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ABSTRACT 

Vibrational waves generated by cardiac events can be detected by an accelerometer or a 

gyroscope placed on the surface of the chest. These waves are generally in the infrasonic range 

and contain information about cardiac mechanics. Recent advances in sensor technology have 

paved the way to portable, and non-invasive sensors. Wearable devices developed with these 

sensors can be used to monitor cardiac vibrations continuously, providing early detection of 

cardiovascular diseases. These are especially important in rural areas or even for astronauts in the 

space, that is, in places where proper clinical support is often unavailable. However, these 

vibrations are extremely sensitive to sensor placement. Hence a better understanding of the waves 

in connection the human body is necessary to take this system from the lab to a hospital setting, 

and our households. This thesis studies cardiac vibrations through acceleration recorded on seven 

locations on the chest. Previous studies have attempted to investigate chest vibrations through 

physical testing, analytical solution, and simulation. However, any connection between 

morphological changes in the chest and vibrational cardiography (VCG) signal quality is yet to be 

established. In this study, we propose a novel method to connect the vibrations to the changes in 

body composition level by testing in the lab, and by building simple numerical models of the 

human chest containing individual material properties for the organs within. A multi-sensor based 

simultaneous VCG recording system was developed in the lab and detailed in this thesis. A pilot 

test was performed on three subjects at McGill University, during the restrictions placed by the 

Covid-19 pandemic. One participant underwent a weight loss and strength training program and 

testing revealed that the signal-to-noise ratio of cardiac vibrations improved during that period. 

Amplitude modulation due to different sensor positioning was observed and it helped to identify 

the best locations on the chest for VCG recording. All sensor positions were able to pick up cardiac 

valvular activity. The systolic and the diastolic peak of the vibrational waves were studied 

simultaneously in time and frequency domain and revealed similar frequency contents in the signal 

during both events. A detailed study on a larger population must be completed to validate the 

findings. 
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RÉSUMÉ 

Les ondes vibratoires générées par les événements cardiaques peuvent être détectées par 

un accéléromètre ou un gyroscope placé à la surface du thorax. Ces ondes sont généralement dans 

la gamme infrasonore et contiennent des informations sur la mécanique cardiaque. Les progrès 

récents de la technologie des capteurs ont ouvert la voie à des capteurs portables et non invasifs. 

Les dispositifs portables développés avec ces capteurs peuvent être utilisés pour surveiller les 

vibrations cardiaques en continu, permettant une détection précoce des maladies cardiovasculaires. 

Ceux-ci sont particulièrement importants dans les zones rurales ou même pour les astronautes dans 

l'espace, c'est-à-dire dans des endroits où un service de santé approprié n'est pas souvent 

disponible. Cependant, ces vibrations sont extrêmement sensibles au placement du capteur. Par 

conséquent, une meilleure compréhension de ces ondes en relation avec le corps humain est 

nécessaire pour faire passer ce système du laboratoire au milieu hospitalier, et dans nos maisons. 

Cette thèse étudie les vibrations cardiaques grâce aux accélérations enregistrées à sept endroits 

différents de la poitrine. Des études antérieures ont tenté d'étudier ces vibrations à travers d’un test 

physiques, d’une solution analytique et d’une simulation. Cependant, aucun lien entre les 

changements morphologiques de la poitrine et la qualité du signal de cardiographie vibratoire 

(VCG) n’a pas encore été établi. Dans cette étude, nous proposons une nouvelle méthode pour 

relier les vibrations aux changements de niveau de composition corporelle grâce à des résultats 

obtenus au laboratoire et grâce à des modèles numériques de la poitrine humaine contenant les 

propriétés des organes. Un système d'enregistrement VCG simultané basé sur plusieurs capteurs a 

été développé en laboratoire et détaillé dans cette thèse. Un test pilote a été réalisé sur trois sujets 

à l'Université McGill, pendant les restrictions imposées par la pandémie de Covid-19. Un 

participant a suivi un programme de perte de poids et de musculation et les tests ont révélé que le 

rapport entre le signal et le bruit des vibrations cardiaques s'est amélioré au cours de cette période. 

Une modulation d'amplitude due au positionnement différent du capteur a été observée et a permis 

d'identifier les meilleurs emplacements sur la poitrine pour les enregistrements VCG. Tous les 

placements des capteurs étaient capables d’enregistrer l'activité valvulaire cardiaque. Les apogées 

systolique et diastolique des ondes vibrationnelles ont été étudiés simultanément dans le domaine 

temporel et fréquentiel et nous avons découvert des contenus de fréquence similaires dans le signal 
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pendant les deux événements. Une étude détaillée sur une population plus large doit être réalisée 

pour valider les résultats. 
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I. INTRODUCTION 

A. Motivation 

Cardiovascular diseases (CVD) are a major cause of premature deaths [1] and are the 

second leading cause of deaths in Canada over the past 21 years [2]. CVD includes any disfunction 

of the heart and the surrounding blood vessels. Underlying CVD also increases the severity of 

respiratory diseases caused by viruses such as the beta-coronavirus [3]. Advances of modern 

technology in the medical field have reduced the possibility of a fatal outcome from CVD. While 

cases of CVD have increased 93% between 1990 and 2019, death rates caused by CVD have only 

increased by 54% during that time [4]. Continuous monitoring of heart functions can further reduce 

this mortality rate by providing improved early detection of critical physiological changes [5]. To 

develop such a system, a proper understanding of the body functions is necessary. But the inherent 

complexity and interconnected dependencies of the human body still raises many unanswered 

questions. While it might not be convenient to experiment on living human bodies to understand 

cardiac functions, relying on non-invasive examination have provided a lot of information-rich 

signals that can be analyzed to estimate the sources of irregularities. However, it is still 

cumbersome to perform non-invasive tests on human subjects, an issue intensified by the ongoing 

pandemic. In this regard, computationally modeling the human body and the heart can help explain 

key cardiac functions, leading to a better understanding of cardiac diseases and associated 

treatments [6].  

The motivation behind the following thesis is divided into two parts. Firstly, it develops a 

system of wireless cardiac monitoring that can be easily replicated in different labs, and can be 

used to develop cost-effective solutions to provide cardiac assessment at home. The system 

captures data from multiple non-invasive sensors placed on the surface of the chest. Hence, it has 

been characterized based on sensor placement and signal quality. The effect of body composition 

on the captured signal was also explored. The second part of the thesis develops computationally 

efficient models that can emulate non-invasive analysis of the human body. The goal of developing 

the models is to verify the findings the in the lab. 



 

    16 

 

A brief discussion about the functioning of the human heart and a detailed discussion about 

the current standards in cardiac monitoring are given below. 

B. Cardiac Function 

1. Cardiac Beating 

The heart is one of the most vital organs in the human body. It pumps blood to oxygenate 

the body and to remove wastes via the circulatory system. A normal heart rate is approximately 60 

to 90 beats per minute (1-1.5 Hz, or 1-1.5 beats per second) at rest, maximum 200 beats per minute 

during exercising, and around 500 beats per minute during atrial fibrillation [7]. The heart consists 

of four chambers (right and left atrium, and ventricle) that operates two pumps. Contraction and 

relaxation at the atrium and the ventricle of the heart is controlled by electrical impulses that are 

generated at the sinoatrial node [7]. The right ventricle, a low-pressure pump, supplies the 

pulmonary circulation, whereas the left ventricle, a high-pressure pump, supplies the systemic 

circulation. As the ventricles and the atriums contract and relax, the one-way valves connecting 

them opens and closes to allow blood flow. It is important to remember that these valves are 

passive, hydraulic devices. They do not contain any active muscle [8]. They move due to pressure 

differentials of blood. The whole process is controlled electrically and can be monitored using 

electrocardiography (ECG) [9]. The movement of the heart chambers are mechanical. During each 

beat, the heart performs a series of events that can be described as the cardiac cycle. 

2. Cardiac Cycle 

A cardiac cycle is divided into two major phases, ventricular contraction (systolic phase), 

and relaxation (diastolic phase). The heart pushes the blood into the body during systole, and refills 

during diastole [10]. At the beginning of the cardiac cycle, deoxygenated blood flows into the right 

atrium from the vena cava while oxygenated blood flows into the left atrium from the pulmonary 

veins. Blood flows from the right atrium to the right ventricle through the tricuspid valve and from 

left atrium to the left ventricular through the mitral valve. Both valves close because of reversed 

pressure differential when the ventricles are filled. The snap produces vibrational pulses, and can 

be heard as the first heart sound (S1). At this point, the ventricles contract while the pulmonary 
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and the aortic valves are still closed, increasing the pressure rapidly, resulting in isovolumetric 

contraction (IVCP). As pressure in the ventricles increase further, the pressure differentials cause 

the pulmonic and the aortic valve to open. This causes a rapid pulsatile ejection of blood through 

the aorta and the pulmonary artery. As ventricular pressure drops below the pressure in the 

pulmonary artery and the aorta, both valves close and produce the second heart sound (S2) [11]. 

The ventricles then start to relax with all valves closed, and ventricular pressure is decreased. This 

period is known as isovolumetric relaxation (IVRP). As ventricular pressure decreases bellow the 

atrium, the cycle is completed.  

3. Cardiac Vibrations  

While the heart sounds can be picked up from the surface of the chest with a stethoscope, 

the deformation of the heart during every heartbeat also generates infrasonic mechanical waves. 

The waves are assumed to be generated as a result of ventricular contraction, valvular activity, and 

pulsatile flow [12]. These waves diffuse through the organs and propagate to the surface of the 

body, and can be picked up by non-invasive monitoring as displacement, velocity, or acceleration 

[13, 14]. These signals have shown to provide important information on cardiovascular functions 

[15], and diseases [16]. A brief description on the current standards of non-invasive cardiac 

monitoring is given below, including a more detailed discussion on cardiac vibration analysis.  

C. Non-Invasive Cardiac Monitoring 

Several techniques have been proposed to monitor the heart non-invasively. The prominent 

ones are described here according to the underlying physics.   

1. Electrical 

ECG is the current clinical standard of cardiac monitoring. It is a measure of potential 

difference between electrodes that are placed on different parts of the chest. ECG was first 

introduced in 1901, and medical usage began around 1950 [17]. A sample ECG signal is provided 

by a graph of voltage (millivolts) vs. time (duration of a cardiac cycle) and is shown in Figure 1.   
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Electrical impulses generated at the sinoatrial node control contraction and relaxation at 

the atrium and the ventricle of the heart. The P, and the R peak represents the depolarization of the 

atrium, and the ventricle respectively. The T peak shows the repolarization of the ventricles [9]. 

Due to its ability to monitor heart rate [18], ECG can be used to detect arrythmia [19], and ischemia 

[20]. While ECG is a valuable tool, it cannot be used to extract important cardiac information such 

as stroke volume (SV) and cardiac output (CO), which relate to the volume of blood ejected by the 

ventricle during a cardiac cycle. ECG has been measured from human subjects as a part of this 

thesis.  

Measured similarly to ECG, Impedance Cardiography (ICG) is obtained by placing four 

electrode pairs around the neck and the thorax to record changes in the impedance. The outer (on 

the sagittal plane of the human body) electrodes are used to apply an alternating current, and the 

inner electrodes are used to measure the voltage differences across it [21]. ICG can monitor the 

flow of blood through the heart and provide information on SV and CO [22]. ECG and ICG are 

affected by motion artifact [23, 24].  

2. Optical 

Non-medical wearable fitness trackers such as Fitbit and Apple Watch uses 

Photoplethysmography (PPG) sensors placed on the hand to measure blood flow variation in the 

microvascular bed of tissue using a light-emitting diode and a photodetector [25]. It can detect 

heart rate [26], oxygen saturation [27], and arterial stiffness [28]. PPG is affected by motion artifact 

[29] and by ambient light [30].  

3. Mechanical  

The vibrations generated during the cardiac beating process can be detected as sounds via 

stethoscope auscultation or phonocardiography (PCG) [31]. This is often described as the ‘lub-

dub’ that can be heard by placing one’s ear on another person’s chest. PCG can be correlated to 

ECG with very high accuracy [32], and typically is more rich in information than PPG [33].  

The lower frequency mechanical (typically <50 Hz) vibrations can be detected by 

Seismocardiography (SCG), Gyrocardiography (GCG), and Ballistocardiogray (BCG). BCG 

measures the ballistic forces of the heart in response to the blood flow during the cardiac beating 
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process. BCG is highly affected by subject’s posture and can be challenging for post-processing 

[34]. While BCG measures the recoil forces of the body, SCG and GCG measures the local 

vibrations of the heart from the chest walls with an accelerometer, and a gyroscope respectively 

[35]. SCG was first introduced in 1964 [36] and further development started around 1990 [37]. A 

combination of tri-axis SCG and GCG is referred to as vibrational cardiography (VCG). The term 

was coined within the research group. VCG signal has been captured from human subjects in the 

lab as the focus of this thesis. VCG can provide unique insights into how cardiac muscles, and 

other tissues and organs behave in the propagation path of the infrasonic vibration. Cardiac timing 

intervals (CTIs) such as aortic and mitral valve opening and closing have been accurately predicted 

Figure 1: Electrocardiography (Top) and dorso-ventral axis Vibrational Cardiography waveform 

(bottom) corresponding to one heart beat, with fiducial points marked.  
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by VCG [38]. VCG has been proposed to be a viable method of unobtrusive [39] cardiac 

monitoring [12, 35, 40].  

Figure 1 provides a typical VCG waveform found in the dorso-ventral axis from a subject 

in a supine position. The waveform can be divided into two main events [16], V1 and V2, 

corresponding to the onset of the cardiac systole, and the diastole respectively. Key fiducial points 

such as mitral valve closing (MC), aortic valve opening (AO), aortic valve closing (AC), and mitral 

valve opening (MO) have been marked on the waveform based on previous work [41]. These 

points predict several key cardiac time intervals such as left ventricular ejection time (LVET) [42], 

IVCP, and IVRP [43]. LVET marks the time difference between AO and AC points in Figure 1 

and represents the time required to eject blood from the ventricle to the aorta. IVCP represents the 

time difference between MC and AO, and IVRP represents the interval between AC and MO. 

However, these fiducial points are debated [44, 45], and no concrete proof has been found yet to 

connect these points to the assumed origins of the vibration. VCG has also been shown to be able 

to monitor respiration [46, 47]. However, it also means that VCG signals can be highly modulated 

by respiratory events and can be cumbersome to analyze. While VCG signals are known to be 

versatile cardiac monitoring tool, the acquired waveforms are highly affected by motion artifact 

[48], and sensor placement [49, 50]. Effect of body composition changes on the acquired signal 

still needs to be explored.  

D. Thesis Objective 

Several cardiac monitoring methods were discussed in the previous section. Among all the 

techniques, ECG and VCG data were captured in the lab from several participants. Several 

unanswered questions need to be tackled before VCG can be considered as a clinically viable 

method of cardiac monitoring. VCG signals are highly affected by sensor positioning, and 

depending on the needs of the system, different sensor locations can prove to be more useful to 

gather certain cardiac events [51]. This thesis studies different VCG capturing locations in the 

process of developing an easily deployable system for clinical and at home cardiac monitoring. 

Dorso-ventral axis VCG was analyzed for seven different locations of the chest. The gathered data 

was first compared based on their relative signal amplitude and it provided a measure for signal-
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to-noise (SNR) ratio. SNR showed general improvement as one subject was measured multiple 

times over six weeks. During this period, the subject underwent a weight loss program. The 

collected data was used to correlate vibrations to subject’s body mass index (BMI). Key cardiac 

event times were calculated from the recorded signal and compared between different locations. 

The signals were also studied in frequency domain where dominant frequencies corresponding to 

each waveform were extracted. Polynomial Chirplet Transform (PCT) and Continuous Wavelet 

Transform (CWT) were implemented to study the signal in both time and frequency domain 

simultaneously. PCT based time-frequency representation showed better amplitude concentration 

of the V1 and V2 peaks than CWT, and was further analyzed to the time and frequency widths of 

V1 and V2 at each location. Lastly, simple numerical based simulations were built to replicate and 

validate findings in the lab.  

The development of the system is detailed in Chapter II. All analysis steps, and the 

simulation methodology are detailed in chapter III. The results are provided in chapter IV, and 

discussed in chapter V. Lastly, the thesis is concluded in chapter VI.  
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II. DATA ACQUISITION METHODS 

This chapter explains the methodology and the techniques used to acquire information on 

cardiac activity from human test subjects. Both hardware and software aspects of the system have 

been explained in detail.   

A. Multi-Sensor Vibrational Cardiography 

1. Sensor 

The system was designed to have the capabilities of being widely deployed for remote 

cardiac health monitoring. Hence, it was built with commercially available and cheap components 

that can be assembled with little complexity. The MPU-9250 by Invensense was used as the inertial 

measurement unit (IMU). The MPU-9250 has a small form factor and contains both a tri-axial 

accelerometer and a gyroscope that can be used simultaneously for six axes vibrational 

cardiography analysis. However, only the dorso-ventral axis accelerometer data was considered 

for analysis in this study, similar to previous works in the field [12, 35]. A total of four IMUs were 

used simultaneously to capture VCG data from different locations in the chest. The chosen IMU 

also has a high sampling rate (maximum 4000 Hz) and low RMS noise (0.078 m/s2), making it 

ideal for capturing data in a wide range of scenarios [52]. The range of the accelerometer was set 

at ±2 g and the range of the gyroscope was set at ±250 deg/sec. 

2. Connectivity 

To receive the data from the IMU, a Raspberry Pi (Pi-Zero W, Raspberry Pi) was used. 

Two IMUs were connected to one Pi and hence, two Pis were used to simultaneously run four 

IMUs. I2C data was polled by the Pi from each of the IMUs at an approximate rate of 300 Hz 

using a custom developed code. The Pi was chosen for its ability to process data from multiple 

IMUs together, and for being able to store the data on a memory card and wirelessly transmit that 

data to the computer device. The data received from each of the IMUs were appended in a single 

text file and was stored on a memory card on the Pi. This data was then sent to the computer device 

via Wi-Fi. 
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3. Placement  

VCG signals can be picked up from different locations of the chest. However, the signal 

quality and the captured fiducial points vary based on the sensor’s position on the chest [50, 53]. 

Testing multiple positions allowed us to verify and compare the effect of chest morphology on 

VCG with previous work in the field [49, 54, 55]. It also enabled the opportunity to find the best 

position for VCG measurement in a remote healthcare setting, where ease-of-use and unobtrusive 

setup is essential [56]. Seven locations on the chest surface were identified for data collection. The 

positions included three locations at the sternum, and the auscultation areas of the four heart valves 

[57].  These positions are marked in Figure 2 (recreated from [58]). Due to the limitation of 

maximum four sensors per simultaneous data collection, these positions were divided into two 

sets. Set one contained locations of interest on the sternum and was denoted as Sternal VCG (S-

VCG).  Set two contained valvular auscultation locations and was identified as valvular VCG (V-

VCG).  

The three S-VCG locations are marked as Xiphoid Process (XP), Mid-Sternum, and the 

Ascending Aorta region (AAr) in Figure 2. The XP location was chosen to be directly above the 

xiphoid process. It represents the cartilaginous section at the bottom of the sternum, detached from 

the ribs. The XP was picked as it was shown to be a reliable location for recording VCG signals 

[12], and as both V1 and V2 vibrations could be recorded at this location with good signal 

amplitude. Measuring this location also allowed our current data to be compared with our previous 

single sensor based VCG publications [14, 46, 59].  

The AAr is located on the angle of louis of the sternum. It is positioned at the level of the 

second coastal ribs, between the T4 and the T5 thoracic vertebra [60]. The blood volume that is 

ejected from the left ventricle through the AV, flows through the ascending aorta into the other 

arteries of the body [10]. The elastic aorta vibrates because of this process and has the potential to 

be a possible source of the VCG signal. Hence, the AAr location was picked as it was the closest 

position on the sternum from the ascending aorta. To further verify the signal differences between 

XP and AAr, a midpoint approximately 4 cm between each sensor was selected and denoted as 

Mid-sternum. This location on the sternum was tested because of its close proximity to the AV, 

another possible source of VCG.  
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V-VCG locations are marked as the AV, PV, TV, and the MV/Heart Apex locations on 

Figure 2 and are positioned in the intercostal spaces of the ribs where each of the four heart valves 

are generally auscultated [57]. Vibrations due to each heart valve opening and closing can be heard 

and differentiated with a stethoscope at these locations. It was hypothesized that lower frequency 

vibrations were also best captured here.  

 

The second intercostal space on the right sternal border was used in previous studies as the 

aortic valve (AV) listening area [57], and was also selected for VCG acquisition because vibrations 

originating at aortic valve are transmitted here through minimum material discontinuities in the 

propagation path. The second intercostal space on the left sternal border was used as the pulmonary 

valve (PV) location. This location was selected because vibrations that can lead to the V2 event in 

VCG were found be more pronounced on the left side of the heart [61]. The tricuspid valve (TV) 

VCG acquisition position was located on the fourth intercostal space on the right sternal border. 

TV location was picked as it was the closest to XP, but situated on the softer pectoral muscle 

instead of the cartilaginous xiphoid process.  

The complex motion of the left ventricle was believed to be a possible source of modulation 

of VCG waveform through cardiac muscle contraction and blood flow turbulence. This was 

Figure 2: VCG measurement locations. From top: 1) AAr: Ascending aorta region. 2) AV: Aortic 

valve location. 3) PV: Pulmonary valve location. 4) Mid-Sternum: Approximately 4 cm between 

AAr and XP. 5) TV: Tricuspid valve location. 6) MV: Mitral valve location and situated at the 

apex of the heart. 7) XP: Xiphoid process region. Recreated from [58]. 



 

    25 

 

investigated by placing a sensor at the fifth intercostal space medial to the clavicular line. It was 

denoted as the MV/Heart Apex location.  

B. ECG 

ECG (BN-RSPEC, BIOPAC) data was captured with the BIOPAC (BIOPAC, MP-160), a 

gold standard physiological measurement data acquisition device. ECG electrodes were placed at 

the corners of the Einthoven's triangular formation around the heart [62]. The AcqKnowledge 

software (AcqKnowledge 5, BIOPAC) was used to filter and smooth raw ECG data. The data 

acquisition methodology is shown in Figure 3.  

C. Time-Correlated Data Collection 

Time-correlation between each of the Pi, and the BIOPAC system was achieved with a 

clock signal generated by the BIOPAC. The clock consisted of a cycle of square waves of different 

pulse widths. The clock information was added as an additional channel of data and was collected 

simultaneously with ECG. This clock signal was also transmitted to both Pis through a physical 

wire. This technique created a reference timing between the BIOPAC and the Raspberry Pis. The 

Figure 3: A schematic (Recreated from [58]) of the system built to capture VCG data from seven 

different locations on the sternum with IMUs through a Raspberry Pi. ECG data was captured 

with the BIOPAC system (Electrode positions shown in blue circle). The data from both systems 

were simultaneously analyzed on a computer.  
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data from the Pis were appended to a text file and wirelessly accessed over Wi-Fi on a Windows 

10 computer. The raw data file collected from each of the systems contained the global reference 

time information as a column. Matching both timeseries in MATLAB R2019a (MATLAB) 

provided the synchronization needed between each sensor, and the BIOPAC. 

D. Human Testing 

The multi-sensor VCG data was collected from three male participants. Due to safety 

concerns and restrictions placed on experiments involving human participants a result of the 

Covid-19 pandemic, a larger population data collection was not feasible. The participants were 

selected from the McGill student community. None of them had any prior cardiovascular diseases. 

The human trials were conducted with the approval of the research ethics board and department of 

electrical and computer engineering at McGill University. A future study has already been 

designed for a broader analysis with a larger set of participants. Table 1 provides basic information 

on the participants considered for data collection. Although data was collected only from three 

participants, Subject 1 was tested three times over six weeks. During this time, Subject 1 underwent 

a weight loss program and lost a total of 11.2 kg. The subject also performed 180 minutes of 

strength building exercises per week with a certified trainer. Strict sanitization and distancing 

(where possible) protocols were followed to reduce the potential of spreading the coronavirus 

during data collection in the lab. Each participant signed a consent form and reported their health 

status prior to entering the lab.  

Table 1: Participants of the multi-sensor VCG data collection 

Participant Sex Age (Years) Weight (kg) Height (m) 

1 M 26 112.1 – 100.9 1.77 

2 M 25 77 1.80 

3 M 24 75.8 1.83 

 

At the beginning of each test, the participants were briefed on the entire testing procedure. 

They were also given time to rest before the test started to reduce the possibility of an elevated 

heart rate during the test period. Three ECG electrodes were then placed on the torso as shown in 

Figure 3. The positive lead was attached to the electrode near the upper right of the torso. The 

negative lead was attached to the electrode placed near the bottom left of the torso. The ground 
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was attached to the final electrode near the bottom right of the torso. The IMUs were then placed 

in the appropriate position (either S-VCG or V-VCG) with double-sided tape. The X, Y, and Z 

axes of the sensors were oriented with the sinistro-dexter, inferior-superior, and dorso-ventral axes 

of the body respectively. In the S-VCG placement, the sensors were placed on the AAr, Mid-

sternum, XP, and the MV/Heart apex locations as shown Figure 2 and 3. In the V-VCG orientation, 

the first three positions were changed to the AV, PV, and TV locations respectively. The MV/Heart 

apex position was identified by auscultation process with a stethoscope (Classic 3, 3M Littmann). 

Several positions were heard to interpret maximum amplitude of heart sound. The best location 

was picked based on the loudness of the heartbeat. As this required more time to set up than other 

locations where the data collection points were easily identifiable, the IMU placed on the 

MV/Heart apex location was kept unchanged throughout all six tests. All the tests were conducted 

with the participants being in a supine position to reduce motion artifact and noise while collecting 

data. During test 1 and test 4, participants were requested to breathe normally in a relaxed state. 

During test 2 and test 5, the participants were asked to inhale as much as possible and hold their 

breath for a maximum of 1 minute. During test 3 and test 6, the participants were asked to exhale 

as much as possible and hold their breath for a maximum of 1 minute. Table 2 lists the tests that 

each participant performed. 

Table 2: Tests performed by each participant during data collection 

Test 
VCG sensor 

orientation 
Test type 

Maximum 

duration* 

Breathing 

1 

S-VCG 

Rest 1 Minute Regular 

2 High Lung Volume (HLV) 1 Minute Inhaled hold 

3 Low Lung Volume (LLV) 1 Minute Exhaled Hold 

4 

V-VCG 

Rest 1 Minute Regular 

5 High Lung Volume (HLV) 1 Minute Inhaled hold 

6 Low Lung Volume (LLV) 1 Minute Exhaled Hold 

 
* Participants may have stopped before  

 

Over the six weeks of the weight loss program, the body composition of the Subject 1 was 

measured with a 3D body scanning machine (Body Scanner, FIT3D). During each measurement 

the scanner took 360-degree images of the subject to create a digital 3D image. FIT3D’s 

proprietary algorithm then automatically measured the body area and fat composition levels, and 

transmitted the data to the subject over the cloud. Table 3 contains the physiological metrics of 
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subject 1 gathered during the weight loss program. VCG data was collected within one day of each 

3D scan.  

Table 3: Wellness metrics gathered from subject 1 during the weight loss program 

Test Waist 

Circumference 

Chest 

Circumference 

Body fat 

percentage 

Weight Fat 

Mass 

Lean 

Mass 

BMI BMR 

Week 1 120.4 cm 122.9 cm 42.03% 112.1 kg 47.1 kg 65 kg 35.8 2102 

Week 3  116.6 cm 118.9 cm 38.56% 104.8 kg 40.4 kg 64.4 kg 33.4 2029 

Week 6  113.3 cm 114.6 cm 37.1% 100.9 kg 37.5 kg 63.4 kg 32.2 1990 

Reduction 7.1 cm 8.3 cm 4.93% 11.2 kg 9.6 kg 1.6 kg 3.6 112 

           

Over the 6 weeks, the subject’s body fat percentage decreased by almost 5%, fat mass 

reduced by 9.6 kg, and body mass index (BMI) improved by 10%. Body area also showed 

improvement, while lean mass and basal metabolic rate (BMR) showed deterioration. BMR 

represents the number of calories needed for basic functioning (breathing, blood circulation, body 

temperature, nervous function, muscle, and cell activity) of the body at rest [63].  

E. Pre-Processing 

Time correlated VCG and ECG were collected from all three participants and pre-

processed in MATLAB before analysis. 30 minutes of cardiac data was collected for analysis. The 

captured data was first imported to MATLAB, even sampled at 500 Hz, and appended to a new 

time-series. The VCG data was then digitally filtered using a 3rd order Butterworth band-pass filter 

between 0.5 Hz and 55 Hz as VCG signals do not contain any cardiac information at high 

frequencies [16]. The lower frequency limit was set to remove respiration modulation, and any 

low frequency noise that would cause drifting in the signal. The higher frequency limit was set to 

remove noises from biological sources such as respiration and digestion sound, and also from 

systemic sources such as sensor noise and electrical connections. Data captured from the BIOPAC 

was filtered and smoothed with the AcqKnowledge 5 software before analysis. Due to inherent 

delays caused from manually turning on and off each of the Pis and the BIOPAC at the beginning 

and end of data collection, each data stream was carefully trimmed at the beginning and the end. 
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The different pulse widths in reference the clock was used to identify the starting and the ending 

points of the clock cycles reported by each system. Only the portion of the data that overlapped 

between all three sets (VCG from both Pis, and BIOPAC) were kept. Filtered and matched VCG, 

and BIOPAC data were further down sampled to 200 Hz for faster post-processing. VCG data was 

then separated and segmented by heartbeat. The ECG R peak was used to segment VCG signals 

according to each heartbeat. The Pan Tomkins real-time QRS analysis algorithm [64] was used for 

R peak detection. Each separated VCG waveform was selected to start 0.1s before the R peak to 

approximate the start of the cardiac cycle. 
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III. ANALYSIS 

After filtering, down sampling, and segmentation, the following analysis were performed 

on the data collected from all seven locations. The analysis included both time and frequency 

domain feature extraction based on different positions and different tests performed.  

A. Signal-to-Noise ratio (SNR) 

SNR measures the relative quality of the acquired signal in comparison to the background 

noise. A low SNR signal is muffled with unwanted noise and can lead to inaccurate identification 

of V1 and V2. To get a metric for the signal quality, the amplitude of V1 and V2 portion of the 

VCG waveform was measured in relation to the noise. To acquire a measure of the noise from the 

signal, the portion of the VCG signal relating to the T-P interval of the ECG signal (Figure 1) was 

picked [49, 65]. This portion corresponds to a period when heart activity is low. During this period, 

the heart remains in a relaxed phase within the cardiac cycle and the VCG waveform shows very 

low acceleration variations over this period. Each segmented VCG signal was divided into three 

Figure 4: (a) Dorso-ventral axis VCG plotted for all S-VCG locations (AAr, Mid-sternum, and 

XP), and the Heart apex. (b) RMS values of VCG signals corresponding to the same locations 

are plotted. The data was taken from an inhaled breath hold test. Both plots represent average 

data from 25 sequential heart beats. 
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portions corresponding to V1 (Systolic period), V2 (Beginning of diastolic period), and noise 

(Cardiac dormancy/noise period), as shown in Figure 4.  

The root mean squared (RMS) value of each of the segmented section was acquired using 

MATLAB’s envelope function [66]. A sliding window of 100 ms was used and maximum RMS 

value acquired at each portion of the signal was extracted using MATLAB’s findpeaks function. 

The SNR was measured using the following equation: 

 VCG V1SNR =  
max(rms VCG V1 period) 

max(rms Noise period)
  

 VCG V2SNR =  
max(rms VCG V2 period) 

max(rms Noise period) 
 (1) 

B. Cardiac Timing 

Cardiac timing intervals (CTIs) are clinically relevant information that provide insights on 

how the heart performs. Variability in CTIs can give important information on valve, artery, and 

myocardial diseases. Previous studies have shown VCG to be able to provide information on CTIs 

Figure 5: Dorso-ventral axis VCG is plotted at the XP location. Key fiducial points identifiable 

in the waveform are marked. Data taken during an inhaled breath hold test from 25 sequential 

heart beats.  
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[15, 44, 67]. The average VCG waveform in time domain was extracted for multiple subjects and 

MC, AO, AC, and MO fiducial points were marked [41] for all the locations on the chest for each 

of the tests. The data was then used to calculate LVET, IVCP, and IVRP as shown in Figure 5.  

C. Dominant Frequency 

To analyze the frequency content of VCG signals found in different chest locations, the 

dominant frequencies corresponding to each of the waves were extracted. For this, discrete Fourier 

transform (DFT) was computed using the MATLAB fft function. Due to the noisy recreation of 

the signal in frequency domain, Welch’s power spectral density (Pwelch) estimate method 

(MATLAB pwelch function) was used to extract the power spectral density of the signal. A 

hamming window size of 750 ms was used. Both techniques were used to find the frequencies at 

each sensor location as shown in Figure 6.  

  

Figure 6: Frequency domain representation of a dorso-ventral axis VCG signal collected from a 

subject during the inhaled breath hold test. (a) VCG waveform in time represents average data 

from 25 sequential heart beats. (b) DFT (Top) and Pwelch (bottom) performed on the entire 

dataset. Both DFT and Pwelch method were able to identify the frequency peaks marked at 3, 11, 

and 26 Hz.   
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D. Time-Frequency (TF) Analysis 

1. TF Representation 

VCG signals records the physical process of heart movement, which is variable over time. 

Moreover, the signal is often dominated by noise. As a result, VCG signals contain periodic 

changes in both time and frequency domain. Recreating the signal only one domain is not adequate, 

and they should be studied together to retain the full contents of the signal. To create a time and 

frequency visualization of VCG signals, several spectral analysis methods have been proposed in 

previous works, such as short-time Fourier Transform [68], Continuous Wavelet Transform 

(CWT) [16], and Polynomial Chirplet Transform (PCT) [16, 49]. CWT is widely accepted as a 

time-frequency domain (TFD) analysis tool for studying many different biomedical signals such 

as ECG [69], PCG [70, 71], Electromyography (EMG) [72], Electroencephalogram (EEG) [73], 

and so on. CWT decomposes signals by small oscillations or wavelets (such as, Morse [73], 

Analytical morlet [74], or Bump [75]) that are localized in time and frequency domain. However, 

CWTs are affected by the Heisenberg–Gabor inequality [76], where improving the resolution of 

one of either time or frequency domains worsens the resolution in the other domain. PCT on the 

other hand was first introduced in 2011 [77] and builds on the conventional chirplet transform 

(CT)  method [78] to analyze signals with non-linear instantaneous frequencies. An example of 

such a signal is the VCG waveform. Similar to CWT, chirplet transform also decomposes signals, 

but into small chirps instead of a wave. PCT incorporates nonlinear frequency rotating and shift 

operators, and a polynomial kernel to enhance the performance and resolution of TFD produced 

by CT [77]. The frequency rotating and shifting depends on the chirp rate parameter and it must 

be properly selected to match the chirp rate of the signal being analyzed. PCT based analysis have 

shown poor performance for multi-frequency component signals [77]. 

For developing the TFD of VCG signals, both CWT (Morse) and PCT was applied to the 

average VCG waveforms representing several heartbeats from each location. MATLAB’s cwt 

function was used for wavelet transformation, and a modified version of a PCT function from [79] 

was used to perform PCT analysis. For PCT, the window length was set to 250 ms, frequency units 

were set to 10,000, and a chirp rate of 5 Hz/s was used. Both representations have been shown in 
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Figure 7 for S-VCG data captured from a subject during an inhaled breath hold test. While both 

representations showed comparable reconstruction of the VCG signal in TFD, CWT based TFD 

plots were affected by spreading in the time domain at low frequencies as shown Figure 7 (c). 

Hence, only PCT based TFD representation was picked for further analysis.  

2. TF Analysis 

A custom algorithm was developed to extract both V1 and V2 peaks from the PCT plots. 

The workflow of the algorithm is detailed in Figure 8. Both time and frequency distribution in 

PCT showed a pseudo-gaussian distribution which can be seen in the 3D surface plot of Figure 8 

(a). At first, only the time axis data was considered. MATLAB’s findpks function was used to find 

the two highest peaks in the time plot. To remove false peak identification due to noise in the 

signal, a minimum time difference was set between two successive peaks. The value of the time 

Figure 7: a) S-VCG locations. b) Average (25 heartbeats) dorso-ventral VCG collected from a 

subject in supine position during inhaled breath hold and corresponds to the locations shown in 

(a). c) Continuous wavelet transformation (Morse). d) Polynomial chirplet transformation. 



 

    35 

 

difference was taken from the LVET measurement detailed in Chapter III (B). From the 3D surface 

plot Figure 8 (a), it can be seen that the frequency profile of V1 covers the frequency profile of 

V2, and vice versa. Hence a direct frequency peak finding and split could not be done. To find the 

frequency profile of both V1 and V2, the time signal from Figure 8 (b) was first split. The splitting 

was performed at the minimum amplitude location between the peaks found in the time 

representation. The center frequency at the maximum peak location, and the corresponding 

frequency width from both separated V1 and V2 were then extracted as shown in Figure 8 (c).  

E. Simulation of Cardiac Waveforms 

To understand and validate the findings in the VCG signal, simple numerical based 

simulations were performed and the wave propagation path from the heart to the chest surface was 

analyzed. The COMSOL (COMSOL Multiphysics 5.6, COMSOL Inc.) software was used to 

perform the simulation task. The software uses finite element method and allows to study various 

Figure 8: a) PCT of dorso-ventral VCG collected in supine position during inhaled breath hold at 

XP location (Top). Time domain signal (bottom left) and 3D surface plot (bottom right) is 

shown. b) V1 and V2 peak in time. c) V1 and V2 peak in frequency.   
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coupled physics phenomena. Within the software environment, the structural mechanics module 

was used to simulate the model.  

1. Geometry and Materials 

To reduce the complexity of the simulation while still maintaining results that can be 

correlated to the experimental VCG waveform, a simplified geometry approach was taken to 

design the chest and the organs within it. The geometry was designed as a 2D cross section on the 

transverse plane of the human body across the heart. The idea of the geometry was adopted from 

previous works on sound transmission in the chest [80, 81]. It is shown in Figure 9 (b). The circular 

chest geometry contained six domains representing different organs of the chest from the heart 

valves to the xiphoid process location. The geometry and the material parameters are shown in 

Table 4 below.  

Table 4: Simulation geometry and material parameters 

Geometry Material Parameters 

Domain Element 
Thickness 

(mm) 

Lamé  

parameter λ (kPa) 

Shear  

modulus μ (kPa) 

 Density ρ 

(kg/m^3) 

1 Heart Valve 12.5 [82] 5.04 9 1000 

2 Cardiac Muscle 27.5 [83] 6.86 12.25 1000 [84] 

3 Soft Tissue 15 8.96 16 1000 [85] 

4 Rib 2 [86] 50.28 89.6 1400[85] 

5 Fat 2-8 .504 .9 900 [87] 

6 Skin 2 [88] 14 25 1000[85] 

 

Each of the domains were simulated as isotropic linear elastic materials. The Lamé 

parameter λ and the shear modulus μ values in the model were adapted from previous low 

frequency wave propagation speed study of the heart [89]. These were modified to find the relative 

elasticity for the rest of the organs. The path was designed without any lung region, as linear 

elasticity was inadequate to effectively model the behaviour of the lungs. This is further discussed 

in Chapter V.  A layer of fat with varying thickness was placed before the final skin domain, 

representing Subject 1’s fat mass loss over 6 weeks.  

2. Physics 

Any elastic solid can be parametrized by its density and elasticity. Any load originating 

from the heart valve area diffuses to the organs surrounding it. At each material boundary, due to 
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impedance mismatch, a portion of the original wave gets reflected. The propagation of the wave 

though each solid domain can be defined by the wave equation shown below.  

ρ
d2𝑢

dt
= (𝜆 + 2𝜇)∇(∇. 𝑢) − 𝜇∇  ×  ∇  × u  (2) 

Here ρ, 𝜆, and 𝜇 are the material properties defined in Table 4. u is the displacement of a 

particle from its equilibrium position. ∇. u represents volumetric deformation, and ∇ × u represents 

shear deformation. The material properties define the pressure (vp = √λ + 2μ ρ⁄ ) and shear wave 

(vs = √μ ρ⁄ ) speeds in the material. The physics was implemented in COMSOL using the solid 

mechanics interface within the structural mechanics module. To reduce back reflection of the 

outward propagating waves, a perfectly matched layer was set up to absorb all outgoing waves. A 

low-reflecting boundary condition was also applied at the outer boundaries to further reduce 

modulation of the waveforms due to reflection. 

3. Input Load 

Each vibration source of the simulated VCG signal was assumed as an analytical function 

representing pulses of different amplitude. The amplitude difference was adopted from the results 

of the VCG SNR measurement shown in Chapter III A. Two pluses at 150 ms and 500 ms were 

inputted to the model as shown in Figure 9 (a). They correspond to the V1 and V2 timing of VCG. 

The pulses were inputted using either the prescribed displacement node or the body load node in 

COMSOL, depending on the performed analysis.  

4. Study and Mesh 

The simulation performed two different types of analysis. At first, the effect of fat layer 

and circumference reduction was studied. During this step, the model input was set up as a 

prescribed displacement of two pulses as shown in Figure 9 (a). This was done to eliminate any 

vibration of the input domain that might lead to a noisy output signal. A second study was 

performed to analyze the effect of cardiac contractility on VCG waveforms. During this study, the 

same input function in Figure 9 (a) was inputted using the body load node, to include the effect of 

the vibration of the input domain itself on the acquired result. A user-defined mesh was 

implemented and optimized to minimize computational intensity with about 15 mesh nodes per 
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wavelength. Due to the simplicity of the model, the software was able to handle computation with 

ease (approximately 20 minutes per one second study). A time-dependent study for one second 

was performed covering an approximate time interval of a full cardiac cycle. The output of the 

model was probed below the skin layer.  

 

Figure 9: (a) Input V1 and V2 pulse load. (b) Geometry with six different domains. Load was 

inputted in domain 1. (c) (Top) Surface plot of Acceleration propagation during the simulation. 

(Bottom) Acceleration value at Output node (skin layer) representing a synthetic VCG signal. 
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IV. RESULTS  

The Results chapter describes the findings of the analysis described in Chapter III, from 

the tests performed in Chapter II.  

A. Signal-to-Noise ratio 

1. SNR and Sensor Placement 

The relative SNR for the all the measurement locations for different tests are given in the 

appendix (Chapter VII A). For the subjects at rest, the average V1 showed 64% higher SNR than 

V2. It increased to 81% during LLV breath hold test, and to 89% during HLV breath hold. Table 

5 shows the Average SNR for all subjects at different positions on the chest.  

Table 5: Average SNR for all subjects during the different tests performed 

 V1 SNR V2 SNR 

Chest 

positions 
Rest HLV LLV Average Rest HLV LLV Average 

XP 3.18 7.14 3.83 4.72 2.31 4.54 2.23 3.03 

TV 4.42 7.41 4.52 5.45 2.38 3.25 1.91 2.51 

MV 4.44 6.68 4.08 5.07 1.82 2.76 1.81 2.13 

AV 3.19 2.92 2.96 3.02 2.14 1.69 2.14 1.99 

Mid-S 2.68 3.48 3.00 3.05 1.74 1.93 1.8 1.82 

PV 2.49 2.96 3.08 2.84 1.74 1.47 1.8 1.67 

AAr 2.10 2.33 2.84 2.42 1.58 1.64 1.77 1.66 

 

For measuring V1, the TV location showed the best SNR metric at 5.45, with the MV 

position at second with 5.07, and the XP location at third with 4.72. For V2 measurement, the XP 

location showed the highest SNR metric of 3.03, with TV at 2.51, MV at 2.13. In these three 

positions, HLV tests always showed the best SNR, and opposite was observed during LLV tests. 

The data verifies that the XP is still the overall best position for collecting VCG signal, however 

the TV location would be ideal if only V1 is of interest. It was hypothesized that that the AV, Mid-

Sternum, and the PV locations would provide better V2 SNR than other locations, due to their 

proximity to the aortic valve. While it was true for some cases, the opposite was observed for most 

of the tests. It can be attributed to the overall low-quality signal gathered from these locations. 
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From the results, it is suggested that the relative RMS for V1 and V2 should be at least above two 

to properly identify the fiducial points when using the system at home, or in a clinical setting.  

2. SNR During Weight Loss  

Table 6 shows the relative SNR results for the weight loss participant for the three best 

locations discussed in the previous step. V1 SNR generally improved during all tests as the subject 

underwent weight loss and strength training over the six weeks. 

Table 6: V1 and V2 SNR at XP, TV, and MV for Subject 1. Corrupted data due to system failure 

shown as empty cells  

  V1 SNR V2 SNR V1 Change  V2 Change 

Test 
Test 

type 
XP TV MV XP TV MV 

(Average of all 

locations) 

 

Week 1 

Rest 2.42 3.02 3.80 1.60 1.94 1.43 N/A N/A 

HLV 7.00 6.21 7.17 5.59 2.07 2.72 N/A N/A 

LLV 3.96 4.17 3.84 2.10 1.67 1.70 N/A N/A 

Week 3 

Rest 3.29 3.77 4.53 1.70 1.49 1.46 25.4% -6.4% 

HLV  7.96 7.11  2.51 3.05 10.9% -19.7% 

LLV  4.47 4.07  1.34 1.46 7.0% -23.2% 

Week 6 

Rest 3.51 5.31 6.13 2.06 2.05 1.92 29.0% 29.7% 

HLV 12.17 9.22 7.56 3.74 2.24 3.49 28.1% 13.5% 

LLV 4.72 5.05 6.03 1.67 1.75 1.67 23.3% 21.2% 

        

The measured SNR is visualized in Figure 10 against the participant’s BMI. At the end of 

the six weeks, V1 SNR showed improvement of 29% during rest, 28.1% during HLV breath hold, 

and 23.3% during LLV breath hold tests. The participant’s physiological parameters were shown 

in Table 3. Over the six weeks, the participant’s chest circumference reduced by 8.3 cm, body fat 

percentage dropped by 4.93%, the participant lost 11.2 kg of (9.6 kg fat mass) overall weight, all 

of which could contribute to the improvements of V1 SNR. The observed results are further 

discussed in the next chapter. The trend in SNR improvement was less clear for V2, as the relative 

RMS value was below two for most of the tests.  
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B. Cardiac Timing 

IVCP, LVET, and IVRP from all subjects were extracted and shown in the appendix 

(Chapter VII B). The average results per position for all the subjects are discussed here. During 

rest, the highest IVCP was reported by the XP and MV positions at 54 ms and 52 ms with a standard 

deviation (SD) of 19 ms and 26 ms respectively.  The lowest IVCP values were reported from the 

PV, AV, and the TV location at 37 ms. However, the lowest values of IVCP were still within the 

SD of XP and MV. The average rest LVET value for all the locations was found to be 320 ms, 

with a SD of 20 ms. The LVET measured from each of the locations were also within the SD 

range. Similar observations were found for IVRP at rest, with the XP location being the highest 

(85 ms) and the PV location reporting the lowest IVRP value (58 ms).  

Figure 11 demonstrates IVCP, LVET, and IVRP in a bar plot for the different chest 

locations. During each of the different type of tests (Rest, HLV, or LLV), all locations showed 

comparable values that are within the error limit of each other. Hence, cardiac timings could be 

acquired from each of the tested locations in the chest when the system is deployed for at home 

Figure 10: V1 SNR from three Sensor locations (TV, XP, and MV) for all the tests are plotted 

against the subject’s BMI changes over 6 weeks. 
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use. It was reported previously that breath holding affects the cardiac cycle [47, 59, 90]. A change 

in cardiac timing was found as shown in Figure 11. However, no clear trend was observed. For the 

weight loss participant, the cardiac timing from each location acquired at week six remained within 

the SD of the values acquired during week 1. Hence, no change in cardiac timing was observed 

for the weight loss participant.   

C. Dominant Frequency 

The dominant frequencies at each sensor position were extracted for all the tests using DFT 

and Pwelch method. All locations on the chest reported similar frequency metrics, and three 

dominant frequencies were found in the VCG waveform. Table 7 shows the frequencies found per 

subject as f1, f2, and f3. The signal contained a dominant frequency at 10 Hz during most of the 

tests, while a lower frequency at 3.125 Hz was also evident. Another dominant frequency was 

found around 25 Hz. For some tests, this was indistinguishable with another frequency found 

around 35 Hz. A higher frequency value between 45 and 50 Hz was also found and is assumed to 

be a harmonic of the frequency located at 25 Hz [16]. No significant change in the dominant 

frequencies from wight loss participant was observed over the six weeks.   

Figure 11: The bar plot represents IVCP (in blue), LVET (in orange), and IVRP (grey) for all 

subjects at each location of the chest. The SD is plotted as vertical error bars.  
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Table 7: Average dominant frequencies found for each subject 

Subject f 1 f 2 f 3 

1 10.53 Hz 26.14 Hz 45.63 Hz 

2 8.618 Hz 23.17 Hz 33.4 Hz 

3 6.41 Hz 29.84 Hz 37.26 Hz 

      

D. V1 and V2 Peak 

VCG waveforms corresponding to each heartbeat were first converted to its PCT 

representation. The algorithm described in Chapter III D was then applied to split the waveforms 

in time and frequency. Analyzing it gave a measure of the time and frequency location and widths 

of V1 and V2. The results specific to each individual subject are given in the appendix (Chapter 

VII C). No trend in the time and frequqncy location and widths of V1 and V2 was observed for 

the subject who underwent weight loss. The average results for all the subjects are discussed here.  

1. Time  

The time distribution of V1 and V2 were extracted and shown in Table 8. All the sensor 

positions reported comparable V1 and V2 peak time during rest at an average of 175 ms and 539 

ms respectively. However, during breath hold, both V1 and V2 peak time reduced. Both HLV and 

LLV breath hold results were comparable at around 155 ms for V1, and at 496 ms for V2. This 

establishes the effect of breath holding on V1 and V2 peak occurrence.  

Table 8: Location of V1 and V2 peaks in time 

 

 

 

 

 

 V1 peak time (ms) V2 peak time (ms) 

Chest 

positions 
Rest HLV LLV Rest HLV LLV 

XP 148 160 159 541 468 519 

TV 172 140 149 537 495 484 

MV 200 141 153 538 481 529 

AV 188 166 191 505 481 510 

Mid-S 221 141 146 496 517 471 

PV 160 172 157 583 503 514 

AAr 142 157 149 578 469 485 
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Amplitude concentration around center time and frequency for both V1 and V2 showed a 

gaussian distribution. Hence the full width half maximum (FWHM) values were extracted for each 

of V1 and V2 peak, in time and frequency domain. The FWHM of each time peak are reported in 

Table 9. The relative differences based on the sensor positions were within the average SD. 

However, HLV breath hold tests showed a significantly low V1 peak width at an average 125 ms 

than rest (144 ms) and LLV (139 ms) tests. The V2 peak width was comparable to V1, and also 

showed a lower width during HLV (132 ms), than rest (147 ms) and LLV (152 ms) tests.   

Table 9: V1 and V2 peak widths in time 

 V1 peak width (ms) V2 peak width (ms) 

Chest 

positions 
Rest HLV LLV Rest HLV LLV 

XP 136 129 163 134 105 174 

TV 146 131 120 151 126 129 

MV 150 114 121 153 128 154 

AV 174 140 156 158 104 179 

Mid-S 122 113 149 150 177 130 

PV 145 117 120 155 172 147 

AAr 134 131 145 130 119 153 

 

2. Frequency 

The V1 and V2 center frequencies are reported in Table 10. Averaging the values found 

from each location, V1 center frequency was found to be 15.6 Hz.  

Table 10: Center frequency of V1 and V2  

 V1 Center Frequency (Hz) V2 Center Frequency (Hz) 

Chest 

positions 
Rest HLV LLV Rest HLV LLV 

XP 10.9 17.4 11.6 11.3 18.7 10.9 

TV 15.4 15.3 14.3 9.7 17.3 12.8 

MV 12.1 14.8 12.8 9.7 14.6 9.1 

AV 23.3 22.5 13.7 10.2 11.0 12.8 

Mid-S 14.2 21.2 16.4 12.3 21.6 10.6 

PV 13.5 27.0 18.0 17.3 9.1 13.4 

AAr 19.7 29.1 20.1 14.6 18.8 12.7 

 

While this increased to 21.04 Hz during HLV, it slightly decreased to 15.3 Hz during LLV. This 

trend was also observed for V2. Center frequency during rest was at 12.2 Hz. It increased to 15.9 
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Hz during HLV and decreased to 11.8 Hz during LLV. High location variability in the data was 

found. This was attributed to the noise in the measured signal, at positions away from the heart. 

FWHM values were extracted for each of V1 and V2 peak in the frequency domain. The 

results are shown in Table 11. Both peak 1 and 2 frequency widths were around 16 Hz during rest, 

and increased to around 20 Hz during HLV test. LLV tests showed frequency widths of 17 Hz for 

both V1 and V2.  

Table 11: Frequency widths of V1 and V2 

 V1 Frequency Width (Hz) V2 Frequency Width (Hz) 

Chest 

positions 
Rest HLV LLV Rest HLV LLV 

XP 15.9 15.4 14.6 16.4 24.3 18.1 

TV 13.7 23.0 23.0 14.1 23.9 15.6 

MV 15.5 18.7 16.8 14.4 17.7 16.6 

AV 12.5 23.1 14.0 22.2 24.1 15.9 

Mid-S 16.4 21.6 20.9 16.9 13.5 16.5 

PV 16.5 18.5 16.0 12.7 19.8 17.3 

AAr 21.5 17.1 14.6 18.5 17.4 19.6 

 

E. Simulated VCG 

To verify the findings of the SNR changes for the weight loss participant, a simple 

numerical model was built in COMSOL to represent the wave propagation path from the heart 

valves to the VCG measurement locations. The geometry of the model was shown in Figure 9, 

while the material properties used for each domain was given in Table 4. To test the improvements 

in SNR shown at the beginning of this Chapter, domain 5 thickness was changed between 2 mm 

and 8 mm, representing the subject’s fat mass loss, and reduction in chest circumference. The 

results are plotted in Figure 12. As the fat layer thickness decreased from 8mm to 2mm (fat 

percentage reduced by 12.7%), the V1 peak RMS value improved by 90% from 1.24 to 2.35, hence 

predicting a connection between body composition and VCG signal amplitude. The RMS values 

were extracted with the method shown in Chapter III A. V2 amplitude did not show the same trend. 

This was attributed to the increased oscillations of the skin layer due an increased thickness of the 

softer fat layer underneath, and back reflections modulating the lower V2 amplitude peak. 
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Effect of exercise and cardiac contractility on VCG SNR was also investigated through the 

model. Cardiac compliance increases [91] due to exercising. During systole, a more contractile 

heart (for example, an athlete’s heart) ejects a greater stroke volume through the valves. This leads 

to a greater pressure differential across the heart valves which is hypothesized to produce a greater 

vibrational pulse, and as a result, a greater amplitude in the VCG signal. This was emulated by 

changing the material stiffness parameter of the input and the cardiac muscle domain. The results 

are shown in Figure 13. The model input was changed to a body load representing a force instead 

of previously used prescribed displacement to identify the effect of the material parameter change 

in the input domain. However, this also resulted in spurious oscillations in the simulated VCG 

signals. The results still showed an expected trend.  

As the elastic modulus of the input and the cardiac muscle domain was decreased from 10 

kPa to 1 kPa, the V1 amplitude of the synthetic VCG captured at the skin domain increased by 

almost 90% as shown in Figure 13 (b). V2 amplitude also showed this trend.  

Hence, both body fat reduction and increased heart contractility was attributed to an 

increased V1 amplitude and SNR of the VCG signal.  

 

Figure 12: (a) Simulated dorso-ventral axis VCG plotted for different fat layer thickness (domain 

5). (b) RMS values corresponding to the different VCG waveform.   
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Figure 13: (a) Simulated dorso-ventral axis VCG plotted for different input domain elasticity. (b) 

RMS values corresponding to the different VCG waveform 
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V. DISCUSSION 

V1 SNR showed about 25% improvement after subject 1 performed six weeks of weight 

loss routine and 180 minutes per week strength training exercise. The exercise was done to 

supplement the participant’s weight loss goal, and to maintain the BMR required to lose the desired 

weight. V1 relates to the cardiac event of aortic valve opening and the beginning of the ventricular 

systole. The morphological changes in the chest that could potentially lead to better SNR were 

identified as three main aspects: 1) Reduced body fat mass, 2) Decreased chest circumference, and 

3) Increased ventricular contractility and ventricular thickening due to exercising. The implications 

of each of them on the acquired VCG signal are discussed below.  

Over the six weeks, the participant had a reduction of 9.6 kg subcutaneous and visceral fat 

mass, and an 8.3 cm reduction of chest circumference. VCG waves are the localized vibrations of 

the heart acquired at the chest. Any wave travelling through multiple materials experience 

reflection, refraction, and damping due to discontinuities and inherent material properties. Hence, 

a reduction in the fat layer could lead to less damping in the path of the VCG waveform, leading 

to a higher signal amplitude at the skin surface. The wave propagation simulation results also 

showed this effect. An increase in synthetic VCG V1 signal amplitude was found as the fat layer 

thickness and chest circumference were reduced. However, any concrete proof to connect fat mass 

reduction to VCG will need addition metrics such as echocardiogram images of the subject at 

different times during the period of the weight loss. Collecting echocardiogram images requires 

proper medical equipment and appropriate lab setting. It was out of scope for the project.  

The effect of regular exercising on cardiac health has been explored in literature previously. 

Cardiac compliance increases [91], and stiffness decreases [92] due to exercising. As the heart is 

a muscle, increased physical activity has shown to be associated with an increase in ventricular 

thickness [93]. A stronger heart pumps more blood per cardiac cycle. The blood pressure across 

the valves along with valve elasticity and mass gives rise to the vibration at the valves [94]. The 

effect of cardiac contractility was emulated on the synthetic VCG signal, and increased 

contractility showed better VCG signal amplitude. Hence all three aspects could lead to a better 

SNR of cardiac vibrations.  
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However, increased pressure difference across the heart valves also leads to an increase of 

the frequency of vibration of the valves [95]. VCG V1 peak has been assumed to be a direct 

manifestation of vibrations originating at the cardiac valves and hence an increase in V1 peak 

frequency after six weeks could have further justified the assumed physiological changes. No such 

trend in the frequency content of the VCG signal was observed from the weight loss participant 

over the six weeks. Moreover, the effect of 180-minute exercise per week might have been 

inadequate to result in ventricular thickening. For example, an 8 week 2 hours/day, 5days/week 

high-intensity treadmill exercise on rats showed 20-30% thickening of cardiac muscle cells [96]. 

The results show that a much higher intensity of workout might have been required for ventricular 

thickening of subject 1. Hence, fat mass and chest circumference reduction are assumed to be the 

biggest modulator of the improved VCG SNR, with increased cardiac contractility also affecting 

the signal. Ventricular thickening is assumed to be the least probable cause of VCG SNR 

improvement.   

The cardiac timing intervals such as IVCP, LVET, and IVRP did not vary between 

measurement positions. The collected results were deemed reasonable as all sensor positions 

recorded the same cardiac cycle, and ideally should report the same values.  

While the dominant frequency results acquired through DFT and Pwelch allowed to easily 

create a frequency representation of the signal and match the acquired results with previous works, 

it did not provide any valuable information that could be correlated to the cardiac beating process. 

The frequency domain results further motivated the development of a TFD representation of the 

cardiac signal and the V1 and V2 peak and width detection algorithm. While PCT showed better 

amplitude concentration for V1 and V2 than CWT, it is still not ideal for studying multi-frequency 

component signals. Any additional VCG signal component around V1 and V2 could not be 

identified if those components were within the FWHM of V1 and V2. This would explain why the 

assumed ascending aorta component of the VCG signal was not identifiable during the analysis. 

According to the cardiac cycle, the vibration in the aorta would occur right after the aortic valve 

opening, and if it arrives at the sensor within the FWHM of the V1 peak, it would be superimposed 

by the larger AO event. Hence, a more robust multi-component signal analysis tool should be used 

for future TFD studies of the VCG signal.  
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Using the PCT method, both V1 and V2 peaks showed similar time and frequency contents. 

While the V1 peak frequency results match with previous works, the results differ on V2 frequency 

profile [16]. This can be attributed to the method used to extract both peaks. Pulse dispersion 

analysis could be done to further analyze the peak widening of V1 and V2 at different sensor 

locations. 

Several shortcomings of the performed study have been recognized. Firstly, to properly 

identify the biological and physiological implications of the study, a much larger population data 

collection must be done. However, it was not feasible due to restrictions placed by the Covid-19 

pandemic. Although it was compensated through simulation work, no concrete proof was extracted 

from the results of the simulation. This is due to the oversimplification of the human body during 

the simulation performed. Biological tissues exhibit complex stress-strain relationships, and hence 

approximating organs with linear elastic materials in simulation lead to an inadequate 

representation of the human body. For example, soft tissues are consisted of elastin and collagen 

fiber families that give rise to directional stress-strain relationships [97]. Hence a proper 

viscoelastic [98], or a hyperelastic material model is required [97] to understand their behaviour. 

The lung has been shown to be a prime modulator of VCG waveform amplitude [46, 47]. However, 

modeling vibrational wave propagation in the lung would required the use of Biot theory of 

poroviscoelasticity, or the effective medium theory [99]. While a more detailed simulation might 

have been able to provide more insight on the functioning of the heart, cardiac simulations are still 

a cumbersome task, and require many assumptions because of the interconnected dependencies of 

the human body.  

Lastly, while only the dorso-ventral axis VCG was studied in this thesis, simultaneous 

analysis of the other axes would allow to study the affect of ventricular twist on sensor position 

and respiration modulation of VCG signals at different positions.   
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VI. CONCLUSION 

A system capable of wireless cardiac monitoring from multiple positions on the chest was 

developed in the lab. The system is cost-effective, and easily usable to provide cardiac assessment 

at home. VCG waves collected at different positions in the chest were studied. Location specific 

amplitude modulation was observed and identified through V1 and V2 SNR. The results verified 

the previous claims of the xiphoid process being the best location for collecting the overall VCG 

signal. However, if only V1 is of interest, the tricuspid valve auscultation showed the best V1 

amplitude. For any system built to acquire VCG waveforms, a minimum V2 SNR metric of two 

should be ensured while finding the sensor location for at home or clinical use. Measuring a subject 

undergoing weight loss showed approximately 25% VCG V1 SNR improvement as the subject’s 

body fat percentage reduced by almost 5%, chest circumference reduced by approximately 7%, 

and as BMI reduced by 10%. However, improved heart functions such as increased ventricular 

contractility due to exercising could also be a modulator of the VCG waveforms. All valve 

positions were able to pick up cardiac timing intervals. Both V1 and V2 peaks showed similar 

frequency content when studied with PCT. Morphological frequency modulation was not 

observed. A larger population study is required to further verify the findings of the current thesis.  
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VII. APPENDIX 

All the results from each of the subject’s tests are given below. 

A. SNR 

   Sensor locations 
 Subject Test type MV Mid-S AAr XP PV AV TV 

V1 

SNR 

1 W1 

Rest 3.80 2.04 1.68 2.42 1.71 2.14 3.02 

HLV 7.17 2.83 1.59 7.00 2.01 1.77 6.21 

LLV 3.84 2.55 2.52 3.96 2.93 1.78 4.17 

1 W3 

Rest 4.53 2.61 2.19 3.29 2.17 2.79 3.77 

HLV 7.11 2.53   2.60 2.67 7.96 

LLV 4.07 2.44     2.76 2.08 4.47 

1 W6 

Rest 6.13 2.45 2.63 3.51 2.44 2.83 5.31 

HLV 7.56 3.40 2.87 12.17 3.91 3.95 9.22 

LLV 6.03 3.29 2.39 4.72 3.16 2.38 5.05 

2 

Rest 3.82 3.75 1.90   4.12 5.94 6.59 

HLV 4.14 3.55 2.09 8.42 3.19 3.01 7.07 

LLV 3.26 4.12 4.56 3.01 4.75 6.73 5.72 

3 

Rest 3.92 2.53   3.52 2.02 2.23 3.40 

HLV 7.43 5.09 2.78 0.99 3.09 3.22 6.60 

LLV 3.21 2.59 1.91 3.66 1.79 1.83 3.20 

V2 

SNR 

1 W1 

Rest 1.43 1.40 1.40 1.60 1.93 1.18 1.94 

HLV 2.72 1.39 1.36 5.59 1.26 1.73 2.07 

LLV 1.36 1.34 1.75 2.10 1.95 2.09 1.67 

 1 W3 

Rest 1.46 1.29 1.49 1.70 1.46 1.44 1.49 

HLV 3.05 1.22   1.69 1.65 2.51 

LLV 1.46 1.17     1.49 1.49 1.69 

1 W6 

Rest 1.92 1.72 2.19 2.06 1.58 2.59 2.05 

HLV 3.49 1.37 1.71 3.74 1.55 1.65 2.24 

LLV 1.67 2.35 1.92 1.67 2.12 1.64 1.75 

2 

Rest 1.84 2.16 1.24   2.23 4.21 3.18 

HLV 2.18 3.12 1.87 8.28 1.35 2.07 5.42 

LLV 2.03 2.72 2.23 3.21 1.95 4.32 2.80 

3 

Rest 2.42 2.12   3.90 1.49 1.30 3.22 

HLV 2.38 2.52 1.60 0.56 1.53 1.37 4.02 

LLV 2.52 1.45 1.16 1.95 1.46 1.18 1.64 
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B. IVCP, LVET, and IVRP 

Cardiac 

timings (ms) 
  Sensor locations 

 Subject Test type MV Mid-S AAr XP PV AV TV 

IVCP 

1 W1 

Rest 20 35 35 55 35 40 30 

HLV 50 45 40 45 40 35 55 

LLV 70 65 55 55 45 30 25 

1 W3 

Rest 90 80 30 80 35 50 40 

HLV 50 50   40 45 75 

LLV 80 40   50 45 30 

1 W6 

Rest 60 30 30 40 30 30 45 

HLV 50 50 40 55 45 45 55 

LLV 45 25 50 40 35 50 40 

2 

Rest 50 35 35  40 35 30 

HLV 20 30 30 35 35 30 30 

LLV 80 25 25 25 35 25 25 

3 

Rest 40 45 55 40 45 50 40 

HLV 30 40 35 45 40 35 45 

LLV 50 30 30 40 30 30 50 

LVET 

1 W1 

Rest 330 310 290 280 315 330 310 

HLV 345 350 345 345 380 285 355 

LLV 260 305 260 280 260 375 355 

1 W3 

Rest  310 310 355 370 290 330 

HLV 225  265 200 340 250 275 

LLV 255 320 335 365 325 280 320 

1 W6 

Rest 285 370 290 330 295 265 350 

HLV 210 340 250 275 350  345 

LLV 320 325 280 320 285 370 350 

2 

Rest 280 335 285  325 320 345 

HLV 335 335 305 335 405 305 335 

LLV 285 335 290 340 300 270 325 

3 

Rest 330 345  350 375  355 

HLV 305 270 265 310 285 285 320 

LLV 230 285 270 280 240 240 245 

IVRP 
 

1 W1 

Rest 80 90 105 80 70 55 55 

HLV 95 60 60 80 75 80 45 

LLV 80 45 60 80 70 60 55 

1 W3 

Rest  75 85 65 80 65 120 

HLV 90  100 115 85 90 90 

LLV 80 60 65 65 50 60 115 

1 W6 

Rest 110 80 65 120 70 90 55 

HLV 65 85 90 90 85  35 

LLV 70 50 60 115 70 55 50 

2 

Rest 40 45 75 0 35 55 50 

HLV 65 45 55 55 80 70 55 

LLV 40 45 50 50 35 65 50 

3 

Rest 85 75  75 35  75 

HLV 60 55 75 60 55 50 45 

LLV 75  15 60 45 50 65 
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C. PCT 

  Sensor locations 

Rest  Subject MV Mid-S AAr XP PV AV TV 

V1 Time 

Location 

(ms) 

1 W1 150 235 230 195 225 215 135 

1 W3 155 135 125 190 230 130 150 

1 W6 140 125 230 160 255 165 140 

2 165 125 215  135 145 160 

3 130 240 0 205 260 145 125 

V2 Time 

Location 

(ms) 

1 W1 595 585 535 525 490 565 585 

1 W3 425 585 470 470 500 650 580 

1 W6 555 550 490 535 490 605 570 

2 645 480 655  490 495 660 

3 485 485  490 510 600 495 

V1 Time 

Width (ms) 

1 W1 140 125 185 150 105 220 155 

1 W3 160 235 90 190 135 75 160 

1 W6 140 100 155 200 135 150 135 

2 110 115 170  95 120 125 

3 130 155  155 140 160 95 

V2 Time 

Width (ms) 

1 W1 120 225 175 140 135 100 140 

1 W3 155 140 130 180 200 185 125 

1 W6 130 180 205 210 180 215 135 

2 125 100 100  110 90 135 

3 140 110  100 125 185 115 

V1 Center 

Frequency 

(Hz) 

1 W1 11.6 7.0 12.1 11.8 10.8 12.4 15.4 

1 W3 10.8 12.2 26.1 10.6 10.2 29.7 11.9 

1 W6 12.7 17.3 10.8 13.1 8.6 11.4 13.1 

2 15.4 28.5 29.7  29.8 34.6 13.5 

3 9.9 6.1  8.0 8.0 28.4 22.8 

V2 Center 

Frequency 

(Hz) 

1 W1 7.5 12.5 10.7 9.6 14.2 10.7 10.1 

1 W3 10.4 4.6 13.4 10.7 13.3 5.8 6.0 

1 W6 8.2 10.9 11.5 6.5 11.8 6.6 8.2 

2 7.7 26.7 22.7  39.5 21.7 7.6 

3 14.6 7.1  18.5 7.8 6.5 16.6 

V1 

Frequency 

Width (Hz) 

1 W1 14.5 8.8 15.2 16.8 18.0 16.9 25.2 

1 W3 14.1 17.4 20.0 14.1 16.5 20.0 19.9 

1 W6 16.8 6.2 8.5 3.8 7.2 9.2 17.3 

2 20.1 19.5 18.3   25.3 20.8 23.0 

3 14.1 16.7   15.3 15.0 15.7 22.2 

V2 

Frequency 

Width (Hz) 

1 W1 9.1 9.5 16.6 12.8 17.9 6.7 17.9 

1 W3 17.3 10.2 12.6 30.1 9.7 5.9 16.2 

1 W6 16.1 19.8 14.9 17.7 19.9 10.6 13.6 

2 19.2 21.3 13.5   24.2 25.1 14.2 

3 20.0 9.9   28.2 12.9 15.3 30.4 
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  Sensor locations 

HLV  Subject MV Mid-S AAr XP PV AV TV 

V1 Time 

Location 

(ms) 

1 W1 175 150 140 215 140 150 160 

1 W3     140 145 175 

1 W6 175 140 135 165 135 205 160 

2 150 130 135 145 135 190 140 

3 140 140 155 140 155 170 150 

V2 Time 

Location 

(ms) 

1 W1 495 545 490 530 425 475 470 

1 W3     635 470 480 

1 W6 425 490 485 450 520 520 430 

2 490 490 485 490 540 510 490 

3 460 455 465 455 465 540 475 

V1 Time 

Width (ms) 

1 W1 160 165 155 190 110 90 140 

1 W3     125 115 145 

1 W6 130 145 85 140 105 160 125 

2 115 110 75 115 125 95 125 

3 110 105 140 115 100 125 120 

V2 Time 

Width (ms) 

1 W1 115 115 120 115 150 210 160 

1 W3     190 165 140 

1 W6 110 175 195 115 210 195 100 

2 80 100 70 95 240 150 90 

3 115 115 125 90 95 140 105 

V1 Center 

Frequency 

(Hz) 

1 W1 9.7 12.3 27.2 11.1 25.9 31.1 13.4 

1 W3     29.9 26.8 12.2 

1 W6 11.4 19.0 28.8 16.4 24.8 15.1 14.4 

2 10.3 26.7 32.4 15.6 28.9 12.0 12.2 

3 28.0 26.8 28.0 26.4 25.5 27.4 24.5 

V2 Center 

Frequency 

(Hz) 

1 W1 12.6 19.4 14.8 13.2 10.3 12.8 7.9 

1 W3     6.4 13.5 12.0 

1 W6 17.9 15.4 10.0 12.1 11.8 6.6 8.2 

2 17.9 29.4 28.9 25.2 8.9 13.4 25.6 

3 9.9 22.3 21.7 24.3 8.1 8.8 32.9 

V1 

Frequency 

Width (Hz) 

1 W1 12.1 14.9 22.8 23.1 26.3 19.3 20.1 

1 W3     17.0 9.9 16.3 

1 W6 13.3 26.8 20.3 18.9 24.0 26.5 18.2 

2 18.0 23.2 11.7 24.3 22.6 19.2 15.8 

3 18.2 27.0 20.0 25.9 18.0 17.6 15.2 

V2 

Frequency 

Width (Hz) 

1 W1 25.9 17.5 24.9 18.3 17.1 16.5 7.8 

1 W3     7.6 12.8 14.7 

1 W6 21.0 18.4 17.2 18.2 17.5 28.9 22.8 

2 22.4 29.1 17.7 23.1 15.9 16.6 25.0 

3 27.9 30.4 11.1 36.9 9.2 24.4 16.8 
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  Sensor locations 

LLV  Subject MV Mid-S AAr XP PV AV TV 

V1 Time 

Location 

(ms) 

1 W1 150 160 180 200 165 210 155 

1 W3     140 125 160 

1 W6 140 125 120 150 125 160 135 

2 170 130 135 195 130 175 130 

3 175 180 175 220 170 115 165 

V2 Time 

Location 

(ms) 

1 W1 575 470 505 520 500 495 475 

1 W3     485 525 475 

1 W6 555 565 585 540 480 595 565 

2 490 485 480 495 460 475 475 

3 455 415 545 485 430 480 435 

V1 Time 

Width (ms) 

1 W1 180 130 155 170 130 150 170 

1 W3     135 90 145 

1 W6 130 120 115 115 125 115 135 

2 175 95 95 180 100 80 140 

3 165 135 120 160 255 165 135 

V2 Time 

Width (ms) 

1 W1 155 100 145 150 160 195 120 

1 W3     130 150 235 

1 W6 135 160 125 285 135 145 155 

2 170 90 105 105 110 100 100 

3 235 165 240 175 115 145 155 

V1 Center 

Frequency 

(Hz) 

1 W1 10.1 13.0 17.0 12.0 15.7 15.0 12.0 

1 W3     17.4 28.0 10.8 

1 W6 12.8 16.4 22.0 14.3 21.1 8.5 12.8 

2 13.5 30.1 34.6 11.6 29.9 9.9 25.3 

3 14.5 6.0 6.9 8.6 5.9 7.1 10.2 

V2 Center 

Frequency 

(Hz) 

1 W1 6.2 4.5 12.8 9.5 14.6 15.4 9.7 

1 W3     4.5 17.4 9.3 

1 W6 10.1 7.5 6.0 6.0 26.4 5.8 8.5 

2 11.8 25.5 25.7 21.9 15.1 20.1 24.7 

3 8.3 5.1 6.1 6.4 6.6 5.5 11.6 

V1 

Frequency 

Width (Hz) 

1 W1 13.1 17.2 20.9 9.5 24.8 18.4 16.8 

1 W3     16.6 23.1 8.5 

1 W6 15.4 27.8 12.4 15.5 20.0 11.2 16.9 

2 14.9 32.1 22.1 8.6 27.0 15.5 16.5 

3 15.2 14.8 11.9 22.5 15.9 11.7 14.4 

V2 

Frequency 

Width (Hz) 

1 W1 21.0 7.9 15.5 17.4 20.1 28.8 13.7 

1 W3     11.3 10.5 11.9 

1 W6 19.8 19.9 10.6 13.6 15.6 12.2 22.3 

2 8.8 28.7 18.7 23.2 23.0 22.3 26.7 

3 22.7 5.7 21.5 9.2 12.3 12.5 23.5 
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