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ABSTRACT 

ABSTRACT 

In this thesis, a new parallel synchronization mechanism, XTW, is proposed. XTW 

is designed for the parallel simulation of large logic circuits on a cluster of computer 

workstations. In XTW, a new event queue structure, XEQ, is created in order to 

reduce the cost of event-scheduling; a new message "un-sending" mechanism, "rb-

messages", is proposed to reduce the cost of uun-sending" previously sent messages. 

Both theoretical analysis and actual simulations provide evidence that XTW speeds 

up parallel logic simulations and provides excellent scalability versus the number of 

processors and the circuit size. An object-oriented parallel logic simulation software 

framework, XTWFM, is built upon the base of the XTW mechanism. A million-

gates circuit, which can not be simulated by our sequential simulator, is successfully 

simulated by XTWFM over a cluster of 6 "small" PCs. This success demonstrates that 

a cluster of PCs is an attractive low-cost alternative for large scale circuit simulation. 

n 



RESUME 

RESUME 

Dans cette these, on propose un nouveau mecanisme parallele de synchronisation. 

XTW. XTW est concu pour la simulation parallele de grands circuits logiques sur 

un faisceau des stations de travail d'ordinateur. Dans XTW, une nouvelle structure 

de file d'attente d'evenement, XEQ, est creee afin de reduire le cout d'evenement-

programme; un nouveau mecanisme de message non-envoi, rb-messages, est propose 

pour reduire le cout de non-envoi Its messages precedemment envoyes . L 'analyse 

theorique et les simulations reelles fournissent Vevidence de que XTW accelere des 

simulations paralleles logiques et fournit Vexcellent scalability (contre le nombre de 

processeurs et la taille de circuit). Une structure du logiciel de objective-oriente par­

allele logique simulation. XTWFM. est etablie sur la base du mecanisme de XTW. 

Un million-portes circuit, qui ne peut pas etre simule par le simulateur sequentiel, est 

simule par XTWFM avec succes sur un faisceau de 6 petits PCs. Ce succes demontre 

qu'un faisceau des PCs bon marche peut etre une alternative peu couteuse attrayante 

pour des simulations de circuit a grande echelle. 

in 
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CHAPTER 1. INTRODUCTION 

CHAPTER 1 

Introduction 

In the competitive arena of VLSI systems design, high performance computer sim­

ulation is indispensable. Simulation execution time of VLSI circuits is proportional 

to both the size of the circuit and the number of test patterns. Test patterns are 

themselves proportional to the size of the circuit; consequently the total simulation 

time is proportional to the square of the circuit size. During the last 20 years, the 

size of circuits has increased as the Moore's law predicted -the transistor density 

on integrated circuits doubles every couple of years. The result is that one circuit 

can consist of millions of components and its simulation can easily take hours, days, 

or even weeks. Even though special purpose hardware can be used to accelerate 

simulations[13][37][31][l], they are not flexible and are extremely expansive. Hence 

there exists a need for faster, more flexible and scalable distributed logic software 

simulators which can run on general-purpose architectures. 

The research community has contributed considerable effort investigating the 

use of parallel processing to accelerate logic simulation. A great deal of effort has 

been expended on parallel discrete-event simulation(PDES) techniques for parallel 

computers and for clusters of PCs (see the Workshop on Parallel and Distributed 

Simulation ). An excellent survey of this work may be found in [10]. 

The main purpose of this research is to shorten the circuit simulation time via a 

new PDES protocol and build a robust software simulation engine that can simulate 



1 LOGIC SIMULATION 

ultra-large circuits(over a million gates), something which cannot to be accomplished 

by sequential simulators running on a single processor. 

1. Logic Simulation 

During the VLSI design process, VLSI systems are frequently simulated across a 

wide variety of abstraction levels, from continuous models at the circuit level to block-

structured models at the behavioral level. There are 8 major levels of simulations used 

in the design process[2]: 

• behavioral level: at this level, a model of the circuit is created to charac­

terize the behavior of a circuit regardless of its internal structure. 

• register transfer level: this level deals with registers, I/O, ALU, buses, etc. 

• functional level: this level deals with systems specified in terms of major 

building blocks and their interconnection. 

• gate level: only discrete logic levels are used in a gate level simulator whose 

purpose is to validate the logical behavior of the circuit. 

• switch level: in a switch level simulator, MOS transistors are modeled as 

a voltage controlled switch. The advantage of modeling a group of MOS 

transistors rather than a simple logic gate is that MOS devices have a 

bilateral switching characteristic which allows them to perform complex 

logic functions when grouped together. 

• timing level: timing simulators are similar to circuit level simulators except 

for the fact that they use simpler models and relaxed simulation meth­

ods. Therefore, the designer can simulate circuits faster with an accuracy 

comparable to circuit level simulators. 

• circuit level: this level is usually the lowest level of abstraction in which 

the circuit designer checks the different electrical characteristics of a group 

of transistors which are generally a small subset of the entire circuit. 

2 
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• device level: at this level, various aspects of the fabrication process on 

device parameters are examined. The design is usually not involved at this 

stage. 

Only discrete-event simulations are considered in this thesis and only gate-level 

simulations are conducted in our experiments. In gate-level logic simulation, a circuit 

contains a set of logic gates such as NOT, AND. OR, XAXD, NOR, XOR, XXOR 

gates and flip-flops. Gate-level logic simulation is an example of a low-granularity 

application which is very challenging for parallel processing. Hereafter, the term logic 

simulation implies discrete-event simulation. 

There are a number of ways in which parallelism can be exploited in order to 

improve the performance of logic simulation[ll][21]. 

• Algorithm parallelism The simulator is decomposed into a series of func­

tional units which are then mapped onto different processors. Pipeline 

techniques are used to accelerate the simulation. Because there are a lim­

ited number of functional units, only a limited amount of parallelism is 

available using this technique. 

• Data parallelism Multiple processors perform the same simulation, but with 

different input vectors. This technique is effective when a large number of 

distinct input vectors need to be simulated, such as in fault simulation. 

• Model parallelism A VLSI circuit is partitioned and mapped to different 

processors in order to perform functional evaluation for distinct logic ele­

ments. The advantages of this technique are twofold. First, it can accelerate 

the design verification in which the goal is to minimize the completion time 

of an individual input vector. Second, it can solve the problem of large sim­

ulation models that cannot fit on a single processor due to limited system 

resources (e.g., memory resources). 

This thesis concentrates on exploiting the techniques for model parallelism. 
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2. Parallel Logic Simulation Algorithms 

In parallel logic simulation, individual gates are typically considered to be atomic 

elements, and are modeled as a Logical Pro<<s.s{LP). It is also possible for more than 

one gate to be combined into a single LP. LPs interact via exchanging timestamped 

events (messages) through communication channels, which model the circuit connec­

tivity of the VLSI systems. ("Messages" and "events" are not distinguished in the 

rest of the thesis.) In PDES, system state variables are modeled as discrete-valued 

quantities which change their value at discrete instants in simulated time. This sim­

ulated time is often referred as Virtual Time. In logic simulation, the state variables 

typically represent signal levels on wires that connect the circuit elements. In the sim­

plest two-valued logic simulations, state variables are constrained to two quantities 

representing Boolean values(i.e., 0 or 1). Most modern logic simulators use multi­

valued variables to represent additional information. For example, many switch-level 

simulators add an X state to represent unknown or floating signals, and gate-level 

simulators add states to represent drive strength and high impedance conditions. The 

IEEE standard logic system for VHDL simulation uses a 9-valued logic[5]. A change 

in the output of an LP(e.g., a 0 to 1 transition at a gate output) is communicated to 

the fanout LPs by delivering a time stamped message to each fanout LP. 

In PDES, the simulation is correct if each LP processes its events in chronological 

order of their timestamps. This is known as the causality constraint. To insure the 

causality constraint in PDES, a synchronization algorithm must be engaged in order 

to coordinate all of the processes. This extra synchronization cost is the major source 

of overhead compared to sequential simulations. Therefore, the central problem of 

parallel simulation is the development of synchronization algorithm with minimal 

overhead. Synchronization overhead can result in increased memory demands and in 

increased execution time. 



3 PARALLEL SYNCHRONIZATION ALGORITHMS 

3. Parallel Synchronization Algorithms 

Two primary approaches to synchronization algorithms have been developed, the 

conservatiue[22][8] and the optimistic[20] classes of algorithms. 

3.1. Conservative Synchronization Algorithms. The conservative ap­

proaches are the earliest known synchronization strategies for Parallel Discrete Event 

Simulation!PDES). A survey of these mechanisms can be found in [32]. The under­

lying principle of the conservative approach is that only safe events can be processed. 

An event el with time-stamp tl is a safe event if it can be guaranteed that the 

process will not receive another event with a time-stamp less than tl. Processes con­

taining no safe events must block, resulting in an increased execution time as well as 

the possibility- of deadlocks. In a deadlock, several LPs wait for each other for further 

causality information. Consider a simple situation in Figure 1.1, in which there are 

two LPs: LPi and LP2- The LVT of LP\ is 5. The LVT or local virtual time is the 

current simulation progress of an LP, and is equal to the virtual time of the currently 

processed event. It will advance to the time of next event to be processed. LP{s next 

minimum event time in its internal event queue is 7. and its input queue from LP2 is 

empty. It is waiting for causality information from LP2 so that it can safely process 

the events in its input queue. LP2's LVT is 6; its next minimum event time in its 

internal event queue is 8; its input queue from LP\ is empty. It is also waiting for 

causality information from LP\ in order to proceed with its event processing. This 

is a deadlock situation-the two LPs do not know they are waiting for each other and 

the simulation will never resume. 

A number of deadlock avoidance and deadlock detection and recovery methods 

have been developed[24][25][29][44][6]. A prime example of deadlock avoidance tech­

niques is the null message mechanism [22], which uses a special message type that 

has a time-stamp but no content (a null message) [32]. Whenever an LP receives a 

message, it must send a message on each of its outputs. If the simulation does not 

require a regular message to be output on a channel, a null message is sent in its 

5 



3 PARALLEL SYNCHRONIZATION ALGORITHMS 
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FIGURE 1.1. An Example of the Deadlock Situation in the Conservative Protocol 

place. When a non-zero lookahead value exists, and each null-message contains its 

time-stamp plus lookahead, this algorithm can eliminate deadlock. This algorithm 

relies on a quantity called lookahead, defined in [16] below: 

Lookahead. If a logical process at simulation time T can only 

schedule new events with time stamp of at least T+L. the L is 

referred to as the lookahead for the logical process. 

The drawback of the null-message algorithm is that it may substantially increase 

the total number of messages required to execute the simulation. 

Two other well know examples of deadlock avoidance algorithms are the Carrier 

Null Message algorithm and Conservative Time Windows. The Carrier Null Message 

Protocol attaches some lookahead information to the null message, thereby speeding 

up the simulation[9]. Conservative Time Windows allows events to be processed 

concurrently within a given time window. [33][28] 

Deadlock detection and breaking algorithms make use of algorithms for knot de­

tection in order to detect a deadlock and may use distributed leader elector algorithms 

to break deadlocks.[6] 

Conservative algorithms are generally easier to implement than optimistic al­

gorithms and require less memory to run. There is no overhead associated with 

causality correction and memory recover)'. However, it is hard to maximize the ex­

ploitation of event parallelism. This is because conservative algorithms are generally 

too pessimistic about an event's concurrence. Hence an LP either has to wait, or to 

(i 
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acquire a large amount of causality information in order to ensure safety of simula­

tion. Deadlocks may occur if LPs wait for each other's information, and recovering 

from a deadlock is an expensive operation. 

3.2. Optimistic Synchronization Algorithms. Optimistic mechanisms do 

not block unsafe events in order to avoid causality errors; instead they detect and 

recover from such errors. This approach allows the mechanism to exploit to the 

maximum extent possible the parallelism which is available in the model. 

The prime example of an optimistic approach is the Tune Warp(TW) mechanism, 

which is an implementation of the I'irtual Tunc synchronization paradigm described 

by Jefferson in [20]. In a Time Warp architecture, an LP has an input queue to hold 

newly arriving events and processed events, an output queue to store a copy of output 

events, a state list to store past states, and an event heap to store the events pending 

to be processed. 

In TW. events are processed optimistically without blocking. All events are 

assumed to be safe events. The processing of an event involves the following: 

(i) the event is retrieved from the event heap, it is processed based on the 

current state, a copy of that event is saved in the input queue, 

(ii) newly generated internal events are scheduled in the event heap and the 

newly generated external events are sent to other LPs, 

(iii) a copy of those output events are saved in the output event queue, 

(iv) a copy of the original states are saved in the state-list. 

All of the logging actions in the above operations is to make it possible to undo the 

processing of an event in case of causally errors. 

When an LP receives an event message whose time-stamp is smaller than the 

current LVT of the LP, a causality error occurs. This event is called a straggler. To 

recover from the causality error, the LP has to "undo" all the incorrect computing 

by rolling back. The process of rolling back consists of the following steps: 

(i) restore state variables to a correct value prior to the causality error 
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(ii) re-schedule processed events whose time-stamp is larger than that of the 

straggler back into the input queue in order to be re-processed 

(iii) "un-send" previously sent messages whose time-stamp is larger than that 

of the straggler 

Since all of the previous states and events are saved, to restore state variables 

and re-schedule processed events is straightforward. 

To "un-send" previously sent messages, the anti-messages mechanism is em­

ployed. An anti-message is actually a negative output event which is sent to the 

same destination LP as its counterpart positive output event was sent. When an LP 

receives an anti-message, there are three cases which need to be considered: 

(i) The positive event is still in the event heap. In this case, the event heap is 

searched in order to locate the positive event It is then annihilated by the 

anti-message, 

(ii) The positive event is processed. In this case, the LP has to be rolled 

back to a virtual time which is less then or equal to the timestamp of 

the anti-message. Then the corresponding positive event is annihilated. 

The rolled back LP may generate additional anti-messages, which may in 

turn cause additional rollbacks (and the sending of anti-messages) to other 

LPs. Recursively applying this "roll back, send anti-message" procedure 

will eventually erase all incorrect computations resulting from the original, 

incorrect message send, 

(iii) The positive event has not arrived. This case only happens when the com­

munication system is not guaranteed to be FIFO. In this case, the anti-

message is inserted into the event heap. When the positive event arrives, 

it will be annihilated accordingly. 

Because an LP is subject to rollbacks, its' LVT value may drop back to a previous 

virtual time. There is, however, always a virtual time such that an LP may not be 

rolled back prior to it. It is called Global Virtual Time(GVT). The GVT value is 

equal to the minimum of (1) the LVT values of all LPs, and (2) the minimum time 
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of all of the events which were sent but not yet been processed (known as transient 

messages). One of the reasons for computing the GVT value during a simulation 

is to reclaim memory. Since rollbacks can never cause the simulation to return to 

a virtual time which is smaller then the GVT, any memory that has been allocated 

before the GVT may be reclaimed. Reclaiming memory, or fossil collection, involves 

the freeing of events before GVT in the input queue, the copying of output events 

before the GVT in the output queue, and the copying of saved states before GVT in 

the state-list. During a simulation, each event must be saved in memory, hence the 

amount of available memory can quickly decrease. Reclaiming the unused memory 

during the simulation may become crucial to sustaining the simulation. The tricky 

point is to compute GVT values accurately and quickly. 

The main problem in computing the GVT is including the time-stamps of the 

transient messages into the GVT computation. Jefferson[l9] and Samadi[38] pro­

posed a acknowledging received events approach to solve this problem. This approach 

is improved later by Lin and Lazowska[26]. The drawback of this approach is that the 

acknowledgment messages increase the network traffic and may degrade simulation 

performance. Other GVT algorithms include: Bellenot's Routing Graph MGR[4], 

the passive response pGVT[14], the asynchronous token-passing algorithms[12] and 

Mattern's GVT algorithm[30]. 

Red Msg 
• 

White Msg 
> 

Cutl Cut2 

Wallc lock Time 

FIGURE 1.2. Mattern's Two Cuts GVT Algorithm 
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In this thesis, a slightly modified version of Mattern's GVT algorithm is used. 

Figure 1.2 depicts a "two cuts" case of Mattern's GVT algorithm. In this algorithm, 

a white-red two colors scheme is used to color all messages. All of the processors 

are structured in a logical ring topology. Our algorithm works as follows: all of the 

processors are originally colored white. A white processor sends only white messages 

and a red processor sends only red messages. Each processor uses a counter(local-

white-counter) to count the white messages. When a processor sends a white message, 

the local-white-counter adds one and when it receives a white message, the local-

white-counter subtracts one. An initiating processor starts the GVT computation 

by sending a GVT-CUT message to its successor and changes its color to red. A 

red processor keeps track of the smallest timestamp(red-min-time) of the red events 

which it sends. The GVT-CUT message is passed among the processors in the form of 

a token which contains a timestamp(cut-time) and a counter (global-white-counter). 

When a white processor receives the GVT-CUT message, it changes its color to 

red, start to track the red-min-time, and then pass the GVT-CUT message to its 

successor. When a red processor receives the GVT-CUT message, it compares the 

cut-time with its LVT and red-min-time, and updates the cut-time with the minimum 

value of the three. Moreover, it adds the value of local-white-counter into the global-

white-counter, and then passes the GVT-CUT message to its successor. When the 

initiating processor receives the GVT-CUT message, it checks if the global-white-

counter is zero. If so, the GVT computation is done. The cut-time is the new GVT 

and is propagated to all of the processors. If it is not zero, the initiating processor 

works in the same way as a normal red processor. The GVT-CUT message then is 

passed to its successor, and another round of GVT computation is started. 

From the above description, we can see that at least two rounds (two cuts) of 

GVT-CUT are required in one GVT computation. The first cut is to turn all of 

the processors from white to red, while the second cut is to compute the GVT. In 

some cases, the above algorithm may require more then 2 cuts. In our experiments, 

a maximum of 3 cuts are observed. 

10 
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3.3. Summary of Parallel Synchronization Algorithms. Both conser­

vative and optimistic synchronization algorithms have their own advantages and 

disadvantages[15]. The conservative approach does not save events and states. Thus 

it consumes less memory than the optimistic approach, and is able to handle simula­

tions with large states. On the other hand, good lookahead is essential for obtaining 

good performance, and only limited model parallelism can be exploited due to overly 

pessimistic event execution. The optimistic approach can run with zero lookahead 

and can fully exploit model parallelism. The drawbacks are larger memory consump­

tion, extra computational and communication overhead on causality corrections, and 

instability due to rollbacks which spread quickly to a number of processors (known 

as cascading rollbacks). 

Previous research has indicated that the optimistic approach outperforms the 

conservative approach in parallel logic simulations[3][45]. In the next section, we focus 

on optimization techniques for Time Warp(TW) which are particularly appropriate 

for logic simulation. 

4. Previous Optimization Techniques for Parallel Logic Sim­

ulation 

Parallel and distributed discrete-event simulation(PDES) has evolved over the 

past 20 years into a mature yet still challenging research area. Logic simulation is 

one of its major applications. Various optimization techniques have been developed to 

attack different overheads, to stabilize TW or to simply add useful features. [40][27] 

[34][23][17] [46] [42] [18] [36] [39], 

Four previous optimization techniques are made use of by XTW: 

(i) Rollback Relaxation 

(ii) Clustered Time Warp 

(iii) Bounded Time Window 

(iv) Event-lookahead Time Warp 

We now turn to a brief description of these techniques. 

11 
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4.1 . Rollback Relaxat ion . Rollback Relaxation is a novel technique for 

attacking state-saving overhead in TW[43]. To apply rollback relaxation, LPs are 

classified into two categories: memoryless and memoried LPs. A memoried LP is 

actually an ordinary LP in TW. The output of a memoried LP is a function of both 

input values and internal state values. In such LPs event processing may use internal 

state information from previous event processing activities in order to produce an 

output event. Thus a state-saving mechanism must be implemented in a memoried LP 

in order to enable the restoration of state variables in case of rollback. A memoryless 

LP's output behavior is completely determined by the values of its inputs. Event 

processing by a memoryless LP will never use internal state information from past 

event processing to produce an output event. 

All memoryless LPs qualify for rollback relaxation. In rollback relaxation, no state 

is saved during processing. When a straggler arrives, the LP reconstructs any required 

input state from the events of input queues. In general, an optimistically synchronized 

simulator maintains one input queue for all incoming events. Thus, depending upon 

the activity of the input set, the state reconstruction may require a significant search 

through most of the input queue. Because of this potentially large input, Wilsey et 

al propose multiple input queues. Figure 1.3 depicts the structure of the multiple 

input queues. In multiple input queues, each distinct input variable is assigned an 

input queue(e.g. A, B in fig 1.3). Events in each input queue are sorted in increasing 

timestamp order and are linked in a list (white arrows in fig 1.3). Additional links 

are constructed among input queues to link all of the input messages in increasing 

timestamp order (black arrows in fig 1.3). Thus, the simulator can quickly search 

each input variable for state reconstruction and it can also quickly process the input 

messages in timestamp order as necessary in order to process a straggler message or 

anti-message. 

Since rollback relaxation is embedded our new system, we can see that the new 

input queue structure has a root in the multiple input queues. 
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FIGURE 1.3. multiple input queues 

In logic simulation, the logic gates, such as AND, OR and XOR etc, can be 

modeled as memoryless LPs. Obviously, the rollback relaxation mechanism can reduce 

the state-saving overhead by a considerable amount if there are a large number of 

memoryless LPs in the simulation. 

4.2. Clustered T i m e Warp. Clustered Time Warp (CTW) is a hybrid 

system in which LPs are scheduled sequentially within clusters, and clusters are syn­

chronized by TW[3]. CTW has the following three variations: 

• Clustered Rollback-Clustered Checkpoint(CRCC): In CRCC, all of the LPs 

in a cluster are required to roll back when a straggler arrives at the cluster. 

A collection of time zones are created in an input queue to a cluster in 

order to determine checkpoints for each of the LPs in the cluster. This 

approach requires the least memory of the three techniques. Nevertheless, 

the fact that all of the processes in a cluster are rolled back results in a 

heavy execution time penalty. 

• Local Rollback-Local Checkpoint(LRLC): In this variation of CTW, each 

LP rolls back individually and the checkpoints are determined by the times-

tamps of messages arriving from other clusters. This is closest to pure Time 

Warp and performs well in terms of execution time. However, the price to 

pay is memory. 

• Local Rollback - Clustered Checkpoint (LRCC): This technique is midway 

between CRCC and LRLC. It uses the clustered checkpoints of CRCC and 

13 



4 PREVIOUS OPTIMIZATION TECHNIQUES FOR PARALLEL LOGIC SIMULATION 

uses the individual LP rollback technique of LRLC. Not surprisingly, it gives 

performance results between CRCC and LRLC in terms of both execution 

time and memory consumption. 

Experimental results[3] indicate that the LRLC approach is the fastest and that it 

consumes more memory then the other approaches. Since we apply other techniques 

to reduce memory usage, we make use of the LRLC approach in order to minimize 

the simulation time. 

4.3. Event-lookahead Time Warp. The Event-lookahead Time Wary (ETW) [23] 

technique reduces unnecessary intermediate events by combining multiple input events 

which occur within the same clock cycle at each gate and generates only one output 

event for all of these combined events. 

Clock Boundary event Generated c l o c k Boundary 

eO 

V 
1 
• 
1 
1 
I 

Y 
• 
I 
I 

el e2 e3 :4 e5 e6 e7 

FIGURE 1.4. an ETW example 

Figure 1.4 shows an example to illustrate the ETW algorithm. The waveform 

shown in the example may appear at the output of a logic gate resulting from event 

evaluation. In fig 1.4, suppose events Ci to e7 are in the input queue and they are all for 

the same clock cycle. ETW first updates the gate input signal values by considering 

all of the seven events and evaluates the gate output value at e7. Depending on the 

output value, there is either none or one new event to generate corresponding to those 

seven events. If a new event is generated, as is the case in this example, it is because 

there is a "valid" waveform transition that is not considered to be a glitch. The new 

event generated in this example corresponds to the waveform transition at e6. To get 

the correct timing of the waveform transition, there is a need to evaluate e6 and then 

14 
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e5. However, there is no need to evaluate el, e2, e3 and e4. If there are no further 

event received for the gate during this clock cycle, then the wave form is considered 

to contain exactly one signal transition at e6 and two glitches, one at el and e3 and 

the other at e4 and <x, which are removed as a result. In this example, to check if 

there is a "valid" waveform transition, the logic gate output before event ex is used as 

a reference for comparison. Because of that, there is no "valid" waveform transition 

at e3 or e5. 

Obviously, if a large number of events occur in the same lookahead (clock-cycle), 

the efficiency of ETW will be high. However, in "unit-delay" logic simulation, the 

one-unit time lookahead is too small to create a large number of events within a clock-

cycle. It should be noted that all of the experiments in this thesis use "unit-delay" 

in logic simulations and that ETW, as a result, can provide limited improvement. 

4.4. Bounded Time Window. Due to unbalanced loads assigned across 

participating processors in TW, an overly optimistic LP or cluster may use too much 

memory in saving events and states which may well be rolled back. Moreover, the 

increased number of rollbacks ma)r eventually cause TW to be unstable. A simple 

approach to preventing some LPs from advancing too far ahead of the pack is to bound 

how far one LP can advance ahead of the others. The Bounded Time Window (BTW') 

mechanism is an example of this approach[35][41]. 

In BTWr, a time window is defined as GVT+W. where W is the size of the 

time window. LPs are not allowed to advance beyond GVT+W. This time window 

advances forward whenever GVT advances. 

The central advantage of BTW is that it provides a simple, easy to implement 

mechanism to limit overly optimistic LPs from advancing too far ahead of other 

LPs. The central disadvantage of this approach is that frequent GVT computations, 

which increase the overhead, are required in order to keep the time window moving. 

Another disadvantage of this approach is that the window does not distinguish correct 

computations from incorrect ones, i.e., incorrect computations within the window 

would still be allowed to execute, while correct ones beyond the window are not 
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allowed to execute. Furthermore, it is not immediately clear how the size of the 

window should be set; this is clearly application dependent. 

A variation of the time window approach is to define the window in terms of 

the number of processed, uncommitted events (NPUE) that may reside in a logical 

process rather than using simulation time. In the Breathing Time Warp protocol[39], 

the user must specify this NPUE parameter. An LP is blocked when the number of 

processed events in that LP with a time-stamp larger than the GVT reaches NPUE. 

The LP becomes unblocked when the GVT is advanced and some of these events are 

committed. 

5. Thesis Contributions 

The contributions of this thesis are twofold. Firstly, a new optimistic synchro­

nization algorithm. XTW, is proposed. XTW has the following new features: 

• A new Input-Channel structure associated with each LP. 

• An 0(1) event scheduling mechanism 

• An rb-messages mechanism which replaces the anti-messages mechanism. 

• Eliminate the Output Queue at each LP. 

Moreover, the following optimization techniques are made use of in our implementa­

tion of XTW: 

• Clustered Time Warp[3] 

• Rollback Relaxation[43] 

• Event-lookahead technique[23] 

• Bounded Time Window[36] 

A new object-oriented parallel VLSI simulation framework is created which we call 

XTWFM. A Virtual External LP(VEL) structure is created in XTWFM. This struc­

ture, combined with the XTW algorithm causes XTWFM to have the capability of 

simulating million-gates circuits over a cluster of 6 "small" PCs. 

16 
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6. Thesis Organization 

The remainder of this thesis is organized into following chapters: 

• Chapter 2: XTW 

• Chapter 3: XTW Framework 

• Chapter 4: Experiments 

• Chapter 5: Conclusion and future work 
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CHAPTER 2. XTW 

CHAPTER 2 

XTW 

The creation of XTW is inspired by the belief that the best parallel synchroniza­

tion algorithm for parallel logic simulation is takes advantage of the characteristics 

of logic simulation and strives to reduce as much as possible this overhead. Rolling 

back, saving events and saving states are the main sources of this overhead in opti­

mistic synchronization. XTW pursues a new approach, creating the following new 

mechanisms in TW in order to reduce the cost of rolling back, event saving and event 

scheduling. 

• An input-channel structure is added to each LP. 

• XEQ provides an 0(1) event scheduling mechanism. 

• The rb-messages mechanism replaces the anti-messages mechanism and 

eliminates the output queue. 

• An 0(1) mechanism for deleting previously scheduled events 

All XTW mechanisms are based on the assumption that the underlying commu­

nication system guarantees FIFO order. 

In this thesis, we do not distinguish between "messages" and "events". 

The rest of the chapter is organized as follows. Section 1 introduces the Input-

Channel structure. Section 2 presents the structure of XEQ. Section 3 presents the 

XTW event scheduling mechanism and its cost analysis. Section 4 presents the rb-

messages mechanism and its cost analysis. 
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1 INPUT-CHANNEL 

1. Input-Channel 

In XTW, a new structure,the input-channel(IC), is added to each LP. The Input-

channel is inspired by the observation that all of the circuit components are sparsely 

connected and that the connections are static. Thus, in logic simulations, all of the 

LPs have a limited number of input and output channels, and these channels are 

not subject to change during the course of a simulation. This makes it feasible to 

implement ICs within LPs for parallel logic simulation. Each IC represents an unique 

input to an LP and is subject to Rule 1 as follows: 

Rule 1: Each IC can only have one unique incoming source. 

Figure 2.1 shows how the Input-Channel models the connection edge of gates. In 

figure 2.1, Gl has two inputs from G2 and G3. G2 and G3 each has one input. Each 

input is modeled as an Input-Channel. 

I C l 

31 

IC2 

FIGURE 2.1. Input Channel Model 

Figure 2.2 shows the structure of Input-Channel. Each Input-Channel contains 

one input event queue(ICEQ) and one processed event queue(ICPQ). Newly arrived 

events are put in the ICEQ. After an event is processed, it is put in ICPQ. 
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FIGURE 2.2. The Structure of Input Channel 

2. The Structure of XEQ 

As a result of the FIFO assumption and Rule 1, all of the events must arrive at 

each ICEQ in increasing timestamps order, and as a result all events are naturally 

sorted in the ICEQs(see Figure 2.2). We take the advantage of this "zero-cost" 

sorting and re-organize the normal TW event input queue into a multi-level event 

queue structure, which we call XEQ. The following corollaries can be inferred from 

the FIFO assumption and Rule 1: 

• Corollary 1: Events must arrive at each input channel in chronological 

order. 

• Corollary 2: If an event arrives at an Input Channel out of chronological 

order, it must be a straggler event. 

Figure 2.3 shows the structure of XEQ. In XEQ, there are three event queues 

respectively at the Input-Channel level, the LP level and the Cluster level. 

• At the Input-Channel level, the event queue is called the ICEQ and is 

implemented as a list of events sorted in increasing timestamp order. 

• At the LP level, the event queue is called the LPEQ and implemented as a 

list of events sorted in increasing timestamp order. 

• At the cluster level, the event queue is called the CLEQ and implemented as 

a list of time-buckets sorted in increasing timestamp order. A time-bucket 

is a list of events which have the same time-stamp. 

In addition, the following two event pointers are added respectively for each Input-

Channel and each LP. 
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FIGURE 2.3. The Structure of XEQ 

• CTE: At each Input-Channel a CIE(current-IC-event) pointer points to the 

event which is popped from its IC and is currently stored in the LPEQ or 

the CLEQ. This pointer is used to remove the (pointed-to) event from the 

LPEQ or the CLEQ in the event that a straggler arrives at the I C 

• CLE: At each LP, a CLE(current-LP-event) pointer points to the event 

wrhich is popped from its LP and is currently stored in the CLEQ. This 

pointer is used to move the (pointed-to) event from the CLEQ back to 

LPEQ in the event that a rollback happens at the LP. 

2.1. Rules in X E Q . The following rules are enforced in XEQ: 

• Rule 2: An IC can pop only one event to its hosting LP if and only if the 

ICEQ is not empty. This event has the lowest time-stamp in the ICEQ and 

is called the current IC event. Its pointer value is assigned to CIE. 

• Rule 3: An LP pop only one event to its hosting cluster's CLEQ if and 

only if the LPEQ is not empty. This event has the lowest time-stamp in the 

LPEQ, It is called the current LP event and its pointer value is assigned to 

CLE. 
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2.2. Event Node Structure, Space Cost of XEQ. Figure 2.4 shows the 

structure of an event node and how event node moves around among different levels 

of the event queue. 

LP level event queue us tec level event queue 

-QOppCr *DiQ&CX 
curLJiEvefrit 

cur ic t -Vent i 
\ r , I o 

EX .§ 
- O Q O ^ X *tsrio^cr 

IC level event queue IC level processed event queue 

FIGURE 2.4. an event node structure and its movement 

Moving an event node from one event queue to another event queue is accom­

plished by changing the values of next and prev pointer of the event node. No 

duplication of an event node is necessary and as a consequence, extra memory is not 

required at each of the event queues. An example is depicted in figure 2.4. When el 

is moved from the Input Channel event queue(ICEQ) to the LP event queue(LPEQ), 

the only operation necessary to changing the next and prev pointer of el from 11,12 

to Ll, L2. Similarly, moving el to the cluster event queue(CLEQ) or processed event 

queue(ICPQ) just involves changing the next and prev pointer value to Cl, C2 or 

PI. P2. Thus, XEQ can be viewed as a Time Warp input queue broken into four 

sections. The total space cost of XEQ is the same as that of the Time Warp input 

queue structure. 

2.3. O( l ) Previously Scheduled Events Deleting Mechanism. One 

major drawback of the Clustered Time Warp(CTW) is the high cost of deleting 

previously scheduled events from the Cluster Event Queue(CLEQ) when a rollback 

occurs. In CTW7, LPs within a cluster schedule all the events into a single CLEQ. 

The result is that the size of CLEQ is considerable large during simulation. When 

a rollback occurs, the rolled back LP needs to delete its previously scheduled events 

from CLEQ. The lowest cost to find and delete one previously scheduled event in the 
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CLEQ is 0(log N), where N is the size of CLEQ - the number of events in CLEQ. To 

study the actual value of N during simulation, we conducted a series of experiments. 

The results are presented in Figure 2.5 and Figure 2.6. 
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FIGURE 2.5. the number of CLEQ events vs. the number of processors(circuit 
s38584 running 50 vectors) 

Figure 2.5 and Figure 2.6 portray the the maximum number of events in the CLEQ 

during each simulation for the s38584 circuit with various numbers of processors and 

vectors. Thus, the results present the worst case scenario. Both figures clearly show 

that the number of events in the CLEQ increases with the number or processors and 

vectors. It should be noted that in Figure 2.6, the 1000 vectors point almost has 1 

million events in the CLEQ. Compared with the light computational load of event 

processing, the overhead of deleting rollback events is large when the number of CLEQ 

events is large. In XTW, this problem is circumvented by the implementation of CLE 

and CTE pointers along with the structure of XEQ and the event node. By Rule 3, 

at most one event will be scheduled in the CLEQ from one LP at any time. Thus, 

when an LP is rolled back, the LP can simply use the CLE pointer to delete the single 
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FIGURE 2.6. the number of CLEQ events vs. the number of vectors (circuit s38584 
running with 7 processors) 

scheduled event from the CLEQ at cost 0(1). It should be noted that the steeply 

increasing number of events in the CLEQ not only increases the cost of deleting the 

rollback events, but also increases the cost of event scheduling. In the next section, a 

new event scheduling mechanism is introduced in XTW with a constant 0(1) cost. 

3. X T W O(l ) Event Scheduling Mechanism 

In general, XTW is a similar to CTW [3] - LPs run sequentially inside each 

cluster. Clusters use Time Warp to synchronize with one other. Within a cluster, 

XTWr uses the Smallest-Timestamp-First-Scheduling. This scheduling procedure is, 

in essence, a sorting problem -all events need to be sorted in timestamp order in order 

to insure causality, resulting in an 0{n2) complexity. There are a number of algo­

rithms which have been proposed in order to reduce the event-scheduling complexity-

the calendar queue(0(l))[7], the splay-tree(0(logn)), the red-black tree(O(logn)), 

the skip-list(O(logn)) and the heap(0(logn)) are some of these algorithms. In XTW. 
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we propose a new event scheduling mechanism -XEQ- which has an 0(1) complexity 

for event scheduling. 

An event is scheduled in XTW via the following three steps: 

(i) The smallest timestamp event in the ICEQ is popped from ICEQ to LPEQ. 

Since the ICEQ is naturally sorted, the smallest timestamp event is just the 

head event of ICEQ. Thus, we can simply pop the head event at a cost of 

1. 

(ii) The event from ICEQ is inserted into LPEQ. The cost of finding the correct 

position to be inserted is 7Ve. Ne is the number of events stored in LPEQ 

(the size of LPEQ). Based on Rule 3, in worst case, the maximum value of 

Nc is Clc, where Clc is the constant number of ICs in an LP. 

(iii) The event is inserted from LPEQ to CLEQ. The cost of finding the correct 

position to be inserted is Ntb. Ntb is the number of time-buckets in the 

CLEQ (the size of the CLEQ). Based on Rule 4, in the worst case, the 

maximum value of Ntb is C/p, where C)p is the constant number of LPs in a 

cluster. 

Putting the above observations together, the cost of scheduling an event in XTW, 

SC, is: 

SC=l + Ne + Ntb (2.1) 

In the worst case the cost of scheduling an event is : 

SC = l + Cic + Clp (2.2) 

Since both CIC and C[p are constant numbers, the complexity of scheduling an event 

is 0(1). 

4. Rollback with Rb-messages and Cost Analysis 

4.1. The Rb-messages Mechanism. In Time Warp, when an LP receives 

a straggler event, it must "undo" incorrect computations by rolling back, restoring 
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state variables and "un-sending" previously sent messages. In Time Warp, the anti-

messages mechanism is used to "un-send" previously sent messages. A good descrip­

tion of this mechanism can be found in Fujimoto's book[l6]. Figure 2.7 shows how 

the anti-messages mechanism works. In figure 2.7, LP1 receives a straggler event E15 

which causes LP1 to roll back and send out straggler message E16 and anti-messages 

E21, E32 and E40. LP2 is then rolled back and sends out straggler message E17 and 

anti-messages E22 and E34. Recursively applying this "roll back, send anti-message" 

procedure will eventually erase all incorrect computations resulting from the original, 

incorrect message send. 

In normal logic simulation, an output event is propagated only if its value is 

different from last output event's value. In XTW, the following "Propagating Rule" 

is enforced in addition to the normal propagation rule: 

• Rule 4: If o- straggler event is processed and if the timestamp of the output 

event which it produces is smaller than last output event timestamp, output 

events must be propagated. 

Figure 2.8 depicts examples of the XTW rollback mechanism. In XTW, a new 

mechanism - the rb-messages (rollback messages) mechanism is used to "un-send" 

previously sent messages. In the following, we describe how the rb-messages mecha­

nism works in the XTW rollback procedure: 

(i) When a straggler event arrives at an LP, the LP first restores the state-

variables if it is a memoried LP. 

(ii) The current LP event is moved from the CLEQ and pushed back to the 

LPEQ. 

(iii) Push all events in the LPEQ to their original ICEQ. 

(iv) Each IC searches for a "cut point event" in its ICPQ (Input Channel Pro­

cessed Event Queue) from the tail to the head of the queue. The cut point 

event is the first event which has a timestamp equal to or smaller than the 

straggler's, 

(v) Each IC rolls back. There are two cases to be considered: 
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FIGURE 2.7. "Un-sending" Messages by anti-messages 

(a) An IC is the one which receives the straggler. The IC erases all events 

in its ICEQ, and all ICPQ events after the cut point event.(e.g. ICl in 

Figure 2.8). 

(b) An IC is not the one which receives the straggler. The IC connects the 

tail of the ICPQ with the head of the ICEQ, sets the cut point event 

to be the new tail of the ICPQ and sets the event after the cut point 

event to be the new head event of the ICEQ.(e.g. IC2 in Figure 2.8) 
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FIGURE 2.8. rb-messages, an LP receives a straggler rb-message 

Vi) If it is a memoryless LP, the LP reconstructs any required input state with 

the cut point events. 
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FIGURE 2.9. rb-messages, an LP receives a no-straggler rb-message 

'vii) The straggler event is pushed to the head time-bucket of the CLEQ. Because 

it is a straggler, it must have the smallest timestamp in the Cluster. The 

related CIE and CLE are set to point to the straggler. 
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(viii) The ICs which do not receive the straggler insert their ICEQs head events 

into the LPEQ. 

(ix) The head event of the CLEQ, the straggler, is then processed. Complying 

with Rule 4< the LP generates and propagates output events to its descen­

dant LPs. Since these output events are used to propagate rollbacks, they 

are called rb-messaf/cs. Now consider what happens when an LP receives a 

rb-message. There are two cases to consider: 

(a) The rb-message has a timestamp smaller than the receiving LP's LVT 

- it is a straggler. Since a rb-message is nothing but a normal output 

event, the LP handles the rb-message in the same way as it would 

handle a normal straggler.(e.g. E15 arrives at ICl in Figure 2.8). All 

previously sent messages are deleted by deleting the whole ICEQ and 

the ICPQ events with larger timestamp than the rb-message. 

(b) The rb-message has a timestamp larger or equal to the LVT. The rb-

message is not a straggler and inserted into the ICEQ of its arriving IC. 

All ICEQ events with timestamps larger than the rb-message are erased 

when the rb-message is inserted. Thus all previously sent messages are 

deleted. No further rb-message is generated in this case.(e.g. E16 

arrives at IC3 in Figure 2.9). 

Recursively applying the "roll back, send rb-messages" procedure will eventually 

erase all incorrect computations resulting from the original incorrect message send. 

4.2. El iminat ing the Output Queue. From the above description, we can 

see that the anti-messages mechanism is eliminated in XTW, and therefore the output 

queue, which is used to store all of the anti-messages, can be obviated in XTW as 

well. Since an anti-message is saved for each output event, considerable time and 

space are expected to be saved with the elimination of the output queue. This is the 

fundamental virtue of the rb-messages mechanism. 
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4.3. Rb-message time complexity. The time complexity of the anti-

messages and rb-messages are as follows. (The cost is for "un-sending" all previously 

sent messages caused by one single straggler). 

• the cost of anti-messages: In TW, the cost is (Mam * logNae). Mam is 

the number of anti-messages. log AQe is the cost to find a positive message 

in input queue. Thus, the cost of anti-messages is 0(Mam * logAr
Qe) = 

0(nlogn). It should be noted that, in CTW, logAQe is the cost to find 

a positive message in CLEQ which is usually much larger than the input 

queue of an LP. 

• the cost of rb-messages: In XTW, the cost is Nrm * log7Vpe. logNpe is the 

cost to find the "cut point event" in the ICPQ(input channel processed 

event queue). A'rm is the number of rb-messages which is the number of 

descendant LPs. In the worst case, Ar
rm is equal to C/p, the constant number 

of LPs in a cluster. Thus the cost of rb-messages is 0(Cip * \ogNpe) = 

O(logn). 

From the above analysis, we can see that the rb-messages mechanism has an O(logn) 

cost which is lower than the anti-messages mechanism's O(nlogn) cost in "un-

sending" previously sent messages caused by one straggler. 

5. Observations 

In the above event scheduling and rb-messages cost analysis, the following vari­

ables are assumed to the constant: 

• Ne, the cost of scheduling an event in the LPEQ - the number of events 

stored in the LPEQ is approximated by Cic, the (constant) number of ICs 

in an LP. 

• Ntb, the cost of scheduling an event in the CLEQ - the number of time-

buckets in the CLEQ is approximated by C[p, the (constant) number of LPs 

in a cluster. 
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• Nrm, the number of rb-messages per straggler event is approximated by C\p, 

the constant number of LPs in a cluster. 

While in a theoretical analysis the above simplifications are acceptable; in prac­

tical simulations, the actual values of these "factor variables" are more concerned 

about. Ne and Ntb dominate the cost of event scheduling and Nrm dominates the 

cost of "un-sending" messages. Consequently, we conducted a large number of exper­

iments in order to explore the actual values of these "factor variables". The results 

are presented in Chapter 6. 
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1 VIRTUAL EXTERNAL LP 

C H A P T E R 3 

X T W Framework 

With the advent of high performance personal computers(PCs) and low-cost high 

speed networks . Cluster-Computing techniques have become an attractive alternative 

to high-cost supercomputers for various science and engineering computations. The 

goal of designing the XTW Framework(XTWFM) is to use a cluster of low-cost PCs 

to achieve a similar logic simulation capacity to supercomputers. The maximum 

number of gates that can be simulated on a given platform is largely dependent on 

the amount of memory available for the simulation. High performance workstations 

are easily overwhelmed by a million gate circuit. XTWFM takes a cost-effective 

approach - a cluster of PCs- to attack this problem. 

1. Virtual External LP 

By utilizing C-b+'s object-oriented features, a "virtual external LP"(VEL) struc­

ture is created in XTWFM, which reduces the memory consumption for sharing global 

topology information in each cluster. 

Figure 3.1 shows the structure of an XTW cluster. There are two cluster-level 

data structures- the CLEQ and an array which stores global LP information and is 

called the uglobal-LP-array" (GLA). Each element of GLA is an LP pointer which 

points to an LP object. Each LP is assigned a monolithic increased globally unique 

ID, the LPID. The LPID is used to directly index the LP in the GLA. LPIDs are 
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C l u s t e r 2 

CLEQ 

global-LP-array 
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FIGURE 3.1. The structure of the Virtual External LP 

also used in each propagated event (message) to indicate the target LP. In each XTW7 

cluster, only local LPs are "real" LP objects. External LPs, which are assigned to the 

same external cluster, are represented by one single virtual external LP. In Figure 3.1, 

gl-g4, which are assigned to clusterl, are represented by a single virtual external LP 

VEL1. g5-g8, which are local LPs, have their real LP object in the cluster. g9-gl2 are 

assigned to cluster3 and represented by VEL3. Both virtual external LP and local LP 

objects share one abstract interface which has a virtual function - addEvent(Event*). 

In a local LP, addEvent( Event* ) is implemented to add an event into the event queue. 

In a virtual external LP. addEvent(Event*) is implemented to send a message to a 

pre-determined processor. Now consider what happens when an event is propagated. 

(i) The target LP's LPID is used to get the LP pointer from GLA. 

(ii) The addEvent(Event*) function is called in the LP object which is pointed 

to by the GLA pointer, 

(iii) There are two cases to be considered when the addEvent(Event*) function 

is called: 

(a) The LP object is a local LP: the propagated event is added to the 

event queue. 

(b) The LP object is a virtual external LP: the propagated event is sent 

to the pre-determined external cluster which hosts the target LP. 
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(iv) When a cluster receives an external event message, the target LP's LPID 

is used to get the LP pointer from GLA. Then the pointed LP's addE-

vent(Event*) function is called. This time, it must be a local LP function 

call. Thus, the propagated event is added to the event queue. 

From the above description, we can see that an LP(a gate) only instances its 

object once in its hosting cluster. In other clusters, the LP only consumes one pointer-

space in memory. 

2. Pu t t ing It All Together 

To improve the performance of XTWFM, various optimization techniques are 

used and the entire system programming code is optimized in several rounds. In 

most critical parts of the XTWFM, several implementations are coded for the same 

mechanism/algorithm. Then, we use simulation results to identify the best imple­

mentation approach. Our study shows that different implementations can have con­

siderable impact on system performance. We list all mechanisms and their impacts 

on XTWFM: 

• XTW synchronization algorithm. This algorithm reduces the event-scheduling 

cost, increases the events committed rate and stabilizes the Time Warp sys­

tem. 

• CTW. The CTW synchronization algorithm is embedded in XTW to get a 

hybrid system. 

• Rollback Relaxation. This mechanism reduces the parallel state-saving cost. 

• Bounded Time Window(BTW). This mechanism stabilizes Time Warp and 

reduces the memory consumption. It should be noted that the BTW mech­

anism increases the simulation time in most cases while it stabilizes the 

system in the large circuit simulations when memory consumption is criti­

cal. 

• Event-lookahead Time Warp. This mechanism reduces the overall events 

number. In current unit-delay logic simulation, only little performance 
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improvement is gained from this mechanism. This mechanism is useful for 

both sequential and parallel simulators. 

Putting all of the above mechanisms together, we get a stable, fast, low cost and 

large capacity logic simulation engine - XTWFM. In the next chapter, we demonstrate 

that XTWFM can simulate a million-gates circuit over a cluster of six "small" PCs. 
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1 EXPERIMENTAL ENVIRONMENT 

C H A P T E R 4 

Experimental Evaluation of X T W 

Four sets of experiments are presented in this chapter: 

• In section 2, a set of experiments is conducted on various benchmark circuits 

in order to explore the actual values of the "factor variables". 

• In section 3, a set of experiments compares CTW and XTW. and provide 

evidence that XTW outperforms CTW. 

• In section 4, a set of experiments compares XTW and a sequential XTW 

simulator(XSS). Experimental results provide evidence that XTW has good 

scalability in the number of processors and the size of circuits. 

• In section 5, a set of experiments is conducted on two benchmark circuits 

having half-million and one-million gates. The experimental results provide 

evidence that using XTW over a cluster of PCs is a cost-effective alternative 

for the simulation of ultra-large circuits. 

1. Experimental Environment 

All experiments are conducted on a network of seven personal computers. Each 

computer is equipped with dual Pentium III 450 processors and 256 Megabytes of 

internal memory. The network is connected by a Myrinet switch which operates at 

one Gigabyte per second. XTW employs MPI as the software communication platform 

which guarantees a FIFO order in communication. All of the XTW experimental data 
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presented in this thesis is the average value from at least 100 runs while each set of 

CTW data is the average value from at least. 10 runs. 

2. Event Scheduling and Ry Costs 

2.1. The Cost of Event Scheduling in the LPEQ. In the analysis of event 

scheduling (Chapter 2 section 3), the cost of scheduling an event in the LPEQ is Ne, 

the number of events in the LPEQ. In the worst case, Ne is Clc - the number of ICs 

in an LP. In Table 4.1, the maximum number of ICs in various circuit benchmarks 

are presented. It shows that the maximum number of ICs in an LP does not vary 

much from circuit to circuit, and does not increase with the size of circuit. 

name of circuit 
number of gates 

max ICs in an LP 
TABLE 4.1. 1 

s38584 
20995 

4 
^he maxim 

s38417 
23949 

4 

sl5850 
10470 

4 

s5758 
3042 

4 
um number of ICs in an LP 

s9234 
5866 

4 

2.2. The Cost of Event Scheduling in the CLEQ. In the analysis of event 

scheduling cost (Chapter 2 section 3), the cost of scheduling an event in the CLEQ 

is Ntb. Ntb is the number of time-buckets in the CLEQ. In the worst case, Ntb is 

approximated by C/p - the number of LPs in a cluster. 

Figure 4.1 shows the number of time-buckets in the CLEQ vs. the number of 

processors. Figure 4.2 shows the number of time-buckets vs. the number of input 

vectors. Both Figure 4.1 and Figure 4.2 clearly indicate that Ntb is far less than C/p 

in all the cases. We can see that there is a general trend in Figure 4.1 - a larger 

number of time-buckets in the CLEQ with more processors. The reason for this trend 

is that the more clusters there are, the more chances that different time-stamps events 

can be generated and the more time-buckets that will exist in CLEQ. Nevertheless, we 

can see that this general trend has variations among individual circuits, i.e. different 

circuits which are partitioned into the same number of clusters may well exhibit a 

different behavior as the number of processors increase. In 4.1, we can observe that 

the line of s38584 circuit ascends from 5 to 7 processors while the lines of other circuits 
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FIGURE 4.1. number of time-buckets vs. number of processors(with 100 vectors) 

have nearly flat or descending segments. It should be noted that this general trend 

represents the worst case scenario. In some cases, the number of time-buckets may 

not increase or even decrease with more processors. 

In Figure 4.2. we observe that all of the circuits exhibit a steeply rising section 

from 15 vectors to 200 vectors and an almost flat section from 200 vectors to 1000 

vectors. This phenomenon is caused by a 200 vector Bounded Time Window used 

in XTW. From 15 to 200 vectors the number of events with different time-stamps 

increases, but after 200 vectors it does not increase. Hence we can conclude that 

when making use of Bounded Time Window the number of vectors does not have 

much effect on the number of time-buckets. 

Figure 4.2 shows the cost of event scheduling in the CLEQ is limited when BTW7 

is used. We are interested in finding out what will happen if BTW is not used. To 

find this out, a series of experiments is conducted on a special version XTW which 
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FIGURE 4.2. number of time-buckets vs. number of vectors(with 7 machines) 

does not use BTW. The results are presented in Figure 4.3 and Figure 4.4. Figure 4.3 

shows the number of time-buckets in the CLEQ vs. the number of processors (without 

BTW and with 100 vectors). Figure 4.4 shows the number of time-buckets vs. the 

number of input vectors (without BTW, with 7 processors). 

A similar trend may be observed in both Figure 4.3 and Figure 4.1. The actual 

number of time-buckets are also similar in both figures. There is one exception in 

Figure 4.3 at a point of s38584 circuit with 4 processors. This point has an abnormally 

high value due to the unbalanced load among the processors. However this point is 

not observed in Figure 4.1. This indicates that BTW has the ability to inhibit the 

bad effects caused by the unbalanced load. 

In Figure 4.4, we can see that most of the actual number of time-buckets are 

larger than the ones in Figure 4.2. The differences are enlarged with an increase in 

the number of vectors. The lines ascend from 200 vectors to 1000 vectors in Figure 4.4 
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FIGURE 4.3. number of time-buckets vs. number of processors(XTW without using 
BTW with 100 vectors) 

instead of the flat line sections in Figure 4.2. These results indicate that BTW is more 

useful and effective in simulations with a large number of vectors than in the ones 

with a small number of vectors. 

Although the number of time-buckets increase from the maximum 120 in Fig­

ure 4.2 to the maximum 547 in Figure 4.4, they are still far less than the approximate 

value - C\p , which is the number of LPs in a cluster (see section 3 page 24). In 

Figure 4.4, the maximum number of time-buckets is at the point of s38417 with 6 

processors. Since one processor is used as a manager node and is not assigned any 

LPs, C{p is calculated with only 5 processors for this point. The C\p is 23950 (the 

size of s38417)/5 = 4790 which is almost 9 times larger than the actual maximum 

number of time-buckets. 

From above results, we can see that, even without BTW7, the cost of event sched­

uling in the CLEQ is still limited and is far less than the approximate value. 
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FIGURE 4.4. number of time-buckets vs. number of vectors(XTW without using 
BTW with 7 machines) 

2.3. Analysis of XTW Event Scheduling cost. The above results show 

that the actual value of Ne is confined to a limited range of values. We observed 

that Ne has a maximum value of 4. The actual value of Ntb is also far less than the 

theoretical value, the number of LPs in a cluster. Actually, Ntb is almost constant 

when the Bounded Time Window technique is used. Thus, we can conclude that 

XTW has an 0(1) cost of event-scheduling in theory and in practice. 

2.4. The Efficiency of Rb-messages. In XTW, the rb-messages mech­

anism replaces the anti-message mechanism to "un-send" previously sent messages. 

From our theoretical analysis, we know that the cost of anti-message is (il/am*log Nae) 

and the cost of rb-messages is Nrm * logNpe(Chapter 2. page 30). From the IC struc­

ture, we know that ICPQ must be smaller than or equal to (in worst case) the input 

queue, and far less than CLEQ. Thus log Npe must be smaller than log Nae. So if Nrm 

is smaller than Mam, we can conclude that the rb-messages mechanism has a lower 

42 



2 EVENT SCHEDULING AND Rb COSTS 

cost than the anti-messages mechanism. In this section, experiments are conducted 

to compare the value of Mam and Nrm. 

Ideally, we would like to compare the rb-messages mechanism with both the ag­

gressive and lazy cancellation anti-message mechanisms. However, the efficiency of 

lazy-cancellation depends on a number of factors, including the partitioning algo­

rithm, the characteristics of the circuit, and the value of the input vectors. It is hard 

to draw any conclusion when so many factors are at play. Thus we only show the 

comparison of results between the rb-messages mechanism and the aggressive anti-

message mechanism. The term anti-messages refers to aggressive anti-messages in 

rest of the section. 

Since the anti-message mechanism uses one anti-message to cancel one previously 

sent message, the number of anti-messages is equal to the number of canceled mes­

sages. Let Mam be the number of canceled messages(anti-messages) and let Ar
r6 be 

the number of rb-messages. To quantify the differences between Mam and Nrm, we 

define the following metric: 

• rb-message efficiency(REFF) is defined as the ratio of the number of anti-

messages and the number of rb-messages. REFF also can be viewed as the 

number of messages canceled by one rb-message. 

REFF = Mam/Nrm 

Figure 4.5 shows the REFF vs. the number of processors. Figure 4.6 shows 

the REFF vs. the number of input vectors. Both Figure 4.5 and Figure 4.6 clearly 

indicate that Xrm is smaller than Mam in all cases. In most cases. A'rm is several 

times smaller than Mam- Although there are several high points for 3 processors due 

to the characteristics of circuits and partitioning, we can see a general trend that 

rb-message efficiency increases with the number of processors and vectors. It should 

be noted that the number of rollbacks increases with the number of processors and 

vectors. The larger the number of rollbacks, the more unstable Time Warp will be. 

Fortunately, the rb-messages mechanism has a higher efficiency in the worse situation. 
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FIGURE 4.5. rb-message efficiency vs. the number of processors(with 100 vectors) 

Therefore, the rb-messages mechanism not only reduces parallel overheads, but also 

tends to stabilize TW. 

3. X T W vs. C T W 

In this section, we present results comparing the performance of XTW and CTW7 

[3] [46]. In our experiments, the LP-roll back mechanism is made use of in CTW. 

We conducted experiments on various benchmark circuits. The results show that 

CTW has the best performance on the circuit s90k - a combination benchmark circuit 

which consists of two s38584 and two s38417 and has around 90,000 gates. In the 

following, we present the XTW-CTW comparisons making use of s90k. To simplify 

the comparison, the Event-lookahead and Bounded Time Window techniques are not 

used in XTW in this section. 
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FIGURE 4.6. rb-message efficiency vs. the number of vectors (with 7 machines) 

It should be noted that CTW uses PVM as the software communication platform. 

There is a separate PVM process paired with each CTW process. The workload of 

both PVM and CTW processes are automatically distributed by the operating system 

across the two processors inside each machine. In actual experiments, we can observe 

that the dual processors in each machine are used respectively for the PVM process 

and the CTW process. 

XTW uses MPI as the software communication platform and no separate com­

munication process is launched. In each machine, only one processor will be used by 

XTW. To simplify the comparison, the number of machines used by CTW is referred 

to as the number of processors used by CTW. Thus when CTW and XTW are com­

pared with the same number of processors, we should be aware that CTW uses an 

extra processor to handle communications. 
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Since the memory usage of CTW does not count the memory consumed by a 

PVM process, a peak memory usage comparison between CTW and XTW does not 

make much sense and thus is not included in this thesis. 

The following metrics are used for the performance comparison: 

• Simulation Time: Simulation Time is defined as the elapsed real time for 

the simulation. The average Simulation Time across the participating pro­

cessors is presented. 

• Relative Speedup: Relative Speedup is defined as the ratio of the simulation 

time of a simulator using 2 processors and the simulation time of the same 

simulator using more than 2 processors. 

• Throughput: Throughput is defined as the number of processed events per 

second. 

• Good-put: Good-put is defined as the number of committed processed events 

per second. 

• Committed Rate: Committed Rate is defined as the ratio of the Good-put 

and the Throughput. 

Both CTW and XTW use the same partitioning algorithm. The time to perform 

the partitioning is not included in the simulation time. Since CTW crashes when 

more than 4 processors are used in a simulation, all of the CTW results are presented 

with up to 4 processors. 

3.1 . "Sequential" Comparison. Both CTW and XTW7 use one processor 

as a "manager node" which is not involved in the simulation and only handles data 

collection and GVT computation. Thus when 2 processors are used, the simulation 

is sequential - no rollback occurs. To identify which factors improve the simulator 

itself, we first conduct experiments with XTW and CTW using only 2 processors. 

Table 4.2 shows the results with XTW and CTW running on 2 processors. Due to 

the different DFF gate clock mechanisms implemented in XTW and CTW, XTW has 

twice as many events as CTW when the same number of vectors are used. However, 
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system 
XTW 
CTW 
XTW 
CTW 

vectors 

15 
15 
50 
50 

processors 
2 
2 
2 
2 

simulation time 
8.47 
67.5 
25.80 
243.4 

events 
1221614 
558878 
3843441 
2018970 

throughput 

144231.28 
8279.67 

148952.98 
8294.86 

TABLE 4.2. simulation time vs. number of processors 

XTW finishes the simulation in a far shorter time. Table 4.2 shows that XTW is 8 

times faster than CTW while XTW7 processes double the number of events that CTW 

executes. XTW7 has an 18 times larger throughput than CTW. In this non-rollback 

"sequentially" running environment, the dramatic performance improvement is due 

to the following factors: 

• the 0(1) event scheduling mechanism in XTW7 has a lower cost than CTW 

• the rollback relaxation mechanism reduces the state saving cost 

• XTW eliminates the overhead of saving output events in the output queue 

In the next section, we study the performance of XTW7 in a parallel simulation 

environment. 

3.2. Simulation Time. Figure 4.7 shows the simulation time vs. the number 

of processors. The results demonstrate that XTW outperforms CTW7 in all parallel 

simulations with an)- number of processors. 

3.3. Throughput, Good-put and Committed Rate. Figure 4.8 depicts 

the throughput vs. the number of processors while Figure 4.9 depicts the good-

put vs. the number of processors. Figure 4.10 shows the committed rate vs. the 

number of processors. Figure 4.8 and Figure 4.9 show that XTW7 has an almost 

linear increase in both the throughput and the good-put, while CTW7 has a relatively 

flat one. Figure 4.10 reveals the reason behind this phenomenon- XTW7 has a higher 

committed event rate than CTW. Moreover, XTW has an almost flat reduction in 

committed event rate1 when more processors are used, while CTW has a relatively 

steep reduction in its committed event rate. These results indicate that XTW7 has a 

more efficient rollback mechanism. 
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FIGURE 4.7. simulation time vs. number of processors 

3.4. Relative Speedup. Figure 4.11 shows the relative speedup vs. the num­

ber of processors. It should be noted that the larger the throughput of a simulator, 

the harder it is to obtain a good relative speedup. Although XTW has a much larger 

throughput than CTW, the results indicate that XTW7 still has a larger relative 

speedups than CTW in all the cases. Moreover, XTW has an almost linear increase 

in relative speedup while CTW has a relative flat one. This clearly demonstrates that 

XTW has a smaller overhead than CTW. 

4. X T W vs. Sequential Simulator 

In this section, several benchmark circuits are simulated by both XTW and a 

sequential simulator. The purpose of these experiments is to compare the performance 

between parallel and sequential simulations. 
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4.1. The Sequential Simulator. The sequential simulator actually is a 

sequential version of XTW which implements exactly same event-scheduling and logic 

simulation algorithms as parallel XTW7. All parallel simulation related mechanisms 

are removed, including message checking, GVT computing and bounded time window 

etc. However, the event-lookahead optimization technique is kept. We call the XTW 

sequential simulator XSS and call the XTW7 parallel simulator XTW. XSS simulations 

are processed on one of the cluster PCs with a single processor. To simplify the 

comparisons between the parallel and sequential approaches, no extra optimizations 

are implemented in the sequential simulator. 

4.2. Benchmark Circuits and Metrics. Three benchmark circuits were 

used in the experiments. They are as follows: 

• s.38584 circuit with a total of 20996 gates 

• sl80k consisted of four s.38584 and four s38417 circuits with a total around 

180,000 gates 

• s360k consisted of eight s38584 and eight s38417 circuits with a total around 

360,000 gates 

The metrics are defined as follows: 

• max simulation time is defined as the maximum elapsed real time across 

the participating processors for each simulation. The partitioning time is 

included in max simulation time. 

• peak memory usage is defined as the maximum peak memory usage across 

the participating processors for each simulation. 

• absolute speedup is defined as the ratio of the sequential simulation time to 

the max simulation time for a parallel execution. Since XTW needs at least 

3 processors to run parallel simulations, the absolute speedups are presented 

with 3 or more processors. 

4.3. XTW Implementation Parallel Overhead. Since XTW7 uses one 

processor as a "manager" node, the results for XTW7 with 2 processors can be viewed 
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as XTW runs sequentially. To avoid confusion, we call the sequential simulations 

pure-sequential simulations; the simulations conducted by XTW with 2 processors as 

parallel-sequential simulations. In parallel-sequential simulations, the good-put is the 

same as throughput. 

system 

Seq. 
XTW 7 

Seq. 
XTW 
Seq. 

XTW 
Seq. 

XTW 
Seq. 

XTW 
Seq. 
XTW 7 

circuit 

s38584 

S385S4 

s385S4 

s38584 

sl80k 

sl80k 

sl80k 

sl80k 

s360k 

s360k 

s360k 

s360k 

vectors 

50 
50 
100 
100 
50 
50 
100 
100 
50 
50 
100 
100 

max sim. time 

28.31 

35.32 

55.08 

69.41 

228.24 

290.97 

443.91 

569.59 

602.13 

617.28 

987.67 

1206.92 

throughput 

171206 

136625 

175431 

138951 

167977 

131709 

172606 

134512 

127290 

124225 

155157 

126990 

IPO 

20.20% 

20.79% 

21.59% 

22.07% 

2.41% 

18.15CX 

peak mem.(k) 

15608 

70708 

18000 

70580 

111400 

136804 

122924 

137836 

206336 

203284 

209152 

209932 

TABLE 4.3. pure sequential vs. parallel "sequentia 

Table 4.3 shows the results of the three benchmark circuits simulated in pure-

sequential simulations and parallel-sequential simulations. It is easy to see that there 

are performance differences between the two kinds of "sequentiaF simulations. Since 

there is no run-time communication and rollback overhead in parallel-sequential sim­

ulations, the only possible reason for these differences is the overhead of the extra 

parallel algorithm code that is implemented in the parallel simulator. We call the 

overhead which is caused by the parallel implementation the "implementation paral­

lel overheads" (IPO). 

Let STP be the throughput of a pure-sequential simulation and PSTP be the 

throughput of a parallel-sequential simulation. 

The implementation parallel overheads (IPO) is quantified by: 

IPO = {STP - PSTP)/STP 
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Table 4.3 shows that there is approximately a 20%, IPO for XTW when s38584 

and sl80k circuits are simulated with both 50 and 100 vectors. However, when s360k 

is simulated with 50 vectors, there is only a 2.41% IPO for XTW. Through a detailed 

trace analysis, we found that this low overhead was due to the large number of gates 

in the s360k circuit causing XSS to swap memory in order to complete the simulation. 

The extra cost of swapping dominates the 50 vector s360k simulations, hence the IPO 

is relatively small in this case. This analysis is confirmed by the results for s360k with 

100 vectors. Since the peak memory usage of simulations for s360k with 50 vectors and 

100 vectors are almost the same, the memory swapping cost is also almost the same 

in both 50 and 100 vectors simulation. When s360k is simulated with 100 vectors the 

memory swapping cost becomes a smaller portion of the overall simulation cost. The 

XTW IPO is 18% . 
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FIGURE 4.12. max simulation time vs. number of processors 

4.4. Max Simulation Time, Absolute Speedup and Good-put. Fig­

ure 4.12 shows the max simulation time vs. the number of processors. In Figure 4.12. 
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we can clearly see a trend that the max simulation time decreases as the number of 

processors increases. Moreover, this trend is enhanced as the size of circuit and the 

number of vectors are increased (e.g. simulations for sl80k and s360k). However, 

the max simulation time of simulations for s38584, which is a relatively small circuit, 

only decreases slightly as the number of processors increases and has a bump at the 

point of 4 processors due to the unbalanced load across processors. It should be 

noted that the max simulation time of simulations for s360k circuit decreases steeply 

from one processor to three and more processors due to the swap-memory used in the 

sequential simulations. 

5 

number of processors 

FIGURE 4.13. absolute speedup vs. number of processors 

Figure 4.13 and Figure 4.14 present respectively the absolute speedup and the 

good-put vs. the number of processors for three benchmark circuits simulated with 

50 vectors and 100 vectors. In both figures, there is a general trend of increasing 

speedups and good-puts with an increasing number of processors, circuit size and 

number of vectors. A slight drop of absolute speedup in s38584 with 4 processors is 

due to the unbalanced loads assigned across the processors. The trends in Figure 4.12, 
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x 10 

number of processors 

FIGURE 4.14. good-put vs. number of processors 

Figure 4.13 and Figure 4.14 all clearly indicate that XTW7 is scalable and is capable 

of simulating large circuits. 

4.5. Peak Memory Usage. Figure 4.15 presents the peak memory usage 

vs. the number of processors. As we can see, the size of circuit dominates the peak 

memory usage - the larger the circuit size, the larger the peak memory usage. The 

results also indicate that the peak memory usage only increases a small amount with 

an increase in the number of vectors. 

To quantify parallel peak memory usage, we consider the following metric: Peak 

memory usage ratio(PMUR) is defined as the ratio of the peak memory usage of a 

parallel simulation to that of a sequential simulation. Let PPMU be the amount of 

parallel peak memorv usage and SPMU be the amount of sequential peak memory 

usage. 

PMUR = PPMU I SPMU 
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Figure 4.16 shows the peak memory usage ratio vs. the number of processors for all 

three circuit benchmarks. In Figure 4.16, we can clearly see that the peak memory 

usage ratio drops dramatically as the size of the circuit increases. When a small 

circuit is simulated, such as s.38584, the peak memory usage ratio is larger than 1 -

A'TJF uses more memory than A\S".S'. However, as the size of a circuit reaches a certain 

number, the peak memory usage ratio becomes less than 1 XTW uses less memory 

than XSS. 

Figure 4.17 displays the results of the peak memory usage ratio for the two large 

circuits slSOk and s360k. In Figure 4.17, although there are some increases due 

to unbalanced loads across the processors, we can clearly see a general trend of de­

creasing peak memory usage ratios with an increase in the number of processors for 

all simulations. This trend indicates that XTW is capable of simulating large cir­

cuits that XSS is not capable of simulating because of insufficient memory in a single 

machine. 

x 10 

number ol processors 

FIGURE 4.15. peak memory usage vs. number of processors 
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number ol processors 

FIGURE 4.1G. peak memory usage ratios, number of processors 
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FIGURE 4.17. peak memory usage ratio vs. number of processors(sl80k and s360k) 

57 



4 XTW VS. SEQUENTIAL SIMULATOR 

4.6. Overall Parallel Overheads and Parallel Efficiency. In section 4.3, 

we describe how much implementation parallel overhead exists in XTW. In this sec­

tion, we present results which indicate the size of the XTW7 overall parallel overhead. 

The overall parallel overhead includes the implementation parallel overhead, run-time 

communication and rollback overheads. The parallel efficiency is also presented here. 

We define the pure_sequentiaLthroughput(PST) as the throughput of the sequen­

tial simulator. 

We define the average_uniprocessor_paraIleLgood-put(AUPG) as the overall good-

put of a parallel simulation divided by the number of processors used in the simulation. 

The overall parallel overhead(OPO) is quantified as follows: 

OPO = {PST - AUPG)/PST 

The parallel efficiency(PE) is defined as the ratio of the good-put of a single 

processor in a parallel simulation and the throughput in a sequential simulation. The 

parallel efficiency(PE) is quantified as follows: 

PE = AUPG/PST 

Figure 4.18 shows the overall parallel overhead vs. the number of processors for 

all three benchmark circuits with 50 and 100 vectors. In Figure 4.18, we can see 

that the overall parallel overhead decreases as the size of circuits and the number of 

vectors increases. Nevertheless, the overall parallel overhead increases as the number 

of processors increases. 

Figure 4.19 shows the parallel efficiency vs. the number of processors for all three 

benchmark circuits with 50 and 100 vectors. The results indicate that the parallel 

efficiency increases with the circuit size and the number of vectors, and decreases 

with the number of processors. It should be noted that XTW has a parallel efficiency 

as high as 60% to 80% in an ultra-low granularity computing environment(e.g. the 

sequential simulator has a 167977-172606 events/sec throughput for the sl80k circuit 
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number of processors 

FIGURE 4.18. overall parallel overheads vs. the number of processors 

number ot processors 

FIGURE 4.19. parallel efficiency vs. the number of processors 
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simulation). When the sequential simulator starts to use swap-memory, the parallel 

efficiencies soar to 90%) and more at several points. 

Figure 4.12, Figure 4.18 and Figure 4.19 all underline the fact that simply in­

creasing the number of processors will not shorten the simulation time or improve 

the simulation performance. Instead the blindly added processors may hurt the over­

all simulation performance, increase overheads and decrease the efficiency of each 

processor. 

5. The Million-Gates Logic Simulation 

In section 4, we can see that the performance of the sequential simulator decreases 

dramatically when the size of circuits reaches a certain number, because the sequential 

simulator has to use swap-memory to complete the simulation (e.g. simulations with 

s360k). When the size of the benchmark circuit is increased to 500,000 gates, the 

performance of the sequential simulator is decreased so dramatically that it runs 

for hours and can not complete the simulation. However, XTW7 does not show a 

performance degradation when 3 or more processors are used. When the size of the 

benchmark circuit is increased to 1 million gates, the sequential simulator simply runs 

out of memory and halts. XTWT can successfully complete the simulation with 6 or 

more processors. In the following we present the results of the 500K and 1 million 

gates benchmark circuits simulated by XTW. The benchmark circuits are as follows: 

• s500k is consists of eighteen s38584 circuits and five s38417 circuits for a 

total of around 500,000 gates 

• slOOOk is consists of thirty-six s38584 circuits and ten s38417 circuits for a 

total of around 1,000,000 gates 

Figure 4.20 shows the max simulation time vs. the number of processors for the 

s500k and slOOOk benchmark circuits simulated with 10, 50 and 100 vectors. We 

can see that a general trend is the same as the one in figure 4.12 - simulation time 

decreases as the number of processors increases. This trend is enhanced as the size 

of circuit and the number of vectors are increased. 
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FIGURE 4.20. max simulation time vs. the number of processors 
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FIGURE 4.21. good-put vs. the number of processors 
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Figure 4.21 shows the good-put vs. the number of processors for the s500k and 

slOOOk benchmark circuits simulated with 10, 50 and 100 vectors. The results clearly 

show a trend of increasing good-puts with an increase in the number of processors. 

Nevertheless, simulations of the slOOOk circuit exhibits a smaller good-put than the 

ones of the s500k circuit as a consequence of swapping in slOOOk simulations. 

Both Figure 4.20 and Figure 4.21 show that XTW can improve the performance 

for large circuits simulations for which the sequential simulator's performance is non­

existent. XTW can complete the ultra-large circuits simulations for which the se­

quential simulator is unable to do. 
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C H A P T E R 5 

Conclusion and Future Work 

1. Conclusions 

In this thesis, a new parallel synchronization mechanism XTW is presented which 

reduces much of the overhead implicit in optimistic synchronization. XTW is designed 

in such a way that it 

• reduces event scheduling cost by creating the XEQ structure 

• reduces rollback and message cancellation cost by creating the rb-messages 

mechanism 

• reduces event saving cost by eliminating the output queue 

• reduces overall number of events by applying the event-lookahead mecha­

nism 

• reduces state saving by embedding the rollback relaxation mechanism 

• reduces memory usage and stabilizes the Time Warp system by embedding 

the Bounded Time Window mechanism 

The cost of XTW7 algorithms are analyzed in theory and confirmed via experiments 

which make use of a number of benchmark circuits. Based on XTW, an object-

oriented parallel logic simulation framework, XTWFM, was created. In XTWFM, a 

new virtual external LP structure is used to reduce the memory usage. Empirical 

results show that XTWFM has good scalability and can simulate ultra-large size 

circuits. A million-gate benchmark circuit is simulated by XTWFM over a cluster of 
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6 PCs. Each PC only can simulate less than 500k-gafes circuits making use of the 

sequential simulator. 

2. Future Work 

From previous research and our own results, we can see the fact that both sequen­

tial and parallel logic simulators have their own niches. Depending on the character­

istics of the circuit the underlying hardware infrastructure and simulation algorithms, 

either a sequential or a parallel simulator can have a better performance and be more 

cost-effective for specific circuit design. With the advent of on-demanding computing, 

it is desirable and feasible to dynamically pool the most cost-effective resources for 

a specific computing task. Thus an interesting future research direction could be to 

develop an intelligent logic simulation engine which can decide upon the algorithms(e. 

g. either sequential or parallel) and the hardware infrastructure^.g. either a single 

high performance workstation or a cluster of workstations) to be used for a specific 

circuit simulation and to dynamically pool the most cost-effective resources from an 

available computing grid. 
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