
XTW, A PARALLEL AND DISTRIBUTED

LOGIC SIMULATOR

Qing XU

School of Computer Science

McGill University, Montreal

August 2003

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements for the degree of

Master of Science

\ -,) x / "}
© QING XU, 2003 --- L' "

To

My dear wife

and

My parents

ABSTRACT

ABSTRACT

In this thesis, a new parallel synchronization mechanism, XTW, is proposed. XTW

is designed for the parallel simulation of large logic circuits on a cluster of computer

workstations. In XTW, a new event queue structure, XEQ, is created in order to

reduce the cost of event-scheduling; a new message "un-sending" mechanism, "rb-

messages", is proposed to reduce the cost of uun-sending" previously sent messages.

Both theoretical analysis and actual simulations provide evidence that XTW speeds

up parallel logic simulations and provides excellent scalability versus the number of

processors and the circuit size. An object-oriented parallel logic simulation software

framework, XTWFM, is built upon the base of the XTW mechanism. A million-

gates circuit, which can not be simulated by our sequential simulator, is successfully

simulated by XTWFM over a cluster of 6 "small" PCs. This success demonstrates that

a cluster of PCs is an attractive low-cost alternative for large scale circuit simulation.

n

RESUME

RESUME

Dans cette these, on propose un nouveau mecanisme parallele de synchronisation.

XTW. XTW est concu pour la simulation parallele de grands circuits logiques sur

un faisceau des stations de travail d'ordinateur. Dans XTW, une nouvelle structure

de file d'attente d'evenement, XEQ, est creee afin de reduire le cout d'evenement-

programme; un nouveau mecanisme de message non-envoi, rb-messages, est propose

pour reduire le cout de non-envoi Its messages precedemment envoyes . L 'analyse

theorique et les simulations reelles fournissent Vevidence de que XTW accelere des

simulations paralleles logiques et fournit Vexcellent scalability (contre le nombre de

processeurs et la taille de circuit). Une structure du logiciel de objective-oriente par­

allele logique simulation. XTWFM. est etablie sur la base du mecanisme de XTW.

Un million-portes circuit, qui ne peut pas etre simule par le simulateur sequentiel, est

simule par XTWFM avec succes sur un faisceau de 6 petits PCs. Ce succes demontre

qu'un faisceau des PCs bon marche peut etre une alternative peu couteuse attrayante

pour des simulations de circuit a grande echelle.

in

ACKNOWLEDGMENTS

ACKNOWLEDGMENTS

I would like to thank my thesis advisor, Dr. Carl Tropper, for his invaluable guidance,

his encouragement, his care and support throughout the course of this thesis work.

I would like to thank my parents and brother for all their love and support over

the years.

I am grateful to Jacky Huang, Linda Sun, Keven Zhu, Julie Zhu, Moody Lu and

Esther Tan for the friendship and encouragement. A special thank to Julie Zhu for

translating the abstraction into French.

Thanks also go to the SOCS system wizards, and especially Ron SIMPSON. He

always provides promptly support on various hardware and software problems.

I would like to thank Lijun Li and Hai Huang for the friendship and all the intel­

ligent discussions we had. They make it to be a lot of fun to work in the Distributed

Simulation Lab.

Finally, I would like to express my heartfelt gratitude to my wonderful, loving,

caring wife, Sally Li, for all her support, motivation, patience, cooking, cleaning,

paper binding, tolerance of my 5 AM sleep schedule, and for letting me make a mess

in our living room. This research could not have been possible without her consistent

encouragement and support right from the beginning.

IV

TABLE OF CONTENTS

TABLE OF CONTENTS

ABSTRACT ii

RESUME iii

ACKNOWLEDGMENTS iv

LIST OF FIGURES viii

LIST OF TABLES x

CHAPTER 1. Introduction 1

1. Logic Simulation 2

2. Parallel Logic Simulation Algorithms 4

3. Parallel Synchronization Algorithms 5

3.1. Conservative Synchronization Algorithms 5

3.2. Optimistic Synchronization Algorithms 7

3.3. Summary of Parallel Synchronization Algorithms 11

4. Previous Optimization Techniques for Parallel Logic Simulation 11

4.1. Rollback Relaxation 12

4.2. Clustered Time Warp 13

4.3. Event-lookahead Time Warp 14

4.4. Bounded Time Window 15

5. Thesis Contributions 16

6. Thesis Organization 17

v

TABLE OF CONTENTS

CHAPTER 2. XTW 18

1. Input-Channel 19

2. The Structure of XEQ 20

2.1. Rules in XEQ 21

2.2. Event Node Structure, Space Cost of XEQ 22

2.3. 0(1) Previously Scheduled Events Deleting Mechanism 22

3. XTW 0(1) Event Scheduling Mechanism 24

4. Rollback with Rb-messages and Cost Analysis 25

4.1. The Rb-messages Mechanism 25

4.2. Eliminating the Output Queue 30

4.3. Rb-message time complexity 31

5. Observations 31

CHAPTER 3. XTW Framework 33

1. Virtual External LP 33

2. Putting It All Together 35

CHAPTER 4. Experimental Evaluation of XTW 37

1. Experimental Environment 37

2. Event Scheduling and Rf, Costs 38

2.1. The Cost of Event Scheduling in the LPEQ 38

2.2. The Cost of Event Scheduling in the CLEQ 38

2.3. Analysis of XTW Event Scheduling cost 42

2.4. The Efficiency of Rb-messages 42

3. XTW vs. CTW 44

3.1. "Sequential" Comparison 46

3.2. Simulation Time 47

3.3. Throughput, Good-put and Committed Rate 47

3.4. Relative Speedup 48

4. XTW vs. Sequential Simulator 48

vi

TABLE OF CONTENTS

4.1. The Sequential Simulator 51

4.2. Benchmark Circuits and Metrics 51

4.3. XTW Implementation Parallel Overhead 51

4.4. Max Simulation Time, Absolute Speedup and Good-put 53

4.5. Peak Memory Usage 55

4.6. Overall Parallel Overheads and Parallel Efficiency 58

5. The Million-Gates Logic Simulation 60

CHAPTER 5. Conclusion and Future Work 63

1. Conclusions 63

2. Future Work 64

REFERENCES 65

vn

LIST OF FIGURES

LIST OF FIGURES

1.1 An Example of the Deadlock Situation in the Conservative

Protocol 6

1.2 Mattern's Two Cuts CAT Algorithm 9

1.3 multiple input queues 13

1.4 an ETW example 14

2.1 Input Channel Model 19

2.2 The Structure of Input Channel 20

2.3 The Structure of XEQ 21

2.4 an event node structure and its movement 22

2.5 the number of CLEQ events vs. the number of processors(circuit

s38584 running 50 vectors) 23

2.6 the number of CLEQ events vs. the number of vectors(circuit

s38584 running with 7 processors) 24

2.7 "Un-sending" Messages by anti-messages 27

2.8 rb-messages, an LP receives a straggler rb-message 28

2.9 rb-messages, an LP receives a no-straggler rb-message 29

3.1 The structure of the Virtual External LP 34

4.1 number of time-buckets vs. number of processors(with 100 vectors) 39

viii

LIST OF FIGURES

4.2 number of time-buckets vs. number of vectors(with 7 machines) 40

4.3 number of time-buckets vs. number of processors(XTW without

using BTW with 100 vectors) 41

4.4 number of time-buckets vs. number of vectors(XTW without

using BTW with 7 machines) 42

4.5 rb-message efficiency vs. the number of processors(\vith 100

vectors) 44

4.6 rb-message efficiency vs. the number of vectors(with 7 machines) 45

4.7 simulation time vs. number of processors 48

4.8 throughput vs. number of processors 49

4.9 good-put vs. number of processors 49

4.10 committed events rate vs. number of processors 50

4.11 relative speedup vs. number of processors 50

4.12 max simulation time vs. number of processors 53

4.13 absolute speedup vs. number of processors 54

4.14 good-put vs. number of processors 55

4.15 peak memory usage vs. number of processors 56

4.16 peak memory usage ratios, number of processors 57

4.17 peak memory usage ratio vs. number of processors(sl80k and

s360k) 57

4.18 overall parallel overheads vs. the number of processors 59

4.19 parallel efficiency vs. the number of processors 59

4.20 max simulation time vs. the number of processors 61

4.21 good-put vs. the number of processors 61

IX

LIST OF TABLES

LIST OF TABLES

4.1 The maximum number of ICs in an LP 38

4.2 simulation time vs. number of processors 47

4.3 pure sequential vs. parallel "sequential1' 52

CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

In the competitive arena of VLSI systems design, high performance computer sim­

ulation is indispensable. Simulation execution time of VLSI circuits is proportional

to both the size of the circuit and the number of test patterns. Test patterns are

themselves proportional to the size of the circuit; consequently the total simulation

time is proportional to the square of the circuit size. During the last 20 years, the

size of circuits has increased as the Moore's law predicted -the transistor density

on integrated circuits doubles every couple of years. The result is that one circuit

can consist of millions of components and its simulation can easily take hours, days,

or even weeks. Even though special purpose hardware can be used to accelerate

simulations[13][37][31][l], they are not flexible and are extremely expansive. Hence

there exists a need for faster, more flexible and scalable distributed logic software

simulators which can run on general-purpose architectures.

The research community has contributed considerable effort investigating the

use of parallel processing to accelerate logic simulation. A great deal of effort has

been expended on parallel discrete-event simulation(PDES) techniques for parallel

computers and for clusters of PCs (see the Workshop on Parallel and Distributed

Simulation). An excellent survey of this work may be found in [10].

The main purpose of this research is to shorten the circuit simulation time via a

new PDES protocol and build a robust software simulation engine that can simulate

1 LOGIC SIMULATION

ultra-large circuits(over a million gates), something which cannot to be accomplished

by sequential simulators running on a single processor.

1. Logic Simulation

During the VLSI design process, VLSI systems are frequently simulated across a

wide variety of abstraction levels, from continuous models at the circuit level to block-

structured models at the behavioral level. There are 8 major levels of simulations used

in the design process[2]:

• behavioral level: at this level, a model of the circuit is created to charac­

terize the behavior of a circuit regardless of its internal structure.

• register transfer level: this level deals with registers, I/O, ALU, buses, etc.

• functional level: this level deals with systems specified in terms of major

building blocks and their interconnection.

• gate level: only discrete logic levels are used in a gate level simulator whose

purpose is to validate the logical behavior of the circuit.

• switch level: in a switch level simulator, MOS transistors are modeled as

a voltage controlled switch. The advantage of modeling a group of MOS

transistors rather than a simple logic gate is that MOS devices have a

bilateral switching characteristic which allows them to perform complex

logic functions when grouped together.

• timing level: timing simulators are similar to circuit level simulators except

for the fact that they use simpler models and relaxed simulation meth­

ods. Therefore, the designer can simulate circuits faster with an accuracy

comparable to circuit level simulators.

• circuit level: this level is usually the lowest level of abstraction in which

the circuit designer checks the different electrical characteristics of a group

of transistors which are generally a small subset of the entire circuit.

2

1 LOGIC SIMULATION

• device level: at this level, various aspects of the fabrication process on

device parameters are examined. The design is usually not involved at this

stage.

Only discrete-event simulations are considered in this thesis and only gate-level

simulations are conducted in our experiments. In gate-level logic simulation, a circuit

contains a set of logic gates such as NOT, AND. OR, XAXD, NOR, XOR, XXOR

gates and flip-flops. Gate-level logic simulation is an example of a low-granularity

application which is very challenging for parallel processing. Hereafter, the term logic

simulation implies discrete-event simulation.

There are a number of ways in which parallelism can be exploited in order to

improve the performance of logic simulation[ll][21].

• Algorithm parallelism The simulator is decomposed into a series of func­

tional units which are then mapped onto different processors. Pipeline

techniques are used to accelerate the simulation. Because there are a lim­

ited number of functional units, only a limited amount of parallelism is

available using this technique.

• Data parallelism Multiple processors perform the same simulation, but with

different input vectors. This technique is effective when a large number of

distinct input vectors need to be simulated, such as in fault simulation.

• Model parallelism A VLSI circuit is partitioned and mapped to different

processors in order to perform functional evaluation for distinct logic ele­

ments. The advantages of this technique are twofold. First, it can accelerate

the design verification in which the goal is to minimize the completion time

of an individual input vector. Second, it can solve the problem of large sim­

ulation models that cannot fit on a single processor due to limited system

resources (e.g., memory resources).

This thesis concentrates on exploiting the techniques for model parallelism.

2 PARALLEL LOGIC SIMULATION ALGORITHMS

2. Parallel Logic Simulation Algorithms

In parallel logic simulation, individual gates are typically considered to be atomic

elements, and are modeled as a Logical Pro<<s.s{LP). It is also possible for more than

one gate to be combined into a single LP. LPs interact via exchanging timestamped

events (messages) through communication channels, which model the circuit connec­

tivity of the VLSI systems. ("Messages" and "events" are not distinguished in the

rest of the thesis.) In PDES, system state variables are modeled as discrete-valued

quantities which change their value at discrete instants in simulated time. This sim­

ulated time is often referred as Virtual Time. In logic simulation, the state variables

typically represent signal levels on wires that connect the circuit elements. In the sim­

plest two-valued logic simulations, state variables are constrained to two quantities

representing Boolean values(i.e., 0 or 1). Most modern logic simulators use multi­

valued variables to represent additional information. For example, many switch-level

simulators add an X state to represent unknown or floating signals, and gate-level

simulators add states to represent drive strength and high impedance conditions. The

IEEE standard logic system for VHDL simulation uses a 9-valued logic[5]. A change

in the output of an LP(e.g., a 0 to 1 transition at a gate output) is communicated to

the fanout LPs by delivering a time stamped message to each fanout LP.

In PDES, the simulation is correct if each LP processes its events in chronological

order of their timestamps. This is known as the causality constraint. To insure the

causality constraint in PDES, a synchronization algorithm must be engaged in order

to coordinate all of the processes. This extra synchronization cost is the major source

of overhead compared to sequential simulations. Therefore, the central problem of

parallel simulation is the development of synchronization algorithm with minimal

overhead. Synchronization overhead can result in increased memory demands and in

increased execution time.

3 PARALLEL SYNCHRONIZATION ALGORITHMS

3. Parallel Synchronization Algorithms

Two primary approaches to synchronization algorithms have been developed, the

conservatiue[22][8] and the optimistic[20] classes of algorithms.

3.1. Conservative Synchronization Algorithms. The conservative ap­

proaches are the earliest known synchronization strategies for Parallel Discrete Event

Simulation!PDES). A survey of these mechanisms can be found in [32]. The under­

lying principle of the conservative approach is that only safe events can be processed.

An event el with time-stamp tl is a safe event if it can be guaranteed that the

process will not receive another event with a time-stamp less than tl. Processes con­

taining no safe events must block, resulting in an increased execution time as well as

the possibility- of deadlocks. In a deadlock, several LPs wait for each other for further

causality information. Consider a simple situation in Figure 1.1, in which there are

two LPs: LPi and LP2- The LVT of LP\ is 5. The LVT or local virtual time is the

current simulation progress of an LP, and is equal to the virtual time of the currently

processed event. It will advance to the time of next event to be processed. LP{s next

minimum event time in its internal event queue is 7. and its input queue from LP2 is

empty. It is waiting for causality information from LP2 so that it can safely process

the events in its input queue. LP2's LVT is 6; its next minimum event time in its

internal event queue is 8; its input queue from LP\ is empty. It is also waiting for

causality information from LP\ in order to proceed with its event processing. This

is a deadlock situation-the two LPs do not know they are waiting for each other and

the simulation will never resume.

A number of deadlock avoidance and deadlock detection and recovery methods

have been developed[24][25][29][44][6]. A prime example of deadlock avoidance tech­

niques is the null message mechanism [22], which uses a special message type that

has a time-stamp but no content (a null message) [32]. Whenever an LP receives a

message, it must send a message on each of its outputs. If the simulation does not

require a regular message to be output on a channel, a null message is sent in its

5

3 PARALLEL SYNCHRONIZATION ALGORITHMS

LP1

LVT = 5

7

^
^

fe
W

LP2

LVT=6

8

FIGURE 1.1. An Example of the Deadlock Situation in the Conservative Protocol

place. When a non-zero lookahead value exists, and each null-message contains its

time-stamp plus lookahead, this algorithm can eliminate deadlock. This algorithm

relies on a quantity called lookahead, defined in [16] below:

Lookahead. If a logical process at simulation time T can only

schedule new events with time stamp of at least T+L. the L is

referred to as the lookahead for the logical process.

The drawback of the null-message algorithm is that it may substantially increase

the total number of messages required to execute the simulation.

Two other well know examples of deadlock avoidance algorithms are the Carrier

Null Message algorithm and Conservative Time Windows. The Carrier Null Message

Protocol attaches some lookahead information to the null message, thereby speeding

up the simulation[9]. Conservative Time Windows allows events to be processed

concurrently within a given time window. [33][28]

Deadlock detection and breaking algorithms make use of algorithms for knot de­

tection in order to detect a deadlock and may use distributed leader elector algorithms

to break deadlocks.[6]

Conservative algorithms are generally easier to implement than optimistic al­

gorithms and require less memory to run. There is no overhead associated with

causality correction and memory recover)'. However, it is hard to maximize the ex­

ploitation of event parallelism. This is because conservative algorithms are generally

too pessimistic about an event's concurrence. Hence an LP either has to wait, or to

(i

3 PARALLEL SYNCHRONIZATION ALGORITHMS

acquire a large amount of causality information in order to ensure safety of simula­

tion. Deadlocks may occur if LPs wait for each other's information, and recovering

from a deadlock is an expensive operation.

3.2. Optimistic Synchronization Algorithms. Optimistic mechanisms do

not block unsafe events in order to avoid causality errors; instead they detect and

recover from such errors. This approach allows the mechanism to exploit to the

maximum extent possible the parallelism which is available in the model.

The prime example of an optimistic approach is the Tune Warp(TW) mechanism,

which is an implementation of the I'irtual Tunc synchronization paradigm described

by Jefferson in [20]. In a Time Warp architecture, an LP has an input queue to hold

newly arriving events and processed events, an output queue to store a copy of output

events, a state list to store past states, and an event heap to store the events pending

to be processed.

In TW. events are processed optimistically without blocking. All events are

assumed to be safe events. The processing of an event involves the following:

(i) the event is retrieved from the event heap, it is processed based on the

current state, a copy of that event is saved in the input queue,

(ii) newly generated internal events are scheduled in the event heap and the

newly generated external events are sent to other LPs,

(iii) a copy of those output events are saved in the output event queue,

(iv) a copy of the original states are saved in the state-list.

All of the logging actions in the above operations is to make it possible to undo the

processing of an event in case of causally errors.

When an LP receives an event message whose time-stamp is smaller than the

current LVT of the LP, a causality error occurs. This event is called a straggler. To

recover from the causality error, the LP has to "undo" all the incorrect computing

by rolling back. The process of rolling back consists of the following steps:

(i) restore state variables to a correct value prior to the causality error

3 PARALLEL SYNCHRONIZATION ALGORITHMS

(ii) re-schedule processed events whose time-stamp is larger than that of the

straggler back into the input queue in order to be re-processed

(iii) "un-send" previously sent messages whose time-stamp is larger than that

of the straggler

Since all of the previous states and events are saved, to restore state variables

and re-schedule processed events is straightforward.

To "un-send" previously sent messages, the anti-messages mechanism is em­

ployed. An anti-message is actually a negative output event which is sent to the

same destination LP as its counterpart positive output event was sent. When an LP

receives an anti-message, there are three cases which need to be considered:

(i) The positive event is still in the event heap. In this case, the event heap is

searched in order to locate the positive event It is then annihilated by the

anti-message,

(ii) The positive event is processed. In this case, the LP has to be rolled

back to a virtual time which is less then or equal to the timestamp of

the anti-message. Then the corresponding positive event is annihilated.

The rolled back LP may generate additional anti-messages, which may in

turn cause additional rollbacks (and the sending of anti-messages) to other

LPs. Recursively applying this "roll back, send anti-message" procedure

will eventually erase all incorrect computations resulting from the original,

incorrect message send,

(iii) The positive event has not arrived. This case only happens when the com­

munication system is not guaranteed to be FIFO. In this case, the anti-

message is inserted into the event heap. When the positive event arrives,

it will be annihilated accordingly.

Because an LP is subject to rollbacks, its' LVT value may drop back to a previous

virtual time. There is, however, always a virtual time such that an LP may not be

rolled back prior to it. It is called Global Virtual Time(GVT). The GVT value is

equal to the minimum of (1) the LVT values of all LPs, and (2) the minimum time

3 PARALLEL SYNCHRONIZATION ALGORITHMS

of all of the events which were sent but not yet been processed (known as transient

messages). One of the reasons for computing the GVT value during a simulation

is to reclaim memory. Since rollbacks can never cause the simulation to return to

a virtual time which is smaller then the GVT, any memory that has been allocated

before the GVT may be reclaimed. Reclaiming memory, or fossil collection, involves

the freeing of events before GVT in the input queue, the copying of output events

before the GVT in the output queue, and the copying of saved states before GVT in

the state-list. During a simulation, each event must be saved in memory, hence the

amount of available memory can quickly decrease. Reclaiming the unused memory

during the simulation may become crucial to sustaining the simulation. The tricky

point is to compute GVT values accurately and quickly.

The main problem in computing the GVT is including the time-stamps of the

transient messages into the GVT computation. Jefferson[l9] and Samadi[38] pro­

posed a acknowledging received events approach to solve this problem. This approach

is improved later by Lin and Lazowska[26]. The drawback of this approach is that the

acknowledgment messages increase the network traffic and may degrade simulation

performance. Other GVT algorithms include: Bellenot's Routing Graph MGR[4],

the passive response pGVT[14], the asynchronous token-passing algorithms[12] and

Mattern's GVT algorithm[30].

Red Msg
•

White Msg
>

Cutl Cut2

Wallc lock Time

FIGURE 1.2. Mattern's Two Cuts GVT Algorithm

3 PARALLEL SYNCHRONIZATION ALGORITHMS

In this thesis, a slightly modified version of Mattern's GVT algorithm is used.

Figure 1.2 depicts a "two cuts" case of Mattern's GVT algorithm. In this algorithm,

a white-red two colors scheme is used to color all messages. All of the processors

are structured in a logical ring topology. Our algorithm works as follows: all of the

processors are originally colored white. A white processor sends only white messages

and a red processor sends only red messages. Each processor uses a counter(local-

white-counter) to count the white messages. When a processor sends a white message,

the local-white-counter adds one and when it receives a white message, the local-

white-counter subtracts one. An initiating processor starts the GVT computation

by sending a GVT-CUT message to its successor and changes its color to red. A

red processor keeps track of the smallest timestamp(red-min-time) of the red events

which it sends. The GVT-CUT message is passed among the processors in the form of

a token which contains a timestamp(cut-time) and a counter (global-white-counter).

When a white processor receives the GVT-CUT message, it changes its color to

red, start to track the red-min-time, and then pass the GVT-CUT message to its

successor. When a red processor receives the GVT-CUT message, it compares the

cut-time with its LVT and red-min-time, and updates the cut-time with the minimum

value of the three. Moreover, it adds the value of local-white-counter into the global-

white-counter, and then passes the GVT-CUT message to its successor. When the

initiating processor receives the GVT-CUT message, it checks if the global-white-

counter is zero. If so, the GVT computation is done. The cut-time is the new GVT

and is propagated to all of the processors. If it is not zero, the initiating processor

works in the same way as a normal red processor. The GVT-CUT message then is

passed to its successor, and another round of GVT computation is started.

From the above description, we can see that at least two rounds (two cuts) of

GVT-CUT are required in one GVT computation. The first cut is to turn all of

the processors from white to red, while the second cut is to compute the GVT. In

some cases, the above algorithm may require more then 2 cuts. In our experiments,

a maximum of 3 cuts are observed.

10

4 PREVIOUS OPTIMIZATION TECHNIQUES FOR PARALLEL LOGIC SIMULATION

3.3. Summary of Parallel Synchronization Algorithms. Both conser­

vative and optimistic synchronization algorithms have their own advantages and

disadvantages[15]. The conservative approach does not save events and states. Thus

it consumes less memory than the optimistic approach, and is able to handle simula­

tions with large states. On the other hand, good lookahead is essential for obtaining

good performance, and only limited model parallelism can be exploited due to overly

pessimistic event execution. The optimistic approach can run with zero lookahead

and can fully exploit model parallelism. The drawbacks are larger memory consump­

tion, extra computational and communication overhead on causality corrections, and

instability due to rollbacks which spread quickly to a number of processors (known

as cascading rollbacks).

Previous research has indicated that the optimistic approach outperforms the

conservative approach in parallel logic simulations[3][45]. In the next section, we focus

on optimization techniques for Time Warp(TW) which are particularly appropriate

for logic simulation.

4. Previous Optimization Techniques for Parallel Logic Sim­

ulation

Parallel and distributed discrete-event simulation(PDES) has evolved over the

past 20 years into a mature yet still challenging research area. Logic simulation is

one of its major applications. Various optimization techniques have been developed to

attack different overheads, to stabilize TW or to simply add useful features. [40][27]

[34][23][17] [46] [42] [18] [36] [39],

Four previous optimization techniques are made use of by XTW:

(i) Rollback Relaxation

(ii) Clustered Time Warp

(iii) Bounded Time Window

(iv) Event-lookahead Time Warp

We now turn to a brief description of these techniques.

11

4 PREVIOUS OPTIMIZATION TECHNIQUES FOR PARALLEL LOGIC SIMULATION

4.1 . Rollback Relaxat ion . Rollback Relaxation is a novel technique for

attacking state-saving overhead in TW[43]. To apply rollback relaxation, LPs are

classified into two categories: memoryless and memoried LPs. A memoried LP is

actually an ordinary LP in TW. The output of a memoried LP is a function of both

input values and internal state values. In such LPs event processing may use internal

state information from previous event processing activities in order to produce an

output event. Thus a state-saving mechanism must be implemented in a memoried LP

in order to enable the restoration of state variables in case of rollback. A memoryless

LP's output behavior is completely determined by the values of its inputs. Event

processing by a memoryless LP will never use internal state information from past

event processing to produce an output event.

All memoryless LPs qualify for rollback relaxation. In rollback relaxation, no state

is saved during processing. When a straggler arrives, the LP reconstructs any required

input state from the events of input queues. In general, an optimistically synchronized

simulator maintains one input queue for all incoming events. Thus, depending upon

the activity of the input set, the state reconstruction may require a significant search

through most of the input queue. Because of this potentially large input, Wilsey et

al propose multiple input queues. Figure 1.3 depicts the structure of the multiple

input queues. In multiple input queues, each distinct input variable is assigned an

input queue(e.g. A, B in fig 1.3). Events in each input queue are sorted in increasing

timestamp order and are linked in a list (white arrows in fig 1.3). Additional links

are constructed among input queues to link all of the input messages in increasing

timestamp order (black arrows in fig 1.3). Thus, the simulator can quickly search

each input variable for state reconstruction and it can also quickly process the input

messages in timestamp order as necessary in order to process a straggler message or

anti-message.

Since rollback relaxation is embedded our new system, we can see that the new

input queue structure has a root in the multiple input queues.

12

4 PREVIOUS OPTIMIZATION TECHNIQUES FOR PARALLEL LOGIC SIMULATION

o l d . new

- i — i — i — i — I — i — i — i — i — I — i — i — i — r

0 5 10 15 20

FIGURE 1.3. multiple input queues

In logic simulation, the logic gates, such as AND, OR and XOR etc, can be

modeled as memoryless LPs. Obviously, the rollback relaxation mechanism can reduce

the state-saving overhead by a considerable amount if there are a large number of

memoryless LPs in the simulation.

4.2. Clustered T i m e Warp. Clustered Time Warp (CTW) is a hybrid

system in which LPs are scheduled sequentially within clusters, and clusters are syn­

chronized by TW[3]. CTW has the following three variations:

• Clustered Rollback-Clustered Checkpoint(CRCC): In CRCC, all of the LPs

in a cluster are required to roll back when a straggler arrives at the cluster.

A collection of time zones are created in an input queue to a cluster in

order to determine checkpoints for each of the LPs in the cluster. This

approach requires the least memory of the three techniques. Nevertheless,

the fact that all of the processes in a cluster are rolled back results in a

heavy execution time penalty.

• Local Rollback-Local Checkpoint(LRLC): In this variation of CTW, each

LP rolls back individually and the checkpoints are determined by the times-

tamps of messages arriving from other clusters. This is closest to pure Time

Warp and performs well in terms of execution time. However, the price to

pay is memory.

• Local Rollback - Clustered Checkpoint (LRCC): This technique is midway

between CRCC and LRLC. It uses the clustered checkpoints of CRCC and

13

4 PREVIOUS OPTIMIZATION TECHNIQUES FOR PARALLEL LOGIC SIMULATION

uses the individual LP rollback technique of LRLC. Not surprisingly, it gives

performance results between CRCC and LRLC in terms of both execution

time and memory consumption.

Experimental results[3] indicate that the LRLC approach is the fastest and that it

consumes more memory then the other approaches. Since we apply other techniques

to reduce memory usage, we make use of the LRLC approach in order to minimize

the simulation time.

4.3. Event-lookahead Time Warp. The Event-lookahead Time Wary (ETW) [23]

technique reduces unnecessary intermediate events by combining multiple input events

which occur within the same clock cycle at each gate and generates only one output

event for all of these combined events.

Clock Boundary event Generated c l o c k Boundary

eO

V
1
•
1
1
I

Y
•
I
I

el e2 e3 :4 e5 e6 e7

FIGURE 1.4. an ETW example

Figure 1.4 shows an example to illustrate the ETW algorithm. The waveform

shown in the example may appear at the output of a logic gate resulting from event

evaluation. In fig 1.4, suppose events Ci to e7 are in the input queue and they are all for

the same clock cycle. ETW first updates the gate input signal values by considering

all of the seven events and evaluates the gate output value at e7. Depending on the

output value, there is either none or one new event to generate corresponding to those

seven events. If a new event is generated, as is the case in this example, it is because

there is a "valid" waveform transition that is not considered to be a glitch. The new

event generated in this example corresponds to the waveform transition at e6. To get

the correct timing of the waveform transition, there is a need to evaluate e6 and then

14

4 PREVIOUS OPTIMIZATION TECHNIQUES FOR PARALLEL LOGIC SIMULATION

e5. However, there is no need to evaluate el, e2, e3 and e4. If there are no further

event received for the gate during this clock cycle, then the wave form is considered

to contain exactly one signal transition at e6 and two glitches, one at el and e3 and

the other at e4 and <x, which are removed as a result. In this example, to check if

there is a "valid" waveform transition, the logic gate output before event ex is used as

a reference for comparison. Because of that, there is no "valid" waveform transition

at e3 or e5.

Obviously, if a large number of events occur in the same lookahead (clock-cycle),

the efficiency of ETW will be high. However, in "unit-delay" logic simulation, the

one-unit time lookahead is too small to create a large number of events within a clock-

cycle. It should be noted that all of the experiments in this thesis use "unit-delay"

in logic simulations and that ETW, as a result, can provide limited improvement.

4.4. Bounded Time Window. Due to unbalanced loads assigned across

participating processors in TW, an overly optimistic LP or cluster may use too much

memory in saving events and states which may well be rolled back. Moreover, the

increased number of rollbacks ma)r eventually cause TW to be unstable. A simple

approach to preventing some LPs from advancing too far ahead of the pack is to bound

how far one LP can advance ahead of the others. The Bounded Time Window (BTW')

mechanism is an example of this approach[35][41].

In BTWr, a time window is defined as GVT+W. where W is the size of the

time window. LPs are not allowed to advance beyond GVT+W. This time window

advances forward whenever GVT advances.

The central advantage of BTW is that it provides a simple, easy to implement

mechanism to limit overly optimistic LPs from advancing too far ahead of other

LPs. The central disadvantage of this approach is that frequent GVT computations,

which increase the overhead, are required in order to keep the time window moving.

Another disadvantage of this approach is that the window does not distinguish correct

computations from incorrect ones, i.e., incorrect computations within the window

would still be allowed to execute, while correct ones beyond the window are not

15

5 THESIS CONTRIBUTIONS

allowed to execute. Furthermore, it is not immediately clear how the size of the

window should be set; this is clearly application dependent.

A variation of the time window approach is to define the window in terms of

the number of processed, uncommitted events (NPUE) that may reside in a logical

process rather than using simulation time. In the Breathing Time Warp protocol[39],

the user must specify this NPUE parameter. An LP is blocked when the number of

processed events in that LP with a time-stamp larger than the GVT reaches NPUE.

The LP becomes unblocked when the GVT is advanced and some of these events are

committed.

5. Thesis Contributions

The contributions of this thesis are twofold. Firstly, a new optimistic synchro­

nization algorithm. XTW, is proposed. XTW has the following new features:

• A new Input-Channel structure associated with each LP.

• An 0(1) event scheduling mechanism

• An rb-messages mechanism which replaces the anti-messages mechanism.

• Eliminate the Output Queue at each LP.

Moreover, the following optimization techniques are made use of in our implementa­

tion of XTW:

• Clustered Time Warp[3]

• Rollback Relaxation[43]

• Event-lookahead technique[23]

• Bounded Time Window[36]

A new object-oriented parallel VLSI simulation framework is created which we call

XTWFM. A Virtual External LP(VEL) structure is created in XTWFM. This struc­

ture, combined with the XTW algorithm causes XTWFM to have the capability of

simulating million-gates circuits over a cluster of 6 "small" PCs.

16

6 THESIS ORGANIZATION

6. Thesis Organization

The remainder of this thesis is organized into following chapters:

• Chapter 2: XTW

• Chapter 3: XTW Framework

• Chapter 4: Experiments

• Chapter 5: Conclusion and future work

17

CHAPTER 2. XTW

CHAPTER 2

XTW

The creation of XTW is inspired by the belief that the best parallel synchroniza­

tion algorithm for parallel logic simulation is takes advantage of the characteristics

of logic simulation and strives to reduce as much as possible this overhead. Rolling

back, saving events and saving states are the main sources of this overhead in opti­

mistic synchronization. XTW pursues a new approach, creating the following new

mechanisms in TW in order to reduce the cost of rolling back, event saving and event

scheduling.

• An input-channel structure is added to each LP.

• XEQ provides an 0(1) event scheduling mechanism.

• The rb-messages mechanism replaces the anti-messages mechanism and

eliminates the output queue.

• An 0(1) mechanism for deleting previously scheduled events

All XTW mechanisms are based on the assumption that the underlying commu­

nication system guarantees FIFO order.

In this thesis, we do not distinguish between "messages" and "events".

The rest of the chapter is organized as follows. Section 1 introduces the Input-

Channel structure. Section 2 presents the structure of XEQ. Section 3 presents the

XTW event scheduling mechanism and its cost analysis. Section 4 presents the rb-

messages mechanism and its cost analysis.

18

1 INPUT-CHANNEL

1. Input-Channel

In XTW, a new structure,the input-channel(IC), is added to each LP. The Input-

channel is inspired by the observation that all of the circuit components are sparsely

connected and that the connections are static. Thus, in logic simulations, all of the

LPs have a limited number of input and output channels, and these channels are

not subject to change during the course of a simulation. This makes it feasible to

implement ICs within LPs for parallel logic simulation. Each IC represents an unique

input to an LP and is subject to Rule 1 as follows:

Rule 1: Each IC can only have one unique incoming source.

Figure 2.1 shows how the Input-Channel models the connection edge of gates. In

figure 2.1, Gl has two inputs from G2 and G3. G2 and G3 each has one input. Each

input is modeled as an Input-Channel.

I C l

31

IC2

FIGURE 2.1. Input Channel Model

Figure 2.2 shows the structure of Input-Channel. Each Input-Channel contains

one input event queue(ICEQ) and one processed event queue(ICPQ). Newly arrived

events are put in the ICEQ. After an event is processed, it is put in ICPQ.

19

2 THE STRUCTURE OF XEQ

Inpu t Channel

P r o c e s s e d Event Queue

e3 e l 2 e20e29 e 3 1 e 3 9 e43

Input Ev

e50 e52

ent C

e54

ueue

e63 e91

FIGURE 2.2. The Structure of Input Channel

2. The Structure of XEQ

As a result of the FIFO assumption and Rule 1, all of the events must arrive at

each ICEQ in increasing timestamps order, and as a result all events are naturally

sorted in the ICEQs(see Figure 2.2). We take the advantage of this "zero-cost"

sorting and re-organize the normal TW event input queue into a multi-level event

queue structure, which we call XEQ. The following corollaries can be inferred from

the FIFO assumption and Rule 1:

• Corollary 1: Events must arrive at each input channel in chronological

order.

• Corollary 2: If an event arrives at an Input Channel out of chronological

order, it must be a straggler event.

Figure 2.3 shows the structure of XEQ. In XEQ, there are three event queues

respectively at the Input-Channel level, the LP level and the Cluster level.

• At the Input-Channel level, the event queue is called the ICEQ and is

implemented as a list of events sorted in increasing timestamp order.

• At the LP level, the event queue is called the LPEQ and implemented as a

list of events sorted in increasing timestamp order.

• At the cluster level, the event queue is called the CLEQ and implemented as

a list of time-buckets sorted in increasing timestamp order. A time-bucket

is a list of events which have the same time-stamp.

In addition, the following two event pointers are added respectively for each Input-

Channel and each LP.

20

2 THE STRUCTURE OF XEQ

Clus te r 1

TimeBucketlH 1

a l

0

ICEQ ICE

TimeBucketet]

BE

TimeBucketSt?

\0

ICEQ ICEQ

S? D
•<S>

FIGURE 2.3. The Structure of XEQ

• CTE: At each Input-Channel a CIE(current-IC-event) pointer points to the

event which is popped from its IC and is currently stored in the LPEQ or

the CLEQ. This pointer is used to remove the (pointed-to) event from the

LPEQ or the CLEQ in the event that a straggler arrives at the I C

• CLE: At each LP, a CLE(current-LP-event) pointer points to the event

wrhich is popped from its LP and is currently stored in the CLEQ. This

pointer is used to move the (pointed-to) event from the CLEQ back to

LPEQ in the event that a rollback happens at the LP.

2.1. Rules in X E Q . The following rules are enforced in XEQ:

• Rule 2: An IC can pop only one event to its hosting LP if and only if the

ICEQ is not empty. This event has the lowest time-stamp in the ICEQ and

is called the current IC event. Its pointer value is assigned to CIE.

• Rule 3: An LP pop only one event to its hosting cluster's CLEQ if and

only if the LPEQ is not empty. This event has the lowest time-stamp in the

LPEQ, It is called the current LP event and its pointer value is assigned to

CLE.

21

2 THE STRUCTURE OF XEQ

2.2. Event Node Structure, Space Cost of XEQ. Figure 2.4 shows the

structure of an event node and how event node moves around among different levels

of the event queue.

LP level event queue us tec level event queue

-QOppCr *DiQ&CX
curLJiEvefrit

cur ic t -Vent i
\ r , I o

EX .§
- O Q O ^ X *tsrio^cr

IC level event queue IC level processed event queue

FIGURE 2.4. an event node structure and its movement

Moving an event node from one event queue to another event queue is accom­

plished by changing the values of next and prev pointer of the event node. No

duplication of an event node is necessary and as a consequence, extra memory is not

required at each of the event queues. An example is depicted in figure 2.4. When el

is moved from the Input Channel event queue(ICEQ) to the LP event queue(LPEQ),

the only operation necessary to changing the next and prev pointer of el from 11,12

to Ll, L2. Similarly, moving el to the cluster event queue(CLEQ) or processed event

queue(ICPQ) just involves changing the next and prev pointer value to Cl, C2 or

PI. P2. Thus, XEQ can be viewed as a Time Warp input queue broken into four

sections. The total space cost of XEQ is the same as that of the Time Warp input

queue structure.

2.3. O(l) Previously Scheduled Events Deleting Mechanism. One

major drawback of the Clustered Time Warp(CTW) is the high cost of deleting

previously scheduled events from the Cluster Event Queue(CLEQ) when a rollback

occurs. In CTW7, LPs within a cluster schedule all the events into a single CLEQ.

The result is that the size of CLEQ is considerable large during simulation. When

a rollback occurs, the rolled back LP needs to delete its previously scheduled events

from CLEQ. The lowest cost to find and delete one previously scheduled event in the

22

2 THE STRUCTURE OF XEQ

CLEQ is 0(log N), where N is the size of CLEQ - the number of events in CLEQ. To

study the actual value of N during simulation, we conducted a series of experiments.

The results are presented in Figure 2.5 and Figure 2.6.

5.5

5

4.5

CO
m
oo 4
CD

w
"5 o
3 3.5
O
tu
_ i

U 3
_c

> 2.5

"o

92 I 2

C

1.5

1
I

x 10

•

-

-

-

-

i i i i i i

- e - 50 vectors |

1 ! I

̂ — "

^^^^^

-

'

-

-

1 1 1

2.5 3.5 4 4.5 5
number of processors

5.5 6.5

FIGURE 2.5. the number of CLEQ events vs. the number of processors(circuit
s38584 running 50 vectors)

Figure 2.5 and Figure 2.6 portray the the maximum number of events in the CLEQ

during each simulation for the s38584 circuit with various numbers of processors and

vectors. Thus, the results present the worst case scenario. Both figures clearly show

that the number of events in the CLEQ increases with the number or processors and

vectors. It should be noted that in Figure 2.6, the 1000 vectors point almost has 1

million events in the CLEQ. Compared with the light computational load of event

processing, the overhead of deleting rollback events is large when the number of CLEQ

events is large. In XTW, this problem is circumvented by the implementation of CLE

and CTE pointers along with the structure of XEQ and the event node. By Rule 3,

at most one event will be scheduled in the CLEQ from one LP at any time. Thus,

when an LP is rolled back, the LP can simply use the CLE pointer to delete the single

23

3 XTW 0(1) EVENT SCHEDULING MECHANISM

x 10

400 500 600
number o(vectors

700 800 900 1000

FIGURE 2.6. the number of CLEQ events vs. the number of vectors (circuit s38584
running with 7 processors)

scheduled event from the CLEQ at cost 0(1). It should be noted that the steeply

increasing number of events in the CLEQ not only increases the cost of deleting the

rollback events, but also increases the cost of event scheduling. In the next section, a

new event scheduling mechanism is introduced in XTW with a constant 0(1) cost.

3. X T W O(l) Event Scheduling Mechanism

In general, XTW is a similar to CTW [3] - LPs run sequentially inside each

cluster. Clusters use Time Warp to synchronize with one other. Within a cluster,

XTWr uses the Smallest-Timestamp-First-Scheduling. This scheduling procedure is,

in essence, a sorting problem -all events need to be sorted in timestamp order in order

to insure causality, resulting in an 0{n2) complexity. There are a number of algo­

rithms which have been proposed in order to reduce the event-scheduling complexity-

the calendar queue(0(l))[7], the splay-tree(0(logn)), the red-black tree(O(logn)),

the skip-list(O(logn)) and the heap(0(logn)) are some of these algorithms. In XTW.

24

4 ROLLBACK WITH RB-MESSAGES AND COST ANALYSIS

we propose a new event scheduling mechanism -XEQ- which has an 0(1) complexity

for event scheduling.

An event is scheduled in XTW via the following three steps:

(i) The smallest timestamp event in the ICEQ is popped from ICEQ to LPEQ.

Since the ICEQ is naturally sorted, the smallest timestamp event is just the

head event of ICEQ. Thus, we can simply pop the head event at a cost of

1.

(ii) The event from ICEQ is inserted into LPEQ. The cost of finding the correct

position to be inserted is 7Ve. Ne is the number of events stored in LPEQ

(the size of LPEQ). Based on Rule 3, in worst case, the maximum value of

Nc is Clc, where Clc is the constant number of ICs in an LP.

(iii) The event is inserted from LPEQ to CLEQ. The cost of finding the correct

position to be inserted is Ntb. Ntb is the number of time-buckets in the

CLEQ (the size of the CLEQ). Based on Rule 4, in the worst case, the

maximum value of Ntb is C/p, where C)p is the constant number of LPs in a

cluster.

Putting the above observations together, the cost of scheduling an event in XTW,

SC, is:

SC=l + Ne + Ntb (2.1)

In the worst case the cost of scheduling an event is :

SC = l + Cic + Clp (2.2)

Since both CIC and C[p are constant numbers, the complexity of scheduling an event

is 0(1).

4. Rollback with Rb-messages and Cost Analysis

4.1. The Rb-messages Mechanism. In Time Warp, when an LP receives

a straggler event, it must "undo" incorrect computations by rolling back, restoring

25

4 ROLLBACK WITH RB-MESSAGES AND COST ANALYSIS

state variables and "un-sending" previously sent messages. In Time Warp, the anti-

messages mechanism is used to "un-send" previously sent messages. A good descrip­

tion of this mechanism can be found in Fujimoto's book[l6]. Figure 2.7 shows how

the anti-messages mechanism works. In figure 2.7, LP1 receives a straggler event E15

which causes LP1 to roll back and send out straggler message E16 and anti-messages

E21, E32 and E40. LP2 is then rolled back and sends out straggler message E17 and

anti-messages E22 and E34. Recursively applying this "roll back, send anti-message"

procedure will eventually erase all incorrect computations resulting from the original,

incorrect message send.

In normal logic simulation, an output event is propagated only if its value is

different from last output event's value. In XTW, the following "Propagating Rule"

is enforced in addition to the normal propagation rule:

• Rule 4: If o- straggler event is processed and if the timestamp of the output

event which it produces is smaller than last output event timestamp, output

events must be propagated.

Figure 2.8 depicts examples of the XTW rollback mechanism. In XTW, a new

mechanism - the rb-messages (rollback messages) mechanism is used to "un-send"

previously sent messages. In the following, we describe how the rb-messages mecha­

nism works in the XTW rollback procedure:

(i) When a straggler event arrives at an LP, the LP first restores the state-

variables if it is a memoried LP.

(ii) The current LP event is moved from the CLEQ and pushed back to the

LPEQ.

(iii) Push all events in the LPEQ to their original ICEQ.

(iv) Each IC searches for a "cut point event" in its ICPQ (Input Channel Pro­

cessed Event Queue) from the tail to the head of the queue. The cut point

event is the first event which has a timestamp equal to or smaller than the

straggler's,

(v) Each IC rolls back. There are two cases to be considered:

26

4 ROLLBACK WITH RB-MESSAGES AND COST ANALYSIS

LPl

15

1
17.

I processed

unprocesse

event

d event

Straggler Event E15 causing rollback

Input Queue
(Event List) -4.

Output Queue * ^
(antl-messages)

31 39
[""I

16 21

II
32 4 0

anti-messages E21, E32 and E40 are sent out

LP2 Anti-messages arrive to "unsend" messages

16 . I 21 32 40

Input Queue
(Event List) 4J 21 25 -U v~i r

•! 37 h — • ! 4 0

-T_

Output Queue
(anti-messages)

£V, X
17 22 34

anti-messages E22 and E34 are sent out

FIGURE 2.7. "Un-sending" Messages by anti-messages

(a) An IC is the one which receives the straggler. The IC erases all events

in its ICEQ, and all ICPQ events after the cut point event.(e.g. ICl in

Figure 2.8).

(b) An IC is not the one which receives the straggler. The IC connects the

tail of the ICPQ with the head of the ICEQ, sets the cut point event

to be the new tail of the ICPQ and sets the event after the cut point

event to be the new head event of the ICEQ.(e.g. IC2 in Figure 2.8)

27

4 ROLLBACK WITH RB-MESSAGES AND COST ANALYSIS

LPl
A straggler rb-message E15 arrives at LPl

15

IC1

Processed Event Queue Input Event Queue

e3 el2 e20 ̂ 29 e31 e39 e48 e50 e52 e54 e63 e91

IC2

Processed Event Queue Input Event Queue

e6 elO e23s26 e37 e49 e43 e99

BEFORE

LPl rb-message E16 is propagated after
the straggler event E15 is processed

el6

IC1

Processed Event Queue Input Event Queue

e3 el2 e!5

IC2

Processed Event Queue

e6 elO

Input Event Queue

e23 e26 e37 e49 e43 e99

AFTER

FIGURE 2.8. rb-messages, an LP receives a straggler rb-message

Vi) If it is a memoryless LP, the LP reconstructs any required input state with

the cut point events.

28

4 ROLLBACK WITH RB-MESSAGES AND COST ANALYSIS

LP2

A rb-message E14 arrives at LP2

! 16 •

Processed Event Queue

e4

IC3

7"

J Input Event Queue

e!3 e21 e30 e32 e40

Processed Event Queue

e6

IC4

Input Event Queue

el2 e89

BEFORE

LP 2

No rb-messages will be sent out,
because E16 does not cause LP2 to rollback

Processed Event Queue

e3 e5 e9 ell

IC3

Input Event Queue

el3 el6

Processed Event Queue

e6

IC4

Input Event Queue

el2 e89

After

FIGURE 2.9. rb-messages, an LP receives a no-straggler rb-message

'vii) The straggler event is pushed to the head time-bucket of the CLEQ. Because

it is a straggler, it must have the smallest timestamp in the Cluster. The

related CIE and CLE are set to point to the straggler.

29

4 ROLLBACK WITH RB-MESSAGES AND COST ANALYSIS

(viii) The ICs which do not receive the straggler insert their ICEQs head events

into the LPEQ.

(ix) The head event of the CLEQ, the straggler, is then processed. Complying

with Rule 4< the LP generates and propagates output events to its descen­

dant LPs. Since these output events are used to propagate rollbacks, they

are called rb-messaf/cs. Now consider what happens when an LP receives a

rb-message. There are two cases to consider:

(a) The rb-message has a timestamp smaller than the receiving LP's LVT

- it is a straggler. Since a rb-message is nothing but a normal output

event, the LP handles the rb-message in the same way as it would

handle a normal straggler.(e.g. E15 arrives at ICl in Figure 2.8). All

previously sent messages are deleted by deleting the whole ICEQ and

the ICPQ events with larger timestamp than the rb-message.

(b) The rb-message has a timestamp larger or equal to the LVT. The rb-

message is not a straggler and inserted into the ICEQ of its arriving IC.

All ICEQ events with timestamps larger than the rb-message are erased

when the rb-message is inserted. Thus all previously sent messages are

deleted. No further rb-message is generated in this case.(e.g. E16

arrives at IC3 in Figure 2.9).

Recursively applying the "roll back, send rb-messages" procedure will eventually

erase all incorrect computations resulting from the original incorrect message send.

4.2. El iminat ing the Output Queue. From the above description, we can

see that the anti-messages mechanism is eliminated in XTW, and therefore the output

queue, which is used to store all of the anti-messages, can be obviated in XTW as

well. Since an anti-message is saved for each output event, considerable time and

space are expected to be saved with the elimination of the output queue. This is the

fundamental virtue of the rb-messages mechanism.

30

5 OBSERVATIONS

4.3. Rb-message time complexity. The time complexity of the anti-

messages and rb-messages are as follows. (The cost is for "un-sending" all previously

sent messages caused by one single straggler).

• the cost of anti-messages: In TW, the cost is (Mam * logNae). Mam is

the number of anti-messages. log AQe is the cost to find a positive message

in input queue. Thus, the cost of anti-messages is 0(Mam * logAr
Qe) =

0(nlogn). It should be noted that, in CTW, logAQe is the cost to find

a positive message in CLEQ which is usually much larger than the input

queue of an LP.

• the cost of rb-messages: In XTW, the cost is Nrm * log7Vpe. logNpe is the

cost to find the "cut point event" in the ICPQ(input channel processed

event queue). A'rm is the number of rb-messages which is the number of

descendant LPs. In the worst case, Ar
rm is equal to C/p, the constant number

of LPs in a cluster. Thus the cost of rb-messages is 0(Cip * \ogNpe) =

O(logn).

From the above analysis, we can see that the rb-messages mechanism has an O(logn)

cost which is lower than the anti-messages mechanism's O(nlogn) cost in "un-

sending" previously sent messages caused by one straggler.

5. Observations

In the above event scheduling and rb-messages cost analysis, the following vari­

ables are assumed to the constant:

• Ne, the cost of scheduling an event in the LPEQ - the number of events

stored in the LPEQ is approximated by Cic, the (constant) number of ICs

in an LP.

• Ntb, the cost of scheduling an event in the CLEQ - the number of time-

buckets in the CLEQ is approximated by C[p, the (constant) number of LPs

in a cluster.

31

5 OBSERVATIONS

• Nrm, the number of rb-messages per straggler event is approximated by C\p,

the constant number of LPs in a cluster.

While in a theoretical analysis the above simplifications are acceptable; in prac­

tical simulations, the actual values of these "factor variables" are more concerned

about. Ne and Ntb dominate the cost of event scheduling and Nrm dominates the

cost of "un-sending" messages. Consequently, we conducted a large number of exper­

iments in order to explore the actual values of these "factor variables". The results

are presented in Chapter 6.

32

1 VIRTUAL EXTERNAL LP

C H A P T E R 3

X T W Framework

With the advent of high performance personal computers(PCs) and low-cost high

speed networks . Cluster-Computing techniques have become an attractive alternative

to high-cost supercomputers for various science and engineering computations. The

goal of designing the XTW Framework(XTWFM) is to use a cluster of low-cost PCs

to achieve a similar logic simulation capacity to supercomputers. The maximum

number of gates that can be simulated on a given platform is largely dependent on

the amount of memory available for the simulation. High performance workstations

are easily overwhelmed by a million gate circuit. XTWFM takes a cost-effective

approach - a cluster of PCs- to attack this problem.

1. Virtual External LP

By utilizing C-b+'s object-oriented features, a "virtual external LP"(VEL) struc­

ture is created in XTWFM, which reduces the memory consumption for sharing global

topology information in each cluster.

Figure 3.1 shows the structure of an XTW cluster. There are two cluster-level

data structures- the CLEQ and an array which stores global LP information and is

called the uglobal-LP-array" (GLA). Each element of GLA is an LP pointer which

points to an LP object. Each LP is assigned a monolithic increased globally unique

ID, the LPID. The LPID is used to directly index the LP in the GLA. LPIDs are

33

1 VIRTUAL EXTERNAL LP

C l u s t e r 2

CLEQ

global-LP-array

gO gl g2 g3 g4 g5 g6 g7 g8 g9 glO gll gl2

\f \i/1/ \l v \ \j_^W
ClkLP VEL1 LP5 LP6 LP7 LP8 VEL3

FIGURE 3.1. The structure of the Virtual External LP

also used in each propagated event (message) to indicate the target LP. In each XTW7

cluster, only local LPs are "real" LP objects. External LPs, which are assigned to the

same external cluster, are represented by one single virtual external LP. In Figure 3.1,

gl-g4, which are assigned to clusterl, are represented by a single virtual external LP

VEL1. g5-g8, which are local LPs, have their real LP object in the cluster. g9-gl2 are

assigned to cluster3 and represented by VEL3. Both virtual external LP and local LP

objects share one abstract interface which has a virtual function - addEvent(Event*).

In a local LP, addEvent(Event*) is implemented to add an event into the event queue.

In a virtual external LP. addEvent(Event*) is implemented to send a message to a

pre-determined processor. Now consider what happens when an event is propagated.

(i) The target LP's LPID is used to get the LP pointer from GLA.

(ii) The addEvent(Event*) function is called in the LP object which is pointed

to by the GLA pointer,

(iii) There are two cases to be considered when the addEvent(Event*) function

is called:

(a) The LP object is a local LP: the propagated event is added to the

event queue.

(b) The LP object is a virtual external LP: the propagated event is sent

to the pre-determined external cluster which hosts the target LP.

34

2 PUTTING IT ALL TOGETHER

(iv) When a cluster receives an external event message, the target LP's LPID

is used to get the LP pointer from GLA. Then the pointed LP's addE-

vent(Event*) function is called. This time, it must be a local LP function

call. Thus, the propagated event is added to the event queue.

From the above description, we can see that an LP(a gate) only instances its

object once in its hosting cluster. In other clusters, the LP only consumes one pointer-

space in memory.

2. Pu t t ing It All Together

To improve the performance of XTWFM, various optimization techniques are

used and the entire system programming code is optimized in several rounds. In

most critical parts of the XTWFM, several implementations are coded for the same

mechanism/algorithm. Then, we use simulation results to identify the best imple­

mentation approach. Our study shows that different implementations can have con­

siderable impact on system performance. We list all mechanisms and their impacts

on XTWFM:

• XTW synchronization algorithm. This algorithm reduces the event-scheduling

cost, increases the events committed rate and stabilizes the Time Warp sys­

tem.

• CTW. The CTW synchronization algorithm is embedded in XTW to get a

hybrid system.

• Rollback Relaxation. This mechanism reduces the parallel state-saving cost.

• Bounded Time Window(BTW). This mechanism stabilizes Time Warp and

reduces the memory consumption. It should be noted that the BTW mech­

anism increases the simulation time in most cases while it stabilizes the

system in the large circuit simulations when memory consumption is criti­

cal.

• Event-lookahead Time Warp. This mechanism reduces the overall events

number. In current unit-delay logic simulation, only little performance

35

2 PUTTING IT ALL TOGETHER

improvement is gained from this mechanism. This mechanism is useful for

both sequential and parallel simulators.

Putting all of the above mechanisms together, we get a stable, fast, low cost and

large capacity logic simulation engine - XTWFM. In the next chapter, we demonstrate

that XTWFM can simulate a million-gates circuit over a cluster of six "small" PCs.

36

1 EXPERIMENTAL ENVIRONMENT

C H A P T E R 4

Experimental Evaluation of X T W

Four sets of experiments are presented in this chapter:

• In section 2, a set of experiments is conducted on various benchmark circuits

in order to explore the actual values of the "factor variables".

• In section 3, a set of experiments compares CTW and XTW. and provide

evidence that XTW outperforms CTW.

• In section 4, a set of experiments compares XTW and a sequential XTW

simulator(XSS). Experimental results provide evidence that XTW has good

scalability in the number of processors and the size of circuits.

• In section 5, a set of experiments is conducted on two benchmark circuits

having half-million and one-million gates. The experimental results provide

evidence that using XTW over a cluster of PCs is a cost-effective alternative

for the simulation of ultra-large circuits.

1. Experimental Environment

All experiments are conducted on a network of seven personal computers. Each

computer is equipped with dual Pentium III 450 processors and 256 Megabytes of

internal memory. The network is connected by a Myrinet switch which operates at

one Gigabyte per second. XTW employs MPI as the software communication platform

which guarantees a FIFO order in communication. All of the XTW experimental data

37

2 EVENT SCHEDULING AND Rb COSTS

presented in this thesis is the average value from at least 100 runs while each set of

CTW data is the average value from at least. 10 runs.

2. Event Scheduling and Ry Costs

2.1. The Cost of Event Scheduling in the LPEQ. In the analysis of event

scheduling (Chapter 2 section 3), the cost of scheduling an event in the LPEQ is Ne,

the number of events in the LPEQ. In the worst case, Ne is Clc - the number of ICs

in an LP. In Table 4.1, the maximum number of ICs in various circuit benchmarks

are presented. It shows that the maximum number of ICs in an LP does not vary

much from circuit to circuit, and does not increase with the size of circuit.

name of circuit
number of gates

max ICs in an LP
TABLE 4.1. 1

s38584
20995

4
^he maxim

s38417
23949

4

sl5850
10470

4

s5758
3042

4
um number of ICs in an LP

s9234
5866

4

2.2. The Cost of Event Scheduling in the CLEQ. In the analysis of event

scheduling cost (Chapter 2 section 3), the cost of scheduling an event in the CLEQ

is Ntb. Ntb is the number of time-buckets in the CLEQ. In the worst case, Ntb is

approximated by C/p - the number of LPs in a cluster.

Figure 4.1 shows the number of time-buckets in the CLEQ vs. the number of

processors. Figure 4.2 shows the number of time-buckets vs. the number of input

vectors. Both Figure 4.1 and Figure 4.2 clearly indicate that Ntb is far less than C/p

in all the cases. We can see that there is a general trend in Figure 4.1 - a larger

number of time-buckets in the CLEQ with more processors. The reason for this trend

is that the more clusters there are, the more chances that different time-stamps events

can be generated and the more time-buckets that will exist in CLEQ. Nevertheless, we

can see that this general trend has variations among individual circuits, i.e. different

circuits which are partitioned into the same number of clusters may well exhibit a

different behavior as the number of processors increase. In 4.1, we can observe that

the line of s38584 circuit ascends from 5 to 7 processors while the lines of other circuits

38

2 EVENT SCHEDULING AND Rb COSTS

150

o
LU

u
c
en

<U

• - •

-O

<D

E

ai
-O
E

100

4 4.5 5
number of processors

5.5 65

FIGURE 4.1. number of time-buckets vs. number of processors(with 100 vectors)

have nearly flat or descending segments. It should be noted that this general trend

represents the worst case scenario. In some cases, the number of time-buckets may

not increase or even decrease with more processors.

In Figure 4.2. we observe that all of the circuits exhibit a steeply rising section

from 15 vectors to 200 vectors and an almost flat section from 200 vectors to 1000

vectors. This phenomenon is caused by a 200 vector Bounded Time Window used

in XTW. From 15 to 200 vectors the number of events with different time-stamps

increases, but after 200 vectors it does not increase. Hence we can conclude that

when making use of Bounded Time Window the number of vectors does not have

much effect on the number of time-buckets.

Figure 4.2 shows the cost of event scheduling in the CLEQ is limited when BTW7

is used. We are interested in finding out what will happen if BTW is not used. To

find this out, a series of experiments is conducted on a special version XTW which

39

2 EVENT SCHEDULING AND Rb COSTS

200
-G- S38584

S38417
s15850
S5378
S9234

400 500 600
number of vectors

700 800 900 1000

FIGURE 4.2. number of time-buckets vs. number of vectors(with 7 machines)

does not use BTW. The results are presented in Figure 4.3 and Figure 4.4. Figure 4.3

shows the number of time-buckets in the CLEQ vs. the number of processors (without

BTW and with 100 vectors). Figure 4.4 shows the number of time-buckets vs. the

number of input vectors (without BTW, with 7 processors).

A similar trend may be observed in both Figure 4.3 and Figure 4.1. The actual

number of time-buckets are also similar in both figures. There is one exception in

Figure 4.3 at a point of s38584 circuit with 4 processors. This point has an abnormally

high value due to the unbalanced load among the processors. However this point is

not observed in Figure 4.1. This indicates that BTW has the ability to inhibit the

bad effects caused by the unbalanced load.

In Figure 4.4, we can see that most of the actual number of time-buckets are

larger than the ones in Figure 4.2. The differences are enlarged with an increase in

the number of vectors. The lines ascend from 200 vectors to 1000 vectors in Figure 4.4

40

2 EVENT SCHEDULING AND Rb COSTS

250

200

O
LU
_J

o
150 -

a
n
E

100

4 4.5 5
number of processors

FIGURE 4.3. number of time-buckets vs. number of processors(XTW without using
BTW with 100 vectors)

instead of the flat line sections in Figure 4.2. These results indicate that BTW is more

useful and effective in simulations with a large number of vectors than in the ones

with a small number of vectors.

Although the number of time-buckets increase from the maximum 120 in Fig­

ure 4.2 to the maximum 547 in Figure 4.4, they are still far less than the approximate

value - C\p , which is the number of LPs in a cluster (see section 3 page 24). In

Figure 4.4, the maximum number of time-buckets is at the point of s38417 with 6

processors. Since one processor is used as a manager node and is not assigned any

LPs, C{p is calculated with only 5 processors for this point. The C\p is 23950 (the

size of s38417)/5 = 4790 which is almost 9 times larger than the actual maximum

number of time-buckets.

From above results, we can see that, even without BTW7, the cost of event sched­

uling in the CLEQ is still limited and is far less than the approximate value.

41

2 EVENT SCHEDULING AND Rh COSTS

600

500

o
O 400

o
.O
| 300

200

100

-e- S38584
S38417
S15850
S5378
S9234

100 200 300 400 500 600
number of vectors

700 800 900 1000

FIGURE 4.4. number of time-buckets vs. number of vectors(XTW without using
BTW with 7 machines)

2.3. Analysis of XTW Event Scheduling cost. The above results show

that the actual value of Ne is confined to a limited range of values. We observed

that Ne has a maximum value of 4. The actual value of Ntb is also far less than the

theoretical value, the number of LPs in a cluster. Actually, Ntb is almost constant

when the Bounded Time Window technique is used. Thus, we can conclude that

XTW has an 0(1) cost of event-scheduling in theory and in practice.

2.4. The Efficiency of Rb-messages. In XTW, the rb-messages mech­

anism replaces the anti-message mechanism to "un-send" previously sent messages.

From our theoretical analysis, we know that the cost of anti-message is (il/am*log Nae)

and the cost of rb-messages is Nrm * logNpe(Chapter 2. page 30). From the IC struc­

ture, we know that ICPQ must be smaller than or equal to (in worst case) the input

queue, and far less than CLEQ. Thus log Npe must be smaller than log Nae. So if Nrm

is smaller than Mam, we can conclude that the rb-messages mechanism has a lower

42

2 EVENT SCHEDULING AND Rb COSTS

cost than the anti-messages mechanism. In this section, experiments are conducted

to compare the value of Mam and Nrm.

Ideally, we would like to compare the rb-messages mechanism with both the ag­

gressive and lazy cancellation anti-message mechanisms. However, the efficiency of

lazy-cancellation depends on a number of factors, including the partitioning algo­

rithm, the characteristics of the circuit, and the value of the input vectors. It is hard

to draw any conclusion when so many factors are at play. Thus we only show the

comparison of results between the rb-messages mechanism and the aggressive anti-

message mechanism. The term anti-messages refers to aggressive anti-messages in

rest of the section.

Since the anti-message mechanism uses one anti-message to cancel one previously

sent message, the number of anti-messages is equal to the number of canceled mes­

sages. Let Mam be the number of canceled messages(anti-messages) and let Ar
r6 be

the number of rb-messages. To quantify the differences between Mam and Nrm, we

define the following metric:

• rb-message efficiency(REFF) is defined as the ratio of the number of anti-

messages and the number of rb-messages. REFF also can be viewed as the

number of messages canceled by one rb-message.

REFF = Mam/Nrm

Figure 4.5 shows the REFF vs. the number of processors. Figure 4.6 shows

the REFF vs. the number of input vectors. Both Figure 4.5 and Figure 4.6 clearly

indicate that Xrm is smaller than Mam in all cases. In most cases. A'rm is several

times smaller than Mam- Although there are several high points for 3 processors due

to the characteristics of circuits and partitioning, we can see a general trend that

rb-message efficiency increases with the number of processors and vectors. It should

be noted that the number of rollbacks increases with the number of processors and

vectors. The larger the number of rollbacks, the more unstable Time Warp will be.

Fortunately, the rb-messages mechanism has a higher efficiency in the worse situation.

43

3 XTW VS. CTW

4 4.5 5
number of processors

5.5 6.5

FIGURE 4.5. rb-message efficiency vs. the number of processors(with 100 vectors)

Therefore, the rb-messages mechanism not only reduces parallel overheads, but also

tends to stabilize TW.

3. X T W vs. C T W

In this section, we present results comparing the performance of XTW and CTW7

[3] [46]. In our experiments, the LP-roll back mechanism is made use of in CTW.

We conducted experiments on various benchmark circuits. The results show that

CTW has the best performance on the circuit s90k - a combination benchmark circuit

which consists of two s38584 and two s38417 and has around 90,000 gates. In the

following, we present the XTW-CTW comparisons making use of s90k. To simplify

the comparison, the Event-lookahead and Bounded Time Window techniques are not

used in XTW in this section.

44

3 XTW VS. CTW

- e - S38584
- 0 - S38417
- * - S15850
- B - s5378
- l - S9234

100 200 300 400 500 600
number of vectors

700 800 900 1000

FIGURE 4.6. rb-message efficiency vs. the number of vectors (with 7 machines)

It should be noted that CTW uses PVM as the software communication platform.

There is a separate PVM process paired with each CTW process. The workload of

both PVM and CTW processes are automatically distributed by the operating system

across the two processors inside each machine. In actual experiments, we can observe

that the dual processors in each machine are used respectively for the PVM process

and the CTW process.

XTW uses MPI as the software communication platform and no separate com­

munication process is launched. In each machine, only one processor will be used by

XTW. To simplify the comparison, the number of machines used by CTW is referred

to as the number of processors used by CTW. Thus when CTW and XTW are com­

pared with the same number of processors, we should be aware that CTW uses an

extra processor to handle communications.

45

3 XTW VS. CTW

Since the memory usage of CTW does not count the memory consumed by a

PVM process, a peak memory usage comparison between CTW and XTW does not

make much sense and thus is not included in this thesis.

The following metrics are used for the performance comparison:

• Simulation Time: Simulation Time is defined as the elapsed real time for

the simulation. The average Simulation Time across the participating pro­

cessors is presented.

• Relative Speedup: Relative Speedup is defined as the ratio of the simulation

time of a simulator using 2 processors and the simulation time of the same

simulator using more than 2 processors.

• Throughput: Throughput is defined as the number of processed events per

second.

• Good-put: Good-put is defined as the number of committed processed events

per second.

• Committed Rate: Committed Rate is defined as the ratio of the Good-put

and the Throughput.

Both CTW and XTW use the same partitioning algorithm. The time to perform

the partitioning is not included in the simulation time. Since CTW crashes when

more than 4 processors are used in a simulation, all of the CTW results are presented

with up to 4 processors.

3.1 . "Sequential" Comparison. Both CTW and XTW7 use one processor

as a "manager node" which is not involved in the simulation and only handles data

collection and GVT computation. Thus when 2 processors are used, the simulation

is sequential - no rollback occurs. To identify which factors improve the simulator

itself, we first conduct experiments with XTW and CTW using only 2 processors.

Table 4.2 shows the results with XTW and CTW running on 2 processors. Due to

the different DFF gate clock mechanisms implemented in XTW and CTW, XTW has

twice as many events as CTW when the same number of vectors are used. However,

46

3 XTW VS. CTW

system
XTW
CTW
XTW
CTW

vectors

15
15
50
50

processors
2
2
2
2

simulation time
8.47
67.5
25.80
243.4

events
1221614
558878
3843441
2018970

throughput

144231.28
8279.67

148952.98
8294.86

TABLE 4.2. simulation time vs. number of processors

XTW finishes the simulation in a far shorter time. Table 4.2 shows that XTW is 8

times faster than CTW while XTW7 processes double the number of events that CTW

executes. XTW7 has an 18 times larger throughput than CTW. In this non-rollback

"sequentially" running environment, the dramatic performance improvement is due

to the following factors:

• the 0(1) event scheduling mechanism in XTW7 has a lower cost than CTW

• the rollback relaxation mechanism reduces the state saving cost

• XTW eliminates the overhead of saving output events in the output queue

In the next section, we study the performance of XTW7 in a parallel simulation

environment.

3.2. Simulation Time. Figure 4.7 shows the simulation time vs. the number

of processors. The results demonstrate that XTW outperforms CTW7 in all parallel

simulations with an)- number of processors.

3.3. Throughput, Good-put and Committed Rate. Figure 4.8 depicts

the throughput vs. the number of processors while Figure 4.9 depicts the good-

put vs. the number of processors. Figure 4.10 shows the committed rate vs. the

number of processors. Figure 4.8 and Figure 4.9 show that XTW7 has an almost

linear increase in both the throughput and the good-put, while CTW7 has a relatively

flat one. Figure 4.10 reveals the reason behind this phenomenon- XTW7 has a higher

committed event rate than CTW. Moreover, XTW has an almost flat reduction in

committed event rate1 when more processors are used, while CTW has a relatively

steep reduction in its committed event rate. These results indicate that XTW7 has a

more efficient rollback mechanism.

47

4 XTW VS. SEQUENTIAL SIMULATOR

250
Simulation Time vs. number of processors(circuit s90k)

200

8 150

<D
E
i-
c
o

1 100
E

<s>

- e - XTW(15 vectors)
- 0 - XTW(50 vectors)
- * - NTW(15 vectors)
- a - NTW(50 vectors)

4 4 5 5
number of processors

FIGURE 4.7. simulation time vs. number of processors

3.4. Relative Speedup. Figure 4.11 shows the relative speedup vs. the num­

ber of processors. It should be noted that the larger the throughput of a simulator,

the harder it is to obtain a good relative speedup. Although XTW has a much larger

throughput than CTW, the results indicate that XTW7 still has a larger relative

speedups than CTW in all the cases. Moreover, XTW has an almost linear increase

in relative speedup while CTW has a relative flat one. This clearly demonstrates that

XTW has a smaller overhead than CTW.

4. X T W vs. Sequential Simulator

In this section, several benchmark circuits are simulated by both XTW and a

sequential simulator. The purpose of these experiments is to compare the performance

between parallel and sequential simulations.

48

4 XTW VS. SEQUENTIAL SIMULATOR

x 10 Throughput vs. number ot processors(circuit s90k)

r 4

S> 3

I I I I I I

j£r

~

» 1 ¥ 1 f I I

1 I

- e - XTW(15 vectors)
- 0 - XTW(50 vectors)
- * - NTW(15 vectors)
- B - NTW(50 vectors)

i

i ,

-

i

2.5 3 5 4 4.5 5
number of processors

5 5 6 5

x 10

FIGURE 4.8. throughput vs. number of processors

Goodput vs. number of processors(circuit s90k)

4 4.5 5
number ol processors

FIGURE 4.9. good-put vs. number of processors

49

4 XTW VS. SEQUENTIAL SIMULATOR

0 95

085

3 08
E

I 0.75

a 0.7

°- 0 65

Ob

0.55

0 5

Percentage of committed events vs. number of processors(circuit s90k)

- e - XTW(15 vectors)
- 0 - XTW(50 vectors)
- * - NTW(15 vectors)
- B - NTW(50 vectors)

2.5 35 4 4.5 5
number of processors

5.5 6 5

FIGURE 4.10. committed events rate vs. number of processors

Speedup vs number ot processors(circuit s90k)

4 4.5 5
number of processors

FIGURE 4.11. relative speedup vs. number of processors

50

4 XTW VS. SEQUENTIAL SIMULATOR

4.1. The Sequential Simulator. The sequential simulator actually is a

sequential version of XTW which implements exactly same event-scheduling and logic

simulation algorithms as parallel XTW7. All parallel simulation related mechanisms

are removed, including message checking, GVT computing and bounded time window

etc. However, the event-lookahead optimization technique is kept. We call the XTW

sequential simulator XSS and call the XTW7 parallel simulator XTW. XSS simulations

are processed on one of the cluster PCs with a single processor. To simplify the

comparisons between the parallel and sequential approaches, no extra optimizations

are implemented in the sequential simulator.

4.2. Benchmark Circuits and Metrics. Three benchmark circuits were

used in the experiments. They are as follows:

• s.38584 circuit with a total of 20996 gates

• sl80k consisted of four s.38584 and four s38417 circuits with a total around

180,000 gates

• s360k consisted of eight s38584 and eight s38417 circuits with a total around

360,000 gates

The metrics are defined as follows:

• max simulation time is defined as the maximum elapsed real time across

the participating processors for each simulation. The partitioning time is

included in max simulation time.

• peak memory usage is defined as the maximum peak memory usage across

the participating processors for each simulation.

• absolute speedup is defined as the ratio of the sequential simulation time to

the max simulation time for a parallel execution. Since XTW needs at least

3 processors to run parallel simulations, the absolute speedups are presented

with 3 or more processors.

4.3. XTW Implementation Parallel Overhead. Since XTW7 uses one

processor as a "manager" node, the results for XTW7 with 2 processors can be viewed

51

4 XTW VS. SEQUENTIAL SIMULATOR

as XTW runs sequentially. To avoid confusion, we call the sequential simulations

pure-sequential simulations; the simulations conducted by XTW with 2 processors as

parallel-sequential simulations. In parallel-sequential simulations, the good-put is the

same as throughput.

system

Seq.
XTW 7

Seq.
XTW
Seq.

XTW
Seq.

XTW
Seq.

XTW
Seq.
XTW 7

circuit

s38584

S385S4

s385S4

s38584

sl80k

sl80k

sl80k

sl80k

s360k

s360k

s360k

s360k

vectors

50
50
100
100
50
50
100
100
50
50
100
100

max sim. time

28.31

35.32

55.08

69.41

228.24

290.97

443.91

569.59

602.13

617.28

987.67

1206.92

throughput

171206

136625

175431

138951

167977

131709

172606

134512

127290

124225

155157

126990

IPO

20.20%

20.79%

21.59%

22.07%

2.41%

18.15CX

peak mem.(k)

15608

70708

18000

70580

111400

136804

122924

137836

206336

203284

209152

209932

TABLE 4.3. pure sequential vs. parallel "sequentia

Table 4.3 shows the results of the three benchmark circuits simulated in pure-

sequential simulations and parallel-sequential simulations. It is easy to see that there

are performance differences between the two kinds of "sequentiaF simulations. Since

there is no run-time communication and rollback overhead in parallel-sequential sim­

ulations, the only possible reason for these differences is the overhead of the extra

parallel algorithm code that is implemented in the parallel simulator. We call the

overhead which is caused by the parallel implementation the "implementation paral­

lel overheads" (IPO).

Let STP be the throughput of a pure-sequential simulation and PSTP be the

throughput of a parallel-sequential simulation.

The implementation parallel overheads (IPO) is quantified by:

IPO = {STP - PSTP)/STP

52

4 XTW VS. SEQUENTIAL SIMULATOR

Table 4.3 shows that there is approximately a 20%, IPO for XTW when s38584

and sl80k circuits are simulated with both 50 and 100 vectors. However, when s360k

is simulated with 50 vectors, there is only a 2.41% IPO for XTW. Through a detailed

trace analysis, we found that this low overhead was due to the large number of gates

in the s360k circuit causing XSS to swap memory in order to complete the simulation.

The extra cost of swapping dominates the 50 vector s360k simulations, hence the IPO

is relatively small in this case. This analysis is confirmed by the results for s360k with

100 vectors. Since the peak memory usage of simulations for s360k with 50 vectors and

100 vectors are almost the same, the memory swapping cost is also almost the same

in both 50 and 100 vectors simulation. When s360k is simulated with 100 vectors the

memory swapping cost becomes a smaller portion of the overall simulation cost. The

XTW IPO is 18% .

1000.

900

800

_ 700

ffl 60'

500

E 400

300

200

100

number ot processors

FIGURE 4.12. max simulation time vs. number of processors

4.4. Max Simulation Time, Absolute Speedup and Good-put. Fig­

ure 4.12 shows the max simulation time vs. the number of processors. In Figure 4.12.

53

4 XTW VS. SEQUENTIAL SIMULATOR

we can clearly see a trend that the max simulation time decreases as the number of

processors increases. Moreover, this trend is enhanced as the size of circuit and the

number of vectors are increased (e.g. simulations for sl80k and s360k). However,

the max simulation time of simulations for s38584, which is a relatively small circuit,

only decreases slightly as the number of processors increases and has a bump at the

point of 4 processors due to the unbalanced load across processors. It should be

noted that the max simulation time of simulations for s360k circuit decreases steeply

from one processor to three and more processors due to the swap-memory used in the

sequential simulations.

5

number of processors

FIGURE 4.13. absolute speedup vs. number of processors

Figure 4.13 and Figure 4.14 present respectively the absolute speedup and the

good-put vs. the number of processors for three benchmark circuits simulated with

50 vectors and 100 vectors. In both figures, there is a general trend of increasing

speedups and good-puts with an increasing number of processors, circuit size and

number of vectors. A slight drop of absolute speedup in s38584 with 4 processors is

due to the unbalanced loads assigned across the processors. The trends in Figure 4.12,

54

4 XTW VS. SEQUENTIAL SIMULATOR

x 10

number of processors

FIGURE 4.14. good-put vs. number of processors

Figure 4.13 and Figure 4.14 all clearly indicate that XTW7 is scalable and is capable

of simulating large circuits.

4.5. Peak Memory Usage. Figure 4.15 presents the peak memory usage

vs. the number of processors. As we can see, the size of circuit dominates the peak

memory usage - the larger the circuit size, the larger the peak memory usage. The

results also indicate that the peak memory usage only increases a small amount with

an increase in the number of vectors.

To quantify parallel peak memory usage, we consider the following metric: Peak

memory usage ratio(PMUR) is defined as the ratio of the peak memory usage of a

parallel simulation to that of a sequential simulation. Let PPMU be the amount of

parallel peak memorv usage and SPMU be the amount of sequential peak memory

usage.

PMUR = PPMU I SPMU

55

4 XTW VS. SEQUENTIAL SIMULATOR

Figure 4.16 shows the peak memory usage ratio vs. the number of processors for all

three circuit benchmarks. In Figure 4.16, we can clearly see that the peak memory

usage ratio drops dramatically as the size of the circuit increases. When a small

circuit is simulated, such as s.38584, the peak memory usage ratio is larger than 1 -

A'TJF uses more memory than A\S".S'. However, as the size of a circuit reaches a certain

number, the peak memory usage ratio becomes less than 1 XTW uses less memory

than XSS.

Figure 4.17 displays the results of the peak memory usage ratio for the two large

circuits slSOk and s360k. In Figure 4.17, although there are some increases due

to unbalanced loads across the processors, we can clearly see a general trend of de­

creasing peak memory usage ratios with an increase in the number of processors for

all simulations. This trend indicates that XTW is capable of simulating large cir­

cuits that XSS is not capable of simulating because of insufficient memory in a single

machine.

x 10

number ol processors

FIGURE 4.15. peak memory usage vs. number of processors

56

4 XTW VS. SEQUENTIAL SIMULATOR

number ol processors

FIGURE 4.1G. peak memory usage ratios, number of processors

s180k(50 vectors)
s360k(50 vectors)
s180k(100 vectors)
s360k(100 vectors)

number ol processors

FIGURE 4.17. peak memory usage ratio vs. number of processors(sl80k and s360k)

57

4 XTW VS. SEQUENTIAL SIMULATOR

4.6. Overall Parallel Overheads and Parallel Efficiency. In section 4.3,

we describe how much implementation parallel overhead exists in XTW. In this sec­

tion, we present results which indicate the size of the XTW7 overall parallel overhead.

The overall parallel overhead includes the implementation parallel overhead, run-time

communication and rollback overheads. The parallel efficiency is also presented here.

We define the pure_sequentiaLthroughput(PST) as the throughput of the sequen­

tial simulator.

We define the average_uniprocessor_paraIleLgood-put(AUPG) as the overall good-

put of a parallel simulation divided by the number of processors used in the simulation.

The overall parallel overhead(OPO) is quantified as follows:

OPO = {PST - AUPG)/PST

The parallel efficiency(PE) is defined as the ratio of the good-put of a single

processor in a parallel simulation and the throughput in a sequential simulation. The

parallel efficiency(PE) is quantified as follows:

PE = AUPG/PST

Figure 4.18 shows the overall parallel overhead vs. the number of processors for

all three benchmark circuits with 50 and 100 vectors. In Figure 4.18, we can see

that the overall parallel overhead decreases as the size of circuits and the number of

vectors increases. Nevertheless, the overall parallel overhead increases as the number

of processors increases.

Figure 4.19 shows the parallel efficiency vs. the number of processors for all three

benchmark circuits with 50 and 100 vectors. The results indicate that the parallel

efficiency increases with the circuit size and the number of vectors, and decreases

with the number of processors. It should be noted that XTW has a parallel efficiency

as high as 60% to 80% in an ultra-low granularity computing environment(e.g. the

sequential simulator has a 167977-172606 events/sec throughput for the sl80k circuit

58

4 XTW VS. SEQUENTIAL SIMULATOR

number of processors

FIGURE 4.18. overall parallel overheads vs. the number of processors

number ot processors

FIGURE 4.19. parallel efficiency vs. the number of processors

59

5 THE MILLION-GATES LOGIC SIMULATION

simulation). When the sequential simulator starts to use swap-memory, the parallel

efficiencies soar to 90%) and more at several points.

Figure 4.12, Figure 4.18 and Figure 4.19 all underline the fact that simply in­

creasing the number of processors will not shorten the simulation time or improve

the simulation performance. Instead the blindly added processors may hurt the over­

all simulation performance, increase overheads and decrease the efficiency of each

processor.

5. The Million-Gates Logic Simulation

In section 4, we can see that the performance of the sequential simulator decreases

dramatically when the size of circuits reaches a certain number, because the sequential

simulator has to use swap-memory to complete the simulation (e.g. simulations with

s360k). When the size of the benchmark circuit is increased to 500,000 gates, the

performance of the sequential simulator is decreased so dramatically that it runs

for hours and can not complete the simulation. However, XTW7 does not show a

performance degradation when 3 or more processors are used. When the size of the

benchmark circuit is increased to 1 million gates, the sequential simulator simply runs

out of memory and halts. XTWT can successfully complete the simulation with 6 or

more processors. In the following we present the results of the 500K and 1 million

gates benchmark circuits simulated by XTW. The benchmark circuits are as follows:

• s500k is consists of eighteen s38584 circuits and five s38417 circuits for a

total of around 500,000 gates

• slOOOk is consists of thirty-six s38584 circuits and ten s38417 circuits for a

total of around 1,000,000 gates

Figure 4.20 shows the max simulation time vs. the number of processors for the

s500k and slOOOk benchmark circuits simulated with 10, 50 and 100 vectors. We

can see that a general trend is the same as the one in figure 4.12 - simulation time

decreases as the number of processors increases. This trend is enhanced as the size

of circuit and the number of vectors are increased.

60

5 THE MILLION-GATES LOGIC SIMULATION

1400

1200

1000

*• 800

600

400

200 -

4.5 5 5.5
number of processors

FIGURE 4.20. max simulation time vs. the number of processors

x 10

4.5 5 55
number of processors

FIGURE 4.21. good-put vs. the number of processors

61

5 THE MILLION-GATES LOGIC SIMULATION

Figure 4.21 shows the good-put vs. the number of processors for the s500k and

slOOOk benchmark circuits simulated with 10, 50 and 100 vectors. The results clearly

show a trend of increasing good-puts with an increase in the number of processors.

Nevertheless, simulations of the slOOOk circuit exhibits a smaller good-put than the

ones of the s500k circuit as a consequence of swapping in slOOOk simulations.

Both Figure 4.20 and Figure 4.21 show that XTW can improve the performance

for large circuits simulations for which the sequential simulator's performance is non­

existent. XTW can complete the ultra-large circuits simulations for which the se­

quential simulator is unable to do.

62

1 CONCLUSIONS

C H A P T E R 5

Conclusion and Future Work

1. Conclusions

In this thesis, a new parallel synchronization mechanism XTW is presented which

reduces much of the overhead implicit in optimistic synchronization. XTW is designed

in such a way that it

• reduces event scheduling cost by creating the XEQ structure

• reduces rollback and message cancellation cost by creating the rb-messages

mechanism

• reduces event saving cost by eliminating the output queue

• reduces overall number of events by applying the event-lookahead mecha­

nism

• reduces state saving by embedding the rollback relaxation mechanism

• reduces memory usage and stabilizes the Time Warp system by embedding

the Bounded Time Window mechanism

The cost of XTW7 algorithms are analyzed in theory and confirmed via experiments

which make use of a number of benchmark circuits. Based on XTW, an object-

oriented parallel logic simulation framework, XTWFM, was created. In XTWFM, a

new virtual external LP structure is used to reduce the memory usage. Empirical

results show that XTWFM has good scalability and can simulate ultra-large size

circuits. A million-gate benchmark circuit is simulated by XTWFM over a cluster of

63

2 FUTURE WORK

6 PCs. Each PC only can simulate less than 500k-gafes circuits making use of the

sequential simulator.

2. Future Work

From previous research and our own results, we can see the fact that both sequen­

tial and parallel logic simulators have their own niches. Depending on the character­

istics of the circuit the underlying hardware infrastructure and simulation algorithms,

either a sequential or a parallel simulator can have a better performance and be more

cost-effective for specific circuit design. With the advent of on-demanding computing,

it is desirable and feasible to dynamically pool the most cost-effective resources for

a specific computing task. Thus an interesting future research direction could be to

develop an intelligent logic simulation engine which can decide upon the algorithms(e.

g. either sequential or parallel) and the hardware infrastructure^.g. either a single

high performance workstation or a cluster of workstations) to be used for a specific

circuit simulation and to dynamically pool the most cost-effective resources from an

available computing grid.

64

REFERENCES

REFERENCES

[1] The zycad logic evaluator: Product description, zycad corp. 1983.

[2] CAD for VLSI. Van Nostrand Remhold(UK), 1985.

[3] Herve Avril. Clustered Time Warp and Logic Simulation. PhD thesis, McGill

Unversity, 1996.

[4] S. Bellenot. Global virtual time algorithms. In Proceedings of the Multiconfer-

ence on distributed simulation, pages 122-127, 1990.

[5] W.D. Billowitch. Helping designers share vhdl models. IEEE Spectrum, 1993.

[6] A. Boukerche and C. Tropper. A distributed graph algorithm for the detection

of local cycles and knots. Parallel and Distributed Systems. IEEE Transactions.

9(8):748-757, Aug. 1998.

[7] R. Brown. Calendar queues: a fast 0(1) priority queue implementation for the

simulation event set problem. Communications of the ACM, 31, October 1988.

[8] R.E. Bryant. Simulations of packet communication architecture computer sys­

tems. Technical Report Technical Report 188, MIT, LCSi, 1977.

[9] W. Cai and S.J. Turner. An algorithm for distributed discrete-event simulation

- the 'carrier null message' approach. Proceedings of the SCS Multiconference

on Distributed Simulation, 22(l):3-8, Jan. 1990.

[101 carl Tropper. Parallel discrete event simulation-applications. Journal of Par­

allel and Distributed Computing, 62(3), March 2002.

65

REFERENCES

[11] Roger D. Chamberlain. Parallel logic simulation of VLSI systems. In Design

Automation Conference, pages 139-143, 1995.

[12] A.I. Conception and S.G. Kelly. Computing global virtual time using the multi-

levle token passing algorithm. Proceedings of the 15th Workshop on Parallel

and Distributed Simulation, pages 63-68, 1991.

[13] M.M. Denneau. The yorktown simulation engine. In Proc. of the 19th

ACM/IEEE DA conference, pages 55-59, 1983.

[14] L.M. D'Souza X. Fan and P.A. Wilsey. pgvt: an algorithm for accurate gvt

estimation. Proceedings of the 11th Workshop on Parallel and Distributed Sim­

ulation, pages 102-109, 1994.

[15] A. Ferscha and S.K. Tripathi. Parallel and distributed simulation of discrete

event systems. Technical Report CS-TR-3336, University of Maryland, 1994.

[16] Richard M. Fujimoto. Parallel and Distributed Simulation Systems. Wilsey,

2000.

[17] Avril H. and Tropper C. On rolling back and checkpointing in time warp.

Parallel and Distributed Systems, 12:1105-1121, NOV 2001.

[18] Avril H. and Tropper C. The dynamic load balancing of clustered time warp

for logic simulation. In Parallel and Distributed Simulation, pages 20-27, 96.

[19] D. Jefferson and H. Sowizral. Fast concurrent simulation using the time warp

mechanism, part ii: Global control. Technical Report TR-83-204, Rand Cor­

poration, 1983.

[20] D.R. Jefferson. Virtual time. Programming Languages and Systems, 1985.

[21] J.V. Briner Jr. Parallel Mixed-Level Simulation of Digital Circuits Using Vir­

tual Time. PhD thesis, Duke University, 1990.

[22] J. Misra K. Chandy. Distributed simulation: A case study in design and veri­

fication of distributed programs. IEEE Trans. Software Eng., Sep. 1979.

[23] Hong Kvu Kim. Parallel logic simulation of digital circuits.

66

REFERENCES

[24] K.M.Chandy and J. Misra. Asynchronous distributed simulation via a se­

quence of parallel computation. Communications ACM. 24(ll):198-206, 1981.

[25] L.M. Haas K.M.Chandy, J. Misra. Distributed deadlock detection. A CM

Transactions On Computer Systems, 1(2):144 156, May 1983.

[26] Y.B. Lin and E. Lazowska. Determining the global virtual time in distributed

simulation. Technical Report TR-83-204. University of Washington. 1989.

[27] Y.B. Lin and E. D. Lazowska. The optimal checkpoint interval in time warp

parallel simulation. Technical Report Tech. Rep. 89-09-04, University of Wash­

ington, Seattle, Washington, Sep 1989.

[28] B.D. Lubachevsky. Bounded lag distributed discrete event simulation. Proceed­

ing of the SCS Multiconference on Distributed Simulation, 19(3): 183-191, Feb.

1988.

[29] F. Mattern. Algorithms for distributed termination detection. Distributed

Computing, 2:161-175, 1987.

[30] F. Mattern. Efficient algorithms for distributed snapshots and global virtual

time approximation. Journal of Parallel and Distributed Computing, pages

423-434, 1993.

[31] Y.H. Levendel P.R. Menon and S. H. Patel. Special purpose computer for

logic simulation using distributed processing. Bell System Technical Journal.

61(10):2873-2909, Dec. 1982.

[32] J. Misra. "distributed discrete event simulation". ACM Computing Surveys.

18:39-65, March 1986.

[33] D.M. Nicol. Parallel discrete-event simulation of fcfs stochastic queueing net­

works. Proceedings of the ACM/SIGPLAN APPEALS, pages 124-137. 1988.

[34] A. Palaniswamy and P.A. Wilsey. An analytical comparison of periodic check­

pointing and incremental state saving. In 1th Workshop on Parallel and Dis­

tributed Simulation, pages 127-139, May 1993.

REFERENCES

[35] Avinash C. Palaniswamy. Dynamic Parameter Adjustment to Speedup Time

Warp Simulation. PhD thesis, University of Cincinnati, 1994.

[36] P.A.; Palaniswamy, A.C.; Wilsey. Adaptive bounded time windows in an op­

timistically synchronized simulator. VLSI, 1993. Design Automation of High

Performance VLSI Systems, Proceedings, 1993.

[37] M.A. Riepe J.P. Silva K.A. Sakallah and R.B. Brown. Ravel-xl: A hardware ac­

celerator for assigned-delay compiled-code logic gate simulation. IEEE Trans­

actions on Very Large Scale Integrating Systems, 4(1):113—129, 1996.

[38] B. Samadi. Distributed simulation, algorithms and performance analysis. PhD

thesis, University of California, Los Angeles, 1985.

[39] J.S. Steinman. Breathing time warp. 7th Workshop on Parallel and Distributed

Simulation, pages 109-118, May 1993.

[40] D.E. Martin R.Radhakrishnan D.M.Rao M. Chetlur K. Subramani and P.A.

Wilsey. Analysis and simulation of mixed-technology vlsi systems. Journal of

Parallel and Distributed Computing, 62(3):468-493, 2002.

[41] S.J. Turner and M.Q. XU. Performance evaluation of the bounded time warp

algorithm. 6th Workshop on Parallel and Distributed Simulation, pages 117-

126, 1992.

[42] D. West. Optimizing time warp: Lazy rollback and lazy re-evaluation. Master's

thesis, University of Calgary, Calgary, Alberta, 1988.

[43] P. Wilsey and A. Palaniswamy. Rollback relaxation: A technique for reducing

rollback costs in an optimistically synchronized simulation, 1994.

[44] D.S. Scott W.L. Bain. An algorithm for time synchronization in distributed

discrete event simulation. In Proceedings of the SCS Multiconference on Dis­

tributed Simulation, volume 19, pages 30-33, 1988.

[45] Chen Yu-an, Jha Vikas, and Bagrodia Rajive. Parallel switch-level simulation

of VLSI circuits. Technical Report 950020, 12, 1995.

68

REFERENCES

[46] Jing Lei Zhang. The dependence list in time warp. Master's thesis, McGill

University, Montreal, Quebec, 2000.

69

