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In birds and primates, the frequency of behavioural innovation has been

shown to covary with absolute and relative brain size, leading to the sugges-

tion that large brains allow animals to innovate, and/or that selection for

innovativeness, together with social learning, may have driven brain enlarge-

ment. We examined the relationship between primate brain size and both

technical (i.e. tool using) and non-technical innovation, deploying a combi-

nation of phylogenetically informed regression and exploratory causal graph

analyses. Regression analyses revealed that absolute and relative brain size

correlated positively with technical innovation, and exhibited consistently

weaker, but still positive, relationships with non-technical innovation. These

findings mirror similar results in birds. Our exploratory causal graph analyses

suggested that technical innovation shares strong direct relationships with

brain size, body size, social learning rate and social group size, whereas

non-technical innovation did not exhibit a direct relationship with brain size.

Nonetheless, non-technical innovation was linked to brain size indirectly via

diet and life-history variables. Our findings support ‘technical intelligence’

hypotheses in linking technical innovation to encephalization in the restricted

set of primate lineages where technical innovation has been reported. Our

findings also provide support for a broad co-evolving complex of brain, behav-

iour, life-history, social and dietary variables, providing secondary support for

social and ecological intelligence hypotheses. The ability to gain access to dif-

ficult-to-extract, but potentially nutrient-rich, resources through tool use may

have conferred on some primates adaptive advantages, leading to selection for

brain circuitry that underlies technical proficiency.

1. Introduction
The extraordinary ecological and demographic success of humanity is com-

monly linked to our capacity for innovation. We humans would appear to

possess an unprecedented capability to devise novel solutions to life’s chal-

lenges, to express these solutions in our behaviour, tools and technology, and

to propagate innovation through social learning. Our engineering and technol-

ogy have allowed us to inhabit even the most hostile environments. Genetic

studies suggest that this capability is longstanding, with hundreds, possibly

thousands of human genes subject to positive selection over the past 100 kyr,

with a primary hypothesis for why many of these alleles spread being adaptive

responses to human learning and cultural activities [1–3]. For instance, the

domestication of plants and animals and associated consumption of novel

foods seemingly selected for alleles expressed in human digestion, as well as

in resistance to animal-borne diseases [1–3].

While humans may be exceptional innovators, we are far from the only species

that devises novel behaviour patterns. Recent research reveals that many animals

will invent new behaviours or modify existing behaviours (e.g. devise more effi-

cient foraging techniques), that such innovation is taxonomically widespread and

that there is considerable inter- and intraspecific variation in innovation rates [4].
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Innovation has been hypothesized to be an important influence

on the success and evolution of many non-human animals, par-

ticularly in populations faced with novel challenges such as

anthropogenic change [4–6]. Evidence from comparative and

experimental studies supports this contention. For example,

comparative studies of birds have linked rates of behavioural

innovation with range expansion [7–9], with rates of evolution-

ary diversification [10,11] and with dietary and habitat

generalism [12,13]. Experimental studies have associated

novel problem-solving with fitness components such as

mating success and offspring survival [14–16].

These observations raise a number of questions: How did

the ability to innovate evolve? How are the aforementioned

relationships between innovation and variables such as inva-

sion success, fitness and speciosity causally related? What

neurocognitive processes underpin innovation? To what

extent can innovation be treated as a unitary phenomenon

[4]? Might it, for instance, make better sense to subdivide

innovation into different categories, perhaps controlled by

different neurocognitive processes, or to recognize that differ-

ent aspects of innovation may have quite distinctive

evolutionary histories and taxonomic distributions?

To date, both theoretical arguments and empirical evidence

have supported the idea that innovation will be largely the

product of domain-general cognitive abilities [4,17,18]. For

example, comparative analysis of observational reports of inno-

vation across primate species reveal that innovation rate

covaries together with other observational measures thought

to indicate general cognitive ability, such as rates of social learn-

ing, tool use and tactical deception [18,19], as well as with

experimental tests of learning and problem-solving [20–22].

Similarly, experimentally induced and other novel behaviour

in corvids [23,24] supports the idea that innovations appear

when existing, domain-general abilities are applied to a novel

problem. However, there is some evidence that innovation

may carry specific costs, such as exposure to environmentally

transmitted parasites [19]. Behaviour patterns described as

innovations encompass a huge range of behaviour, likely invol-

ving multiple psychological processes [25,26]. A potentially

useful approach is to subdivide innovation into different cat-

egories and to examine to what extent the same processes

predict these different categories of innovation.

Here, we present comparative analyses based on an observa-

tional database of primate innovation used in several previous

studies [18–21,27,28]. Innovation rates for different primate

species are estimated by surveying published literature for

reports of innovation, an approach pioneered in studies of fora-

ging innovation in birds [22,28–31]. The major advantage of this

approach is that it provides quantitative data on a large number

of species, circumventing the longstanding challenge of design-

ing experimental tests that are fair to all species [18,25,32].

Multiple potentially confounding variables have been exam-

ined, with little support for the method being subject to

persistent or sizable biases over-and-above those that are readily

controlled for (e.g. research effort) [22]. The fact that this quanti-

tative measure of innovativeness has shown a significant

correlation with brain size in both birds and primates [22], and

that it also correlates strongly with measures of performance in

experimental tests [18], enhances the validity of our approach.

The method, interpreted appropriately, thus provides a useful

broad-scale complement to the in-depth data that can be

obtained by experimental or observational study of one or a

few species [18,20,25,33].
A long-held assumption is that innovation is a marker of

intelligence, and more extensive or complex innovation is

thought to be facilitated by brain enlargement, particularly

expansion of forebrain regions such as the primate prefrontal

cortex that are linked to creativity and problem-solving [34].

Innovation has long been proposed as a driver of brain evol-

ution [5,20,35]. Examination of the links between innovation

and brain evolution provides a first step into understanding

the neural underpinnings of innovation, and whether

neural changes accompany enhanced innovative propensi-

ties. Above, we raised the question as to whether it would

be informative to divide innovation into different subcate-

gories, potentially controlled by different neurocognitive

processes and driven by different selection pressures. One

observation that prompts this question is a recent analysis

of avian foraging innovation [36], which divided foraging

innovations into ‘technical’ innovations and ‘food-type’ inno-

vations. Overington et al. [36] characterized ‘technical’

innovations as those involving novel foraging techniques,

such as innovative predatory techniques, commensal foraging,

tool use and extractive foraging, and which hence might be

regarded as exerting some additional demands on the cogni-

tive capabilities of the animal associated with the extraction

and exploitation of the novel resource. Conversely, in birds,

non-technical innovations are those where a novel food

source is exploited without the use of any novel technique

(‘food-type’ innovations), typically deploying established feed-

ing methods that seemingly exert few additional cognitive

demands on the innovator over-and-above the recognition of

the novel resource as food. While both technical and food-

type innovations covaried with brain size, Overington et al.
found that technical innovations exhibited a far stronger

relationship with brain size, and explained a greater proportion

of variance in residual brain size than food-type innovations.

These authors suggested that the ability to extract valuable

resources through novel technical foraging skills may require

more advanced cognition than merely introducing novel food

items into their diet, and argued that technical innovation may

have driven brain evolution through selection for the neural

underpinnings of technical proficiency. Thus, Overington

et al.’s results were interpreted as supporting a technical intelli-

gence hypothesis, suggesting that increased brain size allows

individuals to use innovation to modify their technical skills.

Here, we explore the generality and robustness of Over-

ington et al.’s [36] conclusions by investigating whether

similar relationships between innovation and brain evolution

are observed in non-human primates. We take a broadly simi-

lar approach by subdividing our primate innovation dataset

into technical innovations and non-technical innovations.

We focus particularly on innovations that require tool use

as this is a core element of technical intelligence hypotheses

[37], one of several hypotheses put forward to explain the

evolution of enhanced cognition and brain enlargement

[20,38–41]. In a second set of analyses, we examine a broader

definition of technical innovation, including both innovative

tool use and innovative extractive foraging, reflecting argu-

ments that extractive foraging played a role in primate

cognitive evolution [42,43].

Our analyses examine the relationship between technical

innovation, non-technical innovation, and both absolute and

relative brain size, as well as several factors that have been

shown to covary with brain size and/or innovation rate,

including body size, life-history variables, social group size,
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diet breadth and rates of social learning. While there is poten-

tial utility in examining individual brain components and their

relation to behavioural innovation, currently insufficient data

are available when innovation is subdivided. Moreover,

recent work on the coevolution of different brain areas suggests

that many components change in volume together as a net-

work [44,45]. This suggests that a focus on large brain areas

or the entire brain may be appropriate, particularly for broad

categories of behaviour such as innovation that are plausibly

reliant on domain-general capabilities, and involve many

cognitive and other processes and many parts of the brain.

Our objectives are twofold: (i) to determine the extent to

which different classes of innovation covary with brain size in

primates and (ii) to examine how technical and non-technical

innovation co-evolve with other behavioural and socioecologi-

cal traits. We address these objectives deploying a powerful

combination of comparative phylogenetic analyses [46], phylo-

genetically informed causal graphs [47] and nonlinear statistical

approaches, to examine potential evolutionary drivers and infer

causal relations. We conduct analyses on datasets including

all primate innovations recorded. We also analyse datasets lim-

ited to foraging behaviour to facilitate more precise comparison

with Overington et al. [36], who examined foraging innovation.

The analyses shed new light on how and why innovative

propensities evolved.
2. Methods
(a) Brain data
Species means for brain size and body mass were obtained from

Isler et al. [48]. Isler et al. compiled endocranial volumes (ECV)

for 3813 museum specimens, at least 88% wild-caught, for 167 pri-

mate species. ECV provides a good estimate of brain volume that is

easily convertible into brain mass [49]. We complemented the data-

set with body mass and brain mass for four additional species:

Callicebus moloch, Cercopithecus talapoin (from [50]), Saguinus
imperator and Callithrix geoffroyi (from [51]). Brain mass in these

species was converted into ECV [49] before being added to the

dataset. ECV and body mass were natural log-transformed prior

to analysis to normalize distributions. Below, we refer to ECV as

‘brain size’ and to body mass as ‘body size’.

(b) Behavioural data
Behavioural data were drawn from Reader et al. [18]. Reader et al.
surveyed over 4000 published articles for examples of innovation,

social learning, tool use and extractive foraging in living non-

human primates, using keywords (e.g. ‘novel’ or ‘traditional’) to

classify behaviour patterns (e.g. as ‘innovation’ or ‘social learn-

ing’). Full details of the database and discussion of its merits,

disadvantages, reliability and validity are given in Reader et al.
[18] and the papers cited therein. The observation frequencies for

each of the four behavioural measures were calculated as the

total number of reported examples of each class. Initially, we exam-

ined each innovation report and categorized it as a ‘technical’

innovation (involving tool use) or a ‘non-technical’ innovation

(not involving tool use; data will be archived online in the Dryad

depository). We go on to conduct further analyses in which ‘tech-

nical innovation’ is broadened to include both innovative tool use

and innovative extractive foraging. We also restricted a subset of

analyses to foraging innovations only (strictly, innovations that

occur in a foraging context), deploying the classification in

Reader & Laland [27]. We used the number of published articles

on each species in the Zoological Record (taken from [18]) as a

measure of research effort. We corrected the behavioural measures
for differences in research effort by including research effort as an

independent variable in statistical analyses [52].

(c) Diet breadth, life history and social group size
Data on diet breadth (the number of food types typically eaten, out

of a maximum of 13 different categories) were obtained from

Reader et al. [18]. Social group size and six life-history variables

(gestation length, interbirth interval, weaning age, age of sexual

maturity, age at first birth and maximum longevity) were extracted

from the PanTHERIA dataset for the 167 species with brain data,

with these measures available and complete for 71 species [53]. In

pairwise phylogenetic generalized least-square regressions

(PGLS) analyses, the six life-history variables were found to be sig-

nificantly positively correlated ( p , 0.05). In order to extract a

single dimension of life history to use later as a predictor in an

exploratory analysis of causality, these six variables were natural

log-transformed and used to create a composite ‘life-history’ vari-

able using phylogenetically controlled principal components

analysis (PPCA; [54]). The PPCA extracted a single component,

which explained 78% of the variance in the data, and all variables

loaded positively on this component, with loadings from 0.58 to

0.90 (l ¼ 0.84). This composite life-history variable was used in

subsequent analyses. Social group size was natural log-transformed

for normalization. Diet breadth did not require transformation.

(d) Phylogeny
For the phylogenetic analyses, we used the 10 k Trees project

dated consensus tree (v. 3) [55], and matched primate species

from the brain dataset and the behavioural dataset with species

in the tree, taking into consideration changes in nomenclature

(electronic supplementary material).

(e) Data analyses
A total of 167 primate species were represented in the phylogenetic

tree and had published brain and innovation data (strepsirrhines:

39 species, tarsids: 3 species, platyrrhines: 49 species, catarrhines:

76 species). Data on life history, social group size and diet breadth

were only available for 71 species in the innovation and brain data-

set (19 strepsirrhines, 1 tarsid, 21 platyrrhines and 30 catarrhines),

and thus analyses involving these variables were restricted to

these 71 species. A substantial number of the 167 species had no

recorded innovations. The fact that a species has zero recorded

innovations when this is unexpected for a given research effort

may be informative, but it is also possible that species with no

innovation reports have been studied differently from those with

innovation reports [25]. Thus, we also conducted analyses exclud-

ing those species with zero innovation reports in our database.

This ‘innovators’ sample covered 48 species with available

brain data.

To account for non-independence of species-level data, we used

PGLS, with phylogenetic signal (Pagel’sl) estimated by maximum-

likelihood (henceforth l ¼ML). Analyses were run in R v. 3.0.2 [56]

using the ‘caper’ [57] and ‘phytools’ packages [58]. Models explored

the relationship between brain size and innovation, treating inno-

vation rates as response variables, and including research effort as

a covariate. Analyses that examined the relationship between rela-

tive brain size and innovation included body mass. We also ran

analyses examining absolute brain size, without body mass as a

covariate, to allow comparison of absolute versus relative brain

measures of brain size as predictors of cognitive differences, an

open question in the field [21].

We ran additional analyses (electronic supplementary

material) to take into account the fact that a large number of

species in our database had zero recorded innovations. We ran

a binomial regression predicting the probability that an inno-

vation is observed in each paper based on research effort



innovation

tool use

233 87

129

135

144

65

extractive
foraging

246

Figure 1. Number of reports of innovation, tool use and extractive foraging
in our survey of non-human primates. Out of the 584 reports of innovation
(shaded), 264 or 45% were classified as ‘technical innovation’ (i.e. innovative
tool use) and 320 or 55% were classified as ‘non-technical innovation’. In a
second set of analyses, we used a broader definition of technical innovation
that included novel tool use and novel extractive foraging behaviour patterns.
With this broader definition, 351 or 60% were classified as ‘technical
innovation’ and 223 or 40% were classified as ‘non-technical innovation’.
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(conducted using the method ‘glm’ in R [56]). We also present

the results of using a zero-inflated Poisson (ZIP) model, which

provides an alternative method for controlling for the large

number of species with zero recorded innovations [59]. However,

the ZIP model may not be suitable when there are a small

number of observations for some entries (over 58% of the species

had under 20 papers recorded in the Zoological Record survey),

meaning that the results of these models should be interpreted

with caution. Both the binomial model and the zero-inflated

Poisson models also help control for the observed heteroscedas-

ticity in the data (if the number of observations for a species is

large, we should expect greater absolute variance in the

number of reported innovations). However, binomial and ZIP

models that incorporate phylogenetic information are not yet

established methodologies. Thus, we used non-phylogenetic

methods for these analyses.

Exploratory causal graphs were used to further examine

interrelationships between variables. Causal graphs were gener-

ated by examining the phylogenetic partial correlation between

variables, taking into account the remaining variables (using

PGLS). For a set of variables A ¼ fA1, . . . ,Ang, this method

assesses the relationship between Ai and Aj by examining the cor-

relation between the residuals of a phylogenetic linear model of

Ai predicted by the remaining variables (i.e. Ak for all k except for

Ai and Aj) and Aj predicted by the remaining variables. In order

to guard against the premature rejection of causal relations

between variables, we take the conservative stance of treating

the correlation as potentially significant if p , 0.1, in which

case an edge between Ai and Aj is added to the causal graph.

This method allows us to visualize the significant relationships

between variables when taking into account the presence of

other variables, similar to other path analysis methods [47,60].

Edges were not oriented (i.e. directed) as we reasoned that bio-

logical evolution in this domain frequently encompasses

feedback processes between traits [18,61].

Although this method uses the full set of covariates (all Ak)

to assess independence, which may reduce statistical power, we

find that the results of this procedure are the same as a more

complex algorithm [62] that uses only connected variables. Our

new method can be seen as an exploratory automation of von

Hardenberg & González-Voyer [63], building on Pearl’s PC

algorithm [64]. For PGLS models within a given causal graph, l

is estimated by maximum-likelihood, in order to account for differ-

ing levels of phylogenetic signal across linear models. However,

given that previous approaches have assumed a fixed common

value for l for all paths [63], we also analyse graphs with l fixed

at 0 or 1, which represent the extreme values of l, and thereby pro-

vide a strong check as to whether our conclusions are robust to

different values of phylogenetic signal. The values on the edge of

each graph represent the p-value, i.e. the significance of the

relationship between variables when taking into account the

influence of only connected variables (see figure 2).
3. Results
Where technical innovation was restricted to tool use, out of

the 584 reports of innovation, 45% were classified as technical

innovations and 55% as non-technical innovations (figure 1).

In the broader categorization of technical innovation that

included novel extractive foraging behaviour patterns,

60% were classified as technical innovations and 40% as

non-technical innovations.

(a) Comparative phylogenetic analyses for all species
Total innovation rate (i.e. technical and non-technical com-

bined) was found to be positively correlated with absolute
but not relative brain size in primates (table 1). That is,

there was a significant positive correlation between inno-

vation rate and brain volume, but this relationship was no

longer significant when body mass was taken into account.

Technical (i.e. involving tool use) and non-technical inno-

vation rates correlated positively with each other (PGLS: l ¼

0, r ¼ 0.61, b ¼ 0.49+ 0.09, p , 0.0001). A similar correlation

was observed using a broader classification of technical inno-

vation, including innovative extractive foraging (PGLS: l ¼

0.06, r ¼ 0.53, b ¼ 0.44+ 0.10, p , 0.0001). However, despite

this positive correlation, different relationships were observed

between brain size and technical versus non-technical inno-

vation rates. Technical innovation rate was significantly

correlated with absolute but not relative brain size, and we

observed a stronger relationship with brain size than that

observed for total innovation rate. Similar results were

found for technical innovation including extractive foraging

(table 1). In contrast, non-technical innovation rate was not

significantly correlated with either absolute brain size or rela-

tive brain size (table 1). The model including brain size as a

predictor of technical innovation, with research effort as a

covariate, showed a higher correlation coefficient (r ¼ 0.13)

than the model predicting non-technical innovation (r ¼
0.07), with a similar pattern observed using the broader

classification of technical innovation including extractive

foraging (r ¼ 0.14 versus r ¼ 0.08).

(b) Controlling for zero-inflation
To address the concern that our PGLS results were biased by

the large number of primate species with no innovations

(zero-inflation), we conducted ZIP and binomial analyses.

ZIP models on our 167-species sample confirmed that zero

scores on all measures of innovation were more likely in

those species where research effort was low (electronic sup-

plementary material, table S1). We found that the number

of innovations observed correlated significantly with research

effort, body mass and relative brain size using all innovation

classifications. In contrast, absolute brain size correlated with
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only two innovation measures, total innovation rate and tech-

nical innovation including extractive foraging. Technical

innovation was more strongly related to brain size than was

non-technical innovation, using both absolute and relative

brain size measures and for all classifications of technical

innovation (see block A, table S1 in electronic supplementary

material). Comparison of Akaike information criterion (AIC)

values between models with and without body size found

better support for models that included body size (i.e. relative

brain size models).

We also ran a set of analyses using a binomial model,

which predicted the likelihood that a given paper in the data-

set contained an innovation. Binomial models for all species

showed that all innovation rates (including total innovations,

technical innovations and non-technical innovations) exhib-

ited strong positive correlations with both absolute and

relative brain size ( p , 0.0001, electronic supplementary

material, table S2). Technical innovation was more strongly

related to both absolute and relative brain size than was

non-technical innovation. These results are consistent with

the results of the ZIP model, and again, comparison of AIC

values between models with and without body size found

better support for models that included body size.

(c) Innovators only analyses
Confirmation of zero inflation in the full species dataset provides

further justification for repeating the analysis using the reduced

dataset of innovators (table 1). Among our sample of innovators

(48 species), we found strong correlations between total inno-

vation rate and both absolute and relative brain size. Technical

innovation also exhibited strong correlations with both absolute

and relative brain size, and these relationships were stronger

than those for total innovations. Non-technical innovation corre-

lated significantly with absolute brain size only, and this

correlation was weaker than the one observed between technical

innovations and absolute brain size. Brain size was a better pre-

dictor of technical innovation than a predictor of non-technical

innovation (technical innovation: r¼ 0.14; non-technical inno-

vation: r ¼ 0.10; technical innovation with extractive foraging:

r ¼ 0.26, non-technical innovation without extractive foraging:

r ¼ 0.05). Using the binomial models, we again observed

strong and significant correlations between all innovation rates

and absolute and relative brain size (see electronic supple-

mentary material, table S2), and stronger relationships were

observed between technical innovation rates and brain size

measures than between non-technical innovation rates and

brain size.

(d) Comparisons with Overington et al.: foraging
innovations

To facilitate a closer comparison with Overington et al. [36],

extractive foraging innovations were included in technical

innovation, and PGLS analyses were restricted to foraging

innovations only. This reduced the available pool of inno-

vations considerably, and because of the aforementioned

problems with zero-innovation scores, the 167-species analysis

was not appropriate. In the innovators only sample, technical

innovation correlated significantly with both absolute and rela-

tive brain size, but non-technical innovation did not correlate

with either (table 1). In the ZIP and binomial models, technical

innovation was again more strongly correlated with brain size
measures than was non-technical innovation (electronic

supplementary material, tables S1 and S2).

(e) Causal graphs
We constructed three phylogenetically informed causal

graphs, using total innovations, technical innovations and

non-technical innovations. In all sets of causal graphs, the

findings for total innovations resemble those for non-techni-

cal innovations, and can be contrasted with those for

technical innovation. Also, in all of our analyses, brain size,

body size, the life-history composite measure and social

group size shared multiple direct connections (‘edges’) with

each other, suggesting that these variables have evolved

together (figure 2).

Technical innovation rate shared direct edges with brain

size in the best-supported graphs (l ¼ML: p ¼ 0.043,

figure 2a; l ¼ 0: p ¼ 0.014, l ¼ 1: p ¼ 0.009, see electronic sup-

plementary material, figure S1), which indicates that these two

variables are directly correlated even when the other variables

are taken into account. Technical innovation rate also was

directly related to social learning rate ( p , 0.0001), body size

( p ¼ 0.039) and social group size ( p , 0.0001). PGLS analy-

ses showed that these associations were all positive (brain

size: l ¼ 0.84, r ¼ 0.27, p ¼ 0.014; body size: l ¼ 0.85, r ¼
0.20, p ¼ 0.050; social learning: l ¼ 0, r ¼ 0.77, p , 0.0001; elec-

tronic supplementary material, table S3). However, the

relationship between technical innovation and social group

size was not statistically significant in the PGLS model (l ¼

0.91, r ¼ 0.02, p ¼ 0.88). These edges are also strong when l

was set to 0 or 1 (l ¼ 0: social learning rate: p , 0.0001, body

size: p ¼ 0.041, social group size: p , 0.0001; l ¼ 1: social learn-

ing rate: p , 0.0001, body size: p ¼ 0.007, social group size: p ,

0.0001, see electronic supplementary material, figure S1a).

Non-technical innovation shared a direct edge with social

learning rate alone (l ¼ML: p , 0.0001, figure 2b; l ¼ 0: p ,

0.0001, l ¼ 1: p , 0.0001, electronic supplementary material,

figure S1b). PGLS analysis showed that the correlation

between these two variables was positive (l ¼ 0, r ¼ 0.66,

p , 0.0001). Any relationships between non-technical inno-

vation rates with other variables in the graph, including

brain size, were mediated by social learning and diet breadth.

Technical innovation rate including extractive foraging

shared direct edges with social learning rate ( p , 0.0001) and

social group size ( p ¼ 0.020) in the graphs with l ¼ML

(figure 2c), as well as in the graphs with l ¼ 0 and l ¼ 1 (elec-

tronic supplementary material, figure S1c), but the direct

relationship with brain size was lost ( p . 0.1). PGLS analyses

showed that the correlation of this measure of technical inno-

vation with social learning was positive (l ¼ 0, r ¼ 0.76, p ,

0.0001), but the relationship with social group size was not

significant (l ¼ 0.728, r ¼ 0.11, p ¼ 0.17).
4. Discussion
The innovativeness of a species, defined as the frequency

with which novel behaviour patterns are generated (control-

ling for research effort), covaries with diverse measures of

absolute and relative brain size in both birds and primates

[18,22]. In birds, brain size covaries more strongly with tech-

nical than with non-technical innovation [36], suggesting a

potentially important distinction between these types of

novel behaviour. Our findings in non-human primates were
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Figure 2. Best-supported graphs using phylogenetic exploratory path analyses including either (a) technical innovation rate, (b) non-technical innovation rate or
(c) technical innovation rate including extractive foraging (EF), together with social learning rate, brain size, body size, a life history composite measure, social group
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other variables into account. P-values are indicated for those edges. Analyses of total innovation rate (i.e. technical and non-technical innovations combined) give
very a similar picture to figure 2b. Dotted boxes indicate tightly covarying suites of variables.
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broadly consistent with those of Overington et al. [36]. Phylo-

genetic analyses comprising all primate innovations found

that absolute (but not relative) brain size correlated positively

and strongly with both technical innovation and total

innovations but showed a non-significant relationship with

non-technical innovation. However, PGLS analyses do not

account for the zero-inflated distribution of innovation

counts across species. When this is controlled for, either by

deploying zero-inflated Poisson or binomial models, or by

reducing the sample to ‘innovator’ species, we find that

total innovation measures covary significantly with abso-

lute and relative brain size, and that technical innovation

always exhibits a stronger relationship with brain size than

non-technical innovation.

Exploratory causal graph analyses painted a similar pic-

ture, where technical innovation shared a direct edge with

brain size (figure 2a), whereas the number of non-technical

innovations did not. Rather, non-technical innovation was

linked to brain size via social learning, diet and life-history

variables (figure 2b). Technical innovation also shared very

strong direct edges with social learning, body size and social

group size. However, when we add extractive foraging to tech-

nical innovation, the direct relationship with brain size was lost

(figure 2c). This implies that tool use, more so than extractive

foraging, may be the relevant factor underlying the direct

relationship between technical innovation and brain size.

This direct connection between technical innovation and

brain size provides support for ‘technical intelligence’ hypoth-

eses [37] in suggesting that in some primate lineages the ability

to invent novel technical behaviours, specifically those invol-

ving tools, may have favoured encephalization, more than

the ability to generate novel behaviours per se. Overington

et al. [36] restrict their analyses to foraging innovations

alone, and use a somewhat broader definition of technical

innovations, with technical innovations referring to novel fora-

ging techniques, not just tool use. Our analyses tell a similar

story to those of Overington et al. As in birds, the ability to

gain access to difficult-to-extract, but potentially nutrient-

rich, resources through tool use and technical skill may have

conferred adaptive advantages, leading to selection for brain

regions and circuitry that underlie technical flexibility and pro-

ficiency in some primate lineages. This pattern holds when our

PGLS analyses were restricted to foraging innovations.

We also observed strong connections in causal graph

analyses between primate technical innovation and both

social learning and social group size (although the group

size–technical innovation link was not significant in a PGLS

analysis), suggesting coevolution of elements of social, techni-

cal and ecological intelligence, as has been previously argued

[65]. Those primates that score highly for innovation and tool

use (e.g. the great apes, capuchins, macaques) are also

renowned for their social learning [18,65], and there is now

extensive experimental evidence demonstrating that primates

can acquire many tool-using methods through social learning

[61]. Indeed, a robust finding of both our causal graph analyses

and our previous work [18,19] is that innovation and social

learning evolve together, a conclusion that holds here for

both technical and non-technical innovation.

The direct connections between technical innovation and

social group size, as well as between social learning and

social group size, conflict with previous analyses that found

no relation between social group size and total innovation

rate or social learning rate [18,66]. This could reflect the effect
of examining technical innovations alone, additional power

in the current analyses or sample, or the effect of the additional

variables incorporated in the present analyses. Theoretical

work, however, suggests that the observed relationships of

group size with reported technical innovation rates may be

no artefact. A wide variety of theoretical studies now link the

size of cultural repertoires with social group size, as larger

populations provide a more stable repository for the retention

of innovations than do smaller groups, as well as more poten-

tial innovators [67–70]. These links between technical

innovation and both social learning incidence and social

group size are, of course, consistent with several social intelli-

gence hypotheses [20,38–41], which supports the suggestion

that these explanations are not mutually exclusive [18,71].

The consistently observed edge in our path analyses linking

social group size and brain size supports the established find-

ing that social intelligence is an important driver of brain

evolution [20,38–41].

Our causal graph analyses linked non-technical inno-

vation to measures of diet breadth via social learning, a

finding that evokes ecological intelligence explanations, in

which primate intelligence is favoured by the challenge of

locating and extracting diverse and constantly changing

foods [42,43,72,73]. However, as Overington et al. [36]

reported for birds, while larger-brained, innovative primate

species may be more likely to incorporate novel foods into

their diets, and while this ability may be ecologically impor-

tant, our findings imply that the relationship between

innovativeness and brain size in primates is more likely to

be primarily driven by technical innovations.

Although the absence of an edge between non-technical

innovation and brain size in the best-supported causal graph

ostensibly rules out a direct coevolutionary relationship

between these variables, it does not preclude a more diffuse

coevolutionary interaction. What the causal graph analysis

implies is that if there is a causal influence of non-technical

innovation on brain evolution it occurs through changes in

social learning, diet and life history. One plausible interpret-

ation of these findings is that through social transmission

many primates learn to exploit novel foods, and the resources

so gleaned both aid survival and fuel brain growth. Cultural

drive explanations [5,20,35,41,74] are relevant here, as they pro-

pose that selection for innovativeness and/or efficient social

learning drove the evolution of encephalization in primates.

However, given that most primate species in our sample exhib-

ited zero innovations, we emphasize that any causal role for

innovation, be it technical or non-technical, in driving encepha-

lization is likely to be only part of the story, and restricted to a

subset of primate lineages.

We emphasize that our causal graph analyses merely

establish significant direct versus diffuse coevolutionary

relationships between variables, and we explicitly avoid

attempting to infer the directionality of edges. We adopt this

conservative stance as we anticipate that feedback between

coevolving traits is highly likely, indeed at least as likely as

the unidirectional evolution of one trait in response to changes

in the other. Hence, while our analyses are consistent with the

interpretations that in some primate lineages (i) technical inno-

vation drove brain enlargement, or (ii) large brains (which

evolved for reasons unconnected to innovation) are faculta-

tively expressed in innovative behaviour, we suggest (iii) that

technical innovation and brain size coevolved in certain taxa,

with each driving enhancements in the other. In addition,
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while it is likely that technical innovation is more cognitively

complex than non-technical innovation, a suggestion that our

findings may appear to support, there are reasons to be cau-

tious in drawing this conclusion as technical innovations may

differ from other innovations in ways other than tool use.

Given the fact that both brains and innovations can per-

form many functions, a complete analysis would require

numerous interacting variables to be investigated. Moreover,

it remains an open question as to whether innovation is a

driving causal factor in our evolutionary analyses, or whether

the innovations observed in our survey are simply the by-

products of broader psychological processes. Reports of tech-

nical innovation are relatively sparsely distributed across the

primates, and close relatives often differ considerably in inno-

vation rates. This could reflect the difficulty in gathering a

comprehensive sample of primate innovation, but also

points to technical innovation being just a part of a larger

story. Even focused on the restricted set of variables con-

sidered in our analyses, the emergent picture is one in
which there are multiple drivers of the evolution of the pri-

mate brain and intelligence that feed back on each other in

complex, nonlinear ways. It would seem that innovativeness

in primates, like intelligence and cognition more generally, is

not to be explained by a single prime mover, but rather by a

complex of factors that encompass technical, social and

ecological intelligence.
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