
An Accelerated Algorithm for
Delayed Distributed Convex

Optimization

Ioannis M. Bakagiannis

Master of Engineering

Department of Electrical and Computer Engineering

McGill University

Montreal,Quebec

2015-08-04

A thesis submitted to McGill University
in partial fulfilment of the requirements of the degree of

Master of Engineering

©IOANNIS M. BAKAGIANNIS, August 2015



DEDICATION

To my family who has always been there for me.

ii



ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincerest gratitude to my

advisor Professor Michael Rabbat. I thank him for offering me the chance to

be part of his research group, for his honest advice in difficult times, and for

providing me with full support during my studies at McGill thus far. I would also

like to thank my family in Greece and in Canada for believing in my decisions

and providing all the tools to stand up on my own. Also I would like to thank

my friends Argyris, Kostas, Antreas, Olympia, Prokopis, Konstantinos, Jim and

many more from all over the world that stood by me in all stages of my life and for

supporting me every day.

iii



ABSTRACT

In many large-scale optimization problems arising in the context of machine

learning the decision variable is of high-dimension and the objective function

decomposes into a sum over a large number of terms (one for each instance in

the training data set).In this setting, second-order optimization methods such

as Newton or quasi-Newton methods, are not tractable due to the complexity of

evaluating and inverting the Hessian, or an approximation thereof. Also, the vast

amount of data available is spread around multiple servers making a centralized

optimization solution sub optimal or impossible. Therefore we concentrate on first

order methods that are scalable in a decentralized setting. In this thesis we provide

a framework for distributed delayed convex optimization methods for networks

in a master-server setting. Our goal is to optimize a global objective function

which is the sum of the local objective functions of the agents in the network.We

review Nesterov’s accelerated algorithm for centralized optimization since it is

the optimal algorithm for the class of convex, and strongly convex functions

and to modify it accordingly for decentralized optimization in the master-server

setting. It is natural that in an asynchronous setting the current value of the

server node is a past value of the master node communicated some time steps

ago, and thus gives rise to delays in the analysis. We have proven that a delayed

accelerated method maintains the optimality of the algorithm with a convergence

rate of O
(

1
t2

)
. We have also performed simulations and we have verified that
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the accelerated algorithm performs better that the alternative algorithms for

decentralized optimization in a master server setting.
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ABRÉGÉ

Dans de nombreux problèmes d’optimisation à grande échelle qui se posent

dans le cadre de la machine l’apprentissage , la variable de décision est de haute

dimension et la fonction objectif se décompose en une somme sur un grand nombre

de termes (une pour chaque instance dans l’ensemble de données d’apprentissage).

Dans ce cadre , les méthodes d’optimisation de second ordre tels en tant que

méthode de Newton ou quasi- Newton , ne sont pas traitables par la complexité

de et l’évaluation de l’inversion de la Hessian ou une approximation de celui-ci.

Par conséquent , nous nous concentrons sur les méthodes du premier ordre qui

sont évolutives dans un cadre décentralisé. Dans cette thèse, nous fournissons

un système cadre pour des méthodes d’optimisation distribués retardés convexes

pour les réseaux multi-agents dans un cadre serveur-mâıtre. Notre objectif

est d’ optimiser une fonction objectif globale qui est la somme des fonctions

objectifs locales des agents dans le réseau. Nous introduisons l’idée d’ accélérer

l’algorithme de Nesterov pour l’optimisation centralisée dans le cadre serveur

mâıtre décentralisée puisqu’il est l’algorithme optimal pour le classe de fonctions

qui nous intéressent. Il est naturel que dans un cadre asynchrone, la valeur actuelle

du noeud de serveur est une valeur passée du noeud mâıtre communiquée depuis

quelques mesures de temps et ainsi donner lieu à des retards dans l’analyse.

Nous ont prouvé que d’une méthode accélérée retardé maintient l’optimalité

de l’algorithme avec des taux de convergence de O
(

1
t2

)
. Nous avons également

effectué des simulations et nous avons vérifié qu’un algorithme accéléré surpasse
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d’autres algorithmes disponible pour optimisation décentralisé dans un cadre de

serveur mâıtre.
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CHAPTER 1
Introduction

1.1 Motivation

In modern world optimization, problems arise in various levels in almost every

application field, such as machine learning, finance and network systems. It is

human nature to try to go “faster” or try to use the least amount of resources

to achieve a goal. The question that needs to be answered every time is how

to minimize our costs in the quickest possible way. Depending on the field of

application the problem could range from an optimal control problem to an

optimal route to come back from work.

The mathematical formulation of all optimization problems is summarized in:

min
x∈Rn

f(x), (1.1)

where f is the objective function of the problem at hand, which takes on many

forms, and we can cast various assumptions over it. Throughout the thesis

we assume that the function is convex, or strongly convex, depending on the

algorithm that we analyze each time. Many fundamental convex optimization

problems, especially in machine learning, take the form of:

min
x∈Rn

m∑
i=1

fi(x) + λR(x), (1.2)
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where the functions f1...fm, R are convex and λ ≥ 0 is a fixed parameter. Each

fi can be interpreted as a cost of using x on the i-th element of a data set and

R(x) is a regularization term that helps keep x “simple”. In many machine

learning tasks (supervised learning problems) there is a data set of the form

(wi, yi) ∈ Rn × Y. In classification problems we have Y = {−1, 1} and the cost

function can be turned into hinge loss that is expressed as:

min
x∈Rn

m∑
i=1

max(0, 1− yix
Twi) + λ‖x‖22, (1.3)

to solve the Support Vector Machine problem or the cost function becomes the

logistic loss

min
x∈Rn

m∑
i=1

log(1 + exp(−yix
Twi)) + λ‖x‖22, (1.4)

and obtain the logistic regression problem. In both cases we used L2 regularization

in order to avoid over-fitting. In regression Y = R and one of the most common

problems is the least squares problem:

min
x∈Rn

‖Wx− Y ‖22, (1.5)

or the Least Absolute Shrinkage and Selection Operator problem with L1 regular-

ization:

min
x∈Rn

‖Wx− Y ‖22+‖x‖1. (1.6)

All these machine learning problems fall under the spectrum of convex optimiza-

tion.
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In addition to the broad spectrum of optimization problems in recent years,

we have an increasing amount of data that is needed for the optimization proce-

dure. The expansion of the Internet and global connectivity has helped greatly

in that regard. Also, imagine a portfolio optimization with stocks from diverse

markets where data is flowing in real time. Now we can obtain, store and use all

the information due to the advancement in technology, in vast amounts. Therefore,

along with the optimization problem arises the problem of effectively using all the

information, which is an optimization problem in itself. Our goal is to solve the

optimization problem while using the least amount of resources as fast as possible.

One way to approach the processing of vast amounts of information is to

divide it among several processing units. Although centralized approaches provide

simpler solutions and better guarantees, as we will see in the following sections,

they are limited by the sole unit itself. This means that the whole optimization

procedure will depend on the capabilities of the one processing unit, which

even if it is powerful enough it is destined to operate in a linear fashion that

cannot do more than one operation at a time. Since the amount of data is ever

growing it is unavoidable to turn to solutions that make use of multiple processing

units and deal with a fraction of the data with each one. Also the current semi-

conductor technology is reaching the limits of Moore’s law, and consequently the

speed of individual processing units is no longer getting faster. To perform more

calculations in a fixed amount of time we thus must turn to distributed processing,

and this is why the technology is driven to multi-core processors and computer

clusters.
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There are many algorithms for solving convex optimization problems such

as: gradient descent, mirror descent, Newton, quasi-Newton and many more. One

way to categorize them is by the amount of information they require from the

function itself. The two most popular categories are the first and second order

methods. The former requires the value of the function and the first derivative

of the function at point and the latter additionally requires the second derivative

of the function. In large scale problems where the information is abundant and

in problems that the dimension of the parameters is large, the computation alone

of the computation of the second derivative is computationally intensive, or not-

tractable, and it is needed in each iteration. Thus for scalability reasons we will

contain our research to first order methods that are simpler in each iteration.

We already have to choose how to set up our approach towards the optimiza-

tion problem: Centralized, which means that one processing unit holds all the

information and performs the necessary optimization steps itself, or decentralized

when you split the information into pieces and feed it to different processing units

in order that each one performs an optimization step. Throughout this thesis we

will examine both of these approaches and see their merits and their flaws.

For the decentralized setting, the information is distributed among multiple

agents in a network and usually the network is quite large and the structure of it

is given a priori. Each agent is given a convex function as their objective function

and they cooperate with each other to solve the convex optimization problem

through local information and communication over the network. Mathematically
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this can be expressed as

min
x∈Rn

1

m

m∑
i=1

fi(x) (1.7)

where m is the total number of agents in the network and fi the convex objective

of each agent. At every time step through the optimization procedure each agent i

maintains information xi and tries to obtain x∗ which is the optimal for the overall

objective.

This decentralized setting implies that each agent in the network maintains

data necessary to compute fi(x) and compute ∇fi(x). Even if a single server

maintains the current iterate of the decision vector and orchestrates gradient

evaluations; there will be an inherent delay in querying the machines. Moreover,

when the network latency and work load on the machines change, so will the

query delay. It is therefore important that techniques developed for this set-up can

handle time-varying delays [6].

Furthermore we are concerned about the convergence rate of the algorithm

that tries to solve the convex optimization problem. By convergence rate we mean

the rate that the sequence xk, where k is the k-th time step of the algorithm,

converges to x∗ which is the solution of:

f(x∗) = min
x∈Rn

f(x). (1.8)

Generally the convergence rate tells us how fast the algorithm is at hand. Espe-

cially for the centralized case of algorithms for convex optimization there have

been many attempts to make these algorithms converge faster. For this cause the
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accelerated algorithms were introduced by Nesterov [12] that achieves optimal

convergence rate for the class of convex functions and speeds up the procedure by

an order of magnitude compared to the other first order algorithms. In the decen-

tralized field such optimality has not been achieved and more and more research is

headed towards this purpose, such as ours.

In any distributed algorithm, it is necessary to coordinate to some extent

the activities of the different processors. This coordination is often implemented

by dividing the algorithm in “phases”. During each phase, every processor

executes a number of computations that depend on results of previous phases of

other processors. But within a phase each processor doesn’t interact with other

processors as far as the given algorithm is concerned. All interaction takes place

at the end of phases. Such algorithms are called synchronous and the “opposite”

are the asynchronous algorithms where there are no phases and the coordination

between processors is not strict [3]. Synchronous algorithms are more convenient

to use since there is an order of execution and conflicts are resolved in a “tidy”

manner. Unfortunately this convenience comes with a price as long as the time

until convergence is concerned. It is obvious that for synchronous algorithms

agents have to finish transmitting and receiving information in order to proceed to

further computations. This creates a bottleneck and hurts synchronous algorithms

scalability because this problem becomes bigger as the network becomes larger.

Asynchronous algorithms are free from this curse and therefore are better suited

for large scale problems despite the harder implementation due to the inherent

complexity they have.
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1.2 Contribution

Given the motivation for algorithms that can solve a convex optimization

problem in a decentralized manner the focus of this thesis is twofold. First our

goal is to provide an algorithm based on the accelerated algorithm of Nesterov that

could handle delayed information. Asynchronous implementations of algorithms

give birth to delays due to communication overhead or diversity in processing

power. Also, as we will see in next chapter, Nesterov’s accelerated algorithm

is the optimal algorithm for the centralized setting and we wish to modify and

implement it in a decentralized setting in order to obtain a faster convergence rate

than the existing algorithms for decentralized optimization. This is a first step

to observing how the accelerated algorithms behave when delayed information

is forced upon them and what the are requirements for them to converge to the

optimal solution. After defining the accelerated algorithm we proceed with a

convergence proof which enables us to fine tune the parameters of the algorithm

and prove an optimal convergence rate for the class of convex functions.

Secondly this thesis focuses on a centralized accelerated algorithm and

explores the possibility of being used in distributed computing. We set up a

suitable network structure for the algorithm to operate on with keeping at

the same time the features of the accelerated algorithms. The original delayed

algorithm is modified into an incremental algorithm that takes into consideration

one agent’s objective function at a time step. Specifically the computations at each

time step are based on the objective function of the agent that is “active” at that

time.
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1.3 Outline

The thesis is organized as follows. In Chapter 2 we review the most important

algorithms in centralized convex optimization. We investigate the necessary

features of the algorithms that solve convex optimization problems bearing in mind

that our motivation is to transfer these algorithms in the decentralized setting,

where we want simple computations in each step and the minimum amount of

communication through the agents. Also we are going to see the optimal bounds

for classes of convex functions and the associated optimal algorithms.

In Chapter 3 we consider decentralized algorithms for convex optimization.

We provide the network structures and a number of algorithms that work on each

structure and present their unique ideas and convergence rates.

Chapter 4 offers an accelerated delayed distributed algorithm for decentralized

convex optimization along with simulation results upon quadratic functions. We

provide an algorithm in centralized setup that is able to handle outdated informa-

tion in the form of past gradients and analyze a continuous time approximation

of the delayed dynamics using differential equations. Next we focus in the de-

centralized setting as we modify the algorithm accordingly into an incremental

accelerated algorithm to fit the master-server network structure.

Finally in Chapter 5 we present our conclusions for this area of research and

provide directions for future work.
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CHAPTER 2
Centralized first-order methods for convex optimization

First order methods have been heavily studied and have been proven very

useful tools for solving centralized optimization problems. In this chapter we

review of a number of those first order methods that will help us understand

the reasons why these algorithms are needed in optimization with a perspective

towards the distributed setting.

2.1 First order oracle methods

When solving a problem P, such as an optimization problem or an everyday

problem like routing your way from work to home, we have plenty of numerical

methods that we can use, but we want to find a scheme that is best suited for P.

However such a task is almost impossible. Imagine for example a problem P that

has an optimal value x∗ = 0. Then the method with the optimal “performance”

is the one that reports in every step x∗ = 0. Thus there is no point in finding the

best method to solve a concrete problem P. Instead we should focus on finding

methods for classes of problems F ⊃ P. Indeed, usually numerical methods are

developed to solve many different problems with similar characteristics. Then the

problem becomes: find a method M for the problem class F. Therefore we can

define the performance of M on F as its performance on the worst problem from

F.
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Since we are going to evaluate a method M for a problem class F it is safe

to assume that the method doesn’t have perfect information about the concrete

problem P. It has only a description of class F. In this case we need someone to

tell us information about the problem P at every step of the procedure M. In order

to model this situation, it is convenient to introduce the notion of the oracle O. An

oracle O is just a unit, which answers the successive questions of the method. The

method M is trying to solve the problem P by collecting and handling the data.

In general, each problem can be included in different problem classes. For each

problem we can also develop the different types of oracles. But if we fix F and

O, then we fix a model of our problem P . In this case, it is natural to define the

performance of M on (F ; O) as its performance on the worst Pw from F [12].

Next let us see the main types of oracles that exist in optimization theory. For

all the oracles the input is an x ∈ Rn but the output differs:

• Zero-order oracle: outputs f(x)

• First-order oracle: outputs f(x) and f
′
(x)

• Second-order oracle: outputs f(x), f
′
(x) and f

′′
(x)

where f
′
(x) and f

′′
(x) is the first and second derivative of function f accordingly.

As can be seen the amount of information regarding the problem increases

as the order of the oracle. This means that methods that use higher order oracles

require more information and therefore they implement complex procedures

in each iteration. But as mentioned in the introduction, the huge amount of

information available and the need to make the data allocation decentralized

guides us to use problem solving methods that in each iteration do not perform
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load-heavy tasks. Thus in this thesis we will deal with First-order oracle methods

for convex optimization problems.

2.2 Smooth convex functions

In this thesis and generally in the optimization field it is favorable to deal

with function (problem) classes that have “nice” properties in order to make the

optimization procedure faster and the convergence to an optimal value plausible

with certainty. As before we are concerned with the unconstrained minimization

problem of a differentiable function f

min
x∈Rn

f(x). (2.1)

It is preferable then that the function f belongs to the class of convex or strongly

convex differentiable functions. We denote the class of one time differentiable

convex functions as F1 and the class of one time differentiable strongly convex

functions as S1. We can continue to the definition of the convex function:

Definition 2.2.1 A continuously differentiable function f(x) is called convex

on Rn if for any x, y ∈ Rn we have:

f(y) ≥ f(x) + 〈∇f(x), y − x〉. (2.2)

Examples of a convex function is the exponential function f(x) = exp(x) and

the absolute value function f(x) = |x|.
In addition to the class of convex functions sometimes we prefer to impose

something stronger as a restriction in order to get global convergence and faster
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convergence rates. The following assumption for a function that is f ∈F 1(Rn)

leads us to the class of strongly convex functions.

Assumption 2.2.1 There exists some constant μ > 0 such that for any x̂

with ∇f(x̂) = 0 we have

f(x) ≥ f(x̂) + μ
1

2
‖x− x̂‖.

Definition 2.2.2 A continuously differentiable function f(x) is called strongly

convex on Rn with notation f ∈ S1
μ(R

n) if there exists a constant μ > 0 such that

for any x, y ∈ Rn we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ μ
1

2
‖x− y‖. (2.3)

An example of a strongly convex function is the quadratic function f(x) = x2.

In the beginning of the section we also mentioned the notion of smoothness of

the function. The smoothness notion is associated with the Lipschitz continuity of

their respective gradients.

Definition 2.2.3 For a function to have Lipschitz continuous gradients with

constant L in Rn means that for any x, y ∈ Rn we have:

‖∇f(x)−∇f(y)‖≤ L‖x− y‖. (2.4)

Examples of Lipschitz continuous functions are the absolute value function

f(x) = |x| and the sine function f(x) = sin(x).
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The notation for convex and strongly convex k times differentiable functions

with Lipschitz continuous gradients and l times second order differentiable is Fk,l
L

and Sk,l
μ,L accordingly.

2.3 Lower bounds

Before we move forward and investigate the possible optimization methods

for the classes of functions-problems that we have seen so far, it is useful to see

the lower bounds for each class. By lower bounds we mean the lower complexity

possible with regard to the iterations of the method in use, or in other words the

number of oracle calls that are required from the method in order to achieve a

solution close to the optimal value. Each of the two classes has different lower

bounds and since for the strongly convex functions we have more restrictive

assumptions we expect that the lower bounds to be better.

From Theorem 2.1.6 of [12] we have that the lower bounds for the class of

convex functions F∞,1
L (R∞) are

f(xk)− f ∗ ≥ 3L‖x0 − x∗‖
32(k + 1)2

, (2.5)

where {xk} is the sequence generated from the method, k is the time and x∗ if the

minimum of f with any initial point x0.

Also from Theorem 2.1.12 of [12] we have that the lower bounds for the class

of convex functions S∞,1
μ,μQf

(R∞) are

f(xk)− f ∗ ≥ μ

2

(√
Qf − 1√
Qf + 1

)2k

‖x0 − x∗‖, (2.6)
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where {xk} is the sequence generated from the method, k is the time,any constants

μ > 0, Qf > 1 and x∗ if the minimum of f with any initial point x0.

2.4 Gradient descent

When we talk about techniques in optimization the first one that comes to

mind is gradient descent. Gradient descent is easy to use and understand and

provides a scalable solution to large optimization problems. The main idea behind

this first order method is that the antigradient is the direction of the locally

steepest descent of a differentiable function. The algorithm is described as follows:

Algorithm 1 Gradient Descent
1: x0 ∈ Rn

2: for k = 0 to T do

3: xk+1 = xk − hk∇f(xk)

4: end for

5: Output : xT

As simple as it seems this is the gradient descent. Obviously the only pa-

rameter is hk which is called the step size of the gradient method and it is very

important for the convergence procedure. Since we want to move in the antigra-

dient direction the step size should be positive. The sequence {hk} is chosen in

advance and there are many variants to the step size to choose from. Some of the

important ones are:

• hk = h

• hk =
h√
k+1

• hk = argmin
h≥0

f(xk − h∇f(xk))

14



The simplest and the most heavily used is the constant step size. After

analyzing the convergence rate through the improvement in each iteration we can

consider the constant step size as the parameter of the expression and optimize

accordingly in order to obtain the best rate possible. With this analysis we end up

with the value hk = 1
L
for the class of convex functions and hk = 2

L+μ
for the class

of strongly convex functions, where L is the Lipschitz constant of the function.

The resulting convergence rate as it is proven in [12] for the class of differentiable

convex functions for hk =
1
L
is:

f(xk)− f ∗ ≤ 2L‖x0 − x∗‖
k + 4

, (2.7)

and for the class of strongly convex differentiable functions for hk =
2

L+μ
is:

f(xk)− f ∗ ≤ L

2

(
Qf − 1

Qf + 1

)2k

‖x0 − x∗‖2, (2.8)

where L is the Lipshitz coefficient, x∗ is the optimal point, f ∗ is the optimal

value of the function and Qf = L
μ
a constant.

Comparing the rate of convergence of the gradient method with the lower

bounds for convex and strongly convex functions we can see that the method

does not provide a convergence rate close to this lower bound. This will be the

motivation to seek first order methods that achieve optimal convergence rates in

further sections. On the other hand though, gradient descent is the bread and

butter of optimization and it is a part of many other algorithms that transcend to

the decentralized field.

15



2.5 Mirror descent

So far we have dealt with first order methods that attend to the unconstrained

optimization problem of a convex function. Sometimes we want to constrain

our solution in a subset of Rn due to practicality and feasibility reasons that we

encounter in real life applications. Also mirror descent with mild alterations is

used for decentralized solutions and provides a delay tolerant framework as we

will see in the next chapter. Basically if we have a set X ⊂ Rn which is assumed

compact, the problem is set as:

min
x∈X

f(x). (2.9)

Constraining the solution set affects algorithms designed for unconstrained

optimization such as gradient descent and requires alterations in order for the

converging sequence to reside in the solution space. For this reason we need to

introduce the notion of the projection operator ΠX on the set X:

ΠX(x) = argmin
y∈X

‖x− y‖. (2.10)

An important Lemma that is proven useful in the analysis is Lemma 3.1 from [4]

that states:

Let x ∈ X and X is compact and convex and y ∈ Rn then

(ΠX(y)− x)T (ΠX(y)− y) ≤ 0 (2.11)

‖ΠX(y)− x‖2+‖ΠX(y)− y‖2≤ ‖y − x‖2. (2.12)

16



The mirror descent algorithm is based on the idea of moving through the dual

space of the gradient operators and projecting these points on the original solution

space. In order to explain the method we have to point out that if the solution

space is a Banach space B the gradients reside in the dual space B∗. The great

insight of Nemirovski and Yudin [11], that created mirror descent, is that one can

still do gradient descent in the dual space by first mapping the point x ∈ B into

the dual space B∗, then performing a gradient descent step in the dual space, and

finally mapping the point back to the primal space B. This operation might result

in a point that does not reside in the restricted solution space X, so we have to

project the point back inside to this space.

Another useful notion is the Bregman Divergence associated with the function

f and is defined as:

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉, (2.13)

and the main identity that follows this definition is

〈∇f(x)−∇f(y), x− z〉 = Df (x, y) +Df (z, x)−Df (z, y). (2.14)

In order to move from the primal space of the functions to the dual space

of the gradients we need a mapping that will allow us do that, and this mapping

is called a mirror map. Following the definitions from S. Bubeck’s book [4], let

G ⊂ Rn be a convex set such that X is included in its closure and X ∩G �= ∅. We

say that Φ : G → R is a mirror map if it satisfies the following properties:

1. Φ is μ strongly convex and differentiable
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2. The gradient of Φ takes all possible values

3. The gradient of Φ diverges on the boundary of G

As mentioned previously the mirror map allows a point x ∈ X ∩ G to be

mapped to ∇Φ(x) from where we can take a gradient step to get to ∇Φ(x) −
h∇f(x). Then the properties of the mirror map allows us to write ∇Φ(y) =

∇Φ(x) − h∇f(x) for some y ∈ G. The point y may reside outside of the solution

space X so we have to project the point into that set. In Mirror Descent Bregman

Divergence of the mirror map helps us to do that operation as:

ΠΦ
X(y) = argmin

y∈X∩G
DΦ(x, y). (2.15)

Resulting from the definition of the mirror map and its properties, it is guaranteed

the existence and the uniqueness of this projection. After all these definitions we

can now proceed to the Mirror Descent method:

Algorithm 2 Mirror Descent

1: x1 ∈ argmin
x∈X∩G

Φ(x)

2: for k = 1 to T do

3: ∇Φ(yk+1) = ∇Φ(xk)− h∇f(xk)

4: xk+1 ∈ ΠΦ
X(yk+1)

5: end for

6: Output : xT

Or with the help of some algebra we end up with the more common view of

the Mirror Descent that is seen as a definition most times (from Beck and Teboulle

[2]) and gives a proximal point of view in the sense that the algorithm is trying to
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minimize the local linearization of the function while not moving too far away from

the previous point (with distances measured via the Bregman divergence of the

mirror map).:

Algorithm 3 Mirror Descent

1: x1 ∈ argmin
x∈X∩G

Φ(x)

2: for k = 1 to T do

3: xk+1 = argmin
x∈X∩G

(h∇f(xk)x+DΦ(x, xk))

4: end for

5: Output : xT

Regarding the convergence rate of the Mirror Descent algorithm we have from

Theorem 4.1 of [4] that, if M2 = sup
x∈X∩G

Φ(x)− Φ(x1) and h = M
L

√
2μ
k

, then :

f

(
1

k

k∑
s=1

xs

)
− f(x∗) ≤ ML

√
2

μk
. (2.16)

2.6 Nesterov’s accelerated algorithm

So far we have seen first order methods that have convergence rates that

are far from optimal for the classes of convex and strongly convex functions.

This means that the lower bounds that we saw in the previous section are not

met by the convergence rate of these algorithms. Nesterov [12] introduced a

pioneer algorithm that achieves the optimal convergence rate regarding the lower

bounds for strongly convex differentiable functions. This algorithm is known as

Nesterov’s accelerated algorithm and relies on the notion of the estimate sequence.

In gradient descent, the method forms a relaxation sequence that means that at
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each step of the function the value of the function is getting smaller and smaller:

f(xk+1) ≤ f(xk). Instead the estimate sequence is defined in [12] as:

Definition 2.6.1: A pair of sequences {φk(x)}∞k=0 and {λk}∞k=0, λk ≥ 0 is

called an estimate sequence of a function f(x) if λk → 0 for any x ∈ Rn and all

k ≥ 0 we have

φk ≤ (1− λk)f(x) + λkφ0(x). (2.17)

The point of this definition is made apparent in the following Lemma 2.2.1

from [12]: If for a sequence {xk} we have

f(xk) ≤ φ∗
k = min

x∈Rn
Φ(x), (2.18)

then f(xk)− f ∗ ≤ λk(φ0(x
∗)− f ∗) → 0 as k → ∞.

As it can be seen, the convergence of the sequence {xk} that follows the

estimate sequence depends solely on the convergence rate of the sequence λk → 0

and hence at a first glance it simplifies things. But the tricky part is how to form

the estimate sequence and how to ensure the Lemma 2.2.1 from [12]. Nesterov

crafted a series of lemmas and theorems to answer these questions and provides

the accelerated algorithm. Lemma 2.2.2 of [12] states that if

• f is an μ-strongly convex differentiable, L-Lipshitz function in Rn

• φ0 is an arbitrary function on Rn

• {yk}∞k=0 is an arbitrary sequence on Rn

• {ak}∞k=0, ak ∈ (0, 1),
∑∞

k=0 ak = ∞
• λ0 = 1
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Then the pair of sequences {φk(x)}∞k=0, {λ}∞k=0 defined by the following recursive

rules:

λk+1 = λk(1− ak), (2.19)

φk+1 = (1− ak)φk(x) + ak(f(yk) + 〈∇f(yk), x− yk〉+ μ

2
‖x− yk‖2, (2.20)

is an estimate sequence.

This Lemma places a framework around the estimate sequence and by taking

a simple quadratic function as φ0 Nesterov proceeds with the Lemma 2.2.3 in [12]

that states that if φ0 = φ∗
0 +

γ0
2
‖x− v0‖2 then

φk(x) = φ∗
k +

γk
2
‖x− vk‖2, (2.21)

where

γk+1 = (1− ak)γk + akμ,

vk+1 =
1

γk+1

((1− ak)γkak + akμyk − ak∇f(yk)) ,

φ∗
k+1 = (1−ak)φk+akf(yk)− a2k

2γk+1

‖∇f(yk)‖2+ak(1− ak)γk
γk+1

(
μ

2
‖yk−vk‖2+〈∇f(yk), vk−yk〉).

With these two lemmas we are led to the general scheme for Nesterov’s

accelerated method:
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Algorithm 4 Nesterov’s General Scheme

1: Choose x ∈ Rn, γ0 > 0 and v0 = x0

2: for k = 1 to T do

3: Compute ak ∈ (0, 1) from La2k = (1− ak)γk + akμ

4: γk+1 = (1− ak)γk + akμ

5: yk =
akγkvk+γk+1xk

γk+akμ

6: xk+1 = yk − 1
L
∇f(yk)

7: vk+1 =
1

γk+1
((1− ak)γkvk + akμyk − ak∇f(yk))

8: end for

9: Output : xT

We observe in this scheme that the gradient step is taken from the sequence

{yk} and it is used to update the sequence {xk} which means that the auxiliary

variable drives the sequence to the optimal point. Also as k → ∞ and xk → x∗ the

auxiliary variable gets closer and closer to the sequence {xk} since the difference

between 2 consecutive points xk+1 − xk is diminishing as we can see in Algorithm 5

which is the commonly known Nesterov’s accelerated algorithm for strongly convex

functions.
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Algorithm 5 Nesterov’s Accelerated Method
1: y0 = x0

2: for k = 1 to T do

3: xk+1 = yk − 1
L
∇f(yk)

4: yk+1 = xk+1 +
√
L−√

μ√
L+

√
μ
(xk+1 − xk)

5: end for

6: Output : xT

This form of the algorithm provides a clearer idea about the sequences

entailed. There is the primary sequence {xk} that updates from a gradient step

to meet a condition of getting lower values at each iteration and the auxiliary

sequence {yk} that was stated arbitrary in the beginning but after the imposed

restrictions for the estimate sequence to hold takes the form of a mixture of

two different time steps of the sequence {xk}. In this form of the algorithm it is

assumed for simplicity that a0 =
√

μ
L
. Many have tried to interpret how Nesterov’s

accelerated algorithm works with the help of differential equations [15] or using

multiple optimization techniques to realize each variable of Nesterov’s algorithm

[16]. As for the convergence rate of the Nesterov’s Accelerated algorithm Theorem

2.2.3 from [12] gives us:

f(xk)− f ∗ ≤ min

{(
1−

√
μ

L

)
,

4L

(2
√
L+ k

√
γ0)2

}
(f(x0)− f ∗ +

γ0
2
‖x0 − x∗‖2),

(2.22)

where γ0 =
a0(a0L−μ)

1−a0
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We can see that the convergence rate of this scheme coincides with the lower

bounds set for the family of strongly convex differentiable functions, which makes

the algorithm optimal for the type of class.
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CHAPTER 3
Decentralized first order methods

Up until now we have seen methods that work in a centralized manner requir-

ing all the information to be held in one machine and perform the computations

locally. Nowadays the information is spread through the network and we want

to take advantage of distributed solutions to speed up optimization procedures.

Though usually the local speed up of the smaller optimization procedures is great,

the amount of communication through the nodes in the network and the degree

of synchronization that dictates the procedure makes the optimization process a

challenging task. Also, as we will verify later in this section, the convergence rates

of the decentralized algorithms are far from optimal and yet there is no algorithm

that achieves the lower bounds for any class of functions with respect to the cen-

tralized setting. In this chapter we will examine network setups for distributed

optimization and look into the literature for suitable algorithms for each setup and

compare them.

Throughout the section we assume that there are n nodes in a network and

that each one of them hold their own information-objective function fi(x) and the

goal is to optimize the objective function of the network, which is the sum of all

the agents objective functions.

f(x) =
1

n

n∑
i=1

fi(x). (3.1)
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One key feature is the network topology and the way that the algorithms treat it.

There are algorithms in decentralized convex optimization that neglect the network

topology and work on a generic setting [9], [5], [7], [13] and others that take

advantage of a static network topology to work on [14], [6], [1] . The first category

relies upon the notion of consensus which means that each node communicates

locally the information of its value and then aggregates the total information it

received along with its value to obtain the next value. In the second category

fall algorithms such as incremental algorithms and algorithms that work in the

master-server setting. Both have a static network structure and the way that they

approach the optimization problem relies on that structure. The shared idea is

that the computations are made locally and the information is passed on from

node to node for the procedure to carry on. Also another way to look at these

two classes is that the first class does not require any knowledge of the network

topology while the second class does.

As we have seen in this section there is a rise in interest in distributed

optimization algorithms in recent years for convex optimization. Many of them are

based on the seminal paper of Tsitsiklis et al [9], which sets the foundations for

distributed asynchronous gradient optimization algorithms. These algorithms allow

the agents to communicate locally with their neighbors and exchange information

locally about their current values and each agent proceeds with the optimization

procedure based on their information.

Since the results of [9] are rather important we present the main ideas of the

article. Assume there is a connected graph G = {V,E} for the underlying network
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and H1, H2...HL finite dimensional vector spaces and x = (x1, x2...xL) with xl ∈ Hl

being the l − th component of x. Also let {1...M} be the set of processors that

participate in the distributed optimization process. At any time k processor i may

transmit some (or all) of the components of xi(k) to some of the other processors.

We assume that the communication delay is bounded. If a message from processor

j of a component Hl is received by processor i at time k, let tijl (k) denote the time

the message was sent. Therefore the content of the message is xj
l (t

ij
l (k)). Once the

processor i receives all the messages sent at time k then it proceeds to update his

current value along with the computation of gradient step with regard to his own

information. Therefore the updated value of the node is a convex combination of

the received messages and his own gradient update. Then

xi
l(k + 1) =

M∑
j=1

aijl (k)x
ij
l (t

ij(k)) + γi(k)sil(k), (3.2)

where sil(k) is the l-th component of si(k) which is relative to the update rule and

can be for example a gradient method:

sii(k) = − ∂J

∂xi

xi(k), (3.3)

and the coefficients are scalars satisfying:

1. aijl (k) ≥ 0

2.
∑M

j=1 a
ij
l (k) = 1

3. aijl (k) = 0 when no message received or cannot be received due to lack of an

edge in the graph
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4. γi(k) is the step size of the method being used, for example 1
l
for gradient

descent

We also observe that this algorithm is designed to handle delays. If tij(k) �= k,

meaning that the communication between nodes i and j is not instantaneous there

will be delays in the transferred state of the neighboring node. In [9] the delays are

assumed to be bounded, the transmission rate between two nodes is also bounded

and there are numbers B, β such that there exists at least one message between i

and j in the interval [Bkβ, B(k + 1)β] and the number of transmissions is bounded

in the interval. The presence of communication delays necessitates an augmented

state if a state space representation is desired. Exploiting linearity, we conclude

that there exist scalars Φij
l (k|q), for k ≥ q such that:

xi
l(k) =

M∑
j=1

Φij
l (k|0)xj

l (1) +
k−1∑
q=1

M∑
j=1

γj(q)Φij
l (k|q)sjl (q). (3.4)

The coefficients Φij
l (k|q) are determined by the sequence of transmission and

reception times and the combining coefficients. Thus in general they are unknown,

but they have properties that can be defining.

3.1 Consensus based distributed optimization algorithms

Other algorithms for distributed optimization in a static generic network

setting rely on the separation of the objective function instead of the components

of the feature vector. Again we assume a graph G = {V,E} for the underlying

network which is connected (and sparse), simple and undirected . In a generic

network an important feature is the adjacency or weight matrix of the network.

We assume that the weight matrix W is symmetric and doubly stochastic with
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μ = μ(W ) the second largest singular value of W and R a bound on the distance

on the solution. The work of Jakovetic et al in [7], [8] provides two accelerated

algorithms for distributed optimization that operate in each iteration in way

similar to our work. Both methods rely on the notion of consensus for converging

to the average “truth” between nodes and it is an extension to the work of [9].

The first method in [8] is the Distributed Nesterov Gradient method (D-NG).

This algorithm, much as Nesterov’s for centralized optimization, generates a

sequence (xi(k), yi(k)) at each node i where yi(k) is the auxiliary variable. Each

agent performs updates after communicating with its neighbors and performing the

gradient step with regard to his own value. The update equations are:

xi(k + 1) =
∑
j∈Oi

Wijyj(k)− ak∇fi(yi(k)) (3.5)

yi(k + 1) = xi(k + 1) + βk(xi(k + 1)− xi(k)) (3.6)

where Wij are the weights of the weight matrix W for respecting nodes i and j and

Oi is the neighborhood set of node i. The coefficients are defined as:

ak =
c

k + 1
, c > 0, βk =

k

k + 3
(3.7)

At each iteration of the algorithm, each node broadcasts the auxiliary variable

to its neighbors and receives their corresponding values. Then weighs each value-

depending on how much he “trusts” the particular neighbor- and performs a

negative gradient step with regard to its objective function fi.
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Another approach in [8] for an accelerated method in the generic network

setting is to apply a consensus procedure in the two stages of the algorithm one

for each sequence. The algorithm Distributed-Nesterov Consensus (D-NC) uses

a constant step size a < 1
2L

and operates in 2 scales. In the outer iteration k,

each node updates (xi(k), yi(k)), just as D-NG, and in the inner iteration s the

nodes perform 2 rounds of consensus for both sequences. The number of the

inner iterations depend of the time k and the value of μ. Both the algorithms

D-NG and D-NC will reach the optimal solution with the difference that the

consensus on the first one is implicit and on the second one is explicit meaning

that D-NG applies consensus on each sequence within the network and D-NC

applies consensus on the pair. As we have seen so far k is the number of gradient

evaluations for the algorithms. Let K be the number of per-node communications.

The D-NG algorithm achieves convergence rate O( logk
k
) and O( logK

K
) where k is

the per-node gradient evaluations and K is the per-node communications, since

the communication occurs once in each iteration. The D-NC algorithm has less

outer iterations and achieves a rate of O( 1
k2
) and O( 1

K2−ξ ) with ξ > 0 arbitrarily

small. Generally the D-NG does not require any knowledge of the network and

its structure and it is faster than D-NC on certain networks, especially with none

complicated ones. The D-NC algorithm requires some knowledge of the network

such as μ(W ) and on the outer iterations behave much more like the centralized

accelerated algorithm of Nesterov. Also the convergence rate depends on the

weight of matrix W so it is harder to understand the convergence behavior.
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Figure 3–1: Figure 3.1: Cyclical Master-Server network setting where gi(x) =
∇fi(x) and the server nodes pass out-of-date information to the master with a
delay of n [1]

3.2 Master-server based distributed optimization algorithm

Since our focus is distributed algorithms in a master-server network setting,

Agarwal and Duchi in [1] present an elegant alteration to mirror descent that we

have seen in the previous section and it is fitted for the needs of distributed convex

optimization. Their approach handles the minimization of a stochastic function

that samples over a data space that is distributed in the server nodes.

min
x∈X

f(x), f(x) = E [F (x, ξ)] (3.8)

For this scheme, the algorithm handles gradients that are out of date and this

means that instead of g(t) = ∇F (x(t), ξ) we get g(t − τ(t)) = ∇F (x(t − τ(t)), ξ)

where τ(t) is the delay of time t and it is potentially random. In [1] they focus

on two different algorithms: mirror descent and dual averaging. Since the mirror
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descent method was presented in the previous chapter we will analyze only this

method due to the fact that the analysis is similar for both methods.

As with most algorithms that we have seen before, the analysis of the dis-

tributed mirror descent requires the following assumptions

• Assumption 1: Lipshitz continuity which expands to bounded gradients of

the function: E [‖∇F (x, ξ)‖2] ≤ G2

• Assumption 2: Smoothness assumption-Lipschitz continuity of gradients

and the variance bound E[‖∇f(x)−∇F (x, ξ)‖2∗] ≤ σ2 holds

• Assumption 3: Compactness assumption: For x∗ ∈ argmin
x∈X

f(x) and x ∈ X

the bounds φ(x∗) ≤ R2

2
and Dφ(x

∗, x) ≤ R2 both hold.

As we have previously seen the mirror descent algorithm is expressed as:

x(t+ 1) = argmin
x∈X

{
〈g(t), x〉+ 1

at
Dφ(x, x(t))

}
. (3.9)

The idea of the authors of [1] is to implement the mirror descent algorithm

as it is in a delayed decentralized setting of master-server network. Workers have

the only responsibility of computing gradients based on the information they have

and report them back to the master node when asked. The master node is the

one performing the bulk of the algorithm. The master node at the start of each

iteration selects a server node to exchange information. The selection could follow

some deterministic rules like a cyclic rule going through the server nodes in a

circle. Depending on the selection procedure the server node has information about

the gradient of the function at the point where it last communicated with the

master node. Of course the information that the server node has does not coincide
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with the current information that the master node has. Assuming that each server

has a delay τ(t) depending on the time stamp that it received the information and

this delay is bounded by B, E[τ(t)] ≤ B, in the previous iterative equation we have

to change the receiving gradient to g(t − τ(t)) calculated in the point x(t − τ(t)).

The master node carries the mirror descent with the given gradient and returns

the next point in the sequence x to the server node. Thus the delayed algorithm

can be expressed as:

x(t+ 1) = argmin
x∈X

{
〈g(t− τ(t)), x〉+ 1

at
Dφ(x, x(t))

}
. (3.10)

Besides all the merits of decentralized algorithms though, we have to verify if it is

worth transitioning from an algorithm that has proven itself in the centralized field

to a distributed one in the master-server setting in the sense of faster overall con-

vergence and robustness. Even though the master-server setting is not completely

decentralized since it has a static network topology it maintains the main features

such as distributed information to the agents and scalability through asynchronic-

ity. In most functions small pertubations of the point calculating the gradient lead

to big differences in the actual values. The Lipschitz continuity assumptions of

the function and the gradients help towards robustness of pertubations since they

upper bound that variation. But inherently we expect an error in the convergence

rate of the algorithm due to the delay introduced in it. The goal of each algorithm

that deals with these matters of asynchronicity is to restrain these terms that

contain the delay into orders that converge asymptotically faster than the terms of

the original algorithm.
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Regarding the convergence rate of the delayed stochastic mirror descent

in [1] it is proven that indeed the term of the delay is of a second order and

asymptotically negligible. If we set a(t) = 1
L+η(t)

and η(t) is chosen to control

the effects of delays and errors from the delayed stochastic information then from

Theorem 2 of [1] and if we are under the assumption that the delay is constant

as for example in the cyclical delayed master-server network, we obtain the

convergence rate:

E[
T∑
t=1

f(x(t+ 1))]− Tf(x∗) ≤ 2LR2 +R2(η(1) + η(T )) +
σ

2

T∑
t=1

1

η(t)

+ 2LG2(τ + 1)2
T∑
t=1

1

η(t− τ)2
+ 2τGR. (3.11)

If we optimize with regard to the convergence rate we get a value for η = σ
√
t+τ
R

which leads to the bound

E[f(x(T ))]− f(x∗) = O

(
LR2 + τGR

T
+

σR√
T

+
LG2τR2log(T )

σ2T

)
. (3.12)

The convergence rate is of the same order for time variant bounded delays that

applies to the same network architecture. Although this is a robust algorithm

and rather simple to implement and understand, the idea behind it is not optimal

regarding the lower bounds that we have seen in the previous section for the

classes of smooth convex and strongly convex functions. Also there is a obvious

restraint regarding the size of the network since the convergence rate naturally

comes from it and it can be clearly seen in the case of the cyclical master-server

setting where the delay is equal to the server nodes of the network n.
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3.3 Incremental gradient descent algorithms

In this section, as well in this chapter, we continue to analyze algorithms that

are based in the master-server network setup mainly because we want to keep the

idea of maintaining the information spread to the network and communicating

gradients in a simple way. We have seen so far that this type of network inherently

introduces delays in the queue of the process. Also network latency and work load

in the server nodes could vary in a real scenario having an impact in the delay

mechanism also. So it is important that a distributed algorithm has the attribute

to respond to network delays accordingly and incorporate them as part of the

process. Furthermore, another challenge in this formulation is to balance the delay

penalty of waiting to collect gradients from all machines (to compute the gradient

of the total loss) and the bias that occurs when the decision vector is updated

incrementally as soon as new partial gradient information from a machine arrives

[14]. In this section we give emphasis to the second setup which is called as an

incremental approach. It is called like that since at each step of the procedure the

algorithm does computations regarding partial derivatives without wasting time

waiting to aggregate the sum of the whole.

Throughout the section as with most algorithms we have seen so far we make

the following assumptions:

• Assumption 1: The objective function is smooth: ‖∇f(x) − ∇f(y)‖≤
L‖x− y‖

• Assumption 2: The objective function is μ-strongly convex: f(y) ≥
f(x) + 〈∇f(x), y − x〉+ μ

2
‖x− y‖2

35



So far from the algorithms of the centralized field the simplest and one of the

most widely used is gradient descent. One idea would be to try and implement

simple delays in a centralized manner in the beginning to gain some insight about

how it could possibly work in the master-server setting. The iteration for the

gradient descent for strongly convex functions would be:

x(k + 1) = x(k)− a∇f(x(k)), (3.13)

where a = 2
μ+L

for the strongly convex case [12]. Now lets assume that there is

some delay introduced in each iteration regarding the computation of the gradients

discarding the distribution of the function into partial functions giving them as

objective functions to the server nodes. Then the gradient descent would take the

shape of:

x(k + 1) = x(k)− a∇f(x(k − τ(k))), (3.14)

where τ(k) is the delay of each step as a random number that τ : N → N0. Imagine

this artificial delay as the delay from a node in the master server network. One

could say that this iterative procedure doesn’t make much sense in the way that

gradient descent was introduced. The philosophy behind the centralized algorithm

was that we choose a point of a function and move towards the steepest descent

which is the anti-gradient. But in that context the delayed algorithm fails to give

such an intent. The iterations take a point of the function and move it towards

the anti-gradient of a previous point. This could mean that the algorithm under

the necessary assumptions would not even converge into the neighborhood of the
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optimal point. More accurately the algorithm demands a function in which ”small”

pertubations around a point have a ”small” impact in the gradients.

Thinking about the main goal of the gradient descent it is more logical to

keep the same mindset when the delays are introduced. Therefore when a delayed

gradient comes to be processed form the algorithm it could be paired with the

matching point of the function to keep the same premises of the gradient descent.

Though it is a bit unintuitive at first to keep back tracking to find the pair instead

of using the most recent point of the sequence {xk} it is surprisingly more easy to

analyze since the idea of the gradient descent remains the same. The main update

rule would be:

x(k + 1) = x(k − τ(k))− a∇f(x(k − τ(k))). (3.15)

We complete a gradient step at the delayed point that, in the sense of the master-

server network, the master received by the worker. Each agent in the network has

its own delayed information that the master passed to him in a previous moment

and computes the gradient based on this information. Along with the ”feeling”

that this iterative procedure would probably converge, in Proposition 1 of [6] it

states that if f is an μ-strongly convex function in Rn and the delay is bounded,

0 ≤ τ(k) ≤ τmax and the optimal step size of a = 2
μ+L

then the sequence {xk}
obeys:

‖x(k)− x∗‖≤
(
Q− 1

Q+ 1

) k
1+τmax

, (3.16)
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where Q = L
μ
. One thing to note also is that the step size is independent of the

delays and the convergence rate depends on the upper bound of the delay which

could have some implications regarding the size of the network in the master-server

setting.

In order to implement the same idea to the distributed delayed network of

master-server we have some extra points to cover. First the function should be

able to be written as:

f(x) =
M∑
i=1

fi(x), (3.17)

where each fi(x) is strongly convex and it is assigned as the objective function of

each server. The setting for random delays implies that at every iteration of the

algorithm a node that has completed the processing of its information is picked

in a stochastic order. With these points in mind the authors of [6] proceed to the

incremental algorithm:

Algorithm 6 Delayed Proximal Gradient Method
1: x0 ∈ Rn

2: for k = 0 to T do

3: i(k) = U [1,M ]

4: s(k) = x(k − τ(k))− a∇fi(k)(x(k − τ(k)))

5: x(k + 1) = (1− θ)x(k) + θs(k)

6: end for

7: Output : xT
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where θ ∈ (0, 1] and i(t) is being drawn from the uniform discrete distribution

with support 1,2..M. Also the assumption made previously are in power with each

fi(x) being Li-smooth and L ≤ Lmax with

Lmax = max
1≤m≤M

Lm.

The main theorem of [6] provides the convergence rate of the algorithm and

states that:

Theorem 2 of [6]:If τ(k) ∈ [0, τmax] for all k ∈ N and that the step size a

satisfies

a ∈
(
0,

μ

L2
max

)
,

then the sequence {xk} generated by the Delayed Proximal Gradient Method

satisfies

Ek−1[f(x(k))]− f ∗ ≤ ρk(f(x(0)− f ∗) + ε, (3.18)

where Ek−1 is the is the expectation over all random variables i(0), i(1)..i(k − 1),

f ∗ is the optimal value of problem ,

ρ =

(
1− 2aμθ

(
1− a

L2
max

μ

)) 1
1+τmax

, (3.19)

and

ε =
aLmax

2M(μ− aL2
max)

M∑
m=1

‖∇fm(x
∗)‖2. (3.20)

Theorem 2 shows that even with a constant step size, which can be chosen

independently of the maximum delay bound τmax and the number of objective
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function components M , the iterations generated by the Delayed Proximal

Gradient Method converge linearly to within a neighborhood of the optimal value.

Note the inherent trade-off between ρ and ε: a smaller step-size a yields a smaller

residual error ε but also a larger convergence factor ρ [6]. The algorithm provides

descent convergence rate for the class of strongly convex functions but not nearly

optimal, especially if we consider the tradeoff for the convergence neighborhood.
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CHAPTER 4
An accelerated algorithm for delayed distributed convex optimization

In the previous chapters we have seen centralized and decentralized algorithms

for convex optimization and every one of them has its pros and cons. We described

centralized algorithms in order to realize and understanding of the existing

methods we reviewed the most relevant ones that can take the leap to distributed

optimization. In chapter 3 there was a discussion about decentralized algorithms.

The main flaw of these methods is, as we have seen, their convergence rates. The

convergence rates of distributed methods are far from optimal and also they may

guarantee a convergence within a neighborhood of the optimal point without the

decrease of this neighborhood in time. This is reasonable if someone takes into

consideration the errors that the delays introduce in the network of the agents.

The main goal of this thesis and especially this chapter is to provide an algorithm

that converges with an optimal convergence rate for the class of functions it refers

to with the error introduced by the delay to be negligible.

For these reasons we turn to marry the benefits of accelerated algorithms

of the centralized field and successful decentralized techniques. The main issue

remains the stability of the algorithm when delays are introduced and also their

impact on the convergence rate. The focus of this chapter is to use an accelerated

setup for the decentralized algorithm and borrow insight from the incremental

algorithms. It is obvious why we are interested in accelerated algorithms since
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they are the only known algorithms that have optimal convergence rates for the

class of functions that are of interest. Although introducing delays into these

algorithms is trickier than the common methods like gradient descent because of

the auxiliary sequence {yk}. This difficulty we try to offset with the insight we

have by investigating incremental algorithms.

4.1 Differential equation for modeling Nesterov’s accelerated algorithm
with delay

Since the analysis of Nesterov’s accelerated scheme with delays is challenging

we select to analyze the scheme as a centralized algorithm that has inherent delay

in its gradients. Nesterov’s accelerated algorithm can be written as:

Algorithm 7 Nesterov’s Accelerated Method
1: y0 = x0

2: for k = 1 to T do

3: xk+1 = yk − s∇f(yk)

4: yk+1 = xk+1 +
k−1
k+2

(xk+1 − xk)

5: end for

6: Output : xT

and the momentum coefficient of (xk+1 − xk) can be written as k−1
k+2

≈ 1 − 3
k
.

Our goal is to introduce delays in the gradients as if the gradients are taken

from an asynchronous decentralized system in a master-server network. Let τ be

a constant delay that is introduced into the gradients that the processing unit
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receives. Then the first statement of the algorithm should change accordingly:

xk+1 = yk − s∇f(yk−τ ). (4.1)

The delay that is inserted it is assumed constant-imagine something like a cyclical

master-server setting-for the convenience of the analysis. Also further assumptions

that are made are the same as in Nesterov’s algorithm:

• Assumption 1: The function is μ-strongly convex

• Assumption 2: The function is L-smooth

From here we observe that we inserted a delay in a gradient step iteration. From

the analysis in the section of incremental distributed algorithms we have seen that

gradient steps behave smoothly and are easier to analyze if the gradient iteration

is taken with regard to one point such as yk−τ and not two points as yk−τ and yk.

Thus this intuition urge us to write the update step as:

xk+1 = yk−τ − s∇f(yk−τ ). (4.2)

Also since the xk+1 is a gradient update with respect to yk−τ we want to be

consistent towards the update of yk+1 and replace the difference term (xk+1 − xk

with (xk+1 − xk−τ . This difference originally was a difference between the updated

x value and the value of x of the time step that the update was made so he have

to honor this logic in addition to the fact that it helps with the analysis of the

algorithm. Rewriting the algorithm and taking the momentum coefficient as a

parameter:
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Algorithm 8 Nesterov’s Accelerated Method with Delay
1: y0 = y1 = .. = yk−τ = xk−τ = .. = x0

2: for k = τ + 1 to T do

3: xk+1 = yk−τ − s∇f(yk−τ )

4: yk+1 = xk+1 + βk+1(xk+1 − xk−τ )

5: end for

6: Output : xT

In order to analyze this accelerated algorithm we draw inspiration from the

differential analysis of Nesterov’s algorithm in [15]. First we combine the equations

of the main loop:

xk+1 = yk−τ − s∇f(yk−τ ) = xk−τ + βk−τ (xk−τ − xk−2τ−1)− s∇f(yk−τ )

xk+1 − xk−τ√
s

=
βk−τ√

s
(xk−τ − xk−2τ−1)−

√
s∇f(yk−τ ).

We introduce xk = X(k
√
s) for some smooth curve of X(t) and define the delay as

τ̂ = τ
√
s. The Taylor expansion with these approximations is:

xk+1 − xk−τ√
s

= Ẋ(t− τ̂)(1 + τ) +
1

2
Ẍ(t− τ̂)

√
s(1 + τ)2 + o(

√
s),

(xk−τ − xk−2τ−1)√
s

= Ẋ(t− τ̂)(1 + τ)− 1

2
Ẍ(t− τ̂)

√
s(1 + τ)2 + o(

√
s),

√
s∇f(yk−τ ) =

√
s∇f(X(t− τ̂)) + o(

√
s).
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Where we use that yk−τ − X(t − τ̂) = o(1) due to the Lipschitz continuity of

function f . Next we define the value of the momentum coefficient such that

βk = 1− β̂

k
⇒ βt = 1− β̂

√
s

t
,

where β̂ is a constant. And placing them all together

Ẋ(t− τ̂)(1 + τ) +
1

2
Ẍ(t− τ̂)

√
s(1 + τ)2 + o(

√
s) =(

1− β̂
√
s

t− τ

)(
Ẋ(t− τ̂)(1 + τ)− 1

2
Ẍ(t− τ̂)(1 + τ)2

√
s+ o(

√
s)

)

−√
s∇f(X(t− τ̂)) + o(

√
s). (4.3)

And by comparing coefficients of
√
s since all the other terms cancel or are of

higher order

Ẍ(t− τ̂) +
β̂

(t− τ)(1 + τ)
Ẋ(t− τ̂) +

1

(1 + τ)2
∇f(X(t− τ̂)) = 0. (4.4)

We can define t− τ̂ = t
′
and α = β̂

1+τ
the differential equation will be

Ẍ +
α

t′
Ẋ +

1

(1 + τ)2
∇f(X) = 0, (4.5)

with initial conditions X(0) = x0 and Ẋ(0) = 0. The convergence of the ODE

is guaranteed by theorem 2.1 of [15] that states for the same ODE: for any

f ∈ F∞ � ∪L>0FL and any x0 ∈ Rn the ODE with initial conditions X(0) = x0

and Ẋ(0) = 0 has a unique global solution X.
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4.2 Convergence analysis

We have seen that we can analyze this new accelerated delayed algorithm

with differential equations. The question remains if the convergence rate of the

accelerated algorithm is preserved and it is answered in theorem 4.1.

Theorem 4.1. For any convex f let X(t) be the unique solution to the ODE

with initial conditions X(0) = x0 and Ẋ(0) = 0 and t > 0. Then:

f(X(t))− f ∗ ≤ (α− 1)2(1 + τ)2‖x0 − x∗‖2
2t2

. (4.6)

Proof

Define the energy functional

E(t
′
) =

2

(α− 1)(1 + τ)2
(t

′
)2(f(X(t

′
))− f ∗) + (α− 1)‖X(t

′
) +

t
′

α− 1
Ẋ(t

′
)−X∗‖2

(4.7)

Ė(t′) =
4

(α− 1)(1 + τ)2
(t

′
)(f(X(t

′
))− f ∗) +

2

(α− 1)(1 + τ)2
(t

′
)2〈∇f, Ẋ〉

+ 2(α− 1)〈X(t
′
) +

t
′

α− 1
Ẋ(t

′
)−X∗,

α

α− 1
Ẋ +

t
′

α− 1
Ẍ〉. (4.8)

From the definition of our differential equation we have:

α

α− 1
Ẋ +

t
′

α− 1
Ẍ =

t
′

α− 1

(
Ẍ +

α

t′
Ẋ
)
=

t
′

(α− 1)(1 + τ)2
∇f.
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Then

Ė(t′) =
4

(α− 1)(1 + τ)2
(t

′
)(f(X(t

′
))− f ∗) +

2

(α− 1)(1 + τ)2
(t

′
)2〈∇f, Ẋ〉

+ 2(α− 1)〈X(t
′
) +

t
′

α− 1
Ẋ(t

′
)−X∗,

t
′

(α− 1)(1 + τ)2
∇f〉

=
4

(α− 1)(1 + τ)2
(t

′
)(f(X(t

′
)− f ∗) +

2(α− 1)t
′

(α− 1)(1 + τ)2
〈X(t

′
)−X∗,∇f〉.

(4.9)

Using the assumption of convexity of f :

Ė(t′) ≤ 4

(α− 1)(1 + τ)2
(t

′
)(f(X(t

′
))− f ∗) +

2t
′

(1 + τ)2
(f(X(t

′
)− f ∗)

=
2t

′
(3− α)

(1 + τ)2(α− 1)
(f(X(t

′
))− f ∗) ≤ 0, (4.10)

for α > 3 ⇒ β > 3(1 + τ).

Since we know that f(X) ≥ f ∗ the energy functional is non increasing and the

term (α− 1)‖X(t
′
) + t

′

α−1
Ẋ(t

′
)−X∗‖2 is positive by definition we can deduce

2(t
′
)2

(α− 1)(1 + τ)2
(f(X(t

′
))− f ∗) ≤ E(t

′
) ≤ E(0) = (α− 1)‖x0 − x∗‖2.

Rearranging terms gives:

f(X(t
′
))− f ∗ ≤ (α− 1)2(1 + τ)2‖x0 − x∗‖2

2(t′)2
. (4.11)
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4.3 Incremental accelerated algorithm for the master-server setting

Once again we turn our attention to the master-server setting and the

minimization of the objective function:

f(x) =
M∑
i=1

fi(x) (4.12)

In order to push this accelerated algorithm to the distributed master-server setting

a few minor changes should be made and the idea is similar to the one of the

incremental distributed algorithms [6]. First we have to take into consideration

that each agent has its oracle that calculates the gradient of and send this infor-

mation back to the master node in an asynchronous manner. We make the usual

assumptions that:

• Assumption 1: The objective function is smooth: ‖∇fi(x) − ∇fi(y)‖≤
Li‖x− y‖ ∀i ∈ {1..M}

• Assumption 2: The objective function is μ-strongly convex: f(y) ≥
f(x) + 〈∇f(x), y − x〉+ μ

2
‖x− y‖2

We want our algorithm to be able to handle delays so it is appropriate to maintain

most of the accelerated algorithm presented in the previous section. The difference

is that we assume that the master node selects a node from the available workers

in random to share information and thus the delay introduced in the gradients

is random but bounded τ(k) ≤ B and the gradient is calculated for a portion of

f which corresponds to the certain node fi. We desire to create an incremental

algorithm as in [6] fitting the delayed accelerated algorithm of the previous section.
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Combining these two ideas in an incremental accelerated algorithm we come up

with:

Algorithm 9 Incremental accelerated algorithm for the master-server setting
1: y0 = x0

2: for k = 1 to T do

3: i(k) = U [1,M ]

4: xk+1 = yk−τ(k) − s∇fi(k)(yk−τ(k))

5: yk+1 = xk+1 + βk+1(xk+1 − xk−τ(k))

6: end for

7: Output : xT

where U [1,M ] is a uniform discrete distribution in [1,M] and τ(k) is the delay

at time k.

4.4 Experimental results

To evaluate the performance of the proposed algorithms we have focused on

unconstrained quadratic programming optimization problems because of their

frequent appearance in applications such as portfolio optimization, regression and

decision analysis, and because of the knowledge of the exact solution in closed

form. We are interested in solving optimization problems of the form :

f(x) =
1

2
xTPx+ qx (4.13)

and for the incremental accelerated algorithm for the master-server setting

f(x) =
1

M

M∑
m=1

(
1

2
xTPmx+ qmx

)
(4.14)
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We have chosen to use randomly generated instances, where the matrices Pm

and the vectors qm are generated as explained in [10]. We choose the size of the

network to be a variable in order to show how the general expected delay upper

bound affects the convergence rate. In figure 4–1 we show the convergence rate of

Nesterov’s accelerated algorithm with delay of 3,7 and 15 respectively in a single

node. There is no surprise that when the delay goes up the convergence rate slows

down something that is aligned with the theoretical background that we provided.

We performed 500 trials and we show the logarithmic average of all the tests. Also

we observe a higher oscillation when the delay is increased. This happens due to

the fact that an older value that is further away from the optimal is called back

in the algorithm due to the higher delay and takes more time to wash this value

away.

Figure 4–2 corresponds to experiments with the incremental accelerated

algorithm for the master-server setting with 3, 7 and 15 nodes respectively. In

these results we observe, in a fashion similar as with Nesterov’s algorithm with

delays, that the size of the network and thus the expected delay impacts the

convergence rate. Also we can see that the convergence is in a neighborhood of the

optimal point with some residual error ε such as in [14]. Also we observe that as

the network becomes bigger and the expected delay higher the neighborhood of

convergence gets larger which means larger residual errors. From the simulations

we derive that the convergence rate of the incremental accelerated algorithm

is faster by quite a margin from decentralized mirror descent [1] for the master
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Figure 4–1: Logarithmic error of Nesterov’s accelerated algorithm with delay =
3,7,15

server setting since the plots are showing at least linear convergence. As before we

performed 500 trials and averaged the results.

In figures 4–3, 4–4 and 4–5 we compare the accelerated incremental algorithm

with the incremental proximal gradient method from [6]. In each iteration one

node updates the gradient value for the master server uniformly at random and

the master returns the current value. The trials were repeated 500 times and

we show the average of the results of the error. For this experiment we used a

constant momentum coefficient small enough to be close to the corresponding

coefficient of the incremental method. The incremental proximal gradient method

has a linear convergence rate for the class of strongly convex functions. As

we can see from the figures the accelerated incremental method appears to
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Figure 4–2: Logarithmic error of the incremental accelerated algorithm for the
master-server setting with 3, 7 and 15 nodes

converge faster to the neighborhood of the optimal solution demonstrating, at least

experimentally, that the convergence rate is at least linear with a factor of equal or

less than ρ that we have seen in section 3.2.

52



Figure 4–3: Comparison of error of the incremental accelerated algorithm and the
incremental proximal gradient method for the master-server setting with 3 nodes

Figure 4–4: Comparison of error of the incremental accelerated algorithm and the
incremental proximal gradient method for the master-server setting with 7 nodes
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Figure 4–5: Comparison of error of the incremental accelerated algorithm and the
incremental proximal gradient method for the master-server setting with 15 nodes
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CHAPTER 5
Conclusion

5.1 Summary

In this thesis, we have examined centralized and decentralized algorithms

for convex optimization and observed their strengths and weaknesses. From all

that we have seen we verified that the transition from centralized solutions to

decentralized ones is not simple and requires further assumptions and network

setups. Simple methods like gradient descent are more suited in large scale

networks since the simplicity of each iteration allows the agent to focus on

the communication overhead and not on its own computations. Also we have

seen that it is especially difficult to manage delays in distributed asynchronous

convex optimization and plug and play solutions like the mirror descent which

requires static setups like the master-server setting. The delays and the further

assumptions lead to the fact that up until now there is no optimal algorithm for

the class of convex and strongly convex functions that resides in the decentralized

field.

Our contribution focuses on the creation of an accelerated algorithm for

the master-server network setup with a convergence rate that is optimal for

the class of convex and strongly convex functions. Our aim was to merge the

optimal algorithm for strongly convex functions of the centralized field with

techniques that are used in the decentralized algorithms using at the same time a
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static, star network setup. We managed to provide theoretical proof for constant

delay accelerated algorithm and a framework for distributed delayed convex

optimization. Also the simulation results coincide with the theoretical ones and

provide promising results for the distributed case of master-server network setting.

This thesis also provides insight about the common features of known

centralized algorithms that can work in a decentralized environment. The key

for these algorithms to work is to configure the update step to consider the delayed

value instead for the current value for the computations. For example in mirror

descent the update takes place in the dual space of the gradients where the update

time is set to the delayed time stamp by default. In incremental gradient descent

the whole gradient step is rolled back to the time k − τ(k). Also in the accelerated

algorithm that we introduced the gradient step is rolled back in time and the

auxiliary variable is based around k − τ(k) time stamp. In other words the known

centralized algorithms have to take into account the delay of the gradients and

incorporate them in their respective update steps.

5.2 Future research

According to our contribution the most needed result that is absent from our

research is the theoretical proof for the incremental accelerated algorithm for the

master-server setting. That would set a cornerstone for future endeavors in the

distributed optimization field and provide a framework for future accelerated algo-

rithms for different classes of functions in order for the decentralized algorithms to

achieve optimal convergence rates.
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Furthermore since the network setup that we looked into was limited in the

master-server setting it would be interesting to expand this type of accelerated al-

gorithm to different type of networks, in a fashion similar to the work of Jakovetic

[8], and let notions as consensus be a part of the algorithm and provide analysis

upon that.
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