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Abstract 

The Neural Integrator (NI) in the oculomotor system is a conceptual process presumed to 

perform mathematical integration of eye velocity related sensory signals into motor 

signals controlling ocular orientation (position) in the orbit. It participates in tasks such as 

maintaining gaze in space during head fixed or head-free viewing of targets. The NI is 

classically assumed to perform ideally (large time constants) and to be identical in all 

tasks. This thesis explores past assumptions on the time-invariant characteristics of the 

NI. During passive head movement in the dark and measurements of the horizontal 

Vestibulo-Ocular Reflex (VOR), the dynamics of the NI were found to vary dynamically, 

depending on head velocity and eye positional set-points. To investigate the observed 

phenomenon, we incorporated a nonlinear component into an existing model for the NI 

and attempted to emulate the context-dependent changes in the NI dynamics. To estimate 

the model parameters, optimization methods were used instead of the least squared based 

algorithms due to the more complex formulation of the nonlinear NI model. When 

comparing nonlinear NI model estimates during passive VOR responses in human 

subjects, the nonlinear parameters were found to differ greatly between vestibular 

patients and the control group; furthermore, the nonlinear model predicts apparent NI 

dynamics that are set-point dependent for most of the subjects, even in controls. The form 

and optimal set-point for the NI characteristics are well correlated with the side of a 

lesion in patients, even after compensation. Furthermore, the non-linear NI formulation 

provides better fits on ocular data, than the presumed ideal integrator. The results have 

implications for both more sensitive detection of vestibular anomalies, and for the 

appropriate choice of analyses methods in the study of oculomotor physiology and 

reflexes. 
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Résumé 

L'intégrateur neural (IN) dans le système oculomoteur est un processus conceptuel 

présumé d‘effectuer l'intégration mathématique des signaux sensoriels relatifs à la vitesse 

de l‘oeil en signaux moteurs commandant l'orientation oculaire (position de l‘oeil) dans 

l'orbite. L‘IN  participe aux tâches telles que maintenir le regard  dans l'espace pendant le 

visionnement des cibles à tête fixe ou libre. Classiquement,  l‘IN est supposé intégrer 

idéalement (avec de grandes constantes de temps) et identiquement dans toutes les tâches. 

Cette thèse explore les anciennes prétentions sur les caractéristiques temps-invariables de 

l‘IN. Durant le mouvement passif de la tête dans l'obscurité et en mesurant le réflexe 

Vestibulo-Oculaire (RVO) horizontal, la dynamique de l‘IN s'est avérée de varier 

dynamiquement, selon la vitesse de la tête et les points de consigne de la position de 

l‘œil. Pour étudier le phénomène observé, nous avons incorporé un composant non 

linéaire à un modèle existant de l‘IN et nous avons essayé d'émuler les changements 

contexte-dépendants dans les dynamiques de l‘IN. Pour estimer les paramètres du 

modèle, des méthodes d'optimisation ont été employées au lieu des algorithmes basés sur 

le moindre carré à cause de la formulation plus complexe du modèle non linéaire de l‘IN. 

En comparant des évaluations non linéaires du modèle pendant des RVO passives chez 

des sujets humains, on a trouvé que les paramètres non linéaires diffèrent 

considérablement entre les patients vestibulaires et le groupe de control; de plus, le 

modèle non linéaire prévoit les dynamiques apparentes de l‘IN qui dépendent de la point 

de consigne pour la majorité des sujets, même chez le groupe de control. La forme et le 

point de consigne optimale pour les caractéristiques de l‘IN sont bien corrélés avec le 

côté de lésion chez les patients, même après la compensation. En outre, la formulation 

non linéaire de l‘IN correspond mieux aux données oculaires que l'intégrateur idéal 

présumé. Les résultats ont des implications pour une détection plus sensible des 

anomalies vestibulaires, ainsi que pour le choix approprié des méthodes d'analyses dans 

l'étude de la physiologie et réflexes oculomoteurs. 
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1. Introduction 

The Vestibulo-Ocular Reflex (VOR) is responsible for maintaining gaze in space during 

head perturbations. In the horizontal VOR, head rotational movement is detected by the 

horizontal semi-circular canals, converted into velocity-related neuronal signals and sent 

to the brainstem for processing. The central processing network in the brainstem includes 

the Vestibular Nuclei (VN), the reticular formation (RF) in the brainstem, the superior 

colliculus (SC) and the Prepositus Hypoglossi (PH). This network creates an estimate of 

the expected eye position required to correct for the head movement and then projects 

this positional drive signal as part of the eye control signal to the motorneurons of the 

eyes. The conversion of the velocity-related signal from the semi-circular canals to the 

positional signal in the motorneuronal drive suggests the existence of a mathematical 

integrator, known as the Neural Integrator in the oculomotor literature (Robinson 1981). 

The Neural Integrator (NI) has been modeled in the past as a linear low-pass filter 

(Robinson 1975; Raphan & Cohen 1978; Barnes 1979) presumed constant and with a 

large time constant (>15s, a ‗leaky‘ integrator). However earlier experiments by 

(Crawford et al 1992) implied a possible change in the gaze holding properties of the NI, 

with initial eye eccentricity.  The implications of a model for VOR modulation with 

target depth also predicts NI properties that would change with binocular set-points 

(Khojasteh & Galiana 2006). In addition, lesion experiments in the brainstem within the 

circuit supporting NI function also caused wide changes in its function, with the greatest 

effect caused by PH lesions (Cannon & Robinson 1987; Mettens et al. 1994). Similarly, 

intact connections between the brainstem and cerebellum are also required to preserve a 

strong NI with large time constant (Robinson 1989; McCrea, et al. 1987; Aksay et al. 

2000). 

The goal of this PhD research was to investigate the sensorimotor conditions 

(input/output context) that would cause variability in the NI dynamics, and to postulate a 

model structure that could support this variability in a physiologically significant manner. 

The experimental results in this study document that NI function depends both on eye 
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eccentricity and on concurrent head velocity levels. It is proposed that a non-linear 

element inside an existing loop model for the NI will accommodate for the set-point 

dependent characteristics of the NI dynamics. This non-linear element is placed at the 

level of VN premotor cells known to combine vestibular afferent information with 

internal efferent copies of eye position (so-called Position-Vestibular-Pause cells). Since 

the NI is known to be shared by all oculomotor reflexes, its context-dependency should 

also affect the dynamics of many reflexes in a similar manner. Thus, the modified NI 

model is used to estimate model parameters in VOR tests from human control subjects 

and peripheral vestibular patients. Comparisons of the estimates from the different 

subject groups imply a more sensitive detection of vestibular anomalies and a more 

sensitive tool for diagnosis, even after lesion compensation.  

This manuscript-based thesis begins with a Literature Review of the physiology and 

current models of the VOR, and the tools that are used to estimate these model 

parameters (VOR dynamics). The third chapter presents the first published manuscript, 

the discovery that the dynamics of the NI are setpoint-dependent even in the dark (gaze 

holding), and further change with the testing conditions (head fixed vs. passive head 

turns).  The fourth chapter presents the published manuscript with a nonlinear feedback 

model that emulates the observed setpoint-dependent dynamics of the NI, together with a 

validated algorithm to estimate the model coefficients from passive VOR responses in the 

dark. Finally, the fifth chapter compares the parameter estimates for this model form 

from different human subject groups in a manuscript submitted for publication. The 

thesis then concludes with a discussion linking the manuscript chapters and outlining 

their implications for future theoretical and clinical work on oculomotor control. 
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2. Literature Review 

In this review, we attempt to present all the tools that are essential for this thesis. They 

cover areas such as the physiology of the Vestibulo-Ocular Reflex (VOR), the various 

existing models for the VOR, and the different parameter estimation algorithms, such as 

the Least Squares Method and methods of Optimization. 

2.1 Physiology 

Numerous anatomical sites are involved in the horizontal Vestibular Ocular Reflex 

(VOR), such as the Semicircular Canals, Vestibular Nuclei, Prepositus Hypoglossi, 

Reticular Formation, Superior Colliculus and Abducen Nuclei. A brief overview on the 

different sites is given below: 

 2.1.1 Semicircular Canals 

The inner ear contains three semicircular canals oriented orthogonal to each other 

(horizontal, anterior and posterior). A pair of fluid-filled semi-circular canals lying on the 

horizontal plane detects horizontal head rotations from the induced pressure differential 

across the cupula, which in turn bends hair cells and triggers spikes in the vestibular 

nerve. The geometric and fluid properties of the canals cause the transduction of head 

velocity to spike frequency as a high-pass filter. Canal signals are then transmitted to the 

Vestibular Nuclei through the afferent vestibular nerve fibres. 

 
1
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


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(Goldberg and Fernandez 1980; Wilson and Melvill Jones 1979) 

 2.1.2 Vestibular Nuclei 

The Vestibular Nuclei (VN) consist of four major subdivisions: the superior, lateral, 

medial and descending VN (Buttner and Buttner-Ennever 2006). Most of the vestibular 
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nerves containing information on horizontal head rotation terminate in the medial VN. 

Disruption of the VN, such as electrical stimulation (Cohen 1974) and lesions (Uemura 

and Cohen 1973), leads to nystagmus during eye movement. Neurons in the VN can be 

classified into five general groups: Group I – vestibular only neurons which respond only 

to vestibular stimulation; Group II – vestibular plus saccades neurons which burst or 

pause in response to saccades in addition to responding to vestibular stimulation; Group 

III – vestibular plus position neurons which show activity changes related to both orbital 

eye position and vestibular stimulation; Group IV – gaze velocity neurons which encode 

eye velocity in space; and Group V – saccade plus position neurons which behave like 

ocular motorneurons and have a burst-tonic pattern during spontaneous eye movement 

with no sensitivity to vestibular stimulation (Buttner and Buttner-Ennever 2006). The 

presence of the Group III neurons in the VN provides a physiological substrate  for the 

VOR and neural integrator models (below) in this thesis that rely on an internal estimate 

of the eye position in a closed loop.  

 2.1.3 The Reticular Formation 

The reticular formation forms the central core of the brainstem. Since it has no distinct 

cytoarchitectural boundaries, it is subdivided according to its general location, such as the 

mesencephalic reticular formation, the Paramedian pontine reticular formation and the 

medullary reticular formation (Horn 2006). The Mesencephalic reticular formation or the 

rostral interstitial nucleus of the medial longitudinal fasciculus (RIMLF) contains 

premotor burst neurons which are essential for the generation of vertical and torsional 

saccades (Buttner, Buttner-Ennever and Henn 1977; Crawford and Vilis 1992). The 

paramedian pontine reticular formation lies between the abducens nucleus and the 

trochlear nucleus. It projects to motorneurons and internuclear neurons within the 

ipsilateral abducens nucleus, and the medial vestibular nuclei (Langer, et al. 1986) and is 

involved in the generation of horizontal saccades (Robinson 1972). The medullary 

reticular formation corresponds to the area just caudal and ventral to the abducens 

nucleus, and contains premotor inhibitory burst neurons for horizontal saccades (Scudder, 

Fuchs and Langer 1988). These inhibitory burst neurons have dendrites that enter either 
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the abducens or the PH (Strassman, Highstein and McCrea 1986). Studies on the firing 

rate of these burst cells indicate that their activity is related to concurrent eye velocity 

during saccades. 

 2.1.4 Prepositus Hypoglossi 

The Prepositus Hypoglossi (PH) consists of neurons that are located between the 

hypoglossal nucleus and the abducen nucleus in the brain stem (McCrea and Horn 2006). 

It receives inputs from areas that are involved in the control of eye movements, such as 

the vestibular nuclei and the reticular formation (McCrea and Horn 2006). Furthermore, it 

receives input from areas that drive gaze to spatial targets, such as the superior colliculus 

and the flocculus (Grantyn and Grantyn 1982; Balaban, Schuerger and Porter 2000). Due 

to its heavy interconnection with anatomical sites that are responsible for the generation 

of the VOR, the PH plays an essential role in the VOR as well as in the neural integration 

process (Mettens, et al. 1994). Whether by distributed circuitry (Kaneko 1997) or acting 

as a sole contributor to neural integration (Cannon and Robinson 1987), the PH‘s 

involvement in the neural integration process is generally accepted.  Many cells in this 

nucleus modulate their activity with orbital eye position, regardless of the sensory 

stimulus that caused the ocular response (Gonzalez-Forero et al. 2003; Cheron et al. 

1986; Baker et al. 1975). Hence it is also generally accepted that the NI function in the 

PH is shared by all ocular reflexes. 

 2.1.5 Superior Colliculus 

The superior colliculus (SC) is located rostral to the midbrain and plays an important role 

in the generation of saccadic eye movements (Moschovakis and Highstein 1994). It is 

involved in generating involuntary and visually-guided saccades, and plays a role in 

supporting visual fixation in cats (Munoz and Guitton 1991) and in monkeys (Munoz and 

Wurtz, 1993). Although lesion of the SC does not have any long term effect on the 

subject‘s ability to perform saccades since the Frontal Eye Field (FEF) is also involved in 

the task of generating saccadic eye movements, but the latency of the compensated 

saccadic eye movements increases substantially (Schiller et al. 1987). This suggests that 
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the SC provides a more direct pathway in generating saccadic eye movement. Neurons in 

the SC were found to synapse onto sites including the abducens nuclei, the burst neurons 

(BN) and Prepositus Hypoglossi (PH) in the medullary reticular formations (Guitton 

1991). There exist many saccade burst generator models, such as the Scudder model 

(Scudder 1988) and the Galiana model (Guitton et al. 1990), but a review on these 

models is beyond the scope of this thesis. 

2.2 Physiological Behaviour 

 2.2.1 Types of Eye Movements 

Eye movements are usually categorized in the following types: saccades, smooth pursuit 

eye movements, vestibulo-ocular reflex, optokinetic reflex, vergence and gaze holding 

(Buttner and Buttner-Ennever 2006). Saccadic eye movements correspond to fast 

conjugate eye movements that reposition the eyes to new spatial targets. Visual 

information is suppressed during saccades for normal subjects. Smooth pursuit eye 

movements are exhibited during voluntary tracking of a small foveal moving target, 

which can be mixed with fast catch-up or corrective saccades (pursuit nystagmus). The 

vestibulo-ocular reflex (VOR) adjusts eye movements when the head is subjected to 

perturbations in space. It consists of both slow phase (compensatory) and fast phase 

(anticompensatory) eye movements to form the VOR nystagmus pattern.  

An example of VOR nystagmus is provided in Figure 1.  It is clear that the eye velocity 

profile during slow phases follows in mirror fashion the head velocity profile. 

Optokinetic eye movements are triggered by movement of a large visual field, and consist 

of slow (following) segments interrupted by opposite rapid movements creating 

optokinetic nystagmus (OKN) (Henn et al. 1980). Subjects undergoing optokinetic 

stimuli often have the sensation of moving in a direction opposite to the visual flow, 

despite remaining stationary. Hence OKN and VOR are deemed to serve complementary 

roles at premotor levels (Robinson 1972, Raphan and Cohen 1978). Convergence, or 

vergence, eye movements correspond to the foveation of the two eyes on objects at 
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varying distances. Gaze holding corresponds to the fixation of the eyes on a chosen target 

even in the dark, though with decaying trajectories. 

 

Figure 1: VOR Nystagmus: eye position (B) and eye velocity (C) when subjected to a head velocity 

profile (A). 

The classification of eye movements according to response type and sensory trigger is 

typical in the literature. However, recent data in the literature emphasizes that many of 

these movements rely on identical brain circuits, and differ only in their sensory 

processes (Henn et al. 1980). Hence a simpler classification refers to rapid eye 

movements to redirect gaze in any reflex (saccades, VOR and OKN fast phases, fast 

vergence), and to slow eye movements aligning the eyes on a current goal (in VOR, 

OKN, pursuit and slow vergence). 

 2.2.2 Vestibular Deficits 

The role of the Vestibulo-Ocular Reflex (VOR) is to stabilize gaze on objects during head 

movements. Performance of the VOR may be affected by abnormalities in any part of the 
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vestibular and oculomotor systems. We will go over some of the abnormalities that will 

be presented in this thesis and their effects on the VOR data.  

 

Figure 2: Example of a subject suffering from Vestibular Neuronitis on the right side, with (A) the 

head velocity and (B) the response eye velocity in the dark. The slow phases of the nystagmus are 

directed opposite to the head rotation direction. Note dereased reflex gain during rigtward head 

rotation (positive). 

  2.2.2.1 Vestibular Neuronitis 

Vestibular Neuronitis (VN) is caused by a viral infection of the vestibular nerve. 

Symptoms of Vestibular Neuronitis (or neuritis) include vertigo, nausea, imbalance, 

spontaneous nystagmus and blurred vision. Subjects with Vestibular Neuronitis usually 

experience the acute phase of the vertiginous episodes for one to two weeks, and then 

recover either because of compensation or of prevalence of the auto immune system over 

the virus. The recurrence rate of Vestibular Neuronitis symptoms is extremely low and 

compensated subjects with previous Vestibular Neuronitis function as well as normal 

subjects in daily tasks (Heardman et al 2000), but multiple recurrences are still possible 
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and may be reclassified as Benign Paroxysmal Vertigo (Basser 1964) or Meniere‘s 

disease (Rasekh and Harker 1992). The infection may be localized in one vestibular 

apparatus and produces a suppressed VOR response during rotation to the affected side 

(Figure 2). 

  2.2.2.2 Sudden Hearing Loss 

Sudden Hearing Loss consists of an acute loss of hearing and may be accompanied by 

symptoms similar to those of Vestibular Neuronitis, such as dizziness and nausea. It may 

be caused by sudden air pressure change in the ear, infection, side effect from ototoxic 

drugs/medications or acoustic trauma (Lazarini & Camargo 2006). Depending on the 

prognosis, methods of intervention may include surgery, cessation of ototoxic drugs 

administration, or administration of medication for the infection (Narozny et al. 2006). Its 

effects on the vestibular system and VOR may be similar to that of Vestibular Neuronitis 

and require an extended period of compensation. 

The data of Vestibular Neuronitis or Sudden Hearing Loss patients that are presented in 

this thesis were from individuals who suffered only one vestibular episode and were 

recorded within a few months after the initial complaint. No labyrinthectomy was 

performed on any of these patients. 

  2.2.2.3 Meniere’s disease 

Patients suffering from Meniere‘s disease generally experience intermittent vertiginous 

episodes lasting for several minutes, tinnitus which is described as a sensation of ringing 

or fullness within the inner ear, and fluctuations in hearing (Atkinson 1961). It may be 

associated with endolymphatic hydrops, or the building up of pressure within the semi-

circular canals (Kariya et al 2007), some patients experiencing symptoms of Meniere‘s 

disease may or may not be showing any endolymphatic hydrops, but it is the only 

histologic marker for Meniere‘s disease (Cureoglu et al 2004). Thus the diagnosis of 

Meniere‘s disease in subjects is done by eliminating other possible causes, such as 

Vestibular Neuronitis, strokes or a tumor in the brainstem, which may result in the same 

symptoms as Meniere‘s disease (Mills 2007). Patients initially suffering from Meniere‘s 
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disease unilaterally may progress to exhibit symptoms bilaterally with time (Kariya et al 

2007). Since the occurrence and frequency of vertigo, tinnitus and hearing loss are 

unpredictable, many Meniere‘s disease patients suffering from frequent and severe 

episodes may opt for vestibular neurectomy (Pelletier 2002). Meniere‘s disease patients, 

when not experiencing any episodes, often exhibit a VOR that is comparable to that of 

normal subjects when relying on standard clinical tests. 

2.3 Models for the VOR 

 2.3.1 Velocity Storage 

The semicircular canals can be modeled by a first order high-pass filter of the form: 
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Due to the physical properties of the cupula-endolymph system, velocity-step head speed 

profiles appear in the primary vestibular afferents as activity declining with a time 

constant of 4-6s in man or monkey (Fernandez and Goldberg 1971; Gizzi and Harper 

2003; Wilson and Melvill Jones 1979). 

On the other hand during the rotation profile, it has been observed that the response of 

cells in the Vestibular Nuclei (VN) decays instead with a time constant of around 20s in 

human (Dai, et al. 1999). Ocular nystagmus in this protocol also follows a slow decay 

pattern. The slower pattern of central and behavioral decay is called velocity storage in 

the literature. It has been modeled by postulating a lead-lag process that cancels the canal 

primary time constant and replaces it with the observed central/ocular decay time 

constant (Robinson 1981; Raphan and Cohen 1978): 
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Where sT
V

20 .Thus lumping this model with the canal model with an arbitrary 

projection gain ‗g‘, we have: 

 
111

1

1
)()()(














sT

sT
G

sT

sgT
g

sT

sT

sT

sT
sHsHsH

VS

VS

VS

VS

C

VS

C

C

C

VNCVs
 (4)  

This provides in a global sense the first order high-pass filter properties observed at VN 

and ocular levels during steps in head velocity. 

 2.3.2 Neural Integrator (NI) 

Neural Integrator is the term used to describe the process of mathematical integration 

performed at the neuronal level. Such an NI is necessary in the oculomotor system to 

accommodate observed premotor and motor responses. Its exact physiological site is still 

under great debate, but the VN and Prepositus Hypoglossi, the Reticular Formation and 

the Superior Colicullus are believed to form a network that functions as an integrator 

(Gonzalez-Forero, et al. 2003). Appropriate construction of motor signals for eye control 

can either be achieved by an integrator in parallel with a feedforward path or an 

integrator with a feedback path. The NI itself is generally modeled as a global first order 

low pass filter with the form: 
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Where 
NI

T corresponds to the Neural Integrator time constant, usually assumed > 15s. 

 2.3.3 Building Motor signals 

The Eye Plant is responsible for converting motorneural signals into eye movement. It 

consists of the eyeball and the ocular muscles that control the movement of the eye. The 

horizontal Eye Plant can be modeled by a first order low-pass filter (Sylvestre and Cullen 

1999; Skavenski and Robinson 1973) as: 
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Where )(sE and )(sF respectively denote the eye position and motoneuronal firing rate, 

and 
EP

T  denotes the eye plant time constant of approximately 100-150 ms.  

A realization of the VOR to provide adequate signals on ocular motorneurons consists of 

passing the head velocity signal encoded by the Velocity Storage (VS) process onto, in 

parallel,  the postulated NI process (first order low-pass filter) and a simple feedforward 

gain,. The sum then simply combines at the level of the MN (Skavenski and Robinson 

1973) (Figure 3A). In this case, the coefficients a and b control the weight between the 

two feedforward pathways, while the coefficient   denotes the gain before the NI model. 

The overall transfer function of this realization is: 
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Where  babTT
NIEP

 and  baG
VOR

  . 

Another realization embedding suitable NI function and eye plant compensation consists 

of a feedforward pathway within a feedback loop containing an internal copy of the eye 

position from an approximate eye plant model (Skavenski and Robinson 1973) (Figure 

3B). This realization is supported by the presence of cells in the Vestibular Nuclei and 

PH that modulate with both eye position and head velocity (Mettens et al. 1994). The 

overall transfer function of this realization is: 
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With    1
VOR

G  and   1
EPNI

TT . 

For the two realizations to be equivalent, we set: 
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   11ba and   1
EPNI

TT  (9)  

 

Figure 3: Different Realizations of the Neural Integrator and eye plant compensation. 

The realizations that are based on the feed-forward model structure, such as the Robinson 

model (Figure 3A) and the models proposed by Galiana & Outerbridge (1984) and Seung 

et al (2000) are all based on neural-like networks and try to build from single cells the 

performance of a near-ideal integrator (T>10s); in contrast the feedback loop approach 

(Figure 3B) is relying on building a ‗model‘ of the eye plant (linear or non-linear) with a 

much smaller time constant (T~200-300ms). In the linear case, all the implementations 

can look the same at the global level (e.g. gaze holding). However the latter points to 

possible execution by simpler neural networks (fewer cells as in goldfish) without loss of 

behavioural performance. 

Thus, the dynamics of the Vestibulo-Ocular Reflex are achieved by concatenating the 

Velocity Storage and the Neural Integrator/MN processes together (Figure 4), yielding: 
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


sT

G

sT

sT
sH

NI

NI

VS

VS

VOR
 (10)  

 

Figure 4: Block diagram of the overall VOR model structure 

This is a cascade of a first order high-pass filter and a first order low-pass filter regardless 

of the realization used for the NI. GVOR represents the gain of eye velocity with respect to 

head velocity for large rotation frequencies (
NIVS

TT 1;1 ). 

2.4 Model Parameter Estimation Algorithms 

Regardless of the model form that may be postulated, testing a model‘s validity requires 

fitting coefficients to central or ocular data, and evaluating its predictive capability. An 

overview of available identification schemes is now provided. 

 2.4.1 Method of Least Squares 

Let us first consider a linear system with the model structure given as in Figure 5 with the 

input given by )(nx , the output given by )(ny  and the transfer function given by )(nh . 

 

Figure 5: A system with an input stimulus and observed output 

Below, M will denote the order of the system (number of states in discrete or continuous 

time) and N the length of the data (number of data points). The problem must first be 

formulated in terms of multiple segments of ocular nystagmus of the same type (e.g. slow 

phases for the VOR).  Hence the input data X  in a given segment of length N can be 



 

24 

 

defined as an N by M matrix with each of its rows containing M  samples of the input 

data starting at n, while Y is a column vector of N samples: 
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


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 (11)  

  
T

NnynynyY )1()1()(    (12)  

 The relationship between the input and output of the system can then be expressed as: 

 eXY   (13)  

Where  corresponds to the system parameters of )(nh  and e corresponds to the residual 

caused by observation noise or model deficiencies. 

  
T

M
 

21
  (14)  

By the method of least squares (Kukreja et al. 2005; Ljung & Glad 1994; Freund & 

Walpole 1987), the estimate of the model parameters is given by: 

 YXXX
TT 1

)(ˆ 
  (15)  

While the variance-covariance matrix of the estimates is given by: 

 12
)()ˆ(


 XXD
T

  (16)  

and  , the variance of the output residual, can be estimated with: 

 
NM

XYXY
T




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)ˆ()ˆ(
ˆ

2
  (17)  
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In order to use the method of least squares and obtain unbiased estimates, the system has 

to satisfy the following criteria (Kukreja 2001; Ljung & Glad 1994): 

 The input signal has to be deterministic, i.e. noiseless. 

 The output residual (and observation noise) has to be zero mean and white (or 

uncorrelated) with respect to the input. 

 The model used in the estimation process has to be correct. 

In addition the input characteristics should include the expected bandwidth of the system 

under study. This solution presumes a linear system with long data records that allow 

transients (initial conditions) to play a minor role. Also it is presumed that each output is 

only a function of delayed inputs – moving average with exogenous input  (Ljung and 

Glad 1994). Alternatives are needed for systems with auto-regressive components or non-

linearities in the presence of observation noise and/or short data segments (as in 

nystagmus). 

 2.4.2 Extended Least Squares for NARMAX Models 

Many biological systems can be represented well by cascades of static non-linearities 

with linear systems (e.g. Wiener or Hammerstein systems; Kukreja 2001). Let us 

consider a nonlinear model with the following configuration: 

 

Figure 6: System with Noise 
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A NARMAX structure can serve to identify models with auto-regressive components and 

cascaded non-linearities. For example, in Figure 5, let us consider a Wiener structure 

with:  

 )()()()()(
342

2

3121
dnydnxdnxnxny    (18)  

And since we can only measure )(nz instead of )(ny : 

 )]()([)()()()()(
3342

2

3121
dnednzdnxdnxnxnenz    (19)  

Grouping the observed output )(nz on the left hand side, we have: 

 )()()()()()()(
34342

2

3121
dnenednzdnxdnxnxnz    (20)  

Or for N samples, 

 rZ
zu

  (21)  

with  
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 (22)  

  
T

4321
  (23)  

And the residual r is given by: 
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We observe that the noise term )(
3

dne   in the residual is biased by the coefficient
4

 . 

Thus the Least Squares method cannot yield unbiased estimates of this nonlinear model. 

To address this problem, let us consider: 

 ZZe ˆˆ   
(25)  

Where Z denotes the measured output and Ẑ denotes the predicted output. Ẑ can be 

calculated by iteration, where the first attempt is calculated from the method of Least 

Squares with: 

 
ZUZU

Z  ˆˆ  (26)  

and 
zu

 and
ZU

̂  only contain terms that are related to the input )(nx and output )(nz .  

With the estimated residual, the system parameters can be recomputed with an extended 

regressor to include the coefficients for the noise model: 

 Z
TT

zue


1
)(ˆ  (27)  

Where ][ ˆˆ eezxzx
 , and 

zx
 contains combinations of z and x terms only, 

ezx ˆ
 contains all cross-terms between z, x and ê , and 

ê
 contains polynomials of ê only. 

Thus the procedure is: 

1. Calculate the estimates 
zx

̂  for all combined terms of z and x only with the 

method of Least Squares. 

2. Calculate the residual estimate ê  from
zxzx

Z  ˆˆ . 

3. Formulate ][ ˆˆ eezxzx
  and calculate Z

TT

zue


1
)(ˆ . 

4. Calculate the residual estimate ê from
ezxezx

Z
ˆˆ

ˆˆ  . 

5. Repeat 3 and 4 until convergence. 
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The Method of Extended Least Squares requires that all the noise and residual terms be 

included in the model, hence the complexity of the model increases rapidly as the 

model‘s order of nonlinearity increases (Kukreja 2001). Furthermore, the Method of 

Extended Least Squares requires the model ouput to be expressible explicitly as a 

function of inputs and past outputs, i.e. in the form:  

  )(),...,1(),(),...,(),(),...,1()(
eyy

mnenemnxnxmnynyfny   (28)  

For models whose output cannot be explicitly expressed due to non-linearities, such as: 

  )(),...,1(),(),...,(),(),...,1(),()(
eyy

mnenemnxnxmnynynyfny   (29)  

alternatives to Least Squares are required to estimate the system parameters. 

Optimization tools are such an option. 

 2.4.3 Methods of Optimization 

The goal of optimization is to search for a set of parameters that minimizes (or 

maximizes) an objective function while satisfying certain constraints. Let us formulate it 

as: 

  


Vmin  (30)  

Subject to 

   0g  (31)  

with  
T

n
 

21
  denoting the n parameters to be estimated,  V  denoting 

the objective (or cost) function and  g  denoting the constraints on the parameter set 

 .  

An example of an optimization problem would be to find the set of parameters to 

minimize an error function, such as the mean-squared error: 



 

29 

 

     
2

)(ˆ)(
1

nyny
N

V
m

  (32)  

Where N denotes the data length, )(ny
m

the measured output at instance n and )(ˆ ny the 

predicted output from the model at instance n .  

While the system equation for the model is included in the constraint: 
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mnenemnxnxmnynynyf

nyg
 (33)  

Thus the output from the system  ny is not required to be expressed explicitly in the 

system equation. 

We will present an overview of several optimization methods that are widely used and 

compare their advantages and merits.  

  2.4.3.1 Linear Optimization 

For linear optimization, both the objective function and the constraint are linear. We can 

reformulate them as: 

 
T

Cz


min  (34)  

Subject to  

 ,BA   (35)  

 0  (36)  

Where 
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  
T

n
 
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  (38)  
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  
T

m
bbbB 

21
  (40)  

Where 1 nC , 1 n , nmA   and 1 mB . 

Then for the i th row in the matrix A , we have: 

 0
2211


sinniii

aaa    (41)  

Where 

 0
si

  (42)  

Therefore we can rewrite the constraint as: 
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With 0  and 0
s

, and I the mm  identity matrix 

  
smsss

 
21

  (44)  

With this formulation, we can now present the Conjugate Gradient Method or the Direct 

Search Method to solve the linear optimization problem. 

  2.4.3.2 Conjugate Gradient Method 
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The Conjugate Gradient Method is another linear optimization method that uses an 

iterative approach to search for the optimal solution. Let us consider the following 

problem (Hestenes & Stiefel 1952): 

 bAx 


min  (45)  

Where A is an n-by-n symmetric positive-definite matrix. 

Then the Conjugate Gradient Method consists of the following algorithm: 

1. We define the residual for the initial step as: 
00

Axbr  , where 
0

x is the initial 

point of the solution, and the direction of descent is defined as: 
00

rp  , with 

0k . 

2. We then have: 
k

T

k

k

T

k

k
App

rr
 , 

kkkk
pxx 

1
 and 

kkkk
Aprr 

1
. If 

1k
r  is 

‗small‘, we have 
1k

x  as our optimal solution, otherwise,  

3. We perform the following updates: 
k

T

k

k

T

k

k
rr

rr
r

11 
 , 

kkkk
prp 

 11
 and 

1 kk , and go back to step 2.  

The Conjugate Gradient method is suited to be used on sparse systems that are too large 

for the direct search methods, which will be presented in the next section.  

  2.4.3.3 Direct Search Methods  

The benefit of direct search methods is that they search for the optimal solution without 

calculating derivatives (Powell 1998). Instead, direct search methods define an area 

around a point, and search for a direction to improve the objective function. 
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Simplex Method:  

One of the most widely used Direct Search Method is the Simplex method. Given an 

optimization problem with n  number of parameters, the underlying idea of Direct Search 

Method is to iteratively move a polytope of dimension 1n , one vertex at a time, around 

on the objective function such that the new vertex would have an improved yield from 

the objective function  (Han and Michael 2006),  (Nelder and Mead 1965). 

Mathematically, we can denote the set of vertices of the polytope as  
n

vvv ,,,
10
  with 

     
n

vVvVvV  
10

 where  V  is the objective function. To move the polytope 

towards the optimum, the worse vertex, in this case
n

v , will have to be replaced by a new 

vertex. Four operations can be used to search for the new vertex: reflection, expansion, 

contraction and shrinkage. To express the operations mathematically, we respectively 

assign the multipliers ,  ,   and  to reflection, expansion, contraction and shrinkage. 

Note that 0 , 1 , 10    and 10   . We define the centroid of the polytope as  

 






1

0

1
n

i

i
v

n
v  (46)  

and the reflection, expansion, outside contraction, inside contraction and shrink 

procedures are respectively defined as: 

  
nr

vvvv    (47)  

  
ne

vvvv    (48)  

  
noc

vvvv    (49)  

  
nic

vvvv    (50)  

  
ni

vvvv    (51)  
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Thus the steps for the Simplex Method are: 

1. Search for the 
n

v that yields the worse value from the objective function, 

2. Evaluate  
r

vV . If      
nr

vVvVvV 
0

, replace 
n

v  with 
r

v , 

3. If    
0

vVvV
r
 , compute  

e
vV . If    

re
vVvV  , replace 

n
v  with 

e
v ; otherwise, 

replace 
n

v  with 
r

v , 

4. If      
nrn

vVvVvV 
1

, compute  
oc

vV . If    
roc

vVvV  , replace 
n

v  with 
oc

v , 

5. If    
nr

vVvV  , compute  
ic

vV . If    
nic

vVvV  , replace 
n

v  with 
ic

v , otherwise, 

6. We shrink the polytope for ni 1 . 

Grid-Based Method: 

Another realization of the direct search methods is the grid-based methods. The idea 

behind the grid-based methods is that a grid is formed over the feasible region, with one 

of the points on the grid selected as the current solution. Then the optimal solution is 

found by searching through the directions of the coordinate system (Carlyle, Montgomery 

and Runger 2000). An overview of the algorithm is as follow: 

1. Select an initial point,  11

2

1

1

1

xnxx
  , where xnxx ,,2,1   corresponds 

to the n  dimension for the objective function. 

2. Evaluate  1
V . 

3. Define a minimum step length
0

 . Then define a certain step parameters for each 

coordinate: 
xnxx

 ,,,
21

 . 

4. Evaluate  11

2

1

1
,,,

1 xnxx x

V 





, if  1
V , replace the current point 1

  by 

11

2

1

1
,,,

1 xnxx x







; otherwise, evaluate  11

2

1

1
,,,

1 xnxx x

V 





, if  1
V , replace 

the current point 1
  by 11

2

1

1
,,,

1 xnxx x






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5. Repeat step 4 for 
1

n
 with the step parameter

xn
 , denote the new current point 

as 2
 . 

6. If 21
  , repeat step 4 to 6 with 2

  as the new value, otherwise: 

7. Divide all  ‘s by 2. If
0

  , go back to step 4 with the new  , otherwise, stop the 

process. 

  2.4.3.4 Nonlinear Optimization Methods 

The disadvantage of direct search algorithms is that they do not necessarily converge to 

the global minimum. The Linear optimization methods are only capable of solving 

problems with a linear cost function in the form 
T

cV )( , but if the mean-squared 

error is used as the cost function (Eq. (32)), nonlinear optimization methods will need to 

be used. 

Let us reconsider an optimization problem posed as follow: 

  


Vmin  (52)  

Subject to 

 

  0g  

  0h  

(53)  

When the objective function  V does not possess a linear form, i.e. it cannot be 

expressed with the form 
T

cV )( , nonlinear optimization methods will need to be 

used. In the next section, we present the Generalized Reduced Gradient algorithm on 

which most of the nonlinear optimization solvers are based. 

  2.4.3.5 Generalized Reduced Gradient Method 
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The Generalized Reduced Gradient (GRG) method handles optimization problems in 

which both the objective function and the constraints are nonlinear. The following 

outlines a summary of the algorithm, for further reference, please refer to (Abadie and 

Carpentier 1968). 

1. The problem starts off with: 

 )(max xf
x

 (54)  

Subject to: 

 BXAxg  ,0)(  (55)  

Where N
Rx  , and x  is bounded by A  and B .  

All constraints, including inequalities, can be expressed as in equation (55) by 

introducing non-negative slack variables. 

2. With the inclusion of the slack variables, we assume that there exist a solution 

0
X  and it can be separated into two parts, such that  

  000
, yxX   (56)  

Where
n

Rx 
0

, m
Ry 

0 , with mNn  . 

Then the boundaries can be separated as  ', aaA   and  ', bbB   such that 

''
0

bya    and   00 
 xx

yg  is nonsingular. 

Then the problem can be restated as: 

 ),(max yxf  (57)  

Subject to 
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 0),( yxg , (58)  

 bxa  , (59)  

 '' yya   (60)  

 

At the optimal point  00
, yx , the Kunh-Tucker conditions (Kuhn & Tucker 1951), 

as well as the necessary conditions for a solution, state that there exists 
m

Ru   

and 
n

Rv   (with 
n

R  denoting the dual space to n
R ) such that: 
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Then, 
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Thus, 
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If the computed v  satisfies equation (61), then 0
X  is a stationary point, i.e. 

optimal solution. Otherwise, we update x  as: 
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Then we define a continuous curve   around the neighborhood of  00
, yx  by: 

 0,
0

 hxx  (67)  
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The tangent L  to   at ),(
00

yx  is then given by: 
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The following formula is easily checked: 

     2000
,)(, hkyhxf
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Where  
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i
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2
. 

3. A value of X , )'
~

,'('
~

yxX  will be chosen. 
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   hx
0  (74)  
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 With  0  

Determine 
1

 as ),(max
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Since 1~
X  may not belong toV , we need to deduce a point 

VyxX  ),(
111

by 0),(
1

yxg . 

Using Newton‘s method (Deuflhard 2004), starting with
1~

y , the current iteration 

for Newton‘s method is given by: 
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Where  
1

 yg should be computed at )
~

,(
1 t

yx . 

Assuming convergence of PVX 
1 , there will be two possible ends: 

a. ''
1

  y , then repeat on 1
X  what has been done on 0

X  

b. ''
rr

y  or '
r

 , then 
r

y must become x while some
s

x becomes y to replace 

r
y . This implies that a change of basis is required. 
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4. Newton‘s method may be unsuccessful in: 

a. Failing to converge; 

b. For some iterate
t

y
~ , we have ),()

~
,(

001
yxfyxf

t
 ; 

c. For some iterate 1~ t
y , the point )

~
,(

11 t
yx is outside the parallelotope P . 

In cases a and b, we reduce 
1

 and repeat the Newton‘s method. In case c, 

let Pyx
t
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~
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

such that '
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r
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r
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or '

r
  for some r . Then 

we make a change of basis and continue with the new splitting. 

5. Instead of computing  
1

 yg , we can use  
10 

 yg  as: 
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That is:
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There exist other types of nonlinear optimization methods such as the Branch and Bound 

method and the Sequential Quadratic Programming (Lazarini & Camargo 2006), but their 

use are not applicable in this thesis. 

  2.4.3.6 Selection of Optimization Methods for this Thesis 

The cost function presented in this thesis consists of minimizing the mean squared error 

of the prediction from the model, as given by Eq.(32). The formulation is thus a nonlinear 

formulation. Therefore only the nonlinear optimization methods, such as the Generalized 

Reduced Gradient, are applicable in our case.  
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2.5 Summary 

All data acquisition and processing procedures presented in the results chapters were 

performed in the Matlab environment (Mathworks, Newark, Mass.). The mathematical 

optimization process was performed in the General Algebraic Modeling System (GAMS, 

Washington, DC) environment, with its nonlinear optimization toolboxes such as 

CONOPT and MINOS, which are based on the Generalized Reduced Gradient method 

(Drud 1985). The results of such optimization methods applied to the VOR identification 

steps will be presented in chapters 5 and 6. 

Chapter 4 presents experimental data to substantiate the presence of dynamic non-

linearities in the NI process that supports the VOR. This leads to the need to postulate a 

new model or realization for the VOR/NI system (Chapter 5), and finally to fitting this 

model to control and patient VOR data (Chapter 6). Implications in clinical diagnosis of 

acute lesions and detection of compensated patients follow. 
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3. Extended Methods 

This chapter was put in place to give a more detailed description of the experimental 

setup and the protocols used in the ocular recordings in this thesis. 

3.1 Experimental Data Collection 

All ocular recordings were acquired with Electrooculography (EOG). Bilateral horizontal 

electrodes recording were averaged out to yield conjugate eye recordings. The 

experimental setup was shown in Figure 7. The electrodes were connected to a pre-

amplifier stage to provide high impedance that matches the high impedance on the skin 

surface. The amplified EOG signals were sent through the slip-rings at the base of the 

rotary chair and passed through an 8
th

 order Bessel anti-aliasing filter set at 40Hz, which 

is well above the bandwidth of ocular nystagmus (30Hz). The signals were then 

downloaded onto an A/D board (National Instrument DI-5024) with a sampling 

frequency of 500Hz for off-line analysis. 

 

Figure 7: Experimental setup of the rotary chair 
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Both the gaze holding protocol described in Chapter 4 and the horizontal rotational 

protocols mentioned in Chapters 4, 5 and 6 are described below:  

All human subjects have signed a consent form outlining the recording procedure before 

the recording sessions (Ethics certificate provided as an appendix). After the surface 

electrodes were placed on the skin on both sides of each eye, the subject was seated in the 

dark for 20 minutes for the ocular potential to stabilize to its level in the dark. The subject 

was then secured on the rotary chair with his/her head restrained with the head rest. The 

EOG was then calibrated by having the subject fixate flashed targets with known 

horizontal deviations from the center. The same calibration procedure was carried out at 

the end of the recording session to ensure the EOG maintaining the same voltage 

differences with respect to the same set of eye deviations. 

The gaze holding protocol was used to measure the gaze shift in space without any head 

movement in the dark. While performing mental arithmetic, the subject fixates onto a 

flash target with random deviation from the center projected on the screen in front of the 

subject. Each flash target would appear for 5 seconds and disappear for 30 seconds. The 

drift of the subject‘s eye position was then recorded. To dissociate drifting of the eye 

position from drifting caused by the change of the EOG baseline, a flash target was 

occasionally projected at the front center of the subject. The corresponding EOG levels at 

the ‗zero‘ light was then used to detrend the EOG signal (Figure 8) during data analysis.  

For the rotational protocols, the subjects were rotated with a signal that consists of the 

sum of three sinusoids or with a single sinusoid. It was verified that a stimulating signal 

consisting of a sum of sinusoids provides more robust system parameter estimates (Smith 

et al 2005). The sinusoids were chosen at 0.03Hz, 0.1Hz and 0.17Hz, having non-

overlapping harmonics to dissociate their nonlinear effects from each other. Furthermore, 

the bandwidth of the stimulus was chosen in the frequency range that would activate 

ocular nystagmus in the subjects, yielding output with bandwidth spanning from 0.03Hz 

up to 20Hz. The bandwidth of the output includes the generally accepted range of the 

Neural Integrator time constant of 10-15s (pole locating at 0.07Hz-0.1Hz). The input 
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chair profile from an optical position sensor, and the output eye position were sampled at 

500Hz, well above the 40Hz cut-off frequency of the anti-aliasing filter. 

 

Figure 8: Deviation of the flash target during the stationary protocol 

3.2 Signal Processing 

This section outlines the steps of offline signal processing on the recorded data before 

they were used in the analysis procedure. 

As mentioned in the previous section, the random flash target during the stationary 

protocol was occasionally projected right in front of the subject to allow later detrending 

of any drift of the EOG potential. During the stage of signal processing, a linear 

interpolation was performed on the EOG potential at the different instances of the ‗zero‘ 

light presentation. The raw EOG data was then de-trended by this measured shift in null-

point, and digitally filtered with an 8
th

 order Bessel filter of 40Hz to minimize noise 

levels. 

As for the chair signal during the rotational protocol, it is also filtered through an 8
th

 

order Bessel anti-aliasing filter set at 40Hz. 

Since this thesis only performs analysis on slow phase eye movements, a classification 

method, which was developed by Rey & Galiana (1993) and modified by Radinsky 

(2004), between fast and slow phase eye movement was used to perform the task. 

Subsequent analysis of eye recordings was then restricted to those segments flagged as 
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belonging to fixation intervals or slow phases of nystagmus. To avoid biases introduced 

by filtering effects near transitions between slow and fast phases, classified slow phase 

intervals were narrowed at each end by half the filter width used in discrete filtering (see 

above) before performing any model fits. 

3.3 VOR Simulation 

In Chapter 5 and 6, simulated VOR data are generated by models consisting of three 

basic structures: linear, Hammerstein nonlinear and dynamically nonlinear models. The 

detailed explanation on the corresponding models will be given in chapter 5 & 6, while 

the block diagrams and the list of parameters of the models used in the simulation are 

presented in this section. The simulation was carried out with the basic structure given in 

Figure 4. In detail, the sensory stage and the velocity stage were lumped together into a 

high-pass filter given by  
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VS

VS

VS
 (81)  

And the neural integrator/eye plant compensation stages were modeled by the feedback 

model given in Figure 3B. Therefore, for the simplest linear VOR model, the following 

parameters were required in the simulation: 

 
VS

T - time constant corresponding to the sensory/velocity storage stage 

  - gain of the VOR model 

  - ratio between the gain of the feedback eye position estimate and the output eye 

positon estimate 

 
EP

T - time constant of the eye plant dynamics 
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Note that there is no specific time constant corresponding to the neural integrator, instead 

the mathematical integration is achieved from the effects of the feedback loop, as 

outlined in section 2.3.  

Furthermore, for the nonlinear VOR model with the Hammerstein structure that will be 

described in chapter 5, a static 3
rd

 order polynomial is placed between the velocity 

storage stage and the NI/compensator stage, with the following expression: 

 kkpkpkg 
2

2

3

3
)(  (82)  

Where k corresponds to the input to the nonlinearity. 

For the dynamic nonlinear model that will be proposed in Chapter 5, a symmetric static 

nonlinearity is placed in the feedforward pathway within the feedback loop, with the form  
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Where b corresponds to a controlling parameter of the nonlinearity. As for the 

asymmetric case presented in chapter 6, a third order polynomial was used instead: 
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3.4 Identification Procedure and Cross Validation 

This section outlines the procedure used in the model parameter estimation and validation 

of the parameter estimates on the data set. All slow phase segments eye position were 

concatenated into a vector with flags outlining the initial point of each slow phase 

segment. In the sections requiring the selection of correct model structures from the data 

sets (Chapter 5 & 6), each data set was divided into two sections of equal length: the first 

half of the data set was used in the parameter estimation process and the second half was 

used to cross-validate the estimates by calculating the difference, or residual, between the 

predicted data from the model parameter estimates and the data set. Once the residual in 
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the cross-validation is zero-mean and near the EOG noise (±1deg), it is presumed from 

the central-limit theorem that the associated model form and coefficients is the optimal 

one for the data, and the MSE was sufficient for the correct model form selection. The 

AIC was only used if two postulated model forms had similar MSE but different 

complexity. 

Since the basic model structures presented in this thesis were in the continuous time 

domain and the data were sampled in the discrete time domain, the method of bilinear 

transform was used to convert the transfer functions between the two domains. 

 
 
 1

1

1

12










zT

z
s

samp

 (85)  

Where s corresponds to the variable in the Laplace domain (continuous-time), z 

corresponds to the variable in the Z-domain (discrete-time) and Tsamp corresponds to the 

sampling rate.
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4. Integrator function in the Oculomotor System is Dependent 

on Sensory Context 

W.W.P. Chan and H.L. Galiana 

 

This chapter was used with permission from the Journal of Neurophysiology and can be 

found with the following citation: 

W.W.P. Chan and H.L. Galiana Integrator Function in the Oculomotor System Is 

Dependent on Sensory Context J Neurophysiol 93(6): 3709-17, 2005. 

 

Abstract 

The oculomotor integrator is usually defined by the characteristics of decay in gaze after 

saccades to flashed targets or after spontaneous gaze shifts in the dark. This property is 

then presumed fixed and accessed by other ocular reflexes, such as the vestibulo-ocular 

reflex (VOR) or pursuit, in order to shape motoneural signals. An alternate view of this 

integrator proposes that it relies on a distributed network, which should change its 

properties with sensory-motor context. Here we demonstrate in ten normal subjects, that 

the function of integration can vary in an individual with the imposed test. The value of 

the time constant for the decay of gaze holding in the dark can be significantly different 

from the effective integration time constant estimated from VOR responses. Hence 

analytical tools for the study of dynamics in ocular reflexes must allow for non-ideal and 

labile integrator function. The mechanisms underlying such labile integration remain to 

be explored, and may be different in various ocular reflexes (e.g. visual vs vestibular). 

Keywords: VOR, oculomotor integrator, gaze holding 
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4.1 Introduction 

The oculomotor system has long been represented as relying on sensory processes 

which then converge on a shared ‗oculomotor integrator‘. Many publications have 

addressed the issue of estimating the time constant of this gaze-holding integrator (Tg), as 

most recently illustrated in Goldman et al (2002). A common presumption is that this 

gaze holding capability is a localized (anatomically) process whose function is invariant 

and necessary for the appropriate formation of motoneural drives to the ocular muscles. 

That is, the oculomotor integrator is presumed to rely on a filtering process with very 

large time constants (>20 s, Cannon & Robinson, 1987; Mettens et al 1994). This 

integrator is then presumed to interact with other systems to produce proper reflexes such 

as the Vestibular Ocular Reflex (VOR). While it is accepted that the VOR can change its 

dynamics (gain, time constant) with vergence context (Paige et al, 1998), the gaze 

integrator is always presumed to be fixed and with large time constant unless lesioned 

(Cannon & Robinson, 1987; Cheron et al 1986; Cheron & Godaux, 1987; Goldman et al, 

2002, Mettens et al 1994). In an alternate representation of the oculomotor system and the 

VOR, Galiana et al have proposed that the process of integration could rely instead on a 

distributed process (Galiana, 1991; Khojasteh & Galiana, 2003), recently supported by 

Aksay et al (2003). Because of central non-linearities, the connectivity of this distributed 

process should change with sensory-motor context, and hence this hypothesis predicts 

that the oculomotor integrator should have a time constant that is variable with test 

conditions (dark/light, fixed/free head…). Figure 9 summarizes the different views of 

central integration in the oculomotor system (see Methods). 

Here we report on the first direct test of oculomotor integration performance in 

normal human subjects. The ocular responses to three conditions are examined: the decay 

of fixation in the dark to flashed targets at various eccentricities, the responses during 

slow phases of the VOR to passive harmonic rotation with one sinusoid, or a sum of two 

uncorrelated sinusoids. The VOR produces compensatory eye movements during the 

slow phases of induced nystagmus with head perturbations. The reflex pathways are 

known to converge on an oculomotor integration process, located in the VN-Prepositus 
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Hypoglossi (PH) complex used by all horizontal ocular reflexes, including the 

maintenance of gaze direction in the dark after fixation of a flashed target (Cannon et al 

1987, Mettens et al 1994, Robinson 1968).In a previous paper (Green & Galiana 1998), 

we demonstrated that sharing of the integrator would be facilitated by sensory projections 

on different points on the network. Hence we selected a comparison of integrator function 

with and without head motion to test the validity of our hypothesis: integration function 

should vary with recruited sensory pathways. We have already demonstrated in a model 

study that integrator function could be labile with binocular context (orbital positions) 

given non-linearities in vestibular neural responses during the VOR (Khojasteh & 

Galiana 2003b):  this suggests a mechanism for the prior observations of Crawford et al 

(1993), showing that gaze direction decays with different time constants depending on 

eye eccentricity. Preliminary results supporting labile integration have appeared 

elsewhere in abstract form (Chan et al, 2004). 

4.2 Methods 

Data Acquisition 

 Ten human volunteers with no known vestibular dysfunction participated in the 

experiment. All subjects signed a consent form, describing the protocol approved by the 

Institutional Review Board of McGill‘s Faculty of Medicine. The experimental procedure 

has been described in detail elsewhere (e.g. see Galiana et al 1995). In brief, to avoid 

invasive procedures, horizontal conjugate eye movements were measured by Electro-

oculography (EOG) with an accuracy of ±1.5
o
 estimated in the calibration data. Passive 

head rotations around a vertical axis were performed en-block using a servo-controlled 

chair with either a single sinusoid (1/6 Hz, peak 150deg/s) or a sum of two sine waves 

(0.03Hz and 0.1Hz, peak 120 deg/s). The intent here is to also test for possible changes in 

reflex dynamics with changes in input bandwidth. EOG and turntable signals were 

filtered to 40 Hz with an 8-pole Besel filter and stored on a PC at 500Hz for later 

analysis.  
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 After a 20 min. rest period in the dark to stabilize the EOG electrodes, the 

recording procedure in the dark included: calibration with a laser target over +/- 50 deg 

range to quantify any bias and recording sensitivity (
o
/V), recording of eye movement 

with rotational stimuli (VOR, no target), recording of self-paced fixations intermingled 

between flashed targets (gaze, no rotation) and a final re-calibration. Pauses between tests 

were used to ensure the disappearance of any residual effects from the previous test. The 

dark-fixation trials were designed with imbedded catch-trials (flashed targets) to control 

for the well-known drift properties of EOG (Wolfgang 1973). First a horizontal target 

was presented randomly on a circular screen within 50 deg from the mid-point for 5 s and 

back to centre for 5 s; and then a new target was flashed at another random location and 

the subject was allowed to perform spontaneous saccades over 60s. This sequence was 

repeated 4 times, and allowed calibration of the EOG throughout the gaze holding trials, 

particularly for any changes in zero offset. In our experience, the amplitude calibration 

(volts to saccade size in deg) does not change over our trials. Trends in the zero offset 

during catch trials were used to detrend the EOG gaze holding trials, and did not exceed 

5-10
o
 over the whole procedure. (i.e.~0.04

o
/s over the gaze trials) 

Data Analysis 

 The raw data sampled at 500Hz was first digitally filtered to 20Hz before down-

sampling to 100Hz for analysis. Slow phase segments of the eye movements were then 

selected from records in each test, with a minimum duration of 0.2s to allow for the 

estimation of large time constants in the presence of noise. The selection was based on 

the classification routines developed by Galiana & colleagues (Rey et al 1993, Radinsky 

et al 2004), which propose a simple reduced model for the relationship between stimulus 

and eye response and accept as slow phase only those segments that are behaving within 

a range of the model. This often appears as selection based on an eye velocity criteria, but 

in general allows classification for any stimulus trajectory and robustly rejects low-

velocity saccades.  

 To quantify the dynamics of eye responses, we rely on a global schematic 

generally accepted in oculomotor control for the conjugate slow phases of the VOR 
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(Figure 9): angular head velocity ( H ) is the stimulus and angular eye position (E) is the 

response, assuming the eye plant is well-enough described as a simple low-pass filter 

with time constant T and gain K. In Figure 9A the classical approach uses a first stage 

typically called ‗velocity storage‘ (VS) (Raphan et al 1985, Robinson 1968) to describe 

the centrally derived vestibular signal, followed by direct and neural integrator (NI) 

parallel pathways to compensate for eye plant dynamics – it implies a near-perfect 

integrator in all eye reflexes. Figure 9B describes an alternative (Galiana 1991, Guitton et 

al 1990) that achieves the same integration and eye plant compensation with a single 

feedback loop  through a model of the eye plant – here integrator function depends on 

loop gains through non-linear vestibular cells (VN)  (Khojasteh et al 2003a, b). Both 

approaches can be lumped into equivalent dynamic processes (Figure 9C), where now we 

also include potential initial conditions on eye position E
o
 at the beginning of slow phase 

segments. Algorithms were developed in Matlab to estimate the value of the integrator 

time constant (Tg in Figure 9C) in each protocol: 

 1. For gaze holding in the dark: on a stationary chair, the input head velocity in 

Figure 9 is set to zero and two approaches were compared to evaluate integrator function. 

The first used a previously published equation (Becker & Klein 1973, Goldman et 

al.2002), where the integrator time constant can be extracted from the slope of an eye 

velocity vs eye position plot (Figure 9) with
vpg

EET / , in seconds.  The second 

method relied on a subset of our NARMAX estimation method (Rey & Galiana, 1993; 

Smith et al. 2002; Kukreja et al, 2005; see Figure 10).  In fact, the Rey & Galiana (1993) 

algorithm is a more general superset of that proposed by Becker and Klein (1973), later 

re-validated by Goldman et al (2002).  The relationship in Figure 9C is mapped into the 

discrete domain for all pooled slow-phase segments: 
1 1n n n n

E aE or E aE b
 
    

n {n=1…N, the number of slow-phase data points} refers to the sample number in a 

given slow-phase segment, and b allows for a non-zero null point in some subjects. For 

sampling interval Tsamp, )ln( aTT
sampg

 , in seconds. Since the eye position 

measurements (E
m

) are the real eye position including the residual: m
E E r  , with 
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assumed white noise ‗r‘. As a result, the regression problem in the equations above, in 

terms of  E
m

 (the data) becomes 

1 1 1
( )

m m

n n n n n
E r aE r ar

  
    , or  

1 1
( )

m m

n n n n
E aE b r ar

 
     

This is a linear ARMA problem: after substitution for the noisy eye position observations 

in the equations, there is a moving-average over the innovations (noise) but no exogenous 

input (such as head velocity). The estimates are found by extended least squares over all 

the slow-phase segments and do not require differentiation. Note that both methods are 

less accurate (larger standard deviations) when the time constants are large and/or when 

noise increases. As a result, it becomes more and more difficult to numerically resolve 

changes in the slopes as time constants get large in either method. 

                 2. For VOR in the dark:  both dynamic processes in Figure 9C must be taken 

into account. Analysis of VOR data was performed with our ARMAX method with an 

iterative regression approach to simultaneously estimate the optimal gain and time 

constant for the VS stage (Tv), and the time constant of the NI stage (Tg). As above, the 

dynamics of the VOR in Figure 9C can be mapped to the discrete domain with:     

1
'nn n

E aE b c H



    

where 
n

H '


 denotes the internal estimate of head velocity from the VS stage into the NI 

stage, and {a, b, and c} denote the coefficients for the one step delay of E, the bias, and 

the head velocity input into the regressor, respectively. Again, substituting for the 

measured data, the regression problem in the VOR becomes: 

'

1 1
( )

m m

n n n n n
E aE b c H r ar



 
     . 

This is an ARMAX problem, where the exogenous input 
n

H '


 must also be determined 

from the known head velocity profile. We relied on an iterative search where potential Tv 

over a range from 1 to 50 s  were used to generate candidate 
n

H '


 profiles by simulation 
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of the VS stage in Figure 9, prior to applying each regression. The regression optimally 

finds the parameters in each case using all samples and then also estimates the optimal 

initial condition E
0
 for individual slow-phase segments.  This last step caused a change in 

the optimal time constants of no more than 5%, and was only necessary to provide 

accurate simulations in the selection of VS time constants, especially when Tg is less than 

a few seconds. The optimal {Tv,Tg}  pair was selected as the one that generated the best 

QF in the validation (see below). This algorithm has been extensively tested on simulated 

data and shown to converge correctly (Smith et al 2002, Kukreja et al. 2005). It has the 

advantage of being applicable to any head velocity profile. 

                   3. Validation of models and statistical tests: A Simulink (Matlab) model of 

Figure 9C generated predicted eye position profiles in each VOR protocol, using the 

parameters estimated from the data, the measured head velocity profile and the optimal 

initial condition at the beginning of each slow phase (e.g. Figure 11). The quality of fit 

(QF) for estimated models was calculated from  

  
2

2
100 1 %

fit meas meas
QF z z z   

  
 

  

where zfit is the predicted trajectory (model simulation) and zmeas is the measured 

response. QF served to select the cases that minimized the modeling error with the best 

{Tv,Tg} combination for VOR tests. 

In order to estimate the confidence interval of time constant estimates in both gaze 

holding and VOR protocols, a t-test was first performed on the regression coefficients (θ). 

In general, the regression problem can be written as:  Y R , where Y is a vector of 

observations (En+1 above), R is the matrix of input/output observations (regressor without 

initial conditions) that multiplies the vector of desired coefficients (θ of dimension k)  

(a,b,c.. above) . The regression algorithm provides a solution ̂  which is used to generate 

the prediction ˆŶ R . The residual vector, or errors in prediction, is defined as 

ˆY Y   , with standard deviation ̂  . From this, we expect the coefficient estimates to 
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belong to a Normal distribution with mean ̂  , and with confidence intervals defined by  

the t-statistic for the i
th

 estimate as   

ˆ ˆ[ ] /
1

ii

i i

N c
t

N k
   

 
  

where cii is the ith diagonal element of (R‘R)
-1

, N is the number of data points, and k is 

the number of estimated coefficients. The confidence interval so computed at the 99% 

level for each parameter was then converted into the range of associated  time constants 

(T), according to the function postulated in each method  {e.g. 1/a or –Tsamp/ln(a) }. This 

approach relies on the fact that the cumulative probability of a coefficient interval must 

equal the probability of the associated range after a non-linear mapping. 

4.3 Results 

 Gaze holding in the dark: Figure 10 provides a sample of the spontaneous 

saccades and post-saccadic drift for subject JN48. Like two other subjects, he had a rather 

small gaze holding time constant in the dark (9.1s). All other subjects had larger time 

constants reaching even 100s in one case, as would be expected from the classical view 

of an ideal oculomotor integrator (Figure 12A). Integrator time constants evaluated with 

either the Goldman or the ARMA method were equivalent (no statistically significant 

differences, Figure 12B). Despite the presence of noise on the EOG records, the standard 

deviations for integrator estimates are reasonable and allow statistical tests against the 

VOR results below. 

 Integration function in the VOR:  Figure 11 illustrates part of the VOR response 

for subject DC06 during rotation with a sum of sines. Using the time constant estimates 

from the ARMAX method, the fits for the VOR responses in both eye position and 

velocity are excellent. The integrator time constants (Tg) in the single sine and sum of 

sinusoids protocol were found to be respectively 2.6s and 17.4s. Yet, the estimated 

integrator time constant during gaze holding was much larger for this subject, at Tg=31s 

for the Goldman method and 33s for the ARMA method (no significant difference, 
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p<.005). Integrator function during VOR tests is summarized for all subjects in Figure 

12A and in Table 1 to Table 4. This was typical for almost all subjects: weaker 

integration during rotation than during gaze shifts in the dark. A large gaze holding time 

constant is not necessarily associated with a strong integrator function during rotation 

tests, when examining estimates for a given subject (Figure 12C). Although Tg estimated 

in the VOR can vary between subjects from 1s to ~20s, the mean across all subjects in the 

single sinusoid protocol is 4.5s, while the mean for the sum of two sinusoids is 8.2s. This 

can be compared to the mean for the stationary protocol (gaze holding in the dark) at 31s 

for the Goldman method and 33s for the ARMA method. Therefore the averages across 

subjects for the VOR protocols are lower than the generally accepted range for the 

oculomotor integrator during gaze holding (20-30s). This trend is also observed within 

the estimates for a given subject. The integration time constant during rotation is 

systematically reduced from that during gaze holding in the dark for almost all subjects (* 

in Figure 12A, p<0.005). Thus it appears that the functional level of oculomotor 

integration (Tg) varies with sensory context.  

To further support these changes in different protocols, rotational data in the low eye-

velocity range (| E |<15deg/s) were selected to generate Tg estimates at eye speeds 

comparable to the gaze holding protocol; similarly, integrator estimates from VOR data 

at these low speeds were compared to those extracted only from high-speed segments 

(| E |>25deg/s). Figure 12D illustrates the results in the three scenarios: in the eight 

subjects that posses a significant change in Tg from stationary protocol to rotational 

protocol, all but one subject retain the same trend in Tg deficits (decrease) in the VOR, 

whether eye velocities are small or large. There is a trend for stronger decreases in 

integrator time constant with larger eye speeds, which will be covered in the Discussion.  

4.4 Discussion 

 Classically, the oculomotor integrator is assumed to be a very effective filter with 

a large time constant in all ocular reflexes. It was first hypothesized by Robinson as a 

global concept in order to transform velocity signals from sensors into position signals 
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for the eye plant. As a result, many analysis procedures to study ocular reflexes rely on 

this presumption of near-ideal integration in premotor ocular circuits:  – for example, eye 

velocity is assumed to allow unmasking of sensory stimuli, since differentiation of eye 

position cancels the effect of an ideal central integrator. This study illustrates in 10 

normal subjects that the general presumption of ideal integration can be totally 

unfounded. The results here support a distributed integrator process with very labile 

properties, which will have significant impact on the analysis of ocular reflex dynamics, 

for both neuroscientists and clinicians.  

 The accuracy of estimates: The estimated ‗integrator‘ time constant in our 

subjects varies in a context-dependent manner. The time constant is significantly larger in 

the stationary protocols when compared to rotational protocols (Figure 12B).  The 

changes in Tg during rotation tests might be ascribed to inaccurate algorithms which 

converge on biased values. However, we have tested the ARMAX algorithm extensively 

with simulations over a broad range of {Tv, Tg} combinations, and found it robust and 

unbiased even in the presence of the noise levels associated with EOG. Furthermore, 

estimates of dark gaze-holding from the Goldman et al approach are not significantly 

different from those obtained with the ARMA method (Figure 12D). Though one might 

be tempted to argue that the ARMAX algorithm for the VOR mistakenly assigned large 

time constants to the vestibular system and smaller ones to integration, this is not 

possible: in addition to our prior tests with simulated data, we use the validation of model 

predictions compared to experimental data to verify the high quality (QF) of fits – if one 

reverses the time constant estimates, the result is a very poor fit for the VOR data. Hence, 

the measured changes in the oculomotor integrator with test conditions are not likely due 

to our analysis algorithms. In fact, there is also an indication of differences in integrator 

time constants in the article by Goldman et al (2002, their Figure 11) with search coil 

data, when comparing fixations to VOR, but it was not discussed at that time. The main 

difference between the Goldman method and the ARMA method described here is that 

the Goldman method does not include an estimate for the filtered noise term (MA)  that is 

generated by the differentiation process of eye position. This can introduce biased 

estimates unless the noise level on eye records is extremely low.  
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 Finally, one might argue that the changes in estimated integration could be due to 

failure of the model used in regression. For example, Goldman et al, in commenting on 

their estimation technique, add the cautionary note that it should only be applied at low 

head velocities, to avoid corruption by head velocity signals in a pathway parallel to the 

integrator. This is because they rely on the characteristics of eye velocity. In our method, 

we simply assume that the premotor pathways serve to cancel eye-plant dynamics in 

whatever form they may take (Figure 9C) and so the only restriction for valid estimates is 

that the model be valid for any head velocity profile- i.e. that the eye plant is well 

compensated in all conditions, and that the assumption of a linear model (Figure 9C) is 

valid. First, according to Sylvestre and Cullen (1999), there is no reason to believe major 

changes are needed in eye plant compensation in these protocols: the r/k ratios in their 

Figure 14 remain between 100-200ms (dominant time constant for the eye plant) for eye 

velocities up to and beyond 200 deg/s. Second, our analysis supports changes in the 

integrator time constant that not only depend on the protocol (e.g. gaze holding vs VOR), 

but also appear to be sensitive to other variables such as eye speed. This is clearly a non-

linear property so that the model in Figure 9C is not sufficient, and some estimates will 

be biased. However, changes in the ‗integrator‘ time constant must be real given the huge 

and statistically significant differences observed here, even after restricting eye velocity 

ranges where a linear model should hold. The results are not likely due to simple model 

failure. 

Mechanisms for labile integration: Changes in Tg with protocols, and even with 

different subsets in the same protocol, are perfectly compatible with the concept of a 

distributed oculomotor integrator whose filtering properties will vary with recruitment of 

feedback or recurrent pathways. Activating vestibular processes in the dark can affect the 

recruitment level of brainstem loops around the vestibular nuclei, and the operating point 

of non-linear vestibular cells. In Figure 9B for example, with the assumed shape of the 

non-linearity, one would expect changes in the gain and time constant of the behavioral 

VOR with set point due to either sensory level '


H or eye eccentricity E* (Khojasteh & 

Galiana 2003b). This hypothesis has recently been tested successfully by Wu Zhou using 

acoustic clicks during head rotation (Personal Communication, manuscript submitted 
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2004). Similarly, a protocol in the light will add a visual loop around the brainstem 

filter(s) and again change the overall global performance of the ‗integrator‘ process. 

Since visual signals such as slip also converge on premotor loops, one would expect the 

effective integration to vary with all sensory contexts and with motor context 

(vergence/version set-points). More experiments will be required to explore all the factors 

affecting integration in both normal subjects and patients. 

 Implications for the estimation of sensory dynamics: Traditional estimates of 

vestibular time constants from eye velocity trajectories in the VOR can be seriously 

biased (Galiana, 1991). Unless the integrator is near ideal, the estimated Tv  (Figure 9) 

will actually be an average of the concurrent vestibular and integration function. In the 

ten subjects studied here for example, the average vestibular time constant Tv was found 

to be about 35s. This is larger than the traditionally accepted VOR time constants of 

about 20s, but it is compatible with the expected underestimation of vestibular time 

constants in the presence of degraded integration (Tg ~5.7s). The argument of biased 

sensory estimates would hold true for any ocular reflex since the ‗integrator‘ is also 

shared by the pursuit, optokinetic, saccadic, etc systems. One might be tempted to 

conclude that the VOR is deficient in subjects with a small integrator time constant 

during rotation (near 1s in one subject), but this would be false. The global VOR 

performance at the behavioral level remained perfectly equivalent in all these normal 

subjects, in terms of the slip levels during slow phases in the dark. It is possible to 

achieve appropriate reflex dynamics at the behavioral level with different combinations 

of sensory and integrator dynamics, especially with the help of nystagmus. 

In summary, the results here point to a need to fully investigate this phenomenon 

in a much larger group of both normal subjects and patients. More importantly, we cannot 

continue to use analytical methods in the study of ocular reflexes that rely on the 

assumption of a near-ideal integrator. More general statistical approaches must be applied 

to at least allow for the possibility of dynamic changes in the integrator with context. The 

first step will require a model framework that incorporates potential non-linear equations 
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for the integration stage (Figure 9B) in the regression problems, using NARMAX 

approaches (Kukreja et al 2005). 
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Table 1: Goldman Method:  Gaze Holding Time Constant in the dark 

 99% Confidence Interval 

Subject 

Code 

Estimated variance of 

residual (ζ2) 

θ (-1/T) Cii T min T T max 

nv67 1.2128 -0.11312 2.54E-5 7.85 8.84 10.12 

dc06 0.28635 -0.03208 5.91E-6 28.22 31.17 34.80 

nv20 7.3576 -0.07106 3.74E-7 13.27 14.07 14.97 

mr41 0.076603 -0.00804 9.59E-6 97.60 124.42 171.54 

mr81 1.0538 -0.01926 6.92E-6 38.15 51.93 81.30 

mr82 1.1341 -0.19246 7.70E-5 4.62 5.20 5.94 

mr83 0.80772 -0.09626 6.08E-5 8.75 10.39 12.79 

jn08 3.1819 -0.01173 7.34E-7 63.81 85.22 128.27 

jn48 13.042 -0.12769 3.19E-7 7.52 7.83 8.17 

jl61 5.3567 -0.04307 2.10E-7 21.84 23.22 24.79 
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Table 2: ARMA Method: Gaze Holding Time Constant in the dark 

99% Confidence Interval 

Subject 

Code 

Estimated variance of 

residual (ζ2) 

Θ exp(-Tsamp/T) Cii T min 

(sec) 

T (sec) T max 

(sec) 

nv67 6.41E-6 0.99945 2.07E-9 17.70 18.18 18.68 

dc06 2.19E-5 0.9997 5.63E-9 28.97 33.33 39.24 

nv20 0.000401 0.9993 2.49E-10 13.50 14.28 15.17 

mr41 1.65E-6 0.9999 8.73E-8 86.59 100 118.31 

mr81 1.05E-5 0.99985 6.89E-9 54.16 66.67 86.67 

mr82 6.04E-6 0.99925 3.23E-8 12.39 13.33 14.43 

mr83 9.88E-6 0.999 6.03E-8 9.09 10.00 11.10 

jn08 2.55E-5 0.99985 7.78E-10 59.48 66.67 75.83 

jn48 7.72E-5 0.9989 3.17E-10 8.93 9.09 9.26 

jl61 5.18E-5 0.99955 2.08E-10 21.58 22.22 22.90 
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Table 3: ARMAX Method: Integrator time constant, Head rotation at 0.167Hz 

99% Confidence Interval 

Subject 

Code 

Estimated variance of 

residual (ζ2) 

Θ exp(-Tsamp/T) Cii T min 

(sec) 

T (sec) T max 

(sec) 

nv67 1.1867 0.998812 1.63E-9 5.69 8.40 16.08 

dc06 0.57402 0.996206 1.50E-8 2.00 2.63 3.84 

nv20 1.6926 0.985775 6.63E-9 0.637 0.698 0.772 

mr41 0.72036 0.999459 9.17E-10 11.46 18.47 47.50 

mr81 1.5134 0.993685 5.82E-9 1.33 1.58 1.95 

mr82 1.0404 0.997239 2.15E-8 2.13 3.62 11.95 

mr83 1.1086 0.994994 2.11E-9 1.77 1.99 2.28 

jn08 0.072248 0.997396 1.15E-7 2.64 3.84 6.98 

jn48 0.18896 0.993567 6.64E-8 1.27 1.55 2.00 

jl61 0.096324 0.995893 7.17E-8 1.93 2.43 3.29 
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Table 4: ARMAX Method: Integrator time constant, Head rotation with sum of sinusoids at 0.03Hz 

and 0.1Hz 

99% Confidence Interval 

Subject 

Code 

Estimated variance of 

residual (ζ2) 

Θ exp(-Tsamp/T) Cii T min 

(sec) 

T (sec) T max 

(sec) 

nv67 0.006527 0.999427 9.78E-9 14.79 17.45 21.27 

dc06 0.00605 0.99881 6.46E-8 1.61 1.68 1.76 

nv20 0.004914 0.994452 3.73E-8 1.74 1.80 1.86 

mr41 0.007112 0.996725 2.64E-8 2.89 3.05 3.22 

mr81 0.014481 0.997623 6.53E-8 3.60 4.20 5.04 

mr82 0.024783 0.998708 6.08E-9 6.89 7.74 8.81 

mr83 0.031865 0.997556 1.18E-7 3.09 4.09 6.04 

jn08 0.00299 0.999436 4.77E-8 13.92 17.71 24.34 

jn48 0.006658 0.996265 2.81E-7 2.33 2.67 3.14 

jl61 0.003386 0.998434 2.60E-8 5.92 6.38 6.91 
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Figure 9: Block diagram representations of the VOR (input head velocity H  and response eye 

position (E)) using velocity storage (VS) cascaded with a central integrator (NI). A) Classical 

approach with parallel pathways through a near-ideal integrator (large Tg) to compensate for eye 

plant dynamics, B) Integrator is distributed in a feedback system that simultaneously compensates 

for eye plant dynamics, and the premotor cell has a non-linear sensitivity ‘m’. Both approaches 

provide an equivalent mid-stage transfer function Gi(Ts+1)/(Tgs+1) before projecting to the eye 

plant, here a simple low-pass filter with time constant T. C) Merging the last two stages, the two 

approaches are equivalent to a 2-stage cascade with VS =    1
v v v

G sT sT  , a high-pass system 

with high-frequency gain of Gv and an integrator  stage GiK/(sTg+1). The initial condition 
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contribution on a slow phase segment can be described by  
0

1
gg

E sTT  , a decaying exponential in 

time. In form A: 
i g

G d T  , and Tg is presumed fixed; In form B: /(1 )
i

G m m K  and 

/(1 )
g

T T m K  , where m varies with set point. The simpler form in C) is used in the data analysis, 

to estimate global VS and ‘integrator’ time constants from experimental data, and to simulate 

predicted trajectories. 
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Figure 10: Eye position (A) and eye velocity (B) of JN48 in an extract of gaze holding tests. C and D 

zoom in on a shorter time interval in eye position and eye velocity, respectively. Subject JN48 with 

estimated Tg=7.8s (99% confidence interval 7.5 s – 8.2 s) with the Goldman method vs. Tg= 9.09s 

(99% confidence interval  9.07s -  9.11s) with the ARMA method (see Methods). There is no 

statistically significant difference between these estimates (p<0.01) but the ARMA method has a 

much smaller confidence interval (more robust). 
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Figure 11: Passive VOR in the dark for Subject DC06. A - Head velocity, eye position and eye 

velocity for a rotation protocol with a sum of two sinusoids (± 20 deg/s at 0.03Hz and ± 80 deg/s at 

0.1Hz) (blue) and predicted slow phase segments (red). B – Zooms in on a time section. Using 

ARMAX, the time constants for gaze holding and vestibular processes were found to be: Tg = 7.7s, Tv 

=40s; compare to the Tg of ~30s in gaze holding. The associated predicted (model) eye responses are 

provided superimposed, with associated QF of   99.5% (position) and 97% (velocity). 

B 
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Figure 12: Estimates of ‘integrator’ time constants, with bars for the 99% confidence intervals on 

each estimate. A)  Bar Chart of ‘Integrator’ Time Constants from 10 normal subjects, including 2 

methods for the estimation during gaze holding in the dark; * marks subjects where gaze holding 

integration is significantly different from that estimated during both rotation tests ( p<0.005);  B) Plot 

of gaze holding time constants in the dark, relating estimates from Goldman et al method (2002) to 

our ARMA method (Kukreja et al 2005). Note that there is a near one-to-one relationship between 

the estimates with no statistically significant difference. As expected, estimate uncertainty increases 

with larger time constants. C)  Plot of time constant (Tg) of the oculomotor integrator during 

rotations versus that estimated during gaze holding, using the ARMA(X) method in all cases. Except 

for a clear reduction during rotation there is no evident relationship between the estimates. The line 

represents the unit slope expected if there were no change.  D) Bar Chart of ‘Integrator’ Time 

Constants from the same 10 subjects, when the VOR data are segregated into two groups of low or 

high velocity (see text). The trend of decreasing ‘integrator’ time constants is still observed from 

stationary protocol to rotatory protocol. 
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The previous chapter demonstrates the variability of the neural integrator time constant 

with respect to the set-points of the head velocity and eye position. To accommodate for 

the change in the apparent dynamics of the Neural Integrator, we propose  a nonlinear 

component in the Neural Integrator model to modify it into a ‗dynamically‘ nonlinear 

model. The next paper presents the derivation of such a model. Furthermore, the method 

of optimization is used to calculate estimates of the model parameters since the Extended 

Least Squared based method is inadequate in performing such a task. 
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5. Modeling the Non-Linear Context Dependency of the 

Neural Integrator in the Vestibulo-Ocular Reflex 

Wilbur W. P. Chan, Henrietta L. Galiana 

 

This chapter was re-used with permission from the IEEE Transaction on Biomedical 

Engineering and can be found with the following citation: 

W.W.P. Chan, H.L. Galiana. Modeling the nonlinear context dependency of the 

neural integrator in the vestibuloocular reflex. IEEE Trans Biomed Eng 55(8): 1946-

55, 2008. 

 

Abstract - A Neural Integrator (NI) is presumed to exist in the oculomotor system to 

assist in numerous tasks such as maintaining gaze on imaginary targets in the dark. It is 

shared by all ocular reflexes including the Vestibulo-Ocular Reflex (VOR). It has been 

widely accepted that the NI acts as a `perfect' integrator even in the dark with time 

constants as large as 50s. However, the NI time constant is often less than ideal and its 

value can also be dependent on context (Chan and Galiana 2005). In this paper, a 

nonlinear feedback model is postulated to model the context-dependent properties of the 

NI. Algorithms are first developed and validated to fit both linear and nonlinear NI 

models to experimental data in the presence of ocular nystagmus. Preliminary results 

indicate that even normal subjects can have a nonlinear VOR and NI. 

Keywords - Motor systems (biological), Neural Integrator, Vestibulo-Ocular Reflex. 
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5.1 Introduction 

An internal estimate of eye position is required to perform tasks such as gaze fixation on 

remembered targets in the dark, and is presumed to reflect the holding properties of a 

central neural integrator (NI) with a large time constant. In addition, during rotations 

about a vertical axis, the horizontal vestibulo-ocular reflex (VOR) only receives signals 

related to angular head velocity during natural movements sensed by the semicircular 

canals. Yet during the slow compensatory phases of vestibular nystagmus, the eyes (low-

pass filters of neural drive) follow a trajectory opposite to head position, rather than being 

related to head velocity  (Robinson 1975). Hence the function of a neural integrator (NI) 

is also required in the VOR system to process head velocity signals into appropriate 

motor commands to the eyes. It is generally accepted that this network is shared during 

all eye movements (Guitton, Munoz and Galiana 1990) with near ideal performance that 

can be impaired by lesions, for example, to the region of the medial vestibular and 

Prepositus hypoglossi nuclei (Cannon and Robinson 1987) (Mettens, et al. 1994). The 

exponential decay of eye position during attempted fixation in the dark is typically used 

to describe the NI performance under the presumption that this value is invariant in all 

reflexes. However, the time constant of this decay was recently shown to be less than 

`perfect' and to depend on context (Chan and Galiana 2005): the ‗apparent' NI time 

constant was found to be larger when the eye position is close to zero (straight ahead 

relative to the head), while larger eye deviations lead to a lower `apparent' time constant.  

Furthermore, it is known that firing activities from premotor cells in the Vestibular 

Nuclei (VN) modulate with both head velocity and eye position (McConville, Tomlinson 

and Na 1996). These characteristics are the basis of a new model that can account for the 

context dependent nature of the `apparent' time constant of the NI and the presence of 

head velocity and eye position signals in the VN. The remaining sections of this paper are 

organized as follows: Section II presents the model used to describe the context 

dependent nature of the ‗apparent' time constant. Section III compares the performance of 

the nonlinear feedback model against a linear feedback model. Section IV presents the 

conclusions. 
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5.2 Methodology 

In all the realizations presented below, the structures are first presented in the Laplace 

domain, and then mapped to the discrete domain using the Bilinear transform. The intent 

is to develop alternative representations that can be fitted to sampled experimental data 

using optimization techniques that minimize the mean-squared error of the fit. The 

models are fitted only to slow-phase segments of the VOR, assuming a time-invariant 

transfer function with respect to the controlled input (head velocity). However, because 

of the switched nature of nystagmus (Figure 13), and the short duration of slow-phase 

segments, it is also necessary to find optimal initial conditions for each segment, while 

searching for a shared global transfer function (details below). 

 

Figure 13: A simulation of the passive Vestibulo-Ocular Reflex (VOR) responses in the dark. Arrows 

denote segments of fast and slow phases in eye position (B) and eye velocity (C) when subjected to 

head rotation (A). 
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5.2.1 Possible Formulations for the NI Network 

5.2.1.1 Formulation of the Linear Model 

The Neural Integrator (NI) is classically modeled as a linear low-pass filter (Cannon and 

Robinson 1987). Two realizations of the linear model will be presented in this section: a 

feedforward model developed by Robinson (Robinson 1975) (Figure 14A) and a 

feedback model (see Appendix of Guitton et. al.  (Guitton, Munoz and Galiana 1990)}, 

Figure 14B). The eyeplant dynamics D(s), and the internal estimate of eyeplant dynamics 

D*(s) for the feedback case (Figure 14B), are approximated by first order low pass filters 

(Robinson 1981). 
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where T denotes the eyeplant time constant, G denotes the gain of the eyeplant while A 

denotes the gain of the internal eyeplant model. 

Experimentally, neural signals in the Vestibular Nuclei (VN) and the Prepositus 

Hypoglossi (PH) have been reported to be correlated with eye position (Robinson 1981)  

(Angelaki, Green and Dickman 2001)  (Gonzalez-Forero, et al. 2003). In the model 

realizations, this is represented by e* (Figure 14). The realizations of the function for the 

linear NI process (parts A and B) are equivalent. For example, in form A after 

substitution of (Eq.(86)), 
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Where b and a are chosen such that we achieve a large time constant and cancellation of 

eye plant dynamics, i.e. 
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E(s) denotes the eye position in the s-domain, )(sH  is the canal filtered head velocity, β 

is the gain acting on the input head velocity before the summing junction, a is the gain in 

the NI path, b is the feedforward gain, and T' is the feedforward model's NI time constant 

(i.e. the time constant of decay of ocular initial conditions). 

Similarly, in Figure 14B, the overall transfer function after substitution of (Eq. (86)) is 

given by 
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Where 
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Both forms provide an internal estimate of eye position (for example in form B, e*= 

(A/G) e) and both forms provide cancelation of eye plant dynamics. Since they are 

equivalent, we focus only on algorithm implementation with form B, which provides a 

better platform for inclusion of potential nonlinearities, besides including premotor cells 

with mixed sensory-motor signals. 

By using the Bilinear Transformation on (Eq. (90)) and a sampling interval η, the eye 

position for the linear NI model in the discrete domain then becomes 
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with the following substitutions: 
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Figure 14: Block diagram of alternate Neural Integrator (NI) models: A) The feedforward linear 

model, B) feedback linear model, C) Hammerstein model, D) Dynamic Nonlinear model. h(dot) 

denotes the head velocity from the canal, e
m

 as the measured eye position, v the added noise, e the 

true eye position; β the gain before any NI block, D(s) the eyeplant dynamics and D*(s) the internal 

eyeplant model dynamics. 
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Thus the analog coefficients can be recovered from 
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From this formulation, we can perform the optimization with respect to the coefficients ξ1 

and ξ2. Constraints to the parameter search include stable dynamics and appropriate 

reflex direction in simulations and human subjects: Thus G'<0, T'>0. Therefore ξ1 has to 

be between 0 and 1 and ξ2 has to be negative. 

An appropriate objective function for the linear model is: 
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subject to 0 < ξ1 < 1 and ξ2 < 0. N1 denotes the slow phase eye velocity in the data set, 

and 
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with e
m

n denoting the measured (noisy) eye position. 

5.2.2.2 Formulation of the Hammerstein Model 

The static nonlinear model is formulated as a Hammerstein model by adding a 

nonlinearity g(.) before the linear NI process that would represent sensory properties 

(Figure 14C). The eyeplant dynamics D(s) and D*(s) are the same. Since a cubic is 

sufficient to represent the asymmetric behavior seen in patients (Galiana, Smith and 

Katsarkas 1995), g(.) can be represented by a third order polynomial: 
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The nonlinearity is located in front of the feedback loop, so the apparent time constant of 

the model remains constant. By substituting this nonlinearity in the numerator of (Eq. 

(90)), and converting to the discrete domain 

      
141

22

31
33

211 


nnnnnnnn
hhhhhhee    (97)  
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The constraints on G' and T' are the same as in the linear model (Eq. (91)). Thus the 

constraints on θ1 and θ4 are the same as those on ξ1 and ξ2; there are no constraints on θ2 

and θ3. The objective function for the Hammerstein model becomes 
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subject to 0 < θ1 < 1 and θ4<0, and 
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5.2.2.3 Formulation of the Dynamic Nonlinear Model 

To accommodate possible changes in the NI time constant at different eye positions, a 

nonlinear feedback model is proposed as an alternative to describe the NI characteristics 

(Figure 14D). We place a nonlinearity on the feed-forward pathway in the loop to yield 

an `apparent' time constant that is context dependent. Note that the input to the 

nonlinearity is the difference between eye position and head velocity multiplied by scale 

factors to represent signals combined in the VN (variable i in Figure 14D). We select a 

nonlinear curve that disassociates peak gain from nonlinear range to minimize free 
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parameters while preserving the well known nonlinear characteristics of neural cells 

whose firing rate sensitivity often varies with set point (Idoux, et al. 2006). An example is 

the ‗Versiera' curve (Shikin 1995): 
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where f(.) and i respectively denote the output and input of the nonlinearity, and b 

controls the width of the pass-band in Figure 14E. The eyeplant dynamics D(s) and D*(s) 

in (Eq. (86)) become in sampled domain: 
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The discrete nonlinear model, with its states at instance n, is then defined by: 
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To relate input to output with minimal degrees of freedom, we combine the above 

equations to obtain: 
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where α=Gβ, K = b/β and γ= A/(Gβ). 
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Thus we are down to four free parameters, α, K, γ and T, to describe the nonlinear NI 

process. As a general guide, α can be interpreted as the gain controlling parameter, K as 

the parameter controlling the belt (or the roll-off) of the nonlinear curve, γ as the 

parameter for the feedback gain, and T the dynamics for the eyeplant time constant. 

Denoting r as the instantaneous gain of f(i)/i, this determines the set-point in a small-

signal model of the system, where the apparent overall gain and local time constant are 

given by: 
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 (105)  

Which restricts r > (1-T)/αγ. 

 

Figure 15: Example of model predictions from a linear fit (Figure 14B) and dynamic nonlinear fit 

(Figure 14D) to noisy simulated data of the nonlinear family (Data set 3 (Table 7)). The linear 

predictions (green curves, MSE=4.74, AIC=9754) are worse than the correct nonlinear model 

structure (red curves, MSE=1.89,AIC=3903), as expected (see Table 7) 



 

83 

 

In other words, with α, γ > 0, 0 < T < 1. This time constant restriction is consistent with 

reported experimental results on eye plant dynamics (T< 200 ms)  (Robinson 1981). 

Given the original analog system, all the parameters are greater than zero.  

The objective function is then defined as 
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Subject to α, K, γ > 0 and 0 < T < 1, and the residual becomes 

  
n

m

nn
eeTK ,,,   (107)  

5.2.2.4 Initial Conditions due to Switching 

Eye movements in the VOR consist of two modes of operation, with the slow phase eye 

movement generally opposite to the head motion while the fast phase eye movement is in 

the same direction as the head movement (Figure 13). This phenomenon can be modeled 

by switching between two system dynamics. This paper only deals with the modeling of 

the slow phase dynamics and thus fast phase models are not discussed in the previous 

sections. Whenever switching occurs, the initial condition at the beginning of each slow 

phase segment needs to be included in the model in the optimization process. We create a 

variable named e
0

j which represents the initial condition in the jth segment of slow phase. 
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(108)  

Since this is measured noisy data, and transients are important, we introduce a new 

coefficient 
j

  to allow estimation of the true initial condition as part of the optimization 

process. Hence, in the jth slow phase segment, the discrete model equation as a function 

of the input to D(s) becomes (valid for all forms in Figure 14). 
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The δj are treated as weights applied to the first noisy data point (segment initial 

condition) in the modeling of each segment's second data point, while the other 

coefficients are shared by all data entries across all slow-phase segments. Estimating the 

initial conditions on each segment is a necessary step in finding unbiased system 

coefficients and in producing optimal predictions for validations described below. In 

summary, all discrete models to be compared during data fitting are described by the 

following equations for the jth segment 
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where DMk represents the right-hand side of Eq. (91), Eq. (91) or Eq. (104), according to 

the selected discrete model type. This formulation is repeated for all segments in the data 

set. Clearly only the first equation in each segment includes the effect of its initial 

condition. Subsequent points in each segment follow the original mentioned equations 

Eq. (91), Eq. (91) or Eq. (104). 

5.3 Simulation 

Simulations in Matlab Simulink (MathWorks, Natick, MA, USA) of all the model forms 

presented in the previous sections are used to validate model identification algorithms. 

All simulations were carried out at 500Hz, sufficient for the dynamics studied here. We 

used a switching strategy previously published (Galiana 1991) for each of the feedback 

representations in (Figure 14B, C & D). When noise was added to the output of 

simulations, the Signal to Noise Ratio was defined as: 
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where en denotes the eye position and ε denotes the noise added at the output. Normally 

distributed noise was low-pass filtered to 40Hz with an eighth order Bessel filter and 

added to the output signal of the model (i.e. eye position) to approximate experimental 

conditions during clinical data acquisition. 

5.4 Recordings from Real Subjects 

Vestibulo-Ocular Reflex (VOR) data was recorded from four human subjects with no 

known VOR dysfunction. The data was acquired by electrooculography (EOG) after 

appropriate electrode stabilization and calibration (Galiana, Smith and Katsarkas 1995). 

These data were used in preliminary tests of the model type that might best suit normal 

subjects. All subjects signed a consent form outlining the protocol which was approved 

by the Institutional Review Board of McGill's Faculty of Medicine. They were asked to 

sit in total darkness for a 20-min period to stabilize the EOG electrodes. Calibration 

extended over ±50deg range and included viewing a central target (0 degree) immediately 

before and after each rotational protocol. This allows defining not only sensitivity but 

also correction for drift on the electrodes. See (Galiana, Smith and Katsarkas 1995) for 

more details. 

5.5 Parameter Estimation and Model Selection/Validation 

Optimal parameter estimation was carried out with both a previously developed 

algorithm coded in Matlab (MathWorks, Natick, MA, USA) and the General Algebraic 

Modeling System (GAMS) (Washington, DC, USA). Our previous Matlab code is based 

on a sequential optimization process; it assumes Linear or Non-linear Autoregressive 

Moving Average Exogenous (ARMAX or NARMAX) structures and uses the Modified 

Extended Least Square (MELS) method developed by Kukreja et al (Kukreja, Kearney 

and Galiana 2005) to solve for the parameters. As such it can only be applied on 

structures described by Figure 14A, B & C. It cannot be applied to dynamic non-linear 

descriptions (Figure 14D). The MELS method first estimates system parameters with 

ELS and then, based on these, finds estimates of initial conditions in each segment, inside 

an iterative search. The GAMS code, on the other hand, is formulated to perform 
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parameter searches (including initial conditions for each slow phase segment) globally 

and simultaneously. The CONOPT solver is more general and was used to perform the 

optimization on all proposed models. For a detailed description of the algorithm, please 

refer to (Carlyle, Montgomery and Runger 2000), (Abadie and Carpentier 1969). 

5.5.1 Validation of parameter estimates with the correct model 

Since MELS is not applicable to the nonlinear cases (Figure 14D), initial comparison of 

the new GAMS-based approach against MELS was carried out on results from linear 

models only. Identification used half the data set to find the optimal system parameters, 

together with optimal segment initial conditions. Prediction and model validation used 

the reserved second half of the data set, and was based solely on the stimulus data 

sequence (head velocity) and the global identified parameter set (infinite horizon); this 

allows a better distinction between alternate models than simple one-step prediction. 

Normal residuals of minimal variance were obtained by starting each segment at an 

optimal initial point, as required for trajectories that contain a transient component. 

Standard deviations on estimated system parameters were obtained in two ways. One 

approach relied on a Monte Carlo method, with 20 runs at the selected SNR with 

different noise seeds to compute the expected value and standard deviation for each 

parameter. A second approach derived the sensitivity functions for each parameter 

analytically, from the applied cost function and the standard deviation of the residuals 

(see (Ljung and Glad 1994), chapter 9 for details). The latter approach gives us an 

advantage in which one experimental data set is sufficient to define both the expected 

value and standard deviation of model coefficients. 

5.5.2 Validation of appropriate model selection 

We define Akaike's Information Criteria (AIC) (Akaike 1974) and Mean Squared Error 

(MSE) as: 
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where y corresponds to either the noisy simulated eye position in the simulation case or 

the measured eye position in the trials with real subjects, ŷ  corresponds to the prediction 

of y from the identified model, N is the sample length and d denotes the order of the 

model (number of estimated coefficients). Only the number of system coefficients 

defined the order of the model (2 for the linear model and a value of 4 for the 

Hammerstein and Dynamic Nonlinear models), since the initial conditions were not 

common to the data sets used for identification and validation. 

Table 5: Comparison of Parameters estimated in the MELS and CONOPT environment (standard 

deviation in brackets) 

Values used in Simulation with Linear Model 
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0.1 0.3 0.6 0.95 0.9940 -3.589 
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2
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MELS 

CONOPT 

0.9940 (±0.00030) 

0.9940 (±0.00019) 

-3.5892 (±0.0012) 

-3.5892 (±0.0081) 

SNR = 10dB 
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)3

2
10(


  

MELS 

CONOPT, 1 run 

CONOPT, 20 runs 

0.9920 (±0.0013) 

0.9938 (±0.00011) 

0.9937 (±0.00020) 

-3.532 (±0.09) 

-3.579 (±0.028) 

-3.580 (±0.040) 
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Table 6: Estimated Parameters, Dynamic Nonlinear case 

Scenario (SNR = 10)   K    T  

True Value 0.188s 200 0.94 0.3s 

CONOPT estimates ̂  K̂  ̂  T̂  

Mean of 20 Realizations 

Std of 20 Realizations 

0.23s 

0.025 

227 

33 

0.95 

1.6e-5 

0.37s 

0.041 

Estimates from one Realization 

Std from one Realization 

0.21s 

0.021 

207 

31 

0.953 

2.3e-5 

0.35s 

0.039 

Focusing on the GAMS-based method, MSE and AIC indicators are used to compare the 

accuracy and complexity measures using the three alternate estimators defined for the 

Linear (Eq. (94)), Hammerstein (Eq. (99)) and Dynamic Nonlinear (Eq. (106)) models. 

All three are applied to each data set extracted from simulations of these model types, to 

test appropriate model selection. Similarly MSE and AIC are also used in the selection of 

the model type best describing each of the four experimental subjects for preliminary 

tests of the new non-linear model's general applicability. 

5.6 Results 

5.6.1 Parameter Estimation and Validation with Simulated Data 

5.6.1.1 Linear Estimators 

To validate the performance of the CONOPT-based algorithm, we simulated a data set 

with the Linear model described in section 4.2.1.1 (Figure 14B) and estimated its 

parameters with both MELS and CONOPT. We used an eye plant time constant of 0.3s 

(Angelaki, Green and Dickman 2001) (Robinson 1981) (Kaneko 1997) and a feedforward 

gain (G') of -0.6 (Minor, et al. 1999) (Collewijn, Martins and Steinman 1983) reflecting 
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the properties of the typical VOR in the dark. Their corresponding discrete coefficients ξ1 

and ξ2 are summarized in Table 5. The estimates are provided for different levels of 

Signal to Noise Ratio (SNR), using up to 20 runs (different seeds) at the same SNR. The 

CONOPT estimator remains robust and unbiased even at high noise levels, while the 

results from MELS are more likely to become biased, as expected. Hence, in the 

following validation tests, we focus only on the CONOPT-based approach to model 

identification and selection. 

5.6.1.2 Nonlinear Estimator 

We document the asymptotic property of CONOPT during parameter estimation of the 

most difficult case: the Dynamic Nonlinear model for the NI process. This case cannot 

even be addressed by the MELS approach. 

Table 6 contains the true values of the parameter set used in simulation and their 

corresponding estimates for the model in Figure 14D. 20 different noise sequences were 

generated and added to the simulated data to generate 20 realizations of data with a 

Signal-to-Noise ratio (SNR) of 10, a noise level that exceeds that seen in our 

experimental data. The mean and the standard deviations of the estimates from the 20 

realizations are included in the table. The estimates from one realization are also included 

together with the standard deviation derived analytically from sensitivity functions and 

the standard deviation of the residual (see Appendix). The similarity between numerically 

derived std's (20 runs) and the analytically derived results support the accuracy of the 

CONOPT solver, since none of the standard deviations exceed 10% of the estimate. 

The purpose of the nonlinear model is to support possible changes in the Neural 

Integrator apparent time constant, TNI, with context. In the current representation, TNI is 

at its highest when the input to the nonlinearity, in, is closest to the origin, and decreases 

as in deviates from zero. The simulated data set had a maximum TNI of 5s. With the 

estimated parameters in a given context, the predicted apparent time constant and VOR 

gain are given by Eq. (105), or 
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The expected TNI in this test could thus vary from 4.4s to 1.23s (Figure 16A& B), 

depending on the context (combined head velocity and eye position). 

 

Figure 16: Predicted variability in apparent VOR gain (A) and time constants (B) from linear and 

non-linear models applied to three experimental subjects. One observes that subjects nv67 (red) 

could be classified as 'linear' in his behavior, jl61 (green) is mildly non-linear while mh02 (blue) is 

very non-linear. Where the subjects are nearly-linear, the model predictions are very consistent. 

5.6.2 Cross-validation of the Linear, Hammerstein and Dynamic Nonlinear 

models 

Here the validation consists in demonstrating the robustness of the estimators in terms of 

proper selection of the best model structure for a given data set. To this end, simulated 

data were generated using the Linear, Hammerstein and Dynamic Nonlinear models 

introduced in section 4.2.1 with SNR of 10 (Table 7). 

The goal for the nonlinear feedback model is to define a nonlinear curve that accounts for 

the change in the dynamics in the feedback loop. Thus the exact mathematical 

representation of the nonlinearity is not as important as the dynamic behavior that it is 

supposed to represent since the nonlinearity only approximates the context-dependent 

behavior in subjects. The nonlinearity in (Eq. (101)) was chosen for the convenience that 
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its roll-off is simply controlled by one parameter b independent of its peak value. Figure 

15 contains the simulated and predicted data for the context-dependent case. To verify the 

robustness of our algorithm, we also generated a fourth data set with another nonlinear 

function of similar shape, while preserving the overall structure of Figure 13D. Here the 

nonlinear sensitivity was chosen to be 

 
 2/cosh

)(
i

ai
if

alt
  (115)  

where a and η corresponds to the coefficients of the nonlinearity. 

Table 7: Estimated Parameters on Simulated Data (standard deviation in brackets), * denotes 

selected model 

Parameters used in data simulation 

Data Set 1 – 

Linear Model 

(2 parameters) 

99960.0
1
  

4

2
10259.6


  

Data Set 2 – 

Hammerstein 

Model (4 

parameters) 

99960.0
1
  

9

2
10612.1


  

8

3
10259.6


  

4

4
10259.6


  

Data Set 3 – 

Dynamic 

Nonlinear 

Model (4 

parameters) 

18.0  100K  94.0  3.0
ep

T  

Data Set 4 – 

Dynamic NL 

Model with NL 

in Eq. (115) 

188.0  50  94.0  3.0
ep

T  
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Parameters Estimated by the Linear Model 

Set 
1

̂  )10(ˆ 4

2


  

AIC MSE 

*1 0.99967 (±1.97e-4) 6.418 (±0.297) 4248 2.12 

2 0.99971 (±9.78e-5) 7.522 (±0.774) 4614 2.23 

3 0.99904 (±1.76e-4) 5.447 (±2.30) 9754 4.74 

4 0.99921 (±1.98e-4) 5.671 (±2.57) 4397 2.16 

Parameters Estimated by the Hammerstein Model 

Set 
1

̂  )10(ˆ 10

2


  )10(ˆ 8

3


  )10(ˆ 4

3


  

AIC MSE 

1 0.99959 

(±3.96e-4) 

-4.882 (±0.219) 10.81 (±0.995) -6.475 (±0.407) 4609 2.30 

*2 0.99964 

(±1.30e-4) 

-17.68 (±1.09) 6.47 (±0.994) -6.788 (±0.290) 4500 2.18 

3 0.99904 

(±2.26e-4) 

-0.7059 

(±0.230) 

0.9394 

(±0.349) 

-5.430 (±2.50) 10011 4.85 

4 0.99924 

(±3.18e-4) 

-2.313 (±0.276) 3.983 (±0.987) -5.642 (±0.295) 4232 2.08 

Parameters Estimated by the Dynamic Nonlinear Model 

Set ̂  K̂  ̂  
ep

T̂  
AIC MSE 

1 0.170 

(±0.013) 

500 (±23) 0.95 (±0.0023) 26 (±0.90) 5284 2.63 

2 0.400 

(±0.023) 

359 (±17) 0.90 (±0.0012) 64 (±0.62) 6105 2.95 

*3 0.190 

(±0.032) 

101 (±9) 0.94 (±0.011) 30 (±0.50) 3903 0.89 

*4 0.200 

(±0.0081) 

118 (±6) 0.95 (±0.0023) 32 (±0.47) 3947 1.94 
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The values of MSE and AIC are both at their lowest when the model structure of the 

estimator matches the model structure used in the simulations. Hence, as denoted by * in 

Table 7, the correct model is selected in each case, based on these criteria. This confirms 

that the algorithm is performing correctly, because the data belonged to one of the tested 

model forms. 

Although the formulation of the model nonlinearity did not match that used to generate 

data set 4, the Dynamic Nonlinear estimator has the lowest AIC of all estimators, and the 

estimated nonlinearity follows the same trend as the nonlinear curve used in the 

simulation (Figure 17). This confirms the robustness of the Dynamic Nonlinear model for 

general nonlinearities of similar shape. In addition, all the estimated coefficients in the 

selected models have 95% confidence intervals that include the true values. 

 

Figure 17: Convergence to the correct non-linear shape in dynamic non-linear models (Figure 14D). 

The simulated non-linearity used an inverted cosh function (Eq. (115), blue curve), while the 

estimation relied on fitting a Versiera function (red). The matches are excellent in both cases. 

5.6.3 Parameter Estimation on data from Human Subjects 

Now that the robustness of the estimators against misidentification of the model structure 

is verified, the three model estimators are applied to data recorded from human subjects 
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during VOR tests. The Linear, Hammerstein and the Dynamic Nonlinear estimators were 

all used to find the model with optimal prediction quality based on MSE and AIC, in four 

normal subjects with no history of vestibular deficits. Standard deviations on the 

estimated parameter sets were calculated with the analytical approach outlined in section 

4.5.1. All four subjects are best described by the Dynamic Nonlinear estimator (see 

Figure 18  for an example of the fit on one of the subjects). The instantaneous GNI and 

TNI of mh02, jl61 and nv67 are shown in Figure 16A&B. The absolute values of GNI and 

TNI are at their maximums when the input i to the nonlinearity is at the origin, and decay 

as i moves away from the origin. For subject jl61 and nv67, the values of GNI and TNI 

estimated by the Dynamic Nonlinear model remain almost constant throughout the range 

of i. In these cases, the nonlinearity f(i) in the Dynamic Nonlinear model simply consists 

of a gain, therefore the linear model may be sufficient enough to describe the two data 

sets. Thus the Dynamic Nonlinear model can be used to fit all the data sets while the 

estimates and shape of the non-linearity can be used to classify the data sets. 

 

Figure 18: Example of model predictions on human experimental data. Subject mh02 is best fit by 

the Dynamic non-linear model (MSE=0.75, AIC=1644, red curves) when compared to linear model 

predictions (MSE=0.86, AIC=1883, green curves). The differences are most visible at the ends of 

segments with large eye deviations, as expected from a context-dependent non-linearity. 
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Table 8: Estimated parameters on human VOR data (standard deviation in brackets), * denotes 

selected model. 

Parameters Estimated by the Linear Model 

Subject )(sT
c

 
1

̂  )10(ˆ 4

2


  

AIC MSE 

mh02 20 0.999617 (±0.00021) 7.475 (±0.593) 1883 0.86 

Jl61 20 0.999946 (±0.00016) 6.032 (±0.489) 1432 0.81 

jn08 50 0.999919 (±0.00014) 37.74 (±4.44) 1616 1.32 

nv67 50 0.999831 (±0.00021) 8.643 (±1.27) 1729 0.79 

Parameters Estimated by the Hammerstein Model 

Subject )(sT
c

 
1

̂  )10(ˆ 5

2


  )10(ˆ 4

3


  )10(ˆ 2

4


  

AIC MSE 

mh02 10 0.9802 

(±0.0059) 

-2.475 

(±0.032) 

-8.069 

(±0.39) 

-4.950 

(±0.69) 

56523 25.85 

Jl61 20 0.9820 

(±0.0014) 

-2.047 

(±0.055) 

3.279 

(±0.11) 

-4.685 

(±0.42) 

32291 18.22 

jn08 50 0.9861 

(±0.0048) 

-0.6096 

(±0.030) 

-5.958 

(±0.079) 

-45.83 

(±3.5) 

1630 1.33 

nv67 50 0.9976 

(±0.0010) 

-4.444 

(±0.063) 

17.07 (±2.7) -57.87 

(±1.9) 

59387 26.96 
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Parameters Estimated by the Dynamic Nonlinear Model 

Subject )(sT
c

 ̂  K̂  ̂  
ep

T̂  
AIC MSE 

mh02 15 0.44 

(±0.047) 

192 (±3.4) 0.979 

(±0.005) 

0.59 

(±0.046) 

1646 0.75 

Jl61 20 0.22 

(±0.013) 

284 (±1.2) 0.90 

(±0.002) 

0.36 

(±0.024) 

1200 0.68 

jn08 50 0.34 

(±0.057) 

2557 (±3.2) 0.98 

(±0.001) 

0.8 (±0.014) 1261 1.03 

nv67 50 0.18 

(±0.018) 

4326 (±13) 0.98 

(±0.001) 

0.2 (±0.025) 1644 0.75 

 

We performed a small signal analysis with the linear estimator on a data set best 

described by the Dynamic Nonlinear model. We segregated the data set into nine 

segments, with the corresponding segregation from -250deg/s to -25deg/s, -25deg/s to 

25deg/s and 25deg/s to 250deg/s for the head velocity; and from -50deg to -15deg, -

15deg to 15deg and 15deg to 50deg for eye position. The estimated parameters and the 

apparent T' and G' in each subset are given in Table 9. We observe that mh02 exhibits 

changes in both apparent T' and G'. Furthermore, we observe the diagonal terms of the 

'T̂ and 'Ĝ  ‗matrices' contain higher values compared to the non-diagonal terms (Table 9). 

These characteristics are compatible with the optimal model type selected with global 

identification, but would only be expressed by plots of expected TNI and VOR gain from 

fits of the most complex model (see below), given sufficiently high rotation speeds. 
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Table 9: Values from Small Signal Analysis on subject mh02 (± standard deviation) 

Eye Pos. 

(deg) 

-50 to -15 -15 to 15 15 to 50 -50 to -15 -15 to 15 15 to 50 

Head Vel. 

(deg/s) 1
̂  )10(ˆ 4

2


  

-250 to -25 0.999808 

(±0.000012) 

0.999145 

(±0.000048) 

0.999149 

(±0.000034) 

-8.259 

(±1.3) 

-7.307 

(±1.8) 

-6.906 

(±0.6) 

-25 to 25 0.999010 

(±0.000026) 

0.999952 

(±0.000031) 

0.999600 

(±0.000024) 

-6.119 

(±1.6) 

-7.726 

(±2.3) 

-5.895 

(±1.1) 

25 to 250 0.998493 

(±0.000067) 

0.999589 

(±0.000021) 

0.999907 

(±0.000054) 

-10.37 

(±1.2) 

-7.664 

(±3.1) 

-13.42 

(±1.0) 

 
'T̂  'Ĝ  

-250 to -25 19.65 2.338 2.349 -16.23 -1.709 -1.623 

-25 to 25 2.019 41.95 5.002 -1.236 -32.41 -2.948 

25 to 250 1.326 4.870 21.46 -1.376 -3.733 -28.79 

 

5.7 Discussion 

This paper proposes an alternative to the currently accepted function of 'neural 

integration' (NI) in the oculomotor system. The NI is generally believed to be an ideal 

mathematical integrator that converts sensory and premotor velocity signals into 

efference copies of eye position. Yet it is now known that the dynamic characteristics of 

this NI can be very labile with context and are not predicted from simple fixation decay 

in the dark (Zhou, et al. 2007) (Chan and Galiana 2005). For this reason, linear and non-

linear alternatives to the representation of the NI in ocular reflexes are compared, 

algorithms for their robust identification are validated and then the algorithms are applied 

to preliminary experimental data to show their relevance. Indeed even normal subjects 
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with no sign of vestibular dysfunction can exhibit non-linear NI characteristics. Hence, 

alternatives to ideal NI processes should always be considered in identifying ocular reflex 

dynamics, so that the best representation is detected for any subject. 

Here only three representations were examined to illustrate the methodology, which 

includes handling transients in the responses during ocular nystagmus. Our previous 

identification algorithm (MELS) was compared to the GAMS-based CONOPT solver for 

the linear case to demonstrate that the approach with simultaneous optimization over 

initial conditions and parameters is more robust than the sequential/iterative MELS 

approach. The results on simulated data were found to be unbiased from the true values 

within 95% confidence intervals and validate the use of these optimization methods in 

identifying nonlinear NI models. Hence, whether using GAMS or another software 

environment (e.g. Matlab), we recommend the use of non-linear optimization approaches 

that prune the number of free coefficients to provide stable and unbiased results. 

It is interesting to note that the Dynamic Non-linear representation was always adequate 

and very close to the 'best' case in fitting experimental data from MSE and AIC criteria. It 

seems to represent a valid superset, whose properties can be examined later for 'linear' or 

'non-linear' dominance with plots such as Figure 16A&B for sensitivity with context. We 

need not at this time apply all possible model types - it is sufficient to identify the 

parameters for the most complex type. 

The uniqueness of optimal solutions - Global vs Local Minima 

So far, the most complex representation uses non-linear feedback in the NI process, to 

allow for cases where both the dynamics and the reflex sensitivity can change with 

sensorimotor context. Such non-linear representations potentially have multiple minima 

especially in the presence of noise, while CONOPT, the optimization method used in the 

validation tests, is a local optimization method (Drud 1985). Hence the results with 

CONOPT were also compared to those of global solvers also available in GAMS, 

including BARON, LGO and MSNLP (Pinter 1996). A global solver starts the 

optimization procedure with parameters at diverse initial values in the allowed range(s) to 
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prevent convergence to local minima. It was found that all global solvers tested 

converged to the same optimal values for the parameter set- containing the true values 

with 95% confidence. Thus the optimization algorithms are demonstrated to be robust in 

our application. However this test should be repeated whenever the structure of a 

proposed non-linear model is changed. 

Symmetric vs Asymmetric Non-linearities - Extending model classes 

Previous identification work on the VOR of patients with sensory lesions point to the 

presence of biases and asymmetries in the reflex gain, evaluated with Hammerstein 

representations (Jenkins, Cohen and Kimball 2000) (Crane, Tian and Demer 2000). The 

current representations in Figure 14 are all symmetric and bias-free. Extensions to the 

non-linear forms in the dynamic NL structure (Figure 14D) will be required to allow 

analysis of patient data. A bias can be integrated into all three models of the Neural 

Integrator by simply adding a bias term to Eq. (91), Eq. (91) or Eq. (104). This is only 

one example of the ease with which model structures can be adjusted if required by 

further examination of experimental data. The methodology proposed to find optimal 

parameter sets in VOR and NI models is quite general. 

Implications for clinical testing of the VOR - Future work 

For the first time, there are validated tools to test whether a particular VOR data set is 

best represented by Linear, Hammerstein (NL gain, Linear dynamics) or truly NL 

dynamics. The identification algorithms allow for initial conditions in the sequence of 

slow phase segments and hence are more sensitive to imbedded dynamics despite 

multiple switching over short intervals. In contrast, traditional approaches based on 

reconstructed slow-phase velocity across fast-phase gaps will provide biased estimates 

that vary with the fast phase patterns. Thus the identification methods provided here are 

expected to provide more sensitive detection of anomalies in the ocular reflexes of 

patients even after long-term compensation. The preliminary tests on 4 normal subjects 

already imply that non-linear behavior can be present even in symptom-free subjects, but 

a larger pool of normal subjects and patients is now being studied to evaluate trends in 
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the two populations. This will determine if the form of the proposed models is adequate 

in a larger data set and or require modifications to the proposed nonlinear characteristics. 

Issues to be considered are what mathematical functions could be used to represent biases 

(non-zero response to zero input) and general right-left asymmetries in the VOR 

dynamics (Figure 14E is symmetric); whether the nonlinearity has a single peak; and 

whether there is a need to disassociate sensory non-linearities from NI nonlinearities (a 

hybrid of models Figure 14C&D). Only further analysis of VOR responses with 

optimally designed stimuli will resolve the minimal complexities required to represent 

human vestibular function. 

Finally, it should now be clear that even the Neural Integrator in oculomotor reflexes 

should be treated as a complex potentially non-linear and context-dependent process. 

This theoretically could have beneficial impact on proper reflex function in a binocular 

system (Khojasteh and Galiana 2006), and we now have the tools to explore it 

systematically. 
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The previous paper presents the dynamic nonlinear Neural Integrator model that yields 

variable apparent VOR gain and NI time constant with different head velocity and eye 

position set-points. The next paper verifies the practical aspect of such a model by 

calculating estimates from real data collected from human subjects. It also compares the 

estimated parameters between different subject groups including patients. 
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Detection of Deficits in the Human VOR 

Wilbur W. P. Chan, Henrietta L. Galiana 

This chapter was submitted to the IEEE Transactions on Biomedical Engineering on 

Oct. 6, 2008. 

 

 

 

 

 

 

Abstract — A nonlinear model has been proposed to describe the setpoint-dependent 

characteristics of the Neural Integrator (NI) in the oculomotor system. It was shown to yield 

improved prediction of slow-phase eye position in the Vestibulo-Ocular Reflex (VOR) of normal 

subjects, when compared to the classical linear model of the NI. In this paper, we compare the 

parameters of this nonlinear NI model fitted to VOR data from 1) compensated subjects 

diagnosed with vestibular deficiencies such as Vestibular Neuronitis and Meniere‘s disease, and 

2) normal (symptom-free) subjects. The identified models exhibit more severe nonlinearity in 

VOR patients than the normal controls.  Several of the identified parameters in patients unmask 

asymmetries and more context-dependence in the NI and in the VOR gain that are consistent with 

the lesioned side and could serve to support detection of lesions even after compensation.  

Keywords — Vestibulo-Ocular Reflex, Neural Integrator, Modeling, Lesion Detection 



 

106 

 

6.1 INTRODUCTION 

 Here the focus will be on the horizontal vestibulo-ocular reflex (VOR), involving 

the horizontal semicircular canals, the medial vestibular nuclei (VN) and an essential 

Neural Integration process (NI; Robinson 1989). The NI in the oculomotor system is 

widely distributed in the premotor circuits, including the Prepositus Hypoglossi [1]-[4], 

the Reticular Formation in the brainstem [5] and the cerebellum [6].  This process of 

integration is required to mathematically integrate velocity-modulated sensory signals 

into positional motor neuron signals (e.g. head velocity signals encoded by the 

semicircular canals and projecting via the vestibular nerve to premotor cells in the VN), 

and for the ‗holding‘ of ocular deviations when stimuli are removed (gaze holding in the 

dark).  In tasks such as gaze holding and head rotation in the dark, a subject‘s perception 

of orientation will be inaccurate if the NI is defective (leaky, small time constant). 

Generally, the NI is presumed well represented by a linear first order filter [4] with a 

large time constant (> 15s), according to decay patterns of fixation in the dark.  However, 

we recently reported that the NI can have variable dynamics sensitive to protocol, head 

velocity and eye position set-points [7]. This was implied by prior experimental and 

theoretical work that reported NI changes with eye eccentricity, and their potential link to 

VOR modulation with target depth  [8][9].  Thus, a dynamically nonlinear model was 

developed to imitate the set-point dependent dynamics of the NI and shown to yield an 

improved prediction of eye position during VOR nystagmus in controls [10].  A more 

accurate prediction implies a more robust and realistic model structure, so that estimated 

model parameters could have diagnostic relevance. In this paper, we present a systematic 

study of the dynamic linear or nonlinear model parameters estimated from the VOR of 

human subjects with different vestibular conditions: we report trends derived from the 

parameters and their global impact on VOR dynamics which could be used to detect 

anomalies even in the presence of long-term  compensation. 
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6.2 Methodology 

6.2.1 Recordings from Human Subjects 

Angular VOR data are used to calculate and compare the NI parameters from different 

human subject groups: those who have compensated from vestibulopathy such as 

Vestibular Neuronitis and Meniere‘s disease, and a control group. A total of 18 trials 

were recorded from 7 patients (with 10 trials from 4 subjects showing dysfunction on the 

left side and 8 trials from 3 subjects with right side dysfunction) while 15 trials were 

taken from 7 normal subjects. A single recording session from patients took place varying 

from 1 to 10 months after occurrence of the first vestibular episode. Prognosis and time 

of recording session after first vestibular episode are tabulated on Table 16. The three 

subject groups will hereafter be referred to as Controls, Left patients or Right patients. 

All subjects signed a consent form outlining the protocol which was approved by the 

Institutional Review Board of McGill‘s Faculty of Medicine. Whole-body yaw rotation 

was achieved with either rotation at a single frequency (0.167Hz), or a sum of 

frequencies (0.03Hz, 0.1Hz and 0.17Hz,). The frequencies of the three sinusoids were 

selected such that none of them was a multiple of the others, so that harmonics in the 

reflex response could be assigned to a central non-linearity. It was demonstrated earlier 

that a more complex stimulus yields estimates that are more robust than those from a 

single sinusoid [11] for linear models. This should also be true for non-linear systems and 

will be addressed in the Results. 

The VOR data were recorded with electrooculography (EOG) at 500Hz, well above the 

50Hz upper limit of the ocular nystagmus bandwidth [12]. After retinal potential 

stabilization in the dark for at least 20 min, the subject was seated in a servo-driven chair 

with the head restrained by a fixation system.  Pre- and post-rotation calibration allowed 

correction for any residual electrode drift. Each recording consists of duration of around 

70s. A more detailed description of the experimental procedure can be found in Galiana 

et al [13]. 
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6.2.2 Formulation of the NI model in the VOR system and Model 

Selection 

As reported previously, a formulation for the NI can rely either on a low-pass filter with 

long memory (a separate block or process), or it can instead rely on placing a filter inside 

a feedback loop so that the global properties of the loop implement the desired filter 

characteristics [14], [15].  In the case of a linear process both approaches are equivalent. 

However, in the case of a context-dependent NI, changes in dynamics with operating 

point are easier to implement in the form of Figure 19, where a simple non-linearity in 

secondary vestibular neurons (function f(i)) will automatically cause the overall loop to 

behave in a context-dependent manner. The form of the nonlinearity,  if , can be 

represented by any nonlinear function which will characterize the behavior of the variable 

dynamics of the NI; for example, it is modeled by the ‗Versiera‘ curve in our previous 

paper [10], [16] targeting controls with symmetric and unbiased VOR responses. To now 

accommodate for possible asymmetries in subjects, especially those with unilateral 

vestibular deficits, a third-order polynomial is now selected for the nonlinearity: 

 
32

)( diciiaif   (116)  

where i corresponds to the input, a is the offset in the nonlinearity, { c , d } are the 

coefficients of the second and third order terms, respectively. The coefficient of the first 

order term is absorbed in the feedforward gain  . We search for the shape of the non-

linearity, if applicable, not its particular functional definition. 

The input 'h  is presumed to project from vestibular afferents, with the dynamics of a 

high-pass filter with respect to head velocity H [17]: 

  h '( ) ( )
1

VS

VS

T s
s H s

T s




   (117)  
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Where s is the Laplace variable, 
V S

T  is the time constant of the processed vestibular 

signals (to be estimated) including potential velocity storage [18], [19], and the gain is 

presumed absorbed in the later projection gain  . On the other hand, the eye plant 

dynamics are represented by a low pass filter [18], [20] as: 

 
1

 D ( ) * ( ) ( )
1

EP

s with D s D s
T s

 


 (118)  

Where   defines the ratio in sensitivity to eye position at the level of the internal model 

(neural), relative to the behavioral eye position (deg). 

 

Figure 19: Block diagram of the nonlinear Neural Integrator model with preceding vestibular stage: 

'h corresponds to the head velocity signal projecting from the canal; VS is the vestibular stage;  is 

the gain of this projection to the NI; (.)f is the static nonlinearity at the level of VN cells, modulated 

by head velocity and eye position context; i and   are respectively the input and output of the 

nonlinearity; )(sD and )(* sD are the eyeplant and internal model (eyeplant)  dynamics presumed 

equal; e is the response as eye position; v is the measurement noise on the output; and 
m

e is the 

resulting measured eye position. 

With these definitions, the ensemble of model equations can be grouped to relate 

sampled eye positions and head velocity during the protocol (see Appendix, and [10]).  
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During parameter estimation and validation of proposed models, the data set is divided 

into two segments, with the first half used for the estimation process and the other for the 

model validation process. From the first half of the data set, the parameters that are to be 

identified are: caT
EP

,,,,  and d . Since
n

e is present on both sides of Eq. (119), and is 

expressed with its quadratic and cubic terms on the right hand side, the output cannot be 

expressed explicitly on one side of the equation as a function of the parameters and past 

sample values. Hence the Ordinary Least Square Method cannot be used on the ensemble 

of data. Instead, we rely on a non-linear optimization method to search for the optimal 

parameter set [21](GAMS software). For a more detailed description of the method, 

please refer to [10]. This requires an iterative approach, since the vestibular time constant 

is not expressed as a parameter in Eq.4. Thus, tentative profiles for 'h  are generated from 

the head velocity profile according to Eq. (117), for vestibular time constants ranging 

from 0.1s to 50s, in steps of 0.25s. For each possible
V S

T , an optimal solution is found for 

the other model parameters. The parameter set and its associated 
V S

T yielding the lowest 

Mean Squared Error (MSE) for predictions in the second half of the data is deemed the 

best model, whether considering the linear or non-linear class. The MSE is defined as: 

  
2

1

1
ˆ

N

j j

j

M SE e e
N 

   (120)  

N denotes the number of data points, 
j

e  denotes the j
th

 measured output eye position 

and ˆ
j

e  denotes the predicted j
th

 eye position from the estimated model. We also 

calculate the Akaike‘s Information Criteria (AIC) [22] which trades off increased model 

complexity with improved MSE, to compare the performance of linear (c=d=0) vs. non-

linear (all parameters free) descriptions: 
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where q denotes the number of free parameters in the model used in the final tables. For 

example, with envelope fits during pure harmonic rotation, there are up to 3 parameters 

for linear fits and 5 parameters for non-linear fits, including the VS time constant (e.g. 

Table 18Table 20). The NL NI model for the VOR can have a maximum of 7 significant 

parameters (e.g. Table 12). Selecting between the linear or non-linear option in a given 

test relies on choosing the model type with the smallest MSE, provided the AIC is also 

lower. 

6.2.3 Estimating VOR Gain and NI Time Constant in the Nonlinear VOR 

model 

 The parameter estimates for the optimal non-linear model in a test can be 

combined to extract the apparent dynamics of the Neural Integrator and VOR gain. The 

dynamics of the VOR are directly linked to the estimated optimal value of ˆ
vs

T  and to the 

shared NI integration process ˆ
N I

T . For the linear case, the classical form for the transfer 

function of the VOR in Figure 19 is:   

 
ˆ ˆ( )

ˆ'( ) 1

VOR NI

NI

G T sE s

h s T s







 (122)  

which depends on all the NI parameters estimated (see below). Note that 'h is the filtered 

head velocity from the velocity storage. If the best model is dynamically non-linear, the 

classical form is only valid for small changes about a given operating point (small-signal 

model). Here the non-linearity appears as a function varying with set-point ‗i‘ which fixes 

the local value for f(i). Hence for any given set-point, the local values of the VOR gain 

VOR
G  at high frequencies (>0.01Hz) and the Neural Integrator Time Constant 

NI
T  are 

given by [10]:  
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 (123)  

 ˆˆ ˆ ˆ'( ) /
VOR EP

G f i T   (124)  

where the ‗hat‘ symbol denotes estimated values from the fitting step. ˆ '( )f i is the 

derivative (slope) of the estimated non-linearity with respect to i  (Eq. 1), at the same set-

point,  

 2ˆ3ˆ21)('ˆ idicif   (125)  

Thus the non-linear NI representation will be associated with NI dynamics and VOR gain 

that change with sensorimotor context through the level of ‗i‘. On the other hand, in the 

linear case ˆ '( )f i is 1 ( 1)('ˆ if ) and Eq. (123) & (124) produce constant dynamics 

independent of context. 

6.2.4 Comparisons with Classical VOR Analysis 

In classical VOR evaluation, the time constant of the NI is presumed large and invariant. 

Hence, vestibular time constants (or VOR phase) and the VOR gain are assumed fixed, 

and are unmasked by comparing eye velocity to head velocity during the slow phases of 

nystagmus (envelope analysis). During pure sinusoidal tests and assuming constant 

dynamics, the characteristics of the VOR can be deduced by using X-Y plots of data 

segments during slow phases: after shifting the head velocity trajectory to minimize the 

dispersion of data points around a line or curve, the VOR time constant can be calculated 

from the required time shift: 

 
 tan

1


VS
T  (126)  
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where θ corresponds to the phase difference in the head and eye velocity (in radians) and 

ω corresponds to the frequency of the stimulus. Θ=2π ΔT/P, defines the proportion of the 

time shift (ΔT, in s) used in plots to the full period of the harmonic stimulus (P, in s). 

The VOR gain (linear or non-linear) is approximated by the shape of the observed x-y 

curve relating slow-phase eye velocity segments to shifted head velocity (e.g. [13], [23]). 

This process was applied to the protocols consisting of pure sinusoidal head turns, to 

compare the results from alternative model fits that allow a context-dependent NI. 

6.3 Results 

The results are summarized below, referring to relevant figures. These are supported by 

annotated Tables of identification results, using both the standard envelope method for 

VOR analysis, versus fitting a context-dependent (non-linear) model for the VOR and NI 

(Table 10, Table 11 and Table 12). 

6.3.1 Validation of the Nonlinear NI identification scheme 

Validation of the algorithm for the identification of a Dynamic Nonlinear NI Model 

relied on its application to realistic, simulated, VOR data with known parameters. Two 

sets of simulated VOR data were defined with the sum-of-sines stimulus:  one exhibits 

characteristics similar to normal subjects (nearly linear) and the other data set has 

characteristics similar to patients suffering from unilateral vestibular deficits. Both sets 

included the automatic generation of nystagmus, to provide realistic slow-phase segments 

(Please see [14] for further description of the process of nystagmus generation). The 

model parameters used in the simulations with the model structure in Figure 19 are given 

in Table 13, and noise was added to the resulting eye trajectories with a standard 

deviation of 1 deg (comparable to our EOG recordings).  The two sets of simulated noisy 

data, with each lasting for 80s, were then analyzed to obtain model parameter estimates 

(Table 13) from the pooled slow phase data alone.  Predicted eye trajectories and 

estimates of the internal non-linear curves could then be generated from the optimal 

parameter sets, using Eq. 1&4. They are provided for comparison in Figure 20, along 
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with the range of the input to their respective nonlinearities.  Note that the polynomial 

curve of data set 1 resembles more a straight line, compared to that of data set 2, as 

expected from the parameter values. The predicted eye positions and eye velocities using 

the parameter estimates yield an extremely low MSE, and the 95% confidence intervals 

(2 standard deviations) on the estimated parameters include their true values (For a more 

thorough description of model validation, please refer to [10]). It is worth noting that the 

estimated polynomial curves  have their largest errors at the extremes of the input domain 

as a consequence of first, lack of data beyond the edge due to switching, and second, 

because  slow-phase segments tend to be shorter at high head speeds or large eye 

deviations (reproduced in the simulations). 

6.3.2 Detection of lesions with Classical VOR analysis vs. the Dynamic 

Nonlinear Model 

Here the estimated non-linear VOR characteristics are compared for the two methods 

described in Methods. The Dynamic Nonlinear NI model will be shown to be more 

effective in yielding estimates that correlate with the conditions of clinical subjects, when 

compared to the envelope method that is traditionally used in clinical diagnosis. Three 

representative examples are provided as X-Y plots of predicted eye velocity (Y-axis) 

versus appropriately time-shifted head velocity (X-axis) from VOR fits with both 

methods: a normal subject (jn08p5; Figure 21A), a subject suffering from left-side 

Meniere‘s Disease (ja67p4; Figure 21B) and a subject suffering from left side Vestibular 

Neuronitis (ap68p6; Figure 21C). The comparison here is restricted to the data collected 

during simple harmonic tests. Section 0 describes the required time shift for X-Y plots 

with the envelope method, while the phase expected from the estimated vestibular time 

constant defines the required time shift in the dynamic NL method (Eq. (126)). The plots 

superimpose the predictions from all models attempted. The optimal model from each 

method (linear or non-linear) is selected on the basis of achieved MSE and AIC. 

 



 

115 

 

Table 10: Envelope Estimates for Controls 

 Linear Envelope Nonlinear Envelope 

Subject Code Linear Bias Cubic Quadratic Linear Bias 

jl61p5 -0.508 4.14 1.78E-06 2.63E-04 -0.545 1.89 

jn08p6 -0.416 -0.281 -9.3E-06 -9.70E-04 -0.371 2.42 

jn08p5 -0.423 -6.46 3.36E-06 -7.33E-04 -0.488 -2.85 

mr81p5 -1.84 8.55 1.6E-06 -7.90E-04 -1.84 13.3 

mr81p6 -0.918 2.01 -9.9E-06 3.19E-04 -0.749 1.018 

mr82p5 -0.0809 -3.36 2.2E-05 3.13E-04 -0.540 -11.0 

mr83p7 -0.776 10.2 9.58E-06 -1.45E-03 -1.03 14.9 

Table 11: Envelope Estimate for Left Patients  

 Linear Envelope Nonlinear Envelope 

Subject Code Linear Bias Cubic Quadratic Linear Bias 

nv10p3 -0.508 2.40 6.79E-06 1.83E-04 -0.547 1.71 

nv10p5 -0.516 8.99 3.56E-06 4.82E-04 -0.577 5.62 

ja67p4 -0.789 0.423 9.67E-07 -3.90E-04 -0.797 2.08 

ja67p5 -0.689 -0.124 -7.3E-07 1.83E-05 -0.679 -0.163 

ap68p6 -0.572 1.23 4.2E-06 1.43E-04 -0.735 2.12 

jn30p6 -0.493 -7.96 4.65E-06 3.45E-04 -0.578 -11.0 
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Table 12: Envelope Estimates of Right Patients  

 Linear Envelope Nonlinear Envelope 

Subject Code Linear Bias Cubic Quadratic Linear Bias 

oc26p5 -0.454 10.7 3.97E-06 -7.7E-06 -0.512 10.2 

oc26p6 -0.457 14.6 4.03E-06 7.06E-04 -0.611 9.57 

mr31p3 -0.738 4.18 1.06E-05 1.82E-04 -0.804 3.44 

mr31p4 -0.709 8.18 1.05E-05 5.16E-05 -0.804 7.73 

mr31p5 -0.616 12.4 3.04E-06 7.65E-04 -0.677 6.33 

mr31p6 -0.403 11.2 3.04E-06 3.18E-04 -0.492 9.23 

mr57p6 -0.996 -1.09 -4.1E-06 5.11E-05 -0.923 -0.921 
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Figure 20: Validation with simulated data.  A & B display the simulated and predicted eye position of 

data set 1 and 2, respectively; C &D display the simulated and predicted eye velocity of data set 1 

and 2, respectively; E & F, the histograms of input range to their respective nonlinearities; G &H 

plot the estimated nonlinearities superimposed on the ones used in the simulations. Slow phase 

segments are shown in red in A&B. Note that the number of slow-phase segments is approximately 

the same for both trials (~8 in 10s), with data set 1 (normal) exhibiting a more uniform distribution 

of its fast phases throughout the data set.  
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Figure 21: X-Y plots of eye velocity versus head velocity with simple harmonic rotation: control (A), 

patient suffering from Meniere’s disease (B), and patient suffering from Vestibular Neuronitis (C). A 

linear model is selected by the envelope method for trials A & B, implying that both jn08p5 and 

ja67p4 might be from the normal group. The nonlinear (lesioned) property of ap68p6 (C) is detected 

by the envelope method on the basis of lower MSE and AIC (see methods). In all three cases, the 

dynamic NL model provides the best fits, even in the control group (compare MSE in Tables A.4-
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A.6). To allow overlap, predictions from the dynamic NL model are plotted here with the same phase 

shift used in the envelope fit. 

Table 13: True and Estimated Parameters in Simulation Validation of the NL-NI method 

For the first two trials (Table 14), the linear envelope fit yields lower AIC and MSE than the third 

order polynomial nonlinear envelope fit (AIC linear envelope = 28244 and AIC NL envelope = 29382 for 

jn08p5; AIC linear envelope = 11782 and AIC NL envelope = 18407 for ja67p4). Hence the envelope 

method does not distinguish between a normal subject and the Meniere‘s patient.  

Table 14: Estimates of Linear and Nonlinear Envelope Fits- 3 cases 

  Linear Envelope Fit Nonlinear Envelope Fit 

Trials Tvs Bias Gain MSE AIC Bias Gain Quadratic Cubic MSE AIC 

jn08p5 
18s 

-0.335 -0.715 13.0 28244 0.501 -0.659 -3.65e-4 
-1.18e-

5 
13.3 29382 

ja67p4 8s 0.423 -0.789 9.12 11782 2.08 -0.797 -3.95e-4 9.67e-7 14.2 18407 

ap68p6 6s -16.7 -0.751 22.5 19178 -11.1 -0.710 -4.02e-4 -1.84e-

6 

19.3 16353 

 

Parameters     
EP

T  a  b  c  d  
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Simulated 0.191 0.940 0.284 -0.52 1 -11.8e-4 3.24e-5 

Estimated 

0.213 

(±0.053) 

0.899 

(±0.06) 

0.293 

(±0.031) 

-0.57 

(±0.013) 

1.04 

(±0.041) 

-9.70e-4 

(±5.6e-4) 

3.42e-5 

(±1.4e-5) 

D
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a 
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et
 2

 (
P

at
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n
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Simulated 0.450 0.500 0.800 -3.82 0.86 8.03e-3 2.52e-5 

Estimated 

0.487 

(±0.072) 

0.551 

(±0.043) 

0.799 

(±0.063) 

-3.58 

(±0.38) 

0.811 

(±0.048) 

7.40e-3 

(±6.3e-4) 

1.60e-5 

(±8.1e-6) 
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In contrast, the dynamic nonlinear NI model provides a better fit in both these cases 

(AICDyn NL=4383 for jn08p5 and AICDyn NL=996 for ja67p4), with non-linear coefficients.  

In addition, the absolute value of the quadratic term in the Dynamic Nonlinear model 

(Table 15 & Table 16)  is one order of magnitude larger for the Meniere‘s patient ( 

Ja67p4)  than for the normal subject (jn08p5) – compare ĉ =-7.27e-45.8e-5 vs. ĉ =-

1.95e-51.5e-6. This implies not only that the dynamic NL NI model is a better choice, 

but that it is more sensitive to deficits than the envelope approach. Furthermore, the 

residuals between the measured data and predicted eye position from the dynamic 

nonlinear model from all trials appear to be random noise sequences. In terms of 

vestibular dynamics, the VOR time constants using the envelope method on the first two 

trials, jn08p5 and ja67p4, are close (19s and 21s, respectively); the corresponding fitting 

exercise with the dynamic NL model results in estimated vestibular time constants of 

22.5s and 12.5s, respectively.   
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Table 15: NL-NI Model Estimates for Controls  

Coefficient entries denoted by a dashed line indicate that they were not statistically 

different from zero at the 95% confidence level. 

Subject 

Code 
Tvs (s) ̂  std(  ) â  std( â ) ĉ  std( ĉ ) d̂  std( d̂ ) ̂  std( ̂ ) 

EP
T̂  std(

EP
T̂ ) MSE 

dc06s4 37.7 0.286 3.62E-03 -0.48 3.9E-02 3.21E-07 2.6E-06 ------- ------- 0.890 3.9E-03 0.404 7.0E-02 2.51 

dc06s6 37.3 0.207 4.23E-03 0.09 1.2E-02 ------- ------- ------- ------- 0.311 4.7E-03 0.333 2.7E-02 6.23 

jl61s5 32.5 0.101 1.66E-03 0.54 4.4E-02 -5.62E-05 4.5E-06 -3.23E-05 2.6E-06 0.941 1.6E-03 0.204 2.8E-02 15.2 

jl61s7 32.5 0.096 2.68E-04 1.27 9.8E-02 ------- ------- ------- ------- 0.913 5.6E-04 0.218 9.1E-03 4.61 

jn08p6 22.5 0.097 1.23E-03 -0.59 4.5E-02 9.17E-05 7.1E-06 ------- ------- 0.983 1.4E-03 0.195 1.3E-01 1.16 

jn08p5 32.5 0.186 3.29E-03 -3.41 2.6E-01 -1.95E-05 1.5E-06 -2.62E-05 2.8E-06 0.517 3.5E-03 0.800 1.3E-02 2.82 

jl61p5 22.5 0.433 7.01E-04 0.00 ------- 2.46E-05 1.9E-06 -3.59E-05 2.0E-06 0.517 3.7E-03 0.800 1.3E-01 1.10 

mr81p5 7.3 0.395 1.93E-02 5.95 8.0E-01 ------- ------- ------- ------- 0.298 1.7E-02 0.475 7.7E-02 26.47 

mr81p6 47.7 0.286 1.10E-02 0.07 9.5E-03 ------- ------- ------- ------- 0.299 2.6E-02 0.800 3.3E-02 3.61 

mr81s6 32.5 0.196 2.07E-03 0.53 6.3E-02 ------- ------- ------- ------- 0.337 2.3E-03 0.214 1.0E-02 7.37 

mr82p5 47.7 0.424 3.12E-02 6.07 8.0E-01 -1.93E-05 2.6E-06 -4.44E-05 5.9E-06 0.303 1.3E-02 0.438 2.2E-02 10.70 

mr82s4 47.7 0.135 1.12E-02 5.92 2.4E-01 -4.46E-05 1.8E-06 -9.99E-05 4.0E-06 1.800 3.5E-03 0.400 9.4E-02 3.27 

mr83s5 12.5 0.140 5.61E-03 1.42 1.2E-01 1.37E-05 1.2E-06 -2.23E-05 1.9E-06 0.833 1.5E-03 0.181 2.9E-03 1.47 

my58z5 12.5 0.114 1.14E-04 -0.29 2.7E-02 5.59E-05 5.1E-06 -4.12E-05 3.8E-06 0.699 1.7E-04 0.186 2.0E-02 19.92 

my58z6 34.5 0.101 1.04E-04 -0.44 3.6E-02 1.41E-04 1.1E-05 -2.04E-05 1.6E-06 0.941 9.4E-05 0.172 3.2E-02 4.92 

MEAN 29.1 0.213 0.10 1.11 4.1 5.4E-06 3.1E-04 -7.81E-05 1.2E-04 0.705 0.21 0.388 0.26 4.45 
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Finally, for the subject recovered from Vestibular Neuronitis (ap68p6), where the 

recording was performed 5 months after the vestibular episode, the nonlinear envelope fit 

now yields a better fit than the linear envelope fit, but the Dynamic NL NI model 

continues to provide the best MSE and AIC (Table 19). The envelope method is able to 

detect an abnormality in a serious deficit, but not in more ‗compensated‘ patients (e.g. 

previous paragraph). As we will see below, envelope results can also yield biases in 

estimated vestibular time constants and presumed integrator function.  

Comparisons of the quality of fit with the two methods in all protocols using single 

harmonics are provided in Tables A.7& A.8. The optimal coefficients (linear or non-

linear) obtained by the dynamic NL NI method and the envelope method are detailed in 

Table 15, Table 16 &Table 17; if a linear model is selected for a trial, then its 

corresponding quadratic and cubic terms are set to zero. The resulting non-linear 

coefficients from both methods (cubic vs. quadratic) are also provided as a scatter plot in 

Figure 22A&B. This highlights the fact that any VOR non-linearity is better segregated 

between the three subject categories when relying on the dynamic NL NI model (Figure 

22B), rather than estimates from the envelope method (Figure 22A) which assumes a 

constant ideal NI.  In Figure 22B, controls are clustered about the origin much more 

tightly than patients. We did not find any useful clustering in the bias and linear terms 

obtained from either method, probably because this can be sensitive to stimulus 

amplitude and nystagmus patterns (personal observations; see also [13]).  



 

123 

 

Table 16: NL-NI Model Estimates for Left Patients (MD: Meniere’s disease, VN: 

Vestibular Neuronitis; #M indicates recording was performed # months after the 

first vestibular episode.) 

Subject 
Code 

Tvs 

(s) 
̂  std(  ) â  std( â ) ĉ  std( ĉ ) d̂  std( d̂ ) ̂  std( ̂ ) 

EP
T̂  std(

EP
T̂ ) MSE 

nv10p3 

(MD-10M) 

12.5 0.33 1.8E-02 14.80 1.20 -1.56E-03 1.3E-04 -2.98E-05 2.4E-06 0.45 3.3E-02 0.276 1.2E-02 1.08 

nv10p5 

(MD-10M) 

12.5 0.08 6.3E-03 3.19 0.28 -1.04E-03 8.3E-05 -1.34E-04 1.1E-05 0.78 1.8E-02 0.284 3.3E-03 1.64 

ja67p4 

(MD-2M) 

12.5 0.09 3.1E-02 1.11 0.02 -7.27E-04 5.8E-05 -9.20E-05 7.4E-06 0.77 1.3E-06 0.150 1.7E-03 0.81 

ja67p5 

(MD-2M) 

12.5 0.50 5.9E-04 -0.92 0.14 -3.12E-04 2.5E-05 -6.60E-05 5.3E-06 0.51 5.2E-03 0.684 2.9E-02 0.54 

ap68p6 

(VN-5M) 

12.5 0.25 4.2E-02 ------- ------- -1.57E-03 1.3E-04 -6.88E-05 5.5E-06 0.25 2.2E-01 0.461 6.6E-03 3.82 

ap68z4 

(VN-5M) 

12.5 0.38 2.1E-03 -3.77 0.06 -3.20E-03 2.6E-04 -2.32E-04 1.9E-05 0.59 6.4E-02 0.475 2.0E-03 1.33 

ap68z5 

(VN-5M) 

22.5 0.12 2.8E-03 -1.30 0.08 -5.22E-03 4.2E-04 -8.88E-04 7.1E-05 0.84 1.3E-02 0.291 2.4E-03 2.07 

jn30p6 

(VN-1.5M) 

12.5 0.18 1.2E-03 -1.15 0.04 -1.65E-02 1.3E-03 -1.49E-03 1.2E-04 0.83 8.5E-03 0.336 1.8E-02 2.38 

jn30z5 

(VN-1.5M) 

12.5 0.71 2.1E-02 1.40 0.74 -1.96E-03 1.6E-04 2.09E-05 1.7E-06 0.36 3.9E-02 0.228 8.6E-03 1.52 

jn30z6 

(VN-1.5M) 

12.5 0.22 6.4E-03 -4.81 0.13 -2.55E-02 2.0E-03 -6.45E-04 5.2E-05 0.55 2.0E-02 0.234 1.9E-03 3.72 

MEAN 13.6 0.27 0.39 0.69 3.9 -5.37E-03 1.1E-02 -3.52E-04 7.2E-04 0.61 0.18 0.333 0.24 1.89 
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Figure 22: A & B) Nonlinear coefficients from (A) the envelope method and (B) the dynamic NL NI 

method for trials with single sinusoidal stimulus for Controls (N=7), Left patients (N=6) and Right 

patients (N=7).   In A) coefficients are dispersed and overlap in the 3 groups. In B) with the dynamic 

NL NI coefficients, controls  are clustered closer to the origin than patients; note the robust 

correlation between the sign of  the quadratic term and the side of the lesion. C & D) Model 

coefficients for VOR Tests with pure harmonics C) There is no apparent segregation of the envelope 
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TVS between the 3 groups; TVS estimates from the dynamic NL approach, also appear mixed. D) On 

the other hand, taking full advantage of estimates for both velocity storage and NI time constants 

(maxima in Figure 25) in the NL NI model, there is a clear segregation of controls from all patients, 

mainly correlated with poor integrator function. E & F) Coefficients of f(i) in the NL NI Model for all 

subjects and protocols (Controls N=15, Left patients N=10,  Right patients N=8). A) Grouped by 

protocol – showing that multi-harmonics distinguish patients from controls better than single sine 

rotation; B) Grouped by diagnosis- patients overlapping controls are mainly in the Meniere’s  pool 

and presumably compensated while vestibular neuronitis cases are clustered well away from controls 

especially with complex rotation protocols (compare A & B data points). 

Table 17: NL-NI Model Estimates for Right Patients (MD: Meniere‘s disease, VN: Vestibular Neuronitis; 

#M indicates recording was performed # months after the first vestibular episode.) 

Subject 
Code 

Tvs (s)   std(  ) a  std( a ) c  std( c ) d  std( d )   std( ) 
EP

T  std(
EP

T ) MSE 

oc26p5 

(VN-1M) 12.5 0.19 3.8E-04 -2.98 0.07 2.92E-03 2.3E-04 -1.29E-05 1.0E-06 0.45 2.4E-02 0.312 9.3E-04 1.83 

oc26p6 

(VN-1M) 47.7 0.28 7.1E-03 -1.50 0.60 6.95E-04 5.6E-05 -6.04E-05 4.8E-06 0.54 1.8E-01 0.273 1.8E-02 2.23 

mr31p3 

(VN-6M) 47.7 0.12 2.6E-04 0.75 0.10 5.59E-03 4.5E-04 -9.33E-05 7.5E-06 0.83 2.2E-02 0.119 3.8E-03 4.72 

mr31p4 

(VN-6M) 47.7 0.15 4.5E-04 1.74 0.52 5.91E-03 4.7E-04 -9.15E-05 7.3E-06 0.81 5.1E-02 0.170 1.1E-02 2.31 

mr31p5 

(VN-6M) 12.5 0.25 7.6E-03 4.83 0.35 2.09E-03 1.7E-04 -4.24E-05 3.4E-06 0.84 1.2E-01 0.353 1.5E-02 1.64 

mr31p6 

(VN-6M) 12.5 0.21 9.6E-04 1.58 0.04 6.20E-03 5.0E-04 -1.63E-04 1.3E-05 0.56 2.2E-03 0.388 5.5E-04 1.02 

mr57p6 

(VN-12M) 22.5 0.11 2.7E-04 -0.92 0.03 8.22E-03 6.6E-04 -3.36E-04 2.7E-05 0.90 1.3E-03 0.120 1.1E-04 2.14 

mr57z5 

(VN-12M) 34.5 0.19 3.0E-03 -0.66 0.06 3.01E-03 2.4E-04 -7.23E-05 5.8E-06 0.87 1.4E-02 0.254 2.0E-03 1.94 

MEAN 28.2 0.19 0.17 0.36 2.6 4.33E-03 3.3E-03 -1.20E-04 1.1E-04 0.72 0.14 0.249 0.31 4.95 
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A & B: Linear Model Predictions MSE=0.543, AIC=13028 
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C & D: Nonlinear Model Prediction MSE=0.372, AIC=8939 

Figure 23: Validation of identified linear (A: eye position & B: eye velocity) and non-linear (C: eye 

position & D: eye velocity) models for subject test jn30z6, multiple harmonic rotation: slow-phase 

predictions given in red, overlapping data in blue. From MSE and AIC criteria, the nonlinear model 

is justified, despite added complexity (figure zoomed in, but MSE/AIC computed over the whole 

validation data set, see Methods; N=1598 in validation). 

We now turn to a comparison of estimated dynamics (VOR time constant (Tvs), and 

maximum NI time constant (TNI)). Only the NL NI method allows for the estimation of 

the NI time constant, and it will be context dependent (discussed below; see also peaks in 

Figure 25).   Figure 22C&D provides the scatter plot for estimated vestibular time 



 

127 

 

constants with the two methods (Figure 22C): based on Tvs alone, there is no clear 

segregation by subject group and the correlation of estimates from the two groups is very 

poor. This is explained in part by the assumption of an ideal NI in the envelope method. 

Yet this assumption must be false in many cases, since the quality of fit is always better 

with the dynamic NL representation for the VOR. In all cases studied so far, the linear or 

non-linear options for the dynamic NI model fit produce lower MSEs and yield estimates 

that segregate more distinctly according to the subject types. Thus in Figure 22D, the NL 

NI model allows joint viewing of TVS against TNI and unmasks a deterioration of NI 

function that clearly segregates all patients from controls. Since the dynamic NL model 

provides the best predictions for the sinusoidal protocols, the assumptions in the envelope 

method must be faulty and are expected to produce biased and noisy estimates of little 

help in diagnosis.  

6.3.3 Identifying & Selecting NL NI Models for Experimental VOR data  

The dynamic NL NI model has the advantage that its application to segments of VOR 

slow phases can be used in any protocol. Hence, focusing on this method alone, estimates 

for VOR and NI dynamics are found and compared for the whole database, including 

both harmonic and mixed harmonic stimuli (see Methods). The intent was to potentially 

unmask parametric differences between the groups that might not be observable in 

conventional VOR analysis. All VOR tests were treated the same way: i) identification of 

the optimal parameter sets was performed assuming a linear model and a non-linear 

model, on half a data set, ii) by comparing the MSE and AIC for each alternative model 

in the second half of the dataset, the model with the lowest AIC was selected as the best 

description, provided that it had the lowest MSE. The optimal parameter estimates for all 

three subject groups are given in Table 18 & Table 19 compare the quality of fit obtained 

from the optimal linear and non-linear model in each case, allowing selection of the best 

model type for each subject and test record. The analyses that follow are based on the 

parameters of the selected (optimal) model (Table 15 to Table 17). When a linear model 

was selected, unused parameters are entered as null (-----). Examples of predictions in 

one of the trials are shown in Figure 23A & B, for the optimal linear model (Figure 23A) 
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and dynamic nonlinear model (Figure 23B) of trial ‗jn30z6‘, where the criteria (MSE, 

AIC) support selection of the non-linear model, though in this case the differences are 

small.  

 

Table 18: Mean Square Error (MSE) and Akaike‘s Information Criteria (AIC) for Controls 

Subject 
Code 

Linear Envelope Fit Nonlinear Envelope Fit Linear Model Dynamic NL Model 

MSE AIC MSE AIC MSE AIC MSE AIC 

dc06s4 ----- ----- ----- ----- 3.80 911.6 2.51 876 

dc06s6 ----- ----- ----- ----- 6.72 1014 6.23 1039 

jl61s5 ----- ----- ----- ----- 22.2 73106 15.2 60609 

jl61s7 ----- ----- ----- ----- 4.95 1299 4.61 1443 

jl61p5 6.75 15614 6.22 14381 1.29 309 1.16 274 

jn08p6 8.49 10532 7.86 9748 6.5 15052 2.82 11021 

jn08p5 13.0 28244 13.3 29382 2.14 5129 1.10 4383 

mr81p5 202 582427 200 575898 26.97 64720 26.47 68880 

mr81p6 22.7 55500 16.7 40947 3.52 844 3.61 1022 

mr81s6 ----- ----- ----- ----- 6.11 1466 7.37 1825 

mr82p5 121.6 253735 120.2 250845 13.19 9886 10.70 7078 

mr82s4 ----- ----- ----- ----- 5.78 2346 3.27 1762 

mr83s5 ----- ----- ----- ----- 1.76 4214 1.47 3052 

my58z5 ----- ----- ----- ----- 21.53 51666 19.92 45968 

my58z6 ----- ----- ----- ----- 5.07 2158 4.92 2374 
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Table 19: Mean Square Error (MSE) and Akaike‘s Information Criteria (AIC) for 

Patients 

 Linear Envelope Fit Nonlinear Envelope Fit Linear Model Dynamic NL Model 

Subject 
Code 

MSE AIC MSE AIC MSE AIC MSE AIC 

nv10p3 4.99 7297 4.87 7127 1.86 2075 1.08 1178 

nv10p5 8.78 11658 6.78 9004 2.93 7028 1.64 1625 

ja67p4 9.12 23245 8.86 22586 1.30 3113 0.81 996 

ja67p5 16.9 28295 16.9 28276 0.92 1724 0.54 413 

ap68p6 14.3 19178 11.8 16353 9.14 12197 3.82 9193 

ap68z4 ----- ----- ----- ----- 1.57 3779 1.33 3218 

ap68z5 ----- ----- ----- ----- 2.54 6103 2.07 4964 

jn30p6 43.6 77554 42.0 74726 2.49 5971 2.38 5713 

jn30z5 ----- ----- ----- ----- 4.41 10585 1.52 3412 

jn30z6 ----- ----- ----- ----- 5.43 13028 3.72 8939 

oc26p5 34.0 63952 33.5 62894 2.15 5120 1.83 4923 

oc26p6 49.2 107352 41.5 90486 5.29 12690 2.23 5353 

mr31p3 4.82 9245 4.60 74727 82.9 198946 4.72 11320 

mr31p4 6.70 9291 5.74 7959 3.62 8889 2.31 6732 

mr31p5 9.36 13511 4.71 6798 1.89 4525 1.64 3945 

mr31p6 6.10 7920 3.43 4456 1.34 3137 1.02 2904 

mr57p6 30.3 73208 29.3 70834 7.08 16991 2.14 5131 

mr57z5 ----- ----- ----- ----- 3.56 8557 1.94 5127 
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 To verify the convergence of the parameters to the same set of estimates from 

different initial starting points in the optimization algorithm, we randomly selected a 

normal trial (jl61s5) and performed the search for the optimal set of estimates from 

various initial values of the parameters within the constraints (Table 17). These 

constraints included known ranges in eye plant dynamics (TEP) and limitations on loop 

gains in the system ( ˆˆ1 '( )f i >0 ) to preserve stability in the NL NI responses (for a 

more detailed explanation on the constraints, please refer to [10]). From the ten different 

sets of initial values, the optimization process still converged to the same set of estimates. 

The convergence to the same optimal set from different initial parameters was also 

observed in the other trials. This implies that the optimization algorithm finds a global 

minimum, and provides robust repeatable estimates. The characteristics of optimal model 

descriptions (parameters) will now be examined in terms of the global VOR/NI properties 

associated with them. 

6.3.4 Comparing central nonlinearities in the NI/VOR  

 The first step compares the estimated nonlinearity (or linearity) of the VN 

summing junction in the loop ( f(i) in Eq. (125) and Figure 19) from all trials for the three 

subject groups (Figure 24). The input range to the nonlinearities was determined by the 

maximum and minimum values (‗i‘ in Figure 19, Eq. (129)) of the input to the VN 

summing junction, derived from the data set and the estimated gains of the afferent and 

feedback paths: 

 
nnn

hei 'ˆˆ    (127)  

Estimated nonlinearities are only reliable over the range of data affecting the estimates, 

since polynomials are free to form any random shape beyond that range. Hence each 

individual trial has its own distinct span on the input range to its nonlinearity (or 

linearity).  

Several conclusions can be drawn: 
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- Controls have symmetrical gains in the summing junction, representing VN 

premotor cells, and are dominated by linear characteristics (Figure 24A, Table 15);  

- Left-patients have higher VN gains for negative inputs (Figure 24B), which 

corresponds to combinations of rightward head velocity and/or left eye position 

(Eq. (125)). They also tend to show a saturating behavior for positive inputs 

corresponding to head velocity towards the lesioned side.  

-  Right-patients have the opposite behavior from the left-sided patients (C). 

Thus, the identified central gain inside the hypothesized NI loop has characteristics 

consistent with the laterality of the diagnosed vestibular condition. Controls are well 

represented in majority by a linear model, whereas the patients require the non-linear 

representation. 

Table 20: Initial values for parameter search in the optimization process 

 ̂  â  ĉ  d̂  ̂  
EP

T̂  

In
it

ia
l V

al
u

e
s 

0.1 0 0 0 0.8 0.3 

0.2 1 0 0 0.8 0.3 

0.1 1 0.1 0 0.8 0.3 

0.15 -2 -0.1 0.1 0.8 0.3 

0.25 -1 -0.1 0.1 0.6 0.3 

0.15 2 0 -0.1 0.8 0.2 

0.05 1 -0.1 -0.1 0.6 0.15 

0.15 1 -0.5 0.1 0.9 0.35 

0.15 1 -0.1 -0.01 0.7 0.2 

0.10 0.5 0.02 0.01 0.8 0.3 

Optimal Set 0.101 0.54 -5.62E-05 -3.23E-05 0.941 0.204 
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Figure 24: Estimated Nonlinear Gains f(i) (see Fig. 1) for controls and Left or Right Patients. See text 

for control/patient comparisons on the shifts in context and preferred gain zones. 
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6.3.5 Evaluating context-dependence of VOR gain and NI time constant: 

For non-linear descriptions,  the dynamics of the NI and VOR become dependent on the 

operating range of i , which itself varies with the range of head velocities and excursions 

in eye position during a given protocol (see Eq. (122)-(124)). The degree of this 

variability could be a significant factor in detecting lesions or anomalies. 

Before examining estimated parameters individually, it is instructive to examine the 

VOR characteristics that are associated globally with the estimated VOR models as a 

function of the input ‗i‘: the apparent NI time constant 
NI

T̂  and VOR gain
VOR

Ĝ , as given 

respectively by Eq. (123) and Eq. (124). Again a clear pattern emerges in Figure 25: 

- Most Controls have very stable 
NI

T̂  and 
VOR

Ĝ  even when their best model is non-

linear. The range of large time constants (>2s) is quite broad in each case and 

clustered around i=0 (Figure 25 A&B); similarly, the VOR gain is either constant 

or with peaks near i=0 (mean gain=-0.60 ±0.21). 

- Left patients have narrow ranges for effective 
NI

T̂  with peaks shifted to the left 

(mean 1.18s ±0.69) – indicating a preference for right head turns and/or leftward 

deviations in eye position. (Figure 25 C&D). The high-frequency VOR gain,
VOR

Ĝ , 

tends to increase with rotation to the contralateral side (negative ‗i‘ in Eq. (125)). 

The dynamics of the NI and VOR in these subjects imply improved performance 

for contralateral head turns (to the right) and/or desirable ipsilateral biases in eye 

position (to the left). 

- Right patients have a similar pattern with reversed directions. 
NI

T̂ peaks (mean 

1.72s ±0.90) are shifted toward leftward rotation and/or ipsilateral (right) eye 

deviation, and 
VOR

Ĝ increases its level for (contralateral) leftward rotation. 
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Figure 25: Estimated NI Time Constant and VOR gain as a function of the operating range of the 

input to the VN summing junction (i in Fig.1), while all protocols are included. A & B: Controls; 

C&D: Left patients; E&F: Right patients. Note different scales with   lateral shift and broadening 

of NI curves in patients. 

 

Furthermore, the operating ranges of the VN input i  are different for the various 

subject groups: Left patients have their operating range centered towards the negative 

side of the i  axis (with a mean center of the operating range at 41.4 i ) while Right 

patients have their range centered towards the positive side on the i  axis (with a mean 
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center of the operating range at 59.1 i ). This suggests that the patients‘ operating 

range is part of the mechanism to compensate, or boost, responses during rotation 

towards the lesioned side, by shifting a non-linear curve so that its peak now coincides 

with the weaker sensory context. 

 The measured means in time constants and gains have a robust pattern across the 

3 groups, but the standard deviations (quantitative estimates) can be quite large. This is 

likely due to the fact that all test patterns were grouped in this analysis: rotation with 

single harmonics and sum of sines. The next step explores the effects of protocols on the 

parameter estimates, and hence on the estimated VOR function.  

6.3.6 Segregation of Data according to Stimulus Type 

Artifacts in the nonlinear coefficient distribution could be introduced by the pooling of 

different protocols when collecting data from subjects. As mentioned in the Methods 

section, the VOR data were recorded from rotation either with a single sinusoid 

(0.167Hz) or a sum of multiple sinusoids (0.03Hz, 0.1Hz and 0.17Hz). The root mean 

squared values for the head velocity in two protocols were set to be the same to provide 

comparable power content in the two protocols. By re-categorizing the controls group 

and the patients group according to protocol, we obtain scatter plots for the following 

four categories: patients in a single sinusoid protocol, patients in a multiple sinusoids 

protocol, controls stimulated in a single sinusoid protocol, and controls in a sum of 

multiple sinusoids (Figure 22E). The nonlinear coefficients from both groups of patient 

data are further from the origin, and this aspect is emphasized for more complex inputs 

(1.04±0.25E-3 for the multiple sine rotation and 3.00±1.4E-4 for the single sine rotation); 

the control parameters acquired with both stimuli are much closer to the origin, with the 

mean distance from the origin of 1.2±0.8E-4 for the multi-sine protocol and 3.2±1.1E-4 

for the single sine stimulus protocol. The plots confirm that complex stimuli enhance the 

detection of the side of a vestibular deficit. 
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6.3.7 Segregation of Data based on Diagnosis  

Symptoms of vestibulopathy are intermittent for subjects with Meniere‘s disease (MD) 

[24], where some MD patients may not be exhibiting any vestibular abnormalities during 

the recording sessions. In order to discriminate between possibly transient deficits and 

more permanent ones, we segregate the patients‘ data into their respective categories (left 

and right Vestibular Neuronitis, left and right Meniere‘s disease and controls), and replot 

the nonlinear coefficients‘ distribution (Figure 22F). As before, the coefficients of the 

control group cluster around the origin, but it is now clear that it overlaps patient 

coefficients which belong to the Meniere‘s diagnosis.  Patients with Vestibular Neuronitis 

have nonlinear coefficients that are much larger.  The trials from patients suffering from 

Meniere‘s disease have their quadratic terms slightly deviating from the origin (with the 

mean for the quadratic terms of -1.04±0.5E-3 for patients with left sided Meniere‘s 

disease compared to -0.14±3.2E-5 for controls, p<0.05, t-distribution).  

In Figure 22F, the coefficients of patients with Vestibular Neuronitis are located far 

from the origin when compared to the controls and patients with Meniere‘s disease. 

Furthermore, a number of coefficient sets from the Meniere‘s disease group appear 

indistinguishable from the controls coefficient sets. This may be due to the fact that some 

MD patients were not experiencing any vestibular malaise at the time of recording as 

mentioned earlier. On the other hand, the patients with prior Vestibular Neuronitis were 

recorded between 1 to 12 months from their primary episode. 

6.4 Discussion 

It has been demonstrated here that the function of gaze holding or oculomotor neural 

integration (NI) could vary with concurrent ocular context and VOR protocol [7]. This 

suggested that the dynamics of the NI are labile, varying with different eye position and 

head velocity set-points. Many previous models of the neural integrator in the oculomotor 

system rely on neural network formulations which are inherently non-linear in their 

elements, but are designed through large populations, to produce relatively linear 

behavior at the motor  level [25]-[29]. A model is proposed here that preserves the 
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characteristics of local non-linearities at the global level, to replicate the experimentally 

derived properties.  The model can describe context changes in NI values, and improved 

prediction of VOR data from normal subjects [10]. To accommodate for possible 

asymmetry in VOR patients, a third order polynomial was proposed here as the 

nonlinearity in this NI model (Eq. (116)). This model representation is first validated and 

then applied to VOR records from controls and vestibular patients.  

Comparing the results from this model fitting exercise to traditional envelope analysis 

demonstrates that data fits and detection of deficits are improved with the non-linear NI 

model, and most robust with complex multi-frequency rotation profiles. The analysis 

approach allows the use of complex inputs, since it does not rely on steady-state 

envelopes to estimate the VOR phase, and it can probe the VOR over a broader frequency 

range. The number of patients here is relatively small, but the detected trends are very 

strong. They warrant a careful comparison of NI dynamics over a much larger pool of 

controls and patients, now underway. 

6.4.1 Context Dependence of Neural Integrator and VOR Gain 

 The study here confirms that the classical gaze integrator or NI in oculomotor 

control is context dependent and often non-ideal (small time constant); it rarely achieves 

values over 15s, and this over narrow ranges of context; in patients the peak levels can be 

very small (< 3s) and are shifted to a context favoring contralateral head velocity and 

ipsilateral eye position with respect to the side of the deficit. Hence the hypothesis of 

non-ideal NI function is confirmed in patients and even some controls (Figure 25). The 

implication is that for most subjects, both the NI and the VOR dynamics will co-vary 

with the protocol type and with concurrent levels of eye position and head velocity. The 

more complex and intense the head rotation profile, the better controls can be segregated 

from patient responses. In contrast, envelope measures are not likely to take advantage of 

this, since estimated parameters are sensitive to both the nystagmus frequency and 

average eye deviations, creating noisy estimates. 
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 The central nonlinearities from the different subject groups exhibited trends 

consistent with the subject groups: controls often had a linear NI representation or 

symmetric mild non-linearity about zero; nonlinearities of patients with left side 

vestibular deficiencies tend to have a higher gain for negative input to the nonlinearity, 

while the nonlinearities of patients with right side vestibular deficiencies have a higher 

gain for positive input to the nonlinearity (Figure 24). As a result, the maximal NI time 

constants and VOR gains will be shifted towards the same context, and decrease their 

performance with deviations from this optimal. Normal controls have a relatively broad 

operating range, but patients can have a very narrow range for adequate NI and VOR 

function (Figure 25). Optimal gaze holding performance (NI time constant) and VOR 

gain in patients are achieved during rotations contralateral to the lesion combined with 

eye deviations ipsilateral to the lesion. This could explain the tendency in compensated 

patients to produce nystagmus with a mean deviation towards the healthy side [14]. With 

the context-dependent NI model, the clearest indicator of VOR deficits is degradation 

(lower values) of the NI time contant, and highly tuned context-dependence. 

6.4.2 Useful Trends in Model Coefficients from Patients and Controls 

 The section above addressed the results of model fitting on the global dynamic 

properties of the VOR and NI with context. Here we focus on the actual model 

coefficients estimated in the model identification step. We compare the estimates for 

subjects with vestibulopathy such as Meniere‘s disease and Vestibular Neuronitis 

against those from normal subjects. First at the sensory level, estimated time constants 

for the vestibular signal (Tvs) were always relatively large (>10s) using the NL NI 

model in the VOR, regardless of clinical status in this patient pool. Using the envelope 

approach, Tvs was very noisy (5-28s), with large overlap in the subject groups. Hence 

the estimate of vestibular sensory dynamics is not very useful on its own to detect 

anomalies. However, with the NL NI model, there is a significant trend for clustering of 

the combined estimates for the vestibular and NI time constants between controls and 

patients (Figure 22D).  The other parameters of the VOR model are: the eye plant time 

constant (
EP

T ), the afferent vestibular gain (  ) and the central feedback gain (  ), only 
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 showed a noticeable trend between normal subjects and patients, with higher   in 

normal subjects. Higher  are associated with larger NI time constants (Eq. (123)), and 

this is already discussed above.  

  The remaining model coefficients involve the description of the internal 

non-linear gain f(i). The cubic and quadratic nonlinear coefficients(eq.(116)) were the 

most significant  terms related to vestibular state, lying much further from the origin for 

vestibular patients than for controls (Figure 22F). The associated intensified context 

dependence of the VOR and NI can be considered a sign of clinical anomaly. It has long 

been assumed that deficits are localized in the vestibular primary afferents in patients 

with Vestibular Neuronitis [30] and Meniere‘s disease [31], but their long term effects 

on the entire vestibular network are yet to be studied. Our results suggest that at least 

the nonlinearity of the Neural Integrator behaves differently for subjects with long-term 

vestibulopathy, even if its origin is peripheral.  Compensation for a peripheral deficit 

apparently requires central re-organization with negative side-effects on the oculomotor 

‗integrator‘.  

This paper presents a VOR model containing a single nonlinearity at the site of the 

Neural Integrator to mimic the ‗set-point‘ dependent characteristic previously found 

even in gaze holding [7s]. Differences in the form of the non-linearity are evident when 

comparing the VOR of normal subjects to patients even after compensation A second 

nonlinearity would be required before the NI process to disassociate the variation of NI 

dynamics from potential set-point effects at the peripheral sensors/velocity storage 

stage. This approach might allow for a single set of model parameters in all protocols, 

instead of the current changes in estimated models with protocols in the same subject 

(Table 15, Table 16 Table 17). An alternative would also be to include data from all 

protocols in a given subject to find a single optimal model representation valid 

globally.  
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6.4.3 Comparing VOR dynamics obtained in different laboratories 

 We compared the estimated parameters from data acquired in different rotational 

profiles with two conclusions: first as expected from identification theory, a richer 

stimulus, such as one containing multiple sinusoidal profiles, allows a more accurate 

description of the VOR system dynamics compared to the single sinusoidal profile and 

most importantly, unmasks larger differences between controls and patients; second, with 

a context-dependent VOR-NI process, the selected protocol bandwidth and intensity can 

affect the values obtained for model coefficients by changing the sensory-motor context. 

As a result, it becomes impossible to directly compare the estimates of VOR function 

from other laboratories using different rotation trajectories, not to mention the unreliable 

envelope method for VOR analysis. Therefore, it is necessary to reach a consensus on 

clinical VOR protocols and analysis methods to allow comparisons. At the very least, 

data sets should now be coalesced and become available to multiple laboratories for 

testing of algorithms and for consistent comparison of results. 

6.5 APPENDIX 

6.5.1 Defining the optimization equations 

In a previously published paper, we presented the Dynamic Nonlinear Model for the 

Neural Integrator (NI) which models the varying nature of the apparent dynamics of the 

NI [10]. It consists of a static nonlinearity within the feedback loop (Figure 19). The eye 

plant dynamics )(sD  are modeled by a first order low-pass filter with the form: 
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 (128)  

Since the parameter estimation process is carried out in the discrete domain, the eye 

plant dynamics are then converted into the discrete domain as: 
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Where  denotes the sampling interval of the data and z
-1 

is
 
the delay operator. As a 

result of combining this with the equations in METHODOLOGY, the following 

summarizes the relationship between the variables in the Dynamic Nonlinear NI model: 
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Where the subscript n denotes a variable at sample time n ; i corresponds to the internal 

state i  (Figure 19) merging head velocity and eye position states, 
n

e * denotes the internal 

estimate of the eye position,   denotes the afferent gain of the system, 'h  is the input 

head velocity as detected by the semi-circular canal,  corresponds to the output of the 

nonlinear function  if , 
EP

T is the eye plant time constant,   corresponds to the 

feedback gain for the internal estimate of the eye position, and e is the output eye 

position of the system. For a further description of the model, please refer to Chan & 

Galiana 2008.  

 

By incorporating the definition for the non-linearity (Eq. 1) into the set of equations 

above, the output of the system
n

e  becomes: 
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This equation, together with the minimization criteria, is used to estimate the optimal 

model parameters to represent the slow phases of the VOR response over the whole 

recording interval (see Methods). 
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7. Conclusion and Future Work 

7.1 Conclusion 

The analyses and experimental data appearing in this thesis were all aimed at testing the 

hypothesis that the classical Neural Integrator in the oculomotor system is not ideal, but 

in fact leaky and context dependent. This required 

 Demonstrating the validity of the hypothesis in a simple protocol (Chapter 4) 

 Developing new identification tools and models that could replicate such context-

dependent behavior (Chapter 5) 

 Fitting the new models and classical alternatives to clinical VOR data from 

controls and vestibular patients (Chapter 6) 

The first two components of this work appear in published articles, and the third has been 

submitted to IEEE TBME. The following paragraphs summarize the results and their 

implications to oculomotor physiology, clinical diagnosis and perceptions of motor 

control. 

A Leaky Neural and Labile Integrator 

The observations from Chapter 4 suggests that the Neural Integrator (NI) in the 

oculomotor system exhibits  labile dynamics that depend on input and output oculomotor 

set-points, i.e. the current combination of sensory (head velocity) and motor levels (eye 

deviation). Two different experimental protocols were used to examine the possible 

context-dependent characteristics of the Neural Integrator. In one protocol, the Vestibulo-

Ocular Reflex during horizontal rotational head profiles of either a single harmonic or 

sum of multiple harmonics were measured; in the other protocol, head fixed gaze shifts to 

various spatial targets were recorded and  the trajectory of decaying gaze holding 

attempts in the dark were recorded. The NI characteristics from the two protocols differ 
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greatly : the NI time constant measured during decaying gaze shifts in the dark is much 

larger than that estimated during VOR reflexes. This suggests a labile NI mechanism. 

Furthermore, the NI dynamics also varied when binning the VOR data (from the first 

protocol) in a given protocol with respect to different ranges of input (head velocity) and 

output (eye position) levels. When modeling the NI as a first order low-pass filter, the 

apparent Neural Integrator time constant (TNI) is observed to be at its maximum when 

both the conjugate eye position and the concurrent head velocity are close to zero; the TNI 

decreases as the head velocity and/or the eye position deviate from the origin. These 

results pointed to the need to develop a new nonlinear formulation for the NI 

A Model for the Labile Integrator –imbedding central cells that combine sensory and 

motor information 

The above observation prompted us to modify existing, constant and ideal, models for the 

NI to accommodate for the variation in the apparent NI dynamics. In Chapter 5, a 

previous bilateral model of the VOR using positive feedback around models of the eye 

plants to achieve the function of ‗integration‘ (large time constants) was presented. This 

feedback approach was modified to include a nonlinearity in the loop, representing non-

linear premotor Position-Vestibular cells in the VN. As a result, the model characteristics 

allow for non-linear changes in the performance of the NI as observed experimentally. It 

yields apparent dynamics that are set-point dependent. The ‗gain‘ of the nonlinearity, or 

the ratio between its input and output, affects the time constant and gain of the NI 

process: a lower nonlinear ‗gain‘ yields a lower NI time constant and gain in the 

associated sensorimotor context. Thus, during the parameter estimation process, the 

apparent ‗gain‘ of the nonlinearity is tuned to yield NI dynamics that correlate with those 

observed. Validation of the identification (parameter estimation) algorithms was provided 

with simulated VOR data and applied to data from normal subjects. This model is called 

a dynamic nonlinear formulation for the NI in VOR processes – hence the acronym NL 

NI in Chapter 5. In all normal cases tested so far, the NL NI formulation fit gaze holding 

trajectories and VOR responses in some cases as well as traditional models, but in most 

cases with much improved residuals in the range of the noise on the recordings.  
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In controls, the NL NI appears to reflect better the underlying dynamics in oculomotor 

circuits, during gaze holding and VOR. Since it is shared by all ocular reflexes including 

VOR, pursuit and OKN and saccades, it is logical to assume that a better model structure 

should have a more robust capacity to detect differences between normal subjects and 

patients. That is model identification could help in clinical diagnosis of deficits in 

oculomotor pathways.  

Clinical Relevance of the NL NI Approach 

A NL NI process was found to be a more accurate description of the function of the 

neural integrator during gaze holding even in normal subjects. This NI process supports 

the function of all ocular reflexes including the VOR. Hence a non-linear integrator of 

necessity would be expected to be associated with dynamic non-linear characteristics in 

VOR responses, and that this would be aggravated in patients. In Chapter 6, a pilot study 

to test these hypotheses was performed on patients with peripheral vestibular deficits 

during and after long-term compensation. The expectation was that trends in the nature of 

the non-linearity in a postulated NL NI process could be consistent with the state of a 

patient and/or the side of the peripheral deficit. In many long-term compensated cases, 

classical analysis of the VOR often reported return to normal in VOR tests, and so often 

fail to detect a long-term compensated sensory deficit.  

The Dynamic NL NI formulation was used to calculate NI parameters and VOR 

dynamics in a database of human VOR recordings from normal subjects and patients 

suffering from VOR dysfunctions. In most instances (60% of controls and 100% of 

patients), the dynamic NL NI model following a sensory VOR process yields superior 

prediction of the recorded data compared to the traditional VOR representations 

assuming linearity and a perfect NI. The variation of the NI dynamics projected from the 

model estimates differ greatly between different subject groups, allowing for robust 

detection of patients versus controls and the side of the sensory deficits. This was true 

even in patients whose VOR behavior is indistinguishable from that of the control when 

studied using the other classical VOR analysis techniques. Hence the Dynamic NL NI 
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model could be used to effectively segregate VOR patients from normal subjects in 

diagnostic tests of vestibular function both at the acute and the compensated stages. 

7.2 Original Contributions 

The following original contributions/discoveries are claimed as part of the thesis: 

 First demonstration that head-fixed gaze shifts in the dark are followed by decay 

rates sensitive to the initial orbital eye deviation – the so-called oculomotor neural 

integrator depends on sensory-motor context. 

 Demonstration that the NI context dependence extends to concurrent sensory-

motor context in the VOR (head-fixed vs passive head-turns) 

 Development of a NL NI model that replicates observed behavioural changes with 

combined sensory-motor context 

 Development and validation of identification techniques that can optimally fit the 

NL NI model in any ocular reflex containing nystagmus 

 Development of a tool to determine the precision of the parameter estimates in the 

non-linear model fitting process, and thereby allow model ‗pruning‘.  Based on 

the mean squared error formulation for the cost function in the process of 

optimization, we were able to derive the Taylor Series based estimates on the 

standard deviation of the parameters. 

 Demonstration that both controls and unilateral vestibular patients can have 

significant central non-linearities. Despite apparent global symmetries using 

traditional VOR analysis in controls and many compensated patients, the non-

linearity from the NL NI representation is more symmetric in controls while it is 

asymmetric and shifted towards the side of the lesion in patients, regardless of 

compensation state.  
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 Demonstration that the degree of nonlinearity (amplitude of higher order 

coefficients in model) is much higher in patients than controls, allowing detection 

of the side of a deficit even after long-term compensation. 

 Demonstration that the working range of the NL NI and VOR in controls is broad 

while that in patients is narrow, of much smaller amplitude and shifted towards 

the side of the lesion. 

7.3 Future Work 

The contributions above indicate that the NI and VOR can no longer be presumed to be 

well represented by constant dynamics, with or without static non-linearities. Dynamic 

non-linearities are present in the ocular reflexes considered and this, together with the 

presence of nystagmus, requires models and analyses that allow for such characteristics. 

This thesis relied on models with non-linearities imbedded in a loop, thereby causing 

responses to be highly context-dependent (hence dynamic nonlinearity) and protocol 

dependent. For further applications in general studies of central neural processes 

participating in the control of eye movements, several directions for further work can be 

suggested. 

Extending or Refining the NL Sites in the Proposed Models 

As presented, the structure of the NL NI model can represent behavioural non-linearities 

relying on local non-linear premotor centres in the VN, and/or in the eye plants. These 

two sites are not distinguishable in the current model, since it places a model of the eye 

plant inside the feedback loop that creates the function of ‗integration‘. Hence if the eye 

plant is non-linear it is expected that this non-linearity would be included in the loop 

model, creating the same form assumed here, merging a premotor non-linearity with a 

motor-model non-linearity. The behavioural effect would be  the same, resulting in 

context-dependence of the NI performance. However it should be possible to at least 

evaluate the site and weight of a NL contribution from VN versus eye plant sites (if any). 

One approach for neurophysiologists would be to identify any non-linear component in 
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the dynamics of relationships between measured VN responses and eye responses, 

between VN responses and motoneural responses and finally  between motoneural 

responses and eye responses in matched protocols. 

The Dynamic NL NI model currently consists of a single nonlinearity within a feedback 

loop, and allows description of the context-dependent dynamics of the so-called neural 

integrator. In effect it is forced to merge the NI non-linearity with potential sensory non-

linearities that occur before projecting onto the NI. A second nonlinearity can be included 

before the feedback loop to dissociate the variability of the VOR gain caused by the 

sensor stage from those caused by  the NL NI time constant. The site of abnormalities in 

a VOR patient may be better pinpointed with such model. Also, it would allow 

discriminating the source of the nonlinearity in controls (normal subjects with apparently 

no vestibular deficits) – it could be due in part to symmetric but limited (saturating) 

responses in bilateral sensors. Protocols for the identification of these more complex 

models would have to be designed carefully to ensure sufficiently ‗rich‘ inputs for robust 

estimates. Testing with simulated data would help in the design process. 

The VOR model in the thesis combines a postulated NL NI circuit cascaded with a 

vestibular sensory process. This passive VOR model should  be extended to include 

visual feedback with the addition of a visual pathway involving say the Superior 

Colliculus (Guitton 1991), and the coordination of eyes and head in head-free gaze 

control. This would allow analytical exploration of the behavioural effect of non-

linearities in visual vs dark protocols, head-fixed vs head-free, etc. 

 

Applications in the Clinic and Basic Research 

A limited number of experimental trials were used in the thesis to compare the difference 

between the apparent NI dynamics of normal subjects and VOR patients, and to 

demonstrate feasibility and consistency of deficit detection. With the addition of a second 

sensory nonlinearity, a more systematic study can be carried out in a larger number of 

patients to map out the different model parameters with respect to VOR abnormalities. 
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Clustering of identified coefficients would offer the possibility of quantitatively-guided 

diagnosis and distinction between peripheral and central deficits. Studies so far focused 

on the passive rotational VOR acquired in the dark, and associated conjugate eye 

movements. Concurrent studies on the VOR and its modulation with target depth suggest 

that the VOR is likely to have both vergence and conjugate components in the dark 

(Khojasteh & Galiana 2006). Hence all VOR tests should include binocular recordings 

and explore the dynamics of crosstalk between version and vergence. 

Since the NI apparently has significant non-linearities, and is imbedded in reflexes such 

as pursuit and the VOR, the results here imply that all reflexes are likely to be 

significantly context-dependent. This has not been considered previously. In fact the 

formulations above would imply that context-dependence could depend on both fusion of 

sensory modalities (retinal, vestibular, etc) and on available motor platforms to achieve a 

goal (eyes, head, body…) 

All the questions above can also be posed in the analysis of central cell activities in 

animal experiments (cat or monkey) to determine if the context-dependence appears at 

the expected pre-motor levels and on which type of cells. This would have significant 

impact on our understanding of how the brain tunes motor behavior with the task at hand, 

without necessarily switching between separate task-dependent controllers. 
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