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Abstract 

The growing availability of large-scale genetic and phenotypic data has facilitated 

substantial endeavors aimed at understanding the genetic architecture of human diseases and 

complex traits. However, the mapping of genetic variation onto phenotypes presents several 

challenges. Integrating multiple types of omics data from diverse sources to reveal functional 

insights represents a daunting task. Furthermore, the intricate interplay of multiple functional 

elements within regulatory networks complicates the understanding of the consequences of 

dysregulation of specific regulators. Additionally, establishing a causal link between risk factors 

and disease remains a considerable difficulty. This thesis aims to address these challenges by 

developing bioinformatics applications to support data analytics and hypothesis generation. 

First, I developed mGWAS-Explorer, a web-based platform that links SNPs, genes, 

metabolites, and diseases for functional insights. The tool contains a comprehensive collection of 

up-to-date significant mGWAS summary statistics with deep annotation on metabolite quantitative 

trait loci (mQTLs) and advanced network visual analytics support. By integrating multiple 

knowledgebases, mGWAS-Explorer is able to build SNP-based, gene-based, and metabolite-based 

networks to facilitate mechanistic insights. The application of the mGWAS-Explorer was 

demonstrated using COVID-19 and type 2 diabetes case studies. 

Next, I developed version 2.0 of miRNet, a web-based platform for miRNA-centric 

network visual analytics. It integrates data from over 14 different miRNA databases and supports 

intuitive network analysis and functional enrichment analysis. It supports various inputs and 

statistics, including a list of miRNAs, SNPs, genes, transcription factors, small molecules, ncRNAs, 

diseases, epigenetic factors, any combinations, or a data table from microarray, RNAseq, or RT-

qPCR experiments. 
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Lastly, I developed version 2.0 of mGWAS-Explorer, which focuses on inferring causal 

relationships between metabolites and diseases by leveraging mGWAS summary statistics and 

two-sample Mendelian randomization approach. It was also able to integrate additional molecular 

QTLs to facilitate understanding the mechanisms of how genetic variants influence the phenotypes 

at different omics levels and visualize the results in a network view. Additionally, mGWAS 2.0 

allows reproducible and scalable analysis through an underlying R package. 

Overall, the web-based platforms described in this dissertation enable the interpretation 

and functional analysis of omics data and pave the way toward a better understanding of the 

genetics of metabolism and regulatory relationships. 
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Résumé 

La disponibilité croissante de données génétiques et phénotypiques à grande échelle a 

facilité les efforts substantiels visant à comprendre l'architecture génétique des maladies humaines 

et des traits complexes. Cependant, la cartographie de la variation génétique sur les phénotypes 

présente plusieurs défis. Une proportion importante, environ 90 %, des variants identifiés par les 

études d'association pangénomique (GWAS) sont situés dans des régions non codantes du génome, 

ce qui rend difficile la détermination de leur impact fonctionnel sur le phénotype. En outre, 

l'interaction complexe de multiples éléments fonctionnels au sein des réseaux de régulation 

complique la compréhension des conséquences de la dérégulation de régulateurs spécifiques. Enfin, 

l'établissement d'un lien de causalité entre les facteurs de risque et la maladie reste une difficulté 

considérable. Cette thèse vise à relever ces défis en développant des applications bioinformatiques 

pour soutenir l'analyse des données et la génération d'hypothèses. 

Tout d'abord, j'ai développé mGWAS-Explorer, une plateforme basée sur le web qui relie 

les SNP, les gènes, les métabolites et les maladies pour obtenir des informations fonctionnelles. 

L'outil contient une collection complète de statistiques sommaires mGWAS significatives et 

actualisées, avec une annotation approfondie sur les loci de traits quantitatifs (mQTL) des 

métabolites et un support avancé d'analyse visuelle des réseaux. En intégrant plusieurs bases de 

connaissances, mGWAS-Explorer est capable de construire des réseaux basés sur les SNP, les 

gènes et les métabolites pour faciliter la compréhension des mécanismes. L'application de 

mGWAS-Explorer a été démontrée à l'aide des études de cas COVID-19 et diabète de type 2. 

Ensuite, j'ai développé la version 2.0 de miRNet, une plateforme en ligne pour l'analyse 

visuelle de réseaux centrés sur les miARN. Elle intègre les données de plus de 14 bases de données 

miRNA différentes et permet une analyse intuitive des réseaux et une analyse de l'enrichissement 



 

 

6 
 

fonctionnel. Elle prend en charge différentes entrées et statistiques, y compris une liste de miRNA, 

SNP, gènes, facteurs de transcription, petites molécules, ncRNA, maladies, facteurs épigénétiques, 

toute combinaison, ou un tableau de données provenant d'expériences de microarray, RNAseq, ou 

RT-qPCR. 

Enfin, j'ai développé la version 2.0 de mGWAS-Explorer, qui se concentre sur l'inférence 

des relations causales entre les métabolites et les maladies en exploitant les statistiques sommaires 

de mGWAS et l'approche de randomisation mendélienne à deux échantillons. Il a également été 

en mesure d'intégrer des QTL moléculaires supplémentaires pour faciliter la compréhension des 

mécanismes d'influence des variants génétiques sur les phénotypes à différents niveaux omiques 

et de visualiser les résultats dans une vue en réseau. En outre, mGWAS 2.0 permet une analyse 

reproductible et évolutive grâce à un progiciel R sous-jacent. 

Dans l'ensemble, les plateformes web décrites dans cette thèse permettent l'interprétation 

et l'analyse fonctionnelle des données omiques et ouvrent la voie à une meilleure compréhension 

de la génétique du métabolisme et des relations de régulation. 
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Chapter 1: General introduction 

The foremost and ongoing question in the field of human genetics pertains to the 

elucidation of the relationships between genotype and phenotype. With the advent of technological 

advancement in the generation of data from various levels of biological systems, many 

experimental and analytical approaches have been developed to define functional elements in the 

human genome. These include evolutional, biochemical and genetics approaches (1). The 

evolutionary approach assesses the degree of selective pressure, the biochemical approach assesses 

molecular activity, while the genetic approach assesses the consequence of alterations on the 

phenotype (e.g., GWAS). Each of the three methods can provide a wealth of information on the 

biological significance of a genetic segment. However, there are several challenges in regard to 

dissecting how genetic variation map into phenotypes. (i) 90% of the variants identified by GWAS 

locate at the noncoding regions of the genome and their functional consequence on the phenotypes 

cannot be easily interpreted. (ii) The interaction of multiple functional elements in regulatory 

networks make it difficult to understand the effect of dysfunction of particular regulators. (iii) 

Causal inference between the risk factor and disease remains a major hurdle. Therefore, this thesis 

focuses on developing bioinformatics tools to address these challenges.   

 

INTERMEDIATE MOLECULAR QTLs 

The recent advancement in high-throughput technologies has facilitated the generation of 

multiple types of omics data (Figure 1), thereby enabling the identification and analysis of genetic 

variants associated with these intermediate molecular phenotypes (molQTLs). Through this, we 

are able to gain a better understanding of the functional impacts of these genetic variations on 

biological processes and regulatory networks (1-4). For instance, RNA sequencing quantifies gene 
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expression, as well as noncoding RNAs and other forms of post-transcriptional regulation (5). 

Bisulfite sequencing, on the other hand, allows for the profiling of DNA methylation (6). 

Chromatin immunoprecipitation sequencing (ChIP-Seq) can be utilized to investigate histone 

modifications, such as H3K4me1 and H3K27ac, as well as the regulatory elements, including 

transcription factor binding sites and RNA polymerase II-binding sites (7). Furthermore, 16s rRNA 

and shotgun metagenomics allow the characterization of the microbiome (8), while mass 

spectrometry is the key technology in profiling proteins and metabolites (9). These advancements 

have opened up the possibility of identifying a wide range of quantitative trait loci (QTLs), 

including expression QTLs, epigenetic QTLs, proteomic QTLs, metabolic QTLs, and microbiome 

QTLs. 

 

Figure 1. Overview of multi-omics integration in human diseases. The impact of genetic variations 

from multi-omics molecular quantitative traits (molQTLs) to diseases outcome through various 

layers of information such as the epigenome, transcriptome, proteome, metabolome, and 

microbiome.  
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Expression QTL 

eQTL analysis is a method that studies the relationship between a genetic variant and 

changes in gene expression. This approach has been applied to a wide range of research fields, 

including the interpretation of GWAS and the fundamental processes of gene regulation (10,11). 

Studies of eQTL analysis in cell lines or tissues have revealed the existence of shared and context-

specific eQTL mapping across a range of cells and tissues (12,13). Additionally, eQTL analysis 

has facilitated the identification of disease risk loci and genes that may play a role in the 

modulation of pathogenesis in a variety of diseases, including epilepsy (14), schizophrenia (15), 

and type 1 diabetes (16). eQTLs can be divided into two subcategories: cis-eQTLs and trans-

eQTLs. Cis-eQTLs are genetic variants that are located within 1 megabase of the gene whose 

expression they affect, whereas trans-eQTLs are those variants that are situated either farther away 

or on a different chromosome from the gene of interest. It is noted that cis-eQTLs and trans-eQTLs 

exhibit distinct characteristics. Studies have shown that the effects of trans-eQTLs on gene 

expression are weaker when compared to those of cis-eQTLs (17), and that they are also less 

replicable across different studies (18).  

eQTL in Noncoding RNAs 

eQTLs in noncoding RNA (ncRNA) is an emerging area of research that aims to 

understand how genetic variants affect the expression levels of various types of ncRNA, such as 

long ncRNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA). lncRNA-eQTL 

(lncR-eQTL) refers to the effect of genetic variants on lncRNA expression. Thus far, over 2,000 

lncR-eQTLs have been identified in four primary tissues, and they have been linked to patient 

survival and known genetic loci associated with disease (19). miRNA eQTLs (miR-eQTLs) study 
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the effect of genetic variants on miRNA transcription, maturation and targeting (20), with over 

5,200 miR-eQTLs identified in whole blood (21)  and more than 90,000 cis- and trans-miR-eQTLs 

across 33 cancer types (19). This high number of miR-eQTLs indicates that miRNAs have a 

significant regulatory impact on gene expression in the context of cancer and may contribute to 

tumor heterogeneity and cancer progression. Circular RNA-eQTL (circ-eQTL) studies the effect 

of genetic variants on circRNA expression. Most of the circ-eQTLs were found to be located near 

the back-splicing sites, suggesting their role in circRNA regulation (22). The increasing knowledge 

of circRNAs provides opportunities to understand the connection between genetic variations and 

circRNAs in complex traits and diseases (23-26). The different orders of magnitude observed 

among the noncoding RNAs could be due to the differences in the focus of the studies, the roles 

these noncoding RNA molecules play in gene regulation, and the complexity of the molecular 

mechanisms involved in different biological contexts, such as cancer and whole blood samples. 

These numbers highlight the importance of further exploring noncoding RNA regulatory 

mechanisms to better understand their roles in gene expression, disease risk, and phenotypic 

variation. 

 

Epigenetic QTL 

Genetic variations play a crucial role in regulating gene expression through epigenetic 

marks, such as DNA methylation (27), histone modification (28), and regulatory elements (e.g., 

promoters and enhancers) (29). (i) DNA methylation QTLs (meQTLs) have been identified in 

several tissues and organs, including immune cells (30) and brain (31), and have been found to 

play a functional role in negatively regulating gene expression (30). meQTLs have been associated 

with human diseases such as post-traumatic stress disorder (32). (ii) Histone modification is 
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another important epigenetic marker that helps in gene regulation through chromosomal packaging. 

Different types of histone modification, such as H3K4me3, H3K9ac, and H3K27me3, are 

associated with different regulatory elements in the human genome (28). The genetic variants 

associated with histone modifications are defined as histone modification QTLs (hQTLs). (iii) 

Regulatory elements, such as promoters and enhancers, play a key role in regulating gene 

expression. The dynamic usage of regulatory elements is defined as promoter usage QTLs 

(puQTLs) and enhancer activity QTLs (eaQTLs) (29), which are associated with phenotypic traits 

and diseases such as Alzheimer’s disease (33).  

 

Proteomic QTL 

As fundamental building blocks of life, proteins occupy a crucial position within the 

biology of organisms, fulfilling various critical functions including enzymatic activity, receptor 

and transport processes. The genetic variations that influence the expression of these proteins are 

known as protein quantitative trait loci (pQTLs) (34). These pQTLs have facilitated the 

identification of shared etiological mechanisms across diseases and have allowed for a 

prioritization of therapeutic targets. For instance, the FBLN3 protein, which is an extracellular 

matrix glycoprotein encoded by the EFEMP1 gene, has been identified as a target in a significant 

number of diseases and phenotypic conditions, such as whole body fat bass and carpal tunnel 

syndrome (35). Furthermore, leveraging pQTL in Mendelian randomization analysis, a method for 

evaluating causality between protein levels and disease risks, holds great promise in the validation 

of drug targets (36).  

 

Metabolic QTL 
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The human metabolome is the comprehensive collection of the low-molecular-weight 

compounds, or “metabolites”, found in blood, urine, saliva, or other biofluid and tissues, which 

reflect the joint effects of genetic and environmental factors (37,38). Genetic variants associated 

with variations in metabolite levels are referred to as metabolic QTLs (mQTLs) (4). In 2008, first 

metabolome genome-wide association study (mGWAS) analyzed 363 metabolites in serum of 284 

individuals from the KORA study using a targeted approach (39). The authors found associations 

of SNPs with significant variations in the metabolite concentrations, accounting up to 12% of the 

observed variance. They were able to determine the presence of four variants in genes responsible 

for coding enzymes FADS1, LIPC, SCAD, and MCAD. These variants were found to exhibit a 

direct correlation with the corresponding metabolic phenotype, effectively aligning with the 

established biochemical pathways in which the relevant enzymes react. Furthermore, the study 

conducted by Suhre et al. provided valuable insights into the intricacies of transport mechanisms 

in a high-dimensional setting (40). Through the application of a nontargeted mass spectrometry-

based approach, the authors quantified hundreds of blood metabolites and identified numerous 

genetic variants with associations to various metabolic traits. Of particular significance was the 

observation of genetic variants in the gene SLC16A9 that were associated with free carnitine 

concentrations. The results of this study were further validated by experimental confirmation of 

the role of SLC16A9, also known as monocarboxylate transporter 9, as a carnitine efflux 

transporter using the Xenopus oocyte system. Recently, mQTLs have gained increasing attention 

as a key factor in shaping individual differences in metabolism and health (41-45). The mQTLs 

are associated with various phenotypic traits, including body mass index (BMI) (46), and have 

been implicated in the development of several human diseases, including kidney diseases (47) and 

cardiometabolic diseases (48).  
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Microbiome QTL 

The microbiome has been demonstrated to play a pivotal role in a multitude of host tissues 

and organs, including the gastrointestinal tract, skin, and respiratory systems (49). Genetic variants 

associated with microbiome are known as microbiome QTL. A number of studies have aimed to 

identify these microbiome QTLs in a variety of human tissues, such as gut biopsies (50), feces 

(51), and skin (52). Additionally, studies have revealed the enrichment of microbiome QTLs in 

several diseases, including inflammatory bowel disease (53), as well as meningitis and 

gastrointestinal adenocarcinoma (54). These microbiome QTLs are mapped to genes involved in 

pathways related to immunity and food metabolism (54) . For example, SNP located in the LCT 

locus (rs4988235) is associated with the Bifidobacterium genus, showing evidence of a gene-diet 

relationship in the control of Bifidobacterium abundance (49). 

 

NETWORK-BASED APPROACHES 

Integrating multi-omics in a network biology context holds the promise for advancing our 

understanding of the complex relationships between the genotype and phenotype (55). The 

integration of diverse data sources through network analysis can play a crucial role in the 

identification of functional elements that participate in a multitude of interactions and offer a more 

extensive comprehension of their cellular functions (56,57). This holistic methodology offers a 

framework to integrate knowledge, construct meaningful models and extract biological insights at 

a system level.  

The objective of integrating knowledge within network systems is to attain a deeper 

comprehension of the molecular context that underlies omics datasets. This aim can be realized 
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through the implementation of these three phases: (i) subjecting individual omics data to data 

processing and comparative statistical analysis in order to obtain features of significance; (ii) 

mapping the identified features with the existing knowledge, as represented by the available 

molecular interaction data, such as protein-protein interactions (PPIs), metabolic pathways, and 

gene regulatory networks (Figure 2); (iii) visualizing and examining the resulting subnetwork. The 

resulting subnetwork constitutes a basis for more in-depth subsequent analysis, including the 

detection of modules (i.e., subnetworks) and functional enrichment analysis. (58,59). 

 

Figure 2. An example of an integrated regulatory network, composed of miRNA-gene interactions 

and protein-protein interactions, where blue nodes depict the genes/proteins and orange nodes 

represent miRNAs. This figure is generated with OmicsNet 2.0 web application (60). 

 

Network topology 

Interactions between biological components, such as metabolites or genes, can be 

represented as nodes in a network. These nodes are connected by edges, which depict the 
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relationships between the nodes. The directionality of the network is determined by the 

characteristics of the biological data, with undirected networks commonly used for protein-protein 

or genetic interactions, while directed networks are utilized for transcription factor binding, 

miRNA targeting, phosphorylation, and metabolic networks (61,62).  

Topology plays a critical role in understanding network architecture and function. Some of 

the most widely used topological features include degree, shortest path length, and betweenness 

(57). The degree of a node refers to the number of connections it has. Nodes with a high degree 

are more highly connected within the network and may therefore play a more crucial role. Distance 

measures the shortest path length between two nodes, with the average distance and diameter of a 

network indicating the general proximity of nodes. Betweenness represents the number of times it 

functions as a bridge along the shortest path between two other nodes. In other words, it estimates 

the amount of traffic passing through a node (63). 

 

Network modules 

In recent years, much emphasis has been placed on the examination of the local structural 

components of biological networks, as opposed to only focusing on the characterization of their 

global topological structure. These local units, referred to as network modules, are defined as large 

subnetworks that consist of densely connected nodes (64). Several algorithms have been developed 

to identify potential network modules. For instance, Prize-Collecting Steiner Forest (PCSF) is an 

algorithm utilized for the identification of one or multiple subnetworks in a given undirected global 

network (65,66). The goal of PCSF is to maximize the prizes associated with the input nodes, 

minimize the costs associated with the edges, and reduce the number of subnetworks. PCSF has 

been applied to study risk genes for autism spectrum disorders (67) as well as metabolic alterations 



 

 

29 
 

in multiple sclerosis (68). Other algorithms include random walks and label propagation (69). 

Random walk method attempts to locate densely interconnected subnetworks, commonly referred 

to as communities, within a network through the utilization of random walks. The underlying 

concept is that random walks of short distance tend to remain within the same community (70). 

Conversely, label propagation algorithm is a fast approach for identifying community structures 

within networks. It operates by assigning unique labels to the nodes and then iteratively updating 

the labels through a majority voting process in the direct neighborhoods of the nodes  (71). 

 

Network motifs 

The abundance of interaction data has enabled the identification of small, frequent patterns 

within large networks, referred to as network motifs (72). Each network motif is capable of 

executing well-defined information processing functions, as has been demonstrated through 

various experimental studies, particularly in the model organism Escherichia coli (73). One such 

motif, the feed-forward loop (FFL), involves regulation of target genes by a transcription factor 

(TF) and the regulation of the same genes by a miRNA (62). FFLs can be classified into two types: 

coherent and incoherent. In coherent FFLs, both direct and indirect regulation have the same effect 

on gene expression, either activating or repressing. In contrast, incoherent FFLs have opposing 

effects on gene expression. These two types of FFLs also exhibit distinct patterns of gene 

expression, with the coherent type showing mutual exclusion of miRNA and target gene 

expression, and the incoherent type exhibiting co-expression. The role of coherent FFLs may be 

to prevent the co-expression of miRNA and its targets, while the incoherent type may play a role 

in precisely modulating target gene expression and controlling biological noise (74). For instance, 

a recent study identified an incoherent FFL between miR-34a and Numb targeting Notch, which 
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regulates asymmetric division in early-stage colon cancer stem cells. Disruptions to this FFL 

resulted in the emergence of an intermediate cell population with plastic properties, highlighting 

the significance of FFLs in maintaining stem cell proliferation (75). 

 

Network-based enrichment 

Network-based enrichment methods leverage the information contained in biological 

pathways or molecular interaction networks through the use of graph-based statistics. The standard 

approach to these methods consists of two main stages: (i) mapping the experimental data onto the 

network and (ii) utilizing "topology-aware" statistics that incorporate structural information to 

compute pathway enrichment scores (58). A proximity measure is often utilized to establish a 

relationship between the user input and known biological pathways, with the underlying principle 

being that nodes with similar functions tend to be situated in close proximity within the network. 

By using this method, it is possible to identify enriched pathways whose related members do not 

exactly match the input provided by the user. Additionally, the connectivity pattern can be used in 

conjunction with conventional enrichment techniques as a complementary factor to improve 

interpretability and discriminative power in the context of networks (58). Some popular network-

based enrichment methods include SPIA (76), NetGSA (77), and EnrichNet (78). For example, 

EnrichNet is a network-based enrichment analysis method, which utilizes the concept of proximity 

to quantify the relationship between input genes and reference gene sets (78). This method is 

comprised of several steps, including the application of the Random Walk with Restart (RWR) 

algorithm to calculate the distance of seed nodes to all reference gene sets, the conversion of node-

level distance scores into distance score vectors for reference gene sets, the aggregation of 

individual distance vectors to form a background model distribution, and the calculation of 
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enrichment scores through a measurement of deviation from the background model average 

distribution.  

 

Network visual analytics 

A crucial aspect of network-based approach is the implementation of visualization 

techniques, which serve to enhance the comprehensibility of the network results (79). Visual 

analytics allows seamlessly integration of interactive visualization and human judgement within 

the processes of data analysis (80). Such an approach requires the combination of data analysis 

methods, data visualization and interactive techniques (e.g., web technologies) in the analytical-

reasoning process for decision making. By incorporating this approach, decision makers are 

enabled to leverage their human creativity and domain knowledge to make sound decisions. The 

utilization of a visual analytics methodology is highly appropriate for the analysis of omics data 

due to several compelling factors:1) The integration of statistical analysis algorithms and 

computational models constitutes a crucial aspect of modern omics data analysis, as it leverages 

well-established methodologies to enhance the traditional visual assessment techniques. The 

synergy between these two approaches leads to a more comprehensive and sophisticated analysis, 

resulting in more informed decision-making. 2) The concept of interactivity plays a crucial role in 

promoting an iterative approach to data analysis. This iterative process enables the gradual 

understanding of data, whereby initial hypotheses and insights act as a foundation for more 

extensive investigations. The incorporation of interactivity in the data analysis process, therefore, 

fosters incremental data understanding. 3) The analytical process can be enriched through the 

integration of the domain expertise, intuitive understanding, and creative abilities of the users via 

the utilization of interactive visualizations. This thesis endeavors to demonstrate the applicability 
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of visual analytics by presenting two applications. Our contribution underscores the efficacy of 

visual analytics in the realm of linking genotype to phenotype. 

 

CAUSAL INFERENCE 

The inference of causality between risk factors and relevant phenotypes constitutes a major 

objective in biomedical observational research that holds significant implications for 

comprehending the etiology of pathological conditions (81). A major challenge in the investigation 

of causal relationships is confounding, where a variable causally impacts both the risk factor and 

the outcome. Randomized Controlled Trials (RCTs), frequently held as the gold standard of 

causality inference, have limitations inherent to their methodology and maybe sometimes 

impractical and unethical to conduct (82). The limitations of RCTs and challenges of causal 

inference have led to the development of methodologies to enhance causal inference in 

observational research. Among these methods, Mendelian randomization (MR) is particularly 

effective in controlling for confounders (83).  

 

Mendelian randomization 

The Mendelian randomization (MR) technique is a scientifically robust methodology that 

leverages genetic variants that are associated with a given exposure as instrumental variables to 

calculate the causal effect of the exposure on a specific outcome of interest (83,84). Single 

nucleotide polymorphisms (SNPs) are commonly used genetic instruments that can act as an 

anchor for estimating causality. By evaluating the difference in outcome between individuals 

carrying the risk allele (i.e., exposure) and those without (i.e., control), it is possible to assess the 

causal effect of a given exposure (85,86) (Figure 3a). Based on Mendel’s laws of segregation and 
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independent assortment, Mendelian randomization (MR) can be considered a natural experiment 

similar to randomized controlled trials (RCTs) (83,87). By relying on random genetic allocation, 

MR generates variation in exposure that is not confounded, allowing for a more rigorous 

examination of causality (81). 

Mendelian randomization depends on three key assumptions. Firstly, the instrumental 

variable must exhibit an association with the risk factor under examination (relevance assumption). 

Secondly, it must be independent of confounders that may impact the outcome (independence 

assumption). Lastly, it must affect the outcome only through the risk factor (exclusion restriction 

assumption) (Figure 3b). It is possible for a genetic variant to fulfill these assumptions if the 

biological process connecting the variant to the risk factor has been thoroughly understood. 

However, in numerous instances, Mendelian randomisation investigations includes multiple 

genetic variants, which can be used in analyses of sensitivity to assess the basic assumptions. 

Typically, the three conditions must be satisfied for each of the genetic variants utilized (88). 
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Figure 3. Overview of Mendelian randomization. (a) The design of a Mendelian randomization 

study. In Mendelian randomization, the random allocation of alleles during meiosis assigns one 

allele to represent “exposure” and the other to represent “control”. The disease outcomes are 

compared between control group with the wild-type allele and the exposure group with the variant. 

“Exposure” refers to the presence of a specific variant that is hypothesized to influence a particular 

risk factor or characteristic. Individuals carrying this allele are considered “exposed” to the risk 

factor. “Control” refers to individuals who do not carry the specific variant. They represent the 

comparison group, which is not “exposed” to the potential influence of the genetic variant on the 

risk factor. (b) The three essential elements of instrumental variable assumptions are: the 

instrumental variable, which can be genetic variants, must have a relationship with the exposure; 

the instrumental variable must not be related to any confounders; and there must not be any direct 

path from the genetic variants to the disease outcome that bypasses the exposure of interest. 
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The utilization of results from genome-wide association studies (GWAS) in the context of 

Mendelian randomization (MR) has been recognized as a critical aspect of MR methodology. This 

strategy, known as two-sample MR (2SMR), was first described by Pierce and Burgess in 2013 

(89). The two-sample MR approach allows for the estimation of causal influence between two 

traits through the use of summary data derived from separate studies, where the SNP-exposure 

effects and the SNP-outcome effects are obtained independently (90). The advantage of this 

method is that it enables causal inference to be made between two traits that may not be measured 

in the same set of samples, thereby leveraging the statistical strength of pre-existing large GWAS. 

The versatility of 2SMR has broad implications for MR applications, as it can be applied to 

thousands of potential exposure-outcome associations, including behavioral traits such as alcohol 

consumption, as well as intermediate molecular phenotypes like miRNAs (91) and metabolites 

(92). 

 

Triangulation with literature-mined evidence 

The Mendelian randomization technique, although effective in addressing the confounding 

and reverse causality problems that frequently arise in observational studies, nonetheless is not 

immune to the potential biases that may result from its statistical-based methodology. Hence, it is 

imperative to adopt a multi-faceted approach to the assessment of causality, through the utilization 

of what has been referred to as the "triangulation" framework. By combining the results of various 

approaches and verifying that they concur in their conclusions, the robustness and validity of the 

results can be enhanced and the confidence in the causal inferences drawn from the data 

strengthened (93,94). The integration of MR estimates and literature mined experimental results 
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constitutes a notable exemplar of the utilization of triangulation in the examination of causal 

relationships. The employment of searching enriched overlapping terms in semantic triples 

(‘subject-predicate-object’), as a means of delineating the intermediate processes that connect risk 

factors and disease outcomes, holds the potential to significantly enhance our ability to identify 

the mechanisms that underlie the etiology of disease (95-97). The enrichment analysis is performed 

utilizing the conventional 2x2 Fisher's Exact Test, which compares the frequency of queries 

against a reference background. An overlap is considered to occur when the subject of a triple from 

the set of exposure queries overlaps with the object of the triple from the set of outcome inquiries. 

Therefore, the process of triangulation, which involves the integration of evidence derived from 

multiple sources, enables the enhancement of decision-making and the formulation of more robust 

hypotheses (98). 

 

Rationale and objectives 

After decades of reductionist approach, integrated omics analysis and network analysis 

have started investigating the molecular mechanism at a systems level. Various databases and 

algorithms have been developed to support such analysis. However, considering the complexity of 

these methods, the applications to biomedical research are limited. Therefore, user-friendly 

computational platforms need to be developed to better understand the multiple interactions to 

obtain a more systems-level understanding of the linking between genotype to phenotype. In 

particular, this thesis focuses on genetics of metabolism and regulatory interactions.  

The objectives of my thesis project are threefold: (i) to enhance our understanding of the 

functional significance and causal effects underlying the genetic basis of metabolism and disease; 
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(ii) to improve functional profiling, network visual analytics, and reproducible analysis of miRNA-

centric regulatory networks; (iii) to develop bioinformatics applications that can facilitate scalable, 

transparent, and reproducible research. 
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Abstract 

Tens of thousands of single-nucleotide polymorphisms (SNPs) have been identified to be 

significantly associated with metabolite abundance in over 65 genome-wide association studies 

with metabolomics (mGWAS) to date. Obtaining mechanistic or functional insights from these 

associations for translational applications has become a key research area in the mGWAS 

community. Here, we introduce mGWAS-Explorer, a user-friendly web-based platform to help 

connect SNPs, metabolites, genes, and their known disease associations via powerful network 

visual analytics. The application of the mGWAS-Explorer was demonstrated using a COVID-19 

and a type 2 diabetes case studies. 
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Introduction 

Genome-wide association studies (GWAS) have identified hundreds of thousands of 

genetic loci associated with complex diseases. These associations have improved our 

understanding of the genetic architecture of human diseases [1]. However, translations of these 

associations into biomedical or pharmaceutical applications have been limited, as the majority of 

the disease-associated loci reside in the non-coding regions of the genome with no obvious gene 

targets [2]. Technology advancements in mass spectrometry (MS) and nuclear magnetic resonance 

(NMR) spectroscopy have allowed GWAS to be carried out with metabolomics (mGWAS) to 

study genetically influenced metabotypes (GIMs) [3,4]. mGWAS have been very successful in 

identifying metabolite quantitative trait loci (mQTLs). An mQTL is a locus that is associated with 

variations in metabolite abundance [3]. In addition to having larger effects compared to loci 

identified in GWAS of clinical phenotypes in general, many mQTLs can map to genes encoding 

enzymes or transporters, providing biochemical context for these variations [3,5]. Leveraging 

these mQTLs to improve our knowledge of metabolism and metabolic disorders for translational 

applications has become a key research area in the mGWAS community. 

mQTLs are characterized by polygenicity and pleiotropy [6,7]. Polygenicity means a single 

trait is influenced by multiple genes, whereas pleiotropy refers to the phenomenon in which genetic 

variants affect multiple traits or diseases [8,9]. For instance, one single-nucleotide polymorphism 

(SNP) can directly affect multiple traits, or different SNPs in high linkage disequilibrium (LD) 

may exist for more than one trait. Pleiotropy may provide insights into the cause of trait 

comorbidity and help determine the direction of causal relationships by pointing to shared genetic 

mechanisms [8,10]. Various strategies have been developed to examine genetic relationships 

between multiple phenotypes [11,12,13,14,15,16,17,18]. For example, LD score regression is a 
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popular method to assess the genetic correlations of pairwise traits using GWAS summary 

statistics [13]. Colocalization is another strategy aiming to identify causal variants at two 

overlapping association signals [14]. These methods have successfully identified pleiotropic 

genomic regions and addressed fundamental research questions regarding the polygenicity of traits, 

but it is challenging to scale up these methods to study hundreds of traits at once. 

Comprehensive annotations are necessary in order to gain functional insights into SNP–

metabolite associations. Many resources are available to support SNP to gene annotation, such as 

VEP and SNiPA [19,20]. For metabolite annotation, there is a wealth of biochemical knowledge 

on enzymatic reactions as well as transporters and their substrates. In addition, mapping GWAS 

results to the protein–protein interaction (PPI) network can potentially augment the association 

signals [21]. 

Recently, cross-phenotype association analysis has gained increasing attention 

[22,23,24,25,26]. It takes a specific SNP and searches for associations across a range of molecular 

or disease phenotypes, which allows for elucidations of complex networks between phenotypes 

and their genetic loci. A variety of databases currently exist to store the genotype–phenotype 

association datasets, including GWAS Catalog [27], PhenoScanner [28], OpenGWAS [29], Open 

Targets Genetics [30], PheLiGe [31], DisGeNET [32], as well as specific tools for mGWAS, such 

as the metabolomics GWAS server [33,34]. Valuable tools currently exist to allow users to perform 

cross-phenotype analysis [35,36,37,38,39,40]. However, these tools do not offer extra support 

beyond displaying and visualization, and none of them are dedicated to mGWAS. 

There is a clear demand for dedicated bioinformatics resources to support mGWAS data 

analysis and interpretation. Our overall assumption is that by developing a centralized place for 

mGWAS datasets and performing deep annotation of the underlying SNPs and metabolites, users 
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can gain valuable functional insights into the statistical associations identified from mGWAS 

results. 

A network is a valuable approach to depict mGWAS results and allows the dissection of 

polygenicity and pleiotropy. Heterogeneous networks comprising various types of nodes (e.g., 

SNPs, genes, metabolites, and diseases) and edges (e.g., statistical or biochemical associations) 

have been remarkably useful in depicting the complex interplay across biological entities [41]. 

These network-based approaches have the potential to identify and prioritize therapeutic 

candidates to generate new hypotheses [42]. 

Here, we introduce mGWAS-Explorer (https://www.mgwas.ca (accessed on 1 May 2022), 

a user-friendly web-based platform for network-based integrative analysis and visual exploration 

of SNPs, genes, metabolites, and diseases. Its key features include: 

• Comprehensive collection and deep annotation of SNP–metabolite associations based on data 

from the 65 mGWAS to date. 

• Support for SNP-based, gene-based, and metabolite-based network generation to facilitate 

interpreting results. 

• Powerful network visual analytics system facilitating interactive exploration and built-in 

topological and functional enrichment analysis. 

mGWAS-Explorer also includes a comprehensive list of frequently asked questions (FAQs) 

and detailed tutorials. Together, these features comprise a powerful platform for functional 

interpretation and cross-phenotype association analysis of mGWAS datasets.  

 

Results 

Overview of the curated mGWAS datasets 



 

 

43 
 

Since the first study in 2008 [5], mGWAS with increasing sample sizes and various 

populations have been conducted, resulting in a continued increase in SNP–metabolite associations. 

We systematically curated the public mGWAS datasets to date. A summary table of these mGWAS 

datasets can be found in Table 1. Please note the p-value cutoffs are based on significance 

thresholds of the original studies, as the p-values and effect sizes of SNP-metabolite associations 

may differ across different studies due to the differences in sample sizes, population types, or the 

metabolomics platforms [4,7]. 

Table 1. A summary of the mGWAS datasets in mGWAS-Explorer. 

Sample Type Study # * Metabolite # ** Metabolite Ratio # SNP # 
SNP–Metabolite 
Associations # 

Blood 57 3992 1265 67,570 30,3090 

Urine 5 271 1123 6877 9647 

Saliva 1 14 0 1364 1454 

Cerebrospinal fluid     

(CSF) 1 15 0 1178 1182 

Mitochondria 1 0 390 194 404 

Sum (unique) 65 4147 2388 73,737 313,720 

 

* Metabolite number includes both targeted (compound names) and untargeted measures (feature 

IDs, such as ‘391.2859_3.774J based on mass to charge ratio and retention time. The total number 

of such feature IDs is 2464). 

** Metabolite ratios (metabolite A/metabolite B) can be useful as they may reflect the biochemical 

conversion of metabolites and thus enhance the association signals. The # sign indicates size or 

total number [43]. 

 

Overview of the mGWAS-Explorer  

The main workflow of mGWAS-Explorer is summarized in Figure 1. There are three major 

steps—data input, network creation, and network visual analytics. To begin, users can enter 
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through one of the five modules based on input type. The ‘SNP’ module allows users to explore 

SNP–gene, SNP–metabolite, or SNP–disease networks. We provide support for LD proxy search 

to maximize the search by looking for SNPs in LDs with the input SNPs. After SNP to gene 

mapping, users can choose to include PPIs in the networks. The ‘Gene’ module maps genes to 

SNPs that are significant in the mGWAS datasets, or to metabolites (i.e., through encoding 

enzymes or transporters), or known associated diseases. The ‘Metabolite’ module maps 

metabolites to associated SNPs, genes, or diseases. The ‘Search’ module allows users to search 

known SNP–gene associations in mGWAS datasets, while the ‘Browse’ module allows users to 

browse individual mGWAS data in a 3D Manhattan plot or a network view. To start the analysis, 

users must click a circular button from the mGWAS-Explorer homepage to enter the corresponding 

data upload page. Various functions are available to allow users to refine the networks. In the last 

step, the results are shown as interactive networks for visual exploration. Users can easily search, 

explore, highlight, or perform functional enrichment analysis on the nodes of interest. For instance, 

double-clicking an edge will display the evidence supporting the relationships. The network results 

can be downloaded in PNG, SVG format, or as graph files. 
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Figure 1. Overview of mGWAS-Explorer workflow. Users can upload different data types. The 

input will be mapped to the underlying knowledgebases to create mapping tables and networks. 

The visualization page allows users to intuitively explore the networks to identify important 

associations as well as to perform topology or functional analysis. 

 

Analysis workflow 

There are five modules in mGWAS-Explorer corresponding to the five different types of 

input. Users can upload a list of SNPs, metabolites, or genes (Figure 2a–c); browse individual 

mGWAS dataset in a 3D Manhattan plot (Figure 2d); or search significant SNP-metabolite 

associations across all mGWAS datasets (Figure 2e).  

 

Figure 2. Screenshots of upload pages for SNP (a), metabolite (b), and gene (c) modules. (d) A 

screenshot of a 3D Manhattan plot from the ‘Browse’ module based on the data from Lotta et al. 
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[7]. The x-axis is the position of the SNPs, and the y-axis represents different metabolites, while 

the z-axis corresponds to the significance of the association; (e) a screenshot showing the table 

view in the ‘Browse’ module. 

 

2.3.1. Search and Browse. The ‘Search’ module supports searching the association results 

of the curated 65 mGWAS publications. Meanwhile, the ‘Browse’ module allows users to visually 

explore the data in a 3D Manhattan plot or network view. The 3D Manhattan plot strengthens the 

exploration of metabolome-wide pleiotropy at the genome-wide level [39]. Users can mouse-over 

a dot to see the SNP annotation, including the rsID, CHR:BP, nearest gene, most severe 

consequence, p-value, and metabolite name (Figure 2d). 

2.3.2. From SNPs to Networks. Network-based approaches have become increasingly 

applied to identify shared genetic underpinnings (i.e., pleiotropy) in GWAS, where nodes are SNPs 

or phenotypes (e.g., metabolites or diseases) and edges represent significant associations [11]. The 

‘SNPs’ module supports SNP–metabolite (or metabolite ratios), and SNP–disease network 

analysis. Optionally, LD proxy search (i.e., population type and r2) could be performed to 

maximize the results. Users also have the flexibility to include PPI networks, as well as to filter on 

biofluid or population types (Figure 2a). 

2.3.3. From Metabolites to Networks. For many GIMs, metabolites can be functionally 

connected to enzymes, or transporters [3]. The ‘Metabolites’ module allows users to perform either 

statistical-based or knowledge-based metabolite-gene associations as well as metabolite-disease 

associations. Users can upload a list of metabolites from the upload page (Figure 2b). mGWAS-

Explorer currently accepts either HMDB ID, KEGG ID or compound name. The uploaded list is 

then mapped to genes, SNPs, or diseases for network creation and subsequent visualization. 
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2.3.4. From Genes to Networks. The nearest gene mapping approach is suggested to be an 

effective indicator of true positive genes for mQTLs [44]. In mGWAS-Explorer, users can upload 

their gene lists in the ‘Genes’ module, the reversed nearest-gene mapping will be automatically 

performed and return SNPs that are significant in the mGWAS (Figure 2c). The network output 

will include genes, SNPs, and metabolites. Alternatively, users can perform gene–metabolite 

mapping via biochemical knowledge or to the associated diseases. 

 

Case studies 

2.4.1. COVID-19 Case Study. The host genetic variation is known to influence the severity 

of SARS-CoV-2 infection [45,46,47,48,49] and the blood metabolomics can reveal biomarkers for 

disease diagnosis and prognosis [50,51]. However, understanding mechanisms that link genetic 

variation to metabolism and clinical endpoints remains an important challenge. Therefore, we 

applied mGWAS-Explorer to a list of SNPs identified from a GWAS of severe COVID-19 [47] to 

provide insights into the shared genetic architecture of diseases and intermediate metabolic 

phenotypes. We used a suggestive significant association p-value threshold (1 × 10−5) for 

mGWAS-Explorer, resulting in 19 SNPs after LD clumping. mGWAS-Explorer revealed that the 

SNPs at the ABO (alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-

galactosyltransferase) locus were in high LD (r2 > 0.8) with numerous other SNPs in this region 

associated with multiple metabolites and other human diseases, such as leucylalanine, citric acid 

[51], malaria [52], ischemic stroke [53], and venous thrombosis [54]. The blood type locus ABO 

has been linked to the risk of COVID-19 in several studies [47,55]. Multiple hypotheses have been 

proposed to explain the mechanism, such as anti-A and/or anti-B antibodies against corresponding 

antigens, or the glycosyltransferase activity [56]. mGWAS-Explorer provided insights into these 
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possible mechanisms, which identified associations of ABO variants with levels and the ratios of 

fibrinogen A-α peptides (e.g., ADpSGEGDFXAEGGGVR) and venous thromboembolism (Figure 

3a). Fibrinogen plays a role in blood clotting [57]. Therefore, the association between ABO variants 

with fibrinogen may suggest that ABO influences COVID-19 via regulating thrombosis, which 

provided a functional explanation for the observed association of ABO with COVID-19 risk. 

Indeed, studies have reported that COVID-19 is associated with an increased risk of 

thromboembolism [58]. Therefore, we sought to investigate whether the association between 

fibrinogen A-α peptide-associated loci could provide additional insights into the underlying 

pathophysiology of COVID-19. Interestingly, mGWAS-Explorer revealed variants in ENPEP 

(glutamyl aminopeptidase) and FUT2 (fucosyltransferase 2) genes are associated with levels 

and/or ratios of fibrinogen A-α peptides. Additionally, FUT2 gene was also identified in the PPI 

network with the ABO gene (Figure 3a). In fact, ENPEP was discovered to be a candidate co-

receptor for the coronavirus SARS-CoV-2 [59] and individuals with an inactivating FUT2 

mutations were more likely to develop a less severe form of the COVID-19 disease [60]. In 

summary, mGWAS-Explorer supports the evidence that ABO, ENPEP, and FUT2 may be 

candidate genes and discovered fibrinogen A-α peptides as potential biomarkers for COVID-19 

disease.  
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Figure 3.  Screenshots of network results for the (a) COVID-19 case study and (b) type 2 diabetes  

case study. Each node represents either a SNP (orange square), a metabolite (green circle), a gene 

(blue diamond), a disease (dark blue circle), or a seed node (yellow square outline). Each edge is  

either an association between one SNP and one metabolite, an association between one SNP and 

one disease, a positional mapping of SNP to gene, or a protein–protein interaction. The size of a 

node is proportional to the number of other nodes connected to it. 

 

2.4.2. Type 2 Diabetes Case Study. Around 250 genomic regions have been associated with 

type 2 diabetes (T2D) susceptibility in genome-wide association studies, some studies have 

highlighted the link to metabolomic profiles [7,61,62]. We applied mGWAS-Explorer to a list of 

SNPs from a published GWAS of T2D [63] in an attempt to examine shared genetic signals with 

circulating metabolites. Notably, mGWAS-Explorer confirmed the associations between citrulline 

metabolites, T2D, body mass index (Figure 3b), and identified the missense rs17681684 variant 

for citrulline in the GLP2R (glucagon like peptide 2 receptor) gene as reported by Lotta et al. [7]. 

Additionally, it identified shared genetic signals between T2D, coronary artery disease, and 

cholesterol levels at the ABO locus. Indeed, previous epidemiological studies have reported that 
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the associations of ABO group with coronary artery diseases are mediated by cholesterol [64], 

although the evidence regarding associations between ABO blood group with type 2 diabetes were 

not consistent [65,66,67,68]. Thus, further studies are required to identify the associations between 

ABO variants, T2D, and cholesterol levels. Furthermore, mGWAS-Explorer also revealed 

metabolites levels and their ratios identified in the previous COVID-19 case study shared 

associations with T2D loci. In fact, multiple studies have reported the comorbidity of T2D and 

COVID-19 [69,70,71]. In brief, analyzing the T2D cross-phenotype associations with metabolites 

and other diseases highlighted comorbid conditions with shared genetic signals, illustrating the 

usefulness of mGWAS-Explorer. 

 

Comparison with other tools 

Table 2 provides detailed comparisons of mGWAS-Explorer with several bioinformatics 

resources that can be used for mGWAS, including Metabolomics GWAS Server [33,34], PheWeb 

[35], NETMAGE [37], and GePhEx [72]. The metabolomics GWAS server supports searching the 

results of two genome-wide association studies on the blood and urine metabolome in 7824 and 

3861 individuals with European ancestry [33,34]. PheWeb is an excellent tool for developers to 

build a website to explore and visualize large-scale genetic associations [35]. NETMAGE focuses 

on visualizing disease–disease networks from summary statistics [37], and GePhEx allows 

visualization and interpretation of relationships across multiple traits with genetic associations 

evidence [72].  
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Table 2. Comparison of the main features of mGWAS-Explorer with other web-based tools. 

Symbols used for feature evaluations with ‘√’ for present, ‘−’ for absent, and ‘+’ for a more 

quantitative assessment (more ‘+’ symbols indicate better support). 

Tool Name 
mGWAS-

Explorer 

Metabolomics GWAS 

Server 
PheWeb 

NETMA

GE 
GePhEx 

Data input and 

processing 
     

      

SNP √ √ √ √ √ 

LD proxy search √ √ − − √ 

Gene √ √ √ − √ 

Metabolite √ √ √ − √ 

Enrichment analysis      

SNP-set √ − − − − 

Gene-set √ − − − √ 

Metabolite-set √ − − − − 

Cross-phenotype 

exploration  
√ √ √ √ √ 

Visual analytics      

Network visualization +++ − − + − 

Network 

customization 
+++ − − + − 

Integration with PPI 

network 
√ − − − − 

Subnetwork extraction √ − − √ − 

Topology-based 

filtering 
√ − − − − 

3D Manhattan plot √ − − − − 

 

Discussion 

Establishing meaningful connections between diseases and deciphering molecular 

mechanisms that underpin shared genetic architectures are among the key objectives of GWAS. 

Our work shows that integrating mGWAS summary statistics, LD proxy search, and visual 

analytics can rapidly reveal multiple associations across metabolites and diseases, which can be 

utilized to better understand the ongoing global health crisis, such as the COVID-19 pandemic and 

type 2 diabetes. 

When looking at the cross-phenotype associations between metabolites and diseases, it is 

important to investigate the shared SNPs identified in the mGWAS-Explorer output to examine 
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where the SNPs are located on the genome and the extent of overlapping of the SNPs. In fact, we 

consider mGWAS-Explorer as the initial stage in a pipeline for an in-depth mechanistic 

understanding of mGWAS before moving on to similarity analysis [26], colocalization analysis 

[14] or Mendelian randomization studies [73] to further investigate shared genetic signals in the 

same locus and to identify causal links. Ultimately, experimental studies in model organisms and 

human clinical studies are required to test the generated hypothesis to fully understand the 

mechanisms. 

While our first case study highlighted shared genetic variants regulating metabolite 

abundance (e.g., citric acid and fibrinogen A-α peptides) and COVID-19 at ABO, much work needs 

to be done to fully understand the underlying mechanisms. Citric acid acts as a bridge between 

carbohydrate and fatty acid metabolism, promoting the growth and development of immune cells 

[74]. Additionally, citric acid is an important component in the TCA cycle. TCA cycle metabolites 

play key roles in signaling regulations of the innate and adaptive immune systems [75], which may 

be involved in COVID-19 pathogenesis. mGWAS-Explorer was also able to identify ENPEP and 

FUT2 as potential candidate genes for COVID-19, although the association signal of these two 

genes were below the genome-wide significance threshold in the original study [47]. Many follow-

up studies have reported ABO and ENPEP as COVID-19 risk genes; however, the evidence for the 

FUT2 gene is conflicting [60,76,77]. Indeed, a recent whole-genome sequencing study identified 

variants in FUT2 associated with critical COVID-19 diseases [45]. FUT2 is responsible for the 

expression of histo-blood group antigens on the mucosal surface of gastrointestinal, genitourinary, 

and respiratory tracts. Inactivating FUT2 mutations lead to a non-secretor status, which confer 

resistance to norovirus and rotavirus gastrointestinal infections [78,79]. Furthermore, the minor 

allele frequency of the stop–gain variant rs601338 in the FUT2 gene is drastically different 
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between the European population (0.441) and the East Asian population (0.004) [80,81], which 

might explain the differences in host response to SARS-CoV-2 among different populations. 

However, the mechanism by which secretor status influencing COVID-19 pathogenesis is not fully 

understood. Therefore, it may be valuable to perform colocalization analysis and Mendelian 

randomization studies to identify the causal link between FUT2 variants, fibrinogen A-α peptides, 

and COVID-19. 

Increases in throughput and decreases in cost will enable a growing number of mGWAS 

to be conducted in the near future. The web server will be regularly updated to incorporate the 

most up-to-date mGWAS datasets, disease associations, and additional SNP annotation data (e.g., 

eQTLs or chromatin interactions) to serve as a valuable bioinformatics platform for mGWAS 

researchers. With this context, we also intend to add support for peak annotations of untargeted 

metabolomics data obtained from high-resolution mass spectrometry.  

 

Materials and methods 

Knowledgebase curation 

(a) mGWAS papers were searched from PubMed, Web of Science, bioRxiv, and medRxiv, 

resulting in 65 publications as of December 2021. The summary statistics were either downloaded 

from public databases or supplementary data of the original publications. Statistical associations 

between metabolites and SNPs were summarized and pre-filtered using study-specific significance 

thresholds. In addition to p-values and effect sizes of SNP–metabolite associations, we have 

included metadata from each publication, such as the type of biofluid, sample size, population type, 

genotyping platform, metabolomics platform, etc. (b) For SNP annotation, three options are 

provided, including HaploReg [82], PhenoScanner [28], and VEP [20] by using the Application 
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Programming Interface (API) service of each database. For the first two options, users can also 

perform an LD proxy search based on different populations and r2 values. With VEP, users can 

select either a specific distance or the nearest number of genes for SNP annotation. (c) SNP–

disease and gene–disease associations were downloaded from the DisGeNET database [32]. 

HMDB database was used to obtain metabolite–disease associations [83]. (d) KEGG, Recon3D, 

and Transporter Classification Database (TCDB) were used to curate knowledge-based gene–

metabolite association information [84,85,86]. (e) The protein–protein interaction information is 

based on several well-established PPI databases [87,88,89]. (f) The libraries for enrichment 

analysis were curated from seven well-known databases, including GO, Reactome, KEGG, 

Orphanet, DrugMatrix, DisGeNET and DSigDB. The detailed description of these databases and 

their links can be found in the Supplementary Material.  

 

Input processing and connection identification  

SNPs are identified by rsIDs, genes are identified by Entrez IDs, and metabolites are 

identified by HMDB IDs, platform-specific IDs, or feature tags (m/z_retention_time). Additional 

identifiers have also been included, such as genomic coordinates for SNPs (after lifting all SNPs 

to GRCh37 assembly using LiftOver [90]), Ensemble ID, and gene symbol for genes, as well as 

KEGG ID and common name for metabolites. 

There are two general types of relationships, including inter-omics and phenotype-specific 

links. Inter-omics connections are based on statistical associations (based on mGWAS), or 

knowledge-based associations (based on positional mapping for SNP–gene annotation or encoding 

enzymes/transporters for metabolite–gene connections). Phenotype-specific links allow users to 

identify variants that are associated with disease phenotypes. This information is obtained from 
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DisGeNET [32] based on case-control genome-wide association studies or via text mining from 

the literature.  

 

Implementation 

The backend analysis was implemented using the R programming language (version 4.1.3). 

The whole framework was built based on the PrimeFaces component library (version 11.0.0). The 

integrated data are stored in a relational database using SQLite. The interactive visualization was 

developed based on the sigma.js and echarts.js JavaScript libraries for network view and 3D 

Manhattan plot, respectively.  

 

Data collection for case studies  

The datasets of COVID-19 and type 2 diabetes case studies were downloaded from their 

respective original publications [47,63]. LD clumping were performed to identify the independent 

signals by using the ieugwasr package with default parameters [29] prior to the analysis. 

Specifically, the SNPs with the lowest p-value are retained, where SNPs in LD within a certain 

window are removed in LD clumping [91]. In both case studies, European population and r2 = 0.8 

were set as input parameters for LD proxy search. 

 

Network visual analytics  

4.5.1. Network Creation and Customization. The default networks are built by querying for 

the direct mapping from the knowledgebase. Optionally, users can choose to expand the network 

by including PPIs in the SNP module. However, the result may suffer from the ‘hairball’ effect, 

which severely limits the usefulness and interpretability. Therefore, mGWAS-Explorer offers 
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support to refine large networks based on node degree or betweenness values, batch filtering, or 

the shortest paths, as well as by computing minimum subnetworks based on the prize-collecting 

Steiner Forest (PCSF) algorithm [92]. The detailed instructions on how to navigate the network 

visualization system can be found in our Supplementary Material. 

4.5.2. Functional Enrichment Analysis. The combination of network visualization and 

functional enrichment analysis is a valuable tool for gaining key biological insights. For SNP input, 

two types of enrichment approaches have been implemented—(1) directly testing in SNP-set 

library, or (2) testing on mapped genes for enrichment using hypergeometric tests. When the input 

is a gene or metabolite, the associated gene-set or metabolite-set enrichment analysis can be 

performed. The result tables will be displayed under the Function Explorer panel. Notably, clicking 

a row of the table will highlight the nodes contained in the corresponding function/pathway within 

the network. In addition, mGWAS-Explorer also permits enrichment analysis on the selected 

nodes of interests, for instance, from the batch selection panel. 

4.5.3. Other Advanced Features. The Network Viewer page contains multiple advanced 

features for network visual exploration, including Network Layout, Global Node Styles, Module 

Explorer, Batch Selection, and Path Finder. Ten different network layout algorithms are available, 

including Force-Atlas, Fruchterman–Reingold, Circular, Graphopt, Large Graph, Random, 

Circular Bipartite/Tripartite, Linear Bipartite/Tripartite, Concentric, and Backbone layout. Three 

module detection algorithms are offered in the Module Explorer, including the WalkTrap, InfoMap, 

and the Label Propagation algorithms based on the igraph R package [93]. These options can be 

combined to obtain a better visualization experience. Users can find details of these algorithms on 

our FAQs page.  
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Conclusions 

We have developed mGWAS-Explorer to allow users to easily explore the published 

mGWAS datasets, and to provide contextualized analysis for a given list of SNPs, genes, or 

metabolites. As demonstrated by our case studies of COVID-19 and type 2 diabetes, mGWAS-

Explorer can facilitate hypothesis generation and reveal functional insights into the genetic basis 

of human metabolism to permit translational discoveries.  

Supplementary materials  

Program description and methods 

1. KNOWLEDGEBASE CREATION 

1.1 Knowledgebase for network creation 

1.1.1 SNP-metabolite association (mGWAS) 

As of December 2021, 65 mGWAS papers had been found after searching PubMed, Web of 

Science, bioRxiv, and medRxiv, after a thorough literature research. The summary statistics were 

either collected from publicly available databases or supplementary data from the original 

publications. Study-specific significant thresholds were used to pre-filter statistical associations 

between metabolites and SNPs. Details of the curated mGWAS dataset can be found in our 

Resources page: https://www.mgwas.ca/mGWAS/faces/Secure/Resources.xhtml 

1.1.2 SNP to gene mapping 

Three options are provided for SNP to gene mapping, including HaploReg [1], PhenoScanner [2], 

and VEP [3] by using the Application Programming Interface (API) service of each database. 

The Ensembl Variant Effect Predictor (VEP) is a comprehensive suite of tools for analyzing, 

annotating, and prioritizing genomic variants in both coding and non-coding regions. 

https://rest.ensembl.org/documentation/info/vep_id_get 
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PhenoScanner is a curated database of results from large-scale genetic association studies. 

https://github.com/phenoscanner/phenoscanner 

HaploReg is a database for mining putative causal variants, cell types, regulators, and target genes 

for human diseases and complex traits. 

https://github.com/izhbannikov/haploR 

1.1.3 LD proxy search 

mGWAS-Explorer allow users to search for metabolites/diseases associations with proxies for 

SNPs of interest using the HaploReg API or PhenoScanner API. The LD information is based on 

the 1000 Genomes Project. 

1.1.4 SNP-disease association 

DisGeNET was used to obtain SNP-disease associations, which contains both curated and 

literature data [4]. The curated data include SNP-disease associations from UniProt [5], ClinVar 

[6], GWAS Catalog [7], and GWASdb [8]. 

https://www.disgenet.org/downloads 

 1.1.5 Gene-metabolite association 

Knowledge-based gene-metabolite association information was curated using KEGG, Recon3D, 

and the Transporter Classification Database (TCDB) [9-11]. 

KEGG: metabolite-gene associations based on KEGG reaction. https://www.genome.jp/kegg/ 

Recon3D: high-quality genome-scale metabolic reconstruction. https://www.vmh.life/ 

TCDB: transporter classification database for transporter protein information. 

https://www.tcdb.org/ 

1.1.6 Protein-protein interaction 
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Information on protein-protein interaction was taken from four well-established PPI databases, 

including InnateDB [12], STRING [13], HuRI [14], and Rolland et al [15]. 

InnateDB contains literature-curated data on protein-protein interactions. 

https://www.innatedb.com/index.jsp 

STRING is a comprehensive database for protein-protein interaction networks. We have filtered 

on medium (400) to high (900) confidence score. 

https://string-db.org/ 

HuRI is a reference interactome map of human binary protein interactions. 

http://www.interactome-atlas.org/ 

Rolland et al. contains experimentally validated binary human PPI data. 

http://interactome.dfci.harvard.edu/H_sapiens/ 

1.1.7 Gene-disease association 

DisGeNET was also used to obtain gene-disease associations. 

https://www.disgenet.org/downloads 

1.1.8 Metabolite-disease association 

HMDB was used to retrieve metabolite-disease associations. https://hmdb.ca/downloads 

1.2 Knowledgebase for network interpretation 

For network analysis, it is crucial to be able to interpret the results in addition to visualization. In 

this regard, enrichment analysis plays a key role. Thus, we have implemented three types of 

enrichment analysis, including SNP-set, gene-set and metabolite-set enrichment analysis. 

 1.2.1 SNP-sets 

DisGeNET was used for SNP-sets, where diseases having three or more SNPs are taken into 

account when creating a SNP-set. 
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https://www.disgenet.org/downloads 

1.2.2 Gene-sets 

Gene Ontology (GO) was used to obtain gene-sets for biological processes, molecular functions, 

and cellular components. 

http://geneontology.org/ 

Reactome and KEGG was used to get gene-sets for pathways. https://reactome.org/download-data 

https://www.kegg.jp/ 

Orphanet was used to obtain gene-sets for rare diseases. http://www.orphadata.org/cgi-

bin/index.php 

DrugMatrix and DSigDB were used to obtain gene-sets that related drugs and their target genes. 

https://ntp.niehs.nih.gov/data/drugmatrix/ 

http://dsigdb.tanlab.org/DSigDBv1.0/ 

1.2.3 Metabolite-sets 

KEGG was used to retrieve metabolite-sets for KEGG pathways. https://www.kegg.jp/ 

2. DATA SEARCH 

The ‘Search’ module allows users to search the results for significant SNP-metabolite associations 

from the curated mGWAS datasets. Users can enter the rsID or Common Name in the search bar, 

where autocomplete is supported. The search results will return in the table below. 

3. DATA BROWSE 

The ‘Browse’ module allows users to visually examine the summary statistics from individual 

mGWAS datasets in a 3D Manhattan plot. Users can zoom in/out or rotate the 3D plot and mouse 

over on the dots to see detailed information. Meanwhile, table view and network view are also 

provided. 
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 4. DATA UPLOAD AND PROCESSING 

4.1 Data inputs 

The flexible interface allows users to start from SNPs, genes, or metabolites. The input can be 

uploaded by entering a list of IDs (SNPs, genes, metabolites). Users can refer to the relevant FAQs 

and tutorials or see our test examples for more details. 

 

mGWAS-Explorer currently supports rsID for SNPs, Ensembl gene ID, Entrez ID and official 

gene symbol for genes, HMDB ID, KEGG ID and compound name for metabolites. Additionally, 

users can filter on “Biofluid” or “Population”, the results will return SNP-metabolite associations 

on the metabolites measured in the chosen biofluid and population. 

5. NETWORK CREATION AND REFINEMENT 

The input data from users will be searched against our knowledgebase. The resulting pair-wise 

tables are used to generate the default networks. Since not all nodes will be connected, the results 

may return many networks, usually one large network with a few smaller ones. Table summary 

and network summary are displayed (Figure S1), indicating the statistics for nodes and edges to 

allow users to have an overview of the networks. We recommend that users keep their networks 

below 2000 nodes for practical reasons, since large networks will induce a ‘hairball’ effect, which 

make it difficult to comprehend the results. mGWAS-Explorer has built-in network tools that allow 

users to refine networks according to topological measurements (degree, betweenness, and shortest 

path), batch filtering, and computing minimum subnetworks based on the prize-collecting Steiner 

Forest (PCSF) algorithm. 
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Figure S1. A screenshot of the Network Builder page, including table statistics, network statistics 

and network tools. 

 

6. NETWORK VISUALIZATION AND FUNCTIONAL ANALYSIS 

The HTML5 canvas and JavaScript were used to develop the network visualization system. Figure 

S2 shows a screenshot of the network visualization interface. The network visualization system 

comprises four main components: the top menu bar, the left node table, the center network viewing 

area, and the right panel.  
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Figure S2. A screenshot of the mGWAS-Explorer network visual analytic system. The system 

comprises four main components: the top menu bar, the left node table, the center network viewing 

area, and the right panel. Users can easily highlight and arrange nodes based on their connectivity 

patterns or enriched functions. 

 

6.1 General network customization 

The top menu bar offers common functions to customize the network, such as changing the 

background color, adjusting the characteristics of the nodes (label, color, size, shape) and edges 

(opacity, thickness, color), or downloading the results. Users can select the preferred network 

layout by using the ‘Layout’ option. The ‘Scope’ option allows users to specify the mouse 

operation range during drag-and-drop, either ‘Single node’, ‘Node-neighbors’, ‘All highlights’, 

‘Current highlights’, or ‘Node type’. 

6.2 Node searching and edge viewing 
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The nodes of the network are displayed in the Node Explorer on the left side, along with their 

degree and betweenness measurements. A checkmark will show in the ‘Input’ column if it is a 

seed node provided by the user. Users can click on a row or type the ID in the search bar to view 

the node of interest. The network will zoom to the selected node automatically. Alternatively, 

  

multiple nodes can be selected by clicking the checkboxes. Users can decide to highlight ‘All’ or 

the ‘Shared’ nodes accordingly. Meanwhile, double clicking an edge will show the evidence that 

supports the connection between the nodes. 

6.3 Functional enrichment analysis 

The combination of network visualization and functional enrichment analysis can provide valuable 

biological insights. mGWAS-Explorer supports over representation analysis (ORA) [16]. ORA is 

a widely used method to assess whether known biological functions or pathways are over- 

represented (i.e., enriched) in a list of interest (e.g., SNP, gene, or metabolite). Hypergeometric 

tests are used to calculate the p-values. 

6.4 Other Advanced Features 

The bottom right panel contains three tabs – Module Explorer, Batch Selection, and Path Finder. 

The Module Explorer tab provides three different approaches for module detection – the WalkTrap, 

InfoMap, and Label propagation algorithms. Users can perform module detection to identify 

tightly clustered subnetworks with more internal connections than would be expected at random 

in the whole network. The Batch Selection tab allows users to highlight or exclude a list of nodes. 

The Path Finder tab allows users to find the shortest path between any two nodes. 

7. IMPLEMENTATION 



 

 

65 
 

The backend of mGWAS-Explorer was implemented using the R programming language (version 

4.1.3; https://www.r-project.org/). The whole framework was built based on the JavaServer Faces 

technology using the PrimeFaces component library (version 11.0; https://www.primefaces.org/). 

The integrated data is stored in a relational database using SQLite 

(https://www.sqlite.org/index.html). Network visualization and analysis are based on jquery 

(https://jquery.com/) for general-purpose scripting, sigma.js (https://www.sigmajs.org/) for 

network display and interactions, and igraph (https://igraph.org/) for network analysis and layout. 

3D Manhattan plot is built on ECharts-GL, an extension pack of Apache ECharts, which provides 

3D plots and WebGL acceleration (https://echarts.apache.org/en/index.html). 
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Bridging statement to Chapter 3 

In transitioning from Chapter 2 to Chapter 3, I build upon our understanding of the associations 

between genetic variants and metabolites by delving deeper into gene regulation. As we move 

from the metabolic level to the regulatory level, Chapter 3 introduces miRNet 2.0, a miRNA-

centric network visual analytics platform. This platform enables us to explore complex regulatory 

interaction networks, integrating both experimentally validated and computationally predicted 

evidence. While Chapter 2 provided insights into the direct associations between genetic variants 

and metabolites, Chapter 3 will enhance our understanding of the broader regulatory landscape, 

including miRNA-target interactions and miRNA-disease associations. In doing so, miRNet 2.0 

offers a complementary perspective to our investigations in Chapter 2, enriching our overall 

understanding of the genetics of metabolism and regulatory interactions. 
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Abstract 

miRNet is an easy-to-use, web-based platform designed to help elucidate microRNA 

(miRNA) functions by integrating users' data with existing knowledge via network-based visual 

analytics. Since its first release in 2016, miRNet has been accessed by >20 000 researchers 

worldwide, with ∼100 users on a daily basis. While version 1.0 was focused primarily on miRNA-

target gene interactions, it has become clear that in order to obtain a global view of miRNA 

functions, it is necessary to bring other important players into the context during analysis. Driven 

by this concept, in miRNet version 2.0, we have (i) added support for transcription factors (TFs) 

and single nucleotide polymorphisms (SNPs) that affect miRNAs, miRNA-binding sites or target 

genes, whilst also greatly increased (>5-fold) the underlying knowledgebases of miRNAs, 

ncRNAs and disease associations; (ii) implemented new functions to allow creation and visual 

exploration of multipartite networks, with enhanced support for in situ functional analysis and (iii) 

revamped the web interface, optimized the workflow, and introduced microservices and web 

application programming interface (API) to sustain high-performance, real-time data analysis. The 

underlying R package is also released in tandem with version 2.0 to allow more flexible data 

analysis for R programmers. The miRNet 2.0 website is freely available at https://www.mirnet.ca. 
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Introduction 

Gene expression in eukaryotes is a complex process controlled by many factors functioning 

at epigenetic, transcriptional or post-transcriptional levels (1,2). Over the past two decades, the 

broad applications of comprehensive molecular profiling technologies have enabled us to study 

gene expression in various biological processes and disease conditions. However, our 

understanding of the underlying regulatory mechanisms remains incomplete. It has become clear 

that in order to address this issue, it is critical to adopt a systems biology approach to integrate all 

important players (3–5). Network-based approaches have received wide attention as they can 

abstract and integrate different types of information in a format that is often intuitive and 

interpretable (6–8). Based on this concept, we developed miRNet version 1.0 to help illustrate the 

‘multiple-to-multiple’ relationships (i.e. one miRNA can regulate multiple genes and one gene can 

be regulated by multiple miRNAs) through network-based visualization of miRNA-target gene 

interactions coupled with improved functional analysis (9,10). However, the interplays between 

miRNAs and target genes represent only the starting points toward understanding the roles that 

miRNAs play at cellular level. In particular, miRNAs can regulate gene regulatory networks 

through feedback or feedforward loops (11), for instance, by adjusting expression of transcription 

factors (TFs) which in turn exert effects on their corresponding target genes. Such higher-order 

interactions are not captured in miRNet version 1.0. 

The past few years have witnessed several trends in miRNA research. A growing number 

of studies have employed systems biology approaches either experimentally by employing multi-

omics measurements or computationally by including other key factors such as miRNA–lncRNA–

gene (12), miRNA–TF–gene (4) or miRNA–gene–disease (13) to better understand miRNA 

regulatory mechanisms. Another growing area of research is precision medicine, in which the 
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characteristic gene expression patterns of a particular patient can be interpreted by his or her own 

genetic mutations to inform treatment or prevention plan (14). For instance, SNPs in miRNA and 

miRNA-binding sites have been found to be associated with several diseases (15). The complex 

interplays amongst different functional elements can be captured using multipartite networks to 

reveal a more holistic picture. However, integrating multiple data types and interpreting these 

results at a systems level is challenging (16). Building such networks requires manual curation of 

data from multiple databases and powerful network visualization support to aid researchers in 

navigation and understanding. 

Since the release of miRNet version 1.0, many new features and components have been 

gradually introduced based on users’ feedback and developments in the field. For instance, tissue 

and cellular contexts are important for interpretation of miRNA-gene interactions. To support this 

need, we have implemented tissue-specific filters based on their expression profiles (17). In 

addition, current bioinformatics tools focus primarily on human and other model organisms. To 

facilitate miRNA research in species important for agriculture and veterinary medicine, we have 

added support for cows, pigs and chickens following well-established protocols (18). For 

researchers interested in exploring potential regulatory roles of miRNAs derived from pathogens 

such as parasitic helminths (19), viruses (20) or other sources, we have added support for reported 

or putative xeno-miRNAs (21). A continuous effort has been to keep current with new releases of 

its underlying databases as well as to maintain backward compatibility. This effort has triggered 

several rounds of code refactoring to achieve a more robust and modular design, with 

computational intensive tasks distributed among different servers through microservices (22). The 

latter technique also helps address computational bottlenecks with bigger databases and growing 

user traffic. The user-friendly web interface is mainly used by clinicians and bench biologists with 
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little to no programming skills. While for bioinformaticians or tool developers, it may be more 

meaningful to directly access miRNet's functionality through its underlying R code or a well-

defined application programming interface (API). 

To address these emerging bioinformatics needs and challenges, we developed miRNet 

version 2.0 to allow users to easily create complex miRNA-centric networks for systems-level 

interpretation of miRNA functions and gene regulations. The 2.0 release captures all the 

aforementioned updates since 2016 and represents a solid step toward network-based data 

integration for miRNA systems biology. A more detailed description of each of these updates and 

changes in miRNet 2.0 is given below. 

 

Program description and methods 

Overview of miRNet 2.0 framework 

The main workflow of miRNet 2.0 is summarized in Figure 1. There are three main steps—

data input, network creation and network visual analytics. To maintain a flexible and modular 

design, we have organized the main functions into 12 modules based on input types. The ‘miRNAs’ 

module allows users to connect miRNAs with target genes, TFs, ncRNAs etc.; the ‘Genes’ and 

‘TFs’ modules link the corresponding inputs to their partners within the context of known 

interactions among miRNAs, genes and TFs; the ‘SNPs’ module maps SNPs to the above key 

players themselves or their binding sites. The remaining modules follow a similar procedure by 

mapping users’ inputs to their corresponding miRNA associated interaction partners. To start, 

users must click a circular button from the miRNet homepage to enter the corresponding data 

upload page. Two general data formats are accepted: a list of miRNAs, SNPs, genes, small 

molecules etc., or an expression table generated from qPCR, microarray or RNAseq experiments. 
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In the latter case, well-established differential expression analysis will be applied to identify 

significant miRNAs or genes as new input lists. In the second step, the input lists will be mapped 

to the underlying knowledgebases to create one or more interaction tables and networks. Many 

functions are available to allow users to further customize or refine the networks. In the third step, 

the results are presented as interactive networks for visual exploration. Users can easily search, 

zoom, highlight or perform functional enrichment analysis on selected regions of interest. In the 

following sections, we will focus primarily on the new and improved features introduced in version 

2.0. Other features can be found in our prior publications (9,10,21).  
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Figure 1. Overview of miRNet 2.0 workflow. Users can upload different data types or select 

queries from built-in databases to start analysis. The input will be mapped to the underlying 

knowledgebases to create interaction tables and networks. The visualization page allows users to 

intuitively explore the networks using different layout algorithms as well as to perform topology 

or functional analysis. 

 

Knowledgebase update and creation 
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Knowledgebase for network creation. We have put considerable efforts into keeping 

miRNet's underlying knowledgebases up to date. miRNet 2.0 can automatically recognize different 

versions of miRBase IDs, as well as link pre-miRNAs to their mature forms based on the 

miRBaseConverter R package (23). We have updated the miRNA interaction knowledgebase 

based on the latest releases from major miRNA annotation databases including miRBase (24), 

miRTarBase (25), TarBase (26), HMDD (27) etc. The human tissue-specific miRNA annotations 

are based on TSmiR (28) and IMOTA (17) databases, and the human exosomal miRNA 

annotations are from ExoCarta (29). The interactions among miRNAs, TFs and genes are obtained 

from TransmiR 2.0 (30), ENCODE (31), JASPAR (32) and ChEA (33). For miR-SNPs, we have 

used ADmiRE (34), PolymiRTS (35) and SNP2TFBS (36) to obtain SNP information in miRNA 

genes, miRNA-binding sites and TF-binding sites. We have also systematically collected the 

reported xeno-miRNAs together with their putative targeted genes into xeno-miRNet (21), which 

is now integrated in miRNet 2.0. Finally, we have expanded the miRNA-lncRNA interactions to 

include all other major ncRNAs including circRNA, ceRNA, pseudogene and sncRNA based on 

starBase (37). These data can be downloaded from the miRNet ‘Resources’ page as plain text files. 

Knowledgebase for network interpretation. For network analysis, it is important to be able 

to interpret the interactions in addition to their visualization. Enrichment analysis plays a 

significant role in this respect. Applying conventional enrichment analyses such as hypergeometric 

tests on target genes are known to be biased (38,39). In miRNet 1.0, we implemented an algorithm 

based on empirical sampling for enrichment analysis using GO, KEGG or Reactome pathways 

(38). Another effective approach is to perform enrichment analysis directly at miRNA levels (39). 

To support this type of analysis, we have added six miRNA-set libraries including miRNA–

function, miRNA–disease, miRNA–TF, miRNA–cluster, miRNA–family and miRNA–tissue 
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based on TAM 2.0 (40). In summary, miRNet 2.0 provides four query types (all genes, highlighted 

genes, all miRNAs, highlighted miRNAs), two enrichment algorithms (hypergeometric tests and 

empirical sampling), nine annotation libraries (three gene-set libraries and six miRNA-set 

libraries), representing the most comprehensive support to understand collective functions of 

miRNAs. Their potential applications are showcased in recent studies to compare miRNA changes 

specific to different tissues in pancreatic ductal adenocarcinoma (41) and to identify enriched 

miRNA families in a study comparing genetic variants between Alzheimer's disease and cancers 

(42). 

 

Enabling flexible user input  

Significant efforts have been made to provide an intuitive interface that permits the 

integration of miRNAs into different types of interaction networks. From the homepage, users can 

enter their queries by: (a) uploading a list of miRNAs, ncRNAs, genes, TFs or SNPs; (b) selecting 

a list from our built-in databases such as diseases, small compounds, epigenetic modifiers etc. (c) 

uploading a miRNA or gene expression table generated from RT-qPCR, microarray or RNAseq or 

(d) uploading multiple queries of different input types. Here, we will introduce new features for 

several common scenarios. 

From miRNAs to networks. In miRNet 1.0, miRNA–targets mapping was limited to target 

genes based on experimentally validated interaction information. However, increasing evidence 

has shown that miRNAs participate in complex networks through interactions with other 

functional elements to exert effects on cell biology and human diseases (12). For instance, 

lncRNAs can act as miRNA ‘sponge’ and compete with target mRNAs, thus increasing the 

expression level of mRNAs (43). In version 2.0, users can select one or multiple targets from the 
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‘Targets’ dropdown list and miRNet will automatically map miRNAs to those selected targets. 

Users can further include protein-protein interactions (PPI) in the target networks based on several 

well-established PPI databases (44–46). 

From TFs to networks. miRNAs and TFs can cooperate to tune gene expression, or 

mutually regulate each other in feedback loops (4,47). Consequently, we have added a new module 

to allow users to include TFs into analysis. Users can simply upload their TF list, miRNet will 

automatically map the TFs to all potential targets (miRNAs and/or genes) and return as TF–

miRNA and/or TF–gene interaction tables. The interactions will then be further integrated into 

networks for visual exploration. With the updated miRNA module and the addition of the TF 

module, miRNet 2.0 allows users to easily create miRNA-TF coregulatory networks from either a 

list of miRNAs or a list of TFs of interest. 

From SNPs to networks. Mutations in mature miRNAs or their binding sites could 

significantly change their targeting abilities and dysregulate the expression of many genes 

simultaneously, whereas variations in primary or precursor miRNAs could alter the expression 

levels of mature miRNAs by affecting miRNA processing (48,49). In miRNet 2.0, we have added 

a new module to support the analysis of SNPs within the context of miRNA-target gene 

interactions. Users can upload a list of SNPs from the SNPs upload page. miRNet currently accepts 

either rsIDs or genomic coordinates based on the human reference genome build GRCh37. The 

uploaded lists are then mapped to miRNAs and/or their target genes. Following this step, users can 

visually explore their data in the network visualization page. 

Uploading multiple queries. The Multiple Query Types module complements miRNet's 

single type analysis modules by permitting the identification of novel connections amongst 

multiple types of user input. The module currently supports ten input types shown in a dialog when 
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users click the central circular button at the home page. After selecting the input types of interest, 

users simply copy-and-paste their query lists (miRNAs, genes, TFs, lncRNAs, pseudogenes, 

circRNAs, sncRNAs) or select from picklists (diseases, small compounds and epigenetic 

modifiers). The uploaded lists are then mapped to the internal knowledgebases and proceed with 

the workflow as described in other modules. 

 

Enhancing network visual analytics  

Network creation and customization. The default networks are created by searching for 

direct interaction partners in the interaction knowledgebases. These are generally known as first-

order interaction networks. When there is a large number of queries (seeds), it is reasonable to 

focus only on the interactions among those seeds (i.e. zero-order networks). However, many seeds 

could become orphan nodes when switching directly to zero-order networks. A ‘gentle’ approach 

is to extract, from the first-order network, a minimal subnetwork that maximally connects those 

seeds. In miRNet 2.0, we have added the support for computing minimum subnetworks based on 

the prize-collecting Steiner Forest (PCSF) algorithm (50), as well as several other empirical 

refining methods (available under ‘Network Tools’) based on shortest paths, batch filtering, node 

degree or betweenness values. The results can be downloaded as pair-wise interaction tables or 

graph files.  

Network visualization and layout. miRNet 2.0 provides a wide array of options to help 

improve visual exploration of miRNA-centric interaction networks. During the network creation 

stage, users can refine the network by applying different filters on interaction tables or networks. 

At the network visualization page, users can specify node styles based on their types, reduce node 

overlap, or perform edge bundling etc. The resulting network can be further improved using 
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different layout algorithms. Over ten network layout algorithms have been implemented, including 

Force-Atlas, Fruchterman-Reingold, Circular, Graphopt, Large Graph, Random, Circular 

Bipartite/Tripartite, Linear Bipartite/Tripartite, Concentric and Backbone. The latter four 

algorithms are designed for complex networks consisting of multiple node types (miRNAs, genes, 

TFs etc.). The bipartite/tripartite layout provides a straightforward abstraction of the relationships 

between different types of molecular entities by emphasizing the data type of each node (51). 

When there are multiple node types, we recommend visualizing the network in either circular 

bipartite/tripartite (Figure 2A) or linear bipartite/tripartite layout (Figure 2B) followed by applying 

the ‘reduce node overlap’ algorithm. To enable better understanding of a particular key node, we 

have added the Concentric layout (52). This layout arranges nodes in concentric circles around a 

node of interest (i.e. the focal node) in the middle (Figure 2C). The order of the circles represents 

the degree level of their interactions. By arranging nodes in this fashion, it enables a better 

understanding of how the focal node relates to the rest of the graph. By default, the focal node is 

the node with the highest degree value. Users can manually specify the key node by selecting it in 

the Node Explorer table or by double clicking on it in the network. Another new addition is the 

Backbone layout which is very effective in revealing hidden patterns in medium and large 

networks. The algorithm calculates layout after applying sparsification on the network by only 

including the most embedded edges (53). This process helps uncover hidden modules based on 

edge density by putting more emphasis on the structure of graph layout (Figure 2D). 
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Figure 2. Screenshots of the Network Visualization page showing the main features and several 

network layouts. (A) A typical view of the page. The central panel shows a network in Circular-

tripartite layout, and the surrounding panels provide functions for network analysis and 

customization. For instance, users can perform enrichment analysis or module analysis on this 

network. An extracted network module was displayed at bottom right. (B) Linear-tripartite layout. 

(C) Concentric layout with edge bundling. (D) Backbone layout with several modules highlighted 

in different colors. More details of each layout are described in the main text. 
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Improving transparency/reproducibility and web APIs  

Except for the interactive visualization step, which is executed on users’ browsers, all other 

data analysis steps including mapping, filtering, network creation and customization are performed 

by the corresponding R functions on our cloud server. To enable more transparent data analysis, 

we have released the underlying R package (https://github.com/xia-lab/miRNetR), and added a 

‘Download’ page in the web application to allow users to download the R command history and 

results tables generated during their analysis sessions. The R history contains all function calls 

with user-selected parameters. We hope that the R package together with the R command history 

will allow users to track each step of their analysis in a form (R script) that can be easily shared 

and reproduced, complementing the web-based platform. We have also implemented RESTful 

APIs to allow tool developers to submit their query lists programmatically as external requests. 

While offering open access to miRNet 2.0 resources, APIs give a level of abstraction and hide 

complexity from programmers. The currently available APIs are shown in Table 1. More APIs 

will be added based on users’ feedback.  

 

Table 1. List of APIs and programmatic access endpoints on the miRNet server. The API base for 

miRNet 2.0 is http://api.mirnet.ca, which can be visited to view a detailed documentation 

Endpoint HTTP method Input Description 

base/table/mir POST Organism, miRNA ID 

type, target type, 

miRNA list 

Get experimentally 

validated table results 

of the miRNA-target 

interactions (forward 

mapping) 

base/table/gene POST Organism, gene ID 

type, gene list 
Get experimentally 

validated table results 

of the miRNA-gene 

(mRNA, TF, lncRNA) 

interactions (reverse 

mapping) 
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base/function/mir POST Organism, miRNA ID 

type, target type, 

miRNA list, algorithm, 

database 

Get functional 

enrichment results 

base/function/gene POST Organism, gene ID 

type, gene list, 

algorithm, database 

Get functional 

enrichment results 

base/graph/mir POST Organism, miRNA ID 

type, target type, 

miRNA list 

Get graph of miRNA-

target interactions (json 

format) 

base/graph/gene POST Organism, gene ID 

type, gene list 
Get graph of miRNA-

target interactions (json 

format) 

 

Use cases 

To further demonstrate the utility of these new features in miRNet 2.0, we used data from 

a multiple sclerosis (MS) study aiming to identify the role of miRNA and TF co-regulatory 

networks in the pathogenesis of MS (54). In this study, the miRNA target analysis and TF target 

analysis were performed by searching several miRNA–gene, TF–gene and TF–miRNA databases. 

The network was manually built by using Cytoscape (55). We reconstructed and visualized the 

network in miRNet 2.0 by using the miRNA module. The resulting network is comprised of 2414 

nodes (TF: 5; Gene: 2403; miRNA: 6) and 2798 edges. For better visual exploration, a degree 

cutoff 1.0 was applied. As shown in Figure 2A, the TF-miRNA co-regulatory networks is 

displayed at the center of the Network Viewer page in Circular Tripartite layout. It illustrates 

various interactions between miRNAs (inner zone), genes (middle layer) as well as TFs (outer 

layer). The nodes are sorted by degree centrality measures in the Node Explorer table. In this case, 

miRNet 2.0 confirmed the detection of important nodes according to their degree measures. 

Among the top nodes, hsa-miR-125a-5p (degree = 66) has been frequently associated with MS, 

while SP1 (degree = 132) and TCF3 (degree = 8) have been reported in the transcriptional 

regulations of MS (54). We also performed functional enrichment and module analysis on the 
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whole network. The results of functional enrichment analysis using KEGG database are displayed 

in the Function Explorer table. For instance, cytokine-cytokine receptor interaction pathway (adj. 

P-value = 3.25 × 10−5) and p53 signaling pathway (adj. P-value = 9.43 × 10−5) were significantly 

enriched, which were not reported by the original study but the results have been supported by 

other publications (56). Figure 2A (lower right corner) shows an example of an extracted module 

(p53 signaling pathway) after manual increase of the edge thickness. Compared to the original 

network, this module is much more digestible while keeping the important nodes and connections 

(e.g. hsa-miR-125a-5p and SP1). This use case highlights that with only a few mouse clicks, users 

can easily create comprehensive regulatory networks to gain a more holistic view of miRNA-

mediated regulations as well as to extract important modules for more in-depth analysis. 

 

Comparison with miRNet 1.0 and other web-based tools  

Several excellent web-based tools have been developed for miRNA network analysis, 

including miRTargetLink (57), MIENTURNET (58), Arena-Idb (59), and starBase (37). Detailed 

comparison between these tools and miRNet 2.0, as well as its previous version is shown in Table 

2. Particularly, miRTargetLink, MIENTURNET and Arena-Idb can assist researchers in 

understanding miRNAs and their targets through a network-based visualization method based on 

predicted or experimentally validated miRNA–target interactions; while starBase is the most 

comprehensive miRNA–mRNA and miRNA–ncRNA interaction database based on CLIP-Seq 

experiments. In comparison, miRNet 2.0 is a high-performance, easy-to-use web application which 

offers the most comprehensive support for real-time, interactive miRNA network analytics in ways 

that no other tools currently can. More than 15 databases and over 10 graph layout algorithms have 

been integrated to facilitate knowledge discovery and hypothesis generation. The companion R 
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package and APIs have been developed to permit transparent and reproducible analysis as well as 

to reach a broader user base. In summary, miRNet 2.0 caters for both bench researchers as well as 

bioinformaticians by providing an interactive and integrative platform for miRNA-centric systems 

biology. 

 

Table 2. Comparison of the main features of miRNet (versions 1.0–2.0) with other web-based or 

web-enabled tools. Symbols used for feature evaluations with ‘√’ for present, ‘−’ for absent, and 

‘+’ for a more quantitative assessment (more ‘+’ indicate better support) 

Tool name 
miRNet 

miRTargetLink MIENTURNET 
Arena-

Idb 
starBase 

2.0 1.0 

Data processing 

Species # 10 7 1 6 1 23 

Target genes       

Experimental +++ ++ ++ + ++ +++ 

Predicted √ √ √ √ √ √ 

Others       

miR-SNPs √ - - - - - 

TFs √ - - - - - 

ncRNAs +++ + - - + ++++ 

xeno-miRNAs √ - - - - - 

Diseases +++ ++ - - ++ ++ 

Epigenetic modifiers √ √ - - - - 

Small compounds √ √ - - - - 

Expression profiling √ √ - - - - 

Enrichment analysis 

Hypergeometric tests √ √ √ √ - √ 

Empirical sampling √ √ - - - - 

miR-set enrichment  √ - - - - - 

Network visual analytics 

Multiple query types √ - - - - - 

Integration with PPI 

network 
√ - - - - - 

Multipartite network 

visualization 
√ - - - - - 

Subnetwork extraction √ - - -  -  - 
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URL links: 

miRTargetLink: https://ccb-web.cs.uni-saarland.de/mirtargetlink/   

MIENTURNET: http://userver.bio.uniroma1.it/apps/mienturnet/   

Arena-Idb: http://ncrnadb.scienze.univr.it/sites/arenaidb/   

starBase: http://starbase.sysu.edu.cn/index.php   

 

Conclusions  

Over the past few years, miRNA research has gradually evolved from target identification 

toward understanding the regulatory mechanisms underlying their systems level effects. However, 

very few user-friendly bioinformatics tools are available to support this objective. To address this 

gap, we have developed miRNet version 2.0 to assist researchers to easily create miRNA-centric 

multiplex networks integrating key players involved in gene regulation as well as other molecules 

of interest. During this process, we have greatly expanded the underlying knowledgebases and 

added new libraries on TFs, SNPs, ncRNAs and PPIs to provide a rich context for analysis, 

hypothesis generation and mechanistic insights. We have also implemented new graph mining 

functions and layout algorithms tailored to complex multipartite network creation, customization 

and visualization. To sustain real-time intuitive data analysis, we have completely revamped the 

web interface, optimized the workflow, introduced APIs and microservices to enable high-

performance computing and visualization. A limitation of miRNet is its static and qualitative 

nature of the current network analysis. It is important to keep in mind that miRNA functions are 

highly dependent on the context (abundance, location, cell type, cell state etc.) and the effects can 

be dynamic and transient to confer robustness to biological processes (60). We believe that miRNet 
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2.0 will continue to be an invaluable bioinformatics asset for researchers in miRNA systems 

biology. 

 

Data availability  

The miRNet 2.0 web server can be freely accessed at https://www.mirnet.ca. The web APIs 

can be accessed from http://api.mirnet.ca. The miRNetR is available on Github 

(https://github.com/xia-lab/miRNetR). 
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Bridging statement to Chapter 4 

Building upon my exploration of genetics of metabolism and gene regulations in Chapters 2&3, 

Chapter 4 takes a further step by focusing on the potential causal relationships between metabolites 

and diseases. I present mGWAS-Explorer 2.0, an upgraded platform that leverages mGWAS and 

GWAS summary statistics to identify these relationships. This chapter integrates the 

knowledgebase acquired from Chapter 2 and the visual analytics system from Chapter 3. The 

mGWAS-Explorer 2.0 implements the two-sample Mendelian randomization approach, using 

genetic variants as instrumental variables. This method allows us to examine causal relationships 

between exposure risk factors, such as metabolites, and outcomes in observational studies. With 

this platform, we can now choose robustly associated instrumental variables and select the 

outcome data to further our understanding of the interplay between metabolites and diseases.   
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Abstract 

mGWAS-Explorer is an integrated web-based platform developed to explore results from 

metabolome genome-wide association studies (mGWAS) via network visual analytics. While 

version 1.0 was primarily focused on linking single-nucleotide polymorphisms (SNPs), 

metabolites, genes and diseases for hypothesis generation, it has become obvious that establishing 

causal relationships between metabolites and diseases is crucial for understanding molecular 

etiology of diseases. Motivated by this concept, three major enhancements have been introduced 

in mGWAS-Explorer version 2.0, which include: (i) implemented two-sample Mendelian 

randomization analysis for causal inference; (ii) curated comprehensive molecular QTL data and 

semantic triples evidence for improved annotation; (iii) released the underlying R package for 

reproducible data analysis. The utility of mGWAS-Explorer 2.0 is demonstrated in two case 

studies.   
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Introduction 

The circulating metabolites can act as inputs, mediators or products in the metabolic 

networks and play key roles in human health [1]. Over the past 15 years, wide applications of the 

metabolomics technologies in genome-wide association studies (mGWAS) have revealed a wealth 

of statistical associations between metabolites and single-nucleotide polymorphisms (SNPs) [2-5]. 

Meanwhile, a variety of genotype-phenotype association data and biochemistry knowledge are 

now readily available for understanding the impact of SNPs as well as related enzymes or 

transporters for metabolites. However, it is challenging to harmonize and integrate data from 

difference sources to interpret the results at a system level and gain mechanistic insights. To 

address this challenge, we developed mGWAS-Explorer version 1.0 to allow users to visually 

explore known connections among SNPs, genes, metabolites and diseases and to perform cross-

phenotype association analysis for functional insights [6]. However, this is only the first step 

toward a thorough understanding of mGWAS and does not necessarily imply causal relationships.  

In recent years, causal inference has emerged as a popular method within the mGWAS 

community, with Mendelian randomization (MR) becoming a well-established technique for this 

purpose [7-9]. MR leverages genetic variants as anchors to assess causal relationships between an 

exposure and an outcome, offering a reduced susceptibility to confounding and reverse causality 

compared to traditional observational research [10]. This approach is predicated on several 

assumptions, including that genetic variants do not influence the disease outcome through any 

process other than the relevant exposure [11]. As MR analysis has grown in prominence, numerous 

computational methods, databases, and tools have been developed to support this work [12-15], 

with two-sample Mendelian randomization (2SMR) emerging as a particularly useful method for 

inferring causal links from GWAS summary statistics [16]. This approach relies on separate data 
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sources for associations between genetic variant-exposure and genetic variant-outcome, with 

databases and analytical platforms like IEU OpenGWAS and MR-Base web application 

facilitating rapid application of two-sample MR approaches using large-scale GWAS study results 

[12-17]. 

MR has also proven effective in estimating the causal effects of metabolites on diseases or 

other phenotypes by using metabolite quantitative trait loci (mQTLs) as genetic instruments 

[10,12,18]. For example, MR studies have identified the causal role of low-density lipoprotein 

cholesterol (LDL-C) in coronary artery disease (CAD), leading to the discovery of LDL-C-

lowering drugs [19,20]. Despite these advances, there is currently no dedicated bioinformatics tool 

for metabolome-wide MR mapping, necessitating additional resources for researchers seeking 

causal insights between genetically influenced metabolites and diseases. This gap highlights the 

urgent need for accessible bioinformatics tools to support MR analysis in mGWAS. 

Addressing the challenges of interpreting causal assessments by MR methods can be 

achieved by combining causal estimates with information derived from semantic triples (subject-

predicate-object), such as “homocysteine – predisposes – coronary arteriosclerosis” [21]. This 

triangulation approach strengthens the evidence for causation when different sources are in 

agreement and facilitates more robust causal interpretations by leveraging literature-mined 

knowledge from resources like SemMedDB and MELODI Presto [22,23,24]. 

Progressive developments in the field have led to the addition of new features and 

components in mGWAS-Explorer since version 1.0. High-throughput technologies have enabled 

systemic discovery of various molecular quantitative trait loci (QTLs), and integrative analysis of 

QTLs from multi-omics data is crucial for understanding functional impacts of genetic variants on 

phenotypes at different molecular levels [25-28]. In response, features for mapping SNPs to 
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eGenes (eQTLs) and SNPs to proteins (pQTLs) have been added, along with ongoing efforts to 

enhance transparency, scalability, reproducibility, and user support through the development of a 

corresponding R package. 

We now introduce mGWAS-Explorer version 2.0 to address the evolving bioinformatics 

needs and challenges of mGWAS research. Compared to version 1.0, mGWAS-Explorer 2.0 

features three key improvements: 

- Implementation of a two-sample Mendelian randomization strategy for exploring causal 

relationships between metabolites and disease phenotypes; 

- Addition of eQTL and pQTL data, as well as semantic triples evidence, for improved 

annotation and uncovering of mechanistic insights; 

- Enhanced support for reproducible research through the release of the mGWASR package. 

 

Results 

Metabolome-wide Mendelian randomization  

Utilizing genetic associations derived from large-scale metabolome-wide genome-wide 

association studies (mGWAS), we can systematically investigate the potential causal relationships 

between numerous metabolite compounds (targeted) or metabolite features (untargeted) and 

human diseases via Mendelian Randomization (MR). In our newly implemented “MR Analysis” 

module, we support two-sample MR analysis between metabolites and disease phenotypes. 

To conduct a two-sample MR analysis, users must first select metabolites as exposures and 

designate disease outcomes on the data upload page. The mGWAS-Explorer 2.0 enables users to 

identify significant SNPs associated with metabolites (exposure), and subsequently extract these 

instrumental SNPs from the disease (outcome) GWAS. The information on SNP-metabolite 
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associations is derived from curated significant mGWAS summary statistics. Meanwhile, the data 

on disease outcomes is obtained through querying the API of the IEU OpenGWAS database [17], 

which houses complete GWAS summary statistics. After acquiring summary statistics for both 

exposure and outcome, users can harmonize datasets to ensure consistency in genetic instruments, 

effect sizes, and effect alleles. 

Subsequently, the parameter page enables users to perform clumping and linkage 

disequilibrium pruning, retaining only independent genetic variants for MR estimation. Our 

platform offers eighteen distinct MR analysis methods, such as MR Egger, weighted median, and 

inverse variance-weighted methods, to estimate causal effects. 

Additionally, mGWAS-Explorer 2.0 automatically performs sensitivity assessments and 

heterogeneity tests to evaluate potential violations of MR assumptions and the robustness of causal 

estimates. Upon completion, the MR results are displayed in a summary table view and illustrated 

in four types of plots for results interpretation. Users have the option to customize these plots in 

terms of format, resolution, or size for downloading purposes, ensuring a comprehensive and user-

friendly experience that covers all key steps of two-sample MR analysis.  

 

Triangulating evidence from semantic triples   

Incorporating evidence from diverse research methods can mitigate biases and produce 

more reliable findings in response to research questions. This approach, referred to as 

“triangulation,” has gained attention in epidemiological research, particularly for causal inference 

[22]. Triangulation increases confidence in results when multiple sources converge on the same 

conclusion. 



 

 

113 
 

In our study, we utilized triangulation to support causal estimates derived from Mendelian 

Randomization (MR) by examining millions of semantic triples extracted from scientific literature. 

The MR module's results page enables users to examine these semantic triples, which consist of 

subject-predicate-object relationships pertinent to the exposure (metabolite) and outcome (disease). 

Users can search for commonly enriched terms that might suggest an association. An overlap is 

identified when the object of the exposure query corresponds with the subject of the outcome query 

[24]. This rapid process typically takes a few seconds, with the findings presented in a data table 

or as a network diagram for users to investigate. Using this triangulation method offers a more in-

depth understanding of the associations between exposures and outcomes. 

 

Enhancing SNP-gene-metabolite network   

The SNP-gene-metabolite network help gain potential functional insights of the SNP-

metabolite statistical associations. In SNP-metabolite network, SNP nodes connect to metabolite 

nodes with which they have shown significant statistical associations. We have curated significant 

associations based on study-specific genome-wide cut-off threshold in version 1.0 of mGWAS-

Explorer. However, it is limited to only include first-step neighbors of the input SNPs (e.g., SNP-

metabolite statistical associations). We have added support for network expansion and network 

enrichment in the SNP module. mGWAS-explorer 2.0 offers SNP-gene-metabolite networks by 

introducing a new node type (genes) and new edge types (SNP-gene, gene-metabolites) based on 

SNP annotation and known gene/protein - metabolite relationships (i.e., enzymatic reactions or 

transporters). Afterwards, enriched networks are generated with new edges between SNPs, genes 

and metabolites, representing new relationship discoveries.  
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Enabling joint SNP/metabolite user input   

Integrative SNP-metabolite analysis is now a valuable approach for identifying 

connections that cross the boundaries of traditional metabolic pathways [29]. We have added a 

new module to allow users to jointly provide SNPs and metabolite as input. For the SNP input, we 

currently support four types of mapping, including the SNP-metabolite statistical associations, 

SNP to gene mapping based on nearest gene or eQTL, SNP to protein based on pQTL, as well as 

SNP to disease mapping. For the metabolite input, metabolite-SNP mapping, knowledge-based 

metabolite to gene mapping, as well as metabolite-disease mappings are supported. Users can enter 

either a SNP, a metabolite or both. For metabolites, mGWAS-Explorer currently accepts 

compound names, HMDB IDs or KEGG IDs. For SNPs, rsID is currently supported. The uploaded 

SNP and metabolite are then mapped to the internal databases of mGWAS-Explorer. Following 

this step, users can filter the networks based on topological measures (degree and betweenness), 

shortest paths, to compute minimum network or to manually filter the network based on a given 

list. For instance, by using a degree cutoff as 1.0, we can exclude all terminal nodes to better 

visualize the nodes and edges with higher importance (i.e., higher degree levels).  

 

Improving transparency/reproducibility  

Transparent analytical procedures are essential for reproducible research since they 

increase the validity of research findings and scientific claims. Open-source software and in-depth 

documentation are crucial steps toward more reproducible analysis in the field of bioinformatics 

[30]. In mGWAS-Explorer 2.0, we have compiled and re-leased the underlying R functions as the 

mGWASR package (https://github.com/xia-lab/mGWASR). We have also added a Result 

Download page in each module to allow users to obtain all results tables and images generated 
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during the analysis, as well as the R command history. As a complement to the web-based platform, 

we anticipate that the R package and the R command history will enable users to track each stage 

of their analysis in an easily sharable and reproducible format (i.e., R script). Additionally, we 

have migrated all our frequently asked questions (FAQs) to the OmicsForum 

(https://omicsforum.ca/).  

 

Case Studies  

Crohn’s Disease Case Study: To showcase the utility of the MR feature in mGWAS-

Explorer 2.0, we leveraged a recent study integrating metabolomics, genomics and immune 

phenotypes to discover causal effects of metabolites in disease [31]. Specifically, we will 

demonstrate the application to Crohn’s disease, which is a complex disorder with poorly 

understanding of the disease pathogenesis. Previous studies have shown that arachidonic acid 

shares common genetic variants with Crohn’s disease through colocalization analysis [31]. 

Therefore, we sought to investigate the causal effect of the arachidonic acid on Crohn’s disease 

using the summary statistics for both traits in mGWAS-Explorer 2.0 [4,32]. Using 24 independent 

genetic instruments (i.e., SNPs), the results of four commonly used MR methods (inverse-variance 

weighted, MR Egger, weighted median estimator and weighted mode estimator) consistently 

illustrate that the decrease in arachidonic acid levels had a causal effect on Crohn’s disease (Figure 

1), which is consistent to the findings reported by Chu et al [31]. This use case highlights how 

users can quickly and easily perform MR analysis by leveraging our comprehensive 

knowledgebase of mGWAS summary statistics as well as an easy-to-use interface to test the 

hypothesis of plausible causal role of metabolites on diseases.  
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Figure 1 Mendelian randomization case study of the effect of arachidonic acid levels on Crohn’s 

disease. (a) A summary table displaying the results of MR analysis, heterogeneity and horizontal 

pleiotropy tests; (b) a forest plot, comparing the causal effects calculated using the methods include 

all the SNPs to using each SNP separately; (c) a scatter plot, showing the relationships between 

SNP effects on arachidonic acids against the SNP effects on the Crohn’s disease, with slope 

indicating the causal association; (d) a leave-one-out plot, which determine whether a single SNP 

is having a disproportionately larger impact on an association; (e) a funnel plot, showing the 

relationships between the causal effect of arachidonic acids on Crohn’s disease calculated using 

each individual SNP as a separate instrument against the inverse of the standard error of the causal 

estimate. 

 

Coronary Heart Disease Case Study: To demonstrate triangulating casual inference from 

MR with literature evidence, we used glycine and coronary heart disease as an example to explore 

the semantic evidence connecting the metabolite and disease. The causal associations between 

SNP effects on glycine against the SNP effects on the coronary heart disease are shown in Figure 
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2a. Genetic predisposition to higher glycine levels are associated with lower risk of coronary heart 

disease. Besides, Figure 2b displays the semantic-triples connections between glycine and 

coronary heart disease after searching for enriched overlapping terms. A total of 73 overlapping 

terms were identified, including homocysteine [33-35], ethanol [36,37], and TNF protein [38,39]. 

In the case of homocysteine, “homocysteine – PREDISPOSES – Coronary Arteriosclerosis” is the 

most enriched semantic triples on the outcome side (p-value: 4.38 × 10-120), whereas “Glycine – 

INTERACTS_WITH – homocysteine” has a p-value of 8.3 × 10-6. Therefore, we could 

hypothesize that the protective effect of glycine on coronary heart disease may be due to the 

interactions with homocysteine, providing this as a potential mechanism of interest. 

 

Figure 2 Triangulation of MR and literature evidence on the effects of glycine on coronary heart 

disease case study. (a) A scatter plot, showing the relationships between SNP effects on glycine 

against the SNP effects on coronary heart disease, with slope indicating the causal association; (b) 

a network of semantic triples (subject-predicate-object) from literature evidence between “glycine” 

and “coronary heart disease”. Each node represents either an exposure subject (blue), an outcome 

object (green) or an overlapping enriched element (orange), where the object of a triple from the 

exposure query overlaps with a subject of a triple from the outcome query. Each edge is a 

“predicate” connecting two semantic elements. 
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Comparison with Other Tools  

Table 1 compares mGWAS-Explorer 2.0 with its pervious version and several other web-

based tools, including EpiGraphDB [21], The Molecular Human [40], and MR-Base [12]. 

EpiGraphDB is a graph database and an analytical platform containing comprehensive 

epidemiological and biomedical relationships, including pre-computed MR causal estimates, drugs, 

pathways, literatures evidence, ontology information, etc. The Molecular Human focuses on 

providing a comprehensive characterization of the molecular interactions using the integrated 

multi-omics data from 18 different platforms. MR-Base is an integrated platform that automates 

the two-sample MR analysis with a web interface, API, and R package, which incorporates a 

database of complete GWAS summary statistics. In comparison, mGWAS-Explorer 2.0 supports 

both linking multi-omics with diseases and performing MR analysis to identify metabolites with 

causal impacts on the diseases in the context of mGWAS. 

 

Table 1. Comparison of the main features of mGWAS-Explorer (version 1.0-2.0) with other web-

based tools. Symbols used for feature evaluations with ‘√’ for present, ‘−’ for absent, and ‘+’ for 

a more quantitative assessment (more ‘+’ symbols indicate better support). 



 

 

119 
 

 

URL links: 

• EpiGraphDB: https://www.epigraphdb.org/ (accessed on 23 January 2023). 

• The Molecular Human: http://comics.metabolomix.com/ (accessed on 23 January 2023). 

• MR-Base: http://www.mrbase.org/ (accessed 23 January 2023)  

* EpiGraphDB contains pre-computed MR causal estimates. 

** Metabolic trait number includes both compounds and metabolic features, as well as metabolite 

ratios based on mGWAS-Explorer 1.0 when the effect size and standard error are available in the 

summary statistics. 

 

Discussion 

Systematic causal inference between modifiable risk factors and complex traits is a central 

challenge in the field of human genetics [41-43]. We have developed a platform that integrates 

Tool Name 
mGWAS-

Explorer 2.0 
mGWAS-Explorer 1.0 

EpiGra

phDB 

The 

Molecula

r Human 

MR-

Base 

Data input and processing      

Metabolite √ √ √ √ √ 

SNP √ √ √ √ − 

Gene √ √ √ √ − 

MR exposure √ − √ − √ 

MR outcome √ − √ − √ 

Output      

Data table √ √ √ √ √ 

Interactive network +++ +++ ++ ++ − 

Forest plot √ − − − √ 

Scatter plot √ − − − √ 

Funnel plot √ − − − √ 

Functions      

Mendelian randomization √ − *√ − √ 

Exposure (metabolite) 

**4238 

metabolic 

traits, 65 

studies 

− 

123 

metabol

ic traits, 

1 study 

− 

123 

metaboli

c traits, 1 

study 

Enrichment analysis √ √ − − − 

Semantic triples evidence √ − √ − − 

 1 
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published GWAS summary statistics with analytical methods and visualization, with a particular 

focus on understanding the relationships between genetic variants, metabolites and diseases. The 

results from statistical Mendelian randomization analysis only support, but do not prove, causal 

relationships, however, it can guide interventional research when a randomized controlled trial 

may not be feasible [44]. Our first case study investigated the causal role of arachidonic acid (AA) 

on Crohn’s diseases (CD) using MR. Arachidonic acid belongs to omega-6 polyunsaturated fatty 

acids and free AA enhances and modulate type 2 immune response, which are crucial for resistance 

to allergens and parasites [45,46]. In our analysis, negative causal effect of AA on CD is consistent 

with previous studies where CD patients has lower levels of AA [47]. However, much more studies 

need to be done to completely understand the fundamental mechanisms. The second case study 

highlights the protective causal role of glycine on coronary heart disease (CHD), which agrees 

with the findings from the MR study by Wittemans et al. [48]. In the semantic triples analysis, 

“Glycine – INTERACTS_WITH – homocysteine” and “homocysteine – PREDISPOSES – 

Coronary Arteriosclerosis” presents an example that how possible mechanisms could be drawn by 

mining literature data after MR analysis. A high homocysteine level is strongly associated with 

the prevalence of CHD (p-value: 4.38×10-120). The role of homocysteine on CHD is explained by 

its negative effects vascular endothelium and smooth muscle cells [34]. On the other hand, it was 

reported that intracellular concentrations of homocysteine was lowered after 24 hours of co-

incubation with glycine [35], although the mechanism of how glycine lowers the homocysteine 

concentrations is not clear.  

 

Materials and Methods 

Knowledgebase update and creation  
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(a) The data source for the mGWAS summary statistics can be found in the publication of 

version 1.0 of mGWAS-Explorer [6]. For complete GWAS summary data of the disease outcome, 

IEU OpenGWAS database was used by querying the Application Programming Interface (API) 

service of the database [17]. IEU OpenGWAS database contains manually curated collection of 

complete GWAS summary datasets. (b) eQTL from 49 tissues and pQTL data from blood are 

obtained from Genotype-Tissue Expression (GTEx) project and QTLbase database [49,50].  

 

Methods for MR analysis  

The statistical methods for pre-processing and MR analysis are based on the 

TwoSampleMR and MRInstruments R packages [12]. The pre-processing procedure facilitates the 

acquisition of independent instrumental variables by performing linkage disequilibrium (LD) 

clumping. In cases where the queried single nucleotide polymorphism (SNP) is absent in the 

outcome genome-wide association study (GWAS), we identify a proxy SNP in LD with the input 

SNP, utilizing the 1000 Genomes Project data as a reference. A crucial aspect of the analysis is 

harmonizing exposure and outcome data to guarantee that the effects of the SNP on exposure and 

outcome are associated with the same allele. Consequently, we provide three harmonization 

options for researchers to choose from, facilitating accurate analysis: i) assume all alleles are on 

the forward strand; ii) infer the forward strand alleles based on allele frequency; iii) adjust the 

strand for non-palindromic SNPs while excluding all palindromic SNPs. 

Our approach incorporates 18 distinct MR methods, enabling users to compare results 

across different analytical techniques. In addition, we offer support for heterogeneity and 

horizontal pleiotropy testing. For the heterogeneity test, we implement Cochran's Q test, while the 

horizontal pleiotropy test is conducted using Egger regression. These tests contribute to a 
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comprehensive understanding of the potential biases within the MR analysis and promote robust 

and reliable results.  

 

Semantic triples  

The semantic triples are queried by using the API of the MELODI Presto [24], which uses 

a carefully-curated literature dataset from SemMedDB (96) and a high-performance architecture 

(i.e., Elasticsearch). MELODI Presto facilitates a rapid and efficient approach for systematically 

profiling semantic triples originating from the literature. This method enables the exploration of 

enriched literature data corresponding to specific search terms and the identification of potential 

intermediate disease mechanisms among term lists. The Semantic MEDLINE Database 

(SemMedDB) serves as a repository for semantic predications, including subject-predicate-object 

triples.  

 

R package  

mGWASR is written in the R programming language. The package is hosted on GitHub, 

which is build upon the R functions from the web server. To guarantee that the identical results 

will be generated, the R package and the web server have been thoroughly tested. mGWASR 

complies with the R package quality requirements and it includes detailed vignettes for step-by-

step analysis.  

 

Conclusions 

In conclusion, our development of mGWAS-Explorer 2.0 represents a significant 

advancement in enabling researchers to investigate potential causal associations between 
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metabolites and disease phenotypes. With the anticipated increase in accessibility of published 

GWAS summary data, we foresee a tremendous expansion in the scope and impact of its 

applications, paving the way for novel discoveries and improved understanding of disease etiology. 
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Chapter 5: General discussion 

Major technological advancements have greatly accelerated large-scale collections of 

genetic and phenotypic data. Despite the success in identifying genetic risk loci with diseases and 

molecular phenotypes (i.e., omics), it has been challenging to translate genetic associations and 

regulatory interactions to functional insights for understanding mechanisms of diseases and 

development of therapeutic targets. The main goal of my thesis was to bridge the gap from genetic 

associations, regulatory interactions to biological interpretation in order to better comprehend the 

results. Specifically, I focused on metabolome genome-wide association studies (mGWAS) in 

Chapter 2, 4 and miRNA regulatory networks in Chapter 3. To achieve my goal, I have 

developed several easy-to-use web-based and R package software tools, including mGWAS-

Explorer (www.mgwas.ca) (99), miRNet (www.mirnet.ca) version 2.0 (100,101), miRNetR 

(https://github.com/xia-lab/miRNetR), mGWAS-Explorer version 2.0 and mGWASR 

(https://github.com/xia-lab/mGWASR).   

Interpreting mGWAS results to generate mechanistic insights requires navigating a range 

of databases related to genomics and metabolomics as well as advanced visualization tools, which 

can be a daunting task and may cause errors in combining different data types. To provide an 

integrated platform for functional interpretation of mGWAS, I developed a user-friendly web 

application, mGWAS-Explorer version 1.0 by leveraging a variety of high-quality databases and 

advanced visual analytics technologies (Chapter 2). mGWAS-Explorer allows users to (1) upload 

a list of SNPs, metabolites or genes; (2) browse or search significant statistical associations 

between SNP and metabolites from published mGWAS summary statistics. Numerous functional 

annotation databases are included in the knowledgebase, such as HaploReg (102), VEP (103), 

DisGeNET (104) for genetic annotation; HMDB (105), KEGG (106), Recon3D (107), TCDB (108) 

http://www.mgwas.ca/
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for metabolite annotation; and STRING (109), InnateDB (110) for protein-protein interactions. 

Additionally, several well-known databases are used for enrichment analysis, including KEGG, 

GO (111), Reactome (112), Orphanet (113), DisGeNET  (104), DrugMatrix (114), and DSigDB 

(115). mGWAS-Explorer prioritizes genes based on positional mapping, which maps SNPs to 

genes based on physical distances. Notably, it is suggested that the nearest gene mapping method 

is a useful indicator of true positive genes for mQTLs (116) and we have used this method in the 

gene module. Meanwhile, LD proxy search is also supported where users can search for variants 

that are in linkage disequilibrium with other variants. In addition to SNP annotation, mGWAS-

Explorer also annotates mapped genes with functional information to explore the group behavior 

of gene function across a collection of gene, such as enrichment of genes in molecular pathways. 

Besides SNP annotation, mGWAS-Explorer supports metabolite to gene mapping based on 

enzyme or transporter information, and metabolite to disease mapping for metabolite annotation. 

The popular metabolite-set enrichment analysis is also provided to facilitate identifying 

biologically meaningful patterns of metabolite function across a set of metabolites (117). Apart 

from deep annotation, mGWAS-Explorer includes a powerful network visual analytics system 

enabling interactive exploration and topological analysis. The rationale behind network-based 

approach is that network is an intuitive model to dissect mQTLs, which is characterized by 

polygenicity and pleiotropy (45). In a network, nodes represent genetic or phenotypic entities and 

edges represent associations between them. Such a network can help in the analysis of genetic 

associations across metabolic and disease phenotypes and the identification of potential shared 

genetic influences. A variety of features are available to facilitate the visual exploration and 

customization of the network. For instance, degree and between centrality can be used to identify 

key nodes in the network. The utility of mGWAS-Explorer was illustrated in our COVID-19 and 
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type 2 diabetes case studies (99). By integrating SNP-metabolite, SNP-disease, SNP-gene mapping 

and protein-protein interactions, I identified shared genetic signals between metabolites (i.e., citric 

acid and fibrinogen A-α peptides) and COVID-19 at ABO locus, as well as ENPEP and FUT2 as 

potential candidate gene. This has illustrated the power of leveraging prior knowledge with 

statistical associations in revealing biologically meaningful signals. In the second case study, 

mGWAS-Explorer not only confirmed the genetic associations between T2D and citrulline 

metabolites, but also identified shared signals between mQTL, T2D and COVID-19. The results 

suggested potential comorbidity between T2D and COVID-19, which has been reported in 

multiple other studies (118-120).         

In Chapter 3, I aimed to improve the understanding of the miRNA regulatory networks by 

developing version 2.0 of miRNet, which is a web-based visual analytics platform for miRNA-

centric gene regulatory analysis. The rationale for focusing on miRNA related regulatory 

interactions is that miRNAs are highly powerful genetic regulators, as shown by the fact that a 

single miRNA can control a wide range of target genes to drive entire cellular pathways (121). 

Due to this characteristic, miRNAs are now considered to be very intriguing therapeutic tools to 

recover cell functions that have been disrupted as a result of a disease phenotype (121,122). To 

better understand miRNA regulatory interactions with target genes and other important players 

(e.g., TFs and lncRNAs), I significantly improved the knowledgebase for miRNA-target 

interactions by adding new modules for TFs and miRSNPs, as well as extending the miRNA-

lncRNA interactions to incorporate all other important ncRNAs, such as circRNA, pseudogene, 

and sncRNA based on starBase  (123). Besides interactions mapping, miRNet 2.0 provides a 

comprehensive support for functional enrichment analysis, including nine annotation libraries 

(four target gene set libraries and six miRNA set libraries), and two enrichment algorithms 
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(hypergeometric tests and empirical sampling). In addition to the functional enrichment analysis, 

miRNet 2.0 supports flexible user input, accepting a list of miRNAs, miR-SNPs, genes, 

transcription factors, small molecules, ncRNAs, diseases, epigenetic modifiers, any of their 

combinations or a data table from microarray, RNAseq or RT-qPCR experiments. The workflow 

is as follows. Users can start the analysis by uploading various data types or by selecting queries 

from built-in databases. The input will be mapped to the knowledgebase to generate tables and 

networks. Subsequently, users can easily explore the network in the visualization page and conduct 

topological or functional analysis to identify key nodes or modules. miRNet 2.0 also supports 

filtering dense networks based on degree or betweenness centrality, shortest path, to reduce the 

network based on a list, or to calculate minimum network. To improve transparency and 

reproducibility, I have developed the underlying R package (https://github.com/xia-lab/miRNetR). 

As illustrated in our multiple sclerosis case study, miRNet 2.0 can easily pinpoint key regulators 

by visually inspecting the networks, where hub nodes (e.g., miRNAs) with high degree value 

demonstrate that they have high numbers of target genes. Notably, our tool has been used by 

multiple institutions to investigate disease mechanism related to miRNAs, for instance to study 

spaceflight-associated miRNA signature by NASA gene lab, and to understand the role of miR-

2392 in driving SARS-CoV-2 infection (124,125).  

In Chapter 4, I aimed to gain causal insights into the metabolites on diseases by developing 

mGWAS-Explorer version 2.0 with new modules and features. I implemented the two-sample 

Mendelian Randomization analysis framework, which leverages the summary statistics of 

mGWAS and GWAS with disease phenotypes to infer causal relationships between metabolites 

and diseases. mGWAS-Explorer 2.0 allow users to obtain SNPs (i.e., instrumental variables) that 

are significant for the metabolites (i.e., exposure) and extract the instrument SNPs from the disease 

https://github.com/xia-lab/miRNetR
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GWAS (i.e., outcome). The SNP-metabolite association data is based on the curated significant 

mGWAS summary statistics and the disease outcome data is obtained by querying the API of IEU 

OpenGWAS database (126), which contain complete summary statistics. Various functions are 

included to preprocess the data, such as performing LD pruning to get independent SNPs, 

searching for LD proxies, and harmonizing the effects between exposure and outcome. mGWAS-

Explorer 2.0 supports commonly used Mendelian randomization methods and related sensitivity 

analysis. Mendelian randomization is a powerful method used to estimate causal relationships 

between genetic variants, exposures, and outcomes in observational data. It relies on three main 

assumptions for the results to be valid: i) Relevance assumption: the genetic variant(s) used as an 

instrumental variable (IV) must be robustly associated with the exposure of interest. ii) 

Independence assumption: the genetic variant(s) must be independent of any confounders that 

influence both the exposure and outcome. iii) Exclusion restriction assumption: the genetic 

variant(s) must only affect the outcome through the exposure and not through alternative pathways. 

Violations of these assumptions can lead to biased causal estimates. To minimize these violations, 

both algorithmic and database protections can be implemented. Algorithmic protections include 

several strategies: (i) multiple IVs: leveraging multiple independent genetic variants as IVs can 

help mitigate the effects of individual genetic variants violating the MR assumptions. Techniques 

such as weighted median or MR-Egger regression can account for potential violations and yield 

more reliable causal estimates. (ii) Sensitivity analyses: Conducting various sensitivity analyses 

can aid in identifying and evaluating the impact of potential MR assumption violations. For 

instance, MR-Egger regression can detect whether directional horizontal pleiotropy is driving the 

results of an MR analysis. Database protections involve the following measures: (i) large and well-

characterized cohorts: utilizing data from sizable, well-characterized cohorts with high-quality 
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genotyping and phenotyping information can minimize measurement errors and enhance the 

precision of causal estimates. This can help reduce violations of the relevance and independence 

assumptions. (ii) Harmonization of data: ensuring consistency in exposure and outcome definitions 

across the studies included in the MR analysis is crucial. Data harmonization can help to diminish 

potential biases stemming from varying definitions or data collection methods. (iii) Ancestry and 

population stratification: accounting for population stratification, or the presence of systematic 

differences in allele frequencies between subpopulations, can help minimize biases introduced by 

the violation of the independence assumption. This can be achieved by either limiting the analysis 

to a homogeneous population or adjusting for population structure using techniques such as 

principal components analysis. In summary, using both algorithmic and database protections can 

minimize violations of the Mendelian randomization assumptions, ultimately leading to more 

reliable and valid causal estimates. 

In addition, multiple visualization of results is available to facilitate the interpretation. 

Apart from two-sample MR, mGWAS-Explorer 2.0 also allow users to triangulate evidence from 

literature sources. The idea behind triangulation is that if the findings from different approaches 

all direct to the same conclusion, we are more confident in the results (93). This is particular 

important in causal inference in observation studies. As randomized controlled trial (RCT) is costly 

and may not be feasible, causal inference from observational studies could prioritize the targets 

for RCT or to assist in public health policy making process (94). A single source of evidence could 

have its own bias due to study design or measurement errors. Therefore, triangulated evidence 

could minimize the bias and strengthens the reliability of the results. However, triangulation can 

be influenced by biases that stem from the literature or previous experiments. For example: (i) 

publication bias: studies with significant findings are more likely to be published, leading to a bias 
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in the available literature. This could result in an overemphasis on certain diseases. (ii) Limited 

available data: if previous studies have focused on certain populations or ethnic groups, 

triangulation efforts may be biased due to the lack of data from other populations. These biases 

can be mitigated to some extent by using larger and more diverse samples, conducting unbiased 

hypothesis-free research. While triangulation is not without its limitations, it remains a valuable 

approach for identifying and validating causal estimates and understanding their biological 

mechanisms. 

 

Limitations 

The application of network-based multi-omics integration offers substantial potential for 

elucidating complex biological processes and enhancing our understanding of the genetics of 

metabolism and regulatory interactions. This approach includes the combination and analysis of 

data from multiple sources of biological information (e.g., genomics, transcriptomics, proteomics, 

and metabolomics) utilizing network-based models. Despite its immense promise, certain 

limitations persist in network-based multi-omics integration, which warrant further examination: 

(i) Data heterogeneity: multi-omics data arise from different sources and platforms, characterized 

by differing data types and scales. Consequently, integrating this data proves challenging, 

necessitating pre-processing and normalization procedures to ensure compatibility and 

comparability. (ii) Incomplete data: owing to the rapid evolution of high-throughput techniques 

generating multi-omics data, datasets can be incomplete or lack of comprehensive coverage of 

biological systems. This missing data may yield biased or restricted insights. (iii) Computational 

complexity: network-based methodologies frequently demand computationally demanding 

algorithms, which present substantial processing power and memory requirements, particularly 
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when handling large-scale multi-omics datasets. (iv) Noise and biases: multi-omics data accuracy 

and reproducibility can be adversely impacted by experimental and technical noise, as well as 

platform- and batch-specific biases. It can be difficult to apply the right statistical methods to 

account for these factors. Notwithstanding these limitations, network-based multi-omics 

integration has demonstrated potential in yielding valuable insights into complex biological 

systems and revolutionizing our understanding of human health and disease. Continuous 

improvements in computational algorithms, data processing, and experimental methods will assist 

overcome these obstacles and advance the field. 

The present thesis acknowledges the indispensable role of databases in constructing 

networks. However, it is imperative to recognize certain limitations that may arise in specific 

contexts, which could potentially impact the conclusions drawn and the development of 

bioinformatics applications. These limitations can be categorized into three primary areas: data 

quality, data bias, and accessibility. Firstly, data quality remains a significant concern, as databases 

may contain outdated or inaccurate information. The presence of such incorrect data could 

ultimately result in biased conclusions, thereby undermining the validity of the research. Secondly, 

data bias poses a challenge, as databases may predominantly feature data from well-studied 

diseases, tissues, or populations, leading to an inadvertent bias in the results obtained. This skewed 

representation may inadvertently prioritize certain areas of study over others, further limiting the 

scope of potential insights. The third limitation pertains to accessibility, as some databases may 

either be difficult to access or necessitate permission for utilization. This restriction can constrain 

the resources available for the development of open-source bioinformatics tools, thereby impacting 

the breadth of knowledge that can be incorporated into these applications. To mitigate the potential 

adverse effects of these limitations, researchers are encouraged to adopt a rigorous approach when 
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sourcing, cleaning, and verifying data from databases. Using multiple data sources could further 

reduce the risk of data bias, as a more comprehensive and representative dataset can be compiled. 

By addressing these limitations and adopting rigorous strategies for data acquisition and validation, 

the bioinformatics and genetics community can continue to develop more robust, unbiased, and 

accessible tools and approaches, thus driving progress and innovation in the field. 

  

Rationale for technical implementations 

The choice of technical implementations was primarily driven by their suitability for 

specific tasks, widespread usage, and compatibility with other used technologies. (1) R 

programming language: the R language and environment, known for its statistical computing and 

graphical capabilities, is widely utilized for data analysis and statistical modeling. In the context 

of mGWAS-Explorer and miRNet 2.0, R serves as the computational backbone for data processing 

and analysis. (2) JavaServer Faces (JSF) technology: JSF, a Java-based web application framework, 

streamlines the development of user interfaces for web applications by providing a set of reusable 

UI components. JSF was chosen for its ability to facilitate the construction of the web interface. 

(3) PrimeFaces: As a UI component library designed for JavaServer Faces, PrimeFaces offers a 

comprehensive set of rich, ready-to-use components that can be seamlessly integrated into JSF 

applications. PrimeFaces was selected to develop the user interface elements in the web application. 

(4) SQLite: SQLite, a lightweight and serverless relational database management system 

(RDBMS), is widely employed for small to medium-sized applications due to its self-contained 

nature. In my project, SQLite serves as the storage solution for the integrated data. (5) jQuery: 

jQuery, a renowned JavaScript library, simplifies client-side HTML scripting by providing 

extensive functionality for DOM manipulation, event handling, and animation. jQuery was 
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adopted for general-purpose scripting in the web application. (6) Sigma.js: Sigma.js is a JavaScript 

library specifically designed for the display and manipulation of graph data on web pages, making 

it highly suitable for visualizing large networks. In the context of my project, Sigma.js is used for 

network display and interactions. (7) iGraph: iGraph, a collection of network analysis tools with 

implementations in multiple programming languages, including R, enables the creation, analysis, 

and visualization of networks. iGraph is utilized for network analysis and layout in the web 

application. (8) ECharts-GL: ECharts-GL, an extension pack of Apache ECharts, enhances the 

powerful charting and visualization capabilities of ECharts by introducing WebGL support for 

advanced visualization techniques such as 3D plots. In mGWAS-Explorer, ECharts-GL is used to 

generate the 3D Manhattan plots.    
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Chapter 6: Conclusions and future directions 

Computational platforms developed in Chapter 2, 3 and 4 have significantly accelerated 

genetic research discovery by reducing the barriers in data pre-processing, analysis, and 

visualization in mGWAS and miRNA regulatory network research. Several future directions can 

be suggested to continue this work. 

Mendelian randomization to integrate other omics and complex traits 

While my focus was on metabolome-wide Mendelian randomization, integrating other 

omics data with disease outcomes could pinpoint molecular traits causally related to disease 

development at different levels, such as transcriptome, methylome and proteome (127). For 

instance, a recent study identified the causal effects of 65 proteins on 52 disease-related phenotypes 

by performing phenome-wide Mendelian randomization and colocalization analysis on proteins 

(36). The importance of this approach in finding and prioritizing prospective therapeutic targets 

was demonstrated by an analysis of data from historical drug development programs that revealed 

target-indication pairs with MR and colocalization support were more likely to be approved.  

Other causal inference methods in genetics 

Despite successfully applications of MR in causal inference, this method requires strong 

assumptions in horizontal pleiotropy, where the genetic instruments must influence the disease 

outcome only through the exposure viable (90). However, the assumptions may not be met in real-

case scenario. Bayesian network (BN) is an emerging approach to infer the relationships in directed 

acyclic graph and is not restricted to the assumptions by MR. The causal inference is achieved by 

identifying conditional dependencies while testing multiple traits (128). A recent study identified 

potential causal links using the data from genotyped population-scale biobanks by using the 
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Bayesian network. However, more work needs to be done to test the performance and applicability 

to other molecular GWAS data. 
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Supplementary tables 

Supplementary Table 1. A summary of the databases and software mentioned in the thesis. 

Database/Softwar

e Name 

Versions PubMed ID or URL Notes  

miRTarBase v8.0 31647101 Experimentally 

validated 

 

TarBase v8.0 29156006 Experimentally 

validated 

 

miRecords v1.0 18996891 Experimentally 

validated 

 

SM2miR v1.0 23220571 Experimentally 

validated 

 

Pharmaco-miR v1.0 23376192 Experimentally 

validated   

Computationall

y Predicted 

 

HMDD v3.2 30364956 Experimentally 

validated 

 

miR2Disease v1.0 18927107 Curated  

PhenomiR v2.0 20089154 Curated  

EpimiR v1.0 24682734 Curated  

starBase v2.0 24297251 Experimentally 

validated 

 

TransmiR v2.0 30371815 Curated  

ADmiRE v1.0 30302893 Annotated  

PolymiRTS v3.0 24163105 Experimentally 

validated 

 

SNP2TFBS v1.0 27899579 Computationall

y Predicted 

 

TSmiR v1.0 24889152 Curated  

IMOTA v1.0 28977416 Experimentally 

validated 

 

ExoCarta v1.0 19810033 Experimentally 

validated 

 

TAM v2.0 29878154 Curated  

Exo-miRExplorer v1.0 28203233 Experimentally 

validated 

 

DisGeNET (gene-

disease) 

v7.0 31680165 Curated, 

Animal models, 
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Inferred and 

Literature 

DisGeNET 

(variant-disease) 

v7.0 31680165 Curated and 

Literature 

 

KEGG 2021 28451977 Curated  

TCDB 2021 33170213 Curated  

Recon3D 2018 29457794 Curated  

HMDB v5.0 34986597 Curated  

VEP v1.0 27268795 Computationall

y Predicted 

 

InnateDB v1.0 23180781 Curated  

STRING v10.0 25352553 Curated  

HuRI 2020 32296183 Curated  

Gene Ontology v1.0 30395331 Curated  

Reactome v1.0 34788843 Curated  

Orphanet v1.0 https://www.orpha.net/consor/cgi-

bin/index.php 

Curated  

DrugMatrix v1.0 https://ntp.niehs.nih.gov/data/drugmatri

x/ 

Curated  

DSigDB v1.0 25990557 Curated  

OpenGWAS v1.0 https://gwas.mrcieu.ac.uk/ Curated   

*MELODI Presto v1.0 32810207 -  

GTEx v8.0 23715323 Experimental  

QTLbase v2.0 31598699 Curated  

**Elasticsearch v1.0 https://www.elastic.co/ -  

***SemMedDB v1.0 23044550 -  

 

*MELODI Presto:  a quicker and more agile method to identify overlapping enriched literature 

elements between any number of exposures and outcomes. 
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**Elasticsearch: Elasticsearch is an open-source, distributed, RESTful search and analytics engine 

built on top of Apache Lucene. 

***SemMedDB: a PubMed-scale repository of biomedical semantic predications. 
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