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ABSTRACT

Doubly-robust estimators have been used extensively for estimating the treat-

ment effect, for their property of being unbiased when either the outcome regression

model or the propensity score model is correctly specified. As the number of data

dimension increases nowadays, little is known about how these methods perform in

high-dimensional data. In this thesis, we aimed to examine the performance of one

doubly-robust estimator, augmented inverse probability weighting (AIPW) estima-

tor, in such data. Several Monte Carlo simulation studies were conducted, and the

treatment effect was estimated under both model specification and misspecification.

Simulation results showed that propensity score estimation was challenging in such

settings. Advanced methods other than multiple logistic regression should be utilized

for propensity score estimation and eliminating imbalance. We also investigated fur-

ther into a high-dimensional propensity score algorithm, a variable selection method

for confounding adjustment in high-dimensional data. We incorporated this algo-

rithm in the estimation process, and explored the optimal value for the number of

variables to adjust for. Finally, we presented a plasmode simulation study based on

a real data set from Clinical Practice Research Datalink, where the effect of post-

myocardial infarction statin use on the rate of one-year mortality was studied.
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ABRÉGÉ

Les estimateurs doublement robustes ont été largement utilisés pour estimer

l’effet du traitement, parce que ils sont sans biais lorsque le modèle de régression du

résultat ou le modèle de score de propension est correctement spécifié. Aujourd’hui

quand le dimension de données augmente, on sait peu la performance de ces méthodes

dans les données en haute dimension. Dans cette thèse, nous avons cherché à exam-

iner la performance d’un estimateur doublement robuste: la pondération par proba-

bilité inverse augmentée (AIPW) dans ces données. Plusieurs études de simulation

de Monte Carlo ont été menes, et l’effet du traitement a été estimé quand les modèles

sont correctement spécifiés ou incorrectement spécifiés. Les résultats de la simulation

ont montré que l’estimation du score de propension était difficile en haute dimension.

Des méthodes avancées devraient être utilisées pour estimer le score de propension

et éliminer les déséquilibres. Nous avons également étudié plus l’algorithme de score

de propension en haute dimensionnel, une méthode de sélection de variables pour

l’ajustement de confusion dans les donnes en haute dimension. Nous avons intégré

cet algorithme dans le processus d’estimation et avons exploré la valeur optimale du

nombre de variables à ajuster. Enfin, nous avons présenté une étude de simulation

de plasmode basée sur des données relles de Clinical Practice Research Datalink, qui

étudie l’effet de l’utilisation de statines sur la mortalité d’un an.
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CHAPTER 1
Introduction and Literature Review

1.1 Introduction

Treatment effect refers to the measure of intervention effect compared to the

non-intervened group. Estimating the treatment effect from observational data has

been a popular topic. Typically, the treatment effect is obtained through perform-

ing randomized controlled trials (RCT), where the control group and the treatment

group share identical features, because the treatment assignment is randomized [1].

Therefore in RCTs, we can simply compare the outcome in the two groups and

make conclusions about the treatment effect. However in reality, RCTs are often

impeded by limited participation, cost, or research ethics [2]. The limitations of

RCT promote the use of observational data, which are readily available as health

records or insurance claim records. Since randomization is not performed in these

data, researchers have been developing approaches for making statistical inference

from observational data. Some of these methods include G-estimation, outcome re-

gression, and marginal structural model via inverse probability weighting (IPW) [3].

Each of these methods requires the correct specification of either the outcome model

or the treatment assignment model.

A special class of estimators takes advantage of and combine both models, mak-

ing the estimators unbiased when either of the two models is correctly specified. This
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property is referred to as “double-robustness”. One early doubly-robust estimator

is augmented inverse probability weighting (AIPW), first proposed by Robins et al.

[4] and further established by Scharfstein et al. [5]. Its doubly-robust property has

been verified both theoretically and practically through simulation [6]. One other

recently proposed doubly-robust method is called targeted maximum likelihood esti-

mation (TMLE), developed by van der Laan and Rubin [7]. TMLE has been shown

to be locally efficient, such that it will achieve minimum variance when both models

are correctly specified.

Many administrative data are high-dimensional, and they may contain hundreds

of diagnostic codes. The performance of these doubly-robust estimators remains un-

certain. In order to achieve an unbiased estimate of treatment effect, one needs a

correct outcome model, or a correct treatment assignment model. However, the high

dimensionality of such data poses challenges in achieving a correctly specified model.

The high-dimensionality also poses difficulty in confounding adjustment. Schneeweiss

et al. proposed an automated algorithm that ranks all the covariates according to

their potential for confounding, based on their association with the exposure and

the outcome [8]. This high-dimensional propensity score algorithm (hdPS) has been

shown to be effective in adjusting for confounding in both point-exposure and time-

varying intervention studies [9, 10].

In the following sections, we introduce the basic ideas and assumptions of causal

inference theory and the common methods in estimating treatment effect. We then
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introduce the concept of doubly-robustness and how this property can provide a more

robust inference on the estimation. Finally, we are going to review the automated

method for variable selection in high-dimensional confounding adjustment.

1.2 Estimating the Causal Effect

1.2.1 Notation

Causal inference is the study of the effect of an exposure on an outcome of in-

terest. In the clinical context, the exposure is typically a medical treatment, and

the outcome is the desired clinical result, for example, if the patient recovers or not.

In observational studies where the treatment is not randomized, valid estimation of

treatment effect is often impeded by “confounding” variables, which are variables

associated with both the exposure and the outcome. The confounding effect needs

to be properly adjusted in order to make an unbiased estimate. The counterfactual

model, developed by Rubin, is a popular approach used in causal inference research.

Suppose we have a covariate vector X, an exposure Z, and an outcome of interest

Y . Z is a binary variable; Z = 1 if the subject is treated, and Z = 0 otherwise. Now,

n independent and identically distributed (i.i.d.) subjects (Yi, Zi,Xi), n = 1, 2, ..., n

are being observed. We denote the outcome of each subject Y0 or Y1, where Y0 is the

response if the subject receives control, and Y1 is the response if the subject receives

treatment. Each subject also has a counterfactual outcome, Y0 or Y1, which is the

outcome it would have been observed if it was assigned with the other treatment.

We would take the average treatment effect (ATE) (denoted as µ throughout) as a
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measure of the causal effect of the treatment, which can be represented as:

µ = E(Y1)− E(Y0) (1.1)

Before we estimate the average treatment effect, we first need to make several as-

sumptions.

1.2.2 Assumptions

Consistency

Because one can only observe either Y1 or Y0 for each individual, we need to

assume that in the counterfactual model, the potential outcome under treatment

Z = z, z = 0 or 1, is equal to the outcome actually observed, which is referred to as

consistency. This can be represented as Y = Y1Z + Y0(1−Z). Consistency assump-

tion could be violated when different versions of treatment have different effects on

the outcome [11].

Stable Unit Treatment Value Assumption

The Stable Unit Treatment Value Assumption (SUTVA) [12] means that there

is no interference between two units, and the treatment assignment does not affect

the outcome of another unit. Under SUTVA, the potential outcome of each subject

only depends on that subject’s treatment and outcome. This could be violated if

“peer effect” is present, where one’s behaviour is influenced by people around him

or her.
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Strong Ignorability

The strong ignorability assumption means that the treatment assignment is in-

dependent of the potential outcome, and only depends on the covariates X, which

can be represented as (Y1, Y0) ⊥⊥ Z|X. This is often referred to as no unmeasured

confounding. We can think of ignorability as the treatment being randomly assigned

if two individual had the same X. This assumption is violated if unknown confound-

ing is present and not adjusted for.

Positivity

We should also assume that the treatment should not be deterministic given

a set of covariates X, and the probability of receiving either treatment should be

positive. That is P (Z = z|X = x) > 0 for all z = 0 or 1,x ∈ X. The positivity

assumption will play a role when estimating the ATE. The positivity assumption

could be violated when certain characteristics of a subject prevent it from receiving

a specific treatment [13].

1.2.3 Estimating ATE: Outcome Regression

Formula 1.1 is a naive estimate of ATE would be the difference between the

average response of the two treatment groups, which can be denoted as:

µ̂ = E(Y |Z = 1)− E(Y |Z = 0) (1.2)

However, this estimator will only be unbiased when treatment assignment is inde-

pendent of the outcome, such as randomized controlled trials, where there is no
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confounding, that is (Y1, Y0) ⊥⊥ Z. In the presence of confounding, the outcome may

be related to the treatment assignment, and thus the expected outcome of subjects

being treated E(Y |Z = 1) may not be equal to the potential outcome E(Y1). The

same goes for the untreated group that E(Y |Z = 0) 6= E(Y0), making the estimator

1.2 biased for ATE. Therefore, we need to adjust for the confounding present in

the covariate matrix X in order to get an unbiased estimate of ATE. Under the no

unmeasured confounding assumption, (Y1, Y0) ⊥⊥ Z|X will hold, and the estimator

µ̂ = E(Y |Z = 1,X)− E(Y |Z = 0,X) (1.3)

conditioning on treatment and covariates will be unbiased.

One way to adjust for the confounding is by regression modeling of the outcome.

Suppose the true regression of the outcome on the treatment and the covariates is

E(Y |Z,X) = α0 + αZZ + α>X (1.4)

where α0 is the intercept, αZ is the coefficient for the exposure Z, and α is the

coefficient vector for X. The coefficients can all be estimated from a multiple linear

regression.
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To see that the outcome regression (OR) modeling consistently estimates the

ATE, we can rewrite E(Y1) in the following way:

E(Y1) = E[E(Y1|X)]

= E[E(Y1|Z = 1,X)]

= E[E(Y |Z = 1,X)]

Similarly, E(Y0) can be re-expressed as E[E(Y |Z = 0,X)]. By pluging in 2.4, formula

2.1 can be simplified to

µ̂OR = E[E(Y |Z = 1,X)]− E[E(Y |Z = 0,X)]

= E[E(Y |Z = 1,X)− E(Y |Z = 0,X)]

= E[(α0 + αZ + α>X)− (α0 + α>X)]

= E(αZ)

= αZ (1.5)

We can directly estimate the ATE through estimating the coefficient of exposure by

fitting the regression model 1.4.

1.2.4 Estimating ATE: Inverse Probability Weighting

Another way to estimate the ATE is by inverse probability weighting (IPW).

First, we define the probability of being treated as the propensity score, denoted e(X)

[14].

e(X) = P (Z = 1|X) (1.6)
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As the positivity assumption stated previously, the propensity score should be be-

tween 0 and 1. In practice, the propensity score can be estimated via a logistic

regression, shown as the model below.

logit(e(X)) = β0 + β>X (1.7)

where logit(x) = log( x
1−x).

Other methods to estimate the propensity score have also been proposed; for

example, McCaffrey et al. used a generalized boosted model (GBM) to estimate it

[15]. GBM is a boosting method that incorporates multiple regression trees, and

can estimate a smooth function of many covariates by putting together many simple

functions [16]. It is a data-adaptive method and thus avoids the risk of possible

model misspecification of the propensity score. Through a case study in the effect

of substance abuse treatment on adolescent probationers, the authors found that

propensity score estimated by GBM eliminated the imbalance in the data set, and

captured the nonlinear relationship in the covariates while linear logistic regression

failed to.

After obtaining the estimated propensity score, several propensity score-based

methods can be used to adjust for the confounding. IPW, one such one, incorporates

the inverse of propensity score as the weight, and the resulting estimator for ATE is

µ̂IPW =
1

n

n∑
i=1

ZiYi

e(Xi, β̂)
− 1

n

n∑
i=1

(1− Zi)Yi

1− e(Xi, β̂)
(1.8)
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To see its unbiasedness, we can take the expectation of the first half of the IPW

estimator:

E
[ 1

n

n∑
i=1

ZiYi

e(Xi, β̂)

]
= E

[ 1

n

n∑
i=1

ZiYi
P (Zi = 1|Xi)

]
= E

[ ZY

P (Z = 1|X)

]
= E

[ Z

P (Z = 1|X)
(Y1Z + Y0(1− Z))

]
= E

[ Z

P (Z = 1|X)
Y1

]
= E

[ E(Z|Y1,X)

P (Z = 1|X)
Y1

]
by iterated expectation

= E
[ E(Z|X)

P (Z = 1|X)
Y1

]
by no unmeasured confounding assumption

= E
[P (Z = 1|X)

P (Z = 1|X)
Y1

]
= E(Y1) (1.9)

Similarly, we get the second half E
[
1
n

∑n
i=1

(1−Zi)Yi

1−e(Xi,β̂)

]
= E(Y0). Therefore, µ̂IPW =

E(Y1)− E(Y0), and it is an unbiased estimator for ATE.

Besides IPW, we can use other propensity score based methods to adjust for

confounding. For example, propensity score matching is also commonly used. After

obtaining the propensity score for each individual, each individual in the treated

group will be matched to one in the control group and vice versa, according to their

propensity score. Matching is often achieved by 1-nearest neighbour. One should

check that the covariates are balanced in the matched sets, which can be evaluated
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through standard mean difference (SMD), defined as the absolute mean difference

divided by the pooled standard deviation. Once we have the matched pairs, the

treatment effect can be evaluated by taking the mean of the difference of the out-

come between the treated group and their untreated pair, which takes the form

µ̂ = 1
n

∑
i∈{Zi=0}(Y

′
i −Yi) + 1

n

∑
i∈{Zi=1}(Yi−Y ′i ), where Yi and Y ′i are matched pairs.

Similarly, stratification can also be performed, according to the quantiles of es-

timated propensity scores, as êi are divided into qj strata,j = 1, ..., Q [17]. Within

each stratum, the difference of the mean between the two groups will be calculated,

and the treatment effect will be the weighted average of the mean differences across

all the strata, where the weights are based on the number of observations in each

stratum, which can be expressed as µ̂ =
∑Q

j=1 µ̂j
nj

n
, where µ̂j represents the stratum-

specific ATE, and nj represents the number of individuals in stratum qj.

1.3 Double-Robustness

Both outcome regression modeling and inverse probability weighting depend on

the correct specification of the regression modeling and the propensity score respec-

tively. If we take advantage of these two models, then we will be able to achieve an

unbiased estimation of ATE when either of these two models is correctly specified.

This is referred to as double-robustness.
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1.3.1 Augmented Inverse Probability Weighting

Robins et al. incorporates both of these two models, and augments the terms in

the IPW estimator with an expression involving outcome regression [4], which thus

can be called augmented inverse probability weighting (AIPW) estimator. It can also

be shown that AIPW is locally efficient when either of the two models is correctly

specified.

The forms of this doubly-robust estimator is

µ̂AIPW =
1

n

n∑
i=1

[
ZiYi

e(Xi, β̂)
− {Zi − e(Xi, β̂)}

e(Xi, β̂)
m1(Xi, α̂1)

]

− 1

n

n∑
i=1

[
(1− Zi)Yi

1− e(Xi, β̂)
− {Zi − e(Xi, β̂)}

1− e(Xi, β̂)
m0(Xi, α̂0)

]
(1.10)

where m1(Xi, α̂1) = E(Yi|Zi = 1,Xi), m0(Xi, α̂0) = E(Yi|Zi = 0,Xi)

To see its doubly-robust property, we consider the following two situations. In

all cases, we will only prove the first half of AIPW is an unbiased estimator for E(Y1).

The second half of AIPW can be shown to be the unbiased estimator of E(Y0) simi-

larly. Combining the two, we will be able to show that AIPW unbiasedly estimates

ATE.

1) When the outcome regression model is correctly specified, but the propensity score

model is misspecified

11



Under the misspecification of the propensity score model, the propensity score esti-

mated does not equal to its true propensity score:

e(Xi, β̂) 6= e(Xi) = E(Zi = 1|Xi)

Taking the expectation of the first part of 2.10:

E

[
1

n

n∑
i

[ ZiYi

e(Xi, β̂)
− {Zi − e(Xi, β̂)}

e(Xi, β̂)
m1(Xi, α̂1)

]]

= E

[
ZY

e(X, β̂)
− {Z − e(X, β̂)}

e(X, β̂)
m1(X, α̂1)

]

= E

[
ZY

e(X, β̂)

]
− E

[
{Z − e(X, β̂)}

e(X, β̂)
m1(X, α̂1)

]
(1.11)

Now consider the first part:

E

[
ZY

e(X, β̂)

]
= E

[
ZY1

e(X, β̂)

]
from 2.9

= E

[
E
( ZY1

e(X, β̂)

∣∣∣Y1,X)] by iterated expectation

= E

[
E(Z|Y1,XY1
e(X, β̂)

]

= E

[
E(Z|XY1
e(X, β̂)

]

= E

[
Y1e(X)

e(X, β̂)

]
(1.12)
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The second part can be simplified to:

E

[
{Z − e(X, β̂)}

e(X, β̂)
m1(X, α̂1)

]
= E

[
{Z − e(X, β̂)}

e(X, β̂)
E(Y |Z = 1,X)

]

= E

(
E
[{Z − e(X, β̂)}

e(X, β̂)
E(Y |Z = 1,X)

∣∣∣Y1,X])

= E

(
E(Z|Y1,X)− e(X, β̂)

e(X, β̂)
E(Y |Z = 1,X)

)

= E

(
{E(Z|X)− e(X, β̂)}

e(X, β̂)
E(Y1|X)

)

= E

(
e(X)− e(X, β̂)

e(X, β̂)
E(Y1|X)

)

= E
( e(X)

e(X, β̂)
E(Y1|X)

)
− E(E(Y1|X))

= E
( e(X)

e(X, β̂)
Y1

)
− E(Y1) (1.13)

Combining 2.12 and 2.13, we get the first part of AIPW is unbiased for E(Y1):

1

n

n∑
i

[
ZiYi

e(Xi, β̂)
− {Zi − e(Xi, β̂)}

e(Xi, β̂)
m1(Xi, α̂1)

]

= E
( Y1e(X)

e(X, β̂)

)
−

[
E
( e(X)

e(X, β̂)
Y1

)
− E(Y1)

]

= E(Y1) (1.14)

Therefore, AIPW is an unbiased estimator for ATE, even when the propensity score

is misspecified.
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2) When the propensity score model is correctly specified, but the outcome regression

model is misspecified

Under the misspecification of the outcome regression model,

m1(X, α̂1) 6= E(Y |Z = 1,X)

From 2.11, the first part is the same as IPW, and equals E(Y1) as shown in 2.9.

Therefore, we just need to prove the second part in 2.11 equals 0.

E

[
{Z − e(X, β̂)}

e(X, β̂)
m1(X, α̂1)

]
= E

(
E
[{Z − e(X, β̂)}

e(X, β̂)
m1(X, α̂1)

]∣∣∣Y1,X)

by iterated expectation

= E

(
m1(X, α̂1)E

[{Z − e(X, β̂)}
e(X, β̂)

∣∣∣Y1,X])

= E

(
m1(X, α̂1)

E(Z|Y1,X)− e(X, β̂)

e(X, β̂)

)

= E

(
m1(X, α̂1)

E(Z|X)− e(X, β̂)

e(X, β̂)

)

by no unmeasured confounding

= E

(
m1(X, α̂1)

e(X, β̂)− e(X, β̂)

e(X, β̂)

)

= 0 (1.15)

Taking 2.11 and 2.12 together, we obtain that the first part is unbiased for E(Y1)

even when the outcome regression model is misspecified.
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1.3.2 Alternative Doubly-Robust Estimators

In 2007, Kang and Schafer argued that the doubly-robust estimator is sensitive

to even slight model misspecification, and is outperformed by the outcome regression

estimator in such case [18]. Therefore, alternative forms of doubly-robust estimators

have been proposed besides AIPW. Cao et al. published a paper in 2009, aiming

to improve the efficiency of the existing doubly-robust estimator [19]. They found

that the usual doubly-robust estimator does not achieve minimum variance using the

least square estimator below, unless the outcome model m(X,α) is correct.

n∑
i=1

Rim(Xi,α)[Yi −m(Xi,α)] = 0 (1.16)

Note: In the paper by Cao et al., the context is to obtain an unbiased estimate of

the outcome when some outcomes are not observed. In this missing data context,

the missing mechanism (missing indicator represented by Ri, propensity score rep-

resented by π(Xi)) can be viewed similarly to the treatment mechanism.

They proposed an alternative way to estimate α in the outcome regression

model, using the estimating equation below:

n∑
i=1

Ri

[1− π(Xi)

π2(Xi)

]
m(Xi,α)[Yi −m(Xi,α)] = 0 (1.17)

In this way, AIPW will achieve the minimum asymptotic variance even if m(X,α)

is misspecified. Detailed proof can be found in Cao et al. [19]
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1.3.3 Targeted Maximum Likelihood Estimation

van der Laan et al. introduced another doubly-robust method called targeted

maximum likelihood estimation (TMLE) [7]. TMLE also relies on the two models

discussed above: the outcome model and the propensity score model. The first step

is to get an initial estimate of the two models. The fitting of these models can be

achieved via logistic regression, or the data-adaptive Super Learner [20]. The second

step of TMLE is to add a fluctuating term εh(Z,X) on the initial estimate, where

h(Z,X) is a nuisance parameter depending on the influence curve of the parameter

of interest, and equals 1(Z=z)
P (Z=z|X=x)

in the case of binary treatment; the fluctuation

variable ε is obtained by fitting a regression model of Y on h(Z,X) with an offset

of the initial outcome model. This step corrects for any bias in the model, while

increasing the variance minimally, as it solves the efficient influence curve estimating

equation [21]. The treatment effect is then obtained by taking the mean of the coun-

terfactual outcomes in the previous step. It has been shown that TMLE achieves

minimal variance bound when both models are correctly specified.

Pang et al. compared the performance of TMLE with inverse probability weight-

ing [22]. The authors first showed that the two estimators behaved similarly when

only one confounding variable, one instrumental variable, one baseline predictor, and

one noise variables are present. When the number of confounding variables becomes

large, the positivity assumption may be violated due to extreme values of the propen-

sity score. This violation introduced bias for both estimators, and TMLE was more

sensitive to such violation due to non-convergence. TMLE, being doubly-robust, still
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managed to be unbiased when a rich outcome model is specified. Truncating the ex-

treme values of estimated propensity scores resulted in slightly larger bias but better

precision for IPW, but reduced both bias and standard error for TMLE estimation,

and avoided numerical problems.

1.4 High-dimensional Propensity Score Adjustment

Health claim databases are usually high-dimensional, and have a large number

of covariates. It is challenging for investigators to gain knowledge about each vari-

able and identify potential covariates to control for confounding from a large pool

[23]. Although traditional methods like regularized regression is capable of variable

selection and can be used to eliminate confounding bias in some cases, it is not a

method specialized for confounding adjustment, and may shrink the coefficients on

confounders to achieve minimum prediction error [23], and therefore may not be

able to capture the association between the variables and the treatment, and will

create bias [24].

1.4.1 High-dimensional Propensity Score

In 2009, Schneeweiss et al. proposed an automated multistep propensity score-

based algorithm for confounding adjustment [8]. This proxy adjustment method

selects the covariates that need to be adjusted, and takes the following steps:

1. Specify Data Sources

The first step is to manually specify the data sources, and divide them into p
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clusters (dimensions), based on diagnostic codes, laboratory results, or other

electronic health record information. Baseline covariates, such as age, gender,

and race, are also manually identified.

2. Identify Empirical Candidate Covariates

In each data dimension, codes (covariates) are sorted according to their preva-

lence in all the patients. The top n codes are selected. For each code, the

prevalence is defined by the proportion of patients having the code at least

once in the predefined time period of interest.

3. Assess Recurrence

For each code identified in step 2, assess how frequent each code occurred for

each patient and create the following three binary variables: “once” if the

code occurred at least once for the patient, “sporadic” if the code occurred

more than the median times, and “frequent” if the code occurred more than

the 75th percentile. These covariates replace the original codes, and can be

referred to as hdPS covariates. This step results in a total of 3n covariates

within each data dimension.

4. Prioritize Covariates

The hdPS covariates are prioritized based on its potential of confounding, by

measure the association with the exposure, and the association with the out-

come. This is modeled by the Bross formula shown below [25, 26]:

BiasM =
PC1(RRCD − 1) + 1

PC0(RRCD − 1) + 1
(1.18)
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In the above formula, BiasM refers to the multiplicative bias, a measure of

potential confounding impact; PC1 = P (X = 1|Z = 1), PC0 = P (X = 1|Z =

0); RRCD = P (Y=1|X=1)
P (Y=1|X=0)

.

5. Select Covariates

After ranking the hdPS covaraites according to the BiasM , we select the top

k covariates for adjustment. k serves as a tuning parameter.

6. Estimate Exposure Propensity Score

The propensity score will be estimated via multivariate logistic regression or

other methods as discussed in section 2.1.3, conditional on both the baseline

covaraites and the hdPS covariates.

7. Estimate ATE

Propensity score-based methods can be applied to estimate the ATE.

In the paper by Schneeweiss et al., they applied the proposed hdPS adjustment

method to three study cohorts from healthcare claims data:

1) The use of selective Cox-2 inhibitor on severe gastrointestinal (GI) complication

versus nonselective nonsteroidal anti-inflammatory drugs (NSAIDs). Confounding

may conceal this protective effect and move it towards the null.

2) The effect of statin use on the mortality rate of elderly people. Confounding may

exaggerate this effect and move it away from the null.

3) The association between influenza vaccination and the risk of hip fracture in el-

derly people, which has a known null association.
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They estimated the relative risk (RR) of the treatment effect in each study, with

and without hdPS, as well as unadjusted RR, and compared the results from these

study cohorts with that from randomized controlled trials. In the Cox-2 inhibitor

study, the use of selective Cox-2 inhibitor becomes more protective after adjustment

for baseline covariates (RR = 0.94), compared to the nonadjusted RR=1.09. Adding

hdPS covariates for adjustment results in an estimate further towards a protective

effect (RR = 0.86). Similarly, in the study of statin use on 1-year mortality, adjust-

ing for baseline covariates gives a less protective effect of RR=0.80, compared to the

nonadjusted RR=0.56. Adding hdPS covariates for adjustment gives an estimate

further closer to null (RR=0.86), which is consistent with the results from RCT. In

the third example, the nonadjusted RR is 0.93, suggesting a slightly protective effect,

while adjusting for baseline and hdPS covariates suggests null association (RR=1.02).

In this algorithm, one tuning parameter, the number of covariates to adjust after

ranking, plays an important role and needs to be chosen carefully. Too few covariates

may be insufficient for eliminating confounding bias, while adding more covariates

could include instrumental variables, which are variables that are associated with

the treatment assignment but not the outcome, leading to a high variance [23].

One possible solution to this is collaborative TMLE (cTMLE), which is an ex-

tension of TMLE,, proposed by van der Laan and Gruber [27]. cTMLE is a data-

adaptive approach that considers a number of propensity score models and the corre-

sponding TMLE estimators, and then selects the best one that minimizes a specified
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loss function using cross-validation [27]. It improves the bias-variance tradeoff by

only adjusting for the variables that are necessary for controlling confounding, and

thus avoids inflating the variance.

1.4.2 Application hdPS: Adjustment of Confounding by Indication

Several researchers have been using the high-dimensional propensity score al-

gorithm to see its performance on adjustment for confounding by indication. Con-

founding by indication refers to the phenomenon that people taking the treatment

may undergo higher risks than people who are untreated, because treatments will

only be given to sick people. It is commonly seen in observational studies [28].

Guertin et al. studied the adjustment for confounding by indication using hdPS,

and compared it with the traditional propensity score methods [28]. They utilized a

pharmaceutical claim database and created a full cohort of diabetes-free statin users,

and studied the association between the amount of statin use (divided into higher po-

tency and lower potency as exposure) and triggering of diabetes. They then created

two matched sub-cohorts, based on the propensity score estimated using manually

selected covariates, and hdPS selected covariates. As the measure of balance in the

cohort, the authors used the absolute standardized differences (ASDD), which is

the absolute difference between the two groups over the pooled standard deviation.

From their results, both matched sub-cohorts showed greater balance than the full

cohort, and the hdPS-matched sub-cohort has the lowest average ASDD among all

covariates. In addition, both the PS-matched and hdPS-matched sub-cohorts gave
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a similar odds ratio (1.10 and 1.13 respectively) of developing diabetes with higher

statin use, while the unadjusted odds ratio estimated from the full cohort (OR =

1.22) was significantly higher than those estimated from matched cohorts.

This study showed that hdPS would give better-matched cohorts, and could

identify the confounding variables that were unknown to the investigators.

1.5 Machine Learning in Causal Inference

Besides the methods discussed above, many machine learning techniques have

also been incorporated to make better causal estimations. Here, we present some

recent improvements using machine learning.

Estimating Propensity Score Using Super Learner

Pirracchio et al. employed Super Learner (SL) to estimate the propensity score

[29]. Super Learner is an ensemble method that uses a weighted average of multi-

ple machine learning methods to achieve best prediction when minimizing the loss

function through cross validation [30]. The candidate algorithms in the paper in-

cluded regression methods such as logistic regression, stepwise regression, penalized

regression, Bayesian generalized linear model; nonparametric classification methods

such as k-nearest neighbour, support vector machine, classification and regression

trees (CART); and neural networks. Pirracchio et al. performed a simulation study,

and compared the performances of SL-estimated versus logistic regression-estimated

propensity score, in propensity score estimation, balance in covariates, distribution
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of weights, treatment effect estimation, and the performance of variance estima-

tors. Their simulation results showed that both logistic regression-estimated and

SL-estimated exhibited balance in covariates, but in the case of model misspecifica-

tion, SL is more robust in removing bias and improve balance than logistic regression.

Comparing hdPS with Machine Learning Methods

Karim et al. compared the effectiveness of hdPS in confounder selection with

several machine learning methods [31]. The confounders were selected via hdPS,

or LASSO/elastic net/random forest based on the association between covariates

and outcome. The authors also considered a hybrid method, where hdPS selected

the initial covariates, and then the covariates were further reduced through LASSO

or elastic net. The simulation results suggested that both hdPS and the machine

learning methods performed well in terms of bias and mean squared error, although

the covariates selected by hdPS were quite different from those selected by random

forest. The hybrid methods performed better in these scenarios, giving a smaller

MSE.

Schneeweiss et al. also compared hdPS with other methods such as LASSO,

random forest, Bayesian logistic regression in confounder selection [32]. They also

considered replacing RRCD in the Bross formula (2.18) by adjusting for demographic

covariates, or via LASSO or Bayesian logistic regression. Their analysis on five co-

hort studies showed that all other methods did not improve the estimate of hdPS
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significantly, other than using Bayesian logistic regression to estimate RRCD. In ad-

dition, although very different in the variables selected, LASSO and random forest

propensity score models gave a similar estimate as hdPS.

Improving hdPS Estimation

The number of selected covariates k after arranging all the variables according

to the multiplicative bias is a tuning parameter. The performance metric for model

selection depends frequently on how much balance is achieved after propensity score

adjustment [33]. Wyss et al. proposed an alternative data-adaptive method for

model selection based on cross-validation and minimizing the prediction error for

treatment assignment [33].

To achieve this, they combined the hdPS with the ensemble method Super

Learner, as introduced previously. Varying numbers of k ∈ {25, 100, 200, 300, 400, 500}

selected hdPS covariates were incorporated into the propensity score model, which

was estimated using Super Learner. They also compared the results with hdPS

covariates followed by logistic regression to estimate the propensity score, LASSO

regression to estimate the outcome model using k = 500 hdPS covariates, as well as

collaborative TMLE. The authors used plasmode simulation for analysis, which is a

simulation method based on real data sets (plasmode simulation will be described

more in detail in Chapter 5).

24



From the simulation results, the authors were able to show that rather than

using logistic regression to estimate the propensity score adjusting for the hdPS

covariates, Super Learner avoided overfitting of the propensity score by giving the

smallest loss (negative log-likelihood in this case). Although it is still unclear how

overfitting propensity scores relates to causing imbalance among covariates, the au-

thors showed that severe overfitting resulted in the increase of bias and mean squared

error (MSE), and Super Learner-estimated propensity score indeed produces smaller

MSE and removes more bias when estimating the treatment effect.

1.6 Objective

We have presented a comprehensive literature review to provide an overview of

causal inference methods that are further examined in this thesis, as well as a con-

founder selection method for high-dimensional data. The objective of this thesis is

to evaluate the performance of doubly-robust estimator and verify the model specifi-

cations in a high-dimensional point-exposure study through simulations. Its doubly-

robust property will be examined under model misspecifications. The simulation

methods proposed in this thesis can also be extended to evaluate other estimators for

high-dimensional data. We also aim to explore the practical use of high-dimensional

propensity score algorithm. Rassen et al. studied the optimal number of covariates

selected through four pharmacoepidemiologic cohort studies [34]. They found that

the adjusting for the more than 300 hdPS-covariates, the estimated odds ratio would

not change compared to the estimated odds ratio when adjusting for a full set of

covariates. We would like to extend their analysis, and explore this optimal number
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in simulation settings.

This thesis is structured in the following way. Chapter 2 and 3 present several

simulation studies for generating high-dimensional data and verify the performance

of the estimators of the treatment effect. The steps for simulation are described, and

the simulation results are displayed. In addition, the use of the high-dimensional

propensity score algorithm in confounder selection is also demonstrated in Chapter

3. Chapter 4 provides a simulation study based on a real data set, which provides

more insights into the performance of treatment effect estimators in analyzing real

data. In Chapter 5, we discuss the findings, and outline the limitations of this work

and suggestions for future work.

26



CHAPTER 2
Continuous Outcome

In this chapter, we present a simulation study of estimating the average treat-

ment effect (ATE) for continuous responses when the number of covariates is large,

using outcome regression modeling, inverse probability weighting (IPW) estimator,

and augmented inverse probability weighting (AIPW) estimator.

2.1 Simulation Protocol

2.1.1 Covariates Generation

Consider a set of p covariates with sample size n. All the covariates are generated

through Monte Carlo simulation. All the covariates are generate from a standard

normal distribution with mean equal to 0 and variance equal to 1.

Xi ∼ N(0, 1)

For simplicity, the covariates are chosen to be continuous. However, one can

easily extend the simulation to binary covariates. The following analysis and results

would not change.

The covariates are then divided into three following groups:

a) Baseline predictors (BP) that only predict the outcome (Y)

b) Instrumental variables (IV) that only predict the exposure (Z)
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c) Confounders (C) that predict both the exposure and the outcome

The relationships between the covariates, the exposure, and the outcome can be

visualized in the following directed acyclic graph (DAG).

IV Z

C

BP

Y

Figure 2–1: Directed Acyclic Graph of the Simulation Mechanism

In this simulation study, we choose the number of covariates p ∈ {10, 100, 500},

which mimics a real pharmacoepidemiology study. In the following table, we outline

the number of BP, IV, and C that we chose for each case. The sample size n is chosen

to be 5000 in all cases. In each case, the simulation is repeated 500 times, and the

results presented below are based on these 500 repeats.
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Number of covariates BP IV C
10 3 3 4
100 65 30 5
500 350 100 50

Table 2–1: Number of BP, IV and C in the Simulation Study with Different Number
of Covariates

2.1.2 Exposure Generation

To generate the exposure, we first obtain the probability of being exposed for

each individual (ie. the propensity score e(Xi)) using the following model:

e(X) = expit(β0 + β>XZ)

where expit(·) = exp(·)
1+exp(·)

The coefficients β0and β in the above model were generated through a uniform

distribution Unif(−0.25, 0.25). The predictor XZ is the matrix containing the co-

variates IV and C.

To make sure that the positivity assumption of propensity score model is met,

we need to check that there are no extreme values in e(X) that are close to 0 or

1. The plot of e(X) in one simulated data set with p = 100 is shown below. Other

simulation studies with different numbers of covariates have similar patterns. In this

certain data set, the minimum value of e(X) is 0.034, while the maximum value is

0.964. The median value is 0.47. Therefore, the simulated propensity score shows a

normally distributed pattern and there are no extreme values to violate the positivity
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assumption.

Figure 2–2: Distribution of Propensity Score

After obtaining the propensity score, the binary exposure is generated through a

Bernoulli distribution with p = e(Xi). The prevalence of the treatment in the above

particular data set is 0.474.

2.1.3 Outcome Generation

The continuous outcome Y was generated through linear combination of the

treatment Z, and the covariate matrix including BP and C, as shown below.

Y = α0 + αZ ∗ Z + α>X + ε

The coefficients α0 and α are generated from a uniform distribution Unif(−5, 20).

The coefficient αZ was set to be 10, which corresponds to the true average treatment
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effect that we would estimate. The error term ε ∼ N(0, 1).

2.2 Simulation Results

We estimated the treatment effect in the simulated data set using the three

methods discussed in Chapter 1: IPW, outcome regression modeling, and AIPW.

We also compared their performances under model misspecfication, including mis-

specifed propensity score model and misspecified outcome regression model. The

results are listed in table 2-2 below.

As p gets larger, we can see the trend of the performances of the three estimators

in high-dimensional data. For comparison, the non-adjusted average treatment effect

is listed in table 2-2, which is E[Y1]− E[Y0].

2.2.1 Outcome Regression

Estimating the average treatment effect via outcome regression modeling relies

on the correct specification of the outcome regression model, which is a linear regres-

sion model adjusting for all the covariates, including baseline predictors, instrument

variables, and confounders. We also compared its performance when the regression

model was misspecified. In the case of misspecified outcome model, a large portion

of the covariates was left out in the regression model. Only the treatment and a

small number of randomly selected covariates (3 when p = 10, 5 when p = 100, and

7 when p = 500) were included in the linear regression model.
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The results for outcome regression modeling estimation are summarized in table

2-2. From the results, the outcome regression modeling gave an unbiased estimate

of ATE, even when the number of covariates became large. It also displayed a small

standard error and mean squared error. The coverage probabilities were all close to

95% as expected. However, it did rely on the correct specification of outcome model.

When the data dimension was high, the estimate of ATE would not only be biased,

but also had high variance when the outcome model is misspecified.

2.2.2 Inverse Probability Weighting

IPW estimation relies on the correct specification of the propensity score model.

It was estimated using logistic regression by including all the covariates in the data

set. Similar to the case of misspecified outcome model, when the propensity score

model is misspecified, the logistic regression model of estimating the propensity score

only included a small part of randomly selected covariates.

The results for IPW estimation are summarized in table 2.2. The IPW estimator

gave a consistent estimation when p = 10 and 100, and when the propensity score

model was misspecified, it was indeed biased. When in a higher dimension (p = 500),

its estimate showed a slight bias, although still small. It suggested that the specifi-

cation of propensity score can be challenging in high dimensionality. Larger sample

size may help reduce the bias. Notice that IPW estimation gave larger standard

errors, compared to outcome regression, and hence large MSE, even when the bias

was small. McCaffrey et al. argued that the inclusion of more instrumental variables
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Bias(%) SE MSE CP
p = 10

Non-adjusted -3.70(-37.03%) 0.906 14.5 1.6%

OR 0.00242(0.02%) 0.0287 0.0008263 96%
OR(misspecified outcome model) -3.69(-36.90%) 0.676 14.1 0.2%

IPW -0.00270(-0.03%) 0.0812 0.00659 95.8%
IPW(misspecified PS model) 0.862(8.62%) 0.785 1.36 80.6%

AIPW 0.00232(0.02%) 0.0288 0.000831 96.4%
AIPW(misspecified PS model) 0.00238(0.02%) 0.0287 0.000830 96.2%

AIPW(misspecified outcome model) 0.000117(0.00%) 0.0635 0.00403 95.2%
AIPW(both models misspecified) -0.0281(-0.28%) 0.562 0.315 95.2%

p = 100
Non-adjusted -0.678(-6.78%) 2.18 5.20 93%

OR -0.00110(-0.01%) 0.0305 0.000931 94.4%
OR(misspecified outcome model) -0.663(-6.63%) 2.16 5.08 93%

IPW 0.0266(0.27%) 0.799 0.637 95.2%
IPW(misspecified PS model) -0.668(-6.68%) 2.17 5.14 93.2%

AIPW -0.000285(0.00%) 0.0314 0.000983 95%
AIPW(misspecified PS model) -0.00110(-0.01%) 0.0305 0.000930 94.4%

AIPW(misspecified outcome model) 0.0187(0.19%) 0.772 0.595 95.4%
AIPW(both models misspecified) -0.662(-6.62%) 2.16 5.11 92.8%

p = 500
Non-adjusted 2.62(26.17%) 5.91 41.7 92.4%

OR 0.00231(0.02%) 0.0355 0.00126 94.8%
OR(misspecified outcome model) 2.34(23.43%) 5.91 40.3 92.8%

IPW -0.132(-1.32%) 17.9 319 95.2%
IPW(misspecified PS model) 2.34(23.38%) 5.94 40.7 92.6%

AIPW 0.00426(0.04%) 0.0877 0.00769 97.4%
AIPW(misspecified PS model) 0.00226(0.02%) 0.0354 0.00126 94.6%

AIPW(misspecified outcome model) 0.0985(0.99%) 18.4 336 96.4%
AIPW(both models misspecified) 2.35(23.5%) 5.93 40.7 92.8%

SE: Standard error; MSE: Mean squared error; CP: Coverage Probability; OR: Outcome regression; IPW:

Inverse probability weighting; PS: Propensity score; AIPW: Augmented inverse probability weighting

Table 2–2: Estimated ATE for Different Numbers of Covariates
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in the logistic regression model for estimating propensity score increased the mean

squared error [15].

2.2.3 Augmented Inverse Probability Weighting

Augmented inverse probability weighting estimation remains unbiased when ei-

ther the propensity score (PS) model or the outcome regression (OR) model is cor-

rectly specified, and therefore has the doubly-robust property. However, it will be

biased when both models are misspecified. We will explore this property of AIPW

in different data dimensions in this section. The simulation results for the AIPW

estimation are shown in table 2-2. From the results, we can see that the AIPW

estimator did have the double-robustness property in that it was still unbiased for

estimating ATE when either the propensity score model or the outcome regression

model is misspecified. When one of the two models was misspecified, the results of

AIPW estimation became very similar to the estimation using the other remaining

model alone for both bias and standard error, because now AIPW relied solely on

the correct specification of the remaining model. This is the case where at p = 500,

AIPW estimate was slightly biased when outcome regression was misspecified, similar

to the case of IPW, because now AIPW relied on the propensity score model, which

logistic regression failed to specify under high dimension. In addition, when both

models were misspecified, AIPW failed to give an unbiased estimate, and the bias

increased greatly as p got larger, from 0.28% when p = 10 to 23.5% when p = 500.
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2.3 Correlated Covariates

2.3.1 Correlation Structure

In a real study, the covariates are unlikely to be independent of each other.

Therefore it is of interest to know how well the estimators can handle correlation. We

use the simulation study with p = 100 as an example to demonstrate the performance

of AIPW in correlated covariates. The covariates were first generated in the same

way as described above. Correlation was further generated among the covariates,

through linear combination, similar to the method used by Setoguchi et al. [35].

Let X1−X30 be the IV, X31−X35 be the C, and X36−X100 be the BP. We introduce

the following linear combinations:

X1 = X1 + 0.2 ∗X31 X2 = X2 + 0.9 ∗X32

X3 = X3 + 0.2 ∗X33 X4 = X4 + 0.9 ∗X34

X36 = X36 + 0.2 ∗X31 X37 = X37 + 0.9 ∗X32

X38 = X38 + 0.2 ∗X33 X39 = X39 + 0.9 ∗X34

The exposure and outcome were then generated in the same way.

2.3.2 Results

We applied outcome regression modeling, IPW and AIPW to estimate the ATE

in this data set. The results are summarized in table 2.3 below.
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Non-adjusted Outcome Regression
specified misspecified

Bias(%) -0.642(6.42%) 4.21 ∗ 10−4(0.00%) -0.141(-1.41%)
SE 2.28 0.0303 2.21

MSE 5.59 0.000914 4.88
CP 94.4% 94.8% 94%

IPW
specified misspecified

Bias(%) 0.0161(0.16%) -0.546(-5.46%)
SE 0.736 2.33

MSE 0.540 5.71
CP 94.6% 94.6%

AIPW
both specified PS misspecified OR misspecified both misspecified

Bias 2 ∗ 10−5(0.00%) −4.71 ∗ 10−4(0.00%) 0.0145(0.15%) -0.313(-3.13%)
SE 0.0309 0.0304 0.0692 2.24

MSE 0.000955 0.000921 0.478 5.12
CP 95& 94.8& 94& 94.8&

Table 2–3: Estimated ATE for Correlated Data, p = 100

Overall, the estimated ATE of the correlated data showed a similar pattern

compared to data where covariates are linearly independent. The outcome regres-

sion and IPW both give an unbiased estimate of ATE when the regression model is

correctly specified respectively, but they will be biased if the models are misspeci-

fied. The outcome regression also gives a more efficient estimate than IPW in that

the standard error of outcome regression modeling is much smaller than that of IPW.
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AIPW also gives an unbiased estimate of ATE, when either outcome regression

model or propensity score model is correctly specified, although the bias is slightly

higher when the outcome regression model is misspecified, due to the same reason

explained in the previous section.

Here, we presented an example of how these estimation methods perform in high-

dimensional correlated data. However, the correlation structure in this example is

relatively simple. The performance of these estimators in data with more complex

correlation structure, and larger numbers of covariates can be further explored.

In this chapter, we described a simulation study and analyzed the performance of

AIPW in estimating ATE on continuous outcomes. However, in many observational

studies, the outcome of interest is binary, such as mortality rate or recovery rate.

We would like to extend our analysis to binary outcomes in the following chapter.
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CHAPTER 3
Binary Outcome

In this chapter, we are going to discuss strategies to estimate binary treatment

effect, and present a simulation study to estimate the treatment effect using methods

introduced previously.

3.1 Measure of Treatment Effect: Odds Ratio

In the case of binary outcomes, although it is still possible to estimate the

treatment effect via the difference between groups, it is more common to use odds

ratio to describe the treatment effect.

For the following 2× 2 contingency table:

Occurrence (Y=1) No Occurrence (Y=0)
Exposed (Z=1) a b

Unexposed (Z=0) c d

The odds ratio (OR), denoted θ is defined as the ratio of the odds of the out-

come of interest occurring when exposed to that when unexposed, ie. θ = Ω1/Ω0,

where Ω is the odds parameter, which can be estimated by dividing the number of

occurrence by the number of no occurrence. Therefore, from the contingency table,

the odds ratio can be estimated by θ̂ = a/c
b/d

= ad
bc

. An odds ratio of 1 means that

there is no association between the exposure and the outcome. An odds ratio larger

than 1 means that the exposure gives a higher odds of outcome occurring, and vice
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versa.

The above formula evaluates the crude odds ratio. When a third variable is

present, the odds ratio can be evaluated marginally, ignoring the third variable, or

conditionally, on fixed levels of the third variable.

θcrude =
P (Y = 1|Z = 1)× P (Y = 0|Z = 0)

P (Y = 1|Z = 0)× P (Y = 0|Z = 1)

=
P (Y1 = 1|Z = 1)× P (Y0 = 0|Z = 0)

P (Y0 = 1|Z = 0)× P (Y1 = 0|Z = 1)
(3.1)

θmarginal =
P (Y1 = 1)× P (Y0 = 0)

P (Y0 = 1)× P (Y1 = 0)
(3.2)

θconditional =
P (Y = 1|Z = 1,X = x)× P (Y = 0|Z = 0,X = x)

P (Y = 1|Z = 0,X = x)× P (Y = 0|Z = 1,X = x)
(3.3)

As mentioned in the previous sections, P (Y1 = 1|Z = 1) 6= P (Y1 = 1) in the

presence of confounders. Thus, the crude odds ratio does not equal the marginal

odds ratio, and is biased for measuring the treatment effect.

In the case of continuous outcome where the outcome is estimated via linear

regression, the marginal effect equals the conditional effect, as shown below:

E(Y1|Z = 1,X = x)− E(Y0|Z = 1,X = x) = E(Y1|X = x)− E(Y0|X = x)

by unmeasured confounding

= (αZ + α>X)−α>X

= αZ (3.4)
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Also, from formula 2.5, we have E(Y1) − E(Y0) = αZ . Therefore, E(Y1|Z = 1,X =

x)− E(Y0|Z = 1,X = x) = E(Y1)− E(Y0) = αZ .

On the other hand, for binary outcomes, depending on the research context,

we would want to estimate the marginal odds ratio or conditional odds ratio. The

marginal odds ratio should be used when we are interested in the treatment effect at

the population level, while the conditional odds ratio should be used when the effect

at the individual or subgroup is of interest [36].

The difference between the marginal effect and the effect across strata, resulting

in the discrepancy between marginal and conditional odds ratio, is referred to as

the non-collapsibility of the odds ratio. Due to this property, we need to estimate

the true marginal odds ratio in all simulation studies presented in this chapter. We

would designate a value for conditional odds ratio and generated the outcomes using

this value, and then estimate the marginal odds ratios for evaluating the treatment

effect estimations.

3.2 Simulation Study and Results

We will use the same simulation mechanism as described in section 2.1, with the

following differences:

1) Coefficients for generating the exposure β> and the outcome α> followed a uni-

form distribution Unif(−0.5, 0.5). The coefficient for the exposure in the outcome

model αZ was selected to be 0.75. In the case of 500 covariates, the coefficients
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for generating the exposure were from Unif(−0.25, 0.25) to ensure a more evenly

distributed propensity score across (0, 1).

2) The model for generating the outcome was a logistic model:

P (Y = 1) = expit(α0 + αZZ + α>XY + ε)

The outcome Y was then generated through a Bernoulli distribution with probability

calculated above.

3.2.1 Estimating the True Marginal Odds Ratio

First, we need to obtain the true treatment effect, measured by the marginal

odds ratio. The marginal odds ratio was estimated in the following way:

1) Covariates for a large number of samples (n = 500000) were generated using the

same mechanism.

2) Two different data sets were then created, one with exposure Z = 1, the other

one with Z = 0.

3) The outcome was generated from a Bernoulli distribution for the two data sets

respectively, with probabilities calculated from the expit function, using the same

coefficients as in the simulation study.

4) The marginal odds ratio was obtained by calculating P (Y1=1)×P (Y0=0)
P (Y0=1)×P (Y1=0)

.

3.2.2 Simulation Results

For the simulated data sets, we estimated the non-adjusted marginal odds

ratio and the adjusted marginal odds ratio using outcome regression, IPW and
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AIPW. The non-adjusted marginal odds ratio was obtained by calculating θ̂marginal =
1
n

∑n
i=1 ZiYi/(1− 1

n

∑n
i=1 ZiYi)

1
n

∑n
i=1(1−Zi)Yi/(1− 1

n

∑n
i=1(1−Zi)Yi)

. The results were presented in table 3-1.

Outcome Regression

Estimating the marginal odds ratio with outcome regression was implemented

in the following steps. First, a logistic regression model of the outcome Y on expo-

sure Z and all the covariates X was built. The counterfactual outcomes were then

generated by replacing exposure with Z = 1 and Z = 0 using the fitted model. In

the misspecified case, only a small fraction of covariates was used to fit the logistic

model, similar to the misspecified case in the previous chapter. The marginal odds

ratio was obtained from the mean of the outcome in the two counterfactual groups

θ̂ORmarginal =
1
n

∑n
i=1 ZiY1i/(1− 1

n

∑n
i=1 ZiY1i)

1
n

∑n
i=1(1−Zi)Y0i/(1− 1

n

∑n
i=1(1−Zi)Y0i)

. The results were summarized in table

3-1.

Estimation via outcome regression indeed provides a consistent estimate of the

marginal odds ratio. As the data dimension increases, the bias slightly increases but

is still small overall. When the outcome model is misspecified, the estimate becomes

biased.

Inverse Probability Weighting

The propensity score was first estimated via a logistic regression including all the

covariates. The counterfactual outcomes were the obtained incoporating the inverse

of propensity score as the weight. The marginal odds ratio was calculated using the
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Bias(%) SE MSE CP
p = 10

Non-adjusted 0.168(9.45%) 0.0933 0.0369 52.8%

OR -0.00798(-0.45%) 0.110 0.0121 94.8%
OR(misspecified outcome model) 0.168(9.45%) 0.0933 0.0369 54.2%

IPW -0.0102(-0.58%) 0.113 0.0129 95%
IPW(misspecified PS model) 0.171(9.60%) 0.0931 0.0378 52%

AIPW -0.0103(-0.59%) 0.112 0.0127 94.8%
AIPW(misspecified PS model) -0.00782(-0.44%) 0.110 0.0122 94.8%

AIPW(misspecified outcome model) -0.0104(-0.58%) 0.113 0.0128 95.2%
AIPW(both models misspecified) 0.170(9.59%) 0.0930 0.0377 52%

p = 100
Non-adjusted 0.0293(1.96%) 0.0886 0.00870 94.6%

OR -0.00407(-0.27%) 0.0869 0.00755 93.8%
OR(misspecified outcome model) -0.0472(-3.17%) 0.0929 0.0108 91.6%

IPW -0.00454(-0.30%) 0.148 0.0218 95.2%
IPW(misspecified PS model) -0.0315(-2.12%) 0.0961 0.0102 93.6%

AIPW -0.00939(-0.63%) 0.131 0.0173 94.8%
AIPW(misspecified PS model) -0.00415(-0.28%) 0.0872 0.00760 94.6%

AIPW(misspecified outcome model) -0.00365(-0.25%) 0.147 0.0217 94.8%
AIPW(both models misspecified) -0.0515(-3.46%) 0.0962 0.0119 91.8%

p = 500
Non-adjusted 0.0508(4.17%) 0.0658 0.00690 89.4%

OR -0.0122(-1.00%) 0.0568 0.00337 94.8%
OR(misspecified outcome model) 0.0516(4.24%) 0.0660 0.00702 89.6%

IPW -0.0186(-1.52%) 0.213 0.0455 97.8%
IPW(misspecified PS model) 0.0522(4.29%) 0.0659 0.00707 89%

AIPW -0.0181(-1.48%) 0.0832 0.00723 94.4%
AIPW(misspecified PS model) -0.0122(-1.00%) 0.0568 0.00337 94.6%

AIPW(misspecified outcome model) -0.00450(-0.37%) 0.302 0.0913 99.2%
AIPW(both models misspecified) 0.0528(4.34%) 0.0660 0.00714 89.2%

SE: Standard error; MSE: Mean squared error; CP: Coverage Probability; OR: Outcome regression; IPW:

Inverse probability weighting; PS: Propensity score; AIPW: Augmented inverse probability weighting

Table 3–1: Estimated Marginal Odds Ratio for Different Number of Covariates
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following expression

θ̂IPWmarginal =

1
n

∑n
i=1

ZiYi

e(Xi,β̂)
/(1− 1

n

∑n
i=1

ZiYi

e(Xi,β̂)
)

1
n

∑n
i=1

(1−Zi)Yi

1−e(Xi,β̂)
/(1− 1

n

∑n
i=1

(1−Zi)Yi

1−e(Xi,β̂)
)

The results from table 3-1 showed that IPW gives an unbiased estimate of

marginal OR when p = 10 and 100, but there is some bias, although small, when

p = 500. It does not perform as well as the outcome regression estimation. It also

becomes biased when the propensity score is misspecified, by leaving out part of

the covariates in the regression model. Furthermore, the standard error is also sig-

nificantly higher compared to that of outcome regression, due to the same reason

discussed in Chapter 2.

Augmented Inverse Probability Weighting

Estimating the marginal OR via AIPW was similar to IPW, but incorporated

the predicted outcomes Y1i, Y0i from the outcome model. The marginal OR was

calculated using the following formula

θ̂AIPWmarginal =

1
n

∑n
i=1

[
ZiYi

e(Xi,β̂)
− Zi−e(Xi,β̂)

e(Xi,β̂)
Y1i

]
/
(

1− 1
n

∑n
i=1

[
ZiYi

e(Xi,β̂)
− Zi−e(Xi,β̂)

e(Xi,β̂)
Y1i

])
1
n

∑n
i=1

[
(1−Zi)Yi

1−e(Xi,β̂)
− Zi−e(Xi,β̂)

1−e(Xi,β̂)
Y0i

]
/
(

1− 1
n

∑n
i=1

[
(1−Zi)Yi

1−e(Xi,β̂)
− Zi−e(Xi,β̂)

1−e(Xi,β̂)
Y0i

])
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The results of the estimated marginal ORs are listed in table 3.1. From the

results, it is clear that AIPW has the doubly-robust property. When either propen-

sity score model or outcome regression model is misspecified, AIPW is still unbiased.

However, similar to IPW, when AIPW relies solely on the propensity score model,

the standard error gets very large. At p = 500, AIPW had a small bias even when

both models were correctly specified. This suggests that two correctly specified mod-

els might not necessarily give a more accurate estimation than one correctly specified

model. Also, when both models are not specified, it fails to give an unbiased esti-

mation. But the biases were smaller compared to the biases in continuous outcome

data, meaning that AIPW is a little more robust against model misspecifications for

binary outcome data in high dimensions.

3.2.3 Correlated Covariates

We also examined the performance of the three estimators for correlated co-

variates. We adopted the same correlation structure as the previous chapter in this

simulation study, and performed the same analysis to obtain the marginal OR. The

results are presented in the table below.
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Non-adjusted Outcome Regression
specified misspecified

Bias(%) 0.122(8.25%) -0.01114(-0.08%) 0.0466(3.14%)
SE 0.0812 0.0858 0.0858

MSE 0.0216 0.00734 0.00953
CP 64.8% 95.4% 93.6%

IPW
specified misspecified

Bias(%) -0.000142(0.00%) 0.00183(0.12%)
SE 0.143 0.0905

MSE 0.0205 0.00818
CP 95.8% 94.6%

AIPW
both specified PS misspecified OR misspecified both misspecified

Bias(%) -0.00824(-0.56%) -0.00177(-0.12%) 0.000151(-0.01%) -0.0100(-0.67%)
SE 0.144 0.0866 0.145 0.0906

MSE 0.0209 0.00750 0.0209 0.00828
CP 96.6% 95.2% 95.6% 94.4%

Table 3–2: Estimated Marginal OR for Correlated Data, p = 100

The correlation between covariates had a big effect on the non-adjusted marginal

OR, increasing the bias from 1.96% to 8.25%. However, after confounding adjust-

ment, the estimation will be unbiased and unaffected by the correlation. In the case

of AIPW, the estimated marginal OR is unbiased even under both model misspeci-

fications.
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Compared to the results in the previous chapter, the correlation had a much

smaller effect on binary outcome data. In addition, the overall performance of the

three estimators was also better in the data with no correlation in covariates.

3.3 High-dimensional Propensity Score Algorithm

So far, we have seen the performance of AIPW in high-dimensional data. In

this section, we will focus on the confounding adjustment in high-dimensional data,

and explore the use of high-dimensional propensity score algorithm. We simulated

a data set, used hdPS to select the variables for adjustment, examined the balance

in the data set using propensity score matching, and applied the three methods to

obtain treatment effect estimation.

3.3.1 Simulation Protocol

hdPS only applies to binary variables and binary outcomes, therefore we gen-

erated the covariates via a binomial distribution Xi ∼ Bin(n = 5000, 0.5) instead

of using standard normal distribution. The number of covariates was 500, and the

simulation was repeated 100 times.

We used hdPS to order the covariates according to their multiplicative bias,

and selected the top k ∈ {5, 25, 50, 75, 100, 125, 150, 175} covariates. The selected k

covariates were included in the regression models for outcome and propensity score.

We examined the difference in estimating marginal OR using the selected covariates

for adjustment. We also investigated the balance in the data set after propensity
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score matching, by calculating the average mean standard difference (SMD) between

the treatment group and the control group for all covariates. We presented the re-

sults in figures 3-1 to 3-3. The figures on the left-hand side represent the average of

the marginal OR estimate (outcome regression estimated, IPW estimated and AIPW

estimated) based on 100 repeats, while the figures on the right-hand side represent

the standard deviation. The figure showing the balance after propensity score ad-

justment is shown in figure 3-4.

(a) Mean for Marginal OR via Outcome
Regression

(b) Standard Deviation for Marginal OR
via Outcome Regression

Figure 3–1: Marginal OR via Outcome Regression for different k
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(a) Mean for Marginal OR via IPW (b) Standard Deviation for Marginal OR
via IPW

Figure 3–2: Marginal OR via IPW for different k

(a) Mean for Marginal OR via AIPW (b) Standard Deviation for Marginal OR
via AIPW

Figure 3–3: Marginal OR via AIPW for different k
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Figure 3–4: Average Standard Mean Difference (SMD) among all Covariates fter
Propensity Score Matching

It is clear that hdPS is useful in confounding adjustment. After adjusting for

selected covariates, the bias decreased significantly using all three estimation meth-

ods. Adjusting for 100 and 125 covariates yielded the smallest bias, while the bias

after adjusting for 5 and 25 covariates was still considerable, suggesting that more

covariates should be selected for adjustment. Looking at the standard deviation,

the standard deviation for k = 75 was the smallest, and the standard deviations for

k = 50, 100 were also very small compared to other k’s. Taking both the mean and

the standard deviation into consideration, the optimal number of the covariates being

selected after ranking them according to the multiplicative bias is 100, in the case of

500 covariates in this study, which is 20% of the total number of covariates. From

the figure showing the balance between the treatment group and the control group,

adjusting for 75 or 100 covariates eliminates the confounding bias most efficiently,

based on the average standard mean difference. As more covariates were selected

and included in the propensity score model, the average SMD was further reduced,

but the rate of decrease became small when k reached 75. Including more covariates
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for adjustment would be unlikely to have a great improvement on achieving balance

in the data set.

The actual number of covariates being selected will be affected by the total num-

ber of covariates in the study. In the paper by Schneeweiss et al., they selected about

10% of all the covariates, although in their paper, they did not explain how this k

should be chosen [8]. The finding from our simulation study is close to the result in

Schneeweiss et al., and provides more insights into how this tuning parameter k can

be established.
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CHAPTER 4
Plasmode Simulation Study

So far, we have examined the performance of AIPW in Monte Carlo simula-

tion studies. However, Monte Carlo simulation may not be able to capture the data

features that are present in an observational study [37]. We adopted a simulation

method based on an empirical cohort study, and studied further the performance of

AIPW.

4.1 Plasmode Simulation

4.1.1 Simulation Framework

In 2014, Franklin et al. proposed a simulation framework, naming it “plasmode

simulation” [37]. The framework contains the following steps. First, a study cohort

needs to be chosen. The exposure must be identified, as well as the length of the

study period if it is a longitudinal study. A large pool of potential covariates, such

as diagnostic codes and medications, are also selected. Some of the covariates are

then chosen to generate the outcome. Demographic covariates are recommended to

be included in the simulation process. Covariates that are believed to be associated

with the outcome should also be included. The associations between the covariates

and the outcome are estimated by fitting a Cox proportional model. The coefficient

for the exposure estimated from the previous step is then replaced by a given value

chosen by the researchers. Other coefficients, including the baseline survival rate,
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can also be changed to ensure the overall event rate remains the same. These coeffi-

cients are utilized in generating the event time and censoring time. J simulated data

sets of size n are constructed using bootstrap resampling. The exposure effect can

be estimated for each of the J data sets, thus we may obtain the bias and variance.

4.1.2 Application

The authors applied their framework to a cohort study that examines the effect

of high-intensity versus low-intensity statin use on cardiovascular disease prevention.

500 simulated data sets with 100,000 patients were constructed. All the covariates

were considered, while 61 were used for outcome simulation. They showed that their

simulated data sets closely resembled the observed data, in terms of censoring times,

event times, and population distribution. The authors then evaluated the effective-

ness of hdPS for confounding adjustment. They demonstrated that, although not

as effective as manually selecting covariates to adjust, hdPS is useful in selecting

confounders and requires no prior knowledge about the covariates. Many other re-

search papers have also used the plasmode simulation framework. For example, in

the paper by Franklin et al., the authors employed the plasmode simulation to study

the performance of propensity score-based methods in evaluating the treatment ef-

fect in databases with rare outcomes and found that regression on propensity score

performed best in such context. [38]
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4.2 CPRD Data

In this section, we illustrate the steps of this plasmode simulation study. We

adapted the simulation framework to the casual setting, similar to the method in

Franklin et al. [38], and applied the method to the data from Clinical Practice

Research Datalink (CPRD). By utilizing the plasmode simulation framework, we

were able to define a true treatment effect, which was unknown in an observational

study, and thus evaluate the performance of the estimators of interest. This cohort

study examines the effect of post-myocardial infarction (MI) statin use on one-year

all-cause mortality. The data set contains observational data of the information on

32,210 patients who had myocardial infarction, displayed as clinical codes. 400 co-

variates based on hdPS were selected to be included in this plasmode simulation.

We also had the demographic and clinical characteristics on 78088 patients, with

and without myocardial infarction. We refer to these covariates as the empirical

covariates.

First, some data pre-processing was performed. There were missing data present

in the empirical covariates obesity and smoking status, which were handled using R

package “MICE”. Some empirical covariates were not included in the simulation:

hospital, region, year registered, and year entered cohort, resulting in 33 empirical

covariates being included in subsequent analyses.

We then combined the empirical covariates of 32,210 MI patients among the

78088, with the 400 hdPS covariates, constructing the basis for plasmode simulation.
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We analyzed the association between each covariate and the outcome, and obtained

the coefficients using logistic regression. Similarly, we obtained the coefficients for

the association between covariates and the exposure. We then modified the inter-

cept for this propensity score model so that the propensity scores were more evenly

distributed across (0,1). The two sets of coefficients obtained would be used as the

coefficients in the simulation step.

Since the covariates and the propensity score have already been determined, we

simply simulate the exposure from Bernoulli distribution. The outcome was also

generated as described in section 4.2. We selected the coefficient for the exposure in

the outcome generation model to be 0.8. The true marginal odds ratio was then esti-

mated to be 1.741, by taking 500,000 samples with repeats from the 32,210 patients

and using the procedure of 4.2.1. We chose the sample size in this plasmode simu-

lation to be 10,000, obtained through sampling with replacement. The simulations

were repeated for 100 times, and the results were analyzed based on the average of

the 100 repeats.

4.3 Simulation Results

The marginal odds ratio from the simulated data sets was estimated via outcome

regression, IPW, and AIPW, under both model specification and misspecification.

The bias and standard deviation are presented in the table below, and the boxplot

is shown in the following figure.
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Bias(%) Median Bias(%) SE
Non-adjusted -0.995(-57.16%) -0.998(-57.32%) 0.0502

OR 0.0186(1.07%) 0.0222(1.27%) 0.138
OR(misspecified outcome model) -0.799(-45.89%) -0.790(-45.39%) 0.0698

IPW 0.109(6.27%) -0.0312(-1.79%) 0.750
IPW(misspecified PS model) -0.433(-24.88%) -0.438(-25.13%) 0.0927

AIPW 0.154(8.82%) 0.0199(1.14%) 1.064
AIPW(misspecified outcome model) 0.196(11.23%) -0.0103(-0.59%) 1.104

AIPW(misspecified PS model) 0.0175(1.01%) 0.0161(0.93%) 0.139
AIPW(both models misspecified) -0.438(-25.15%) -0.440(-25.25%) 0.0919

SE: Standard error; OR: Outcome regression; IPW: Inverse probability weighting; PS:

Propensity score; AIPW: Augmented inverse probability weighting

Table 4–1: Estimated Marginal OR for Plasmode Simulation

Based on the results of the mean estimated marginal OR, we can see that the

biases in this simulation are significantly larger than the Monte Carlo simulation

setting. In the case of IPW-estimated marginal OR, the bias is 6.27%, and 8.82% for

AIPW even under correct model specifications. However, the bias is reduced to 1.01%

for AIPW when the propensity score is misspecified. This suggests that estimating

propensity score is challenging, and propensity score-based methods perform much

worse than outcome regression in analyzing real cohort studies, which can result

from the difficulty in selecting confounders for adjustment. We further examined the

simulation results by creating the boxplot. It can be seen that under correct model

specifications (either one in the case of AIPW), the median estimated marginal ORs

were very close to the true value for all methods. Propensity score-based methods

displayed a high variation compared to outcome model-based methods. We therefore
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summarized the bias based on the median in table 5-1 as well. From our analysis, it

is recommended that in such simulation setting, the median provides a more accurate

estimate of the treatment effect than the mean.
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Figure 4–1: Boxplot for Estimated Marginal ORs for Plasmode Simulation
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CHAPTER 5
Discussion

In this thesis, we conducted several simulation studies to compare the perfor-

mance of doubly-robust augmented inverse probability weighting estimation with

outcome regression and inverse probability weighting, under both model specifica-

tion and misspecification.

We considered two types of outcomes: continuous and binary; for continuous

outcomes, average treatment effect was measured while the marginal odds ratio was

estimated for binary outcomes. Overall, the simulation results behave very similarly

to for both types of outcomes. When the data dimension is small, where the number

of variables equals 10 or 100, all three estimators performed as expected. Under

model specification, outcome regression, IPW and AIPW all generated unbiased es-

timates of treatment effect. We also verified the doubly-robustness of AIPW in that

AIPW was still unbiased when either outcome model or propensity score model is

misspecified. We also introduced correlation between variables and obtained similar

results. However, when the data dimension gets high (in our simulation studies we

considered the number of variables to be 500), these methods did not perform as well

as they did in lower data dimension. Outcome regression still estimated the treat-

ment effect well for both continuous and binary outcomes, but for IPW, there was a

slight bias, indicating that the propensity score model was not estimated correctly
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in high-dimension. Similarly, AIPW also displayed bias when the outcome model is

misspecified, making the estimation solely rely on the propensity score model. IPW

also exhibited an anomalously high standard error, due to the inclusion of instru-

mental variables in the propensity score model [15]. The results agree with recent

findings by Tan in 2007, who proposed using calibrated estimation alternatively to

fit logistic regression of the propensity score model instead of maximum likelihood,

and regularized calibrated estimation with LASSO penalty for high-dimensional data

[39]. Since researchers would not know which variables are confounders a priori, a

method capable of selecting confounders for adjustment among numerous covariates

is highly needed. We also applied the three estimation methods to real data set

through plasmode simulation. The results suggested that AIPW was still doubly-

robust in this complex data, although the median treatment effect should be used

instead of mean treatment effect for an unbiased estimate in the simulation.

Another aspect of the thesis is to explore the practical use of the high-dimensional

propensity score algorithm, a variable selection method specialized for confounding

adjustment. In our simulation study, when 100 top-ranked covariates based on mul-

tiplicative bias were adjusted, the bias reached minimum and the standard deviation

was also considerably small. Adding more covariates to fit the outcome and propen-

sity score models would not provide a more accurate estimate, and would not reduce

the SMD significantly, but it would result in a much larger variance, and a much

longer running time. This indicated that 20% of the total covariates should be ad-

justed in order for an unbiased estimation. Our finding differs slightly from the
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previous literature, where Rassen et al. suggested using 300 hdPS-covariates (among

4200-4800 covariates), and Schneeweiss et al. selected 10% [8, 34]. However, this

tuning parameter depends highly on the data structure, for example, number of

confounders, the relative degree of association between covariates and exposure. It

would also vary by the total number of covariates. On the other hand, our analysis

indeed showed that the high-dimensional propensity score algorithm is effective in

selecting confounders automatically.

There could be several improvements to our simulation studies. First, we only

generated 500 covariates for the data set to be high-dimensional. In real epidemiolog-

ical studies, this number can be as high as a few thousand. Due to limited computing

resources, we were not able to evaluate the performance of AIPW in a higher data

dimension. But according to the pattern we observed as the data dimension went

higher, we suspect that it would not perform well due to the difficulty in propensity

score specification. Second, the correlation structure we generated was relatively

simple, so that it may not resemble real data. No second or higher order correlation

was introduced in the simulation. Furthermore, the validity of the high-dimensional

propensity score algorithm in highly correlated data should also be examined. If two

variables are strongly correlated, they may be selected at the same time by hdPS,

which could result in multi-collinearity problems in regression. The performance of

AIPW and hdPS in highly correlated data need to be verified further through simu-

lation. Lastly, we only considered continuous outcomes and binary outcomes. When

multilevel outcomes are present, the measure of treatment effect would be redefined,
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and the form of AIPW estimation would be reconstructed.

In conclusion, we developed simulation methods for evaluating the performance

of augmented inverse probability weighting estimation in high-dimensional data. Its

doubly-robust property is impeded by the difficulty in obtaining a correct propen-

sity score model. The specification of the propensity score in high-dimension is of

importance for making correct inference about treatment effect.
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