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ABSTRACT 

The design and characterization of both electromagnetic bandgap (EBG) and 

inter-coupled split-ring resonator (SRR) structures utilized in microwave frequencies 

were proposed and studied. A new double-stopband EBG structure with a passband 

region of 14 to 18 GHz was initially constructed by determining the critical structural 

ratios. To reduce the size of EBG structure, a novel tapered array pattern was 

introduced. The structural period, the number of slot, and the length of slot were 

examined and a strong correlation was found between the lowpass cutoff frequency 

and the center slot length. Non-linearly tapered configuration was applied to enhance 

the filter performance and its size was only 57% of the conventional EBG structure. 

Inter-coupled SRR was also examined and utilized as a bandpass filter when it is 

implemented on the microstrip line for the first time. It was found that the proposed 

structure can provide a fractional bandwidth of over 68% with an insertion loss of 

0.81 dB in the passband region with a device size of 15.5 mm. 

Chemical bath deposited Cadmium Sulfide (CdS) thin film was applied to the 

microwave structures to construct switchable filters. The illumination-sensitive CdS 

thin film's sheet resistance has been demonstrated to be able to switch from 300 to 109 

n/square. With the proposed "conductive-islands" implementation, switching of EBG 

structure's transmission coefficient (S2/) was achieved from 31.3 dB to 5.6 dB at 13 
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GHz. The inter-coupled SRR structure also showed a S21 switching response from 19 

dB to 1.5 dB at 5 GHz. Therefore, optically controlled microwave filters were 

successfully constructed and realized. 

Critical contributions in the field of microwave periodic structures are the 

characterization and the construction of double-stopband structure, linearly and 

non-linearly tapered array structures, and inter-coupled SRR structures. Vital 

characteristics and advantages discovered include wide stopband, reduced size, and 

large fractional bandwidth. Chemical bath deposited CdS thin films were studied to 

achieve an ultra low sheet resistance and high photosensitivity. Important applications 

associated with these structures are microwave lowpass/bandpass filters and optically 

controlled filters. 
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RÉSUMÉ 

La conception et la caractérisation de l'espace de bande électromagnétique (EBG) 

et du résonateur de structures inter-couplées «split-ring» (SRR), utilisées dans des 

fréquences micro-ondes, ont été proposées et étudiées. Une nouvelle structure de 

bande à double-arrêt EBG avec une région de bande de passage de 14 à 18 Gigahertz 

a été construite en déterminant les rapports structuraux critiques. À fin de réduire la 

taille de la structure d'EBG, un nouveau modèle d'arrangement de fente conique a été 

introduit. La période de la structure, le numéro de fente, et la longueur de la fente ont 

été examinés, et une corrélation forte a été trouvée entre la fréquence de coupure 

«lowpass» et la longueur centrale de fente. De la configuration conique non-linéale a 

été appliquée à fin d'augmenter la performance du filtre et sa taille était seulement 

57% de la structure conventionnelle d'EBG SRR inter-couplé a été également 

examiné et utilisé comme un filtre de passage de bande, quand il a été mis en 

application sur la ligne de bande micro pour la première fois. On a constaté que la 

structure proposée peut fournir une largeur de bande partielle de plus de 68% avec une 

perte d'insertion de 0.81 dB dans la région de bande de passage avec une taille de 

dispositif de 15.5 millimètre. 

Une couche mince -- déposée par bain chimique -- de sulfure de cadmium (CdS) 

a été appliquée aux structures de micro-onde, pour construire les filtres permutables. 
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La résistance de la feuille à couche mince d'illumination-sensible CdS a été 

démontrée de pouvoir commuter de 300 à 109 D/square. Avec l'exécution proposée 

des «îles-conductrices», du changement du coefficient de la transmission de la 

structure d'EBG (S:n) a été obtenu de 31.3 dB à 5.6 dB à 13 Gigahertz. La structure 

inter-couplée de SRR a également montré une S21 réponse de commutation de 19 dB à 

1.5 dB à 5 Gigahertz. Par conséquent, des filtres de commande optique à micro-ondes 

ont été construits et réalisés avec succès. 

Des contributions critiques dans le domaine des structures périodiques de 

micro-onde sont la caractérisation et la construction de structure «double-stopband», 

les structures coniques de rangée linéaires et non-linéaires, et les structures 

inter-couplées SRR. Des caractéristiques essentielles et des avantages découverts 

incluent le «stopband» large, la taille réduite, et la grande largeur de «bandwidth» 

partielle. Les couches minces déposées par bain chimique de CdS ont été étudiées 

pour réaliser une résistance de feuille ultra basse. Des applications importantes 

associées à ces structures son des filtres «Iowpass/bandpass» à micro-ondes et des 

filtres à commande optique. 
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1. INTRODUCTION 

The transfer of information has become an integral part of our lives. We rely on 

communication systems and networks to transmit and receive an enormous amount of 

information everyday. Just to name a few that are more closely bounded to us such as 

television/radio networks, telephone networks, and computer inter-networking 

(internet). The advancement in the telecommunication technology not only allows the 

ease of conveying information from one place to another, but also encourages people 

to share inspirational ide as and tackle the major obstacles that this world faces 

together. It was estimated in 2006 that the telecommunication industry generated 

revenue of US$I.2 trillion, which is equivalent to around 2 % of the gross world 

product (~ US$59 trillion) [1-1]. Therefore, it is vastly important to develop the 

components of the telecommunication equipment so that the ability to control the 

transmitted and received information can be performed efficiently. 

For a large amount of information to travel faster and further, microwave and 

millimeter-wave components are often applied. Microstrip transmission line is a 

suitable high frequency structure that can be utilized to carry these signais across a 

long distance with minimal insertion loss. It is a very suitable transmission structure 

for microwave signais, which, can propagate through air very efficiently. Moreover, to 

provide robustness and flexibility in designs and functions, these microstrip 



transmission lines are often built with periodic patterns that are located either in the 

ground plane or on the microstrip line. These patterns not only assist the transmission 

of the signaIs, but also they provide useful functionalities such as frequency-selection 

and filtering. Therefore, the design and characterization of structures that are 

compatible with microstrip Hne become a very important part in these high-speed 

components. In this thesis work, two types of structures were considered and proposed 

to integrate with the microstrip transmission line: the electromagnetic bandgap (EBG) 

structure and the split-ring resonator (SRR) structure. Both structures are suitable for 

planar circuit technology and are relatively simple to fabricate. New characteristics 

and design methods were explored and studied utilizing the structures with microstrip 

Hnes. Mainly, three types of novel periodic structures are proposed to be utilized in the 

microwave region: double-stopband EBG structure, linearly and non-linearly tapered 

array EBG structures, and inter-coupled SRR structures. In addition, switchable 

microwave lowpass and bandpass filters are developed and experimentally verified 

with the proposed low-resistance CdS thin film. 

The term Photonic Band-Gap (PBG) was initially acknowledged in late 1980s 

where it is used to de scribe the blockage of traveling electromagnetic (EM) waves in 

optical regime. Such blockage in the transmission is caused by a periodically changing 

pattern of the dielectric layers with different index of refractions [1-2, 1-3, 1-4, 1-5]. 
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In the microwave applications, the structures that exhibit this phenomenon are referred 

to as Electromagnetic Band-Gap (EBG) structures. The most advantageous aspects of 

the microwave EBG structures are their extremely simple implementation and 

effective stop band ab il ity. Planar EBG structures can be implemented easily in the 

ground plane of a microstrip transmission line with periodic perforations. These 

perforations, with appropriate spacing, provide interference for the traveling EM 

waves at a certain range offrequency [1-6, 1-7, 1-8]. Fig. 1-1 illustrates a typical EBG 

structure with four periodic rectangular perforations implemented directly undemeath 

the microstrip line to induce a stopband effect. 

Microstrip Line 

Ground Plane 

Fig. 1-1: A typical one-dimensional EBG with rectangular perforations implemented in the ground 

plane of a microstrip transmission line. 

It has been reported that that the ratios of perforation dimensions to the period (a) are 

closely linked to the stopband frequency [1-9]. In the beginning of Chapter 3, this 

relationship is further investigated and subsequently a double-stopband EBG structure 

with a controllable passband region has been developed simply by adjusting the 

structural ratios [1-10]. The proposed double-stopband EBG structure provides an 
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opportunity to have a profound understanding of the relationship between the 

structural dimension and the passband region, which has not been explored before in 

the literature. 

Ordinary periodic planar EBG structures have SJl ripples in the passband region 

and therefore the transmission quality in this region is degraded [1-11, 1-12]. SJl 

ripples usually occur near the stopband-edge and degrade the passband performance; 

therefore, insertion loss is increased. However, this drawback of the planar EBG 

structures can be solved with an innovative Tapered Array (TA) pattern [1-13]. It is 

noted that the fiber Bragg gratings, which utilize the grating apodization have the 

similar concept applied in the optical regime [1-14, 1-15]. The TA patterns proposed 

in this thesis work provide not only defined passband and stopband regions, but also 

the position of cutoff frequency can be controlled very easily. The physical length of 

TA patterned EBG structure does not increase with a decrease of cutoff frequency like 

the typical EBG structures. Furthermore, the stopband region of the TA patterns is 

much wider than regular periodic patterns. The characterization of linearly and 

non-linearly TA patterned structures are also presented in Chapter 3. 

Split-ring resonator (SRR) structure was first proposed by Pendry et al. [1-16] to 

achieve a large imaginary component in effective permeability due to its unique 

resonance nature. Smith et al. [1-17, 1-18] further investigated the split-ring resonator 
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structure together with metallic wires placed in proximity. Such combined structure 

exhibits passband characteristics with backward wave propagation and it is known as 

the left-handed medium. This realizes the structure proposed by Veselago in 1968 

[1-19], which have a negative permeability and a negative permittivity simultaneously. 

Soon after, split-ring resonator and complementary split-ring resonator structures have 

been exploited in many different applications including microwave filters [1-20, 1-21, 

1-22, 1-23, 1-24, 1-25]. However, most of these structures have the resonators 

implemented in the ground plane or beside the parallel coupled microstrip lines to 

enhance the filtering performance. Planar edge-coupled split-ring resonator was 

proposed as bandpass filter but the fractional bandwidth still remains small [1-26]. In 

Chapter 4, a newly proposed structure called inter-coupled split-ring resonator 

structure implemented directly on the microstrip line is characterized and explored for 

the first time. The structure is found to have an exceptionally large fractional 

bandwidth when it is utilized as a bandpass filter. Fig. 1-2 shows an inter-coupled 

split-ring resonator structure. 
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Microstrip line with 
4-cell SRR structure 

Ground Plane 

;' Period Ca) ;' 
..... .... 

; ; 
~~- --~----- - -----------------------" 

; ; 

Fig. 1-2: An inter-coupled split-ring resonator (SRR) structure with four unit celIs implemented on the 

microstrip line. 

Chapter 5 presents the deposition method of illumination-sensitive Cadmium 

Sulfide (CdS) thin film by Chemical Bath Deposition (CBD). It has been reported that 

CdS thin film deposition by the CBD method yields the best results in terms of 

photoconductivity and photosensitivity [1-27, 1-28]. The CBD method is also a 

low-cost and a simple way to deposit CdS over a large area. This chapter explores and 

proposes a set of optimal conditions for depositing CdS thin films with extremely low 

sheet resistance (~ 300 fJlsquare) under illumination condition. Thus, it is possible to 

apply such thin film to microwave structures and achieve optical switching of the 

transmission signais [1-29, 1-30]. 

Chapter 6 combines the works on EBG and SRR structures with the low sheet 

resistance CdS thin film to realize the proposed optically switchable microwave filters. 

The highly sensitive CdS thin films were deposited on the ground plane of the EBG 

structures to coyer up the perforations. Meanwhile, a novel perforation pattern is 
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introduced in this thesis to enhance the switching performance of the EBG structures. 

The additional "conductive islands" in the center of the perforations improved the 

insertion loss significantly when the structure was under illuminated condition. For 

inter-coupled SRR structures, the CdS thin film is deposited on top of the microstrip 

line so that the passband effect can be switched with illumination. Due to the high 

isolation between the controlling device and the periodic structures, there are many 

potential applications for the switchable structures such as tunable filters and 

optoelectronic components. AlI the simulations were done with Agitent Advanced 

Design System 's Momentum simulator, which has the capability of performing 

fulI-wave analysis. The simulation results were verified by experimentally fabricated 

and measured samples. 

FinalIy, the last chapter gives a summary of the thesis and sorne possible future 

improvements that can be carried out to design an EBG/SRR structure and its 

applications. 
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2. MICROWAVE EBG AND SRR STRUCTURES 

The attractive features of microwave EBG and SRR structures are the abilities to 

generate passband and stopband regions at specific frequency ranges depending on 

their structural dimensions. This chapter attempts to summarize the characteristics of 

different types of EBG and SRR structures that were reported in the literatures. In 

addition, the possibilities of switching the passband and stopband effects are discussed 

at the end. 

2.1. EBG STRUCTURES 

Prior to implementation in the ground plane, the periodic perforations of an EBG 

structure used to be placed in the dielectric substrate as shown in Fig. 2-1 [2-1]. 

periodic perforations 

Fig. 2-1: An EBG structure with perforations implemented in the layer of dielectric substrate. 

Various shapes of lattices such as triangular, rectangular, and honeycomb were studied 

for this type of EBG structure and they have been utilized in applications such as 
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harmonic tuning to increase the power-added efficiency for power amplifiers [2-2, 

2-3]. It was also reported that the interference effect due to different periodicities can 

be cascaded together to produce a wide stopband from 4 GHz to 15 GHz [2-4]. 

However, the dielectric-based EBG structures are difficult to fabricate and therefore 

they were replaced with planar EBG structures, which have the periodic perforations 

implemented in the ground plane. The fabrication of the planar EBG structures is 

easier since no drilling process in the substrate is required. In addition, the planar EBG 

structures possess the same stopband effects as the dielectric-based structures. 

Generally, the planar EBG structures can be separated into two categories: uniformly 

and non-uniformly sized perforations. 

2.1.1. EBG DESIGNS WITH UNIFORM PERFORATIONS 

Fig. 2-2 shows a typical planar EBG structure where uniformly sized perforations 

are implemented in the ground plane of a microstrip transmission line. 
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Microstrip Line 

Ip, perforation 
length 

Wp, perforation 
width 

Ground Plane 

Fig. 2-2: A typical planar EBG structure with 3 by 6 uniformly sized perforations in the ground plane of 

a microstrip transmission line. 

The maximum interference of traveling electromagnetic waves occurs when the 

Bragg's condition (f3a=7l', fJ is the propagation constant) is met and therefore the 

structural period (a) of the EBG structure can be obtained with a corresponding 

frequency of interference [1-6, 2-5]. Consequently, the structural period is a critical 

parameter in determining the stopband frequency of an EBG structure. It has been 

reported that as the ratios of w/a and l/a decrease, the stopband width and the 

stopband attenuation are decreased [1-5]. The stopband attenuation can be improved 

by increasing the number of perforation period; however, this will also increase the 

totallength ofthe device. 

Furthermore, a wide stopband EBG structure was demonstrated, which was 

achieved by having a parallel connection of the perforations that were designed to 

have different stopband frequencies, shown in Fig. 2-3. The perforations located in the 
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center row have a larger structural period and therefore the corresponding stopband 

position is at lower frequencies. The top and bottom rows of perforations have a 

smaller structural period; thus, they are responsible for the stopband located at higher 

frequencies. When appropriate calculations are applied, the two stopbands can merge 

together and create a wider overall stopband. 

Center row: Perforations 
for low frequency band-gap 

Side rows: Perforations for 
high frequency band-gap 

Fig. 2-3: An EBG structure with perforations connected in a parallel configuration. 

Such configuration has the advantage of creating a wide stopband width without 

increasing the physical size of the whole structure Iike the serially cascaded case. The 

reported EBG structure that utilizes this configuration has a stop band region that 

extends from 3 GHz to 12 GHz [2-6]. The applications of this structure for 

suppressing harmonies in microstrip patch antenna and feed-forward amplifier have 

been demonstrated [2-7]. 

The last EBG design that is introduced in this section is called 

Uniplanar-Compact EBG (UC-EBG) structure. UC-EBG structures are able to 
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generate the stopband effects with sm aller lattice patterns that are also implemented in 

the ground plane of a microstrip transmission Hne. Fig. 2-4 shows an OC-EBG 

structure where the lattice pattern is consisted of a metal pad and four connecting 

branches. 

Fig. 2-4: A microstrip transmission line with UC-EBG lattice pattern implemented in the ground plane. 

The narrow branches and gaps between metal pads introduce series inductances 

and shunt capacitances respectively. Thus, the propagation constant (fJ) is much larger 

than the convention al microstrip line structure due to the se two additional components. 

According to Bragg's condition, the propagation of quasi-TEM mode along the 

microstrip line is prohibited when the following expression is satisfied: 

{JL = 1T (2-1) 

Therefore, if fJ is larger, then the period distance of a unit ceIl, L, can be reduced [2-8, 

2-9]. Many applications of the OC-EBG have been explored. One of the most popular 
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applications is the harmonie tuning for power amplifiers. It has been shown that the 

second and third harmonies of a power amplifier can be suppressed by UC-EBG 

structure so that the power-added efficiency is increased by 10% and the output power 

is increased by 1.3 dB [2-10]. AIso, UC-EBG can be used to enhance the performance 

of lowpass filters (LPF) and bandpass filters (B PF) [2-9, 2-11]. Conventional 

parallel-coupled BPF used in microwave integrated circuits usually have spurious 

passbands at high frequencies. Therefore, extra filters are required to eliminate these 

unwanted harmonics to increase the performance of the overall circuits. However, the 

insertion loss will increase in this case. This problem can be solve by utilizing 

UC-EBG structures since they provide intrinsic harmonic tuning at high frequencies; 

thus, the spurious passbands can be filtered without adding any loss to the 

transmission line. It has been reported that the UC-EBG structure with a dimension of 

18.3 mm by 9.1 mm (number ofperiod is 3 by 6) can create a stopband above 10 GHz 

with an attenuation better than 20 dB [2-9]. 

2.1.2. EBG DESIGNS WITH NON-UNIFORM PERFORATIONS 

Non-uniform perforation patterns or tapered perforation patterns can be utilized 

to enhance the performance of the EBG structures. It has been reported that an EBG 

structure can be constructed to have multiple stopbands simultaneously [2-12]. Instead 

of having a uniform and periodic perforation pattern, the multiple-frequency-tuned 

13 



EBG has a non-uniform perforation pattern that is consisted of a multiple of 

Hamming-windowed raised sinusoidal functions added together. Each function has a 

different period length and therefore it is optimized to generate a stopband region at a 

specifie frequency range. Thus, the EBG structure possesses an irregular pattern that is 

very different from the ordinary ones. It has been demonstrated that a triple-frequency 

tuned EBG structure with periods of 24 mm, 19 mm and 15 mm can create stopband 

regions located at 3 GHz, 4 GHz, and 5 GHz respectively. The totallength of the EBG 

structure is 215 mm long. Even though this device has multiple stopband regions, but 

the insertion losses in the passband regions remain high and the fabrication of such 

irregular pattern is complicated. 

Another type of non-uniform EBG structure is focused on improving the 

passband quality near the band edge. Conventional EBG structures with uniform 

perforations have the problem of S11 ripples occur near the stopband edge. Therefore, 

the passband insertion loss increases significantly. It has been reported that this 

problem can be solved by implementing non-uniform perforations. Fig. 2-5 illustrates 

EBG structures with non-uniform circular perforations. 
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1 D circularly-tapered pattern 

(Perforation sized according 

to Chebychev coefficient) 

plane of a microstrip 

transmission line 

2D circularly-tapered pattern 

(Perforation sized according 

to Kaiser coefficient) 

Fig. 2-5: EBG structures with non-uniform circular perforations in the ground plane of a microstrip 

transmission line [1-10, 2-13]. 

By proportion aIl y sizing the dimension of each circular pattern according to 

coefficient of the Chebychev polynomials, an enhanced passband performance can be 

achieved [2-13]. It has been demonstrated that the Su ripples were significantly 

reduced with a non-uniform EBG structure (10 periods, a = 5.7 mm, r1 = 2.1 mm, er = 

10.2) having a stopband region from 9 GHz to 13 GHz. Similar two-dimensional 

tapered EBG structure has been constructed with three rows of circular perforations 

that are proportional to Kaiser's window function [1-10]. Such EBG structures can be 

utilized as lowpass filters but the overall size is still quite large. Therefore, the tapered 

structure's size needs to be reduced while maintaining the equivalent performance in 

order for the EBG effect to be practical in real applications. 
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2.2. SRR STRUCTURES 

The split-ring resonator (SRR) structure is originated to realize the negative 

permeability of the proposed Ieft-hand materiai (LHM), which possesses a negative 

index of refraction. The concept of LHM was tirst proposed by Veselago in 1968 

[1-16]. He carried out the tirst theoreticai investigation on LHM by simultaneously 

assuming both dielectric permittivity and magnetic permeability to be negative. Thus, 

the propagating waves inside of the LHM would have unique properties such as 

reversaI of Snell's Iaw, Cerenkov radiation, and Doppler's effect. However, this 

concept was not experimentally demonstrated until recently in mid-90s. pendry and 

Smith have successfully verified the properties of LHM experimentally with thin-wire 

structures and split-ring resonators [1-13, 1-14, 1-15,2-14]. These artiticiai structures, 

indeed, have negative properties and they stimulate researchers from worldwide to 

utilize LHM on practical applications. However, the three-dimensional LHM have 

bulky structures and high insertion loss so they cannot be applied to microwave 

applications effectiveIy. This does not discourage researchers who are interested in 

microwave structures because SRR structure, alone, is perfectly suitable to be 

implemented with planar technology. 

Since then, split-ring resonator and complementary split-ring resonator (CSRR) 

structures (Fig. 2-6) are explored and implemented in planar microwave components 
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widely [2-15]. 

(a) (b) 

Fig. 2-6: (a) a split-ring resonator and (b) a complementary split-ring resonator structures (Black region 

represents the conductive metallization region). 

Due to its unique magnetic resonance property, SRR and CSRR can be employed 

beside the microstrip transmission line [1-18, 2-16] or in the ground plane [2-17, 2-18] 

to generate or enhance the filter responses. Fig. 2-7 shows a construction of lowpass 

filter utilizing CSRR patterns in the ground plane of a microstrip transmission line. 

A .. 
L. 

A' .. 

Cross-sectional 
view along A-A' 

Dielectric Substrate 

Ground plane contains 4 
units of periodic CSRR 

Fig. 2-7: Periodic CSRR structures implemented in the ground plane of a microstrip transmission line to 

construct a lowpass filter. 

Microwave bandpass fiIters with high-frequency selectivity can also be achieved by 
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utilizing CSRR structures [1-22]. It has been reported that a passband region centered 

at 1 GHz was achieved with a total device length of 45.6 mm, which is significantly 

shorter than the conventional parallel-coupled line filter. However, this proposed 

structure needs a more complicated fabrication process. 

2.3. SWITCHABLE STRUCTURES 

Switching of EBG structure's stopband effect has been reported with the 

utilization of a piezoelectric actuator [2-19]. The actuator controls a piece of 

conductor's movement so the EBG structure's perforations can be covered up to 

eliminate the stopband effect. Fig. 2-8 iIIustrates how the switching is performed with 

the actuator. 

Microstrip Line Substrate 

De voltage 

Ground Plane 
(EBG perforations) 

Piezoelectric actuator 
(Provide up/down movements) 

Stage (fixed) 

Fig. 2-8: The setup of an EBG structure with a piezoelectric actuator to facilitate switching [2-19]. 

When a voltage that ranges from 0 to 40 V is applied to the actuator, it induced an 
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up/down movement that ranges from 0 to 400 J1111. Thus, the gap between the EBG 

perforations and the conductor is effectively controlled by the applying voltage. When 

the conductor piece touches the EBG structure, the ground plane becomes continuous 

and the stopband is eliminated. Therefore, the stopband phenomenon delivered by the 

EBO perforations can be switched on and off by the voltage. Such method achieved a 

switching of the transmission coefficient (S21) from -35 dB to -1 dB at 16 GHz. 

Furthermore, optically controlled EBG structures have been demonstrated by 

simulation [2-20]. This concept utilizes the photoconductive material as the substrate 

of the EBO structure. As the illumination incidents on the ground plane of the EBO 

structure where the perforations are located, electron-ho le pairs are generated and the 

conductivity of the photoconductive substrate that is exposed to the illumination is 

increased. Thus, a continuous ground plane without the perforations is formed and the 

structure behaves Iike an ordinary microstrip transmission line. Without the 

illumination, the conductivity of the photoconductive substrate is low and the EBO 

structure produces a stop band effect. Fig. 2-9 shows the proposed EBO structure, 

which the stopband effect can be switched on and off by illumination. However, this 

proposed structure has only been simulated and therefore the actual characteristics of 

the photoconductive substrate are yet to be explored experimentally. 
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Si-photoconductive Substrate 

Ground Plane Illumination 

Fig. 2-9: An optically-controlled EBG structure with a photoconductive substrate [2-20]. 
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3. DESIGN OF ELECTROMAGNETIC BANDGAP 

STRUCTURES 

Since the electromagnetic bandgap (EBG) structures possess unique properties of 

stop band effects, they can be utilized as bandpass and lowpass microwave filters. Two 

types of EBG structures are studied and explored in this chapter: double-stopband 

EBG structure and tapered slot-array EBG structures. The main advantages of the 

proposed double-stopband EBG structure are its simple implementation and flexible 

control of passband frequency. The critical characteristics of the proposed tapered 

array EBG structures are their remarkably wide stopband region and reduced device 

size. 

3.1. DOUBLE-STOPBAND EBG STRUCTURES 

The vital characteristics of the EBG structure are the perforation dimension to the 

period ratios. When the appropriate ratios are implemented as the ground perforations 

in a microstrip line, a double-stopband effect can be achieved. Therefore, the size of 

the overall structure does not increase while the stopband effects can be controlled to 

give the desired performance. Effectively, the double-stopband phenomenon creates a 

passband region that can be utilized as a microwave bandpass tilter. First, the 

preliminary design and the calculation method used to obtain the passband frequency 

are shown. Then, the EBG structures were simulated with Agilent Advanced Design 
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System, which provides a full-wave analysis on the structural layout designs. The 

simulated S-parameters were compared to the measured results from an actual sample 

to vatidate the initial design. 

3.1.1. DESIGN TECHNIQUE 

The stop band effect of the EBG structures is created by the interferences of the 

traveling electromagnetic waves. In order to achieve this effect, sorne form of periodic 

perturbation has to be presented. Therefore, a simple way to accomplish the 

interference effect is to introduce periodic perforations in the ground plane of a 

microstrip transmission tine structure. Fig. 3-1 shows a typical EBG structure with 

rectangular perforations periodically placed in the ground plane of a microstrip 

transmission line. It is noted that the microstrip transmission line structure is on a 

substrate with a thickness h, and a microstrip tine width, w. Together with the 

dielectric permittivity (Br) of the substrate, these three parameters are critical in 

determining the characteristic impedance (Zo) of the overall structure. To maintain a 

low insertion loss and to ensure a good transmission, it is desirable to have Zo to be 50 

il at the operating frequency. 
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Dielectric substrate, Gr 

Fig. 3-1: A typical EBG structure with periodically spaced rectangular perforations. 

Moreover, each perforation in the ground plane is separated by a period, a. In 

order to achieve maximum interference for the traveling electromagnetic waves, 

Bragg's condition must be satisfied and therefore a is chosen to be half of the guided 

wavelength (Âg). 

nÂ = 2asinB; a = nÂg/2 (n is an integer) (3-1) 

Since in the case of microstrip transmission line, the incident angle of the traveling 

waves (8) is 90 degrees, interference condition is fulfilled when the period (a) is equal 

to any multiple of the half guided-wavelength (Âg). Therefore, it is possible to obtain 

the stopband frequency from the above relationships. 

(3-2) 

a = Period of the perforations 

Âg = Guided wavelength 

c = Velocity of propagating wave in free-space 

Jo = Principle interference frequency 
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Seo(!) = Frequency-dependent effective permittivity· 

From this relationship, it is also noted that for every chosen a, interferences will 

occur at any multiple of the princip le frequency, /0. Meanwhile, each rectangle has a 

perforation width (wp) and a perforation length (Ip). The ratios of these dimensions to 

the period (wJl'a and IJI'a) are the critical factors in determining the stopband 

characteristics such as the stopband width, stopband frequency, and maximum 

attenuation ofthe planar EBG structures. However, to construct an EBG structure with 

a decent passband region (insertion loss less than 1 dB), a more comprehensive 

investigation on the wJl'a and IJI'a ratios is required. 

Since the target is to create a passband region above la GHz, the preliminary 

design of the period (a) was chosen to be 6.5 mm, which corresponds to stop band 

regions centered roughly at 9 GHz and 18 GHz according to the equation shown above. 

Thus, it is possible to obtain a passband in between the two stopband regions. In the 

next section, detailed simulation results are presented. 

3.1.2. SIMULATION RESULTS 

TABLE 3-1 shows the global and trial simulation conditions used for aIl of the 

EBG structures in this section. The global conditions are to ensure the microstrip line 

has a characteristic impedance of 50 il. A standard bandpass EBG model (a = 6.5 mm) 

• Please refer to Appendix A for detailed calculations on frequency-dependent effective perrnittivity. 
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was first constructed and simulated. Then, the dimension of the EBG structure was 

reduced to characterize the effects ofhaving a passband behavior at higher frequencies. 

The performance of each case was evaluated in terms of S-parameters, mainly the 

reflection coefficient (Sn) and the transmission coefficient (S21) t. Consequently, the 

S-parameters indicate the vital characteristics of an EBG structure such as the 

positions of passband width, cutoff frequency, passband insertion loss and stopband 

attenuation. 

TABLE 3-1: GLOBAL AND TRIAL SIMULATIONS CONDITIONS 

Global Simulation Conditions: 

Thickness of the substrate (h) 250 JU11 

Width of the microstrip line (w) 250 JU11 

Characteristic impedance (Zo) 50n 

Dielectric constant of the substrate (8r ) 9.8 

Trial Simulation Conditions: 

Parameters Standard EBG Model With 50% Reduction 

Period (a) 6.50 mm 3.25 mm 

Perforation width (wp) 1.63 mm 0.81 mm 

Perforation length (lp) 4.88 mm 2.44 mm 

w/a Ratio 0.25 0.25 

l/a Ratio 0.75 0.75 

Number ofPeriod (n) 5 5 

ln TABLE 3-1, the dimensions and parameters for the standard bandpass EBG 

model are provided. The w/a and l/a ratios are not 0.5 as seen in most of the EBG 

structures. The distinctive feature of the double-stopband EBG structure is that the 

wp/a ratio and lm (distance between two rectangular perforations) are equal to 

t Please refer to Appendix B for detailed equations of S-parameters. 
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one-eighth of the guided wavelength (.-1g/8). Thus, the region in between the two 

stop bands is suitable for transmission because of the low insertion loss. With the se 

dimensions, the resulting S-parameters of the standard model are shown in Fig. 3-2. A 

passband region is observed from 13.5 GHz to 18.3 GHz at the 3 dB cutofffrequencies. 

Therefore, the bandwidth is 4.8 GHz with an average insertion loss (S21) of 1.4 dB. 

AIso, the return loss (Sll) in the passband regions is 28.6 dB. Moreover, two 

distinctive stopband regions located at 10 GHz and 22 GHz with attenuations of 

around 30 dB result from this construction. Thus, a bandpass filter is effectively 

created with a very simple planar EBG structure by alternating its perforation 

dimensions. 

~~-_._-----~-~----~~~----_._---------~.~._. 

o 

-5 

-10 --= "CS '-' -15 
..... 
~ 

-~ 
1 

Stopband 

~ -20 
..... ..... 
~ -25 

-30 E
--------- --i!J_.-

-SIl - S21 .-.-
_._----

-35 

7 9 11 13 15 17 19 21 23 25 
Frequency (GHz) 

'-----------~--. 

Fig. 3-2: S-parameters showing the passband characteristics of the standard EBG model. 

For comparison, Fig. 3-3 illustrates the S-parameters of an ordinary EBG 
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structure with the wpla and lpla ratios of 0.5. Even though it has a larger stopband 

region at low frequencies, the passband region is very po or with high insertion and 

retum losses. Therefore, the ratios of the perforation dimension to the period play a 

vital role in the transmission and reflection responses. 

o -.. -................ .. .................... -........ ~ ..... -............ ~--_ .................. " .... " ... _ ... __ .... .. . ................................... _ ...... . 

-10 -------------

s: 
-e -20 --..... r;;: 
~ -30 ..... 
~ 

-40 ~ t I-Sl1l=~~-
•••••••••••••••••••••••. ~ ........................................................................................................... 1 .•..•.•.•••••.••••••••••••••• , ......... -. .......................................... 1 ......................................................................... . -50 

5 10 15 
Frequency (GHz) 

20 25 

Fig. 3-3: S-parameters of an ordinary EBG structure with wpfa and lpfa ratios of 0.5 (a = 6.5 mm) 

In order to explore the passband characteristics at higher frequencies, the 

dimensions of the standard EBG model was reduced by 50% while the w~a and l~a 

ratios were unchanged. The dimensions used to simulate the EBG structure with 50% 

reduction are also shown in TABLE 3-1. The resulting S-parameters of the sm aller 

structure are shown in Fig. 3-4. Two structures having different number of periods (n 

= 5 and n = 7) were simulated. Jt is observed that the passband region is now shifted 

to above 20 GHz, which is located from 22.4 GHz to 34.3 GHz at the 3 dB cutoff 
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frequencies. Therefore, the bandwidth is 11.9 GHz with an average S21 of 1.2 dB. In 

addition, S11 in the passband region is beyond 30 dB. As the number of the period (n) 

increases, the upper and lower stopband attenuations are increased. Hence, the 

double-stopband EBG structure can be constructed and utilized at higher frequencies 

efficiently by just changing the overall dimensions. The simulation results are 

summarized in TABLE 3-II. 

~--,--,,-,_._,-~-

-5 

-10 

~ -15 jf-t--jft----4-~~-I-'~ 

~ 
~-20 H-~~~~G---~~H-~ r;; 
~ -25 
~ 
~ 

~ -30 

-35 

-40 ~n=5(SII) -n=5(S21) -e-n=7(SI1) -*-n=7(S21) p_ 

15 20 25 30 35 40 
Frequency (GHz) 

--~-

Fig. 3-4: S-parameters for the EBG model with 50% reduction in size. 

TABLE 3-II: SUMMARY OF THE SIMULATION REsULTS 

-- Standard Mode1 50% Reduction Model 

Lower 3 dB passband edge 13.5 GHz 22.4 GHz 

Higher 3 dB passband edge 18.3 GHz 34.3 GHz 

Bandwidth 4.8 GHz Il.9 GHz 

Fractional Bandwidth 30.5% 42.9% 

Average insertion loss 1.4 dB 1.2 dB 

Maximum retum loss 26.8 dB 35.0 dB 
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3.1.3. EXPERIMENTAL MEASUREMENTS AND COMPARISONS 

The standard EBG structure with the dimensions shown in TABLE 3-1 was 

fabricated on Alumina substrate (er = 9.8) and the S-parameters were measured with 

the Anritsu 37347 A vector network analyzer, which has the capability of measuring 

S-parameters up to 20 GHz. Please refer to Appendix C for detailed fabrication and 

measurement procedures. Fig. 3-5 illustrates the front (microstrip line) and the back 

(EBG perforations) sides ofthe standard EBG model fabricated for measurements. 

:+- Totallength = 30.8 mm ~ 
1 1 
1 1 

Fig. 3-5: A photo of the actual fabricated sample showing the front and the back side (standard model). 

The experimental measured results are compared with the simulated one s, which 

are shown in Fig. 3-6. It is seen that the general shape of both passband and stopband 

regions are very similar. However, the measurement results of S21 showed a higher 

insertion 10ss in the passband region. This is due to the imperfection on the microstrip 
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transmission tine during the fabrication processes. The insertion loss can be improved 

with a better microstrip transmission line mask. Other aspects of the bandpass EBG 

structure such as the attenuation of the upper and lower stopbands showed good 

behaviors in the measurement results. Therefore, the measurement results verified and 

confirmed the performance of the proposed double-stopband EBG structure. Also, the 

passband region that exists in this type of EBG structure can be constructed easily 

with appropriate w/a and l/a ratios. 
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Fig. 3-6: Comparison of simulated and measured results for the standard EBG structure. 

3.1.4. SUMMARY 

A new characteristic of the planar EBG structure was found by varying the width 

and length of the rectangular perforation patterns. The structure period (a) primarily 

determines the position of the stopbands. Meanwhile, the ratio ofwpfa and lm were set 
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to be one-eighth of the guided wavelength in order to obtain a passband region. The 

proposed EBG structure has a unique property of double-stopband and it can be 

utilized as a bandpass filter. It has been demonstrated both by simulation and 

experiment that the characteristic of the double-stop band effect can be achieved. 

Moreover, it has been shown by simulation that reducing the overall size of the ground 

perforations can control the location of the passband frequency. Therefore, a bandpass 

tilter can be constructed easily and efficiently by utilizing the EBG structure. 

3.2. TAPERED SLOT-ARRAY EBG STRUCTURES 

In this section, an innovative tapered array (TA) pattern that is used to construct 

an EBG structure is proposed. Tapered array patterns not only provide distinctive 

passband and stopband regions, but also the position of cutoff frequency can be 

controlled very easily. In addition, the stopband region provided by the tapered array 

patterns is much wider and the structural dimension is more compacted than regular 

periodic patterns and any other proposed tapered structures in the literatures. Fig. 3-7 

shows a typical planar EBG structure with linearly tapered array pattern inside of a 

ground plane of a microstrip transmission line. 
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Fig. 3-7: An EBG structure constructed with 7-slot Iinearly tapered array pattern implemented in the 

ground plane. 

The design and analysis of the linearly TA patterned EBG structures are firstly 

discussed. The simulation and measurement results showing the dependence of the 

transmission and reflection performances on the structure period (a), number of slots 

(n), and the center slot length (L) are presented. Then, the improved design, which is 

consisted of non-linearly tapered slot-array, is investigated and studied. In both linear 

and non-linear cases, actual EBG samples were fabricated to verify the initial designs. 

3.2.1. LlNEARLY TAPERED SLOT ARRAY 

3.2.1.1. DESIGN TECHNIQUE 

Tapered array pattern consists of a periodic array of slots, whose lengths are 

linearly tapered toward the ends. This critical characteristic allows the traveling 

electromagnetic waves to be exposed to periodic interferences progressively and 
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therefore it is possible to obtain much defined regions of passband and stopband in a 

frequency response. This indicates that the transmission and reflection performances 

of the structure are very good. The parameters for the preliminary design are shown in 

Fig. 3-8. 

Tapered array pattern (7 slots) 
--------------~--------------

L: Center slot length 
a: Structure period 
x: Siot length step 

. t: Siot width 
v: Min. slot length 

Fig. 3-8: A 7-s1ot tapered array pattern showing preliminary design dimensions. 

In order to understand the TA patterned EBG structure better, the slots can be 

modeled with resistor-inductor-capacitor (RLC) resonator equivalent circuits. Fig. 3-9 

shows a circuit representation of a 7-slot TA patterned EBG structure with microstrip 

transmission lines in between. The grey components represent the microstrip 

transmission line in the TA pattemed EBG structure, which can be characterized by 

series inductors and shunt capacitor. The slots are modeled with RLC network where 

RL4C4 represents the center slot. 
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R R R R 

R R R 

Fig. 3-9: Equivalent circuit representation for a 7-slot TA patterned EBG structure. (R = 1500 n, L4 = 

1,45 nH, C4 = 0.145 pF, L3 = 1.00 nH, C3 = 0.10 pF, L2 = 0.55 nH, C2 = 0.055 pF, LI = 0.10 nH, and CI 

= 0.01 pF) 

Fig. 3-10 shows the comparison of S-parameters between the equivalent circuit 

model and the actual measurement of the sample. It is observed that the S-parameters 

match fairly weIl. Therefore, the equivalent circuit model serves as a good preliminary 

design tool and representation for the actual TA pattemed EBG structure. 
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Fig. 3-10: Comparison of Su/Su between equivalent circuit model (EC) and measurement (M) results 

for a 7-slot tapered array pattern EBG structure with L = 7.7 mm. 
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To characterize the tapered array pattern and its stopband performance, three 

parameters were chosen to be analyzed: the structure period (a), the number of slots 

(n), and the center slot length (L) mainly because these three structural parameters 

describe the essence of the EBG structure. TABLE 3-111 shows a simulation overview 

on how the data sets were obtained and analyzed. 

TABLE 3-III: SIMULATION DATA SETS 

Data Sets Structure period (a) Number ofSlots (n) Center slot length (L) 

Trial #1 1 ~2.5 mm 7-Slots 7.7 mm 

Trial #2 2mm 5-, 7- 9-slots 10.1 mm 

Trial #3 2mm 7-Slots 1.7 ~ 12.5 mm 

The performance of each case is measured in terms of S-parameters. 

Consequently, the S-parameters indicate the vital characteristics of an EBG structure 

such as passband width, cutoff frequency, passband insertion loss and stopband 

attenuation. Fig. 3-11 shows the critical characteristics mentioned above on a typical 

S-parameter diagram with S11 and S21 responses. 
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Fig. 3-11: A typical S-parameters diagram showing critical characteristics of an EBG structure. 

3.2.1.2. SIMULATION RESULTS 

AlI of the simulations were performed with Agilent Advanced Design System 's 

Momentum simulator, which utilizes the method of moments to simulate the 

microwave structures. The global simulation parameters are shown in TABLE 3-IV, 

primarily the properties of dielectric substrate and the microstrip line width, which are 

the same for each trial. Finite ground plane structure is used for aIl the simulation 

models to provide more realistic S-parameter results. 

TABLE 3-IV: GLOBAL SIMULATION PARAMETERS FOR ALL TRIALS 

Substrate type Alumina (Ab03) 

Dielectric constant (Er) 9.8 
Substrate thickness (h) 250 ;..on 

Microstrip line width (w) 250 ;..on 
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Trial # 1 - Varying the structure period 

The structure period (a) is defined as the distance between the centers of each 

slot. In this trial, a is varied from 1 mm to 2.5 mm with incremental steps of 0.5 mm. 

Meanwhile, other dimensions were unchanged, which are summarized in TABLE 3-V. 

TABLE 3-V: PARAMETERS USED FOR SIMULATIONS IN TRIAL #1 

Number of slots (n) 7 

Center slot length (L) 7.7 mm 

Structure period (a) l, l.5, 2, and 2.5 mm 

Slot length step (x) l.2mm 

Slot width (t) 0.5 mm 

Minimum slot length (v) 0.5 mm 

Fig. 3-12 shows the simulation results of S21 and S11 responses for each structure 

period, a. 
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Fig. 3-12: Simulation results of Sl1 and SIl responses for trial #l. 

From Fig. 3-12, it is observed that a passband region lies up to around 9 GHz, 
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while a defined stopband region is obtained from around 10 GHz and onwards. AIso, 

in the stopband region, S21 at 11.5 GHz is highly dependent on a. This stopband 

attenuation increases as a is increased. Thus, it indicates that a wider structure period 

permits better stopband ability at this frequency region. Furthermore, in the passband 

region, it is observed that the insertion loss (S21) decreases as a is increased. However, 

stopband performance degrades as the frequency is increased beyond 20 GHz. 

In ordinary microwave EBG structures, the structure period (a) is an important 

indicator for the center of the stopband region because of the Bragg's law. In this case, 

Bragg's condition predicts that the center of the stopband for a equals to 1 mm and 2.5 

mm are at 58 GHz and 23 GHz respectively. However, Bragg's condition does not 

predict the stopband width and the cutoff frequencies (Le., frequency of stopband 

edges). Therefore, the effect of the structure period ais not obvious in the case of TA 

pattemed EBG structures below 25 GHz. 

TABLE 3-VI shows a detailed data set on the 3 dB cutoff frequency, the 

maximum passband insertion loss, and the minimum stopband attenuation for each 

simulated structure period. For the minimum stopband attenuation, the data were 

obtained for values below 20 GHz. 
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TABLE 3-VI: SUMMARIZED SIMULATION RESULTS FOR TRiAL # 1 

1 mm 1.5 mm 2mm 2.5 mm 

3 dB cutofffreq. (GHz) 9.01 9.01 9.29 9.65 

Max. passband insertion loss (dB) 1.39 1.21 0.95 0.76 

Min. stopband attenuation (dB) 7.71 11.10 16.00 20.90 

The structure period (a) affects the quality of passband and stopband region in 

terms of insertion loss and attenuation respectively. However, it is not very influential 

on the cutoff frequency. Therefore, other aspects of the tapered array pattern have to 

be examined to realize the control of the cutofffrequency. 

Trial #2 - Varying the number of slots 

The number of slots (n) is varied in this trial. Siots are rectangular perforations in 

the ground plane with various dimensions. In this trial, two cases relate to n are 

investigated. The tirst case has the conditions where the center slot length (L) and the 

minimum slot length (v) are kept constant. Thus, the slot length step (x) is different for 

each n. The second case simply reduces the number of slots from the sides and 

therefore x remains the same for each n. Fig. 3-13 illustrates the variation parameters 

for two cases accordingly. The dimensions utilized in this trial are summarized in 

TABLE 3-VII. 
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Fig. 3-13: Schematics of the varying slots in the ground plane. 

TABLE 3-VII: PARAMETERS USED FOR SIMULATIONS IN TRIAL #2 ----- Case #1 Case #2 

Number of slots (n) 5, 7, 9 5, 7, 9 

Center slot length (L) 10.1 mm 10.1 mm 

Structure period (a) 2mm 2mm 

Slot length step (x) 2.4, 1.6, and 1.2 mm 1.2mm 

Siot width (t) 0.5 mm 0.5 mm 

Minimum slot length (v) 0.5 mm 5.3,2.9, and 0.5 mm 

Fig. 3-14 shows the simulation results for Case #1, where the minimum slot 

length was kept constant while n varied. 
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Fig. 3-14: Simulation results of Case #1, where v is fixed and n = 5, 7, and 9. 

From Fig. 3-14, a passband region is observed up to 7 GHz, while a well-defined 

stop band region follows. AIso, in the stopband region, the attenuation (S2/) generally 

increases as n is decreased. This indicates that a higher number of slots offer a better 

defined stop band region. Furthermore, in the passband region, it is seen that the 

insertion loss (S2/) up to 2.3 GHz decreases as n is decreased. Beyond 2.3 GHz, the 

insertion 10ss increases significantly for n = 5. TABLE 3-VIII shows a detailed data 

set on the 3 dB cutoff frequency, the maximum passband insertion loss, and the 

minimum stopband attenuation for each n. For the minimum stop band attenuation, the 

data were obtained for values below 20 GHz. 
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TABLE 3-VIII: SUMMARIZED SIMULATION RESULTS FOR TRIAL #2, CASE # 1 

n 5 n 7 n 9 

3 dB cutoff frequency 7.50 GHz 7.14 GHz 7.25 GHz 

Max. passband insertion loss 1.49 dB 0.93 dB 0.95 dB 

Min. stop band attenuation 13.6 dB 17.3 dB 19.3 dB 

Fig. 3-15 shows the simulation results for Case #2, where x was kept constant 

while n varied. 
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Fig. 3-15 Simulation results for Case #2, where x was fixed and n = 5,7, and 9. 

From Fig. 3-15, similar results are observed as in Fig. 3-14. However, the 

insertion 10ss in the passband region for n = 5 is much better than in Case # 1. On the 

other hand, the stopband region of the S11 starts to de grade at around 16 GHz, 

compared to 20 GHz in Case # 1. Therefore, it is noticed that the slots with shorter 

length (i.e., the outer slots) were mainly responsible for stopband effect at higher 

frequencies. For Case #1, since sorne slots with medium length were taken away as n 

is decreased, the stopband effect started to degrade at around 9 GHz to 12 GHz. Hence 
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from this trial, the correlation of the slot length with respect to stopband frequency is 

starting to emerge. TABLE 3-IX shows a detailed data set on the 3 dB cutoff 

frequency, the maximum passband insertion loss, and minimum stopband attenuation 

for each n. For minimum stopband attenuation, the data were obtained for values 

below 20 GHz. 

TABLE 3-IX: SUMMARIZED SIMULATION RESULTS FOR TRIAL #2, CASE #2 -- n=5 n=7 n=9 -
3 dB cutoff frequency 7.14 GHz 7.05 GHz 7.25 GHz 

Max. passband insertion loss 0.90 dB 0.90 dB 0.79 dB 

Min. stopband attenuation 14.9 dB 19.0 dB 19.2 dB 

Trial #3 - Varying the center slot length 

The center slot length (L) is detined as the longest slot in the middle of the 

tapered array pattern. In this trial, Lis varied from 1.7 ~ 12.5 mm to analyze the effect 

of this dimension with respect to the stopband characteristics. Fig. 3-16 shows a 

schematic of the variations. Meanwhile, other dimensions were unchanged, which are 

summarized in TABLE 3-X. 

Fig. 3-16: Center slot length of the TA patterned EBG structure was varied linearly in this trial. 

Since the lengths of the tirst and last slots are to be kept constant for the stopband 

43 



effect to be distributed evenly through out a wide range of frequency, the slot length 

step (x) has to be increased for every center slot length (L). There were a total of ten 

different L, which were simulated in this trial. In each variation, L was increased by 

1.2 mm. The 3rd and 5th slots were increased by 0.8 mm while the 2nd and 6th slots were 

increased by 0.4 mm. Therefore x was increased by 0.2 mm in each variation of L. 

TABLE 3-X: P ARAMETERS USED FOR SIMULATIONS IN TRIAL #3 

Number of stots (n) 7 

Center slot length (L) 1.7 ~ 12.5 mm 

Structure period (a) 2mm 

Siot length step (x) 0.2~2.0mm 

Siot width (t) 0.5 mm 

Minimum slot length (v) 0.5 mm 

Fig. 3-17 shows the simulation results of S21. Each curve refers to a different L. 

-5 J12.5mm l 

-10 -L= 1.7 mm 

-15 -L=2.9mm ..-.. = "0 
-20 --L=4.1 mm --..... " r;; ---e- L = 5.3 mm ': 
-25 

, 

-30 -t-L=7.7mm 

-35 
--L= 10.1 mm 

-40 
- - - L = 12.5 mm 

-~---

o 5 10 15 20 25 
Frequency (GHz) 

Fig. 3-17: Simulation results of S21 for variation of L. 

First of aIl and most significantly, Fig. 3-17 shows that the cutoff frequency 
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decreases as L is increased. Also, the insertion loss in the passband region increases as 

L is increased. This demonstrates that the passband region is highly dependent on L. 

As the center slot length increases, the series inductance and capacitance represented 

by the slot are increased. Therefore, the cutoff frequency of the lowpass network 

represented by the tapered slot-array pattern is decreased as the slot length increases. 

Thus a stop band region is created and it has a cutoff frequency that is highly 

dependent on the center slot length. It is noted that the S21 response for L = 1.7 mm 

and 2.9 mm showed unphysical results of beyond 0 dB towards the higher end of the 

frequency span. This is due to the limitation of the simulation software on the 

calibration of the ports. 

Furthermore, the attenuation in the stopband region is generally around 20 dB. 

The simulation results for Sn are shown in Fig. 3-18. TABLE 3-XI presents detaHed 

values for 3 dB cutoff frequency, the maximum passband insertion loss, and the 

minimum stopband attenuation. For the minimum stopband attenuation, the data were 

obtained for values below 20 GHz. 
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Fig. 3-18: Simulation resuIts of S11 for variation of L. 

TABLE 3-XI: SUMMARIZED SIMULATION RESULTS FOR TRIAL #3 

Center slot 3 dB cutoff Max. passband Min. stop band 

length, L frequency insertion loss attenuation 

1.7mm 22.5 GHz 0.56 dB --
2.9 mm 17.6 GHz 0.54 dB --
4.1 mm 14.6 GHz 0.67 dB 33.8 dB 

5.3 mm 12.0 GHz 0.87 dB 30.8 dB 

6.5 mm 10.0 GHz 0.77 dB 25.6 dB 

7.7mm 9.0 GHz 0.95 dB 16.0 dB 

8.9 mm 7.9 GHz 1.04 dB 19.1 dB 

10.1 mm 7.1 GHz 0.93 dB 17.2 dB 

11.3 mm 6.5 GHz 1.12 dB 12.7 dB 

12.5 mm 5.9 GHz 1.16 dB 12.7 dB 

Since L is a very effective parameter to determine the cutoff frequency, Fig. 3-19 

plots the relationship between them (Cutoff frequency versus L). 
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Fig. 3-19: The relationship between L and the cutoff frequency. 

Based on the simulation results, it is concluded that the 3 dB cutoff frequency is 

highly dependent on the center slot length, L. It is observed that as L increases, the 3 

dB cutoff frequency is decreased. Therefore, the passband and stop band regions can 

be controlled very easily with the TA pattemed EBG structures. AIso, from TABLE 

3-XI, in most cases the maximum insertion loss in the passband region is below 1 dB. 

Renee, the quality of the filter performance is maintained while the cutoff frequency 

can be controlled. Moreover, the overall length of the device does not increase as the 

cutoff frequency is decreased. 

3.2.1.3. EXP ERlMENTAL MEASUREMENTS AND COMPARlSONS 

To validate the simulation results, a few samples of the TA pattemed EBG 

structures were fabricated and measured. The samples were fabricated on Alumina 

47 



substrates with the same structural properties shown in TABLE 3-IV. Please refer to 

Appendix C for detailed fabrication and measurement procedures. 

Fig. 3-20 illustrates two samples having 7-slot linearly TA patterns implemented 

in the ground plane of a microstrip transmission tine structure. 

(a) 

Front side with 
microstrip line 

Back side with 
tapered array 
perforations 

1 

--+: 
1 

1 

12.5 mm ~ 1 

(b) 

Fig. 3-20: Fabricated 7-s1ot linearly TA pattemed EBG structures with (a) L = 7.7 mm and (b) L = 4.1 

mm. 

Two comparisons are shown to ilIustrate the effect of varying the center slot 

length, L. Fig. 3-21 shows the comparison between the simulation and the 

measurement results for the case of7-slot TA patterned EBG with L = 7.7 mm. 
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Fig. 3-21: Comparison of S]/IS11 between simulation (8) and measurement (M) results for the 7-slot TA 

patterned EBG structure with L = 7.7 mm. 

It is observed from Fig. 3-21 that the measurement resuIts match very well with 

the simulation ones. The 3 dB cutoff frequencies in two cases differ only by 0.4 GHz. 

Therefore, the passband and stop band width are very similar. Also from the graph, it 

can be seen that the insertion 10ss in the passband region and the attenuation in the 

stopband region generally have the same behavior, which is a solid indication that the 

simulation results are very accurate. Fig. 3-22 further illustrates the strong dependence 

of the cutofffrequency on the center slot length (L), which was reduced to 4.1 mm. 
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Fig. 3-22: Comparison of S2l/Sll between simulation (S) and measurement (M) results for the 7-slot TA 

pattemed EBG structure with L = 4.1 mm. 

In Fig. 3-22, the difference between simulation and measurement results in 3 dB 

cutoff frequencies is only 0.1 dB. Also, it is clearly shown that the cutoff frequency 

shifted roughly from 9 GHz to 15 GHz when compared with Fig. 3-21. Therefore, this 

confirms that the center slot length (L) and the cutofffrequency are highly correlated. 

From the measurement results, it is concluded that the simulation results are very 

reliable and they provide a good prediction on the designs of the new TA patterned 

EBG structures. 

3.2.2. NON-LINEARLY TAPERED SLOT ARRAY 

3.2.2.1. DESIGN TECHNIQUE AND SIMULATIONS 

The most unique characteristic of TA patterned EBG structure is that it is 
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consisted of a periodic array of slots with different lengths. Fig. 3-23 illustrates the 

difference between linearly and non-linearly TA patterns. 

Parameters 
Le: Center slot length 
a: Structure period 
t: Siot width 

Linear 
v: Min. slot length 
x: Siot length step 

Nonlinear 
LI, Lz, LJ, L 4: 

designed slot lengths 
to create a wide 
stopband lowpass 
filter 

Fig. 3-23: (a) Linearly and (b) non-Iinearly 9-slot TA patterned EBG structure implemented in the 

ground plane of a microstrip transmission line. 

The general performance of TA patterned EBO structure can be demonstrated 

through the linear configuration. However, to fully utilize the TA patterned EBO 

structure in any specifie application, non-linear configuration can be used to maximize 

the stopband effect at a wide range of frequency. In this section, the design of a 

non-linearly TA pattern with stopband from 9.3 GHz to 20 GHz is studied and verified. 

In order to model the non-linearly tapered array pattern, RLC equivalent circuit is 

used to represent each slot. Simulations were performed with Agitent Advanced 

Design System. Fig. 3-24 shows the equivalent circuit and the layout of a single slot. 
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Fig. 3-24: (a) Equivalent circuit with R = 500 12, L = 1.3 nH, and C = 0.15 pF, and (b) layout of the 

center slot with Le = 7.9 mm and t = 0.5 mm (microstrip line width = 0.25 mm and thickness of Alumina 

= 0.25 mm) 

Fig. 3-25 shows the comparison of the S-parameters between the equivalent 

circuit model and simulation results from the layout. 
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Fig. 3-25: A comparison of S-parameters between the equivalent circuit model and the layout design for 

the center slot length, Le = 7.9 mm. 
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From Fig. 3-25, it is noticed that the RLC equivalent circuit models the slot 

perforation fairly well. Therefore, it is possible to find the rest of the slot lengths (L1, 

L], L3, and L4) using this technique and construct a wide stopband lowpass filter. The 

dimensions of the non-linearly TA pattemed EBG structure, which can be utilized as a 

wide stopband lowpass filter, are summarized in TABLE 3-XII. 

TABLE 3-XII: DIMENSIONS OF NON-LINEARLY TAPERED ARRAY PATTERN 

Number ofslots (n) 9 

Center slot length (L) 7.9 mm 

Structure period (a) 1.5mm 

Siot lengths (L/, L], L3, and L4) 7.4,5.7,4.5, and 3.7 mm 

Siot width (t) 0.5 mm 

The simulation results of S]l of each slot, as well as the complete 9-slot 

non-linearly TA pattemed EBG structure, are shown in Fig. 3-26. 
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Fig. 3-26: Su results for both single slot (L = 7.9, 7.4, 5.7, 4.5, and 3.7 mm) and 9-slot non-linearly TA 

pattemed EBG structure. 

It is seen from Fig. 3-26 that the overall 9-slot non-linearly TA pattemed EBG 
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structure has a very flat passband up to 9 GHz and a stopband with high attenuation up 

to 20 GHz. Therefore, the simulation results show promising performance for the 

non-linearly TA pattemed EBO structure to be utilized as a microwave lowpass filter 

with an exceptionally wide stopband. To illustrate the significance of the non-linearly 

tapered structure, Fig. 3-27 shows the simulation results of S21 of both linearly and 

non-linearly TA pattemed EBO structure. 
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Fig. 3-27: 821 results for both Iinearly and non-Iinearly 9-slot TA pattemed EBG structures. 

It is observed from Fig. 3-27 that the non-linear structure has a superior stopband 

performance, especially near the stopband edge at 9.5 GHz and 10.5 GHz where the 

attenuation is 20 dB more than the linearly tapered structure. Also, the non-linearly 

tapered structure has a more defined passband edge, which allows a better 

transmission near the cutoff frequency. 
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Furthermore, the overall dimension of the EBG structure is significantly sm aller 

when the non-linearly TA pattern is used instead of the ordinary rectangular pattern. 

To construct an EBG structure with a stopband region centered at around 12 GHz 

(cutoff frequency is around 9 GHz) by utilizing the conventional rectangular 

perforations, the structure period (a) can be calculated according to Eq. 3-2 and it is 

equal to 4.8 mm. Assuming that the substrate is Alumina with an dielectric constant (8r ) 

of 9.8, which is also the same material used for non-linearly TA patterned EBG 

structure. Fig. 3-28 illustrates both the conventional rectangular EBG pattern and the 

non-linearly TA pattern for comparison. 

(a) 

Total 
= 12.5 

(b) 

Fig. 3-28: Layout schematics of (a) the conventional EBG and (b) the non-Iinearly TA patterned EBG 

structures. 
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Fig. 3-29: Comparisons of SIl and SZl between the conventional EBG and the non-linearly TA pattemed 

EBG structures. 

It is observed from Fig. 3-29 that the performances of both structures are similar 

with a cutoff frequency at around 9 GHz. However, the conventional EBG structure 

shows a smaller stopband region and a poorer retum loss (Sn) performance in the 

passband region. Meanwhile, the conventional structure has a higher insertion loss 

(S21) in the passband region. Therefore, the non-linearly TA pattemed EBG structure 

not only has a significantly reduced dimension (57% of the conventional structure in 

length) but also has superior passband and stopband regions. In the next section, the 

performance of the non-linearly TA pattemed EBG structure is verified with 

experimental results. 
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3.2.2.2. EXPERIMENTAL MEASUREMENTS AND COMPARISONS 

The Anritsu vector network analyzer (VNA) was used to carry out the 

S-parameters measurements of the non-linearly TA patterned EBG sample. The 

universal test fixture was utilized to hold the sample in place and the setup was 

connected to the VNA via microwave cab les. Thus, the EBG structure was being 

measured as a two-port network where S21 and Sn were used to characterize its 

performance. Fig. 3-30 illustrates the front (microstrip line) and the back sides 

(non-linearly TA pattern) of the fabricated sample and its dimensions. 

Fig. 3-30: A photo of9-slot non-linearly TA patterned EBG structure fabricated for measurements. 

Fig. 3-31 shows the simulated and measured results on the 9-s10t non-linearly TA 

patterned EBG structure. 
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Fig. 3-31: S-parameter results of simulated (S) and measured (M) 9-slot TA pattemed EBG structure. 

It is observed from Fig. 3-31 that the simulated and measured results match very 

weil. Therefore, the concept of constructing a non-linearly TA patterned EBG 

structure is verified. 

3.2.3. SUMMARY 

ln this section, an EBG structure with a special type of pattern called Tapered 

Array (TA) was explored and investigated. The distinct characteristic oftapered array 

pattern is the graduai increase of the slot perforation length to a maximum then 

decrease back to the original dimension with a certain structure period. It is considered 

to be a planar pattern that can be implemented in the ground plane of a microstrip 

transmission line very easily. 

It was found that the structure period (a) affects the quality of the passband 
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insertion loss and the stopband attenuation. The insertion loss decreases and the 

attenuation increases as a is increased. The number of slots (n) and the slot lengths are 

also very important for constructing a continuous and wide stopband region. 

Meanwhile, the most important dimension in the TA-patterned EBG structure is the 

center slot length (L), which is strongly correlated to the 3 dB cutoff frequency. The 

cutoff frequency increases as L is decreased. Therefore, this finding allows designers 

to control the passband and stopband regions very easily. 

The non-linearly tapered array pattern further enhanced the performance of the 

EBG structure as a microwave lowpass filter significantly. In addition, the design and 

implementation are both simple and compatible with microwave planar technology. 

When compared to the conventional EBG structure with periodically spaced 

rectangular perforations, the proposed TA patterned EBG structure has a better 

performance and a sm aller structural size. Therefore, the non-linear structure can 

easily be utilized and applied in microwave components that require a lowpass filter. 
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4. DESIGN OF INTER-COUPLED SPLIT-RING 

RESONATOR STRUCTURES 

Bandpass filters are one of the most common and yet essential building blocks in 

today's communication system. Many microwave components and devices depend on 

filters to achieve the frequency-selective or harmonic-suppression applications [4-1, 

4-2, 4-3]. Conventionally, the bandpass filters are constructed with parallel-coupled 

microstrip tines, which utilize half-wavelength line resonators [4-4, 4-5]. However, 

recent development in commercial communication systems makes broad bandwidth 

transmission at higher frequencies desirable. Therefore, the drawback of narrow 

bandwidth of parallel-coupled filters has to be addressed. The structures with 

improved fractional bandwidth have been proposed but these structures utilize short 

circuit stub as inductors and shunt metal pads as capacitors, which require via and 

increase the overall device area [4-6, 4-7]. 

In this chapter, inter-coupled split-ring resonator (SRR) structure (Fig. 4-1) is 

proposed and implemented directly on the microstrip line to realize a bandpass filter 

(BPF) at microwave frequencies. The characteristics of the proposed structure such as 

the passband frequency and the bandwidth are explored so the filter can be controlled 

and designed to have practical applications. The proposed structure not only exhibits a 

special property of having a wide passband width but also it is very simple to design 
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and implement. Therefore, the proposed structure can be a suitable candidate for 

microwave filters employed in microstrip planar technology. 

A 
À 
1 

Top view 1 

Cross-sectional view 
alongA-A' 

:Microstrip 

A' 
À 

line ~w~ 

Substrate, Si02 

Continuous 
ground plane 

Fig. 4-1: An inter-coupled SRR structure implemented on microstrip line to realize a BPF with a large 

FBW. 

4.1. DESIGN METHODOLOGY: UNIFORM SRR STRUCTURES 

The standard procedure to design a microstrip-based filter is to tirst select a 

lowpass prototype network with normalized element values. Then, by performing 

frequency and element transformation, the lowpass prototype can be realized with 

lumped network, which has the desired frequency band performance. A lowpass 

prototype with a ladder network structure is shown in Fig. 4-2. 
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Fig. 4-2: A generalized lowpass prototype with a ladder network structure. 

In order to implement the filter circuit and realize it with practical microwave 

structures, the impedance inverters (K-inverters) were utilized. Fig. 4-3 illustrates the 

equivalent circuit of a shunt capacitor and a bandpass filter expressed in terms of 

K-inverters. 

(0) L 

K K 

(b) 

Zo K K K K Zn+l 

Fig. 4-3: Equivalent form of (a) a shunt capacitance and (b) the bandpss prototype with the utilization 

of K-inverters [4-8]. 

The K-inverter is a two-port network that has a phase shift of 90 degrees and it 

can be realized with a quarter-wavelength microstrip transmission line [4-8]. Thus, 

one way to comprehend this in practical microwave filter design is to utilize the 
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proposed inter-coupied split-ring resonator structure. The K-inverter couid be 

represented by the split-ring structure, which its Iength is chosen to be a quarter of the 

guided waveiength at the frequency of transmission. Then, the series inductor and 

capacitor shown in Fig. 4-3 are represented by the cascaded metal rings and the space 

between each resonator respectively. 

The proposed bandpass filter is consisted of haIf-waveiength resonators that are 

inter-coupled together to form cascaded split-ring structures. Therefore, the input and 

the output ports can be aligned, which is an advantage when compared to the 

conventional parallel-coupled microstrip filters where there is an offset between the 

ports. Fig. 4-4 shows a single half-wavelength resonator and its equivalent circuit. The 

half-wavelength resonator is represented by the black region shown in Fig. 4-4(a). The 

dashed tine regions are part of the adjacent resonators aiso shown to illustrate how the 

split-rings are formed. Fig. 4-4(b) illustrates the corresponding series inductance 

(contributed by the half-wavelength resonator shown in black) and series capacitance 

(contributed by the spacing between the split-rings) that are induced by this 

configuration. The spacings between the split-rings are exaggerated in Fig. 4-4(b) to 

reveal how each component is contributed by the physical implementation. 
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Fig. 4-4: (a) A half-wavelength resonator (black region) showing (b) induced capacitance and 

inductance and (c) its equivalent circuit. 

LR and CR are the series inductance and capacitance of the half-wavelength 

resonator. Cps are the parasitic capacitances to the ground. Two approximations were 

made for the following analysis. First, since the width of the split-ring structure is 

relatively small, the effect of the parasitic is small and hence Cps are neglected. 

Second, even though region #1 and #2 shown in Fig. 4-4 are non-symmetrical, the 

induced capacitances (CR) in both regions are assumed to be the same since the 

coupling regions of the split-ring resonators are approximately the same. If w of the 

resonator shown in Fig. 4-4 is selected to be the same as the microstrip Hne width, 

then the characteristic impedance of the Hne will remain near 50 il. Therefore, the 
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bandpass filter network shown in Fig. 4-3 can be approximated with the inter-coupled 

split-ring resonators and the values of Ls and Cs can be calculated with the basic 

element transformation equations given by 

Z 1 
LR R:Ls =-x 0 g;; CR R:Cs =-2-

'COo COoLs 
(4-1) 

The fractional bandwidth (X) of the bandpass filter is given by 

(4-2) 

where COI and CO] indicate the passband-edge angular frequencies and Zo is the 

characteristic impedance of 50 il. 

First of ail, the proposed structures that have uniform and periodic split-ring 

resonators are considered. Thus, the element values of gi for every unit cell are forced 

to be the same (denoted by g) for every resonator since they are periodically identical. 

From Eq. 4-1, LR and CR can be expressed in terms of g and therefore, one set of 

solution can be found to satisfy the desired fractional bandwidth (X) and the center 

frequency (coo). To demonstrate the design methodology, bandpass filters were 

analyzed according to the parameters shown in TABLE 4-1, in the attempt to reveal 

the characteristics of the proposed inter-coupled split-ring resonator structure. 
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TABLE 4-1: PHYSICAL AND DESIGN PARAMETERS 

Substrate Coming 1059 (Si02) 

Physical Dielectric constant (sr) 3.9 

Parameters Substrate thickness (h) 0.37 mm 

Microstrip line width (w) 0.80 mm 

Arithmetic Mean Center frequency (Je) 14 GHz 

Design Geometric Mean Center frequency (Jo) 13 ~ 14 GHz 

Parameters Fractional Bandwidth (X) 30 ~ 80% 

Number of SRR cells 5 

The physical parameters are chosen so the microstrip transmission line structure has a 

characteristic impedance of 50 il. The target center passband frequency is set at 14 

GHz and five of the cascaded split-ring resonators are considered here. Meanwhile, it 

is also desirable to have the control of the fractional bandwidth of the filter so the 

target is set from 30% to 80%. Since 010 (= ~ 011 • 012 = 27ifo) is calculated as a 

geometric mean value, it varies as the fractional bandwidth is increased. Therefore, a 

fixed arithmetic mean center frequency O1e (= (01) + 012 )/2 = 27ifc) is used as an 

indicator to design the bandpass filters. The inductance and the capacitance from Eq. 

4-1 have to be calculated before the implementation of the inter-coupled split-ring 

resonators. Therefore, an element value, g, can be found for every pair of X and Wo 

with the equivalent circuit modeling simulated by Agilent Advanced Design System. 

TABLE 4-11 shows the corresponding inductance, capacitance, and the e1ement values 

of the bandpass filters obtained from calculations and circuit simulations. 
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TABLE 4-11: DESIGN PARAMETERS FOUND BY CALCULATIONS AND CIRCUIT MODELING 

Targetfe Target Ls Cs Resulting Resulting 

(GHz) X(%) (nH) (PF) 
g 

fo(GHz) X(%) 

30 2.56 0.05 1.35 14.0 28.7 

40 1.63 0.08 1.13 13.8 40.5 

14.0 
50 1.22 0.11 1.04 13.6 50.7 

60 0.92 0.15 0.93 13.4 61.8 

70 0.71 0.21 0.89 13.1 71.9 

80 0.64 0.23 0.84 13.0 79.5 

Fig. 4-5 shows the simulated results of S21 from the circuit modeling. It can be seen 

that the fractional bandwidth is varied for a significant range while the arithmetic 

mean of the center frequency stays at 14 GHz. Also noted from the figure that as the 

fractional bandwidth decreases from 80% to 30%, the insertion loss (ripples in the 

passband) is increased from 0.5 dB to 1.5 dB. However, as the fractional bandwidth 

decreases, the quality of high frequency stopband is improved. The attenuation at 

around 22.5 GHz improves from 18.9 dB to 53.8 dB. Fig. 4-6 illustrates the 

corresponding SIl of the circuit simulations. 
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Fig. 4-5: S21 of the circuit simulations showing the variation of the fractional bandwidth. 
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Fig. 4-6: S11 of the circuit simulations showing the variation of the fractional bandwidth. 

The number of uniform and periodic inter-coupled split-ring resonators utilized is five 

for the previous simulations. 
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Fig. 4-7: Comparisons of simulated S11IS21 for the structures with 3, 5, and 10 inter-coupled split-ring 

resonator cells. 

Fig. 4-7 shows the simulated SIl and Su for the structures that have a fractional 

bandwidth of 70% but with a different number of resonators. Just like the 

conventional parallel-coupled microstrip filter, as the number of resonator unit 

increases, the filter's selectivity is improved. Therefore, a higher number of resonator 

units are required to produce a more defined passband. 

Up to this point, the values of capacitance and inductance were calculated and the 

desired filter responses were confirmed by the circuit simulation. Therefore, the next 

step is to implement the inter-coupled split-ring resonator physically in the layout 

designs. 
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4.2. PHYSICAL IMPLEMENTATION OF SRR STRUCTURES 

Since strong couplings are desirable, every half-wavelength resonators are 

inter-coupled with adjacent resonators to form split-ring structures along half of their 

length. Therefore, the quarter-wavelength coupling length (or the structure period, a) 

that consisted of the split-ring resonator determines the arithmetic mean of the center 

frequency (Je) ofthe passband region. 

Â 
a=~' 

4 ' 
Â = c 

g fc~eejJ 
(4-3) 

where Âg is the guided wavelength, c is the speed of light, and eeff is the effective 

permittivity of the medium. Thus, the first design requirement is to select a, which can 

be ca1culated from Bq. 4-3 and it is equal to 3.1 mm for fc of 14 GHz. Fig. 4-8 

illustrates the dimensions used to characterize an inter-coupled split-ring resonator 

structure. Evidently, the capacitance is controlled by the ring spacing (s) and the 

inductance is controlled by the ring width (wr). The structure period (a) has a 

combined effect on both the capacitance and the inductance. 
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Fig. 4-8: Dimensions ofthe inter-coupled split-ring resonator structure. 

The substrate used to construct the inter-coupled split-ring resonator structure IS 

Coming 1059, which has a dielectric constant of 3.9. Its dimension and microstrip 

width were described in TABLE 4-1, which provide a characteristic impedance of 50 

Q. In order to maintain the compatibility, it is desirable to keep this characteristic 

impedance undisturbed. Therefore, the second requirement to design the inter-coupled 

split-ring resonator is to let w equals 0.8 mm. With these conditions, the ring spacing 

(s) and width (w,) were varied to match to the values derived from the circuit 

simulations (TABLE 4-11) in order to construct bandpass filters with desired fractional 

bandwidths. TABLE 4-1II shows the physical parameters used to build the 

inter-coupled split-ring resonators that can be utilized as microwave bandpass filters 

with controllable fractional bandwidth. The resulting passband center frequency and 

the fractional bandwidth are also shown. 
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TABLE 4-III: PHYSICAL PARAMETERS USED IN LA YOUT SIMULATIONS 

Microstrip Structure Target Ring Spacing Ring Width Resulting Resulting 

Width (w) Period (a) X(%) s (j.1m) W r (j.im) fo(GHz) X(%) 

30 224.0 32.0 14.0 29.1 

3.1 mm 
40 160.0 80.0 13.8 40.1 

0.8 mm forlc = 14 
50 106.0 120.5 13.6 50.9 

GHz 
60 64.0 152.0 13.4 60.6 

70 32.0 176.0 13.2 71.7 

80 10.0 192.5 13.0 80.0 

From TABLE 4-111, it can be seen clearly that the physicallimitations of the proposed 

filter are the ring spacing (s) and width (wr). The inter-coupled split-ring resonator 

structure becomes harder to construct as the se two values reach below micro-meters. 

Nevertheless, the proposed structure is demonstrated to have a flexible range of 

fractional bandwidth that can be controlled easily by adjusting the ring spacing and 

width. Meanwhile, the arithmetic mean center frequency of the bandpass filter can be 

designed by choosing the desired structure period (a), which can be calculated with Eq. 

4-3. Fig. 4-9 shows the S21 of the simulated layout designs according to the physical 

values given by TABLE 4-111 to demonstrate the variation of the fractional bandwidth 

from 30% to 80%. The corresponding S11 are shown in Fig. 4-10. 
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Fig. 4-9: S21 of the simulated layout designs for the inter-coupled split-ring resonator structures with 
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Fig. 4-10: SlI of the simulated layout designs. 

20 25 

It is observed that the insertion loss (S2}) in the passbands increases from 0.9 dB to 3.2 

dB as the fractional bandwidth is decreased from 80% to 30%. This indicates that the 
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passband's quality degrades as the fractional bandwidth is decreased. This degradation 

can also be seen from the Sn response in Fig. 4-10. Nevertheless, the maximum 

attenuations of the upper and lower stopbands were ail better than 25 dB shown in Fig. 

4-9. Also, the arithmetic means of center passband frequencies remain at 14 GHz, 

which is consistent with the circuit simulations. For the purpose of comparison, Fig. 

4-11 illustrates the S21 obtained from the circuit (dashed-grey) and layout (solid-black) 

simulations. It can be seen that the circuit and layout simulations matched fairly weil. 
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Fig. 4-11: Comparisons of S 2I between the circuit and layout simulations. 

To demonstrate the control of the center passband frequency (fc), three structures 

with different structure period (a = 4.3 mm, 3.6 mm, and 3.1 mm) were simulated. Ali 

other dimensions including the microstrip width (w), ring spacing (s), and ring width 

(w,) were kept constant. The resulting S21 responses are shown in Fig. 4-12. 
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Fig. 4-12: Su of the inter-coupled split-ring resonator structures with a = 4.3 mm, 3.6 mm, and 3.1 mm. 

It can be observed that the corresponding center passband frequency (le) is located at 

10.1 GHz, 12.1 GHz, and 14.0 GHz for structures with a = 4.3 mm, 3.6 mm, and 3.1 

mm respectively. Also, the fractional bandwidth remains unchanged at 73% for ail 

three cases. The maximum insertion losses in the passbands were around 1.1 dB while 

the attenuations of the stopbands were ail better than 30 dB. Therefore, the proposed 

structures that have uniform inter-coupled split-ring resonators can be designed to 

have a particular center frequency and fractional bandwidth without difficulty. 

Moreover, the proposed structure exhibit a wider than normal fractional bandwidth 

characteristic with low insertion loss. 

The inter-coupled split-ring resonator structure that has five unit cells with a 

equals to 3.1 mm (fc = 14 GHz) and a ring spacing of 30 pm was experimentally 
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fabricated and the S-parameters were measured with Anritsu 37347A Vector Network 

Analyzer to compare against the simulated ones. Fig. 4-13 illustrates the fabricated 

sample with four half-wavelength resonators cascaded together to form five 

periodically inter-coupled split-rings implemented on the microstrip line. The overall 

device length is 15.5 mm. Fig. 4-14 shows the comparison between the simulated and 

measured S-parameters. 

1 1 

:+-- 1 cm --.: 
1 1 

Fig. 4-13: A photo offabricated sample with a = 3.1 mm and s = 30 J.lm for measurements. 
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Fig. 4-14: Comparison between the simulated (S) and measured (M) S-parameters for the case with a = 

3.1 mm and s = 30 JD1l. 

It is observed from Fig. 4-14 that thefc ofthe measured sample is located at 13.8 

GHz, which is very close to the simulation result. In addition, the measured sample 

exhibits a passband region from 9.33 GHz to 18.21 GHz, which corresponds to a 

fractional bandwidth of 68.2%. The maximum passband insertion loss is 0.81 dB for 

the measured sample. Therefore, this experiment confirms the feasibility of utilizing 

the inter-coupled split-ring resonator structure for microwave bandpass filter 

applications. One possible explanation for the discrepancy between the measured and 

simulated S21 at low frequency end is due to the calibration of the test fixture. Due to 

the limitation of the physical size of the fabricated sample, there was not much room 

at both ends of the microstrip tine, which are needed for the calibration purpose. 

Nevertheless, the viability of the structure is demonstrated. 
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4.3. NON-UNIFORM SRR STRUCTURES 

Depending on the application ofthe filter, whether a maximally-flat response or a 

steeper roll-off edge is desirable, various transfer functions such as Butterworth, 

Chebyshev or elliptic responses used for lowpass prototype filters can be considered. 

In this section, the inter-coupled split-ring resonator structures were simulated 

according to the element values of 3-pole and 5-pole Chebychev prototypes with a 

fractional bandwidth (X) of 30% centered at 14 GHz to demonstrate the enhanced 

filter performances. TABLE 4-IV summarizes the design parameters used to realize 

the modified resonator structure. 

TABLE 4-IV: SIMULATION AND DESIGN PARAMETERS FOR NON-UNIFORM SRR STRUCTURES 

Targetfc (GHz) 14 

Target X 30% 

a (mm) 3.10 

Functions Elements gi Ls (nIf) Cs (PF) s(mm) w, (mm) 

Chebychev n = 1,3 1.032 1.95 0.066 0.100 0.125 

3-pole n=2 1.147 2.17 0.059 0.200 0.125 

Chebychev 
n = 1, 5 1.147 2.17 0.059 0.080 0.140 

n=2,4 1.371 2.60 0.050 0.160 0.140 
5-pole 

n=3 1.975 3.74 0.035 0.240 0.140 

Fig. 4-15 illustrates the topology of the microstrip line containing the 

inter-coupled split-ring resonators, which has non-periodic cells with the ring spacings 

(s) and ring widths (wr) that correspond to the coefficients of the 3-pole Chebychev 

prototype. A 3-pole filter in the inter-coupled split-ring resonator design wou Id have 
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three independent branches (n = 1 ~ 3) as shown in Fig. 4-15 and thus, there are four 

split-ring resonator cells. Therefore, a 5-pole filter would have five independent 

branches, which would form six split-ring resonator cells. 

n = 1, 3 

Microstrip width, 

w = 4(wr l)+3(sl) 

(a) 3-Pole SRR Bandpass Filter 

wr2 

Width = 4(wr2)+3(s2) 

(b) 5-Pole SRR Bandpass Filter 

Fig. 4-15: (a) Layout of the modified inter-coupled split-ring resonators according to the element values 

of the 3-pole Chebychev prototype. (b) Schematic for the 5-pole filter. 

Fig. 4-16 shows the S-parameters obtained from the layout simulations of the 

inter-coupled split-ring resonator structures that utilize Chebychev 3-pole and 5-pole 

filter responses. 
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Fig. 4-16: Sn and S21 of the layout simulations of the inter-coupled split-ring resonator structures based 

on 3-pole and 5-pole Chebychev coefficients. 

Both structures have a fractional bandwidth of 30.8% centered at around 14 GHz. 

It is observed that the 5-pole configuration has a sharper roll-off at the passband edges. 

However, the maximum insertion loss in the passbands is only 0.15 dB for the 3-pole 

configuration (0.5 dB for the 5-pole). By utilizing a transfer function, the filter's 

performance is greatly enhanced. Fig. 4-17 shows a comparison between the 

uniformly-sized (four SRR unit cells) and the Chebychev 3-pole inter-coupled 

split-ring resonator structures. Both structures have a fractional bandwidth of 30% 

centered at 14 GHz. 
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It can be observed that the filter with Chebychev 3-pole configuration has superior 

performances on both the insertion 10ss (S21) and the retum 10ss (Sn) in the passband. 

The maximum insertion 10ss is 0.17 dB for the filter with Chebychev 3-pole 

configuration and 2.3 dB for uniformly-sized configuration. Therefore, the 

inter-coupled split-ring resonator structures can also be configured with typical 

transfer functions to enhance the filter performance. 

4.4. SUMMARY 

A novel inter-coupled split-ring resonator structure has been designed and 

analyzed in this chapter. Together with the microstrip transmission line, the proposed 

structure has unique characteristics such as a wide passband region with low insertion 

loss and a high attenuation in stopband regions. Thus, it can be utilized in applications 
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such as microwave bandpass filter. Unlike the traditional parallel-coupled structures, 

the inter-coupled split-ring resonators occupy less space in the lateral direction and 

they are compatible with microwave planar technology. It has been dernonstrated in 

both simulations and experiments that the proposed structure can exhibit a fractional 

bandwidth of over 68% with a simple uniformly-sized configuration. The location of 

the passband frequency and the fractional bandwidth are also relatively 

straightforward to design. In addition, corn mon filter prototype response can be 

applied easily to enhance the performances of the structure. Therefore, the 

inter-coupled split-ring resonator structure incorporated with microstrip tine has been 

successfully demonstrated with promising results for thern to be applied as microwave 

filters. 
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5. ULTRA-LOW SHEET RESISTANCE CdS 

DEPOSITION 

Cadmium Sulfide (CdS) is a II-VI semiconductor compound used mostly as 

window layers in solar cell applications [5-1, 5-2, 5-3]. AIso, CdS is a very sensitive 

photoconductor when the appropriate deposition conditions are applied. Many 

deposition methods are available for CdS thin films such as chemical bath deposition 

(CBD), vacuum deposition, and sputtering [5-4, 5-5, 5-6]. CdS thin films with 

different properties were reported depending on the deposition method and conditions 

such as solution concentration, temperature, deposition time, and annealing techniques 

[5-7, 5-8, 5-9, 5-10, 5-11, 5-12, 5-13]. It has been reported that CdS thin film 

deposition by the CBD method yields the best results in terms of photoconductivity 

and photosensitivity [1-24, 1-25]. The CBD method is also a low-cost and simple way 

to deposit CdS over a large area. The purpose ofthis chapter is to explore and propose 

a set of optimal conditions for depositing CdS thin films with extremely low sheet 

resistance (~ 300 Q/square). It is possible to utilize such thin films for microwave 

switching applications [1-26, 1-27]. 

First, the preparation of the CBD and the formation of CdS are discussed. Then, 

the measurement setup used to obtain the sheet resistances and the calculations of 

photoconductivity are described. Three essential conditions, including temperature, 
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stir rate, and number of depositions were examined and the results are presented. 

5.1. PREPARATION OF CBD SOLUTION 

ln order to form CdS thin films, Cd2
+ and S2- ions are required in the CBO 

solution. 0.5 M ofboth cadmium acetate (CdC4H604) and thiourea (SCN2fu) solutions 

were first prepared with de-ionized (DI) water. The Cd2
+ ions are released when the 

cadmium acetate reacts with a complexing agent, triethanolamine (TEA) with a 

concentration 0[7.4 M. Ammonia (30 %) was added in the CBD solution to ensure the 

release of the S2- ions so CdS could be formed. The pH value of the solution is 

maintained to be around Il. The chemical reaction of the CBD is 

The CBD solution was prepared in a 80 ml beaker and the deposition steps are 

described in TABLE 5-1. The glass substrates were cleaned with hydrochloric acid and 

rinsed with DI water in ultrasonic bath prior to CdS deposition. Four gold-electrodes 

were vacuum deposited onto the glass substrates before the CBD deposition so the 

sheet resistance of the CdS thin film could be measured. 
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TABLE 5-1: PREPARATION OF CBD SOLUTION AND PROCEDURE OF DEPOSITION 

Steps Actions 

1 Add Il.2 g of 0.5 M cadmium acetate solution into the beaker. 

2 Add 2.8 g of99% TEA and stir thoroughly. 

3 Add 5 g of 30% Ammonia solution and stir thoroughly. 

4 Add 2.8 g of 0.5 M thiourea solution and stir thoroughly. 

5 Add 20 g of DI water and stir thoroughly for 1 minute. 

6 
Place the beaker in water bath (55 ~ 95 oC) and set the stir rate 

(100 ~ 800 rpm), wait for 15 seconds. 

7 Immerse the glass substrate into the solution for 30 minutes. 

8 Remove the substrate and rinse with DI water for 1 minute. 

9 Place the substrate with DI water in ultrasonic bath for 2 minutes 

10 Remove the substrate and rinse with DI water for 5 minutes. 

11 Repeat from step 1 if multiple numbers of depositions is required. 

5.2. MEASUREMENT SETUP AND METHOD 

The sheet resistances of CdS thin films were measured with the four-point probe 

technique. The measurement setup is shown in Fig. 5-1 and the sheet resistance (Rs) 

can be calculated by obtaining the values for VI and V2. 

,w, -.. , .... , , 

Glass 
substrate 

L=3.0mm 
w=O.2 mm 

Fig. 5-1: Measurement setup utilized to evaluate the sheet resistances of the CdS thin films. 

With the dimensions of the electrodes (L and w) and the value of the resistor known, 
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the following equation was used to calculate the sheet resistance (R = 2.2 kil, L = 3 

mm, and w = 0.2 mm). 

Rs -_ V2 x~ _- (RL) V2 " (V2 ) k~/ :. Rs = 33 -V; (.lDsquare) 
1 w w V; 

(5-2) 

AIl the CdS thin films were placed in a dark condition for at least 12 hours before 

measurements. For every sample, the dark Rs is first recorded for one minute and then 

the samples were exposed to a 532 nm green laser pointer (50 mW/cm2
) for three 

minutes. Afterwards, the samples were remained in the dark for seven minutes. Fig. 

5-2 shows a photo of actual deposited CdS thin film on the glass substrate with four 

go Id electrodes for the sheet resistance measurements. The color of the CdS thin film 

appears to be semi-transparent orange. The degree of the orange color darkens as the 

number of the deposition increases. 

Fig. 5-2: A photo of actual deposited CdS thin film on the glass substrate with four gold electrodes. 

5.3. RESULTS AND DISCUSSIONS 

Three aspects of deposition conditions were examined: the temperature, the stir 
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rate, and the number of depositions. The findings for each are shown in the following 

sections. 

5.3.1. VARIATION OF DEPOSITION TEMPERATURE 

Three CdS samples were deposited at 55°C, 75°C, and 95°C respectively in this 

experiment to show the effect of deposition temperature. Fig. 5-3 shows the 

measurement results of the sheet resistance (Rs) versus time at three different 

deposition temperatures. 
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Fig. 5-3: Measured results of R. for CdS thin films that were deposited with different temperatures. 

It is observed that as the temperature increases, the Rs under illumination is 

decreased significantly. Therefore, this indicates that Rs is strongly correlated with the 

deposition temperature. The sample deposited at 95°C yields the best result of the 
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sheet resistance. However, the decay time of the photoconductive state becomes 

longer as the deposition temperature is increased. Since the main purpose of this work 

is to establish a CdS thin film with lowest possible Rs, the deposition temperature of 

95°C is selected as the first essential condition. 

5.3.2. VARIATION OF STIR RATE 

The stirring action in the CBD solution provides a uniform layer of CdS thin film 

in a transparent-orange color to be deposited. In this section, the goal is to determine 

the optimal stir rate for depositing a CdS layer with lowest sheet resistance. Five CdS 

samples with different stir rates (1 00 ~ 800 rpm) were deposited at 95°C for 30 

minutes each. Fig. 5-4 shows the measurement results of Rs under illumination for 

three minutes versus the stir rate. 
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Fig. 5-4: Measured results of Rs under illumination for three minutes versus stir rate. 
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It is seen that the Rs reaches a minimum at the stir rate of 600 rpm. Further 

increase in stir rate did not show significant improvement on the Rs. The stirring 

action evenly mixes the CBD and produces a layer of uniform CdS thin film with a 

thickness around 0.5 ~ 0.8 ;.on for a 30-minute deposition. Therefore, the optimal stir 

rate is chosen to be at 600 rpm. 

5.3.3. MULTIPLE NUMBERS OF DEPOSITIONS 

The effect of the number of depositions was also investigated and studied. 

Theoretically, the relationship between the sheet resistance and the thickness of a thin 

film is 

R =pLx =p~=>if(L =w \ then=>R = p 
S A w .t x xh S t 

x 

(5-3) 

The dimensions in Eq. 5-3 are illustrated in Fig. 5-5. Therefore, the Rs can be reduced 

if the thickness of the thin film is increased. 

t = thickness 

Wx = width 

Lx = length 

p = resistivity 

A = cross-sectional area 

Fig. 5-5: The dimensions used for sheet resistance calculations in Eq. 5-3. 

In order to increase the thickness of the CdS thin film, the deposition by CBO 

were repeated for three and six times for two separate samples to determine the effect 

of multiple depositions. The measured results of the se two samples are plotted in Fig. 
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5-6 and the sample with only one deposition is also included for comparison. 
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Fig. 5-6: Measured result of Rs versus time for CdS sampi es with different numbers of depositions. 

It is observed that after three minutes of illumination the Rs decreases 

significantly as the number of depositions is increased. Rs values of 300 [}jsquare 

under illumination for three minutes was obtained with six depositions. Aiso shown in 

Fig. 5-6 is a dashed Hne, which represents the CdS sample deposited for four times but 

without the stirring. The Rs of this sample after three minutes of illumination did not 

show any improvements when compared to the samples with stirring. Therefore, the 

stirring action is very critical in achieving an ultra-Iow sheet resistance CdS thin film 

since it provides uniform mixture to be deposited evenly. 

The thickness of the CdS sample with six depositions was measured with 

Scanning Electron Microscopy (SEM) and found to be 5 f.Jffl and it is shown in Fig. 
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5-7. The conductivity ofthis CdS thin film is calculated to be 6.7 al cm-Jo The sheet 

resistance of the CdS thin film can possibly be reduced even further with more 

depositions. 

Fig. 5-7: SEM photo showing the thickness of the CdS thin film for the sample with six depositions. 

5.4. POSSIBLE IMPROVEMENTS ON SWITCHING SPEED 

The proposed CdS thin film has achieved the low sheet resistance (Rs) 

requirement. The switching speed from off state (high Rs) to on state (low Rs) is very 

fast (~ 107 Ws). However, the switching from on to offstate is very slow (~ 10-3 ilIs). 

Further investigations are necessary in arder ta improve this characteristic for an 

effective switching ta be accompli shed. Here, one possible enhancement is proposed 
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to increase the on to off switching speed. It is suspected that the prolonged duration of 

the on state is due to the excess amount of free carriers that are not able to recombine. 

Therefore, one method to provide the recombination paths is to deposit small metallic 

dot patterns in between the CdS thin film layers. The metallization layer used for 

metallic dots should be made to be very thin so it will not block the illumination too 

severely. Two configurations of different dot sizes and spacings, shown in Fig. 5-8 

were experimentally fabricated and measured. Two layers of CdS were first deposited 

according to the procedure in TABLE 5-1. Then, the layer of metallic dots were 

deposited and it followed by another two layers of CdS. 

r (dot radius) = 50 f.11n 
dl = 400 !lm 

d2 = 200 

r (dot radius) = 25 f.11n 
dl = 100 flm 

d2 = 50 

Fig. 5-8: Photos of the metallic dots deposited in between the layers of CdS thin films with (a) r = 50 

Jl1rI and (b) r = 25 Jl1rI. 

Fig. 5-9 illustrates the graph of sheet resistance (Rs) versus time when the 
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switching was taking place from on state (low Rs) to off state (high Rs) . 
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Fig. 5-9: Switching responses from on state to off state. 

At zero seconds, the illumination was tumed off and the samples were measured in 

dark so the switching responses from on to off can be obtained. The comparisons 

show the effect ofthe metallic dots on the switching speed. As observed from Fig. 5-9, 

the sample without the dots showed a decay of around 3 Q/s. When the dots were 

deposited, the sheet resistance started to decay faster at 8 Q/s and 420 Q/s for dot 

radius of 50 JD11 and 25 JD11 respectively. Thus, the initial investigation suggests that 

the dot metallization could improve the switching speed. However, more vigorous 

exploration and analysis are necessary to truly enhance the speed down to millisecond 

range. Parameters such as the dot radius, metal thickness, number of metal layers, and 

heat treatment time should be examined carefully in order to achieve a fast switching 
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response. 

5.5. SUMMARY 

The sheet resistance of CBD deposited CdS thin film is studied. Three aspects of 

the deposition conditions were explored in order to accomplish the goal of preparing 

an ultra-Iow sheet resistance CdS thin film. It is found that the sheet resistance 

depends strongly on the deposition temperature, the stir rate, and the number of 

depositions. A set of optimal deposition conditions were established and a CdS thin 

film with sheet resistance of 300 f21square was successfully prepared. It is possible ta 

utilize such thin films in microwave switching applications that require low sheet 

resistance. Initial investigation on the attempt to improve the switching speed from on 

state (low Rs) to off state (high Rs) showed moderate increase on the decay rate of the 

sheet resistance. Further works are required ta fully enhance the switching speed. 
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6. APPLICATIONS: SWITCHABLE MICROWAVE 

FILTERS 

In this chapter, the works on constructing a novel switchable microwave filter are 

studied. The illumination-sensitive CdS thin films were deposited on microwave 

electromagnetic bandgap (EBO) and inter-coupled split-ring resonator (SRR) 

structures to facilitate the optical switching of the propagating signais. Both simulated 

and experimentally measured results are presented. 

6.1. ELECTROMAGNETIC BA ND GAP STRUCTURES 

When CdS is deposited entirely on the ground plane of an EBO structure, the 

periodic perforations are covered up. Thus, the CdS thin film's conductivity becomes 

a critical factor in the operation of the microwave structure. When the thin film is in 

the resistive state (Dark condition), the traveling wave experiences a discontinued 

ground plane and a filter response is produced accordingly. When the thin film is in 

the conductive state (Illuminated condition), the traveling wave experiences a 

continuous ground plane and therefore the structure behave like an ordinary microstrip 

tine. Effectively, the responses of the constructed microwave filter can be tumed on 

and off by the illumination. Fig. 6-1 shows an EBO structure with the CdS thin film 

deposited on the ground plane to coyer up the perforations. 
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Fig. 6-1: EBG with Iinearly tapered slot-array pattern and the CdS th in film deposited on the ground 

plane to facilitate optical switching. 

To enhance the switching performance, a conductive island is inserted in the 

center of each EBG perforations. Thus, the EBG pattern is now defined by boundaries 

of gaps instead of perforations (Fig. 6-2). The conductive islands are the same as the 

rest of ground plane, which are gold conductors. 

(a) 

Ground 

Conductive 

islands 

Tapered 

slot-array 

perforations 

(b) 
Fig. 6-2: A ground plane with (a) regular tapered slot-array perforations and (b) conductive islands 
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located in the center of each slot. 

The proposed structure reduces the area that is covered by CdS while maintains 

the same periodically-induced stop band effect. By adding the conductive islands, the 

overall conductivity in the perforation regions is increased under the illuminated state 

because the gold has a much higher conductivity than the CdS thin film. The proposed 

structures with different gap widths (g) were simulated and the results are presented in 

the next section. 

6.1.1. SIMULATIONS: THE EFFECT OF CONDUCTIVE ISLANDS 

Agilent Advanced Design System's full-wave Momentum is used to simulate the 

proposed structures, which have the additional conductive islands. The gap width was 

varied from 5 pm to 100 pm to demonstrate the significance of the conductive islands. 

The linearly tapered slot-array structure discussed in Chapter 3 was utilized in this 

study. The simulation parameters are reiterated in TABLE 6-1. 

TABLE 6-1: SIMULATION PARAMETERS FOR THE STRUCTURES WITH CONDUCTIVE ISLANDS 

Substrate type Alumina (Ah03) 

Structural Dielectric constant (Br) 9.8 
Dimensions Substrate thickness (h) 250 pm 

Microstrip line width (w) 250 pm 

Number of slots (n) 7 

Center slot length (L) 7.7 mm 

Structure period (a) 2.0 mm 
EBG Pattern 

Dimensions 
Slot length step (x) 1.2mm 

Siot width (1) 0.5 mm 

Minimum siot Iength (v) 0.5 mm 

Gap width (g) 5 - 100 pm 

97 



First of aIl, the simulation results of Sn and S21 for structures without the effects 

of CdS thin film are presented in Fig. 6-3. 

,.--------.:4' .... O--------~-.----~-- -------~.--~ . . o 
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Frequency (GHz) 
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Fig. 6-3: Simulation results of Su and S21 for the structures without the CdS thin film. (No CI = No 

conductive islands present) 

It can be observed from Fig. 6-3 that the S-parameters behave similarly for 

structures with and without the conductive islands. There is a slight decrease in the 3 

dB cutoff frequency as the gap width (g) is decreased. However, this variation is very 

smaIl, which is only 0.5 GHz between the case of narrowest gap (g = 5 Jlm) and the 

case of no conductive islands. The results show that the additions of the conductive 

islands ta the ground plane do not disturb the stopband effect of the EBG structure 

significantly. Therefore, it is feasible and realistic ta utilize the proposed structure ta 

enhance the optical switching of the microwave signaIs with the illumination-sensitive 

CdS thin films. 
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The next step is to simulate the proposed structure with a layer of CdS thin film, 

which is assumed to exhibit both high and low sheet resistances to predict the optical 

switching performance. In the following simulations, the sheet resistances for the 

illuminated and dark states are assumed to be 300 Wsquare and 109 Wsquare 

respectively so that this contrast would provide a sufficient switching ratio. Fig. 6-4 

shows the S-parameters for three cases under dark state: g = 5 JIl11, g = 100 JIl11, and 

the structure without the conductive islands . 
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-50 -- S21 (g=lOOum) --e- S21 (NO CI) 

o 5 10 
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15 20 

Fig. 6-4: S-parameters under dark state for g = 5 J.Un, g = 100 J.Un, and the structure without the 

conductive islands (NO CI). 

It can be seen from Fig. 6-4 that the S-parameters for the three cases are almost 

identical. The 3 dB cutofffrequencies ofthe S21 are alliocated at around 9 GHz. When 

the CdS thin film operates under dark state, the sheet resistance is high and therefore 

the ground plane that contains the slot-array patterns is not continuous. Thus, the 
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structures maintained their stopband properties and the results shown in Fig. 6-4 are 

expected. When the CdS thin film is exposed to illumination, the sheet resistance 

reduces significantly and renders the film to be conductive. Thus, the ground plane 

becomes continuous and the stopband effect of the EBG structure is eliminated. Fig. 

6-5 shows the simulated S21 of the structures with the gap widths (g) vary from 5 to 

100 J.1lll under illuminated state. 

~---~-----------_.~---------------, 
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~ 
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-+-g= lOum -s-g=5 um 

-25 

0 5 10 15 20 
Frequency (GHz) 

----- ---~~ 

Fig. 6-5: Simulated S21 with g varies from 5 to 100;..un under illuminated condition. (No CI = No 

conductive islands present) 

The importance of the conductive islands and the gap width (g) can be observed 

in Fig. 6-5. As gis decreased, the insertion loss (S21) reduces significantly. At 13 GHz, 

the insertion loss reduced from 16 dB to 1 dB when compared between the case of g = 

5 J.1lll and the case of no conductive islands. Therefore, by adding the conductive 

islands into the EBG perforations, it facilitates the possibility of making an optically 
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switchable device. Fig. 6-6 shows a comparison of S2J between illuminated and dark 

states for the case of g = 5 f.011. The dark to illumination insertion loss ratio at 13 GHz 

is about 40 (40 dB to 1 dB). 

-

o 
-5 

-10 

-15 

---~--\\\---I 

----------l~~~--~_1I'__m___4_ 

~-20 I-~~-~-~------

M-25 
~ -Oark 

-30 

-35 - Illuminated 

-40 

-45 

o 5 

--------'A\.--------I----+--------j 

1 
---------"-----IB-~_l__-------___I 

10 

Frequency (GHz) 

! 
._ ... _ .... .,-_ ... _._---------_._--_.~ 

15 20 

~-~-~--~---_._---~_._--------------

Fig. 6-6: Comparison of S11 between iIIuminated and dark states (the case of g = 5 J1m). 

6.1.2. EXPERIMENTAL MEASUREMENTS AND COMPARISONS 

Actual samples of tapered slot-array EBG structures with and without the 

conductive islands were fabricated according to the dimensions shown in TABLE 6-1. 

The gap widths (g) in the ground plane of the EBG structure were constructed with 

standard photolithography steps. The case of g = 30 f.011 was used to demonstrate the 

effect of the conductive islands. After the EBG structures were constructed, the CdS 

thin film was then deposited on the ground plane to cover up the perforation patterns. 

The deposition method for the CdS layer was presented in Chapter 5. The vector 
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network analyzer was used to measure the S-parameters of the samples in both 

illuminated and dark conditions. Fig. 6-7 shows photos of the fabricated samples for 

measurements. The results are compared to simulated ones and they are presented in 

this section. 

(a) 

Front side 
(Microstrip) 

Back side 
(Without 

CdS) 

Back side 
(With CdS) 

- 30 -*--­
g- 1---

(b) 

Fig. 6-7: Photos offabricated samples (a) without and (b) with the conductive islands (CI). CdS thin 

films were deposited on the ground plane ofthe samples to coyer up the perforations. 
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Fig. 6-8: Comparison of simulated (8) and measured (M) 821 for the case where no conductive islands 

are presented in the structures. 

Fig. 6-8 shows the comparisons of simulated and measured S21 results for the 

structures that do not contains the conductive islands. It is seen that the results for the 

dark state match very weil. For the illuminated state, the measured S21 has a slightly 

lower insertion loss. The reason for this occurrence might be because the sheet 

resistance ofthe actual deposited CdS thin film under illuminated condition was lower 

than 300 fJ/square, which is the sheet resistance value used in the simulations. 

However, the insertion loss for the illuminated state is still large when the conductive 

islands are not presented. The dark to illumination insertion loss ratio for the measured 

results at 13 GHz is 1.9 (24.1 dB to 12.7 dB). The ratio is equal to 2.4 for the 

simulated results. 

Fig. 6-9 illustrates the comparisons of simulated and measured S21 for the 

103 



structures that contain the conductive islands. The gap width (g) is equai to 30 J.ITn in 

this case. The insertion Ioss for the illuminated case improved significantly when it is 

compared to the structure without the conductive islands. The dark to illumination 

insertion loss ratio for the measured results at 13 GHz is 5.6 (31.3 dB to 5.6 dB). The 

ratio is equal to 8.6 for the simulated results. Therefore, by inserting the conductive 

islands, the effective ratio increased aimost three times. Moreover, from the simulation 

analysis, this performance can be improved even further by reducing g. 
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Fig. 6-9: Comparison of simulated (8) and measured (M) S2] for g = 30 /-lm. 

The switching of EBG structures by means of illumination has been 

demonstrated successfully. Also, the switching performance can be enhanced 

significantly with the addition of conductive islands. Therefore, a novel EBG structure 

that is suitable for optical switching has been constructed and achieved. 
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6.2. SPLIT-RING RESONATOR STRUCTURES 

The inter-coupled split-ring resonator structures presented in Chapter 4 are also 

potentially suitable for optical switching applications. In this section, this option is 

explored and studied. Both simulation and measurement results were performed to 

provide a thorough analysis. 

In order to achieve switching, the passband effect induced by the inter-coupled 

split-ring resonators has to be controlled. One method to accomplish this is to deposit 

a layer of CdS thin film on the microstrip line where the inter-coupled split-ring 

resonators were constructed. Thus, the passband effect can be switched on and off 

with the applied illumination because of the CdS thin film 's light-sensitive property. 

When the structure is under dark condition, it retains the characteristic of a bandpass 

filter. On the other hand, the structure becomes an ordinary microstrip transmission 

tine when it is exposed to illumination. Fig. 6-10 shows an inter-coupled split-ring 

resonator structure with a layer of CdS thin film deposited on the top to facilitate the 

optical switching. 
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Fig. 6-10: Inter-coupled SRR structure with a layer of CdS thin film deposited on the top to facilitate 

optical switching. 

From Chapter 4, it is already known that the coupling length (a) is directly 

related to the arithmetic mean of the center passband frequency. AIso, the 

corresponding ring spacing (s) and width (w,) can be determined from the calculated 

equivalent capacitance and inductance of the resonator. Therefore, this analysis will 

not be repeated in this section. Instead, the effect of the CdS thin film layer deposited 

on top of the inter-coupled split-ring resonator structure is explored. 

6.2.1. SIMULATIONS: THE SWITCHING EFFECT OF CDS THIN FILMS 

In the following simulations, the sheet resistances for the illuminated and dark 

states are assumed to be 300 fJlsquare and 109 fJlsquare respectively. Two groups of 
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structures were simulated with the addition of the CdS layer. The structure period (a) 

was varied in the tirst group and the number of split-ring resonator cells (n) was 

varied in the second group. The structural dimensions used in the simulations are 

summarized in TABLE 6-11. 

TABLE 6-11: THE STRUCTURAL DIMENSIONS USED IN THE SIMULATIONS 

Substrate type Corning 1059 (Si02) 

Dielectric constant (Br) 3.9 

Substrate thickness (h) 0.37 mm 

Microstrip line width (w) 0.80 mm 

~ 
Structure Ring Center passband Numberof 

period (a) spacing (s) frequency (Jo) SRR cells (n) 

Group #1 2.40 ~ 3.60 mm 0.030 mm 12 ~ 18 GHz 5 

Group #2 2.70 mm 0.030 mm 16 GHz 3~6 

Fig. 6-11 shows the S21 responses for the structures in group # 1 under dark 

condition. Four inter-coupled split-ring resonator structures with different structure 

period (a) were simulated with the CdS layer having a sheet resistance of 109 

f2/square. The passband is clearly observed since the microstrip lines were still 

remained discontinuous with the split-ring patterns on the top. At 5 GHz, the insertion 

losses are aIl higher than 40 dB. 
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Fig. 6-11: S21 of the structures in group #1 (variation of a) under dark condition. 

Fig. 6-12 shows the S21 and S11 responses for the structures in group #1 under 

illuminated condition. In this case, the passband regions were eliminated since the 

microstrip lines became continuous due to the conductive CdS thin film (Sheet 

resistance = 300 [)/square) on the top. The insertion losses (S21) did not vary 

significantly when the structure period is changed. At 5 GHz, the insertion losses are 

around 1.3 dB while the retum los ses (S11) are below 20 dB. Therefore, the dark to 

illumination insertion loss ratio for a = 3.1 mm at 5 GHz is 34 (44.7 dB to 1.3 dB). 
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Fig. 6-12: S2l/SIl of the structures in group #1 (variation of a) under i\luminated condition. 

Simulation group #2 examines the relationship between the numbers of split-ring 

resonator cells with respect to the switching performance. Fig. 6-13 shows the 

simulation results of four split-ring resonator structures with different n under dark 

condition (Sheet resistance of the CdS layer is 109 [J/square). 
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Fig. 6-13: S2J/Sn of the structures in group #2 (variation of n) under dark condition. 

It is observed that the passband region centered at 16 GHz is the same for aIl 

cases because the structure periods (a) were kept constant at 2.7 mm. However, the 

"roll-off' slopes in the stopband region decrease significantly as n is decreased. This 

means that the band edges are less defined and the stopband ability is decreased. Fig. 

6-14 shows the S-parameters of the same structures under illuminated condition 

(Sheet resistance ofthe CdS layer is 300 {)/square). 

o 
-5 - - .. 

i 0 
-1 

-10 

-15 

-.-20 
~ 
"0 --25 

.... .... 
~ -30 

-35 

-40 

-45 

-50 

0 

".,,,.,"""""",,.,''',,,,,,,,.,,,,,,,,,.,,,,.,,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,.""''''''',,,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,,,,.,,,,., "."".",,,,, -2 

~~"""""--........... ;;,;;;;;;;:;::::.i -3 
.. .. .. 

-4 
~ -5 .... 
~ 

-6 $ 
-7 

-8 

. n = 6 (S 11) --n = 5 (S Il) - n = 4 (S Il) • - n = 3 (S 1 ~) 1 -9 
n = 6 (S21) - n = 5 (S21) - n = 4 (S21) ", "n = 3 (S21) 1 
---'--~. '---.-._--.. - ... --.. _ .. - ---- " ... ---- -- ---- --- -10 

5 10 
Frequency (GHz) 

15 20 

Fig. 6-14: S21/S11 of the structures in group #2 (variation of n) under i1\uminated condition. 

Again, the passband regions were eliminated when the CdS thin films become 

conductive. It is observed that the insertion loss (S2]) at 5 GHz increases from 0.8 dB 

to 1.6 dB as n is increased from 3 to 6. As the frequency increases, this effect is 

amplified (1.7 dB to 3.4 dB at 15 GHz). Meanwhile, the retum losses (Su) are below 

20 dB for aIl cases. The insertion loss ratio for n = 6 at 5 GHz is 38 (61 dB to 1.6 dB). 
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Therefore, the optical switching with the illumination-sensitive CdS thin film 

deposited on the split-ring resonator structures is successfully demonstrated with the 

simulations. To verify these results, two actual split-ring resonator structures with the 

deposition of CdS thin films were fabricated and measured. The comparisons of 

simulation and measurement results are presented in the next section. 

6.2.2. EXPERIMENTAL MEASUREMENTS AND COMPARISONS 

Two inter-coupled split-ring resonator structure with different structure period (a) 

and cell number (n) were fabricated to demonstrate the optical switching. The 

substrate type, thickness, and microstrip line width used to construct the split-ring 

resonator structures are the same as the values used in the simulations shown in 

TABLE 6-11. The rest of the structural dimensions are shown in TABLE 6-III. Fig. 

6-15 shows the photos of fabricated inter-coupled split-ring resonator structures with 

and without the CdS thin films. 

TABLE 6-II1: DIMENSIONS OF SPLIT-RING RESONATORS USED TO FABRICATE THE ACTUAL SAMPLES 

Structure Ring Center passband Numberof 
Sample No. 

period (a) spacing (s) frequency (fo) SRR cells (n) 

A 3.10 mm 0.030 mm 14 GHz 5 

B 2.70 mm 0.030 mm 16 GHz 6 
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Without CdS layer on 

Microstrip line 

SampleA: 

Microscopic 

View (20X) 

s~ 30 pm :~ 

With CdS layer on 

Microstrip line 

Fig. 6-15: Photos offabricated inter-coupled split-ring resonator structures with and without the CdS 

thin films. 

Both samples were measured with the vector network analyzer and the results are 

compared to the simulated ones. Fig. 6-16 shows both measured and simulated S21 

results. They matched very well for the illuminated case. However, the measured 

result under the dark condition shows a reduced roll-off slope in the low frequency 

stopband region. Thus, the dark to illumination insertion loss ratio at 5 GHz for the 

measured result is equal to 13 (19 dB to 1.5 dB), which is not as large as the simulated 

one (the ratio = 34). 
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Fig. 6-16: The comparisons ofmeasured (M) and simulated (8) S:u for sample A under dark/illuminated 

conditions. 

Fig. 6-17 illustrates the switching responses of sample B obtained from both the 

simulations and the measurements. In this case, the structure period (a) is reduced and 

the number of the split-ring resonator cells (n) is increased. It is observed that the 

passband region shifted to higher frequencies due to the reduced a. Both the passband 

regions and the illuminated S21 responses matched very weil between the simulations 

and the measurements. At 5 GHz, the dark to illuminated insertion loss ratio is 12 (23 

dB to 1.9 dB) from the measured S21. Meanwhile, the ratio equals to 38 (61 dB to 1.6 

dB) for the simulated S21. 
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Fig. 6-17: The comparisons of measured (M) and simulated (S) S21 for sample B under dark/illuminated 

conditions. 

6.3. SUMMARY 

In this chapter, the possibility of building a switchable structure is explored and 

studied. The illumination-sensitive CdS thin film investigated in Chapter 5 is utilized 

as the switching medium. Therefore, it is crucial to find the appropriate microwave 

structure to complete this task. It has been shown that the electromagnetic bandgap 

(EBG) structures can be enhanced and modified by adding the conductive islands in 

the perforations. The greatest advantage of this feature is to make the EBG structures 

suitable for switching and thus the insertion loss is improved significantly. At the same 

time, the conductive islands do not affect EBG structures' ability to create stopband 

regions. The switching ratio of the enhanced EBG structure is aimost three times 

114 



higher than the ordinary EBG structure. Therefore, the conductive islands are an 

integral part of the optically switchable microwave structure. 

Inter-coupled split-ring resonator (SRR) structures are also a good candidate for 

optical switching due to their unique arrangement of ring patterns. It has been shown 

that a bandpass filter constructed with defining the SRR patterns on a microstrip line 

can be switched to an ordinary microstrip line with a switching ratio of higher than 10 

at 5 GHz. 

TABLE 6-IV: SUMMARIZED RESULTS OF THE SWITCHABLE STRUCTURES OBTAINED BY MEASUREMENTS 

Insertion Losses & EBG EBG SRR SRR 

Switching Ratios (without CI#) (with CI) (sampleA) (sample B) 

IL" at 13 GHz (Dark) 24.1 dB 31.3 dB -- --
IL at l3 GHz (Illuminated) 12.7 dB 5.6 dB -- --

IL at 5 GHz (Dark) -- -- 19.0 dB 23.0 dB 

IL at 5 GHz (Illuminated) -- -- 1.5 dB 1.9 dB 

Switching Ratios 1.9 5.6 13 12 

NCI = Conductive Islands; 'IL = Insertion Loss 

Even though the S:11 dark to illuminated ratios of the measured results are not as 

high as the simulated ones, but the optical switching with a ratio of higher than lOis 

successfully demonstrated with experimentally fabricated samples. For the EBG 

structures, the switching ratio can be improved by reducing the gap width (g) that 

surrounds the conductive islands. From the simulation results, the switching ratio can 

be improved up to 40 when g is reduced to 5 J.1In. For the SRR structures, the 

switching ratio can be improved by either reducing the number of cells (n) or the ring 
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spacing (s). Therefore, the opticai switching of microwave signaIs is proven to be 

achievable by utilizing the proposed structures and the CdS thin films. 
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7. CONCLUSIONS AND FUTURE WORKS 

7.1. THESIS SUMMARY 

In this thesis work, novel perforation patterns used to construct electromagnetic 

bandgap (EBG) structures and innovative utilization of the split-ring resonator (SRR) 

were proposed and verified by experiments. Also, the illumination-sensitive Cadmium 

Sulfide (CdS) thin films were applied to the proposed structure to enable the switching 

of the transmission properties. Thus, switchable microwave structures were 

successfully achieved and demonstrated. Main contributions to the field of microwave 

periodic structures and their applications are stated as follow: 

1. The double-stop band EBG structure has been proposed and experimentally 

verified. The critical structural ratios were found so the construction of a flat 

passband region is achieved in between two stopband regions. Flexibility of the 

passband frequency has also been confirmed. 

2. Linearly and non-linearly tapered slot array EBG structures have been proposed 

and experimentally verified. The novel tapered array pattern not only exhibits a 

wider stop band region but also takes 40% less space to construct when compared 

to ordinary rectangular patterns. The design technique for tapered array EBG 

structures has also been developed. 

3. Inter-coupled SRR structure has been proposed and experimentally constructed on 
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the microstrip line to build microwave bandpass filters. The novel construction 

demonstrated an exceptionally wide fractional bandwidth of over 68%. Meanwhile, 

the analysis showed that the proposed structure is compatible with common filter 

responses. The control of passband frequency and fractional bandwidth has been 

achieved. 

4. Ultra-Iow sheet resistance CdS thin film has been experimentally prepared. 

Multiple depositions allow the film to achieve a sheet resistance of 300 fJlsquare 

when incident with a green laser pointer having an illumination intensity of 50 

mW/cm2
• Highest dark state sheet resistance recorded was 1012 fJlsquare. 

5. Optically controlled microwave filters have been proposed and experimentally 

verified. The CdS thin films were deposited on both proposed tapered array EBG 

structure and inter-coupled SRR structure. Addition of conductive islands to the 

EBG structure enhanced the switching significantly. 

Detailed summary on the findings and the analysis are presented in the following: 

In Chapter 3, three types of EBG structures were investigated: the 

double-stopband structure, the linearly and non-linearly tapered array (TA) structures. 

The double-stopband EBG structure can be constructed simply by implementing 

one-dimensional rectangular periodic perforations in the ground plane of a microstrip 

transmission line. With the proper adjustment of the perforation's length and width to 
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the structure period ratios, the frequencies of the stopband regions can be controlled. 

Thus, the configuration creates a passband region in between the two stopbands. The 

double-stopband EBG structure was demonstrated by experiment and a passband 

region from 14 to 18 GHz was achieved with a device that is 30.8 mm in length. 

EBG structure's physical length must be reduced in order for it to be practical. 

Thus, the TA pattemed EBG structure was proposed to accomplish this goal. Three 

aspects of the linearly TA pattemed EBG structures were examined: the structure 

period (a), the number of slot (n), and the length of slot (L). It has been found that the 

structure period did not notably affect the stopband frequency like in the conventional 

periodic EBG structures. Instead, it was the lengths of the tapered slots that were 

controlling the cutoff frequency. As the center length of the tapered slot increases, the 

cutoff frequency is decreased significantly. Therefore, the overall length of the device 

can be maintained while the stop band frequency varies. To fully appreciate and 

maximize the effect of the tapered array EBG structure, non-linearly tapered slots 

were utilized. It has been demonstrated that a 9-slot non-linearly TA pattemed EBG 

structure with a length of 12.5 mm can generate a stopband from 9 to 20 GHz. 

Meanwhile, the minimum attenuation in the stopband was 25 dB and the average 

insertion 10ss in the passband was 1 dB. It would require the conventional EBG 

structure to have a length of 21.6 mm to achieve a stopband from 9 to 18 GHz. The 
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non-linearly TA pattemed EBG structure is only 57% in length of the conventional 

structure and it does not have the spurious S11 ripple in the passband. 

In Chapter 4, split-ring resonators (SRR) were implemented in a form of 

inter-coupled configuration on the microstrip line and the overall structure was 

investigated. This configuration was found to have an exceptionally wide fractional 

bandwidth while the implementation did not require extra space. The passband 

frequency was discovered to have a strong dependence on the SRR's structure period. 

A fractional bandwidth of 68.2% with a maximum insertion loss of 0.81 dB was 

achieved with a fabricated sample having a length of 15.5 mm. Also, the fractional 

bandwidth can be controlled and designed easily while the overall filter performance 

can be enhanced further when a transfer function's coefficients are applied. Therefore, 

the inter-coupled SRR structure can be utilized as an efficient bandpass filter. 

In Chapter 5, a set of optimal deposition condition was established for the 

deposited CdS thin film to have a low sheet resistance. Chemical bath deposition was 

utilized while the deposition temperature, the stir rate, and the number of deposition 

were examined. It was demonstrated that a CdS thin film having an illuminated sheet 

resistance of 300 .QJsquare can be achieved with a deposition temperature of 95 oC, a 

stir rate of 600 rpm, and six times of repeated depositions. Initial investigation on 

improving the switching speed was carried out and moderately enhanced results have 
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been observed. 

In Chapter 6, the CdS thin films were applied to EBG and inter-coupled SRR 

structures to construct optically switchable microwave filters. To enhance the 

switching performance of the EBG structure, the conductive islands were inserted to 

the middle of the perforations. Thus, a switching of the transmission coefficient (S21) 

from 31.3 dB (dark state) to 5.6 dB (illuminated state) at 13 GHz was demonstrated for 

the 7-s10t linearly tapered array EBG structure. Meanwhile, a switching of Su from 19 

dB (dark state) to 1.5 dB (illuminated state) was achieved for the 5-cell inter-coupled 

SRR structure. Therefore, both the lowpass and bandpass microwave filters were 

successfully realized as switchable structures with the application of the 

illumination-sensitive CdS thin films. 

Furthermore, the main advantages of the double-stopband EBG structure are its 

simple implementation and defined passband region. The drawback of bulky physical 

size can be addressed with the tapered array EBG structures, which not only offer 

significantly reduced sizes but also possess the ability to create wide stopband. In 

addition, non-linearly tapered structures offer customized results that are simple to 

design. The inter-coupled split-ring resonator structures have main advantages such as 

wide fractional bandwith and compatibility with microstrip line. Thus, no extra space 

is required to implement this component as a bandpass filter. When the se microwave 

121 



periodic structures are integrated with the developed low sheet-resistance CdS thin 

film, novel optically controlled microwave structure is produced. The switchable filter 

provides an opportunity to be integrated in optoelectronic applications. Also, it does 

not have any mechanical parts and it is simple to implement. 

In conclusion, the microwave structures based on EBG and inter-coupled SRR 

patterns were explored and analyzed in this thesis work. The possibility of switching 

their stopband effects by optical means were also investigated and demonstrated. 

These will allow the advancement of both EBG and inter-coupled SRR structures in 

practical microwave filter applications and improve the understanding of these 

periodic structures. 

7.2. POTENT/AL FUTURE WORKS 

Much works remain to be done to improve the performance of these periodic 

structures. AIso, the quality of the CdS thin film needs to be improved for a shorter 

switching time. Parameters such as the metallization patterns, metal thickness, layers 

of metallization and heat treatment length should be examined further to achieve a 

faster switching speed. New switching structures could be developed in order to 

maximize the contrast between on and off states. For example, a switching structure 

that changes the transmission response from having EBG characteristics to 

complementary-SRR (CSRR) characteristics can possibly be achieved by modifying 
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the construction of the ground patterns. Also, the inter-coupled split-ring resonator 

structure can be modified to allow more control on the series inductance and 

capacitance on the microstrip Hne. Therefore, as the understanding of these periodic 

structures advances, they will become an integral part of the microwave and 

millimeter-wave components because of their simple designs and promising 

performances. 
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8. APPENDICES 

8.1. APPENDIX A - EFFECTIVE PERMITTIVITyt 

Since the microstrip transmission line is based on a mixed-dielectric system, the 

effective microstrip permittivity (8efl) has to be determined. The 8efl is a vital 

parameter in determining the velocity of the propagating waves with the microstrip 

transmission line as the medium. Therefore, the relationship between Âg and 8efl is as 

follow: 

V p = fÂ.g 

c = fÂ.o 

Â. =~ 
g ~8eff 

Vp = Velocity ofpropagating wave in microstrip 

c = Velocity of propagating wave in free-space 

Âg = Propagating wavelength in microstrip 

Â.o = Propagating wavelength in free-space 

f= Propagating frequency 

(8-1) 

(8-2) 

It has been found that the 8efl is highly correlated to width-to-height ratio of the 

microstrip transmission line structure. For very wide microstrip lines, the 8efl is 

approaching 8r (the permittivity of the substrate) since most of the electric fields are 

confined within the substrate. For very narrow microstrip lines, the 8efl is approaching 

t The discussion in this appendix is based on Chapter 3 and 4 of the reference [8-1]. 
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half of the combination of the substrate and the free-space. Fig. A-t illustrates the two 

extreme cases of eejJo 

r-Width, w-1 

Very Wide Line (w »h) Very narrow Line (w «h) 

Fig. A-l: Microstrip transmission line structure with very wide and very narrow line widths. 

Many closed-form formulas have been investigated and established to calculate 

eef! [8-2, 8-3]. Owens developed the closed-form formulas shown below, which is 

applicable to alumina-type substrates where the permittivity is between 8 and 12 (8 ::; 

er ::; 12). 

Case #1: Zo> (44 - 2eJ Q 

(8-3) 

Case #2: Zo < (44 - 2er) Q 

(8-4) 

However, the eef!calculated thus far is not frequency-dependent and is applicable 

for frequencies up to a few Giga-Hertz. As the operating frequency increases, the 

dispersion effect cannot be neglected anymore. The microstrip transmission line 
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structure exhibits the dispersion effect, which is a problem that the phase constant is 

not exactly doubled as the frequency of the transmitting signal doubles. Therefore, the 

phase velocity (vp) becomes frequency-dependent and so as BejJo 

asf~O 

asf ~ OC! 

(8-5) 

(8-6) 

Kirschning and Jansen [8-4] developed a set of formula, which can solve for 8efffor all 

frequencies up to 60 GHz with accuracy better than 0.6 percent. The restrictions are 

as follow: 

1::; Br ::; 20 

0.1::; wlh::; 100 

0-:;, hl Ao ::; 0.13 

The expression for calculating Beg{/) is as follow where frequency f is in GHz and 

thickness h is in cm: 

( ) 
Br - Be!! 

Be!! f = Br - 1 + P(j) (8-7) 

P(j) = ~P2 {(0.1844 + P3P4 ).1 Ojh}1.5763 (8-8) 

~ = 0.27488+ ~.6315 + 0.525/(1 + 0.157 jhyo kw/ h)-0.065683exp(-8.7513w/ h) 
P2 = 0.33622{1- exp(- 0.034428r )) 

P3 = 0.0363exp(- 4.6w/ h)[I- exp{- (,fh/3.87)4.97}] 
P4 = 1 + 2.751[1- exp~ (8r 115.916t Jj 

Once the 8eg{/) is found, the guided wavelength traveling with the microstrip 

structure can be calculated. Therefore, the relationship between the period of the 
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electromagnetic bandgap structure (a) and the center stopband frequency can be 

established through the following equation. 

(8-9) 

Thus, the dimension of the electromagnetic bandgap structure with desirable stopband 

frequency can be found. 

8.2. APPENDIX B - SCATTERING PARAMETERS OF 

TWO-PORT NETWOR~ 

In a two-port transmission line network, the "scattering parameters" 

(S-parameters) are used to characterize the behavior of the incident and reflected 

waves. Fig. B-l shows the two-port network with Al and BI as the incident and 

reflected waves at Port-l and A2 and B2 as the incident and reflected waves at Port-2 

respectively. 

Port -1 Port - 2 

Fig. B-1: Two-port network showing incident and reflected waves at Port-1 and Port-2. 

Thus, the relationships between the traveling waves at both ports can be expressed in 

§ The discussion in this appendix is based on Chapter 1 of the reference [8-5]. 
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the following equations. 

or in matrix form, 

BI = SllAI + SI2A2 

B2 = S21 AI + S22 A2 
(8-10) 

(8-11 ) 

S-parameters are defined as follows: 

BI 
Sll =-

AI A2=O 
Input reflection coefficient (output properly terminated) 

B2 S21=-
AI A2=O 

Forward transmission coefficient (output properly terminated) 

B2 S22 =-
A2 A,=O 

Output reflection coefficient (input properly terminated) 

Reverse transmission coefficient (input properly terminated) 

Input/Output is properly terminated means that the characteristic impedance of the 

microstrip transmission line matches the termination so a traveling wave incident on 

the load will be absorbed totally and no energy will be retumed to the output port. For 

example, when measuring the transmission coefficient (S21), the output termination 

has to be matched with the characteristic impedance so A 2 is zero. Thus, the 

contribution to the transmitted wave at Port-2 (B2) is only due to the incident wave at 

Port-l (Al) and the transmission coefficient of the network can be found. Therefore, 

the S-parameters are very useful in measuring the performance of the electromagnetic 
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bandgap and inter-coupled split-ring resonator structures that are based on microstrip 

transmission lines. 

8.3. APPENDIX C - FABRICATION AND MEASUREMENT 

PROCEDURES 

8.3.1. FABRICATION PROCEDURE 

The following steps are the procedure used to fabricate the electromagnetic 

bandgap and inter-coupled split-ring resonator structures. The substrates are either 

Alumina (Ah03) or Coming 1059 (Si02) with gold metallization on both sides. 

1. Apply photo-resist (Shipley 1827) on one side of the sample with a spin rate of 

3000 rpm for 30 seconds. 

2. Pre-bake the sample for 10 minutes at 90°C. 

3. Repeat step 1 and 2 for the second side of the sample. 

4. Expose UV-light to the area where the gold metallization is to be etched away. 

Each side is exposed for 300 seconds. 

5. Develop the photo-resist on the sample, rinse and spin dry. 

6. Post-bake the sample for 10 minutes at 120°C. 

7. Etch the gold metallization, rinse and spin dry. 

8. Wash away the remaining photo-resist with acetone, rinse and spin dry. 

For the optical switching applications, the CdS layer is deposited onto the sample 
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according to the method described in Chapter 5. To etch away the unwanted CdS in 

certain regions, the following steps were performed. 

Electromagnetic bandgap structures: 

1. Apply photo-resist (Shipley 1827) on the ground plane where the perforations are 

defined to protect the CdS layer. 

2. Pre-bake the sample for 10 minutes at 90°C. 

3. Immerse the sample into diluted hydrochloric acid (10% HCl) solution to etch 

away the CdS layer on the front side (where the microstrip line is). 

4. Rinse and spin dry the sample. 

5. Wash away the photo-resist with acetone, rinse and spin dry. 

Split-ring resonator structures: 

1. Apply photo-resist, 3000 rpm for 30 seconds, (Shipley 1827) on the front side of 

the sample where the split-ring patterns are defined to protect the CdS layer. 

2. Pre-bake the sample for 10 minutes at 90°C. 

3. Expose UV-light to the front side of the sample with the split-ring patterns covered 

for 300 seconds. 

4. Develop the photo-resist on the sample, rinse and spin dry. 

5. Immerse the sample into diluted hydrochloric acid (10% HCI) solution to etch 

away unwanted CdS. 
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6. Rinse and spin dry the sample. 

7. Wash away the photo-resist with acetone, rinse and spin dry. 

8.3.2. MEASUREMENT PROCEDURE 

The Anritsu 37347A Vector Network Analyzer (VNA) is used to carry out the 

S-parameters measurements of the experimentally fabricated electromagnetic bandgap 

and inter-coupled split-ring resonator samples. A Universal Test Fixture (UTF, 

Inter-Continental Microwave) fixes the sample in place and the setup is connected to 

the VNA via microwave cab les. Thus, the structure is being measured as a two-port 

network where S21 and SIl are used to characterize its performance. Fig. C-l shows 

the schematic diagram of the measurement setup. 

DUT (EBG or 
SRR structures) 

Fig. C-I: Schematics of the measurement setup with the vector network analyzer and the universal test 

fixture. 

Prior to the measurements, the VNA is calibrated using TRL (Thru-Reflect-Line) 

method such that the reference planes for characterizing the samples are located 5 mm 
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from both edges. The samples were made to have extra spaces at both ends so the 

device under test (DUT) is only the EBG or the SRR structure. Therefore, losses due 

to the connectors, the cables, and the UTF are not included in the measurement results. 

Fig. C-2 shows a schematic diagram of an EBG sample with the locations of reference 

planes as an example. 

Fig. C-2: Schematic diagram of an electromagnetic bandgap structure with the position ofreference 

planes. 

8.3.3. TRL CALIBRATION 

To measure structures like microstrip transmission line, Universal Test Fixture 

(UTF) is required to provide the connection between the Deviee Under Test (DUT) 

and the Vector Network Analyzer (VNA). However, calibration steps are required 

prior to the measurements to ensure the accuracy of the results. A set of in-fixture 

calibration standard is needed to remove the effects of VNA, cables, and UTF. 

Therefore TRL (Thru-Reflect-Line) calibration method provides a simple and 
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effective way to remove the measurement errors. To perform the TRL calibration, 

three standards are required: Thru, Reflect, and Line. 

Thru 

Non-zero length line. 

Attenuation of the Thru is not required to be known. 

Reference plane is established at the center ofthe line. 

Zo must be the same as the Line. 

Refleet 

Short or open that has phase within +/- 90°. 

Does not need to be perfect short or open (ideally the reflection 

coefficient, r, equals to 1) but need to specify either greater or less 

than Zoo 

r must be identical at both Port -1 and Port-2. 

Line 

Optimallength is ÎJ4 or 90° of insertion phase relative to the Thru. 

Attenuation of the Line is not required to be known. 

The difference between the Line and the Thru has to be between 

Ali calibration standards should have the same characteristic impedance and 
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same width-to-height ratio as the DUT. Also, the accuracy of the calibration depends 

on the quality of the calibration standards. The bandwidth to which the TRL 

calibration is accurate is around 8: 1 (frequency span:start frequency). This means the 

accuracy range is depending on the length of the Line and the Thru standards; thus 

more than one LinelThru pairs are required if accurate result is needed for a wide 

frequency range. Therefore, the TRL calibration is ideal for measuring and 

characterizing the microstrip structures. More information on calibrations can be 

found in reference [8-6, 8-7, 8-8]. 
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