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ABSTRACT 

 This thesis presents a deep analysis of the steady and unsteady viscous flows past airfoils and 

three-dimensional wings, and of three-dimensional confined flows at low Reynolds numbers. 

This research work was carried out in several cases studies: (i) steady and unsteady confined 

viscous flows; (ii) unsteady separations effects on the flow past stationary airfoils; (iii) effect of 

the ground proximity on the steady and unsteady viscous flows past oscillating and fixed airfoils; 

(iv) three-dimensional steady flows past wings at low Reynolds numbers.  

 The first part presents an efficient numerical method to solve three-dimensional steady and 

unsteady flows in a three-dimensional downstream-facing step channel at low Reynolds 

numbers. A finite-difference formulation and artificial compressibility were used on a stretched 

staggered grid for the solution of the Navier-Stokes equations, which is second-order accurate in 

space and time. The results were found to be in good agreement with the available experimental 

results. For the first time it was confirmed that the difference between the two-dimensional 

numerical solutions and the experimental results was due to the effect of the lateral walls in the 

experimental configuration. 

 The second part is the study of the unsteady effects on stationary airfoils due to unsteady 

flow separations at low Reynolds numbers. This study was performed with an efficient time-

accurate numerical method using a pseudo-time relaxation procedure with artificial 

compressibility and a factored Alternate-Direction Implicit (ADI) scheme for the pseudo-time 

integration. The method is successfully validated by comparison with the experimental results 

obtained by Suwa et al. for triangular airfoils at low Reynolds numbers. It was found that the 

aerodynamic coefficients of lift and drag displayed periodic variations in time due to the 

unsteady flow separations occurring at low Reynolds numbers on stationary airfoils at relatively 

small angles of attack. 

 Analysis of the steady and unsteady flows over airfoils in the proximity of the ground was 

studied in the third part. Various flight evolutions of the micro-air-vehicles take place in the 

proximity of the ground or a ceiling, which require the aerodynamic solutions in these conditions 

at low Reynolds numbers. Solutions are presented for the unsteady lift and drag coefficients of 

several NACA airfoils in the proximity of the ground. A detailed study of the influence of 
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various geometric and flow parameters, such as the angle of attack, airfoil relative thickness, 

amplitude and frequency of oscillations and Reynolds number, on the flow separations in the 

proximity of the ground were carried out in this part. This study also presented the analysis of the 

unsteady flows past stationary airfoils in the proximity of the ground, aiming to determine the 

influence of the distance to the ground on these unsteady effects which are generated by the 

unsteady flow separations on the stationary airfoils at low Reynolds numbers. It was found that 

these unsteady effects appear at lower angles of attack for the airfoils in the proximity of the 

ground than in free flight. 

 The fourth and final case study is the three-dimensional analysis of the steady viscous flows 

past rectangular wings with various NACA airfoil sections at low Reynolds numbers. The 

solutions are obtained using an efficient numerical method to solve the Navier-Stokes equations 

for incompressible flows. The numerical solutions of the aerodynamic lift and drag coefficients 

obtained by this method are validated with the experimental results obtained by Sunada et al. for 

rectangular wings. A parametric study of the influence of various geometric and flow 

parameters, such as wing thickness, wing airfoil camber, angle of attack and Reynolds number is 

also presented. 

 The solutions obtained in all these studies are completely original and are validated by 

experimental results. They have also shown very interesting results, such as the effect of lateral 

walls in the experimental configurations, and the time variation of the aerodynamic lift and drag 

coefficients of the stationary airfoils due to the formation of the unsteady flow separations at low 

Reynolds numbers. 
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RÉSUMÉ 

 Cette thèse présente une analyse approfondie des écoulements visqueux permanents et 

oscillatoires autour des profils aérodynamiques et des ailes tridimensionnelles, ainsi que des 

écoulements confinés tridimensionnels à faible nombre de Reynolds. Ces travaux de recherche 

ont été réalisés dans plusieurs études: i) les écoulements visqueux confinés permanents et 

oscillatoires; (ii) les effets de séparation nonstationnaires sur les profils aérodynamiques 

stationnaires; (iii) l’effet de la proximité du sol sur les écoulements visqueux stationnaires et 

oscillatoires autour des profils aérodynamiques fixes et oscillants; (iv) les écoulements en trois 

dimensions autour des ailes à faibles nombres de Reynolds. 

 La première partie présente une méthode numérique efficace pour résoudre les ecoulements 

permanents et oscillatoires en trois dimensions dans un canal à faibles nombres de Reynolds. 

Une formulation à différences finies et une compressibilité artificielle ont été utilisées pour la 

solution des équations de Navier-Stokes, qui est précise au second ordre dans l'espace et dans le 

temps. Les résultats se sont avérés en bon accord avec les résultats expérimentaux disponibles. 

Pour la première fois, il a été confirmé que la différence entre les solutions numériques en deux 

dimensions et les résultats expérimentaux était due à l’effet des parois latérales dans la 

configuration expérimentale. 

 La seconde partie est l'étude des effets nonstationnaires sur les profils aérodynamiques 

stationnaires générés par les séparations d'écoulement oscillatoires à faibles nombres de 

Reynolds. Cette étude a été réalisée avec une méthode numérique efficace dans le temps, 

utilisant une procédure de relaxation pseudo-temporelle avec compressibilité artificielle et un 

schéma implicite de la direction alternative (ADI) factorisé pour l'intégration pseudo-temporelle. 

La méthode est validée avec succès par comparaison avec les résultats expérimentaux obtenus 

par Suwa et al. pour les profils aérodynamiques triangulaires à faibles nombres de Reynolds. On 

a constaté que les coefficients aérodynamiques de portance et de traînée présentaient des 

variations périodiques dans le temps en raison des séparations d’écoulement nonstationnaires se 

produisant à des nombres de Reynolds faibles sur des profils aérodynamiques fixes à des angles 

d’attaque relativement faibles. 
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L'analyse des écoulements permanents et oscillatoires sur les profils aérodynamiques à proximité 

du sol a été étudiée dans la troisième partie. Diverses évolutions de vol des micro-véhicules 

aériens se produisent à proximité du sol ou d'un plafond, ce qui nécessite des solutions 

aérodynamiques dans ces conditions à des faibles nombres de Reynolds. Des solutions sont 

présentées pour les coefficients de portance et de traînée oscillatoires de plusieurs profils 

aérodynamiques NACA à proximité du sol. Une étude détaillée de l'influence de divers 

paramètres géométriques et d'écoulement, tels que l'angle d'attaque, l'épaisseur relative du profil, 

l'amplitude et la fréquence des oscillations et le nombre de Reynolds, a été réalisée dans cette 

partie. Cette étude a également présenté l’analyse des écoulements oscillatoires autour des profils 

aérodynamiques stationnaires à proximité du sol, visant à déterminer l’influence de la distance au 

sol sur ces effets oscillatoires générés par les séparations d’écoulement oscillatoire sur les profils 

aérodynamiques stationnaires à des faibles nombres de Reynolds. Il a été constaté que ces effets 

oscillatoires apparaissent à des angles d’attaque plus faibles pour les profils aérodynamiques à 

proximité du sol qu’en vol libre. 

 La quatrième et dernière étude de cas est l'analyse tridimensionnelle des écoulements 

visqueux autour des ailes rectangulaires avec diverses sections de profil aérodynamique à faibles 

nombres de Reynolds. Les solutions sont obtenues en utilisant une méthode numérique efficace 

pour résoudre les équations de Navier-Stokes pour les écoulements incompressibles. Les 

solutions numériques des coefficients de portance et de traînée aérodynamiques obtenus par cette 

méthode sont validées avec les résultats expérimentaux obtenus par Sunada et al. pour les ailes 

rectangulaires. Une étude paramétrique de l'influence de divers paramètres géométriques et 

d'écoulement, tels que l'épaisseur de l'aile, la cambrure du profil de l'aile, l'angle d'attaque et le 

nombre de Reynolds est également présentée. 

 Les solutions obtenues dans toutes ces études sont originales et validées par des résultats 

expérimentaux. Ils ont également montré des résultats très intéressants, tels que l'effet des parois 

latérales dans les configurations expérimentales et la variation oscillatoire des coefficients de 

portance et de traînée aérodynamiques des profils aérodynamiques stationnaires dus à la 

formation des séparations d'écoulement oscillatoires à faibles nombres de Reynolds. 
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MAIN CONTRIBUTIONS  

The main contributions of this thesis consist of the development of numerical methods and 

computational codes for the analysis of the steady and unsteady viscous flows past fixed or 

oscillating airfoils and wings in free flight or in the proximity of the ground, and of the three-

dimensional confined flows at low Reynolds numbers. The obtained computational solutions are 

of topical interest for Micro-Aerial Vehicles (MAVs), Unmanned-Aerial Vehicles (UAVs), and 

for the steady and unsteady confined laminar flows in various industrial applications.  

The main research contributions are summarized below.  

Confined three-dimensional flows  

1) A novel three-dimensional method has been developed for the time-accurate solutions of 

the Navier-Stokes equations in the incompressible confined flows at low Reynolds 

numbers. This very efficient method is second-order accurate in space and time, uses 

artificial compressibility and a factored Alternate-Direction Implicit (ADI) scheme, and 

is based on a finite difference formulation on a stretched staggered grid. This method 

solves for the first time the three-dimensional steady and unsteady incompressible flows 

at low Reynolds numbers.  

2) Original solutions have been obtained for the steady and unsteady confined viscous flows 

for the benchmark case of the downstream-facing step channel at low Reynolds numbers, 

which are generated by the time variable inflow velocities and by the oscillating walls.  

3) The study of these confined steady flows at low Reynolds numbers, explains and 

confirms that the disagreement between the two-dimensional solutions and the 

experimental results is due to the three-dimensional effect of the lateral walls. The 

obtained three-dimensional computational solutions were in good agreement with the 

experimental results.  

4) The multiple flow separations generated on the upper and lower walls have been 

thoroughly studied in function of the Reynolds number, span-to-height ratio, and the 

amplitude and frequency of the inflow velocity and the wall oscillations.  
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Unsteady separations effects on the flow past stationary airfoils  

1) The unsteady separations effects on the flow past stationary airfoils at low Reynolds 

numbers have been studied using an efficient time-accurate numerical method for the 

integration of the Navier-Stokes equations. This numerical method is based on a second-

order three-point-backward implicit scheme for the real time discretization and a pseudo-

time relaxation procedure using artificial compressibility and a factored alternate-

direction implicit scheme for the pseudo-time integration. A special decoupling 

procedure using the continuity equation reduces the problem to the solution of scalar-

tridiagonal systems of equations, which enhances substantially the computational 

efficiency of the method.  

2) The solutions obtained for the triangular airfoil were found in good agreement with the 

experimental results, before the effects of unsteady flow separations become important, 

since the experimental results were obtained only for steady flows. 

3) This study indicated for the first time that the lift and drag coefficients of the stationary 

airfoil have oscillations in time generated by the unsteady flow separations on the upper 

surface of airfoil at low Reynolds numbers, which appear at relatively low angles of 

attack (about 8 degrees).  

4) These flow separations effects on the unsteady aerodynamic coefficients have been 

studied for various geometric and flow parameters, such as the angle of attack, relative 

thickness and camber, and Reynolds number.  

Effect of the ground proximity on the steady and unsteady viscous flows past oscillating 

and fixed airfoils  

1) The effect of the ground proximity on the steady and unsteady flows past airfoils has 

been thoroughly studied to solve the problems encountered by the micro-air-vehicles 

flying in the proximity of the ground or ceiling. The method developed in the previous 

case study has been extended to solve this problem.  

2) This study revealed the flow separations appear on the upper surface of the airfoil at 

lower angles of attack are due to the proximity of the ground. It was also found that the 

flow separation regions developed on the upper surface of the airfoil increase with the 
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getting closer to the ground, and for larger Reynolds numbers, thinner airfoils, and higher 

angles of attack. 

3) The solutions for the lift and drag coefficients of the steady and unsteady flows for 

several symmetric and cambered NACA airfoils in the proximity of the ground are 

thoroughly analyzed in function of the distance to the ground. The unsteady flow 

separations on the airfoils are studied with the aid of flow visualizations illustrating the 

changes in the flow pattern at various moments in time.  

Three-dimensional steady flows past rectangular wings at low Reynolds numbers  

1) An efficient numerical method has been developed to solve the Navier-Stokes equations 

for incompressible flows past rectangular wings at low Reynolds numbers. The problem 

is solved in a computational domain obtained from the physical flow domain by a 

coordinate transformation, and using a pseudo-time relaxation procedure with artificial 

compressibility, a factored alternate-direction implicit scheme, and a special decoupling 

procedure to reduce the problem to the solutions of scalar-tridiagonal systems of 

equations, which improves significantly the computational efficiency of the method. It is 

interesting to note that for the micro-air vehicles applications, the chord length is between 

5 and 20 cm, Reynolds number is between 600 and 4000 and the Mach number is less 

than 0.03, which justifies the numerical method used in this thesis based on 

incompressible flows in comparison with the few solutions obtained with compressible 

flow solvers. This is especially important for the case of unsteady flows which occur due 

to the unsteady flow separation at relatively low angles of attack (about 8 degrees), as it 

was shown for the case of airfoils in this thesis.  

2) The numerical solutions of the aerodynamic lift and drag coefficients obtained by this 

method are validated with the experimental results for rectangular wings. 

3) The influence of various geometric and flow parameters on the aerodynamic coefficients, 

such as the wing thickness, wing airfoil camber, angle of attack and Reynolds number is 

thoroughly studied.  
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Chapter 1  

Introduction 

 The unsteady flow problems are present in numerous engineering fields such as in thermo-

fluid systems, pumps, nuclear reactors, gas and hydraulic turbines, aeronautics, and Micro-

Electro-Mechanical Systems (MEMS). These unsteady flow problems can be studied 

experimentally or computationally. However, experimental studies are sometimes difficult and 

challenging to be handled. The analysis of the unsteady flows using numerical methods requires 

excellent computational efficiency and accuracy. These requirements are made even more 

difficult by the complexity of the fluid flow problems, involving usually flow separation regions 

and oscillating boundaries, especially at very low Reynolds numbers. In this case, the solutions 

of the Navier-Stokes equations are required to compute these flow separation regions accurately. 

In this thesis, a new numerical method has been developed and applied in order to study the 

steady and unsteady two-dimensional and three-dimensional flow problems at very low 

Reynolds numbers. This method has been applied to two different study cases, internal flows 

such as the confined flows in a backward-facing step channel, and external flows such as the 

unsteady flows over two-dimensional airfoils and three-dimensional aircraft wings. Each case 

study will be analyzed and discussed separately in several chapters throughout of this thesis. 

1.1 Background and motivations of the study 

 A particular interest has recently been devoted to the analysis of steady and unsteady flows at 

low Reynolds numbers (Re < 6000) [10, 11] where the viscous effect is very considerable 

throughout the flows. These fluid flows are usually present in confined flows, such as fluid-

structure interaction problems, and in external flow problems, such as the steady and unsteady 

aerodynamics of airfoils and wings. This study is becoming increasingly important from both 

fundamental and engineering applications points of view, due to recent advances in small 

Unmanned-Aerial Vehicles (UAVs) [17], Micro-Air Vehicles (MAVs) [18], special military 

aircraft, as well as researches on bird/insect flying aerodynamics [19]. More recently, research 

interest has been increased for steady and unsteady confined fluid flows at very low Reynolds 

numbers for various engineering applications related to the cooling flows in miniature electronic 

devices [20] or to the aluminum continuous casting operation to a near-net shape [21]. These 
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engineering applications demonstrate why the analysis of the steady and unsteady laminar flows 

received a topical interest worldwide [1-16, 22, 23, 24, 25]. 

 The fluid flows are dominated by viscosity at low Reynolds numbers, between 400 and 6000. 

As a result, the analysis of these flows is very challenging and different from those of higher 

Reynolds number flows. One important physical phenomenon that occurs in this case is the flow 

separation which is more significant at very low Reynolds numbers. The separation of the flow 

and its subsequent reattachment to a solid surface exists in many industrial and aeronautical 

systems. In external flows, the flow separations increases the drag and decreases the lift force, 

and for internal flows, it reduces efficiency. The importance and complexity of such flows to 

engineering equipment have been stressed in many publications (e.g., see Abbott and Kline [26] 

and Eaton and Johnston [27]). 

 Aerodynamics of airfoils and wings at very low Reynolds numbers are extensively studied in 

the past years. As an example, micro-aerial vehicles fly at Reynolds numbers of 1000 or even 

lower. These small aircrafts can operate in various indoor or outdoor environments including 

tunnels, desert, and jungles [18, 19]. Several authors (such as Kunz and Kroo [28]) found that 

many successful aerodynamic codes developed for the normal range of Reynolds numbers are 

not well suited for very low Reynolds number flow. The aerodynamics of airfoils at low 

Reynolds numbers have also been studied by Mateescu et al. [1-16] with a numerical method 

based on a finite-difference formulation with artificial compressibility introduced by Chorin [30], 

using domain decomposition. 

 The literature review shows the majority of the studies have been carried out in the range of 

Re > 105, and there are few publications for the study of laminar flows either experimentally or 

computationally at very low Reynolds numbers. For this reason, the present research has focused 

on the study of laminar viscous flows at very low Reynolds numbers in several case studies. 

1.2 Three-dimensional confined viscous flows at low Reynolds numbers 

 Flow separations and reattachments as one of the important fundamental subjects in fluid 

mechanics, have been the focus of intensive studies for many decades. To understand this 

phenomenon better, the flow in a channel with a sudden expansion, such as backward-facing step 

has been studied experimentally and computationally. The backward-facing step flow became a 

very popular benchmark problem for validating different Computational Fluid Dynamics (CFD) 
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methods in comparison with the available experimental data (e.g. Armaly et al. [31], Goldstein et 

al. [32], Eaton et al. [33], Kim and Moin [34], Grant et al. [35], and Lee and Mateescu [13]) 

and/or numerical fluid dynamics simulation codes (e.g. Gartling [36] and Mateescu and Venditti 

[12]). 

 For instance, Gartling [36] found an accurate solution of the incompressible viscous steady 

flow past a two-dimensional downstream-facing step channel, applying the Garlerkin-based 

finite method. This solution shows a strong separation on the lower wall channel and a weaker 

one on the upper wall channel. Mateescu and Venditti [12] made further research on the steady 

flows in a similar geometry to obtain more precise and efficient numerical results for steady 

confined flows using a method based on a finite-difference formulation and the artificial 

compressibility concept. This numerical method is capable of predicting and analyzing the 

steady and unsteady laminar viscous flows past the two-dimensional backward-facing step 

channel. It is characterized by excellent accuracy and computational efficiency. For example, the 

finally converged solution for two-dimensional flow over a backward-facing step has been 

obtained for 500 x 50 grid points in one hour of computing time on a PC (Intel dual-core i7 

CPU) using FORTRAN 90. However, using a finite element method required a longer 

computing time: 0.2 hours per iteration (including matrix assembly, triangularization, and back-

substitution) on a CRAY XMP/416 using FORTRAN 77 for 400 x 20 elements with nine nodes 

[36]. 

 Lee and Mateescu [13] performed experimental investigations of flows in a two-dimensional 

downstream-facing step channel. The obtained experimental data showed good agreement with 

the previous numerical and experimental results. The separation and reattachment lengths of the 

upper and lower walls and the streamwise velocity were measured non-intrusively using multi-

element hot-film sensor arrays and a bank of constant temperature anemometers. The 

reattachment and separation location points produced by the fully developed laminar and 

transitional flows were analyzed.  

 Mateescu et al. [16] presented a thorough analysis of the unsteady confined viscous flows 

generated by the variations in time of the inflow velocities and by oscillating walls (which can 

occur in the practical industrial applications). The time-accurate solutions of the Navier–Stokes 

equations for these unsteady flows were obtained with a finite-difference method using artificial 

compressibility on a stretched staggered grid. This method was then applied to obtain solutions 
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for the benchmark unsteady confined flows past a two-dimensional downstream-facing step with 

oscillating walls, which displays multiple flow separation regions on the upper and lower walls. 

 In the last three decades, there have been many studies on two-dimensional flows past 

backward-facing step channel. In the recent years, there has been significant progress in these 

analyses based on different CFD techniques in which three-dimensional calculations have 

become affordable for many research centers. 

 Williams and Baker [37] analyzed laminar flow in a three-dimensional backward-facing step 

geometry. The solution correctly predicts the reattachment lengths for 100 < Re < 800 and 

confirms the effect of three-dimensionality. They also found that the sidewalls result in the 

creation of a wall jet, located at the lower channel wall and pointing from the side wall towards 

the channel mid-plane. 

 Chiang and Sheu [38] carried out three-dimensional simulations of laminar flow in a step 

geometry with a similar expansion ratio to the Armaly et al. study case [31] for various Reynolds 

numbers and aspect ratios. They observed that the flow develops into a two-dimensional profile 

at the plane of symmetry when the aspect ratios are increased up to 50 and higher. 

 Nie and Armaly [39] obtained the results of laminar forced convection flow in a backward-

facing step geometry. They presented that the size of the primary recirculation gets larger with 

increasing the step height. They also have shown that the jet-like flow near the side wall lies on 

the stepped wall which causes a shorter reattachment length near the side wall. 

 In addition to the obvious engineering interests, this study is also motivated by an academic 

interest related to the steady laminar flows past downstream-facing step channel. The two-

dimensional numerical solutions for the flow separation and reattachment locations in this 

confined flow problem, such as those obtained by Gartling [36] and by Mateescu and Venditti 

[12], were found to be not in good agreement with the experimental results obtained by Armaly 

et al. [31] and by Lee and Mateescu [13], especially for larger Reynolds numbers (between 700 

and 1200). In the studies performed by Mateescu and Panahi [4, 5, 7, 8] it was shown that this 

disagreement between the two-dimensional numerical solutions and experimental results is due 

to the three-dimensional effect of the lateral walls in the experimental configuration, as opposed 

to the rigorous two-dimensional numerical solution. However, up to now, this explanation has 

not been scientifically confirmed by theoretical or numerical three-dimensional solutions for this 
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problem. Therefore, this study represents a novel contribution, which has not been previously 

reported. 

 The primary objectives of this section when considering the unsteady internal laminar flows is 

to obtain time-accurate solutions of the Navier-Stokes equations for three-dimensional unsteady 

confined flows with harmonic variations in time of the inflow velocities coupled with the 

oscillations of the channel walls. This study is carried out with an efficient time-accurate method, 

which is capable of solving the multiple flow separation regions developed on the lower and 

upper walls of the channel. It is also interesting to estimate the effect of the amplitudes and the 

frequencies of the inflow velocity and of the oscillating walls to obtain solutions for the three-

dimensional flows with multiple separation regions in a channel with a downstream-facing step. 

1.3 Study of unsteady flow separations on stationary airfoils at low Reynolds 

numbers 

 The dream to design an aircraft that can fly at low Reynolds numbers is not new. There are 

many publications related to the design of low-speed airfoils that are still relevant today [40-45]. 

At the time these studies were first published, low Reynolds number flows were considered in 

the order of fifty to hundred thousand. However, for the micro-aerial vehicles the Reynolds 

number varies from several hundreds to several thousands. Recently, a new experimental facility 

has been built with the specific goal of studying the flows in this range of Reynolds numbers 

[46]. The goal of these experimental works and the corresponding numerical studies is the 

analysis of micro-aerial vehicles. 

 The airfoil aerodynamics at these low Reynolds number flows is dominated by viscous effects 

and flow separation phenomena is very different from those of conventional aircraft. Several 

studies have been published on the airfoil analysis in steady flow at very low Reynolds numbers. 

Kunz and Kroo [28] used in their computational study of low Reynolds number flows the INS2D 

code developed at NASA Ames based on an upwind finite differencing scheme developed by 

Rogers and Kwak [29]. Mateescu and Abdo [10] also studied the steady flows past airfoils at low 

Reynolds numbers with a method using artificial compressibility and a central finite-difference 

formulation on stretched staggered grids. A previous study analyzing the unsteady flows past 

oscillating airfoils at low Reynolds numbers has been published by Mateescu et al. [14]. 
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The focus of the present study is to analyze the unsteady flows past stationary airfoils at low 

Reynolds numbers. This work is performed by an efficient time-accurate numerical method 

developed for the solution of the unsteady Navier-Stokes equations, which is second-order-

accurate in time and space. A second-order three point-backward implicit scheme is used first for 

the real-time discretization, followed by a pseudo-time relaxation procedure using artificial 

compressibility and a factored alternate-direction implicit scheme for the pseudo-time 

integration. A second-order central finite-difference formulation is used on a stretched staggered 

grid, which avoids the odd-and-even points decoupling. A special decoupling procedure using 

the continuity equation reduces the problem to the solution of scalar-tridiagonal systems of 

equations, which enhances substantially the computational efficiency of the method. 

 The numerical method is first validated by comparison with the experimental results obtained 

by Suwa et al. [47, 48] for a flat plate and a triangular airfoil in the various angles of attack at 

Reynolds number of 3000. These experimental results are presented in the form of lift and drag 

coefficients for several angles of attack.  

 This work aims to analyze the unsteady effects in the flows past stationary airfoils generated 

by the unsteady flow separations developed on the airfoil upper surface at low Reynolds 

numbers. This leads to the study of the unsteady effects on the aerodynamic coefficients 

generated by the unsteadiness of the flow separations, occurring at relatively small angles of 

attack. It is also important to obtain the numerical results for the lift and drag coefficients and the 

lift-to-drag ratio for several symmetric and cambered NACA airfoils at different Reynolds 

numbers. 

1.4 Steady and unsteady viscous flows over airfoils in the proximity of the 

ground 

 Ground effect is one of the aerodynamic phenomena that can be seen on an aircraft during 

take-off and landing when the wings are in the proximity of the ground. This close vicinity of the 

ground changes the flow of air around the wing leading to an increase in the lift and a reduction 

in the induced drag of the wing [49]. 

 Various flight evolutions of the micro-aerial vehicles take place in the proximity of the 

ground, a ceiling or a wall, which require the aerodynamic solutions in these conditions at low 



 





Reynolds numbers. To date, there are no published studies for steady or unsteady flows past 

airfoils in the proximity of the ground at low Reynolds numbers. 

 This unsteady flow problem is solved in a rectangular computational domain, obtained from 

the physical domain by time-dependent coordinate transformations for various sub-domains, in 

which the boundary conditions are efficiently and rigorously implemented. Solutions for the 

airfoils in the proximity of the ground at low Reynolds number flows are obtained with an 

efficient numerical method developed by the author for the time-accurate solution of the Navier-

Stokes equations, which is second-order accurate in both time and space.  

 This study devoted to the analysis of the steady and unsteady flows past fixed and oscillating 

airfoils at low Reynolds numbers (from 400 to 6000) in the proximity of the ground. This work 

presents a detailed study of the influence of various parameters, such as Reynolds number, angle 

of attack, airfoil relative thickness, and amplitude and frequency of oscillations on the flow 

separations occurring on the airfoil and aerodynamic coefficients (lift, drag and lift-to-drag ratio) 

in the proximity of the ground. 

 The unsteady flows past the stationary airfoils in the proximity of the ground at low Reynolds 

numbers are also studied in this research. The goal is to analyze the effect of the ground 

proximity on the stationary airfoils considering these unsteady effects generated by the unsteady 

flows separations, which are shown to appear at even lower angles of attack near the ground. 

This study presents solutions for the oscillations in time of the lift and drag coefficients of 

several symmetric and cambered stationary airfoils in the proximity of the ground, which are 

generated by the unsteady flow separations developed on the airfoil upper surface at low 

Reynolds numbers. The influence of various geometric and flow parameters, such as the distance 

to the ground, the angle of attack, relative thickness and camber, and Reynolds number on the 

unsteady aerodynamic coefficients and on the unsteady flow separations is also studied in this 

research. 

1.5 Steady viscous flows over wings at low Reynolds numbers 

 The steady flows around wing sections and airfoils have been significantly studied during the 

past decades for their aeronautical and engineering applications. At the early studies, the method 

of conformal transformations has been applied to obtain inviscid steady flow solutions for 

various airfoil shapes including Joukowski, Karman-Trefftz, and Carafoli airfoils [50-54]. 
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Glauert and Birnbaum [55] developed classical thin airfoil theory and established the foundation 

of the aerodynamics of thin airfoils of arbitrary shapes in incompressible flows, by using a 

modified Fourier series for the distributed vortex intensity on the chord. 

 More recently, computational solutions have been obtained using various numerical methods 

for solving the Euler or Navier–Stokes equations, such as those based on finite-difference or 

finite-volume formulations (for examples see Anderson [50, 56], Drela and Giles [57, 58], 

Jameson et al. [59], Elrefaee et al. [60], Nelson et al. [61] and Mateescu and Stanescu [62]). 

Several authors solved the viscous flows past airfoils and wings numerically by combining 

inviscid Euler solvers, or panel methods, with the analysis of the boundary layer, developed 

along the airfoil contour (see Cebeci [63] and Drela and Giles [57, 58]). 

 The literature review shows that the external flows past airfoils have been substantially 

studied both experimentally and numerically at higher Reynolds number regimes. For example, 

Peterson [64] published experimental results of pressure distribution, induced forces and 

boundary layer measurements for NACA 64A010 airfoil at Reynolds number of Re = 4.1 x 106 

with different angles of attack. Similarly, Derkesen et al. [65] published several experimental 

results for NACA 0012 airfoil in steady flows at different Reynolds numbers ranging from 5,000 

to 60,000, with angles of attack varying from 8 to 12 degrees. They have noticed the fluctuation 

in the velocity and vorticity due to the increase of Reynolds number and angle of attack.  

 However, there is a lack of experimental and numerical studies for steady and unsteady flows 

past airfoils and wings at very low Reynolds numbers (Re < 6000). As it is discussed earlier, the 

study of laminar flows at this range of Reynolds numbers is somewhat challenging and difficult 

to perform due to viscous effects. Commercial and open source CFD software also show 

limitations for studies at very low Reynolds numbers. Maughmer and Coder [66] conducted a 

benchmark investigation of commercial and open source software like PROFIL 07, XFOIL 6.94, 

and ANSYS FLUENT 12.1.2. They published a comparison between experimental results and 

the theoretical methods computations used to predict the aerodynamics characteristics of static 

airfoils concluding that for most of the programs when the Reynolds number decreases below 

70,000 the predictions of the aerodynamic characteristics deteriorate. 

 As a result, there is a need to analyze the steady and unsteady flows past airfoils and wings at 

low Reynolds numbers. The viscous effect and flow separation phenomenon in this type of flows 

are dominant and very challenging and different from those aircraft flying at Reynolds numbers 
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between Re = 10 x 106 and 100 x 106 in the compressible flow regime. At these low Reynolds 

numbers, the fluid flow past the airfoil is incompressible, and many authors use the concept of 

artificial compressibility introduced by Chorin [30, 67, 68]. In incompressible flows at low 

Reynolds numbers, the occurring separation phenomena create difficulties for the numerical 

methods related to their convergence, stability, and accuracy. 

 Mateescu and Abdo [10] presented a numerical method for the flows past airfoils at very low 

Reynolds numbers based on a pseudo-time integration method using artificial compressibility for 

solving the Navier–Stokes equations accurately. The method was first successfully validated for 

the flows with multiple separation regions past a downstream-facing step by comparison with 

previous experimental and computational results at very low Reynolds numbers between 400 and 

1200 [13]. The airfoil solutions were validated by comparison with the results obtained by Kunz 

and Kroo [28] for Reynolds numbers between 1000 and 6000, and excellent agreement was 

found between the two sets of results. 

 Broering and Lian [69] reported a numerical study of tandem flapping wing aerodynamics in 

both two- and three-dimensions. The simulations were based on the incompressible Navier-

Stokes equations, discretized on overlapping grids. They found that vortex interactions highly 

depend on the phase lag angle and spacing between the forewing and hindwing, and three-

dimensional cases exhibited a spanwise variation in the Leading Edge-Vortex (LEV) structure 

and a weaker LEV formation at mid-span compared to the two-dimensional cases with the same 

kinematics. 

 Recently, Mateescu and Munoz [14] developed a numerical method to solve steady and 

unsteady flows past airfoils at very low Reynolds numbers. The solutions are obtained with an 

efficient numerical method and presented for the unsteady aerodynamic coefficients (unsteady 

lift and drag coefficients, and lift-to-drag ratio) of the airfoils executing pitching oscillations at 

low Reynolds numbers. 

 In this thesis, a new efficient numerical method is used to solve the steady Navier-Stokes 

equations for three-dimensional viscous flows in the incompressible regime at very low 

Reynolds numbers, between 600 and 6000. There are few experimental data by several authors. 

Sunada et al. [70] investigated the aerodynamic characteristics of various rectangular wings at 

Reynolds number 4000. Their study presented the experimental aerodynamic lift and drag 

coefficients obtained for these wings. The influence of camber ratio, thickness ratio, and 
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streamline shape has also been presented in their research. The results were shown in the form of 

a comparison of the lift and drag coefficients, which is used to validate this new numerical 

method. 

 This analysis is performed with an efficient numerical method to solve the Navier-Stokes 

equations in a fixed computational domain, obtained from the physical domain by a geometrical 

coordinate transformation. This novel approach has the advantage of solving the problem in a 

fixed rectangular computational domain in which the boundary conditions are implemented 

efficiently and rigorously. The numerical method is second-order accurate in space, and a 

pseudo-time relaxation procedure is used with artificial compressibility. A factored Alternate-

Direction Implicit (ADI) scheme is used for the pseudo-time integration. It is important to 

mention here that while the ADI scheme reduces the problem to the solution of block tri-

diagonal systems of equations, the special decoupling procedure mentioned earlier reduces 

further the problem to the solution of several sets of scalar-tridiagonal systems of equations, 

which are much more efficient to solve computationally. 

 The main objective of this research is to analyze and obtain accurate and efficient steady 

solutions for three-dimensional flows past wings. Furthermore, various aerodynamic coefficients 

such as lift and drag coefficients along the chord and span of the wing are calculated for various 

low Reynolds numbers between 400 and 4000. 

1.6 Thesis organization 

 After the introduction, in Chapter 2, the analysis of the steady and unsteady three-dimensional 

internal flows with oscillating walls and variable inflow velocity is presented. The geometry and 

the boundary conditions of the problem are formulated, and the Navier-Stokes equations for 

incompressible flows are introduced in non-dimensional form, for computational convenience. 

The method of solution is then discussed through the presentation of a synthesis of its various 

features, such as the time-dependent transformation, the real-time discretization approach, the 

pseudo-time iterative technique, the ADI scheme and the special decoupling procedure leading to 

the reduction of the problem to the solution of a set of scalar-tridiagonal systems of equations.  

 Chapter 3 is devoted to studying of unsteady effects on stationary airfoils generated by the 

unsteady flow separations at low Reynolds numbers. This study presents solutions for the 

oscillations in time of the lift and drag coefficients of several symmetric and cambered airfoils. 
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The influence of various geometric and flow parameters, such as the angle of attack, relative 

thickness and camber, and Reynolds number on the unsteady aerodynamic coefficients and the 

flow separation is also studied. 

 Chapter 4 presents the analysis of the steady and unsteady viscous flows over airfoils in the 

proximity of ground. After the problem formulation, the novel time-dependent coordinate 

transformation defining the fixed computational domain with six sub-domains is presented. The 

time-accurate numerical method to solve the modified Navier-Stokes equations in the fixed 

computational domain is also presented. Unsteady effects on the stationary airfoils in the vicinity 

of the ground, which are due to the unsteady flow separations, are also studied thoroughly in this 

chapter.  

 Chapter 5 is focused on the presentation and discussion of the solutions obtained for steady 

viscous flows over rectangular wings with NACA airfoil sections at low Reynolds numbers. 

After introducing the problem formulation, a novel geometrical coordinate transformation 

defining the fixed computational domain with six sub-domains is presented. The numerical 

method is used to solve the modified Navier-Stokes equations in the fixed computational 

domain. 

 Chapter 6 is devoted to the conclusions of the present study and suggestions for future works. 

 The main contributions of this thesis are summarized after the Acknowledgment. 
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Chapter 2  

Steady and Unsteady Solutions for Three-Dimensional Confined 

Flows with Oscillating Walls and Variable Inflow Velocity 

 This Chapter is devoted to the analysis of the steady and unsteady confined viscous flows that 

are present in many engineering systems. A three-dimensional backward-facing step channel has 

been chosen as a benchmark problem for this study. Unsteady flows are usually generated by an 

oscillating wall and by the variations in time of the inflow velocities. These flows have to be 

taken into account in the study of flow-induced vibration and instability of these systems. 

 In this chapter, a numerical method is presented for three-dimensional laminar steady and 

unsteady confined flows which can be used to obtain accurate and efficient solutions for the 

flows with multiple separation regions. Time-accurate solutions of the Navier-Stokes equations 

for steady and unsteady flows are obtained with a numerical method developed by the author. 

The method is second-order accurate in space and time, and is based on a finite difference 

formulation on a stretched staggered grid which uses artificial compressibility. A factored 

Alternate-Direction Implicit (ADI) scheme and a special decoupling procedure, based on the 

utilization of the continuity equation, are used to substantially enhance the computational 

efficiency of the method by reducing the problem to the solution of scalar-tridiagonal systems of 

equations. 

 This method was successfully validated by comparison with the theoretical results obtained 

by White [71] for a fully developed velocity profile in the uniform rectangular channels at 

several axial locations. The current three-dimensional results are also compared with 

experimental results conducted by Lee and Mateescu [13], Armaly et al. [31] and with the two-

dimensional solution obtained by Mateescu et al. [16] for confined flows past backward-facing 

step channel. 

 The formation of the flow separation regions is thoroughly analyzed in this chapter. A special 

interest is to study the effect of the inflow velocity variations, Reynolds numbers, reduced 

frequency of oscillations, and amplitude of oscillating wall on the flow separations appearing in 

confined viscous flows. The author found no previous solutions for three-dimensional unsteady 

confined flows generated by time variable inflow velocities and by oscillating walls. 
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2.1 Problem formulation and governing equations 

 As an example of steady and unsteady confined laminar flows, consider a flow in a 

rectangular channel of downstream height H  and downstream width Hb2 . The upstream 

portion of the channel of length 0lH  has the same width, Hb2 , and an upstream height Hh  

which is suddenly enlarged to the downstream height through a downstream-facing step of 

height  Hh1 , as shown in Figure 2.1. The downstream length of the channel is denoted by 

1lH . The numerical solutions presented further were obtained for 5.0h . 

This flow is referred to the Cartesian coordinates xH , yH  and zH  centered at the step 

corner in the plane of symmetry of the channel, where x , y  and z  are nondimensional 

coordinates (with respect to H ). 

At the channel inlet ( 0lHxH  ) there is a fully developed laminar unsteady flow defined by 

the axial fluid velocity  zyu ,  expressed in White [71] 
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and  tU  is the mean inflow velocity at time t in the form of  

 )(sin1)( 0 taUtU   ,         (2.3a) 

and in the steady case where ( 0t ) the mean inflow velocity becomes   

0)( UtU   ,           (2.3b) 

where 0U  is the time-average mean velocity, HtUt /*
0  and 0

* UH  are the 

nondimensional time and the reduced frequency of oscillation ( f 2*  is the radian frequency 

of the oscillation), and a is the nondimensional amplitude of the inflow velocity oscillation. 
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Figure 2.1 Geometry of the rectangular channel with a downstream-facing step and an oscillating 

wall. 

A portion of the lower wall of length Hl , situated just behind the downstream-facing step, is 

assumed to execute transverse oscillations defined by the following lower wall equation 
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where  txg ,  is the oscillation mode defined as 

 

  )cos()(where)/sin()(, tAtelxtetxg   ,     (2.5) 

 

in which A  is the nondimensional amplitude of oscillation (nondimensionalized with respect to 

H ). The equation (2.1) defining the theoretical velocity profile of the fully-developed laminar 

flow is very slow converging, and can lead to numerical errors when the infinite summation is 

truncated to a finite number of terms. The following procedure has been used in this analysis to 

calculate efficiently and more accurately the fully-developed laminar velocity profile. Consider 

the general term of the infinite summation appearing in equation (2.1), which can be expressed in 

the form  
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 Up to a certain value of 1Nk   this term of the series can be calculated numerically with a 

good accuracy. However, for very large values of 1yK  and 1bK , the ratio of the 
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hyperbolic cosine becomes very close to unity and the numerical evaluations with a finite 

number of digits is affected by large truncation errors. In this case, this ratio can be successively 

expressed as  
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and the general series term for large values of K  becomes  
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where the exponential can be expanded in Taylor series as  
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 Thus, the velocity profile of the fully-developed laminar flow can be numerically calculated 

in the form  
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where 1N  has the following indicated values in function of the downstream aspect ratio, b2 , of 

the channel and for step height 5.0h :  

 

b2  1 2 4 8 12 16 26.6 

1N  112 55 27 13 8 6 3 

 

2.1.1 Navier-Stokes equations for unsteady confined viscous flows 

 Applying the conservation of mass and Newton’s second laws to an infinitesimal, fixed 

control volume yield the continuity and momentum equations as follows: 
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In vector form 
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 In three-dimensional Cartesian coordinate form: 
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where, u 
v 

w and p  are dimensional velocity components and pressure which can be 

defined as 0uUu 
, 0vUv 

, 0wUw 
, and pUp 2

0
. The dimensional coordinates 

can be expressed as xHx *
 yHy *

and zHz *
 where the dimensional time 

is 0
* /UtHt  (where   is the fluid density).

 The nondimensionalization is implemented in the incompressible continuity and Navier-

Stokes equations in which the fluid velocity vectors are nondimensionalized with respect to 0U , 

time-average mean velocity and the Cartesian coordinates x , y and z are nondimensionalized 

with respect to H, downstream channel height. Thus, the nondimensional form of the equations 

can be written as follows: 
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where, /Re 0 HU represents the time-average mean Reynolds number based on the 

downstream channel height, which is related to the Reynolds number, which is related to the 

Reynolds number based on the hydraulic diameter as  124ReRe  bbD  (where   is the 

kinematic viscosity).

 The time-dependent Navier-Stokes equations for the incompressible flow past a backward-

facing step channel can be expressed in nondimensional conservation form as  
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where  T
,, wvuV , which represents the dimensionless fluid velocity vector, and ),( pVQ , 

which includes the convective derivative, pressure and viscous terms, are expressed in three-

dimensional Cartesian coordinates as  

 T
,, wvuV ,          (2.22) 
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in which u , v , w  and p  represent the dimensionless velocity components and pressure, 

nondimensionalized with respect to 0U  and 
2

0U , respectively. 

2.1.2 Boundary conditions  

 No-slip boundary conditions are considered at the solid walls. The inflow and outflow 

boundaries of the computational domain are situated at a distance 0lH  and 1lH  upstream and 



 





downstream from the step, respectively. The inflow boundary condition is defined by equation 

(2.1), and the outflow boundary conditions for the velocity components are based on an 

extrapolation to second-order accuracy from inside the computational domain. The outlet 

pressure is obtained by integrating the momentum equation from the bottom wall (Mateescu and 

Venditti [12]). The implementation of the boundary conditions is shown in Appendix A. 

2.2 Method of solution for the unsteady three-dimensional confined viscous 

flows 

 The development of a time-accurate method is shown in this section, which starts with the 

time-dependent transformation from the physical domain to the fixed computational domain, and 

applied to Navier-Stokes equations. It is followed by the real-time discretization of the Navier-

Stokes equations. A detailed description of the pseudo-time relaxation technique applied to 

Navier-Stokes equations is also shown. The alternate-direction implicit scheme and the 

implementation of the special decoupling procedure are performed, and finally, the spatial 

discretization on stretched staggered grids is carried out.  

2.2.1 Time-dependent coordinate transformation 

 For a rigorous implementation of the boundary conditions on the oscillating walls, the real 

fluid flow domain with moving boundaries is transformed into a fixed computational domain by 

the time-dependent coordinate transformation  

xX  ,   yY  ,    tzxfZ ,, ,  tt    (2.28) 

where  tzxf ,,  is defined in terms of oscillation mode,  txg ,  defined by equation (2.5), in the 

form 
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 Thus in the fixed computational domain  ZYX ,, , the lower and upper boundaries of the 

channel before and after the step are defined by the equations 0Z  and 1Z . 

 In the fixed computational domain, the Navier-Stokes and the continuity equations can be 

expressed as: 
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in which the coefficients 1C , 2C , 3C , . . . , 6C  are defined as: 
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and in the steady case these coefficients are as following 
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 The derivation of these coefficients is presented in Appendix A. 
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2.2.2 Real-time discretization 

 A second-order three-point backward implicit scheme is used to perform the discretization of 

the momentum equation in real-time:  
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where the three consecutive time levels and the time step are represented by the superscripts 

1n , n  and 1n , and 11   nnnn ttttt  respectively. Hence, equations (2.30) can be 

expressed at the time level 1nt  in the form  
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 The initial conditions are specified for 1
V  and 

1p , throughout the fluid domain for the 

computational initialization of the previous momentum equation. It means that the solution 

should be known at previous time level 
1t . A simple implicit Euler scheme is used instead of the 

second-order three-point-backward implicit scheme to start the advance to the next time level 

2t . Then, only at the first time iteration t  and nn
VF  . The solution of the flow 

quantities 
1n

V  and 
1np  is done by imposing boundary conditions at the inlet, outlet, and on 

the moving surfaces of the airfoil, which are analyzed in following sections of this chapter. 

2.2.3 Pseudo-time iterative relaxation technique 

 To advance the solution of the semi-discretized equations from real-time level nt  to 1nt , an 

iterative pseudo-time relaxation procedure with artificial compressibility is used in the following 

form 

npα FVGV
V

 ),(







,  0)(  V


D

p




 ,     (2.38) 

where  V


 and  p


 denote the pseudo-functions corresponding to the variable velocity and 

pressure at pseudo time  , between the real time levels 
nt  and 

1nt , and   represents an 

artificially-added compressibility. Pseudo-continuity and Navier-Stokes equations (2.38) are 
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solved in pseudo-time. An implicit Euler scheme is used in this respect to discretize these 

equations between the pseudo-time levels 
v  and   vv 1

, and the resulting equations 

are expressed as 

n
FGV

VV




 


11
1










,
  

0
1 1

1




 






V


pp
,
  

(2.39) 

where   is the pseudo-time step and the superscript   indicates the solution at pseudo-time 

level    and  111 ,    p


VGG . To start the pseudo-time integration initial conditions 

are required, then n
V  and np  take the following values: 

n
VV 

1




 ,  npp 
1



       
(2.40) 

 Once the steady state is reached at k , the pseudo-time derivatives become zero 

kk
VV


1 ,   kk pp


1        (2.41) 

and then (at that point)  

11   nk
VV


,  11   nk pp


       (2.42)  

 Introducing the pseudo-time variations,   


VVV


 1 ,  
 ppp


 1
,  

GGG


 1
  (2.43) 

 

 Then equations (2.38) can be written in delta form as 

   ),(F),(1   ppδτ n 
VGVVGV  ,    (2.44) 

  








VV








p
       

(2.45) 

 The last two equations are iterated in pseudo-time until variations are equal to zero ( 0 
V


 

and 0 p


). Although there are many different methods to calculate the value of the artificial 

relaxation parameter   and  , (for example, see Soh [72, 73] and Mateescu et al. [23, 24]) in 

this research these values are optimized by numerical experimentation. 
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2.2.4 The linearization and alternating-direction implicit scheme 

 In previous sections the implementation of a time integration method for the solution of the 

Navier-Stokes equations was shown. The introduction of spatial differential operators is required 

to go on further obtaining numerical solution of the system of equations. In addition, to facilitate 

the pseudo-time iterative process, the implicit nonlinear system of equations (2.44) and (2.45) are 

linearized. 

The linearization of the 
V


  and 
G


  terms is done by lagging the velocity components in 

the pseudo-time variation. This method of linearization is simple, efficient and fits well in this 

implicit scheme. It is expressed as  
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where, 
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Equations can be written (2.44) and (2.45) in a global matrix form as 

   SI   ΦZYX DDD         (2.52) 

where  TpwvuΦ  ,,, , 32 /t , and I is the identity matrix, and where  
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in which the differential operators M , N  and R  are defined as 
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where Φ  can be u , v , w  or p . 

 A factored Alternate-Direction Implicit (ADI) scheme is then applied to the left hand side of 

equation (2.52) 

       ΦΦ ZYXZYX  DDDDDD  IIII    (2.56) 

 

 It should be mentioned that the approximate factorization eliminates the quadratic terms 

YX DD
22   , ZY DD

22   , ZX DD
22   , and cubic term ZYX DDD

33    from left hand side 

of equation (2.52). Therefore, it is important to keep ∆τ sufficiently small. This ADI scheme can 

produce some convergence issues if ∆τ takes large values. 



 





The ADI scheme reduces the solution to the sets of several scalar-tridiagonal systems of 

equations. Thus, equation (2.52) changes to 

 

    SIII   ΦZYX DDD
      (2.57) 

 The ADI scheme requires the introduction of intermediate variables Φ  and *Φ to solve the 

linear implicit system of equations. The variable Φ  has the components u , v , w  and p  

which are calculated in the Z-weep 

  SI   ΦZD           (2.58) 

 Next, in the X-sweep the values of  TpwvuΦ ***** ,,,   are computed 

  ΦΦX  *I D          (2.59) 

and finally, in the Y-sweep the values of  TpwvuΦ  ,,,  are obtained
 

  *I ΦΦY  D           (2.60) 

 Hence, after the ADI method application, by replacing the equations (2.53a) and (2.53b) into 

(2.58), (2.59) and (2.60), the scalar form of Z-sweep, X-sweep and Y-sweep can be obtained. 

The details are presented in Appendix A. 

2.2.5 Special decoupling procedure 

 A special decoupling procedure [9, 10, 11], based on the utilization of the continuity equation, 

is used for each sweep to eliminate the pressure term from momentum equations. In this manner, 

the problem is reduced to the solution of several sets of decoupled scalar-tridiagonal systems of 

equations. As a result, this method is characterized by excellent computational efficiency and 

accuracy. For example, for Z-sweep the corresponding relation from continuity equation can be 

used: 
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2.2.6 Spatial discretization on stretched staggered grids 

 These equations are further spatially discretized by central differencing on a stretched 

staggered grid, in which the flow variables u , v , w  and p  are defined at different positions, as 

shown in Figure 2.2. 

 By using a staggered grid, this method avoids the odd-and-even point decoupling while 

preserving the second-order accuracy in space of the method. To obtain a good spatial resolution 

the grid is stretched by increasing the number of points in regions where higher velocity 

gradients are present such as near the solid walls. The stretched-staggered grid can be seen in 

Figure 2.3. The grid is stretched along one direction independently of the other coordinate 

direction and is defined by hyperbolic sine and tangent functions in the x , y  and z -directions. 
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(2.64) 

where, 0X , 0Y , 0Z  are the start coordinates points of the grid, NxX , NyY , NzZ  are the end coordinate 

points of the grid, Nx , Ny , Nz  are the number of grid points in X, Y, and Z directions, and   is 

the stretching parameter. 
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Figure 2.2 Geometry of the three-dimensional staggered grid. 
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Figure 2.3 Three-dimensional stretched staggered grid with an oscillating wall configuration 

2.3 Method validation 

 The numerical method has been successfully validated by comparison with experimental 

results available for three-dimensional steady flows past a downstream-facing step and with 

previous two-dimensional computational solutions. 

 

 
 

Figure 2.4 Typical flow pattern for the confined flow past a down-stream-facing step in a 

rectangular duct illustrating the flow separation regions by using the streamlines and the velocity 

profiles along the duct in the plane of symmetry ( 0y ).  

The main feature of this confined flow past a downstream-facing step is the presence of two 

flow separation regions, one on the lower wall and the other one on the upper wall. This typical 

flow pattern is illustrated in Figure 2.4 by using the streamlines and the velocity profiles in the 
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plane of symmetry ( 0y ) along the channel at various axial locations. The axial locations of the 

flow separation sx  and reattachment rx  on the upper wall (with upper separation length 

sru xxL  ) and the lower wall separation length lL  are used to validate the solutions by 

comparison with previous numerical and experimental results. These points represent the 

characteristic features of this flow as shown in Figure 2.5. 

 

 

 

 

 

 

Figure 2.5 Location of the separation and reattachment points on the upper and lower walls into 

the downstream-facing step (H/h = 2) channel. 

2.3.1 Validation for uniform rectangular channels  

This method is first validated for the flows in a uniform rectangular channel of width Hb2  

and height Hh (similar to the upstream portion of the channel in Figure 2.1, which has the aspect 

ratio hb2 ) with the axial length of 25, by considering a fully-developed laminar flow or a 

uniform flow at the inlet.  

The velocity profiles obtained in the symmetry plane of the channel ( 0y ), are starting from 

the fully-developed laminar profile as shown in Figures 2.6 (a) and 2.6 (b) for various aspect 

ratios ( 8,4,2,12 hb ) and at various axial locations ( 25,15,10,5,0x ). 

 Very good agreement was found between the present numerical results and the theoretical 

solutions [71]. The present numerical method maintaining very good accuracy with the fully-

developed laminar velocity profile along the channel, as expected. 
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Figure 2.6 Velocity profiles at 0y  (symmetry plane of the channel): (a) at several axial 

locations (for 2b/h =1), and (b) for several aspect ratios ( hb2 ) at the axial location 15x .  

2.3.2 Comparison with the experimental data and effect of lateral walls 

 The computed locations of the flow separation and reattachment on the upper and lower walls 

in the plane of symmetry ( 0y ) are shown in Figure 2.7 in comparison with the experimental 

results obtained by Armaly et al. [31] and by Lee and Mateescu [13], and two-dimensional 

numerical results by Mateescu and Venditti [12]. 

 One can notice good agreement between the present solutions and the experimental results, 

while the two-dimensional solutions obtained by Mateescu and Venditti are not in good 

agreement with the experimental results especially for larger Reynolds numbers. 

 This confirms the explanation advanced in [31, 36] that the disagreement between the two-

dimensional solutions and the experimental results is due to the three-dimensional effects due to 

the lateral walls in the experimental configuration. This explains why three-dimensional study of 

confined laminar flows is important in this research. 
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Figure 2.7 Steady flow over a downstream-facing step ( 5.0h ):  Variation with the Reynolds 

number of the flow separation and reattachment locations on the upper wall ( sx  and rx ) and the 

separation length on the lower wall ( lL ) in the symmetry plane of the channel ( 0y ). 

Comparison between:  

----o----    Present solution:      3D solutions for the aspect ratio 6.262 b ;  

---------    Mateescu and Venditti [12]:    2D solutions (for b2 );  

□, ◊, Δ     Lee and Mateescu [13]:     Experimental results (for 6.262 b );  

■, ♦, ▲   Armaly et al. [31]:      Experimental results.  

2.3.3 Grid sensitivity analysis for steady and unsteady internal flow solutions 

 The grid sensitivity has been investigated for the presented numerical solution through the 

mesh refinement applied to the steady and unsteady flow cases. Through the geometry analysis, 

it is found the length of upstream and downstream should be at least L0 = 25, and L1 = 75. Beyond 

these two channel lengths the numerical results are not affected. These results are obtained by 

using 240 x 68 x 68 grid points, and shown in Tables 2.1 and 2.2. 
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Present 3D 

Results 
Ll xs xr 

L1 = 45 4.96 4.21 7.75 

L1 = 55 5.01 4.20 7.82 

L1 = 65 5.04 4.24 7.87 

L1 = 75 5.06 4.27 7.91 

L1 = 85 5.06 4.27 7.91 

 

Table 2.1 Analysis of downstream length (L1) for Re = 600: comparison of separation length on 

the lower wall (Ll) and flow separation and reattachment locations on the upper wall ( sx and rx ), 

for L0 = 25. 

 

Present 3D 

Results 
Ll xs xr 

L0 = 5 5.01 4.21 7.85 

L0 = 10 5.03 4.24 7.88 

L0 = 15 5.04 4.25 7.89 

L0 = 25 5.06 4.27 7.91 

L0 = 35 5.06 4.27 7.91 

 

Table 2.2 Analysis of upstream length (L0) for Re = 600: comparison of separation length on the 

lower wall (Ll) and flow separation and reattachment locations on the upper wall ( sx  and rx ), 

for L1 = 75. 

 To find the ideal grid points, the solution is solved for a confined steady flow at Re = 600 in a 

backward-facing step with total span of 2b = 26.6, step height h = 0.5, upstream channel length 

L0 = 25, and downstream channel length L1 = 75. 

 The criteria of comparison are based on the lower wall separation length Ll, and the upper 

wall separation and reattachment locations xs and xr (with upper separation length Lu = xr – xs). 

 The results of the grid sensitivity test are shown in Table 2.3. It can be seen there is no 

discrepancy between the solution obtained by using 240 x 68 x 68 grid points and the fully 

converged solution obtained with 300 x 88 x 88 grid points and beyond this grid density  

(240 x 68 x 68), the numerical solution is not influenced by increasing the number of grid points. 
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Number of grid points 

Lower wall Upper wall 

 
Ll Lu= xr - xs xs xr 

  
 

160 x 28 x 28 4.932 3.621 4.143 7.765 

 
180 x 38 x 38 5.025 3.638 4.226 7.854 

 
200 x 48 x 48 5.068 3.643 4.274 7.913 

 
220 x 58 x 58 5.073 3.654 4.285 7.932 

 
240 x 68 x 68 5.081 3.667 4.293 7.957 

 
260 x 78 x 78 5.081 3.667 4.293 7.957 

 300 x 88 x 88 5.081 3.667 4.293 7.957 

 

Table 2.3 Grid sensitivity of the numerical solution for h = 0.5, Re = 600, 2b = 26.6, L0 = 25, and 

L1 = 75 based on the computed non-dimensional lengths of separation and reattachment. 

 

 

 

 

 

 

 

 

 

Figure 2.8 Order of accuracy calculated from the grid sensitivity test data. 

 The order of accuracy is validated and as shown in Figure 2.8. To check the order of accuracy 

the mean absolute error (Log e0) for the upper separation point is plotted with respect to grid 

spacing. The slope of the dashed curve, which is the linear regression of the upper separation 

point is 2.03 and as a result the method is second-order accurate. 
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2.3.4 Time-step convergence study 

 Considering the unsteady confined flow case, the size of the nondimensional real-time step is 

 Nt 2  with a number of steps during an oscillation period of N=80. The number of steps 

is taken from the analysis of the upper and lower wall separations. Figure 2.9 shows a portion of 

the oscillation cycle from 3.9 t/T to 4 t/T of the wall separation length. One can see from Table 

2.4 that the separation lengths keep constants after N=80. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Several number of time steps per oscillation cycle describing the upper and lower wall 

separation length of unsteady confined flow past downstream-facing steps at Re=400 and inflow 

velocity amplitude a=0.05 and frequency ω=0.05. 
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The real-time integration started from the steady flow solution for fixed walls and inflow 

velocity variation, and it was performed until all variables in the computational domain were 

executing repeatable and exact harmonic oscillations from one period to the next, usually after 3 

oscillation cycles or less, as shown in Figure 2.9.  

 

Time steps per cycle t/T Ll Lu 

40 3.95 4.2217 1.8578 

60 3.95 4.2220 1.8566 

80 3.95 4.2220 1.8567 

100 3.95 4.2220 1.8567 
 

Table 2.4 Sensitivity of the time steps per oscillation cycle of the numerical solution for N=40, 

60, 80 and 100 with Re = 400 at t/T=3.95 based on the computed nondimensional lengths of 

separation and reattachment (see Figure 2.9).  

2.4 Steady solutions for the confined flows with backward-facing step channel 

 After validation the method has been used to obtain steady solutions for the flows in a channel 

with a backward-facing step (shown in Figure 2.1). The variations of the flow separation and 

reattachment locations ( sx  and rx ) on the upper wall and the separation length ( lL ) on the 

lower wall along the span of the channel, from the plane of symmetry (y = 0) towards the lateral 

wall at y = 13.3 are shown in comparison with experimental results conducted by Lee and 

Mateescu [13] and Armaly et al. [31] only in the plane of symmetry (y = 0) in Figure 2.10. These 

results are computed for total span 6.262 b , step height 5.0h  (expansion ratio, ER = 2), and 

various Reynolds numbers, Re = 450, 600, 800 and 1000.  

 The typical variations of the flow separation and reattachment locations on the upper and 

lower walls ( sx , rx  and lL ) along the span of the channel ( y -direction) with the non-

dimensional step height hhS 1  are shown in Figure 2.11. The results are obtained for total 

span 6.262 b , and for several step heights 6.0and5.0,4.0h  at Re = 600. 
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Figure 2.10 Influence of the Reynolds number on the variation of the flow separation and 

reattachment locations on the lower and upper walls ( lL , sx  and rx ) along the span of the 

channel (y-direction) for 6.262 b  and step height of 5.0h  at various Reynolds numbers for 

Re = 450, 600, 800 and 1000. For the plane of symmetry ( 0y ): Comparison with the 

experimental results obtained by Armaly et al. [31] and Lee and Mateescu [13]. 
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Figure 2.11 Influence of the step height, hhS 1 , on the variations of the flow separation and 

reattachment locations on the upper and lower walls ( sx , rx  and lL ) along the span of the 

channel (y-direction) for 6.262 b  and for several step heights at Re = 600.  

 The typical front views ( zx  planes) of the flow as viewed from the longitudinal planes 

0y , 4y , 8y  and 13y  towards the lateral wall ( 3.13y ) are illustrated in Figure 2.12 

for 6.262 b  and 50.h  at Re = 600, by using streamlines (represented by continuous lines) 

and velocity contours. The color shades indicate the magnitude of the nondimensional flow 

velocity with respect to the mean flow velocity, 0U , according to the scale included in the 

figure.  

 A top view of the channel ( yx   plane) illustrating the flow separation regions on the lower 

and upper walls is also shown in Figure 2.13 for 6262 .b  at Re = 600. For a better illustration 

of the flow separation regions in this complex three-dimensional flow, the isomeric view of the 

streamlines and the velocity contours is indicated in Figure 2.14, and a more detailed isometric 

view is shown in Figure 2.15.  
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Figure 2.12 Front views (x-z plane) of the 3-D flow in the duct with a downstream-facing step 

( 5.0h ), for 6.262 b  at Re = 600, illustrating the streamlines and the velocity contours at 

several distances from the plane of symmetry ( 0y ) towards the lateral wall ( 13.3y ).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 Top view (x-y plane) of the streamlines in the three-dimensional flow past a 

downstream-facing step ( 5.0h ), illustrating the flow separation regions on the lower and upper 

walls for 6.262 b  at Re = 600. 
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Figure 2.14 Isometric view of the streamlines and velocity contours in a three-dimensional 

confined flow past a downstream-facing step ( 5.0h ), for 6.262 b  at Re = 600. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15 A detailed view of the streamlines and velocity contours in a three-dimensional 

confined flow past a downstream-facing step ( 5.0h ), for 6.262 b  at Re = 600. 
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2.5 Solutions for three-dimensional unsteady confined flows with variable 

inflow velocity 

 The numerical method presented in Section 2.2 is applied to obtain solutions for the unsteady 

confined flows past downstream-facing step generated by harmonic variations in time of the 

inflow velocities defined by equations (2.1) to (2.3), when the channel walls are fixed ( 0A , 

where A  is the amplitude of wall oscillation). Computations have been performed for the step 

height   HHh 5.01   (where 5.0h , and expansion ratio ER = 2), and for the aspect ratio of 

the channel 26.6 in respect to downstream height H. Numerical solutions have been obtained for 

various values of the Reynolds number,  0Re UH , and for various values of the amplitude of 

the inflow velocity, a , and of the reduced frequency of oscillations, ω . In the computations, the 

size of the nondimensional real time step is defined as NTt  , where the number of real time 

steps during an oscillation period ( ωT  2 ) was taken 80N  as it was shown in section 

2.3.4. 

 The pseudo-time computations have been performed using 8.0δ  and 01.0 τ , and 

convergence was assumed to be reached when the RMS residuals were less than 10−5. The real 

time integration was started from the steady flow solution for fixed walls and constant inflow 

velocity (obtained by Mateescu, Panahi and Roy [8]), and was performed until all variables in 

the computational domain were executing repeatable harmonic oscillations from one period to 

the next (usually after 3 oscillation cycles). The number of sub-iterations in pseudo-time are less 

than 100 for each time step depending on the case. This leads to have a fast converging 

numerical method. 

 The streamline patterns and the velocity contours in the plane of symmetry ( 0y ) of the 

unsteady confined flow at various moments during the oscillatory cycle, Tt 3.0, 3.25, 3.5 and 

3.75, for the Reynolds numbers Re = 400, 600, and 800, for the reduced frequency 05.0ω , and 

for three values of the amplitude of the inflow velocity variation, a =0.05, 0.2 and 0.4 are shown 

in Figure 2.16 for the case of fixed walls ( 0A ). 



 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 Streamline patterns and velocity fields of the unsteady confined flow at various 

moments during the oscillatory cycle, 75.3 and5.3,25.3,0.3Tt , for  Re = 400, 600 and 800, 

05.0  and for three values of the amplitude of the inflow velocity variation, a 0.05,  0.2  

and  0.4  ( 0A ). The color shades indicate the nondimensional values (with respect to 0U ) of 

the local fluid velocity 

Re = 400  ,  2b = 26.6  ,  A = 0  ,  a = 0.05   Re = 400  ,  2b = 26.6  ,  A = 0  ,  a = 0.2 

Re = 600  ,  2b = 26.6  ,  A = 0  ,  a = 0.05    Re = 600  ,  2b = 26.6  ,  A = 0  ,  a = 0.2 

Re = 800  ,  2b = 26.6  ,  A = 0  ,  a = 0.05         Re = 800  ,  2b = 26.6  ,  A = 0  ,  a = 0.4 
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2.5.1 Influence of the amplitude of the inflow velocity fluctuations on the 

unsteady flow separations 

The typical influence of the inflow velocity oscillation amplitude, a , on the lower wall 

separation length ( lL ) and on the upper wall separation and reattachment locations ( sx  and rx ) 

is illustrated in Figure 2.17 for the case of fixed walls ( 0A ). These solutions were obtained in 

the plane of symmetry of the channel ( 0y ) for several values of the amplitudes of the inflow 

velocity variation, a , and of the Reynolds number, Re, and for the reduced frequency 05.0ω , 

and the non-dimensional period of oscillations denoted by ωT  2 . 

It is interesting to note that the upper wall flow separation is present only during a portion of 

the oscillatory cycle (being absent for the rest of the cycle) when the inflow velocity amplitude is 

larger, such as 05.0a  for 600Re  , and 20 a  for Re = 800. At Re = 800, one can notice 

the formation of secondary flow separation regions on the lower and upper walls for 4.0a , 

which appear only during a small portion (about one quarter) of the oscillatory cycle. The 

formation of these secondary flow separation regions on the lower and upper walls can also be 

seen in the flow visualizations for Re 800 shown in Figure 2.17. 

2.5.2 Influence of the Reynolds number on the unsteady flow separations 

The typical influence of the inflow velocity oscillation amplitude, a , on the lower wall 

separation length ( lL ) and on the upper wall separation and reattachment locations ( sx  and rx ) 

is illustrated in Figure 2.18 for the case of fixed walls ( 0A ) with variable inflow velocity. 

These solutions are obtained for several values of the amplitudes of the inflow velocity variation, 

a  and of the Reynolds number, Re, and for the reduced frequency ω = 0.05.  

Again one can observe the formation of the secondary flow separation region on the lower 

and upper walls for Re 800 and 4.0a . 
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Figure 2.17. Influence of the inflow velocity amplitude, a , for fixed walls: Variation during the 

oscillatory cycle, Tt , of the upper wall separation and reattachment locations and of the lower 

wall reattachment locations, for Re = 400, 600 and 800, 05.0ω   ( 6.262 b , 0A ). 

              Re=400  ,   upper wall         Re=400  ,   lower wall 

               Re=600  ,   upper wall           Re=600  ,   lower wall 

               Re=800  ,   upper wall          Re=800  ,   lower wall 

          Time variation of the inflow velocity         Time variation of the wall displacement 
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Figure 2.18. Influence of the Reynolds number, Re:  Variation during the oscillatory cycle, Tt , 

of the upper and lower wall separation and reattachment locations, for 05.0 , 

0.4 and05.0a  ( 6.262 b , 0A ).  

2.6 Solutions for three-dimensional unsteady confined flows with oscillating 

walls and time-variable inflow velocity 

 Numerical solutions are also obtained for the unsteady confined flows past downstream-

facing steps generated by oscillating wall ( 0A ), defined by equations (2.4), and (2.5), and by 

harmonic variations in time of the inflow velocities defined by equations (2.1) to (2.3).  

 Computations have been performed for the step height   HHh 5.01   (where 5.0h ) and 

for the nondimensional length of the oscillating wall 10l .  

 The streamline patterns and the velocity contours in the plane of symmetry ( 0y ) of the 

unsteady confined flow at various moments during the oscillatory cycle, ,  3.0, 3.25, 3.5 and 

3.75, for the Reynolds numbers Re = 600 and 800, with the reduced frequency 05.0ω , and for 

two values of the amplitude of the inflow velocity variation, a =0  and  0.05, are shown in Figure 

2.19 for the case of the wall oscillation amplitude 05.0A . In this figure, the color shades 

indicate the nondimensional values (with respect to 0U ) of the local fluid velocity.  

  a = 0.05    ,   upper wall              a = 0.05     ,   lower wall  

  a = 0.4     ,    upper wall               a = 0.4     ,   lower wall  
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Figure 2.19 Streamline patterns and velocity fields of the unsteady confined flow at various 

moments during the oscillatory cycle, 75.5 and5.5,25.5,0.5Tt , for Re = 600 and 800, 

05.0  and for two values of the amplitude of the inflow velocity variation, a 0  and  0.05, 

and for the wall oscillation amplitude 05.0A . The color shades indicate the nondimensional 

values (with respect to 0U ) of the local fluid velocity. 

Re = 800  ,  2b = 10  ,  A = 0.05  ,  a = 0    Re = 800  ,  2b = 10  ,  A = 0.05  ,  a = 0.05 

Re = 600  ,  2b = 10  ,  A = 0.05  ,  a = 0    Re = 600  ,  2b = 10  ,  A = 0.05  ,  a = 0.05 
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2.6.1 Influence of the aspect ratio of the channel on the unsteady flow 

separations  

 The typical influence of the aspect ratio of the downstream portion of the channel, b2 , on the 

lower wall separation length ( lL ) and on the upper wall separation and reattachment locations 

( sx  and rx ) is illustrated in Figure 2.20 for Reynolds number Re 600 and the reduced 

frequency 05.0 . These solutions are obtained in the plane of symmetry of the channel ( 0y ) 

for the inflow velocity amplitude, 05.0a , and for several values of the amplitude of the wall 

oscillation, A = 0.05, 0.1 and 0.2 , for two values of the channel aspect ratio, 2b = 26.6 and 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 Influence of the aspect ratio, b2 : Variation during the oscillatory cycle, Tt , of the 

upper and lower wall separation and reattachment locations, for Re =600, 05.0 , 05.0a  

and for A 0.05,  0.1 and 0.2.  

              Re = 600,   2b = 26.6  ,   a = 0.05  ,  lower wall   Re = 600,   2b = 10  ,   a = 0.05  ,  lower wall 

   Time variation of the inflow velocity             Time variation of the wall displacement  

             Re = 600,   2b = 26.6  ,   a = 0.05  ,  upper wall   Re = 600,   2b = 10  ,   a = 0.05  ,  upper wall 
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It can be noticed that the presence of the upper wall separation during the oscillatory cycle is 

reduced for the lower aspect ratio of the channel, while the length of the lower wall separation 

increases and has larger oscillation amplitudes at the lower aspect ratio, 102 b .  

2.6.2 Influence of the wall oscillation amplitude on the unsteady flow separations 

 The typical influence of the wall oscillation amplitude, A , on the lower wall separation length 

( lL ) and on the upper wall separation and reattachment locations ( sx  and rx ) is illustrated in 

Figure 2.21 for the oscillation frequency 05.0  and Reynolds number 600Re  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21 Influence of the wall oscillation amplitude, A : Variation during the oscillatory 

cycle, Tt , of the upper and lower wall separation and reattachment locations, for Re =600, 

05.0 , 05.0a  and A 0.05, 0.1 and 0.2.  

        Re=600  ,   2b = 10  ,  a = 0,  lower wall   Re=600  ,   2b = 10  ,  a = 0.05,  lower wall 

 Time variation of the inflow velocity            Time variation of the wall displacement  

Re=600  ,   2b = 10  ,  a = 0,  upper wall             Re=600  ,   2b = 10  ,  a = 0.05,  upper wall 
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These solutions are obtained in the plane of symmetry of the channel ( 0y ) for the aspect ratio, 

102 b , two values of the inflow velocity amplitude, 0a  (that is steady inlet flow velocity) 

and 05.0a , and for several values of the amplitude of the wall oscillation, A = 0.05,  0.1 and 

0.2. 

It can be seen that the length and the time duration of the upper wall separation gets larger by 

increasing the wall oscillation amplitude, A , and the length of the lower wall separation has 

larger oscillation amplitudes at the larger wall amplitude oscillations.  

2.6.3 Influence of the Reynolds number on the unsteady flow separations  

The typical influence of the Reynolds number on the lower wall separation length ( lL ) and on 

the upper wall separation and reattachment locations ( sx  and rx ) is illustrated in Figure 2.22 for 

the oscillation frequency 05.0 , wall oscillation amplitude 05.0A  and for two values of the 

inflow velocity amplitude, 0a  and 05.0a . These solutions are obtained in the plane of 

symmetry of the channel ( 0y ) for the aspect ratio, 102 b , two values of the inflow velocity 

amplitude, 0a  (that is steady inflow velocity) and 05.0a , and for several values of the 

Reynolds number, Re 400, 600, 800 and 1000.  

One can notice that the length and the time duration of the upper wall separation increase with 

the Reynolds number for both values of the inflow velocity amplitudes, and the length of the 

lower wall separation also increases with the Reynolds number.  

It is interesting to note the formation of a secondary flow separation at the lower wall at, 

Re 1000 (the largest Reynolds number included in Figure 2.22), which has a duration of about 

one quarter of the oscillatory cycle, slightly shorter for 05.0a .  
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Figure 2.22 Influence of the Reynolds number:  Variation during the oscillatory cycle, Tt , of 

the upper and lower wall separation and reattachment locations, for 05.0 , 05.0A , and 

a 0 and 0.05, and for Re 400, 600, 800 and 1000  ( 102 b , 0y ).  

2.6.4 Variation of the unsteady flow separations along the span of the channel  

The typical variations along the span (with y) of the unsteady lower wall separation length 

( lL ) and of the upper wall separation and reattachment locations ( sx  and rx ) is illustrated in 

Figures 2.23 and 2.24 for the channel aspect ratio, 102 b , at two Reynolds numbers Re 600 

and 800, and for several locations along the span of the channel: y = 0, 0.25b, 0.5b, and 0.75b.  

 A = 0.05  ,   2b = 10  ,  a = 0,  upper wall    A = 0.05  ,   2b = 10  ,  a = 0.05,  upper wall 

 A = 0.05  ,   2b = 10  ,  a = 0,  lower wall      A = 0.05  ,   2b = 10  ,  a = 0.05,  lower wall 

          Time variation of the inflow velocity     Time variation of the wall displacement 
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Figure 2.23 Spanwise variation of the unsteady flow separations: Variation during the oscillatory 

cycle, Tt , of the upper and lower wall separation and reattachment locations, for wall 

amplitude oscillation 05.0A , inflow velocity amplitude , 05.0a , and two Reynolds numbers 

Re = 600 and 800, at several locations along the span of the channel: y = 0, 0.25b, 0.5b, and 

0.75b. (aspect ratio 102 b  and reduced frequency of oscillations 05.0 )  

 

The spanwise variations of the unsteady flow separations is shown in Figure 2.23 for the 

oscillation frequency 05.0 , wall amplitude oscillation 05.0A , inflow velocity amplitude 

05.0a , and two Reynolds numbers Re 600 and 800, in four longitudinal planes along the 

span of the channel: bbby 75.0and,5.0,25.0,0 .  

Re = 800,   2b = 10  ,   A = 0.05  ,   a = 0.05  ,  upper wall  Re = 600,   2b = 10  ,   A = 0.05  ,   a = 0.05  upper wall 

  Re = 800,   2b = 10  ,   A = 0.05  ,   a = 0.05  ,  lower wall   Re = 600,   2b = 10  ,   A = 0.05  ,   a = 0.05  ,  lower wall 

          Time variation of the inflow velocity      Time variation of the wall displacement 
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Figure 2.24 Spanwise variation of the unsteady flow separations:  Variation during the 

oscillatory cycle, Tt , of the upper and lower wall separation and reattachment locations, for 

fixed walls ( 0A ), inflow velocity amplitude 1.0a , and two Reynolds numbers Re = 600 and 

800, at several locations along the span of the channel: y = 0, 0.25b, 0.5b, and 0.75b. (aspect ratio 

102 b  and reduced frequency of oscillations 1.0 )  

The spanwise variations of the unsteady flow separations is illustrated in Figure 2.24 for fixed 

walls ( 0A ), inflow velocity amplitude 1.0a , oscillation frequency 05.0 , and two 

values of Reynolds numbers Re 600 and 800, at several locations along the span of the channel 

y = 0, 0.25b, 0.5b, and 0.75b. 

2.7 Summary of findings 

A novel three-dimensional method has been developed for the time-accurate solutions of the 

Navier-Stokes equations in the incompressible confined flows at low Reynolds numbers 

(between 400 and 6000). This very efficient method is second-order accurate in space and time, 

uses artificial compressibility and a factored Alternate-Direction Implicit scheme, and is based 

Re = 800,   2b = 10  ,   A = 0  ,   a = 0.1  ,  lower wall   Re = 600,   2b = 10  ,   A = 0  ,   a = 0.1  ,  lower wall 

  Re = 800,   2b = 10  ,   A = 0  ,   a = 0.1  ,  upper wall   Re = 600,   2b = 10  ,   A = 0  ,   a = 0.1  ,  upper wall 
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on a finite difference formulation on a stretched staggered grid. This method solves for the first 

time the three-dimensional steady and unsteady incompressible flows at low Reynolds numbers.  

Original solutions have been obtained for the steady and unsteady confined viscous flows for 

the benchmark case of the downstream-facing step channel at low Reynolds numbers, which are 

generated by the time variable inflow velocities and by the oscillating walls.  

The study of these confined steady flows at low Reynolds numbers, explains and confirms 

that the disagreement between the two-dimensional solutions and the experimental results is due 

to the three-dimensional effect of the lateral walls. The obtained three-dimensional 

computational solutions were in good agreement with the experimental results. The multiple 

flow separations generated on the upper and lower walls have been thoroughly studied in 

function of the Reynolds number, span-to-height ratio, and the amplitude and frequency of the 

inflow velocity and the wall oscillations. 
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Chapter 3 

Unsteady Effects on Stationary Airfoils Due to Unsteady Flow 

Separations at Low Reynolds Numbers 

 This chapter presents the unsteady flow analysis of the stationary airfoils at low Reynolds 

numbers, which is performed to study the unsteady effects on the aerodynamic coefficients 

generated by the unsteadiness of the flow separations appearing at angles of attack above 8 

degrees.  

 The unsteady flow analysis of the stationary airfoils at low Reynolds numbers is performed 

with an efficient time-accurate numerical method developed by the author for the solution of the 

Navier-Stokes equations at low Reynolds numbers, which is second-order accurate in time and 

space. A second-order three-point-backward implicit scheme is used first for the real-time 

discretization, followed by a pseudo-time relaxation procedure using artificial compressibility 

and a factored Alternate-Direction Implicit (ADI) scheme for the pseudo-time integration. Then, 

a second-order central finite difference formulation is used on a stretched staggered grid to avoid 

the odd-and-even points decoupling in this numerical method. A special decoupling procedure 

using the continuity equation reduces the problem to the solution of scalar-tridiagonal systems of 

equations, which enhances substantially the computational efficiency of the method. 

 The numerical method is validated by comparison with experimental results obtained by 

Suwa et al. [47, 48]. Solutions are obtained for the unsteady lift and drag coefficients of a 

triangular airfoil and several symmetric and cambered airfoils. The flow separation is also 

studied with the aid of flow visualizations illustrating the changes in the flow pattern at various 

moments in time. The influence of various geometric and flow parameters, such as the angle of 

attack, relative thickness and camber, and Reynolds number on the unsteady aerodynamic 

coefficients and the flow separation is also studied in this chapter.  

3.1 Problem formulation and numerical method 

 Consider a cambered airfoil of chord c  placed at an incidence   in a uniform stream of 

velocity U , as shown in Figure 3.1. The airfoil is referred to a Cartesian reference system of 

coordinates xc  and yc , where x  and y  are nondimensional coordinates (with respect to the 
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chord c ), with the x-axis along the airfoil chord and its origin at the airfoil leading edge. The 

airfoil upper and lower surfaces are defined by the equations  

     xexhxey  1 , and      xexhxey  2  ,    (3.1)  

 

where the subscripts 1 and 2 refer to the upper and lower surfaces, and where  xh  and  xe  

define, respectively, the camberline and the airfoil thickness variation along the airfoil chord. 

The special case of symmetric airfoils is characterized by      xexexe  21  and   0xh .  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Geometry of an airfoil placed in a uniform flow at the angle of attack . 

 The viscous fluid flow past the oscillating airfoil is referred to a fixed Cartesian reference 

system of coordinates ξc  and c  defined by the equations  

 sincos yx  ,    cossin y  ,    (3.2)  

where   and   are nondimensional coordinates with respect to the airfoil chord c , with the  -

axis parallel to the uniform stream velocity U , which is inclined with the angle   with respect 

to the airfoil chord as shown in Figure 3.1. 

 Velocity components along the fixed  - and  -axes are defined as uU  and vU , where 

u  and v  are the nondimensional velocity components with respect to U .  

3.1.1 Navier-Stokes equations for unsteady viscous flows 

 The time-dependent Navier-Stokes and continuity equations for the incompressible flow past 

the airfoil can be expressed in nondimensional conservation form as  
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where cUtt  *  is the nondimensional time ( *t  is the dimensional time), 

 T
,vuV represents the vector of the dimensionless velocity components and ),( pVQ , which 

includes the convective derivative, pressure and viscous terms, can be expressed in two-

dimensional Cartesian coordinates in the form  
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,,,,,, pvuQpvuQp vuVQ ,          (3.4)  
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where p  is the dimensionless pressure, nondimensionalized with respect to 
2

U , and 

 UcRe  is the Reynolds number based on the chord length (   and   are the fluid density 

and kinematic viscosity). In the present computational analysis we focus our attention on flows 

at low Reynolds numbers, in which the viscous effects play very important role.  

3.1.2 Boundary conditions  

No-slip boundary conditions are implemented on the airfoil contour and non-penetration 

condition (normal velocity component equals to zero, v = 0) are applied on the upper and lower 

boundaries of the computational domain. 

Also, the viscous boundary conditions are imposed on the airfoil upper and lower surfaces 

which are transformed in the computational domain to a solid wall, in which u = 0 and v = 0. The 

upper and lower far-field boundaries can be imposed as those of the uniform stream (u = 1). 
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3.2 Method of solution for unsteady viscous flows past stationary airfoils 

 The time-accurate method that is devolved in this section starts with the time-dependent 

transformation of the physical domain to the fixed computational domain. This transformation is 

applied to Navier-Stokes equations, and it is followed by the real-time discretization of the 

Navier-Stokes equations. A detailed description of the pseudo-time relaxation technique applied 

to Navier-Stokes equations is also presented. After that, the ADI scheme and the special 

decoupling procedure are implemented and finally the spatial discretization on stretched 

staggered grids is carried out.  

3.2.1 Time-dependent coordinate transformation 

 The problem is solved in a fixed rectangular computational domain with six sub-domains, 

which is obtained from a rectangular physical domain indicated in Figure 3.2 by a geometrical 

transformation defined as  

  ,gX   ,       ,fY   ,    (3.6)  

where   ,g  and   ,f  are defined for each domain in the following forms: 

Domain 1 (for  0x   and  10 H  ):  
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Domain 6 (for  1x   and   sin2 H  ):  
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Figure 3.2 Geometry of the physical domain (top), and computational domain (bottom)  YX ,  

defined by coordinate transformations (3.6) to (3.7). 
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In equations (3.7c) and (3.7d), x  and y  are defined in function of the coordinates   and   by 

the relations  

 sincos x  ,   cossin y       (3.8)  

 In equations (3.7a) to (3.7f), 1H  and 2H  are the nondimensional physical 

coordinates of the upper and lower far-field boundaries of the computational domain (which are 

considered equal in the specific numerical applications presented further, HHH  21 ), while 

0L  and 1L  are the nondimensional physical coordinates of the inflow and outflow 

boundaries, as shown in Figure 3.2.  

 In the computational domain  YX , , the upstream inflow and downstream outflow 

boundaries and the upper and lower boundaries are defined by the same nondimensional 

coordinates 0LX  , 1LX   and 1HY  , 2HY  , respectively. The Navier-Stokes and 

continuity equations can be expressed in the computational domain, as  
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in which the expressions of the coefficients 1C , 2C , 3C , . . . , 7C  are obtained for each domain 

from the coordinate transformations (3.6) to (3.7), the details are explained in Appendix B. 
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3.2.2 Real-time discretization 

 In order to study the unsteady effects in the flow past stationary airfoils at low Reynolds 

numbers, the Navier-Stokes equations is first discretized in real time based on a second-order 

three-point-backward implicit scheme:  

tt
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 ,       (3.14)  

where the superscripts 1n , n  and 1n  indicate three consecutive real time levels, and 

11   nnnn ttttt  represents the real time step. Thus, equations (3.14) can be expressed 

at the time level 
1nt  in the form  

nnn
FGV   11  ,    01 nDV  ,    (3.15)  

where 32 t ,  111 ,   nnn pVGG  and   34 1 nnn
VVF .  

3.2.3 Pseudo-time iterative relaxation technique 

 An iterative pseudo-time relaxation procedure with artificial compressibility is then used in 

order to advance the solution of the semi-discretized equations from the real time level 
nt  to 

1nt  in the form  
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where  V


 and  p


 denote the pseudo-functions corresponding to the variable velocity and 

pressure at pseudo-time  , between the real time levels 
nt  and 

1nt , and   represents an 

artificially-added compressibility. 

 Pseudo Navier-Stokes and continuity equations (3.16) are solved in pseudo-time. An implicit 

Euler scheme is used in this respect to discretize these equations in pseudo-time, and the 

resulting equations are expressed as 
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where   is the pseudo-time step and the superscript   indicates the solution at pseudo-time 

level    and  111    p


,VGG . To facilitate the pseudo-time iterative process, the 

implicit nonlinear system of equations shown in (3.17) and (3.18) are linearized.  
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3.2.4 Alternating-direction implicit scheme 

 The ADI scheme is applied to reduce the effort to solve the linearized equations (3.19) and 

(3.20). Then, an implicit Euler scheme is used to discretize equations (3.16) between the pseudo-

time levels   and   1 , and the resulting equations are expressed in terms of the 

pseudo-time variations 
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Writing equations (3.19) and (3.20) in a global matrix form 

   SfDDI   YX  ,        (3.21)  

where  T
,, pvu f , 32 t , I is the identity matrix, and 
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in which the differential operators M  and N  are defined as  
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where   can be u , v  or p .  
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The optimal value of the artificial compressibility,  , and the size of the pseudo-time step,  , 

are determined, as indicated in our previous studies by Mateescu et al. [11, 14, 16], the values for 

  and   are eventually optimized by numerical experimentation.  

 A factored ADI scheme is used to separate equation (3.21) into two successive sweeps in the 

Y  and X  directions, defined by the equations (3.25) and (3.26). It is important to mention that 

the approximate factorization, which implies the elimination of the quadratic term 

YX DD
22   , produces some convergence issues for the ADI scheme. This situation can be 

noticed when ∆τ takes large values, however, the convergence issues can be neglected when ∆τ 

is sufficiently small. 

 The ADI method requires the introduction of an intermediate variable *
f  to solve the linear 

implicit system of equations. This variable has the components of *u , *v  and *p , which are 

calculated in the Y-sweep 

  SfDI   *Y           (3.25) 

Next, in the X-sweep the values of  Tpvu  ,,f  are computed 

  *ffDI  X          (3.26)  

 These equations are further spatially discretized by central differencing on a stretched 

staggered grid, in which the flow variables u , v  and p  are defined at different positions, as 

shown in Figure 3.3. By using a staggered grid, this method avoids the odd-and-even point 

decoupling while preserving the second-order accuracy in space of the method. The grid 

stretching is defined by hyperbolic sine functions in X  and Y  directions. 

 A special decoupling procedure [9, 10, 11], based on the utilization of the continuity equation, 

is used for each sweep to eliminate the pressure from the momentum equations. The following 

relations, which are derived from the continuity equation expressed for each sweep, are used to 

eliminate the pseudo-time variations of the pressure from the systems of equations for the 

pseudo-time variations of the velocity components in each sweep. 
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In this manner, the problem is reduced to the solution of two sets of decoupled scalar-tridiagonal 

systems of equations, for each sweep. As a result, this method is characterized by excellent 

computational efficiency and accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Staggered grid two-dimensional geometry. 

3.2.5 Lift and drag coefficients at low Reynolds numbers 

 The aerodynamic lift and drag forces are entirely due to pressure and shear stress distribution 

over a body surface. The pressure p  can be obtained by solving the Navier-Stokes equations, 

acts normal and the shear stress   acts tangential to the airfoil surface.  

 To calculate the lift and drag coefficients, consider an airfoil of chord 1c , placed at 

incidence   in a uniform flow of velocity U  as depicted in Figure 3.4. 

 The resultant aerodynamic force R , is the net product of p  and   distributions integrated 

over the complete airfoil. The aerodynamic lift L  per units span is the component of R  

perpendicular to U  and the drag force D  is parallel to it. The normal force N  is defined as the 

component of R  perpendicular to the chord of the airfoil and the chordwise force A  is parallel 

to it. 



 





 

 

 

 

 

 

 

 

 

Figure 3.4 Components of the resultant aerodynamics forces over the airfoil surface. 

From Figure 3.4, one obtains 

 sincos ANL             (3.28) 

 cossin AND             (3.29) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Integration of the pressure and shear stress distributions over an airfoil. 
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The pressure and shear stress on the upper surface of the airfoil are denoted by up  and u  , and 

for the lower surface by lp  and l , as shown in Figure 3.5. At a given point, the pressure is 

normal to the surface and is oriented at an angle   relative to the vertical axis; and shear stress is 

tangential to the surface and is oriented at the same angle relative to the horizontal axis. In Figure 

3.5, the sign convection is positive when measured clockwise. 

 Consider an elemental surface unit area on the airfoil 1 dsdS , (from the leading edge (LE) 

to the trailing edge (TE) ), one obtains the normal force N , and tangential force A , per unit 

span 

    
TE

LE lll

TE

LE uuu dspdspN  sincossincos
     

 (3.30) 

    
TE

LE lll

TE

LE uuu dspdspA  cossincossin      (3.31) 

 The normal and tangential coefficients are then expressed in terms of pressure coefficient pC , 

and skin friction coefficient fC , by noting the following  

 
cosdsdx              (3.32) 

 sindsdy            (3.33) 

 Replacing equations (3.32) and (3.33) into equations (3.30) and (3.31), the forces coefficients 

are obtained as follows 
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with  
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



Uc
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
      

 (3.36) 

where   ppCp 2  is the nondimensional pressure coefficient (p is nondimensionalized 

respect to 2
U ) and  2

2

1
 UC f   is the skin friction coefficient, while dxdy /  is the slope 

of the surface. 
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The lift and drag coefficients in two-dimensional form can be expressed as 

 sincos
ANL

CCC  ,          (3.37) 

 cossin
AND

CCC  ,
         

 (3.38) 

with  2

2

1
 ULCL   and  2

2

1
 UDCD  . 

 

3.3 Method validation 

 The numerical method has been successfully validated by comparison with experimental 

results available for steady flows past a triangular airfoil at low Reynolds numbers (there are no 

published experimental results for unsteady flows). 

3.3.1 Comparison with experimental results 

 The numerical method presented in section 3.1 is validated for steady flows by comparison 

with the experimental results obtained by Suwa et al. [47, 48] for a triangular airfoil at low 

Reynolds numbers. The tested triangular airfoil, with a flat bottom, is defined by the following 

equations of the upper and lower surfaces  

 
   









1for11

0for
1

xssx

sxsx
xey




, and    02  xey  , (3.39)  

where 05.0  and 30.0s . 

 The experimental results are obtained for the lift and drag coefficients of this triangular airfoil 

at Reynolds number Re = 3000 and Mach number 15.0M . These results are obtained by static 

measurements, and for this reason they can be compared with the time-averaged solutions 

obtained with the present numerical method. 

 The time-averaged values of the present solutions for the lift and drag coefficients, LC  and 

DC , of the triangular airfoil at Re = 3000 are compared in Figure 3.6 with the experimental 

results presented in [47, 48]. The maximum and minimum values of these coefficients are also 

shown in Figure 3.6.  
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Figure 3.6 The variation with the angle of attack   of the time-averaged values of the lift and 

drag coefficients, LC  and DC , of the triangular airfoil for Re = 3000. Comparison between: 

■ Present time-averaged solutions;   ● Experimental steady results Suwa [47, 48]; 

○ Maximum and minimum values of the current solution. 
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Good agreement can be noticed between the present time-averaged solutions of the lift and drag 

coefficients and the experimental results, with some differences at 7  and 8  for which the 

unsteady effects become stronger in the present numerical solution. In other words, when the 

angle of attack increases, the numerical solution becomes unsteady and cannot be compared with 

experimental steady results. 

3.3.2 Grid sensitivity analysis 

 The sensitivity of the numerical solution with the mesh refinement procedure has been 

performed for the steady flow past a NACA 0002 airfoil for Reynolds number Re = 1000 at 

incidence 40  . It should be noticed the lift, and drag coefficients used as a criteria for this 

comparison. The results for the grid sensitivity test are gathered in Table 3.1. One can notice that 

the solution obtained by using 260 x 101 grid points for each variable (or 520 x 202 grid points 

for staggered grid in total) is very close to the fully converged solution, which is obtained by 310 

x 131 grid points for each variable, and beyond this the numerical solution is not influenced by 

grid refinement. All the solutions presented in this study were obtained using 620 x 262 total grid 

points (310 x 131 grid points for each variable). 

 

Grid points for each variable LC  DC  

130 x 41 0.3255 0.1001 

180 x 61 0.3286 0.1016 

220 x 81 0.3355 0.1021 

260 x 101 0.3376 0.1031 

310 x 131 0.3382 0.1033 

420 x 151 0.3382 0.1033 

 

Table 3.1 Grid sensitivity of the numerical solution for NACA 0002 airfoil in steady flow for 

Reynolds number Re = 1000 and incidence 
40  .  
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3.3.3 Time-step convergence study 

 For the unsteady flow past an oscillatory airfoil case, the real-time step is defined as 

 Nt 2 . The time step can be analyzed by giving different values to N, the number of points per 

period, for example N=40, 60, 80 and 100. Figure 3.7 and 3.8 shows the variation of the lift and drag 

coefficients during the oscillatory cycle. The Figure 3.7 shows the coefficients at the oscillatory cycle 

from t/T= 5 to 6 and the Figure 3.8 illustrates the coefficients from t/T= 5.28 to 5.34. One can see that the 

major deviation is presented by the curve calculated with N=40. This situation matches with the data 

shown in Table 3.2 in which the lift and drag coefficients converge after N=80 at oscillatory cycle point 

t/T=5.34. Therefore, the selected number of time steps per cycle was N=80. 

Time steps per cycle t/T CL CD 

40 5.34 1.19795 0.326121 

60 5.34 1.18598 0.326433 

80 5.34 1.16601 0. 326507 

100 5.34 1.16601 0. 326507 
 

Table 3.2 Sensitivity of the time steps per oscillation cycle of the numerical solution for N=40, 

60, 80 and 100 of the unsteady flow past NACA 0002 airfoil for Re = 1000, at angle of attack, 

14 .and frequency ω=0.05 at t/T=5.34 based on the computed lift and drag coefficients. The 

grid size used is 310 x 131 grid points for each variable. 

 

 

 

 

 

 

 

 

Figure 3.7 Influence of time steps per oscillation cycle: Comparison of the lift and drag 

coefficients of NACA 0002 airfoil for Re = 1000, at angle of attack, 14 .and frequency 

ω=0.05 for several time steps, N = 40, 60, 80 and 100 between the oscillatory cycle from t/T=5 

to 6. 
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Figure 3.8 Influence of time steps per oscillation cycle: showing the lift and drag coefficient 

variation of NACA 0002 airfoils for Re = 1000, at angle of attack, 14 .and frequency 

ω=0.05 for several time steps, N = 40, 60, 80 and 100 between the oscillatory cycle from 

t/T=5.28 to 5.34. 

 

3.4 Unsteady effects in the flow past the triangular airfoil  

 For angles of attack larger than 6 , the computed aerodynamic coefficients of lift and 

drag, LC  and DC , of the triangular airfoil display periodic variations in time as shown in Figure 

3.9 for Re = 3000.  

 One can observe that up to   the aerodynamic coefficients are practically constant in time. 

With the increase in incidence, the lift and drag coefficients display periodic variations in time. 

The amplitude of these variations in time increases substantially with the angle of attack, for 

incidences larger than 10 . The oscillations of the aerodynamic coefficients become more 

complex, due to an increasing complexity of the unsteady flow separations. 
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Figure 3.9 The variations with the nondimensional time, cUtt  * , of the lift and drag 

coefficients, LC  and DC , of the triangular airfoil for Reynolds number, Re = 3000, at various 

angles of attack,  . 

The behavior is consistent with the results of the flow separation analysis, which revealed that 

for incidences smaller than 6  the flow separation behind the ridge (situated at 30.0 sx ) 

is well organized and does not present oscillations in time, as it can be seen in the flow 

visualizations shown in Figure 3.10. In these flow visualizations, the streamlines are represented 

by continuous lines, and the flow velocity field is represented by color shades related to the non-

dimensional velocity UV . 
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Figure 3.10 Illustration of the steady flow separations for the triangular airfoil for Re = 3000 at 
2  and 4 . 

 At incidences larger than 6 , the complexity of the flow separations and their variations 

in time increase when the angle of attack increases. The most complex pattern of the flow 

separations is displayed for incidences larger than 12 . This can be seen in Figures 3.11 to 

3.13, which present illustrations of the flow separations at various moments in time for the 

triangular airfoil for Reynolds number, Re = 3000, at various incidences 

 16and14,12,10,8,6 . The lines in these figures show the streamline pattern of the 

flow around the airfoil, and the color shades indicate the nondimensional velocity field (with 

respect to the uniform stream velocity U ). 
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Figure 3.11 Illustration of the unsteady flow separations for the triangular airfoil at various 

moments in time using the streamlines and the color shades indicating the nondimensional 

velocity field: For Re = 3000 at the angles of attack 6  and 8 . 
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Figure 3.12 Illustration of the unsteady flow separations for the triangular airfoil at various 

moments in time using the streamlines and the color shades indicating the nondimensional 

velocity field: For Re = 3000 at the angles of attack 10  and 12 . 

t=5.40

  

t=4.86 

t=5.49

  

t=4.90 

t=5.56

  

t=5.00 

t=5.63

  

t=5.06 

t=5.70

  

t=5.09 



 





 

 

14    
 

       16   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    UV  

Figure 3.13 Illustration of the unsteady flow separations for the triangular airfoil at various 

moments in time using the streamlines and the color shades indicating the nondimensional 

velocity field: For Re = 3000 at the angles of attack 14  and 16 . 
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These illustrations of the variation in time of the flow separation pattern shown in Figures 3.11 to 

3.13 are consistent with the oscillatory variations in time of the aerodynamic coefficients shown 

in Figure 3.9. It can be seen these unsteady flow separation structures, appearing in the flow past 

stationary airfoils at low Reynolds numbers, generate the oscillatory variations in time of the lift 

and drag coefficients.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3.14 The variations with the nondimensional time, cUtt  * , of the lift and drag 

coefficients, LC  and DC , of the triangular airfoil for Reynolds number, Re = 600, at various 

angles of attack,  . 
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After presenting the results for the triangular airfoil at Re = 3000, which was chosen because of 

available experimental results. The numerical results can be also obtained for the triangular 

airfoil at Reynolds numbers Re = 600, 1000 and 1500 for the aerodynamic coefficients of lift and 

drag, LC  and DC , as shown in Figures 3.14 to 3.16. These new set of results can help to study 

the influence of Reynolds number on the unsteady effects generated by the unsteady flow 

separations at low Reynolds numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.15 The variations with the nondimensional time, cUtt  * , of the lift and drag 

coefficients, LC  and DC , of the triangular airfoil for Reynolds number, Re = 1000, at various 

angles of attack,  . 
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Figure 3.16 The variations with the nondimensional time, cUtt  * , of the lift and drag 

coefficients, LC  and DC , of the triangular airfoil for Reynolds number, Re = 1500, at various 

angles of attack,  . 

One can notice, at angles of attack larger than 10  in Figure 3.14, and larger than 8  

in Figure 3.15 and 3.16, as the Reynolds number increases the amplitudes of the oscillations in 

time of the lift and drag coefficients become larger. This is where the numerical solution enters 

into unsteadiness region and the lift and drag coefficients are not constant in a real time. 

Therefore, in one oscillation cycle there are minimum and maximum values for these two 

coefficients at higher angles of attack as shown in Figures 3.14 to 3.16. 
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3.5 Unsteady solutions for several symmetric and cambered airfoils  

The numerical method presented in section 3.1 is then used to obtain solutions for several 

symmetric and cambered airfoils at various angles of attack, in order to study the unsteady 

effects generated by the unsteady flow separations at low Reynolds numbers.  

The aerodynamic coefficients of lift and drag LC  and DC  of the NACA 0004 airfoil are 

shown in Figure 3.17, 3.18 and 3.19 for the Reynolds numbers Re = 600. 1000 and 1500; 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 The variations with the nondimensional time, cUtt  * , of the lift and drag 

coefficients, LC  and DC , of the NACA 0004 airfoil for Reynolds number, Re = 600, at various 

angles of attack,  . 
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Figure 3.18 The variations with the nondimensional time, cUtt  * , of the lift and drag 

coefficients, LC  and DC , of the NACA 0004 airfoil for Reynolds number, Re = 1000, at various 

angles of attack,  . 

 One can be seen that the amplitudes of the oscillations in time of the lift and drag coefficients 

increase when the angle of attack,   goes up, this is more significant at angles of attack larger 

than 10 . By comparing Figures 3.17 to 3.19, it is apparent that these oscillations grow with 

an increase in Reynolds number. 
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Figure 3.19 The variations with the nondimensional time, cUtt  * , of the lift and drag 

coefficients, LC  and DC , of the NACA 0004 airfoil for Reynolds number, Re = 1500, at various 

angles of attack,  . 

 One can observe that up to 8  the aerodynamic coefficients are practically constant in 

time. With the increase in incidence, the lift and drag coefficients display periodic variations in 

time; as a result the solution becomes unsteady. The amplitude of these variations in time 

increases as the angle of attack goes up, and for incidences larger than 10  these oscillations 

of the aerodynamic coefficients become more complex, due to complexity of the unsteady flow 

separations at higher angle of attack. 
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As it can be seen in the flow visualizations shown in Figure 3.20, this behavior is consistent with 

the results of the flow separation analysis, which revealed that for incidences smaller than 

8  for Re = 1000, and 10  for Re = 600, the flow separation is well organized and does 

not present oscillations in time. 

In these flow visualizations, the streamlines are represented by continuous lines, and the flow 

velocity field is represented by color shades related to the non-dimensional velocity UV / .  
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Figure 3.20. Illustration of the steady flow separations for the NACA 0004 airfoil for two 

Reynolds numbers, Re = 600 and 1000, and at two angles of attack,  .  

At incidences larger than 8 , the complexity of the flow separations and their variations 

in time increase as the incidence becomes larger. The most complex pattern of the flow 

separations is displayed for incidences larger than 14 . This can be seen in Figures 3.22 and 

3.22 which present illustrations of the flow separations at various moments in time for the 

NACA 0004 airfoil at Reynolds number Re = 600 and Re = 1000 for various incidences 

 18and,1614 , . The lines in these figures show the streamline pattern of the flow around 

the airfoil, and the color shades indicate the nondimensional velocity.  
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The following flow visualizations indicated in Figures 3.21 to 3.24 are consistent with the 

oscillatory variations in time of the aerodynamic coefficients shown in Figure 3.17 and 3.18, 

indicating that these unsteady flow separation structures, occurring in the flow past stationary 

airfoils at low Reynolds numbers, generate the oscillatory variations in time of the lift and drag 

coefficients 
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Figure 3.21 Illustration of the unsteady flow separations for the NACA 0004 airfoil at various 

moments in time using the streamlines and the color shades indicating the nondimensional 

velocity field: For Re = 600 at the angles of attack 12  and 14 . 
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Figure 3.22 Illustration of the unsteady flow separations for the NACA 0004 airfoil at various 

moments in time using the streamlines and the color shades indicating the nondimensional 

velocity field: For Re = 600 at the angles of attack 16  and 18 . 
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Figure 3.23 Illustration of the unsteady flow separations for the NACA 0004 airfoil at various 

moments in time using the streamlines and the color shades indicating the nondimensional 

velocity field: For Re = 1000 at the angles of attack 10  and 12 . 
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Figure 3.24 Illustration of the unsteady flow separations for the NACA 0004 airfoil at various 

moments in time using the streamlines and the color shades indicating the nondimensional 

velocity field: For Re = 1000 at the angles of attack 14  and 16 . 
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3.5.1 Influence of Reynolds number for symmetric airfoils 

 The influence of the Reynolds number on the flow separations can be observed by comparing 

the flow visualizations shown in Figures 3.21 to 3.24. For instance, in Figure 3.22 the flow 

visualizations for NACA 0004 airfoil, and 16  at Re = 600 can be compared with Figure 

3.24 for the same airfoil and same angle of attack at Re = 1000. It is noticeable that for the same 

angle of attack,  , the unsteadiness of the flow separations increases with the increment in 

Reynolds number.  

The influence of the Reynolds number on the unsteady effects generated by the unsteady flow 

separations at low Reynolds numbers can be also observed by comparing the results shown in 

Figures 3.25 and 3.26 for Re = 600 and Re = 1000 over the symmetric airfoil NACA 0004.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25 Influence of Reynolds number for symmetric airfoils. Comparison of the variations 

with the nondimensional time, cUtt  * , of the lift coefficients, LC , of NACA 0004 airfoils 

for Re = 600 and 1000, at various angles of attack,  . 
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Figure 3.26 Influence of Reynolds number for symmetric airfoils. Comparison of the variations 

with the nondimensional time, cUtt  * , of the drag coefficients, DC , of NACA 0004 airfoils 

for Re = 600 and 1000, at various angles of attack,  . 

From above figures it can be seen that the amplitude of oscillations goes higher as the 

Reynolds number increases, and the stall conditions happen in a smaller angle of attack 

( 18 ) when Reynolds number is larger. 

3.5.2 Influence of the airfoil thickness for symmetric airfoils 

The influence of the relative thickness of the symmetric airfoil on the unsteady effects 

generated by the unsteady flow separations at low Reynolds numbers can be studied by 
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comparing the results shown in Figures 3.27 and 3.28 for the symmetric NACA 0002 and 0008 

airfoils at Re = 600, and the results shown in Figures 3.29 and 3.30 for the same NACA airfoils 

at Re = 1000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27 Influence of the airfoil thickness for symmetric airfoils. Comparison of the variations 

with the nondimensional time, cUtt  * , of the lift coefficients, LC , of NACA 0002 and 

0008 airfoils for Reynolds number Re = 600, at various angles of attack,  .  

One can be seen that the amplitudes of the oscillations in time of the aerodynamic coefficients 

are larger for the thinner airfoil, NACA 0002, at the same angle of attack, and that the stall 

conditions appear at smaller incidence ( 20 ) for the thinner airfoil. 



 





 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.28 Influence of the airfoil thickness for symmetric airfoils. Comparison of the variations 

with the nondimensional time, cUtt  * , of the drag coefficients, DC , of NACA 0002 and 

0008 airfoils for Reynolds number Re = 600, at various angles of attack,  .  

Similar comparisons are shown in Figures 3.29 and 3.30 for a different Reynolds number, 

Re = 1000, in order to evaluate influence of the Reynolds number as well as influence of the 

airfoil thickness for NACA 0004 symmetric airfoil.  
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Figure 3.29 Influence of the airfoil thickness for symmetric airfoils. Comparison of the variations 

with the nondimensional time, cUtt  * , of the lift coefficients, LC , of NACA 0002 and 

0008 airfoils for Reynolds number Re = 1000, at various angles of attack,  .  

From the Figures 3.27 and 3.29, it is noticeable that the amplitude of oscillations goes up by 

increasing the Reynolds number from 600 to 1000 for NACA 0002 airfoil. Also, the stall 

condition occurs in smaller angle of attack ( 18 ) for higher Reynolds number.  



 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.30 Influence of the airfoil thickness for symmetric airfoils. Comparison of the variations 

with the nondimensional time, cUtt  * , of the drag coefficients, DC , of NACA 0002 and 

0008 airfoils for Reynolds number Re = 1000, at various angles of attack,  .  

3.5.3 Influence of the airfoil thickness for cambered airfoils  

The influence of the relative thickness of the cambered airfoil on the unsteady effects 

generated by the unsteady flow separations at low Reynolds numbers can be studied by 

comparing the results shown in Figures 3.31 and 3.32 for the NACA 2402 and 2404 airfoils at 

Re = 600.  
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Figure 3.31 Influence of the airfoil thickness for cambered airfoils. Comparison of the variations 

with the nondimensional time, cUtt  * , of the lift coefficients, LC , of NACA 2402 and 

2404 airfoils for Reynolds number Re = 600, at various angles of attack,  . 

One can observe that, at the same angle of attack, the amplitudes of the oscillations in time of 

the aerodynamic coefficients are larger for the thinner airfoil, NACA 2402.  
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Figure 3.32 Influence of the airfoil thickness for cambered airfoils. Comparison of the variations 

with the nondimensional time, cUtt  * , of the drag coefficients, DC , of NACA 2402 and 

2404 airfoils at Reynolds number Re = 600, for various angles of attack,  . 
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3.5.4 Influence of the airfoil relative camber  

The influence of the relative camber of the airfoil on the unsteady effects generated by the 

unsteady flow separations at low Reynolds numbers can be studied by comparing the results 

shown in Figures 3.33 and 3.34 for the cambered airfoils NACA 2404 and 4404.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33 Influence of the airfoil relative camber. Comparison of the variations with the 

nondimensional time, cUtt  * , of the lift coefficients, LC , of NACA 2404 and 4404 airfoils  

for Reynolds number Re = 600, at various angles of attack,  .  
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Figure 3.34 Influence of the airfoil relative camber. Comparison of the variations with the 

nondimensional time, cUtt  * , of the lift coefficients, DC , of NACA 2404 and 4404 airfoils  

for Reynolds number Re = 600, at various angles of attack,  . 

One can notice that, at the same angle of attack, the amplitudes of the oscillations in time of 

the aerodynamic coefficients are slightly smaller for the more cambered airfoil, NACA 4404.  

3.6 Summary of findings 

In this chapter the unsteady separations effects on the flow past stationary airfoils at low 

Reynolds numbers have been studied using an efficient time-accurate numerical method for the 

integration of the Navier-Stokes equations. This numerical method is based on a second-order 



 





three-point-backward implicit scheme for the real time discretization and a pseudo-time 

relaxation procedure using artificial compressibility and a factored alternate-direction implicit 

scheme for the pseudo-time integration. A special decoupling procedure using the continuity 

equation reduces the problem to the solution of scalar-tridiagonal systems of equations, which 

enhances substantially the computational efficiency of the method.  

The solutions obtained for the triangular airfoil were found in good agreement with the 

experimental results, before the effects of unsteady flow separations become important, since the 

experimental results were obtained only for steady flows. 

This study indicated for the first time that the lift and drag coefficients of the stationary airfoil 

have oscillations in time generated by the unsteady flow separations on the upper surface of 

airfoil at low Reynolds numbers, which appear at relatively low angles of attack (about 8 

degrees). These flow separations effects on the unsteady aerodynamic coefficients have been 

studied for various geometric and flow parameters, such as the angle of attack, relative thickness 

and camber, and Reynolds number.  

The obtained results can be used for different engineering applications such as the design of 

micro aerial vehicles and unmanned aerial vehicles where the flow is relatively at low Reynolds 

numbers less than 6000.  



 





Chapter 4 

Analysis of Steady and Unsteady Viscous Flows past Airfoils in the 

Proximity of the Ground 

 The first part of this chapter is dedicated to study the steady and unsteady flows past 

oscillating airfoils at low Reynolds numbers (from 400 to 6000) in the proximity of the ground. 

There are many applications including military aircraft and Unmanned-Aerial Vehicles (UAVs) 

and very small aircrafts called Micro-Air Vehicles (MAVs) that can operate in various indoor or 

outdoor environments. To date, there are no published studies on steady or unsteady flows past 

airfoils in the proximity of the ground at these low Reynolds numbers. 

 The second part of this chapter is devoted to the analysis of unsteady flows past stationary 

airfoils, generated by the unsteady flow separations at low Reynolds numbers, in the proximity 

of the ground. It is interesting to analyze the effect of the ground proximity on these unsteady 

effects on the stationary airfoils at low Reynolds numbers. This study obtains solutions for the 

oscillations in time of the lift and drag coefficients of several symmetric and cambered airfoils in 

the proximity of the ground, which are generated by the unsteady flow separations developed on 

the airfoil upper surface at low Reynolds numbers. 

 This chapter presents the study of the ground effect on steady and unsteady flows past fixed 

and oscillating airfoils at low Reynolds numbers. This unsteady flow problem is solved in a 

rectangular computational domain, obtained from the physical domain by time-dependent 

coordinate transformations for various sub-domains, in which the boundary conditions are 

efficiently and rigorously implemented. Solutions for the airfoils in the proximity of the ground 

at low Reynolds numbers flows are obtained with an efficient numerical method developed by 

the author for the time-accurate solution of the Navier-Stokes equations, which is second-order 

accurate in both time and space. This method uses a pseudo-time relaxation procedure based on 

artificial compressibility, and a factored Alternate-Direction Implicit (ADI) scheme for 

integration in pseudo-time. A second-order central finite difference formulation is used on a 

stretched staggered grid, which avoids the odd-and-even points decoupling. A special decoupling 

procedure based on the continuity equation reduces the problem to the solution of scalar-
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tridiagonal systems of equations, which enhances substantially the computational efficiency of 

the method.  

 This study analyzes the influence of various geometric and flow parameters, such as the 

distance to the ground, angle of attack, relative thickness and camber, and Reynolds number on 

the flow separations occurring on the airfoil upper surface and on the aerodynamic coefficients in 

the proximity of the ground.  

4.1 Problem formulation   

 Consider a cambered airfoil of chord c  placed at a variable incidence  t  in a uniform 

stream of velocity U  at a distance Hc  above the ground, as shown in Figure 4.1. The airfoil 

is referred to a Cartesian reference system of coordinates xc  and yc , where x  and y  are 

nondimensional coordinates, with the x -axis along the airfoil chord and its origin at the airfoil 

leading edge. The airfoil upper and lower surfaces are defined by the equations (4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Geometry of an oscillating airfoil placed in a uniform flow at the variable incidence, 

   tt A  cos0  , in the proximity of the ground. 

     xexhxey  1 , and      xexhxey  2 ,    (4.1) 
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where the subscripts 1 and 2 refer to the upper and lower surfaces, and where  xh  and  xe  

define the camberline and the airfoil thickness variation along the airfoil chord, respectively. The 

special case of symmetric airfoils is characterized by      xexexe  21  and   0xh . 

 The airfoil is assumed to execute harmonic pitching oscillations of frequency f  about a hinge 

situated at the distance acxc   from the leading edge, which is defined by the time variation of 

the angle attack with respect to the mean incidence 0 , expressed as  

   tt A  cos0   ,         (4.2) 

where A  is the amplitude of oscillations, cUtt  *  is a nondimensional time and 

 Ucf 2  is the nondimensional frequency of the oscillations ( *2 tft   ). In the steady 

case, the angle of attack is constant,   constant0  t .  

The viscous fluid flow past the oscillating airfoil is referred to a fixed Cartesian reference 

system of coordinates ξc  and c  are defined by the equations  

   sincos yax  ,     cossin yax  ,   (4.3) 

where   and   are nondimensional coordinates with respect to the airfoil chord c , with the  -

axis parallel to the uniform stream velocity U  (inclined with the angle   with respect to the 

airfoil chord) and with its origin at ax   (at the airfoil rotational hinge, as shown in Figure 4.1).  

 Let uU  and vU  denote the fluid velocity components along the fixed  - and  -axes, 

where u  and v  are the nondimensional velocity components with respect to U .  

Applying the conservation of mass and Newton’s second laws to an infinitesimal and fixed 

control volume yield the continuity and momentum equations in nondimensional conservation 

form as, 0VQ
V


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
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t
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V ,        (4.4)  

where cUtt  *  is the nondimensional time ( *t  is the dimensional time),  T
,vuV  

represents the vector of the dimensionless velocity components and ),( pVQ , which includes the 

convective derivative, pressure and viscous terms, can be expressed in two-dimensional 

Cartesian coordinates in the form  
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4.2 Method of solution 

 The problem is solved in a similar method that was explained in details in chapter 3. For an 

efficient and rigorous implementation of the moving boundary conditions, the problem is solved 

in a fixed rectangular computational domain with six sub-domains (indicated in Figure 4.2), 

which is obtained from the physical domain by a time-dependent geometrical transformation 

defined as 

  tgX ,, ,   tfY ,, ,  tt  ,     (4.8) 

where  tg ,,  and  tf ,,  are defined for each domain in the following forms:  

Domain 1 (for  0x   and    1sin Hta  ):  
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Domain 2 (for  0x   and   taH  sin  ):  
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Domain 3 (for  10  x   and    11 Hyxe  ):  
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Domain 4 (for  10  x   and   xeyH 2  ):  
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Domain 5 (for  1x   and      1sin1 Hta   ):  
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Domain 6 (for  1x   and     taH  sin1  ):  
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Figure 4.2 Geometry of the physical ),(   and fixed computational domain  YX ,  defined by 

the time-dependent coordinate transformations from equations (4.8) to (4.14).  
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In equations 4.11 and 4.12, x  and y  are defined in function of the fixed coordinates   and   

by the relations  

ax   sincos ,    cossin y     (4.15) 

 In these equations, 1H  and HH  2  are the nondimensional physical coordinates of 

the upper and lower boundaries of the computational domain, and 0L , 1L  are the 

nondimensional physical coordinates of the inflow and outflow boundaries, as shown in Figure 

4.2.  

In the computational domain  YX , , the upstream inflow and downstream outflow 

boundaries and the upper and lower boundaries are defined by the nondimensional coordinates 

0LX  , 1LX   and 1HY  , HY  , respectively.  

In this fixed computational domain, the Navier-Stokes and continuity equations can be 

expressed as 

0 ),V(G
V

p
t


 ,  0VD  ,      (4.16) 

where  
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in which the expressions of the coefficients 1C , 2C , 3C , . . . , 9C  are obtained for each domain 

from the time-dependent coordinate transformations (4.8) to (4.14). These coefficients are given 

in Appendix B.  



 





0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8

   Present computational solution 

  (Navier-Stokes) 
 

  Kunz & Kroo  

LC



 NACA 0002, Re=1000 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.11 0.12 0.13 0.14

LC

   Present computational solution 

  (Navier-Stokes) 
 

  Kunz & Kroo  

1000Re 4402,NACA 

DC

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6

 NACA 0002, Re=2000 

   Present computational solution 

  (Navier-Stokes) 
 

  Kunz & Kroo  

LC


0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.07 0.08 0.09 0.1

LC

   Present computational solution 

  (Navier-Stokes) 
 

  Kunz & Kroo  

DC

 2000Re 4402,NACA 

No-slip boundary conditions are implemented on the airfoil contour and non-penetration 

condition (zero normal velocity component) are implemented on the upper and lower boundaries 

of the computational domain.  

 In a similar manner as it was explained in chapter 3, the equations (4.18) to (4.20) are further 

spatially discretized by central differencing on a stretched staggered grid, in which the flow 

variables u , v  and p  are defined at different positions. By using ADI scheme the equations are 

transformed to a set of scalar equations in order to solve the problem more effectively. 

4.3 Method validation for steady flows past airfoils far from the ground  

The method has been first validated by comparison with the results obtained by Kunz and 

Kroo [28] and by Mateescu and Abdo [9, 10] for several NACA airfoils without the presence of 

the ground which were found in very good agreement with the present solutions for airfoils far 

from the ground (H = 12). Two examples of validation results are presented in Figures 4.3 and 

4.4 for the lift coefficient and for the pressure coefficient distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.3 Present solutions for H = 12 (no ground effect) for the lift coefficient of the isolated 

NACA 0002 and for the drag polar diagram for the isolated NACA 4402 airfoil for Re = 1000 

and 2000, compared with the results obtained by Kunz and Kroo [28].  
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Figure 4.4 Present solutions obtained for H = 12 (no ground effect) for the pressure coefficient 

distribution on the NACA 0002 and NACA 0008 airfoils at zero incidence for Reynolds numbers 

Re = 1000, 2000 and 6000, compared with results obtained by Kunz and Kroo [28] and by 

Mateescu and Abdo [9, 10] for inviscid flows.  
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4.4 Ground effect on the steady flows past airfoils at low Reynolds numbers 

 The method of solution has been first applied to obtain solutions for the steady flows past 

airfoils in the proximity of the ground for various low Reynolds numbers and various distances 

to the ground. 

 The effect of the distance to the ground on the aerodynamic coefficients is illustrated in 

Figures 4.5 and 4.6, presenting the variations with the angle of attack   of the lift and drag 

coefficients, LC  and DC , and of the lift-to-drag ratio, DL CC , for several symmetric and 

cambered NACA airfoils at several Reynolds numbers, Re, and for the distances to the ground 

30 H , 50 H  and 12H  (no ground effect).  

 Figure 4.5 illustrates the influence of the Reynolds number on the ground effect for the lift 

and drag coefficients of the NACA 0004 airfoil at various low Reynolds numbers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Influence of the Reynolds number.  Typical variations of the lift and drag coefficients, 

LC  and DC , with the angle of attack   for NACA 0004 airfoil at Re = 600, 1000 and 1500, for 

three nondimensional distances to the ground: 3.0H , 5.0H  and 12H  (no ground 

effect). 

 The influence of the relative thickness and relative camber on the variations with the angle of 

attack   of the lift and drag coefficients, LC  and DC , and of the lift-to-drag ratio, DL CC , is 

illustrated in Figure 4.6 for three symmetric airfoils NACA 0002, NACA 0004, NACA 0008 and 

three cambered airfoils NACA 2404, NACA 4404, NACA 6404 at Re = 1000 for three 

nondimensional distances to the ground: 30 H , 50 H  and 12H  (no ground effect).  
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Figure 4.6 Lift and drag coefficients, LC , DC ,  and the lift-to-drag ratio, DL CC , versus the 

angle of attack   for Re = 1000 for the nondimensional distances to the ground 3.0H , 

5.0H  and 12H  (no ground effect). 
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The analysis of the flow revealed that flow separations appear on the upper surface of the airfoil 

at lower angles of attack due to the proximity of the ground. This is seen in Figure 4.7 which 

illustrates the streamline pattern of the flow around three airfoils NACA 0002, NACA 0004 and 

NACA 0008 for Reynolds number, Re = 1000, and at the angle of attack 
o6 . 
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Figure 4.7 Illustration of the flow separation on the upper surface of three NACA airfoils at 

angle of attack 
o6  and Reynolds number Re = 1000 for the several distances to the ground 

30 H , 50 H  and 12H  (no ground effect). The lines show the streamline patterns of the 

flow around the airfoil and the color shades indicate the nondimensional velocity fields (with 

respect to the uniform stream velocity U ) 

 It is noticeable that in the proximity of the ground (for 50 H  and especially for 30 H ) 

there are important flow separation regions on the upper surface of the airfoils, while very far 
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from the ground ( 12H ) there is no flow separation for the thinner airfoils (NACA 0002 and 

0004) and a smaller flow separation region for NACA 0008 airfoil.  

 The influence of the Reynolds number on the flow separation on the NACA 0004 airfoil at 

angle of attack 
o6  is illustrated in Figure 4.8 for three Reynolds numbers, Re = 600, 1000 

and 1500. One can observe that the flow separation region becomes larger with the increase in 

the Reynolds number and in the closer proximity of the ground. 
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Figure 4.8 Illustration of the flow separation for NACA 0004 airfoil at angle of attack 
o6  for 

three Reynolds numbers, Re = 600, 1000 and 1500 and for two distances to the ground: 50 H  

and 12H  (no ground effect)  
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4.5 Unsteady flow solutions for oscillating airfoils in the proximity of the 

ground at low Reynolds numbers 

` The numerical method presented in section 4.2 has been then applied to obtain solutions for 

the unsteady flows past airfoils executing pitching oscillations with respect to the leading edge 

( 0a ) in the proximity of the ground for various low Reynolds numbers.  

4.5.1 Influence of the Reynolds number 

The influence of the Reynolds number and the distance to the ground on the unsteady lift and 

drag coefficients, LC , DC , and on the unsteady lift-to-drag ratio DL CC , is illustrated in 

Figures 4.9 and 4.10 for NACA 0002 and NACA 0004 airfoils executing pitching oscillations 

   tt A  cos0  , with 00  , 4A  and 050  , at Re = 600 and 1000 for three 

distances to the ground: 30 H , 50 H  and 12H  (no ground effect).  

The influence of the Reynolds number and the distance to the ground on the unsteady pitching 

moment coefficient, mC , is illustrated in Figure 4.11 for NACA 0002 and NACA 0004 airfoils 

executing pitching oscillations    tt A  cos0  , with 00  , 4A  and 050  , at 

Re = 600 and 1000 for three distances to the ground: 30 H , 50 H  and 12H  (no ground 

effect).  

4.5.2 Influence of the airfoil relative thickness 

 The influence of the airfoil relative thickness and of the Reynolds number with the distance to 

the ground on the unsteady lift and drag coefficients, LC , DC  and on the lift-to-drag ratio 

DL CC , is illustrated in Figure 4.12 for NACA 0002, NACA 0004 and NACA 0008 airfoils 

executing pitching oscillations    tt A  cos0  , with 00  , 4A  and 050  , at 

Re = 1000 for three distances to the ground.  
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Figure 4.9 Influence of Reynolds number: Solutions for the unsteady lift and drag coefficients 

for a NACA 0002 airfoil executing pitching oscillations with o00 , o
A 4 , 05.0 , at Re = 

600 and 1000 for three distances to the ground: 3.0H , 5.0H , 12H  (no ground effect). 
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Figure 4.10 Influence of Reynolds number: Solutions for the unsteady lift and drag coefficients 

for a NACA 0004 airfoil executing pitching oscillations with o00 , o
A 4 , 05.0 , at Re = 

600 and 1000 for three distances to the ground: 3.0H , 5.0H , 12H  (no ground effect). 
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Figure 4.11 Influence of Reynolds number: Solutions for the unsteady pitching moment 

coefficient, mC , for a NACA 0002 and NACA 0004 airfoils executing pitching oscillations, with 

o00 , o
A 4 , 05.0 , at Re = 600 and 1000 for three distances to the ground: 3.0H , 5.0H , 

12H  (no ground effect). 

4.5.3 Influence of the oscillation frequency 

 The influence of the oscillation frequency,  , and of the mean incidence, 0 , with the 

distance to the ground on the unsteady lift and drag coefficients, LC  and DC , and on the lift-to-

drag ratio DL CC , is illustrated in Figure 4.13 for NACA 0002 airfoil executing pitching 

oscillations    tt A  cos0  , with the oscillation amplitude 4A , for two oscillation 

frequencies 100and050  , and for two values of the mean incidence 00   and 20  , 

at Re = 1000 and for two distances to the ground: 30 H  and 12H  (no ground effect).  
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Figure 4.12 Influence of the airfoil thickness: The unsteady aerodynamic coefficients for NACA 

0002, NACA 0004 and NACA 0008 airfoils executing pitching oscillations with o00 , o
A 4 , 

05.0 , at Re = 1000 for three distances to the ground: 3.0H , 5.0H , 12H . 
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Figure 4.13 Influence of the oscillation frequency for NACA 0002 at two frequencies, 

10.0and05.0 , and for two values of the mean incidence o00  and o20 , at Re = 1000 and 

for two distances to the ground: 3.0H  and 12H  (no ground effect).  
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One can be noted in Figure 4.13, that the shape of the hysteresis curve for the unsteady lift 

coefficient, LC , in the case of pitching oscillations with 2A , 4A  and 10   is 

significantly changed for the distance to the ground 30 H  due to the flow separation region 

developed on the upper surface of the airfoil in this case.  

4.5.4 Typical variations of the unsteady pressure coefficient 

 The typical variations of the unsteady pressure coefficient along the chord at several moments 
 

 during the oscillatory cycle, Tt , are illustrated in Figure 4.14 for NACA 0004 airfoil 

oscillating with 00  , 4A , 050  , and for NACA 0002 airfoil oscillating with 

20  , 4A , 050  , at Re = 1000 and for three distances to the ground: 30 H , and 

12H  (no ground effect).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Variations of pressure coefficient along the chord during the oscillatory cycle, Tt : 

For NACA 0004 and NACA 0002 airfoils oscillating with o
A 4 , 050  , and with o00  

and o20 , respectively, at Re = 1000 and for 3.0H , 5.0H , 12H  (no ground effect). 
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4.6 Solutions for unsteady flows past stationary airfoils in the proximity of the 

ground at low Reynolds numbers  

This chapter also presents the numerical and experimental validation of computed solutions 

for unsteady flows past stationary airfoils in the proximity of the ground at low Reynolds 

numbers through the numerical method developed in section 4.2. The discussion is a novel 

contribution for the aerodynamics field that has not been identified in the literature review.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Influence of the distance to the ground, H : The variations with the nondimensional 

time, cUtt /
*

 , of the lift coefficient, LC , of the NACA 0004 airfoil for several 

nondimensional distances to the ground, H = 0.3, 0.5, 1.0 and 12 (no ground effect), for Re = 

1000 and at various angles of attack,  . 
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4.6.1 Influence of the distance to the ground 

The aerodynamic coefficients of lift and drag, LC  and DC , of the NACA 0004 airfoil are 

shown in Figures 4.15 and 4.16 for four distances to the ground, 3.0H , 0.5, 1.0 and 12 (no 

ground effect) for Reynolds number Re=1000 and at various angles of attack,  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Influence of the distance to the ground, H : The variations with the nondimensional 

time, cUtt  * , of the drag coefficient, DC , of the NACA 0004 airfoil for several distances to 

the ground, H = 0.3, 0.5, 1.0 and 12 (no ground effect), for Reynolds number, Re = 1000, and at 

various angles of attack,  . 

One can notice that the amplitude of the oscillations in time of the lift coefficient, LC , 

increases with the decrease of the distance to the ground, and these oscillations appear at smaller 

angles of attack,  , near the ground. A similar observation can be made for the drag coefficient.  
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One can also notice that close to the ground, at the nondimensional distance 5.0H , the stall 

conditions are reached at 14 , and at 16  the lift coefficient becomes smaller, while the 

drag coefficient is larger than that at 14 . It is important to note that the oscillations in time 

of the aerodynamic coefficients, which are generated by the unsteady flow separations at low 

Reynolds numbers, start at much smaller angles of attack than the stall angle.  

 From Figures 4.15 and 4.16 it can be seen that up to 6  for Re = 1000 and up to 8  

for Re = 600, the aerodynamic coefficients are practically constant in time. With the increase in 

incidence, the lift and drag coefficients display periodic variations in time. The amplitude of 

these variations in time increases with the angle of attack, and for incidences larger than 10  

these oscillations of the aerodynamic coefficients become more complex, due to an increasing 

complexity of the unsteady flow separations.  
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Figure 4.17 Illustrations of the steady flow separations for the NACA 0004 airfoil for two 

Reynolds numbers, Re = 600 and 1000 and at three angles of attack, 4 , 6  and 8  

at the nondimensional distance to the ground 50 H .  
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This behavior is consistent with the results of the flow separation analysis, which revealed that 

for incidences smaller than 8 , the flow separation is well organized and does not present 

oscillations in time, as it can be observed in the flow visualizations shown in Figure 4.17.  

In these flow visualizations, the streamlines are represented by continuous lines, and the flow 

velocity field is represented by color shades related to the non-dimensional velocity UV .  

At incidences larger than 8 , the complexity of the flow separations and their variations 

in time increase with the increase in the angle of attack,  , and with decrease in the 

nondimensional distance to the ground, H . The most complex pattern of the flow separations is 

displayed closer to the ground and at larger angles of attack.  

This can be seen in Figures 4.18 to 4.21 which present illustrations of the flow separations at 

various moments in the nondimensional time, cUtt  * , for the NACA 0004 airfoil at 

Reynolds number Re = 1000 for various distances to the ground, 30 H , 0.5, 1.0 and 12 (no 

ground effect), and at two angles of attack, 10  and 12 . 

The influence of the angle of attack,  , on the flow separations can be observed by 

comparing the flow visualizations shown in Figures 4.18 and 4.19 at 10  with the ones 

illustrated in Figures 4.20 and 4.21 for the same airfoil NACA 0004 at 12 . It can be seen 

that the unsteadiness of the flow separations increases with the increase in the angle of attack (for 

the same H ) and with the decrease in the nondimensional distance to the ground, H .  
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Figure 4.18 Illustration of the flow separations for the NACA 0004 airfoil at various moments in 

time, cUtt  * , comparison between two nondimesional distances to the ground, 50 H  

and 12H  (no ground effect), for Re = 1000 and at 10 . 
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Figure 4.19 Illustration of the flow separations for the NACA 0004 airfoil at various moments in 

time, cUtt  * , comparison between two nondimesional distances to the ground, 30 H  

and 1H  (no ground effect), for Re = 1000 and at 10 . 
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Figure 4.20 Illustration of the flow separations for the NACA 0004 airfoil at various moments in 

time, cUtt  * , comparison between two nondimesional distances to the ground, 50 H  

and 12H  (no ground effect), for Re = 1000 and at 12 . 
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Figure 4.21 Illustration of the flow separations for the NACA 0004 airfoil at various moments in 

time, cUtt  * , comparison between two nondimesional distances to the ground, 30 H  

and 1H  (no ground effect), for Re = 1000 and at 12 . 
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These illustrations of the variation in time of the flow separation pattern are consistent with the 

oscillatory variations in time of the aerodynamic coefficients shown in Figures 4.15 and 4.16, 

indicating that these unsteady flow separation structures, occurring in the flow past stationary 

airfoils at low Reynolds numbers, generate the oscillatory variations in time of the lift and drag 

coefficients.  

4.6.2 Influence of the Reynolds number  

 The influence of the Reynolds number on the unsteady effects generated by the unsteady flow 

separations at low Reynolds numbers is shown in Figure 4.22 for NACA 0002  airfoil at the  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Influence of Reynolds number: Comparison of the variations with the 

nondimensional time, cUtt  * , of the lift and drag coefficients, LC  and DC , for NACA 0002 

airfoil for two Reynolds numbers, Re = 600 and 1500, at the distance to the ground 50 H , for 

various angles of attack,  .  
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distance to the ground 50 H  for two Reynolds numbers, Re = 600 and 1500, at several angles 

of attack, and in Figure 4.23 for the NACA 0004 airfoil for two Reynolds numbers, Re = 600 and 

1000, at the same distance to the ground, 50 H . 

 One can notice that the amplitudes of the oscillations in time of the aerodynamic coefficients 

are increasing with the increase in the Reynolds number. This is more evident for the thinner 

airfoil, NACA 0002, in which the amplitudes of oscillations for both coefficients, LC  and DC , 

are substantially larger for Reynolds number Re = 1500 than those at Re = 600.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4.23 Influence of Reynolds number: Comparison of the variations with the 

nondimensional time, cUtt  * , of the lift and drag coefficients, LC  and DC , for NACA 0004 

airfoil for two Reynolds numbers, Re = 600 and 1000, at the distance to the ground 50 H , for 

various angles of attack,  . 
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4.6.3 Influence of the airfoil thickness  

 The influence of the relative thickness of the airfoil on the unsteady effects generated by the 

unsteady flow separations at low Reynolds numbers in the proximity of the ground is shown in 

Figures 4.24 and 4.25 for two symmetric airfoils, NACA 0002 and 0008, for two Reynolds 

numbers, Re = 600 and 1000, and at the nondimensional distance to the ground 50 H .  

 One can observe that the amplitudes of the oscillations in time of the aerodynamic 

coefficients are larger for the thinner airfoil, NACA 0002, at the same angle of attack and at the 

same distance to the ground ( 50 H ).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 Influence of the airfoil thickness: Comparison of the variations with the 

nondimensional time, cUtt  * , of the lift coefficients, LC  and DC , for two symmetric 

airfoils, NACA 0002 and NACA 0008 for Reynolds number, Re = 600, and the distance to the 

ground 50 H , for various angles of attack,  .  
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Figure 4.25 Influence of the airfoil thickness: Comparison of the variations with the 

nondimensional time, cUtt  * , of the lift coefficients, LC  and DC , for two symmetric 

airfoils, NACA 0002 and NACA 0008 for Reynolds number, Re = 1000, and the distance to the 

ground 50 H , for various angles of attack,  . 

4.6.4 Influence of the distance to the ground for cambered airfoils 

 The influence of the airfoil camber on the unsteady effects generated by the unsteady flow 

separations at low Reynolds numbers in the proximity of the ground is shown in Figures 4.26 

and 4.27 for the cambered airfoil NACA 2404 at four nondimensional distances to the ground, 

30 H , 0.5, 1.0 and 12 (no ground effect) and at various angles of attack,  .  



 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.26 Influence of the distance to the ground, H , for a cambered airfoil: The variations 

with the nondimensional time, cUtt  * , of the lift coefficient, LC , of the NACA 2404 airfoil 

for several nondimensional distances to the ground, 3.0H , 0.5, 1.0 and 12 (no ground effect), 

for Reynolds number, Re = 1000, and at various angles of attack, .  

 One can notice that the amplitudes of the oscillations in time of the aerodynamic coefficients 

become larger with the decrease of the distance to the ground for the cambered airfoil, NACA 

2404, at the same angle of attack.  
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Figure 4.27 Influence of the distance to the ground, H , for a cambered airfoil: The variations 

with the nondimensional time, cUtt  * , of the drag coefficient, DC , of the NACA 2404 

airfoil for several nondimensional distances to the ground, 3.0H , 0.5, 1.0 and 12 (no ground 

effect), for Reynolds number, Re = 1000, and at various angles of attack, .  

 The above variations in time of the aerodynamic coefficients are consistent with the results of 

the flow separation analysis, which are shown in the flow visualizations illustrated in Figures 

4.28 to 4.30 for the cambered airfoils NACA 2404 and NACA 4404 for Reynolds number, 

Re = 1000, and angle of attack 10 .  

 In these flow visualizations, the streamlines are represented by continuous lines, and the flow 

velocity field is represented by color shades related to the non-dimensional velocity UV . 
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Figure 4.28 Illustration of the flow separations for NACA 2404 airfoil at various moments in 

time using the streamlines and the color shades indicating the nondimensional velocity field 

for 5.0H  and 12H , for Re = 1000 and at 10 . 
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Figure 4.29 Illustration of the flow separations for NACA 2404 airfoil at various moments in 

time using the streamlines and the color shades indicating the nondimensional velocity field 

for 3.0H  and 1H , for Re = 1000 and at 10 . 
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Figure 4.30 Illustration of the flow separations for NACA 4404 airfoil at various moments in 

time using the streamlines and the color shades indicating the nondimensional velocity field 

for 3.0H  and 5.0H , for Re = 1000 and at 10 . 
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4.6.5 Influence of the relative camber  

 The influence of the relative camber on the unsteady effects generated by the unsteady flow 

separations at low Reynolds numbers in the proximity of the ground can be seen in Figures 4.31 

by comparing the results for NACA 4404 airfoil, and for NACA 2404 airfoil for H = 0.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.31 Influence of the relative camber for two cambered airfoil NACA 4404 and NACA 

2404: The variations with the nondimensional time, cUtt  * , of the lift and drag coefficients, 

LC  and DC , for Reynolds number, Re = 1000, and distance to the ground, 50 H  at various 

angles of attack, .  

 One can notice that the amplitudes of the oscillations in time of the aerodynamic coefficients 

increase with the relative camber, for the same angle of attack and distance to the ground. It 
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should be mentioned the stall condition for NACA 2404 airfoil occurs in an earlier 

incident 16 . 

4.6.6 Influence of the relative thickness for cambered airfoils  

 The influence of the relative thickness of cambered airfoils on the unsteady effects generated 

by the unsteady flow separations at low Reynolds numbers in the proximity of the ground is 

shown in Figure 4.32 for the NACA airfoils 2402 and 2404 for Re = 1000, and distance to the 

ground 50 H  at various angles of attack,  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.32 Influence of the airfoil thickness of cambered airfoils. Comparison of the variations 

with the nondimensional time, cUtt  * , of the lift and drag  coefficients, LC  and DC , for 

two cambered airfoils, NACA 2402 and 2404 for Reynolds number, Re = 1000, and distance to 

the ground 50 H  at various angles of attack,  .  
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4.6.7 Influence of the maximum camber position  

 The influence of the maximum camber position on the unsteady effects generated by the 

unsteady flow separations at low Reynolds numbers in the proximity of the ground is shown in 

Figure 4.33 for the NACA 4404 and 4304 airfoils for Re = 1000, and distance to the ground 

50 H  at various angles of attack,  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33 Influence of the maximum camber position. Comparison of the variations with the 

nondimensional time, cUtt  * , of the lift and drag  coefficients, LC  and DC , for two 

cambered airfoils, NACA 4404 and 4304 for Reynolds number, Re = 1000, and distance to the 

ground 50 H  at various angles of attack,  . 
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4.7 Summary of findings 

In this chapter the effect of the ground proximity on the steady and unsteady flows past 

airfoils has been thoroughly studied to solve the problems encountered by the micro-air-vehicles 

flying in the proximity of the ground or ceiling. The method developed in the previous case 

study has been extended to solve this problem.  

The solutions for the lift and drag coefficients of the steady and unsteady flows for several 

symmetric and cambered NACA airfoils in the proximity of the ground are thoroughly analyzed 

in function of the distance to the ground. The unsteady flow separations on the airfoils are 

studied with the aid of flow visualizations illustrating the changes in the flow pattern at various 

moments in time.  

This study revealed that the flow separations appear on the upper surface of the airfoil at 

lower angles of attack due to the proximity of the ground. It was also found that the flow 

separation regions developed on the upper surface of the airfoil increase with the getting closer 

to the ground, and for larger Reynolds numbers, thinner airfoils, and higher angles of attack. 
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Chapter 5 

Analysis of Steady Viscous Flows Past Wings at Low Reynolds 

Numbers 

 The analysis of the flows past airfoils and wings at low Reynolds numbers received a special 

interest recently due to the development of the Unmanned-Aerial Vehicles (UAVs) and Micro-

Air Vehicles (MAVs), which can operate at relatively low altitudes and low speeds [18, 19]. The 

flows past the airfoils and wings at these low Reynolds numbers (Re < 6000) are laminar, and the 

fluid viscosity effect is dominant and vastly different from those at high Reynolds numbers, 

usually generating flow separations at their surfaces. Several studies have been published for the 

airfoil analysis at very low Reynolds numbers. Kunz and Kroo [28] found that many successful 

codes developed for the normal range of Reynolds numbers (in millions) are not appropriate for 

low Reynolds numbers. Kunz and Kroo in their computational study of low Reynolds number 

flow used the INS2D code developed at NASA Ames based on an upwind finite differencing 

scheme developed by Rogers and Kwak [29]. Later on, Mateescu and Abdo [10] studied the 

steady flows past airfoils at low Reynolds numbers with a method using artificial compressibility 

and a central finite difference formulation on stretched staggered grids.  

 Sunada et al. [70] conducted experiments for various rectangular wings of aspect ratio 7.25 at 

Reynolds number Re = 4000. Their study presents the experimental aerodynamic lift and drag 

coefficients obtained for these wings. The influence of the camber ratio, thickness ratio, and 

streamline shape has been shown in their research. The results presented in the form of lift and 

drag coefficients are used to validate the present numerical method. 

 This chapter presents the analysis of steady flow past wings at low Reynolds numbers. The 

problem is solved in a computational domain obtained from the physical flow domain using a 

coordinate transformation, in which the boundary conditions are rigorously and efficiently 

implemented. A pseudo-time relaxation procedure is used with artificial compressibility first 

introduced by Chorin [30]. A factored Alternate-Direction Implicit (ADI) scheme for the pseudo-

time integration, and a special decoupling procedure is used to reduce the problem to the 

solutions of scalar-tridiagonal systems of equations, which increases significantly the 
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computational efficiency of the method. A second-order central finite difference formulation is 

implemented on a stretched staggered grid.  

 The solutions of the lift and drag coefficients of wings with several symmetric and cambered 

NACA airfoil sections at low Reynolds numbers are also presented in this chapter. The current 

numerical solutions are validated by comparison with the experimental results for aerodynamic 

lift and drag coefficients obtained by Sunada et al. [70].  

 The influence of various geometric and flow parameters, such as wing thickness, wing airfoil 

camber, angle of attack and Reynolds number, on the aerodynamic coefficients is also studied in 

this chapter.  

5.1 Problem formulation and numerical method 

 Consider a wing with cambered airfoil of chord c  and span b  placed at an incidence   in a 

uniform stream of velocity U , as shown in Figure 5.1 (the figure shows the half wing). The 

wing is referred to a Cartesian reference system of coordinates xc , yc , and zc , where x , y  

and z  are nondimensional coordinates (with respect to the chord c ), with the x-axis along the 

wing chord and the y-axis along the wing span, and with the origin of the system situated at the 

leading edge of the wing root chord. The wing upper and lower surfaces are defined by the 

equations  

     xexhxez  1 ,         xexhxez  2  ,  (5.1) 

where the subscripts 1 and 2 refer to the upper and lower surfaces, and where  xh  and  xe  

define, respectively, the camberline and the wing thickness variation along the wing chord. The 

special case of symmetric wing section is characterized by      xexexe  21  and   0xh .  

 The viscous fluid flow past the wing is referred to a fixed Cartesian reference system of 

coordinates ξc , c , and c  defined by the equations  

 sincos yx  ,  y ,   cossin y ,      (5.2)  

where  ,  , and   are nondimensional coordinates with respect to the wing chord c , with the 

 -axis parallel to the to the uniform stream velocity U , which is inclined with the angle   

with respect to the wing chord, the -axis along the wing span, and the  -axis perpendicular to 

the uniform stream velocity as shown in Figure 5.1. 
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Figure 5.1. Geometry of a half rectangular wing placed in a uniform flow at the angle 

of attack  . 

 Let uU , vU , and wU  denote the fluid velocity components along the fixed  -,  -, 

and  -axes, where u , v , and w  are the nondimensional velocity components with respect to 

U .  

 The Navier-Stokes and continuity equations for the incompressible flow past a wing can be 

expressed in nondimensional conservation form as  

0),( pVQ ,    0

















wvu
V ,    (5.3)  

where  T
,, wvuV  represents the vector of the dimensionless velocity components and 

),( pVQ , which includes the convective derivative, pressure and viscous terms, can be 

expressed in three-dimensional Cartesian coordinates in the form  

        T
,,,,,,,,,,,, pwvuQpwvuQpwvuQp wvuVQ ,        (5.4) 
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









 wvu
 V ,           (5.6) 

where p  is the dimensionless pressure, nondimensionalized with respect to 2
U , and 

 UcRe  is the Reynolds number based on the chord length, c  (   and   are the fluid 

density and kinematic viscosity).  

 The problem is solved for a half wing in a fixed computational domain  ZYX ,, , which is 

obtained from the physical flow domain   ,, , indicated in Figure 5.2. In this computational 

domain, the half wing is transformed into a flat plate by geometrical transformation expressed as  

  ,,gX  ,  )(qY      ,,fZ  ,   (5.7)  

where   ,,g , )(q , and   ,,f  are defined for each of the six sub-domains in the 

following forms  

Domain 1  (for  0 , Sb  2/0  , and 12 HH    ) :  

0
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Domain 2  (for  10   , 2/0 b , and   11 Hxe    ) :  
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Domain 3  (for  10   , 2/0 b , and  xeH 22    ) :  
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 , (5.8c)  

Domain 4  (for  10  , Sbb  2/2/  , and 12 HH    ) :  
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Domain 5  (for  1 , Sb  2/0  , and 1sin H   ) :  
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Figure 5.2. Geometry of the half wing in the physical domain   ,,  and of the flat plate in the 

computational domain  ZYX ,,  obtained by the coordinate transformations (5.7) to (5.8). 
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Domain 6  (for  1 , Sb  2/0  , and  sin2 H  ) :  
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
 , (5.8f)  

 In equations (5.8b) and (5.8c), x  and z  are defined in the function of the coordinates   and 

  by the relations  

 sincos x  ,     cossin z  ,  (5.9)  

where, 0L  and 1L  are the nondimensional physical coordinates of the inflow and 

outflow boundaries, while, 0  and Sb  2/ are the nondimensional physical coordinates 

of lateral boundaries, and 1H , 2H  are the nondimensional physical coordinates of the 

upper and lower boundaries, illustrated in Figure 5.2.  

 In the computational domain  ZYX ,, , the upstream inflow and downstream outflow 

boundaries, lateral boundaries, and the upper and lower boundaries are defined by the same 

nondimensional coordinates 0LX  , 1LX  , and 0Y , SbY  2/ , and 1HZ  , 

2HZ  , respectively. 

 The Navier-Stokes and continuity equations can be expressed in the computational domain, as  

0),( pVG ,       0VD ,     (5.10) 

where,  

 T
,, wvuV ,         T

,,,,,,,,,,,, pwvuGpwvuGpwvuGp wvuVG ,  (5.11) 
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in which the expressions of the coefficients 1C , 2C , 3C , . . . , 9C , and 10C  are obtained for 

each domain from the coordinate transformations (5.7) to (5.8), the details are explained in 

Appendix C. 

5.2 Method of solution 

An iterative pseudo-time relaxation procedure with artificial compressibility is then used in 

order to solve this steady flow problem  
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where  V


 and  p


 denote the pseudo-functions corresponding to the variable velocity and 

pressure at pseudo-time  , and   represents an artificially-added compressibility.  

 An implicit Euler scheme is then used to discretize equations (5.14) between the pseudo-time 

levels   and   1 , and the resulting equations are expressed in terms of the pseudo-

time variations  uuu
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matrix form  
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in which the differential operators M , N , and L  are defined as  
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where   can be u


 , v


 , w


 , or p


 .  

The optimal value of the artificial compressibility,  , and the size of the pseudo-time step, 

 , are determined, in a similar manner to that used in the previous studies by the author [1, 3, 

6].  

A factored ADI scheme is then applied to separate equation (5.15) into three successive 

sweeps in the Z , Y and X  directions, defined by the equation 

       fDIDIDIfDDDI  ZYXzYX  .   (5.21) 

 This ADI scheme can produce some convergence issues when ∆τ takes large values. 

Therefore, to have a faster convergence it is important to keep ∆τ sufficiently small.  

 The ADI scheme is reduced to the solution of several sets of scalar-tridiagonal systems of 

equations. Thus, equation (5.15) changes to  

    RfDIDIDI   ZYX        (5.22) 

The ADI method requires the introduction of the intermediate variables *
f  and f  to 

solve the linear implicit system of equations. The variable *
f  has the components 

*u , *v , 

*w  and 
*p , which are calculated in the Z-sweep as  

  RfDI   *
Z ,         (5.23) 
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and the variable f  has the components u , v , w  and p , which are computed in the Y-

sweep as  

  *
ffDI  Y ,         (5.24) 

then, f  are obtained in the X-sweep as 

  ffDI  Y ,         (5.25) 

Hence, after the factored ADI scheme is applied, the scalar form of Z-sweep, Y-sweep, and X-

sweep are obtained by replacing the equations (5.16) to (5.20) into (5.23), (5.24) and (5.25). 

The Z-sweep, Y-sweep, and X-sweep equations are further spatially discretized by central 

differencing on a stretched staggered grid, in which the flow variables u , v , w  and pressure, p  

are defined at different positions, as shown in Figure 5.3. By using a staggered grid, this method 

avoids the odd-and-even point decoupling while preserving the second-order accuracy in space 

of the method. The grid stretching is defined by hyperbolic sine functions in the X , Y , and Z  

directions.  

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

Figure 5.3. Geometry of the staggered grid. 
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A special decoupling procedure [9, 10, 11], based on the utilization of the continuity equation is 

used for each sweep to eliminate the pressure from the momentum equations. For example, for 

the Z-sweep the corresponding relation from continuity equation can be used:  
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 In this manner, the problem is reduced to the solution of three sets of decoupled scalar-

tridiagonal systems of equations, for each sweep. As a result, this method is characterized by 

excellent computational efficiency and accuracy.  

5.3 Lift and drag coefficients of the rectangular wings 

The aerodynamic lift and drag forces are generated by the pressure and the shear stress acting 

perpendicular and tangential on the upper wing surface, up  and u , and on its lower surface, lp  

and l . The wing upper and lower surfaces are each divided, by planes of constant y  and planes 

of constant x , into very small area elements of elemental areas 
jiuw ,,

  and 
jilw ,,

 , 

respectively, where i  varies from 1 to m  along the chord, and j  varies from n  to n  along 

the wing span.  

Consider a strip element of the wing of constant width jy  (from the leading edge to the 

trailing edge), the normal force, N, and tangential force, A, on this strip is  
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where jiu ,,  and jil ,,  are the inclination angles of the upper and lower wing surfaces with 

respect to the x-axis.  
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As a result, the normal and tangential force coefficients for the spanwise wing strip are expressed 

in terms of the pressure coefficient pC  and the skin friction coefficients fC  in the form  
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 Then, the lift and drag coefficients for each strip of the wing along the span can be expressed 

in the form  

 sin,cos,, jaCjnCjlC  ,        (5.29a) 

 cos,sin,, jaCjnCjdC          (5.29b) 

To obtain the total lift and drag coefficients of the wing, the lift and drag forces for each wing 

strip are summed up along the span and divided to the total area of the wing as  
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1
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where wS  is the total area of rectangular wing and jw,  is the area of each strip.  

5.4 Method validation 

The numerical solutions for the lift and drag coefficients obtained by this method for the 

steady flow past the wing are validated in Figure 5.4 by comparison with the experimental results 

reported by Sunada et al. [70] for the rectangular wing with NACA 0006 airfoil of aspect ratio 

7.25 for Reynolds number Re = 4000 at several incidences.  

Very good agreement can be noticed in Figure 5.4 between the present solutions of the lift and 

drag coefficients and the experimental results for angle of attack up to 7.5 . After this 

incidence, the flow becomes unsteady, due to the unsteady flow separations, and the comparison 

deteriorates.  
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Figure 5.4. The variation with the angle of attack,  , for the lift and drag coefficients, LC  

and DC , of the rectangular wing with NACA0006 airfoil and aspect ratio 7.25 at Reynolds 

number Re = 4000. Comparison between:  

       Present steady solutions  

    Experimental steady results obtained by Sunada et al. [70].  

5.5 Grid sensitivity analysis 

 The grid sensitivity has been evaluated for the presented numerical solution through the mesh 

refinement applied to a steady flow past the rectangular wing. Through the geometry analysis, it 

is found the length of domain 1 and domain 5, 6 (as shown in Figure 5.2) along the wing chord 

should be at least L0 = 10, and L1 = 30, the length of upper and lower boundaries are H1 =  10, and 
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H2  = -10, and the length of domain 4 along the span should be at least S1 =  8, and S2  = -8. 

Beyond these lengths the numerical results are not affected.  

 To find the ideal grid points, the solution is solved for a steady viscous flow past rectangular 

wing with NACA 0004 airfoil section for Re = 1500 at angle of attack, 4 . 

 The criteria of comparison are based on the aerodynamic coefficients such as the total lift and 

drag coefficients of the rectangular wing, LC  and DC . 

 The results of the grid sensitivity test are shown in Table 5.1. It can be seen there is no 

discrepancy between the solution obtained by using 300 x 120 x 175 grid points and the fully 

converged solution obtained with 350 x 145 x 200 grid points. Beyond this grid density, the 

numerical solution is not influenced by the grid refinement. 

 

 

 

 

 

 

 

Table 5.1 Grid sensitivity of the numerical solution for steady flow past rectangular wing with 

NACA 0004 airfoil section for Re = 1500 at angle of attack, 4 based on the computed 

aerodynamic coefficients, LC  and DC . 

 The computational time varies for each study case, however, in general the finally converged 

solution for steady viscous flow over a rectangular wing for a fine mesh with 300 x 120 x 175 

grid points requires 0.2 minutes per iteration computing time on a PC (Intel dual core- i7 CPU) 

using FORTRAN 90. 

5.6 Solutions of the steady viscous flows past rectangular wings  

The numerical method presented in section 5.2 is used to obtain solutions of the flow past 

wings with symmetric and cambered NACA airfoil sections at low Reynolds numbers. The 

results are shown for different Reynolds numbers, and several angles of attack. The influence of 

Reynolds number, and wing thickness is also presented for several aerodynamic characteristics 

Number of grid points CL CD 

100 x 20 x 75 0.203 0.079 

150 x 45 x 100 0.221 0.087 

200 x 70 x 125 0.234 0.089 

250 x 95 x 150 0.236 0.090 

300 x 120 x 175 0.237 0.091 

350 x 145 x 200 0.237 0.091 
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including total lift and drag coefficients, and variations of lift and drag coefficients along the 

wing span. 

5.6.1 Influence of the Reynolds number  

The influence of Reynolds number on the aerodynamic lift and drag coefficients, LC  and 

DC , of a rectangular wing with NACA 0002 airfoil section and aspect ratio 8 for two Reynolds 

numbers Re = 600 and 1000 is shown in Figure 5.5. In addition, the influence of Reynolds 

number for a rectangular wing with NACA 0004 airfoil section, and the same aspect ratio for 

two values of Reynolds numbers Re = 600 and 1500 is illustrated in Figure 5.6. These results are 

presented for the lift and drag coefficients at various angles of attack.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Influence of the Reynolds number on the aerodynamic coefficients: Comparison of 

the lift and drag coefficients, LC  and DC , for a rectangular wing with NACA0002 airfoil 

section of aspect ratio 8 for two Reynolds numbers, Re = 600 and 1000, at several angles of 

attack,  . 

One can notice that the lift coefficient is increasing as the Reynolds number increases. 

However, when the Reynolds number rise, the drag coefficient shows an opposite behavior and it 

decreases. 
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Figure 5.6. Influence of the Reynolds number on the aerodynamic coefficients: Comparison of 

the lift and drag coefficients, LC  and DC , for a rectangular wing with NACA 0004 airfoil 

section and aspect ratio 8 for two Reynolds numbers, Re = 600 and 1500, at several angles of 

attack,  . 

5.6.2 Influence of the wing thickness  

The influence of the wing thickness with NACA 0002 and NACA 0008 airfoil sections, and 

aspect ratio 8 on the aerodynamic characteristics, LC  and DC , is shown in Figure 5.7 for  

Re = 600, and in Figure 5.8 for Re = 1000.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Influence of the wing thickness on the aerodynamic coefficients: Comparison of the 

lift and drag coefficients, LC  and DC , for a rectangular wing with NACA0002 and NACA0008 

airfoil sections and aspect ratio 8 for Reynolds number Re = 600 at several angles of attack,  . 
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Figure 5.8. Influence of the wing thickness on the aerodynamic coefficients: Comparison of the 

lift and drag coefficients, LC  and DC , for a rectangular wing with NACA0002 and NACA0008 

airfoil sections and aspect ratio 8 for Reynolds number Re = 1000 at several angles of attack,  . 

In the above figures, one can notice that the lift coefficient decreases for thicker wings at the 

same Reynolds number. In other words, the lift coefficient is smaller for the wing with NACA 

0008 airfoil section than for NACA 0002 airfoil section at the same Reynolds number. 

However, the drag coefficient increases for thicker wings at the same Reynolds number, such 

that the drag coefficient of wing with NACA 0008 airfoil section is larger than that of the wing 

with NACA 0002 airfoil section at the same Reynolds number. 

5.6.3 Influence of Reynolds number and wing thickness on the variations of 

the local lift and drag coefficients along the semi-span of the wing  

In order to study the variations of the local lift and drag coefficients, lC  and dC , along the 

semi-span of the wing, three rectangular wings with NACA 0002, NACA 0004, and NACA0008 

airfoil sections are selected. The influence of the Reynolds number on these variations can be 

seen in Figure 5.9 for the half wing with NACA 0004 airfoil section for two Reynolds numbers,  

Re = 600 and 1500 at the angles of attack 6 and 8 degrees.  
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Figure 5.9. Influence of the Reynolds number on the variation of the local aerodynamic 

coefficients along the wing semi-span: Comparison of lC  and dC  for a rectangular wing with 

NACA 0004 airfoil section of aspect ratio 8 for two Reynolds numbers, Re = 600 and 1500, at 

angles of attack 6  and 8 . 

One can notice that as the angle of attack increases, the local lift and drag coefficients, lC  

and dC , are larger. At the same angle of attack and NACA airfoil section, the local lift 

coefficient becomes larger when the Reynolds number increases.  
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The influence of the wing thickness on the local lift and drag coefficients variations along the 

semi-span for rectangular wings with NACA 0002, and NACA 0008 airfoil sections for Re = 

600 at the angles of attack 2 and 4 degrees is shown in the Figure 5.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Influence of the wing thickness on the variation of the aerodynamic coefficients 

along the semi-span of the wing: Comparison of lC  and dC , for two rectangular wings with 

NACA 0002 and NACA 0008 airfoil sections, aspect ratio 8 for Re = 600 at the angles of attack 

2  and 4 . 
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One can notice that the thinner wing with NACA 0002 airfoil section has a larger local lift 

coefficient and a smaller drag coefficient than the thicker wing with NACA 0008 airfoil section. 

5.6.4 Influence of the wing camber  

The influence of the airfoil camber of the rectangular wing with aspect ratio 8 for Re = 1000 

on the wing lift and drag coefficients can be seen in Figure 5.11 by comparing the results for the 

wing with NACA 2404 airfoil section and the wing with NACA 4404 airfoil section.  

One can notice that the wing lift and drag coefficients, LC  and DC , are larger for the more 

cambered wing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. Influence of the wing camber on the aerodynamic coefficients: Comparison of the  

wing lift and drag coefficients, LC  and DC , for two rectangular wings with NACA 2404 and  

NACA 4404 airfoil section, aspect ratio 8 for Re = 1000 at several incidences. 

5.6.5 Streamline and flow pattern for steady viscous flows past wings 

The typical front views (  ,  planes) of the flow past a wing with NACA 0008 airfoil section 

as viewed from the longitudinal planes y = 0, y = 0.25(b/2), y = 0.5(b/2), and y = 0.75(b/2) 

towards the wing tip (y=b/2) are illustrated in Figure 5.12 for Re = 1000 at angle of attack 8  

by using the streamlines (represented by continuous lines). The color shades show the magnitude 

of the nondimensional flow velocity with respect to the mean flow velocity, U , according to 

the scale indicated in the figure.  
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Figure 5.12. Illustration of the velocity contours and streamlines indicating the nondimensional 

velocity for the wing with NACA 0008 airfoil section for Re = 1000 and angle of attack 8  

at various spanwise locations y = 0, y = 0.25(b/2), y = 0.5(b/2), and y = 0.75(b/2). 
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One can notice, the flow separation is appearing at the trailing edge on the upper surface of the 

wing as illustrated in Figure 5.12. It is interesting to see that the flow separation is decreasing as 

moving towards to the wing tip and finally vanishing. 

Typical velocity contours of steady flow past the wing with NACA 0008 airfoil section is 

shown in Figure 5.13 for Re = 1000 at the angle of attack, 8 . 

Moreover, the streamlines pattern are illustrated in Figure 5.14 at the plane ( , ). It is clearly 

noticeable that a vorticity occurs at the tip of the rectangular wing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13. Isometric view of the velocity contours in a flow past a half-wing with NACA 0008 

airfoil section for Re = 1000 at angle of attack 8  illustrated in the physical domain 

(  ,, ). 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. Velocity contours and streamlines in the ( , ) plane (side view) of a flow past a 

wing with NACA 0008 airfoil section for Re = 1000 at angle of attack 8 . 
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5.7 Summary of findings 

 An efficient numerical method has been developed to solve the Navier-Stokes equations for 

incompressible flows past rectangular wings at low Reynolds numbers. The problem is solved in 

a computational domain obtained from the physical flow domain by a coordinate transformation, 

and using a pseudo-time relaxation procedure with artificial compressibility, a factored alternate-

direction implicit scheme, and a special decoupling procedure to reduce the problem to the 

solutions of scalar-tridiagonal systems of equations, which improves significantly the 

computational efficiency of the method. 

 The numerical solutions of the aerodynamic lift and drag coefficients obtained by this 

method are validated with the experimental results for rectangular wings. The influence of 

various geometric and flow parameters on the aerodynamic coefficients, such as the wing 

thickness, wing airfoil camber, angle of attack and Reynolds number is thoroughly studied.  

 It is interesting to note that for the micro-air vehicles applications, the chord length is 

between 5 and 20 cm, Reynolds number is between 600 and 4000 and the Mach number is less 

than 0.03, which justifies the numerical method used in this thesis based on incompressible flows 

in comparison with the few solutions obtained with compressible flow solvers.  
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Chapter 6 

Conclusions 

 The main conclusions of this thesis are presented below in several categories corresponding 

to the chapters 2 through 5. Several suggestions for future work are also given at the end of this 

chapter. 

6.1 Three-dimensional confined viscous flows at low Reynolds numbers 

Chapter 2 presents the analysis of the steady and unsteady three-dimensional confined viscous 

flows with fixed and oscillating walls and variable inflow velocity. This analysis is performed 

with a time-accurate numerical method developed by the author for the solution of the Navier-

Stokes equations for unsteady laminar flows. The problem is solved in a fixed computational 

domain obtained by a time-dependent coordinate transformation from the physical domain, 

which converts the physical oscillating wall into a fixed wall in the computational domain. This 

numerical method is second-order-accurate based on a finite difference formulation on a 

staggered grid and uses a pseudo-time relaxation procedure with artificial compressibility. An 

Alternate-Direction Implicit (ADI) scheme is used in conjunction with a special decoupling 

procedure, which eliminates the pressure based on the continuity equation. This procedure 

reduces the problem to the efficient solution of several sets of decoupled scalar-tridiagonal 

systems of equations, which enhances substantially the computational efficiency of the method.  

The method was successfully validated by comparison with the theoretical solutions for the 

case of uniform rectangular channels of various aspect ratios and by comparison with 

experimental results for the three-dimensional confined flows with multiple separation regions in 

a channel with a downstream-facing step. It is confirmed for the first time that the discrepancy 

between the two-dimensional numerical solutions and the experimental results is due to the 

three-dimensional effects introduced by the lateral walls of the experimental configuration, in 

contrast to the rigorous two-dimensional character of the two-dimensional computational 

solutions.  

This method is then used to obtain solutions for the three-dimensional steady and unsteady 

flows past a downstream-facing step with oscillating walls and variable inflow velocities. The 
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variation of the flow separation and reattachment locations on the upper and lower walls along 

the span of the channel has been thoroughly studied. 

 The chapter presents a detailed study of the unsteady flow separation regions, including the 

study of the influence of various geometric and flow parameters, such as the channel aspect ratio, 

step height, Reynolds number, amplitudes of the wall oscillation and inflow velocity variation, 

and oscillation frequency, on the formation and duration of the flow separation regions.  

6.2 Unsteady flow separations on stationary airfoils at low Reynolds numbers 

 Chapter 3 presents the unsteady flow analysis of the stationary airfoils at low Reynolds 

numbers, aiming to study the unsteady effects on the aerodynamic coefficients generated by the 

unsteadiness of the flow separations. It was found that the aerodynamic coefficients of lift and 

drag have periodic variations in time at incidences larger than 6 or 8 degrees depending on the 

airfoil shape and the Reynolds number.  

 Solutions are presented for the unsteady lift and drag coefficients of several symmetric and 

cambered airfoils, which incorporate the effect of the unsteady flow separations. These unsteady 

solutions are obtained with an efficient time-accurate numerical method developed by the author 

for the solution of the Navier-Stokes equations at low Reynolds numbers, which is second-order-

accurate in time and space. Comparison with available experimental results successfully 

validates the numerical method.  

 The influence of various geometric and flow parameters, such as the angle of attack, the 

airfoil relative thickness and camber, and the Reynolds number on the unsteady aerodynamic 

coefficients has been studied for several symmetric and cambered NACA airfoils. 

 The flow separation is also studied with the aid of the flow visualizations illustrating the 

changes in the flow pattern at various moments in time. It was found that the unsteadiness of the 

flow separations is consistent with the oscillations in time of the aerodynamic coefficients, which 

are generated by the unsteady flow separations occurring at low Reynolds numbers. 

6.3 Steady and unsteady viscous flows past airfoils in the proximity of the 

ground 

The steady and unsteady flow past airfoils in the proximity of the ground at low Reynolds 

numbers has been studied in Chapter 4. The unsteady flow problem is solved in a rectangular 

computational domain, obtained from the physical domain by time-dependent coordinate 
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transformations for various sub-domains, in which the boundary conditions are efficiently and 

rigorously implemented. The numerical method developed in Chapter 3 for the integration of the 

Navier-Stokes equations was extended to study these flows in the proximity of the ground. 

The numerical method was validated by comparing the steady flow solutions obtained for a 

larger distance to the ground with the available experimental results for isolated airfoils at low 

Reynolds numbers.  

Solutions are first presented for the aerodynamic coefficients of several NACA airfoils in 

steady flows for various low Reynolds numbers at several distances to the ground. The effect of 

the proximity of the ground on the aerodynamic coefficients has been studied for various 

Reynolds numbers and several symmetric and cambered NACA airfoils. The analysis of the 

steady flow on these airfoils revealed that flow separations appear on the upper surface of the 

airfoil at lower angles of attack are due to the proximity of the ground. It was also found that the 

flow separation regions developed on the upper surface of the airfoil increase with the getting 

closer to the ground, and for larger Reynolds numbers, thicker airfoils, and higher angles of 

attack.  

Solutions are also presented for the unsteady aerodynamic coefficients of several NACA 

airfoils executing pitching oscillations for various low Reynolds numbers at several distances to 

the ground. The influence of different parameters, such as the Reynolds number, relative 

thickness of the airfoil and oscillation frequency, on the ground effect in the unsteady flows at 

low Reynolds numbers has also been studied.  

The unsteady flow separations effects on the stationary airfoils at low Reynolds numbers in 

the proximity of the ground has also been presented in this chapter. It was found that the 

aerodynamic coefficients of lift and drag have periodic variations in time at incidences larger 

than 6 or 8 degrees depending on the airfoil shape, the Reynolds number and the distance to the 

ground.  

The amplitude of the oscillations in time of the lift coefficient was found to increase with the 

decrease of the distance to the ground, and these oscillations appear at smaller angles of attack 

near the ground. A similar observation can be made for the drag coefficient.  

 The flow separations on the stationary airfoils in the proximity of the ground are also studied 

with the aid of the flow visualizations illustrating the changes in the flow pattern at various 

moments in time.  
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6.4 Steady viscous flows past wings at low Reynolds numbers 

The steady viscous flows past rectangular wings with different NACA airfoil sections at low 

Reynolds numbers has been studied in Chapter 5 with an efficient numerical method developed 

by the author for the steady solution of the Navier-Stokes equations for laminar incompressible 

flows, which is second-order accurate in space. The steady flow problem is solved in a 

rectangular computational domain, obtained from the physical domain obtained by geometrical 

coordinate transformations for various sub-domains, in which the boundary conditions are 

efficiently and rigorously implemented. This method uses a pseudo-time relaxation procedure 

based on artificial compressibility, and a factored alternate-direction implicit scheme for the 

integration in pseudo-time. A second-order central finite differencing formulation is used on a 

stretched staggered grid.  

The method was successfully validated by comparing the present flow solutions with the 

previous experimental results for the rectangular wing with NACA 0006 airfoil section of aspect 

ratio 7.25 at Reynolds number Re = 4000 at various angles of attack.  

The influence of various flow and geometrical parameters, such as the Reynolds number, 

wing thickness, wing camber and angle of attack on the aerodynamic characteristics such as the 

total lift and drag coefficients of the rectangular wing has been studied. In addition, typical 

streamlines and velocity contours of the flow past rectangular wings with a NACA airfoil section 

at low Reynolds numbers are also illustrated in this chapter. 

6.5 Future work 

As a suggestion for future work, the numerical method developed in Chapter 5 for solving the 

steady viscous flows past rectangular wings can be extended to study of the unsteady flows past 

trapezoidal wings executing pitching oscillations at low Reynolds numbers. The author will 

continue these studies in the near future.  
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Appendix A 

Alternating-Direction Implicit (ADI) scheme: 

 By replacing the equations (2.53) to (2.55) into (2.58), (2.59) and (2.60), the scalar form of Z-

sweep, X-sweep and Y-sweep are as follows 

 

Z-sweep: 

[

∆𝑢̅
∆𝑣̅
∆𝑤̅
∆𝑝̅

] + ∆𝜏

[
 
 
 
 
 
 
 
 𝐶2

𝜕(𝑢̃𝜈∆𝑢̅)

𝜕𝑍
+ 𝐶3

𝜕(𝑤̃𝜈∆𝑢̅)

𝜕𝑍
+𝐶4

𝜕(∆𝑢̅)

𝜕𝑍
+𝐶2

𝜕(∆𝑝̅)

𝜕𝑍
+𝐶5

𝜕2∆𝑢̅

𝜕𝑍2
+𝐶6

𝜕2∆𝑢̅

𝜕𝑍𝜕𝑋

𝐶2
𝜕(𝑢̃𝜈∆𝑣̅)

𝜕𝑍
+ 𝐶3

𝜕(𝑤̃𝜈∆𝑣̅)

𝜕𝑍
+𝐶4

𝜕(∆𝑣̅)

𝜕𝑍
+𝐶5

𝜕2∆𝑣̅

𝜕𝑍2
+𝐶6

𝜕2∆𝑣̅

𝜕𝑍𝜕𝑋

𝐶2
𝜕(𝑢̃𝜈∆𝑤̅)

𝜕𝑍
+ 𝐶3

𝜕(𝑤̃𝜈∆𝑤̅)

𝜕𝑍
+𝐶4

𝜕(∆𝑤̅)

𝜕𝑍
+𝐶3

𝜕(∆𝑝̅)

𝜕𝑍
+𝐶5

𝜕2∆𝑤̅

𝜕𝑍2
+𝐶6

𝜕2∆𝑤̅

𝜕𝑍𝜕𝑋

𝐶2
1

𝛿

𝜕∆𝑢̅

𝜕𝑍
+ 𝐶3

1

𝛿

𝜕∆𝑤̅

𝜕𝑍 ]
 
 
 
 
 
 
 
 

 

= ∆𝜏

[
 
 
 
 
 
−𝐺̃𝜈𝑢
−𝐺̃𝜈𝑣
−𝐺̃𝜈𝑤

−
1

𝛿
∇. Ṽν]

 
 
 
 
 

                                                                                                                                      (A. 1) 

 

X-sweep: 

[

∆𝑢∗

∆𝑣∗

∆𝑤∗

∆𝑝∗

] + ∆𝜏

[
 
 
 
 
 
 
 
 
𝜕(𝑢̃𝜈∆𝑢∗)

𝜕𝑋
+ 𝐶1

𝜕2∆𝑢∗

𝜕𝑋2
+
𝜕(∆𝑝∗)

𝜕𝑋
𝜕(𝑢̃𝜈∆𝑣∗)

𝜕𝑋
+ 𝐶1

𝜕2∆𝑣∗

𝜕𝑋2

𝜕(𝑢̃𝜈∆𝑤∗)

𝜕𝑋
+ 𝐶1

𝜕2∆𝑤∗

𝜕𝑋2

1

𝛿

𝜕∆𝑢∗

𝜕𝑋 ]
 
 
 
 
 
 
 
 

= [

∆𝑢̅
∆𝑣̅
∆𝑤̅
∆𝑝̅

]                                                               (A. 2) 

  



170 

 

Y-sweep: 

[

∆𝑢
∆𝑣
∆𝑤
∆𝑝

] + ∆𝜏

[
 
 
 
 
 
 
 
 

𝜕(𝑣̃𝜈∆𝑢)

𝜕𝑌
+ 𝐶1

𝜕2∆𝑢

𝜕𝑌2

𝜕(𝑣̃𝜈∆𝑣)

𝜕𝑌
+ 𝐶1

𝜕2∆𝑣

𝜕𝑌2
+
𝜕(∆𝑝)

𝜕𝑌
𝜕(𝑣̃𝜈∆𝑤)

𝜕𝑌
+ 𝐶1

𝜕2∆𝑤

𝜕𝑌2

1

𝛿

𝜕∆𝑣

𝜕𝑌 ]
 
 
 
 
 
 
 
 

= [

∆𝑢∗

∆𝑣∗

∆𝑤∗

∆𝑝∗

]                                                                     (A. 3) 

Spatial discretization of momentums: 

 The central and backward difference operators, which denotes the difference between the 

primary grid points and the secondary grid points are defined as: 

 

∆𝑋𝑖
𝑢 = 𝑋𝑖+1

𝑣 − 𝑋𝑖
𝑣

∆𝑌𝑗
𝑢 = 𝑌𝑗

𝑣 − 𝑌𝑗−1
𝑣

∆𝑍𝑘
𝑢 = 𝑍𝑘

𝑤 − 𝑍𝑘−1
𝑤

                

∆𝑋𝑖
𝑣 = 𝑋𝑖

𝑢 − 𝑋𝑖−1
𝑢

∆𝑌𝑗
𝑣 = 𝑌𝑗+1

𝑢 − 𝑌𝑗
𝑢

∆𝑍𝑘
𝑤 = 𝑍𝑘+1

𝑢 − 𝑍𝑘
𝑢

  

 

∇𝑋𝑖
𝑢 = 𝑋𝑖

𝑢 − 𝑋𝑖
𝑣

∇𝑌𝑗
𝑢 = 𝑌𝑗

𝑢 − 𝑌𝑗−1
𝑣

∇𝑍𝑘
𝑢 = 𝑍𝑘

𝑢 − 𝑍𝑘−1
𝑤

                 

∇𝑋𝑖
𝑣 = 𝑋𝑖

𝑣 − 𝑋𝑖−1
𝑢

∇𝑌𝑗
𝑣 = 𝑌𝑗

𝑣 − 𝑌𝑗
𝑢

∇𝑍𝑘
𝑤 = 𝑍𝑘

𝑤 − 𝑍𝑘
𝑢

 

X-Momentum: 

 

       (A. 4) 

  

 
X

p

Z

u
C

Z

wu
C

Y

vu

Z

uu
C

X

u
C

X

uu
pwvuGu












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


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


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


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


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After spatial discretization: 

𝐺𝑢𝑖,𝑗,𝑘 =
1

∆𝑋𝑖
𝑢 [(𝑢𝑢

𝑋+)2 − (𝑢𝑢
𝑋−)2 + 𝐶1 (

𝑢𝑖+1,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘

∆𝑋𝑖+1
𝑣 −

𝑢𝑖,𝑗,𝑘 − 𝑢𝑖−1,𝑗,𝑘

∆𝑋𝑖
𝑣 )

+ (𝑝𝑖+1,𝑗,𝑘 − 𝑝𝑖,𝑗,𝑘)]

+
1

∆𝑌𝑗
𝑢 [(𝑢𝑢

𝑌+𝑣𝑢
𝑌+ − 𝑢𝑢

𝑌−𝑣𝑢
𝑌−) + 𝐶1 (

𝑢𝑖,𝑗+1,𝑘 − 𝑢𝑖,𝑗,𝑘

∆𝑌𝑗
𝑣 −

𝑢𝑖,𝑗,𝑘 − 𝑢𝑖,𝑗−1,𝑘

∆𝑌𝑗−1
𝑣 )]

+
1

∆𝑍𝑘
𝑢 [𝐶2[(𝑢𝑢

𝑍+)2 − (𝑢𝑢
𝑍−)2] + 𝐶3(𝑢𝑢

𝑍+𝑤𝑢
𝑍+ − 𝑢𝑢

𝑍−𝑤𝑢
𝑍−)

+ 𝐶4(𝑢𝑢
𝑍+ − 𝑢𝑢

𝑍−) + 𝐶2(𝑝𝑖,𝑗,𝑘+1 − 𝑝𝑖,𝑗,𝑘)

+ 𝐶5 (
𝑢𝑖,𝑗,𝑘+1 − 𝑢𝑖,𝑗,𝑘

∆𝑍𝑘
𝑤 −

𝑢𝑖,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘−1

∆𝑍𝑘−1
𝑤 )

+ 𝐶6 (
𝑢𝑤

𝑝+ − 𝑢𝑤
𝑚+

∆𝑋𝑖
𝑢 −

𝑢𝑤
𝑝− − 𝑢𝑤

𝑚−

∆𝑋𝑖
𝑢 )]                                                               (A. 5) 

 

where, the following linear interpolates of the velocity components of the staggered grid are used: 

𝑢𝑢𝑖,𝑗,𝑘
𝑋− =

∇𝑋𝑖
𝑣.𝑢𝑖,𝑗,𝑘+∇𝑋𝑖

𝑢𝑢𝑖−1,𝑗,𝑘

∆𝑋𝑖
𝑣 ,  and  𝑢𝑢𝑖,𝑗,𝑘

𝑋+ = 𝑢𝑢𝑖+1,𝑗,𝑘
𝑋−  

𝑢𝑢𝑖,𝑗,𝑘
𝑍− =

∇𝑍𝑘−1
𝑤 .𝑢𝑖,𝑗,𝑘+∇𝑍𝑘

𝑢𝑢𝑖,𝑗,𝑘−1

∆𝑍𝑘−1
𝑤  , and  𝑢𝑢𝑖,𝑗,𝑘

𝑍+ = 𝑢̆𝑢𝑖,𝑗,𝑘+1
𝑍−  

𝑣𝑢𝑖,𝑗,𝑘
𝑌− =

∇𝑋𝑖
𝑢.𝑣𝑖+1,𝑗−1,𝑘+∇𝑋𝑖+1

𝑣 𝑣𝑖,𝑗−1,𝑘

∆𝑋𝑖
𝑢 , and   𝑣𝑢𝑖,𝑗,𝑘

𝑌+ = 𝑣𝑢𝑖,𝑗+1,𝑘
𝑌−  

𝑢𝑢𝑖,𝑗,𝑘
𝑌− =

∇𝑌𝑗−1
𝑣 .𝑢𝑖,𝑗,𝑘+∇𝑌𝑗

𝑢𝑢𝑖,𝑗−1,𝑘

∆𝑌𝑗−1
𝑣 , and   𝑢𝑢𝑖,𝑗,𝑘

𝑌+ = 𝑢𝑢𝑖,𝑗+1,𝑘
𝑌−  

𝑤𝑢𝑖,𝑗,𝑘
𝑍− =

∇𝑋𝑖
𝑢.𝑤𝑖+1,𝑗,𝑘−1+∇𝑋𝑖+1

𝑣 𝑤𝑖,𝑗,𝑘−1

∆𝑋𝑖
𝑢 , and   𝑤𝑢𝑖,𝑗,𝑘

𝑍+ = 𝑤̆𝑢𝑖,𝑗,𝑘+1
𝑍−  

𝑢11 =
∇𝑋𝑖

𝑢 .𝑢𝑖−1,𝑗,𝑘−1+∇𝑋𝑖
𝑣 .𝑢𝑖,𝑗,𝑘−1

∆𝑋𝑖
𝑣 , and   𝑢12 =

∇𝑋𝑖
𝑢 .𝑢𝑖−1,𝑗,𝑘+∇𝑋𝑖

𝑣 .𝑢𝑖,𝑗,𝑘

∆𝑋𝑖
𝑣  

𝑢|𝑤𝑖,𝑗,𝑘
𝑚− =

∇𝑍𝑘
𝑢 .𝑢11+∇𝑍𝑘−1

𝑤  .𝑢12

∆𝑍𝑘−1
𝑤 ,  and  𝑢|𝑤𝑖,𝑗,𝑘−1

𝑚+ = 𝑢|𝑤𝑖,𝑗,𝑘
𝑚−   , 

𝑢|𝑤𝑖−1,𝑗,𝑘
𝑝−

= 𝑢|𝑤𝑖,𝑗,𝑘
𝑚−  ,   and  𝑢|𝑤𝑖−1,𝑗,𝑘−1

𝑝+
= 𝑢|𝑤𝑖,𝑗,𝑘

𝑚−  
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y-Momentum: 

 

        (A. 6) 

After spatial discretization: 

𝐺𝑣𝑖,𝑗,𝑘 =
1

∆𝑋𝑖
𝑣 [(𝑣𝑣

𝑋+𝑢𝑣
𝑋+ − 𝑣𝑣

𝑋−𝑢𝑣
𝑋−) + 𝐶1 (

𝑣𝑖+1,𝑗,𝑘 − 𝑣𝑖,𝑗,𝑘

∆𝑋𝑖
𝑢 −

𝑣𝑖,𝑗,𝑘 − 𝑣𝑖−1,𝑗,𝑘

∆𝑋𝑖−1
𝑢 )]

+
1

∆𝑌𝑗
𝑣 [(𝑣𝑣

𝑌+)2 − (𝑣𝑣
𝑌−)2 + 𝐶1 (

𝑣𝑖,𝑗+1,𝑘 − 𝑣𝑖,𝑗,𝑘

∆𝑌𝑗+1
𝑢 −

𝑣𝑖,𝑗,𝑘 − 𝑣𝑖,𝑗−1,𝑘

∆𝑌𝑗
𝑢 )

+ (𝑝𝑖,𝑗+1,𝑘 − 𝑝𝑖,𝑗,𝑘)]

+
1

∆𝑍𝑘
𝑢 [𝐶2(𝑣𝑣

𝑍+𝑤𝑣
𝑍+ − 𝑣𝑣

𝑍−𝑤𝑣
𝑍−) + 𝐶3(𝑣𝑣

𝑍+𝑤𝑣
𝑍+ − 𝑣𝑣

𝑍−𝑤𝑣
𝑍−)

+ 𝐶4(𝑣𝑣
𝑍+ − 𝑣𝑣

𝑍−) + 𝐶5 (
𝑣𝑖,𝑗,𝑘+1 − 𝑣𝑖,𝑗,𝑘

∆𝑍𝑘
𝑤 −

𝑣𝑖,𝑗,𝑘 − 𝑣𝑖,𝑗,𝑘−1

∆𝑍𝑘−1
𝑤 )

+ 𝐶6 (
𝑣𝑢

𝑝+ − 𝑣𝑢
𝑚+

∆𝑋𝑖
𝑣 −

𝑣𝑢
𝑝− − 𝑣𝑢

𝑚−

∆𝑋𝑖
𝑣 )]                                                                  (A. 7) 

 

where, the following linear interpolates of the velocity components of the staggered grid are used: 

𝑢𝑣𝑖,𝑗,𝑘
𝑋− =

∇𝑌𝑗
𝑣.𝑢𝑖−1,𝑗+1,𝑘+∇𝑌𝑗+1

𝑢 𝑢𝑖−1,𝑗,𝑘

∆𝑌𝑗
𝑣  , and  𝑢𝑣𝑖,𝑗,𝑘

𝑋+ = 𝑢𝑣𝑖+1,𝑗,𝑘
𝑋−  

𝑣𝑣𝑖,𝑗,𝑘
𝑋− =

∇𝑋𝑖−1
𝑢 .𝑣𝑖,𝑗,𝑘+∇𝑋𝑖

𝑣𝑣𝑖−1,𝑗,𝑘

∆𝑋𝑖−1
𝑢  , and   𝑣𝑣𝑖,𝑗,𝑘

𝑋+ = 𝑣𝑣𝑖+1,𝑗,𝑘
𝑋−  

𝑣𝑣𝑖,𝑗,𝑘
𝑍− =

∇𝑍𝑘−1
𝑤 .𝑣𝑖,𝑗,𝑘+∇𝑍𝑘

𝑢𝑣𝑖,𝑗,𝑘−1

∆𝑍𝑘−1
𝑤  , and   𝑣𝑣𝑖,𝑗,𝑘

𝑍+ = 𝑣̆𝑣𝑖,𝑗,𝑘+1
𝑍−  

𝑣𝑣𝑖,𝑗,𝑘
𝑌− =

∇𝑌𝑗
𝑢.𝑣𝑖,𝑗,𝑘+∇𝑌𝑗

𝑣.𝑣𝑖,𝑗−1,𝑘

∆𝑌𝑗
𝑢  ,  and   𝑣𝑣𝑖,𝑗,𝑘

𝑌+ = 𝑣𝑣𝑖,𝑗+1,𝑘
𝑌−  

𝑣21 =
∇𝑋𝑖

𝑣 .𝑣𝑖−1,𝑗−1,𝑘+∇𝑋𝑖−1
𝑢  .𝑣𝑖,𝑗−1,𝑘

∆𝑋𝑖−1
𝑢  , and   𝑣22 =

∇𝑋𝑖
𝑣 .𝑣𝑖−1,𝑗,𝑘+∇𝑋𝑖−1

𝑢  .𝑣𝑖,𝑗,𝑘

∆𝑋𝑖−1
𝑢  

𝑣|𝑢𝑖,𝑗,𝑘
𝑚− =

∇𝑌𝑗
𝑣 .𝑣21+∇𝑌𝑗

𝑢 .𝑣22

∆𝑌𝑗
𝑢  ,  and   𝑣|𝑢𝑖−1,𝑗,𝑘

𝑝−
= 𝑣|𝑢𝑖,𝑗,𝑘

𝑚−    
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𝑣|𝑢𝑖,𝑗−1,𝑘
𝑚+ = 𝑣|𝑢𝑖,𝑗,𝑘

𝑚−  ,   and   𝑣|𝑢𝑖−1,𝑗−1,𝑘
𝑝+

= 𝑣|𝑢𝑖,𝑗,𝑘
𝑚−  

 

z-Momentum: 

 

        (A. 8) 

After spatial discretization: 

𝐺𝑤𝑖,𝑗,𝑘 =
1

∆𝑋𝑖
𝑣 [(𝑤𝑤

𝑋+𝑢𝑤
𝑋+ − 𝑤𝑤

𝑋−𝑢𝑤
𝑋−) + 𝐶1 (

𝑤𝑖+1,𝑗,𝑘 − 𝑤𝑖,𝑗,𝑘

∆𝑋𝑖
𝑢 −

𝑤𝑖,𝑗,𝑘 − 𝑤𝑖−1,𝑗,𝑘

∆𝑋𝑖−1
𝑢 )]

+
1

∆𝑌𝑗
𝑢 [(𝑤𝑤

𝑌+𝑣𝑤
𝑌+ − 𝑤𝑤

𝑌−𝑣𝑤
𝑌−) + 𝐶1 (

𝑤𝑖,𝑗+1,𝑘 − 𝑤𝑖,𝑗,𝑘

∆𝑌𝑗
𝑣 −

𝑤𝑖,𝑗,𝑘 − 𝑤𝑖,𝑗−1,𝑘

∆𝑌𝑗−1
𝑣 )]

+
1

∆𝑍𝑘
𝑤 [𝐶2(𝑤𝑤

𝑍+𝑢𝑤
𝑍+ − 𝑤𝑤

𝑍−𝑢𝑤
𝑍−)

+ 𝐶3[(𝑤𝑤
𝑍+)2 − (𝑤𝑤

𝑍−)2 + (𝑝𝑖,𝑗,𝑘+1 − 𝑝𝑖,𝑗,𝑘)] + 𝐶4(𝑤𝑤
𝑍+ − 𝑤𝑤

𝑍−)

+ 𝐶5 (
𝑤𝑖,𝑗,𝑘+1 − 𝑤𝑖,𝑗,𝑘

∆𝑍𝑘+1
𝑢 −

𝑤𝑖,𝑗,𝑘 − 𝑤𝑖,𝑗,𝑘−1

∆𝑍𝑘
𝑢 )

+ 𝐶6 (
𝑤𝑢

𝑝+ − 𝑤𝑢
𝑚+

∆𝑋𝑖
𝑣 −

𝑤𝑢
𝑝− − 𝑤𝑢

𝑚−

∆𝑋𝑖
𝑣 )]                                                               (A. 9) 

 

where, the following linear interpolates of the velocity components of the staggered grid are used: 

𝑤𝑤𝑖,𝑗,𝑘
𝑋− =

∇𝑋𝑖−1
𝑢 .𝑤𝑖,𝑗,𝑘+∇𝑋𝑖

𝑣𝑤𝑖−1,𝑗,𝑘

∆𝑋𝑖−1
𝑢  , and   𝑤𝑤𝑖,𝑗,𝑘

𝑋+ = 𝑤𝑤𝑖+1,𝑗,𝑘
𝑋−  

𝑢𝑤𝑖,𝑗,𝑘
𝑋− =

∇𝑍𝑘
𝑤.𝑢𝑖−1,𝑗,𝑘+1+∇𝑍𝑘+1

𝑢 .𝑢𝑖−1,𝑗,𝑘

∆𝑍𝑘
𝑤  , and   𝑢𝑤𝑖,𝑗,𝑘

𝑋+ = 𝑢𝑤𝑖+1,𝑗,𝑘
𝑋−  

𝑤𝑤𝑖,𝑗,𝑘
𝑍− =

∇𝑍𝑘
𝑢.𝑤𝑖,𝑗,𝑘+∇𝑍𝑘

𝑤.𝑤𝑖,𝑗,𝑘−1

∆𝑍𝑘
𝑢  , and   𝑤𝑤𝑖,𝑗,𝑘

𝑍+ = 𝑤𝑤𝑖,𝑗,𝑘+1
𝑍−  

𝑢𝑤𝑖,𝑗,𝑘
𝑍− = 𝑢𝑢𝑖,𝑗,𝑘

𝑋− ,   and   𝑢𝑤𝑖,𝑗,𝑘
𝑍+ = 𝑢𝑤𝑖,𝑗,𝑘+1

𝑍−  

𝑤𝑤𝑖,𝑗,𝑘
𝑌− =

∇𝑌𝑗−1
𝑣 .𝑤𝑖,𝑗,𝑘+∇𝑌𝑗

𝑢𝑤𝑖,𝑗−1,𝑘

∆𝑌𝑗−1
𝑣  , and   𝑤𝑤𝑖,𝑗,𝑘

𝑌+ = 𝑤𝑤𝑖,𝑗+1,𝑘
𝑌−  
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𝑣𝑤𝑖,𝑗,𝑘
𝑌− =

∇𝑍𝑘
𝑤.𝑣𝑖,𝑗−1,𝑘+1+∇𝑍𝑘+1

𝑢 𝑣𝑖,𝑗−1,𝑘

∆𝑍𝑘
𝑤  , and   𝑣𝑤𝑖,𝑗,𝑘

𝑌+ = 𝑣̆𝑤𝑖,𝑗+1,𝑘
𝑌−  

𝑤11 =
∇𝑋𝑖

𝑣 .𝑤𝑖−1,𝑗,𝑘−1+∇𝑋𝑖−1
𝑢  .𝑤𝑖,𝑗,𝑘−1

∆𝑋𝑖−1
𝑢  , and   𝑤12 =

∇𝑋𝑖
𝑣 .𝑤𝑖−1,𝑗,𝑘+∇𝑋𝑖−1

𝑢  .𝑤𝑖,𝑗,𝑘

∆𝑋𝑖−1
𝑢   

𝑤|𝑢𝑖,𝑗,𝑘
𝑚− =

∇𝑍𝑘
𝑤 .𝑤11𝑖,𝑗,𝑘+∇𝑍𝑘

𝑢 .𝑤12𝑖,𝑗,𝑘

∆𝑍𝑘
𝑢  , and   𝑤|𝑢𝑖,𝑗,𝑘−1

𝑚+ = 𝑤|𝑢𝑖,𝑗,𝑘
𝑚−  

𝑤|𝑢𝑖−1,𝑗,𝑘
𝑝−

= 𝑤|𝑢𝑖,𝑗,𝑘
𝑚−  ,   and   𝑤|𝑢𝑖−1,𝑗,𝑘−1

𝑝+
= 𝑤|𝑢𝑖,𝑗,𝑘

𝑚−  

Continuity equation: 

∇. 𝑉 = 𝐶7
𝜕𝑢

𝜕𝑋
+ 𝐶2

𝜕𝑢

𝜕𝑍
+
𝜕𝑣

𝜕𝑌
+ 𝐶8

𝜕𝑤

𝜕𝑋
+ 𝐶3

𝜕𝑤

𝜕𝑍
                                                                             (A. 10)  

Continuity equation can be spatially discretized as 

∇. 𝑉 =
1

∆𝑋𝑖
𝑣 (𝐶7(𝑢𝑖,𝑗,𝑘 − 𝑢𝑖−1,𝑗,𝑘) + 𝐶8 (𝑤|𝑢𝑖,𝑗,𝑘

𝑚+ − 𝑤|𝑢𝑖,𝑗,𝑘
𝑚− )) +

1

∆𝑌𝑗
𝑢 [(𝑣𝑖,𝑗,𝑘 − 𝑣𝑖,𝑗−1,𝑘)]

+
1

∆𝑧𝑘
𝑢 (𝐶2 (𝑢|𝑤𝑖,𝑗,𝑘

𝑚+ − 𝑢|𝑤𝑖,𝑗,𝑘
𝑚− ) + 𝐶3(𝑤𝑖,𝑗,𝑘 − 𝑤𝑖,𝑗,𝑘−1))                                   (A. 11) 

 

Spatial discretization of three successive sweeps: 

Theses sweeps can be spatially discretized as following 

Z-sweep: 

X-Momentum: 

∆𝑢̅̅̅̅ + 𝛼∆𝜏 (𝐶2
𝜕𝑢∆𝑢̅̅̅̅

𝜕𝑍
+ 𝐶3

𝜕𝑤∆𝑢̅̅̅̅

𝜕𝑍
+ 𝐶4

𝜕∆𝑢̅̅̅̅

𝜕𝑍
+ 𝐶5

𝜕2∆𝑢̅̅̅̅

𝜕𝑍2
+ 𝐶6

𝜕2∆𝑢̅̅̅̅

𝜕𝑋𝜕𝑍
+ 𝐶2

𝜕∆𝑝̅̅̅̅

𝜕𝑍
) = ∆𝜏𝑅𝑢      (A. 12) 
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∆𝑢̅̅̅̅ 𝑖,𝑗,𝑘−1.

{
 
 
 
 
 

 
 
 
 
 

𝛼∆𝜏

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 
 
 𝐶2 (−𝑢̆𝑢𝑖,𝑗,𝑘

𝑍− (
∇𝑍𝑘

𝑢

∆𝑍𝑘−1
𝑤 ))

−𝐶3 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑍− (

∇𝑍𝑘
𝑢

∆𝑍𝑘−1
𝑤 ))

−𝐶4 (
∇𝑍𝑘

𝑢

∆𝑍𝑘−1
𝑤 )

+𝐶5 (
1

∆𝑧𝑘−1
𝑤 )

]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

+ ∆𝑢̅̅̅̅ 𝑖,𝑗,𝑘.

{
 
 
 
 
 

 
 
 
 
 

1 +
𝛼∆𝜏

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 
 
 𝐶2.(𝑢̆𝑢𝑖,𝑗,𝑘

𝑍+ (
∇𝑍𝑘+1

𝑢

∆𝑍𝑘
𝑤 ) − 𝑢̆𝑢𝑖,𝑗,𝑘

𝑍− (
∇𝑍𝑘−1

𝑤

∆𝑍𝑘−1
𝑤 ))

+𝐶3 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑍+ (

∇𝑍𝑘+1
𝑢

∆𝑍𝑘
𝑤 ) − 𝑤̆𝑢𝑖,𝑗,𝑘

𝑍− (
∇𝑍𝑘−1

𝑤

∆𝑍𝑘−1
𝑤 ))

+𝐶4 ((
∇𝑍𝑘+1

𝑢

∆𝑍𝑘
𝑤 ) − (

∇𝑍𝑘−1
𝑤

∆𝑍𝑘−1
𝑤 ))

+𝐶5 (
−1

∆𝑧𝑘
𝑤 +

−1

∆𝑧𝑘−1
𝑤 )

]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

+ ∆𝑢̅̅̅̅ 𝑖,𝑗,𝑘+1.

{
 
 
 
 
 

 
 
 
 
 

𝛼∆𝜏

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 
 
 𝐶2.(𝑢̆𝑢𝑖,𝑗,𝑘

𝑍+ (
∇𝑍𝑘

𝑤

∆𝑍𝑘
𝑤))

+𝐶3 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑍+ (

∇𝑍𝑘
𝑤

∆𝑍𝑘
𝑤))

+𝐶4 (
∇𝑍𝑘

𝑤

∆𝑍𝑘
𝑤)

+𝐶5 (
1

∆𝑧𝑘
𝑤)

]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

 

= ∆𝜏𝑅𝑢 −
𝐶6
∆𝑋𝑖

𝑢

𝛼∆𝜏

∆𝑍𝑘
𝑢 (∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘

𝑝+ − ∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘
𝑚+ − ∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘

𝑝− + ∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘
𝑚− )                                             (A. 13) 
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Y-Momentum: 

∆𝑣̅̅̅̅ + 𝛼∆𝜏 (𝐶2
𝜕𝑢∆𝑣̅̅̅̅

𝜕𝑍
+ 𝐶3

𝜕𝑤∆𝑣̅̅̅̅

𝜕𝑍
+ 𝐶4

𝜕∆𝑣̅̅̅̅

𝜕𝑍
+ 𝐶5

𝜕2∆𝑣̅̅̅̅

𝜕𝑍2
+ 𝐶6

𝜕2∆𝑣̅̅̅̅

𝜕𝑋𝜕𝑍
) = ∆𝜏𝑅𝑣                         (A. 14) 

 

∆𝑣̅̅̅̅ 𝑖,𝑗,𝑘−1.

{
 
 
 
 
 

 
 
 
 
 

𝛼∆𝜏

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 
 
 𝐶2 (−𝑢𝑣𝑖,𝑗,𝑘

𝑍− . (
∇𝑍𝑘

𝑢

∆𝑍𝑘−1
𝑤 ))

−𝐶3 (𝑤𝑣𝑖,𝑗,𝑘
𝑍− . (

∇𝑍𝑘
𝑢

∆𝑍𝑘−1
𝑤 ))

−𝐶4 (
∇𝑍𝑘

𝑢

∆𝑍𝑘−1
𝑤 )

+𝐶5 (
1

∆𝑧𝑘−1
𝑤 )

]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

 

+∆𝑣̅̅̅̅ 𝑖,𝑗,𝑘.

{
 
 
 
 
 

 
 
 
 
 

1 +
𝛼∆𝜏

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 
 
 𝐶2 (𝑢𝑣𝑖,𝑗,𝑘

𝑍+ . (
∇𝑍𝑘+1

𝑢

∆𝑍𝑘
𝑤 ) − 𝑢𝑣𝑖,𝑗,𝑘

𝑍− . (
∇𝑍𝑘−1

𝑤

∆𝑍𝑘−1
𝑤 ))

+𝐶3 (𝑤𝑣𝑖,𝑗,𝑘
𝑍+ . (

∇𝑍𝑘+1
𝑢

∆𝑍𝑘
𝑤 ) − 𝑤𝑣𝑖,𝑗,𝑘

𝑍− . (
∇𝑍𝑘−1

𝑤

∆𝑍𝑘−1
𝑤 ))

+𝐶4 (
∇𝑍𝑘+1

𝑢

∆𝑍𝑘
𝑤 −

∇𝑍𝑘−1
𝑤

∆𝑍𝑘−1
𝑤 )

+𝐶5 (
−1

∆𝑧𝑘
𝑤 +

−1

∆𝑧𝑘−1
𝑤 )

]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

 

+∆𝑣̅̅̅̅ 𝑖,𝑗,𝑘+1

{
 
 
 
 
 

 
 
 
 
 

𝛼∆𝜏

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 
 
 𝐶2 (𝑢𝑣𝑖,𝑗,𝑘

𝑍+ . (
∇𝑍𝑘

𝑤

∆𝑍𝑘
𝑤))

+𝐶3 (𝑤𝑣𝑖,𝑗,𝑘
𝑍+ . (

∇𝑍𝑘
𝑤

∆𝑍𝑘
𝑤))

+𝐶4 (
∇𝑍𝑘

𝑤

∆𝑍𝑘
𝑤)

+𝐶5 (
1

∆𝑧𝑘
𝑤)

]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

 

= ∆𝜏𝑅𝑣 −
𝐶6
∆𝑋𝑖

𝑣

𝛼∆𝜏

∆𝑍𝑘
𝑢 (∆𝑣̅̅̅̅ |𝑢𝑖,𝑗,𝑘

𝑝+ − ∆𝑣̅̅̅̅ |𝑢𝑖,𝑗,𝑘
𝑚+ − ∆𝑣̅̅̅̅ |𝑢𝑖,𝑗,𝑘

𝑝− + ∆𝑣̅̅̅̅ |𝑢𝑖,𝑗,𝑘
𝑚− )                                                (A. 15) 
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Z-Momentum: 

∆𝑤̅̅ ̅̅ (1 + ∆𝜏) + 𝛼∆𝜏 (𝐶2
𝜕𝑢∆𝑤̅̅ ̅̅

𝜕𝑍
+ 𝐶3

𝜕𝑤∆𝑤̅̅ ̅̅

𝜕𝑍
+ 𝐶4

𝜕∆𝑤̅̅ ̅̅

𝜕𝑍
+ 𝐶5

𝜕2∆𝑤̅̅ ̅̅

𝜕𝑍2
+ 𝐶6

𝜕2∆𝑤̅̅ ̅̅

𝜕𝑋𝜕𝑍
+ 𝐶3

𝜕∆𝑝̅̅̅̅

𝜕𝑍
)

= ∆𝜏𝑅𝑤                                                                                                                        (A. 16) 

∆𝑤̅̅ ̅̅ 𝑖,𝑗,𝑘−1

{
 
 
 
 
 
 

 
 
 
 
 
 

𝛼∆𝜏

∆𝑍𝑘
𝑤

[
 
 
 
 
 
 
 
 
 
 
 
 
 𝐶2.(−𝑢𝑤𝑖,𝑗,𝑘

𝑍− (
∇𝑍𝑘

𝑤

∆𝑍𝑘
𝑢))

−𝐶3 (𝑤𝑤𝑖,𝑗,𝑘
𝑍− (

∇𝑍𝑘
𝑤

∆𝑍𝑘
𝑢))

−𝐶4 (
∇𝑍𝑘

𝑤

∆𝑍𝑘
𝑢)

+𝐶5 (
1

∆𝑧𝑘
𝑢)

−𝐶3𝑤. 𝐶3𝑝
∆𝝉

𝜹
(
1

∆𝑧𝑘
𝑢)

]
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 

 
 
 
 
 
 

 

+∆𝑤̅̅ ̅̅ 𝑖,𝑗,𝑘

{
 
 
 
 
 
 

 
 
 
 
 
 

1 + ∆𝜏 +
𝛼∆𝜏

∆𝑍𝑘
𝑤

[
 
 
 
 
 
 
 
 
 
 
 
 
 𝐶2 (𝑢𝑤𝑖,𝑗,𝑘

𝑍+ .
∇𝑍𝑘+1

𝑤

∆𝑍𝑘+1
𝑢 − 𝑢𝑤𝑖,𝑗,𝑘

𝑍− .
∇𝑍𝑘

𝑢

∆𝑍𝑘
𝑢)

+𝐶3 (𝑤𝑤𝑖,𝑗,𝑘
𝑍+ .

∇𝑍𝑘+1
𝑤

∆𝑍𝑘+1
𝑢 − 𝑤𝑤𝑖,𝑗,𝑘

𝑍− .
∇𝑍𝑘

𝑢

∆𝑍𝑘
𝑢)

+𝐶4 (
∇𝑍𝑘+1

𝑤

∆𝑍𝑘+1
𝑢 −

∇𝑍𝑘
𝑢

∆𝑍𝑘
𝑢)

+𝐶5 (
−1

∆𝑧𝑘+1
𝑢 +

−1

∆𝑧𝑘
𝑢)

−𝐶3𝑤. 𝐶3𝑝
∆𝝉

𝜹
(
−1

∆𝑧𝑘+1
𝑢 +

−1

∆𝑧𝑘
𝑢)

]
 
 
 
 
 
 
 
 
 
 
 
 
 

}
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+∆𝑤̅̅ ̅̅ 𝑖,𝑗,𝑘+1

{
 
 
 
 
 
 

 
 
 
 
 
 

𝛼∆𝜏

∆𝑍𝑘
𝑤

[
 
 
 
 
 
 
 
 
 
 
 
 
 𝐶2 (𝑢𝑤𝑖,𝑗,𝑘

𝑍+ .
∇𝑍𝑘+1

𝑢

∆𝑍𝑘+1
𝑢 )

+𝐶3 (𝑤𝑤𝑖,𝑗,𝑘
𝑍+ .

∇𝑍𝑘+1
𝑢

∆𝑍𝑘+1
𝑢 )

+𝐶4 (
∇𝑍𝑘+1

𝑢

∆𝑍𝑘+1
𝑢 )

+𝐶5 (
1

∆𝑧𝑘+1
𝑢 )

−𝐶3𝑤. 𝐶3𝑝
∆𝜏

𝛿
(

1

∆𝑧𝑘+1
𝑢 )

]
 
 
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 
 

 
 
 
 
 
 

 

= ∆𝜏𝑅𝑤 − 𝐶6𝛼
∆𝜏

∆𝑍𝑘
𝑤 (

∆𝑤̅̅ ̅̅ |𝑢𝑖,𝑗,𝑘
𝑝+ − ∆𝑤̅̅ ̅̅ |𝑢𝑖,𝑗,𝑘

𝑚+

∆𝑋𝑖
𝑣 −

∆𝑤̅̅ ̅̅ |𝑢𝑖,𝑗,𝑘
𝑝− − ∆𝑤̅̅ ̅̅ |𝑢𝑖,𝑗,𝑘

𝑚−

∆𝑋𝑖
𝑣 )

+ 𝐶3𝑤𝛼
∆𝜏

∆𝑍𝑘
𝑤

∆𝜏

𝛿
(∇. 𝑉𝑖,𝑗,𝑘+1 − ∇. 𝑉𝑖,𝑗,𝑘)

+ 𝐶3𝑤. 𝐶2𝑝𝛼
∆𝜏

∆𝑍𝑘
𝑤

∆𝝉

𝜹
[((

∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘+1
𝑚+ − ∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘+1

𝑚−

∆𝑧𝑘+1
𝑢 )

− (
∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘

𝑚+ − ∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘
𝑚−

∆𝑧𝑘
𝑢 ))]                                                                                      (A. 17) 

Continuity equation: 

∆𝝉

𝜹
(𝐶2

𝜕∆𝑢̅̅̅̅

𝜕𝑍
+ 𝐶3

𝜕∆𝑤̅̅ ̅̅

𝜕𝑍
) + ∆𝑝̅̅̅̅ = ∆𝜏𝑅𝑝                                                                                             (A. 18) 

∆𝑝̅̅̅̅ 𝑖,𝑗,𝑘 = −
∆𝜏

𝛿
∇. 𝑉𝑖,𝑗,𝑘 −

∆𝝉

𝜹
[𝐶2 (

∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘
𝑚+ − ∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘

𝑚−

∆𝑧𝑘
𝑢 ) + 𝐶3 (

∆𝑤̅̅ ̅̅ 𝑖,𝑗,𝑘 − ∆𝑤̅̅ ̅̅ 𝑖,𝑗,𝑘−1

∆𝑧𝑘
𝑢 )]           (A. 19) 
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X-sweep: 

X-Momentum: 

∆𝑢∗(1 + ∆𝜏) + 𝛼∆𝜏 (𝐶9
𝜕∆𝑢∗

𝜕𝑋
+ 𝐶7

𝜕𝑢∆𝑢∗

𝜕𝑋
+ 𝐶8

𝜕𝑤∆𝑢∗

𝜕𝑋
+ 𝐶1

𝜕2∆𝑢∗

𝜕𝑋2
+ 𝐶7

𝜕∆𝑝∗

𝜕𝑋
) = ∆𝑢̅̅̅̅     (A. 20) 

∆𝑢∗𝑖−1,𝑗,𝑘.

{
 
 
 
 

 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑢

[
 
 
 
 
 
 
 
 −𝐶7 (𝑢̆𝑢𝑖,𝑗,𝑘

𝑋− (
∇𝑋𝑖

𝑢

∆𝑋𝑖
𝑣))

−𝐶8 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑋− (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑣))

+𝐶1 (
1

∆𝑥𝑖
𝑣)

−
∆𝜏

𝛿
𝐶7𝑢𝐶7𝑝 (

1

∆𝑥𝑖
𝑣)]
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

  

+∆𝑢∗𝑖+1,𝑗,𝑘.

{
 
 
 
 
 

 
 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑢

[
 
 
 
 
 
 
 
 
 
 +𝐶7 (𝑢̆𝑢𝑖,𝑗,𝑘

𝑋+ . (
∇𝑋𝑖+1

𝑣

∆𝑋𝑖+1
𝑣 ))

+𝐶8 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑋+ (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖+1
𝑣 ))

+𝐶1 (
1

∆𝑥𝑖+1
𝑣 )

−
∆𝜏

𝛿
𝐶7𝑢𝐶7𝑝 (

1

∆𝑥𝑖+1
𝑣 )

]
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

 

+∆𝑢∗𝑖,𝑗,𝑘.

{
 
 
 
 
 

 
 
 
 
 

1 + ∆𝜏 +
𝛼∆𝜏

∆𝑋𝑖
𝑢

[
 
 
 
 
 
 
 
 
 
 +𝐶7 (𝑢̆𝑢𝑖,𝑗,𝑘

𝑋+ . (
∇𝑋𝑖+1

𝑢

∆𝑋𝑖+1
𝑣 ) − 𝑢̆𝑢𝑖,𝑗,𝑘

𝑋− (
∇𝑋𝑖

𝑣

∆𝑋𝑖
𝑣))

+𝐶8 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑋+ (

∇𝑋𝑖+1
𝑢

∆𝑋𝑖+1
𝑣 ) − 𝑤̆𝑢𝑖,𝑗,𝑘

𝑋− (
∇𝑋𝑖

𝑣

∆𝑋𝑖
𝑣))

+𝐶1 (
−1

∆𝑥𝑖+1
𝑣 +

−1

∆𝑥𝑖
𝑣)

−
∆𝜏

𝛿
𝐶7𝑢𝐶7𝑝 (

−1

∆𝑥𝑖+1
𝑣 +

−1

∆𝑥𝑖
𝑣) ]

 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

 

= ∆𝑢̅̅̅̅ −𝐶7𝑢𝛼
∆𝜏

∆𝑋𝑖
𝑢 (∆𝑝̅̅̅̅ 𝑖+1,𝑗,𝑘 − ∆𝑝̅̅̅̅ 𝑖,𝑗,𝑘)

+ 𝛼
∆𝜏

∆𝑋𝑖
𝑢

∆𝜏

𝛿
𝐶7𝑢𝐶8𝑝 (

∆𝑤∗|𝑢𝑖+1,𝑗,𝑘
𝑚+ − ∆𝑤∗|𝑢𝑖+1,𝑗,𝑘

𝑚−

∆𝑋𝑖+1
𝑣 −

∆𝑤∗|𝑢𝑖,𝑗,𝑘
𝑚+ − ∆𝑤∗|𝑢𝑖,𝑗,𝑘

𝑚−

∆𝑋𝑖
𝑣 )  (A. 21) 
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Y-Momentum: 

∆𝑣∗ + 𝛼∆𝜏 (𝐶9
𝜕∆𝑣∗

𝜕𝑋
+ 𝐶7

𝜕𝑢∆𝑣∗

𝜕𝑋
+ 𝐶8

𝜕𝑤∆𝑣∗

𝜕𝑋
+ 𝐶1

𝜕2∆𝑣∗

𝜕𝑋2
) = ∆𝑣̅̅̅̅                                          (A. 22) 

∆𝑣∗𝑖−1,𝑗,𝑘.

{
 
 
 
 

 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 −𝐶9 (

∇𝑋𝑖
𝑣

∆𝑋𝑖−1
𝑢 )

−𝐶7 (𝑢𝑣𝑖+1,𝑗,𝑘
𝑋− (

∇𝑋𝑖
𝑣

∆𝑋𝑖−1
𝑢 ))

−𝐶8 (𝑤𝑣𝑖+1,𝑗,𝑘
𝑋− (

∇𝑋𝑖
𝑣

∆𝑋𝑖−1
𝑢 ))

+𝐶1 (
1

∆𝑥𝑖−1
𝑢 )

]
 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

  

+∆𝑣∗𝑖,𝑗,𝑘.

{
 
 
 
 
 

 
 
 
 
 

1 +
𝛼∆𝜏

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 
 
 𝐶9 (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖
𝑢 −

∇𝑋𝑖−1
𝑢

∆𝑋𝑖−1
𝑢 )

+𝐶7 (𝑢𝑣𝑖+1,𝑗,𝑘
𝑋+ (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖
𝑢 ) − 𝑢𝑣𝑖+1,𝑗,𝑘

𝑋− (
∇𝑋𝑖−1

𝑢

∆𝑋𝑖−1
𝑢 ))

+𝐶8 (𝑤𝑣𝑖+1,𝑗,𝑘
𝑋+ (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖
𝑢 ) − 𝑤𝑣𝑖+1,𝑗,𝑘

𝑋− (
∇𝑋𝑖−1

𝑢

∆𝑋𝑖−1
𝑢 ))

+𝐶1 (
−1

∆𝑥𝑖
𝑢 +

−1

∆𝑥𝑖−1
𝑢 )

]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

 

+∆𝑣∗𝑖+1,𝑗,𝑘.

{
 
 
 
 
 

 
 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 
 
 𝐶9 (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑢)

+𝐶7 (𝑢𝑣𝑖+1,𝑗,𝑘
𝑋+ (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑢))

+𝐶8 (𝑤𝑣𝑖+1,𝑗,𝑘
𝑋+ (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑢))

+𝐶1 (
1

∆𝑥𝑖
𝑢)

]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

= ∆𝑣̅̅̅̅ 𝑖,𝑗,𝑘                                                              (A. 23) 
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Z-Momentum: 

∆𝑤∗ + 𝛼∆𝜏 (𝐶9
𝜕∆𝑤∗

𝜕𝑋
+ 𝐶7

𝜕𝑢∆𝑤∗

𝜕𝑋
+ 𝐶8

𝜕𝑤∆𝑤∗

𝜕𝑋
+ 𝐶1

𝜕2∆𝑤∗

𝜕𝑋2
) = ∆𝑤̅̅ ̅̅                                     (A. 24) 

∆𝑤∗
𝑖−1,𝑗,𝑘.

{
 
 
 
 

 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 −𝐶9 (

∇𝑋𝑖
𝑣

∆𝑋𝑖−1
𝑢 )

−𝐶7 (𝑢𝑤𝑖,𝑗,𝑘
𝑋− . (

∇𝑋𝑖
𝑣

∆𝑋𝑖−1
𝑢 ))

−𝐶8 (𝑤𝑤𝑖,𝑗,𝑘
𝑋− . (

∇𝑋𝑖
𝑣

∆𝑋𝑖−1
𝑢 ))

+𝐶1 (
1

∆𝑥𝑖−1
𝑢 )

]
 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

  

+∆𝑤∗
𝑖,𝑗,𝑘.

{
 
 
 
 
 

 
 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 
 
 1 + 𝐶9 (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖
𝑢 −

∇𝑋𝑖−1
𝑢

∆𝑋𝑖−1
𝑢 )

+𝐶7 (𝑢𝑤𝑖,𝑗,𝑘
𝑋+ . (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖
𝑢 ) − 𝑢𝑤𝑖,𝑗,𝑘

𝑋− . (
∇𝑋𝑖−1

𝑢

∆𝑋𝑖−1
𝑢 ))

+𝐶8 (𝑤𝑤𝑖,𝑗,𝑘
𝑋+ . (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖
𝑢 ) − 𝑤𝑤𝑖,𝑗,𝑘

𝑋− . (
∇𝑋𝑖−1

𝑢

∆𝑋𝑖−1
𝑢 ))

+𝐶1 (
−1

∆𝑥𝑖
𝑢 +

−1

∆𝑥𝑖−1
𝑢 )

]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

 

+∆𝑤∗
𝑖+1,𝑗,𝑘

{
 
 
 
 
 

 
 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 
 
 𝐶9 (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑢)

+𝐶7 (𝑢𝑤𝑖,𝑗,𝑘
𝑋+ . (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑢))

+𝐶8 (𝑤𝑤𝑖,𝑗,𝑘
𝑋+ . (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑢))

+𝐶1 (
1

∆𝑥𝑖
𝑢)

]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

= ∆𝑤̅̅ ̅̅ 𝑖,𝑗,𝑘                                                                (A. 25) 
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Continuity equation: 

∆𝜏

𝛿
(𝐶7

𝜕∆𝑢∗

𝜕𝑋
+ 𝐶8

𝜕∆𝑤∗

𝜕𝑋
) + ∆𝑝∗ = ∆𝑝̅̅̅̅                                                                                              (A. 26) 

∆𝑝∗
𝑖,𝑗,𝑘

= ∆𝑝̅̅̅̅ 𝑖,𝑗,𝑘 −
∆𝜏

𝛿
(𝐶7

∆𝑢∗𝑖,𝑗,𝑘 − ∆𝑢
∗
𝑖−1,𝑗,𝑘

∆𝑋𝑖
𝑣 + 𝐶8

∆𝑤∗|𝑢𝑖,𝑗,𝑘
𝑚+ − ∆𝑤∗|𝑢𝑖,𝑗,𝑘

𝑚−

∆𝑋𝑖
𝑣 )                       (A. 27) 

Y-sweep: 

X-Momentum: 

∆𝑢 + 𝛼∆𝜏 (
𝜕𝑣∆𝑢

𝜕𝑌
+ 𝐶1

𝜕2∆𝑢

𝜕𝑌2
) = ∆𝑢∗                                                                                              (A. 28) 

 

∆𝑢𝑖,𝑗−1,𝑘.

{
 
 

 
 
𝛼∆𝜏

∆𝑌𝑗
𝑢

[
 
 
 
 −𝑣̆𝑢𝑖,𝑗,𝑘

𝑌− (
∇𝑌𝑗

𝑢

∆𝑌𝑗−1
𝑣 )

+𝐶1 (
1

∆𝑌𝑗−1
𝑣 )

]
 
 
 
 

}
 
 

 
 

+ ∆𝑢𝑖,𝑗,𝑘.

{
 
 

 
 

1 +
𝛼∆𝜏

∆𝑌𝑗
𝑢

[
 
 
 
 𝑣̆𝑢𝑖,𝑗,𝑘
𝑌+ . (

∇𝑌𝑗+1
𝑢

∆𝑌𝑗
𝑣 ) − 𝑣̆𝑢𝑖,𝑗,𝑘

𝑌− (
∇𝑌𝑗−1

𝑣

∆𝑌𝑗−1
𝑣 )

+𝐶1 (
−1

∆𝑌𝑗
𝑣 +

−1

∆𝑌𝑗−1
𝑣 )

]
 
 
 
 

}
 
 

 
 

+ ∆𝑢𝑖,𝑗+1,𝑘.

{
 
 

 
 
𝛼∆𝜏

∆𝑌𝑗
𝑢

[
 
 
 
 𝑣̆𝑢𝑖,𝑗,𝑘
𝑌+ . (

∇𝑌𝑗
𝑣

∆𝑌𝑗
𝑣)

+𝐶1 (
1

∆𝑌𝑗
𝑣)
]
 
 
 
 

}
 
 

 
 

= ∆𝑢∗                                                           (A. 29) 

Y-Momentum: 

∆𝑣(1 + ∆𝜏) + 𝛼∆𝜏 (
𝜕𝑣∆𝑣

𝜕𝑌
+ 𝐶10

𝜕2∆𝑣

𝜕𝑌2
+
𝜕∆𝑝

𝜕𝑌
) = ∆𝑣∗                                                               (A. 30) 

∆𝑣𝑖,𝑗−1,𝑘. {
𝛼∆𝜏

∆𝑌𝑗
𝑣 [

−𝑣̆𝑣𝑖,𝑗,𝑘
𝑌− . (

∇𝑌𝑗
𝑣

∆𝑌𝑗
𝑢)

+𝐶1 (
1

∆𝑌𝑗
𝑢) −

∆𝜏

∆𝑌𝑗
𝑢

]} + ∆𝑣𝑖,𝑗,𝑘.

{
 
 

 
 

1 + ∆𝜏

 

+
𝛼∆𝜏

∆𝑌𝑗
𝑣

[
 
 
 
 
 𝑣̆𝑣𝑖,𝑗,𝑘
𝑌+ . (

∇𝑌𝑗+1
𝑣

∆𝑌𝑗+1
𝑢 ) − 𝑣̆𝑣𝑖,𝑗,𝑘

𝑌− . (
∇𝑌𝑗

𝑢

∆𝑌𝑗
𝑢)

+𝐶1 (
−1

∆𝑌𝑗+1
𝑢 +

−1

∆𝑌𝑗
𝑢)

+
∆𝜏

∆𝑌𝑗+1
𝑢 +

∆𝜏

∆𝑌𝑗
𝑢 ]

 
 
 
 
 

}
 
 

 
 

+

∆𝑣𝑖,𝑗+1,𝑘. {
𝛼∆𝜏

∆𝑌𝑗
𝑣 [

𝑣̆𝑣𝑖,𝑗,𝑘
𝑌+ . (

∇𝑌𝑗+1
𝑢

∆𝑌𝑗+1
𝑢 )

+𝐶1 (
1

∆𝑌𝑗+1
𝑢 ) −

∆𝜏

∆𝑌𝑗+1
𝑢

]} = ∆𝑣∗𝑖,𝑗,𝑘 − 𝛼
∆𝜏

∆𝑌𝑗
𝑣 (∆𝑝

∗
𝑖,𝑗+1,𝑘

− ∆𝑝∗
𝑖,𝑗,𝑘

)                  (A. 31)  
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Z-Momentum: 

∆𝑤 + 𝛼∆𝜏 (
𝜕𝑣∆𝑤

𝜕𝑌
+ 𝐶1

𝜕2∆𝑤

𝜕𝑌2
) = ∆𝑤∗                                                                                         (A. 32) 

 

∆𝑤𝑖,𝑗−1,𝑘.
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𝑣 )

]
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+ ∆𝑤𝑖,𝑗,𝑘.

{
 
 

 
 

 

1 +
𝛼∆𝜏

∆𝑌𝑗
𝑢

[
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∆𝑌𝑗
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𝑣 )

+𝐶1 (
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∆𝑌𝑗
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𝑣 )

 ]
 
 
 
 

}
 
 

 
 

+ ∆𝑤𝑖,𝑗+1,𝑘 .

{
 
 

 
 
𝛼∆𝜏

∆𝑌𝑗
𝑢

[
 
 
 
 𝑣̆𝑤𝑖,𝑗,𝑘
𝑌+ . (

∇𝑌𝑗
𝑣

∆𝑌𝑗
𝑣)

+𝐶1 (
1

∆𝑌𝑗
𝑣)

]
 
 
 
 

}
 
 

 
 

= ∆𝑤∗
𝑖,𝑗,𝑘                                                  (A. 33) 

Continuity equation: 

∆𝜏
𝜕∆𝑣

𝜕𝑌
+ ∆𝑝 = ∆𝑝∗                                                                                                                              (A. 34) 

∆𝑝𝑖,𝑗,𝑘 = ∆𝑝
∗
𝑖,𝑗,𝑘

−
∆𝜏

∆𝑌𝑗
𝑢 (∆𝑣𝑖,𝑗,𝑘 − ∆𝑣𝑖,𝑗−1,𝑘)                                                                                (A. 35) 
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Appendix B  

Steady and unsteady flows past airfoils 

The Navier-Stokes equations can be expressed in the computational domain by using 

geometrical transformation 
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Time-dependent coordinate transformation coefficients 

The time-dependent coordinate transformation coefficients for each domain can be defined as 
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Domain 3 and 4 
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Alternating-direction implicit scheme 

Continuity and momentum equations can be arranged in the global matrix form: 
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and, 
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with, 
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Using ADI scheme results in two successive sweeps in y and x directions: 

  StDtI y  *     * xDtI 
  

(B.27) 

Spatial discretization for momentums 

 

Spatial discretizations are made by using central differences: 
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The central and backward  difference operators, which denotes the difference between the 

primary grid points and the secondary grid points are defined as: 
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The following linear interpolates of the velocity components of the staggered mesh are used : 
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X-Momentum:
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Y-Momentum: 
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Spatial discretization of two successive sweeps 

Y-sweep: 

X-Momentum: 
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Y-Momentum: 
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Continuity equation: 
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X-sweep: 

X-Momentum: 
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Y-Momentum: 
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Continuity equation: 
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Appendix C  

Steady viscous flows past wings 

 The Navier-Stokes and continuity equations for the incompressible steady flow past the wing 

can be expressed in nondimensional conservation form as 

0V ),(G p ,    0

















wvu
V ,    (C.1)  

𝐺𝑢(𝑢, 𝑣, 𝑤, 𝑝) = 𝐶7
𝜕𝑢𝑢

𝜕𝑋
+ 𝐶2

𝜕𝑢𝑢

𝜕𝑍
+
𝜕𝑣𝑢

𝜕𝑌
+ 𝐶8

𝜕𝑤𝑢

𝜕𝑋
+ 𝐶3

𝜕𝑤𝑢

𝜕𝑍
+ 𝐶7

𝜕𝑝

𝜕𝑋
+ 𝐶2

𝜕𝑝

𝜕𝑍
+ 𝐶1

𝜕2𝑢

𝜕𝑋2

+ 𝐶4
𝜕𝑢

𝜕𝑍
+ 𝐶10

𝜕2𝑢

𝜕𝑌2
+ 𝐶5

𝜕2𝑢

𝜕𝑍2
+ 𝐶9

𝜕𝑢

𝜕𝑋
+𝐶6

𝜕2𝑢

𝜕𝑋𝜕𝑍
                                                (C. 2)  

𝐺𝑣(𝑢, 𝑣, 𝑤, 𝑝) = 𝐶7
𝜕𝑢𝑣

𝜕𝑋
+ 𝐶2

𝜕𝑢𝑣

𝜕𝑍
+
𝜕𝑣𝑣

𝜕𝑌
+ 𝐶8

𝜕𝑤𝑣

𝜕𝑋
+ 𝐶3

𝜕𝑤𝑣

𝜕𝑍
+
𝜕𝑝

𝜕𝑌
+ 𝐶1

𝜕2𝑣

𝜕𝑋2
+ 𝐶4

𝜕𝑣

𝜕𝑍

+ 𝐶10
𝜕2𝑣

𝜕𝑌2
+ 𝐶5

𝜕2𝑣

𝜕𝑍2
+ 𝐶9

𝜕𝑣

𝜕𝑋
+𝐶6

𝜕2𝑣

𝜕𝑋𝜕𝑍
                                                                (C. 3) 

𝐺𝑤(𝑢, 𝑣, 𝑤, 𝑝) = 𝐶7
𝜕𝑢𝑤

𝜕𝑋
+ 𝐶2

𝜕𝑢𝑤

𝜕𝑍
+
𝜕𝑣𝑤

𝜕𝑌
+ 𝐶8

𝜕𝑤𝑤

𝜕𝑋
+ 𝐶3

𝜕𝑤𝑤

𝜕𝑍
+ 𝐶8

𝜕𝑝

𝜕𝑋
+ 𝐶3

𝜕𝑝

𝜕𝑍
+ 𝐶1

𝜕2𝑤

𝜕𝑋2
+ 𝐶4

𝜕𝑤

𝜕𝑍

+ 𝐶10
𝜕2𝑤

𝜕𝑌2
+ 𝐶5

𝜕2𝑤

𝜕𝑍2
+ 𝐶9

𝜕𝑤

𝜕𝑋
+𝐶6

𝜕2𝑤

𝜕𝑋𝜕𝑍
                                                                     (C. 4) 

𝐶7
𝜕𝑢

𝜕𝑋
+ 𝐶2

𝜕𝑢

𝜕𝑍
+
𝜕𝑣

𝜕𝑌
 + 𝐶8

𝜕𝑤

𝜕𝑋
+ 𝐶3

𝜕𝑤

𝜕𝑍
= 0                                                                                     (C. 5) 

Geometrical coordinate transformation coefficients: 

 Geometrical coordinate transformation coefficients for each domain can be defined as 

Domain 1, 4, 5 and 6 

𝐶1 = −
1

Re
[(
𝜕𝑋

𝜕𝜉
)
2

+ (
𝜕𝑋

𝜕𝜂
)
2

+ (
𝜕𝑋

𝜕𝜁
)
2

]                                                                                              (C. 6) 

𝐶2 = 0                                                                                                                                                         (C. 7) 

 𝐶3 =
𝜕𝑍

𝜕𝜁
                                                                                                                                                    (C. 8) 

𝐶4 = −
1

Re
[
𝜕2𝑍

𝜕𝜂2
]                                                                                                                                      (C. 9) 
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𝐶5 = −
1

Re
[(
𝜕𝑍

𝜕𝜂
)
2

+ (
𝜕𝑍

𝜕𝜁
)
2

]                                                                                                              (C. 10) 

𝐶6 = −
2

Re
(
𝜕𝑍

𝜕𝜂

𝜕𝑋

𝜕𝜂
+
𝜕𝑍

𝜕𝜁

𝜕𝑋

𝜕𝜁
)                                                                                                             (C. 11) 

𝐶7 =
𝜕𝑋

𝜕𝜉
                                                                                                                                                   (C. 12) 

 𝐶8 =
𝜕𝑋

𝜕𝜁
                                                                                                                                                  (C. 13) 

𝐶9 = −
1

Re
[
𝜕2𝑋

𝜕𝜂2
+
𝜕2𝑋

𝜕𝜁2
]                                                                                                                      (C. 14) 

𝐶10 = −
1

Re
                                                                                                                                             (C. 15) 

Domain 2 and 3 

𝐶1 = −
1

Re
[(
𝜕𝑋

𝜕𝑥
)
2

(
𝜕𝑥

𝜕𝜉
)
2

+ (
𝜕𝑋

𝜕𝜂
)
2

+ (
𝜕𝑋

𝜕𝑥
)
2

(
𝜕𝑥

𝜕𝜁
)
2

]                                                                   (C. 16) 

𝐶2 = [
𝜕𝑍

𝜕𝑧

𝜕𝑧

𝜕𝜉
+
𝜕𝑍

𝜕𝑥

𝜕𝑥

𝜕𝜉
+

𝜕𝑍

𝜕𝑒(𝑥̅)

𝜕𝑒(𝑥̅)

𝜕𝑥̅

𝜕𝑥̅

𝜕𝑥

𝜕𝑥

𝜕𝜉
]                                                                                 (C. 17) 

 𝐶3 = [
𝜕𝑍

𝜕𝑧

𝜕𝑧

𝜕𝜁
+
𝜕𝑍

𝜕𝑥

𝜕𝑥

𝜕𝜁
+

𝜕𝑍

𝜕𝑒(𝑥̅)

𝜕𝑒(𝑥̅)

𝜕𝑥̅

𝜕𝑥̅

𝜕𝑥

𝜕𝑥

𝜕𝜁
]                                                                                (C. 18) 

𝐶4 = −
1

Re
[(
𝜕2𝑍

𝜕𝑥2
+ 2(

𝜕2𝑍

𝜕𝑥𝜕𝑒(𝑥̅)

𝜕𝑒(𝑥)

𝜕𝑥̅
) +

𝜕2𝑍

𝜕𝑒(𝑥)2
(
𝜕𝑒(𝑥)

𝜕𝑥
)

2

+
𝜕𝑍

𝜕𝑒(𝑥̅)

𝜕2𝑒(𝑥̅)

𝜕𝑥̅2
)(
𝜕𝑥

𝜕𝜉
)
2

+ (2
𝜕2𝑍

𝜕𝑥𝜕𝑧
+ 2(

𝜕2𝑍

𝜕𝑧𝜕𝑒(𝑥̅)

𝜕𝑒(𝑥̅)

𝜕𝑥̅
)) (

𝜕𝑧

𝜕𝜉

𝜕𝑥

𝜕𝜉
)

+ (
𝜕2𝑍

𝜕𝑥2
+ 2(

𝜕2𝑍

𝜕𝑥𝜕𝑒(𝑥̅)

𝜕𝑒(𝑥)

𝜕𝑥̅
) +

𝜕2𝑍

𝜕𝑒(𝑥)2
(
𝜕𝑒(𝑥)

𝜕𝑥
)

2

+
𝜕𝑍

𝜕𝑒(𝑥̅)

𝜕2𝑒(𝑥̅)

𝜕𝑥̅2
)(
𝜕𝑥

𝜕𝜁
)
2

+ (2
𝜕2𝑍

𝜕𝑥𝜕𝑧
+ 2(

𝜕2𝑍

𝜕𝑧𝜕𝑒(𝑥̅)

𝜕𝑒(𝑥̅)

𝜕𝑥̅
)) (

𝜕𝑧

𝜕𝜁

𝜕𝑥

𝜕𝜁
)]                                                     (C. 19) 
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𝐶5 = −
1

Re
[(
𝜕𝑍

𝜕𝑧
)
2

(
𝜕𝑧

𝜕𝜉
)
2

+ 2(
𝜕𝑍

𝜕𝑥

𝜕𝑥

𝜕𝜉

𝜕𝑍

𝜕𝑧

𝜕𝑧

𝜕𝜉
) + 2 (

𝜕𝑍

𝜕𝑒(𝑥̅)

𝜕𝑒(𝑥̅)

𝜕𝑥̅

𝜕𝑥̅

𝜕𝑥

𝜕𝑥

𝜕𝜉

𝜕𝑍

𝜕𝑧

𝜕𝑧

𝜕𝜉
) + (

𝜕𝑍

𝜕𝑥
)
2

(
𝜕𝑥

𝜕𝜉
)
2

+ 2(
𝜕𝑍

𝜕𝑒(𝑥̅)

𝜕𝑒(𝑥̅)

𝜕𝑥̅

𝜕𝑥̅

𝜕𝑥

𝜕𝑍

𝜕𝑥
(
𝜕𝑥

𝜕𝜉
)
2

) + (
𝜕𝑍

𝜕𝑒(𝑥̅)
)
2

(
𝜕𝑒(𝑥̅)

𝜕𝑋
)
2

(
𝜕𝑥̅

𝜕𝑥
)
2

(
𝜕𝑥

𝜕𝜉
)
2

+ (
𝜕𝑍

𝜕𝑧
)
2

(
𝜕𝑧

𝜕𝜁
)
2

+ 2(
𝜕𝑍

𝜕𝑥

𝜕𝑥

𝜕𝜁

𝜕𝑍

𝜕𝑧

𝜕𝑧

𝜕𝜁
) + 2 (

𝜕𝑍

𝜕𝑒(𝑥̅)

𝜕𝑒(𝑥̅)

𝜕𝑥̅

𝜕𝑥̅

𝜕𝑥

𝜕𝑥

𝜕𝜁

𝜕𝑍

𝜕𝑧

𝜕𝑧

𝜕𝜁
)

+ (
𝜕𝑍

𝜕𝑥
)
2

(
𝜕𝑥

𝜕𝜁
)
2

+ 2(
𝜕𝑍

𝜕𝑒(𝑥̅)

𝜕𝑒(𝑥̅)

𝜕𝑥̅

𝜕𝑥̅

𝜕𝑥

𝜕𝑍

𝜕𝑥
(
𝜕𝑥

𝜕𝜁
)
2

)

+ (
𝜕𝑍

𝜕𝑒(𝑥̅)
)
2

(
𝜕𝑒(𝑥̅)

𝜕𝑋
)
2

(
𝜕𝑥̅

𝜕𝑥
)
2

(
𝜕𝑥

𝜕𝜁
)
2

]                                                                    (C. 20) 

𝐶6 = −
1

Re
[2 (

𝜕𝑍

𝜕𝑧

𝜕𝑧

𝜕𝜉

𝜕𝑋

𝜕𝑥

𝜕𝑥

𝜕𝜉
) + 2(

𝜕𝑍

𝜕𝑥
(
𝜕𝑥

𝜕𝜉
)
2 𝜕𝑋

𝜕𝑥
) + 2(

𝜕𝑍

𝜕𝑒(𝑥̅)

𝜕𝑒(𝑥)

𝜕𝑥

𝜕𝑥̅

𝜕𝑥

𝜕𝑋

𝜕𝑥
(
𝜕𝑥

𝜕𝜉
)
2

)

+ 2(
𝜕𝑋

𝜕𝑥
(
𝜕𝑥

𝜕𝜉
)
2 𝜕𝑍

𝜕𝑥
) + 2 (

𝜕𝑍

𝜕𝑒(𝑥)

𝜕𝑒(𝑥)

𝜕𝑥

𝜕𝑥

𝜕𝜂

𝜕𝑋

𝜕𝜂
) + 2 (

𝜕𝑍

𝜕𝑧

𝜕𝑧

𝜕𝜁

𝜕𝑋

𝜕𝑥

𝜕𝑥

𝜕𝜁
)

+ 2(
𝜕𝑍

𝜕𝑒(𝑥)

𝜕𝑒(𝑥)

𝜕𝑥
(
𝜕𝑋

𝜕𝑥
)
2

(
𝜕𝑥

𝜕𝜁
)
2

)]                                                                         (C. 21) 

𝐶7 =
𝜕𝑋

𝜕𝑥

𝜕𝑥

𝜕𝜉
                                                                                                                                             (C. 22) 

 𝐶8 =
𝜕𝑋

𝜕𝑥

𝜕𝑥

𝜕𝜁
                                                                                                                                            (C. 23) 

𝐶9 = −
4

Re
[
𝜕2𝑋

𝜕𝜂2
]                                                                                                                                   (C. 24) 

𝐶10 = −
1

Re
                                                                                                                                             (C. 25) 

Alternating-Direction Implicit (ADI) scheme: 

Continuity and momentum equations can be arranged in the global matrix form: 

   RfDDDI   ZYX        (C.26) 

where, 
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 ,     (C.27)  

in which the differential operators M , N , and L  are defined as  

   
2

2
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X

C
X

w
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X
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 ,       (C.28)  

 
2

2
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Y

C
Y

v
N







 




 ,         (C.29)  

   
ZX

C
Z

C
Z

C
Z

w
C

Z

u
CL



















  2

62

2

5432 





 ,     (C.30)  

Using ADI scheme results in three successive sweeps in Z, Y and X directions: 

 [𝐈 + 𝛼∆𝜏𝐃𝑍]∆𝐟
∗ = ∆𝜏𝐑  Z-Sweep 

 [𝐈 + 𝛼∆𝜏𝐃𝑌]∆𝐟̅ = ∆𝐟∗  Y-Sweep 

 [𝐈 + 𝛼∆𝜏𝐃𝑋]∆𝐟 = ∆𝐟 ̅ X-Sweep 
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Spatial discretization for momentums: 

 Spatial discretizations on momentum equations are made by using central differences: 

  or  

   

(C.31) 

     

(C.32)

 

 The central and backward difference operators, which denotes the difference between the 

primary grid points and the secondary grid points are defined as: 

   
 

    
w
k

w
k

u
k zzz 1    

u
k

u
k

w
k zzz  1  

    

    
w
k

u
k

u
k zzz 1    

u
k

w
k

w
k zzz 

 

 The following interpolates are needed to discretize momentum equations (C.2) to (C.5) 

Interpolations for Gu 

𝑢̆𝑢𝑖,𝑗,𝑘
𝑋− =

∇𝑋𝑖
𝑣.𝑢𝑖,𝑗,𝑘+∇𝑋𝑖

𝑢𝑢𝑖−1,𝑗,𝑘

∆𝑋𝑖
𝑣                  and       𝑢̆𝑢𝑖,𝑗,𝑘

𝑋+ = 𝑢̆𝑢𝑖+1,𝑗,𝑘
𝑋−  

𝑢̆𝑢𝑖,𝑗,𝑘
𝑍− =

∇𝑍𝑘−1
𝑤 .𝑢𝑖,𝑗,𝑘+∇𝑍𝑘

𝑢𝑢𝑖,𝑗,𝑘−1

∆𝑍𝑘−1
𝑤                and       𝑢̆𝑢𝑖,𝑗,𝑘

𝑍+ = 𝑢̆𝑢𝑖,𝑗,𝑘+1
𝑍−  

𝑣𝑢𝑖,𝑗,𝑘
𝑋− =

∇𝑌𝑗
𝑣.𝑣𝑖,𝑗−1,𝑘+∇𝑌𝑗

𝑢𝑣𝑖,𝑗,𝑘

∆𝑌𝑗
𝑢                     and       𝑣𝑢𝑖−1,𝑗,𝑘

𝑋+ = 𝑣𝑢𝑖,𝑗,𝑘
𝑋−  

𝑢̆𝑢𝑖,𝑗,𝑘
𝑌− =

∇𝑌𝑗−1
𝑣 .𝑢𝑖,𝑗,𝑘+∇𝑌𝑗

𝑢𝑢𝑖,𝑗−1,𝑘

∆𝑌𝑗−1
𝑣                  and       𝑢̆𝑢𝑖,𝑗,𝑘

𝑌+ = 𝑢̆𝑢𝑖,𝑗+1,𝑘
𝑌−  

𝑤̆𝑢𝑖,𝑗,𝑘
𝑋− =

∇𝑍𝑘
𝑢.𝑤𝑖,𝑗,𝑘+∇𝑍𝑘

𝑤𝑤𝑖,𝑗,𝑘−1

∆𝑍𝑘
𝑢                  and       𝑤̆𝑢𝑖−1,𝑗,𝑘

𝑋+ = 𝑤̆𝑢𝑖,𝑗,𝑘
𝑋−  

𝑤̆𝑢𝑖,𝑗,𝑘
𝑍− =

∇𝑋𝑖
𝑢.𝑤𝑖+1,𝑗,𝑘−1+∇𝑋𝑖+1

𝑣 𝑤𝑖,𝑗,𝑘−1

∆𝑋𝑖
𝑢          and       𝑤̆𝑢𝑖,𝑗,𝑘

𝑍+ = 𝑤̆𝑢𝑖,𝑗,𝑘+1
𝑍−  

𝑝1𝑖,𝑗,𝑘 =
∇𝑋𝑖+1

𝑣 .𝑝𝑖,𝑗,𝑘+∇𝑋𝑖
𝑢𝑝𝑖+1,𝑗,𝑘

∆𝑋𝑖
𝑢                  and      𝑝2𝑖,𝑗,𝑘 =

∇𝑋𝑖+1
𝑣 .𝑝𝑖,𝑗,𝑘+1+∇𝑋𝑖

𝑢𝑝𝑖+1,𝑗,𝑘+1

∆𝑋𝑖
𝑢                    
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𝑝𝑢𝑖,𝑗,𝑘
𝑍+ =

∇𝑍𝑘+1
𝑢 .𝑝1𝑖,𝑗,𝑘+∇𝑍𝑘

𝑤𝑝2𝑖,𝑗,𝑘−1

∆𝑍𝑘
𝑤               and       𝑝𝑢𝑖,𝑗,𝑘

𝑍− = 𝑝𝑢𝑖,𝑗,𝑘−1
𝑍+  

𝑢11 =
∇𝑋𝑖

𝑢 .𝑢𝑖−1,𝑗,𝑘−1+∇𝑋𝑖
𝑣 .𝑢𝑖,𝑗,𝑘−1

∆𝑋𝑖
𝑣                 and        𝑢12 =

∇𝑋𝑖
𝑢 .𝑢𝑖−1,𝑗,𝑘+∇𝑋𝑖

𝑣 .𝑢𝑖,𝑗,𝑘

∆𝑋𝑖
𝑣  

𝑢|𝑤𝑖,𝑗,𝑘
𝑚− =

∇𝑍𝑘
𝑢 .𝑢11+∇𝑍𝑘−1

𝑤  .𝑢12

∆𝑍𝑘−1
𝑤    ,     𝑢|𝑤𝑖,𝑗,𝑘−1

𝑚+ = 𝑢|𝑤𝑖,𝑗,𝑘
𝑚−   , 

𝑢|𝑤𝑖−1,𝑗,𝑘
𝑝− = 𝑢|𝑤𝑖,𝑗,𝑘

𝑚−      ,    𝑢|𝑤𝑖−1,𝑗,𝑘−1
𝑝+ = 𝑢|𝑤𝑖,𝑗,𝑘

𝑚−  

Interpolations for Gv 

𝑢̆𝑣𝑖,𝑗,𝑘
𝑋− =

∇𝑌𝑗
𝑣.𝑢𝑖−1,𝑗+1,𝑘+∇𝑌𝑗+1

𝑢 𝑢𝑖−1,𝑗,𝑘

∆𝑌𝑗
𝑣              and       𝑢̆𝑣𝑖,𝑗,𝑘

𝑋+ = 𝑢̆𝑣𝑖+1,𝑗,𝑘
𝑋−  

𝑣𝑣𝑖,𝑗,𝑘
𝑋− =

∇𝑋𝑖−1
𝑢 .𝑣𝑖,𝑗,𝑘+∇𝑋𝑖

𝑣𝑣𝑖−1,𝑗,𝑘

∆𝑋𝑖−1
𝑢                     and       𝑣𝑣𝑖,𝑗,𝑘

𝑋+ = 𝑣𝑣𝑖+1,𝑗,𝑘
𝑋−  

𝑣̆𝑣𝑖,𝑗,𝑘
𝑍− =

∇𝑍𝑘−1
𝑤 .𝑣𝑖,𝑗,𝑘+∇𝑍𝑘

𝑢𝑣𝑖,𝑗,𝑘−1

∆𝑍𝑘−1
𝑤                     and        𝑣̆𝑣𝑖,𝑗,𝑘

𝑍+ = 𝑣̆𝑣𝑖,𝑗,𝑘+1
𝑍−  

𝑣𝑣𝑖,𝑗,𝑘
𝑌− =

∇𝑌𝑗
𝑢.𝑣𝑖,𝑗,𝑘+∇𝑌𝑗

𝑣.𝑣𝑖,𝑗−1,𝑘

∆𝑌𝑗
𝑢                        and        𝑣𝑣𝑖,𝑗,𝑘

𝑌+ = 𝑣𝑣𝑖,𝑗+1,𝑘
𝑌−  

𝑤𝑣𝑖,𝑗,𝑘
𝑍− =

∇𝑌𝑗
𝑣.𝑊𝑖,𝑗+1,𝑘−1+∇𝑌𝑗+1

𝑢 𝑊𝑖,𝑗,𝑘−1

∆𝑌𝑗
𝑉             and        𝑤𝑣𝑖,𝑗,𝑘

𝑍+ = 𝑤𝑣𝑖,𝑗,𝑘+1
𝑍−  

𝑣11 =
∇𝑋𝑖

𝑣 .𝑣𝑖−1,𝑗,𝑘−1+∇𝑋𝑖−1
𝑢  .𝑣𝑖,𝑗,𝑘−1

∆𝑋𝑖−1
𝑢                 and        𝑣12 =

∇𝑋𝑖
𝑣 .𝑣𝑖−1,𝑗,𝑘+∇𝑋𝑖−1

𝑢  .𝑣𝑖,𝑗,𝑘

∆𝑋𝑖−1
𝑢  

 𝑣|𝑐𝑖,𝑗,𝑘
𝑚− =

∇𝑍𝑘
𝑢 .𝑣11+∇𝑍𝑘−1

𝑤  .𝑣12

∆𝑍𝑘−1
𝑤    ,                   and       𝑣|𝑐𝑖,𝑗,𝑘−1

𝑚+ = 𝑣|𝑐𝑖,𝑗,𝑘
𝑚−   , 

𝑣|𝑐𝑖−1,𝑗,𝑘
𝑝− = 𝑣|𝑐𝑖,𝑗,𝑘

𝑐−                                       and       𝑣|𝑐𝑖−1,𝑗,𝑘−1
𝑝+ = 𝑣|𝑐𝑖,𝑗,𝑘

𝑐−  

Interpolations for Gw 

𝑤𝑤𝑖,𝑗,𝑘
𝑋− =

∇𝑋𝑖−1
𝑢 .𝑤𝑖,𝑗,𝑘+∇𝑋𝑖

𝑣𝑤𝑖−1,𝑗,𝑘

∆𝑋𝑖−1
𝑢                   and       𝑤𝑤𝑖,𝑗,𝑘

𝑋+ = 𝑤𝑤𝑖+1,𝑗,𝑘
𝑋−  

𝑢𝑤𝑖,𝑗,𝑘
𝑋− =

∇𝑍𝑘
𝑤.𝑢𝑖−1,𝑗,𝑘+1+∇𝑍𝑘+1

𝑢 .𝑢𝑖−1,𝑗,𝑘

∆𝑍𝑘
𝑤             and       𝑢𝑤𝑖,𝑗,𝑘

𝑋+ = 𝑢𝑤𝑖+1,𝑗,𝑘
𝑋−  

𝑤𝑤𝑖,𝑗,𝑘
𝑍− =

∇𝑍𝑘
𝑢.𝑤𝑖,𝑗,𝑘+∇𝑍𝑘

𝑤.𝑤𝑖,𝑗,𝑘−1

∆𝑍𝑘
𝑢                    and       𝑤𝑤𝑖,𝑗,𝑘

𝑍+ = 𝑤𝑤𝑖,𝑗,𝑘+1
𝑍−  

𝑢𝑤𝑖,𝑗,𝑘
𝑍− = 𝑢𝑢𝑖,𝑗,𝑘

𝑋−            and       𝑢𝑤𝑖,𝑗,𝑘
𝑍+ = 𝑢𝑤𝑖,𝑗,𝑘+1

𝑍−     
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𝑣̆𝑤𝑖,𝑗,𝑘
𝑋− = 𝑣̆𝑢𝑖−1,𝑗,𝑘

𝑍+                                        and        𝑣̆𝑤𝑖−1,𝑗,𝑘
𝑋+ = 𝑣̆𝑤𝑖,𝑗,𝑘

𝑋−  

𝑣̆𝑤𝑖,𝑗,𝑘
𝑍− = 𝑣̆𝑣𝑖,𝑗,𝑘

𝑌−                                           and      𝑣̆𝑤𝑖,𝑗,𝑘−1
𝑍+ = 𝑣̆𝑤𝑖,𝑗,𝑘

𝑍−  

𝑤̆𝑤𝑖,𝑗,𝑘
𝑌− =

∇𝑌𝑗−1
𝑣 .𝑤𝑖,𝑗,𝑘+∇𝑌𝑗

𝑢𝑤𝑖,𝑗−1,𝑘

∆𝑌𝑗−1
𝑣                  and      𝑤𝑤𝑖,𝑗,𝑘

𝑌+ = 𝑤𝑤𝑖,𝑗+1,𝑘
𝑌−  

𝑤11 =
∇𝑋𝑖

𝑣 .𝑤𝑖−1,𝑗,𝑘−1+∇𝑋𝑖−1
𝑢  .𝑤𝑖,𝑗,𝑘−1

∆𝑋𝑖−1
𝑢              and        𝑤12 =

∇𝑋𝑖
𝑣 .𝑤𝑖−1,𝑗,𝑘+∇𝑋𝑖−1

𝑢  .𝑤𝑖,𝑗,𝑘

∆𝑋𝑖−1
𝑢    

𝑤|𝑢𝑖,𝑗,𝑘
𝑚− =

∇𝑍𝑘
𝑤 .𝑤11𝑖,𝑗,𝑘+∇𝑍𝑘

𝑢 .𝑤12𝑖,𝑗,𝑘

∆𝑍𝑘
𝑢    ,     𝑤|𝑢𝑖,𝑗,𝑘−1

𝑚+ = 𝑤|𝑢𝑖,𝑗,𝑘
𝑚−   , 

𝑤|𝑢𝑖−1,𝑗,𝑘
𝑝−

= 𝑤|𝑢𝑖,𝑗,𝑘
𝑚−      ,    𝑤|𝑢𝑖−1,𝑗,𝑘−1

𝑝+
= 𝑤|𝑢𝑖,𝑗,𝑘

𝑚−  

After rearranging equations (C.1) to (C.5), the discretized momentum equations are as follows 

𝐺𝑢(𝑢, 𝑣, 𝑤, 𝑝) =
1

∆𝑋𝑖
𝑢

[
 
 
 
 
 
 
 
 
 𝐶7. ((𝑢̆𝑢𝑖,𝑗,𝑘

𝑋+ )
2

− (𝑢̆𝑢𝑖,𝑗,𝑘
𝑋− )

2

)

+𝐶8 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑋+ . 𝑢̆𝑢𝑖,𝑗,𝑘

𝑋+ − 𝑤̆𝑢𝑖,𝑗,𝑘
𝑋− . 𝑢̆𝑢𝑖,𝑗,𝑘

𝑋− )

+𝐶7(𝑝𝑖+1,𝑗,𝑘 − 𝑝𝑖,𝑗,𝑘)

+𝐶1 (
𝑢𝑖+1,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘

∆𝑥𝑖+1
𝑣 −

𝑢𝑖,𝑗,𝑘 − 𝑢𝑖−1,𝑗,𝑘

∆𝑥𝑖
𝑣 )

+𝐶9 (𝑢𝑢𝑖,𝑗,𝑘
𝑋+ − 𝑢𝑢𝑖,𝑗,𝑘

𝑋− ) ]
 
 
 
 
 
 
 
 
 

+
1

∆𝑌𝑗
𝑢

[
 
 
 
 
 (𝑣̆𝑢𝑖,𝑗,𝑘

𝑌+ . 𝑢̆𝑢𝑖,𝑗,𝑘
𝑌+ − 𝑣̆𝑢𝑖,𝑗,𝑘

𝑌− . 𝑢̆𝑢𝑖,𝑗,𝑘
𝑌− )

+𝐶10 (
𝑢𝑖,𝑗+1,𝑘 − 𝑢𝑖,𝑗,𝑘

∆𝑌𝑗
𝑣 −

𝑢𝑖,𝑗,𝑘 − 𝑢𝑖,𝑗−1,𝑘

∆𝑌𝑗−1
𝑣 )

]
 
 
 
 
 

+
1

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 
 
 
 
 𝐶2 ((𝑢̆𝑢𝑖,𝑗,𝑘

𝑍+ )
2

− (𝑢̆𝑢𝑖,𝑗,𝑘
𝑍− )

2

)

+𝐶3 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑍+ . 𝑢̆𝑢𝑖,𝑗,𝑘

𝑍+ − 𝑤̆𝑢𝑖,𝑗,𝑘
𝑍− . 𝑢̆𝑢𝑖,𝑗,𝑘

𝑍− )

+𝐶2 (𝑝𝑢𝑖,𝑗,𝑘
𝑍+ − 𝑝𝑢𝑖,𝑗,𝑘

𝑍− )

+𝐶5 (
𝑢𝑖,𝑗,𝑘+1 − 𝑢𝑖,𝑗,𝑘

∆𝑧𝑘
𝑤 −

𝑢𝑖,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘−1

∆𝑧𝑘−1
𝑤 )

+𝐶4 (𝑢𝑢𝑖,𝑗,𝑘
𝑍+ − 𝑢𝑢𝑖,𝑗,𝑘

𝑍− )

+𝐶6 (
𝑢|𝑤𝑖,𝑗,𝑘
𝑝+ − 𝑢|𝑤𝑖,𝑗,𝑘

𝑚+

∆𝑋𝑖
𝑢 −

𝑢|𝑤𝑖,𝑗,𝑘
𝑝− − 𝑢|𝑤𝑖,𝑗,𝑘

𝑚−

∆𝑋𝑖
𝑢 )

]
 
 
 
 
 
 
 
 
 
 
 
 
 

                                        (C. 33) 
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𝐺𝑣(𝑢, 𝑣, 𝑤, 𝑝) =
1

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 𝐶7 (𝑢𝑣𝑖+1,𝑗,𝑘

𝑋+ . 𝑣𝑣𝑖,𝑗,𝑘
𝑋+ − 𝑢𝑣𝑖+1,𝑗,𝑘

𝑋− . 𝑣𝑣𝑖,𝑗,𝑘
𝑋− )

+𝐶8 (𝑤̆𝑣𝑖,𝑗,𝑘
𝑋+ . 𝑣̆𝑣𝑖,𝑗,𝑘

𝑋+ − 𝑤̆𝑣𝑖,𝑗,𝑘
𝑋− . 𝑣̆𝑣𝑖,𝑗,𝑘

𝑋− )

+𝐶1 (
𝑣𝑖+1,𝑗,𝑘 − 𝑣𝑖,𝑗,𝑘

∆𝑥𝑖
𝑢 −

𝑣𝑖,𝑗,𝑘 − 𝑣𝑖−1,𝑗,𝑘

∆𝑥𝑖−1
𝑢 )

+𝐶9 (𝑣𝑣𝑖,𝑗,𝑘
𝑋+ − 𝑣𝑣𝑖,𝑗,𝑘

𝑋− )
 ]

 
 
 
 
 
 
 
 
 

+
1

∆𝑌𝑗
𝑣

[
 
 
 
 
 
 
 ((𝑣̆𝑣𝑖,𝑗,𝑘

𝑌+ )
2

− (𝑣̆𝑣𝑖,𝑗,𝑘
𝑌− )

2

)

+(𝑝𝑖,𝑗+1,𝑘 − 𝑝𝑖,𝑗,𝑘)

+𝐶10 (
𝑣𝑖,𝑗+1,𝑘 − 𝑣𝑖,𝑗,𝑘

∆𝑌𝑗+1
𝑢 −

𝑣𝑖,𝑗,𝑘 − 𝑣𝑖,𝑗−1,𝑘

∆𝑌𝑗
𝑢 )

]
 
 
 
 
 
 
 

+
1

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 
 
 
 𝐶2 (𝑢𝑣𝑖,𝑗,𝑘

𝑍+ . 𝑣𝑣𝑖,𝑗,𝑘
𝑍+ − 𝑢𝑣𝑖,𝑗,𝑘

𝑍− . 𝑣𝑣𝑖,𝑗,𝑘
𝑍− )

 +𝐶3 (𝑤̆𝑣𝑖,𝑗,𝑘
𝑍+ . 𝑣̆𝑣𝑖,𝑗,𝑘

𝑍+ − 𝑤̆𝑣𝑖,𝑗,𝑘
𝑍− . 𝑣̆𝑣𝑖,𝑗,𝑘

𝑍− )

+𝐶5 (
𝑣𝑖,𝑗,𝑘+1 − 𝑣𝑖,𝑗,𝑘

∆𝑧𝑘
𝑤 −

𝑣𝑖,𝑗,𝑘 − 𝑣𝑖,𝑗,𝑘−1

∆𝑧𝑘−1
𝑤 )

+𝐶4 (𝑣𝑣𝑖,𝑗,𝑘
𝑍+ − 𝑣𝑣𝑖,𝑗,𝑘

𝑍− )

+𝐶6 (
𝑣|𝑐𝑖,𝑗,𝑘
𝑝+ − 𝑣|𝑐𝑖,𝑗,𝑘

𝑚+

∆𝑋𝑖
𝑣 −

𝑣|𝑐𝑖,𝑗,𝑘
𝑝− − 𝑣|𝑐𝑖,𝑗,𝑘

𝑚−

∆𝑋𝑖
𝑣 )

]
 
 
 
 
 
 
 
 
 
 
 
 

                                            (C. 34) 
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𝐺𝑤(𝑢, 𝑣, 𝑤, 𝑝) =
1

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 
 𝐶7 (𝑤𝑤𝑖,𝑗,𝑘

𝑋+ . 𝑢𝑤𝑖,𝑗,𝑘
𝑋+ − 𝑤𝑤𝑖,𝑗,𝑘

𝑋− . 𝑢𝑤𝑖,𝑗,𝑘
𝑋− )

+𝐶8 ((𝑤̆𝑤𝑖,𝑗,𝑘
𝑋+ )

2

− (𝑤̆𝑤𝑖,𝑗,𝑘
𝑋− )

2

)

+𝐶8(𝑝𝑤 𝑖,𝑗,𝑘
𝑋+ − 𝑝𝑤 𝑖,𝑗,𝑘

𝑋− )

+𝐶1 (
𝑤𝑖+1,𝑗,𝑘 − 𝑤𝑖,𝑗,𝑘

∆𝑥𝑖
𝑢 −

𝑤𝑖,𝑗,𝑘 − 𝑤𝑖−1,𝑗,𝑘

∆𝑥𝑖−1
𝑢 )

+𝐶9 (𝑤𝑤𝑖,𝑗,𝑘
𝑋+ − 𝑤𝑤𝑖,𝑗,𝑘

𝑋− )
 ]

 
 
 
 
 
 
 
 
 
 

+
1

∆𝑌𝑗
𝑢

[
 
 
 
 
 (𝑤̆𝑤𝑖,𝑗,𝑘

𝑌+ . 𝑣̆𝑤𝑖,𝑗,𝑘
𝑌+ − 𝑤̆𝑤𝑖,𝑗,𝑘

𝑌− . 𝑣̆𝑤𝑖,𝑗,𝑘
𝑌− )

+𝐶10 (
𝑤𝑖,𝑗+1,𝑘 − 𝑤𝑖,𝑗,𝑘

∆𝑌𝑗
𝑣 −

𝑤𝑖,𝑗,𝑘 − 𝑤𝑖,𝑗−1,𝑘

∆𝑌𝑗−1
𝑣 )

]
 
 
 
 
 

+
1

∆𝑍𝑘
𝑤

[
 
 
 
 
 
 
 
 
 
 
 
 𝐶2 (𝑤𝑤𝑖,𝑗,𝑘

𝑍+ . 𝑢𝑤𝑖,𝑗,𝑘
𝑍+ −𝑤𝑤𝑖,𝑗,𝑘

𝑍− . 𝑢𝑤𝑖,𝑗,𝑘
𝑍− )

+𝐶3 ((𝑤̆𝑤𝑖,𝑗,𝑘
𝑍+ )

2

− (𝑤̆𝑤𝑖,𝑗,𝑘
𝑍− )

2

)

+𝐶3(𝑝𝑖,𝑗,𝑘+1 − 𝑝𝑖,𝑗,𝑘)

+𝐶5 (
𝑤𝑖,𝑗,𝑘+1 − 𝑤𝑖,𝑗,𝑘

∆𝑧𝑘+1
𝑢 −

𝑤𝑖,𝑗,𝑘 − 𝑤𝑖,𝑗,𝑘−1

∆𝑧𝑘
𝑢 )

+𝐶4 (𝑤𝑤𝑖,𝑗,𝑘
𝑍+ − 𝑤𝑤𝑖,𝑗,𝑘

𝑍− )

+𝐶6 (
𝑤|𝑢𝑖,𝑗,𝑘

𝑝+ − 𝑤|𝑢𝑖,𝑗,𝑘
𝑚+

∆𝑋𝑖
𝑣 −

𝑤|𝑢𝑖,𝑗,𝑘
𝑝− − 𝑤|𝑢𝑖,𝑗,𝑘

𝑚−

∆𝑋𝑖
𝑣 )

]
 
 
 
 
 
 
 
 
 
 
 
 

                                      (C. 35) 

 

Continuity equation 

∇. 𝑉 =
1

∆𝑋𝑖
𝑣 [

𝐶7(𝑢𝑖,𝑗,𝑘 − 𝑢𝑖−1,𝑗,𝑘)

+𝐶8 (𝑤|𝑢𝑖,𝑗,𝑘
𝑚+ − 𝑤|𝑢𝑖,𝑗,𝑘

𝑚− )

] +
1

∆𝑌𝑗
𝑢 [(𝑣̆𝑖,𝑗,𝑘 − 𝑣̆𝑖,𝑗−1,𝑘)]

+
1

∆𝑧𝑘
𝑢 [

𝐶2 (𝑢|𝑤𝑖,𝑗,𝑘
𝑚+ − 𝑢|𝑤𝑖,𝑗,𝑘

𝑚− )

+𝐶3(𝑤̆𝑖,𝑗,𝑘 − 𝑤̆𝑖,𝑗,𝑘−1)

]                                                                           (C. 36) 
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Spatial discretization of three successive sweeps: 

Z-sweep: 

 

X-momentum 

 

∆𝑢̅̅̅̅ 𝑖,𝑗,𝑘−1.

{
 
 
 
 

 
 
 
 

𝛼∆𝜏

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 𝐶2 (−𝑢̆𝑢𝑖,𝑗,𝑘

𝑍− (
∇𝑍𝑘

𝑢

∆𝑍𝑘−1
𝑤 ))

−𝐶3 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑍− (

∇𝑍𝑘
𝑢

∆𝑍𝑘−1
𝑤 ))

−𝐶4 (
∇𝑍𝑘

𝑢

∆𝑍𝑘−1
𝑤 )

+𝐶5 (
1

∆𝑧𝑘−1
𝑤 )

]
 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

+ ∆𝑢̅̅̅̅ 𝑖,𝑗,𝑘.

{
 
 
 
 

 
 
 
 

1 +

𝛼∆𝜏

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 𝐶2 (𝑢̆𝑢𝑖,𝑗,𝑘

𝑍+ (
∇𝑍𝑘+1

𝑢

∆𝑍𝑘
𝑤 ) − 𝑢̆𝑢𝑖,𝑗,𝑘

𝑍− (
∇𝑍𝑘−1

𝑤

∆𝑍𝑘−1
𝑤 ))

+𝐶3 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑍+ (

∇𝑍𝑘+1
𝑢

∆𝑍𝑘
𝑤 ) − 𝑤̆𝑢𝑖,𝑗,𝑘

𝑍− (
∇𝑍𝑘−1

𝑤

∆𝑍𝑘−1
𝑤 ))

+𝐶4 ((
∇𝑍𝑘+1

𝑢

∆𝑍𝑘
𝑤 ) − (

∇𝑍𝑘−1
𝑤

∆𝑍𝑘−1
𝑤 ))

+𝐶5 (
−1

∆𝑧𝑘
𝑤 +

−1

∆𝑧𝑘−1
𝑤 )

]
 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

+ ∆𝑢̅̅̅̅ 𝑖,𝑗,𝑘+1.

{
 
 
 
 

 
 
 
 

𝛼∆𝜏

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 𝐶2 (𝑢̆𝑢𝑖,𝑗,𝑘

𝑍+ (
∇𝑍𝑘

𝑤

∆𝑍𝑘
𝑤))

+𝐶3 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑍+ (

∇𝑍𝑘
𝑤

∆𝑍𝑘
𝑤))

+𝐶4 (
∇𝑍𝑘

𝑤

∆𝑍𝑘
𝑤)

+𝐶5 (
1

∆𝑧𝑘
𝑤) ]

 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

 

= ∆𝜏𝑅𝑢 −
𝐶6

∆𝑋𝑖
𝑢

𝛼∆𝜏

∆𝑍𝑘
𝑢 (∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘

𝑝+ − ∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘
𝑚+ − ∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘

𝑝− + ∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘
𝑚− ) − 𝐶2

𝛼∆𝜏

∆𝑍𝑘
𝑢 (∆𝑝̅̅̅̅ 𝑢

𝑍+ − ∆𝑝̅̅̅̅ 𝑢
𝑍−)   (C. 37)  
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Y-momentum 

 

∆𝑣̅̅̅̅ 𝑖,𝑗,𝑘−1.

{
 
 
 
 

 
 
 
 

𝛼∆𝜏

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 𝐶2 (−𝑢𝑣𝑖,𝑗,𝑘

𝑍− . (
∇𝑍𝑘

𝑢

∆𝑍𝑘−1
𝑤 ))

−𝐶3 (𝑤𝑣𝑖,𝑗,𝑘
𝑍− . (

∇𝑍𝑘
𝑢

∆𝑍𝑘−1
𝑤 ))

−𝐶4 (
∇𝑍𝑘

𝑢

∆𝑍𝑘−1
𝑤 )

+𝐶5 (
1

∆𝑧𝑘−1
𝑤 )

]
 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

+ ∆𝑣̅̅̅̅ 𝑖,𝑗,𝑘.

{
 
 
 
 

 
 
 
 

1 +

𝛼∆𝜏

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 𝐶2 (𝑢𝑣𝑖,𝑗,𝑘

𝑍+ . (
∇𝑍𝑘+1

𝑢

∆𝑍𝑘
𝑤 ) − 𝑢𝑣𝑖,𝑗,𝑘

𝑍− . (
∇𝑍𝑘−1

𝑤

∆𝑍𝑘−1
𝑤 ))

+𝐶3 (𝑤𝑣𝑖,𝑗,𝑘
𝑍+ . (

∇𝑍𝑘+1
𝑢

∆𝑍𝑘
𝑤 ) − 𝑤𝑣𝑖,𝑗,𝑘

𝑍− . (
∇𝑍𝑘−1

𝑤

∆𝑍𝑘−1
𝑤 ))

+𝐶4 (
∇𝑍𝑘+1

𝑢

∆𝑍𝑘
𝑤 −

∇𝑍𝑘−1
𝑤

∆𝑍𝑘−1
𝑤 )

+𝐶5 (
−1

∆𝑧𝑘
𝑤 +

−1

∆𝑧𝑘−1
𝑤 )

]
 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

+ ∆𝑣̅̅̅̅ 𝑖,𝑗,𝑘+1

{
 
 
 
 

 
 
 
 

𝛼∆𝜏

∆𝑍𝑘
𝑢

[
 
 
 
 
 
 
 
 
 𝐶2 (𝑢𝑣𝑖,𝑗,𝑘

𝑍+ . (
∇𝑍𝑘

𝑤

∆𝑍𝑘
𝑤))

+𝐶3 (𝑤𝑣𝑖,𝑗,𝑘
𝑍+ . (

∇𝑍𝑘
𝑤

∆𝑍𝑘
𝑤))

+𝐶4 (
∇𝑍𝑘

𝑤

∆𝑍𝑘
𝑤)

+𝐶5 (
1

∆𝑧𝑘
𝑤) ]

 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

  

= ∆𝜏𝑅𝑣 −
𝐶6

∆𝑋𝑖
𝑣

𝛼∆𝜏

∆𝑍𝑘
𝑢 (∆𝑣̅̅̅̅ |𝑐𝑖,𝑗,𝑘

𝑝+ − ∆𝑣̅̅̅̅ |𝑐𝑖,𝑗,𝑘
𝑚+ − ∆𝑣̅̅̅̅ |𝑐𝑖,𝑗,𝑘

𝑝− + ∆𝑣̅̅̅̅ |𝑐𝑖,𝑗,𝑘
𝑚− )                                                      (C. 38)   
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Z-momentum 

∆𝑤̅̅ ̅̅ 𝑖,𝑗,𝑘−1

{
 
 
 
 
 

 
 
 
 
 

𝛼∆𝜏

∆𝑍𝑘
𝑤

[
 
 
 
 
 
 
 
 
 
 
 𝐶2 (−𝑢𝑤𝑖,𝑗,𝑘

𝑍− (
∇𝑍𝑘

𝑤

∆𝑍𝑘
𝑢))

−𝐶3 (𝑤𝑤𝑖,𝑗,𝑘
𝑍− (

∇𝑍𝑘
𝑤

∆𝑍𝑘
𝑢))

−𝐶4 (
∇𝑍𝑘

𝑤

∆𝑍𝑘
𝑢)

+𝐶5 (
1

∆𝑧𝑘
𝑢)

−𝐶3𝑤𝐶3𝑝
∆𝝉

𝜹
(
1

∆𝑧𝑘
𝑢) ]

 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

+ ∆𝑤̅̅ ̅̅ 𝑖,𝑗,𝑘

{
 
 
 
 
 

 
 
 
 
 

1 + ∆𝜏 +

𝛼∆𝜏

∆𝑍𝑘
𝑤

[
 
 
 
 
 
 
 
 
 
 𝐶2 (𝑢𝑤𝑖,𝑗,𝑘

𝑍+ .
∇𝑍𝑘+1

𝑤

∆𝑍𝑘+1
𝑢 − 𝑢𝑤𝑖,𝑗,𝑘

𝑍− .
∇𝑍𝑘

𝑢

∆𝑍𝑘
𝑢)

+𝐶3 (𝑤𝑤𝑖,𝑗,𝑘
𝑍+ .

∇𝑍𝑘+1
𝑤

∆𝑍𝑘+1
𝑢 − 𝑤𝑤𝑖,𝑗,𝑘

𝑍− .
∇𝑍𝑘

𝑢

∆𝑍𝑘
𝑢)

+𝐶4 (
∇𝑍𝑘+1

𝑤

∆𝑍𝑘+1
𝑢 −

∇𝑍𝑘
𝑢

∆𝑍𝑘
𝑢)

+𝐶5 (
−1

∆𝑧𝑘+1
𝑢 +

−1

∆𝑧𝑘
𝑢)

−𝐶3𝑤𝐶3𝑝
∆𝝉

𝜹
(

−1

∆𝑧𝑘+1
𝑢 +

−1

∆𝑧𝑘
𝑢) ]

 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

+ ∆𝑤̅̅ ̅̅ 𝑖,𝑗,𝑘+1

{
 
 
 
 
 

 
 
 
 
 

𝛼∆𝜏

∆𝑍𝑘
𝑤

[
 
 
 
 
 
 
 
 
 
 𝐶2 (𝑢𝑤𝑖,𝑗,𝑘

𝑍+ .
∇𝑍𝑘+1

𝑢

∆𝑍𝑘+1
𝑢 )

+𝐶3 (𝑤𝑤𝑖,𝑗,𝑘
𝑍+ .

∇𝑍𝑘+1
𝑢

∆𝑍𝑘+1
𝑢 )

+𝐶4 (
∇𝑍𝑘+1

𝑢

∆𝑍𝑘+1
𝑢 )

+𝐶5 (
1

∆𝑧𝑘+1
𝑢 )

−𝐶3𝑤. 𝐶3𝑝
∆𝝉

𝜹
(

1

∆𝑧𝑘+1
𝑢 )

]
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

  

= ∆𝜏𝑅𝑤 − 𝐶6𝛼
∆𝜏

∆𝑍𝑘
𝑤 (

∆𝑤̅̅ ̅̅ |𝑢𝑖,𝑗,𝑘
𝑝+

−∆𝑤̅̅ ̅̅ |𝑢𝑖,𝑗,𝑘
𝑚+

∆𝑋𝑖
𝑣 −

∆𝑤̅̅ ̅̅ |𝑢𝑖,𝑗,𝑘
𝑝−

−∆𝑤̅̅ ̅̅ |𝑢𝑖,𝑗,𝑘
𝑚−

∆𝑋𝑖
𝑣 ) + 𝐶3𝑤𝛼

∆𝜏

∆𝑍𝑘
𝑤

∆𝜏

𝛿
(∇. 𝑉𝑖,𝑗,𝑘+1 − ∇. 𝑉𝑖,𝑗,𝑘) +

𝐶3𝑤. 𝐶2𝑝𝛼
∆𝜏

∆𝑍𝑘
𝑤

∆𝝉

𝜹
[((

∆𝑢̅̅ ̅̅ |𝑤𝑖,𝑗,𝑘+1
𝑚+ −∆𝑢̅̅ ̅̅ |𝑤𝑖,𝑗,𝑘+1

𝑚−

∆𝑧𝑘+1
𝑢 ) − (

∆𝑢̅̅ ̅̅ |𝑤𝑖,𝑗,𝑘
𝑚+ −∆𝑢̅̅ ̅̅ |𝑤𝑖,𝑗,𝑘

𝑚−

∆𝑧𝑘
𝑢 ))]                                              (C. 39)  

Continuity equation 

∆𝑝̅̅̅̅ 𝑖,𝑗,𝑘 = −
∆𝜏

𝛿
∇. 𝑉𝑖,𝑗,𝑘 −

∆𝜏

𝛿
[𝐶2 (

∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘
𝑚+ − ∆𝑢̅̅̅̅ |𝑤𝑖,𝑗,𝑘

𝑚−

∆𝑧𝑘
𝑢 ) + 𝐶3 (

∆𝑤̅̅ ̅̅ 𝑖,𝑗,𝑘 − ∆𝑤̅̅ ̅̅ 𝑖,𝑗,𝑘−1

∆𝑧𝑘
𝑢 )]           (C. 40) 
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Y-Sweep: 

 

X-Momentum 

∆𝑢𝑖,𝑗−1,𝑘. {
𝛼∆𝜏

∆𝑌𝑗
𝑢 [

−𝑣̆𝑢𝑖,𝑗,𝑘
𝑌− (

∇𝑌𝑗
𝑢

∆𝑌𝑗−1
𝑣 )

+𝐶10 (
1

∆𝑌𝑗−1
𝑣 )

]} + ∆𝑢𝑖,𝑗,𝑘. {1 +
𝛼∆𝜏

∆𝑌𝑗
𝑢 [

𝑣̆𝑢𝑖,𝑗,𝑘
𝑌+ . (

∇𝑌𝑗+1
𝑢

∆𝑌𝑗
𝑣 ) − 𝑣̆𝑢𝑖,𝑗,𝑘

𝑌− (
∇𝑌𝑗−1

𝑣

∆𝑌𝑗−1
𝑣 )

+𝐶10 (
−1

∆𝑌𝑗
𝑣 +

−1

∆𝑌𝑗−1
𝑣 )

]} +

∆𝑢𝑖,𝑗+1,𝑘. {
𝛼∆𝜏

∆𝑌𝑗
𝑢 [

𝑣̆𝑢𝑖,𝑗,𝑘
𝑌+ . (

∇𝑌𝑗
𝑣

∆𝑌𝑗
𝑣)

+𝐶10 (
1

∆𝑌𝑗
𝑣)
]} = ∆𝑢∗                                                                                               (C. 41)  

Y-Momentum 

∆𝑣𝑖,𝑗−1,𝑘. {
𝛼∆𝜏

∆𝑌𝑗
𝑣 [

−𝑣̆𝑣𝑖,𝑗,𝑘
𝑌− . (

∇𝑌𝑗
𝑣

∆𝑌𝑗
𝑢)

+𝐶10 (
1

∆𝑌𝑗
𝑢) −

∆𝜏

∆𝑌𝑗
𝑢

]} + ∆𝑣𝑖,𝑗,𝑘.

{
 
 

 
 

1 + ∆𝜏

 

+
𝛼∆𝜏

∆𝑌𝑗
𝑣

[
 
 
 
 
 𝑣̆𝑣𝑖,𝑗,𝑘
𝑌+ . (

∇𝑌𝑗+1
𝑣

∆𝑌𝑗+1
𝑢 ) − 𝑣̆𝑣𝑖,𝑗,𝑘

𝑌− . (
∇𝑌𝑗

𝑢

∆𝑌𝑗
𝑢)

+𝐶10 (
−1

∆𝑌𝑗+1
𝑢 +

−1

∆𝑌𝑗
𝑢)

+
∆𝜏

∆𝑌𝑗+1
𝑢 +

∆𝜏

∆𝑌𝑗
𝑢 ]

 
 
 
 
 

}
 
 

 
 

+

∆𝑣𝑖,𝑗+1,𝑘. {
𝛼∆𝜏

∆𝑌𝑗
𝑣 [

𝑣̆𝑣𝑖,𝑗,𝑘
𝑌+ . (

∇𝑌𝑗+1
𝑢

∆𝑌𝑗+1
𝑢 )

+𝐶10 (
1

∆𝑌𝑗+1
𝑢 ) −

∆𝜏

∆𝑌𝑗+1
𝑢

]} = ∆𝑣∗𝑖,𝑗,𝑘 − 𝛼
∆𝜏

∆𝑌𝑗
𝑣 (∆𝑝

∗
𝑖,𝑗+1,𝑘

− ∆𝑝∗
𝑖,𝑗,𝑘

)                (C. 42)  

Z-Momentum 

∆𝑤𝑖,𝑗−1,𝑘. {
𝛼∆𝜏

∆𝑌𝑗
𝑢 [

−𝑣̆𝑤𝑖,𝑗,𝑘
𝑌− . (

∇𝑌𝑗
𝑢

∆𝑌𝑗−1
𝑣 )

+𝐶10 (
1

∆𝑌𝑗−1
𝑣 )

]} + ∆𝑤𝑖,𝑗,𝑘.

{
 
 

 
 

 

1 +
𝛼∆𝜏

∆𝑌𝑗
𝑢

[
 
 
 𝑣̆𝑤𝑖,𝑗,𝑘
𝑌+ . (

∇𝑌𝑗+1
𝑢

∆𝑌𝑗
𝑣 ) − 𝑣̆𝑤𝑖,𝑗,𝑘

𝑌− . (
∇𝑌𝑗−1

𝑣

∆𝑌𝑗−1
𝑣 )

+𝐶10 (
−1

∆𝑌𝑗
𝑣 +

−1

∆𝑌𝑗−1
𝑣 )

 ]
 
 
 

}
 
 

 
 

+

∆𝑤𝑖,𝑗+1,𝑘. {
𝛼∆𝜏

∆𝑌𝑗
𝑢 [

𝑣̆𝑤𝑖,𝑗,𝑘
𝑌+ . (

∇𝑌𝑗
𝑣

∆𝑌𝑗
𝑣)

+𝐶10 (
1

∆𝑌𝑗
𝑣)
]} = ∆𝑤∗

𝑖,𝑗,𝑘                                                                                      (C. 43)  

Continuity Equation 

∆𝑝𝑖,𝑗,𝑘 = ∆𝑝
∗
𝑖,𝑗,𝑘

−
∆𝜏

∆𝑌𝑗
𝑢 (∆𝑣𝑖,𝑗,𝑘 − ∆𝑣𝑖,𝑗−1,𝑘)                                                                                 (C. 44) 
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X-Sweep: 

 

X-Momentum 

 

∆𝑢∗𝑖−1,𝑗,𝑘.

{
 
 
 
 
 

 
 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑢

[
 
 
 
 
 
 
 
 
 
 
 𝐶9 (−

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑣)

−𝐶7 (𝑢̆𝑢𝑖,𝑗,𝑘
𝑋− (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑣))

−𝐶8 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑋− (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑣))

+𝐶1 (
1

∆𝑥𝑖
𝑣)

−
∆𝜏

𝛿
𝐶7𝑢𝐶7𝑝 (

1

∆𝑥𝑖
𝑣)]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

+ ∆𝑢∗𝑖,𝑗,𝑘.

{
 
 
 
 
 

 
 
 
 
 

1 + ∆𝜏 +

𝛼∆𝜏

∆𝑋𝑖
𝑢

[
 
 
 
 
 
 
 
 
 
 
 𝐶9 (

∇𝑋𝑖+1
𝑢

∆𝑋𝑖+1
𝑣 −

∇𝑋𝑖
𝑣

∆𝑋𝑖
𝑣)

+𝐶7 (𝑢̆𝑢𝑖,𝑗,𝑘
𝑋+ . (

∇𝑋𝑖+1
𝑢

∆𝑋𝑖+1
𝑣 ) − 𝑢̆𝑢𝑖,𝑗,𝑘

𝑋− (
∇𝑋𝑖

𝑣

∆𝑋𝑖
𝑣))

+𝐶8 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑋+ (

∇𝑋𝑖+1
𝑢

∆𝑋𝑖+1
𝑣 ) − 𝑤̆𝑢𝑖,𝑗,𝑘

𝑋− (
∇𝑋𝑖

𝑣

∆𝑋𝑖
𝑣))

+𝐶1 (
−1

∆𝑥𝑖+1
𝑣 +

−1

∆𝑥𝑖
𝑣)

−
∆𝜏

𝛿
𝐶7𝑢𝐶7𝑝 (

−1

∆𝑥𝑖+1
𝑣 +

−1

∆𝑥𝑖
𝑣) ]

 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

+ ∆𝑢∗𝑖+1,𝑗,𝑘.

{
 
 
 
 
 

 
 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑢

[
 
 
 
 
 
 
 
 
 
 
 𝐶9 (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖+1
𝑣 )

+𝐶7 (𝑢̆𝑢𝑖,𝑗,𝑘
𝑋+ . (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖+1
𝑣 ))

+𝐶8 (𝑤̆𝑢𝑖,𝑗,𝑘
𝑋+ (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖+1
𝑣 ))

+𝐶1 (
1

∆𝑥𝑖+1
𝑣 )

−
∆𝜏

𝛿
𝐶7𝑢𝐶7𝑝 (

1

∆𝑥𝑖+1
𝑣 )

]
 
 
 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

  

= ∆𝑢̅̅̅̅ −𝐶7𝑢𝛼
∆𝜏

∆𝑋𝑖
𝑢 (∆𝑝̅̅̅̅ 𝑖+1,𝑗,𝑘 − ∆𝑝̅̅̅̅ 𝑖,𝑗,𝑘)

+ 𝛼
∆𝜏

∆𝑋𝑖
𝑢

∆𝜏

𝛿
𝐶7𝑢𝐶8𝑝 (

∆𝑤∗|𝑢𝑖+1,𝑗,𝑘
𝑚+ − ∆𝑤∗|𝑢𝑖+1,𝑗,𝑘

𝑚−

∆𝑋𝑖+1
𝑣 −

∆𝑤∗|𝑢𝑖,𝑗,𝑘
𝑚+ − ∆𝑤∗|𝑢𝑖,𝑗,𝑘

𝑚−

∆𝑋𝑖
𝑣 )  (C. 45) 
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Y-Momentum 

 

∆𝑣∗𝑖−1,𝑗,𝑘.

{
 
 
 
 

 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 −𝐶9 (

∇𝑋𝑖
𝑣

∆𝑋𝑖−1
𝑢 )

−𝐶7 (𝑢𝑣𝑖+1,𝑗,𝑘
𝑋− (

∇𝑋𝑖
𝑣

∆𝑋𝑖−1
𝑢 ))

−𝐶8 (𝑤𝑣𝑖+1,𝑗,𝑘
𝑋− (

∇𝑋𝑖
𝑣

∆𝑋𝑖−1
𝑢 ))

+𝐶1 (
1

∆𝑥𝑖−1
𝑢 )

]
 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

+ ∆𝑣∗𝑖,𝑗,𝑘.

{
 
 
 
 

 
 
 
 

1 +

𝛼∆𝜏

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 𝐶9 (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖
𝑢 −

∇𝑋𝑖−1
𝑢

∆𝑋𝑖−1
𝑢 )

+𝐶7 (𝑢𝑣𝑖+1,𝑗,𝑘
𝑋+ (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖
𝑢 ) − 𝑢𝑣𝑖+1,𝑗,𝑘

𝑋− (
∇𝑋𝑖−1

𝑢

∆𝑋𝑖−1
𝑢 ))

+𝐶8 (𝑤𝑣𝑖+1,𝑗,𝑘
𝑋+ (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖
𝑢 ) − 𝑤𝑣𝑖+1,𝑗,𝑘

𝑋− (
∇𝑋𝑖−1

𝑢

∆𝑋𝑖−1
𝑢 ))

+𝐶1 (
−1

∆𝑥𝑖
𝑢 +

−1

∆𝑥𝑖−1
𝑢 )

]
 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

+ ∆𝑣∗𝑖+1,𝑗,𝑘.

{
 
 
 
 

 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 𝐶9 (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑢)

+𝐶7 (𝑢𝑣𝑖+1,𝑗,𝑘
𝑋+ (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑢))

+𝐶8 (𝑤𝑣𝑖+1,𝑗,𝑘
𝑋+ (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑢))

+𝐶1 (
1

∆𝑥𝑖
𝑢) ]

 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

=

∆𝑣̅̅̅̅                                                                                                                                                               (C. 46)   

                                                              

  



207 
 

Z-Momentum 

 

∆𝑤∗
𝑖−1,𝑗,𝑘.

{
 
 
 
 

 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 −𝐶9 (

∇𝑋𝑖
𝑣

∆𝑋𝑖−1
𝑢 )

−𝐶7 (𝑢𝑤𝑖,𝑗,𝑘
𝑋− . (

∇𝑋𝑖
𝑣

∆𝑋𝑖−1
𝑢 ))

−𝐶8 (𝑤𝑤𝑖,𝑗,𝑘
𝑋− . (

∇𝑋𝑖
𝑣

∆𝑋𝑖−1
𝑢 ))

+𝐶1 (
1

∆𝑥𝑖−1
𝑢 )

]
 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

+

∆𝑤∗
𝑖,𝑗,𝑘.

{
 
 
 
 

 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 1 + 𝐶9 (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖
𝑢 −

∇𝑋𝑖−1
𝑢

∆𝑋𝑖−1
𝑢 )

+𝐶7 (𝑢𝑤𝑖,𝑗,𝑘
𝑋+ . (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖
𝑢 ) − 𝑢𝑤𝑖,𝑗,𝑘

𝑋− . (
∇𝑋𝑖−1

𝑢

∆𝑋𝑖−1
𝑢 ))

+𝐶8 (𝑤𝑤𝑖,𝑗,𝑘
𝑋+ . (

∇𝑋𝑖+1
𝑣

∆𝑋𝑖
𝑢 ) − 𝑤𝑤𝑖,𝑗,𝑘

𝑋− . (
∇𝑋𝑖−1

𝑢

∆𝑋𝑖−1
𝑢 ))

+𝐶1 (
−1

∆𝑥𝑖
𝑢 +

−1

∆𝑥𝑖−1
𝑢 )

]
 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

+

∆𝑤∗
𝑖+1,𝑗,𝑘

{
 
 
 
 

 
 
 
 

𝛼∆𝜏

∆𝑋𝑖
𝑣

[
 
 
 
 
 
 
 
 
 𝐶9 (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑢)

+𝐶7 (𝑢𝑤𝑖,𝑗,𝑘
𝑋+ . (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑢))

+𝐶8 (𝑤𝑤𝑖,𝑗,𝑘
𝑋+ . (

∇𝑋𝑖
𝑢

∆𝑋𝑖
𝑢))

+𝐶1 (
1

∆𝑥𝑖
𝑢) ]

 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

= ∆𝑤̅̅ ̅̅ 𝑖,𝑗,𝑘 − 𝐶8𝛼
∆𝜏

∆𝑋𝑖
𝑣 (∆𝑝

∗
𝑤 𝑖,𝑗,𝑘

𝑋+ − ∆𝑝∗
𝑤 𝑖,𝑗,𝑘

𝑋− )             (C. 47)  

 

Continuity Equation 

∆𝑝∗
𝑖,𝑗,𝑘

= ∆𝑝̅̅̅̅ 𝑖,𝑗,𝑘 −
∆𝜏

𝛿
(𝐶7

∆𝑢∗𝑖,𝑗,𝑘 − ∆𝑢
∗
𝑖−1,𝑗,𝑘

∆𝑋𝑖
𝑣 + 𝐶8

∆𝑤∗|𝑢𝑖,𝑗,𝑘
𝑚+ − ∆𝑤∗|𝑢𝑖,𝑗,𝑘

𝑚−

∆𝑋𝑖
𝑣 )                            (C. 48) 




