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ABSTRACT

This thesis presents a deep analysis of the steady and unsteady viscous flows past airfoils and
three-dimensional wings, and of three-dimensional confined flows at low Reynolds numbers.
This research work was carried out in several cases studies: (i) steady and unsteady confined
viscous flows; (ii) unsteady separations effects on the flow past stationary airfoils; (iii) effect of
the ground proximity on the steady and unsteady viscous flows past oscillating and fixed airfoils;
(iv) three-dimensional steady flows past wings at low Reynolds numbers.

The first part presents an efficient numerical method to solve three-dimensional steady and
unsteady flows in a three-dimensional downstream-facing step channel at low Reynolds
numbers. A finite-difference formulation and artificial compressibility were used on a stretched
staggered grid for the solution of the Navier-Stokes equations, which is second-order accurate in
space and time. The results were found to be in good agreement with the available experimental
results. For the first time it was confirmed that the difference between the two-dimensional
numerical solutions and the experimental results was due to the effect of the lateral walls in the
experimental configuration.

The second part is the study of the unsteady effects on stationary airfoils due to unsteady
flow separations at low Reynolds numbers. This study was performed with an efficient time-
accurate numerical method wusing a pseudo-time relaxation procedure with artificial
compressibility and a factored Alternate-Direction Implicit (ADI) scheme for the pseudo-time
integration. The method is successfully validated by comparison with the experimental results
obtained by Suwa et al. for triangular airfoils at low Reynolds numbers. It was found that the
aerodynamic coefficients of lift and drag displayed periodic variations in time due to the
unsteady flow separations occurring at low Reynolds numbers on stationary airfoils at relatively
small angles of attack.

Analysis of the steady and unsteady flows over airfoils in the proximity of the ground was
studied in the third part. Various flight evolutions of the micro-air-vehicles take place in the
proximity of the ground or a ceiling, which require the aerodynamic solutions in these conditions
at low Reynolds numbers. Solutions are presented for the unsteady lift and drag coefficients of

several NACA airfoils in the proximity of the ground. A detailed study of the influence of



various geometric and flow parameters, such as the angle of attack, airfoil relative thickness,
amplitude and frequency of oscillations and Reynolds number, on the flow separations in the
proximity of the ground were carried out in this part. This study also presented the analysis of the
unsteady flows past stationary airfoils in the proximity of the ground, aiming to determine the
influence of the distance to the ground on these unsteady effects which are generated by the
unsteady flow separations on the stationary airfoils at low Reynolds numbers. It was found that
these unsteady effects appear at lower angles of attack for the airfoils in the proximity of the
ground than in free flight.

The fourth and final case study is the three-dimensional analysis of the steady viscous flows
past rectangular wings with various NACA airfoil sections at low Reynolds numbers. The
solutions are obtained using an efficient numerical method to solve the Navier-Stokes equations
for incompressible flows. The numerical solutions of the acrodynamic lift and drag coefficients
obtained by this method are validated with the experimental results obtained by Sunada et al. for
rectangular wings. A parametric study of the influence of various geometric and flow
parameters, such as wing thickness, wing airfoil camber, angle of attack and Reynolds number is
also presented.

The solutions obtained in all these studies are completely original and are validated by
experimental results. They have also shown very interesting results, such as the effect of lateral
walls in the experimental configurations, and the time variation of the aerodynamic lift and drag
coefficients of the stationary airfoils due to the formation of the unsteady flow separations at low

Reynolds numbers.
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RESUME

Cette thése présente une analyse approfondie des écoulements visqueux permanents et
oscillatoires autour des profils aérodynamiques et des ailes tridimensionnelles, ainsi que des
¢coulements confinés tridimensionnels a faible nombre de Reynolds. Ces travaux de recherche
ont ét¢ réalisés dans plusieurs études: i) les écoulements visqueux confinés permanents et
oscillatoires; (ii) les effets de séparation nonstationnaires sur les profils aérodynamiques
stationnaires; (iii) 1’effet de la proximité du sol sur les écoulements visqueux stationnaires et
oscillatoires autour des profils aérodynamiques fixes et oscillants; (iv) les écoulements en trois
dimensions autour des ailes a faibles nombres de Reynolds.

La premiére partie présente une méthode numérique efficace pour résoudre les ecoulements
permanents et oscillatoires en trois dimensions dans un canal a faibles nombres de Reynolds.
Une formulation a différences finies et une compressibilité artificielle ont été utilisées pour la
solution des équations de Navier-Stokes, qui est précise au second ordre dans l'espace et dans le
temps. Les résultats se sont avérés en bon accord avec les résultats expérimentaux disponibles.
Pour la premicre fois, il a été confirmé que la différence entre les solutions numériques en deux
dimensions et les résultats expérimentaux était due a D'effet des parois latérales dans la
configuration expérimentale.

La seconde partie est 1'étude des effets nonstationnaires sur les profils aérodynamiques
stationnaires générés par les séparations d'écoulement oscillatoires a faibles nombres de
Reynolds. Cette étude a été réalisée avec une méthode numérique efficace dans le temps,
utilisant une procédure de relaxation pseudo-temporelle avec compressibilité artificielle et un
schéma implicite de la direction alternative (ADI) factorisé pour l'intégration pseudo-temporelle.
La méthode est validée avec succes par comparaison avec les résultats expérimentaux obtenus
par Suwa et al. pour les profils aérodynamiques triangulaires a faibles nombres de Reynolds. On
a constaté que les coefficients aérodynamiques de portance et de trainée présentaient des
variations périodiques dans le temps en raison des séparations d’écoulement nonstationnaires se
produisant a des nombres de Reynolds faibles sur des profils aérodynamiques fixes a des angles

d’attaque relativement faibles.
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L'analyse des écoulements permanents et oscillatoires sur les profils aérodynamiques a proximité
du sol a été étudiée dans la troisieme partie. Diverses évolutions de vol des micro-véhicules
aériens se produisent a proximité du sol ou d'un plafond, ce qui nécessite des solutions
aérodynamiques dans ces conditions a des faibles nombres de Reynolds. Des solutions sont
présentées pour les coefficients de portance et de trainée oscillatoires de plusieurs profils
aérodynamiques NACA a proximité du sol. Une étude détaillée de l'influence de divers
parameétres géométriques et d'écoulement, tels que I'angle d'attaque, 1'épaisseur relative du profil,
'amplitude et la fréquence des oscillations et le nombre de Reynolds, a été réalisée dans cette
partie. Cette étude a également présenté I’analyse des écoulements oscillatoires autour des profils
aérodynamiques stationnaires a proximité du sol, visant a déterminer I’influence de la distance au
sol sur ces effets oscillatoires générés par les séparations d’écoulement oscillatoire sur les profils
aérodynamiques stationnaires a des faibles nombres de Reynolds. Il a été constaté que ces effets
oscillatoires apparaissent a des angles d’attaque plus faibles pour les profils aérodynamiques a
proximité du sol qu’en vol libre.

La quatriéme et derni¢re étude de cas est l'analyse tridimensionnelle des écoulements
visqueux autour des ailes rectangulaires avec diverses sections de profil aérodynamique a faibles
nombres de Reynolds. Les solutions sont obtenues en utilisant une méthode numérique efficace
pour résoudre les équations de Navier-Stokes pour les €coulements incompressibles. Les
solutions numériques des coefficients de portance et de trainée aérodynamiques obtenus par cette
méthode sont validées avec les résultats expérimentaux obtenus par Sunada et al. pour les ailes
rectangulaires. Une ¢étude paramétrique de l'influence de divers parametres géométriques et
d'écoulement, tels que 1'épaisseur de l'aile, la cambrure du profil de l'aile, 1'angle d'attaque et le
nombre de Reynolds est également présentée.

Les solutions obtenues dans toutes ces études sont originales et validées par des résultats
expérimentaux. Ils ont également montré des résultats tres intéressants, tels que 1'effet des parois
latérales dans les configurations expérimentales et la variation oscillatoire des coefficients de
portance et de trainée aérodynamiques des profils aérodynamiques stationnaires dus a la

formation des séparations d'écoulement oscillatoires a faibles nombres de Reynolds.
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MAIN CONTRIBUTIONS

The main contributions of this thesis consist of the development of numerical methods and

computational codes for the analysis of the steady and unsteady viscous flows past fixed or

oscillating airfoils and wings in free flight or in the proximity of the ground, and of the three-

dimensional confined flows at low Reynolds numbers. The obtained computational solutions are

of topical interest for Micro-Aerial Vehicles (MAVs), Unmanned-Aerial Vehicles (UAVs), and

for the steady and unsteady confined laminar flows in various industrial applications.

The main research contributions are summarized below.

Confined three-dimensional flows

1)

2)

3)

4)

A novel three-dimensional method has been developed for the time-accurate solutions of
the Navier-Stokes equations in the incompressible confined flows at low Reynolds
numbers. This very efficient method is second-order accurate in space and time, uses
artificial compressibility and a factored Alternate-Direction Implicit (ADI) scheme, and
is based on a finite difference formulation on a stretched staggered grid. This method
solves for the first time the three-dimensional steady and unsteady incompressible flows
at low Reynolds numbers.

Original solutions have been obtained for the steady and unsteady confined viscous flows
for the benchmark case of the downstream-facing step channel at low Reynolds numbers,
which are generated by the time variable inflow velocities and by the oscillating walls.
The study of these confined steady flows at low Reynolds numbers, explains and
confirms that the disagreement between the two-dimensional solutions and the
experimental results is due to the three-dimensional effect of the lateral walls. The
obtained three-dimensional computational solutions were in good agreement with the
experimental results.

The multiple flow separations generated on the upper and lower walls have been
thoroughly studied in function of the Reynolds number, span-to-height ratio, and the

amplitude and frequency of the inflow velocity and the wall oscillations.
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Unsteady separations effects on the flow past stationary airfoils

1y

2)

3)

4)

The unsteady separations effects on the flow past stationary airfoils at low Reynolds
numbers have been studied using an efficient time-accurate numerical method for the
integration of the Navier-Stokes equations. This numerical method is based on a second-
order three-point-backward implicit scheme for the real time discretization and a pseudo-
time relaxation procedure using artificial compressibility and a factored alternate-
direction implicit scheme for the pseudo-time integration. A special decoupling
procedure using the continuity equation reduces the problem to the solution of scalar-
tridiagonal systems of equations, which enhances substantially the computational
efficiency of the method.

The solutions obtained for the triangular airfoil were found in good agreement with the
experimental results, before the effects of unsteady flow separations become important,
since the experimental results were obtained only for steady flows.

This study indicated for the first time that the lift and drag coefficients of the stationary
airfoil have oscillations in time generated by the unsteady flow separations on the upper
surface of airfoil at low Reynolds numbers, which appear at relatively low angles of
attack (about 8 degrees).

These flow separations effects on the unsteady aerodynamic coefficients have been
studied for various geometric and flow parameters, such as the angle of attack, relative

thickness and camber, and Reynolds number.

Effect of the ground proximity on the steady and unsteady viscous flows past oscillating

and fixed airfoils

1)

2)

The effect of the ground proximity on the steady and unsteady flows past airfoils has
been thoroughly studied to solve the problems encountered by the micro-air-vehicles
flying in the proximity of the ground or ceiling. The method developed in the previous
case study has been extended to solve this problem.

This study revealed the flow separations appear on the upper surface of the airfoil at
lower angles of attack are due to the proximity of the ground. It was also found that the

flow separation regions developed on the upper surface of the airfoil increase with the

viii



getting closer to the ground, and for larger Reynolds numbers, thinner airfoils, and higher
angles of attack.

3) The solutions for the lift and drag coefficients of the steady and unsteady flows for
several symmetric and cambered NACA airfoils in the proximity of the ground are
thoroughly analyzed in function of the distance to the ground. The unsteady flow
separations on the airfoils are studied with the aid of flow visualizations illustrating the
changes in the flow pattern at various moments in time.

Three-dimensional steady flows past rectangular wings at low Reynolds numbers

1) An efficient numerical method has been developed to solve the Navier-Stokes equations
for incompressible flows past rectangular wings at low Reynolds numbers. The problem
is solved in a computational domain obtained from the physical flow domain by a
coordinate transformation, and using a pseudo-time relaxation procedure with artificial
compressibility, a factored alternate-direction implicit scheme, and a special decoupling
procedure to reduce the problem to the solutions of scalar-tridiagonal systems of
equations, which improves significantly the computational efficiency of the method. It is
interesting to note that for the micro-air vehicles applications, the chord length is between
5 and 20 cm, Reynolds number is between 600 and 4000 and the Mach number is less
than 0.03, which justifies the numerical method used in this thesis based on
incompressible flows in comparison with the few solutions obtained with compressible
flow solvers. This is especially important for the case of unsteady flows which occur due
to the unsteady flow separation at relatively low angles of attack (about 8 degrees), as it
was shown for the case of airfoils in this thesis.

2) The numerical solutions of the aerodynamic lift and drag coefficients obtained by this
method are validated with the experimental results for rectangular wings.

3) The influence of various geometric and flow parameters on the aerodynamic coefficients,
such as the wing thickness, wing airfoil camber, angle of attack and Reynolds number is

thoroughly studied.
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Chapter 1

Introduction

The unsteady flow problems are present in numerous engineering fields such as in thermo-
fluid systems, pumps, nuclear reactors, gas and hydraulic turbines, aeronautics, and Micro-
Electro-Mechanical Systems (MEMS). These unsteady flow problems can be studied
experimentally or computationally. However, experimental studies are sometimes difficult and
challenging to be handled. The analysis of the unsteady flows using numerical methods requires
excellent computational efficiency and accuracy. These requirements are made even more
difficult by the complexity of the fluid flow problems, involving usually flow separation regions
and oscillating boundaries, especially at very low Reynolds numbers. In this case, the solutions
of the Navier-Stokes equations are required to compute these flow separation regions accurately.
In this thesis, a new numerical method has been developed and applied in order to study the
steady and unsteady two-dimensional and three-dimensional flow problems at very low
Reynolds numbers. This method has been applied to two different study cases, internal flows
such as the confined flows in a backward-facing step channel, and external flows such as the
unsteady flows over two-dimensional airfoils and three-dimensional aircraft wings. Each case

study will be analyzed and discussed separately in several chapters throughout of this thesis.

1.1 Background and motivations of the study

A particular interest has recently been devoted to the analysis of steady and unsteady flows at
low Reynolds numbers (Re < 6000) [10, 11] where the viscous effect is very considerable
throughout the flows. These fluid flows are usually present in confined flows, such as fluid-
structure interaction problems, and in external flow problems, such as the steady and unsteady
aerodynamics of airfoils and wings. This study is becoming increasingly important from both
fundamental and engineering applications points of view, due to recent advances in small
Unmanned-Aerial Vehicles (UAVs) [17], Micro-Air Vehicles (MAVs) [18], special military
aircraft, as well as researches on bird/insect flying aerodynamics [19]. More recently, research
interest has been increased for steady and unsteady confined fluid flows at very low Reynolds
numbers for various engineering applications related to the cooling flows in miniature electronic

devices [20] or to the aluminum continuous casting operation to a near-net shape [21]. These



engineering applications demonstrate why the analysis of the steady and unsteady laminar flows
received a topical interest worldwide [1-16, 22, 23, 24, 25].

The fluid flows are dominated by viscosity at low Reynolds numbers, between 400 and 6000.
As a result, the analysis of these flows is very challenging and different from those of higher
Reynolds number flows. One important physical phenomenon that occurs in this case is the flow
separation which is more significant at very low Reynolds numbers. The separation of the flow
and its subsequent reattachment to a solid surface exists in many industrial and aeronautical
systems. In external flows, the flow separations increases the drag and decreases the lift force,
and for internal flows, it reduces efficiency. The importance and complexity of such flows to
engineering equipment have been stressed in many publications (e.g., see Abbott and Kline [26]
and Eaton and Johnston [27]).

Aerodynamics of airfoils and wings at very low Reynolds numbers are extensively studied in
the past years. As an example, micro-aerial vehicles fly at Reynolds numbers of 1000 or even
lower. These small aircrafts can operate in various indoor or outdoor environments including
tunnels, desert, and jungles [18, 19]. Several authors (such as Kunz and Kroo [28]) found that
many successful aerodynamic codes developed for the normal range of Reynolds numbers are
not well suited for very low Reynolds number flow. The aerodynamics of airfoils at low
Reynolds numbers have also been studied by Mateescu ef al. [1-16] with a numerical method
based on a finite-difference formulation with artificial compressibility introduced by Chorin [30],
using domain decomposition.

The literature review shows the majority of the studies have been carried out in the range of
Re > 10°, and there are few publications for the study of laminar flows either experimentally or
computationally at very low Reynolds numbers. For this reason, the present research has focused

on the study of laminar viscous flows at very low Reynolds numbers in several case studies.

1.2 Three-dimensional confined viscous flows at low Reynolds numbers

Flow separations and reattachments as one of the important fundamental subjects in fluid
mechanics, have been the focus of intensive studies for many decades. To understand this
phenomenon better, the flow in a channel with a sudden expansion, such as backward-facing step
has been studied experimentally and computationally. The backward-facing step flow became a

very popular benchmark problem for validating different Computational Fluid Dynamics (CFD)



methods in comparison with the available experimental data (e.g. Armaly et al. [31], Goldstein et
al. [32], Eaton et al. [33], Kim and Moin [34], Grant et al. [35], and Lee and Mateescu [13])
and/or numerical fluid dynamics simulation codes (e.g. Gartling [36] and Mateescu and Venditti
[12]).

For instance, Gartling [36] found an accurate solution of the incompressible viscous steady
flow past a two-dimensional downstream-facing step channel, applying the Garlerkin-based
finite method. This solution shows a strong separation on the lower wall channel and a weaker
one on the upper wall channel. Mateescu and Venditti [12] made further research on the steady
flows in a similar geometry to obtain more precise and efficient numerical results for steady
confined flows using a method based on a finite-difference formulation and the artificial
compressibility concept. This numerical method is capable of predicting and analyzing the
steady and unsteady laminar viscous flows past the two-dimensional backward-facing step
channel. It is characterized by excellent accuracy and computational efficiency. For example, the
finally converged solution for two-dimensional flow over a backward-facing step has been
obtained for 500 x 50 grid points in one hour of computing time on a PC (Intel dual-core i7
CPU) using FORTRAN 90. However, using a finite element method required a longer
computing time: 0.2 hours per iteration (including matrix assembly, triangularization, and back-
substitution) on a CRAY XMP/416 using FORTRAN 77 for 400 x 20 elements with nine nodes
[36].

Lee and Mateescu [13] performed experimental investigations of flows in a two-dimensional
downstream-facing step channel. The obtained experimental data showed good agreement with
the previous numerical and experimental results. The separation and reattachment lengths of the
upper and lower walls and the streamwise velocity were measured non-intrusively using multi-
element hot-film sensor arrays and a bank of constant temperature anemometers. The
reattachment and separation location points produced by the fully developed laminar and
transitional flows were analyzed.

Mateescu et al. [16] presented a thorough analysis of the unsteady confined viscous flows
generated by the variations in time of the inflow velocities and by oscillating walls (which can
occur in the practical industrial applications). The time-accurate solutions of the Navier—Stokes
equations for these unsteady flows were obtained with a finite-difference method using artificial

compressibility on a stretched staggered grid. This method was then applied to obtain solutions



for the benchmark unsteady confined flows past a two-dimensional downstream-facing step with
oscillating walls, which displays multiple flow separation regions on the upper and lower walls.

In the last three decades, there have been many studies on two-dimensional flows past
backward-facing step channel. In the recent years, there has been significant progress in these
analyses based on different CFD techniques in which three-dimensional calculations have
become affordable for many research centers.

Williams and Baker [37] analyzed laminar flow in a three-dimensional backward-facing step
geometry. The solution correctly predicts the reattachment lengths for 100 < Re < 800 and
confirms the effect of three-dimensionality. They also found that the sidewalls result in the
creation of a wall jet, located at the lower channel wall and pointing from the side wall towards
the channel mid-plane.

Chiang and Sheu [38] carried out three-dimensional simulations of laminar flow in a step
geometry with a similar expansion ratio to the Armaly et al. study case [31] for various Reynolds
numbers and aspect ratios. They observed that the flow develops into a two-dimensional profile
at the plane of symmetry when the aspect ratios are increased up to 50 and higher.

Nie and Armaly [39] obtained the results of laminar forced convection flow in a backward-
facing step geometry. They presented that the size of the primary recirculation gets larger with
increasing the step height. They also have shown that the jet-like flow near the side wall lies on
the stepped wall which causes a shorter reattachment length near the side wall.

In addition to the obvious engineering interests, this study is also motivated by an academic
interest related to the steady laminar flows past downstream-facing step channel. The two-
dimensional numerical solutions for the flow separation and reattachment locations in this
confined flow problem, such as those obtained by Gartling [36] and by Mateescu and Venditti
[12], were found to be not in good agreement with the experimental results obtained by Armaly
et al. [31] and by Lee and Mateescu [13], especially for larger Reynolds numbers (between 700
and 1200). In the studies performed by Mateescu and Panahi [4, 5, 7, 8] it was shown that this
disagreement between the two-dimensional numerical solutions and experimental results is due
to the three-dimensional effect of the lateral walls in the experimental configuration, as opposed
to the rigorous two-dimensional numerical solution. However, up to now, this explanation has

not been scientifically confirmed by theoretical or numerical three-dimensional solutions for this



problem. Therefore, this study represents a novel contribution, which has not been previously
reported.

The primary objectives of this section when considering the unsteady internal laminar flows is
to obtain time-accurate solutions of the Navier-Stokes equations for three-dimensional unsteady
confined flows with harmonic variations in time of the inflow velocities coupled with the
oscillations of the channel walls. This study is carried out with an efficient time-accurate method,
which is capable of solving the multiple flow separation regions developed on the lower and
upper walls of the channel. It is also interesting to estimate the effect of the amplitudes and the
frequencies of the inflow velocity and of the oscillating walls to obtain solutions for the three-

dimensional flows with multiple separation regions in a channel with a downstream-facing step.

1.3 Study of unsteady flow separations on stationary airfoils at low Reynolds
numbers

The dream to design an aircraft that can fly at low Reynolds numbers is not new. There are
many publications related to the design of low-speed airfoils that are still relevant today [40-45].
At the time these studies were first published, low Reynolds number flows were considered in
the order of fifty to hundred thousand. However, for the micro-aerial vehicles the Reynolds
number varies from several hundreds to several thousands. Recently, a new experimental facility
has been built with the specific goal of studying the flows in this range of Reynolds numbers
[46]. The goal of these experimental works and the corresponding numerical studies is the
analysis of micro-aerial vehicles.

The airfoil aerodynamics at these low Reynolds number flows is dominated by viscous effects
and flow separation phenomena is very different from those of conventional aircraft. Several
studies have been published on the airfoil analysis in steady flow at very low Reynolds numbers.
Kunz and Kroo [28] used in their computational study of low Reynolds number flows the INS2D
code developed at NASA Ames based on an upwind finite differencing scheme developed by
Rogers and Kwak [29]. Mateescu and Abdo [10] also studied the steady flows past airfoils at low
Reynolds numbers with a method using artificial compressibility and a central finite-difference
formulation on stretched staggered grids. A previous study analyzing the unsteady flows past

oscillating airfoils at low Reynolds numbers has been published by Mateescu et al. [14].



The focus of the present study is to analyze the unsteady flows past stationary airfoils at low
Reynolds numbers. This work is performed by an efficient time-accurate numerical method
developed for the solution of the unsteady Navier-Stokes equations, which is second-order-
accurate in time and space. A second-order three point-backward implicit scheme is used first for
the real-time discretization, followed by a pseudo-time relaxation procedure using artificial
compressibility and a factored alternate-direction implicit scheme for the pseudo-time
integration. A second-order central finite-difference formulation is used on a stretched staggered
grid, which avoids the odd-and-even points decoupling. A special decoupling procedure using
the continuity equation reduces the problem to the solution of scalar-tridiagonal systems of
equations, which enhances substantially the computational efficiency of the method.

The numerical method is first validated by comparison with the experimental results obtained
by Suwa et al. [47, 48] for a flat plate and a triangular airfoil in the various angles of attack at
Reynolds number of 3000. These experimental results are presented in the form of lift and drag
coefficients for several angles of attack.

This work aims to analyze the unsteady effects in the flows past stationary airfoils generated
by the unsteady flow separations developed on the airfoil upper surface at low Reynolds
numbers. This leads to the study of the unsteady effects on the aerodynamic coefficients
generated by the unsteadiness of the flow separations, occurring at relatively small angles of
attack. It is also important to obtain the numerical results for the lift and drag coefficients and the
lift-to-drag ratio for several symmetric and cambered NACA airfoils at different Reynolds

numbers.

1.4 Steady and unsteady viscous flows over airfoils in the proximity of the
ground

Ground effect is one of the aerodynamic phenomena that can be seen on an aircraft during
take-off and landing when the wings are in the proximity of the ground. This close vicinity of the
ground changes the flow of air around the wing leading to an increase in the lift and a reduction
in the induced drag of the wing [49].

Various flight evolutions of the micro-aerial vehicles take place in the proximity of the

ground, a ceiling or a wall, which require the aerodynamic solutions in these conditions at low



Reynolds numbers. To date, there are no published studies for steady or unsteady flows past
airfoils in the proximity of the ground at low Reynolds numbers.

This unsteady flow problem is solved in a rectangular computational domain, obtained from
the physical domain by time-dependent coordinate transformations for various sub-domains, in
which the boundary conditions are efficiently and rigorously implemented. Solutions for the
airfoils in the proximity of the ground at low Reynolds number flows are obtained with an
efficient numerical method developed by the author for the time-accurate solution of the Navier-
Stokes equations, which is second-order accurate in both time and space.

This study devoted to the analysis of the steady and unsteady flows past fixed and oscillating
airfoils at low Reynolds numbers (from 400 to 6000) in the proximity of the ground. This work
presents a detailed study of the influence of various parameters, such as Reynolds number, angle
of attack, airfoil relative thickness, and amplitude and frequency of oscillations on the flow
separations occurring on the airfoil and aerodynamic coefficients (lift, drag and lift-to-drag ratio)
in the proximity of the ground.

The unsteady flows past the stationary airfoils in the proximity of the ground at low Reynolds
numbers are also studied in this research. The goal is to analyze the effect of the ground
proximity on the stationary airfoils considering these unsteady effects generated by the unsteady
flows separations, which are shown to appear at even lower angles of attack near the ground.
This study presents solutions for the oscillations in time of the lift and drag coefficients of
several symmetric and cambered stationary airfoils in the proximity of the ground, which are
generated by the unsteady flow separations developed on the airfoil upper surface at low
Reynolds numbers. The influence of various geometric and flow parameters, such as the distance
to the ground, the angle of attack, relative thickness and camber, and Reynolds number on the
unsteady aerodynamic coefficients and on the unsteady flow separations is also studied in this

research.

1.5 Steady viscous flows over wings at low Reynolds numbers

The steady flows around wing sections and airfoils have been significantly studied during the
past decades for their aeronautical and engineering applications. At the early studies, the method
of conformal transformations has been applied to obtain inviscid steady flow solutions for

various airfoil shapes including Joukowski, Karman-Trefftz, and Carafoli airfoils [50-54].



Glauert and Birnbaum [55] developed classical thin airfoil theory and established the foundation
of the aerodynamics of thin airfoils of arbitrary shapes in incompressible flows, by using a
modified Fourier series for the distributed vortex intensity on the chord.

More recently, computational solutions have been obtained using various numerical methods
for solving the Euler or Navier—Stokes equations, such as those based on finite-difference or
finite-volume formulations (for examples see Anderson [50, 56], Drela and Giles [57, 58],
Jameson et al. [59], Elrefaece et al. [60], Nelson ef al. [61] and Mateescu and Stanescu [62]).
Several authors solved the viscous flows past airfoils and wings numerically by combining
inviscid Euler solvers, or panel methods, with the analysis of the boundary layer, developed
along the airfoil contour (see Cebeci [63] and Drela and Giles [57, 58]).

The literature review shows that the external flows past airfoils have been substantially
studied both experimentally and numerically at higher Reynolds number regimes. For example,
Peterson [64] published experimental results of pressure distribution, induced forces and
boundary layer measurements for NACA 64A010 airfoil at Reynolds number of Re = 4.1 x 10°
with different angles of attack. Similarly, Derkesen et al. [65] published several experimental
results for NACA 0012 airfoil in steady flows at different Reynolds numbers ranging from 5,000
to 60,000, with angles of attack varying from 8 to 12 degrees. They have noticed the fluctuation
in the velocity and vorticity due to the increase of Reynolds number and angle of attack.

However, there is a lack of experimental and numerical studies for steady and unsteady flows
past airfoils and wings at very low Reynolds numbers (Re < 6000). As it is discussed earlier, the
study of laminar flows at this range of Reynolds numbers is somewhat challenging and difficult
to perform due to viscous effects. Commercial and open source CFD software also show
limitations for studies at very low Reynolds numbers. Maughmer and Coder [66] conducted a
benchmark investigation of commercial and open source software like PROFIL 07, XFOIL 6.94,
and ANSYS FLUENT 12.1.2. They published a comparison between experimental results and
the theoretical methods computations used to predict the aerodynamics characteristics of static
airfoils concluding that for most of the programs when the Reynolds number decreases below
70,000 the predictions of the aerodynamic characteristics deteriorate.

As a result, there is a need to analyze the steady and unsteady flows past airfoils and wings at
low Reynolds numbers. The viscous effect and flow separation phenomenon in this type of flows

are dominant and very challenging and different from those aircraft flying at Reynolds numbers



between Re = 10 x 10% and 100 x 10% in the compressible flow regime. At these low Reynolds
numbers, the fluid flow past the airfoil is incompressible, and many authors use the concept of
artificial compressibility introduced by Chorin [30, 67, 68]. In incompressible flows at low
Reynolds numbers, the occurring separation phenomena create difficulties for the numerical
methods related to their convergence, stability, and accuracy.

Mateescu and Abdo [10] presented a numerical method for the flows past airfoils at very low
Reynolds numbers based on a pseudo-time integration method using artificial compressibility for
solving the Navier—Stokes equations accurately. The method was first successfully validated for
the flows with multiple separation regions past a downstream-facing step by comparison with
previous experimental and computational results at very low Reynolds numbers between 400 and
1200 [13]. The airfoil solutions were validated by comparison with the results obtained by Kunz
and Kroo [28] for Reynolds numbers between 1000 and 6000, and excellent agreement was
found between the two sets of results.

Broering and Lian [69] reported a numerical study of tandem flapping wing aerodynamics in
both two- and three-dimensions. The simulations were based on the incompressible Navier-
Stokes equations, discretized on overlapping grids. They found that vortex interactions highly
depend on the phase lag angle and spacing between the forewing and hindwing, and three-
dimensional cases exhibited a spanwise variation in the Leading Edge-Vortex (LEV) structure
and a weaker LEV formation at mid-span compared to the two-dimensional cases with the same
kinematics.

Recently, Mateescu and Munoz [14] developed a numerical method to solve steady and
unsteady flows past airfoils at very low Reynolds numbers. The solutions are obtained with an
efficient numerical method and presented for the unsteady aerodynamic coefficients (unsteady
lift and drag coefficients, and lift-to-drag ratio) of the airfoils executing pitching oscillations at
low Reynolds numbers.

In this thesis, a new efficient numerical method is used to solve the steady Navier-Stokes
equations for three-dimensional viscous flows in the incompressible regime at very low
Reynolds numbers, between 600 and 6000. There are few experimental data by several authors.
Sunada et al. [70] investigated the aerodynamic characteristics of various rectangular wings at
Reynolds number 4000. Their study presented the experimental aerodynamic lift and drag

coefficients obtained for these wings. The influence of camber ratio, thickness ratio, and



streamline shape has also been presented in their research. The results were shown in the form of
a comparison of the lift and drag coefficients, which is used to validate this new numerical
method.

This analysis is performed with an efficient numerical method to solve the Navier-Stokes
equations in a fixed computational domain, obtained from the physical domain by a geometrical
coordinate transformation. This novel approach has the advantage of solving the problem in a
fixed rectangular computational domain in which the boundary conditions are implemented
efficiently and rigorously. The numerical method is second-order accurate in space, and a
pseudo-time relaxation procedure is used with artificial compressibility. A factored Alternate-
Direction Implicit (ADI) scheme is used for the pseudo-time integration. It is important to
mention here that while the ADI scheme reduces the problem to the solution of block tri-
diagonal systems of equations, the special decoupling procedure mentioned earlier reduces
further the problem to the solution of several sets of scalar-tridiagonal systems of equations,
which are much more efficient to solve computationally.

The main objective of this research is to analyze and obtain accurate and efficient steady
solutions for three-dimensional flows past wings. Furthermore, various aerodynamic coefficients
such as lift and drag coefficients along the chord and span of the wing are calculated for various

low Reynolds numbers between 400 and 4000.

1.6 Thesis organization

After the introduction, in Chapter 2, the analysis of the steady and unsteady three-dimensional
internal flows with oscillating walls and variable inflow velocity is presented. The geometry and
the boundary conditions of the problem are formulated, and the Navier-Stokes equations for
incompressible flows are introduced in non-dimensional form, for computational convenience.
The method of solution is then discussed through the presentation of a synthesis of its various
features, such as the time-dependent transformation, the real-time discretization approach, the
pseudo-time iterative technique, the ADI scheme and the special decoupling procedure leading to
the reduction of the problem to the solution of a set of scalar-tridiagonal systems of equations.

Chapter 3 is devoted to studying of unsteady effects on stationary airfoils generated by the
unsteady flow separations at low Reynolds numbers. This study presents solutions for the

oscillations in time of the lift and drag coefficients of several symmetric and cambered airfoils.
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The influence of various geometric and flow parameters, such as the angle of attack, relative
thickness and camber, and Reynolds number on the unsteady aerodynamic coefficients and the
flow separation is also studied.

Chapter 4 presents the analysis of the steady and unsteady viscous flows over airfoils in the
proximity of ground. After the problem formulation, the novel time-dependent coordinate
transformation defining the fixed computational domain with six sub-domains is presented. The
time-accurate numerical method to solve the modified Navier-Stokes equations in the fixed
computational domain is also presented. Unsteady effects on the stationary airfoils in the vicinity
of the ground, which are due to the unsteady flow separations, are also studied thoroughly in this
chapter.

Chapter 5 is focused on the presentation and discussion of the solutions obtained for steady
viscous flows over rectangular wings with NACA airfoil sections at low Reynolds numbers.
After introducing the problem formulation, a novel geometrical coordinate transformation
defining the fixed computational domain with six sub-domains is presented. The numerical
method is used to solve the modified Navier-Stokes equations in the fixed computational
domain.

Chapter 6 is devoted to the conclusions of the present study and suggestions for future works.

The main contributions of this thesis are summarized after the Acknowledgment.
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Chapter 2

Steady and Unsteady Solutions for Three-Dimensional Confined

Flows with Oscillating Walls and Variable Inflow Velocity

This Chapter is devoted to the analysis of the steady and unsteady confined viscous flows that
are present in many engineering systems. A three-dimensional backward-facing step channel has
been chosen as a benchmark problem for this study. Unsteady flows are usually generated by an
oscillating wall and by the variations in time of the inflow velocities. These flows have to be
taken into account in the study of flow-induced vibration and instability of these systems.

In this chapter, a numerical method is presented for three-dimensional laminar steady and
unsteady confined flows which can be used to obtain accurate and efficient solutions for the
flows with multiple separation regions. Time-accurate solutions of the Navier-Stokes equations
for steady and unsteady flows are obtained with a numerical method developed by the author.
The method is second-order accurate in space and time, and is based on a finite difference
formulation on a stretched staggered grid which uses artificial compressibility. A factored
Alternate-Direction Implicit (ADI) scheme and a special decoupling procedure, based on the
utilization of the continuity equation, are used to substantially enhance the computational
efficiency of the method by reducing the problem to the solution of scalar-tridiagonal systems of
equations.

This method was successfully validated by comparison with the theoretical results obtained
by White [71] for a fully developed velocity profile in the uniform rectangular channels at
several axial locations. The current three-dimensional results are also compared with
experimental results conducted by Lee and Mateescu [13], Armaly ef al. [31] and with the two-
dimensional solution obtained by Mateescu et al. [16] for confined flows past backward-facing
step channel.

The formation of the flow separation regions is thoroughly analyzed in this chapter. A special
interest is to study the effect of the inflow velocity variations, Reynolds numbers, reduced
frequency of oscillations, and amplitude of oscillating wall on the flow separations appearing in
confined viscous flows. The author found no previous solutions for three-dimensional unsteady

confined flows generated by time variable inflow velocities and by oscillating walls.
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2.1 Problem formulation and governing equations

As an example of steady and unsteady confined laminar flows, consider a flow in a

rectangular channel of downstream height H and downstream width 26 H . The upstream
portion of the channel of length H/, has the same width, 2b H , and an upstream height 7 H
which is suddenly enlarged to the downstream height through a downstream-facing step of
height (1—%)H , as shown in Figure 2.1. The downstream length of the channel is denoted by
H1, . The numerical solutions presented further were obtained for #=0.5.

This flow is referred to the Cartesian coordinates Hx, Hy and Hz centered at the step
corner in the plane of symmetry of the channel, where x, y and z are nondimensional
coordinates (with respect to H ).

At the channel inlet ( Hx = —H|,) there is a fully developed laminar unsteady flow defined by

the axial fluid velocity u(y,z) expressed in White [71]

zy
1642 @ (—l)k cosh(2k+1)7
ullooyz)=—3-CX g |1 7b
70 k=0 (2k+1) cosh(2k+1) 7

cos [(Zk + 1)% 2Zh_ h} 5 2.1)

where C is related to the time-variable mean flow velocity in the form

-1

1920 21 b

c=u()3/n*)|1-2=2 tanhk +1)—| (2.2)
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and U (t) is the mean inflow velocity at time # in the form of
Ut)=U, (1-asin(w?)) , (2.3a)
and in the steady case where (7 =0) the mean inflow velocity becomes

un=0,, (2.3b)
where U, is the time-average mean velocity, t=U, t'/H and o=w H /U, are the

nondimensional time and the reduced frequency of oscillation (" =27 f is the radian frequency

of the oscillation), and a is the nondimensional amplitude of the inflow velocity oscillation.
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Figure 2.1 Geometry of the rectangular channel with a downstream-facing step and an oscillating
wall.

A portion of the lower wall of length HI, situated just behind the downstream-facing step, is

assumed to execute transverse oscillations defined by the following lower wall equation

Hlg(x,r)-h]  for xe0,1]
Hz= , (2.4)
— Hh for x>/

where g(x,¢) is the oscillation mode defined as
g(x, t) =e(t)sin(zrx/1) where e(t)= Acos(wt), (2.5)

in which A4 is the nondimensional amplitude of oscillation (nondimensionalized with respect to
H'). The equation (2.1) defining the theoretical velocity profile of the fully-developed laminar
flow is very slow converging, and can lead to numerical errors when the infinite summation is
truncated to a finite number of terms. The following procedure has been used in this analysis to
calculate efficiently and more accurately the fully-developed laminar velocity profile. Consider
the general term of the infinite summation appearing in equation (2.1), which can be expressed in

the form

T, = G |:1 _ cosh(Ky) } cos (K(z _ ED , where K =2k + 1)z (2.6)
(2k+1)|  cosh(Kb) 2 h

Up to a certain value of k£ < N, this term of the series can be calculated numerically with a

good accuracy. However, for very large values of Ky >>1 and Kb>>1, the ratio of the
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hyperbolic cosine becomes very close to unity and the numerical evaluations with a finite
number of digits is affected by large truncation errors. In this case, this ratio can be successively

expressed as

cosh(Ky) exp (Ky) —exp (— Ky) K(y-b)

= e 5 2.7
cosh(Kb)  exp(Kb)—exp(— Kb) @7)
and the general series term for large values of K becomes
Ik
Tk:&[l—e“y_b)]cos K z—ﬁ for K>>1 and b/h>>1, (2.8)
2k+1) 2
where the exponential can be expanded in Taylor series as
(Ky—Kb) Z 1 on 2n
l-e =—> ——K“(y-b) (2.9)
n=1 (21’1)!
Thus, the velocity profile of the fully-developed laminar flow can be numerically calculated
in the form
_ v
2N [k cosh(2k +1)— B
u(—lo,y,z)=16h3 C Zl: ), 1- hb cos{(2k+1)”2z h}
d e=0(Zk +1) cosh(2k +1) % 2
_16k » 1 3 | _(2k+1)£( —b)Tﬂ co{(zkﬂ)” 224’} (2.10)
2 5 @k | &) 2V 2 |

where N, has the following indicated values in function of the downstream aspect ratio, 25, of

the channel and for step height 2=0.5:

2b

12 16 26.6

N

112

55

27

13

2.1.1 Navier-Stokes equations for unsteady confined viscous flows

Applying the conservation of mass and Newton’s second laws to an infinitesimal, fixed

control volume yield the continuity and momentum equations as follows:
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In vector form

VeV =0, (2.11)

N ivev' Vs YL _y 2y where V' = {uv w }T (2.12)
o

*

In three-dimensional Cartesian coordinate form:

out vt ow'
+ +

ot =0, 2.13
ox oy Oz ( )
ot 0w P D () O 4 ot ot ot

*+—* u +— |+ *(vu )-I- *(wu )ZV 2+ 2+ 7 (214)
ot Ox p) oy Oz " o e )
o 0 (xx\ 0 w9 P 0w« o' v oh

s TT—uv |+t—|v t+t— |(+—FWV |=V 2+ 2+ 3 (2.15)
ot Ox oy P Oz o 8)/* o)
aW* N _(u*w*)+ i(v*w*)+— W*Z +p_* _ 82W N azw N azw*

where, u*, v, w",and p" are dimensional velocity components and pressure which can be
definedas u" =uU,, v: =vU,, w =wU,,and p* = png . The dimensional coordinates
can be expressed as x =xH, )y =yH, and z =zH, where the dimensional time
is 1 =tH/ U, (where o is the fluid density).

The nondimensionalization is implemented in the incompressible continuity and Navier-
Stokes equations in which the fluid velocity vectors are nondimensionalized with respect to U,
time-average mean velocity and the Cartesian coordinates x, y and z are nondimensionalized

with respect to H, downstream channel height. Thus, the nondimensional form of the equations

can be written as follows:

a_u+@+a_w—0

xta =t 2.17)
RPN I S O R L A

PRI PR P PR e P

a ooyt PR Relad g7 a2 ) (2.19)



%+i(uw)+i(vw)+ﬁ(w2+p)zi 62w+a2w+62w 290
ot Ox a_y oz Re axz 6)12 622 (2.20)

where, Re=U, H/v represents the time-average mean Reynolds number based on the
downstream channel height, which is related to the Reynolds number, which is related to the
Reynolds number based on the hydraulic diameter as Re, =Re4b/(2b+1) (where v is the
kinematic viscosity).

The time-dependent Navier-Stokes equations for the incompressible flow past a backward-

facing step channel can be expressed in nondimensional conservation form as

WV Qv p) =0, vey=24, 0V, 0w

—+—=0, (2.21)
ot Oox 0Oy 0z

where V = {u,v, W}T , which represents the dimensionless fluid velocity vector, and Q(V, p),

which includes the convective derivative, pressure and viscous terms, are expressed in three-

dimensional Cartesian coordinates as

V= {u,v, W}T , (2.22)
Q(V,p)=0{0,(u,v,w, p). O,(u,v,w, p), O, (u,v,w, p)} ", (2.23)
2 2 2
0, (u,v,w, p)= Ouu)  OGu)  Owu) Op 1|07 O Ou : (2.24)
ox oy oz  ox Relax? o? oz?
2 2 2
0. (u,v, w, p)= o(uv) N o(vv) N o(wv) +8_p_i 0 ;/ N 0 \2/ N 0 ;/ , (2.25)
Ox oy oz oy Relox® oy° oz
2 2 2
Qw(u,v,w,p)= o(uw) N o(vw) N o(ww) +6_p_i 0 W 0 W o'w , (2.26)
ox oy oz 0z Relax® o* oz?
VoV:a—u+ @+@, (2.27)
ox 0oy Oz

in which u, v, w and p represent the dimensionless velocity components and pressure,
nondimensionalized with respect to U, and onz, respectively.
2.1.2 Boundary conditions

No-slip boundary conditions are considered at the solid walls. The inflow and outflow

boundaries of the computational domain are situated at a distance H/, and H/, upstream and
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downstream from the step, respectively. The inflow boundary condition is defined by equation
(2.1), and the outflow boundary conditions for the velocity components are based on an
extrapolation to second-order accuracy from inside the computational domain. The outlet
pressure is obtained by integrating the momentum equation from the bottom wall (Mateescu and

Venditti [12]). The implementation of the boundary conditions is shown in Appendix A.

2.2 Method of solution for the unsteady three-dimensional confined viscous
flows

The development of a time-accurate method is shown in this section, which starts with the
time-dependent transformation from the physical domain to the fixed computational domain, and
applied to Navier-Stokes equations. It is followed by the real-time discretization of the Navier-
Stokes equations. A detailed description of the pseudo-time relaxation technique applied to
Navier-Stokes equations is also shown. The alternate-direction implicit scheme and the
implementation of the special decoupling procedure are performed, and finally, the spatial

discretization on stretched staggered grids is carried out.

2.2.1 Time-dependent coordinate transformation

For a rigorous implementation of the boundary conditions on the oscillating walls, the real
fluid flow domain with moving boundaries is transformed into a fixed computational domain by

the time-dependent coordinate transformation
X=x, Y=y, Z = f(x,z,1), t=t (2.28)

where f (x, z,t) is defined in terms of oscillation mode, g(x, t) defined by equation (2.5), in the

form
z/h for x<0
fle,z,6)= ooz for 0<x <!/ (2.29)
l_g(xat)
l-h+z for x>1

Thus in the fixed computational domain (X ,Y,Z), the lower and upper boundaries of the

channel before and after the step are defined by the equations Z =0 and Z =1.

In the fixed computational domain, the Navier-Stokes and the continuity equations can be

expressed as:
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%—:}+G(V p)=0, VeV =0,

V= {u,v,w}T , G(V, )z {Gu(u,v, w,p), Gv(u,v, w,p), Gw(u,v, w,p)}T s

62?) ¢ o*u LC 6(uu)+6(vu)+c o(wu) e a_u .

G LA S )
lu.vow.p)= o2 2oz oy T az Yazoax

2 2 2
+C28—p+c5 0 L;+C6 Ou +C 0 L; R
oz oz 020X oY

o(uv) “C 0%y LC o(uv) N o(vv) G o(wv) “C, @-ﬁ- ap

G Y 9 =
(v p) ox  ax? Yoz ov 0z Yoz or

Ry GRY CRY
+C +C +C .
“oz2 Cazax ' oy?

2
o(uw) “C 0 v;/ e o(uw) N o(vw) G
oX oX oz oY oz oz oz

8(Ww) op

Gw(u,v, w,p):

2 2 2
6W+C6 o“w +C16 w,
0z* 0ZoX oy?

+Cs

Veyo 04 & o 0u o Ow
ox or ez ey

in which the coefficients C,, C,, C;, ..., C, are defined as:

Ci=——, =
Re ox

S CRC
> Re|\ ox 0z % Reox’

and in the steady case these coefficients are as following

1
C1=__, C2:0, C3:0, C4=0
Re

1
Ci=——u, C =0
" Re 6

oz’ ot

The derivation of these coefficients is presented in Appendix A.
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2.2.2 Real-time discretization

A second-order three-point backward implicit scheme is used to perform the discretization of

the momentum equation in real-time:

n+l n+l 4y n-1
(av} _3v 4Vh 4V , (2.36)

o 2 At

where the three consecutive time levels and the time step are represented by the superscripts

n+l . n n_tn—l

n—1, n and n+1, and At =t t" =t respectively. Hence, equations (2.30) can be

expressed at the time level ¢” 1 in the form
AR ch s L Vev™li_g, (2.37)
n_yn-1
where o = %, (elan G(V”+1,p"+1) and F" = %

The initial conditions are specified for V' and p1 , throughout the fluid domain for the
computational initialization of the previous momentum equation. It means that the solution
should be known at previous time level ¢ A simple implicit Euler scheme is used instead of the

second-order three-point-backward implicit scheme to start the advance to the next time level

t*. Then, only at the first time iteration a¢=A¢ and F"=V". The solution of the flow

quantities v*™*! and p”+1 1s done by imposing boundary conditions at the inlet, outlet, and on

the moving surfaces of the airfoil, which are analyzed in following sections of this chapter.

2.2.3 Pseudo-time iterative relaxation technique

To advance the solution of the semi-discretized equations from real-time level ¢” to ¢ , an

iterative pseudo-time relaxation procedure with artificial compressibility is used in the following

form

oV - == op -
Z L +V+aG(V,p)=F", S5 +DV =0, 2.38
= (V.p) (&) (2.38)

where V(zr) and p(r) denote the pseudo-functions corresponding to the variable velocity and

n+l

pressure at pseudo time 7, between the real time levels ¢” and """, and & represents an

artificially-added compressibility. Pseudo-continuity and Navier-Stokes equations (2.38) are
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solved in pseudo-time. An implicit Euler scheme is used in this respect to discretize these

1

. . + . .
equations between the pseudo-time levels 7 "and 777 =7"+ A7, and the resulting equations

are expressed as

vl _ v _ v+l ov _
v -v _ Pmp g ayvHiog, (2.39)
At At o

where A7 is the pseudo-time step and the superscript v indicates the solution at pseudo-time

level ¥ =vAr and G = G(V"”, P! ) To start the pseudo-time integration initial conditions
are required, then V" and p” take the following values:

VV — V}’l , ﬁv

v=l

= p" (2.40)

v=l

Once the steady state is reached at v = k, the pseudo-time derivatives become zero

VK ik , ﬁkﬂ _ ﬁk (2.41)
and then (at that point)
v — oyl : pk+1 = pn+1 (2.42)

Introducing the pseudo-time variations,

AV' =V vy, AP =pt - p, AGY =G -G (2.43)

Then equations (2.38) can be written in delta form as

(1+ ATAVY +0AG" (V" p*) = Ac[F"= V" —a G (V" p")). (2.44)
AP +%V0(A\7V): —%v-\?v (2.45)

The last two equations are iterated in pseudo-time until variations are equal to zero (AV" =0
and Ap" =0). Although there are many different methods to calculate the value of the artificial
relaxation parameter 0 and Az, (for example, see Soh [72, 73] and Mateescu et al. [23, 24]) in

this research these values are optimized by numerical experimentation.
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2.2.4 The linearization and alternating-direction implicit scheme

In previous sections the implementation of a time integration method for the solution of the

Navier-Stokes equations was shown. The introduction of spatial differential operators is required

to go on further obtaining numerical solution of the system of equations. In addition, to facilitate

the pseudo-time iterative process, the implicit nonlinear system of equations (2.44) and (2.45) are

linearized.

The linearization of the AV” and AG" terms is done by lagging the velocity components in

the pseudo-time variation. This method of linearization is simple, efficient and fits well in this

implicit scheme. It is expressed as

— ~v+1 -
Au uV _uV

AV =| Ay |=| 3 =3

~v+1 -
_AW WV _WV

AGu “uv+1 _ éuv
AGV — AG — ~ v+l _ ~ V

where,
—V 2 —v ~v —y
AG, (v, w, p)= o(u" Au) e 0 A;l N O@"Au) (V" Au) e o’ Au)
oX ox oz oY oz
2 2 2
+C48Au+8Ap+C28Ap+C58A2u+ 68Au+ 16A2ua
oz oX oz oz azox ' oy
—V 2 —v -V —y
AG, (1,v,w, p) = o(u" Av) e 0 sz C, o(u" Av) N o' Av) e O(W" Av)
X ox oz oY oz
2 2 2
48Av+8Ap+ 56A2vJr 68AV+C16A2V
oz oY oz dZoX or?
—V 2 —v —y \,V
AGW(u,v, W,p): o(u” Aw) e 0 A;v G o(u” Aw) N o(v"Aw) Gy o(w" Aw)
ox oxX oz oY 7z
2 2 2
MR LN eR A2W+C6 oaw . ¢, 9 AZW,
oz oz oz oZoX oY

Ve(AV)= OAu N OAv oA 5Au+ , OAw
oX oY oz oz
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(2.49)
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Equations can be written (2.44) and (2.45) in a global matrix form as

[l+ aAz(Dy + Dy + D, )| AB=AzS

where A® = [Au, Av, Aw, Ap]T , a=2At/3, and I is the identity matrix, and where

S

0

G

1
s

R 1=

o)}

zZ

N 0 0
0 N+— 0
o
0 N
10
L o Oy
F'-i" -aG, |
F'—v'-aG,
F,-w —-aG,
 -(/5)DVY |

in which the differential operators M, N and R are defined as

M

-V 2 -V 2
:a(”‘p)aqaf, N:a(v‘p)aclaf,
ox ox oY oY
—V —V 2 2
R=C, o (p): G oo ¢)+C4a—(p+csa—(p+cé—a i s
o7 o7 o7 072 0XoZ

where @ canbe Au, Av, Aw or Ap.

o o2|oo

(2.52)

(2.53a)

(2.53b)

(2.54)

(2.55)

A factored Alternate-Direction Implicit (ADI) scheme is then applied to the left hand side of

equation (2.52)

[l+ aAz(Dy + Dy + D, )A® = (I+ aAzD  )(I+ aArDy )(I+ aArD, ) AD

(2.56)

It should be mentioned that the approximate factorization eliminates the quadratic terms

a*At*D Dy, a?Ar°DyD,, a*Ar*D,D,, and cubic term a’A7°DyDyD, from left hand side

of equation (2.52). Therefore, it is important to keep Az sufficiently small. This ADI scheme can

produce some convergence issues if At takes large values.
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The ADI scheme reduces the solution to the sets of several scalar-tridiagonal systems of

equations. Thus, equation (2.52) changes to

(I+ aAzD ) (I+ aA7Dy ) (I+ aATD, ) A® = A7S (2.57)

The ADI scheme requires the introduction of intermediate variables A@ and A® to solve the

linear implicit system of equations. The variable A@ has the components Au, Av, Aw and Ap

which are calculated in the Z-weep
[I-i—aATDZ]AQE:ATS (2.58)

. * #* * #* w |T
Next, in the X-sweep the values of A®" = [Au AV ,Aw , Ap ] are computed
[+ aATD |AD" = AD (2.59)
and finally, in the Y-sweep the values of A® = [Au, Av, Aw, Ap]T are obtained

[l+ aATDy | AD =AD" (2.60)

Hence, after the ADI method application, by replacing the equations (2.53a) and (2.53b) into
(2.58), (2.59) and (2.60), the scalar form of Z-sweep, X-sweep and Y-sweep can be obtained.
The details are presented in Appendix A.

2.2.5 Special decoupling procedure

A special decoupling procedure [9, 10, 11], based on the utilization of the continuity equation,
is used for each sweep to eliminate the pressure term from momentum equations. In this manner,
the problem is reduced to the solution of several sets of decoupled scalar-tridiagonal systems of
equations. As a result, this method is characterized by excellent computational efficiency and
accuracy. For example, for Z-sweep the corresponding relation from continuity equation can be

used:

2.61)

AT ANt am) - Ar(@AL_{j
’ 5

Ap=-—|VeV'+C +C Ap=Ap——
5( Yz ez v ox
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2.2.6 Spatial discretization on stretched staggered grids

These equations are further spatially discretized by central differencing on a stretched
staggered grid, in which the flow variablesu ,v,w and p are defined at different positions, as

shown in Figure 2.2.

By using a staggered grid, this method avoids the odd-and-even point decoupling while
preserving the second-order accuracy in space of the method. To obtain a good spatial resolution
the grid is stretched by increasing the number of points in regions where higher velocity
gradients are present such as near the solid walls. The stretched-staggered grid can be seen in
Figure 2.3. The grid is stretched along one direction independently of the other coordinate

direction and is defined by hyperbolic sine and tangent functions in the x, y and z -directions.

X; =X, +(XNx—X0)Sins}ilr(+(./7)]\bc) (2.62)
1y =1+, 1) SLI), @63
Z, =7y +(Zy. - Z,) B + tanh(g (tzai I;;V/Z;;z]vz)} : (2.64)

where, X, Y, Z, are the start coordinates points of the grid, Xy, , Yy,, Zy, are the end coordinate

points of the grid, Nx, Ny, Nz are the number of grid points in X, Y, and Z directions, and y is
the stretching parameter.
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Figure 2.2 Geometry of the three-dimensional staggered grid.
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Figure 2.3 Three-dimensional stretched staggered grid with an oscillating wall configuration

2.3 Method validation

The numerical method has been successfully validated by comparison with experimental

results available for three-dimensional steady flows past a downstream-facing step and with

previous two-dimensional computational solutions.

0.5 %

=0

35

Figure 2.4 Typical flow pattern for the confined flow past a down-stream-facing step in a
rectangular duct illustrating the flow separation regions by using the streamlines and the velocity

profiles along the duct in the plane of symmetry (y =0).

The main feature of this confined flow past a downstream-facing step is the presence of two

flow separation regions, one on the lower wall and the other one on the upper wall. This typical

flow pattern is illustrated in Figure 2.4 by using the streamlines and the velocity profiles in the
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plane of symmetry ( y =0) along the channel at various axial locations. The axial locations of the
flow separationx, and reattachment x, on the upper wall (with upper separation length
L,=x.—x,) and the lower wall separation length L, are used to validate the solutions by
comparison with previous numerical and experimental results. These points represent the

characteristic features of this flow as shown in Figure 2.5.

Reattachment x,

lll
Separation x; |<—>

Inlet .
—_— = Outlet

e -

Separation l

Figure 2.5 Location of the separation and reattachment points on the upper and lower walls into
the downstream-facing step (H/h = 2) channel.
2.3.1 Validation for uniform rectangular channels

This method is first validated for the flows in a uniform rectangular channel of width 26 H
and height 4 H (similar to the upstream portion of the channel in Figure 2.1, which has the aspect
ratio2b/h) with the axial length of 25, by considering a fully-developed laminar flow or a
uniform flow at the inlet.

The velocity profiles obtained in the symmetry plane of the channel ( y =0), are starting from
the fully-developed laminar profile as shown in Figures 2.6 (a) and 2.6 (b) for various aspect
ratios (2b/h =1, 2, 4, 8) and at various axial locations (x =0, 5, 10, 15, 25).

Very good agreement was found between the present numerical results and the theoretical
solutions [71]. The present numerical method maintaining very good accuracy with the fully-

developed laminar velocity profile along the channel, as expected.
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Figure 2.6 Velocity profiles at y =0 (symmetry plane of the channel): (a) at several axial
locations (for 2b/h =1), and (b) for several aspect ratios (2b/h ) at the axial location x =15.

k]
n

2.3.2 Comparison with the experimental data and effect of lateral walls
The computed locations of the flow separation and reattachment on the upper and lower walls

in the plane of symmetry ( y =0) are shown in Figure 2.7 in comparison with the experimental

results obtained by Armaly ef al. [31] and by Lee and Mateescu [13], and two-dimensional
numerical results by Mateescu and Venditti [12].

One can notice good agreement between the present solutions and the experimental results,
while the two-dimensional solutions obtained by Mateescu and Venditti are not in good
agreement with the experimental results especially for larger Reynolds numbers.

This confirms the explanation advanced in [31, 36] that the disagreement between the two-
dimensional solutions and the experimental results is due to the three-dimensional effects due to
the lateral walls in the experimental configuration. This explains why three-dimensional study of

confined laminar flows is important in this research.
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--------- Mateescu and Venditti (2D solution) . -
o o & Lee and Mateescu 1998 (expernment) L
R B A Armaly et al. 1983 (experiment) L

Figure 2.7 Steady flow over a downstream-facing step (#=0.5): Variation with the Reynolds

number of the flow separation and reattachment locations on the upper wall (x, and x, ) and the

separation length on the lower wall (L;) in the symmetry plane of the channel (y=0).

Comparison between:

----0---- Present solution:

————————— Mateescu and Venditti [12]:
0,0, A Lee and Mateescu [13]:

m, ¢ A Armalyeral [31]:

3D solutions for the aspect ratio 2b=26.6;
2D solutions (for 2b — o);
Experimental results (for 2b=26.6);

Experimental results.

2.3.3 Grid sensitivity analysis for steady and unsteady internal flow solutions

The grid sensitivity has been investigated for the presented numerical solution through the

mesh refinement applied to the steady and unsteady flow cases. Through the geometry analysis,

it is found the length of upstream and downstream should be at least Ly=25, and L;=75. Beyond

these two channel lengths the numerical results are not affected. These results are obtained by

using 240 x 68 x 68 grid points, and shown in Tables 2.1 and 2.2.
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Present 3D I
Results ! s r
L;=45 4.96 421 7.75
L;=55 5.01 4.20 7.82
L;=065 5.04 4.24 7.87
L;=175 5.06 4.27 7.91
L;=285 5.06 4.27 7.91

Table 2.1 Analysis of downstream length (L;) for Re = 600: comparison of separation length on

the lower wall (L;) and flow separation and reattachment locations on the upper wall (x andx, ),

for Ly = 25.

Present 3D I
Results ! s A
Lo=5 5.01 421 7.85
Lo=10 5.03 4.24 7.88
Lo=15 5.04 4.25 7.89
Lo=25 5.06 4.27 7.91
Lo=135 5.06 4.27 7.91

Table 2.2 Analysis of upstream length (L) for Re = 600: comparison of separation length on the

lower wall (L;) and flow separation and reattachment locations on the upper wall (x, and x,),

for L; =75.

To find the ideal grid points, the solution is solved for a confined steady flow at Re = 600 in a
backward-facing step with total span of 2b = 26.6, step height & = 0.5, upstream channel length
Lo =25, and downstream channel length L; = 75.

The criteria of comparison are based on the lower wall separation length L;, and the upper
wall separation and reattachment locations xs and x, (with upper separation length L, = x, — xy).

The results of the grid sensitivity test are shown in Table 2.3. It can be seen there is no
discrepancy between the solution obtained by using 240 X 68 X 68 grid points and the fully
converged solution obtained with 300 x 88 x 88 grid points and beyond this grid density

(240 x 68 x 68), the numerical solution is not influenced by increasing the number of grid points.
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Lower wall Upper wall
Number of grid points L L= Xy - Xs X X
160 x 28 x 28 4.932 3.621 4.143 7.765
180 x 38 x 38 5.025 3.638 4.226 7.854
200 x 48 x 48 5.068 3.643 4274 7.913
220 x 58 x 58 5.073 3.654 4.285 7.932
240 x 68 x 68 5.081 3.667 4.293 7.957
260 x 78 x 78 5.081 3.667 4.293 7.957
300 x 88 x 88 5.081 3.667 4.293 7.957

Table 2.3 Grid sensitivity of the numerical solution for 2 = 0.5, Re = 600, 2b = 26.6, Lo= 25, and

L1 =175 based on the computed non-dimensional lengths of separation and reattachment.
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Xs
\ y=-2.03x+6.34 Linear (Xs)
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2 22 24 26 28 3 32

Log 1/DeltaX

Figure 2.8 Order of accuracy calculated from the grid sensitivity test data.

The order of accuracy is validated and as shown in Figure 2.8. To check the order of accuracy
the mean absolute error (Log eo) for the upper separation point is plotted with respect to grid
spacing. The slope of the dashed curve, which is the linear regression of the upper separation

point is 2.03 and as a result the method is second-order accurate.
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2.3.4 Time-step convergence study

Considering the unsteady confined flow case, the size of the nondimensional real-time step is
At =2r/ (a)N ) with a number of steps during an oscillation period of N=80. The number of steps
is taken from the analysis of the upper and lower wall separations. Figure 2.9 shows a portion of
the oscillation cycle from 3.9 #T to 4 #/T of the wall separation length. One can see from Table
2.4 that the separation lengths keep constants after N=80.

6 | Upper Wall Separation, Re=400, A=0, a=0.05
5.4
-l———o‘H—H*
-, .
48
X
472
36 : - -
- —=2—— N=100
——¢—— N=80
N=60
3 L L L L L N=40 L L L L L
39 3.92 3.94 /T 396 3.98 4
4.23 T
| Lower Wall Separation, Re=400, A=0, a=0.05
425}

|

421
4.205 N=100
i ——+—— N=80
| N=60
4 o] [ L L L L N=40 L L L L L
739 392 394 4T 3.% 3.98 4

Figure 2.9 Several number of time steps per oscillation cycle describing the upper and lower wall
separation length of unsteady confined flow past downstream-facing steps at Re=400 and inflow
velocity amplitude a=0.05 and frequency w=0.05.
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The real-time integration started from the steady flow solution for fixed walls and inflow
velocity variation, and it was performed until all variables in the computational domain were
executing repeatable and exact harmonic oscillations from one period to the next, usually after 3

oscillation cycles or less, as shown in Figure 2.9.

Time steps per cycle t/T L Ly
40 3.95 4.2217 1.8578
60 3.95 4.2220 1.8566
80 3.95 4.2220 1.8567
100 3.95 4.2220 1.8567

Table 2.4 Sensitivity of the time steps per oscillation cycle of the numerical solution for N=40,
60, 80 and 100 with Re = 400 at #/T=3.95 based on the computed nondimensional lengths of

separation and reattachment (see Figure 2.9).

2.4 Steady solutions for the confined flows with backward-facing step channel
After validation the method has been used to obtain steady solutions for the flows in a channel
with a backward-facing step (shown in Figure 2.1). The variations of the flow separation and

reattachment locations (x, and x,) on the upper wall and the separation length (L) on the

lower wall along the span of the channel, from the plane of symmetry (y = 0) towards the lateral
wall at y = 13.3 are shown in comparison with experimental results conducted by Lee and
Mateescu [13] and Armaly et al. [31] only in the plane of symmetry (y = 0) in Figure 2.10. These
results are computed for total span 2b =26.6, step height #=0.5 (expansion ratio, ER = 2), and
various Reynolds numbers, Re =450, 600, 800 and 1000.

The typical variations of the flow separation and reattachment locations on the upper and

lower walls (x,, x, and L;) along the span of the channel (y -direction) with the non-

dimensional step height ~g =1—A are shown in Figure 2.11. The results are obtained for total

span 2b=26.6, and for several step heights 2=0.4, 0.5 and 0.6 at Re = 600.
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Figure 2.10 Influence of the Reynolds number on the variation of the flow separation and
reattachment locations on the lower and upper walls (L;, x; and x, ) along the span of the

channel (y-direction) for 2b=26.6 and step height of #=0.5 at various Reynolds numbers for
Re = 450, 600, 800 and 1000. For the plane of symmetry (y=0): Comparison with the
experimental results obtained by Armaly et al. [31] and Lee and Mateescu [13].
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Figure 2.11 Influence of the step height, 43 =1— /A, on the variations of the flow separation and

reattachment locations on the upper and lower walls (x,, x, and L,) along the span of the

S

channel (y-direction) for 2b = 26.6 and for several step heights at Re = 600.

The typical front views (x—z planes) of the flow as viewed from the longitudinal planes
y=0, y=4, y=8 and y =13 towards the lateral wall ( y =13.3) are illustrated in Figure 2.12
for 2b=26.6 and £ =0.5 at Re = 600, by using streamlines (represented by continuous lines)
and velocity contours. The color shades indicate the magnitude of the nondimensional flow
velocity with respect to the mean flow velocity, U,, according to the scale included in the

figure.

A top view of the channel (x —y plane) illustrating the flow separation regions on the lower

and upper walls is also shown in Figure 2.13 for 26 =26.6 at Re = 600. For a better illustration
of the flow separation regions in this complex three-dimensional flow, the isomeric view of the
streamlines and the velocity contours is indicated in Figure 2.14, and a more detailed isometric

view is shown in Figure 2.15.
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L\ —=

Figure 2.12 Front views (x-z plane) of the 3-D flow in the duct with a downstream-facing step
(h=0.5), for 2b=26.6 at Re = 600, illustrating the streamlines and the velocity contours at
several distances from the plane of symmetry ( y = 0) towards the lateral wall ( y =13.3).
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geparation separation

=

Figure 2.13 Top view (x-y plane) of the streamlines in the three-dimensional flow past a
downstream-facing step (4 =0.5), illustrating the flow separation regions on the lower and upper
walls for 2b =26.6 at Re = 600.
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Figure 2.14 Isometric view of the streamlines and velocity contours in a three-dimensional
confined flow past a downstream-facing step (4 =0.5), for 2b =26.6 at Re = 600.

010203040506070809 1 1.11.21.21.4

Figure 2.15 A detailed view of the streamlines and velocity contours in a three-dimensional
confined flow past a downstream-facing step (4 =0.5), for 2b =26.6 at Re = 600.
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2.5 Solutions for three-dimensional unsteady confined flows with variable
inflow velocity

The numerical method presented in Section 2.2 is applied to obtain solutions for the unsteady
confined flows past downstream-facing step generated by harmonic variations in time of the
inflow velocities defined by equations (2.1) to (2.3), when the channel walls are fixed (4=0,
where A is the amplitude of wall oscillation). Computations have been performed for the step
height (l—h)H =0.5H (where 2 =0.5, and expansion ratio ER = 2), and for the aspect ratio of
the channel 26.6 in respect to downstream height H. Numerical solutions have been obtained for

various values of the Reynolds number, Re = HU, /v, and for various values of the amplitude of
the inflow velocity, a, and of the reduced frequency of oscillations, w . In the computations, the
size of the nondimensional real time step is defined as At =T/N , where the number of real time

steps during an oscillation period (7 =2m/w) was taken N =80 as it was shown in section

2.3.4.

The pseudo-time computations have been performed using 6=0.8 and A7=0.01, and

convergence was assumed to be reached when the RMS residuals were less than 107>, The real
time integration was started from the steady flow solution for fixed walls and constant inflow
velocity (obtained by Mateescu, Panahi and Roy [8]), and was performed until all variables in
the computational domain were executing repeatable harmonic oscillations from one period to
the next (usually after 3 oscillation cycles). The number of sub-iterations in pseudo-time are less
than 100 for each time step depending on the case. This leads to have a fast converging

numerical method.
The streamline patterns and the velocity contours in the plane of symmetry (y =0) of the

unsteady confined flow at various moments during the oscillatory cycle, #/T =3.0, 3.25, 3.5 and

3.75, for the Reynolds numbers Re = 400, 600, and 800, for the reduced frequency w = 0.05, and
for three values of the amplitude of the inflow velocity variation, a=0.05, 0.2 and 0.4 are shown

in Figure 2.16 for the case of fixed walls (4 =0).
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Re=600 , 2b=26.6 , A=0, a=0.05 Re=600 , 2b=26.6 , A=0, a=02 ,7=30
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Figure 2.16 Streamline patterns and velocity fields of the unsteady confined flow at various
moments during the oscillatory cycle, #/T =3.0,3.25,3.5 and 3.75, for Re = 400, 600 and 800,

®=0.05 and for three values of the amplitude of the inflow velocity variation, a =0.05, 0.2
and 0.4 (A=0). The color shades indicate the nondimensional values (with respect to U, ) of

the local fluid velocity
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2.5.1 Influence of the amplitude of the inflow velocity fluctuations on the

unsteady flow separations

The typical influence of the inflow velocity oscillation amplitude, a, on the lower wall
separation length ( L,) and on the upper wall separation and reattachment locations ( x, and x, )
is illustrated in Figure 2.17 for the case of fixed walls ( A =0). These solutions were obtained in
the plane of symmetry of the channel (y =0) for several values of the amplitudes of the inflow
velocity variation, a, and of the Reynolds number, Re, and for the reduced frequency w =0.05,
and the non-dimensional period of oscillations denoted by 7' =271/ .

It is interesting to note that the upper wall flow separation is present only during a portion of
the oscillatory cycle (being absent for the rest of the cycle) when the inflow velocity amplitude is

larger, such as a > 0.05 for Re <600, and a>0-2 for Re = 800. At Re = 800, one can notice
the formation of secondary flow separation regions on the lower and upper walls for a=0.4,

which appear only during a small portion (about one quarter) of the oscillatory cycle. The
formation of these secondary flow separation regions on the lower and upper walls can also be

seen in the flow visualizations for Re =800 shown in Figure 2.17.

2.5.2 Influence of the Reynolds number on the unsteady flow separations
The typical influence of the inflow velocity oscillation amplitude, a, on the lower wall
separation length ( ;) and on the upper wall separation and reattachment locations ( x; and x, )

is illustrated in Figure 2.18 for the case of fixed walls (4 =0) with variable inflow velocity.
These solutions are obtained for several values of the amplitudes of the inflow velocity variation,
a and of the Reynolds number, Re, and for the reduced frequency @ = 0.05.

Again one can observe the formation of the secondary flow separation region on the lower

and upper walls for Re=800 and a=04.
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Figure 2.17. Influence of the inflow velocity amplitude, a, for fixed walls: Variation during the
oscillatory cycle, #/T , of the upper wall separation and reattachment locations and of the lower
wall reattachment locations, for Re =400, 600 and 800, w =0.05 (2b6=26.6, A=0).
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Figure 2.18. Influence of the Reynolds number, Re: Variation during the oscillatory cycle, #/T ,

of the upper and lower wall separation and reattachment locations, for @ =0.05,

a=0.05and 04 (2b=26.6, A=0).

2.6 Solutions for three-dimensional unsteady confined flows with oscillating
walls and time-variable inflow velocity

Numerical solutions are also obtained for the unsteady confined flows past downstream-
facing steps generated by oscillating wall ( 4 0), defined by equations (2.4), and (2.5), and by
harmonic variations in time of the inflow velocities defined by equations (2.1) to (2.3).

Computations have been performed for the step height (1-4)H =0.5H (where 4=0.5) and
for the nondimensional length of the oscillating wall / =10.

The streamline patterns and the velocity contours in the plane of symmetry ( y =0) of the
unsteady confined flow at various moments during the oscillatory cycle, , 3.0, 3.25, 3.5 and
3.75, for the Reynolds numbers Re = 600 and 800, with the reduced frequency w =0.05, and for
two values of the amplitude of the inflow velocity variation, =0 and 0.05, are shown in Figure
2.19 for the case of the wall oscillation amplitude 4=0.05. In this figure, the color shades

indicate the nondimensional values (with respect to U, ) of the local fluid velocity.
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Figure 2.19 Streamline patterns and velocity fields of the unsteady confined flow at various
moments during the oscillatory cycle, ¢/T =5.0, 5.25, 5.5 and 5.75, for Re = 600 and 800,

o =0.05 and for two values of the amplitude of the inflow velocity variation, a =0 and 0.05,
and for the wall oscillation amplitude 4 =0.05. The color shades indicate the nondimensional

values (with respect to U, ) of the local fluid velocity.
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2.6.1 Influence of the aspect ratio of the channel on the unsteady flow
separations

The typical influence of the aspect ratio of the downstream portion of the channel, 25, on the
lower wall separation length ( Z;) and on the upper wall separation and reattachment locations
(x, and x,) is illustrated in Figure 2.20 for Reynolds number Re=600 and the reduced
frequency @ =0.05. These solutions are obtained in the plane of symmetry of the channel (y=0)
for the inflow velocity amplitude, a =0.05, and for several values of the amplitude of the wall

oscillation, 4=0.05, 0.1 and 0.2 , for two values of the channel aspect ratio, 26 = 26.6 and 10.
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Figure 2.20 Influence of the aspect ratio, 2b : Variation during the oscillatory cycle, /T , of the

upper and lower wall separation and reattachment locations, for Re =600, @ =0.05, a=0.05
and for 4 =0.05, 0.1 and 0.2.
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It can be noticed that the presence of the upper wall separation during the oscillatory cycle is
reduced for the lower aspect ratio of the channel, while the length of the lower wall separation

increases and has larger oscillation amplitudes at the lower aspect ratio, 2b =10.

2.6.2 Influence of the wall oscillation amplitude on the unsteady flow separations

The typical influence of the wall oscillation amplitude, A4, on the lower wall separation length

(L;) and on the upper wall separation and reattachment locations ( x, and x, ) is illustrated in

Figure 2.21 for the oscillation frequency @ = 0.05 and Reynolds number Re = 600 .
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Figure 2.21 Influence of the wall oscillation amplitude, A: Variation during the oscillatory
cycle, ¢/T, of the upper and lower wall separation and reattachment locations, for Re =600,

@w=0.05, a=0.05 and 4=0.05,0.1 and 0.2.
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These solutions are obtained in the plane of symmetry of the channel ( y = 0) for the aspect ratio,
2b =10, two values of the inflow velocity amplitude, a =0 (that is steady inlet flow velocity)
and a =0.05, and for several values of the amplitude of the wall oscillation, 4= 0.05, 0.1 and

0.2.
It can be seen that the length and the time duration of the upper wall separation gets larger by
increasing the wall oscillation amplitude, A4, and the length of the lower wall separation has

larger oscillation amplitudes at the larger wall amplitude oscillations.

2.6.3 Influence of the Reynolds number on the unsteady flow separations

The typical influence of the Reynolds number on the lower wall separation length ( Z;) and on
the upper wall separation and reattachment locations ( x, and x, ) is illustrated in Figure 2.22 for
the oscillation frequency @ = 0.05, wall oscillation amplitude 4 = 0.05 and for two values of the
inflow velocity amplitude, a =0 and a =0.05. These solutions are obtained in the plane of
symmetry of the channel (y = 0) for the aspect ratio, 206 =10, two values of the inflow velocity
amplitude, a =0 (that is steady inflow velocity) and a =0.05, and for several values of the
Reynolds number, Re =400, 600, 800 and 1000.

One can notice that the length and the time duration of the upper wall separation increase with
the Reynolds number for both values of the inflow velocity amplitudes, and the length of the
lower wall separation also increases with the Reynolds number.

It is interesting to note the formation of a secondary flow separation at the lower wall at,
Re =1000 (the largest Reynolds number included in Figure 2.22), which has a duration of about
one quarter of the oscillatory cycle, slightly shorter for a =0.05.
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Figure 2.22 Influence of the Reynolds number: Variation during the oscillatory cycle, ¢/T , of

the upper and lower wall separation and reattachment locations, for @ =0.05, 4=0.05, and

a=0and 0.05, and for Re =400, 600, 800 and 1000 (26 =10, y=0).

2.6.4 Variation of the unsteady flow separations along the span of the channel
The typical variations along the span (with y) of the unsteady lower wall separation length

(L) and of the upper wall separation and reattachment locations (x, and x,) is illustrated in

Figures 2.23 and 2.24 for the channel aspect ratio, 2b =10, at two Reynolds numbers Re =600
and 800, and for several locations along the span of the channel: y =0, 0.25b, 0.5b, and 0.755.
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Figure 2.23 Spanwise variation of the unsteady flow separations: Variation during the oscillatory
cycle, ¢/T, of the upper and lower wall separation and reattachment locations, for wall

amplitude oscillation 4=0.05, inflow velocity amplitude , @ =0.05, and two Reynolds numbers
Re = 600 and 800, at several locations along the span of the channel: y = 0, 0.25b, 0.5b, and
0.75b. (aspect ratio 2b =10 and reduced frequency of oscillations @ = 0.05)

The spanwise variations of the unsteady flow separations is shown in Figure 2.23 for the
oscillation frequency @ =0.05, wall amplitude oscillation 4=0.05, inflow velocity amplitude

a=0.05, and two Reynolds numbers Re =600 and 800, in four longitudinal planes along the
span of the channel: y =0, 0.25b, 0.5b, and 0.75b.
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Figure 2.24 Spanwise variation of the unsteady flow separations: Variation during the
oscillatory cycle, /T, of the upper and lower wall separation and reattachment locations, for

fixed walls ( 4=0), inflow velocity amplitude a =0.1, and two Reynolds numbers Re = 600 and
800, at several locations along the span of the channel: y = 0, 0.25b, 0.5b, and 0.75b. (aspect ratio
2b =10 and reduced frequency of oscillations @ =0.1)

The spanwise variations of the unsteady flow separations is illustrated in Figure 2.24 for fixed
walls (A=0), inflow velocity amplitude a=0.1, oscillation frequency @ =0.05, and two

values of Reynolds numbers Re =600 and 800, at several locations along the span of the channel

y=0,0.25b, 0.5b, and 0.75b.

2.7 Summary of findings

A novel three-dimensional method has been developed for the time-accurate solutions of the
Navier-Stokes equations in the incompressible confined flows at low Reynolds numbers
(between 400 and 6000). This very efficient method is second-order accurate in space and time,

uses artificial compressibility and a factored Alternate-Direction Implicit scheme, and is based

50



on a finite difference formulation on a stretched staggered grid. This method solves for the first
time the three-dimensional steady and unsteady incompressible flows at low Reynolds numbers.

Original solutions have been obtained for the steady and unsteady confined viscous flows for
the benchmark case of the downstream-facing step channel at low Reynolds numbers, which are
generated by the time variable inflow velocities and by the oscillating walls.

The study of these confined steady flows at low Reynolds numbers, explains and confirms
that the disagreement between the two-dimensional solutions and the experimental results is due
to the three-dimensional effect of the lateral walls. The obtained three-dimensional
computational solutions were in good agreement with the experimental results. The multiple
flow separations generated on the upper and lower walls have been thoroughly studied in
function of the Reynolds number, span-to-height ratio, and the amplitude and frequency of the

inflow velocity and the wall oscillations.
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Chapter 3

Unsteady Effects on Stationary Airfoils Due to Unsteady Flow

Separations at Low Reynolds Numbers

This chapter presents the unsteady flow analysis of the stationary airfoils at low Reynolds
numbers, which is performed to study the unsteady effects on the aerodynamic coefficients
generated by the unsteadiness of the flow separations appearing at angles of attack above 8
degrees.

The unsteady flow analysis of the stationary airfoils at low Reynolds numbers is performed
with an efficient time-accurate numerical method developed by the author for the solution of the
Navier-Stokes equations at low Reynolds numbers, which is second-order accurate in time and
space. A second-order three-point-backward implicit scheme is used first for the real-time
discretization, followed by a pseudo-time relaxation procedure using artificial compressibility
and a factored Alternate-Direction Implicit (ADI) scheme for the pseudo-time integration. Then,
a second-order central finite difference formulation is used on a stretched staggered grid to avoid
the odd-and-even points decoupling in this numerical method. A special decoupling procedure
using the continuity equation reduces the problem to the solution of scalar-tridiagonal systems of
equations, which enhances substantially the computational efficiency of the method.

The numerical method is validated by comparison with experimental results obtained by
Suwa et al. [47, 48]. Solutions are obtained for the unsteady lift and drag coefficients of a
triangular airfoil and several symmetric and cambered airfoils. The flow separation is also
studied with the aid of flow visualizations illustrating the changes in the flow pattern at various
moments in time. The influence of various geometric and flow parameters, such as the angle of
attack, relative thickness and camber, and Reynolds number on the unsteady aerodynamic

coefficients and the flow separation is also studied in this chapter.

3.1 Problem formulation and numerical method

Consider a cambered airfoil of chord ¢ placed at an incidence « in a uniform stream of
velocity U, , as shown in Figure 3.1. The airfoil is referred to a Cartesian reference system of
coordinates cx and cy, where x and y are nondimensional coordinates (with respect to the
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chord c¢), with the x-axis along the airfoil chord and its origin at the airfoil leading edge. The

airfoil upper and lower surfaces are defined by the equations

y:el(x):h(x)—l—e(x), and y:—ez(x):h(x)—e(X) , (3.1)

where the subscripts 1 and 2 refer to the upper and lower surfaces, and where A(x) and e(x)
define, respectively, the camberline and the airfoil thickness variation along the airfoil chord.

The special case of symmetric airfoils is characterized by e, (x)=e,(x)=e(x) and A(x)=0.

CT]J\ UOOV == T
£ Z:

o0} C_J/

e

Figure 3.1 Geometry of an airfoil placed in a uniform flow at the angle of attack « .

The viscous fluid flow past the oscillating airfoil is referred to a fixed Cartesian reference

system of coordinates ¢ and cn defined by the equations

E=xcosa+ysina, n=-sina+ycosa , (3.2)
where & and 7 are nondimensional coordinates with respect to the airfoil chord ¢, with the & -
axis parallel to the uniform stream velocity U, which is inclined with the angle o with respect
to the airfoil chord as shown in Figure 3.1.

Velocity components along the fixed ¢&- and 7 -axes are defined as U u and U_ v, where

u and v are the nondimensional velocity components with respectto U, .

3.1.1 Navier-Stokes equations for unsteady viscous flows
The time-dependent Navier-Stokes and continuity equations for the incompressible flow past

the airfoil can be expressed in nondimensional conservation form as
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Y iQv.p=0. vev=Tu, OV

=28, %Yy, (3.3)
ot o on

where ¢=t*U_/c is the nondimensional time (¢* is the dimensional time),

V= {u,v}T represents the vector of the dimensionless velocity components and Q(V, p) , which

includes the convective derivative, pressure and viscous terms, can be expressed in two-

dimensional Cartesian coordinates in the form

QV.p)={0,(w.v.p). 0,(.v.p)}", (3:4)
ofun) o) 0p 1 (S

0, (u,v,p)= oc + on +8r§ RC[8§2+8772 , (3.5a)
_a(uv) a(vv) a_p_iﬁ o%v

QV(M’V’p)_—éf +—677 +677 Re[8§2+6772 , (3.5b)

where p is the dimensionless pressure, nondimensionalized with respect to pU_~, and

Re=cU_ /v is the Reynolds number based on the chord length ( p and v are the fluid density

and kinematic viscosity). In the present computational analysis we focus our attention on flows

at low Reynolds numbers, in which the viscous effects play very important role.

3.1.2 Boundary conditions

No-slip boundary conditions are implemented on the airfoil contour and non-penetration
condition (normal velocity component equals to zero, v = 0) are applied on the upper and lower
boundaries of the computational domain.

Also, the viscous boundary conditions are imposed on the airfoil upper and lower surfaces
which are transformed in the computational domain to a solid wall, in which # =0 and v = 0. The

upper and lower far-field boundaries can be imposed as those of the uniform stream (u = 1).
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3.2 Method of solution for unsteady viscous flows past stationary airfoils

The time-accurate method that is devolved in this section starts with the time-dependent
transformation of the physical domain to the fixed computational domain. This transformation is
applied to Navier-Stokes equations, and it is followed by the real-time discretization of the
Navier-Stokes equations. A detailed description of the pseudo-time relaxation technique applied
to Navier-Stokes equations is also presented. After that, the ADI scheme and the special
decoupling procedure are implemented and finally the spatial discretization on stretched

staggered grids is carried out.

3.2.1 Time-dependent coordinate transformation

The problem is solved in a fixed rectangular computational domain with six sub-domains,
which is obtained from a rectangular physical domain indicated in Figure 3.2 by a geometrical

transformation defined as

X =g(&n), Y=fEn) . (3.6)
where g(f, 77) and f (5, 77) are defined for each domain in the following forms:

Domain 1 (for x<0 and O<n<H,):

Ecosa—nsina

g(é:a 77) = LO s f(§> 77) =n (373)

Lycosa+nsina
Domain 2 (for x<0 and —H, <n<0):

)_ Ecosa —nsina

Ly, fEn)=n (3.7b)

glém

Lycosa+nsina

Domain 3 (for 0 <x<1 and el()c)<y<1r—l1 ):

glem)=boosa-nsina, fem=5— (ic});(f;(o)tc)—l-xsina Hiooser (3.7
1 1

Domain 4 (for 0 <x<1 and —H2<y<—e2(x) ):

g(&.n)=Ecosa—nsina f(&n)= 7 e (J;c;rczzs(;)—xsina H, cosa (3.7d)
276

Domain 5 (for x>1 and —simna<n<H, ):

)_ fcosa—nsina—l( )_ n+sina

H, +sina

L-1)+1, f(&n

gl&n H, (3.7¢)

Lycosa—nsma—1
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Domain 6 (for x>1 and —H, <p<-sina ):

n+sina

Ecosa—nsina —1
g(&n)= : (L -1)+1, fl&n)=——""H, (3.7f)
L cosa—nsina -1 H, —smna
Upper far-field boundary
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Figure 3.2 Geometry of the physical domain (top), and computational domain (bottom) (X ,Y )
defined by coordinate transformations (3.6) to (3.7).
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In equations (3.7¢) and (3.7d), x and y are defined in function of the coordinates & and 7 by
the relations

x=&cosa—nsina y=¢&sina+ncosa (3.8)

In equations (3.7a) to (3.7f), n=H, and n=-H, are the nondimensional physical
coordinates of the upper and lower far-field boundaries of the computational domain (which are
considered equal in the specific numerical applications presented further, H, =H, = H ), while
&=-L, and &=L, are the nondimensional physical coordinates of the inflow and outflow
boundaries, as shown in Figure 3.2.

In the computational domain (X Y ), the upstream inflow and downstream outflow
boundaries and the upper and lower boundaries are defined by the same nondimensional
coordinates X =—L,, X =L, and Y =H,, Y =—H,, respectively. The Navier-Stokes and

continuity equations can be expressed in the computational domain, as

a—V+G(V,p)=0 , DV=0, (3.9)
ot
where
V={uv}, G(V,p)=1G, v, p).G, (v, p)}", (3.10)
G, (u,v, p)=C, ag;l) +C, ag’;‘) +C, 8;;’) +C, a(avyu) +C, §—§+C2 S—I;wl 2}% (3.11)
0%u o%u

C +C ,
Soxoy ° oy?
0%y

o(vu) o(vu) o(vv) o(vv) op op

G, (u,v,p)=C +C +C +C +C,—+C,—+C,— 3.12
y (v, p) 7 ox 2 5y 4T ox 370y 4ax 3oy 16X2 ( )

2 2

+Cy o +Cs 0 Z ,

oXoY oY

DV=C7Q+C2@+C4Q+C3Q, (3.13)
oX oY oX oY

in which the expressions of the coefficients C,, C,, C5, ..., C, are obtained for each domain

from the coordinate transformations (3.6) to (3.7), the details are explained in Appendix B.
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3.2.2 Real-time discretization
In order to study the unsteady effects in the flow past stationary airfoils at low Reynolds
numbers, the Navier-Stokes equations is first discretized in real time based on a second-order

three-point-backward implicit scheme:

: (3.14)

a_V n+l 3 3Vn+1 _4Vn +Vn—l
ot 2At

where the superscripts n—1, n and n+1 indicate three consecutive real time levels, and

At=¢" 7 =¢" "1 represents the real time step. Thus, equations (3.14) can be expressed

n+l

at the time level ¢ in the form

VoG =F", DV™=0 (3.15)

where a =2A¢/3, G"*! =G(V”+1,pn+1) and F" =(4V” —Vn_l)/?a.

3.2.3 Pseudo-time iterative relaxation technique

An iterative pseudo-time relaxation procedure with artificial compressibility is then used in

order to advance the solution of the semi-discretized equations from the real time level ¢” to

n+l

t in the form

A op .-

—+V+aG(V,p)=F", —+DV=0 3.16

Py (V.p) e (3.16)
where V(z) and ﬁ(r) denote the pseudo-functions corresponding to the variable velocity and

n+l

pressure at pseudo-time 7, between the real time levels " and ¢"", and & represents an

artificially-added compressibility.
Pseudo Navier-Stokes and continuity equations (3.16) are solved in pseudo-time. An implicit
Euler scheme 1s used in this respect to discretize these equations in pseudo-time, and the

resulting equations are expressed as

VASL IR VA4 _ _

XLZ3L+VM+aGM=FK (3.17)
T

v+l v 1 _

p . +gv-V”4=o, (3.18)
T
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where A7 is the pseudo-time step and the superscript v indicates the solution at pseudo-time

level 7 =vAz and GV = G(VV+1, 13"“). To facilitate the pseudo-time iterative process, the

implicit nonlinear system of equations shown in (3.17) and (3.18) are linearized.

(1+ A7)AVY + AG” (V" p") = Ar(F”—VV —a(;v(\?v,[av)), (3.19)
\p" +%V0(A\7V)=—%VO\7V (3.20)

3.2.4 Alternating-direction implicit scheme

The ADI scheme is applied to reduce the effort to solve the linearized equations (3.19) and
(3.20). Then, an implicit Euler scheme is used to discretize equations (3.16) between the pseudo-

1

time levels 7 and 7" =7" +Ar, and the resulting equations are expressed in terms of the

pseudo-time variations Au = i , Av = gy , Ap = ﬁwrl -p”.
Writing equations (3.19) and (3.20) in a global matrix form
[[+aAz(D, +D,)|Af=ATS , (3.21)

where Af = [Au,Av,Ap]T , a =2At/3, 1is the identity matrix, and

M+t 0 o2 N 0o <
a oxX oY
0 1 0
D, = 0 M C,—1|, D,=| O N+— C;— |, (3.22
X 40”X Y a 3 oY ( )
¢, o ¢ o GO G
|lad X addX | a0 JY ao oY |
F!-u"-aG,
S=|F'-v'-aG) |,
~(1/5) DV”
in which the differential operators M and N are defined as
—V —V 2
M=C, A ¢)+C4 A ¢)+C15 ¢ (3.23)
oX X X2
-V =V 2 2
N=0C, A ¢)+c3 A ¢)+C6 oY 0P (3.24)
oYy aYy oXeX oY?

where ¢ canbe Au, Av or Ap.
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The optimal value of the artificial compressibility, o, and the size of the pseudo-time step, Az,
are determined, as indicated in our previous studies by Mateescu et al. [11, 14, 16], the values for
o0 and At are eventually optimized by numerical experimentation.

A factored ADI scheme is used to separate equation (3.21) into two successive sweeps in the
Y and X directions, defined by the equations (3.25) and (3.26). It is important to mention that
the approximate factorization, which implies the elimination of the quadratic term
a’* AT’ D v Dy, produces some convergence issues for the ADI scheme. This situation can be

noticed when At takes large values, however, the convergence issues can be neglected when At

is sufficiently small.

The ADI method requires the introduction of an intermediate variable Af * to solve the linear

implicit system of equations. This variable has the components of Au” , AV and A p* , which are

calculated in the Y-sweep

[[+aATD, |Af*=AzS (3.25)

Next, in the X-sweep the values of Af =[Au,Av,Ap|" are computed
[[+aArD, |Af = Af (3.26)

These equations are further spatially discretized by central differencing on a stretched

staggered grid, in which the flow variables u, v and p are defined at different positions, as

shown in Figure 3.3. By using a staggered grid, this method avoids the odd-and-even point
decoupling while preserving the second-order accuracy in space of the method. The grid
stretching is defined by hyperbolic sine functions in X and Y directions.

A special decoupling procedure [9, 10, 11], based on the utilization of the continuity equation,
is used for each sweep to eliminate the pressure from the momentum equations. The following
relations, which are derived from the continuity equation expressed for each sweep, are used to
eliminate the pseudo-time variations of the pressure from the systems of equations for the

pseudo-time variations of the velocity components in each sweep.

Ap = _%‘:D{]v ic, 6(2;*)+C3 o(Av *)} . Ap=Ap*-BAT (Au) (3.27)

oY
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In this manner, the problem is reduced to the solution of two sets of decoupled scalar-tridiagonal
systems of equations, for each sweep. As a result, this method is characterized by excellent

computational efficiency and accuracy.

v <, <
Yj+1 Vi1j+1 Vij1 Vit1j+1
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Figure 3.3 Staggered grid two-dimensional geometry.

3.2.5 Lift and drag coefficients at low Reynolds numbers
The aerodynamic lift and drag forces are entirely due to pressure and shear stress distribution

over a body surface. The pressure p can be obtained by solving the Navier-Stokes equations,
acts normal and the shear stress 7 acts tangential to the airfoil surface.

To calculate the lift and drag coefficients, consider an airfoil of chord c¢=1, placed at
incidence « in a uniform flow of velocity U, as depicted in Figure 3.4.

The resultant aerodynamic force R, is the net product of p and z distributions integrated
over the complete airfoil. The aerodynamic lift L per units span is the component of R
perpendicular to U_, and the drag force D is parallel to it. The normal force N is defined as the

component of R perpendicular to the chord of the airfoil and the chordwise force A is parallel

to it.
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Figure 3.4 Components of the resultant aerodynamics forces over the airfoil surface.

From Figure 3.4, one obtains

L=Ncosa—Asina (3.28)
D=Nsina+ Acosa (3.29)
7
L pu 50

pi(S) @

Figure 3.5 Integration of the pressure and shear stress distributions over an airfoil.
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The pressure and shear stress on the upper surface of the airfoil are denoted by p, and 7, , and

for the lower surface by p, and 7,, as shown in Figure 3.5. At a given point, the pressure is

normal to the surface and is oriented at an angle & relative to the vertical axis; and shear stress is
tangential to the surface and is oriented at the same angle relative to the horizontal axis. In Figure
3.5, the sign convection is positive when measured clockwise.

Consider an elemental surface unit area on the airfoil dS =ds -1, (from the leading edge (LE)

to the trailing edge (TE) ), one obtains the normal force N , and tangential force A4, per unit

span
N =—j£(pu cos @+, sin O)ds, +jzg(pl cos @ — 7, sin 6) ds, (3.30)
A= jg(— P, Sin@+1, cos O)ds, +J‘Z§(p, sin @ —z, cos 0) ds, (3.31)

The normal and tangential coefficients are then expressed in terms of pressure coefficient C,,
and skin friction coefficient C, by noting the following

dx = dscos @ (3.32)

dy = —(dssin0) (3.33)

Replacing equations (3.32) and (3.33) into equations (3.30) and (3.31), the forces coefficients

are obtained as follows

Cv=0(c, =, v €, Beve, Dl (334)
X
dyu dy 1
.[0[ +Cy d_ledx + .[o (Cfu ¢ )dx (3.35)
with
C, ZIL, c, :% (3.36)
~pU? ~pU?

where C, = 2(p—p,) is the nondimensional pressure coefficient (p is nondimensionalized
respect to p, U2 ) and C,= z‘/ (% pOOUi) is the skin friction coefficient, while dy/dx is the slope

of the surface.
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The lift and drag coefficients in two-dimensional form can be expressed as

C,=C,cosa—C, sincx, (3.37)

C,=C,sina+C, cosa, (3.38)
with ¢, =/ (g p,U2)and €,y = D/ (% p.U2).

3.3 Method validation
The numerical method has been successfully validated by comparison with experimental
results available for steady flows past a triangular airfoil at low Reynolds numbers (there are no

published experimental results for unsteady flows).

3.3.1 Comparison with experimental results

The numerical method presented in section 3.1 is validated for steady flows by comparison
with the experimental results obtained by Suwa et al. [47, 48] for a triangular airfoil at low
Reynolds numbers. The tested triangular airfoil, with a flat bottom, is defined by the following

equations of the upper and lower surfaces

fi
y:el(x):{gx/s or 0<x<s and y:—ez(x)zo , (3.39)

e(l-x)/(1-s) for s<x<1

where £ =0.05 and 5s=0.30.

The experimental results are obtained for the lift and drag coefficients of this triangular airfoil
at Reynolds number Re = 3000 and Mach number M =0.15. These results are obtained by static
measurements, and for this reason they can be compared with the time-averaged solutions

obtained with the present numerical method.
The time-averaged values of the present solutions for the lift and drag coefficients, C, and
Cp, of the triangular airfoil at Re = 3000 are compared in Figure 3.6 with the experimental

results presented in [47, 48]. The maximum and minimum values of these coefficients are also

shown in Figure 3.6.
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Figure 3.6 The variation with the angle of attack « of the time-averaged values of the lift and

drag coefficients, C; and Cp, of the triangular airfoil for Re = 3000. Comparison between:

m Present time-averaged solutions; e Experimental steady results Suwa [47, 48];
o Maximum and minimum values of the current solution.
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Good agreement can be noticed between the present time-averaged solutions of the lift and drag
coefficients and the experimental results, with some differences at o =7° and 8" for which the

unsteady effects become stronger in the present numerical solution. In other words, when the
angle of attack increases, the numerical solution becomes unsteady and cannot be compared with

experimental steady results.

3.3.2 Grid sensitivity analysis

The sensitivity of the numerical solution with the mesh refinement procedure has been

performed for the steady flow past a NACA 0002 airfoil for Reynolds number Re = 1000 at
incidence o, =4". It should be noticed the lift, and drag coefficients used as a criteria for this

comparison. The results for the grid sensitivity test are gathered in Table 3.1. One can notice that
the solution obtained by using 260 X 101 grid points for each variable (or 520 x 202 grid points
for staggered grid in total) is very close to the fully converged solution, which is obtained by 310
x 131 grid points for each variable, and beyond this the numerical solution is not influenced by
grid refinement. All the solutions presented in this study were obtained using 620 X 262 total grid
points (310 x 131 grid points for each variable).

Grid points for each variable C, Cp
130 x 41 0.3255 0.1001
180 x 61 0.3286 0.1016
220 x 81 0.3355 0.1021
260 x 101 0.3376 0.1031
310 x 131 0.3382 0.1033
420 x 151 0.3382 0.1033

Table 3.1 Grid sensitivity of the numerical solution for NACA 0002 airfoil in steady flow for

Reynolds number Re = 1000 and incidence ¢, =4°.
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3.3.3 Time-step convergence study

For the unsteady flow past an oscillatory airfoil case, the real-time step is defined as
At =27/ (a)N ) The time step can be analyzed by giving different values to N, the number of points per
period, for example N=40, 60, 80 and 100. Figure 3.7 and 3.8 shows the variation of the lift and drag
coefficients during the oscillatory cycle. The Figure 3.7 shows the coefficients at the oscillatory cycle
from #/T= 5 to 6 and the Figure 3.8 illustrates the coefficients from #/T= 5.28 to 5.34. One can see that the
major deviation is presented by the curve calculated with N=40. This situation matches with the data
shown in Table 3.2 in which the lift and drag coefficients converge after N=80 at oscillatory cycle point
t/T=5.34. Therefore, the selected number of time steps per cycle was N=80.

Time steps per cycle t/T CL Cp
40 5.34 1.19795 0.326121
60 5.34 1.18598 0.326433
80 5.34 1.16601 0. 326507
100 5.34 1.16601 0. 326507

Table 3.2 Sensitivity of the time steps per oscillation cycle of the numerical solution for N=40,
60, 80 and 100 of the unsteady flow past NACA 0002 airfoil for Re = 1000, at angle of attack,
a =14° .and frequency w=0.05 at #/T=5.34 based on the computed lift and drag coefficients. The

grid size used is 310 x 131 grid points for each variable.
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Figure 3.7 Influence of time steps per oscillation cycle: Comparison of the lift and drag
coefficients of NACA 0002 airfoil for Re = 1000, at angle of attack, a =14°.and frequency

®=0.05 for several time steps, N = 40, 60, 80 and 100 between the oscillatory cycle from #/7=5
to 6.
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Figure 3.8 Influence of time steps per oscillation cycle: showing the lift and drag coefficient
variation of NACA 0002 airfoils for Re = 1000, at angle of attack, a =14°.and frequency

®=0.05 for several time steps, N = 40, 60, 80 and 100 between the oscillatory cycle from
t/T=5.28 to 5.34.

3.4 Unsteady effects in the flow past the triangular airfoil
For angles of attack larger than « =6°, the computed aerodynamic coefficients of lift and

drag, C; and C,, of the triangular airfoil display periodic variations in time as shown in Figure
3.9 for Re = 3000.

One can observe that up to the aerodynamic coefficients are practically constant in time.
With the increase in incidence, the lift and drag coefficients display periodic variations in time.
The amplitude of these variations in time increases substantially with the angle of attack, for

incidences larger than « =10°. The oscillations of the aerodynamic coefficients become more

complex, due to an increasing complexity of the unsteady flow separations.
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Figure 3.9 The variations with the nondimensional time, ¢t =¢*U_/c, of the lift and drag

coefficients, C; and C,, of the triangular airfoil for Reynolds number, Re = 3000, at various

angles of attack, « .

The behavior is consistent with the results of the flow separation analysis, which revealed that

for incidences smaller than & =6° the flow separation behind the ridge (situated at x=s5=0.30)

is well organized and does not present oscillations in time, as it can be seen in the flow

visualizations shown in Figure 3.10. In these flow visualizations, the streamlines are represented

by continuous lines, and the flow velocity field is represented by color shades related to the non-

dimensional velocity V/U, .
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Figure 3.10 Illustration of the steady flow separations for the triangular airfoil for Re = 3000 at

a=2"and a=4".

At incidences larger than « = 6°, the complexity of the flow separations and their variations
in time increase when the angle of attack increases. The most complex pattern of the flow
separations is displayed for incidences larger than « =12°. This can be seen in Figures 3.11 to

3.13, which present illustrations of the flow separations at various moments in time for the

triangular  airfoil for Reynolds number, Re = 3000, at various incidences
a=6°,8",10°,12°, 14°and 16°. The lines in these figures show the streamline pattern of the
flow around the airfoil, and the color shades indicate the nondimensional velocity field (with

respect to the uniform stream velocity U, ).

70



R
I
.
S
I
x?

J)

J%W

W?))))))

[RNRANAN
[RNRNANI

@))))}))))))

[RRANNI

|

W%)ﬁ)ﬁ

i

|

|

|

l»??

W%)}))

[RERARAN)

Ji

|

e

W

W?ﬁ)ﬁ?)ﬂ)

@

K@W

|

J

VIUs
010203040506 070808 1 11121314

Figure 3.11 Illustration of the unsteady flow separations for the triangular airfoil at various
moments in time using the streamlines and the color shades indicating the nondimensional

velocity field: For Re = 3000 at the angles of attack o =6" and o =8".
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Figure 3.12 Illustration of the unsteady flow separations for the triangular airfoil at various

moments in time using the streamlines and the color shades indicating the nondimensional

velocity field: For Re = 3000 at the angles of attack a =10 and o =12°.
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Figure 3.13 Illustration of the unsteady flow separations for the triangular airfoil at various

moments in time using the streamlines and the color shades indicating the nondimensional

14° and o =16".

velocity field: For Re = 3000 at the angles of attack «
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These illustrations of the variation in time of the flow separation pattern shown in Figures 3.11 to
3.13 are consistent with the oscillatory variations in time of the aecrodynamic coefficients shown
in Figure 3.9. It can be seen these unsteady flow separation structures, appearing in the flow past
stationary airfoils at low Reynolds numbers, generate the oscillatory variations in time of the lift

and drag coefficients.
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Figure 3.14 The variations with the nondimensional time, ¢ =7*U, /c, of the lift and drag
coefficients, C; and C,, of the triangular airfoil for Reynolds number, Re = 600, at various

angles of attack, « .
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After presenting the results for the triangular airfoil at Re = 3000, which was chosen because of
available experimental results. The numerical results can be also obtained for the triangular
airfoil at Reynolds numbers Re = 600, 1000 and 1500 for the aerodynamic coefficients of lift and
drag, C, and C,, as shown in Figures 3.14 to 3.16. These new set of results can help to study
the influence of Reynolds number on the unsteady effects generated by the unsteady flow

separations at low Reynolds numbers.
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Figure 3.15 The variations with the nondimensional time, 1 =¢*U_/c, of the lift and drag
coefficients, C;, and C,, of the triangular airfoil for Reynolds number, Re = 1000, at various

angles of attack, « .
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Figure 3.16 The variations with the nondimensional time, ¢ =7*U, /c, of the lift and drag

coefficients, C; and C,, of the triangular airfoil for Reynolds number, Re = 1500, at various

angles of attack, « .

One can notice, at angles of attack larger than « =10° in Figure 3.14, and larger than o =8’

in Figure 3.15 and 3.16, as the Reynolds number increases the amplitudes of the oscillations in

time of the lift and drag coefficients become larger. This is where the numerical solution enters

into unsteadiness region and the lift and drag coefficients are not constant in a real time.

Therefore, in one oscillation cycle there are minimum and maximum values for these two

coefficients at higher angles of attack as shown in Figures 3.14 to 3.16.
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3.5 Unsteady solutions for several symmetric and cambered airfoils

The numerical method presented in section 3.1 is then used to obtain solutions for several

symmetric and cambered airfoils at various angles of attack, in order to study the unsteady

effects generated by the unsteady flow separations at low Reynolds numbers.

The aerodynamic coefficients of lift and drag C;, and C, of the NACA 0004 airfoil are

shown in Figure 3.17, 3.18 and 3.19 for the Reynolds numbers Re =

600. 1000 and 1500;

respectively.
1.2 — 0.5 o
[ NACA 0004, Re=600 NACA 0004, Re=600
- o 045
11 i ald 5 N
. i a=20"
1 : = 0 ul 04+
Y oA /| a=20" a=18'
G f { / G
09k :;' \ :;' ) _' 035 o a a a=16"
i ! .". ¥ A [ -
§ 3 .3 \ / \ / d A \ H
o8| . N b 03f 7 -0 o e
B o o -l \ ) B
B - a=16 B
07 0.25 -
06 L - | | [ ; 0ol L1 | " . I
5 5.2 54 ¢ 5.6 5.8 6 5 5.2 4y 5.6 58
I — - 0.28 —
[ NACA 0004, Re=600 NACA 0004, Re=600
0, — O B
- o R Q S asd
08} : o ! . / ) » o
- ) ” \\ ol “MNa=14" 024 o7 s koS,
< ) / A ~
ol o’ o
a=12 CI)
0.6 . o -
g g (T S S S < — a3 =10
o " ’ ' o ' | a=8" —17
CI_ 02k o=12
¥ a=6"
04
, A = — — << g=10"
o=4" |
0.16 = a=8"
02 o B o=6,
—o0—0—0—0—0—0—0—0— 00— —0—0—0—| g=2 a=4"
o—b0—0—0—0— 000 —C0—F0—0—0—0——0——0—
[ T R | [ B 1 0.12 | - —— -
05 ) 56 58 6 5 5.2 54 5.6 5.8 6

Figure 3.17 The variations with the nondimensional time, ¢ =7*U,/c, of the lift and drag
coefficients, C; and C,, of the NACA 0004 airfoil for Reynolds number, Re = 600, at various

angles of attack, « .
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Figure 3.18 The variations with the nondimensional time, ¢t =¢*U_ /c, of the lift and drag
coefficients, C; and C,, of the NACA 0004 airfoil for Reynolds number, Re = 1000, at various

angles of attack, o .

One can be seen that the amplitudes of the oscillations in time of the lift and drag coefficients

increase when the angle of attack, o goes up, this is more significant at angles of attack larger

than a =10°. By comparing Figures 3.17 to 3.19, it is apparent that these oscillations grow with

an increase in Reynolds number.
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Figure 3.19 The variations with the nondimensional time, ¢ =7*U, /c, of the lift and drag
coefficients, C; and C,, of the NACA 0004 airfoil for Reynolds number, Re = 1500, at various

angles of attack, « .

One can observe that up to o =8" the aerodynamic coefficients are practically constant in

time. With the increase in incidence, the lift and drag coefficients display periodic variations in

time; as a result the solution becomes unsteady. The amplitude of these variations in time
increases as the angle of attack goes up, and for incidences larger than « =10° these oscillations

of the aerodynamic coefficients become more complex, due to complexity of the unsteady flow

separations at higher angle of attack.
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As it can be seen in the flow visualizations shown in Figure 3.20, this behavior is consistent with

the results of the flow separation analysis, which revealed that for incidences smaller than
a =8 for Re = 1000, and o =10" for Re = 600, the flow separation is well organized and does

not present oscillations in time.

In these flow visualizations, the streamlines are represented by continuous lines, and the flow

velocity field is represented by color shades related to the non-dimensional velocity V' /U , .

a=6° Re =1000 a=28

010203040508 0708309 1 11121314
ViU,
Figure 3.20. Illustration of the steady flow separations for the NACA 0004 airfoil for two
Reynolds numbers, Re = 600 and 1000, and at two angles of attack, o .

At incidences larger than o« =8°, the complexity of the flow separations and their variations
in time increase as the incidence becomes larger. The most complex pattern of the flow
separations is displayed for incidences larger than « =14°. This can be seen in Figures 3.22 and

3.22 which present illustrations of the flow separations at various moments in time for the

NACA 0004 airfoil at Reynolds number Re = 600 and Re = 1000 for various incidences
a=14",16",and 18°. The lines in these figures show the streamline pattern of the flow around

the airfoil, and the color shades indicate the nondimensional velocity.
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The following flow visualizations indicated in Figures 3.21 to 3.24 are consistent with the
oscillatory variations in time of the aerodynamic coefficients shown in Figure 3.17 and 3.18,
indicating that these unsteady flow separation structures, occurring in the flow past stationary
airfoils at low Reynolds numbers, generate the oscillatory variations in time of the lift and drag

coefficients

L S el

010203040508 07 0809 1 11121314

Figure 3.21 Illustration of the unsteady flow separations for the NACA 0004 airfoil at various
moments in time using the streamlines and the color shades indicating the nondimensional

velocity field: For Re = 600 at the angles of attack & =12° and a =14".
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Figure 3.22 Illustration of the unsteady flow separations for the NACA 0004 airfoil at various
moments in time using the streamlines and the color shades indicating the nondimensional

velocity field: For Re = 600 at the angles of attack ¢ =16 and o =18".
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Figure 3.23 Illustration of the unsteady flow separations for the NACA 0004 airfoil at various
moments in time using the streamlines and the color shades indicating the nondimensional

velocity field: For Re = 1000 at the angles of attack & =10° and a =12".
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Figure 3.24 Illustration of the unsteady flow separations for the NACA 0004 airfoil at various
moments in time using the streamlines and the color shades indicating the nondimensional

velocity field: For Re = 1000 at the angles of attack & =14° and a =16°.
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3.5.1 Influence of Reynolds number for symmetric airfoils

The influence of the Reynolds number on the flow separations can be observed by comparing

the flow visualizations shown in Figures 3.21 to 3.24. For instance, in Figure 3.22 the flow

visualizations for NACA 0004 airfoil, and a =16 at Re = 600 can be compared with Figure

3.24 for the same airfoil and same angle of attack at Re = 1000. It is noticeable that for the same

angle of attack, «, the unsteadiness of the flow separations increases with the increment in

Reynolds number.
The influence of the Reynolds number on the unsteady effects generated by the unsteady flow
separations at low Reynolds numbers can be also observed by comparing the results shown in

Figures 3.25 and 3.26 for Re = 600 and Re = 1000 over the symmetric airfoil NACA 0004.
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Figure 3.25 Influence of Reynolds number for symmetric airfoils. Comparison of the variations
with the nondimensional time, 1 =¢*U_ /c, of the lift coefficients, C;, of NACA 0004 airfoils

for Re = 600 and 1000, at various angles of attack, o .
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Figure 3.26 Influence of Reynolds number for symmetric airfoils. Comparison of the variations
with the nondimensional time, ¢ =¢*U_ /c, of the drag coefficients, C,, of NACA 0004 airfoils
for Re = 600 and 1000, at various angles of attack, « .

From above figures it can be seen that the amplitude of oscillations goes higher as the

Reynolds number increases, and the stall conditions happen in a smaller angle of attack

(@ =18°) when Reynolds number is larger.

3.5.2 Influence of the airfoil thickness for symmetric airfoils

The influence of the relative thickness of the symmetric airfoil on the unsteady effects

generated by the unsteady flow separations at low Reynolds numbers can be studied by
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comparing the results shown in Figures 3.27 and 3.28 for the symmetric NACA 0002 and 0008
airfoils at Re = 600, and the results shown in Figures 3.29 and 3.30 for the same NACA airfoils

at Re = 1000.
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Figure 3.27 Influence of the airfoil thickness for symmetric airfoils. Comparison of the variations
with the nondimensional time, ¢ =¢*U,_ /c, of the lift coefficients, C;, of NACA 0002 and
0008 airfoils for Reynolds number Re = 600, at various angles of attack, « .

One can be seen that the amplitudes of the oscillations in time of the aerodynamic coefficients

are larger for the thinner airfoil, NACA 0002, at the same angle of attack, and that the stall

conditions appear at smaller incidence ( & = 20°) for the thinner airfoil.
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Figure 3.28 Influence of the airfoil thickness for symmetric airfoils. Comparison of the variations
with the nondimensional time, ¢ =¢*U_ /c, of the drag coefficients, C;,, of NACA 0002 and
0008 airfoils for Reynolds number Re = 600, at various angles of attack, « .

Similar comparisons are shown in Figures 3.29 and 3.30 for a different Reynolds number,

Re = 1000, in order to evaluate influence of the Reynolds number as well as influence of the

airfoil thickness for NACA 0004 symmetric airfoil.
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Figure 3.29 Influence of the airfoil thickness for symmetric airfoils. Comparison of the variations
with the nondimensional time, ¢ =¢*U,_ /c, of the lift coefficients, C;, of NACA 0002 and
0008 airfoils for Reynolds number Re = 1000, at various angles of attack, « .

From the Figures 3.27 and 3.29, it is noticeable that the amplitude of oscillations goes up by
increasing the Reynolds number from 600 to 1000 for NACA 0002 airfoil. Also, the stall

condition occurs in smaller angle of attack ( & =18 ) for higher Reynolds number.
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Figure 3.30 Influence of the airfoil thickness for symmetric airfoils. Comparison of the variations
with the nondimensional time, ¢ =¢*U_ /c, of the drag coefficients, C;,, of NACA 0002 and
0008 airfoils for Reynolds number Re = 1000, at various angles of attack, « .

3.5.3 Influence of the airfoil thickness for cambered airfoils

The influence of the relative thickness of the cambered airfoil on the unsteady effects
generated by the unsteady flow separations at low Reynolds numbers can be studied by
comparing the results shown in Figures 3.31 and 3.32 for the NACA 2402 and 2404 airfoils at
Re = 600.
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Figure 3.31 Influence of the airfoil thickness for cambered airfoils. Comparison of the variations
with the nondimensional time, ¢t =¢*U_ /c, of the lift coefficients, C;, of NACA 2402 and

2404 airfoils for Reynolds number Re = 600, at various angles of attack, « .

One can observe that, at the same angle of attack, the amplitudes of the oscillations in time of

the aerodynamic coefficients are larger for the thinner airfoil, NACA 2402.
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Figure 3.32 Influence of the airfoil thickness for cambered airfoils. Comparison of the variations
with the nondimensional time, ¢ =¢*U_ /c, of the drag coefficients, C;,, of NACA 2402 and

2404 airfoils at Reynolds number Re = 600, for various angles of attack, « .
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3.5.4 Influence of the airfoil relative camber

The influence of the relative camber of the airfoil on the unsteady effects generated by the

unsteady flow separations at low Reynolds numbers can be studied by comparing the results

shown in Figures 3.33 and 3.34 for the cambered airfoils NACA 2404 and 4404.
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Figure 3.33 Influence of the airfoil relative camber. Comparison of the variations with the
nondimensional time, ¢ =¢*U_ /c, of the lift coefficients, C,, of NACA 2404 and 4404 airfoils

for Reynolds number Re = 600, at various angles of attack, « .
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Figure 3.34 Influence of the airfoil relative camber. Comparison of the variations with the
nondimensional time, ¢ =¢*U_ /c, of the lift coefficients, Cj,, of NACA 2404 and 4404 airfoils

for Reynolds number Re = 600, at various angles of attack, o .

One can notice that, at the same angle of attack, the amplitudes of the oscillations in time of

the aerodynamic coefficients are slightly smaller for the more cambered airfoil, NACA 4404.

3.6 Summary of findings
In this chapter the unsteady separations effects on the flow past stationary airfoils at low
Reynolds numbers have been studied using an efficient time-accurate numerical method for the

integration of the Navier-Stokes equations. This numerical method is based on a second-order
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three-point-backward implicit scheme for the real time discretization and a pseudo-time
relaxation procedure using artificial compressibility and a factored alternate-direction implicit
scheme for the pseudo-time integration. A special decoupling procedure using the continuity
equation reduces the problem to the solution of scalar-tridiagonal systems of equations, which
enhances substantially the computational efficiency of the method.

The solutions obtained for the triangular airfoil were found in good agreement with the
experimental results, before the effects of unsteady flow separations become important, since the
experimental results were obtained only for steady flows.

This study indicated for the first time that the lift and drag coefficients of the stationary airfoil
have oscillations in time generated by the unsteady flow separations on the upper surface of
airfoil at low Reynolds numbers, which appear at relatively low angles of attack (about 8
degrees). These flow separations effects on the unsteady aerodynamic coefficients have been
studied for various geometric and flow parameters, such as the angle of attack, relative thickness
and camber, and Reynolds number.

The obtained results can be used for different engineering applications such as the design of
micro aerial vehicles and unmanned aerial vehicles where the flow is relatively at low Reynolds

numbers less than 6000.
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Chapter 4

Analysis of Steady and Unsteady Viscous Flows past Airfoils in the
Proximity of the Ground

The first part of this chapter is dedicated to study the steady and unsteady flows past
oscillating airfoils at low Reynolds numbers (from 400 to 6000) in the proximity of the ground.
There are many applications including military aircraft and Unmanned-Aerial Vehicles (UAVs)
and very small aircrafts called Micro-Air Vehicles (MAVs) that can operate in various indoor or
outdoor environments. To date, there are no published studies on steady or unsteady flows past
airfoils in the proximity of the ground at these low Reynolds numbers.

The second part of this chapter is devoted to the analysis of unsteady flows past stationary
airfoils, generated by the unsteady flow separations at low Reynolds numbers, in the proximity
of the ground. It is interesting to analyze the effect of the ground proximity on these unsteady
effects on the stationary airfoils at low Reynolds numbers. This study obtains solutions for the
oscillations in time of the lift and drag coefficients of several symmetric and cambered airfoils in
the proximity of the ground, which are generated by the unsteady flow separations developed on
the airfoil upper surface at low Reynolds numbers.

This chapter presents the study of the ground effect on steady and unsteady flows past fixed
and oscillating airfoils at low Reynolds numbers. This unsteady flow problem is solved in a
rectangular computational domain, obtained from the physical domain by time-dependent
coordinate transformations for various sub-domains, in which the boundary conditions are
efficiently and rigorously implemented. Solutions for the airfoils in the proximity of the ground
at low Reynolds numbers flows are obtained with an efficient numerical method developed by
the author for the time-accurate solution of the Navier-Stokes equations, which is second-order
accurate in both time and space. This method uses a pseudo-time relaxation procedure based on
artificial compressibility, and a factored Alternate-Direction Implicit (ADI) scheme for
integration in pseudo-time. A second-order central finite difference formulation is used on a
stretched staggered grid, which avoids the odd-and-even points decoupling. A special decoupling

procedure based on the continuity equation reduces the problem to the solution of scalar-
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tridiagonal systems of equations, which enhances substantially the computational efficiency of
the method.

This study analyzes the influence of various geometric and flow parameters, such as the
distance to the ground, angle of attack, relative thickness and camber, and Reynolds number on
the flow separations occurring on the airfoil upper surface and on the aecrodynamic coefficients in

the proximity of the ground.

4.1 Problem formulation

Consider a cambered airfoil of chord ¢ placed at a variable incidence a(¢) in a uniform
stream of velocity U, at a distance ¢H above the ground, as shown in Figure 4.1. The airfoil
is referred to a Cartesian reference system of coordinates cx and cy, where x and y are
nondimensional coordinates, with the x -axis along the airfoil chord and its origin at the airfoil

leading edge. The airfoil upper and lower surfaces are defined by the equations (4.1).

ent Ugv g---=r"
U 4 :I

C
- V. U u

77T

Figure 4.1 Geometry of an oscillating airfoil placed in a uniform flow at the variable incidence,
a(t)= oy +a , cos(wt), in the proximity of the ground.

y:el(x)zh(x)+e(x), and y:—ez(x):h(x)—e(X), 4.1
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where the subscripts 1 and 2 refer to the upper and lower surfaces, and where 4(x) and e(x)
define the camberline and the airfoil thickness variation along the airfoil chord, respectively. The
special case of symmetric airfoils is characterized by ej(x)=e,(x)=e(x) and 2(x)=0.

The airfoil is assumed to execute harmonic pitching oscillations of frequency f about a hinge
situated at the distance cx=ca from the leading edge, which is defined by the time variation of
the angle attack with respect to the mean incidence ¢, expressed as

a(t) =a,+oa, cos(a)t) , 4.2)
where «, is the amplitude of oscillations, t=¢*U_/c is a nondimensional time and
®=27xfc/U, is the nondimensional frequency of the oscillations (w? = 27/t *). In the steady
case, the angle of attack is constant, a(t)= «, = constant.

The viscous fluid flow past the oscillating airfoil is referred to a fixed Cartesian reference
system of coordinates ¢ and cn are defined by the equations

&=(x—a)cosa+ ysina, n=—(x—a)sina+ycosa, (4.3)
where & and 7 are nondimensional coordinates with respect to the airfoil chord ¢, with the & -
axis parallel to the uniform stream velocity U (inclined with the angle « with respect to the
airfoil chord) and with its origin at x =a (at the airfoil rotational hinge, as shown in Figure 4.1).

Let U_u and U_v denote the fluid velocity components along the fixed &- and 7-axes,
where u and v are the nondimensional velocity components with respect to U _ .
Applying the conservation of mass and Newton’s second laws to an infinitesimal and fixed

control volume yield the continuity and momentum equations in nondimensional conservation

formas,%—\t/JrQ(V,p):O, V.Vza_u+8v=

—=0, 4.4
o¢ " on (4.4)
where t=¢*U_/c is the nondimensional time (z* is the dimensional time), V = {u,v}T
represents the vector of the dimensionless velocity components and Q(V, p), which includes the

convective derivative, pressure and viscous terms, can be expressed in two-dimensional
Cartesian coordinates in the form

_6(uu) d(vu) op 1 o’u  0u
Qu(u,v,p)——aég +—677 +8§ Re(ﬁferﬁan’ 4.5)
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2 2
Qv(u,v,p):M+M+a_p_L a_v2+avz , (46)
o0& on on Relo&” 0On
VOV:@+ﬁ 4.7)
os on
4.2 Method of solution

The problem is solved in a similar method that was explained in details in chapter 3. For an
efficient and rigorous implementation of the moving boundary conditions, the problem is solved
in a fixed rectangular computational domain with six sub-domains (indicated in Figure 4.2),
which is obtained from the physical domain by a time-dependent geometrical transformation
defined as

X =g(&n.1). Y= (&), t=t, (4.8)
where g(§,77,t) and f (5, 1, t) are defined for each domain in the following forms:

Domain 1 (for x<0 and asina(t)<n < H,):

_ &cosalt)-nsinalt)+a n—asinalr)
g(f,i],t) - L cos a(t)+ 7sin a(t)—a Lo- f(é: 7! ) H, —asin a(t) i *2)
Domain 2 (for x<0 and —H <n<asina(t) ):
_ &cosalt)-nsinalt)+a n—asin a(t)
glém )= L, cosalt)+nsina(t)—a Lo- f(&m1)= H +asin a(t) " (.10
Domain 3 (for 0<x<1 and el(x)< y<H)):
g(&m,1)=Ecosalt)-nsinalt)+a,
— y—ex)
f&m1)= H, —e,(x)cos a(t)+ (x —a)sin ax(t) Hy cosal) @10
Domain 4 (for 0<x<1 and —H <y <—e,(x)):
g(&n.t)=Ecosalt)-nsinalt)+a,
(& n.t)= ytex) H cos aft) (4.12)

H — e, (x)cos a(t)— (x —a)sin a(z)
Domain 5 (for x>1 and —(1—a)sina(r)<n < H,):

_ Ecosalt)-nsinalt)-1+a B
g(f,n,t)— L, cosa(t)—nsina(t)—1+a (Ll 1)+1’
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fona- e

Domain 6 (for x>1 and —H<77<—(1—a)sina(t) ):
2(Emt)= Ecosalt)- nsina()—l+a(Ll_1)+1’

L cosa() nsma( )—1+a
f(En.r)= ’“((1 a))s;;i(())f, (4.14)

Upper far-field boundary

______________ L
. Out-flow i
boundary ~—___| i
\i
Domain 3 CH[ i

7'y ' Zé
N In-flow ' Domain 4 | Domain 6 cH2 i
! boundary ! | H
i‘ (L“ 'r ! (,L] 'l
\\\\\\\\\\\\\\\\\\

Ground

pTTTTTT I i it TTTTTTTTTSTTTTTTTmoooomsommmmmoes 3T
% Yt ! :
3 Domain 1 Domain 3 I Domain 5 H 1 E
i Solid Wall i

. s R
i Domain2 ! Domain 4 T Domain 6 H2 i
| Lo | L, :
\\\\\\\\\\\\\\\\\\

Ground

Figure 4.2 Geometry of the physical (77,&) and fixed computational domain (X Y ) defined by

the time-dependent coordinate transformations from equations (4.8) to (4.14).
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In equations 4.11 and 4.12, x and y are defined in function of the fixed coordinates & and 7

by the relations
x=&cosa—nsina+a, y=&Esina+ncosa (4.15)
In these equations, 7 =H, and 7=—-H, = H are the nondimensional physical coordinates of
the upper and lower boundaries of the computational domain, and £=-L,, &=L, are the

nondimensional physical coordinates of the inflow and outflow boundaries, as shown in Figure
4.2.

In the computational domain (X Y ), the upstream inflow and downstream outflow
boundaries and the upper and lower boundaries are defined by the nondimensional coordinates

X=-Ly, X=L, and Y=H,, Y =—H , respectively.

In this fixed computational domain, the Navier-Stokes and continuity equations can be
expressed as

%+G(V,p):0, DV =0, (4.16)
where
V= {u,v}T , G(V,p): {Gu (u,v,p), G, (u,v,p)}T , (4.17)
ou ou O(uu) O(uu) o(vu) o(vu)
G (uv,p)=Co—+C,—+C +C +C, +C 4.18
VP =C o Ty T Ty T Ty STy TS Ty (4-18)
2 2 2
+C7a—p+Cza—p+Cl 0 L; +Cy Ou +Cs 0 ”; ,
oX oY oX oXoY oY
ov ov o(vu) o(vu) o(vv) o(vv)
G wv,p)=C,—+C,—+0C +C +C, +C 4.19
P =Co Gy O Ty TGy TSy (+-19)
2 2 2
+C7a—p+C66—p+C1 0 ‘; +Cy v +Cs 0 ‘; ,
oX oY oX oXoY oY
DV:C7Q+C2@+C8ﬁ+C3ﬁ , (4.20)
oX oY oX oY
in which the expressions of the coefficients C,, C,, C;, ..., C, are obtained for each domain

from the time-dependent coordinate transformations (4.8) to (4.14). These coefficients are given

in Appendix B.
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No-slip boundary conditions are implemented on the airfoil contour and non-penetration
condition (zero normal velocity component) are implemented on the upper and lower boundaries
of the computational domain.

In a similar manner as it was explained in chapter 3, the equations (4.18) to (4.20) are further
spatially discretized by central differencing on a stretched staggered grid, in which the flow

variables u, v and p are defined at different positions. By using ADI scheme the equations are

transformed to a set of scalar equations in order to solve the problem more effectively.

4.3 Method validation for steady flows past airfoils far from the ground

The method has been first validated by comparison with the results obtained by Kunz and
Kroo [28] and by Mateescu and Abdo [9, 10] for several NACA airfoils without the presence of
the ground which were found in very good agreement with the present solutions for airfoils far
from the ground (H = 12). Two examples of validation results are presented in Figures 4.3 and

4.4 for the lift coefficient and for the pressure coefficient distribution.

0.6 0.8

NACA 0002, Re=1000 T NACA 4402, Re =1000
0.7

05 % )/Q/
A
0.6
04 /Q /
0.5

C, Cp
03 0.4 -
/ —— Present computational solution
02 / 031 (Navier-Stokes)
/ — Present computational solution 02 - o  Kunz & Kroo
0.1 (Navier-Stokes)

0.1

O Kunz & Kroo

0

0

0 1 2 3 4 s 6 7 8 0.1 011 012 Cp o013 0.14
0.6 v
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_o—]
0 Kunz & Kroo // 0:6 | o—

04 e C, 05 e
L ] Yl

> oy

0.2
v NACA 0002. Re=2000 02 15 —— Present computational solution
ol i ' (Navier-Stokes)

O  Kunz & Kroo

0.1 —

0 0 T T
0 1 2 3 a 4 5 6 0.07 0.08 CD 0.09 0.1

Figure 4.3 Present solutions for H = 12 (no ground effect) for the lift coefficient of the isolated
NACA 0002 and for the drag polar diagram for the isolated NACA 4402 airfoil for Re = 1000
and 2000, compared with the results obtained by Kunz and Kroo [28].
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Figure 4.4 Present solutions obtained for H# = 12 (no ground effect) for the pressure coefficient
distribution on the NACA 0002 and NACA 0008 airfoils at zero incidence for Reynolds numbers
Re = 1000, 2000 and 6000, compared with results obtained by Kunz and Kroo [28] and by
Mateescu and Abdo [9, 10] for inviscid flows.
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4.4 Ground effect on the steady flows past airfoils at low Reynolds numbers
The method of solution has been first applied to obtain solutions for the steady flows past
airfoils in the proximity of the ground for various low Reynolds numbers and various distances
to the ground.
The effect of the distance to the ground on the aerodynamic coefficients is illustrated in

Figures 4.5 and 4.6, presenting the variations with the angle of attack « of the lift and drag
coefficients, C, and Cp, and of the lift-to-drag ratio, C,/C,,, for several symmetric and
cambered NACA airfoils at several Reynolds numbers, Re, and for the distances to the ground
H=0-3, H=0-5 and H =12 (no ground effect).

Figure 4.5 illustrates the influence of the Reynolds number on the ground effect for the lift
and drag coefficients of the NACA 0004 airfoil at various low Reynolds numbers.
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Figure 4.5 Influence of the Reynolds number. Typical variations of the lift and drag coefficients,

C, and C,, with the angle of attack a for NACA 0004 airfoil at Re = 600, 1000 and 1500, for
three nondimensional distances to the ground: H =03, H=0.5 and H =12 (no ground
effect).

The influence of the relative thickness and relative camber on the variations with the angle of

attack « of the lift and drag coefficients, C; and C,,, and of the lift-to-drag ratio, C;/Cj , is

illustrated in Figure 4.6 for three symmetric airfoils NACA 0002, NACA 0004, NACA 0008 and
three cambered airfoils NACA 2404, NACA 4404, NACA 6404 at Re = 1000 for three
nondimensional distances to the ground: H =0-3, H=0-5 and H =12 (no ground effect).
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Figure 4.6 Lift and drag coefficients, C,, C,, and the lift-to-drag ratio, C,/C,,, versus the
angle of attack o for Re = 1000 for the nondimensional distances to the ground H =0.3,
H=0.5 and H =12 (no ground effect).
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The analysis of the flow revealed that flow separations appear on the upper surface of the airfoil
at lower angles of attack due to the proximity of the ground. This is seen in Figure 4.7 which

illustrates the streamline pattern of the flow around three airfoils NACA 0002, NACA 0004 and
NACA 0008 for Reynolds number, Re = 1000, and at the angle of attack a =6°.

NACA 0002, H=12 NACA 0004, H=12 NACA 0008, H=12

B 2l U,

0102 03 04 05 06 07 08 09 1. 1112

Figure 4.7 Illustration of the flow separation on the upper surface of three NACA airfoils at

angle of attack @ =6° and Reynolds number Re = 1000 for the several distances to the ground
H=0-3, H=0-5 and H =12 (no ground effect). The lines show the streamline patterns of the

flow around the airfoil and the color shades indicate the nondimensional velocity fields (with
respect to the uniform stream velocity U, )

It is noticeable that in the proximity of the ground (for H =0-5 and especially for H =0-3)

there are important flow separation regions on the upper surface of the airfoils, while very far
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from the ground ( H =12) there is no flow separation for the thinner airfoils (NACA 0002 and
0004) and a smaller flow separation region for NACA 0008 airfoil.
The influence of the Reynolds number on the flow separation on the NACA 0004 airfoil at

angle of attack « =6° is illustrated in Figure 4.8 for three Reynolds numbers, Re = 600, 1000
and 1500. One can observe that the flow separation region becomes larger with the increase in

the Reynolds number and in the closer proximity of the ground.

Re =600, H=12 Re=1000, H=12 Re=1500, H=12

B A VU,

0102 03 04 05 06 07 08 09 1. 1112

Figure 4.8 Illustration of the flow separation for NACA 0004 airfoil at angle of attack « =6° for
three Reynolds numbers, Re = 600, 1000 and 1500 and for two distances to the ground: H =0-5

and H =12 (no ground effect)

107



4.5 Unsteady flow solutions for oscillating airfoils in the proximity of the
ground at low Reynolds numbers

The numerical method presented in section 4.2 has been then applied to obtain solutions for
the unsteady flows past airfoils executing pitching oscillations with respect to the leading edge

(a=0) in the proximity of the ground for various low Reynolds numbers.

4.5.1 Influence of the Reynolds number

The influence of the Reynolds number and the distance to the ground on the unsteady lift and
drag coefficients, C,, Cp, and on the unsteady lift-to-drag ratio C,/C,, is illustrated in
Figures 4.9 and 4.10 for NACA 0002 and NACA 0004 airfoils executing pitching oscillations
a(t)=a, +a cos(wt), with oy =0, a,=4" and @=0-05, at Re = 600 and 1000 for three
distances to the ground: H =0-3, H=0-5 and H =12 (no ground effect).

The influence of the Reynolds number and the distance to the ground on the unsteady pitching

moment coefficient, C,,, is illustrated in Figure 4.11 for NACA 0002 and NACA 0004 airfoils

executing pitching oscillations a(t)=a, +a cos(w?), with a;=0", a,=4° and @=0-05, at
Re =600 and 1000 for three distances to the ground: # =0-3, H=0-5 and H =12 (no ground

effect).

4.5.2 Influence of the airfoil relative thickness

The influence of the airfoil relative thickness and of the Reynolds number with the distance to

the ground on the unsteady lift and drag coefficients, C,, C, and on the lift-to-drag ratio

C,/Cp, is illustrated in Figure 4.12 for NACA 0002, NACA 0004 and NACA 0008 airfoils

executing pitching oscillations a(t)=a, + a ,cos(wt), with ¢, =0°, a4 =4° and ©=0-05, at

Re = 1000 for three distances to the ground.
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Figure 4.9 Influence of Reynolds number: Solutions for the unsteady lift and drag coefficients

for a NACA 0002 airfoil executing pitching oscillations with « =0, « ,=4°, ©=0.05, at Re =

600 and 1000 for three distances to the ground: # =03, H=0.5, H =12 (no ground effect).
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Figure 4.10 Influence of Reynolds number: Solutions for the unsteady lift and drag coefficients
for a NACA 0004 airfoil executing pitching oscillations with « =0, « ,=4°, ©=0.05, at Re =
600 and 1000 for three distances to the ground: # =03, H=0.5, H =12 (no ground effect).
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Figure 4.11 Influence of Reynolds number: Solutions

for the unsteady pitching moment

coefficient, C, , fora NACA 0002 and NACA 0004 airfoils executing pitching oscillations, with
a=0°, a ,=4°, »=0.05, at Re = 600 and 1000 for three distances to the ground: 7 =03, H=0.5,

H =12 (no ground effect).

4.5.3 Influence of the oscillation frequency

The influence of the oscillation frequency, @, and of the mean incidence, «, with the

distance to the ground on the unsteady lift and drag coefficients, C; and C,, and on the lift-to-

drag ratio C,/Cj, is illustrated in Figure 4.13 for NACA 0002 airfoil executing pitching

oscillations a(t)=a, + e ,cos(wt), with the oscillation amplitude o 4 =4°, for two oscillation

frequencies @=0-05and 0-10, and for two values of the mean incidence ¢, =0" and ¢y =2°,

at Re = 1000 and for two distances to the ground: H =0-3 and H =12 (no ground effect).
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Figure 4.12 Influence of the airfoil thickness: The unsteady aerodynamic coefficients for NACA
0002, NACA 0004 and NACA 0008 airfoils executing pitching oscillations with «(=0°, a =4,
®=0.05, at Re = 1000 for three distances to the ground: H#=0.3, H=0.5, H=12.
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Figure 4.13 Influence

2

®=0.05and 0.10, and for two values of the mean incidence «,=0° and «,=2°, at Re = 1000 and

Y 2 4

2 0 2 o 4
of the oscillation frequency for NACA 0002 at two frequencies,

6

4

&

for two distances to the ground: 7 =0.3 and H =12 (no ground effect).
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One can be noted in Figure 4.13, that the shape of the hysteresis curve for the unsteady lift
coefficient, C,, in the case of pitching oscillations with a4 =2°, a4 =4" and ©=0-1 is
significantly changed for the distance to the ground H =0-3 due to the flow separation region
developed on the upper surface of the airfoil in this case.
4.5.4 Typical variations of the unsteady pressure coefficient

The typical variations of the unsteady pressure coefficient along the chord at several moments

during the oscillatory cycle, ¢/7, are illustrated in Figure 4.14 for NACA 0004 airfoil
oscillating with «g=0°, ay=4", ®=0-05, and for NACA 0002 airfoil oscillating with

ag=2°, ay=4°, ®=0-05, at Re = 1000 and for three distances to the ground: H =0-3, and
H =12 (no ground effect).

15
150 NACA 0004.Re 1000.c0=0.05 NACA 0002,Re 1000,00=0.05
| Op=0, 0s=4,H=023 0g=2, 04=4 ,H=03
1 sg ——e—— ¢T=3.0 1F I T =30
L4 - T =325 b + T =325
& YT =35 L vT=35
b yT =375 [e, T s T = 3.75
0.5 ; ’h&w-r&u 05F o._.‘. Sung .
A e i P Tt
: -.“ .. ’-f—a,_,_ﬂ_i_ia_’—:‘ o S . . - - . .‘“‘f"‘*—-r.,%
0f e +y g =5 .o, - * 3BT
Cp [eccos. = — 737_7.3_-7_5_—}:&{—‘44% G | ——— 4__:;_4;;—_;—;:_352@
w.oo' e F = . o ——a—
05 EM.,»"“' 05 - e
[ #
o i
AH -1 :M;f
i
| [
18 {
15F 15f
L
oL - | L _20 0I2 0!4 e OIG . DI8 . . 1
0 0.2 0.4 e 0.6 0.8 1 . 4 e v .
o NACA 0004.Re 1000.07=0.05 15 NACA 0002,Re 1000,62=0.05
| tlg=0, ta=4 ,H=12 i 0g=2, 04=4,H=12
15 s YT =30 1k —e— tT=30
L - vT = 325 i . ¢T = 3.25
i vT=35 § ¥T =35
05k vT =375 05k ™ T = 375
Y e
.. g - & A — T —
Ur'o',. Gr—a . o e — | oF = 't'_ij_ifi—:a—ﬂ—,
Gp [reeesaii it in ¥ e G |- e L
o ; —
o X -
05F o= 0.5 " A
| i
| &
F 7
1 -1
5 H
. ;
151 154
L
I I
oL | 1 | IR RN 2 L 1 P B | 1.
0 0.2 0.4 e 0.6 0.8 1 0 0.2 0.4 e 06 0.8 1

Figure 4.14 Variations of pressure coefficient along the chord during the oscillatory cycle, ¢/7 :
For NACA 0004 and NACA 0002 airfoils oscillating with « =4°, ©=0-05, and with a,=0°
and «,=2°, respectively, at Re = 1000 and for #=0.3, H=0.5, H =12 (no ground effect).
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4.6 Solutions for unsteady flows past stationary airfoils in the proximity of the
ground at low Reynolds numbers

This chapter also presents the numerical and experimental validation of computed solutions
for unsteady flows past stationary airfoils in the proximity of the ground at low Reynolds
numbers through the numerical method developed in section 4.2. The discussion is a novel

contribution for the aecrodynamics field that has not been identified in the literature review.
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Figure 4.15 Influence of the distance to the ground, H : The variations with the nondimensional

time, tzt*Uoo/ ¢, of the lift coefficient, C,, of the NACA 0004 airfoil for several

nondimensional distances to the ground, H = 0.3, 0.5, 1.0 and 12 (no ground effect), for Re =
1000 and at various angles of attack, « .
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4.6.1 Influence of the distance to the ground
The aerodynamic coefficients of lift and drag, C; and Cp, of the NACA 0004 airfoil are
shown in Figures 4.15 and 4.16 for four distances to the ground, H =0.3, 0.5, 1.0 and 12 (no

ground effect) for Reynolds number Re=1000 and at various angles of attack, « .
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Figure 4.16 Influence of the distance to the ground, H : The variations with the nondimensional
time, t=t*U,_ /c, of the drag coefficient, C,,, of the NACA 0004 airfoil for several distances to

the ground, H = 0.3, 0.5, 1.0 and 12 (no ground effect), for Reynolds number, Re = 1000, and at
various angles of attack, « .

One can notice that the amplitude of the oscillations in time of the lift coefficient, C; ,

increases with the decrease of the distance to the ground, and these oscillations appear at smaller

angles of attack, «, near the ground. A similar observation can be made for the drag coefficient.
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One can also notice that close to the ground, at the nondimensional distance H =0.5, the stall

conditions are reached at o =14°, and at a =16° the lift coefficient becomes smaller, while the

drag coefficient is larger than that at « =14°. It is important to note that the oscillations in time

of the aerodynamic coefficients, which are generated by the unsteady flow separations at low

Reynolds numbers, start at much smaller angles of attack than the stall angle.
From Figures 4.15 and 4.16 it can be seen that up to @ =6" for Re = 1000 and up to o =8°

for Re = 600, the aerodynamic coefficients are practically constant in time. With the increase in

incidence, the lift and drag coefficients display periodic variations in time. The amplitude of
these variations in time increases with the angle of attack, and for incidences larger than o =10°

these oscillations of the aerodynamic coefficients become more complex, due to an increasing

complexity of the unsteady flow separations.

a=6° Re=600, H=0.5 a=28

010203040506 070809 1 11121314

Figure 4.17 Illustrations of the steady flow separations for the NACA 0004 airfoil for two
Reynolds numbers, Re = 600 and 1000 and at three angles of attack, ¢ =4°, a=6" and o =8°

at the nondimensional distance to the ground H =0-5.
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This behavior is consistent with the results of the flow separation analysis, which revealed that
for incidences smaller than « =8, the flow separation is well organized and does not present
oscillations in time, as it can be observed in the flow visualizations shown in Figure 4.17.

In these flow visualizations, the streamlines are represented by continuous lines, and the flow
velocity field is represented by color shades related to the non-dimensional velocity V/U,, .

At incidences larger than o =8°, the complexity of the flow separations and their variations
in time increase with the increase in the angle of attack, «, and with decrease in the

nondimensional distance to the ground, H . The most complex pattern of the flow separations is
displayed closer to the ground and at larger angles of attack.
This can be seen in Figures 4.18 to 4.21 which present illustrations of the flow separations at

various moments in the nondimensional time, ¢#=t*U_ / c, for the NACA 0004 airfoil at
Reynolds number Re = 1000 for various distances to the ground, H# =0-3, 0.5, 1.0 and 12 (no
ground effect), and at two angles of attack, & =10 and o =12°.

The influence of the angle of attack, «, on the flow separations can be observed by

comparing the flow visualizations shown in Figures 4.18 and 4.19 at a =10" with the ones

illustrated in Figures 4.20 and 4.21 for the same airfoil NACA 0004 at « =12°. It can be seen

that the unsteadiness of the flow separations increases with the increase in the angle of attack (for

the same H ) and with the decrease in the nondimensional distance to the ground, H .
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Figure 4.18 Illustration of the flow separations for the NACA 0004 airfoil at various moments in
time, ¢t =¢*U, /c, comparison between two nondimesional distances to the ground, H =0-5

and H =12 (no ground effect), for Re = 1000 and at a =10°.
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Figure 4.19 Illustration of the flow separations for the NACA 0004 airfoil at various moments in
time, t=¢*U_/c, comparison between two nondimesional distances to the ground, H =0-3

and H =1 (no ground effect), for Re = 1000 and at o =10°".
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H=12,a=12°

Figure 4.20 Illustration of the flow separations for the NACA 0004 airfoil at various moments in
time, t=¢*U_ /c, comparison between two nondimesional distances to the ground, H =0-5

and H =12 (no ground effect), for Re = 1000 and at & =12°.
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H=03,a=12° VU, H=1,0=12°

Figure 4.21 Illustration of the flow separations for the NACA 0004 airfoil at various moments in
time, t=¢*U_/c, comparison between two nondimesional distances to the ground, H =0-3

and H =1 (no ground effect), for Re = 1000 and at « =12°.
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These illustrations of the variation in time of the flow separation pattern are consistent with the

oscillatory variations in time of the aerodynamic coefficients shown in Figures 4.15 and 4.16,

indicating that these unsteady flow separation structures, occurring in the flow past stationary

airfoils at low Reynolds numbers, generate the oscillatory variations in time of the lift and drag

coefficients.

4.6.2 Influence of the Reynolds number

The influence of the Reynolds number on the unsteady effects generated by the unsteady flow

separations at low Reynolds numbers is shown in Figure 4.22 for NACA 0002 airfoil at the
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Figure 4.22 Influence of Reynolds number:
nondimensional time, t=¢*U,_ /c, of the lift and drag coefficients, C; and Cj, for NACA 0002
airfoil for two Reynolds numbers, Re = 600 and 1500, at the distance to the ground H =0-5, for

various angles of attack, « .
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distance to the ground H =0-5 for two Reynolds numbers, Re = 600 and 1500, at several angles
of attack, and in Figure 4.23 for the NACA 0004 airfoil for two Reynolds numbers, Re = 600 and
1000, at the same distance to the ground, H =0-5.

One can notice that the amplitudes of the oscillations in time of the aerodynamic coefficients
are increasing with the increase in the Reynolds number. This is more evident for the thinner
airfoil, NACA 0002, in which the amplitudes of oscillations for both coefficients, C; and C,,

are substantially larger for Reynolds number Re = 1500 than those at Re = 600.
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Figure 4.23 Influence of Reynolds number:

Comparison of the variations with the

nondimensional time, ¢ =¢*U,_ /c, of the lift and drag coefficients, C, and Cj,, for NACA 0004
airfoil for two Reynolds numbers, Re = 600 and 1000, at the distance to the ground H =0-5, for

various angles of attack, « .
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4.6.3 Influence of the airfoil thickness

The influence of the relative thickness of the airfoil on the unsteady effects generated by the
unsteady flow separations at low Reynolds numbers in the proximity of the ground is shown in
Figures 4.24 and 4.25 for two symmetric airfoils, NACA 0002 and 0008, for two Reynolds
numbers, Re = 600 and 1000, and at the nondimensional distance to the ground H =0-5.

One can observe that the amplitudes of the oscillations in time of the aerodynamic
coefficients are larger for the thinner airfoil, NACA 0002, at the same angle of attack and at the

same distance to the ground ( H =0-5).
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Figure 4.24 Influence of the airfoil thickness: Comparison of the variations with the
nondimensional time, ¢t=¢*U_/c, of the lift coefficients, C;, and C,,, for two symmetric

airfoils, NACA 0002 and NACA 0008 for Reynolds number, Re = 600, and the distance to the
ground H =0-5, for various angles of attack, o .
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Figure 4.25 Influence of the airfoil thickness: Comparison of the variations with the
nondimensional time, ¢t=¢*U_/c, of the lift coefficients, C;, and C,,, for two symmetric

airfoils, NACA 0002 and NACA 0008 for Reynolds number, Re = 1000, and the distance to the
ground H =0-5, for various angles of attack, « .

4.6.4 Influence of the distance to the ground for cambered airfoils

The influence of the airfoil camber on the unsteady effects generated by the unsteady flow
separations at low Reynolds numbers in the proximity of the ground is shown in Figures 4.26
and 4.27 for the cambered airfoil NACA 2404 at four nondimensional distances to the ground,

H=0-3,0.5,1.0 and 12 (no ground effect) and at various angles of attack, « .
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Figure 4.26 Influence of the distance to the ground, H, for a cambered airfoil: The variations
with the nondimensional time, # =¢*U / c, of the lift coefficient, C; , of the NACA 2404 airfoil

for several nondimensional distances to the ground, H =0.3, 0.5, 1.0 and 12 (no ground effect),
for Reynolds number, Re = 1000, and at various angles of attack, « .

One can notice that the amplitudes of the oscillations in time of the aerodynamic coefficients

become larger with the decrease of the distance to the ground for the cambered airfoil, NACA

2404, at the same angle of attack.
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Figure 4.27 Influence of the distance to the ground, H, for a cambered airfoil: The variations
with the nondimensional time, ¢ =¢*U_, / c, of the drag coefficient, C,, of the NACA 2404

airfoil for several nondimensional distances to the ground, A =0.3, 0.5, 1.0 and 12 (no ground
effect), for Reynolds number, Re = 1000, and at various angles of attack, o .

The above variations in time of the aerodynamic coefficients are consistent with the results of
the flow separation analysis, which are shown in the flow visualizations illustrated in Figures

4.28 to 4.30 for the cambered airfoils NACA 2404 and NACA 4404 for Reynolds number,
Re = 1000, and angle of attack « =10°.

In these flow visualizations, the streamlines are represented by continuous lines, and the flow

velocity field is represented by color shades related to the non-dimensional velocity V/U,, .
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H=12,a=10°
————————————

Figure 4.28 Illustration of the flow separations for NACA 2404 airfoil at various moments in
time using the streamlines and the color shades indicating the nondimensional velocity field

for H=0.5 and H =12, for Re = 1000 and at & =10°.
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Figure 4.29 Illustration of the flow separations for NACA 2404 airfoil at various moments in
time using the streamlines and the color shades indicating the nondimensional velocity field
for H =0.3 and H =1, for Re = 1000 and at & =10".
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Figure 4.30 Illustration of the flow separations for NACA 4404 airfoil at various moments in
time using the streamlines and the color shades indicating the nondimensional velocity field
for H =0.3 and H =0.5, for Re=1000 and at & =10°.
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4.6.5 Influence of the relative camber

The influence of the relative camber on the unsteady effects generated by the unsteady flow
separations at low Reynolds numbers in the proximity of the ground can be seen in Figures 4.31

by comparing the results for NACA 4404 airfoil, and for NACA 2404 airfoil for H = 0.5.
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Figure 4.31 Influence of the relative camber for two cambered airfoil NACA 4404 and NACA
2404: The variations with the nondimensional time, ¢t =¢*U,, /c, of the lift and drag coefficients,

C, and C,, for Reynolds number, Re = 1000, and distance to the ground, H =0-5 at various

angles of attack, « .

One can notice that the amplitudes of the oscillations in time of the aerodynamic coefficients

increase with the relative camber, for the same angle of attack and distance to the ground. It
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should be mentioned the stall condition for NACA 2404 airfoil occurs in an earlier

incident o =16°.

4.6.6 Influence of the relative thickness for cambered airfoils
The influence of the relative thickness of cambered airfoils on the unsteady effects generated
by the unsteady flow separations at low Reynolds numbers in the proximity of the ground is

shown in Figure 4.32 for the NACA airfoils 2402 and 2404 for Re = 1000, and distance to the

ground H =0-5 at various angles of attack, « .
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Figure 4.32 Influence of the airfoil thickness of cambered airfoils. Comparison of the variations
with the nondimensional time, ¢ =¢*U_ /c, of the lift and drag coefficients, C;, and Cj, for

two cambered airfoils, NACA 2402 and 2404 for Reynolds number, Re = 1000, and distance to
the ground H =0-5 at various angles of attack, o .
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4.6.7 Influence of the maximum camber position

The influence of the maximum camber position on the unsteady effects generated by the
unsteady flow separations at low Reynolds numbers in the proximity of the ground is shown in
Figure 4.33 for the NACA 4404 and 4304 airfoils for Re = 1000, and distance to the ground

H =0-5 at various angles of attack, « .
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Figure 4.33 Influence of the maximum camber position. Comparison of the variations with the
nondimensional time, t=¢*U_/c, of the lift and drag coefficients, C; and C,, for two

cambered airfoils, NACA 4404 and 4304 for Reynolds number, Re = 1000, and distance to the
ground H =0-5 at various angles of attack, « .

134



4.7 Summary of findings

In this chapter the effect of the ground proximity on the steady and unsteady flows past
airfoils has been thoroughly studied to solve the problems encountered by the micro-air-vehicles
flying in the proximity of the ground or ceiling. The method developed in the previous case
study has been extended to solve this problem.

The solutions for the lift and drag coefficients of the steady and unsteady flows for several
symmetric and cambered NACA airfoils in the proximity of the ground are thoroughly analyzed
in function of the distance to the ground. The unsteady flow separations on the airfoils are
studied with the aid of flow visualizations illustrating the changes in the flow pattern at various
moments in time.

This study revealed that the flow separations appear on the upper surface of the airfoil at
lower angles of attack due to the proximity of the ground. It was also found that the flow
separation regions developed on the upper surface of the airfoil increase with the getting closer

to the ground, and for larger Reynolds numbers, thinner airfoils, and higher angles of attack.
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Chapter 5

Analysis of Steady Viscous Flows Past Wings at Low Reynolds

Numbers

The analysis of the flows past airfoils and wings at low Reynolds numbers received a special
interest recently due to the development of the Unmanned-Aerial Vehicles (UAVs) and Micro-
Air Vehicles (MAVs), which can operate at relatively low altitudes and low speeds [18, 19]. The
flows past the airfoils and wings at these low Reynolds numbers (Re < 6000) are laminar, and the
fluid viscosity effect is dominant and vastly different from those at high Reynolds numbers,
usually generating flow separations at their surfaces. Several studies have been published for the
airfoil analysis at very low Reynolds numbers. Kunz and Kroo [28] found that many successful
codes developed for the normal range of Reynolds numbers (in millions) are not appropriate for
low Reynolds numbers. Kunz and Kroo in their computational study of low Reynolds number
flow used the INS2D code developed at NASA Ames based on an upwind finite differencing
scheme developed by Rogers and Kwak [29]. Later on, Mateescu and Abdo [10] studied the
steady flows past airfoils at low Reynolds numbers with a method using artificial compressibility
and a central finite difference formulation on stretched staggered grids.

Sunada ef al. [70] conducted experiments for various rectangular wings of aspect ratio 7.25 at
Reynolds number Re = 4000. Their study presents the experimental aerodynamic lift and drag
coefficients obtained for these wings. The influence of the camber ratio, thickness ratio, and
streamline shape has been shown in their research. The results presented in the form of lift and
drag coefficients are used to validate the present numerical method.

This chapter presents the analysis of steady flow past wings at low Reynolds numbers. The
problem is solved in a computational domain obtained from the physical flow domain using a
coordinate transformation, in which the boundary conditions are rigorously and efficiently
implemented. A pseudo-time relaxation procedure is used with artificial compressibility first
introduced by Chorin [30]. A factored Alternate-Direction Implicit (ADI) scheme for the pseudo-
time integration, and a special decoupling procedure is used to reduce the problem to the

solutions of scalar-tridiagonal systems of equations, which increases significantly the
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computational efficiency of the method. A second-order central finite difference formulation is
implemented on a stretched staggered grid.

The solutions of the lift and drag coefficients of wings with several symmetric and cambered
NACA airfoil sections at low Reynolds numbers are also presented in this chapter. The current
numerical solutions are validated by comparison with the experimental results for acrodynamic
lift and drag coefficients obtained by Sunada et al. [70].

The influence of various geometric and flow parameters, such as wing thickness, wing airfoil
camber, angle of attack and Reynolds number, on the aerodynamic coefficients is also studied in

this chapter.

5.1 Problem formulation and numerical method

Consider a wing with cambered airfoil of chord ¢ and span b placed at an incidence « in a
uniform stream of velocity U, , as shown in Figure 5.1 (the figure shows the half wing). The
wing is referred to a Cartesian reference system of coordinates cx, cy, and cz, where x, y
and z are nondimensional coordinates (with respect to the chord c¢ ), with the x-axis along the

wing chord and the y-axis along the wing span, and with the origin of the system situated at the
leading edge of the wing root chord. The wing upper and lower surfaces are defined by the

equations
z=¢/(x)=h(x)+e(x), z=—ey(x)=h(x)—e(x) , (5.1
where the subscripts 1 and 2 refer to the upper and lower surfaces, and where h(x) and e(x)
define, respectively, the camberline and the wing thickness variation along the wing chord. The
special case of symmetric wing section is characterized by ¢(x)=e,(x)=e(x) and (x)=0.
The viscous fluid flow past the wing is referred to a fixed Cartesian reference system of

coordinates c¢¢, c¢n,and cg defined by the equations

E=xcosa+ysina, n=y, { =-sina+ycosa, (5.2)

where &, 1, and ¢ are nondimensional coordinates with respect to the wing chord ¢, with the
& -axis parallel to the to the uniform stream velocity U, , which is inclined with the angle «
with respect to the wing chord, the 7 -axis along the wing span, and the ¢ -axis perpendicular to

the uniform stream velocity as shown in Figure 5.1.
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Figure 5.1. Geometry of a half rectangular wing placed in a uniform flow at the angle
of attack « .

Let Upyu, Uyv, and U, w denote the fluid velocity components along the fixed &-, 77-,
and ¢ -axes, where u, v, and w are the nondimensional velocity components with respect to
Uy .

The Navier-Stokes and continuity equations for the incompressible flow past a wing can be

expressed in nondimensional conservation form as

Q(V,p)=0, vey= 24, 0v, ow_

—+—=0, (5.3)
o5 on 0g
where V:{u,v,w}T represents the vector of the dimensionless velocity components and

Q(V,p), which includes the convective derivative, pressure and viscous terms, can be

expressed in three-dimensional Cartesian coordinates in the form

Q(V.p)={Q,.v.w.p). Q,(w.v.w.p). O, (u.v.w.p) }'. (54)
_8(uu) 6(vu) 8(wu) op 1 O’u  'u  u
0,(u,v,w, p)= 52t on toc "o Re 8§2+8n2+8§2 : (5.52)

0, (v, w, p)= é(uv)+8(vv)+5(wv)+5p L(@ZV N o*v 8% J’ (5.5b)

— = +
o0&  on 0 0n Reld&? on* oc?
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2 2 2
0, (u,v,w, p)= a(uw)+a(vw)+a(ww)+a_p_i 0 M; +9 VZ +2 M; , (5.5¢)
6 | on  oC oC Relof on oc
V.V=@+ﬁ+@’ (56)
oc adn og

where p is the dimensionless pressure, nondimensionalized with respect to onoz, and
Re=cU,/v is the Reynolds number based on the chord length, ¢ (o and v are the fluid
density and kinematic viscosity).

The problem is solved for a half wing in a fixed computational domain (X Y, Z ), which is
obtained from the physical flow domain (é,n,g" ), indicated in Figure 5.2. In this computational

domain, the half wing is transformed into a flat plate by geometrical transformation expressed as

X=g(&n.¢), Y =q(n) Z=f(&n.<), (5.7)

where g(é,n,é’ ), q(n), and f (§,ﬂ,é’ ) are defined for each of the six sub-domains in the

following forms

Domain 1 (for £<0,0<n<b/2+S,and —Hy <{<H;j):

_ Scosa—(sina I
Lycosa + ¢ sina 0 Y=n Z=¢ (5.8a)

3 3 3

Domain 2 (for 0<&<1,0<n<hb/2,and ¢/(x)<{ <H|):

z—ce(x)

X =Ecosa—Csina Y= 7 = Hcosa
d ¢ ’ 7, Hj +xsina—cej(x)cosa ! ., (5.8b)

Domain 3 (for 0<&<1, 0<n<b/2,and —H, <./,”<—e2(x)):

X =Ecosa—Csina, Y=n, 7 .Z+ce2(x)
Hy —Xsma—cez(x)cosa

Hycosa, (5.8¢)

Domain 4 (for 0<&<1, b/2<n<b/2+S,and —H, <{<H;):

_ Scosa—¢sina

Ly, Y=n, Z=g, 5.8d
Lycosa+ ¢ sina 0 7 ¢ (5:8d)

Domain 5 (for £>1, 0<n<b/2+S,and —sina<{<Hj):

X_fcosa—{sma—l (L1—1)+1, Y=p. 7

= : =05 Hy, (5.8¢)
Licosa—{sina—1 H)+sinax
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Figure 5.2. Geometry of the half wing in the physical domain (5,77,4“ ) and of the flat plate in the

computational domain (X Y, Z ) obtained by the coordinate transformations (5.7) to (5.8).



Domain 6 (for £>1, 0<n<b/2+S,and —Hy <{<-sina ):
_ fcosa—é’sgla—l (L1—1)+1» Y=p. 7 4’+51r.1a
Licosa—{sma—1 Hy +sina

Hy, (5.80)

In equations (5.8b) and (5.8¢c), x and z are defined in the function of the coordinates £ and

¢ by the relations
x=&cosa—¢sina z=¢sina+{cosa (5.9)

where, £ =—-L and &=L are the nondimensional physical coordinates of the inflow and

outflow boundaries, while, 7 =0 and 7 =5b/2+ S are the nondimensional physical coordinates

of lateral boundaries, and { =H;, { =—H, are the nondimensional physical coordinates of the

upper and lower boundaries, illustrated in Figure 5.2.
In the computational domain (X Y, Z ), the upstream inflow and downstream outflow

boundaries, lateral boundaries, and the upper and lower boundaries are defined by the same

nondimensional coordinates X =-Ly, X=L;, and Y =0, Y=b/2+S, and Z=H,

Z =—H,, respectively.

The Navier-Stokes and continuity equations can be expressed in the computational domain, as

G(V,p)=0, DV =0, (5.10)
where,
Vz{u,v,w}T, G(V,p):{Gu(u,v,w,p), Gv(u,v,w,p), Gw(u,v,w,p)}T, (5.11)
2
G (u v, w,p) Cy Ouu) +C o +Cy Ouu) + ovu) +C5 O0wu) +Cy ou
X ax?2 oz oY oz oz
ap O(wu) op o%u 0%u 0%u
+C +C C9—+C2 +C5— C6 ClO , (5123)
Tax oX 0. oz 2 0ZoX ov?2
2
G, (u,v, W, p) & O(uv) Cl v +C, o(uv) N o(vv) + Gy o(wv) N @ ap
oX ox 2 oz oY oz Yoz or
2 2 2
g Y e OV e OV L, O (5.12b)
o) oX 072 0ZoX 2
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2
8(uw) e Ly o(uw) N o(vw) Gy o(ww) ow

G, \u,v,w, +Cy —
wleov,wp)=Cr = ox?2 2az | or oz tez
2 2 2
+C8M+c9@+c3 P +Cg -2 P +056 Y+ Cg o w +cloa—w, (5.12¢)
oxX oxX oz oxX 07?2 0ZoX or?

LN e LS RLLY (5.13)

DV =C
Tox Tor oz oz Sox

in which the expressions of the coefficients C{, C,, C3, ..., Cg, and Cj( are obtained for

each domain from the coordinate transformations (5.7) to (5.8), the details are explained in

Appendix C.

5.2 Method of solution

An iterative pseudo-time relaxation procedure with artificial compressibility is then used in

order to solve this steady flow problem

ovV op

TGV 0, SE+pv=0, 5.14
P (V,p)= e (5.14)

where V(z) and p(z) denote the pseudo-functions corresponding to the variable velocity and
pressure at pseudo-time 7, and o represents an artificially-added compressibility.

An implicit Euler scheme is then used to discretize equations (5.14) between the pseudo-time

+1

levels 7" and V" =7¥ +Ar, and the resulting equations are expressed in terms of the pseudo-

time variations Az ="' =", Av =" =5, Aw=w"*1 ", and Ap=p""1 - pY, in the
matrix form

[I+Az(Dy+Dy+D,)|Af =AZR, (5.15)

where Af = [AL?,A?,AVV,A{?] T , I 1s the identity matrix, and

M 0 0 c7i N 0 0 O]
o M o A 0O N 0 0
DX_ ) DY: 0 O N 0 9 (516)
o 0 M 0 0
¢ 0 G o 0 0 — 0
5 ox 5 ox | L oY |

142



i 0| _ _
L 0 C,—
2oz -Gy
L 0 0 ~GY
Dz= 0 0o L 2} R= N (5.17)
3oz ~GY,
(S 0 G o 0 —(l/é‘)DVV
| 6 OZ o o0Z ) B
in which the differential operators M , N, and L are defined as
Y —V 2
M=% c, A ¢)+cg A ¢)+c15 ¢ (5.18)
oX oX X X2
—V 2
N:ﬁ(v ¢)+c105 ¢ (5.19)
oY AY?
Y —V 2 2
L=C, 5(” ¢)+c3 5(W ¢)+C4%+C55 bic, 20 (5.20)
oz oz 4 A72 12, €24

where ¢ canbe Au, Av, Aw,or Ap.

The optimal value of the artificial compressibility, ¢, and the size of the pseudo-time step,
At , are determined, in a similar manner to that used in the previous studies by the author [1, 3,
6].

A factored ADI scheme is then applied to separate equation (5.15) into three successive
sweeps in the Z, Y and X directions, defined by the equation

[1+A7(Dy +Dy +D.)JAf =[1+AzD, [I+AzD, I +AzD, |Af . (5.21)

This ADI scheme can produce some convergence issues when Az takes large values.
Therefore, to have a faster convergence it is important to keep At sufficiently small.

The ADI scheme is reduced to the solution of several sets of scalar-tridiagonal systems of
equations. Thus, equation (5.15) changes to

[[+A7D, I +ArDy I +AzD,|Af =AZR (5.22)

The ADI method requires the introduction of the intermediate variables Af " and Af to

*
solve the linear implicit system of equations. The variable Af * has the components Au Av*,

*
Aw" and Ap ", which are calculated in the Z-sweep as

[I+AzD,|Af" =AZR, (5.23)
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and the variable Af has the components Az , Av, Aw and Ap , which are computed in the Y-

sweep as

[1+AzDy ]Af =AF", (5.24)
then, Af are obtained in the X-sweep as

[I+AzDy JAf =Af (5.25)

Hence, after the factored ADI scheme is applied, the scalar form of Z-sweep, Y-sweep, and X-
sweep are obtained by replacing the equations (5.16) to (5.20) into (5.23), (5.24) and (5.25).

The Z-sweep, Y-sweep, and X-sweep equations are further spatially discretized by central
differencing on a stretched staggered grid, in which the flow variables u, v, w and pressure, p
are defined at different positions, as shown in Figure 5.3. By using a staggered grid, this method
avoids the odd-and-even point decoupling while preserving the second-order accuracy in space

of the method. The grid stretching is defined by hyperbolic sine functions in the X', Y, and Z

directions.
w
Zt1
SWijkai : ® Wikl O Witk
Vi-ljk+] Vijk+l Vil jk+] 22
; Ui-i ke Wijk+l | Uit ] jisl
LI Pitjker| W Pijk+1 o Picrjikef W
. ! : zy
Co Vibgtker L L Vighksl B Lo Vihpbkel ) 4
- o
o A e
! & Witk A ® Wijk o ® Wisrjk /
\ , H .’ 1
t ' t u
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UiLjk Ui jk Wit jk
u Pi-1jk u i Pijk n Pi+Lik B
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D e K S r R W
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Figure 5.3. Geometry of the staggered grid.
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A special decoupling procedure [9, 10, 11], based on the utilization of the continuity equation is
used for each sweep to eliminate the pressure from the momentum equations. For example, for
the Z-sweep the corresponding relation from continuity equation can be used:

o(Au*) . a(aw*) At d(Au)
oz 5 X

Ap* = —%(DVV +C,

+Cs j Ap=Ap*— (5.26)

In this manner, the problem is reduced to the solution of three sets of decoupled scalar-
tridiagonal systems of equations, for each sweep. As a result, this method is characterized by

excellent computational efficiency and accuracy.

5.3 Lift and drag coefficients of the rectangular wings
The aerodynamic lift and drag forces are generated by the pressure and the shear stress acting

perpendicular and tangential on the upper wing surface, p, and r,, and on its lower surface, p;
and ;. The wing upper and lower surfaces are each divided, by planes of constant y and planes

of constant x, into very small area elements of elemental areas ébwul.j and &TW”].,

respectively, where i varies from 1 to m along the chord, and j varies from —# to n along
the wing span.

Consider a strip element of the wing of constant width oy j (from the leading edge to the

trailing edge), the normal force, N, and tangential force, 4, on this strip is

i=m
N == 3 Puj €08 Oy + 7 50Oy )60 Wi, j
i=1

i=m
+ Z(pl,i,j COS Hl,i,j - Tl,i,j Sin el’i’j) 5O-Wl,i,j , (5273)
i=1
i=m )
AJ = Zl(— pu,i,j Sin Gu’i’j +Tu,i,j CcOS Hu’i’j) &-Wu,i,j
i=

i=m,
+ 2 P sin0p j — 710080, ) 8o WANE (5.27b)
i=1

where 6, ; ; and 0, ; ; are the inclination angles of the upper and lower wing surfaces with

respect to the x-axis.
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As a result, the normal and tangential force coefficients for the spanwise wing strip are expressed

in terms of the pressure coefficient C, and the skin friction coefficients C, in the form

Cpj = —lg(cpu’i,j ~Cpp; j+ lg(c foi SN+ Cpy o sin6 . j), (5.28a)
i=m i=
Cq ;= El (Cpu,i,j Sin0,;,; +Cpy; ; SN0, ) + lé(cfuai,f ~Cril ) . (5.28b)
Then, the lift and drag coefficients for each strip of the wing along the span can be expressed
in the form
Cl,j=Cn,joosa—Cy jsina, (5.29a)
Cd,j=Cp, jsina+Cq jcosa (5.29b)

To obtain the total lift and drag coefficients of the wing, the lift and drag forces for each wing

strip are summed up along the span and divided to the total area of the wing as

L 11

CrL= 2 [Cl,jaw,j.S—, (5.30a)
j=-n w
n 11

Cp= 2, [Cl,jffw,j.S— , (5.30b)
j:—n W

where S, is the total area of rectangular wing and o, ; is the area of each strip.

5.4 Method validation

The numerical solutions for the lift and drag coefficients obtained by this method for the
steady flow past the wing are validated in Figure 5.4 by comparison with the experimental results
reported by Sunada ef al. [70] for the rectangular wing with NACA 0006 airfoil of aspect ratio
7.25 for Reynolds number Re = 4000 at several incidences.

Very good agreement can be noticed in Figure 5.4 between the present solutions of the lift and

drag coefficients and the experimental results for angle of attack up to a=5.7°. After this
incidence, the flow becomes unsteady, due to the unsteady flow separations, and the comparison

deteriorates.
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Figure 5.4. The variation with the angle of attack, «, for the lift and drag coefficients, C,
and Cp,, of the rectangular wing with NACAQ0006 airfoil and aspect ratio 7.25 at Reynolds

number Re = 4000. Comparison between:
-e- Present steady solutions
O Experimental steady results obtained by Sunada et al. [70].

5.5 Grid sensitivity analysis

The grid sensitivity has been evaluated for the presented numerical solution through the mesh
refinement applied to a steady flow past the rectangular wing. Through the geometry analysis, it
is found the length of domain 1 and domain 5, 6 (as shown in Figure 5.2) along the wing chord

should be at least Ly=10, and L; =30, the length of upper and lower boundaries are H;= 10, and
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H> = -10, and the length of domain 4 along the span should be at least S; = 8, and S, = -8.
Beyond these lengths the numerical results are not affected.

To find the ideal grid points, the solution is solved for a steady viscous flow past rectangular

wing with NACA 0004 airfoil section for Re = 1500 at angle of attack, oz =4°.

The criteria of comparison are based on the aerodynamic coefficients such as the total lift and
drag coefficients of the rectangular wing, C, and C),.

The results of the grid sensitivity test are shown in Table 5.1. It can be seen there is no
discrepancy between the solution obtained by using 300 x 120 x 175 grid points and the fully
converged solution obtained with 350 X 145 x 200 grid points. Beyond this grid density, the

numerical solution is not influenced by the grid refinement.

Number of grid points CL Cp
100 x 20 x 75 0.203 0.079
150 x 45 x 100 0.221 0.087
200 x 70 x 125 0.234 0.089
250 x 95 x 150 0.236 0.090
300 x 120 x 175 0.237 0.091
350 x 145 x 200 0.237 0.091

Table 5.1 Grid sensitivity of the numerical solution for steady flow past rectangular wing with

NACA 0004 airfoil section for Re = 1500 at angle of attack, a =4°based on the computed

aerodynamic coefficients, C, and Cp,.

The computational time varies for each study case, however, in general the finally converged
solution for steady viscous flow over a rectangular wing for a fine mesh with 300 x 120 x 175
grid points requires 0.2 minutes per iteration computing time on a PC (Intel dual core- 17 CPU)
using FORTRAN 90.

5.6 Solutions of the steady viscous flows past rectangular wings

The numerical method presented in section 5.2 is used to obtain solutions of the flow past
wings with symmetric and cambered NACA airfoil sections at low Reynolds numbers. The
results are shown for different Reynolds numbers, and several angles of attack. The influence of

Reynolds number, and wing thickness is also presented for several aerodynamic characteristics
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including total lift and drag coefficients, and variations of lift and drag coefficients along the

wing span.

5.6.1 Influence of the Reynolds number

The influence of Reynolds number on the aerodynamic lift and drag coefficients, C; and
Cp, of a rectangular wing with NACA 0002 airfoil section and aspect ratio 8 for two Reynolds
numbers Re = 600 and 1000 is shown in Figure 5.5. In addition, the influence of Reynolds
number for a rectangular wing with NACA 0004 airfoil section, and the same aspect ratio for
two values of Reynolds numbers Re = 600 and 1500 is illustrated in Figure 5.6. These results are

presented for the lift and drag coefficients at various angles of attack.

0.8 0.20
-=-NACA0002, Re=600 =+ NACA0002, Re=600
--NACA0002, Re=1000 --NACA0002, Re=1000
0.6
0.15 .//I
CL / |/
0.4 2 Cp /
/ 0.10 Foo
0.2 /
0.0 0.05 '
0 2 Q [degl4 6 8 0 2 O |deg] 4 6 8

Figure 5.5. Influence of the Reynolds number on the aerodynamic coefficients: Comparison of
the lift and drag coefficients, C; and Cp, for a rectangular wing with NACA0002 airfoil

section of aspect ratio 8 for two Reynolds numbers, Re = 600 and 1000, at several angles of
attack, o .

One can notice that the lift coefficient is increasing as the Reynolds number increases.
However, when the Reynolds number rise, the drag coefficient shows an opposite behavior and it

decreases.
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Figure 5.6. Influence of the Reynolds number on the aerodynamic coefficients: Comparison of
the lift and drag coefficients, C; and Cp, for a rectangular wing with NACA 0004 airfoil

section and aspect ratio 8 for two Reynolds numbers, Re = 600 and 1500, at several angles of
attack, o .
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5.6.2 Influence of the wing thickness

The influence of the wing thickness with NACA 0002 and NACA 0008 airfoil sections, and

aspect ratio 8 on the aerodynamic characteristics, C; and Cp, is shown in Figure 5.7 for

Re = 600, and in Figure 5.8 for Re = 1000.
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Figure 5.7. Influence of the wing thickness on the aerodynamic coefficients: Comparison of the
lift and drag coefficients, C; and Cp, for a rectangular wing with NACA0002 and NACA0008

airfoil sections and aspect ratio 8 for Reynolds number Re = 600 at several angles of attack, « .
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Figure 5.8. Influence of the wing thickness on the aerodynamic coefficients: Comparison of the
lift and drag coefficients, C; and Cp, for a rectangular wing with NACA0002 and NACA0008

airfoil sections and aspect ratio 8 for Reynolds number Re = 1000 at several angles of attack, « .

In the above figures, one can notice that the lift coefficient decreases for thicker wings at the
same Reynolds number. In other words, the lift coefficient is smaller for the wing with NACA
0008 airfoil section than for NACA 0002 airfoil section at the same Reynolds number.

However, the drag coefficient increases for thicker wings at the same Reynolds number, such
that the drag coefficient of wing with NACA 0008 airfoil section is larger than that of the wing
with NACA 0002 airfoil section at the same Reynolds number.

5.6.3 Influence of Reynolds number and wing thickness on the variations of

the local lift and drag coefficients along the semi-span of the wing

In order to study the variations of the local lift and drag coefficients, C; and C,;, along the

semi-span of the wing, three rectangular wings with NACA 0002, NACA 0004, and NACA0008
airfoil sections are selected. The influence of the Reynolds number on these variations can be
seen in Figure 5.9 for the half wing with NACA 0004 airfoil section for two Reynolds numbers,
Re =600 and 1500 at the angles of attack 6 and 8 degrees.
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Figure 5.9. Influence of the Reynolds number on the variation of the local aerodynamic
coefficients along the wing semi-span: Comparison of C; and C; for a rectangular wing with

NACA 0004 airfoil section of aspect ratio 8 for two Reynolds numbers, Re = 600 and 1500, at

One can notice that as the angle of attack increases, the local lift and drag coefficients, C;
and C,;, are larger. At the same angle of attack and NACA airfoil section, the local lift

coefficient becomes larger when the Reynolds number increases.




The influence of the wing thickness on the local lift and drag coefficients variations along the
semi-span for rectangular wings with NACA 0002, and NACA 0008 airfoil sections for Re =
600 at the angles of attack 2 and 4 degrees is shown in the Figure 5.10.
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Figure 5.10. Influence of the wing thickness on the variation of the aerodynamic coefficients
along the semi-span of the wing: Comparison of C; and C,;, for two rectangular wings with

NACA 0002 and NACA 0008 airfoil sections, aspect ratio 8 for Re = 600 at the angles of attack
a=2°and 4°.
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One can notice that the thinner wing with NACA 0002 airfoil section has a larger local lift
coefficient and a smaller drag coefficient than the thicker wing with NACA 0008 airfoil section.

5.6.4 Influence of the wing camber

The influence of the airfoil camber of the rectangular wing with aspect ratio 8 for Re = 1000
on the wing lift and drag coefficients can be seen in Figure 5.11 by comparing the results for the
wing with NACA 2404 airfoil section and the wing with NACA 4404 airfoil section.

One can notice that the wing lift and drag coefficients, C; and Cp, are larger for the more

cambered wing.

0.60 0.15
-#-NACA2404, Re=1000 -#-NACA2404, Re=1000

--NACA4404, Re=1000 [ -6-NACA4404, Re=1000

0.45 0.13

0.15 %

0.00 . . - 0.07 . . - :
0 2 Jdeg| 4 6 8 0 2 Odegl4 6 8

Figure 5.11. Influence of the wing camber on the aerodynamic coefficients: Comparison of the

wing lift and drag coefficients, C; and Cp, for two rectangular wings with NACA 2404 and
NACA 4404 airfoil section, aspect ratio 8 for Re = 1000 at several incidences.

5.6.5 Streamline and flow pattern for steady viscous flows past wings

The typical front views ( &,{ planes) of the flow past a wing with NACA 0008 airfoil section
as viewed from the longitudinal planes y = 0, y = 0.25(b/2), y = 0.5(b/2), and y = 0.75(b/2)
towards the wing tip (y=b/2) are illustrated in Figure 5.12 for Re = 1000 at angle of attack o =8°

by using the streamlines (represented by continuous lines). The color shades show the magnitude

of the nondimensional flow velocity with respect to the mean flow velocity, U, , according to

the scale indicated in the figure.
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Figure 5.12. Illustration of the velocity contours and streamlines indicating the nondimensional

velocity for the wing with NACA 0008 airfoil section for Re = 1000 and angle of attack o =8°
at various spanwise locations y = 0, y = 0.25(b/2), y = 0.5(b/2), and y = 0.75(b/2).
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One can notice, the flow separation is appearing at the trailing edge on the upper surface of the
wing as illustrated in Figure 5.12. It is interesting to see that the flow separation is decreasing as
moving towards to the wing tip and finally vanishing.
Typical velocity contours of steady flow past the wing with NACA 0008 airfoil section is
shown in Figure 5.13 for Re = 1000 at the angle of attack, « =8°.
Moreover, the streamlines pattern are illustrated in Figure 5.14 at the plane (77, ). It is clearly

noticeable that a vorticity occurs at the tip of the rectangular wing.

C.-pr y=0

y=bl4

V/Uco

0 010203 04050607 0809 1

Figure 5.13. Isometric view of the velocity contours in a flow past a half-wing with NACA 0008

airfoil section for Re = 1000 at angle of attack «=8° illustrated in the physical domain

(&.17,¢).
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Figure 5.14. Velocity contours and streamlines in the ( 77,{ ) plane (side view) of a flow past a

wing with NACA 0008 airfoil section for Re = 1000 at angle of attack a =8".
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5.7 Summary of findings

An efficient numerical method has been developed to solve the Navier-Stokes equations for
incompressible flows past rectangular wings at low Reynolds numbers. The problem is solved in
a computational domain obtained from the physical flow domain by a coordinate transformation,
and using a pseudo-time relaxation procedure with artificial compressibility, a factored alternate-
direction implicit scheme, and a special decoupling procedure to reduce the problem to the
solutions of scalar-tridiagonal systems of equations, which improves significantly the
computational efficiency of the method.

The numerical solutions of the aerodynamic lift and drag coefficients obtained by this
method are validated with the experimental results for rectangular wings. The influence of
various geometric and flow parameters on the aerodynamic coefficients, such as the wing
thickness, wing airfoil camber, angle of attack and Reynolds number is thoroughly studied.

It is interesting to note that for the micro-air vehicles applications, the chord length is
between 5 and 20 cm, Reynolds number is between 600 and 4000 and the Mach number is less
than 0.03, which justifies the numerical method used in this thesis based on incompressible flows

in comparison with the few solutions obtained with compressible flow solvers.
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Chapter 6

Conclusions

The main conclusions of this thesis are presented below in several categories corresponding
to the chapters 2 through 5. Several suggestions for future work are also given at the end of this

chapter.

6.1 Three-dimensional confined viscous flows at low Reynolds numbers

Chapter 2 presents the analysis of the steady and unsteady three-dimensional confined viscous
flows with fixed and oscillating walls and variable inflow velocity. This analysis is performed
with a time-accurate numerical method developed by the author for the solution of the Navier-
Stokes equations for unsteady laminar flows. The problem is solved in a fixed computational
domain obtained by a time-dependent coordinate transformation from the physical domain,
which converts the physical oscillating wall into a fixed wall in the computational domain. This
numerical method is second-order-accurate based on a finite difference formulation on a
staggered grid and uses a pseudo-time relaxation procedure with artificial compressibility. An
Alternate-Direction Implicit (ADI) scheme is used in conjunction with a special decoupling
procedure, which eliminates the pressure based on the continuity equation. This procedure
reduces the problem to the efficient solution of several sets of decoupled scalar-tridiagonal
systems of equations, which enhances substantially the computational efficiency of the method.

The method was successfully validated by comparison with the theoretical solutions for the
case of uniform rectangular channels of various aspect ratios and by comparison with
experimental results for the three-dimensional confined flows with multiple separation regions in
a channel with a downstream-facing step. It is confirmed for the first time that the discrepancy
between the two-dimensional numerical solutions and the experimental results is due to the
three-dimensional effects introduced by the lateral walls of the experimental configuration, in
contrast to the rigorous two-dimensional character of the two-dimensional computational
solutions.

This method is then used to obtain solutions for the three-dimensional steady and unsteady

flows past a downstream-facing step with oscillating walls and variable inflow velocities. The
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variation of the flow separation and reattachment locations on the upper and lower walls along
the span of the channel has been thoroughly studied.

The chapter presents a detailed study of the unsteady flow separation regions, including the
study of the influence of various geometric and flow parameters, such as the channel aspect ratio,
step height, Reynolds number, amplitudes of the wall oscillation and inflow velocity variation,

and oscillation frequency, on the formation and duration of the flow separation regions.

6.2 Unsteady flow separations on stationary airfoils at low Reynolds numbers

Chapter 3 presents the unsteady flow analysis of the stationary airfoils at low Reynolds
numbers, aiming to study the unsteady effects on the aerodynamic coefficients generated by the
unsteadiness of the flow separations. It was found that the aerodynamic coefficients of lift and
drag have periodic variations in time at incidences larger than 6 or 8 degrees depending on the
airfoil shape and the Reynolds number.

Solutions are presented for the unsteady lift and drag coefficients of several symmetric and
cambered airfoils, which incorporate the effect of the unsteady flow separations. These unsteady
solutions are obtained with an efficient time-accurate numerical method developed by the author
for the solution of the Navier-Stokes equations at low Reynolds numbers, which is second-order-
accurate in time and space. Comparison with available experimental results successfully
validates the numerical method.

The influence of various geometric and flow parameters, such as the angle of attack, the
airfoil relative thickness and camber, and the Reynolds number on the unsteady aerodynamic
coefficients has been studied for several symmetric and cambered NACA airfoils.

The flow separation is also studied with the aid of the flow visualizations illustrating the
changes in the flow pattern at various moments in time. It was found that the unsteadiness of the
flow separations is consistent with the oscillations in time of the aerodynamic coefficients, which

are generated by the unsteady flow separations occurring at low Reynolds numbers.

6.3 Steady and unsteady viscous flows past airfoils in the proximity of the
ground

The steady and unsteady flow past airfoils in the proximity of the ground at low Reynolds
numbers has been studied in Chapter 4. The unsteady flow problem is solved in a rectangular

computational domain, obtained from the physical domain by time-dependent coordinate
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transformations for various sub-domains, in which the boundary conditions are efficiently and
rigorously implemented. The numerical method developed in Chapter 3 for the integration of the
Navier-Stokes equations was extended to study these flows in the proximity of the ground.

The numerical method was validated by comparing the steady flow solutions obtained for a
larger distance to the ground with the available experimental results for isolated airfoils at low
Reynolds numbers.

Solutions are first presented for the aerodynamic coefficients of several NACA airfoils in
steady flows for various low Reynolds numbers at several distances to the ground. The effect of
the proximity of the ground on the aerodynamic coefficients has been studied for various
Reynolds numbers and several symmetric and cambered NACA airfoils. The analysis of the
steady flow on these airfoils revealed that flow separations appear on the upper surface of the
airfoil at lower angles of attack are due to the proximity of the ground. It was also found that the
flow separation regions developed on the upper surface of the airfoil increase with the getting
closer to the ground, and for larger Reynolds numbers, thicker airfoils, and higher angles of
attack.

Solutions are also presented for the unsteady aerodynamic coefficients of several NACA
airfoils executing pitching oscillations for various low Reynolds numbers at several distances to
the ground. The influence of different parameters, such as the Reynolds number, relative
thickness of the airfoil and oscillation frequency, on the ground effect in the unsteady flows at
low Reynolds numbers has also been studied.

The unsteady flow separations effects on the stationary airfoils at low Reynolds numbers in
the proximity of the ground has also been presented in this chapter. It was found that the
aerodynamic coefficients of lift and drag have periodic variations in time at incidences larger
than 6 or 8 degrees depending on the airfoil shape, the Reynolds number and the distance to the
ground.

The amplitude of the oscillations in time of the lift coefficient was found to increase with the
decrease of the distance to the ground, and these oscillations appear at smaller angles of attack
near the ground. A similar observation can be made for the drag coefficient.

The flow separations on the stationary airfoils in the proximity of the ground are also studied
with the aid of the flow visualizations illustrating the changes in the flow pattern at various

moments in time.
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6.4 Steady viscous flows past wings at low Reynolds numbers

The steady viscous flows past rectangular wings with different NACA airfoil sections at low
Reynolds numbers has been studied in Chapter 5 with an efficient numerical method developed
by the author for the steady solution of the Navier-Stokes equations for laminar incompressible
flows, which is second-order accurate in space. The steady flow problem is solved in a
rectangular computational domain, obtained from the physical domain obtained by geometrical
coordinate transformations for various sub-domains, in which the boundary conditions are
efficiently and rigorously implemented. This method uses a pseudo-time relaxation procedure
based on artificial compressibility, and a factored alternate-direction implicit scheme for the
integration in pseudo-time. A second-order central finite differencing formulation is used on a
stretched staggered grid.

The method was successfully validated by comparing the present flow solutions with the
previous experimental results for the rectangular wing with NACA 0006 airfoil section of aspect
ratio 7.25 at Reynolds number Re = 4000 at various angles of attack.

The influence of various flow and geometrical parameters, such as the Reynolds number,
wing thickness, wing camber and angle of attack on the aerodynamic characteristics such as the
total lift and drag coefficients of the rectangular wing has been studied. In addition, typical
streamlines and velocity contours of the flow past rectangular wings with a NACA airfoil section

at low Reynolds numbers are also illustrated in this chapter.

6.5 Future work

As a suggestion for future work, the numerical method developed in Chapter 5 for solving the
steady viscous flows past rectangular wings can be extended to study of the unsteady flows past
trapezoidal wings executing pitching oscillations at low Reynolds numbers. The author will

continue these studies in the near future.
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Appendix A

Alternating-Direction Implicit (ADI) scheme:
By replacing the equations (2.53) to (2.55) into (2.58), (2.59) and (2.60), the scalar form of Z-

sweep, X-sweep and Y-sweep are as follows

Z-sweep:
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Y-sweep:

0PV Au) N 0%Au
ay 1 gy?
Au 0(DYAv) 0%Av N d(Ap)
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Aw (DY Aw) 0%Aw
Ap v 1oy
10Av
6 dY

Spatial discretization of momentums:

(A.3)

The central and backward difference operators, which denotes the difference between the

primary grid points and the secondary grid points are defined as:

AXY = XYy — XY
A =1 =
AZ} =27V - 7Y,

VXY = XF - X7
v =
VZY = Z¥ — 2y,

X-Momentum:

AXY = X}~ X,
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After spatial discretization:

GYijk = 1 [(u )2 — (u, )+ G (ui“'f"‘ ~ Uik Uijk ui—l.j,k>
L], AXlu u u AXL+1U AXLU
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where, the following linear interpolates of the velocity components of the staggered grid are used:

v, . u,
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v u, . .
uY_ — VYj_l.ulJ'k‘i'VY] ul’]_l’k and uy+ — uy_
Ui, jk AvY ’ Ui jk Ujj+1k
u v
wi- = VXi Wit1,jk-1tVXip1Wijk-1 and wZ+  — Z-
Uijk ~ AxF > Ui jk Ui jk+1
u VXL?L -ui—l,j,k—1+VXLP Ui j k-1 and u . VXiu -ui—l,j,k+VX1P Ujjk
11 AXLV s 12 AX;’
u w
u m— — VZk .u11+VZk_1 U12 and u m+ =u m—
Wi jk AZI‘éV—l ’ Wi j k-1 Wijk !
p— — m— pt — m-—
Wi—1jk u Wijk * and ulWi—l,j,k—l =u Wi, jk
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y-Momentum:

0 ov 8
G (u v, w,p) 8(uv) C1 2y +C, 6(uv)+ o(vv) e (wv) o, a
oxX oxX? oz oY oz oz ov
0w 0w O*w
+C +C, + A.6
Soz2 Sozex  'oy? (8.6)
After spatial discretization:
_ _ Vit1jk — Vijk Vijk — Vi-1jk
GYijk = px® [(””X+””X —v )+ Cl( l JAXi” B AXi—llu )]
_ Vij+1,k — Vijk Vijk — Vij-1k
(v,Y)? — (UY)2+C< _ )
AYv [ v v 1 ij+1u iju
+ (pi,j+1,k - pi,j,k)
+ m C, (va+WvZ+ - va_WvZ_) + C3(va+WvZ+ - va_WvZ_)
k
_ Vijk+1 — Vijk Vijk — Vijk-1
vp+_vm+ vp—_vm—
+ Cﬁ< T T T ) (A.7)
l l

where, the following linear interpolates of the velocity components of the staggered grid are used:

v u
s VY Ujq,jr1 ket VY Uiz ik and uXt = yx-
Vijk v > Vijk ~ " Vit1jk
AY]
u v
o VXi—1Vijkt VX Vi-1,jk and pX+ =
Vijk u ’ Vijk ~ “Vitijk
AXi” 4
w u
pZ— = Y1 Vij etV Vi and VIt = pZ-
Vijk w > Vijk — TVijk+1

VY]y.vi’j’k+VY]P.vi’j_1,k

Y- Y+ _ Y-

Yoijpe = AY} ’ and Wijre = Yijerk
vxy -vi—l,j—l,k+VXiu—1 Vij-1k _ vx; -vi—l,j,k+vxiu—1 Vijk
Va1 = AxU , and Va2 = AxH
i-1 i-1
v u

v m- _ VY] .U21+VY]' V22 and p— _ m—

Ui, jk AYY > Uj-1,j,k Ui, jk

J
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m+ _ m-— p+ — m—
Uij-1k ~ “Uijk > and Uj-1,j-1k v Ui jk

z-Momentum:

2
Gw(u,v, w,p) = Ouw) +C, 0w +C, Ouw) + o0w) +C, o0ww) +C, ow + G, P
oX ox? o7 oY o7 o7 o7
o*w o*w o*w
+C + A.8
Soz2  Sozox ' oy? (A.8)

After spatial discretization:

1
AX;

w —
GYijk =

W. . —_ W . W . —_ W .
X+ X+ X— X— i+1,j,k i,j,k Lj.k i-1,j,k
[(Ww Uy — Wy Uw ) + ¢ ( -

AX™ AX;_,"

1 Wijrik — Wijk Wijk — Wij-1k
+— W, Y —w, Y, ) + ¢ = 2 s
iju [( w w w w ) 1 ijv AY}_lv

+ AZkW [Cz (sz+uwz+ - sz_uwz_)

+ C3[ (W ?1)2 — (W, 272 + (pi,j,k+1 - pi,j,k)] + C,(wy 2t —wy, %)

Iy (Wi,j,k+1 —Wijk Wijk — Wi,j,k—l)
g -
ézk+1u . AZ "
w PT —=w, ™ wy P —w, ™
+C — A.9
6( AX;" AX" (A

where, the following linear interpolates of the velocity components of the staggered grid are used:

u o Vi
wX— = VXiZ1 Wi jktVXiWi1,jk and I R
Wi jk u ’ Wijk Wit1,jk
AXl—l
w u
uX- = VZi i1, k+1+V 21 Ui-1, )k and uX+ = X
Wi jk w ’ Wi jk Wit1,jk
u .. w ..
WZ_ _ VZi Wi jk+VZ Wijk—1 and WZ+ — WZ_
Wi jk u ’ Wi, jk Wi jk+1
Z— g X- Z+  — ., Z-
Uwijpe = Yuyjpe and Uwije = Uwijpes
Voo Uy
WY_ — vyj—l'wl,j,k+VY] Wl,]—l,k and WY+ — Wy_
Wijk AYP ’ Wijk Wij+1,k
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u
y— _ VZVij1 k1t V1 Vij-1k

Y+ _ SY-
Ywije = AzY , and Ywijre = Ywijiok
VXLV .Wi_l,j_k_1+VXiu_1 Wi jk-1 VXiv -Wi—l,j,k+VXiu—1 Wi jk

Wi1 = m , and Wi = m

m— VZ]‘éV .W11i’j’k+VZ;é -lei,j,k d m+ m—
w Uijk AZ} , an w Ujjk-1 Ui, jk

b= = w|m- and w|Pt = w|m"

Uj-1,jk Uijk > Uj-1,j,k—1 Ui jk

Continuity equation:

du dv ow ow

ou
v.V= C7(’)X+CZOZ F1% C“ax C3az

Continuity equation can be spatially discretized as

1

1
V.V = AXLU (C7(ui,j,k Ui—1,j, k) + CS (Wluuk - Wlu”k)) + A_Y]u [(vi,j,k - vi,j—l,k)]

1
+ — Azk (CZ ( Wl]k - ulwl]k) + C3(Wi,j,k —_ Wi,j,k—l))

Spatial discretization of three successive sweeps:

Theses sweeps can be spatially discretized as following
Z-sweep:

X-Momentum:

_ dulu dwAu dAu 9%Au 9%Au dAp
Au + alAt| C, = AtR

—+cC C C C C
gz gy tlagy Tl tlegyas T gy
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(A.12)



(] vz \\
C, | —uZ- .
LIk AZ,‘Q’_l
vZY
—C3 | wZ~ < )
_ alAt ( Mk \AZY
Aui,j,k—ﬁ@ . vZy >
“\azy,
+C !
° Az
\ V
( ‘C o (VZRA\ s (VZENN )
2\ M \azy ) T i\ azp
_ VZi\ g (VZk-a
+C3 (ng-;k< AZ:} >_ Ei,j,k (AZW
- alT K k-1
+ ui,j,k.< 1+A_Z}: o VZ]?+1 VZ]‘Q}_l 4
“\\ azy AZY .
o
*\AzY " AzY
\ i 1),
( [ - VZE\N |
Ca. u5i+'k AW
Js AZk
VZy
+C3 WZi+. <_>
— alt ( Hk\AZy
+ Aui,j,k‘l‘l' < m vz%} >
K Co| —
’ 4(AZ¥)
iC ( ! )
| —
Az
\ 1y,
Co alAT 1y — i+ — —_
= MRy = (Bl - Bulyt, —Bull, , +Bul ) (A.13)
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Y-Momentum:

T+ ane (0, 280 1 ¢ WAV OB o O TAYY g A14
vhalt\ Gt gy T lagy T sz T legxaz ) T AT (A.14)
(T . VZENN])
CZ - Vijk AZ}\g/_l
vzy
—Cs | Wz < )
_ alt 3( R \AZY )
Moo \azE (VZ%) |
L4
AZY
Gy (—
“\azy,
\ 1
( C Z+ VZ;(l+1 y VZI‘Q}—I 1
2\ Mo \"az ) T Mo \azw
+C WZ+ <VZIICL+1>_WZ_ <VZI‘2V—1>
3 l . i .
FB 1+ 2T A ez W s
Vil 2T Az e, (VEke _ VZi
“\azy  azv
N i
S\Azy ' Az,
\ I
( [ VZ,‘Q} 1\
vzy
Z+ k
— alt s <in'j'k <AZI‘2V ))
+Avi,j,k+1 { A_Z],: VZ’\év -
+:{ 3z
1
+6 5w
\ v
Ce aAt ——\p+ — ~—p— —_—
= MR, — p5a (Boly, - Bolt, —Bully, + Aol (A.15)
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Z-Momentum:

Aw(1 + A7) + aAt (Cz

+AW; 3 1+ AT+ —

Julw

owAw

dAw

= ATR,,

— Z—
Cs (WWL.J

alt vzy
—w —C4\ u ’
AZY AZ)
+C !
>\AzY
At/ 1
_C3W'C3p? @
iy,
74 VZ{i1 7 VZ}j T
Co\ Wiz, T e pzE
k+1 k
VZY, o, VZE
+C3<WV€$,R'F_ éi.j,k'm
k+1 k

alAt
AZY

0Z

_ ) VZI‘éV -

-

vzy
*\Aazy

d%Aw

VZipy  VZ
e <AZ” Az}
k+1 k

TN
° Azy,y  Azg

At [ -1
_C3W' C3p ? v}j{_l
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!
Az}

)

C C C C
3757 Tl Tl tlegxaz T3z

-

(A.16)



u
alT +C4 <VZk+1>

+Awi,j,k+1 9 _AZI‘:/

= AtR,, — Csx

AT Awl — Aw umljk AWH:]- —Awluuk
AZyY Ax;’ AX?

At AT

+ G —w AZ¥ 5

(V Vl]k+1_V Vl]k)

Coot At E AulWij+1_Au|WL]k+1
PPTAZY 8 Az},

Au|™ Aul
_ < Wi jk Wl]k) (A17)

+ C3yyp-

Continuity equation:

AT CaEJrCam
5§\ % oz 3 0z

— At At Aulwuk Aulwuk mijk - mijk_l
Bpije=—%5VVije =5 [Cz ( AZE + G5 Az (A.19)

) +Ap = AR, (A.18)
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X-sweep:

X-Momentum:
i JdAu* dulAu* owAu* 0% Au* dAp* _
(| —x— (v \ |
-G (uui.ﬁk (AX}’))
_x— (vx}
* alAt _C8 (Wut]k(AXV)>
Au i—1,j,k'< NG ! >
' 1
+6(5)
At 1
\ s C7uC7p (M)_J
( VXY N
X +1
o (uuf;k(Ax; ))
i+1
vXx?
wne| +Co (wfj;'k (Ax;ﬂ))
+Au*i+1 ik ] ” i+1 ’
LK) AXE 1
+c1( )
Axfyq
A‘[C c < 1 )
——CyyCop | ——
L s P\ AxY L))
( '+C xr (VX)) xe (VX))
7\ Foe \agyy) s \axy
2.6 vx?
+Cg | WA ( l“)—W/X_ ( l))
alAt 8< Uijk v Uijik v
+AUS g 1+ AT+ — A AL
AX; e
+
! Axfpy  Dx{
ATC c -1 N -1
L § TWP\AxY,,  AxP) D)
— At S
= Au—Cwam (Bpisjk — Bpijk)
l
+a At EC c AW*'ﬁL,j,k — Aw” Lni:u,k _ Aw- Ln;-]'-k —Aw” m;k (A.21)
AW § 7HEP AX7yq AXY '
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Y-Momentum:

0% Av*

. 0AV* oulAv* owAv*

|
-

( [ _ vxy
Co (AX.” )
vx;
_C7 <u111+1]k (AXu ))
alAt }
AXY VX{
i —Cg (WUL+11k (AX“ ))
+QQu)

*
Av™i_qjxe- 4

\ - 1)
( ' VXii
AXE

+Av*i,j,k. <1+

+C_1
1Ax

( [ c VXi”

P\ Axy

VX

+C7 uvl+1]k AXu
alAt

|
-

*
FAV" 11, j ke o

+C !
1 Ax}

VAL,
AXE,

v
+C uX+ in+ 1 _ uX_
7 Vitvik \ AXY Vit1,jk
alt L

v VX1 _
AXL +C8 (Wvl+1]k < A);-:l' > - ng(i+1,j,k
L

=
Axi’y

v VXu \ = A_vi,j,k
AXi +Cg <WU1+1]k <AX”>>
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VXL,
AXE,
v\
AXE,

)-m

I
-

(A.22)

(A.23)



Z-Momentum:

AW + ah CaAw*+C6qu*+C6wAW*+CazAW* s A 24
W(ZTgaX 77X 8 ax 16X2_W (A.24)
[ vx;} 1
( () |
- vx;
_C7 (u‘i(,i'jyk. (AX-u_l)>
. A
AW i—l,j,k'< ZX;S ¥ VXl? ’
i _C8 WWi.j.k'(AX}il)
1
+C (A)
\ L V
( [ \)¢4 VXH® T
1+69<A;‘1_AXL?‘1>
l -
VX! B VX*,
+C; (u‘{‘(’z_j,k' <—A);-u ) — u,‘,’,(,i‘j,k. <AX;‘ )
alAt L =
AW A BRE | o (e (V) e (VK[
+Cg Wi ik NG Wik AXE,
i i—
N Gt
1 Ax}  Axi
\ )
( [ C (VX}‘) I
5 [ —=
AX}
\V.¢x
+C; <u‘i(":k <_AXlu>>
A : —
AW g g | e u\\ [p = Aw, ; (A.25)
i+1,j,k AXY P VXi i,j,k
l +C8 WWi,j,k' _AXu
l
1
+C; o
l
\ )
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Continuity equation:

)

(A.26)

(A.27)

(A.28)

vy

-1
AY]” ;

)‘i\g
J

(A.29)
(A.30)

(5]

) s+
1
(A.31)

AT(C 6Au*+C BAW*)_I_A T
s 7 ax 8 9x p =4ap
Ap* = E . _f C Au*l’]'k — Au*i_l'j'k AW ul k - AW Iul}k
AN NV
Y-sweep:
X-Momentum:
JvAu 0%2Au .
Au + alAt F1% C, )= Au
U\ u
|{ [_17)'— VY, \l I{ [17"“‘ VY}+1 _y—
zaA‘rl Uijk AY]-’i1 & 4 alAr | ik ijv Ui j ke
Aul}_l'k' Ayu| 1 +A i,k 1+ ml _ )
T 46 | J +C,
l ijli1 } l AY AY”
B v
( ﬁY+ ) VY; —l\
! aAtr| ik AYj” | L .
+ Auy g ke | av7 e i |I = Au
\ \ayy |
Y-Momentum:
0vAv 0%Av  9Ap .
Av(1 + At) + aAt P Cio e + ~ v
( ﬁY+ VY]]fl-l _ ~Y-
—ur- vy Vijk* AYH Vijk
Av: ; alAt Vijk* Ay]u NS PR aAT 2 »
+C1 avu ]l T avu ] Jj+1 j
| AYj AY]- N I +A_T
\ AY}’ﬁr1 iju
[ ove (ViR
alt Vijk' ijlj_1 Ar . )
AV ji1 ke av? e ( L ) Ar =Av7 ik (IAY;,( P i1k — AP i,]k)
- ! AYJIﬁrl AYju+1
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Z-Momentum:

(A.32)

JvAw 9% Aw
Aw + aAt = Aw*

v Ty

([ vy \ ( v+ VY, v vY2i\1)
aAt| VUR\AYY, aht| "\ AYY YI\AYE,
AWij—1k4—u ¥+Awijk. 14—
’ i/ 1 | ' AY¥ -1 -1
L]l+C1A" JJ _— T o T are |
Yo \ | vroan, )
v
ae| "o \ayP)|| _
+ AWy i1k 4 AY-”i L P = AWk (A.33)
e (a) |
J
Continuity equation:
0Av i
Ara—y +Ap = Ap (A.34)
i At
Api,j,k = Ap i)k - m(Avu,k - Avi,j—l,k) (A 35)
J
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Appendix B

Steady and unsteady flows past airfoils

The Navier-Stokes equations can be expressed in the computational domain by using

geometrical transformation

O(uu) G, O(uu) +C, o(vu)
oX oY oX
2 2
+C Ou +C; 0 L;
o0XoY oY

2
+ G, 6(W)+C7a—p+Cza—p+C Ou

G (u,v,p)=C —

2
Gy, p) =, 200 0w 0 00V o 00 o P 0 P O
oxX oY oxX oY oxX oY ox?
2 2
+C, ov +C, oy
oXoY oY?

DV:C7Q+C2@+C4Q+C3ﬁ ,
125, 4 oY oX oY

Time-dependent coordinate transformation coefficients

(B.1)

(B.2)

(B.3)

The time-dependent coordinate transformation coefficients for each domain can be defined as

Domain 1,2, 5 and 6

o-f[%)-(2]]

C,=0
¢,
on

oY dar 0 dh
c =242, A
oo dt  Oh dt

o{al5)
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(B.4)

(B.5)

(B.6)

(B.7)

(B.8)



f— +____
? " 0a(ty dt ohdt Reon’

Domain 3 and 4

c :_L (GX ij [8X 8xj
: ox 0 ) \ éx an

_0Y ox 8Y8y 0Y de ox

x 0F | Oy 0F | Oe dx OF

2=

_G_Y@x 6Y6y oY de ox

3 = -

ox 677 oy 877 Oe dx On

Cﬁ{a_Y{ o da_wa_@} _{l alr), @@}

ox | oalt) dt  oh dt (¢) dt  ohdt

) di ' ohdi ' oe dx

) oY dh oY de| ox dalt) ox dh
dalt) dt  oh dt

1||(Y (%Y de 82Y(dej2 oY d’e | ax )
-— ~+2 — |t | += — | +
Re| || ox Oxoe dx | Oe” \ dx de dx> o0&

0°Y | 0°Y de)dy ox 'Y ox Oy | 0O°Y dedx Oy
oxdy  Oedy dx |OE O Oyox OF OE  Oyde dx OF OE

oY (%Y de 82Y(de]2 oY d’e | ox )
+ ~+2 — |t =t
ox OxOe dx ) Oe” \ dx Oe dx° |\ On
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(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)



%Y de

oY _j

+
ox0y Oedy dx

Qv ox O ox Oy O deox oy
on on 0Oyox On On Oyde dx On On

! |

__L (ay+aydejax 8_Y@2+(6Y 6Ydej8x Lo oY
: Ox Oe dx)o& 0Oy o0& ox Oedx)on oy on
_ 2 (aY+aYde)ax+a_YQ G_X@+(8_Y+8Ydej6x+a_YQ X ox
¥ Ox Oedx)o& 0Oy o0&\ ox o& Ox Oedx)on 0Oy on )\ ox On
_ax ar
T ox OF
oX ox
*Tox on
GX{éx da axdh}
C, = +
Ox | Oa dt Oh dt

Alternating-direction implicit scheme
Continuity and momentum equations can be arranged in the global matrix form:

I +a-adD, +D,)a® =Az-S

where,
M+1/a 0 7i
oX
D = 0 M Cgi
oX
160 1696
la 6 0X o 0 0X |
N 0 Czi
oY
D, = 0 N+1/a CSaiY
1690 1690,
laa 6 0Y «a o0 oY |
and,
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(B.16)

(B.17)

Jms

(B.19)
(B.20)

(B.21)

(B.22)

(B.23)

(B.24)



Au Fun_l,;v_a'éuv
AD =| Ay =|F" =% -a-G,
Ap —1/8-VV"

with,

o> @) i 8(\7V(1))+C 0°d oD
8 1

Mq):C7 +C9_

oxX ox? oxX
~v ~vy 2 2
NO =C, o CD)+C3 o cI))+C4—aq)+C5 0 (12)+C6 o
oY oY oY oY oYox

Using ADI scheme results in two successive sweeps in y and x directions:

#*

[1+a-at-D 0" =As-5 [[+a-At-D,] AD = A
Spatial discretization for momentums

Spatial discretizations are made by using central differences:

% — fi+1 _fi—l or i — fi+1/2 _fi—l/z
dx ' Xig =X, dx ! Xz X
’f 1 {ﬁﬂ—ﬁ_ﬁ—ﬁl}

2 =X;
dx® X — X L% =X X — X

The central and backward difference operators, which denotes the difference between the

primary grid points and the secondary grid points are defined as:

Axiu = xi+1v - xiv Axiv = xiu _xiflu
Ay =y =y Ay, =y =y
vx' =x"-x" Vx, =x"-x_"
vy =y ey Vy, =y )
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(B.26)

(B.27)

(B.28)

(B.29)



The following linear interpolates of the velocity components of the staggered mesh are used :

u \4 u v
u = VX U ; +Vx,, Uiy, u = Vx; Uiy +Vx, U ;
u - v u - v
Axi+l , A)Ci
u v u v
u = VVia Ui + VYt u = Vyi s+ VYU
u - v u - v
ij ij-]
9
v u v u
o= VX, Vi +Vx; Vi) b = Vx;, Vi +Vx, Vi
u - u u - u
Ax; , Ax;
v u v u
p = me Vi +vxi Vi, v = in Vi, +in—1 Vi
v - u v - u
Ax; ’ Ax/,
v u v u
Nt VYia Vi VY Viga b = Vy, v +Vy; v
v - u v - u
Ayin , Ay;
u v u v
u = Vyj+l U +vy_/ Vi u = Vyj+1 Uiy +Vyj Uiy in
v - v v - v
Ay ; Ay ;
b
u v
o = Vyia P +Vy; D, =
U j v Ui j+1 Ui, j
Ay ;
2
v u v u
Py = VX, “Dij +Vx; “Pis,y b, = VX, “Pija +Vx; * P
r u 2 u
Ax; ’ Ax;
u v
me VYU +VY i,
uv. T v
1]
Ay j-1
u v u v
VX U VX _ VU, VX
ul = N u2 v
Ax; Ax,
b
p— . m— m+ . m- p+ . om—
u =Uu u =u =Uu
Vi1,j Vij Vi j-1 Vij Vi1,j-1 Vij
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X-Momentum:

2 2
G, p)=C, 20, M e M e MW e Do P T
oX oY oX oY oX oY o0X (B.30)
o’u o’u ou ou
p +C—+C,—+C
oXoY oY oY oX

1 s '((uux+ )2 - (”uk )2)+ Cy '(va Tou, v '”uk)+ ¢ '(pm,j —p,-,j)..

Ax,"

1
u.,.—u.. u. . —u,., .
+, > , 1, X+ -
+C) | — - ——= +C9-(uu‘ —uu")
i A‘(i

u |i,.i

1 (B3
y+ 2 = 2 y+ = uvar _quH uvp7 _uvm7
C2 (uu ) (uu ) +C2 (pu _pu )+C6 : Axl.u - Axiu
1
+—
ij
u. ., —Uu.. u. . —u. . .
+C5 | it - A lv,./—l + C4 (uuw —u yf)+c3 (vuwuuw _vuyfuur)
| ij ij—l i
Y-Momentum:
0 0 1% 0 1% 0 0 0’
G, (v, p)=Cym+ C, 22 0, 2 0, 2, 2 0 Loy 0 2
oX oY oX oY oY oX oY oX
2 2 (B.32)
o°v o°v ov ov
s +C—+C,—+C—
0XoY oY oY oX
1 |G -((v;f* | )‘)+ e -(z»zv”v;’f* u;’f’v;f’)+ Co-(p2 o)
Y 7A,xi_v vV . —v v -y
4 C9 . (vvx+ _ va—) n Cl . +1.j Ll L) —Lj
Axiu Axi—lu
0 I 0 i IR VR PG P
1
+ v P P
A_}’ ""+ i I - )i j— ; 1:1 +_1um+ 1l"'u __1um_
J +C, i.j+l HJ_ J u:Jl +C, (1H—v3_)+c6 ( - _ - ]
Ay, Ay, Ax, Ax, |
(B.12)
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Spatial discretization of two successive sweeps

Y-sweep:

X-Momentum:

. 'At ~ - V -u ~ u V .ll 1
Al | B ey e Yoo —— ||+
ij " ijq " ij 1 ij—] ij—l
C (,,7 e Wi g ._vy;l} C .(vv o Wi g ._Vy;lj
2 u v u v 3 u v u v
| 1 A Ay; Ayj Ay; Ay
ul.,j 1+ 5 - Vyu yv | | +
Dolee, | 2 Py o L L
Ay;  Ayj, Ay; Ay,
4 (B.33)
. At 9 ' - ' 1
Au; ., @ —-|C,-u’ SRLs +C, V" Y ij C, ij +C - —
Ay, ! j tAY; Ay; Ay;
=At-S,|
L]
Y-Momentum:
. At - Yy, - V) Vy,' 1 C, At
AV"J*l : - v : _C2 .uv y ’ y/u _C3 'VV ’ ’ yju _C4 ’ y/u +C5 u _Cf 73 u +
Ay, YAy MV AyY Ayt o Ay
. Vy, BV . Vy, e Wy
Cz'[ﬁvy _ ijul vl 'iju J_{_C}{Vvy _ iju1 5ol iju ]
. ' Y i1 ' Y ' Vi ' )
Av, 1+At+a—t~ / / / ] +
Vil o | Y W 1 , o~ Al 1 1
4 u u 5 u u 3 3 u
ij+] ij A.y/+] Ay/ 5 ij+l ij
) . . u . V . u V . u
AV,]H' a Avt c, vl y]ul +C3~va y/ul iC,- y_,ul ‘cC, lu B f'C3' Atu
ij Y Ayj+1 Y ij+1 ijﬂ ijﬂ 5 : ij+1
=9l
Au’ " —Aut|" Au” " —Aut]"
At At ~ ~ At Vil Vi j+l Viij Vi
-2 v Gyl = (V i~vj+1_VVi,vi)_7. f : u - u
Ay, 5 AV A" (B.34)
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Continuity equation:

* At la= At 1 x| M+ *|M— * *
Ap ==2tovi S e[ AT a4 - AV ) (B.35)
’ fo) ’ fo) Ay7 ? Vij Vij 3 " "
X-sweep:
X-Momentum:
- At - V. - - Vx" 1 A u
A e o B e e e e e AL v ||,
Axiu u Ax’v v Ax’v Axlv 7 7 5 Ax[v 9 i i-1,j
o Vx Y o Vx!
C,-lu"| - Lisi Al i +C, - _L_ 1 C, Cp.ﬂ. ly 1
o - At ! Ax;/+l " iv Axlv Axi‘i{-l ’ 5 Axlt Ava-%—]
+| 1+ A+ — “Au,
i o VxLt - Ux) . v "
+ Cg . V[H . le _Vv . xz , Vle er
Y Ax;:—l Y szv AX;:_] szv
(oAt e V! - V! 1
+|2 p '[C7 o xlvH +Cy Vi i x",” +C - —— -G, C7 g'%_"cf) 'foVHJ A,
L Axi ! Axi+1 Axi+1 i+1 i+l
. a A . . At [ A, —Av At | Av, —Av,
=Au;, - L= Ap —Cr = Bl op =
Doy { R ( A, J e ad
(B.36)
Y-Momentum:
a- At ol Vx, 1 v y
S K B R 2 A
Ax; Ax, Ax, Ax/ ’
C [1,7‘) o in+1 —0 S vx;l—lj C (‘7\» o VXH—I 7 A vx;l—l
. —= . — ..
. v A v Ax) v Ax) v AX]
e Ar i i1 i i1 -Avu(B'37)
v v u LJ
Ax; RS SR SR TR TP (% PO 6
LA A ) T Ay A
o - At o VxS o+ Vx," 1 " .
+ o -[C7 'Axl“ +Cg v Axl” +C -—+C, - Vx, J Av,, =Av,
Continuity equation:
. At Au, . —Au, Av,” = Av,”
Ap,, =Ap,, —=—-|C” LY L (B.38)
' Y0 . Ax;

191



Appendix C

Steady viscous flows past wings
The Navier-Stokes and continuity equations for the incompressible steady flow past the wing

can be expressed in nondimensional conservation form as

ou 8v ow
+

G(V,p)=0, VeV=— =0, C.1
(V.p) oc 877 o (C.1)
6. )_Cauu_l_cauu ovu +Caw +Cawu+66p+ca Cazu
wth v Wop) = Lr o Ty Ty T Tax Tz T Tax T 2 19x2
o B T T e O C.2
Y9z T W0gyz T S9z2 T 99x T Coxaz €2
G )= Ca +C6uv 6vv+Cawv+Cawv 6p+662v+cav
vV W, D) =Cr o TGy oy T ax T3z Tay T iaxz Tz
ve, Il e v O O C.3
0gyz " “5g9z2 " “99x ' “%0xdZ (€3)
c _c 6uw+C ouw  Ovw c oww c oww c op c op c 0w c ow
wWow,p) =G+ Gt Frt Gt Gt Gopt Gzt Gam T Ggz
c d2%w c d2%w c ow c d2%w c.4
TCogya + Gz T gy e xaz (€4
C@u+C6u+6 +C6W CaW 0 C.5
7ox Tlgz oy Tlesgx T 0357~ (€5)
Geometrical coordinate transformation coefficients:
Geometrical coordinate transformation coefficients for each domain can be defined as
Domain 1,4, 5 and 6
C - 1 (E)X)Z N ((’)X)z N ((’)X)z Ce
1™ Rel\o¢ an a¢ (.6)
C,=0 (C.7)
C; = 0z C.8
C, = 0%z C.9
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1

o=@+ (@)]

. - 2 <azax+azax)
©™ Re\dnadn a7 aC
c _0X
7_66
c _oX
S_ac
= 1 62X+82X
7 Relon? " a2

1
C10=_§

Domain 2 and 3

= -é[(?—f) &) +(G) ) (

0z 62 0z 6x

0Z dJde(x) 0x dx

= 329¢ T ox0¢ T de(x) ox oxoF

a0z az YA ax

0Z dJde(x)dxdx

626( 6x6( de(x) 0x 6x6(

1

0%Z

%)

0%z + 2
e|\dx2

0%7

Cy =

0%Z de(x)
<6xae(f) 0x )

de(x)?

2
+ 0x0z

0%7

X

azz_ 6e§?))>(

d0zoe(x) 0x

9]

0z 0x

9§ 0¢

2z

de(x) 2
(5)

)

d

dx2 +
0%7

0%Z de(x)
dxde(x) 0x >

de(x)?

2
0x0z

o

azz_ 0e(?))>(

0zde(x) O0x
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0z 0x

7 0¢

de(x) 2
()

)

0Z 09%e(x)
de(x) 0x2

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

Z 0%e(%)\ /9x\>
T 3e) ox2 >(a_$)

&)

(C.19)



2 2 — — 2 2
[ e A Y L I L g

(o s e o)) o) (5 () G0

dZ\* (0z\* 07 0x 0Z 0z 0Z de(X)0x0x 0Z 0z
+(5) &) +2( )+ )

az) \a7 dx 0 9z ¢ de(X) 0x 0x 0 0z
2 2 \ A= 2
() &) e 5 G )
2 —. 2 - 2 2
(i) (52 ) 39| (©:20

o 1 Z(azazaxax)+2 6Z(6x)26X s 0z 6e(x)69?6X<6x)2
®7 Re 0z 0§ 0x 0¢ dx \d¢/ ox de(x) O0x O0x dx \9d¢

<ax (ax)z a_z> , ( 0Z de(x) dx a_x) 'y (az 0z 0X ax)

ax \9¢/) ox de(x) 0x 0non 9z 8 0x 0¢
, 9Z de(x) <0X)2(0x>2 c o1
de(x) dx \dx/ \o¢ (€.21)
. - 0X 0x C 22
77 0x 0¢ (C.22)
.= 0X 0x 23
€= o°X C.24
9 — Re anz ( " )
Cho = —— C.25
10 = ~Ro (C.25)

Alternating-Direction Implicit (ADI) scheme:

Continuity and momentum equations can be arranged in the global matrix form:
[I+Az(Dy+Dy+D,)JAf=AzR (C.26)

where,
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M 0 0 c7i N 0 0 0]
ox 0O N 0 0
o M 0 0 b
. o M o0 | e oo Nvoop
(S G 0 0 — 0 0
0 0 oY
5 ox 50X | L .
] . _ _
L _
257 -G,/
0 0 oV
D, = 0 R= Gy
VA 0 3 — s v 5
/4 -Gy,
G o 0 G o 0 —(/5)DV" |
5 oz 5 oz

in which the differential operators M , N, and L are defined as

M =Cy j}‘? +Cy ﬁ(g)‘;¢)+ Cg 0”(171;"¢)+ G 2?? ,

% 2
V= ﬁ(;’Y(ﬁLCIOij

b

Y -V 2 2
el o e s o
o7 o7 a7 o2

Using ADI scheme results in three successive sweeps in Z, Y and X directions:

[ + aATD,]Af* = ATR  Z-Sweep
[1 + aAtDy|Af = Af* Y-Sweep
[+ aAtDy]Af = Af  X-Sweep

195

(C.27)

(C.28)

(C.29)

(C.30)



Spatial discretization for momentums:

Spatial discretizations on momentum equations are made by using central differences:

i = fi+1 _f;‘—l or ﬂ = fi+1/2 _ﬁ—l/z (C.31)
dx'" 7 X, — X ax'" " X0~ X,
dx? X2 X2 L X =X X T X '

The central and backward difference operators, which denotes the difference between the

primary grid points and the secondary grid points are defined as:

Axiu = xi+1v _xiv Axiv = xiu _xiflu
A =y -y Ay, =y =y
A=zt =2, Az =z, 2
Vx" =x"-x" Vx, =x"-x_"
vy =y =y vy, =y =y
Vz =z} -z, Vz! =z -z}

The following interpolates are needed to discretize momentum equations (C.2) to (C.5)

Interpolations for Gu

v u
ox— VX; .ui,j,k+VXi Uj—1,jk and iZX"' o~ X—
Ui jk Ax? Ui jk Ujt1,jk
w u
%= = VZp—1 Wi jretVZUijk—1 and 0zt = yZ-
Ujjk AzZY Ui jk Ui jk+1
v u
e VY 01kt VY Vi ik and pXt = X
Ujjk AvY Uj-1,jk Ui jk
v u
ar- = VY1 Uik tVY U joqk and Yt = -
Ui jk vy, Ui jk Ujj+1,k
u w
WX_ _ vz -Wi,j,k+VZk Wi jk—1 and o X+ o X—
Uijk AZP Ui-1,j,k Ui jk
u v
Wi = VXi Wit k-1+VXipaWijk—1 and Wit = wZ-
Uijk — AXH Uijk — T Uijk+1
v v u
VXDt IX Disa ik and VX1 Di k1Y Ditj k1
Piije = AxE Payji = Ax"

i i
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7+ VZi 1 D1y VZE D24 j k-1

To= and
Ui jk AzY
VXM Ui q i1 +YXP
i i—-1,j,k—1 i i,j,k—1
Uyq = — and
AX}
m— _ VZ,-? .u11+VZ,‘éV_1 Uqp _
u Wijk — AZY , U Wijk-1
- — . |m— p+ — . |m—
Wi—1jk ~ “Wijk ulWi—l,j,k—l u Wijk
Interpolations for Gv
v u
gX- — VYU g ket VY Uik and
Vijk ~ ijv
X— _ VX i etVX{vig i
vy = - and
J AXE,
g VIR VIR e
Uy, = — and
Ji AzY
u v
Y— _ VY]- 'vi,j,k+VYj Vij-1k d
Uik = e an
J
7 VYW g HVY W ken d
Woije = ijV an
VXlV -vi—ljk—1+VXiu_1 Vijk-1
v11 = = ) = and
AX;”y
v m— _ VZ,‘? .1711+VZ,‘€V_1 V12 and
C. . - w b}
iLjk AZy
p— — c—
Ci—1,jk ~ ~'Cijk and
Interpolations for Gw
vX* . wi i+ VX Wi
- —1-Yijk i-1,j,k
wy, = — and
J AXE,
uX_ _ VZ,‘Q’.ui_lij,kH+VZ,1€‘+1.ui_1‘j‘k and
Wijk Az
VZRw; i 492wy
- kWi jktVZ Wijk-1
Wi = Lt and
Ji AZY
Z-  _ . X-
Uw;jk Ui jk and

~7—  _ =7+
pui,j,k - pui,j,k—l

u v
VXl- -ui—l,j,k+VXi -ui,j,k

Uyp = v
AX]
m—
Wi,j,k )
uvi,j,k - uvi+1,j,k
X+ _ . X-
v”i,j,k - UVi+1,j,k
<7+ _ ~7—
Wijk = Wi
Y+ _ Y-
YWijre = Woijiik
Z+ . ,Z-
in,j,k = Vijk+1
v u
v _ VX; -vi—l,j,k+vxi—1 Vijk
12 — u
AXl-_1
m+ — 1, |Mm-—
Cijk—1 Cijk °
p+ — a,|C—
vlci—l,j,k—l . Cijk
X+ _ ,,,X-
WWi,j,k - WWi+1,j,k

X+ _ ., X-
uWi,j,k - uWi+1,j,k

Z+ _ ., Z-
WWi,j,k - WWi,j,k+1
Z+ ., Z-

uWi,j,k - uWi,j,k+1
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- X+ o= X—-

=X— _ =7+
vWi,j,k - Uui—l,j,k and vWi—l,j,k T Wijk
<7— _ =Y-— = Z+ — 3Z—
Ywijre = Yok and YWijr—1 = Ywijk
v u
- = VYj 1 Wikt VY Wij-1k and  wYt = wY-
Wijk AyJV_ s Wijk Wij+1k
v u v u
I VXi Wi-1,jk-1+VXiZq Wijk-1 and Weo = VXi Wi-1,jktVXioq Wijk
11 — m 12 — u
AX;Z 4 AX;Z4
w . u .
wim= = VZ) Wil +VZy wi2;jk wlm+ — wim-
Ui jk AZY ’ Ujj k-1 Uijk °
wlP~ — Wlm— W|P+ = w|m=
Ui-1,jk Uijk 2 Ui-1,jk-1 Wi jik

After rearranging equations (C.1) to (C.5), the discretized momentum equations are as follows

2 2 1
=X+ _(5x-
C7' ((uui,j,k) (uui.j.k) )
S X+ =X+ s X— e X—
1 +Cq (Wui, g W e ™ W e Yy j,k)
G,(u,v,w,p) = -
u( » Y, 'p) AXlu +C7(pi+1,j,k pi,f,k)
v (i = Wijk  Uijk = Yicajk
1 Ax? Ax}
i+1 i
X+ _ 5, X-
| +Cg (uui,j.k uui‘j,k) _
[ SY+ =Y+ _ =Y- =Y- ]
(vui, g Y jre ™ Vg e uui,j,k)
1
* INA B, Upjrik —Uijk  UWijk — Uij-1k
10 v v
AYJ- AYj_1
_ 74 2 7 2
¢ ((uui,j,k) - (uui.j.k) )
HZ+  =Z+ s Z— s Z—
+Cs (Wui,j,k' Uugjre = Wy g uui,j,k)
Z+  _ o Z-—
1 +C2 (pui‘j‘k pui‘j‘k)
+ AZ;: , Ui jk+1 — Uijk _ Ui jk = WUijk-1
> Az Az
k k-1
Z+  _ 3, Z-
+Cy (uui, jk uui, j,k)
pt . |m+ p— _ ., |m-
iC ulWi,j,k Ulwi e _ Ww, j i ulWi,j,k
6 AXH AX}
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1
G,(u,v,w,p) = NG
i

+C;
u u
Ax; Ax;- 4
X+ _ o X-
+Cq (vvi,j,k vvi,j,k)
v+ )\° r—)?
((vvi,j.k) B (v”i,j.k) )
1 +(Pi,j+1,k - pi,j,k)
+ AYY
J Vij+1.k — Vijk Vijk — Vij-1k
+ClO U - AY”
j+1 j
i Z+ Z+ _ ,,Z- zZ-
G (uvi,j,k' Wije = Uvijpe v"i,j,k)
— 7+ SZ+ _ =Z—  =Z—
+Cs (in,j,k' Yije = Woijne v”i,j,k)
1 vV —V; i Viig — Vi
+ — i,jk+1 i,j,k ij,k i,j,k—1
AZ* | +Cs AZV Y
Kk k-1
Z+ _ .. Z-
+Cy (vvi,j,k vvi,j,k)
pt _ _ym+ p—- _ . |m-—
+C vlci,j,k vlci.j.k vlci,j,k V|ci_j_k
| AXY AXY

X+ X X- 1
Gy (uvi+1, g Yoijre T Woig e v”i.j.k)

— X+ _
+Cg (W"i.j.k' Wi = Wou e Yok

X+
SX+ s X—  =X- )

Vit1,jk — Vijk Vijk — Vi-1,jk
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[ X+ X+ ., X- X— T
Gy (WWi,j,k' Uwije ~ Wwiji: uWi,j,k)
2 2
+Cq | (WXF — (WX~
8 Wik Wijk
_ X+ . X-
Gw(u,v,w,p) = NG +Ca(pat ik — Puijk)
i
iC <Wi+1,j,k —Wijk Wijk— Wi—1,j,k>
1 u - u
Ax; Ax;” 4
X+ _ . X-
+Co (wwi’j’k Wwi‘j‘k)
[ SY+ =Y+ Y- SY— i
(Wwi,j,k' vWi,j,k WWi,j,k' vWi,j,k)
1
+ iju' ‘C <Wi,j+1,k ~ Wijk  Wijk ~ Wi,j—l,k)
10 v v
AYj AY}_l
[ Z+ Z+ i ,Z- Z— T
Ca (WWi,j,k' uWi,j,k WWi.j.k' uWi.J'.k)
2 2
+C, | (WEF — (wZ-
3 Wijk Wijk
1 +C3(Pijk+1 — Pijik)
T3z | 4c <Wi,j,k+1 ~Wijk _ Wijk ~ Wi,j,k—1>
5 u u
Azjyq Az,
Z+ . Z-
+C, (Wwi_j_k Wwi_j_k)
pt m+ p— m—
+C Wlui,j,k Wlui,j,k _ Wlui,j,k Wlui,j,k
¥ AXY AX?
Continuity equation
Cy (Wi je = Ui1,jk)
1 1 _ .
V.V = AXY + AY Y [(vi,j,k - vi,j_llk)]
i +C. W|m+ —wlm- J
8 Ui jk Ui jk
m+ _ ., |m—
1 |G (u wije ~ U Wi.f.k)

AzY
“ +Cs(Wijie — Wijk-1)
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Spatial discretization of three successive sweeps:

Z-sweep:

X-momentum

-

Auy -1, 4

b+ AU i 1+

Ce alAT
u u
AX; AZ),

— _ A |IPT AT m+
= ATR, (Bulty, — Buli

|
-

r+ Ei,j,k+1' 4

N

k
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|
-7

vzy

w
AZY

()

1
| tGs (w) _

-

B e
~Bully,,, +Bullyy, ) = €2 (BpE —Bpf) (C.37)



Y-momentum

alAt

Avi,j,k—l' < AZ]?

alAt
AzY

= ATR, — s

‘

v u
AXP AZY

alAt

(@

uvi,j,k '

Z_

u

azy,

— Z_
Vijk

— Z_
Vijk*

p+ m+

Cijk

_A_v|

( vz¥ ) 1
AZy_4

Z_
_Q<MMVQ4;»

-

iy,
vz, |
Az,
vz,
2z,

} + Ei,j,k' 1

Ci,jk

-

b AV e 4

L
e

- A_vlzcjl_

1+

alt
Az

m—
Cijk

et Av|
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)

vz

[ vz\\ |
Z+ Lk
C2 <uvi,,-,k- (w))
vzy
Z+ 2
+C5 <in,j,k' (AZ;‘Q"))

k

1
| G (w)

-
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Z-momentum

( ‘C 7 (72\\]) ’
2 Wijk \ Az}
_ z— (Y
- alt C3 Wijk (Azk) -
AWijk—1<_w w }+AWijk<1+AT+
o AZk —C VZk o
+\azy
1
+C: | —
5 Az}
At 1
C3,,C3,, — \
\ | 3w=3p 5 \az#) 1)
[ C2< 7+  VZpiq Z— VZ,’{‘) T ( [ CZ( Z+ VZk+1> T
w u Wi
Lk AZY Lik™ AZY Lik" AZY
vZ vz} VZ
C Z+' . k+1 _ ,Z— ] k C zZ+ . k+1
s (Wi Az} Lik" AZY s (Wi AZE,
alAt _— alAt
w C VZiew _ VZi F AW k1w C VZje4a >
AZk + 4 AZY AZY AZk + 4 AZY
Zi+1 Z Zie+1
-1 -1 1
+C + — +C
5 Alecl+1 Az 5 Azjyq
1 -1 AT 1
—C3,,C + — —Capyo Coy — | ——
| 3w 3p 6 \Azl Az} 1 \ | 3w 3D 5 Az, )V
aw|Pt  —Awm awlh” . —Aw|R
_ AT ul k uuk Ui jk uuk At At
= ATR,, C6aAzk ax? Axg’ + C3WC¥AZW (V Vijksr1 — V. Vi,j,k) +
AL, M+ _ Ay |Mm— m-—
Co Coma AT At AUl s DU a AulWL]k Au""’i,j,k (C.39)
3w 2p% azw s Az¥, Az¥ '
Continuity equation
N, m+ m-— - ~
A_ ATV v AT c Au Wi - Au Wijk n Awi,j,k - Awi,j,k—l (C 40)
Pijk ) Lk s Az,’j 3 Az}
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Y-Sweep:

X-Momentum

_ u u ”
_ﬁY— Vyf 17Y+ VYj+1 —ij_ VYj—1
ant | Mk \avy ant | Wik \ avp Uijk \Avy
Ay j_1p\ ) + A A 1+ oy L
T G ( ) J +C (— + )
10 v 10 v v
| Ay;” 4 Ayy - AY,
ve (VY
Uy, \ =%
anr | MRk \AY] o
AU jy1 k- 3y ] = Au (C.41)
T 1 +Cy |
10 (AY?’
- J
Y-Momentum
— v u _\
_ vrY ( D’Y‘l‘ (VYJ'+1> _ ﬁg’— <VY] )
. SN B A
—173'.‘. . J Lk AYj+1 Lik ij
A alAt iLjk AYJ.u A 1+ A At . .
Vij-1k\ayv + Av .1+ AT — +Cio (= + — b+
I c () = A2 Ay avi, oAy
10 u u
- AY]' AYJ' At At
+ +—=
\ | AV,  AY} D
[ ﬁY+ Vyjtil
alAt Vijk' m/jth % At « "
AV jy 1k av? c L A (T AV g — “_ijp (AP pj+1k ~ AP i,j,k) (C.42)
Flio\ ) —
o\ ) T v,
Z-Momentum
- u u v
( —pY- < VY > oY+ (V},f"'l) — pY- (Vyj—l)
W W W
alAt iLjk AYJV_1 abt ijk AYJV ijk AYjv—1
AWi'—lk'<_ +Awi'k' 14+ — +
10 10|l 7% —_
S AY; 4 k Ayp oAvp, )
v (VY
Ul .
adr | Viik AY]V .
AWiji1 g oyu (AW ik (C.43)
] C -
| +C1o (AY}’)

Continuity Equation

—_ *
Apijk =Dp*; ;1 — va (AVijr = Avija)

At
(C.44)

AYJ-”
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X-Sweep:

X-Momentum

(0 v T (
G ax?
“X— (VX
_C7 (uuu,k (AX?))
A
Au*i_llj,k. 4 ZXZ —x— (VX! } + Au*i,j,kﬁ 1+ A+
F1=Cs | Wy, (AX}’)
1
6 (55)
At 1
. L s Crulp (Ax}’)_J \
[ VX, vx; I (T VX7, T
Co (AXl”H - RL") Co (Axl"H)
i+1 i i+1
X+ (VX)) ex— (WY —x+ (VXin
o (uui'i'k' (AX}’H) o Uik (AX}’)> o <uui'j'k. (E)>
alt % alt
axt | yca (w5 VXiv1) | —x— (VXL (T AU ke g ot | oo (wrt VXii1
8\ Mk \axy,, Uik \axY 8\ Mk \ax?,
N —) +6 (32-)
1\ax Xl o Axf ! Axfyq
At At 1
L _EC7uC7p <Ax1+1 * E) v \ —_?C7uC7p <Ax:7+1>—J
= Au_C7uOC U (Apl+1 k= Api,j,k)
AX;
p At EC C Aw* |u1+1]k —Aw” |ul+1]k Aw* |ul]k Aw |ul]k (C 45)
AX¥ § TP AXY, . AXY '
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Y-Momentum

i —C, ( vx;} ) 5\ (
axE,
vx;
_C7 <uvl+1]k (Axu ))
alAt
Av*i_l'j'k.< NG } + Av*i'j’k.< 1 +
13
vxy
_C8 (Wvl+1]k (AX” ))
+C
. L EAVYT ) \
[ C. VX{1 _ VXiu—1 N
o\ ax*  axH
L -1
vx? vx ¥
X+ i1\ _ . X— i-1
o (uviﬂ,,,k ( axy ) Uoisa i (uﬁl))
alAt
>+ AV ke S
v i+1,j,k
AX; - ux? Y vt
i+1) _ - i1
+a (it ( Axiu ) i ()
-1
+C
| 1 Ax} Axl-”‘_1 1
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Vi+

+C; <u

vxH
AxXH

1,7k

X+
+C8 <in+1,j,k

+C,

-

—~ o~~~ —

VX

VX

u
AX]

N————

)
_>>

(C.46)



Z-Momentum

OO BTN A2 AT
s (55)
vx;}
- (v ()
% alAt
Aw i—l,j,k'< Ax? r+
L
vx?
- e (55)
. L +G (A u ) 1),
(T VX(a VX, I\
1+ 6 (T - T
x+ (VX x— (VXL
v e () i (52
* alAt
AW jier | ax? v ) -+
X+ (VXip x-  (VXios
v (5) - i (352
-1
L\l +G (Ax Axiu_l) 1),
(T vx; N
AxH
vx;
Wth AX}
" aAt ~~ At X+ «X—
AW 41,14 = Bwy = Coags (B0, —Ap%)  (©4)
vx}
14
1
\ I +G (Axly) iy,
Continuity Equation
\ — At (AU — AUy Aw* — Al
Ap*; i = Dpijx — 7( 7 AX? +Cs AXL}, (C.48)
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