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Abstract 

With the development of multi-processors, multi-threaded programs and program­

ming languages have become more and more popular. This requires extending the 

scope of program analysis and compiler optimization from traditional, sequential pro­

grams to concurrent programs. 

Naumovich et al. proposed May Happen in ParaUel (MHP) analysis that deter­

mines which program statements may be executed concurrently. From this infor­

mation, compiler optimization improvements, as well as analysis data on potential 

program problems such as data races can be analyzed or discovered. 

Unfortunately, MHP analysis has sorne limitations with respect to practical use. 

In this thesis we present an implementation of MHP analysis for Java that attempts 

to address sorne of the practical implementation concerns of the original work. We 

describe a design that incorporates techniques for aiding a feasible implementation 

and expanding the range of acceptable inputs. 

The MHP analysis requires a particular internaI representation in order to run. 

By using a combinat ion of techniques, we are able to compact that representation, 

and thus significantly improve MHP execution time without affecting accuracy. We 

also provide experimental results showing the utility and impact of our approach and 

optimizations using a variety of concurrent benchmarks. The results show that our 

optimizations are effective, and allow more and larger benchmarks to be analyzed. 

For sorne benchmarks, our optimizations have very impressive results, speeding up 

MHP analysis by sever al orders of magnitude. 



Résumé 

Dans la foulée du développement des multiprocesseurs, les programmes en cha­

pelet et les languages de programmation ont acquis une grande popularité. Cette 

dynamique exige d'étendre la portée de l'analyse des programmes et de l'optimisa­

tion des compilateurs, pour les faire passer de programmes séquentiels classiques à 

des programmes concurrents. 

Naumovich et al. ont proposé l'analyse May happen in Parallel (MHP), qui détermine 

les instructions pouvant s'exécuter en parallèle ou concurremment. À partir de cette 

information, les améliorations li l'optimisation des compilateurs, de même que les 

données d'analyse sur les problèmes de programme potentiels comme l'accès concur­

rent d'unités d'exécution, peuvent être analysées ou découvertes. 

Malheureusement, l'analyse MHP comporte des limites ~ plan pratique. Dans 

cette thèse, nous présentons la mise en œuvre de l'analyse MHP pour Java visant 

à aborder certaines préoccupations entourant la mise en œuvre du travail original. 

Nous définissons un concept qui incorpore des techniques pour favoriser une mise en 

œuvre efficiente et étendre la portée des intrants acceptables. 

L'analyse MHP exige une représentation interne afin de fonctionner. En utili­

sant une combinaison de techniques, nous sommes en mesure de synthétiser cette 

représentation, et ainsi d'améliorer considérablement le délai d'exécution de l'analyse 

MHP sans en compromettre l'exactitude. Nous présentons également des résultats de 

recherche expérimentale démontrant l'utilité et l'incidence de notre approche et de nos 

optimisations en utilisant un éventail de bancs d'essai. Les résultats démontrent que 

nos optimisations sont efficientes et qu'elles permettent d'analyser des bancs d'essai 

plus imposants. Pour certains bancs d'essai, nos optimisations ont produit des réultats 
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impressionnants, accélérant l'analyse MHP selon plusieurs ordres de grandeur. 
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1.1 Motivation 

Chapter 1 

Introduction and Contributions 

Java is a popular, high-Ievel, object-oriented language [GJSBOO] designed to support 

various architectures. Java provides a rich set of language features, including garbage 

collection, runtime safety checks, dynamic loading, etc. One important characteristic 

that makes Java unique among most general-purpose programming languages like C 

and C++ is that it has explicit, built-in support for concurrent programming. A 

programmer can specify an application containing threads of execution, and each 

thread designates a part of the program that may execute in parallel with other 

threads. This capability, called concurrent or multi-threaded programming, gives Java 

developers powerful capabilities not available in C and C++ (Of course, external 

multi-threaded libraries for C, C++ are commonly available [NBF96]). 

As with most computer languages, Java programs are optimized by various com­

puter transformations during compilation (and in the case of Java, during actual 

execution as weIl). Unfortunately, traditional compiler optimization is developed in 

the context of sequential or single-threaded programs, and it is not trivial to extend 

a sequential optimization to a concurrent situation. 

Attempts have naturally been made in compiler optimization to rise to the chal­

lenge of extending the scope of sequential analysis and optimization to concurrent 
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1.1. Motivation 

multi-threaded programs. Specific techniques for handling problems related to com­

piling multi-threaded languages are being actively researched, e.g., synchronization 

removal [E.ROO], and race detection [CLL +02]. More general techniques, however, 

that also allow one to compute the impact of concurrency on other compiler analyses 

or optimizations are still desirable. In concurrent programs, information about which 

statements could be executed by different threads at the same time can be used for 

detecting data races, program optimization, debugging, program understanding, and 

improving the accuracy of data flow analysis. Such a more general approach for Java 

is provided by Naumovich et al.'s May Happen in Parallel (MHP) analysis [NSA99]. 

This analysis only determines which statements may be executed concurrently, but 

from this information on potential data races and synchronization problems can be 

derived. 

The original MHP algorithm relies on a simplified program structure. All methods 

need to be inlined, and cloning is necessary to eliminate polymorphism and aliasing. 

Unfortunately, while these limitations still allow a variety of small applications to be 

analyzed, the associated potential exponential growth in code size due to these tech­

niques means they cannot be feasibly applied to more complex programs. Whole 

program inlining is not possible for non-trivial programs, and moreover excludes 

many recursive programs. Cloning further expands the program size, and even in 

the presence of good alias resolution is likely to cause space concerns. Thus although 

Naumovich et al. 's results are encouraging, it is important to also know how well the 

analysis would work in a more practical compiler setting. 

In this thesis, we present our experiences with an implementation of MHP for 

Java that attempts to address such practical concerns. Our implementation of MHP 

incorporates several simple analyses as well as modifications to MHP structures in 

order to reduce many of the practical limitations. We also provide experimental 

results and show how simple optimizations on the MHP internaI data structures can 

make MHP analysis of even moderate size programs quite feasible. 

2 



1.2. Contributions 

1.2 Contributions 

This thesis aims at providing a practical MHP information analysis. Computing MHP 

information involves two aspects: building the appropriate internaI data structures, 

and running algorithms based on them. As mentioned earlier, MHP analysis requires 

the whole program be inlined producing one large graph representing the complete 

program execution. We have developed new analyses and techniques to reduce the 

size of the graphs, and identify and handle certain common situations that prevent 

inlining, such as recursive method caUs. A further difficulty with performance in 

MHP analysis is its reliance on knowing exact, runtime object identities. In the 

original MHP analysis [NSA99], this is handled using cloning, or code replication, to 

eliminated aliases. Finding runtime target objects and methods is very important to 

get correct and precise information. In our case, we use SPARK [LH03], a fast and 

precise flow analysis to resolve aliases, and then find runtime targets through the aid 

of a further custom flow analysis. This is a more feasible technique than cloning, 

although it will in general imply a tradeoff between precision and efficiency. 

Through these improvements, we have been able to run MHP analysis on a variety 

of "moderately-Iarge" programs. 

In summary, the main contributions of this thesis are as follows: 

• Design and Implementation 

We have implemented MHP analysis in the context of the Soot program analysis 

framework [VRHS+99]. We have used features and other analyses available in 

Soot to assist the computation of MHP information. We further develop several 

smaU, custom analyses to support practical considerations. Our implementation 

thus demonstrates that MHP information can be practicaUy computed, and 

also what aspects of a compiler optimization and analysis infrastructures are 

required and/or useful for such a task. 

• Optimization 

Even with special techniques for improving inlining, the data structures used 

to represent the whole program may be huge. We use two approaches based on 

3 



1.3. Thesis Organization 

knowing how MHP information is computed to simplify graphs, reducing the 

size of the internaI data structures and improving analysis performance. The 

specific techniques we use, merging strongly connected components and merging 

sequential nodes, are fairly straightforward graph simplication techniques, but 

their application in this context is shown to result in an impressive improvement 

in the cost of MHP analysis. 

• Experiments 

Our final implementation is sufficiently practical to analyze non-trivial bench­

marks. We provide the first MHP information computation on non-trivial pro­

grams. These experiments reveal that benchmarks that are larger in terms of 

code size do not always consume more analysis time. Thread communication 

and synchronization complexity is a better indication of MHP cost. Finally, the 

comparison between the results before and after optimization proves that our 

optimization greatly improves the performance. 

1.3 Thesis Organization 

The rest of this thesis is organized as follows. Related work is described in Chapter 2. 

In Chapter 3, we introduce the Java thread states and constructs related to the 

synchronization. In Chapter 4, we give a brief description of Gleb Naumovich et al. 's 

MHP analysis [NSA99]. In Chapter 5, we describe our MHP computation structures 

in the context of Soot. Further details on our implementation and improvement are 

then developed in Chapter 6 and 7. In Chapter 8, we introduce our benchmarks and 

describe our experimental results and analysis. Finally, we state our conclusions and 

future work in Chapter 9. 

4 



Chapter 2 

Related Work 

Our work here is based most directly on the MHP analysis originally designed 

by Naumovich et al. [NSA99]. There are of course other approaches to analyze and 

represent concurrent programs. Sorne of them are general purpose, while others have 

specific purposes. In the latter case, datarace detection is perhaps the most common 

intended application. A datarace occurs when two readjwrite operations access the 

same memory location (like a variable) without ordering constraints between the two 

operations, and at least one of them is a write. Dataraces result in indeterminacy in 

concurrent programs, and are programming errors in most cases. Datarace detection 

is very important for multi-threaded programs. 

Whatever the goal, an appropriate representation of the concurrent program is 

critical. Traditionally, Control Flow Graphs (CFGs) are used for intermediate rep­

resentation of sequential programs in compiler analysis [Muc97]. But CFGs have 

many limitations in representing parallel programs; in particular, they are not able 

to describe non-sequential control flow. 

Program Dependence Graphs (PDGs) [F JW87] only present essential data de­

pendence relationships and control dependence relationships, without unnecessary 

sequencing in the control flow graph. Because dependences in PDGs connect rele­

vant parts of a program, sorne optimizations using PDGs require less time to perform 

than with other program representations. PDGs can be used for general program 

optimizations where dependency is a concern; for example, detecting medium to 
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fine-grain parallelism for sequential programs. And they also can be used in other 

contexts, for example, performing slicing in software development or maintenance. 

They are however not designed to represent parallel programs, and cannot represent, 

for example, notification, locks, and the parallel execution of multiple threads. Thus 

PDGs have limitations in representing real parallel programs and while they are an 

improvement over CFGs, they are not suit able for analyzing a language such as Java. 

ParaUel Program Graphs (PPGs) [8ar97,8898] allow the representation of both 

sequential programs and parallel programs. They can be used for determining the 

semantic equivalence of parallel programs, detecting deadlocks, program optimization, 

and have applications in automatic code generation. PPGs are generalizations of 

PDGs and CFGs. 8imilar to control dependence and data dependence edges in PDGs, 

PPGs contain control edges representing parallel fiow of control and synchronization 

edges representing ordering constraints of execution instances of PPG nodes. In 

addition, PPGs also contain special "MGOTO" nodes. An MGOTO node represents 

the construction of parallel threads; i.e., the immediate successors of an MGOTO 

no de are in different, parallel threads. Compared to PDGs, with MGOTO nodes, 

PPGs can be used to fully represent sequential and parallel programs. Unfortunately, 

although PPGs are more general than PDGs and CFGs, not aIl parallel constructs 

can be directly mapped to PPGs; e.g., it is not possible to represent a situation where 

synchronization conditions depend on runtime data values. In addition, analysis and 

optimization [8ar97] can only be applied to deterministic parallel programs, and more 

work needs to be done to handle non-deterministic parallel programs. 

Ferrante et al. [FG897] proposed a Parallel Control Flow Graph (PFG) for opti­

mizing explicitly parallel programs. They provided datafiow equations for the reach­

ing definitions analysis and used a copy-injcopy-out semantics for accessing shared 

variables in parallel constructs. The copy-injcopy-out semantics allow each created 

thread to copy variables at the beginning and modify its own copy at the end of the 

thread execution or at a Wait statement (in postjwait schema). Thus PFGs cannot 

represent general parallel constructs (like busy-wait synchronization), nor can they 

handle programs containing dataraces. 
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A Concurrent Control Flow Graph (CCFG) [Lee99] is an intermediate represen­

tation for explicitly parallel programs with structured concurrency control ("cobe­

ginjcoend" parallel constructs) and postjwait synchronization. CCFGs are similar 

to PPGs and PFGs, but differ in that CCFGs contain "confiict" edges in addition 

to synchronization and control fiow edges. A confiict edge is a bidirectional edge 

connecting two basic blocks (straight-line sections of code) that may be executed in 

parallel and each of these two basic blocks contains at most one shared memory 

location access. 

Approaches have also been considered that build on other well-known sequential 

representations. Static single assignment (SSA) form, for instance, is a more and more 

popular intermediate representation for sequential programs. Lee et al. [LPA97a] used 

CCFGs as intermediate representations for parallel programs in order to transform 

the programs to Concurrent Static Single Assignment (CSSA) form, which provides 

advantages of SSA form in a concurrent setting. 

Any analysis of Java must consider the fact that Java is an object-oriented lan­

guages. Information about the sharing of objects, especially the sharing of objects 

by threads is important for a compiler of an object-oriented programming language. 

Escape analysis [Bla99, BU99, WR99, CGS+99, E.ROO] can be used to compute this 

specific information. Christoph von Praun and Thomas R.Gross [vPR03] used Object 

Use Graphs (OURS) in the context of escape analysis. OUGs are an extension of Heap 

Shape Graphs (HSGs), in which the nodes represent the runtime objects and edges de­

notes the reference relations between these objects. Computed during compile-time, 

HSGs can be used to represent the information of the sharing of runtime objects. But 

an HSG may lose sorne precision; for example, an object is regarded as shared when 

accessed by two threads. This is not al ways true. If the second thread starts after 

the first one terminates, then the object is not shared by these two threads. OUGs 

can detect these cases. The OUG can find the structural, temporal, and lock-based 

protection of accesses in different periods of an object by using control fiow analysis in 

different threads and information about lock protection, object escape, thread-start 

and join. Escape analysis approaches, while useful for the intended goal, are not as 

general as MHP analysis. 
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For the purpose of data race detection, Savage et al. developed Eraser, a race 

checker in the C, C++ environment. Of course, the CjC++ threading model is not 

identical to the one in Java (though there are strong similarities). Jong-Deok Choi 

et al. [CLL +02J proposed an approach for datarace detection for object-oriented lan­

guages, and demonstrated their approach in Java. They use a combination of dynamic 

checking and static analysis, the latter being itself a combinat ion of interthread control 

flow analysis and a flow-insensitive inter-procedural points-to analysis. Interthread 

Control Flow Graphs (ICFGs) are used to represent multi-threaded programs and 

Interthread Call Graphs (ICGs) are used as abstractions of the ICFGs for scalability. 

At each stage of their analysis and implementation they provide optimizations to im­

prove efficiency and precision. The "weaker-than" relation is used during both static 

analysis and dynamic detection. InformaUy, if event a and any other event chas a 

datarace and this implies that events band c must have a datarace, we say b is weaker­

than a. Thus if we have the information b weaker-than a, during datarace detection, 

we only need think about b without thinking about a. This can reduce both time and 

space overhead. Another reduction of overhead results from reporting dataraces only 

once. A lot of accesses may have a datarace in the same memory location, but they 

guarantee reporting at least one access rather than aU of the accesses. 

Flanagan and Freund analyze large Java programs for race conditions by exam­

ining user-provided type annotations for code [FFOOJ. lmprovements to accuracy 

and efficiency of data race detection continue to be addressed; e.g., through dynamic 

techniques [vGOl], and by combining information from multiple analyses [OC03J. 

A similar concentration of efforts has looked at other concurrency related program 

analysis and optimization problem, such as synchronization removal [E.ROO, BU99J. 

The aim of MHP analysis is to give general information useful to a wide variety of 

situations, and not to focus on a specifie aspect of concurrency analysis. 

Our implementation and optimization techniques largely depend on a combinat ion 

of weIl known approaches. Good points-to analysis is one of the more complex and 

expensive compiler problems, and has been addressed in a variety of settings [EGH94, 

Ste96,RMROl,BLQ+03J. SPARK [LH03J pro duces precise points-to information, and 

this has been quite crucial to our ability to analyze non-trivial programs. 
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Chapter 3 

Java Thread and Concurrency Model 

In this chapter, we introduce the Java infrastructure related to concurrency. Java 

has built-in support for multi-threaded programming and provides the communica­

tion of threads in its core. We present the states of a thread in Java and how threads 

transform between these states. Furthermore, when many threads are started and 

interacting with an object, sorne mechanism is needed to ensure the safety of these 

threads, i.e., prevent the threads from adversely affecting one another. This mecha­

nism is also introduced in this chapter. 

3.1 Java Thread States 

In Java, concurrency is modelled with threads, which are defined using a Thread class. 

Threads in Java follow a fairly standard lifecycle [HC02], and the different states of a 

thread are shown in Figure 3.1. Creating a Thread object is the only way to create 

a thread. When the thread is created, it does not begin to execute until its start 0 
method is called. The start 0 method does low level thread initialization, so the 

thread can automatically execute its run 0 method. When the operating system 

assigns a processor to it, the code inside the thread begin to execute, i.e., it is in 

the running state. A thread becomes dead once the execution of its run method is 

done or terminated because of an uncaught exception. Threads can also voluntarily 

give up their CPU time. Wh en the sleep method of a running method is called, 
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3.1. Java Thread States 

start 

Figure 3.1: Thread states 

the thread enters the sleeping state, becoming runnable again after the sleeping 

time expires. Java provides condition synchronization: a running thread enters the 

waiting state when it calls the wait method of an object. A thread in a waiting 

state for an object becomes runnable again when the notify/notifyAll method of 

the object is called by another thread. If a thread tries to lock an object which is 

already locked by another thread, it is temporarily paused. It becomes runnable 

wh en the thread owning the lock of the desired object releases the lock. A running 

thread enters a blocked state when the thread issues an input/output request, and 

remains there until the input/output operation is completed. 

10 



3.2. Java Lock Model 

3.2 Java Lock Model 

3.2.1 High-Ievel Constructs for Synchronization 

In Java, each object is associated with a lock. But there are no explicit high-Ievel 

lock and unlock actions in Java programs; instead, two high-Ievel constructs, syn­

chronized methods and synchronized statements, are used to perform synchronization. 

A synchronized method of an object tries to obtain a lock on the object wh en it is 

invoked. The body of the synchronized method begins to execute after getting the 

lock; and it releases the lock upon return. A synchronized statement has the format 

shown in Figure 3.1. It evaluates the expression to obtain an object that is locked 

for the execution of the block. The curly braces used for scoping in the synchronized 

statement thus correspond to object lock/unlock actions. 

As a difference from other lock models [NBF96], Java locks can always be "recur­

sively locked" -a thread that has acquired, but not released a lock on an object may 

relock the same object, and must then unlock it as many times as it is locked in order 

to release it. 

3.2.2 Wait and Notification 

Although Java does not provide monitors in a true sense [Han99], it does provide a 

limited form of condition synchronization. The Java language defines wait, notify, 

and notifyAll operations to facilitate communication between threads, and like lock­

ing, these operations are performed relative to an object. A thread must obtain the 

lock of an object before executing wait, notify, and notifyAll. Once the lock 

is released, other threads can acquire the ownership. Informally, the wai t operation 

releases the lock, suspends the current thread, and adds the current thread to the 

wai t set for the object. Every object has an associated wai t set, which contains 

a set of threads that want to lock the object but do not have the ownership. The 

waiting threads becomes eligible to run again when another thread performs a notify 

or notifyAll operation on the same object. A notify operation wakes one arbitrary 

waiting thread in the wai t set of the object. The thread is removed from the wai t 
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set and competes for the lock with other threads. The notifyAll operation wakes 

aIl waiting threads inside the wai t set and every thread is removed from the wai t 

set. These threads compete for the lock with each other, as weIl as the other threads 

attempting to execute a synchronized method or statement on the object. Once a 

thread re-acquires the lock, the wait operation is completed. Notice that Java does 

not in general include fairness guarantees of this. 

3.2.3 Bytecode-Ievel Implementation of Synchronization 

JVM locks allow the creation of monitors and critical sections. After compilation to 

bytecode, these high-level abstractions must still be represented as bytecode. The 

monitorenter and monitorexit bytecode are thus used as JVM instructions to im­

plement the lock and unlock actions of objects and the waitjnotify is implemented 

through method calls. In Figure 3.2, (a) is an example of Java code containing syn­

chronized statements, (b) is part of the corresponding bytecode. Note in (b), 3 is a 

monitorenter and both 9 and 15 are monitorexit instructions. The code from 13 to 17 

implements an implicitly "finaIly" block, part of the way Java ensures synchronized 

blocks are properly exited even in the presence of exceptions. 

While explicit monitorenter / monitorexit instructions are only for synchronized 

blocks, synchronized methods acquire and release the object lock implicitly with no 

special bytecode instructions. When a synchronized method is caIled, the JVM ac­

quires the lock first, then executes the body of the method, and finally releases the 

lock again. The synchronization is released regardless of exceptional method exit. 
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void Foo(Bar f) { 
synchronized( f) { 

waitO; 
} 

(a) An example method 

Method void Foo(Bar) 

° 1 
aload_l 
dup 
astore_l 
monitorenter 
aload_O 

/1 push f to stack 
Il keep a copy of f in a local variable 

l/lock f 
2 
3 
4 
5 
8 

invokespecial #2 <Method void waitO> 
aload_2 

9 
10 
13 
14 
15 

16 

17 

monitorexit 
goto 18 
astore_3 
aload_2 
monitorexit 
aload_3 

athrow 

18 return 

(b) Part of bytecode 

Il unlock f 
Il done 
Il exception handle 

Il make sure we unlock f 

Il rethrow exception 

Figure 3.2: An example of synchronization in bytecode 
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Chapter 4 

May Happen in Parallel (MHP) Analysis 

In this chapter, we describe the basics of the MHP algorithm proposed by Gleb 

Naumovich et al. [NSA99]. We introduce the important assumptions and require­

ments of this algorithm. MHP analysis relies on a particular internaI data structure, 

the ParaUel Execution Graph (PEG). We sketch out the major components of the 

PEG and its structure here. The algorithms used to compute MHP information are 

also presented in this chapter. 

4.1 Limitations and Requirements 

MHP analysis is not yet eompletely general. Input processes and information have 

to satisfy a number of limiting requirements as follows. 

• Knowing an upper bound of started threads 

In general, the number of runtime threads in a program cannot be precisely 

determined a priori. However, MHP analysis requires data structures specifie 

to individual threads, and so an upper bound on the number of thread instances 

must be known. This requirement represents reduced generality of input. For 

our benchmarks we have manually unrolled aH thread creation loops, and oth­

erwise ensured each thread creation site is easily identified. 
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4.2. Parallel Execution Graph 

• Alias resolution and cloning 

A requirement of the MHP analysis is that alias resolution is done, and code 

cloning used to eliminate polymorphism and ensure precise variable and method 

targets are known. For example, if a variable in a program may refer to two 

different threads, we can create a structure which contains a copy of the body 

of the first thread and a copy of the second thread. Alias resolution and cloning 

brings space concerns for moderate to large programs . 

• lnlining 

The MHP analysis uses a simplified program structure. It uses an internaI struc­

ture, a Parallel Execution Graph (PEG) to represent the whole program. Every 

method must be inlined to build the who le program representation. However, 

this whole program inlining is not feasible for non-trivial programs. Further­

more, inlining every method cannot be used in programs containing recursive 

method caUs. 

4.2 Parallel Execution Graph 

A Control Flow Graph (CFG) is an abstract data structure used to represent programs 

in compiler optimization, program analysis, and so on. CFGs consist of nodes and 

directed edges. Each node in a CFG represents a basic block, i. e., a straight-line piece 

of code that can only be entered at the beginning and exited at the end. Directed 

edges point to the targets of branches or jumps in the control fiow from the current 

node. CFGs are described in most compiler optimization texts [Muc97]. 

The ParaUel Execution Graph or PEG is a superstructure of a normal control 

fiow graph. Special edges and nodes are incorporated to explicitly represent potential 

thread communication and synchronization. Since thread bounds are known, the 

actions of each thread are also uniquely represented in the graph. Figure 4.1 gives 

an example of a PEG for a simple program that launches two threads t 1 and t2 

from a main thread and then attempts to signal them using a global lock and a 
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t1 main t2 

1 (0, end, 1\) 1 (0, end, 12) 1 

Figure 4.1: An example of a PEG, a simplified version of figure 3 in [NSA99]. 

waitjnotify pattern. In Figure 4.1 nodes in the shaded are88 are actually protected 

by the monitor. 

Nodes in PEG's are structured 88 triples; e.g., for communication methods (wait, 

notify, etc.) the triple (object, name, caller) is used, where the field object 

represents the object controlling the communication, name is the method name, and 

caller is the caller thread name. For nodes that do not represent communication 

methods, a wildcard symbol (*) is used for the object field. 

Certain new nodes are added to aid in later analysis. Most simply, (*, begin, t) 

and (*, end, t) nodes are inserted to mark the beginning and end of each thread 

t, and Clock, entry,t) and Clock, exit,t) nodes indicate monitorenter and 

moni torexi t operations by t on object lock. Condition synchronization is only 

slightly more complex. A waitO method calI is broken down into a chain of wait, 
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waiting and notified-entry nodes, representing the substeps of starting the calI to 

wai t 0, actuaIly sleeping after the lock is released, and having been notified and try­

ing to reacquire the lock, respectively. For example, in Figure 4.1, (lock, wait, tl), 

(lock, waiting, tl), and (lock, notified-entry, tl) represent thread t1 's calI 

to lock. wait O. 

There are four kinds of edges in PEGs: wait edges, local edges, notify edges and 

st art edges: 

• Waiting edge 

A waiting edge is an edge between waiting nodes and notified-entry nodes. In 

Figure 4.1, the dotted edges with empty arrowheads from (lock, waiting, 

ti) to (lock, notified-entry, tl) and from (lock, waiting, t2) to (lock, 

notified-entry, t2) are waiting edges. These represent the transition from 

waiting to being notified . 

• Notifyedge 

No tif y edges are dynamicaIly created during the analysis process. They alIow 

precedence information to flow from the notifier to the waiting thread, rep­

resenting the inter-thread communications implied by the notify calI. Since 

they are inserted during analysis, this information flow can be more precise 

than a static approach. Notify edges are only inserted from an (ob j ect, 

notify/notifyAll, t1) node to a (object, notified-entry, t2) node if 

the same object is involved, the threads are distinct, and the analysis has 

computed that these two events may indeed happen in paraIlel. For exam­

pIe, in Figure 4.1, the dashed edges represent notify edges. There are two 

notify edges in this figure, an edge from (lock, notifyAll, main) to (lock, 

notified-entry, t1), and another one from (lock, notifyAll, main) to 

(lock, notified-entry, t2). This conservatively represents the nondeter­

minism that is inherent in Java's notify mechanism: one, none, or both of t1 

and t2 will be actuaIly waiting when the main thread performs its notify calI. 

Both of them have chance to be notified and compete for the lock again. 
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• Start edge 

A stan edge is created from a call to Thread. start 0 to the first action of the 

initiated thread. Start edges allow information from before a thread has started 

to fiow to the new thread, and ensures that events prior to a st art statement 

are never in parallel with events after. These edges are shown in Figure 4.1 as 

dotted lines with solid arrowheads, i. e., the dotted edge from (t 1, start, *) 

to (*, begin, t1) and the one from (t2, start, *) to (*, begin, t2) are 

stan edges . 

• Local edge 

A local edge represents normal, intra-thread control fiow, not dependent on 

thread communication. These edges are inherited from the base CFG, and are 

shown as solid edges in Figure 4.1. AlI the edges that are not waiting edges, 

natif y edges, or start edges are local edges. 

4.3 A Worklist Flow Analysis Aigorithm 

4.3.1 Overview 

MHP analysis is performed using a worklist datafiow algorithm. The goal is to find for 

each PEG node the set of other PEG nodes which may execute concurrently. For each 

PEG node a set M(n) is initialized to the empty set, and a least fixed-point based 

fiow algorithm propagates set information around the PEG. M(n) then contains the 

set of nodes which may execute in parallel with n. Although this largely follows 

the template of a standard datafiow analysis, with special modifications to create 

notify edges and fiow information across and through the various special edges and 

nodes, the algorithm also includes a "symmetry step" to guarantee that if mE M(n) 

then n E M (m), i. e., if m may be executed in parallel with n, then certainly n may 

happen in parallel with m. This non-standard component of the analysis ensures 

information is accurately maintained as the actions of concurrently executing threads 
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are analyzed. Note that as with most static analyses the computed information is a 

conservative approximation. 

4.3.2 Terminology 

Sorne functions and terms are used to help illustrate this algorithm. 

Functions 

• LocaIPred(n) and LocaISucc(n) 

LocalPred( n) and LocalSucc( n) return the collection containing aIl immediate 

local predecessors and successors of n respectively. Local predecessorsjsuccessors 

are the predecessorsjsuccessors in the same thread. 

• NotifyPred(n) and NotifySucc(n) 

Notify edges go from notify or notifyAll nodes to the corresponding notified­

entry nodes. NotifyPred(n) computes the set of an the notify predeces­

sors of a notified-entry node n. NotifySucc(n) returns the set of aIl the 

notified-entry successors of a notify node or notifyAll node n. 

• StartPred(n) and StartSucc(n) 

As introduced in section 4.2, the PEG contains start edges that go from start 

nodes to the first node of each started thread. The first node of a thread is 

always a begin node. StartPred(n) returns the set of aIl the start predecessors 

of a begin node of a thread. StartSucc(n) returns the collection of begin 

successor nodes of a start node n. 

• WaitingPred(n) and WaitingSucc(n) 

WaitingPred(n) returns a waiting predecessor of a notified-entry node n. 

WaitingSucc(n) returns the notified-entry successor of a waiting node n. 

• N(t) 

AlI PEG nodes in the thread t. 
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Collections 

Three collections are associated with each lock object in this algorithm: 

• notifyNodes(obj) 

notifyNodes(obj) contains the collection of aIl notify and notifyAll nodes for 

lock object obj. Such nodes have a format of (obj, notify, caller) or (obj, 

notifyAll, caller), where caller can be any thread but every node in the 

same collection has the same obj field. In Figure 4.1, the notifiedNodes(lock) 

contains one element, i.e., (lock, notifyAll, main). 

• waitingNodes(obj) 

waitingNodes(obj) contains the collection of aIl waiting nodes of lock object 

obj. For example, in Figure 4.1, waitingNodes(lock) contains two elements, i.e., 

(lock, waiting, tl) and (lock, waiting, t2). 

• Monitor(obj) 

Monitor( obj) represents the collection of PEG nodes in the monitor of the lock 

object obj. For example, in Figure 4.1, the nodes insides the shaded area are 

protected by the monitor. Specifically, Monitor(lock) contains the following 

nodes: 

(*, if, tU, (lock, wait, tU, and (lock, exit, tl) in thread t1, 

(*, if, t2), (lock, wait, t2), and (lock, exit, t2) in thread t2, 

(*, if, main), (lock, notifyAll, main), and (lock, exit, main) 

in thread main. 

Computing Notify Edges 

There are four type of edges in a PEG. Wait edges, local edges, and start edges 

are included as part of building the PEG. But notify edges are built during the 

flow analysis-the flow analysis computes notify successors of notify nodes. The 
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equation for computing notify successors is below. This simply adds a notify edge 

if a notify no de and a matching waiting no de may happen in parallel. 

{ 

{m 1 m E (obj, notified-entry, *) A 

notifySucc(n) = WaitingPred(m) E M(n)}, 

undefined, 

if n E notifyNodes(obj) 

otherwise. 
( 4.1) 

4.3.3 Worklist Version of MHP Flow Analysis 

Oynamic Computing Equations 

This algorithm mostly follows the technology of a standard data flow analysis on 

a CFG [Muc97]. Here we introduce and describe the equations verbatim from the 

original paper used to compute information during the flow analysis. The following 

well-known data flow analysis equation, specialized to each kind of node, is used to 

define how information is propagated. 

OUT(n) = GEN(n) U M(n) \ KILL(n) (4.2) 

M(n) contains the nodes that may be executed in paraUel with n, while OUT(n) 

contains the nodes that may be executed in parallel with the successor of n. GE N (n) 

contains the nodes that may be executed in paraUel with the next no de but not with 

n. Equation 4.2 gives the rule to compute the GEN set of node n. If the current 

node is a start node, GEN set only contains the begin node of the target thread. If 

the current node is a notify node or notifyAll no de for Object obj, GEN consists 

of the notify successors, i.e., aU the notified-entry nodes of Object obj. In aU the 

other cases, GEN is empty. 

{ 

(*, begin, t), 

GEN(n) = NotifySucc(n), 

0, 

if n E (t,start,*) 

if :3obj : n E notifyNodes(obj) 

otherwise 

21 
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KI LL( n) contains the nodes that will definitely not be executed in parallel with 

the next node, although they may be in parallel with n. The below equation gives 

the rule for how to compute the KI LL(n) set. 

N(t) , if n E (t, join, *) 

Monitor(obj), if n E (obj, entry, *) U 

(obj, notified-entry, *) 

KILL(n) = waitingN odes( ob)), if (n E (obj, notify, *) 1\ (4.4) 

IwaitingNodes(obj) 1 = l)V 

(n E (obj, notifyAll, *)) 

0, otherwise 

If the current node n is a j oin node, the successors of n cannot be executed with 

any statement of the target thread of n because the finish of the execution of n means 

the execution of the target thread terminates. Thus the KILL set is aH of thread t. If 

the current no de is an entry or notified-entry node of object obj, which means it 

is outside the monitor of obj and trying to enter the monitor, the KI LL set consists 

of all the statements inside the monitor of ob j . If the current node n is a not if Y 

node of object obj and there is only one waiting node for obj, the waiting node 

is "notified" and cannot be in a waiting state any longer. If the current no de n 

represents a notifyAll node of object obj, all the waiting nodes are "notified" and 

no thread is waiting for obj. Thus, in these two cases, the KI LL set consists of the 

waiting nodes of object obj. In the rest of the cases, the KILL set is empty. 

M(n) contains the nodes that may be executed in parallel with n. During the 

flow analysis, the M set is recomputed and added to the old M set of the current 

node. The following equation gives the rule for computing the M set of the current 

no de n. 
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Computing M Sets 

M(n) = M(n) u 

UpEStartPred(n) OUT(p) 

\N(thread(n))), 

((UPENoti/yPred(n) 0 UT(p)) 
nO UT( WaitingPred( n))) 

U G ENnoti/yAll (n), 

UPELocalPred(n) OUT(p), 

if n E (*, begin, *) 

if n E (*, notified-entry, *) 

otherwise 

(4.5) 

If the current node n is a begin node, the nodes that can be executed in parallel 

with it are the nodes in the OUT set of the start predecessors of n. If the current 

node n is a notified-entry node, the computation of the M set is more complicated 

and needs the foUowing equation. 

GENnoti/yAll(n) = 

0, if n ~ (obj, notified-entry, *) 

{ mlm E (obj, notified-entry, *)A 

WaitingPred(n) E M( WaitingPred(m)) A 

(3 r E N: r E (obj, notifyAU, *) A 

r E (M( WaitingPred(m)) n M (WaitingPred(n)))) } 

if n E (obj, notified-entry, *) 
(4.6) 

If a notifyAll statement wakes aU the waiting threads, aU the corresponding 

notified-entry nodes in these thread may be executed in parallel. In this situation, 

the GENnoti/yAll(n) set contains aU the other notified-entry nodes. SpecificaUy, a 

notified-entry node m should in the GENnoti/yAll(n) if the waiting predecessor of 

n may happen in paraUel with the waiting predecessor of m and there is a notifyAll 

node which may happen in paraUel with both wai ting predecessors of m and n. 

To compute the M set of a notified-entry node n, we first find the union of 

the OUT set of the notify predecessors of n. Then the intersection of that union 

with the OUT set of the waiting predecessor of n is computed. Finally, the nodes 

in the GENnoti/yAll(n) are added to the result. Computing the M set in the rest of 

the cases is intuitive: the M set consists of the union of the OUT set of aU the local 

23 



4.3. A Worklist Flow Analysis Algorithm 

predecessors of the current node. 

Worklist Flow Analysis Aigorithm 

Algorithm 1 The first stage: Initialization 
'ri n EN: KILL(n) = GEN(n) = M(n) = OUT(n) = 0 

Initialize the worklist W to include aU start nodes in the main thread that are reachable 

from the begin no de of the main thread 

'ri nE N: 

case 

n E (t, join, *) =} KILL(n) = N(t) 

nE (obj, entry, *) U (obj, notified-entry, *) =} KILL{n) = MonitoTobj 

n E (obj, notifyAU, *)=} KILL(n) = waitingNodes(obj) 

n E (obj, notify, *) =} 

if 1 waitingNodes(obj) 1 = 1 then 

KILL(n) = waitingNodes(obj) 

n E (t, start, *) =} GEN(n) = (*, begin, t) 

The worklist algorithm is divided into two stages as Algorithm 1 and Algorithm 2 

(these algorithms are verbatim from [NSA99]). The first stage as shown in Algorithm 

1 is the initialization stage. First of all, the KILL(n), GEN(n), M(n) , and OUT(n) set 

of each node is initialized to empty; and the worklist W is initialized to only contain 

the start nodes of the main thread. Then the KILL sets are computed for all nodes 

and the GEN sets for the start nodes. 

The second stage shown in Algorithm 2 is the main loop stage of MHP algorithms. 

The inputs of this stage are graphs representing all threads and the initialized sets for 

each node. In this stage, M(n) and OUT(n) collections for each node are computed, 

and this information is propagated to the next nodes. W is the worklist containing 

nodes to be processed in the algorithm. The execution of this stage begins with the 

first node n of the worklist W, and n is deleted from Was in line 1 and 2. Lines 3 

and 4 backup the current value of the M and OUT set of the current node to Mold 
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and OUTold respectively. There are four kind of edges in PEGs and only notifyedges 

are computed dynamicaIly. Lines 6 to 8 find the NotifySucc() of the current node 

if the current node is a notifyNode and also computes no tif y edges. After building 

the no tif y edges, the graphs representing aIl the threads are connected to become the 

real PEG. Lines 9 to 10 add any new NotifySucc(n) entries to the worklist W to 

ensure MHP information is propagated properly. Line 11 computes GEN(n) set for 

notifyAll nodes. Line 12 computes M() set for the current node. If the current no de 

n is a notifyNode, the GEN(n) set is computed as line 13 and 14. Line 15 computes 

the OUT(n) set using equation 4.2. As previously mentioned, the difference of this 

algorithm from a standard forward fiow analysis lies in that it has a special symmetry 

step. Lines 16 to 19 detail the symmetry step. The symmetry step is based on the 

observation that if a node x is in the M () set of a node y, then y must be in the M () 

set of node x. Lines 20 and 21 add the current nodes' suc cess ors to the worklist W 

when OUT(n) is different from the backup old value of OUT() of current node. The 

output of this stage is M(n) for each node in the PEG, which contains aIl the PEG 

nodes that may be executed in paraIlel with n. 

4.4 Discussion 

The limitations discussed in Section 4.1, particularly the inlining and cloning require­

ment mean that this MHP analysis is expensive and not feasible for moderate to large 

programs. Thus, a refined and more practical analysis is needed for computing MHP 

information. Sorne approaches to do this are described in the Chapter 6 and 7. 
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Algorithm 2 The second stage: Main loop 
We evaluate the following statements repeatedly until W = 0 

lin is the current node: 
1. n = head( W) 

lin is removed from the worklist: 
2. W = tail( W) 

Il Mold, aUTold, and NotifySuCCold are th copies of the M, OUT, 
Il and N otifySuCCold sets for this node, computed to determine 
Il new nodes inserted in these sets on this iteration 

3. Mold = M(n) 
4. OUTold =OUT(n) 
5. NotifySuccold = NotifySucc(n) 

Ilcomputing the new set of notify successors for notify and notifyAll nodes 
6. if 30 : n E notifyNodes(obj) 
7. Vm E M(n) n waitingNodes(obj): 

Il create a new notify edge from no de n to the waiting 
Il successor of node m 

8. NotifySucc(n) = NotifySucc(n) U WaitingSucc(m) 
Ilif new notify edges were added from this no de 

9. if NotifySuccold(n) :f NotifySucc(n) then 
10. W = W U NotifySucc(n) 
11. Compute the set GENnotifyAll(n) as in equation 2.6 
12. Compute the set (M(n)) as in equation 2.5 

Iithe only nodes for which the GEN set has to be recomputed are notify 
1 land notifyAll nodes; their GEN sets are their notify successors: 

13. if 30 : n E notifyNodes(obj) th en 
14. GEN(n) = NotifySucc(n) 
15. Compute the set OUT(n) as in equation 2.2 

lido the symmetry step for all new nodes in M (n): 
16. if M old :f M(n) then 
17. V m E (M(n) \ Mold(n)): 
18. M(m) = M(m) U n 

Iladd m to the worklist because the change in M(m) may lead to a 
Ilchange in OUT(m) 

19. W = Wu m 

Ilif new nodes has been added to the OUT set of n, add all n's successors 
Iito the worklist 

20. if OUTold :f OUT(n) 
21. W = W U (LocalSucc(n) U StartSucc(n) 
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Chapter 5 

MHP computing in the Context of Soot 

Our implementation is based on Soot [VRHS+99], a free compiler infrastructure 

written in Java. One of the goals of this thesis is to extend Soot to allow multi­

threaded Java program analysis. In this chapter, we introduce the Soot framework 

and the main components we used to simplify our effort. At the end of this chapter, 

we present how our MHP analysis is integrated into the Soot framework. 

5.1 Soot Framework 

The Soot framework was originally designed to provide a common infrastructure for 

analyzing and transforming Java bytecode. After years of development, it allows users 

to analyze, transform, optimize, and annotate Java bytecode. Currently, it has been 

extended to include decompilation and visualization. 

Soot reads in a Java bytecode class file and converts it to different intermediate 

representations, according to a user's instruction and the needs of any analyses to be 

run. 

Soot provides five intermediate representations (IR): 

• Baf: 

A stack-based, streamlined representation of bytecode which is simpler to ma­

nipulate than bytecode itself. 
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• Jimple: 

A stackless, typed, "3-address" intermediate representation suitable for opti­

mization. "3-address" code has been traditionally used in the process of com­

piler analyses and optimizations [VSD86]. 

• Shimple: 

A Static Single Assignment (SSA) [CFR+91] variation of Jimple. 

• Grimp: 

An aggregated version of Jimple suit able for decompilation and code inspec­

tion. In this model, series of expressions are aggregated into more complicated 

expressions. It is closer to Java source code and much easier to read than Baf 

and Jimple. 

• Dava: A structured representation used for decompiling Java [Mie03]. 

For each intermediate representation, Soot provides a corresponding processing 

phase and associated Application Program Interface (API). Baf, Jimple, and Grimp 

are unstructured representations designed to allow analyses and optimizations of Java 

bytecode at different levels. Shimple is an variation of Jimple provided for users 

needing the Static Single Assignment (SSA) form. Users can use Dava for Java 

decompilation. The Grimp IR can be converted into the Dava IR which, when printed 

to a text file is recompilable Java source code. 

5.2 MHP Computing in the Context of 500t 

5.2.1 Jimple 

The main internaI program representation in Soot is Jimple. Jimple is a typed, "3-

address" code representation of bytecode. There are a number of advantages to use 

Jimple for our MHP implementation. Primarily, Jimple provides control fiow graph 

construction and various control fiow analyses that we can use for our MHP analysis. 

28 



5.2. MHP Computing in the Context of Soot 

public class A{ 
private void actO{ 

synchronized(buffer) 
2 { 
3 a = b + c; 
4 buffer.writeO; 
5 buffer.notifyAIi0; 
6 
7 

8 

Figure 5.1: An example Java code 

Jimple is also used by most Soot users, and so this simplifies interaction with other 

analyses that may wish to consume MHP information in the Soot framework. 

Java source programs are compiled to bytecode (.class files), then transformed to 

Jimple IR (.jimple files). Figure 5.1 shows a segment of Java source code of method 

act 0 in class A. Figure 5.2 shows the corresponding bytecode of Figure 5.1. In Fig­

ure 5.2 instruction 0 pushes "this" to the stack while instruction 1 loads parameter 

buffer. Instructions 8 to 36 execute the synchronized block while 39 to 43 handle ex­

ceptions. Specifically, instructions 9 to 17 implement line 3, a = b + c, in Figure 5.1 

while instruction 35 implements the unlock operation on buffer. Notice instruction 

41 makes sure that buffer is unlocked in the case of any exceptional method exits. 

In bytecode, full object/method synchronizations are also available, as are other 

low-Ievel operations, such as monitorenterjmontorexit (to enter/exit a synchronized 

block), four kinds of invocations (virtual, static, special, interface). Normally, a 

method invocation for an instance method is decided by the runtime type of the 

object, and these cases are implemented using the invokevirtual instruction (e.g., 

Hnes 24 and 31 in Figure 5.2. Most of the method invocations in Java fall in the 

category of the "virtual invoke". The instruction invokestatic is used for invoking 

a static method. And the instruction invokespecial must be used wh en an instance 

initialization method is invoked, when a method in the superclass is invoked, or when 

a private method is invoked. The instruction invokeinterface is used when a 
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Method void actO 

° aload_O 
1 getfield #5<Field Buffer buffer> 
4dup 
5 astore_l 
6 monitorenter 
7 aload_O 
8 aload_O 
9 getfield #3 <Field int b> 

12 aload_O 
13 getfield #4 <Field int c> 
16iadd 
17 putfield #2 <Field int a> 
20 aload_O 
21 getfield #5 <Field Buffer buffer> 
24 invokevirtual #6 <Method void writeO> 
27 aload_O 
28 getfield #5 <Field Buffer buffer> 
31 invokevirtual #7 <Method void notifyAlIO> 
34 aload_l 
35 monitorexit 
36 goto 44 
39 astore_2 
40 aload_l 
41 monitorexit 
42 aload_2 
43 athrow 
44 return 

Exception table: 
from to target type 

7 36 39 any 
39 42 39 any 

Il push this on the stack 
Il get parame ter buffeT 

Il save a copy for later unlock 
Il lock buffeT 

IIget field b 

Il get field c 

Il b + c 
Il put the result of b + c to a 

Il get field buffeT 

Il get field buffer 

Il unlock buffer 

Il exception handler 

Il make sure we unlock buffeT 

Il rethrow exception 

Figure 5.2: Corresponding bytecode of Figure 5.1 
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private void actO 
{ 

A rO; 
2 Buffer rI, $r3, $r4, $r5; 

{ 
3 ArO; 
4 Buffer rI, $r3, $r4, $r5; 
5 java.lang.Throwable r2, $r6; 
6 int $iO; $il, $i2; 

7 
8 
9 
10 

11 
12 
13 

rO := @this: A; 
$r3 = rO.<A: Buffer buffer>; 
rI = $r3; 
enterrnonitor $r3; 

labelO: 

$iO = rO.<A: int b>; 
$i1 = rO.<A: int c>; 
$i2 = $iO + $il; 

14 rO.<A: int a> = $i2; 
15 $r4 = rO.<A: Buffer buffer >; 
16 
17 
18 
19 

virtualinvoke $r4. <Buffer: void writeO>O; 
$r5 = rO.<A: Buffer buffer>; 
virtualinvoke $r5.<java.lang.Object:void notifyAIIO>O; 
exitmonitor rI; 

label1: 
20 goto label5; 

label:2 
21 $r6:= @caughtexception; 

labeI3: 
22 r2 = $r6; 
23 

24 

exitmonitor rI; 

label4: 
throw r2; 

label5: 
25 return; 

26 catch java.lang.Throwable from labelO to label 1 with label2; 
27 catch java.lang.Throwable from labeI3 to label4 with label2; 

/lload buffer 

/llock buffer 

Ilload b 
Ilload c 
Il b + c 

Il unlock buffer 

Il exception handler 

Il make sure unlock buffer 

Il rethrow exception 

Figure 5.3: Corresponding Jimple code of Figure 5.1 

31 



5.2. MHP Computing in the Context of Soot 

method which is implemented by an interface is called. 

Figure 5.3 shows the corresponding Jimple code of Figure 5.1 and Figure 5.2. 

Jimple does not have stack operations; instead, it uses sorne temporary variables to 

store operation results. For example line 11 to 14 in Figure 5.3 implement a = b + 

c and sorne temporary variables $iO, $il and $i2 are used in this implementation 

instead of stack operations. Notice that in Jimple, as in Java source code, variables 

are explicit in operations, whereas in bytecode operands are implicit stack locations. 

Jimple also provides different method invocation and monitor enter/exit structures. 

5.2.2 Intra-procedural Analysis 

Soot provides many useful analyses, both intra- and inter- procedural analyses. In 

this section, we introduce the intra-procedural analyses used in MHP computation . 

• Control Flow Graphs (CFGs) 

Control Flow Graphs can have varied for ms in Soot. BlockGraph is a tradi­

tional representation [Muc97] of control flow. To facilitate program analysis 

and optimization, the Uni tGraph is provided in Soot, in which nodes represent 

statements in a program and edges indicate control dependence of the nodes. 

We use UnitGraphs for our intra-procedural analysis. 

• Flow analysis 

For data flow analyses, Soot has two built-in intra-procedural analysis schemata: 

ForwardFlow Analysis and BackwardFlow Analysis. These provide standard data 

flow analysis frameworks suit able for most conventional compiler analyses. MHP 

analysis, however, is technically neither a forward flow analysis nor a backward 

flow analysis. Mostly it is a forward analysis with a special symmetry step, 

which we showed in Section 4.3.3. We implement our MHP analysis based 

on the ForwardFlowAnalysis framework, modified to incorporate the symmetry 

step. 
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(a) (b) 

Figure 5.4: Method relationships in CaU Graphs. 

5.2.3 Inter-procedural Analysis 

Here, we introduce the inter-procedural analyses used in our MHP analysis . 

• CalI Graphs 

Consisting of nodes and directed edges, a caU graph contains information about 

the possible targets of virtual method caUs. For a single-threaded program, the 

caU graph must include aU the methods that can be reached from the main 

method. For a multi-threaded program, the caU graph must include aU the 

methods that can be reached from main method and the start or run methods 

of aH instantiated threads or runnable objects passed to instantiated threads. 

Nodes in a caU graph denote methods, and edges in a caU graph represent 

possible caUing relationships between the caUer method and the caUee method. 

For example, if we have a statement calling "BO" in method "A". Figure 5.4 

expresses the calling relationship of the statements. Figure 5.4 (a) represents the 

case wh en there is only one caU to B in method A while (b) denotes a situation 

in which A caUs B twice. In Java programs, caU graphs are important for whole­

program analyses because method bodies tend to be smaU, and method caUs 

very frequently [DDHV03]. 

• Class hierarchy analysis (CHA) 

The Soot framework also provides Glass hierarchy analysis. Glass hierarchy 

analysis [DGC95] conservatively estimates the run-time targets of method caUs 

by using the class-subclass relationships in the type hierarchy. First, a represen­

tation of the class inheritance hierarchy is built. The nodes in a class inheritance 
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Figure 5.5: Class inheritance hierarchy. 

hierarchy represent classes while edges denote the immediate superclass-subclass 

relationship; there is a directed edge A ---t B if B inherits from A. Assume we 

defined four classes A, B, C, and D, and the class inheritance hierarchy is as 

shown in Figure 5.5. Because every class in Java is a child of Object, the root 

is necessarily Object. From Figure 5.5, we can see class Band C are subclasses 

of A, and D is a subclass of C. The potential runtime types of a class or an 

interface are computed over this representation. For a method call on an object 

r of declared type t, the runtime type of the receiver r can be t or any subclass 

of t. For an interface type t, the runtime types of the receiver r can be any class 

c implementing t or a class implementing any subinterface of t, or any subclass 

of c . 

• Points-to analysis 

In a C-like programming languages, many compiler analyses need to make ac­

curate conclusions about the effects of writing to a variable and the possible 

read location too. Thus, identifying points-to relations is important to many 

compiler analyses. In the case of Java, points-to analysis has been extended 

to compute the set of objects a given class reference may assume at runtime. 

This identifies variable aliasing, and in an object-oriented language like Java, 

method targets too, by identifying potential types of the receiver object of a 
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method caU. This can help significantly in reducing the size of the CHA graph. 

Spark [LH03] is a flexible and modular framework providing points-to analysis 

for Java programs based on Soot. Spark offers precise points-to information, 

a more precise call graph, as well as good time/space performance. For our 

analysis we used SPARK rather than CHA to retrieve call graph information, 

in order to take advantage of the greater accuracy. 

5.3 MHP Analysis in Soot 

Figure 5.6 shows how our MHP analysis is integrated with Soot. Java class files are 

first input into the Soot framework, producing Jimple files. The Call Graph, as well 

as CHA and Spark analysis information are computed based on Jimple. Then the 

MHP analysis module computes the may happen in parallel information for each PEG 

node based on the Jimple files, Call Graph, CHA, and points-to analysis information 

from Spark. 

The shaded area represents MHP analysis. Our MHP implementation is composed 

of three mainly phases. The first phase is a PEG Builder which uses Jimple and 

takes input from CallGraphs, CHA, and SPARK. We get a PEG after the PEG 

builder phase. Then a PEG Simplifier works on the PEG to get a smaller PEG 

by aggregating sorne nodes into one node. The PEG Simplifier is an important 

component of how we improve the performance of the MHP computation. Note 

that many of our simplifications are based on the observation (made in [NSA99]) 

that code not containing synchronization does not need to be explicitly modelled. 

The final phase of our MHP analysis is an MHP analyzer which runs the worklist 

algorithm based on the simplified PEG. The details of these pro cesses are discussed 

in Chapter 6 and 7 . 

MHP information can subsequently be used for further program analyses and 

optimization offered by Soot, and/or the analysis results provided by Soot can be 

exported through class file attributes for consumption by a virtual machine or another 

process. 
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Data 

Process 
Jimple 

Figure 5.6: Overview of our MHP analysis. 
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Chapter 6 

Design and Implementation of Parallel 

Execution Graph 

In this chapter, we demonstrate our design and implementation for building Par­

allel Execution Graphs based on Soot. Conceptually, building PEGs from CFGs is 

straightforward. In practice, non-obvious information needs to be computed to make 

correct decisions and to ensure practicality, and this motivates a series of necessary 

optimizations and analyses. 

In order to keep the data size manageable, a realistic implementation must also 

incorporate techniques to limit the size of the resulting data structures. An obvious 

way of restricting data size is to focus attention on application code only. This 

restricts the size of the call graphs and thus the PEG. Java inc1udes a very large 

standard class library, and so even for a very small program a complete call graph 

tends to be quite large. However, in many cases the application itself is of main 

interest, and so if external actions are assumed safe enough, greater efficiency can 

be derived by excluding library and startup information. To facilitate the MHP 

analysis, we therefore define a PegCallGraph to be a call graph restricted to methods 

inside application classes, i.e., user defined classes. Like a CallGraph of Soot, a 

PegCallGraph is a DirectedGraph, the edges of a PegCallGraph go from nodes to 

their successors. 

Another difference in our PEG construction from the original MHP analysis is 
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public void AO{ 

BO; 

public void BO{ 

GO; 

public void GO{ 

AO; 

(a) (b) 

Figure 6.1: An example of recursive method invocations 

related to inlining. The MHP analysis presented in Chapter 4 inlines every method, 

except communication methods into the control flow graphs for the threads. We do 

not use this strategy. First of aIl, this strategy has a drawback in that it easily fails 

when the program contain recursive method caIls. In figure 6.1, (a) is a chunk of 

program code and (b) is the part of the calI graph representing (a). Note in (b) 

methods A, B, and C form a cycle. Inlining every method as proposed in Chapter 2 

requires inlining B into A, Cinto B, A into C, B into A, Cinto B, A into C, ... , . The 

inlining process is endless and the program will keep running until the memory run 

out. Unfortunately, although recursion is not present in every program, it is used in 

many non-trivial programs including, as we discuss in Chapter 8, one of the SPEC 

benchmarks. 

The second reason that we do not inline every method lies in the lacks of necessity 

to al ways do so for MHP analysis. This requires a definition of what methods are 

interesting to MHP analysis. Here, by interesting statements we refer to statements 

related to modeIling execution of threads and synchronization of Java programs: 

Definition 6.0.1 A statement is interesting if it is 
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1) a monitorenter or monitorexit bytecode operations (including entryjexit of syn­

chronized methods) 

2) a call to wait, no tif y, notifyAll of an abject, or start() and join() methods of a 

thread. 

A method is interesting if it either contains an interesting statement, or any callee 

is interesting. 

UsuaUy, only a small part of a program consists of interesting statements. Wh ether 

we extend and inline those methods that do not contain an interesting statements does 

not effect the result of MHP analysis. In addition, the smaller the PEGs, the faster 

the MHP computation is expected to be. 

Determining whether a method should be inlined thus requires identifying 2n­

teresting methods. It is easy to identify communication methods and synchronized 

methods from the signature of the method, i.e., the name, return type, declaration, 

and parameters of the method. The problem is to figure out which methods directly 

or indirectly through other method calls contain interesting statements. Our solution 

to this is described in Section 6.6.1 

MHP analysis requires knowledge of precise runtime object identities. For ex­

ample, we need to know which actual runtime thread is started in call statement 

t. st art 0 if t is a (subclass of) Thread. The CFG representing the runO method 

for each runtime thread must be built for the MHP analysis. Similarly, if we do not 

know which thread corresponds to a method caU to j oin 0, we do not know which 

nodes should be "killed" in computing the kill set as introduced in Section 4.3.3. 

MHP analysis also relies on knowing the value of the Object field in PEG triples for 

determining lock ownership and monitor-based information flow. The MHP analysis 

introduced in Chapter 4 uses alias sets and cloning techniques to resolve object and 

method polymorphism, and to ensure runtime objects are identified. In this thesis, 

we try to find the runtime object when building PEG nodes to reduce the size of 

PEG. In cases when we cannot find the target staticaUy; we use cloning techniques. 

Because of the above differences from the original design of MHP illustrated in 

Chapter 4 and the practical usage concerns, we designed a different PEG format and 
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6.1. PegCallGraph 

implementation steps for building the PEG. In the rest of this chapter, we present 

how we solved the problems for a practical MHP analysis based on Soot, as weIl as 

our PEG design. 

6.1 PegCaliGraph 

A PegCallGraph is a special calI graph that only contains methods in application 

classes. Java has a large class library. Even for a very small Java program, the 

JVM may load and initialize many classes for the running of the program. Thus we 

may get a large calI graph even for a very tiny program; e.g., consider the following 

HelloWorld Java program: 

public class HelloWorld{ 

} 

public static void main{String[] args){ 

System. out. println( "Hello World! ") ; 

} 

The calI graph of the "HelloWorld" program built by Soot contains 5075 different 

methods and most of them are methods of library classes. Methods inside application 

classes only count for a very small part of the call graph. 

To build PegCallGraph, firstly, we use the Soot framework to generate a Call­

Graph. Then a filter will work to only keep the methods and associated edges in the 

application classes. And the native methods will be excluded from PegCallGraphs. 

Thus, in the cases that sorne library code calls back into the application code, or 

where the library code performs synchronization operations on objects created in the 

application code, the PegCallGraph should contain the methods in the called back 

application code (if Soot handles them). 

The PegCallGraph implements the interface DirectedGraph provided by Soot. 

The summary of methods of the DirectedGraph is shown in Table 6.1, and rep­

resents basic graph query and traversaI functionality. In addition to implementing 

aIl the methods in Table 6.1, the PegCallGraph provides another two public meth­

ods: getTrimSuccsOf (Obj ect 0) which returns a list of the unique successors of the 
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1 Methods 1 Return Type 1 Description 

getHeadsO java. util.List Returns the collection of the 

entry points for this graph. 

getTailsO java. util.List Returns the collection of the 

exit nodes of this graph. 

getPredsOf(java.lang.Object 0) java. util.List Returns the collection of the 

predecessors of the given 

node o. 

getSuccsOf(java.lang.Object 0) java. util.List Returns the collection of the 

successors of the given node 

o. 

iteratorO java. util.Iterator Returns an iterator of the 

nodes in this graph. 

sizeO int Returns the number of the 

nodes in this graph. 

Table 6.1: Summary of methods of interface DirectedGraph 

given node 0 and getClini tMethods 0 which returns a list of clini t methods. Wh en 

the initialization method of a class or interface is static and has no arguments, the 

Java compiler creates a special method with the name "<clinit>" in bytecode [LY99]. 

The getClini tMethods 0 returns the li st containing all clinit methods. 

A special method to return unique successors is necessary since Soot 's call graph 

does not guarantee this property. In Figure 6.2, (a) is an example of a Java pro­

gram in which method f 000 contains two method invocations to method bar 0 , 
and (b) is the corresponding call graph. Notice in (b) there are two edges from 

method foo to bar. In (c) of Figure 6.2, we only keep one edge from foo to bar. 

If there is more than one edge from a method a to method b, the list returned 

by method getTrimSuccsOf (Ob j ect 0) only contains one b. The applications of 

method getTrimSuccsOf(Object 0) and getClinitMethodsO will be introduced 
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public void fooO{ 

barO; 

barO; 

(a) (b) (c) 

Figure 6.2: An example of a trimmed PegCallGraph 

in Section 6.2. 

6.2 Finding Runtime Objects 

Nodes in PEGs have the format (object, name, caller) where Object is the object 

owning the method at runtime. In Soot and by using SPARK, it is possible to find the 

potential textual allocation sites corresponding to a given object reference. Allocation 

sites are locations in the code, and thus one can easily determine a set of potential 

types of an object reference, and this is sufficient for many analyses (including calI 

graph refinement). 

For MHP analysis, however, decisions as to whether synchronization has occurred 

requires knowing that an object involved in a monitorexit is the same runtime object 

involved in a previously examined monitorenter. In addition, SPARK computes may­

alias information, and so even the same singleton allocation site sets for the respective 

objects are not sufficient for this conclusion, since one allocation site in a loop may 

spawn more than one runtime object. For example, in the method foo in Figure 6.3, 

the allocation site new AO will be executed 10 times, that means it corresponds 

to 10 objects with type A. A form of inter-procedural value numbering analysis is 

thus required. Again for simplicity of implementation and as weIl as asymptotic 

complexity concerns we have elected for a custom analysis, composed of an intra­

procedural analysis and a flow-insensitive inter-procedural step. 

Given a Jimple statement of method invocation, we can find the target allocation 

sites by the aid of SPARK. As discussed, even a singular allocation site for an object 
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pri vate void fooO { 

int i = 0; 

} 

for (kO; k1O; i++){ 

Object a = new AO; 

} 

Figure 6.3: An example of an allocation site corresponding to multi-objects 

reference does not mean that the runtime object has been found. However, an obvious 

guarantee that two or more synchronization operations are operating on the same 

value can be provided if the computed sets of allocation sites are both the same 

singletons, and the allocation site is only ever executed once. 

To figure out if an allocation site can be executed at most once, we need intra­

procedural analysis and inter-procedural analysis. By the aid of the control-fiow anal­

ysis framework provided by Soot, we can intra-procedurally find out which allocation 

sites may be executed more than once. If an allocation site is inside a method which 

may be called multiple times, this allocation site may be executed more than once, 

too; thus we also need the information of which methods may be executed more than 

once. This is more complicated and need both intra-procedural and inter-procedural 

analyses. 

Inter-procedurally, we can find which methods may be invoked more than once 

using the PegCallGraph. If a method is inside an intra-procedural control fiow cycle, 

it may be called many times. To find out if a particular method calI will be executed 

more than once. We use the intra-fiow analysis provided by Soot. We find which 

method calls are inside cycles, and then propagate this information throughout the 

PegCallGraph. The results of these two analyses are merged and propagated together 

to figure out if only one object is spawned at a specific allocation site. In summary, 

fin ding out aIl the allocation sites and which of them can be executed more than once 

needs the following: 
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• Finding out if a method may be called more than once 

• Finding out if an statement is executed only once inside a method 

• Finding out which allocation sites correspond to only one object 

The implementation details are as follows. 

6.2.1 Finding Out if a Statement Is Executed only Once Inside a 

Method 

Intra-procedurally, a statement is surely executed at most once if it is not included in 

any control fiow cycles. This information is computed for each allocation site of every 

method in the PegCallGraph. This is done by using the intra-procedural fiow analysis 

framework provided by Soot. With the aid of control fiow graph, Soot provides an 

intra-procedural fiow analysis framework. The users can implement data fiow and/or 

control fiow analyses based on the framework. Usually, a FlowSet is used to store the 

variables or other information when the control fiow graph is traversed. The users 

can have different ways to implement data fiow analyses; but usually the users should 

define the fiow equations, operations at merging points, and the initial value of the 

FlowSet. We compute this information for every allocation site of all the methods 

in the PegCallGraph to make sure that we compute this information for every user 

allocation site. 

6.2.2 Finding Out If a Method May Be Called More Than Once 

The steps used to find out if a method may be called more than once are as follows. 

1. Finding out if a method calI may be execute more than once intra-procedurally 

If a method invocation statement is inside a loop, this statement may be exe­

cuted more than once, thus the body of the method may be executed more than 

once, too. Here we use the intra-procedural fiow analysis framework of Soot to 

find the methods inside control fiow cycles at the same time as we look for the 

allocation sites that may be executed once intra-procedurally. 
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2. Propagating the information computed in Step 1 throughout the PegCallGraph 

If we find a methods that may be called more than once intra-procedurally, 

aU the methods that can be reached from this method may be called more 

than once. We propagate the information computed in Step 1 throughout the 

PegCallGraph using a simple depth-first algorithm. 

3. Finding out if a method is called more than once inter-procedurally 

To find out which methods are called more than once inter-proceduraIly, let us 

look at sorne examples first. In Figure 6.4, (a) is a tiny PegCallGraph where 

main, A, B, C, D, E, F, G, H, land J represent methods. The nodes D, E, and 

F may be executed more than once because they form a cycle. The nodes G, 

H, and l may be executed more than once because any call to F may go to G, 

H, and 1. There are two edges that go from A to C and one edge that goes from 

B to C, thus C may be called multiple times. Thus methods C, D, E, F, G, H, 

and l may be executed more than once. 

Our approach to figure out which methods are called more than once inter­

procedurally is made up of two stages. The first stage is a breadth-first search 

to find out which nodes in the PegCaIlGraph are visited more than once, and 

so the methods represented by these nodes may be called more than once. 

In the second stage, we use a modified depth-first search on the PegCaIlGraph 

to detect whether anode is potentially reachable more than once from main. 

Before the execution of this stage, the PegCallGraph is trimmed to be like (b) 

of Figure 6.4 i. e., if there is more than one edge from a node a to b, we only 

keep one of them. 

Figure 6.5 shows the algorithm used to find which methods are called more 

than once inter-proceduraIly. In this algorithm, the methods that may be called 

more than once are stored in the collection multiCalledMethods. The Search 

procedure works as follows. Lines 1-2 paint aIl vertices white. Lines 3-5 check 

each head in PegCaIlGraph Gand, when a white vertex is found, visit it using 

Visit. In each call Visit(v) , if v is gray, line 7 paints it black, and if collection 
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(a) 

(b) 

Figure 6.4: A PegCallGraph containing multi-called methods 
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Search(G) 
for each vertex u of G 

2 mark u WHITE 
3 for each head v of G 
4 if v is WHITE 
5 visit(v) 

Visit(v) 
6 ifv is GRAY 
7 mark v BLACK 
8 if multiCalledMethods does not contains v and v is not a clinit method 
9 add v to multiCalledMethods 

10 el se 
Il mark v GRAY 
12 for each successor s of v do 
13 if s is not BLACK 
14 visit(s) 

Figure 6.5: The algorithm for computing multi-called methods 
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multiCalledMethods does not contain it and it is not a clini t method, v may be 

a method called more than once and is put into multiCalledMethods. The reason 

that we have a special handling for clinit methods here lies in that in Java 

bytecode, the clinit method may be called in different statement, however, 

the clinit method can be executed only once according to Java semantics. 

If v is not gray, it must be white, and is painted gray. Lines 12-14 examine 

each successor s of v, if the successor is not black, the traversaI continues using 

Visites). 

6.2.3 Finding Allocation Sites and If the Allocation Sites May 

Represent More Than One Object 

Methods that can be called more than once conservatively imply each statement 

in them can be executed more than once, regardless of internaI control flow. Our 

algorithm actually computes both intra and inter-procedural information together, 

performing intra-procedural analysis as the inter-procedural analysis proceeds, and 

only if required. This allows the conclusions of each analysis to be merged and 

propagated together. Procedure 3 shows the process of finding aIl the allocation sites 

and which allocation sites may correspond to more than one object. The output of 

this algorithm is two collections: allocNodeSet containing aIl the allocation sites and 

multiObjAllocNodes containing the allocation sites corresponding to more than one 

object. 

Before the execution of this algorithm, we compute which methods may be called 

more than once and store this information in the collection multiCalledMethods. 

This algorithm checks each method in the PegCallGraph to see if the mul tiCalledMethods 

contains it. If the current method may be called more than once, every allocation 

site in this method may correspond to more than one object. Line 3 checks each 

statement of the current method by scanning each node (represented as a unit of 

the Uni tGraph). If the current unit is an allocation site it is added to the allocation 

site collection and to a collection of calI sites that may be called multiple times as in 

lines 5 and 6. If the multiCalledMethods does not contain the current method, the 
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Procedure 3 
1: for aIl method m in the PegCallGraph do 

2: if multiCalledM ethods contains m then 

3: for aIl unit in the UnitGraph do 

4: if unit is an allocation site then 

5: add this allocation site to allocN odeSet 

6: add this allocation site to multiObjAllocNode 

7: end if 

8: end for 

9: else 

10: find all the multiAllocSites inside method m 

11: for aIl unit in the UnitGraph do 

12: if unit is an allocation site then 

13: add this allocation site to allocN odeSet 

14: if s contains unit then 

15: add this allocation site to multiObjAllocNode 

16: end if 

17: end if 

18: end for 

19: end if 

20: end for 
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1 JVM Instruction 1 InvokeExpr in Soot 

invokevirtual VirtualInvokeExpr 

invokespecial SpecialInvokeExpr 

invokeinterface InterfacelnvokeExpr 

invokestatic StaticInvokeExpr 

Table 6.2: JVM Instruction VS. InvokeExpr in Soot 

procedure of intra-procedurally finding allocation sites corresponding to more than 

one object is called and this information is stored in the collection multiAllocSites. 

Every allocation site is put into the collection allocNodeSet as in li ne 13. If the 

current unit is an allocation site and found in the collection multiAllocSites, the 

corresponding AllocNode is put into multiObjAllocNode as in lines 14 and 15. 

6.3 Finding Target Methods 

Because inlining is used in computing MHP information, finding target methods is 

very important. Finding target methods is not as complicated as finding runtime 

objects because we only need to find the runtime type, not the specifie object of 

references. 

Java Virtual Machine provides various instructions for method invocations. As 

introduced in Section 5.2, there are four kinds of JVM instructions for method invo­

cations, i. e., invokevirtual, invokestatic, invokespecial, invokeinterface. Soot creates 

an expression implementing an interface InvokeExpr for each method invocation. Ta­

ble 6.2 shows the JVM instructions used in invoking a method and their correspond­

ing representations in Soot. In table 6.2 the first column specifies the instructions for 

method invocations and the second column shows the interfaces (which are subclass 

of InvokeExpr) used to represent the first column. 

To find target runtime methods, we need to analyze the various InvokeExpr in 

the second column of Table 6.2. If a statement contains a StaticInvokeExpr, it is 
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easy to find the target method because it is in the class defining the called method. 

But in the rest of the cases, we need to make sorne effort to find the target method. 

The CallGraph provided by Soot contains conservative information for method 

targets. With the aid of SPARK, we can get a refined CallGraph that has more precise 

method target information. It is important to note that the CallGraph includes aIl 

kinds of methods, including, for example, native methods. Our analysis does not 

handle nativ~ methods, and so these are excluded. 

6.4 Runtime Objects and Alias Resolution for Threads 

We are trying to staticaIlY find the runtime objects and target method in our MHP 

analysis; unfortunately, sometimes we do not know this information until runtime. 

Figure 6.6 is an example of part of a Java program. We do not know which thread 

is started in statement thread1. start 0 in method bar of class Foo until runtime. 

Similarly, at the statement thread1. j oin 0 we do not know which exact thread 

will die until runtime. With the aid of SPARK and CHA, however, we can find the 

possible threads that threadl points to, and use this to form a conservative solution. 

In the example program of Figure 6.6, both an instance of Threadl and an instance 

of Thread2 may be started in statement threadl. start o. We create two CFGs 

representing the runO method of Threadl and Thread2. There are two stan edges 

built for them. For the j oin statement, it does not kill any statement because we do 

not know which thread it should kil!. 

6.5 Parallel Execution Graph in the Context of Soot 

Our PEG implements the interface DirectedGraph provided by Soot. The contents 

of the PEG are as follows: 
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public c1ass Thread 1 extends Thread { 

public void runO{ 

public c1ass Thread2 extends Thread{ 

public void runO{ 

public c1ass Foo{ 

int argument = 0; 

Thread thread 1 = new Thread 1 0; 

Thread thread2 = new Thread20; 

public int getArgumentO { 

retum argument; 

public void setArgument(int arg){ 

argument = arg; 

public void bar 0 { 
if (argument> 0 ) 

thread 1 = thread2; 

thread l.startO; 

thread 1.joinO; 

public class Main { 

public static void main(String[] args){ 
Foo foo = new fooO; 

Figure 6.6: An example of thread actions needing alias resolution 
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6.5. ParaUel Execution Graph in the Context of Soot 

6.5.1 Nades 

Building nodes is essential for generating PEGs. We use a JPegStmt to represent 

the nodes in our PEGs. Because the nodes in PEGs are used to represent interesting 

statements specifically and other statements more generally in programs, they are 

designed to be subclasses of JPegStmt. JPegStmt has the foUowing subclasses with 

the obvious functionality corresponding to the node name. 

StartStmt 

JoinStmt 

WaitStmt 

NotifiedEntryStmt 

Monitor EntryStmt 

OtherStmt 

NotifyStmt 

NotifyAUStmt 

WaitingStmt 

BeginStmt 

MonitorExitStmt 

AU the subclasses except OtherStmt are used to denote one kind of interest­

ing statement, and OtherStmts denote aU the rest. The format of our PEG nodes 

is (Object, Name, Caller, Unit, UnitGraph, SootMethod) where Object, name, 

and caller are the same as in Chapter 4, Uni tGraph is a reference to the UnitGraph 

(CFG) of the current method, Unit is a reference to the original Unit in the Unit­

Graph, and SootMethod is a reference of current method. For those statements that 

are not method caUs, we label object with "*". 

The pro cess of building PEG nodes begins with calling Soot to build Uni tGraphs. 

Every no de or Unit of the UnitGraph represents a Jimple statement and is then 

transformed to a PEG node. To complete PEG node construction, we have specified 

how to find the runtime object. Note a statement containing an invocation of the 

wai t method needs special handling; it is transformed into three PEG nodes, as per 

the original PEG definition, WaitStmt, WaitingStmt, and NotifiedEntryStmt. 

6.5.2 Edges 

There are four kinds of edges in PEGs. Notify edges are built dynamicaUy during 

the data flow analysis. Rere we introduce how to build the other three kinds of edges. 
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Uni tGraph does not have an explicit Edge field, instead, it use maps to store the 

predecessor lists and successor lists for each no de and method getPredsOf 0 and 

getSuccsOf 0 to locate these lists. FoUowing the same design, we use various maps 

to store nodes and their predecessor and successor lists. 

There are in fact several kinds of Uni tGraphs, including BriefUni tGraphs, Com­

pleteUni tGraphs. The CompleteUni tGraph contains aU the statement and edges 

accounting for control flow between them while the BriefUni tGraph does not include 

the control flow edges associated with exceptions. Here we use the CompleteUni tGraph 

because we need to consider aU the control flow edges. 

• Local edges 

Local edges are the same edges as the edges in the CFG for each thread, and 

thus we can take advantage of the edges in UnitGraph. If there is an edge from 

node a to b in a UnitGraph and the PEG nodes m, n are generated from a, b 

respectively, there must be a local edge from m to n. 

• Start edges 

If a Jimple statement contains a method caU to start 0, the target method is 

checked to see if the object containing it is a thread. If so, a start edge is built 

from the PEG node corresponding to this Jimple statement to the first node, 

i. e., the begin node of the thread. 

• Waiting edges 

A Jimple statement containing a method invocation to wai t is transformed into 

three PEG nodes, WaitStmt, WaitingStmt, and NotifiedEntryStmt. To build 

the waiting edge, we put the NotifiedEntryStmt to the successor list of the 

Wai tingStmt and the WaitingStmt to the predecessor list of the Notif iedEntry­

Stmt. 
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6.6 PEG construction 

Constructing the PEG can involve a lot of duplicated effort, as the same method is 

inlined in various places. Our strategy is to build smaU PEGs, one for each method 

a thread may invoke, and then combine these smaU PEGs into a PEG for the whole 

program. This of course doesn't change the final PEG size, and other techniques 

are necessary for that. Methods without interesting statements are good candidates 

for pruning, and so our PEG construction first proceeds with a simple, fast inter­

procedural analysis to identify and compact such methods, foUowed by a standard 

inlining operation. 

Roughly, building PEGs involves the foUowing implementation. 

• Finding Methods that Need To Be Inlined 

• Safety of Inlining 

• Discovering Inlining Order 

• Implementing Inlining 

6.6.1 Finding Methods that Need to Be Inlined 

Clearly methods that will never execute any interesting statements are of little interest 

to the MHP analysis: any MHP information true on entry to such a method is true 

at exit, and at aU points in between. Since thread communication code is typicaUy 

a smaU part of any significant program, restricting the PEG to useful parts of the 

program is very effective. 

Unfortunately, knowing whether a method is interesting is recursively dependent 

on the status of aU caUee methods. A precise, flow-sensitive inter-procedural analysis 

would be most effective, but is of course both complex and expensive. We have elected 

for a more pragmatic flow-insensitive approach, implemented in two stages. 

The body of each method in the PegCaUGraph is first scanned to see if contains 

an interesting statement. If so the method node in the PegCaUGraph is marked 
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6.6. PEG construction 

Figure 6.7: An example of PegCalIGraph 

interesting. Once aIl methods are examined, marks are propagated in the reverse 

direction of calI graph edges, and logically OR'd at each merge point using a depth 

first search of the PegCalIGraph. The result is a conservative overapproximation 

of interesting methods. During actual PEG construction uninteresting methods are 

represented by single node placeholders, greatly reducing PEG size. 

Scan each method in the PegCaliGraph to find out if it needs to be inlined 

The body of each method in the PegCalIGraph is examined to see if contains inter­

esting statements. If so, it needs to be inlined. But, this is not enough to identify aIl 

methods that need inlining. In Figure 6.7, main, A, B, C, D, and E are methods in a 

PegCaIlGraph and main is the main entry point of a program. Assume A, C, and E 

are found to need inlining at this step. Because C is called by Band E is called by D, 

Band D need to be inlined, too. Thus, a second propagation step is also necessary. 

Propagation inside Cali Graph 

At this stage, the information found in the last step is propagated inside the PegCalI­

Graph. We use a depth-first search to scan the PegCalIGraph: if any successor of a 

method needs to be inlined, this method must be inlined too. 80 after this step, we 

can determine that methods Band D in Figure 6.7 also need to be inlined. 
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6.6.2 Safety of Inlining 

As mentioned, recursive method caUs will result in the failure of inlining. Thus 

we should identify such methods. Here, we use the PegCallGraph to find recursive 

method caUs. Recursive method caUs form loops in a caU graph, and so we sim ply 

need to find cycles inside the PegCallGraph. 

One step to find aU cycles in a graph is to find strongly connected components 

[CLR90]. InformaUy, a strongly connected component (SCC) of a graph is a maximal 

subgraph in which there is a path from one vertex to every other vertex along the 

edges of the graph. Since the PegCallGraph is a directed graph, we use the weU­

known depth-first search based algorithm in [CLR90] to find SCCs. 

Our MHP analysis does not quit immediately after finding SCCs in the PegCall­

Graph. Recursive caUs may be irrelevant to MHP analysis if they do not contain 

interesting statements. Thus, if a SCC does not contain communication methods or 

synchronized methods, it is ignored because it will not effect the inlining. 

6.6.3 Discovering Inlining Order 

The order in which methods are inlined is also important. We describe inlining or der 

in terms of priorities; a method with a higher priority should be inlined earlier than a 

method with a lower priority. In a PegCaUGraph, along a directed edge, the method 

at the head has higher priority than the method at the tail. For example, assume aU 

the methods except main should be inlined in Figure 6.7. The leaves, methods C, and 

E have highest priorities and should be inlined first. Band D have higher priorities 

than A. A has the lowest priority for inlining in this PegCaUGraph. 

We use a list, specificaUy, with the format {inlinee, place, inliner} where inlinee 

is the reference to the PEG will be inlined, place is the method invocation statement, 

and inliner is the container PEG to store the inlining information. This information 

is then sorted and processed according to the inlining order. 
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6.6.4 Special Handling for Synchronized Methods 

Java provides two high-Ievel constructs for locking: synchronized methods and syn­

chronized blocks. In the low-Ievel implementation, monitorenter and monitorexit 

bytecodes are used by the Java Virtual Machine for entering and exiting a synchro­

nized block. However, the JVM does not explicitly add monitorenter and monitorexit 

instructions for synchronized methods; instead, the synchronization of synchronized 

methods is executed during runtime by checking a special flag ACCJ3YNCHRONIZED as­

sociated with the method definition. If it is set, the current thread will request a lock 

on the invoking object before executing the method, and then release the lock after 

the method execution is done. Here, we use a simplification for handling for this by 

manually adding explicit monitorenter and monitorexit instructions at the beginning 

and end of each synchronized method. 
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Chapter 7 

MHP Implementation and Optimization 

The basic MHP algorithm is described in Chapter 4. In this chapter we describe 

various implementation and optimization issues that must be addressed in a practical 

setting. 

7.1 Finding Monitor Objects 

If a Java program uses locks, we need the information of which PEG nodes are 

protected in monitors to implement the MHP algorithm. In Java, there is a lock 

associated with every object. Usually, Java programs have three different type of 

locks, single entrant locks, reentrant locks, and enclosed locks. The single entrant 

locks are the simplest among these three; in this situation a thread tries to acquire a 

lock which is not owned by any thread. The Java runtime system also allows a thread 

to try to acquire multiple locks. If a thread tries to acquire a lock held by itself, it is 

called a reentrant lock. If a thread tries to acquire another lock l while it has held a 

lock m, lock l is called enclosed lock [ACSE99]. 

To model these three types of locks, we design a class Moni torDepth. The class 

Moni torDepth has two member variables, String objName and int depth. Lock 

actions are always based on a specific object. Member variable objName represents 

the object which is being locked. The depth field represents the level of the recursive 

locking and can be 1, 2, or more. For each lock object, an instance of Moni torDepth 
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Object A 
acquire 

}-------l No lock owner 

(a) Single Entrant Lock 

r----------------------------------------
1 1 
1 1 

Object A 
acquire 

}-------l Lock Owner: Thread 1 

(b) Re-entrant Lock 

ObjectA 
acquire 

Object B 

Lock owner: Thread 1 J-------<~ No lock owner 

(c) Enclosed Lock 

Figure 7.1: Three different types of locks in Java 
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is created and a standard flow-sensitive analysis is used to propagate this information 

through the PEG, incrementing the count for the object specified at each monitorenter 

operation and decrementing counts at monitorexit's. Unbounded recursive locking, 

as weIl as general merge points with unmatched locking depths for corresponding 

objects (not possible with Java programs) and are not handled, so this is guaranteed 

to reach a fixed point. 

With lock depth information the MHP analysis can make sound judgements as to 

whether a PEG no de is truly in a monitor or not. 

7.2 Implementation of the Worklist Flow Analysis AI­

gorithm 

The main difference of our implementation from the main loop of the algorithm pre­

sented in Section 4.3.3 is that we need to handle a simplified PEG, where a single 

PEG node may correspond to more than one CFG node. Thus when mapping infor­

mation back to the CFG we must consider the possibility that a PEG node represents 

a list of CFG nodes. 

A further difference is due to our conservative treatment of object identity. Wh en 

we compute KILL sets for JoinStmts, if the number of target threads is more than 

one, the KILL set of the node is empty. 

7.3 Optimizations 

We can proceed to use the MHP algorithms to compute MHP information once the 

PEG is built. However, even with the inlining strategy introduced in Chapter 6, we 

may still have a large PEG. Further optimization techniques can still be useful to 

simplify the PEG before running the MHP algorithms. Since the MHP analysis is a 

fixed-point flow analysis manipulating sets of PEG nodes, the size of the PEG may 

effect the execution time and space consumption. We hope that reducing the size of 

the PEG could make the MHP analysis cost less time and save sorne space. 
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(a) (b) 

Figure 7.2: An example of Strongly Connected Component 

Our approach of inlining was based on the observation that the worklist algorithm 

is affected only by interesting statements, and usually most statements of a Java pro­

gram are not related to interesting statements. This gives us another opportunity for 

simplifying PEGs to get smaller graphs. We applied two straightforward graph reduc­

tions as optimizations: merging lists, and collapsing strongly connected components. 

Data on the effects of these optimization are given in Chapter 8. 

7.3.1 Merging Strongly Connected Components 

A strongly connected component (SCC) of a graph gis a subgraph sg of g in which each 

no de is reachable from any other no de of sg along edges in sg. Compacting a strongly 

connected component into one node is based on an observation: suppose a strongly 

connected component S inside a PEG does not contain interesting statements. If a 

statement A can be concurrently executed with a statement B inside S, it should 

also be possible for A to be concurrently executed with aU the other nodes inside 

S. For example, in (a) of Figure 7.2, suppose A, B, C, D, and E are statements not 
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containing interesting statements in a program. Notice the nodes in shaded area, i. e., 

B, C, and D form an SCC, thus the MHP information of node B, C, and D may be 

propagated to any other node of the SCC. The MHP information of node B, C, and 

D are the same because they do not containing interesting statements and nothing 

will be added or deleted from their MO set after the propagation inside the SCC is 

done. Since the MO sets of every node of an SCC are necessarily the same, we can 

merge the nodes inside this SCC and create a single, new node to represent the entire 

SCC. 

We use the well-known, depth-first-search based algorithm specified in [CLRSOl] 

to find SCCs. After finding the SCCs, we check if they contains interesting statements. 

If not, we create a List which contains aIl the nodes in the SCC, then create a new 

node in the position of the SCC. This new node is a reference to the list containing 

the nodes of the SCC. For example, in (a) of Figure 7.2, the SCC containing nodes 

B, C, and D is transformed to a new node N. 

7.3.2 Merging Sequential Nades 

A sequence of nodes with no interesting statements, and no branching in or out except 

at the beginning and end respectively necessarily has the same MHP information at 

each node in the sequence; whatever is true upon entry is true at exit and at aIl points 

between. 

Tarjan proposed an efficient FIND-UNION algorithm [Tar75] to collapse nodes. 

This algorithm merges two successive nodes and uses one of them to represent the 

pair. Whenever a set of nodes are combined, one of the combined nodes is used as 

the unique representative of the whole set. 

Here we use a different approach to coIlapse nodes. First we locate aIl maximal 

chains of sequential nodes. Then the maximal chains are merged and replaced by a 

new node. 
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(a) (b) 

Figure 7.3: An example of sequential nodes 

Locate the maximal number of sequential nodes that can be merged 

Using an arbitrary order to visit nodes will not work weU here because we need 

to find aU the sequential nodes. A linear order according to a depth-first search 

based topological sort [CLRSOl] is built for accessing nodes. In a directed graph, 

an edge from a descendant to an ancestor in a depth-first tree is caU a back edge 

[CLRSOl]. Back edges form cycles in a directed graph. Note that if a PEG is cyclic, 

no linear order is possible, and in such cases we ignore the back edge when building 

the topological order. 

As we visit each node according to the topological order, each node is examined 

to check if it has only one predecessor, only one successor, and do es not contain 

interesting statements. If so, it is added to a list and we proceed to visit the next 

node. If not, we terminate the current list as a maximal chain of sequential nodes, 

create a new list, and proceed to visit the next node. This process continues until aU 

the nodes have been visited. 

As an example, consider the graph in Figure 7.3. On the left, suppose B, C, D, 
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E, F, G do not contain interesting statements. Our topological sort will produce an 

ordering ABCDEFGH (or AEFGBCDH), and so we will find a maximal chains of 

sequential nodes, (B, C, D) and (E, F, G). 

Merging the sequential nodes 

After locating maximal chains, each is collapsed and replaced by a new node that 

represents the entire sequence. In (a) of Figure 7.3, chain B, C, and D is replaced by 

the newly created node M while chain E, F, and Gis replaced by N as shown in (b). 

7.3.3 Updating the PEG 

Whenever nodes are merged, the PEG should be updated. The nodes that are merged 

are removed from the PEG, and the new nodes representing merged nodes are added 

to the PEG. Of course it is also necessary to preserve control flow in this process, 

and so aIl the edges to and from the merged SCCs or sequential nodes are replaced 

with the edges to and from the new nodes representing the merged nodes. In (b) 

of Figure 7.2, for instance, the nodes and edges inside the SCC are gone, and the 

newly created node N, is added to the PEG and it has the original predecessors and 

successors of the SCC (B, C, and D). In (b) of Figure 7.3, the nodes B, C, D, E, 

F, G and the edges connecting them are removed while the new nodes M and N are 

inserted and have the original predecessors and successors of the chain B, C, and D, 

and the chain E, F, and G respectively. 
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Chapter 8 

Experimental Results 

Here we describe experimental results for our implementation, comparing perfor­

mance with and without our various optimizations and improvements. 

8.1 Benchmarks 

We collected our benchmarks from several sources. Most of the benchmarks are 

multi-threaded benchmarks from the Java Grande Benchmark Suite [Sui]: FORKJOIN, 

SYNC and BARRIER represent low level benchmarks that test synchronization, SE­

RIES, LuFACT, SOR, CRYPT and SPARSEMAT test specific "kernel" operations, and 

MONTECARLO, RAYTRACER and MOLDYN are larger, more complete applications. 

From the SPECJvm98 suite we included MTRT, the only multi-threaded benchmark 

in that benchmark set. In order to fit our input requirements, we modified most 

of these benchmarks by manually unrolling aIl the loops containing method caUs to 

communication methods. AU tests were run on a Pentium 4 1.8GHz, with the Sun 

HotSpot VM (Linux, version 1.4.1) using a 1500M heap. 

For comparative purposes we have also attempted to collect sorne of the same 

benchmarks used in N aumovich et al. 's paper. However, most of the code we have been 

able to acquire is in the form of incomplete program fragments that require a driving 

main program to analyze in our system. Fine-grained comparisons are thus not likely 

to be meaningful. We therefore include AuBANKING and PEBANKING, programs 
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Programs Threads Nodes Edges 
IMOI 

Pairs LOC 
Ave Min Max 

FORKJOIN 4 308 331 64 15 173 6105 544 

SYNC 5 656 712 118 28 459 28944 642 

BARRIER 5 561 716 175 53 339 34651 754 

CRYPT 5 1025 1061 672 193 772 297220 1107 

MONTECARLo 3 405 433 104 35 182 11340 3569 

RAyTRACER 3 660 724 125 43 318 25188 2252 

SERIES 3 315 342 109 46 130 9660 826 

LuFACT 3 465 510 202 112 224 32032 1480 

SOR 3 622 673 289 182 363 66430 730 

SPARSEMAT 3 305 329 81 30 120 6180 726 

MOLDYN 3 2173 2295 1093 917 1866 1088392 1346 

CYCLIC 5 162 201 69 30 124 4580 81 

MTRT 4 188 211 43 14 108 2819 3812 

AuBANKING 3 170 203 31 18 92 4114 301 

PEBANKING 3 154 270 63 47 137 4414 442 

Table 8.1: Experimental results without PEG simplification 

based on the examples AutomatedBanking and PessimBankAccount from Doug Lea's 

book [Lea97]. We have focussed on these two examples sin ce in [NSA99] Naumovich et 

al. 's version of these benchmarks had the largest PEG sizes and also had the largest 

MHP analysis times (by an order of magnitude) of an their benchmarks. We also 

include CYCLIC, a benchmark from the CyclicBarrier example in the second edition 

of Lea's book [Lea99] which was also analyzed by Naumovich et al.. In each case we 

added an appropriate main method, modifying them to be complete applications. 
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8.2 Results 

Tables 8.1 and 8.2 presents the experimental results for the benchmarks without most 

of our optimizations in effect. In Table 8.1 the first column gives the names of the 

benchmarks, the second column gives the number of threads (including the main 

thread), and the next two columns give the number of nodes and edges in the PEGs 

representing each program respectively. 

In the fifth, sixth, and seventh columns, we specify the average, minimal, and 

maximal number of nodes in the computed MO set for each node, i. e., how many 

nodes were determined may be executed in paraUel with each node. This gives sorne 

notion of analysis accuracy, at least in the absence of measuring a consuming analysis. 

The eighth column gives the total number of node pairs found in the entire PEG-as 

well as the PEG itself, this represents the total space requirements of the analysis. 

The last column gives the size of the benchmarks using the number of lines of code. 

Tables 8.1 shows that larger programs does not always have bigger PEG. For 

instance, MOLDvN (1346 lin es of code) is smaUer than MTRT (3812 lines of code), 

but has a bigger PEG; specifically, MOLDvN 2173 nodes and 2295 edges while MTRT 

has 188 nodes and 211 edges. The reason lies in that we only consider the interesting 

statements and interesting methods. Graph size for smaller programs look reasonable, 

though the larger MOLDvN benchmark suggests we may encounter scaling issues. 

Table 8.2 measures time for the various stages of the analysis. PEG time is the 

time to build the PEG, MHP is the subsequent analysis time, and SPARK time is 

the total cost of points-to analysis. Total time is greater than the sum of the these 

stages; the remainder represents time required to load and initialize and shutdown 

the Soot environment. 

The data and timing in Tables 8.1 and 8.2 already represent application of many 

of the previously discussed simplification and implementation techniques (excessive 

data sizes prevented computation of totally unoptimized data), we only exclude the 

PEG node merging techniques of Chapter 7. Note that MTRT contains recursive 

method caUs and method inlining for it would normally fail; however, using the tech­

niques of Section 6.6 we determined that the recursive calls do not involve interesting 
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1 Programs 1 PEG(s) 1 MHP(s) 1 SPARK(s) 1 Total(s) 1 

FORKJOIN 0.18 4.46 67.2 88.5 

SYNC 0.40 51.51 68.2 136.8 

BARRIER 0.34 72.72 68.7 160.4 

CRYPT 0.52 6812.68 67.2 6917.74 

MONTECARLO 0.28 14.15 68.0 102.3 

RAYTRACER 0.37 57.58 67.5 143.42 

SERIES 0.24 8.84 67.8 93.3 

LuFACT 0.23 87.86 68.8 163.08 

SOR 0.29 259.26 68.0 347.9 

SPARSEMAT 0.21 3.98 67.2 88.1 

MOLDYN 1.86 44313.44 69.2 44553.9 

CYCLIC 0.14 1.13 67.8 86.2 

MTRT 0.33 1.53 139.7 232.8 

AuBANKING 0.17 1.14 66.5 86.4 

PEBANKING 0.14 1.17 66.4 85.3 

Table 8.2: Experimental results without PEG simplification 
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statements, and so we are still able to get results. 

For most benchmarks the time to build the PEG is smaIl, and in aIl but one 

case weIl un der a second. MHP analysis time clearly dominates PEG construction 

time. This is unsurprising given the O(n3 ) time complexity of MHP analysis, but 

was considerably less evident in the data presented in [NSA99], where the majority of 

benchmarks were very small (mostly < 100 PEG nodes) and so PEG time generally 

appeared to dominate. For larger programs the cubic behavior of MHP becomes more 

evident: MOLDYN, the largest benchmark in terms of PEG nodes we examined takes 

less than 2 seconds to build the PEG, but over 12 hours to analyze. MOLDYN is 

not an especially large program ( 1346 lines of code) and so these running times are 

clearly still excessive for even moderate programs, and further steps are necessary to 

reduce PEG size, and thus MHP analysis time. 

Table 8.3 shows similar experimental results when the PEG is optimized using 

the techniques of Chapter 7. The second and third columns give the PEG size reduc­

tions supplied by the two techniques of merging SCCs and merging sequential nodes 

respectively; the resulting graph size is given in the fourth and fifth columns. The 

remaining columns present the relative size of the PEGs; specificaIly, the sixth column 

shows the percent of (the number of nodes in optimized PEG) / (the number of nodes 

in original PEG), and the last column shows the percent of (the number of edges 

in optimized PEG)/(the number of edges in original PEG). In every case our PEG 

optimizations were able to reduce the graph, and in sorne cases quite dramatically: 

MOLDYN is reduced from 2173 nodes to 144. In smaller programs sequential node 

contractions are most effective, but in the bigger programs the volume of modular, 

synchronization independent sections of code sometimes made SCC merging quite 

valuable. 

Table 8.4 gives the timing data when the optimization techniques presented in 

Chapter 7 are used. The second and third columns give the time in seconds taken 

to perform the PEG simplifications and run MHP analysis on the smaller PEG. The 

fourth and fifth columns show the total running time including SPARK and Soot 

overhead. The remaining columns give the relative speedup (old-time/new-time) 

ratio achieved by the optimized version versus the base approach, for both total 
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8.2. Results 

Relative size Relative size 
Programs Sim.Scc Sim.Seq. Nodes Edges 

of Nodes(%) of Edges(%) 

FORKJOIN 0 199 109 132 35.4 39.9 

SYNC 2 389 255 307 38.9 43.1 

BARRIER 12 287 262 411 46.7 57.4 

CRYPT 662 240 121 149 11.8 14.1 

MONTECARLO 26 247 132 158 32.6 36.5 

RAYTRACER 18 431 211 267 32.0 36.9 

SERIES 26 180 109 134 34.6 39.2 

LuFACT 166 194 105 130 22.6 25.5 

SOR 298 223 101 124 16.2 18.4 

SPARSEMAT 55 165 85 104 27.9 31.6 

MOLDYN 1482 547 144 174 6.6 7.6 

CYCLIC 0 51 111 150 68.6 74.6 

MTRT 3 107 78 95 41.5 45.0 

AuBANKING 2 71 97 126 57.1 62.1 

PEBANKING 0 66 88 204 57.1 75.6 

Table 8.3: Experimental results after optimization 

running time, and the time just to construct and simplify the PEG and run the MHP 

analysis. Speedups in MHP+PEG construction range from 40% to over 13,000%. 

Again, MOLDYN speedups were most significant, as running time drops from half a 

day to just over 1 second. As a general rule, larger benchmarks have more nodes, 

and hence more opportunities for PEG compaction, which is quite encouraging for 

analysis of reasonable size programs. The benchmarks with minimal or no total 

speedup, CYCLIC, MTRT, AuBANKING, and PEBANKING aIl spend minimal time in 

MHP analysis-even our base MHP and PEG times account for less than 2 seconds, 

no more than 5% of total time. 
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8.2. Results 

1 Programs 1 Sim.(s) 1 MHP(s) 1 Total time(s) 1 Total Speedup 1 PEG+MHP 1 

FORKJOIN 0.02 0.41 84.4 1.05 4.76 

SYNC 0.07 8.81 94.1 1.45 5.95 

BARRIER 0.06 21.21 108.8 1.47 3.71 

CRYPT 0.10 0.93 105.1 65.82 4395.80 

MONTECARLO 0.03 0.53 88.7 1.15 17.13 

RAyTRACER 0.07 6.66 92.5 1.55 8.48 

SERIES 0.03 0.64 85.0 1.09 9.98 

LuFACT 0.04 0.53 87.9 1.91 110.06 

SOR 0.04 0.39 89.0 3.91 360.37 

SPARSEMAT 0.02 0.09 84.5 1.04 12.65 

MOLDYN 0.18 1.18 90.0 495.04 13763.80 

CYCLIC 0.02 0.74 85.8 1.00 1.40 

MTRT 0.02 0.10 231.8 1.00 3.73 

AuBANKING 0.02 0.53 85.8 1.01 1.75 

PEBANKING 0.02 0.62 84.7 1.01 1.68 

Table 8.4: Experimental results after optimization 

sec and sequential merging have clear benefits, with a fairly minimal co st­

even for MOLDYN simplification takes less than 1/5s. Merging in combinat ion with 

an already efficient initial PEG construction allows reasonable size programs to be 

analyzed. Interestingly, after optimization efforts, the BARRIER benchmark is the 

most expensive to analyze. With optimization overall analysis cost is related more 

closely to number and density of communication operations than input program size. 
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Chapter 9 

Conclusions and Future work 

In this thesis, we presented a practical MHP analysis for concurrent Java pro­

grams. There are of course a number of extensions and improvements still required 

to achieve an industrial strength solution. 

9.1 Conclusion 

We have presented a more realistic implementation of MHP analysis for Java. Fo­

cusing on the practical concerns, we designed and implemented a refined approach 

to build PEG for MHP analysis; our design makes use of a variety of existing and 

small custom analyses in order to build a feasible implementation that can analyze 

programs of a reasonable size, bypassing many of the previous input restrictions. 

Moreover, we provided both design and implementation data for optimizations 

intended to improve the performance of our MHP analysis. Our base PEG construc­

tion already excludes large amounts of code by considering only code that may be 

relevant to MHP data, the interesting statements. We further compact PEGs by 

collapsing subsequences of uninteresting code forming strongly connected components 

or sequential chains obtaining smaller PEGs. Because the MHP data-flow algorithms 

run faster on the simplified PEGs than the original PEGs, the performance of our 

MHP computation is greatly improved. 
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9.2. Future work 

We have presented experimental results from such an implementation, and have 

thus shown how excessive MHP analysis time can be efficiently handled through 

simple input compact ion techniques. Our optimizations work for all the benchmarks, 

in sorne cases achieving speedups in MHP analysis time of several orders of magnitude. 

We also include techniques that allow us to handle benchmarks excluded from the 

original MHP presentation, e.g., benchmarks that contain (uninteresting) recursive 

method calls. 

9.2 Future work 

Our work has clear extensions in a number of ways, including analysis and poten­

tial implementation improvements. Certainly accuracy of the resulting information 

deserves examination. Naumovich et al. compare MHP information to precise reach­

ability analyses in order to verify the resulting analysis data, but the complexity 

of reachability analysis means such a technique is not feasible for larger programs. 

We have exhaustively examined (small) test cases, and spot-checked larger results 

to ensure we have a correct implementation, but a more thorough and deterministic 

approach is desirable. 

Given the success of our simple techniques, further PEG compaction or reduction 

approaches seem worth exploring. For example, by considering the flow of MHP 

information through other identifiable PEG substructures, such as "hyperblocks" of 

nodes-collections of connected nodes with only one entry point, though possibly 

more than one exit. Movement to a PEG design that does not require inlining at all 

is of course most desirable. 

We also aim to expand the range of acceptable input programs. Programs with 

an unbounded number of threads, use of timed synchronization constructs, and so 

on could be handled, and this would allow more programs to be analyzed with less 

manual intervention. 

Sorne client analyses for the MHP computation would be interesting, and could 

also serve as indicates of the quality of MHP information. Because the MHP analysis 
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9.2. Future work 

provides information of which statements may be executed in parallel with a given 

statement, by checking the MHP information for a statement involving a variable 

access, we can find information on which variable accesses may happen in parallel. 

Thus static datarace detection becomes straightforward and would also serve as an 

indicator of the quality or accuracy of MHP information. Of course, our effort in this 

thesis is directed at achieving a reasonably efficient MHP implementation. Client 

analyses, however useful are left as future work. 
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