
Performance of real-world I/O workloads
in QEMU/KVM through SPDK and

libvfio-user on NVMe devices

Juan Sebastián Rolón Lancheros

A thesis submitted to McGill University
in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

School of Computer Sience

McGill University
Montréal, Québec, Canada

July 2023

© Juan Sebastián Rolón Lancheros 2023

Abstract

It is a critical concern for cloud computing providers to identify and adopt optimal virtual ma-

chine (VM) I/O storage paths. In Linux, these involve NVMe hardware, PCIe passthrough with

VFIO, and userspace drivers (e.g. SPDK). Vfio-user is a library and protocol for inter-process

communication, making use of sockets to perform I/O. This library aims to tie together all the

above-mentioned host-side improvements. QEMU/KVM VMs using vfio-user and SPDK are the-

oretically expected to attain low latencies due to mostly userspace processing, but this VM datapath

configuration is still experimental and performance data is lacking in the literature.

This thesis presents the setup and results of benchmarks comparing the I/O performance of a

VM using vfio-user and SPDK as its storage backend against different datapath configurations.

Additionally, we present vfio_user_snoop, a bpftrace-based tool to analyze vfio-user packets

in transit; plus a layer-by-layer breakdown of I/O latencies using this setup. We observe negligible

differences for baremetal, vfio-user, and passthrough in fio benchmarks, at 26.66± 0.18µs mean

latency in random reads and 27.77 ± 0.77µs in random writes. For RocksDB, on random reads,

vfio-user attains 19.75% fewer mean ops/sec vs. bare-metal and 1.66% higher mean ops/sec vs.

passthrough; on 50/50 random reads and writes, we see 5.59% and 2.39% fewer mean ops/sec vs.

bare-metal and passthrough, respectively.

ii

Abrégé

Il est essentiel pour les fournisseurs de cloud computing d’identifier et d’adopter des datapath E/S

optimaux pour les machines virtuelles (VM). Dans Linux, ces chemins impliquent le matériel NVMe,

le passthrough PCIe avec VFIO et les pilotes au espace utilisateur comme SPDK. Vfio-user est

une bibliothèque et un protocole pour la communication inter-processus utilisant des sockets Unix

pour effectuer des E/S. Cette bibliothèque regroupe tous les aspects susmentionnés. Les machines

virtuelles QEMU/KVM utilisant vfio-user et SPDK devraient théoriquement atteindre de faibles

latences en raison du traitement essentiellement en espace utilisateur, mais cette configuration du

datapath pour des VM est encore expérimentale et les données relatives aux performances manquent

dans la littérature.

Cette thèse présente la configuration et les résultats de tests comparant les performances d’E/S

d’une VM utilisant vfio-user et SPDK comme backend de stockage contre différentes configurations

des datapaths. Aditionellement, nous présentons vfio_user_snoop, un outil basé sur bpftrace

pour analyser les paquets vfio-user en transit, ainsi qu’une décomposition couche par couche

des latences d’E/S en utilisant cette configuration. Nous observons des différences négligeables

pour les benchmarks baremetal, vfio-user et passthrough avec fio, avec une latence moyenne de

26, 66 ± 0, 18µs en lecture aléatoire et de 27, 77 ± 0, 77µs en écriture aléatoire. Pour RocksDB, en

lecture aléatoire, vfio-user obtient 19,75 % d’ops/sec en moins par rapport à bare-metal et 1,66

% d’ops/sec en plus par rapport à passthrough; sur les lectures et écritures aléatoires 50/50, nous

constatons 5,59 % et 2,39 % d’ops/sec en moins par rapport à bare-metal et passthrough.

iii

Related Publication

Most of Chapters 3, 4, and 5 have been published in:

Sebastian Rolon and Oana Balmau. 2023. Is Bare-metal I/O Performance with User-defined Storage

Drives Inside VMs Possible?: Benchmarking libvfio-user vs. Common Storage Virtualization

Configurations. In 3rd Workshop on Challenges and Opportunities of Efficient and Performant

Storage Systems (CHEOPS ’23), May 8, 2023, Rome, Italy. DOI: 10.1145/3578353.3589544

iv

Acknowledgements

I would like to thank my supervisors, Professors Oana Balmau and Xue Liu, for their guidance,

support, editing, feedback, and insight during the writing of this thesis and the publication it is

based on.

I am also grateful to the Nutanix Acropolis hypervisor team, specifically Felipe Franciosi and

Ben Levon, for their patience and guidance with regards to libvfio-user and advanced topics in

Linux virtualization and performance.

I would additionally like to dedicate this work to my parents, whose support never wavered, and

who truly believed that I would succeed at McGill.

To Taylor, with my deepest gratitude. You were a beacon that lit up my world after years of

darkness. I sincerely thank you for sharing this period of our lives in Montreal. We were both there

when it started, and we walked this path together until it wasn’t possible to continue.

To my friends from Los Andes: Alejandro, Cristian, Juan Pablo, and Zahyra. I am happy that

we’ve stayed together over more than 10 years, despite the distance.

To Gabriel and Ayman, who I can talk to about anything. To Jazlyn and Avinash, for the kind

words and support, the fun and work at CSGS, and the writing sessions.

To Isabelle and Lauren, for their invaluable help and listening.

To the City of Montreal. Living here has been an experience, to say the least. It has driven me

to grow in ways I never expected nor intended.

v

Table of Contents

Abstract . ii

Abrégé . iii

Related Publication . iv

Acknowledgements . v

Table of Contents . vi

List of Tables . viii

List of Figures . ix

List of Programs . xi

1 Introduction . 1
1.1 Problem Statement . 2
1.2 Contribution Overview . 3
1.3 Problem Relevance . 3
1.4 Thesis Overview . 4

2 Background . 6
2.1 Virtualization and QEMU/KVM . 6

2.1.1 System VMs and hardware virtualization . 7
2.1.2 QEMU and KVM . 9
2.1.3 virtio and vhost . 10

2.2 Hardware and drivers . 12
2.2.1 Driver paradigms . 13
2.2.2 Linux userspace drivers: UIO and VFIO . 16
2.2.3 NVMe . 17
2.2.4 SPDK . 19
2.2.5 libvfio-user . 22

3 Approach & methodology . 25
3.1 Choice of end-to-end applications . 26

3.1.1 fio . 26
3.1.2 RocksDB . 26

3.2 Storage virtualization configurations . 27
3.2.1 Bare metal configuration . 28

vi

Table of Contents

3.2.2 Libaio configuration . 29
3.2.3 Passthrough configuration . 30
3.2.4 Vfio-user configuration . 31
3.2.5 Additional configurations . 31

3.3 Layer-by-layer latency measurement with vfio_user_snoop 32

4 Experimental setup . 34
4.1 Hardware and software environment . 34

4.1.1 Hardware . 34
4.1.2 Software . 36

4.2 Provisioning and automation . 38

5 Results . 40
5.1 Fio microbenchmark results . 40

5.1.1 Reads . 41
5.1.2 Writes . 42

5.2 RocksDB end-to-end application results . 43
5.3 Latency breakdown . 48

6 Related Work . 50
6.1 io_uring . 50
6.2 SPDK-vhost-NVMe . 51
6.3 Other approaches and notable work . 52

6.3.1 Kernel-level datapath optimization . 52
6.3.2 SR-IOV . 53
6.3.3 Latency source modeling and formalization 53
6.3.4 Measurement pitfalls . 54

7 Conclusion . 55
7.1 Future Work . 57

Bibliography . 59

Appendices

vii

List of Tables

2.1 I/O latencies and cost per Gigabyte for different storage technologies as of 2021,
forming a clear hierarchy. We are interested in Low-latency SSDs in this thesis,
which sit in the middle of this latency-cost spectrum. Despite recent advances, SSDs
still lag behind memory-bus storage technologies by ∼2 orders of magnitude in the
best case. Data from Wu, et al. [90] . 18

4.1 Hardware specifications of the shared laboratory server (discslab-server1) used to
perform all benchmark runs. NVMe ratings are from the manufacturer’s specifica-
tions [33]. 35

viii

List of Figures

2.1 Virtual machine taxonomy, from Smith and Nair [75]. QEMU/KVM, the Virtual
Machine Manager (VMM) used on all the work in this thesis, is classified as a Same
Instruction Set Architecture (ISA) system virtual machine. 7

2.2 Basic QEMU/KVM execution loop, from Bugnion et al [19]. Notice how I/O handling
breaks out of Kernel mode into userspace, incurring a context switch. 9

2.3 QEMU/KVM I/O handling with virtio and vhost, from Yang et al [93]. 12
2.4 Different driver models in (a) process-structured operating systems (microkernel) and

(b) monolithic kernel operating systems, from Tanenbaum [80]. 14
2.5 Frameworks such as vfio-user make it possible to implement PCI devices in userspace,

with close to no overhead. Note that the “large” SPDK on the right side is a host-level
userspace process, while the “small” SPDK on the left is a different SPDK instance
running in the userspace of the guest. 23

3.1 Bare metal configuration. Applications run inside the host OS and generate I/Os
directly to the NVMe drive, through SPDK. 28

3.2 Libaio configuration. Higher latency is expected in this configuration compared to
bare metal, passthrough, and vfio-user, as the I/O calls incur context switches. . . 29

3.3 Passthrough configuration. Applications run in the guest OS, but they do not perform
system calls to access the NVMe hardware. 30

3.4 Layer-by-layer latency measurement for three layers: 1) application (fio here) to the
guest NVMe driver (green); 2) guest NVMe driver to SPDK bdev (orange); and 3)
SPDK bdev to NVMe (blue). 33

5.1 Mean IOPS per number of threads and queue depth results for fio random reads,
4KB block size. 41

5.2 Mean IOPS per number of threads and queue depth results for fio sequential reads,
4KB block size. 42

5.3 Mean IOPS per number of threads and queue depth results for fio random writes,
4KB block size. 42

5.4 Mean IOPS per number of threads and queue depth results for fio sequential writes,
4KB block size. 43

5.5 RocksDB sequential fill operations per second over time, using 1 thread 44
5.6 RocksDB random read operations per second over time, using 1 thread 45
5.7 RocksDB random write operations per second over time, using 1 thread 46
5.8 RocksDB random read and write operations per second over time, using 1 thread . . 47
5.9 RocksDB sequential read operations per second over time, using 1 thread 48
5.10 Layer-by-layer latency for reads and writes. 49

ix

List of Figures

7.1 A possible “multiplexed” or multi-VM configuration using SPDK, to be tested in
future work. Note that the arrows representing I/O between the memory mappings,
present in Figures 2.5 and 3.4, are omitted here for simplicity. Each QEMU memory
mapping has a corresponding memory mapping in SPDK’s process space. 58

x

List of Programs

3.1 Example fio configuration file used for benchmarking. 26

4.1 Excerpt from the libvirt XML virtual machine schema file for the passthrough
configuration, described in Section 3.2.3. 37

xi

1
Introduction

The advent of cloud computing and datacenter-scale applications has brought on the need for

ubiquitous usage of virtualized workloads and ever-more-performant storage devices at the bottom

of the storage hierarchy, such as NVMe drives and Intel Optane persistent memory [46]. With fleets

of millions of machines, application administrators need to ensure maximum usage of the available

hardware.

In pursuit of this goal, on the software side, datacenter administrators and cloud providers rely

on Virtual Machines (VMs) to provide task isolation, resource disaggregation [11], security [19], and

flexibility for clients using their platforms, and also for themselves [60]. VMs allow cloud service

providers to host more clients than they would be able with physical hardware alone; they allow

for features such as dynamic creation and allocation of new machines for burst workloads; and

they perform their tasks with the theoretical security that tenants will not be able to influence

or affect each others’ tasks in malicious ways (disregarding bugs and breaches) [75]. For example,

1

1.1. Problem Statement

VMs are the fundamental technology that makes it possible for AWS, Azure, GCP, and others, to

offer different operating system hosts with variable hardware characteristics for thousands of users.

It would be a harder task if they only had access to bare-metal machines with the corresponding

configurations.

On the hardware side, Non-Volatile Memory Express (NVMe) devices are as of 2023 one of

the fastest available storage options, possibly only behind persistent memory (PMEM), in the set

of available I/O devices that are now being referred as the storage jungle [46]. For a long time,

application design was dictated by the implicit assumption that I/O would be the biggest bottleneck

in terms of latency. New hardware breaks these preconceptions, due to support for a large amount

of queues and long queue sizes whcih allow for massively parallel I/Os.

1.1 Problem Statement

It is commonly perceived that workloads running inside virtual machines have to pay a performance

overhead [19, 47]. This has changed over the years, first with the implementation of direct vir-

tualized code execution on the CPU facilitated by security rings (Intel and AMD’s virtualization

extensions) [19], and more recently through virtual machines being able to directly access bare-metal

hardware through passthrough on Linux [81]. Most recently, there have been advances in developing

userspace drivers which allow for processes to interact with hardware directly without having to

go through the Kernel and triggering context switches, which in practice so far have shown great

reduction in I/O latency overhead.

A prominent implementation of this paradigm is the SPDK framework [85, 92] created by Intel,

Nutanix, et al., which is a series of Linux libraries and applications that allow processes direct

access to NVMe devices by connecting with the Kernel’s passthrough facilities (such as UIO and

VFIO) and reimplementing Kernel storage stack features with the intention of them being used

directly by applications. SPDK also follows the polling model for NVMe I/O, which as also shown

great success lately with the io_uring Linux storage driver, as opposed to the widespread interrupt

model. Recently, Nutanix has developed libvfio-user, an SPDK library that allows for userspace

processes to “speak” the Kernel VFIO protocol and therefore allow for another layer of the I/O

stack belonging to the Kernel to be bypassed.

2

1.2. Contribution Overview

Research Questions.

• In comparison with currently-existing and production-ready storage I/O for virtual machine

configurations, where does libvfio-user sit in terms of latency and IOPS?

• Is libvfio-user performant enough to be used in production by cloud service providers?

• Given that it requires a complex and layered configuration, where does the CPU spend the

most time when I/O requests are executed through libvfio-user?

1.2 Contribution Overview

In order to answer the questions above, this thesis exposes results of data collection on experiments

executing Fio and RocksDB processes inside a QEMU/KVM virtual machine while using SPDK

inside the VM, and using SPDK from the QEMU process towards the hardware while going through

libvfio-user.

In order to get deeper insight into the contributions of each one of the steps involved in the

I/O pipeline from process I/O submission to response, we developed vfio_user_snoop, a tool for

measuring latency in specific layers of the stack, and its results were collected by generating traffic

using Fio.

Descriptions of the tools, code, and automations developed to set up the scenarios is also in-

cluded. In addition, results from synthetic benchmarks using fio, comparing bare-metal, default

“naive” QEMU/KVM configuration, QEMU/KVM using io_uring at all levels, and QEMU/KVM

using SPDK+libvfio-user are included to contribute to the body of data in the literature.

1.3 Problem Relevance

Datacenters are complex pieces of infrastructure that incur costs in many different dimensions,

including cooling, energy usage, hardware, noise, among others [11, 60]. These costs can also be

understood as directly economic costs for datacenter administrators and cloud service providers.

Improvements in the efficiency of usage of clock cycles can, at scale, have direct impacts on

these costs. Using userspace drivers would involve fewer clock cycles, from I/O request from the

3

1.4. Thesis Overview

process all the way to I/O submission to the hardware, due to the fact that some Kernel facilities

are not involved and there are no kernel to userspace context switches. In effect, less code needs to

be executed to attain the same tasks.

If the above holds true in practice, it could enable cloud service providers different paths for

server hardware usage, e.g.:

1. maintain datacenter size and application density to obtain slight increases in energy efficiency,

due to the fact that fewer clock cycles are spent, or

2. increase application density and datacenter size for very slight degradation in application

performance (since the provider can afford to run e.g. 11 instead of 10 VMs in a single

machine due to the efficiency gains).

In a more practical sense, warehouse-scale computing makes it so that task optimization, even at

small levels, can have measurable and noticeable effects on the environmental impact of datacenters

and surrounding infrastructure. For the cloud service providers themselves, it can also represent

cost savings.

The existence of libvfio-user was brought to our attention by Nutanix themselves, one of the

principal companies involved in its development. As a virtualization technology developer and cloud

service provider, Nutanix is directly invested in using libvfio-user in its own development cycle,

and possibly incorporating it in its own products with the aforementioned goals of performance

improvement and cost reduction. We collaborated with their Acropolis Hypervisor team in the

formulation of the research questions, and throughout the work reported in this thesis.

1.4 Thesis Overview

This thesis is organized as follows:

• Chapter 2: Background. We go over the theoretical framework of virtualization in general

and in Linux specifically using QEMU/KVM; plus the motivation of userspace drivers and a

short overview of their implementation over time.

• Chapter 3: Study approach. We go over the general idea of the experiments that we ran, why

they are useful to answer our research question, and their specifications.

4

1.4. Thesis Overview

• Chapter 4: Experimental setup and implementation. We cover the details on how the exper-

iments were set up, tools and automation, pitfalls, and challenges.

• Chapter 5: Results. We present the complete results of our tests and examine them.

• Chapter 6: Related Work. We discuss how our work fits in the wider scope of research in

operating systems, storage, and cloud computing.

• Chapter 7: Conclusion. We describe our vision for future work in this area, and we summarize

our findings.

5

2
Background

We will cover the necessary concepts to get an understanding of why libvfio-user is a novel

configuration option for providing storage I/O for virtual machines and why we want to measure

its performance, placing it in the context of other currently available storage configurations.

2.1 Virtualization and QEMU/KVM

A virtual machine, in its simplest form, is a software implementation of the hardware parts that

make a modern computer [19, 75]. This means that the CPU, the main memory, and peripherals

such as network or storage cards are provided by the software. This is in contrast with bare-metal

computing, where the operating system manages the real hardware resources of the machine.

A simple virtual machine is therefore a program that provides an illusion to other programs,

including operating systems, of them interacting with real hardware. Programs subject to this

6

2.1. Virtualization and QEMU/KVM

illusion are commonly referred to as running inside the virtual machine. Programs inside the

virtual machine, particularly operating systems, are commonly referred to as guests; the machine

with access to the actual hardware (the one providing the “illusion”) is usually called the host.1.6 Summary: The Versatility of Virtual Machines 9 23

Figure 1.13

Process VMs i

Same

Multiprogrammed Dynamic
Systems Translators

Dynamic
Binary

Optimizers
HLL VMs

A Taxonomy of Virtual Machines.

System VMs

Different

Classic-System Whole-System
VMs VMs

i

i
!
!

Hosted Codesigned
VMs VMs

connected to the VM taxonomy via a "dotted line" because their process-level
interface is at a different, higher level than the other process VMs.

On the right-hand side of the figure are system VMs. If the guest and
host use the same ISA, examples include "classic" system VMs and hosted
VMs. In these VMs, the objective is providing replicated, isolated system
environments. The primary difference between classic and hosted VMs is the
VMM implementation rather than the function provided to the user.

Examples of system VMs where the guest and host ISAs are different include
whole-system VMs and codesigned VMs. With whole-system VMs, perfor-
mance is often of secondary importance compared to accurate functionality,
while with codesigned VMs, performance (and power efficiency) are often
major goals. In the figure, codesigned VMs are connected using dotted lines
because their interface is typically at a lower level than other system VMs.

1o6 Summary: The Versatility of Virtual Machines

A good way to summarize this chapter is with an example of a realistic system
that could conceivably be in use today (Figure 1.14). The example clearly
illustrates the versatility of virtual machine technologies. A computer user
might have a Java application running on a laptop PC. This is nothing special;
it is done via a Java virtual machine developed for IA-32/Linux. However, the

Figure 2.1: Virtual machine taxonomy, from Smith and Nair [75]. QEMU/KVM, the Virtual
Machine Manager (VMM) used on all the work in this thesis, is classified as a Same Instruction
Set Architecture (ISA) system virtual machine.

Simple virtual machines, namely machines that run entirely in software, are usually called pro-

cess virtual machines [75]. Process VMs provide full abstractions of the hardware environment for

the processes that execute inside of them, allowing applications to be run in a consistent environ-

ment regardless of the real hardware configuration. Process VMs can emulate existing hardware

architectures, allowing console games to be played on personal computers, for example; but they

can also describe architectures without any physical equivalents, such as the Java Virtual Machine

(JVM) [57]. Crucially, however, process VMs are unable to run a full operating system, due to OS’s

requirements to run certain instructions in privileged modes in the CPU [73].

2.1.1 System VMs and hardware virtualization

Modern operating systems make use of certain CPU features to provide enhanced security and

protection from possible failures from bugs in userland code. We refer to these as protection rings

or privilege modes. Specific instructions in the CPU instruction set architecture (ISA) can make

7

2.1. Virtualization and QEMU/KVM

it so that memory-access instructions, for example, trigger a hardware trap if attempting to reach

an address outside their allowed range. Other instructions can also be guarded behind a protection

ring, so that e.g. virtualization instructions (more on these later) can only be executed when the

processor is running on the lowest (most privileged) ring. These features allow for more complete

system emulation and a different type of virtual machines: system (or full) virtual machines.

According to Smith and Nair [75], system virtual machines originated in the mainframe-computing

environment of the 60s and the 70s. The initial intention was to run multiple operating systems

on a single machine. System VMs allow for total virtualization of a complete system environment,

which makes it possible for full operating systems to be installed on top of them. In the process

VM paradigm, the host operating system has the capability to execute and manage process virtual

machines. The analogous piece of software that takes care of this task in the system VM paradigm

is the hypervisor, or Virtual Machine Manager.

There are two types of hypervisors. Type-1 hypervisors have direct access to the real hardware

and have no need for an operating system on the bare-metal hardware to operate. Type-2 hypervi-

sors, also called hosted hypervisors, rely on the host operating system to provide access to certain

services, such as hardware access through host drivers [19, 75]. Notice that both of these types are

present under the Same ISA category on Figure 2.1.

In addition to protection rings, a crucial technology that makes modern system VMs possible is

hardware-supported virtualization, implemented in the mid-2000s by Intel and AMD with the VT-x

and AMD-v extensions for their CPU instructions sets. It was possible to have full system VMs

before the introduction of VT-x, as evidenced by the existence of Xen, a Type-1 hypervisor [19]. The

issue, however, was the requirement for guest kernels to be modified so that they could run in the

virtualized environment. This is called paravirtualization: the virtualized task is aware of it being

run in a non-bare-metal environment, and it has to undergo modifications that break the principle

of equivalence: the virtualized task is not identical to how it would run on bare metal [19, 75].

Type-1 VMs have access to lower, distinct CPU protection rings in order to execute code with

higher privileges [4]. This is a way to provide the guest operating systems a better illusion of

them having full access to the hardware; under a Type-1 hypervisor configuration, guest operating

systems will be able to execute their code on the real CPU, but some of the instructions that they

8

2.1. Virtualization and QEMU/KVM

will attempt to execute (such as things related to paging and memory management) will actually

cause traps that must be handled by the hypervisor.

2.1.2 QEMU and KVM
4.4. PERFORMANCECONSIDERATIONS 67

User mode

Handle
IO

IO

Signal
pending?

Issue Guest
Execution ioctl Enter

non-root

Execute Guest

Handle
#vmexit

Kernel mode Non-root

yes

yes

no

no

Figure 4.4: KVM Virtual Machine Execution Loop, adapted from [113].

• handles the #vmexit according to the exit reason, as described in §4.3.2;
• if the guest issued a programmed IO operation (exit_reason = IO) or a memory-mapped

IO instruction (exit_reason = exception, but only when accessing a memory-mapped
IO page), break the loop and return to userspace; and

• if the #vmexit was caused by an external event (e.g., exit_reason = interrupt), break
the loop and return to userspace.

4.4 PERFORMANCECONSIDERATIONS
edesign of VT-x is centered around the duplication of architectural state between root and non-
root modes, and the ability to atomically transition between them: a single instruction, vmresume,
transitions back to non-root mode and loads then VMCS state into the current processor state.
In the other direction, the trap #vmexit stores the entire state of the virtual CPU into the VMCS
state.

Atomic transitions between modes do not imply a high execution speed, and certainly not
a single-cycle execution time. Intuitively, such transitions are expected to stall the entire execu-

Figure 2.2: Basic QEMU/KVM execution loop, from Bugnion et al [19]. Notice how I/O handling
breaks out of Kernel mode into userspace, incurring a context switch.

QEMU was released by Fabrice Bellard in early 2003, originally with the intention of creating

an emulator (Quick Emulator) that would run Linux x86 binaries on a diverse set of CPU archi-

tectures [12]. This was (and still is) supported by a dynamic instruction translator, which QEMU

calls TCG, the Tiny Code Generator [36]. Originally, QEMU was only a process VM, emulating

the CPU exclusively, but by the middle of 2003 a full system emulation mode was added, which

included peripheral and external hardware emulation [13].

By 2005, when the Intel VT-x technology was released [39, 63], Avi Kivity from Qumranet

started working on KVM, which he would release in 2006. KVM stands for Kernel(-based) Virtual

Machine [25], a Linux kernel module that allows QEMU to request certain of its operations to be

executed on the real hardware, supported by the CPU virtualization extensions added by Intel and

9

2.1. Virtualization and QEMU/KVM

AMD to the x86 and x86-64 instruction sets (some other CPU architectures also support virtual-

ization extensions). According to Bugnion et al, QEMU/KVM is squarely a Type 2 hypervisor [6].

Essentially, KVM acts as a driver for the VT-x and VMX CPU features, such as the VMXON,

VMLAUNCH, VMCALL, etc. instructions, that enable the CPU to conceptually work in a lower protection

ring, colloquially called ring -1 [35]. When in this mode, guest kernel instructions are executed

directly on the real CPU, except for certain high-privilege instructions which would trigger a VM_EXIT

signal and return control flow to KVM in the host’s kernel. KVM exposes an API to userspace

through the /dev/kvm character device, on which processes (most commonly QEMU) can issue

ioctl()s to create or destroy hardware-backed virtual machines, abstracted by a virtual CPU and

MMU (vCPU) [6]. This way of exposing kernel features and access to hardware through the Virtual

Filesystem is now common in Linux, as we will see with VFIO in Section 2.2.2.

Both QEMU and KVM are open-source projects that have enjoyed significant momentum in their

development since release. As of 2017, Amazon has based its AWS hypervisor on a modified version

of KVM [74]; Google has done similarly for its GCP products [45]. The cloud and datacenter-

scale computing would not be possible, at least at the current scale, without these advances in

virtualization technology, both for virtual machines (as described in this section) and for other

resources such as networking [60].

Modern cloud infrastructure sits on a very deep and complex "layer cake" of abstraction sup-

ported by both software and hardware: time sharing operating systems that multiplex resources

such as CPU (through sophisticated scheduling) and memory (through collaboration with hardware

MMUs); over which hardware-supported virtual machines are placed to cooperate as distributed

systems through software-defined virtual networks; supporting containers that further make use of

kernel features for security and isolation; culminating in further virtual name resolution services

that collect hundreds or thousands of containers through orchestrators like Kubernetes. The hope

is that all of this infrastructure aids software be faster, easier to maintain, more reliable, and more

helpful for both the users and the developers that strive to create it.

2.1.3 virtio and vhost

The QEMU/KVM hypervisor can, in a simple configuration, handle I/O and peripherals by fully

emulating hardware. One benefit is the virtualization principle of equivalence is held: the unmod-

10

2.1. Virtualization and QEMU/KVM

ified guest operating system is transparently executed by the hypervisor. However, the tradeoff is

a loss of performance. The guest kernel is running a full driver that might waste operations that

could be optimized, if only the driver could be modified to better work in a virtualized environment.

A way to mitigate this wasted work is to use virtio. Rusty Russell introduced virtio in 2007,

a time when multiple hypervisor solutions for Linux were still vying for prominence (a post on

Russell’s own blog mentions four: Xen, KVM, VMWare and lguest [69]). Each one of these had

its own way of emulating or virtualizing hardware accesses for the guest. Russell’s idea was to

introduce a standard for virtual devices to follow in order to facilitate virtualization of hardware.

In his 2008 paper [70], Russell introduces the goals of:

1. a common configuration ABI for virtualized devices, as opposed to "boutique transport mech-

anisms (...) [which are] particular not only to a given hypervisor and architecture, but often

to each particular kind of device";

2. ensuring all work related to virtio was part of the Linux kernel, so it would be included in

the operating system and there would be no need to further convince third-parties to buy-in

to additional libraries;

3. conceptually separating the concepts of drivers, transport, and configuration mechanisms for

virtualized hardware;

4. providing a reference implementation that showed the model was feasible.

virtio is an example of paravirtualization, since the guest OS needs to include virtio frontend

drivers in its kernel that are fully aware of the existence of a virtio backend in the hypervisor layer

that handles I/O (this would usually be QEMU).

virtio can increase the performance of paravirtualized hardware devices, but it doesn’t change

the QEMU/KVM execution loop shown in Figure 2.2. Specifically, I/O handling is triggered from

the guest, captured by the KVM host kernel module, switched back into the virtio backend in

QEMU userspace, and then back to host kernel space through normal I/O system calls. Only the

guest kernel layer is "slimmed down". An approach to reduce the number of context switches is to

offload the backend emulation onto a kernel process.

11

2.2. Hardware and drivers

This is the idea behind vhost. By 2009, users of the virtio network devices had been ex-

periencing performance issues that were identified as being caused by very frequent system calls

triggered by the QEMU virtio backend, in addition to packet data copying from kernel space into

userspace [48]. As a solution, Michael Tsirkin created the first vhost device, vhost-net, which es-

sentially moves the virtio backend code into userspace, allowing it to be configured and controlled

via a character device exposed to userspace [82]. This approach is shown in Figure 2.3b. In time,

additional vhost devices were created to reduce latency in block devices as well.

QEMU

Guest VM

Virtio backend (aio API)

App

Guest kernel

Virtio frontend

Host kernel

KVMNVMe Driver

NVMe Hardware

1

2

34 5 6

7

8

(a) Typical QEMU/KVM virtio handling

QEMU

Guest VM

Vhost kernel

App

Guest kernel

Virtio frontend

Host kernel KVM

NVMe Driver

NVMe Hardware

1

2 7

8

34
5

6

(b) Virtio handling with vhost-kernel

Figure 2.3: QEMU/KVM I/O handling with virtio and vhost, from Yang et al [93].

2.2 Hardware and drivers

Device drivers are programs that have knowledge of a piece of hardware in detail: whether they

have clocks and/or timers (e.g sound cards), what the specifications of the busses for communicating

with the devices are, how the device memory (if present) is laid out, where in this memory can

configuration options be found and set, etc [7].

Operating systems attempt to provide higher-level APIs through layers of abstractions for hard-

ware, with the intent of decoupling the system hardware from the OS implementation, encouraging

code reuse in the kernel, and providing flexibility in the use of system resources for application

12

2.2. Hardware and drivers

developers. Drivers sit directly on top of the hardware, and their tasks are usually the last step in

the conversion of abstract calls (such as “write a line into a file”) into the distinct operations that

the device needs to execute to complete such a request (such as “move the read/write head onto the

4th cylinder and write 96 bytes” [7, 80].

2.2.1 Driver paradigms

Over the history of computing, software to hardware interaction has been handled in different ways.

Some operating systems, such as the original MS-DOS, allowed for userspace programs to take direct

control over hardware. In effect, programs themselves came bundled with drivers for peripherals

and hardware, as exemplified by PC games that had specific settings for particular GPUs and sound

cards [44, 76].

Traditional monolithic kernel operating systems usually bundle their drivers as part of the kernel

distribution. One reason to do this is because drivers usually need to execute privileged code, such as

the out x86 instruction for certain I/O devices, or accesses on PCI device memory-mapped regions.

There may also be a performance requirement for the driver; userspace code can be scheduled away,

or its memory can be paged, which constitutes an unpredictable environment that may affect real-

time interaction with the hardware. However, allowing drivers to run in kernel space may come

with its own sets of problems. It is a common thought that driver programmers have lower skills

than "pure" kernel programmers [7], which may come from the fact that (at least up to the days

of Windows XP), it was estimated that 85% of system crashes were caused by buggy drivers [79].

Despite whether this conception is true or not, if no mitigations are taken, badly programmed kernel

drivers can e.g. overwrite memory regions reserved for other kernel tasks or userspace, among many

other issues.

A different method for organizing drivers is the one used in microkernel operating systems,

such as Minix. The microkernel is intended to be the minimum viable operating system, possibly

managing only scheduling, memory management, and process isolation [80]. In this model, drivers

are no different from other processes that execute in userspace. This solves the issue of badly written

drivers being able to bring down the kernel due to bugs [7]. Certainly, microkernel operating systems

must have mechanisms to allow userspace processes to access the privileged resources that would be

behind kernel space in monolithic OSs. Minix, for example, allows some userspace processes access

13

2.2. Hardware and drivers

Process-structured system

Hardware

System
task

User
process

File
system

Device
driver

1

2

3

4

5

6

U
ser space

K
ernel space

(a) Interactions 1-6 are messages be-
tween four independent userspace pro-
cesses.

Monolithic system

U
ser space

K
ernel space

Userspace
part

File system

Device
driver

process

(b) Userspace processes perform sys-
tem calls to use kernel space functions,
such as the file system, which in turn
interacts with the device driver.

Figure 2.4: Different driver models in (a) process-structured operating systems (microkernel) and
(b) monolithic kernel operating systems, from Tanenbaum [80].

to memory segments from other address spaces, it exposes API calls to access general purpose

I/O, and it provides a way for processes to be notified of hardware interrupts through the receive

mechanism [80].

The choice between monolithic and microkernels has been famously immortalized by the Torvalds-

Tannenbaum debate of the early 1990s [1], which may have eventually led to Linux allowing for

drivers to be partially separated from the kernel via modules, which can be dynamically loaded or

unloaded as part of the running kernel image without having to reboot. Despite this decoupling,

once loaded, module code runs at the same privilege level as the kernel — it can still crash the

system if bugs are present. [3]

Finally, another approach that combines features from “traditional” Kernel-space drivers and

microkernel-inspired userspace processes are userspace drivers. These have been possible in Linux

since at least 2001 [68], albeit with limitations, such as no access to interrupts and an incomplete

API to deal with general purpose I/O ports. However, before kernel 2.6.26 (July 2008), it was

14

2.2. Hardware and drivers

possible for sudoed processes to mmap() the /dev/mem file, a full image of the system memory [30].

It is still possible in modern systems, if the kernel is compiled with the CONFIG_STRICT_DEVMEM

flag disabled, which is not the default configuration. Allowing userspace processes to access all of

the system’s memory is a security and stability risk. This tension between allowing and restricting

access to system resources has been a constant underlying concern for driver and kernel developers

in Linux, as will be covered in Section 2.2.2, much of the progress made in allowing secure access

to the hardware from userspace is what makes libvfio-user possible.

An orthogonal concern for the architectural decisions on how drivers communicate with the

hardware are the mechanisms or algorithms that are used. There are broadly 2 paradigms: pro-

grammed I/O (also commonly called polling) and interrupt-based I/O. Programmed I/O typically

requires the CPU to spend cycles querying and writing to the device’s control and data registers

for its status and the availability of data. In cases where the device is busy, such as a Hard Disk

Drive performing a write (which could require waiting for the read/write head to physically move),

CPU cycles are also spent waiting for the device to become available. On time-sharing systems,

such cycles could possibly be used for serving other userspace processes [2].

Interrupt-based I/O allows for the CPU to perform other tasks while the device controller takes

care of the operations. Essentially, the CPU issues a transfer request onto the device, which could

be the block identifier and the number of bytes expected for a block read request, for example.

Once the device registers contain the requested data, the device raises a hardware interrupt that

forces the CPU to step into kernel code which can handle the request [7]. This saves the CPU from

wasting cycles checking for the device status, but copying data to and from the device still takes

cycles that could be used for other tasks.

An optimization which uses some of the ideas of interrupt-based I/O is Direct Memory Acces

(DMA). DMA requires hardware support as an additional controller on the system motherboard. It

is essentially an offloading of programmed I/O onto this DMA controller. In the simplest possible

cases, the CPU issues transfer requests to the DMA controller, which will then take care of managing

requests towards the device controller. Typically, a system where DMA is available will allow device

controllers themselves to read and write from specific buffers situated in the main system memory,

which are allocated by the drivers. The DMA controller interrupts the CPU once the data is

15

2.2. Hardware and drivers

available in the system memory buffers [80]. This subject is relevant for this thesis, since NVMe

devices use DMA [87].

2.2.2 Linux userspace drivers: UIO and VFIO

As mentioned in Section 2.2.1, userspace drivers were partially possible to implement in Linux by

2001. An important feature that still remained was interrupt handling from userspace. Attempts

to make this work happened since at least 2003, one of them being the Gelato project from the

University of New South Wales [21], with one of the main motivations being to mitigate the intro-

duction of new bugs into the kernel. Gelato introduced kernel patches that would expose interrupt

queue (IRQ) files to userspace through the VFS at /proc/irq/irqX/irq, where irqX is an iden-

tifier corresponding to a specific interrupt cause. Calling read() on these files would cause the

userspace process to wait until an interrupt of the appropriate type was triggered by the hardware.

Interestingly, the Gelato project also added support for DMA, a feature that would return in vfio.

At around the same time, custom kernels were being compiled more or less ad-hoc to support

userspace drivers for industrial PCI control cards. These customizations were usually not shared

with the kernel development community at large until 2006, when Greg Kroah-Hartman published a

rough draft of iio, the Industrial I/O driver [53]. The very first drivers implemented using iio used

far fewer lines of code and complexity when compared with equivalent kernel module drivers for the

same hardware [28]. This improvement in driver simplicity, plus the fact that proprietary drivers for

industrial applications would be possible while also reducing the number of bugs, gave momentum

to the generic userspace driver infrastructure in the Linux kernel, which would be renamed UIO. It

was merged for general availability in kernel 2.6.23, from October 2007 [24]. UIO did not allow for

DMA from userspace, it simply provided ways for userspace processes to be notified of interrupts

and mmap the devices’ memory through character devices under /dev/uioX.

Starting around 2008, Intel and AMD added support for I/O Memory Management Units

(IOMMU) in their server and consumer platforms [14]. In a similar way to standard MMUs, IOM-

MUs are special hardware that sits between the device controllers and the system communication

bus, with the task of translating between real addresses and bus addresses. This can enable devices

to access memory at very high addresses (e.g. if the device can only perform 32-bit addressing),

but it also adds the possibility of securing DMA: the CPU is able to program the IOMMU so that

16

2.2. Hardware and drivers

devices are limited to specific main memory regions [5]. To take advantage of IOMMUs and their

features, Alex Williamson proposed VFIO in 2011, with the intention of replacing UIO as the main

kernel framework for implementing drivers in userspace. From the beginning, VFIO was designed

with the intention of allowing virtual machines to access host hardware directly, supported by fea-

tures such as full interrupt notification support, non-root access to device memory, and DMA (the

latter two now safe due to IOMMU protection) [88]. By and large, the VFIO API is very similar

to UIO: character devices are presented under /dev/vfio/vfioX, where vfioX corresponds to the

PCI group the device belongs to.

In short, userspace applications communicate with the vfio character device using ioctl()s to

obtain PCIe-level information about the devices, such as the contents of their PCI registers or their

address ranges. It is also possible for applications to memory map the PCI device memory onto their

own process space, due to the safety and address routing provided by the IOMMU. Once the device

memory has been mmap()ed into a process, the kernel has no need to intervene in process-device

communication. This allows for safe and feature-complete userspace drivers.

It is important to note that vfio works at the IOMMU device group granularity. This means

that whenever vfio is activated for a specific device, total control of it is given to vfio: there is

no possibility for any other system component to communicate with the device, except through

the vfio ioctl() API. This makes it impossible for Kernel and userspace datapaths to coexist as

actors on a particular NVMe, it has to be one or the other. In effect, the device becomes “invisible”

to the Kernel drivers [88].

2.2.3 NVMe

Non-Volatile Memory Express (NVMe) is a storage communication protocol that uses PCI Express

(PCIe) as its transport bus. It is designed for solid state storage devices (SSDs), as opposed to

previous I/O busses such as Serial ATA (SATA), protocols such as the Advanced Host Controller

Interface (AHCI), and abstractions such as block-based I/O that were designed on the assumption

that the underlying hardware was a metal spinning disk drive [54].

The limits to improving legacy I/O interfaces and the need to create an SSD-specific protocol

started being noticeable in the mid-2000s [54]. For example, starting with PCIe revision 1.0 and

later, the bandwith available on the bus (at 1GB/s when using 4 PCI lanes [62]) was already higher

17

2.2. Hardware and drivers

Storage Technology Device Latency Cost ($/GB)
DRAM SK Hynix DDR4 DRAM 80ns ∼7

NVDIMM Intel Optane DCPM 300ns ∼5
Low-latency SSD Optane SSD 905P 10µs 1
NVMe Flash SSD Samsung 970 Pro 80µs 0.3
SATA Flash SSD Intel 520 SSD 180µs 0.15

Table 2.1: I/O latencies and cost per Gigabyte for different storage technologies as of 2021, forming
a clear hierarchy. We are interested in Low-latency SSDs in this thesis, which sit in the middle
of this latency-cost spectrum. Despite recent advances, SSDs still lag behind memory-bus storage
technologies by ∼2 orders of magnitude in the best case. Data from Wu, et al. [90]

than the state-of-the-art SATA interface released in 2008, revision 3.0, which supported up to

6Gb/s. Furthermore, the non-volatile solid-state hardware could support parallel operations much

more easily than spinning disk drives due to the physical characteristics of the devices. Whereas

SSDs can be conceptualized as bit arrays where the cost of accessing any address is always the same,

HDDs have the constraints of seek time and its variation over the surface of the disk. The speed at

which data could be addressed led the NVMe working group to include support for 64K I/O queues

and 64K commands per I/O queue in the protocol specification [89]. It is theoretically possible to

have 4 billion I/O commands in-flight when using an NVMe device, though normally the actual

devices support much fewer queues than allowed by the spec; e.g. the hardware used for the work

of this thesis only supports up to 31 data queues and 1 control queue [33]. Presumably, as of 2022,

manufacturers have not yet found it cost effective to fabricate NVMe controllers with support for

over 256 queues and queue depths of 2048 [71].

Due to the dominance of spinning disk I/O devices over decades, block device driver implemen-

tations were usually tuned to their behaviour, with the assumption that communication between

the CPU and the disk would be a significant bottleneck in all applications. As described in Sec-

tion 2.2.1, there were attempts at work optimization such as hardware interrupts and DMA, which

free the CPU to work on actual processing tasks rather than waiting for the hardware. With the

advent of NVMes, however, many of these assumptions and software implementations became ob-

solete. For example, the block interface’s usefulness for Flash media and SSDs has been called into

question over the past few years. The block abstraction defines devices as randomly addressable

single-dimensional arrays that can only be accessed in chunks of memory known as blocks. Block

18

2.2. Hardware and drivers

sizes are kernel- or filesystem-defined, and usually a multiple of the underlying spinning hard disk

(HDD) physical sector size. Over time, they have “standardized” to a value of 4096 bytes [68].

The block interface was created and adopted at a time when the gap between primary and

secondary storage media was much larger than what it is today [78]. The block abstraction allowed

lower latency accesses to HDDs through I/O request buffering, which allows for asynchronous request

fulfillment; it batches I/Os to reduce disk seek time and overhead; and it opens the door for

abstract block scheduling algorithms that feed blocks into the drivers programmatically to minimize

latency or maximize throughput. These very features, which justifiably improved the OS/HDD

interface, have been considered a “tax” to be paid by flash media, as explained by Bjørling et al.:

the block abstraction leads to capacity over-provisioning (excess SSD storage dedicated to garbage

collection overhead), excess SSD device DRAM usage for flash page mapping tables, and host

software complexity [16]. This is due to the physical architecture of flash media and the operation

granularity it supports. Additionally, there is some evidence that NVMes have better latency

characteristics for smaller block sizes and higher throughput for larger block sizes, decoupled from

the classic HDD sector size of 512 bytes and its integer-multiple-sized blocks [15]. In short, a

prominent reason why block interfaces are still used with NVMes is due to historical baggage and

ease of NVMe onboarding for already-existing software that expects the block API.

Another standard HDD latency optimization technique that has been judged under a new light

after the advent of NVMes is interrupt-based I/O. CPU polling for I/O completion, also called

busy waiting, which would be considered a waste of cycles under the “slow-I/O” model, became a

feasible approach for fast I/O, considering that hardware latency for I/O request completion started

approaching single-digit microsecond values.

2.2.4 SPDK

The I/O polling approach was picked up by the Storage Performance Development Kit (SPDK),

which describes its goals as the following [85]:

1. Moving all of the necessary drivers into userspace, which avoids syscalls and enables zero-copy

access from the application.

19

2.2. Hardware and drivers

2. Polling hardware for completions instead of relying on interrupts, which lowers both total

latency and latency variance.

3. Avoiding all locks in the I/O path, instead relying on message passing.

Whereas normal applications would use the operating system’s I/O path, which incurs I/O

system calls (such as write()) and usually requires the OS to copy data from the NVMe’s registers

onto main memory, the goal of SPDK is to provide libraries that can be linked by high-performance

and I/O intensive applications to have direct access to the devices’ capabilities directly from their

process space. SPDK also provides some programs that can support I/O intensive applications.

One of these programs is nvmf_tgt, the NVMe-over-Fabrics target. NVMe-over-Fabrics (NVMe-

oF) is a section of the NVMe specification that allows NVMe commands to travel over network

fabrics (such as Infiniband) or over different communication channels locally, i.e. not PCIe. The

nvmf_tgt is a process that acts as an NVMe-oF commands server, meaning that it can receive

NVMe commands over (typically) a Unix domain socket. This is the program that libvfio-user

leverages to implement userspace virtualized NVMe devices.

The benefits of polling for I/O instead of relying on interrupts, specifically for I/O intensive

systems where latency is paramount, were suggested for NVMe and storage devices by researchers

starting around 2012. Yang et al. [91] explicitly showed that wasting cycles on busy waiting could

provide better performance than interrupt-based I/O as long as the underlying storage medium

could attend requests synchronously at sub-5µs latencies. Their suggestion was to have two paths

for I/O: a polling-based path that was to be used for small and frequent transfers; and a traditional

interrupt-based path for large-size infrequent transfers. Notice that this recommendation is only

valid for systems that attend I/O requests that match such a pattern. It has long been accepted

that the trade-off for using polling-based I/O is the wasting of cycles that could be used for compute

tasks; this does not prevent it from being the ideal solution when minimal latency is desired [77, 92].

There has been some effort recently in reducing this trade-off through the use of hybrid polling,

where I/O wait is first scheduled as an interrupt after which polling is started. Choosing how long to

wait before starting polling is the subject of active research, as performing heavy computations for

heuristics can introduce unwanted latency and wipe out pure polling’s performance advantage [56].

20

2.2. Hardware and drivers

The SPDK components that perform the poll-based waiting are called pollers, lightweight thread

abstractions that live inside application context environments called reactors. By definition, reac-

tors exist at a one-to-one correspondence with CPU cores, and they can be understood as poller

schedulers [84]. In the simplest configuration, pollers simply busy-wait on specific system memory

areas where the NVMe device posts completed requests through DMA. To mitigate wasted cycles,

pollers can be set to run on a schedule instead of all the time. Alternatively, the SPDK Scheduler

framework can be used to automatically consolidate the lightweight threads onto a single core, thus

allowing for other cores to go into an idle state. Further scheduling algorithms are pluggable into

the framework [94].

As a comprehensive suite of libraries and tools, SPDK bundles implementations of software

components that are readily available in the Linux kernel storage stack. Briefly, in a normal Linux

system, the path of an I/O request from userspace goes through [38]:

1. the Virtual File System (VFS),

2. the block-based filesystem (ext4, btrfs),

3. the block I/O scheduler (blk-mq),

4. the NVMe driver.

SPDK has implementations of levels 2-4. Level 2 is a stub filesystem called BlobFS, as explained

in Section 3.2.1. Level 3 is a component called bdev, an implementation of a block device interface.

Level 4 is SPDK’s asynchronous and lockless NVMe driver, which can also be linked directly into

userspace applications, factors that differentiate it from Linux’s implementation.

SPDK is an abstraction layer on top of NVMe hardware, whose memory has been made directly

available to userspace through vfio. As such, it is ideally placed to provide multiplexing (virtual-

ization) and caching to applications wishing to perform storage I/O. When hardware methods such

as SR-IOV (covered in depth in Section 6.3.2) are unavailable for a particular device, SPDK can

take over this task by having a single nvmf_tgt process in userspace that attends to multiple I/O

generating processes. In this way, a single instance of each of the layers described above can be

shared, minimizing resource consumption. The way this works is explained in Section 2.2.5. SPDK

can also provide caching through one of bdev’s implementations, the Open CAS Framework Virtual

21

2.2. Hardware and drivers

bdev [86]. In this configuration, the bdev component of an nvmf_tgt process is providing a caching

layer between the hardware device and the I/O generating processes.

2.2.5 libvfio-user

In a standard QEMU/KVM configuration, QEMU takes care of the emulation of I/O and peripheral

devices, whose actual operations are then offloaded to the host Linux kernel using standard system

calls. For example, an I/O storage device seen by the guest is actually code being run by QEMU,

which then transfers the read/write requests down to the host by calling the appropriate read() or

write() system calls. Finally, the KVM host kernel module is responsible for the management of

the “virtual” CPU, as explained before, and emulating the hardware MMU.

Figure 2.3a shows how this standard I/O loop works with a QEMU/KVM virtual machine using

virtio. The guest userspace application makes an I/O system call to the guest kernel (1), which

has a paravirtualized virtio driver that attends to the request. During the guest kernel control

flow, a VM_EXIT event is triggered, which causes a context switch into the KVM code in host kernel

space (2). Another context switch, this time back into userspace, is necessary for the I/O request

to be attended to by the QEMU virtio backend (3). Finally, QEMU, which is simply a process

in the userspace of the host, performs an I/O system call on the host kernel, causing yet another

context switch (4).

It is possible and desirable to reduce the number of context switches from userspace to kernel

space, since they incur a latency overhead on each I/O request. One approach to do this is shown

in Figure 2.3b. With this configuration, it is possible to save 2 context switches from kernel to

userspace, namely the return to the QEMU virtio backend and the system call from QEMU onto

the host kernel’s I/O stack. In their place, there are simple in-kernel-space function calls from KVM

onto the vhost backend, and from vhost onto the kernel’s block device stack and the NVMe driver

further down the line. It is possible, however, to get the same reduction in system calls and kernel-

to-userspace context switches with a different approach. Among these is SPDK-vhost-NVMe [93]

(to be covered in Section 6.2); and the focus of this thesis, libvfio-user.

Libvfio-user is a library, currently used by the SPDK nvmf_tgt and a specific QEMU fork [61,

64], that allows for userspace inter-process communication (IPC) of vfio-style messages accross a

channel such as a Unix-domain socket. From Section 2.2.2, the purpose of the vfio character device

22

2.2. Hardware and drivers

was to allow userspace processes access to the PCIe devices directly through an ioctl() interface

that also allowed for device memory mapping. Vfio-user builds upon this concept, by reusing most

of the vfio API definitions, so that any userspace process can offer an emulated or virtualized PCIe

device of any kind over an IPC channel.

Host OSUser space

Kernel space
Physical NVMe

VFIO

QEMU

vfio-user

User space
SPDK

bdev

poller pollerfio

Kernel space

socket
m

m
apped

area

m
m

apped
areaI/O

vfio-userconfig NVMe Driver

igb_uio

SPDK

Figure 2.5: Frameworks such as vfio-user make it possible to implement PCI devices in userspace,
with close to no overhead. Note that the “large” SPDK on the right side is a host-level userspace
process, while the “small” SPDK on the left is a different SPDK instance running in the userspace
of the guest.

Concretely, SPDK’s nvmf_tgt offers a vfio-user server that listens for vfio-user messages

over a Unix domain socket. At first, the messages have the goal of obtaining and providing in-

formation about an arbitrary PCIe device. Nvmf_tgt has the capacity to present any arbitrary

PCIe-compliant device when responding to the vfio-user messages, but we are interested in the

case where it transparently offers the information that it itself gets from the real hardware NVMe. It

gets this information through the host vfio character device, as explained in Section 2.2.2. QEMU’s

vfio-user client connects to the Unix domain socket established by nvmf_tgt. Multiple connec-

tions can be attended by a single nvmf_tgt process; in a multiplexing scenario, all of the SPDK

components on the right side of Figure 2.5 would be shared.

Once enough identifying information for the virtualized device has been passed through, SPDK

sends a file descriptor over the Unix socket, which will be a memory mapping between the vfio-user

23

2.2. Hardware and drivers

server and client userspace processes. This memory mapping works the in the same way as the host

memory to NVMe controller interface; since the guest is seeing a “real” NVMe device memory space

in the memory mapped area. Message passing and flow control are governed by NVMe protocol spec-

ifications, namely the presence of Admin Submission/Completion and I/O Submission/Completion

queues [89].

Nvmf_tgt is a program with multiple layers in itself. At the top, the reactors (or pollers)

continuously poll on the shared memory mapping to retrieve new I/O requests. They then pass

them down the stack until they reach the block device layer of SPDK (bdev). Finally, bdev leverages

the SPDK NVMe driver to submit I/O to the actual hardware, through the DMA provided by the

host’s vfio.

In terms of resource utilization, the memory available for the nvmf_tgt process and the CPU

allowances for the pollers are explictly defined during nvmf_tgt initialization. SPDK’s memory is

backed by Hugepages, which can be used to effectively bound memory usage via manual allocation of

a maximum desired value, through the /proc/sys/vm/nr_hugepages file that specifies the number

of Hugepages in the system. Regarding CPU usage, there is a one-to-one correspondence between

pollers and processor cores. Each poller is pinned to a CPU core and makes use of it exclusively,

meaning that at least one of the cores in the machine has to be budgeted to be allocated to SPDK.

Thus, this vfio-user setup provides the QEMU/KVM guest with minimal-latency access to a

virtualized NVMe SSD, by moving as much of the I/O stack into userspace as possible. This setup

is shown in Figure 2.5.

24

3
Approach & methodology

Our objective in this thesis is to compare the performance characteristics of different configurations

for providing NVMe-backed storage to a QEMU/KVM virtual machine. Our guiding principle is the

fact that datacenter-scale tasks would greatly benefit, in terms of improved performance at scale, if

we could reduce I/O latency at the bottom of the stack.

To answer our research question we implement a two-pronged approach. Firstly, we perform end-

to-end comparisons of the latency captured by userspace processes, both inside the virtual machine,

and on the bare-metal (so that we can obtain a baseline for the expected IOPS and latencies). The

userspace applications we have chosen for this purpose are fio and RocksDB.

Secondly, we provide a detailed analysis of the latency between the layers of the vfio-user

configuration (Figure 2.5). Briefly, we set up the simplest viable configuration that uses vfio-user

to provide storage for a QEMU/KVM virtual machine, and we trace single I/O requests at different

points of the stack to determine the average latecy in each layer (or groups of layers).

25

3.1. Choice of end-to-end applications

3.1 Choice of end-to-end applications

3.1.1 fio

the block I/O schedulerFio is an application designed for generating I/O requests as flexibly as

possible, using an extensive set of configuration options that allow for synchronous and asynchronous

I/O, using different backing storage APIs (such as Linux’s POSIX-compliant sync engine, or the

standard asynchronous libaio), different access patterns, and many more features [9]. It also has

the convenient feature of reporting statistical summaries of latency and IOPS calculated from the

generated workloads. We use the fio-reported values as-is for our results.

We use fio as a way to generate synthetic benchmarks. In order to facilitate the testing of differ-

ent access patterns, number of threads, and queue size combinations, we make use of the bench_fio

tool included in the fio-plot repository [58]. It generates fio configuration files dynamically based

on a simple template, an example of which is on Listing 3.1. Fio is able to write directly to block

devices without the need for a filesystem to be present. Unless otherwise noted, we make use of this

feature for every benchmark and test.

1[iotest]
2rw=${MODE}
3blocksize=${BLOCK_SIZE}
4ioengine=${ENGINE}
5iodepth=${IODEPTH}
6numjobs=${NUMJOBS}
7direct=${DIRECT}
8group_reporting=1
9invalidate=${INVALIDATE}

10loops=${LOOPS}
11write_bw_log=${OUTPUT}/${MODE}-iodepth-${IODEPTH}-numjobs-${NUMJOBS}
12write_lat_log=${OUTPUT}/${MODE}-iodepth-${IODEPTH}-numjobs-${NUMJOBS}
13write_iops_log=${OUTPUT}/${MODE}-iodepth-${IODEPTH}-numjobs-${NUMJOBS}
14log_avg_msec=${LOGINTERVAL}
15thread=1

Listing 3.1: Example fio configuration file used for benchmarking.

3.1.2 RocksDB

RocksDB is a popular NoSQL embedded key-value store based on the log-structured merge (LSM)

tree data structure. It was created by Meta, originally based on Google’s LevelDB, with the intent

26

3.2. Storage virtualization configurations

of optimizing for fast flash storage and ramdisks, as well as multicore systems [18]. It is also used

by Nutanix to handle system metadata.

Briefly, RocksDB attains fast write performance by initially performing all writes onto an in-

memory data structure called the MemTable. Every write is treated as an append operation. Once

the MemTable is full (at a configurable threshold), the data is flushed onto persistent storage (next

level of the LSM tree) in Sorted String Table (SST) files, where key-value pairs are stored in order.

Each level, just like the MemTable, has a configurable size. When the size is reached, background

processes perform compactions, which remove deleted keys or outdated versions of valid keys [83].

The reason why we run RocksDB benchmarks as well, instead of relying on fio exclusively, is

due to the fact that fio benchmarks are synthetic. The I/O patterns that fio generates can be

very similar to the ones generated by any other arbitrary program, given a properly prepared fio

configuration file; however, the overall resource consumption and environment of fio is much lighter

and different to what RocksDB can effect on the system. For example, RocksDB runs compaction

threads periodically, which can affect I/O performance in unpredictable ways. This is hard to

simulate with fio alone.

3.2 Storage virtualization configurations

We study four popular configurations of I/O stacks for a QEMU/KVM virtual machine on Linux.

These are the following:

1. Bare metal configuration, which is used as an ideal scenario to determine the upper bound

for latency and throughput for the other configurations (Section 3.2.1).

2. Libaio configuration, where the application generates I/O calls from inside QEMU, through

system calls, QEMU provides hardware emulation, and I/O is performed through system calls

to the host kernel (Section 3.2.2).

3. Passthrough configuration, where the application generates I/O inside the QEMU guest

through SPDK, and QEMU itself communicates with the NVMe hardware through vfio,

(Section 3.2.3).

27

3.2. Storage virtualization configurations

4. Vfio-user configuration, where the application generates I/O inside the QEMU guest

through SPDK, and I/O is passed through a new layer emulating the NVMe device via

vfio-user (Section 3.2.4).

3.2.1 Bare metal configuration

Host OSUser space

Kernel space
Physical NVMe

VFIO

SPDK

fio

NVMe Driver

RocksDB

Intensive I/O

fio-plugin

blobfs

bdev

Figure 3.1: Bare metal configuration. Applications run inside the host OS and generate I/Os directly
to the NVMe drive, through SPDK.

Figure 3.1 shows the Bare metal storage configuration. This configuration does not use virtu-

alization. It is meant as a best-case scenario, over which components are added to construct the

next configurations. We consider that the configurations involving virtualization are “good” if their

IOPS and latency values are quantitatively close to those attained by this configuration.

The I/O generating applications (i.e., fio, RocksDB) run as userspace processes inside the host

OS. The application uses SPDK to perform write and read requests. For fio, we use the spdk-fio

plugin (as a statically loaded library), allowing fio to to call SPDK functions directly from its

process space. For RocksDB, we use SPDK’s fork of RocksDB[49] that integrates with BlobFS,

an SPDK-provided filesystem meant to replace the OS-provided filesystem. BlobFS is built on

top of blobstore, SPDK’s power-fail safe block allocator. As of 2023, BlobFS only supports flat

namespaces (i.e. directories are not supported), and writes to a file must always append to the end

28

3.2. Storage virtualization configurations

of the file [92]. BlobFS (the underlying storage provider) is not to be confused with BlobDB, which

is a variation of RocksDB that optimizes for large values and key/value separation (e.g., similar to

the WiscKey [59] and Bourbon [32] key-value stores). SPDK is configured to communicate with the

physical NVMe by using vfio, using the mechanisms described in Section 2.2.2.

3.2.2 Libaio configuration

Host OSUser space

Kernel space
Physical NVMe

QEMU

User space

fio

Kernel space NVMe Driver

NVMe Driver

libaio

Emulated
NVMe

Storage
Layer

Figure 3.2: Libaio configuration. Higher latency is expected in this configuration compared to bare
metal, passthrough, and vfio-user, as the I/O calls incur context switches.

Figure 3.2 presents the libaio configuration. This is a configuration where the NVMe device is

accessed via system calls from QEMU to the host OS. The goal of this configuration is to evaluate the

performance of a scenario where the NVMe drive is accessed without bypassing the kernel, in order

to evaluate the overhead of system calls when the target application runs inside a VM, and obtain

a lower bound on performance. This is an “out-of-the-box” configuration, with no optimization at

all.

The application generates asynchronous I/O requests via libaio [34]. Note that the full QEMU

I/O stack is traversed in this case: the guest is using an emulated NVMe device which in turn

communicates with the QEMU I/O abstractions. QEMU makes use of a QCOW file which represents

a virtual disk image backing the storage for the emulated NVMe device. This QCOW image is simply

29

3.2. Storage virtualization configurations

a file in a file system created on the NVMe hardware as managed by the host I/O stack and kernel

NVMe drivers. Accesses to this file incur further context switches.

3.2.3 Passthrough configuration

Host OSUser space

Kernel space
Physical NVMe

VFIO

QEMU
User space

fio

Kernel space igb_uio

SPDK

Figure 3.3: Passthrough configuration. Applications run in the guest OS, but they do not perform
system calls to access the NVMe hardware.

Figure 3.3 presents the Passthrough configuration, which runs the I/O generating applications

inside the VM, but uses a QEMU/KVM feature called device assignment to access the NVMe drive.

The application runs inside the guest OS. A configuration similar to Bare metal (i.e., Figure 3.1)

is set up inside the guest, where SPDK is used to access the NVMe hardware. The only difference

inside the guest is that the Linux facility providing DMA to the hardware is not vfio, but a custom

kernel module developed by DPDK[22] called uio_igb. To perform device assignment, the QEMU

process requests exclusive access to the NVMe device from the host kernel using vfio. Crucially, it

is QEMU itself that takes care of the ioctl calls to the character device. QEMU then exposes the

physical NVMe of the host directly to the guest.

It is worth mentioning that QEMU additionally supports a different mode that uses vfio as well,

which is called simply “nvme” in the libvirt documentation[52]. This mode adds some of the QEMU

I/O layer code on top of the vfio interaction with the hardware NVMe, which can support features

30

3.2. Storage virtualization configurations

such as QCOW image layering, but we considered it unnecessary towards the goal of measuring

performance.

3.2.4 Vfio-user configuration

Figure 2.5 shows the vfio-user configuration. As before, the application runs in userspace inside

the QEMU guest. Note that this version of QEMU is different from the ones used for the previous

configurations. We use a QEMU fork called multiprocess-QEMU,[64] where the Oracle team have

implemented changes so that arbitrary userspace processes can provide services to the guests. We

use the uio_igb kernel module inside the guest, analogous to vfio in the host.

In the passthrough configuration (Section 3.2.3), QEMU was able to speak directly to the NVMe

due to the actual hardware being available through vfio. In the vfio-user configuration, however,

there is no direct access by QEMU. A new layer is introduced, namely the vfio-user client on the

QEMU side. As far as the guest is concerned, a real NVMe drive is providing I/O facilities. In

effect, this NVMe is software that interfaces with SPDK through a memory-mapped region.

As described in Section 2.2.5, QEMU interacts with SPDK’s nvmf_tgt through a control Unix

socket before establishing a shared memory mapping for the actual passing of the data. SPDK then

takes care of communicating with the real NVMe hardware through the host’s vfio facility.

3.2.5 Additional configurations

It is to be noted that during the course of experimentation, some additional configurations were

tested but their results were not collected and/or plotted to the same extent as the ones described

above. The configurations chosen were considered enough to obtain meaningful comparisons and

upper and lower bounds on performance. We briefly and roughly report the additional setups and

their observed latencies at 1 thread and queue depth 1:

• Malloc bdev. Based on vfio-user but using a ramdisk, instead of the real NVMe hardware.

Avg random read: 1.96± 0.28µs ; Avg random write: 2.88± 0.37µs

• QEMU SCSI. Based on libaio, but using the QEMU paravirtualized virtio-scsi drivers.

Avg random read: 40.08± 1.72µs ; Avg random write: 46.78± 4.45µs

31

3.3. Layer-by-layer latency measurement with vfio_user_snoop

3.3 Layer-by-layer latency measurement with vfio_user_snoop

While end-to-end latency is a valuable metric, it is difficult to understand where the time is

spent in the various layers described in Section 3.2 without a detailed breakdown of where time

is spent. To this end, we develop vfio_user_snoop, a new open-source latency tool that provides

detailed latency measurements at each level of the virtualized stack for the vfio-user configuration.

Vfio_user_snoop works as follows.

For the kernel NVMe driver, we create a bpftrace [23] program, modelled after nvmelatency [41].

The program uses the nvme_setup_cmd and the nvme_complete_rq kernel tracepoints to output the

duration of each NVMe write and flush I/O request on a new line of text over standard output.

To accomplish this, each request ID is stored in a BPF map with a nanosecond timestamp which

is then subtracted from the elapsed time once the same ID is observed in the nvme_complete_rq

tracepoint handler. The complete text output is processed with an awk script that calculates the

standard deviation, minimum, and maximum values on the dataset. We typically collect between

150K and 250K samples for each I/O request type (write and flush) for the statistical calculations.

We observed an overhead of ∼6 to ∼10µs per I/O when the bpftrace probes are enabled.

In addition, we enable the SPDK tracing framework with the bdev and the NVMe driver trace-

points active. After this, the built-in spdk_trace_record tool was used to store binary trace events

into a file that was then converted into parseable text with spdk_trace. This output is processed

with the same awk script that calculates the statistical summary. We did not detect any statistical

difference in latency when the SPDK tracing was enabled.

We create a new, specific QEMU I/O configuration for vfio_user_snoop, based on the vfio-user

configuration. This new configuration is shown in Figure 3.4. It differs from the vfio-user config-

uration in Figure 2.5 by the absence of an SPDK instance inside the guest, meaning that the guest

kernel NVMe driver is active. The motivation for this was to have fio use the synchronous POSIX

I/O API to have the simplest possible traceable datapath on the guest side.

Figure 3.4 shows the three layers where latency is reported, highlighted in different colors (i.e.,

green, orange, and blue, for latency inside userspace, the guest NVMe driver, and SPDK respec-

tively).

32

3.3. Layer-by-layer latency measurement with vfio_user_snoop

Host OSUser space

Kernel space
Physical NVMe

VFIO

QEMU

vfio-user

User space
SPDK

bdev

poller pollerfio

Kernel space

socket

m
m

apped
area

m
m

apped
areaI/O

vfio-userconfig NVMe Driver

write()

NVMe Driver

Figure 3.4: Layer-by-layer latency measurement for three layers: 1) application (fio here) to the
guest NVMe driver (green); 2) guest NVMe driver to SPDK bdev (orange); and 3) SPDK bdev to
NVMe (blue).

First, vfio_user_snoop measures end-to-end latency inside userspace (in green). Second,

vfio_user_snoop measures the kernel NVMe driver latency. I/O requests sent from fio in guest

userspace go through the guest kernel I/O stack, crossing VFS, blk-mq, and the NVMe driver. The

driver sees a memory area that has been allocated by QEMU based on the settings transmitted

through the vfio-user socket. This interface between the Linux NVMe driver and the mmap()ed

region is the first spot at which the vfio-user configuration takes effect. There is no visibility on

data going through this memory region, so the best locations to trace are at each end, namely right

before memory accesses are performed at the NVMe driver, and right after requests are picked up

by the SPDK pollers. After this point, the QEMU/KVM memory management emulation takes

over to translate guest kernel physical memory addresses into host physical memory addresses.

Finally, vfio_user_snoop measures the SPDK bdev callback latency. The SPDK pollers are

monitoring requests on the mmap()ed memory region through which they communicate with QEMU.

Once they see something in the submission queues, they hand it over immediately to bdev. The

latency measured here is the last step: the SPDK block device layer overhead, plus the SPDK

NVMe driver, which speaks with the real NVMe hardware through vfio.

33

4
Experimental setup

4.1 Hardware and software environment

4.1.1 Hardware

All the experiments were executed on a DISCS Lab [10] machine, part of a 3-machine cluster avail-

able for use by DISCS Lab students. Table 4.1 displays the hardware specifications of the machine.

This was a shared server, meaning that some unrelated and potentially disruptive programs were

installed and had the potential to disrupt the benchmark runs. Some of these programs were im-

possible to get rid of due to IT administrative and security policies. Of note, the server was under

control of IT Puppet scripts that would overwrite some AppArmor configurations every 30 minutes.

To mitigate these factors, the following actions were taken before any benchmark execution:

34

4.1. Hardware and software environment

discslab-server1 Hardware Specifications
CPU Intel(R) Xeon(R) Gold 6240L CPU @ 2.60GHz
CPU Features 36 Cores, 2 NUMA Nodes, Hyperthreading disabled
RAM Amount 12×64GiB = 768GiB
RAM Specs 3200 MHz DDR4 DIMM
Target NVMe 375GiB Dell Express Flash NVMe P4800X
NVMe IOPS Ratings (4KB) Random Reads: 550K, Random Writes: 550K

Table 4.1: Hardware specifications of the shared laboratory server (discslab-server1) used to
perform all benchmark runs. NVMe ratings are from the manufacturer’s specifications [33].

• All machine users, aside from the benchmark-running user, were logged out and their processes

were killed

• SSH logins from any user, apart from the benchmark-running user, were disabled for the

duration of the runs

• Any long-running services that were not explicitly required by administrative or security

policies were stopped (e.g. dockerd, containerd).

• Source folders for SPDK, libvfio-user, fio, and DPDK were shared between host and guests

using the virtio-9p-device virtual file system [72].

An important goal when setting up the server for the tests was ensuring result reproducibility.

One place where variability can come from is the CPU frequency. Due to modern CPU power saving

measures, C-states and P-states [37] can dynamically change the CPU frequency in ways that may

appear random, which can affect results. This is because each CPU cycle ends up having a variable

duration, which might affect latency measurements. To prevent this issue, C-states and P-states

were disabled, more detail can be found in Section 4.2.

As explained in Section 2.2, a prerequisite for using vfio is for the host system to have an

IOMMU, and for it to be enabled. This usually requires both a BIOS configuration setting and

a kernel boot parameter [81]. In our case, since we had no physical access to the machine due to

security policy, we requested such configuration changes from the IT team. A roadblock that we

faced was regarding the vfio kernel facility inside the guest OS. In theory, QEMU supports a virtual

IOMMU (vIOMMU) [65] which should allow for vfio to be used inside the guest. However, despite

our best efforts, including following guides for nested virtual machine setups, we managed to enable

35

4.1. Hardware and software environment

vIOMMU, but vfio was never enabled in the guest kernel. Uio, which is available in Linux kernels

by default according to the documentation [53], also did not work despite explicitly enabling the

kernel module using modprobe. This is the reason why DPDK’s uio_igb module was necessary.

As final hardware note, we bring attention to the limitations of commercially available NVMe

hardware with respect to the number of queues. As mentioned in Section 2.2.3, the NVMe spec

allows for up to 64K queues. Our NVMe, however, only supported 31 data queues and an additional

administrative queue. Despite this information being present in the device specifications [33], we

did not discover this until we attempted to execute fio benchmarks with 32 and 36 threads, where

fio was unable to run. In our settings, each thread makes exclusive use of a single queue. We had

chosen 36 as the highest number of threads, because it would have used the total number of cores

in the system.

4.1.2 Software

There are multiple ways to execute the QEMU userspace process. It is possible to simply run the

QEMU binary corresponding to the system to emulate (e.g. qemu-system-x86_64), and passing

command-line flags to enable desired features. These flags are comprehensive [26] and they grant

the most freedom of choice, allowing easy access to experimental features (such as the multiprocess

QEMU flags needed to run vfio-user). An issue with using the bare QEMU command line invo-

cation is that it is difficult to maintain each virtual machine configuration under version control.

Despite the fact that each virtual machine invocation can be wrapped in a specific script file and

version controlled that way, Git’s tooling is usually oriented towards changes on independent lines.

This is doable with scripts, but we considered it suboptimal.

The alternative we chose is libvirt [17]. Libvirt is a suite of tools intended to support different

kinds of virtualization technologies through a set of command-line applications and a standard XML-

based language. Libvirt allows for XML schema documents to be full descriptions of containers or

virtual machines for Docker, LXC [40], VirtualBox, etc. It evidently provides QEMU/KVM support.

Many of the command-line-enabled features of QEMU are outright supported with specific XML

tags. In rare cases, when QEMU features have not been yet added to the language (such as the

vfio-user options for multiprocess-QEMU), libvirt XML schemas support passing command line

arguments to the executable directly.

36

4.1. Hardware and software environment

1 <domain type="kvm" xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
2 <name>passthrough</name>
3 <memory unit="GiB">16</memory>
4 <vcpu cpuset="0-17" placement="static">18</vcpu>
5 <devices>
6 <emulator>/usr/bin/qemu-system-x86_64</emulator>
7 <!-- ... -->
8 <!-- disk under test -->
9 <hostdev managed="yes" mode="subsystem" type="pci">

10 <source>
11 <address bus="0xbc" domain="0x0000" function="0x0" slot="0x00"/>
12 </source>
13 <driver name="vfio" />
14 </hostdev>
15 <!-- ... -->
16 </devices>
17 <!-- ... -->
18 </domain>

Listing 4.1: Excerpt from the libvirt XML virtual machine schema file for the passthrough con-
figuration, described in Section 3.2.3.

One of the tools included with libvirt is virsh, a command-line program that manages startup

and stopping of virtual machines based on their schema files. It also supports accessing the virtual

machines’ serial console through a virtual interface. With the libvirt tool suite, instead of running

a long command with multiple complex flags passed to the QEMU binary, it is enough to run virsh

<vm_spec_file>.xml, and the virtual machine schema defined in the file will be executed.

A notable pitfall when using virsh is that the documentation guides users by default to employ

the volume manager. The volume manager is a feature that can create storage pools, or groups

of automatically managed QCOW files, as backing storage for the virtual machines. There was a

lot of time lost when attempting to have the pools use the real NVMe hardware. Storage pools

do not support this, and it is not their intended purpose. Virtual machine XML schemas do not

require storage pools to be used, and the specific storage configurations that this project needed

were explicitly defined in each one of the XMLs for each machine.

It is important to note SPDK’s requirement to use Linux HugePages. HugePages are a kernel

feature available since 2.6, that allow Linux to allocate memory pages of sizes larger than the default

4KiB. The point of HugePages is reducing cache misses and TLB lookups [51]. SPDK specifically

has a minimum memory allocation requirement in HugePages, and makes use of 2MiB and 1GiB

HugePages if available.

37

4.2. Provisioning and automation

4.2 Provisioning and automation

It was quickly evident that some form of automation of benchmark environment setup would be

beneficial, due to the reduction of manual errors in e.g. data collection or configuration.

We make use of Ansible [43] to execute the preparation tasks for the server to get reproducible

results in the benchmarks. Ansible is a robust open-source configuration management tool, where

desired machine provisioning states can be specified in a declarative manner and executions are

idempotent. In short, a collection of YAML-formatted lists of desired dependencies, files, or any

other kind of system states can be specified, which are called playbooks and roles. We created a

playbook and corresponding roles that deal with the following tasks:

• Disable processor C-states by keeping a file descriptor open on /dev/cpu_dma_latency.

• Disable CPU P-states by setting the kernel pstate drivers

(/sys/devices/system/cpu/intel_pstate/status) to passive mode, selecting the

userspace CPU frequency governor configuration, and specifying the nominal frequency of

the processor (i.e. 2.60GHz, see Table 4.1) by using cpupower.

• Implement the mitigation actions specified in Section 4.1.1.

Every virtual machine configuration required manual work to initially set up and get to a working

stable state. In order to get a faster feedback cycle, it was necessary to implement automation scripts

that would clean up the environment created by a single virtual machine and get a clean slate to

create another one. Many of the steps necessary to set up a specific virtual machine were repetitive

terminal commands. These were collected into a series of scripts that can execute the following

tasks with a single invocation:

1. create and destroy QCOW backing files for the guest OS,

2. drop kernel virtual memory caches,

3. sync or dump buffered data to disks,

4. allocate HugePage memory and relinquish control of the NVMe device from the kernel through

vfio,

38

4.2. Provisioning and automation

5. for the libaio configuration only, format and mount the NVMe device, since it will hold the

QCOW storage file

A further step in aiding automation was the usage of Ubuntu cloud images [66] and cloud-init

for guest configuration. Cloud-init is a set of tools that allow Ubuntu images, including virtual

machine images, to be provisioned on boot. It is widely used by cloud service providers for OS

configuration [42]. The cloud image of Ubuntu 20.04LTS was chosen as the base from which the

operating system images for every other virtual machine were created. Using cloud-init, some

variables were passed into the guest filesystem to aid in the automation of test results, and a script

was created to run on guest boot to trigger tests automatically. Test results are stored in one of the

shared guest-host directories, which makes it easy for us to collect, analyze, and plot test results.

With the scripting infrastructure, a single script can set up every virtual machine in turn, while

each virtual machine executes its benchmarks and outputs results to a shared folder, without any

manual intervention.

These scripts and provisioning configuration files, in addition to the virtual machine XML spec-

ification files, are publicly accessible on the McGill Data-Intensive Storage & Computer Systems

(DISCS) GitLab repositories [67].

39

5
Results

We compare the IOPS and latency of the four configurations described in Section 3.2. We measure

the performance in microbenchmarks generated with fio, as well as end-to-end performance in

RocksDB.

5.1 Fio microbenchmark results

We use fio 3.30. We perform random and sequential reads and writes directly on the NVMe block

device, i.e. no filesystem is involved. We vary the I/O queue depth from 1 to 16 and vary the

number of threads from 1 to 16. Each combination was benchmarked for a duration of 60 seconds.

40

5.1. Fio microbenchmark results

5.1.1 Reads

Figure 5.1 shows the mean IOPS for the random read benchmark. Notice the hardware upper

bound of ∼600K IOPS for the baremetal configuration in Figure 5.1a. For any queue depth greater

than 8, close to full NVMe saturation is reached even with only 1 thread submitting read requests.

Conversely, for 1 thread, saturation is reached at queue depth size 8. Results are similar in Figure

5.1b and Figure 5.1c. For all configurations, the IOPS growth trend is as expected, with higher

IOPS as threads increase. The rate of IOPS growth between baremetal and passthrough is very

similar, but the rate of IOPS growth is slower for vfio-user. This is evident if we follow the mean

IOPS values for queue depth 1. For passthrough at 2 threads we observe ∼230K IOPS and ∼190K

for vfio-user. At 4 threads, passthrough performs ∼440K iops while vfio-user manages ∼330K.

Due to the high cost of context switches, the libaio configuration provides peak performance that

is on average 30x lower than the other three configurations.

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS

(a) baremetal

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS

(b) passthrough

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS

(c) vfio-user

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS

(d) libaio

Figure 5.1: Mean IOPS per number of threads and queue depth results for fio random reads, 4KB
block size.

Figure 5.2 shows mean IOPS for sequential reads. The same behaviour as the one shown on

Figure 5.1 is present here. In fact, the performance values are exceedingly similar; including the

large differences in performance between vfio-user and baremetal/passthrough, where the mean

IOPS at queue depth 1 and 4 threads differ by between ∼80K and ∼100K IOPS. An interesting

anomaly observed in the sequential read results are the pronounced performance “peaks” at 1 thread

and queue depth 8 for baremetal and passthrough, which project slightly over the 600K IOPS line.

Since it is impossible for the hardware to support a higher number of IOPS than its rated spec,

and it only happened in these two benchmarks, we consider that it must be an extrapolation or

41

5.1. Fio microbenchmark results

calculation error on the part of fio. Another anomaly to point out is the discrepancy between

the passthrough IOPS value for 4 threads and queue depth 8; since that workload is fully able

to saturate the hardware and attain peak IOPS. We consider that this must be an artifact of the

testing environment, where possibly some background process triggered and affected the results of

that benchmark.

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS

(a) baremetal

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS

(b) passthrough

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS
(c) vfio-user

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS

(d) libaio

Figure 5.2: Mean IOPS per number of threads and queue depth results for fio sequential reads,
4KB block size.

5.1.2 Writes

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS

(a) baremetal

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS

(b) passthrough

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS

(c) vfio-user

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS

(d) libaio

Figure 5.3: Mean IOPS per number of threads and queue depth results for fio random writes, 4KB
block size.

Figure 5.3 shows virtually identical trends as Figure 5.1. However, the differences in IOPS

between different configurations, except for libaio, are slightly harder to discern. A possible reason

why this is the case is due to the in-NVMe writing time taking up a larger part of the total request

42

5.2. RocksDB end-to-end application results

duration, making the software layers above have a smaller contribution to the total latency. It is

noticeable how vfio-user’s performance is scarcely different than baremetal and passthrough’s. If

we compare the mean IOPS values for the same queue depth and number of threads as we did for

random reads, namely queue depth 1 and 2 threads, it is easy to see that all configurations (except

for libaio) perform between ∼190K and ∼200K IOPS.

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS

(a) baremetal

1 2 4 8 16
Threads

0K

200K

400K

600K

800K
M

ea
n

IO
PS

(b) passthrough

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS
(c) vfio-user

1 2 4 8 16
Threads

0K

200K

400K

600K

800K

M
ea

n
IO

PS

(d) libaio

Figure 5.4: Mean IOPS per number of threads and queue depth results for fio sequential writes,
4KB block size.

Figure 5.4 displays the fio results we obtained when running sequential write benchmarks. De-

spite multiple runs, at different dates and times of day, while ensuring result reproducibility and

interference minimization strategies were put in place, we were not able to obtain data resembling

the expected patterns presented in the previous figures. The only consistent result for this bench-

mark is seen in Figure 5.4d, for the libaio configuration, that keeps its pattern of providing much

fewer mean IOPS than all other configurations. The baremetal and vfio-user configurations show

data roughly suggesting improving average performance as queue depth increases, but the pattern

doesn’t hold in all cases, as can be seen for queue depth 16 at 8 threads in the baremetal configura-

tion. Passthrough shows the most widely distributed results so far, where not even a performance

hierarchy being clearly visible. We have no systemic explanation for this behaviour, suggesting a

bug in fio 3.30’s implementation of the sequential write benchmark.

5.2 RocksDB end-to-end application results

To analyze the end-to-end effect of the four storage configurations, we set up RocksDB, a popular

key-value store, with each of the four back-ends. RocksDB was run inside each VM, via the db_bench

43

5.2. RocksDB end-to-end application results

tool [49]. We use the YCSB [27] benchmark, workloads YCSB-LOAD (sequential inserts), YCSB-A

(1:1 read:write ratio), and YCSB-C (read-only). For YCSB-A and YCSB-C we use a uniform key

distribution. Each workload performs read/write operations on 100 million key-value pairs (16B

keys, 1KB values) and runs for a duration of 10 minutes. To vary the degree of parallelism of the

workloads, we vary the number of compaction threads from 1 to 10. The number of worker threads

is fixed to 1.

SPDK’s blobfs is tested on a specific version of RocksDB, namely 6.15.fb[49], which doesn’t

support time-based benchmarks for sequential reads (benchmark ends as soon as the total number

of keys has been read). This required us adding a patch into the db_bench_tool.cc code from

RocksDB.

A single database was reused for the first 4 benchmarks, readrandomwriterandom and random

writes were performed on fresh databases. Results presented are in operations per second as reported

by db_bench, no other monitoring tools were used at this point.
0 100 200 300 400 500 600

0K

200K

400K

600K

time (s)

op
s/

se
c

baremetal vfio-user
passthrough libaio

0 200 400 600
0K

200K

400K

600K

time (s)

op
s/
se
c

(a) YCSB-LOAD, 1 compaction thread

0 200 400 600
0K

200K

400K

600K

time (s)

op
s/
se
c

(b) YCSB-LOAD, 10 compaction threads

Figure 5.5: RocksDB sequential fill operations per second over time, using 1 thread

Figure 5.5 shows operations per second over time for sequential insertions as reported by

db_bench, for a database running with 1 compaction thread (5.5a) and 10 compaction threads

(5.5b). During the first minute, there are no apparent performance differences between baremetal,

44

5.2. RocksDB end-to-end application results

passthrough, and vfio-user, while libaio is clearly capping at around 200K ops. The downward

trend of both graphs is expected due to the design characteristics of RocksDB, as more keys are

inserted, insertion time increases. At around 160 seconds, we see a precipitous decrease in ops/sec

in 5.5a, caused by a compaction task triggering after a specific number of keys have been inserted.

After this point, libaio reports higher ops/sec until it also triggers a compaction thread at around

500 seconds. The lower throughput of libaio is the reason for the compaction triggering later.

The precipitous decline does not happen when the database has 10 compaction threads. Figure

5.5b shows the expected progression of ops/second when performing sequential insertions in an

LSM tree. Baremetal provided higher throughput than passthrough, which in turn provided higher

throughput than vfio-user, during the period of around 100 to 300 seconds. This is consistent

with the results seen in the fio benchmarks.0 100 200 300 400 500 600
0K

200K

400K

600K

time (s)

op
s/

se
c

baremetal vfio-user
passthrough libaio

0 200 400 600
0K

10K

20K

30K

40K

time (s)

op
s/
se
c

(a) YCSB-C, 1 compaction thread

0 200 400 600
0K

10K

20K

30K

40K

time (s)

op
s/
se
c

(b) YCSB-C, 10 compaction threads

Figure 5.6: RocksDB random read operations per second over time, using 1 thread

Figure 5.6 shows the results of YCSB-C. Notice the clear hierarchy in ops/sec per configuration.

Whereas Fio random reads saturate the hardware, achieving ∼600K IOPS, db_bench random reads

have to go through the RocksDB data structures, showing a smaller number of operations per

second. Despite this, baremetal shows the highest throughput, followed by both vfio-user and

45

5.2. RocksDB end-to-end application results

passthrough, which are essentially equivalent. The Libaio configuration achieves only around 60%

of the throughput of the virtualized configurations.
0 100 200 300 400 500 600

0K

200K

400K

600K

time (s)

op
s/

se
c

baremetal vfio-user
passthrough libaio

0 200 400 600
0K

100K

200K

300K

time (s)

op
s/
se
c

(a) YCSB-WRITE, 1 compaction thread

0 200 400 600
0K

100K

200K

300K

time (s)
op

s/
se
c

(b) YCSB-WRITE, 10 compaction threads

Figure 5.7: RocksDB random write operations per second over time, using 1 thread

Figure 5.7 shows the results for the YCSB-WRITE benchmark, which performs random write

operations over an empty database. As with the YCSB-LOAD benchmark displayed on Figure

5.5, there is a clear descending throughput trend during insertion, though the throughput is much

lower, with a peak of 300K operations per second vs. ∼500K ops/sec in the YCSB-LOAD 10-

compaction thread benchmark. Interestingly, there is a clear difference in ops/sec between 1 and

10 compaction threads in YCSB-WRITE, with the higher number of compaction threads attaining

better throughput. Due to the nature of the log-structured merge tree data structure, which depends

on keys being sorted on the SST files, it is possible that compaction tasks are being triggered earlier

and before specific levels are full to keep the LSM tree structure, background tasks that were

probably not necessary in the YCSB-LOAD test.

The YCSB-A benchmark results are shown in Figure 5.8, which displays how such a mixed

workload appears to not be I/O bound. The data points are scattered over throughput that trends

towards descent, just as it was seen with the sequential fills in figure 5.5. The pattern and the

attained ops/sec values are much closer to the ones on the YCSB-WRITE benchmark, which may

point to random writes being a bottleneck in this particular workload. There is a very clear difference

46

5.2. RocksDB end-to-end application results
0 100 200 300 400 500 600

0K

200K

400K

600K

time (s)

op
s/

se
c

baremetal vfio-user
passthrough libaio

0 200 400 600
0K

100K

200K

300K

time (s)

op
s/
se
c

(a) YCSB-A, 1 compaction thread

0 200 400 600
0K

100K

200K

300K

time (s)

op
s/
se
c

(b) YCSB-A, 10 compaction threads

Figure 5.8: RocksDB random read and write operations per second over time, using 1 thread

in the ops/sec variance between Figures 5.8a and 5.8b, similar to the throughput difference shown

in Figure 5.7. Again, considering that the only difference between these benchmarks is the number

of compaction threads, we may hypothesize that their being in the background is slighly beneficial

for throughput when running random write workloads.

Finally, Figure 5.9 shows the throughput for sequential reads. These results are very similar to

the ones obtained for the YCSB-C benchmark in terms of the clear performance hierarchy, with

baremetal at the top, and vfio-user and passthrough performing nearly identically. Interestingly,

the libaio configuration has closer throughput to the other configurations in this particular work-

load. This may be to the strength of the LSM tree data structure and its use of caching. It is

interesting to note how the number of compaction threads has no statistically visible effect on the

sequential read throughput whatsoever. Furthermore, the peak operations per second attained in

this benchmark exceed those of random reads by ∼400K, which is much higher than the IOPS

supported by the hardware. Considering that one RocksDB operation is at least one or more I/O

operations, this reinforces the fact that RocksDB must be making heavy use of main memory to

attain these performance values.

47

5.3. Latency breakdown
0 100 200 300 400 500 600

0K

200K

400K

600K

time (s)

op
s/

se
c

baremetal vfio-user
passthrough libaio

0 200 400 600
0K

500K

1,000K

time (s)

op
s/
se
c

(a) Sequential reads, 1 compaction thread

0 200 400 600
0K

500K

1,000K

time (s)

op
s/
se
c

(b) Sequential reads, 10 compaction threads

Figure 5.9: RocksDB sequential read operations per second over time, using 1 thread

Overall, it is clear to see how there is practically no throughput or performance distinction

between vfio-user, passthrough, or the baremetal configurations. Whereas the fio synthetic

benchmarks showed some drastic mean IOPS differences for read workloads in particular, these

appear to be able to be “smoothed out” by more realistic workloads that include some CPU work

and the introduction of caching.

5.3 Latency breakdown

Figure 5.10 shows the mean time spent in each one of the layers corresponding to the colored regions

in Figure 3.4, for read and write requests. Every write() call inside the guest is converted into 2

block operations by the guest Kernel’s block layer: write and flush. These are passed to the NVMe

driver. Flush is included because the tests use direct I/O, which waits until the NVMe hardware

reports the write as successful before returning from the write() system call. The write latency

values are therefore calculated from the sums of the average latencies of these 2 calls.

For reads, each layer has more or less an equal contribution to the total measured latency,

considering the standard deviation of their distributions. It is important to note how the core

48

5.3. Latency breakdown

fio end
to end

fio to nvme
driver

nvme driver
to bdev

bdev to
hardware

0
10
20
30
40
50

Ti
m

e
(μ

s)

Reads
Writes

Figure 5.10: Layer-by-layer latency for reads and writes.

vfio-user component, namely the interface between QEMU and SPDK, does not have a larger

impact on latency than the other components.

One of our expectations was that the memory management component of Qemu/KVM would

take a disproportionate amount of time to pass on guest kernel memory accesses through to the

physical memory managed by the host kernel, due to the possibility of VM_EXIT events being trig-

gered forcing some switches into the KVM context. This does not seem to be the case. Observe

that the NVMe hardware read completion time, which involves real peripheral interaction through

the MMU, takes around the same time as the other 2 layers, which are mostly CPU-bound. the

sub-10µs latency for I/O completion is consistent with the specifications of the hardware.

For writes, it is evident that the Fio to NVMe driver stage takes longer than the other 2 layers,

which behave more or less equally as they do in reads. This is due to guest blk-mq involvement

in I/O scheduling, and the overhead of creating the flush and write bio structures in the Kernel.

Mean flush operation duration at the bdev level was measured at 0.25±0.15µs, most of the duration

is due to write operations.

49

6
Related Work

6.1 io_uring

Io_uring is a novel Linux I/O API [29], proposed by fio creator Jens Axboe in 2019 [8]. One of

its main design goals is to improve on Linux’s libaio asynchronous block I/O API with regards

to latency, though it is now flexible enough to be used for networking I/O as well [31]. The key

insight brought by io_uring is that data copying between kernel space and userspace is expensive

and wasteful. Recall from Section 2.2 that standard DMA I/O allows for device controllers to write

data onto system memory; though without an IOMMU, the DMA controller can only access memory

addresses reserved to the kernel. Therefore, when data is requested by a userspace process, it has

to be copied from kernel space into userspace, usually when returning from I/O system calls. Data

copying can be worked around by several means, including zero-copy system calls that are already

available in Linux [31]. Io_uring’s approach is to have the kernel and processes share memory

50

6.2. SPDK-vhost-NVMe

through a ring buffer data structure that is kept alive during the whole process lifespan. Processes

using io_uring perform a small set of system calls to set up submission and completion queues,

over which polling can be performed. It is important to note that io_uring is a kernel-level API,

meaning that QEMU would have to go through the host’s I/O stack when using it.

An extensive collection of synthetic benchmark results comparing Linux I/O API performance

is available in the literature. Since the first time SPDK was released, it has shown 6x to 10x single-

core performance improvements (latency and IOPS) over libaio on the bare-metal as well as in

virtualized tasks [92]. Results are echoed in Didona [34], where SPDK is shown to be the only API

able to saturate NVMe device bandwidth against libaio and io_uring, which end up being CPU

bound and 100% and 20% slower in terms of latency, respectively, in the best case.

Despite the results above, it is somewhat unclear whether SPDK definitively outperforms io_uring

in every case. Considering that io_uring is also an asynchronous polling interface where I/O does

not involve system calls, it is unknown whether the majority of the performance improvements

shown by SPDK come mostly from its own re-implementation of the block stack and DMA facilities

enabled by vfio. Even if io_uring’s performance eventually is shown to be on average better

than SPDK’s, the fact that SPDK+vfio-user allows for userspace IPC access and virtualization

of arbitrary PCIe hardware can ensure its usefulness in developing and prototyping novel storage

devices.

6.2 SPDK-vhost-NVMe

Yang et al [93] present an essentially equivalent approach in context switch reduction for QE-

MU/KVM as our vfio-user configuration, by moving as much of the I/O stack as possible into

userspace. Recall, from Section 3.2.4, that libvfio-user allows for IPC virtualization of NVMe de-

vices through a configuration channel (a Unix socket, traditionally) and a memory mapping meant

for data transfer between the vfio-user server and client.

SPDK-vhost-NVMe follows the same architecture. Namely, the QEMU process has a client

component that interacts with a server component on SPDK’s nvmf_tgt process. The latter, in turn,

accesses the NVMe hardware through vfio as in our case. The key difference between vfio-user

and SPDK-vhost-NVMe is the protocol going through the userspace communication channels, and

51

6.3. Other approaches and notable work

the optional addition of an emulated NVMe device at the QEMU-SPDK interface. Their approach

uses the vhost-user protocol, based on vhost, covered in Section 2.1.3. This allows virtualization

of virtio devices, namely virtio-scsi, virtio-blk, and virtio-net. Furthermore, an NVMe

emulation layer is installed between the guest operating system and the virtio SPDK server process,

that allows the guest to use the non-paravirtualized Linux NVMe driver.

SPDK-vhost-NVMe’s throughput performance is compared against a standard kernel vhost-scsi

configuration, and QEMU’s NVMe emulation. Due to lack of details on the latter, it is difficult

for us to ascertain how similar their emulated NVMe configuration is to our libaio configuration

(Section 3.2.2), except for the fact that the same QEMU emulated NVMe is present in the datapath.

SPDK-vhost-NVMe attains ∼4x higher throughput than the vhost-scsi configuration, and ∼8x

higher throughput than QEMU NVMe emulation. Random reads appear to saturate the hardware

at ∼600K IOPS, though random writes have a hard ceiling of ∼80K IOPS regardless of the num-

ber of threads. We regard this asymmetry as unusual. Furthermore, the lack of an upper bound

configuration makes it difficult to determine how close their configuration sits to the bare metal.

Regardless of performance characteristics, vfio-user’s strength is still the same as covered

previously: it allows for universal PCIe communication virtualization. There is also no need for an

emulation layer for NVMe devices to be introduced at any layer in the stack, also favoring the usage

of the non-paravirtualized kernel NVMe driver. The lines between vfio-user and vhost-user may

blur in the future, as manufacturers adopt hardware virtio implementations.

6.3 Other approaches and notable work

6.3.1 Kernel-level datapath optimization

Whereas we focus on solutions that move the I/O path into userspace, there have been efforts to

reduce latency at the kernel level. One of these, as shown in Section 2.1.3, is vhost, which is

commonly used by QEMU/KVM operators.

Lee et al [55] propose a lightweight block layer, specifically designed for NVMe devices, that

eschews most of Linux’s blk-mq by submitting I/Os asynchronously. Operations that are syn-

chronously performed in the default Kernel I/O path, namely Page Allocations, Cache Insertions,

and bio structure submission, are either performed after I/O submission or replaced with lighter

52

6.3. Other approaches and notable work

versions, such as a Lightweight bio submission that can be done ∼5x faster than a standard bio

submission. They report up to 44% IOPS improvement on RocksDB tasks using their solution.

Zhang et al [95] note the significant overhead posed by current operating systems when I/O

operations reach sub-10µs latencies, when individual kernel-level block device operations introduce

hundreds of nanoseconds of overhead. Their solution, called the Demikernel, allows for multiple

kernel-bypass solutions to operate simultaneously accross heterogenous devices. In a practical sense,

libraries such as SPDK become a built-in part of the operating system, and applications are mostly

expected to operate through their use instead of using system calls. Their results show at least a

15% reduction in I/O request latency when using a Demikernel vs. Linux or Windows.

6.3.2 SR-IOV

SR-IOV is a PCIe specification extension that allows for hardware-supported resource virtualiza-

tion. With PC BIOS and operating system support, it’s possible for a single PCIe device to offer

multiple Virtual Functions (VFs) that are seen as independent devices by the operating system,

with certain limitations. VFs are distinguished from Physical Funcions (PFs), which represent the

actual workings of the hardware. Each device supporting SR-IOV has one Physical Function, and

it is allowed to offer up to 256 Virtual Functions, which can be directly assigned to specific virtual

machines, in the same way in which we set up our passthrough configuration (Section 3.2.3).

Devices supporting SR-IOV must have controllers that support hardware-level multiplexing,

which incurs additional complexity and cost when compared with PCIe devices that don’t comply

with the specification. Furthermore, a similar functionality can be achieved using software-only

solutions such as SPDK+vfio-user, which supports PCIe device multiplexing through userspace

inter-process communication.

In any case, the NVMe hardware available for our testing (refer to Section 4.1.1) did not have

SR-IOV capabilities, as reported by Linux’s lspci utility.

6.3.3 Latency source modeling and formalization

Casini et al. [20] describe a series of mathematical models that allow for guarantees on worst- and

best-case scenario latency bounds for three different I/O virtualization techniques. Under these

models, we could consider vfio-user to be a kind of type C: I/O Para-Virtualization with I/O VM

53

6.3. Other approaches and notable work

and Shared Buffers. In future work, it would be possible to apply these models to the configurations

presented in our work to understand whether Casini’s generalizations hold.

6.3.4 Measurement pitfalls

Kogias et al. [50] bring attention to the difficulty of measuring latency accurately when working at

microsecond scales. We attempt to follow their suggestions with regards to experiment duration

(ensuring convergence in the YCSB results); measurement collection (latency collected indepen-

dently for each request type in Section 5.1); statistical aggregation; and heavy-tailed distribution

identification.

54

7
Conclusion

In this thesis we have covered the motivation for reducing I/O virtualization latency due to

the high impact potential on computing tasks that depend on virtual machines at scale, in terms

of power usage, operating cost reduction, and quality of service for end-users. As the popular-

ity and relevance of warehouse-scale computing continues to increase, we reassert our belief that

performance improvements at the bottom of the stack are crucial to support applications on the

layers above. Additionally, we surveyed some of the theoretical and technical concepts needed to

understand the current state of I/O virtualization configurations, and we covered the factors that

make libvfio-user special and flexible as part of virtual machine storage datapaths.

We showed that the throughput performance of libvfio-user on synthetic fio benchmarks

(Section 5.1) is similar to that of bare metal. Specifically, we observed at most a 29.41% difference

in IOPS for random reads at queue depth 1 and 4 threads (the highest performance difference

we observed throughout all the tests we performed); random writes showed at most a 15.23%

55

Chapter 7. Conclusion

difference under the same queue depth and thread parameters. Fio read benchmarks showed a

greater performance difference than writes, on average. Crucially, libvfio-user attained hardware

IOPS saturation at the same queue depths and thread numbers as both bare metal and passthrough.

Our RocksDB benchmarks (Section 5.2) showed much closer performance between bare metal,

passthrough, and libvfio-user, the latter two being indistinguishable in every workload tested.

As part of our layer-by-layer latency analysis, we demonstrated the fact that it is possible to

probe specific components of the libvfio-user configuration (Section 3.3), despite the fact that

no standalone tool previously existed to accomplish this. The results from this analysis show that

neither SPDK nor libvfio-user appear to have significant effects on latency overhead. We hope

that our results, configurations, and analysis are a valuable contribution to the literature.

Research Questions Revisited.

• In comparison with currently-existing and production-ready storage I/O for virtual machine

configurations, where does libvfio-user sit in terms of latency and IOPS?

We have shown that libvfio-user consistently achieves throughput and latency performance

close to bare-metal, and it is almost indistinguishable to tried-and-tested solutions such as

passthrough device assignment.

• Is libvfio-user performant enough to be used in production by cloud service providers?

Our tentative answer is affirmative, based on our single-machine synthetic and real-world

application benchmarks, though we recommend further work with benchmarks on distributed

systems to ascertain this claim.

• Given that it requires a complex and layered configuration, where does the CPU spend the most

time when I/O requests are executed through libvfio-user?

From our layer-by-layer latency analysis, we observed that most of the I/O request completion

latency for the “simplified” libvfio-user configuration (Section 3.3) is spent on the software

block layer at the kernel level. SPDK and libvfio-user appear to not impose significant

latency overhead.

56

7.1. Future Work

7.1 Future Work

We focused on virtual machine I/O configurations that offered virtual NVMe devices to QE-

MU/KVM guests. Our motivation behind this decision was to perform a like-for-like comparison for

I/O intensive processes, since our throughput upper-bound configuration was ran on the bare metal,

without any virtualization involved, with access to an NVMe device through SPDK (Section 3.2.1).

Due to this restriction, we did not compare our configurations with other possible I/O virtualization

configurations, such as SPDK-vhost-NVME and the vhost-scsi configuration tested by Yang et

al [93]; a standard virtio-blk datapath with both the virtio frontend and backend in userspace;

or any other configuration using io_uring in the guest or the host. Such experiments would be

valuable contributions to the literature.

For our layer-by-layer latency analysis, we decided to eschew using our full vfio-user configu-

ration, which involves SPDK both inside the guest and the host (with the igb_uio kernel module

replacing vfio inside the guest). The reason why we did this, as explained in Section 3.3, was

that we needed the simplest possible configuration that made use of vfio-user, which would also

allow us to follow synchronous I/O requests across the stack for ease of identification. Given the

exploratory work described in Section 3.3, we consider it feasible to trace layer-by-layer latency

for the full vfio-user configuration, which would possibly give us more insight regarding SPDK’s

performance when inside the guest, and whether the igb_uio kernel module shows any overhead

when compared to vfio. It is also worth noting that, as mentioned in Section 4.1.1, we were not

able to set up vIOMMU with QEMU/KVM, which forced us to use igb_uio. Iterating further on

this issue may allow for the vfio kernel module to be used inside the guest.

A natural next step in studying libvfio-user is to set up multiplexing benchmarks, i.e. having

the SPDK nvmf_tgt process attend to multiple virtual machines on the same physical host while

accessing a single NVMe device. As mentioned in Sections 2.2.4 and 2.2.5, a single nvmf_tgt process

is able to attend to multiple virtual machines or userspace processes due to the libvfio-user client-

server model. Executing these benchmarks standalone would provide useful information about

SPDK’s CPU and NVMe hardware usage when under load from multiple VMs, though it would

be best to have a point of comparison for multiplexing, ideally using SR-IOV, since it is hardware-

57

7.1. Future Work

Host OSUser space

Kernel space
Physical NVMe

VFIO

SPDK nvmf_tgt

vfio-user Serverconfig

Pollers + Bdev + Driver

QEMU

G
uest O

S

vfio-user

I/O
 M

em
 3

QEMU

G
uest O

S

vfio-user

I/O
 M

em
 2

QEMU

G
uest O

S

vfio-user

I/O
 M

em
 1

I/O Mem 1
I/O Mem 2

I/O Mem 3

socket

Figure 7.1: A possible “multiplexed” or multi-VM configuration using SPDK, to be tested in future
work. Note that the arrows representing I/O between the memory mappings, present in Figures
2.5 and 3.4, are omitted here for simplicity. Each QEMU memory mapping has a corresponding
memory mapping in SPDK’s process space.

supported. This would require the sourcing of new NVMe hardware for the DISCS Laboratory, as

explained in Section 6.3.2.

Though we performed real-world application benchmarks using RocksDB, we limited ourselves

to one machine. We believe that setting up Kubernetes or EC2 Auto Scaling groups with nodes using

libvfio-user as their storage backend for distributed persistence tasks (e.g. sharded databases)

would provide valuable information about libvfio-user’s performance at a larger scale. We would

expect to observe very similar throughput and latency as with current solutions, barring any emer-

gent behaviours. Further confirmation of libvfio-user’s capacity to replace or complement current

I/O virtualization solutions in cloud-scale computing tasks could be obtained by installing it in more

realistic scenarios such as these.

58

Bibliography

[1] Appendix A. The Tanenbaum-Torvalds Debate. In Chris DiBona, Sam Ockman, and Mark
Stone, editors, Open sources: voices from the open source revolution. O’Reilly, Beijing ; Se-
bastopol, CA, 1st ed edition, 1999. ISBN 978-1-56592-582-3. OCLC: ocm40889566.

[2] Chapter 15. Memory Mapping and DMA. In Linux device drivers. O’Reilly & Associates,
Sebastopol, 2nd ed edition, 2001. ISBN 978-0-596-00008-0.

[3] Chapter 17. Devices and Modules. In Linux kernel development, Developer’s library : essential
references for programming professionals. Addison-Wesley, Upper Saddle River, NJ, 3rd ed
edition, 2010. ISBN 978-0-672-32946-3. OCLC: ocn268788260.

[4] Chapter 4. x86-64: CPU Virtualization With VT-x. In Hardware and software support for vir-
tualization, number # 38 in Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, San Rafael, CA, 2017. ISBN 978-1-62705-693-9.

[5] Chapter 6. x86-64: I/O Virtualization. In Hardware and software support for virtualization,
number # 38 in Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers,
San Rafael, CA, 2017. ISBN 978-1-62705-693-9.

[6] 4.3 KVM—A HYPERVISOR FOR VT-X. In Hardware and software support for virtualization,
number # 38 in Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers,
San Rafael, CA, 2017. ISBN 978-1-62705-693-9.

[7] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating systems: three easy pieces.
Arpaci-Dusseau Books, LLC, Erscheinungsort nicht ermittelbar, 2018. ISBN 978-1-985086-59-3.

[8] Jens Axboe. Efficient IO with io_uring. Technical report, 2019. URL https://kernel.dk/
io_uring.pdf.

[9] Jens Axboe. 1. fio - Flexible I/O tester rev. 3.33 — fio 3.33 documentation, 2022. URL
https://fio.readthedocs.io/en/latest/fio_doc.html#i-o-engine.

[10] Oana Balmau. McGill DISCS Lab, 2023. URL https://sites.google.com/view/discslab.

[11] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. The Datacenter as a Com-
puter: Designing Warehouse-Scale Machines. Synthesis Lectures on Computer Architecture.
Springer International Publishing, Cham, 2019. ISBN 978-3-031-00633-3 978-3-031-01761-2.
doi: 10.1007/978-3-031-01761-2. URL https://link.springer.com/10.1007/978-3-031-
01761-2.

[12] Fabrice Bellard. [announce] QEMU x86 emulator version 0.1, March 2003. URL https:
//www.winehq.org/pipermail/wine-devel/2003-March/015577.html.

59

https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://fio.readthedocs.io/en/latest/fio_doc.html#i-o-engine
https://sites.google.com/view/discslab
https://link.springer.com/10.1007/978-3-031-01761-2
https://link.springer.com/10.1007/978-3-031-01761-2
https://www.winehq.org/pipermail/wine-devel/2003-March/015577.html
https://www.winehq.org/pipermail/wine-devel/2003-March/015577.html

Bibliography

[13] Fabrice Bellard. QEMU CPU Emulator, August 2003. URL https://web.archive.org/web/
20030801214438/http://fabrice.bellard.free.fr/qemu/.

[14] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski, Karl Rister, and Alexis Bruemmer. The
Price of Safety: Evaluating IOMMU Performance. 2007.

[15] Timo Bingmann. NVMe "Disk" Bandwidth and Latency for Batched Block Requests -
panthema.net, March 2019. URL https://panthema.net/2019/0322-nvme-batched-block-
access-speed/.

[16] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh, Damien Le Moal, Gre-
gory R Ganger, and George Amvrosiadis. ZNS: Avoiding the Block Interface Tax for Flash-based
SSDs. 2021.

[17] Roman Bolshakov and Andrea Bolognani. libvirt: The virtualization API, 2018. URL https:
//libvirt.org/.

[18] Dhruba Borthakur. The Story of RocksDB: Embedded Key-Value Store for Flash and
RAM, 2013. URL https://raw.githubusercontent.com/facebook/rocksdb/gh-pages-
old/intro.pdf.

[19] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. Hardware and software support for virtual-
ization. Number # 38 in Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, San Rafael, CA, 2017. ISBN 978-1-62705-693-9.

[20] Daniel Casini, Alessandro Biondi, Giorgiomaria Cicero, and Giorgio Buttazzo. Latency Analysis
of I/O Virtualization Techniques in Hypervisor-Based Real-Time Systems. In 2021 IEEE 27th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 306–319,
May 2021. doi: 10.1109/RTAS52030.2021.00032. ISSN: 2642-7346.

[21] Peter Chubb. UserLevelDrivers - Gelato@UNSW WiKi, January 2004. URL
https://web.archive.org/web/20040108042329/http://www.gelato.unsw.edu.au/
IA64wiki/UserLevelDrivers.

[22] DPDK Project Contributors. 7. Linux Drivers — Data Plane Development Kit 22.11.0 doc-
umentation, 2017. URL https://doc.dpdk.org/guides/linux_gsg/linux_drivers.html#
uio.

[23] IO Visor Project Contributors. bpftrace, February 2023. URL https://github.com/iovisor/
bpftrace. original-date: 2018-08-31T04:34:44Z.

[24] Kernel Newbies Contributors. Linux_2_6_23 - Linux Kernel Newbies, 2017. URL https:
//kernelnewbies.org/Linux_2_6_23#UIO.

[25] Linux Kernel Contributors. KVM - Kernel Virtual Machine, 2016. URL https://www.linux-
kvm.org/page/Main_Page.

[26] QEMU Contributors. Invocation — QEMU documentation. URL https://qemu-project.
gitlab.io/qemu/system/invocation.html.

[27] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st ACM symposium
on Cloud computing, SoCC ’10, pages 143–154, New York, NY, USA, June 2010. Association

60

https://web.archive.org/web/20030801214438/http://fabrice.bellard.free.fr/qemu/
https://web.archive.org/web/20030801214438/http://fabrice.bellard.free.fr/qemu/
https://panthema.net/2019/0322-nvme-batched-block-access-speed/
https://panthema.net/2019/0322-nvme-batched-block-access-speed/
https://libvirt.org/
https://libvirt.org/
https://raw.githubusercontent.com/facebook/rocksdb/gh-pages-old/intro.pdf
https://raw.githubusercontent.com/facebook/rocksdb/gh-pages-old/intro.pdf
https://web.archive.org/web/20040108042329/http://www.gelato.unsw.edu.au/IA64wiki/UserLevelDrivers
https://web.archive.org/web/20040108042329/http://www.gelato.unsw.edu.au/IA64wiki/UserLevelDrivers
https://doc.dpdk.org/guides/linux_gsg/linux_drivers.html#uio
https://doc.dpdk.org/guides/linux_gsg/linux_drivers.html#uio
https://github.com/iovisor/bpftrace
https://github.com/iovisor/bpftrace
https://kernelnewbies.org/Linux_2_6_23#UIO
https://kernelnewbies.org/Linux_2_6_23#UIO
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://qemu-project.gitlab.io/qemu/system/invocation.html
https://qemu-project.gitlab.io/qemu/system/invocation.html

Bibliography

for Computing Machinery. ISBN 978-1-4503-0036-0. doi: 10.1145/1807128.1807152. URL
https://doi.org/10.1145/1807128.1807152.

[28] Jonathan Corbet. UIO: user-space drivers [LWN.net], May 2007. URL https://lwn.net/
Articles/232575/.

[29] Jonathan Corbet. The rapid growth of io_uring [LWN.net], 2020. URL https://lwn.net/
Articles/810414/.

[30] Jonathan Corbet. Killing off /dev/kmem [LWN.net], April 2021. URL https://lwn.net/
Articles/851531/.

[31] Jonathan Corbet. Zero-copy network transmission with io_uring [LWN.net], 2021. URL https:
//lwn.net/Articles/879724/.

[32] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. From WiscKey to Bourbon: A Learned Index
for Log-Structured Merge Trees. 2020.

[33] Dell. Dell Express Flash P4800X Technical Specifications. 2019.

[34] Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and Animesh Trivedi. Un-
derstanding modern storage APIs: a systematic study of libaio, SPDK, and io_uring. In
Proceedings of the 15th ACM International Conference on Systems and Storage, pages 120–
127, Haifa Israel, June 2022. ACM. ISBN 978-1-4503-9380-5. doi: 10.1145/3534056.3534945.
URL https://dl.acm.org/doi/10.1145/3534056.3534945.

[35] Christopher Domas. The Memory Sinkhole, July 2015.

[36] Stephane Duverger. A deep dive into QEMU: The Tiny Code Generator (TCG), part 1, 2021.
URL https://airbus-seclab.github.io/qemu_blog/tcg_p1.html.

[37] Werner Fischer. Processor P-states and C-states - Thomas-Krenn-Wiki, 2019. URL https:
//www.thomas-krenn.com/en/wiki/Processor_P-states_and_C-states.

[38] Werner Fischer. Linux Storage Stack Diagram - Thomas-Krenn-Wiki-en, March 2023. URL
https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram.

[39] Johan De Gelas. Hardware Virtualization: the Nuts and Bolts, March 2008. URL https:
//www.anandtech.com/show/2480.

[40] Stéphane Graber. Linux Containers, 2023. URL https://linuxcontainers.org/.

[41] Brendan Gregg. BPF Performance Tools. Addison-Wesley Professional, November 2019. ISBN
978-0-13-662458-5. Google-Books-ID: ihTADwAAQBAJ.

[42] Canonical Group. cloud-init 23.1.1 documentation, 2023. URL https://cloudinit.
readthedocs.io/en/latest/.

[43] Red Hat. Ansible, 2023. URL https://www.ansible.com.

[44] Greg Hewgill. Answer to "How did old MS-DOS games utilize various graphic cards?", June
2019. URL https://retrocomputing.stackexchange.com/a/11220.

61

https://doi.org/10.1145/1807128.1807152
https://lwn.net/Articles/232575/
https://lwn.net/Articles/232575/
https://lwn.net/Articles/810414/
https://lwn.net/Articles/810414/
https://lwn.net/Articles/851531/
https://lwn.net/Articles/851531/
https://lwn.net/Articles/879724/
https://lwn.net/Articles/879724/
https://dl.acm.org/doi/10.1145/3534056.3534945
https://airbus-seclab.github.io/qemu_blog/tcg_p1.html
https://www.thomas-krenn.com/en/wiki/Processor_P-states_and_C-states
https://www.thomas-krenn.com/en/wiki/Processor_P-states_and_C-states
https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram
https://www.anandtech.com/show/2480
https://www.anandtech.com/show/2480
https://linuxcontainers.org/
https://cloudinit.readthedocs.io/en/latest/
https://cloudinit.readthedocs.io/en/latest/
https://www.ansible.com
https://retrocomputing.stackexchange.com/a/11220

Bibliography

[45] Andy Honig and Nelly Porter. 7 ways we harden our KVM hypervisor at Google Cloud: security
in plaintext, January 2017. URL https://cloud.google.com/blog/products/gcp/7-ways-
we-harden-our-kvm-hypervisor-at-google-cloud-security-in-plaintext.

[46] Kaisong Huang, Tianzheng Wang, Darien Imai, and Dong Xie. SSDs Striking Back:The Storage
Jungle and Its Implications on Persistent Indexes. page 8, 2022.

[47] Khoa Huynh and Stefan Hajnoczi. KVM/QEMU Storage Stack Performance Dis-
cussion, 2010. URL https://docs.huihoo.com/virtualization/2010/02-kvm-storage-
stack-performance.pdf.

[48] Intel. 23. Vhost Sample Application — DPDK documentation, 2014. URL https://doc.dpdk.
org/guides-1.8/sample_app_ug/vhost.html.

[49] Intel and SPDK Contributors. spdk/rocksdb, September 2022. URL https://github.com/
spdk/rocksdb. original-date: 2017-03-10T21:16:22Z.

[50] Marios Kogias, Christos Kozyrakis, and Edouard Bugnion, editors. Measuring Latency: Am I
doing it right? 2017. Meeting Name: 14th USENIX Symposium on Networked Systems Design
and Implementation.

[51] Mike Kravetz. Huge Page Concepts, 2022. URL https://project.linuxfoundation.org/
hubfs/Webinars/Webinar_Slides/Huge-Page-Concepts.pdf?hsLang=en.

[52] Peter Krempa. libvirt: Domain XML format, 2023. URL https://libvirt.org/
formatdomain.html.

[53] Greg Kroah-Hartman. [RFC] Simple userspace interface for PCI drivers, August 2006. URL
https://lore.kernel.org/all/20060830062338.GA10285@kroah.com/#r.

[54] Dave Landsman and Don Walker. AHCI and NVMe as interfaces for SATA Express™ Devices.
November 2013.

[55] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W Lee, and Jinkyu Jeong. Asyn-
chronous I/O Stack: A Low-latency Kernel I/O Stack for Ultra-Low Latency SSDs. 2019.

[56] Gyusun Lee, Seokha Shin, and Jinkyu Jeong. Efficient hybrid polling for ultra-low latency
storage devices. Journal of Systems Architecture, 122:102338, 2021. ISSN 1383-7621. doi: 10.
1016/j.sysarc.2021.102338. URL https://www.sciencedirect.com/science/article/pii/
S1383762121002319.

[57] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley, and Daniel Smith. The Java®
Virtual Machine Specification. February 2022.

[58] Lowrentius. louwrentius/fio-plot: Create charts from FIO storage benchmark tool output, 2023.
URL https://github.com/louwrentius/fio-plot.

[59] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. WiscKey: Separating Keys from Values in
SSD-Conscious Storage. ACM Transactions on Storage, 13(1):5:1–5:28, March 2017. ISSN
1553-3077. doi: 10.1145/3033273. URL https://doi.org/10.1145/3033273.

62

https://cloud.google.com/blog/products/gcp/7-ways-we-harden-our-kvm-hypervisor-at-google-cloud-security-in-plaintext
https://cloud.google.com/blog/products/gcp/7-ways-we-harden-our-kvm-hypervisor-at-google-cloud-security-in-plaintext
https://docs.huihoo.com/virtualization/2010/02-kvm-storage-stack-performance.pdf
https://docs.huihoo.com/virtualization/2010/02-kvm-storage-stack-performance.pdf
https://doc.dpdk.org/guides-1.8/sample_app_ug/vhost.html
https://doc.dpdk.org/guides-1.8/sample_app_ug/vhost.html
https://github.com/spdk/rocksdb
https://github.com/spdk/rocksdb
https://project.linuxfoundation.org/hubfs/Webinars/Webinar_Slides/Huge-Page-Concepts.pdf?hsLang=en
https://project.linuxfoundation.org/hubfs/Webinars/Webinar_Slides/Huge-Page-Concepts.pdf?hsLang=en
https://libvirt.org/formatdomain.html
https://libvirt.org/formatdomain.html
https://lore.kernel.org/all/20060830062338.GA10285@kroah.com/#r
https://www.sciencedirect.com/science/article/pii/S1383762121002319
https://www.sciencedirect.com/science/article/pii/S1383762121002319
https://github.com/louwrentius/fio-plot
https://doi.org/10.1145/3033273

Bibliography

[60] Dan C. Marinescu. Cloud computing: theory and practice. Morgan Kaufmann is an imprint
of Elsevier, Cambridge, MA, third edition edition, 2023. ISBN 978-0-323-85277-7. OCLC:
on1346432663.

[61] Philippe Mathieu-Daudé, Stefan Weil, Paolo Bonzini, and John Johnson. Multi-process QEMU
— QEMU documentation, 2021. URL https://www.qemu.org/docs/master/devel/multi-
process.html.

[62] Paul McLellan. The History of PCIe: Getting to Version 6 - Breakfast Bytes - Cadence Blogs -
Cadence Community, March 2021. URL https://community.cadence.com/cadence_blogs_
8/b/breakfast-bytes/posts/pcie-the-next-generation.

[63] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. Intel® Virtualization
Technology: Hardware Support for Efficient Processor Virtualization. Intel Technology Journal,
10(03), August 2006. ISSN 1535864X.

[64] Oracle and QEMU Contributors. Out-of-process QEMU README, December 2022. URL
https://github.com/oracle/qemu. original-date: 2019-03-07T20:38:04Z.

[65] Peterx and Dwmw2. Features/VT-d - QEMU, 2023. URL https://wiki.qemu.org/Features/
VT-d.

[66] Joshua Powers. Ubuntu Server - Cloud images introduction, 2023. URL https://ubuntu.com/
server/docs/cloud-images/introduction.

[67] Sebastian Rolon and Oana Balmau. DISCS Lab McGill / Vfio user measurements · GitLab,
April 2023. URL https://gitlab.cs.mcgill.ca/discs-lab/vfio-user-measurements.

[68] Alessandro Rubini and Jonathan Corbet. Linux device drivers. O’Reilly & Associates, Se-
bastopol, 2nd ed edition, 2001. ISBN 978-0-596-00008-0.

[69] Rusty Russell. Rusty’s Bleeding Edge Page, May 2007. URL https://ozlabs.org/~rusty/
index.cgi/tech/2007-05-21.html.

[70] Rusty Russell. virtio: towards a de-facto standard for virtual I/O devices. ACM SIGOPS
Operating Systems Review, 42(5):95–103, July 2008. ISSN 0163-5980. doi: 10.1145/1400097.
1400108. URL https://dl.acm.org/doi/10.1145/1400097.1400108.

[71] James Salvadore. NVMe multiqueue interface | NVMe, NVMe/TCP, and Dell SmartFabric
Storage Software Overview - IP SAN Solution Primer | Dell Technologies Info Hub, 2022.
URL https://infohub.delltechnologies.com/l/nvme-nvme-tcp-and-dell-smartfabric-
storage-software-overview-ip-san-solution-primer-1/nvme-multiqueue-interface.

[72] Schoenebeck and Paolo Bonzini. Documentation/9psetup - QEMU, 2023. URL https://wiki.
qemu.org/Documentation/9psetup.

[73] Amit Shah. Ten years of KVM [LWN.net], November 2016. URL https://lwn.net/Articles/
705160/.

[74] Simon Sharwood. AWS adopts home-brewed KVM as new hypervisor, Novem-
ber 2017. URL https://www.theregister.com/2017/11/07/aws_writes_new_kvm_based_
hypervisor_to_make_its_cloud_go_faster/.

63

https://www.qemu.org/docs/master/devel/multi-process.html
https://www.qemu.org/docs/master/devel/multi-process.html
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/pcie-the-next-generation
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/pcie-the-next-generation
https://github.com/oracle/qemu
https://wiki.qemu.org/Features/VT-d
https://wiki.qemu.org/Features/VT-d
https://ubuntu.com/server/docs/cloud-images/introduction
https://ubuntu.com/server/docs/cloud-images/introduction
https://gitlab.cs.mcgill.ca/discs-lab/vfio-user-measurements
https://ozlabs.org/~rusty/index.cgi/tech/2007-05-21.html
https://ozlabs.org/~rusty/index.cgi/tech/2007-05-21.html
https://dl.acm.org/doi/10.1145/1400097.1400108
https://infohub.delltechnologies.com/l/nvme-nvme-tcp-and-dell-smartfabric-storage-software-overview-ip-san-solution-primer-1/nvme-multiqueue-interface
https://infohub.delltechnologies.com/l/nvme-nvme-tcp-and-dell-smartfabric-storage-software-overview-ip-san-solution-primer-1/nvme-multiqueue-interface
https://wiki.qemu.org/Documentation/9psetup
https://wiki.qemu.org/Documentation/9psetup
https://lwn.net/Articles/705160/
https://lwn.net/Articles/705160/
https://www.theregister.com/2017/11/07/aws_writes_new_kvm_based_hypervisor_to_make_its_cloud_go_faster/
https://www.theregister.com/2017/11/07/aws_writes_new_kvm_based_hypervisor_to_make_its_cloud_go_faster/

Bibliography

[75] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and Processes.
Elsevier, July 2005. ISBN 978-0-08-052540-2. Google-Books-ID: JPhQw41vD2MC.

[76] snips-n snails. Answer to "How did old MS-DOS games utilize various graphic cards?", June
2019. URL https://retrocomputing.stackexchange.com/a/11221.

[77] Jonathan Stern. Why SPDK?, April 2016. URL https://spdk.io/update/2016/04/13/not-
your-mothers-storage/.

[78] Sriram Subramanian. Beyond the Block-Based Interface for Flash-Based Storage. PhD thesis,
2013.

[79] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the reliability of commodity
operating systems. In Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 207–222, Bolton Landing NY USA, October 2003. ACM. ISBN 978-1-58113-
757-6. doi: 10.1145/945445.945466. URL https://dl.acm.org/doi/10.1145/945445.945466.

[80] Andrew S. Tanenbaum and Albert S. Woodhull. Operating systems: design and implementation.
Pearson Education : Dorling Kindersley, Delhi., 3rd ed edition, 2006. URL https://archive.
org/details/operatingsystems0000tane. OCLC: 1302148470.

[81] Red Hat Virtualization Documentation Team. Appendix G. Configuring a Host
for PCI Passthrough Red Hat Virtualization 4.1 | Red Hat Customer Portal, 2017.
URL https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.1/
html/installation_guide/appe-configuring_a_hypervisor_host_for_pci_passthrough.

[82] Michael Tsirkin. vhost_net: a kernel-level virtio server [LWN.net], 2009. URL https://lwn.
net/Articles/346267/.

[83] Bosmat Tuvel. Speedb | How does RocksDB Memory Management work?, November 2022.
URL https://www.speedb.io/blog-posts/how-does-rocksdb-memory-management-work.

[84] Daniel Verkamp. SPDK: Under the Hood, 2017. URL https://s3.us-east-2.amazonaws.
com/intel-builders/day_1_spdk_under_the_hood.pdf.

[85] Daniel Verkamp and Benjamin Walker. SPDK: What is SPDK, 2022. URL https://spdk.
io/doc/about.html.

[86] Benjamin Walker. SPDK: Block Device User Guide, 2022. URL https://spdk.io/doc/bdev.
html.

[87] Benjamin Walker, Seth Howell, and Daniel Verkamp. SPDK: Direct Memory Access (DMA)
From User Space, 2022. URL https://spdk.io/doc/memory.html.

[88] Alex Williamson. VFIO - “Virtual Function I/O” — The Linux Kernel documentation, 2011.
URL https://docs.kernel.org/driver-api/vfio.html.

[89] NVM Express Workgroup. NVM Express revision 1.0e specification, 2013. URL https://
nvmexpress.org/wp-content/uploads/NVM-Express-1_0e.pdf.

[90] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagappan, Rathijit Sen,
Kwanghyun Park, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. The Storage
Hierarchy is Not a Hierarchy: Optimizing Caching on Modern Storage Devices with Orthus.
2021.

64

https://retrocomputing.stackexchange.com/a/11221
https://spdk.io/update/2016/04/13/not-your-mothers-storage/
https://spdk.io/update/2016/04/13/not-your-mothers-storage/
https://dl.acm.org/doi/10.1145/945445.945466
https://archive.org/details/operatingsystems0000tane
https://archive.org/details/operatingsystems0000tane
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.1/html/installation_guide/appe-configuring_a_hypervisor_host_for_pci_passthrough
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.1/html/installation_guide/appe-configuring_a_hypervisor_host_for_pci_passthrough
https://lwn.net/Articles/346267/
https://lwn.net/Articles/346267/
https://www.speedb.io/blog-posts/how-does-rocksdb-memory-management-work
https://s3.us-east-2.amazonaws.com/intel-builders/day_1_spdk_under_the_hood.pdf
https://s3.us-east-2.amazonaws.com/intel-builders/day_1_spdk_under_the_hood.pdf
https://spdk.io/doc/about.html
https://spdk.io/doc/about.html
https://spdk.io/doc/bdev.html
https://spdk.io/doc/bdev.html
https://spdk.io/doc/memory.html
https://docs.kernel.org/driver-api/vfio.html
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_0e.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_0e.pdf

[91] Jisoo Yang, Dave B Minturn, and Frank Hady. When Poll is Better than Interrupt. 2012.

[92] Ziye Yang, James R. Harris, Benjamin Walker, Daniel Verkamp, Changpeng Liu, Cunyin
Chang, Gang Cao, Jonathan Stern, Vishal Verma, and Luse E. Paul. SPDK: A Development
Kit to Build High Performance Storage Applications. In 2017 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), pages 154–161, December 2017. doi:
10.1109/CloudCom.2017.14. ISSN: 2330-2186.

[93] Ziye Yang, Changpeng Liu, Yanbo Zhou, Xiaodong Liu, and Gang Cao. SPDK Vhost-NVMe:
Accelerating I/Os in Virtual Machines on NVMe SSDs via User Space Vhost Target. In 2018
IEEE 8th International Symposium on Cloud and Service Computing (SC2), pages 67–76,
November 2018. doi: 10.1109/SC2.2018.00016.

[94] Tomek Zawadzki and Jim Harris. SPDK Schedulers: Realizing Power Savings in Polled
Mode Applications, September 2021. URL https://www.snia.org/sites/default/files/
SDC/2021/pdfs/SNIA-SDC21-Zawadzki-Harris-SPDK-Schedulers.pdf.

[95] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson, Omar S. Navarro
Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay Jayakar, Pedro Henrique
Penna, Max Demoulin, Piali Choudhury, and Anirudh Badam. The Demikernel Datapath OS
Architecture for Microsecond-scale Datacenter Systems. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, SOSP ’21, pages 195–211, New York, NY,
USA, October 2021. Association for Computing Machinery. ISBN 978-1-4503-8709-5. doi:
10.1145/3477132.3483569. URL https://doi.org/10.1145/3477132.3483569.

65

https://www.snia.org/sites/default/files/SDC/2021/pdfs/SNIA-SDC21-Zawadzki-Harris-SPDK-Schedulers.pdf
https://www.snia.org/sites/default/files/SDC/2021/pdfs/SNIA-SDC21-Zawadzki-Harris-SPDK-Schedulers.pdf
https://doi.org/10.1145/3477132.3483569

	Abstract
	Abrégé
	Related Publication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Programs
	Introduction
	Problem Statement
	Contribution Overview
	Problem Relevance
	Thesis Overview

	Background
	Virtualization and QEMU/KVM
	System VMs and hardware virtualization
	QEMU and KVM
	virtio and vhost

	Hardware and drivers
	Driver paradigms
	Linux userspace drivers: UIO and VFIO
	NVMe
	SPDK
	libvfio-user

	Approach & methodology
	Choice of end-to-end applications
	fio
	RocksDB

	Storage virtualization configurations
	Bare metal configuration
	Libaio configuration
	Passthrough configuration
	Vfio-user configuration
	Additional configurations

	Layer-by-layer latency measurement with vfio_user_snoop

	Experimental setup
	Hardware and software environment
	Hardware
	Software

	Provisioning and automation

	Results
	Fio microbenchmark results
	Reads
	Writes

	RocksDB end-to-end application results
	Latency breakdown

	Related Work
	io_uring
	SPDK-vhost-NVMe
	Other approaches and notable work
	Kernel-level datapath optimization
	SR-IOV
	Latency source modeling and formalization
	Measurement pitfalls

	Conclusion
	Future Work

	Bibliography

