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Abstract 

 

Information on the variability of extreme rainfalls in time and in space is of critical 

importance for many types of extreme hydrologic studies related to the estimation of runoff 

characteristics for planning, design, and management of various water resources systems. In 

particular, for urban watersheds that are generally characterized by a fast response, the design of 

different urban infrastructures (such as small dams, culverts, storm sewers, detention basins, and 

so on) require hence an accurate and robust estimation of extreme design rainfalls for very high 

temporal resolutions (ranging from a few minutes to one day) in order to provide an accurate and 

reliable description of runoff properties for urban inundation management. In addition, in recent 

years, climate change has been recognized as having a profound impact on the hydrologic cycle at 

different temporal and spatial scales. Consequently, the intensity and frequency of extreme storm 

events in most regions will be likely increased in the future. The present study is therefore was 

carried out to develop appropriate methods for improving the accuracy of design rainfall estimation 

at gauged and ungauged locations in the current climate as well as in the context of climate 

variability and climate change. This study can be divided into five primary parts. 

The first part presents a general procedure for assessing systematically the performance of 

different commonly used probability distributions in extreme rainfall frequency analyses based on 

their descriptive as well as predictive abilities. This assessment procedure relies on an extensive 

set of graphical and numerical performance criteria to identify the most suitable models that could 

provide the most accurate and most robust extreme rainfall estimates. The proposed systematic 
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assessment approach has been shown to be more efficient and more robust than the traditional 

model selection method based on only limited goodness-of-fit criteria. To test the feasibility of the 

proposed procedure, an illustrative application was carried out using 5-minute, 1-hour, and 24-

hour annual maximum rainfall data from a network of 21 raingages located in the Ontario region 

in Canada. Results have indicated that the Generalized Extreme Values (GEV), Generalized 

Normal (GNO), and Pearson Type 3 (PE3) models were the best models for describing the 

distribution of daily and sub-daily annual maximum rainfalls in this region. The GEV distribution, 

however, was preferred to the GNO and PE3 because it was based on a more solid theoretical basis 

for representing the distribution of extreme random variables. 

The second part introduces a new probability-weighted-moment-based scaling Generalized 

Extreme Value (GEV/PWM) distribution model for modeling rainfall extremes across a wide 

range of time scales (e.g., from several minutes to one day). The GEV distribution has been 

recommended in the national guidelines of many countries. The mathematical framework and the 

scaling properties of the proposed GEV/PWM model were derived. The relations between the 

GEV/PWM model and three existing scaling models such as the non-central-moment-based GEV 

(GEV/NCM) and the NCM- and PWM-based Gumbel models (GUM/NCM and GUM/PWM) 

were described. A comparative study was then carried out to asses the performance of these models 

using the available extreme rainfall data from a network of 74 raingages located across Canada. 

The scaling behaviours of extreme rainfall processes were also analyzed using both NCM and 

PWM estimation methods. Results of this comparative study have indicated the superior 

performance of the proposed GEV/PWM model as compared to the existing GEV/NCM, 

GUM/NCM, and GUM/PWM based on an extensive set of graphical and numerical comparison 
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criteria. In particular, the PWM method can provide a more accurate and more robust identification 

of the scaling behaviour of extreme rainfall processes than the NCM procedure for different rainfall 

scaling regimes and for higher order statistical moments. 

The third part proposes an innovative spatio-temporal statistical downscaling approach for 

establishing the linkage between daily extreme rainfalls at regional scales and daily and sub-daily 

extreme rainfalls at a given local site. The spatial downscaling was relied on the scaling factor 

method while the temporal downscaling was based on the proposed GEV/PWM model. The 

feasibility and accuracy of the proposed method were assessed for a case study in Ontario (Canada) 

using observed extreme rainfall data from seven raingages and climate simulation outputs from 21 

different Global Climate Models (GCMs) that have been downscaled by NASA to a regional 25-

km scale for the RCP 4.5 scenario. Results based on various graphical and numerical comparison 

criteria have indicated the feasibility and accuracy of the proposed downscaling approach. In 

addition, a robust assessment of the climate change impacts on the extreme rainfalls for urban 

drainage system design was performed using a series of statistical tests in sequence to evaluate the 

significant changes of rainfalls among different time periods. It was found that significant 

increases by 8% to 18% in extreme design rainfalls for return periods up to T = 25 years, and 

insignificant increases by 3% to 8% for the 50-year and 100-year design rainfalls for many 

locations, except for one location with a significant increase of 18%. The confidence intervals were 

also computed for these estimated design rainfalls with a range of uncertainty varying from 5% to 

22%. 

The fourth part introduces new scale-invariancce models for modeling rainfall extremes 

across a wide range of time scales. The spatial downscaling approaches have been extensively 
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developed to link the regional projected climate change simulations to the local daily extreme 

rainfalls in many studies. However, very few models have been proposed for describing the 

linkages between the daily and sub-daily extreme rainfalls. The present study presented hence 

some general mathematical frameworks for three commonly-used probability distributions in 

hydrologic frequency analyses such as the Generalized Logistic (GLO), Generalized Normal 

(GNO), and Pearson Type 3 (PE3) using both NCM and PWM estimation methods. Results of an 

illustrative application using the observed IDF data from a network of 74 raingages located across 

Canada have indicated the feasibility and accuracy of these new scale-invariance models. 

Furthermore, it was found that the PWM method can provide more accurate extreme rainfall 

estimates than those given by the NCM procedure. In particular, the GNO/PWM and GEV/PWM 

were found as the two best models, among the eight candidates considered, that could be 

recommended for the estimation of extreme design rainfalls in practice for the current climate as 

well as for future climate change scenarios. 

Finally, the fifth part consists of developing a convenient decision-support tool (referred 

herein as SMExRain) for the construction of robust rainfall IDF relations in consideration of model 

uncertainty and potential climate change impacts for the design and management of urban water 

systems at a given location of interest. More specifically, this tool can readily be used to identify 

in an objective and systematic manner the most suitable probability models for accurate and robust 

estimation of design rainfalls. In addition, in the context of a changing climate, the proposed tool 

was able to establish the linkage between large-scale climate predictors given by GCMs and the 

daily and sub-daily extreme rainfalls at a given site. The SMExRain represents therefore an 

efficient and practical tool for establishing reliable IDF relations at a given site and for assessing 
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the potential impacts of climate change on the estimated design rainfalls. An illustrative 

application of the SMExRain was presented to demonstrate the efficiency and usefulness of the 

proposed tool in engineering practice using climate simulations from 21 different GCMs and 

extreme rainfall data available from a network of 15 raingages located in Ontario (Canada).  
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Résumé 

 

L’information sur la variabilité des précipitations extrêmes dans le temps et dans l’espace 

est très importante pour plusieurs études hydrologiques extrêmes concernant le calcul du 

ruissellement pour la planification, la conception, et la gestion des réseaux de ressources 

hydriques. En particulier, pour les bassins versants urbains ayant généralement une réponse rapide, 

la conception de diverses infrastructures urbaines (par exemples, petites barrages, ponceaux, 

réseau d’égouts, bassins de rétention, etc.) requiert alors une estimation précise et robuste des 

pluies extrêmes de conception aux échelles de temps très fines (de quelques minutes jusqu’un jour) 

afin de fournir une estimation précise et fiable du ruissellement pour la gestion de l’inondation 

dans une région urbaine. De plus, plus récemment, on avait reconnu que le changement climatique 

avait causé des impacts significatifs sur le cycle hydrologique aux diverses échelles de temps et de 

l’espace. Par conséquent, l’intensité et la fréquence des événements de pluies extrêmes dans 

plusieurs régions pourraient être augmentés dans le futur. La présente étude était alors réalisée 

pour élaborer des méthodes plus appropriées pour améliorer la précision de l’estimation de pluie 

de conception pour des sites jaugés et non-jaugés pout le présent climat et également dans un 

contexte du changement et de la variabilité du climat.  Cette étude se divise en cinq parties 

principales.  

La première partie présente une méthodologie générale pour évaluer d’une façon 

systématique la performance des divers modèles de probabilité qui ont été fréquemment utilisés 

dans l’analyse fréquentielle des pluies extrêmes en considérant leur capacités descriptive et 
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prédictive. Cette procédure d’évaluation est basée sur un ensemble des critères graphiques et 

numériques pour identifier les modèles les plus appropriés qui sont capable de fournir une 

estimation le plus précise et le plus robuste des pluies extrêmes. On avait démontré que la méthode 

d’évaluation systématique proposée était plus efficace et plus fiable que la méthode traditionnelle 

qui était basée simplement sur les critères concernant la capacité descriptive de ces modèles.  Pour 

démontrer la faisabilité de la méthode proposée, on avait effectué une application de cette méthode 

aux données des pluies annuelles maximales de durées de 5 minutes, 1 heure et 24 heures du réseau 

pluviométrique de 21 stations en Ontario, Canada. Les résultats de cette application ont indiqué 

que la loi des valeurs extrêmes généralisée (VEG), la loi normale généralisée (NOG), et la loi 

Pearson de type 3 (PE3) sont les meilleurs modèles pour représenter les distributions des pluies 

maximales journalières et aux plus courtes durées pour cette région. Toutefois, parmi ces trois 

modèles, la loi VEG était la plus appropriée parce qu’elle possède une base théorique plus solide 

pour représenter la distribution des variables aléatoires extrêmes.  

 La deuxième partie de cette étude propose un nouveau modèle de distribution d’invariance 

d’échelle basé sur la loi VEG et les moments de probabilité pondérés (VEG/MPP) pour la 

modélisation des processus de pluies extrêmes pour une large gamme d’intervalles de temps (de 

quelques minutes à un jour). La loi VEG a été recommandée comme la meilleure loi dans les 

guides techniques de plusieurs pays. On a présenté en détail dans ce chapitre la méthodologie 

mathématique et les propriétés d’invariance d’échelle du modèle VEG/MPP. On a également 

expliqué la relation entre le modèle VEG/MPP et les trois modèles d’invariance d’échelle 

existants : modèle VEG basé sur les moments non-centrés (VEG/MNC), modèle Gumbel basé sur 

MNC (GUM/MNC), et modèle Gumbel basé sur MPP (GUM/MPP).  Une étude comparative a été 
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effectuée pour évaluer la performance de ces modèles en utilisant les données des pluies annuelles 

maximales disponibles d’un réseau de 74 stations à travers le Canada. On a également effectué 

une analyse des propriétés d’invariance d’échelle de ces données en considérant les deux méthodes 

d’estimation basées sur MNC et MPP. Les résultats de cette étude comparative ont indiqué la 

meilleure performance du modèle VEG/MPP par rapport aux modèles existants VEG/MNC, 

GUM/MNC, et GUM/MPP en se basant sur un nombre de critères de comparaison graphiques et 

numériques. En particulier, la méthode d’estimation basée sur MPP est capable de fournir une 

identification plus précise et plus robuste  des propriétés d’invariance d’échelle du processus de 

pluies extrêmes  que celle par la méthode basée sur MNC pour des régimes de pluie différents et 

pour des moments statistiques d’ordres supérieures. 

La troisième partie de l’étude propose une procédure innovatrice de mise à l’échelle 

statistique dans le temps et dans l’espace pour établir le lien entre les pluies extrêmes journalières 

à l’échelle régionale et les pluies extrêmes journalières et plus courtes durées en un point donné. 

La méthode de mise à l’échelle spatiale était basée sur un facteur de changement d’échelles tandis 

que la procédure de mise à l’échelle temporelle était basée sur le modèle VEG/MPP. Une 

application numérique avait été effectuée pour évaluer la faisabilité et la précision de la méthode 

proposée en utilisant les données de pluies extrêmes disponibles à sept stations pluviométriques 

en Ontario (Canada) et les données de simulation de 21 modèles du climat à l’échelle de 25 km 

fournies par le NASA pour le scénario RCP4.5. Les résultats de cette application ont indiqué la 

faisabilité et la précision de la méthode de mise à l’échelle spatio-temporelle proposée en se basant 

sur un nombre de critères de comparaison graphiques et numériques. De plus, une évaluation 

détaillée des impacts du changement climatique sur les pluies extrêmes pour la conception des 



 

xi 

 

réseaux de drainage urbain avait été effectuée en utilisant un nombre de tests statistiques pour 

identifier des changements significatifs des précipitations en des périodes de temps différentes.    

On a observé une augmentation significative de 8% à 18% pour la pluie de conception pour des 

périodes de retour jusqu’à T = 25 ans, et un changement moins important de 3% à 8% pour des 

pluies de 50 ans et 100 ans à plusieurs endroits, sauf à une place avec une augmentation 

significative de 18%. Les intervalles de confiance ont été également calculées pour ces pluies de 

conception avec une variabilité entre 5% et 22%. 

La quatrième partie de l’étude présente de nouveaux modèles d’invariance d’échelle pour 

la modélisation des processus de pluies pour une large gamme d’échelles temporelles. Plusieurs 

méthodes de mise à l’échelle spatiale sont disponibles dans des études précédentes pour établir le 

lien entre les projections du changement climatique à l’échelle régionale et les pluies extrêmes 

journalières en un site. Toutefois, il existe seulement quelques études qui examinent le lien entre 

les pluies extrêmes journalières et celles à courtes durées. Pour résoudre ce problème, la présente 

étude propose alors une formulation mathématique générale pour trois modèles de probabilité qui 

sont fréquemment utilisées en analyse fréquentielle hydrologique : la loi Logistique généralisée 

(LOG), la loi Normale généralisée (NOG) et la loi de Pearson type 3 (PE3) en utilisant les deux 

méthodes d’estimation basées sur MNC et MPP.   Les résultats d’une application en utilisant les 

données des pluies extrêmes disponibles aux 74 stations à travers le Canada ont indiqué la 

faisabilité et la précision de ces nouveaux modèles. De plus, on a trouvé que la méthode 

d’estimation basée sur MPP est plus précise que la méthode basée sur MNC. En particulier, les 

modèles NG/MPP et EVG/MPP sont les meilleurs parmi 8 modèles considérés.  On peut 
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recommander ces deux modèles pour l’estimation des pluies de conception en pratique pour le 

présent climat ou pour les scénarios de changement climatique dans le futur. 

Finalement, la cinquième partie de cette recherche consiste à développer un outil pratique 

de l’aide à la décision (appelé SMExRain) pour la dérivation des relations intensité-durée-

fréquence (IDF) en un site donné en considérant l’incertitude des modèles choisis et les impacts 

potentiels par le changement climatique pour la conception et la gestion des réseaux de ressources 

hydriques. Plus spécifiquement, cet outil peut être utilisé pour identifier d’une façon systématique 

et objective le modèle de probabilité le plus appropriée pour une estimation précise et robuste de 

la pluie de conception. En plus, dans le contexte de changement climatique, l’outil proposé permet 

d’établir les liens entre les prédicteurs climatiques à l’échelle globale fournis par les modèles 

globaux du climat et les pluies extrêmes journalières et à courtes durées en un site donné. L’outil 

SMExRain représente alors un outil efficace et pratique pour l’estimation des relations IDF et pour 

l’évaluation les impacts potentiels du changement climatique sur la pluie de conception. Une 

application numérique a été effectuée pour démontrer l’efficacité et l’avantage en pratique de cet 

outil en utilisant les données de simulation fournies par 21 modèles globaux du climat et les 

données des pluies extrêmes disponibles d’un réseau de 15 stations pluviométriques en Ontario 

(Canada). 
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Chapter 1. General Introduction 

 

1.1 Problem Statement 

Canada and many nations over the world have significant investments in urban water 

infrastructures (urban drainage systems, water supply systems, wastewater treatment plants, etc.). 

Every day, residents rely on these infrastructures to protect lives, property, and to reduce the 

pollution effects on natural systems such as creeks, rivers, and lakes. The installation of the urban 

water infrastructures, however, could make the cities more vulnerable to extreme rainfall events 

which are a major contributor to many severe flooding events in urban areas (CSA, 2012; Lemmen 

et al., 2016; Zhang et al., 2019). Infrastructure failure and loss are often associated with these 

flooding events as infrastructure design criteria are exceeded (CSA, 2012). More recently, it has 

been observed that there is a notable increase in damages caused by extreme storms in many urban 

municipalities across Canada (IBC, 2018). Some typical examples of the impacts of these extreme 

weather events in Canada include the extreme storm in Toronto on July 8, 2013 - roughly 126 mm 

of rain fell over a two-hour duration- causing a severe loss of  $982 million to the Canadian 

insurance industry; the severe storm in Toronto on August 19, 2005 - resulting in $762 million in 

losses (IBC, 2018); and other extreme rainfalls over the past years that have caused severe damages 

to several  urban municipalities across the country such as Calgary, Saskatoon, Winnipeg, London, 

Burlington, Ottawa, Montreal and Moncton (Sandink, 2015). Hence, an accurate estimation of the 

design storm (that is, the rainfall intensity of an extreme storm event for a given duration and for 

a given probability of occurrence) is of critical importance for sustainable design and management 
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of the urban water infrastructures (see Figure 1-1). Furthermore, for most cities it is expected that 

these increasing trends will continue over the coming decades due to the increasing climate 

variability and climate change in addition to other non-climatic effects such as population growth 

and urban land-use change. Consequently, the design of urban water infrastructures needs urgently 

to incorporate more sustainable approaches to account for these climate and environmental 

changes.     

 

Figure 1-1. Design storm and extreme rainfall intensity-duration-frequency (IDF) relations 

In current engineering practice, for estimating the “design storm” the extreme rainfall 

intensity-duration-frequency (IDF) relations at a location of interest is required. These IDF 

relations represent hence a critical design tool that is commonly used by hydraulic engineers and 

water resource professionals for sustainable design and management of the urban drainage 

networks (Chow, 1964; WMO, 2009a). However, there are many challenging issues in the existing 

methods for constructing IDF relations in practice, especially in the context of a changing climate. 
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These include: (i) the lack of a suitable procedure for selecting an appropriate probability 

distribution model for rainfall frequency analysis; (ii) the unavailability of sub-daily extreme 

rainfall series at a given location of interest; (iii) the lack of a suitable downscaling procedure for 

establishing the linkages between the climate projections given by Global Climate Models (GCMs) 

at global scales and the observed extreme rainfalls at a given local site; and (iv) the lack of a 

decision-support tool that can be used for constructing robust rainfall IDF relations in 

consideration of model uncertainty and climate change information. 

First of all, to construct the IDF curves, different observed annual maximum rainfall series 

(AMS) from a few minutes to one day are required at the given location of interest (Chow, 1964; 

WMO, 2009a). The historical records of the “gauged” site must be sufficiently long, normally 

more than 20 years (WMO, 2009a), in order to have a reliable extreme rainfall frequency analysis 

result. The at-site frequency analysis (ASFA) can be then performed for the “gauged” site by fitting 

an appropriate probability distribution model to the AMS (see Figure 1-2) and then computing the 

model parameters and design rainfall quantiles (Stedinger et. al., 1993; WMO, 2009a). Currently, 

there are many probability models available in the literature for modelling the distribution of 

extreme hydrologic variables at a single site. However, there is no general agreement as to which 

distribution(s) should be used (WMO, 2009a; Nguyen et al., 2017). Furthermore, in current 

practice, the performances of several distributions were compared and assessed based on different 

graphical and statistical assessment criteria, such as quantile-quantile plots and goodness-of-fit 

tests. A probability distribution is then considered as the most suitable among many plausible 

candidates if it can provide the best fit to the observed data (Chow, 1964; Kite, 1977; Hosking and 

Wallis, 1997; Rao and Hamed, 2000). Consequently, the best-fit selection technique depends 

strongly on the characteristics of the existing rainfall records at a given site. However, this 
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approach cannot be used to assess the performance of the selected models for extreme events that 

occur outside the observed rainfall record; that is, based on the best “predictive” ability of a given 

probability model. This model performance assessment criterion (i.e., the model predictive ability) 

is considered critical in the selection of the most suitable probability model for estimating the 

extreme design rainfall for design purposes because the design rainfall usually requires a long 

return period (e.g., more than 100 years) that is much longer than the available historical rainfall 

records. Hence, when comparing the performance of different probability models for extreme 

design rainfall estimation, it is necessary to assess the performance of a probability model based 

on both its descriptive and predictive abilities. The present study proposed therefore a general 

procedure for assessing systematically the performance of different probability distributions for 

rainfall frequency analyses based on both their descriptive as well as predictive abilities.  So far, 

very few studies have been able to provide a similar model assessment (Wilks, 1993; Oztekin, 

2007). 

In many circumstances, the short-duration (sub-daily or sub-hourly) extreme rainfall data 

are often unavailable or very limited (e.g. less than 10 years) at the location of interest while the 

daily data are widely available due to the cost of measurement and maintenance (Nguyen et al., 

2002b; Mekis et al., 2018). These sites are referred to as “partially gauged” sites (see Figure 1-2). 

In this case, the short-duration extreme rainfalls or their distributions must be estimated in order 

to be able to construct the IDF relations for extreme rainfalls at sub-daily time scales. Scale-

invariance (or scaling) models that relate the statistical properties of extreme hydrologic variables 

over a wide range of time scales have received increasing attention as a promising tool for dealing 

with this issue (Nguyen et al., 1998; Sposito, 1998; Hubert, 2001; Bernardara et al., 2007). In other 

words, the scale-invariance technique could be used to infer the sub-daily extreme rainfalls from 
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daily extreme rainfalls available at the site of interest. In the present study, scale-invariance models 

based on the probability weighted moments (PWMs) will be developed for modeling extreme 

rainfall processes over a wide range of time scales (i.e., from several minutes to one day). The 

PWMs have been known to be more robust against outliers and hence more suitable for use with 

short rainfall records as compared to the ordinary statistical moments that have been commonly 

used in some previous studies (Nguyen et al., 2002b). 

 

Figure 1-2. At-site and regional frequency analysis of extreme hydrologic variables 
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In addition, for the completely “ungauged” sites; that is, where no daily or sub-daily 

extreme rainfall data are available, it is necessary to develop a method for transferring the 

estimated design rainfall quantiles from the neighboring sites to the given location of interest 

(Hosking and Wallis, 1997; Nguyen et al., 2002b). Such a technique is referred to as the regional 

frequency analysis approach that consists of three basic tasks: (i) the identification of regional 

rainfall homogeneity or similarity; (ii) the selections of an underlying regional rainfall distribution 

as well as a proper parameter-estimation method; and (iii) the transfer of the estimated regional 

values to the at-site values at the location of interest (Hosking and Wallis, 1997). In the first step, 

the scaling approach has been used to identify rainfall regional homogeneity (Nguyen and Pandey, 

1994; Nguyen et al., 1998). In the second step, the selection of a suitable regional rainfall 

distribution could be based on a similar procedure as being used for the at-site frequency analysis. 

In the last step, the current practice is relied on the index flood (or index rainfall) method to 

estimate the regional value and then to transfer this estimated value to the study location where 

data are unavailable (Dalrymple, 1960; Ojha et al., 2008). The index flood/rainfall method is, 

however, considered as a special case of the scaling approach (Smith, 1992). In particular, Nguyen 

et al. (2002b) used the scaling GEV distribution to estimate extreme rainfalls at ungauged sites by 

transferring the rainfall NCMs from neighboring sites to the site of interest located within the 

rainfall homogeneous region. Therefore, in the present study a special procedure was developed 

for constructing the IDF curves for an ungauged location.  

In addition to the above-mentioned issues related to partially-gauged and ungauged sites, 

the climate change has been recently recognized as having a profound impact on the hydrologic 

cycle, especially for urban areas (Willems et al. 2012; Kharin et al., 2013; Lemmen et al., 2016; 

Zhang et al., 2019). However, the existing traditional methods for constructing IDF relations were 
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not able to account for the possible climate change impacts. Consequently, given the current 

context of a changing climate there is an urgent need to develop improved methods for estimating 

IDF curves for different possible climate change scenarios in order to improve the design and 

management of urban water infrastructures (CSA, 2012; Simonovic et al., 2016). The main 

challenge is how to develop the linkages between daily rainfalls at global/regional scales given by 

global climate models (GCMs) and daily and sub-daily extreme rainfalls at a local site of interest. 

Downscaling approaches have been proposed in many previous studies to downscale these 

global/regional-scale GCM daily information to daily rainfall projections at a local scale. 

However, these daily downscaled data are still considered too coarse in both spatial and temporal 

resolutions and hence they are not suitable for climate change impact studies for small urban 

watersheds (Nguyen and Nguyen, 2007; 2008). Therefore, in the present study, a novel spatio-

temporal statistical downscaling approach was developed for establishing the linkages between 

daily rainfall projections by GCMs and daily and sub-daily extreme rainfalls at a local site of 

interest. 

Finally, IDF relations are essential for estimating extreme rainfalls for design of various 

hydraulic structures (CSA, 2012; Simonovic et al., 2016). However, in current engineering 

practice, the construction of these relations represents a challenging and tedious task since it 

involves the uncertainty analysis of different probability models and the frequency analyses of a 

large amount of extreme rainfall data for different durations at a given site or over many different 

locations (Nguyen and Nguyen, 2019b). In particular, the selection of the best probability model 

for extreme rainfalls is the most difficult decision since it requires two main challenging tasks: (i) 

a detailed evaluation of the descriptive and predictive abilities of each selected distribution as well 

as the analysis of its uncertainty; and (ii) a systematic comparison of the accuracy and robustness 



 

8 

of all candidate models based on a number of graphical and numerical performance criteria 

(Nguyen et al., 2017). Furthermore, to assess the climate change impacts on the IDF relations, 

there are many different sources of downscaled climate projections available from a large number 

of different organizations in Canada and in many other countries (Nguyen and Nguyen, 2019a, 

2020). Each data source itself contains a very large amount of data from several different climate 

models. It is therefore necessary to develop a decision-support tool that could facilitate the 

construction of robust rainfall IDF relations at a given site or at many sites of interest in 

consideration of the available large data sets and the different sources of uncertainty from different 

probability and climate models. The proposed tool will be a convenient and effective means for 

improving the estimation of the design rainfall for design and management of urban water systems. 

1.2 Objectives of the Study 

In view of the afore mentioned issues, the overall objective of the proposed research is to 

develop innovative methods for modelling extreme rainfall processes over a wide range of spatial 

and temporal scales in the context of a changing climate and for cases where rainfall records are 

limited or unavailable. Results of this research could provide new procedures and tools for 

improving the accuracy of design rainfall estimation for water infrastructure design.  These 

procedures and tools could also be used for high-quality climate change impact assessment studies 

in water-related areas such as agriculture, irrigation and drainage, transportation, public health, 

and so on. More specifically, the proposed research is aiming at the following objectives:  

(1) Development of a systematic approach for selecting the best probability model(s) that 

could accurately describe the distributions of rainfall extremes. 
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(2) Development of an original scale-invariance mathematical framework for the 

Generalized Extreme Value (GEV) distribution based on the probability weighted 

moment (PWM) concept to represent the distributions of rainfall extremes over a wide 

range of time scales. 

(3) Development of an innovative approach to establishing the linkages between daily 

climate change information provided by large scale climate models to sub-daily extreme 

rainfall processes at a given local site. 

(4) Development of original scale-invariance mathematical frameworks for commonly-used 

probability distributions for modelling of extreme rainfall processes over different time 

scales: Generalized Logistic (GLO), Generalized Normal (GNO), and Pearson Type 3 

(PE3) probability distributions. 

(5) Development of a decision-support tool for constructing robust extreme rainfalls IDF 

relations for gauged and ungauged sites, and for assessing the climate change impacts 

on extreme design rainfalls. 

1.3 Organization of the Thesis and Chapter Overview 

The thesis consists of eight chapters and the coherent links between the five main chapters 

(Chapters 2 to 6) are indicated in Figure 1-3. Chapter 1 provides a general introduction of the main 

research topic related to the estimation of extreme design rainfall. This chapter also presents an 

overview of the limitations of existing methods, the key challenging issues related to this rainfall 

estimation, especially in the context of climate variability and climate change, and the description 

of the specific objectives of this research to address these issues.  Chapter 2 introduces an original 

systematic procedure for evaluating the performance of different popular probability distributions 
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for rainfall frequency analyses in order to determine the best probability models that could provide 

the most accurate and most robust extreme design rainfall estimates. Chapter 3 proposes a novel 

scale-invariant Generalized Extreme Value (GEV) distribution model based on the Probability-

Weighted Moment (PWM) concept. This GEV/PWM model can be used for modeling extreme 

rainfall processes in consideration of the scaling properties of rainfalls over a wide range of time 

scales. For assessing the climate change impacts on extreme rainfalls at a given location , Chapter 

4 presents an innovative spatio-temporal statistical downscaling approach for establishing the 

linkage between daily extreme rainfalls given by climate models at regional scales and daily and 

sub-daily extreme rainfalls at a local (point) scale using the proposed GEV/PWM model. Chapter 

5 introduces a more general original mathematical framework for modeling extreme rainfall 

processes over different time scales using the Generalized Logistic (GLO), Generalized Normal 

(GNO), and Pearson Type 3 (PE3) probability distributions.  These probability models have been 

recommended in the technical design guidelines in several countries. Chapter 6 presents an 

effective and practical decision-support tool to assist in the evaluation of the performance of the 

different procedures as described in Chapters 2 to 5 for constructing robust rainfall IDF relations 

in consideration of the model uncertainty and climate change information for the design and 

management of urban water systems. The major findings and recommendations for further studies 

are summarized in Chapter 7.  Finally, Chapter 8 provides a summary of the original contributions 

of the present research as well as the list of peer-reviewed journals and refereed conference papers 

based on the results of this doctoral thesis work. 
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Figure 1-3. The big picture and the five main chapters of the thesis  
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Chapter 2. A Systematic Approach to Selecting the Best 

Probability Models for Annual Maximum Rainfalls – A 

case study using data in Ontario (Canada)  

 

2.1 Introduction 

Design and management of various hydraulic structures, particularly urban drainage 

systems, require information on the probability of annual maximum rainfall occurrence and 

amount of durations from several minutes to days. This information is often presented in the form 

of extreme rainfall intensity-duration-frequency (IDF) relations (Chow, 1964). In order to 

construct IDF curves, first, annual maximum rainfall series (AMS) are generally required to 

perform rainfall frequency analyses due to its much simpler structure comparing to the peak over 

threshold series (Lang et al., 1999; WMO, 2009a; WMO, 2009b). The next step is to select a 

suitable distribution that could describe well the distribution of the annual maximum rainfall data. 

This task, however, is not easy and remains as one of the major challenges in engineering practice 

due to significant spatial and temporal variability of rainfall maxima.  

In fact, many probability models have been proposed for representing the distribution of 

annual hydrologic extremes at a single site (Chow, 1964; Kite, 1977; Stedinger et. al., 1993; 

Hosking and Wallis, 1997; Rao and Hamed, 2000; Nguyen et al., 2002a; WMO, 2009a; Salinas et 

al., 2014a, 2014b); however, there is still no general agreement as to which distribution(s) should 
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be used due to the lack of a suitable evaluation procedure. The national guidelines of different 

countries recommend the use of different distributions. For instance, Log-Pearson 3 has been 

recommended in the US in Bulletin 17B (Griffis and Stedinger, 2007). The generalized extreme 

value (GEV) distribution and LP3 are recommended in Australia (Ball et al., 2016). GEV 

distribution is also a recommended choice in many other countries in Europe, including Austria, 

Germany, Italy, and Spain (Salinas et al., 2014b). However, many other distributions have also 

been used popularly, including the Gumbel (GUM) distribution in Finland and Spain, the 

generalized Pareto (GPA) distribution in Belgium, the generalized logistic (GLO) distribution in 

the UK (Salinas et al., 2014b). In Canada, the use of a specific distribution is not compulsory, 

however, LP3, Log-normal three parameters (LN3), GEV, and GUM have been used popularly 

(Chow and Watt, 1991; Adamowski et al. 1996; Alila, 1999; Hansen, 2015). Environment Canada 

currently uses GUM to construct at-site IDF curves for all stations in Canada (Environment 

Canada, 2014). This distribution is also recommended for the development of rainfall IDF relations 

by the Canadian Standard Association (CSA, 2012).  

In general, the common method for selecting a proper probability model is mainly based 

on the best fit of the model to the observed data; that is, the model with its best descriptive ability 

(Mielke and Johnson, 1974; Wilks, 1993; Laio et al., 2009; Haddad and Rahman, 2011). 

Consequently, the best-fit selection approach depends strongly on the characteristics of the existing 

rainfall record at a given site. However, this approach cannot be used to assess the performance of 

the selected models for extreme events that occur outside the considered rainfall record; that is, 

based on the best model predictive ability. This characteristic (i.e. model extrapolation or 

prediction) is considered vital when comparing the performance of different probability models 

for annual extreme rainfall series, however, there are only a few studies concerning this point 
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(Wilks, 1993; Oztekin, 2007). Nevertheless, none of these publications have addressed the 

comparison of a large number of popular probability models for a wide range of short-to-long 

duration AMS data based on both the descriptive and predictive performance.  

In view of the above-mentioned issues, the present study proposes therefore a systematic 

procedure for assessing and comparing the performance of different probability models in terms 

of both their descriptive and predictive abilities in order to determine the “best” model that could 

provide the most accurate extreme rainfall estimates. More specifically, ten common probability 

distributions for extreme rainfalls were considered in this comparative study (WMO 2009a): Beta-

K (BEK), Beta-P (BEP), GEV, GLO, LN3 or Generalized Normal (GNO), GPA, GUM, LP3, 

Pearson Type III (PE3), and Wakeby (WAK). Graphical and numerical comparison criteria were 

utilized to evaluate the performance of the selected probability models based on their degree of 

overall fit to the data, their degree of fit at the right-tails, the accuracy of their right-tail 

extrapolations, which is of particular importance for engineering design purposes (El Adlouni et 

al., 2008), and their overall computational facility. The feasibility of the suggested procedure was 

tested using a total of 63 available AMS data for 5-minute, 1-hour, and 24-hour durations from a 

network of 21 raingauges located in the Ontario region in Canada. These data are provided in 

Section 2.2, while the methodology – the systematic approach, is described in detail in Section 2.3. 

Section 2.4 presents the results and Section 2.5 provides the conclusions. 

2.2 Study Sites and Data 

A total of 63 annual maximum rainfall series for three different durations from a network 

of 21 stations located in the Ontario province in Canada were selected for this study as shown in 

Figure 2-1. Details of the 21 study stations are presented in Table 2-1. The record lengths for these 
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datasets vary from 40 years to 75 years. These data were obtained from the website of the 

Government of Canada (Environment Canada, 2014). Selection of the stations relied on the quality 

of the data, the adequate length of available historical extreme rainfall records, and the 

representative spatial distribution of raingauges.  

 

Figure 2-1. Locations of 21 study raingauges in Ontario. The provincial digital elevation model was 

obtained from LIO (2016).  

In order to ensure the quality of data, only data from recording raingauges under the 

supervision of the Atmospheric Environmental Service of Environment Canada were used. At least 

40 years of historical records is required in order to provide reliable estimates of rainfall quantiles 

for the descriptive ability test. Furthermore, half of the sample have at least 20 years of record for 

the purpose of distribution fitting and then extrapolating for reliable predictive ability evaluation. 

The raingauges were selected from different geography locations across West to East to probably 
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represent different climatic conditions of Ontario. Finally, for illustrative application purposes, 

three rainfall intensity durations (5-minute, 1-hour, and 24-hour) were chosen based on their 

popular applications in practice such as for urban drainage system design. 

Table 2-1. Details of the 21 study stations used in this research, including identification number (ID), 

station name, latitude (Lat, degree), longitude (Lon, degree), elevation (Elev, meter), record year (Start-

End), and record length (RCL, year) 

No ID Station name Lat Lon Elev Start End RCL 

1 6012199 Ear Falls (AUT) 50.63 -93.22 362 1952 2006 49 

2 6016525 Pickle Lake (AUT) 51.45 -90.22 390 1953 2004 41 

3 6034075 Kenora A. 49.79 -94.37 409 1966 2007 40 

4 6042716 Geraldton A. 49.78 -86.93 348 1952 2006 48 

5 6048268 Thunder Bay CS 48.37 -89.33 199 1952 2006 47 

6 6057592 Sault Ste Marie A. 46.48 -84.51 192 1962 2006 45 

7 6078285 Timmins Vic. Power A. 48.57 -81.38 294 1952 2006 47 

8 6085700 North Bay A. 46.36 -79.42 370 1964 2006 41 

9 6104175 Kingston Pumping Stn 44.24 -76.48 76 1914 2007 63 

10 6105978 Ottawa CDA RCS 45.38 -75.72 79 1905 2007 50 

11 6127514 Sarnia Airport 42.99 -82.3 180 1962 2006 40 

12 6131415 Chatham WPCP 42.39 -82.22 180 1966 2007 40 

13 6131983 Delhi CS 42.87 -80.55 231 1962 2007 42 

14 6137362 St Thomas WPCP 42.77 -81.21 209 1926 2007 75 

15 6139525 Windsor A. 42.28 -82.96 189 1946 2007 60 

16 6143090 Guelph Turf Grass CS 43.55 -80.22 325 1954 2003 42 

17 6144478 London CS 43.03 -81.15 278 1943 2007 57 

18 6153301 Hamilton RBG CS 43.29 -79.91 102 1962 2007 44 

19 6158355 Toronto City 43.67 -79.4 112 1940 2007 59 

20 6158731 Toronto Intl. A. 43.68 -79.63 173 1950 2013 60 

21 6158875 Trenton A. 44.12 -77.53 86 1965 2013 41 

The L-moment ratio diagram of all 63 AMS is presented in Figure 2-2. The wide spread of 

data points from one cloud or one group of the same duration in particular and from all three clouds 

or three groups of different durations in general on L-diagram show that no distribution can be 

served at the best distribution for all these datasets. The majority of the 5-min data points seem to 
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fall close to the PE3, GNO, and GEV distributions, while those of 1-hour and 24-hour durations 

are close to the GEV, GNO, and GLO distributions.  

 

Figure 2-2.  L-moment ratio diagram of 63 AMS from 21 raingauges. The blue diamond and ‘+’, red 

triangle and ‘+’, and black rectangle and ‘+’ markers denote 5-min, 1-hour, and 24-hour dataset L-

skewness and L-kurtosis and their corresponding group average values respectively.  

It is acknowledged that one can go further by conducting the discordancy measure to group 

stations within homogeneous regions and then taking the distribution(s) which the average points 

fall close to as the representative distribution(s) for those distinct delineated homogeneous regions. 

However, using this approach, some distributions including BEK, BEP, and WAK, could not be 

investigated. In addition, the performances of the predictive ability of different distributions in 

predicting quantiles, could not be investigated. This section presents the application of a systematic 
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procedure to identify the most appropriate distribution(s) for Ontario daily and sub-daily AMS. 

The proposed procedure is presented in Section 2.3. 

2.3 Methodology: A Systematic Approach to Determining the ‘Best’ 

Distribution for Modeling Annual Maximum Rainfall Processes 

This section presents a systematic evaluation procedure for examining and comparing 

different popular probability distributions in order to determine the most appropriate probability 

model(s) for depicting the distribution of annual maximum rainfalls. Ten probability models 

commonly used in hydrologic frequency analyses and their corresponding parameter estimation 

methods are first presented in Section  2.3.1. The graphical and numerical comparisons of model 

performance in terms of both descriptive and predictive abilities are then described in Section 

2.3.2.  

2.3.1 Probability distributions and parameter estimation methods 

Ten probability models of two to five parameters commonly used in hydrologic frequency 

analyses were examined, including BEK, BEP, GEV, GLO, GNO, GPA, GUM, LP3, PE3, and 

WAK (Chow, 1964; Kite, 1977; Wilks, 1993; Stedinger et. al., 1993; Hosking and Wallis, 1997; 

Rao and Hamed, 2000; WMO, 2009a). Among them, only GUM and WAK contain two and five 

parameters respectively, the remaining models contain three parameters. These distributions are 

chosen based on their popularity in practice and their potential suitability for application in the 

study region. A summary of the ten models including their probability density functions, quantile 

functions, and their parameters is provided in Table 2-2. A brief explanation of all 10 distributions 

are presented as follows.  
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The GNO distribution is the re-parameterized version of the three-parameter log-normal 

(LN3) distribution (Hosking and Wallis, 1997). The LN3 distribution has its limit on fitting 

expectations in real situations where many times the data could show different trend (Martin and 

Perez, 2009). Still the fitting methods of the log-normal distribution is found robust and reliable, 

especially when the distribution of the logarithms departs from normality (Stedinger, 1980). The 

modified version has several advantages over the LN3 since it includes both LN3 distribution with 

positive and negative skewness and the normal distribution as the special case of zero skewness 

(Hosking and Wallis, 1997).  

The PE3 and LP3 distributions are the most popular models in the Gamma family 

frequently used for hydrological frequency analysis (Bobée and Ashkar, 1991). If the log of rainfall 

data follows a PE3 distribution, then the rainfall data is said to follow a LP3 distribution. The LP3 

has been extensively used as the base method of flood frequency analysis in the US (WMO, 

2009a). The performance of LP3 can widely vary according to the parameter estimation applied. 

The estimation procedure for the LP3 recommended by the U.S. Water Resources Council in 1967 

and subsequently updated in 1975, 1977 and 1981 was found unreliable after many investigations 

(Arora and Singh, 1989). LP3 has a tendency to give low upper bounds of the precipitation 

magnitude, which is undesirable for analyzing maximum events (Cunnane, 1989).  

The GUM and GEV are from the family of extreme value distributions. GEV is an 

incorporated general mathematical form of the type I, II and III extreme value distributions for 

maxima and GUM is a special case of GEV when the shape parameter is equal to zero. GUM can 

be used when an independent set of daily rainfall with the exponential like upper tail (WMO, 

2009a). The GEV distribution has been commonly used to describe the probability distribution of 

annual extreme rainfalls and for the construction of the IDF curves (Schaefer, 1990). 
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The GLO distribution used in this paper is introduced by Hosking and Wallis (1997). When 

the skewness is equal to zero, the GLO becomes the logistic distribution. GLO is a re-

parameterized form of the log-logistic distribution proposed by Ahmad et al. (1988). The 

parameterization and behaviour on tails with large values of GLO are similar to the GEV 

distribution (WMO, 2009a).  The distribution has been used for flood frequency analysis in the 

United Kingdom as suggested by Robson and Reed (1999).  

The WAK distribution is first introduced by Houghton (1978) to be used for the flood 

frequency analysis. However, the associated parameter estimates often have large standard errors 

which result in wide confidence intervals for the quantile estimates (Ahmad et al., 1988). The GPA 

distribution is a special case of the WAK and exponential distribution with three parameters. It is 

useful for modelling extreme rainfalls or floods that exceed a specified lower bound (Öztekin 

2005; WMO, 2009a).     

The BEK and BEP distributions are two distinct special cases of the generalized beta 

distribution. These distributions appear to provide reasonable descriptions of commonly 

encountered types of measurements and, possess very desirable computational properties. BEK 

was found providing an excellent computational facility with order statistic distributions (Mielke 

and Johnson, 1974; Murshed et al., 2011). 

Regarding the estimation of the distribution parameters, some common procedures include 

the method of moments, the maximum likelihood method, the method of probability weighted 

moments and L-moments (Chow, 1964; Kite, 1977; Hosking, 1990; Stedinger et. al., 1993; 

Hosking and Wallis, 1997; and Rao and Hamed, 2000), and the method of non-central moments 

(NCMs) (Nguyen et al., 2002b). These approaches differ in the weights they give to different 
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elements in the selected data set.   The maximum likelihood method yields asymptotically optimal 

estimators of the parameters for some distributions; however, it often involves tedious 

computation, and it is very sensitive to the computational techniques considered.  The probability 

weighted moments and L-moments estimators are more robust than conventional moments to 

outliers in the data and sometimes yield more efficient parameter estimates than the maximum 

likelihood estimates (Stedinger et al., 1993; Hosking and Wallis, 1997). The method of NCMs has 

been shown to be able to consider some scale-invariance property of the NCMs of extreme rainfall 

data for different durations (Nguyen et al., 2002b; Nguyen and Nguyen, 2008; Nguyen et al., 

2007). 

Hence, in the present study, the method of L-moments is used for all distributions (Hosking 

and Wallis, 1997) except the BEK and BEP models estimated by the method of maximum 

likelihood (Mielke and Johnson, 1974). The method of L-moments is also available for BEK 

(Murshed et al., 2011), however, it is not preferable since the estimation procedure is more 

complicated and tedious than the method of maximum likelihood, but results are approximate. 

GEV parameter is estimated by both the L-moment (denotes as GEV) and non-central moment 

(denotes as GEV*) methods.  

In general, it is expected that models with more parameters could fit better to the observed 

data; however, their parameter estimates would be more complex; and more importantly, their 

prediction abilities may not be better than those models with fewer parameters. The performance 

assessment of a distribution, hence, should rely on both its descriptive and predictive abilities. 
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Table 2-2. Probability distributions and their parameters 

Model PDF 𝒇(𝒙) and Quantile function 𝒙(𝑭) Parameters Ref. 

BEK 
𝑓(𝑥) = (

𝛼𝜃

𝛽
) (

𝑥

𝛽
)
𝛼𝜃−1

[1 + (
𝑥

𝛽
)
𝜃

]
−(𝛼+1)

; 

𝑥(𝐹) =  𝛽 [
𝐹
1
𝛼⁄

(1−𝐹
1
𝛼⁄ )
]

1
𝜃⁄

 ;   (𝑥 > 0, 𝛼 > 0, 𝛽 > 0, 𝜃 > 0) ;  

𝛼, 𝜃 > 0: shape  

 𝛽 > 0: scale  

Mielke & 

Johnson 

(1974) 

BEP 
𝑓(𝑥) = (

𝛼𝜃

𝛽
) (

𝑥

𝛽
)
𝜃−1

[1 + (
𝑥

𝛽
)
𝜃

]
−(𝛼+1)

; 𝑥 > 0 

𝑥(𝐹) =  𝛽 [(1 − 𝐹)−
1

𝑎 − 1]

1
𝜃⁄

;   

𝛼, 𝜃 > 0: shape  

 𝛽 > 0: scale  

Mielke & 

Johnson 

(1974) 

GEV, 

GUMa 
𝑓(𝑥) =

1

𝛼
𝑒−(1−𝑘)𝑦−𝑒

−𝑦
;  𝑦 = {

−𝑘−1 log [1 −
𝑘(𝑥−𝜉)

𝛼
] ;  𝑘 ≠ 0

(𝑥 − 𝜉) 𝛼⁄                 ;   𝑘 = 0
 

𝑥(𝐹) = {𝜉 +
𝛼[1 − (− log 𝐹)𝑘]

𝑘
   ;  𝑘 ≠ 0

𝜉 − 𝛼log (− log𝐹)       ;  𝑘 = 0

 

𝜉: location 

𝛼: scale 

𝜅: shape 

Jenkinson 

(1955); 

Von Mises 

(1954); 

Gumbel 

(1958) 

GLO 
𝑓(𝑥) =

𝛼−1𝑒−(1−𝑘)𝑦

(1 + 𝑒−𝑦)2
, 𝑦 = {

−𝑘−1𝑙𝑜𝑔 {1 −
𝑘(𝑥 − 𝜉)

𝛼
} , 𝑘 ≠ 0

  (𝑥 − 𝜉) 𝛼⁄                        , 𝑘 = 0

 

  𝑥(𝐹)) = {
𝜉 + 𝛼

{
1−𝐹

𝐹
}
𝑘

𝑘
,   𝑘 ≠ 0

𝜉 − 𝛼𝑙𝑜𝑔 {
(1−𝐹)

𝐹
} ,   𝑘 = 0

 

𝜉: location 

𝛼: scale 

𝜅: shape 

Hosking & 

Wallis 

(1997) 

GNO 
𝑓(𝑥) =

𝑒
𝑘𝑦−

𝑦2

2

𝛼√2𝜋
 ;     𝑦 =  {

−𝑘−1 log [1 −
𝑘(𝑥−𝜉)

𝛼
] ; 𝑘 ≠ 0

(𝑥 − 𝜉) 𝛼⁄    ;       𝑘 = 0
 

𝜉: location 

𝛼: scale 

𝜅: shape 

Hosking & 

Wallis 

(1997) 

GPA 
𝑓(𝑥) =

1

𝛼
𝑒−(1−𝑘)𝑦 , 𝑦 = {

−𝑘−1 log (1 −
𝑘(𝑥 − 𝜉)

𝛼
) ; 𝑘 ≠ 0

(𝑥 − 𝜉) 𝛼⁄             ;  𝑘 = 0

 

𝑥(𝐹) = {𝜉 +
𝛼[1 − (1 − 𝐹)𝑘

𝑘
 ;   𝑘 ≠ 0

𝜉 − 𝛼 log(1 − 𝐹);   𝑘 = 0

 

Range: 𝜉 ≤ 𝑥 ≤ 𝜉 +
𝛼

𝑘
 if 𝑘 > 0; 𝜉 ≤ x < ∞ if k ≤ 0 

𝜉: location 

𝛼: scale 

𝜅: shape 

Pickands 

(1975); 

Hosking & 

Wallis 

(1987) 

PE3, 

LP3b 
𝛾 = 0: 𝑓(𝑥) = ϕ (

𝑥−𝜇

𝜎
) ;    −∞ < 𝑥 < ∞ ;   

𝛾 > 0: 𝑓(𝑥) =  
(𝑥−𝜉)𝛼−1𝑒

−
𝑥−𝜉
𝛽

𝛽𝛼𝛤(𝛼)
  ;  𝜉 ≤ 𝑥 < ∞;   

𝛾 < 0: 𝑓(𝑥) =  
(𝜉−𝑥)𝛼−1𝑒

−
𝜉−𝑥
𝛽

𝛽𝛼𝛤(𝛼)
;     −∞ < 𝑥 ≤ 𝜉  

𝛼 =
4

𝛾2
, 𝛽 =

𝜎|𝛾|

2
, 𝜉 =  𝜇 −

2𝜎

𝛾
 

𝜇: location 

𝜎: scale 

𝛾: shape 

Pearson 

(1893); 

Bobée & 

Ashkar 

(1991) 

WAK 𝑥(𝐹) = 𝜉 +
𝛼

𝛽
{1 − (1 − 𝐹)𝛽} −

𝛾

𝛽
{1 − (1 − 𝐹)−𝛿} 

{
𝜉 ≤ 𝑥 < ∞ ;   𝑖𝑓 𝛿 ≥ 0 𝑎𝑛𝑑 𝛾 > 0

𝜉 ≤ 𝑥 ≤ 𝜉 + 𝛼 𝛽⁄ −
𝛾
𝛿⁄  ;   𝑖𝑓 𝛿 < 0 𝑜𝑟 𝛾 = 0

 

𝜉: location 

𝛼, 𝛾: scale 

𝛽, 𝛿: shape 

Houghton 

(1978)  

a The GUM distribution is a special case of the GEV distribution and is obtained by setting 𝑘 = 0 

b The LP3 distribution is obtained by changing 𝑥 in the equations to 𝑦 = ln(𝑥) 
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2.3.2 Selection of the best probability distributions 

This section presents the use of various graphical and numerical comparisons to compare 

the performance of different distributions in describing the distribution of AMS and in 

extrapolating quantiles that lie beyond the available record length in order to identify the best 

distribution(s).   

2.3.2.1 Descriptive ability test  

Graphical display is a simple yet effective way to compare the observed to the estimated 

values. The quantile-quantile (Q-Q) plots is adopted to visualize the adequacy of fitted 

distributions. To estimate the non-exceedance probability 𝑝𝑖, the Cunnane (1978) plotting position 

formula shown in Eqn. (2-1) is implemented for its ability to yield approximately unbiased 

quantiles for a wide range of distributions.  

𝑝𝑖:𝑛 =
𝑖 − 0.4

𝑛 + 0.2
 

(2-1) 

The Q-Q plots are helpful for visual judgement. However, it is subjective and cannot 

precisely depict the statistical significance of the fit, particularly with a large number of statistical 

models to compare. Various test statistics have been developed to justify whether a sample is 

actually drawn from an assumed distribution, such as Chi-square, likelihood ratio, Kolmogorov-

Smirnov, Anderson-Darling, and so on.  In the present study, for the ease of computation of a large 

number of distributions, six test criteria are used. They are: root mean square error (RMSE), 

relative root mean square error (RRMSE), maximum absolute error (MAE), correlation coefficient 

(CC), Akaike Information Criterion (AIC) and Schwarz Bayesian Criterion (BIC) as follows: 



 

24 

𝑅𝑀𝑆𝐸 = {∑
(𝑥𝑖 − 𝑦𝑖)

2

(𝑛 − 𝑚)
}

1
2

    (2-2) 

𝑅𝑅𝑀𝑆𝐸 = [
1

(𝑛 − 𝑚)
∑ {
(𝑥𝑖 − 𝑦𝑖)

𝑥𝑖
}

2

]

1
2

 (2-3) 

𝑀𝐴𝐸 = max(|𝑥𝑖 − 𝑦𝑖|) (2-4) 

𝐶𝐶 = 
∑{(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)}

{∑(𝑥𝑖 − �̅�)2∑(𝑦𝑖 − �̅�)2}
1
2

 (2-5) 

𝐴𝐼𝐶 =  2𝑚 +  𝑛 ∙ ln(𝑅𝑆𝑆) (2-6) 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2(𝑚 + 1)(𝑚 + 2)

𝑛 − 𝑚 − 2
 (2-7) 

𝐵𝐼𝐶 = ln(𝑛) ∙ 𝑚 +  𝑛 ∙ ln(𝑅𝑆𝑆) (2-8) 

where 𝑛 = sample size; 𝑚 = number of distribution parameters; 𝑖 = 1, 2, … , 𝑛; 𝑥𝑖 = 

observed values; 𝑦𝑖 = values estimated from an assumed probability distribution for the same 

probability level; �̅� = average value of the observations; and �̅� average value of the estimated 

quantiles; 𝑅𝑆𝑆 =  residual sum of square. 𝐴𝐼𝐶𝑐 is 𝐴𝐼𝐶 with a correction for finite sample sizes. 

Since 𝐴𝐼𝐶𝑐 converges to 𝐴𝐼𝐶 as n gets large (Burnham and Anderson, 2004), 𝐴𝐼𝐶𝑐 is employed in 

the paper rather than 𝐴𝐼𝐶. 

RMSE is a popular method to measure residuals – the differences between observed and 

theoretical values and is expressed in Eqn. (2-2). It is also a good indicator for comparing errors 

of different models of particular variables (Hyndman and Koehler, 2006). However, since RMSE 

is computed based on the absolute errors, it gives heavy weighting to large errors that might cover 

the true image of the fit of a distribution.  

In the presence of outliers, which is common in annual extreme rainfalls, a distribution 

may yield a high RMSE even many other data points are well fitted. Thus, RRMSE as expressed 
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in Eqn. (2-3), based on the proportion of errors and the length of the observation, are used along 

with RMSE to reduce the impact of outliers and to provide a better image of the overall fit of a 

distribution. The magnitude of RRMSE tends to decrease with the increase in the sample size (Yu 

et al., 1994).  

MAE represents the largest absolute difference between the observed and computed values. 

Unlike the relative error, the absolute error describes how large the error is, not the relative to the 

observed value. The formula of MAE is closely related to the Kolmogorov – Smirnov statistics 

test and is shown in Eqn. (2-4).  

The correlation coefficient (CC) indicates the linearity of the Q-Q plot. It has a range 

between -1 and 1; where values near -1 and +1 indicates a perfect positive and negative linear 

relationship respectively; values close to 0 indicates no linear relationship. The CC is defined as 

in Eqn. (2-5).  

Regarding AIC and BIC criteria, the use of the log-likelihood functions is required to 

estimate the values of AIC and BIC. These functions are available for all distributions, except the 

Wakeby distribution (WAK) since only the quantile function is available for WAK while the 

probability density function is unavailable. However, since only the differences in AIC and BIC 

are meaningful to analyze distribution fit, another way to look at these criteria is to use the residual 

sum of square (RSS) for the goodness-of-fit term and to keep the same penalty term (Burnham and 

Anderson, 2002) for these criteria as shown in Eqn. (2-6) to (2-8). 

After computing the six statistical tests, a ranking scheme is utilized to rank all the selected 

distributions.  Ranking scores is assigned to each distribution according to the value computed for 

each criterion. A distribution with the lowest RMSE, RRMSE, MAE, AICc, BIC or highest CC is 
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given a rank of 1 for this assessment category. In case of a tie, average ranks are given to those 

corresponding distributions. Furthermore, for each numerical criterion, the overall rank associated 

with each distribution is computed by summing the individual rank obtained for each of the study 

stations. 

2.3.2.2 Predictive ability test 

The predictive ability of a distribution is a vital characteristic to be evaluated after the 

descriptive ability as the accuracy of rainfall quantile prediction depends on it. Often it is known 

as the more parameters a distribution has, the better it will fit to the data. However, estimation of 

parameter could be challenging with a distribution with parameters more than three, like WAK. In 

addition, the extrapolation could result critically inaccurate prediction, as the distribution maybe 

too rigid (Vogel, 1995).  

To evaluate the predictive ability of distributions, the bootstrapping method which yields 

multiple synthetic samples having the same size as the existing record is used in this research 

(Efron and Tibshirani, 1994).  The most attractive feature of the bootstrapping procedure is that it 

is a powerful tool to describe the behavior of distribution only with the obtained sample values, 

even when the information about the true distribution is lacking. Moreover, this procedure could 

be conveniently used to assess the sampling uncertainty. The distribution of sample statistics 

computed from the bootstrap samples is thus a good representation of the respective distribution 

of the observed statistics (Vogel, 1995).  

To carry out the assessment of distribution extrapolation ability using the bootstrapping 

method, one thousand bootstrap samples of size equal to half of the actual sample size are first 

generated. Each candidate distribution is then fitted to the bootstrap samples and is extrapolated to 
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estimate the right-tail quantiles corresponding to the four largest observed rainfall amounts in the 

full data set. The variability in the estimation of these extrapolated quantiles are presented in the 

form of modified box plots (Helsel and Hirsch, 2002). The middle line of a modified box is the 

sample mean, the box height is twice standard deviation, the upper and lower whisker extend to 

the maximum and minimum value of the sample respectively. Large box widths or long whiskers 

imply high uncertainty in the estimation of these extreme values. If the observed values fall outside 

the box, then the distribution fitted to the bootstrap samples has overestimated or underestimated 

the true values and is therefore not commendable. 

2.4 Results 

2.4.1 Descriptive ability test results 

The Q-Q plots of all 63 AMS shows that all distributions closely described the left-tail and 

central parts. The right-tail parts, however, are less well described and there are no obvious trends. 

These values can be well estimated, over-estimated, or under-estimated by any of the ten models. 

Nonetheless, it is found that the WAK model consistently performs superior to the remaining 

models at fitting all regions of the data sample. This can be expected since WAK is a flexible 

model with 5 parameters and that helps it mimic the shape of many other distributions. For 

purposes of illustration, only results for 1-hour AMS from the longest record station – St-Thomas 

station, is presented here as shown in Figure 2-3. 

From the visual standpoint, all distributions seem to perform well in this case, except the 

BEK and GPA models. However, the significance of the differences between the remaining models 
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is difficult to judge solely based on the graphical display. A more objective evaluation using 

numerical comparison criteria is thus necessary. 

The ranking scheme described in Section 2.3 was then applied to assess the overall 

goodness-of-fit of each distribution using the six numerical assessment criteria. Results of the 5-

min AMS of the 21 stations are shown in Figure 2-4 as an example. The results reveal that no 

unique distribution ranks consistently best at all locations and for all three rainfall durations. This 

agrees well with the preliminary investigation using L-moment ratio diagram presented in Section 

3.1 above. However, the rank sum results of the 21 stations of three durations, presented in Figure 

2-5, show that WAK model outperforms the others in describing the distribution of daily and sub-

daily AMS. 

The GEV, GNO, and PE3 models also performed well overall and their scores are close to 

each other (see Figure 2-5). This can be expected since these models are advocated for use in 

frequency analyses of hydrologic extreme variables by many researchers (see Section 2.1). It is 

also noticed that PE3 model performed slightly better than GEV and GNO models for 5-min 

duration data. However, for data set of longer durations – 1-hour and 24-hour, GEV and GNO are 

slightly better. 

The GUM, GPA, and BEK models rank consistently poorly compared to the others. It could 

be explained that GUM, naturally, has a weaker descriptive ability than GEV or other distributions 

with three or more parameters, because it lacks a shape parameter. GPA contains three parameters 

and this distribution is commonly used with POT rather than with AMS data. Regarding BEK 

distribution, simulation results of many stations show that it tends to over-estimate the right-tail 

part, and this leads to a poor result in statistical test results. A similar behaviour was found for the 
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BEP distribution. However, the over-estimation by the BEP is smaller than the estimation by the 

BEK model; indicating that the BEP model has a better performance.  

The GEV*, LP3, and GLO models performed adequately and they stand in the middle 

positions (see Figure 2-5). It is also interesting to notice that if only RRMSE is considered, LP3 is 

even better than WAK for 5-min and 1-hour AMS and stands after the WAK for 24-hour AMS.  

 

Figure 2-3. Q-Q plots between observed (x-axis) and estimated (y-axis) 1-hr AMS (mm) at St-Thomas 

station using all eleven candidate models  



 

 

 

 

Figure 2-4. The ranking of 11 candidates for 5-min AMS for each station individually and the overall rank for 21 stations based on the six 

statistical criteria. Rank = 1 (or close to 1) indicates the best model(s) and rank = 11 (or close to 11) indicates the worst model(s). 

 

Figure 2-5. The overall rank for all 21 stations based on the four statistical tests for all three durations of 5-min, 1-hour, and 24-hour AMS (The 

lowest scores or the shortest bar indicates the best model). 
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2.4.2 Predictive Ability Test Results 

The modified boxplots of 63 AMS show that, generally, the BEK and BEP models 

consistently performed extremely poor with high sampling variation and bias (large box widths 

and very long whiskers) for all three rainfall durations. For instance, Figure 2-6 shows the modified 

boxplots of extrapolated right-tail bootstrap data for 1-hour AMS at St-Thomas station. This can 

be expected since the BEK and BEP models share last positions in the ranking table for the 

descriptive ability; as they produced much higher values of RMSE, RRMSE, and MAE and much 

lower values of CC compare to the other models.  

 

Figure 2-6. Boxplots of extrapolated right-tail bootstrap data for 1-hr AMS at St-Thomas station. The X-

axis shows the four-largest values of the observed and simulated data set. 

Unlike the BEK and BEP models, the modified boxplots for the WAK model do not show 

large box widths, however, they reveal long upper whiskers. This can be explained as the WAK 

model, with five parameters, can mimic many distributions and can fit close to any observed data 
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set and this makes WAK becoming the best distribution in describing the AMS with best goodness-

of-fit test scores as investigated in Section 2.4.1 above. However, the disadvantage is that WAK 

can be a very rigid model with its large number of parameters, and it cannot provide good 

predictive values as presented by the whisker length of its modified boxplot.  

Results of modified boxplots reveal that, the LP3 model produced larger box widths than 

other distributions, yet it was not as poorly performed as BEK, BEP or WAK. Furthermore, the 

result shows that the GUM model exhibited the lowest sample variation in most cases, but it tends 

to overestimate or underestimate the observed values most frequently.  

The GEV, GEV*, GLO, GNO, GPA, and PE3 distributions produced satisfactory results 

at most stations, where the box enclosed the observed right-tail values with a reasonable whisker 

spread and correlation with the observed values. In particular, both GEV and GNO distributions 

produced almost identical results. The PE3 distribution produced slightly shorter boxes, upper 

whiskers, and slightly lower means compared to those of GEV and GNO distributions. 

Occurrences of over- and under-estimation of several largest rainfall amounts however did occur 

for all distributions at several stations. 

2.5 Selection of the most suitable probability distribution(s) 

In general, it is observed that no unique distribution performed consistently best at all 

stations for each category and for all three rainfall durations. This could be due to the strong spatial 

variation of rainfall characteristics within this study region. While it is difficult to provide a clear 

physical interpretation of the regional variability of the probability distribution parameters, one is 

still able to rely on the proposed approach to identify the GEV, GNO, and PE3 as the best 
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distributions for a large number of cases considered. Furthermore, it is easy to recognize the 

distributions that did not perform satisfactory, but it is more difficult to identify the best 

distribution. These three models can be thus used alternately for the frequency analysis of annual 

extreme rainfalls as shown in Figure 2-7.  

 

Figure 2-7. Frequency curves (solid lines) and 90% confidence limits (90% CI, dashed lines) of (a) 5-

minute, (b) 1-hour, and (c) 24-hour AMS (blue circle markers) at St-Thomas station using the top three 

distributions – GEV, GNO, and PE3. Note that 5-min duration data of this station is extremely skew and 

none of the three distributions is able to capture the two largest extreme values. Even the WAK 

distribution performing better than the GEV, GNO, and PE3 distributions in this case, it still could not 

capture those extreme values. 

The difference in extreme design rainfall estimates produced by the three distributions is 

also further investigated for all stations and is shown in Figure 2-8.  Results reveal that the 

estimated values for return periods within twice of sample lengths (that is, up to 100-year return 

periods) are almost identical for the three distributions. However, the GEV model tends to provide 

slightly higher values for high return periods, while the PE3 model tends to give slightly higher 

values for low return periods. The three models, therefore, could be used interchangeably in 

constructing IDF relations and estimating extreme design rainfalls for Ontario region.  

Nonetheless, if only one probability model is preferred for the entire region, other criteria should 
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be thus considered in the choice of an appropriate distribution.  For instance, the GEV model is 

based on a more solid theoretical basis than the other two distributions because it was derived from 

the statistical theory of extreme random variables.  Therefore, the GEV could be considered as the 

most suitable distribution for describing the distribution of annual maximum rainfalls in Ontario. 

 

Figure 2-8. Comparing extreme design rainfalls estimates for different return periods (T=10, 25, 50, and 

100 years) using 5-min AMS of all 21 stations and the top three distributions GEV, GNO, and PE3 

2.6 Summary and Conclusion 

The present study proposes a general procedure for assessing systematically the 

performance of different probability distributions that have been commonly used in hydrologic 

frequency analysis in order to identify the most appropriate probability model(s) for representing 

the distribution of annual extreme rainfalls. The proposed procedure relies on a number of 

graphical and numerical performance criteria to evaluate both the descriptive and predictive 

abilities of each model. More specifically, the assessment of the model goodness-of-fit was 

performed through the visual inspection of the quantile-quantile plots as well as the results of six 

numerical criteria – RMSE, RRMSE, MAE, CC, AICc, and BIC. In addition, the evaluation of 
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model predictive ability was conducted through the utilization of resampling-with-replacement 

bootstrap technique and the visual inspection of the modified boxplots of the four largest values.  

Following a review of various probability distributions available in the literature, ten 

popular probability models were selected for this study. These models include the BEK, BEP, 

GEV, GLO, GNO, GPA, GUM, LP3, PE3, and WAK distributions. Results of an illustrative 

application using AMS data for 5-min, 1-hour, and 24-hour from a network of 21 raingauges 

located in Ontario have indicated the feasibility of the proposed model evaluation method. In 

particular, it was found that, among the ten distributions considered, the GEV, GNO, and PE3 are 

the top three distributions that provided the greatest goodness-of-fit and robust quantile 

extrapolations for different rainfall durations and for a number of locations in the study region. 

These distributions can be thus alternately used for the frequency analysis of daily and sub-daily 

annual extreme rainfalls in this area. The GEV and GNO produced almost identical quantiles and 

confidence interval estimations, while those of PE3 were slightly lower.  

Finally, for practical application purposes, the GEV is preferable to the GNO and PE3 due 

to its more solid theoretical basis (Coles, 2001; Smith, 2003), and the inherent scale-invariance 

property of its non-central moments over different time scales, which is useful for the modelling 

of sub-daily extreme rainfall processes in the context of climate change (Nguyen and Nguyen, 

2008; Nguyen et al., 2007). Therefore, the GEV could be considered as the most suitable 

probability model for representing the distribution of daily and sub-daily annual maximum 

rainfalls for the Ontario region in Canada.  
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Chapter 3. A Novel Scale-Invariance Probability-

Weighted-Moment-Based Generalized Extreme Value 

Distribution for Modeling Rainfall Extremes Across A 

Wide Range of Time Scales 

 

3.1 Introduction 

Information on the spatio-temporal variability of rainfall characteristics is of critical 

importance for many types of hydrologic studies related to the estimation of runoffs for planning, 

design, and management of various water resources systems (CSA, 2012; WMO, 2009). In 

particular, for urban and small rural watersheds that are generally characterized by fast response, 

the designs of various hydraulic structures such as small dams, culverts, storm sewers, detention 

basins and so on require extreme rainfall input with short temporal time scales (e.g., few minutes 

or hours) for runoff simulation models (CSA, 2012). This high-resolution extreme rainfall 

information is necessary for the construction of the “design storm” – that is the extreme rainfall 

intensity of a given storm duration for a given return period at a given location (Chow, 1964; 

WMO, 2009a). More specifically, the required extreme rainfall information is often extracted from 

the available extreme rainfall intensity-duration-frequency (IDF) relations at the location of 

interest.  

To construct the IDF curves at a given location, annual maximum rainfall series (AMS) of 

different rainfall durations ranging from a few minutes to one day are required. However, such 

short-duration extreme rainfall records are often unavailable or very limited (e.g., less than 10 
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years) because of the high measurement costs involved while daily extreme rainfall data are widely 

available For instance, in Canada, Environment Canada provides short-duration extreme rainfall 

data for nine rainfall durations (D = 5, 10, 15, 30, 60, 120, 360, 720, and 1440 minutes) for 

constructing IDF relations for only 596 stations across Canada (Environment Canada, 2019), while 

the daily rainfall or hourly rainfall records are available for 1735 raingage stations (Mekis et al., 

2018). Hence there exists an urgent need to develop new methods for modeling extreme rainfall 

processes over a wide range of time scales (i.e., from several minutes to days) such that information 

related to sub-hourly or sub-daily extreme rainfalls could be inferred from the daily extreme 

rainfalls available at the site of interest.  

More recently, climate change has been recognized as having a profound impact on the 

hydrologic cycle at more vulnerable urban areas (Willems et al. 2012; Kharin et al. 2013). 

Consequently, the development of IDF relations in consideration of the potential impacts of the 

climate change has become critical for the design and management of urban water infrastructures. 

However, the projections of sub-daily extreme rainfalls under different climate change scenarios 

are often not available at the location of interest since climate simulation outputs given by 

global/regional climate models are often limited to the daily scale because of their current 

modeling and computational limitations. Therefore, it is critical to develop an improved rainfall 

modeling approach that can be used to determine the distributions of sub-daily AMS from the 

distributions of available daily AMS. 

In recent years, the scale-invariance (or scaling) concept has increasingly become a 

promising methodology for modeling of various hydrological processes across a wide range of 

time scales (Sposito, 1998; Hubert, 2001; Schertzer et al., 2010; Lovejoy and Schertzer, 2012). 

This scaling concept implies that the statistical properties of extreme rainfalls over different time 
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scales are related to each other by an operator involving only the scale ratio and the scaling 

exponent (Gupta and Waymire, 1990; Bernardara et al., 2007).  The scale invariance is based on 

the fractal and multi-fractal concepts. Historically, at the beginning of the 90s, fractal science 

provided a more theoretical framework to address the scaling issues in geosciences through the 

concept of scale invariance (Schertzer and Lovejoy, 1991).  Lovejoy (1982) first studied the single 

fractal dimension of rainfall phenomena using radar rainfall data. Later on, Schertzer and Lovejoy 

(1987) have proposed the multifractal dimension concept for describing these physical phenomena 

due to the underlying physically complex rainfall process. The scale invariance properties of 

rainfall processes based on fractal and multifractal modeling and analysis approaches have been 

reported in previous studies for different climatic regions (Veneziano et al., 2006; Bernardara et 

al., 2007). In particular, many empirical studies have suggested that rainfalls, in time and space, 

show a scale invariant behaviour within a certain range of rainfall durations (Schertzer and 

Lovejoy, 1987; Gupta and Waymire, 1993; Menabde et al., 1999; Veneziano and Furcolo, 2002; 

Veneziano and Lepore, 2012).  

Pioneering works in the application of the scaling method for deriving short-duration from 

longer-duration AMS and for constructing IDF relations have begun since the last decade of the 

20th century. These studies were primarily relied on the empirical relationships between different 

ordinary statistical moments (or non-central moments, NCMs) of observed rainfall data over 

different rainfall durations and the scale-invariance relations between the parameters of the 

distributions of extreme rainfalls at different durations (Gupta and Waymire, 1990; Nguyen and 

Pandey, 1994; Nguyen and Wang, 1996; Burlando and Rosso, 1996; Nguyen et al., 1998; and 

Menabde et al., 1999).  
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More specifically, Gupta and Waymire (1990) described two common properties of 

empirical moments shared by spatial rainfall and river flow data as well as provided some general 

mathematical frameworks for the simple scaling processes. Nguyen and Pandey (1994) proposed 

a scale-independent mathematical model to represent the probability distribution of rainfalls at 

various time scales on the basis of the theory of multifractal multiplicative cascades. In addition, 

Nguyen and Wang (1996) introduced a time resolution independent mathematical models based 

on the multifractal multiplicative cascade mechanism for transferring rain fluxes from large time 

scales (e.g., one day or longer) to smaller time intervals (e.g., one hour or shorter). Burlando and 

Rosso (1996) analyzed the scaling and multi-scaling properties of the statistical empirical moments 

of rainfall depths of different durations and then developed a scaling two-parameter log-normal 

(LN2) probability distribution to construct depth-duration-frequency relations. Menabde et al. 

(1999) proposed the NCM-based scaling Gumbel (GUM/NCM) distribution rather than the LN2 

as suggested by Burlando and Rosso (1996) for deriving the maximum rainfall IDF relations. 

However, Nguyen et al. (1998) has developed a more general mathematical framework using  the 

NCM-based scaling Generalized Extreme Value (GEV/NCM) distribution. The scaling properties 

of the GEV model are also presented in detail in Nguyen et al. (2002). It can be seen that the 

scaling GUM/NCM as proposed by Menabde et al. (1999) is a special case of the GEV/NCM since  

the two-parameter GUM is a special case of the three-parameter GEV distribution when the shape 

parameter is equal to zero.  

Since then, the application of the scaling method based on the scale-invariance of empirical 

statistical moments of rainfall amounts over different rainfall durations has become popular and 

has been applied extensively to the estimation of short-duration extreme rainfalls at gauged and 

ungauged sites based on both at-site and regional frequency analyses (Nguyen et al., 2002b; Yu et 
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al. 2004; Bougadis and Adamowski, 2006; Blanchet et al., 2016; Ghanmi et al., 2016; Soltani et 

al., 2017; Van de Vyver, 2018; Mélèse et al., 2018). It has also been applied to updating the IDF 

curves considering climate impacts (Nguyen et al., 2007, 2008; Vu et al., 2016; Herath et al., 

2016).    

Compared to the raw statistical moments (also known as conventional moments or ordinary 

moments), the applications of the probability weighted moments (PWMs) and its linear 

combination forms (L-moments) to assess rainfall scaling processes have been found very limited 

in literature (Kumar et al., 1994; Yu et al., 2004; Bairwa et al., 2016). The PWMs, however, have 

been generally known to be more robust and against outliers when applying to small size samples 

which are quite common for the study of extreme hydrologic variables (Greenwood et al., 1979; 

Hosking and Wallis, 1997). In particular, Kumar et al. (1994) have indicated the scale-invariance 

properties of rainfalls over different durations based on the empirical estimates of the more robust 

PWMs. The use of PWMs for assessing the simple scaling behaviour of rainfall processes was 

further examined at a regional scale using rainfall series from Taiwan in a study by Yu et al. (2004), 

in which the PWMs clearly exhibited the scale-invariance behaviour over different rainfall 

durations and the scaling exponents can be used for the delineation of the study area into different 

homogeneous regions. Furthermore, the scaling GUM/PWM distribution was used in this study 

for constructing the regional IDF curves. A similar approach based on the GUM/PWM was also 

used for deriving the IDF curves by Bairwa et al. (2016) using rainfall data in India.  

In summary, based on the best of our knowledge from this literature review, no study has 

been able to provide a general theoretical framework for assessing the scale-invariance properties 

of extreme rainfall processes using the GEV model and the PWMs. In addition, no previous work 

has developed a generalized mathematical framework for describing the scaling properties of the 
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GEV distribution for different statistical moment categories. Furthermore, most previous studies 

investigated the scaling behaviour of extreme rainfall processes using only limited available IDF 

data and for a limited number of existing raingage stations. 

In view of the above-mentioned issues, the present study proposes a novel PWM-based 

scaling GEV distribution model (hereafter referred to as the GEV/PWM model) for modeling 

extreme rainfall processes over a wide range of temporal scales (i.e., from several minutes to one 

day). An extensive set of long records of IDF data from a network of 74 stations located across 

Canada were used in this study to assess the performance of the proposed model as well as to 

compare with other existing scaling models. The study sites and data are described in Section 3.2. 

The mathematical frameworks and scaling properties of the GEV distribution model based on both 

NCM and PWM systems are provided in Section 3.3. The feasibility and accuracy of the 

GEV/PWM model was assessed and compared with the three existing popular models 

(GEV/NCM, GUM/NCM, and GUM/PWM models) in Section 3.4. Research findings and 

conclusions are provided in Section 3.5. 

3.2 Study Sites and Data 

In Canada, rainfall data are collected by Environment Canada, provincial and territorial 

ministries, municipalities, and other organizations. They are collected through a variety of 

measuring devices and to a variety of standards. Environment Canada’s networks and individual 

monitoring stations are generally designed, located, and operated in accordance with the two 

WMO guidelines: the guide to Meteorological Instruments and Methods of Observations (WMO, 

2008) and the Guide to Hydrological Practices (WMO, 2009a). In addition, before data are added 

to the archive, Environment Canada conducts further automated and manual quality control checks 



 

42 

to mainly verify that the collected values are within realistic physical limits and that there is 

internal consistency amongst all the amounts abstracted from the daily chart. Environment Canada 

currently provides observed short-duration extreme rainfall series of nine different rainfall 

durations ranging from 5 minutes to 1440 minutes (i.e., 24 hours) and their statistics as well as 

extreme rainfall quantiles (using the Gumbel distribution model) for 596 locations across Canada 

in electronic file formats (Environment Canada, 2019). These statistics and values are primarily 

used for the designs of various hydraulic structures, especially in urban areas such as road culverts, 

and municipal storm sewer and drainage systems.  

Among approximately 600 stations across Canada, a total of 74 stations with an adequate 

record length of at least 40 years were selected for this study. These stations are located in different 

regions from the west to the east coast and from the north to the south representing the diverse 

climatic conditions of Canada. To ensure the quality of the selected data, only the data from the 

recording raingages under the management of the Atmospheric Environmental Service of 

Environment Canada were used. Furthermore, the data at these stations are available for all nine 

durations and must successfully pass three statistical tests for independence, homogeneity, and 

stationarity at the 5% significant level. These tests include the Mann-Whitney test for homogeneity 

and stationarity (jumps), the Mann–Kendall test for trend detection, and the Wald-Wolfowitz test 

for independence and stationarity (Rao and Hamed, 2000; WMO, 2009a). The test results are 

shown in the Appendix B. The station information and locations are presented in Table 3-1 and 

Figure 3-1.  
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Table 3-1. Details of the 74 study stations used in this research, including territory and province (TP), 

identification number (ID), station name, latitude (Lat, degree), longitude (Lon, degree), elevation (Elev, 

meter), record year (Year), and record length (RCL, year) 

No TP ID Station name Lat  Lon    Elev  Year  RCL  

1 YT 2101310 Whitehorse Auto 60.73 135.10 707 1960-2016 44 

2 NT 2202102 Fort Simpson Climate 61.77 121.23 168 1969-2017 42 

3 BC 1018611 Victoria Gonzales CS 48.42 123.32 61 1925-2017 65 

4 BC 1018621 Victoria Intl A 48.65 123.43 19 1965-2017 50 

5 BC 1021830 Comox A 49.72 124.90 25 1963-2006 40 

6 BC 1038205 Tofino A 49.08 125.77 24 1970-2017 45 

7 BC 1068131 Terrace PCC 54.50 128.62 67 1968-2017 47 

8 BC 1096450 Prince George A 53.88 122.68 691 1960-2002 41 

9 BC 1105192 Mission West Abbey 49.15 122.27 197 1963-2017 54 

10 BC 1106180 Pitt Polder 49.27 122.63 5 1965-2007 40 

11 BC 1108395 Vancouver Intl A 49.18 123.18 4 1953-2017 63 

12 BC 1126150 Penticton A 49.47 119.60 344 1953-2002 45 

13 BC 1166R45 Salmon Arm A 50.68 119.23 527 1964-2016 44 

14 BC 1160899 Blue River A 52.13 119.28 690 1970-2016 44 

15 AB 3012206 Edmonton Intl CS 53.32 113.62 715 1961-2017 52 

16 AB 3012209 Edmonton Blatchford 53.57 113.52 671 1914-2015 69 

17 AB 3025481 Red Deer Regional A 52.18 113.88 904 1959-2014 49 

18 AB 3031094 Calgary Int L CS 51.12 114.00 1081 1947-2015 61 

19 AB 3033890 Lethbridge CDA 49.70 112.77 910 1960-2017 47 

20 AB 3034485 Medicine Hat RCS 50.03 110.72 715 1971-2017 42 

21 AB 3081680 Cold Lake A 54.42 110.28 541 1966-2017 49 

22 SK 401HP5R Weyburn 49.70 103.80 588 1962-2017 43 

23 SK 4012410 Estevan 49.22 102.97 580 1964-2016 52 

24 SK 4015322 Moose Jaw CS 50.33 105.53 577 1960-2014 49 

25 SK 4016560 Regina Int L A 50.43 104.67 577 1941-1995 52 

26 SK 4043901 Kindersley A 51.52 109.18 693 1966-2016 50 

27 SK 4057165 Saskatoon RCS 52.17 106.72 504 1960-2017 40 

28 SK 4060983 Buffalo Narrows (AUT) 55.83 108.42 440 1968-2017 41 

29 MB 5012324 Portage Southport 49.90 98.28 272 1964-2017 40 

30 MB 502S001 Winnipeg A CS 49.92 97.25 238 1944-2016 57 

31 MB 5040681 Dauphin CS 51.10 100.07 304 1954-2016 40 

32 MB 5050919 Flin Flon 54.68 101.68 303 1970-2017 42 

33 MB 5062921 Thompson A 55.80 97.87 224 1971-2017 43 

34 ON 6012199 Ear Falls (AUT) 50.63 93.22 362 1952-2007 50 

35 ON 6016525 Pickle Lake (AUT) 51.45 90.22 390 1953-2007 42 

36 ON 6034073 Kenora RCS 49.78 94.38 412 1966-2011 44 

37 ON 6037775 Sioux Lookout A 50.12 91.90 383 1963-2007 40 

38 ON 6042716 Geraldton A 49.78 86.93 348 1952-2007 50 

39 ON 6048268 Thunder Bay CS 48.37 89.33 199 1952-2012 53 

40 ON 6057592 Sault Ste Marie A 46.48 84.52 192 1962-2007 46 
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No TP ID Station name Lat  Lon    Elev  Year  RCL  

41 ON 6073980 Kapuskasing CDA ON 49.42 82.43 218 1966-2013 42 

42 ON 6078285 Timmins V. Power A 48.57 81.38 294 1952-2007 48 

43 ON 6085700 North Bay A 46.37 79.42 370 1964-2006 41 

44 ON 6104175 Kingston Pumping Stn 44.23 76.48 76 1914-2007 63 

45 ON 6105978 Ottawa CDA RCS 45.38 75.72 79 1905-2011 54 

46 ON 6127519 Sarnia Climate 43.00 82.30 181 1962-2016 49 

47 ON 6131415 Chatham WPCP 42.38 82.22 180 1966-2007 40 

48 ON 6131983 Delhi CS 42.87 80.55 231 1962-2015 50 

49 ON 6137362 St Thomas WPCP 42.77 81.22 209 1926-2007 75 

50 ON 6139525 Windsor A 42.28 82.97 189 1946-2007 60 

51 ON 6143089 Guelph Turfgrass 43.55 80.22 325 1954-2017 52 

52 ON 6144478 London CS 43.03 81.15 278 1943-2016 65 

53 ON 6153301 Hamilton RBG CS 43.28 79.92 102 1962-2016 52 

54 ON 6158355 Toronto City 43.67 79.40 112 1940-2017 67 

55 ON 6158731 Toronto Intl A 43.68 79.63 173 1950-2017 64 

56 ON 6158875 Trenton A 44.12 77.53 86 1965-2017 46 

57 QC 701S001 QC Jean Lesage Intl 46.80 71.38 60 1961-2015 46 

58 QC 7014160 L Assomption 45.82 73.43 21 1963-2017 45 

59 QC 7018001 Shawinigan 46.57 72.73 110 1968-2017 41 

60 QC 702S006 Montreal P.E.T. Intl 45.47 73.73 32 1943-2014 61 

61 QC 7024280 Lennoxville 45.37 71.82 181 1960-2017 45 

62 QC 7060400 Bagotville A 48.33 71.00 159 1961-2017 45 

63 NB 8100885 Charlo Auto 47.98 66.33 42 1959-2013 51 

64 NB 8101605 Fredericton CDA CS 45.92 66.62 35 1959-2015 47 

65 NB 8103201 Moncton Intl A 46.12 64.68 70 1946-2016 67 

66 NB 8104900 Saint John A 45.32 65.88 108 1958-2002 40 

67 NS 8202000 Greenwood A 44.98 64.92 28 1964-2016 44 

68 NS 8204700 Sable Island 43.93 60.02 5 1962-2013 51 

69 NS 8205092 Shearwater RCS 44.63 63.52 24 1955-2016 59 

70 NS 8205702 Sydney CS 46.17 60.03 62 1961-2016 53 

71 NS 8206495 Yarmouth A 43.83 66.08 42 1971-2016 43 

72 NF 8401705 Gander Airport CS 48.95 54.57 151 1939-2017 70 

73 NF 8403820 Stephenville RCS 48.57 58.57 58 1967-2017 48 

74 NF 8501900 Goose A 53.32 60.42 48 1961-2016 53 
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Figure 3-1. Locations and record lengths of the 74 selected raingages. The digital elevation model is generated based on data from the 

Government of Canada (2018). Territorial names: YT = Yukon, NT = Northwest Territories, NU = Nunavut. Provincial names: BC = British 

Columbia, AB = Alberta, SK = Saskatchewan, MB = Manitoba, ON = Ontario, QC = Quebec, NB = New Brunswick, NS = Nova Scotia, PE = 

Prince Edward Island, and NF = Newfoundland and Labrador
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Table 3-2 provides some basic statistics of the 666 time series of annual maximum rainfalls 

for all nine selected rainfall durations and for all selected 74 stations. These basic statistics include 

the maximum rainfall amount, the mean, the standard deviation, and the skewness coefficient. In 

addition, three values were computed for each statistic to represent the range of variability from 

the minimum value to the mean and to the maximum value. Due to the space constraint, only the 

analysis of the maximum rainfall statistic was described in depth in this chapter (see, e.g., Figure 

3-2). For the other statistics (i.e., the standard deviation and the skewness), similar analyses could 

be carried out to obtain a representative picture of the variability of extreme rainfall statistics across 

Canada.  

Table 3-2. Sample statistics of AMS data for 74 selected stations. (Note: the three values given in each 

column represent the interval starting from the minimum to the mean to the maximum)  

Dur Max (mm) Mean (mm)  SD (mm) Cv Skewness 

5-min 5 – 16 – 31   2 – 7 – 10 1 – 3 – 5  0.3 – 0.4 – 0.7  0.0 – 1.2 – 3.0 

10-min 7 – 22 – 43  3 – 10 – 15  1 – 4 – 7  0.3 – 0.4 – 0.6 0.2 – 1.1 – 2.9 

15-min 8 – 28 – 57  4 – 12 – 18  1 – 5 – 9  0.3 – 0.4 – 0.6 0.3 – 1.2 – 3.4 

30-min 10 – 37 – 83  5 – 16 – 24  2 – 6 – 13  0.2 – 0.4 – 0.7 -0.2 – 1.3 – 3.5 

1-hour 15 – 48 – 87  6 – 19 – 29  2 – 8 – 14  0.2 – 0.4 – 0.8 0.4 – 1.5 – 3.4 

2-hour 21 – 59 – 114  9 – 24 – 36  4 – 10 – 20  0.2 – 0.4 – 0.7 0.5 – 1.6 – 4.6 

6-hour 31 – 78 – 149  13 – 35 – 64  4 – 12 – 25  0.2 – 0.4 – 0.6 0.1 – 1.5 – 3.8 

12-hour 43 – 91 – 162  17 – 43 – 94  6 – 15 – 29  0.2 – 0.3 – 0.5 0.4 – 1.3 – 2.9 

24-hour 48 – 112 – 228  21 – 52 – 133  7 – 18 – 31  0.2 – 0.4 – 0.6 0.2 – 1.3 – 3.0 

 

Based on Figure 3-2, it can be easily seen that the largest extreme storms of different 

rainfall durations happened in different parts of Canada. Firstly, the largest extreme storms of 

rainfall durations equal to or longer than 12 hours occurred in both the British Columbia Coast and 

the Maritime Provinces. In particular, the Tofino Airport station, located in British Columbia 

province, recorded the largest value of the 24-hour storm event of 228 mm, while the Sydney CS 
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station, located in Nova Scotia province, observed the largest value of the 12-hour storm event of 

162 mm. The heavy storms of 6-hour duration (i.e., 125 mm) and 24-hour duration (i.e., 161 mm) 

with rainfall depths greater than or equal to the 95 percentiles were also measured in Saint John 

Airport station in New Brunswick. Secondly, the largest extreme storms of rainfall duration equal 

to or less than 1 hour happened in the Prairies of Canada. In particular, the Regina International 

Airport station, located in Saskatchewan, recorded the largest values of 31 mm, 43 mm, and 57 

mm for 5-minute, 10-minute, and 15-minute durations, respectively, while the largest values for 

30-minute and 60-minute durations (83 mm and 87 mm) were observed at the Dauphin CS station 

in Manitoba. The heavy storm events with rainfall depths greater than or equal to the 95 percentiles 

were also observed in Lethbridge CDA station in Alberta. Finally, the largest extreme storms of 

rainfall duration between 1 hour and 12 hours are mostly observed in Ontario. In particular, the 

Kenora RCS station recorded the largest values of 114 mm and 149 mm for the 2-hour and 6-hour 

storms, respectively.  

A preliminary analysis using the L-moment ratio diagram was carried out to identify the 

potential candidate distributions for extreme rainfalls in the study area as shown in Figure 3-3 for 

all computed values of L-skewness, 𝜏3, and L-kurtosis, 𝜏 , from all 666 AMS data for nine 

different rainfall durations (from 5 minutes to 1440 minutes) and for all 74 stations. In other words, 

there are nine groups of data representing nine different rainfall durations, and each group contains 

74 pairs for the 74 selected stations. These groups are plotted on the L-moment ratio diagram using 

different colors and markers, including also the mean value of each group.  
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Figure 3-2. Spatial representation of the maximum rainfall values of different rainfall durations for 74 selected stations across Canada
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Figure 3-3. L-moment ratio diagram of 666 annual maximum rainfall series for nine groups representing 

nine different rainfall durations from 5 minutes to 1440 minutes. Each group contains 74 points for the 74 

selected stations. The average value of each group is also plotted with a big ‘+’ sign with the same color. 

Three-parameter distributions (represented as lines): GLO = generalized logistic, GEV = generalized 

extreme values, GNO = generalized normal (or three-parameter log-normal), GPA = generalized pareto, 

PE3 = Pearson type III. Two-parameter distributions (represented as red circle markers): L = logistic, N = 

normal, U = uniform, G = Gumbel, E = exponential 

The wide spread of data points for each group of data for the same rainfall duration as well 

as for all nine groups of different durations on the L-diagram has indicated that no particular 

distribution can be selected as the best distribution to represent all these extreme rainfall data. 

However, it can be observed that the average values of all nine groups were located close to the 

Generalized Extreme Value (GEV) distribution than any other distributions. Beside this, the L-

diagram also shows that the Generalized Normal (GNO) distribution is also a good candidate for 

all these extreme rainfall series, especially, for rainfall durations less than 1 hour or more than 6 

hours. Furthermore, the large dispersion of data points on the L-moment ratio diagram as obtained 
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in this study have also indicated the major limitation of this popular L-diagram approach for 

identifying the best distributions for extreme rainfalls for a given region due to the high spatial 

variability of extreme rainfalls at different locations as observed in this study region.  The proposed 

method for selecting the best distributions for extreme rainfalls as described in Chapter 2 could be 

the preferred approach to the L-moment ration diagram. However, as indicated above the GEV 

was found to be a reasonable probability model for describing the distributions of extreme rainfalls 

for the selected AMS datasets as indicated by the L-moment ration diagram as well as by the 

selection approach proposed in Chapter 2. The GEV distribution was hence selected for further 

development to account for the scaling properties of the underlying extreme rainfall processes as 

presented in Section 3.3. 

3.3 Methodology 

3.3.1 The Generalized Extreme Values (GEV) distribution  

On the theoretical basis of extreme value theory, the GEV distribution has been recognized 

as being the most appropriate distribution for representing the distribution of the extremes of 

random variables (Coles, 2001; Katz et al., 2002; Smith, 2003). Hence, this distribution has been 

widely used for describing the probability distribution of annual rainfall maxima and for 

constructing the rainfall IDF relations as recommended in a number of technical guidelines for 

hydrological practices by the World Meteorological Organization (WMO, 2009a) as well as by 

many other countries such as Australia, Austria, Germany, Italy, and Spain (Salinas et al., 2014; 

Ball et al., 2016; Nguyen et al., 2017, 2019). The cumulative distribution function (CDF), 𝐹(𝑥), 

of the GEV distribution is given as follows:  
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𝐹(𝑥) = 𝑒𝑥𝑝 [− (1 −
𝜅(𝑥−𝜉)

𝛼
)

1

𝜅
 ]    ;     (𝜅 ≠ 0) 

(3-1) 

in which 𝜉, 𝛼, and 𝜅 are the location, scale, and shape parameters, respectively.  

The quantile, 𝑋𝑇, corresponding to certain return periods, 𝑇 =
1

1−𝐹(𝑥)
, can be obtained using 

the following expression: 

𝑋𝑇 = 𝜉 +
𝛼

𝜅
 {1 − [− ln(𝐹(𝑥))]𝜅} (3-2) 

where 𝐹(𝑥) is the cumulative probability of interest. 

For the particular case when the shape parameter 𝜅 = 0, the GEV distribution becomes the 

two-parameter Gumbel distribution with the CDF and quantile function as follows: 

𝐹(𝑥) = exp [−𝑒𝑥𝑝 (−
𝑥−𝜉

𝛼
)]     ;    (𝜅 = 0) (3-3) 

𝑋𝑇 = 𝜉 − 𝛼 ∙ ln (− ln 𝐹)         (3-4) 

Based on Eqn. (3-2), if the three parameters of the GEV distribution are known, then 

extreme rainfall quantiles can be easily computed. Since daily extreme rainfall data are widely 

available for many locations, estimation of these parameters for the distribution of daily extreme 

rainfalls and the coresponding design daily rainfall quantiles are thus straightforward. However, 

for sub-daily rainfall durations, data are commonly unavailable, hence the estimation of these 

parameters from the missing data is impossible. Therefore, to deal with this difficult missing data 

issue, it is necessary to examine the scale-invariance behaviour of the extreme rainfall processes 

in order to be able to establish some relationships between the daily and sub-daily statistical 

properties of these processes as described in the folowing sections. Firstly, Section 3.3.2 presents 

the details regarding the scaling GEV/NCM model based on the NCMs of extreme rainfalls as 
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suggested in the previous work by Nguyen et al. (1998); and secondly, Section 3.3.3  introduces a 

new scaling GEV/PWM model based on the probability weighted moments (PWMs).  

 

Figure 3-4. Mathematical frameworks and scaling properties of the GEV distribution based on the PWMs 

and the NCMs 

It is necessary to note that both the PWMs and NCMs are particular cases of the general 

PWMs depending upon whether the weight is placed on the data X or on its probability F(X) (see 

Figure 3-4). Hence, the scaling exponents, 𝜂, are determined by two different mathematical 

expressions using these two different categories of statistical moments. For the NCM category, the 

scaling exponents of the higher-order NCMs are expected to be approximately equal to a multiple 

of the exponent of the first-order moment (i.e., the mean); while for the PWM catregory, the scaling 

exponents of the higher-order PWMs are approximately constant for all higher orders and equal to 

the exponent of the zero-order PWM (i.e. the mean). Note that if the scaling exponents are a linear 

General probability weighted moments

Prob. weighted moments Non-central momentsL-MOMs MOMs

Scaling PWMs

Scaling parameters

Scaling NCMs

Scaling quantiles

𝛼 𝜆𝑡 = 𝜆 𝛼 𝑡  

𝜉 𝜆𝑡 = 𝜆 𝜉 𝑡

𝜅 𝜆𝑡 = 𝜅 𝑡

𝑋𝑇 𝜆𝑡 = 𝜆
 𝑋𝑇 𝑡

𝜇𝑟 𝜆𝑡 = 𝜆
𝑟 𝜇𝑟 𝑡𝛽𝑟 𝜆𝑡 = 𝜆

 𝛽𝑟 𝑡

𝜇𝑟 = 𝐸 𝑋
𝑟 =

 𝑥  𝑟𝑑 
1

 

𝛽𝑟 = 𝐸 𝑋{𝐹(𝑋)}
𝑟

=  𝑥   𝑟𝑑 
1

 

𝑀 ,𝑟, = 𝐸[𝑋
 𝐹 𝑋 𝑟 1 − 𝐹 𝑋  ]

𝜆1 = 𝛽 

𝜆2 = 2𝛽1−𝛽 

𝜆3 =  𝛽2−  𝛽1+𝛽 

𝜇 1 = 𝜇1

𝜇 2 = 𝜇2− 𝜇1
2

𝜇 3 = 𝜇3  −  𝜇2𝜇1+ 2𝜇1
3



 

53 

function of the statistical moment orders, then in such cases the process is said to be simple scaling. 

Otherwise, the process is said to be multiscaling. Nevertheless, the scaling properties of the GEV 

parameters, which are computed using these two different NCM and PWM methods, are expected 

to be the same as described in detail in the following sections. 

3.3.2 A NCM-based scaling GEV model  

3.3.2.1 Scaling properties 

The non-central moment (NCM) method (similar to the popular method of moment, MOM) 

can be used for estimating the GEV parameters and can also account for the scaling property of 

the extreme rainfall process over different rainfall durations.   

For a distribution of a random variable 𝑋 with a probability density function 𝑓(𝑥) and a 

cumulative distribution function 𝐹(𝑥), the 𝑟𝑡ℎ-order non-central moment (NCM) is given by:  

𝜇𝑟 = E(X
r) =  𝑥𝑟𝑓(𝑥)𝑑𝑥 =  𝑥𝑟𝑑𝐹(𝑥)

∞

−∞

+∞

−∞

 
(3-5) 

Applying the transformation  = 𝐹(𝑥) and provided that the integral in the Eqn. (3-5) 

exists, the 𝑟𝑡ℎ-order NCM, 𝜇𝑟, can be expressed as in Eqn. (3-6) (Hosking and Wallis, 1997): 

𝜇𝑟 = E(X
r) =  {𝑥( )}𝑟𝑑 

1

 

 
(3-6) 

where 0 <  < 1 and 𝑥( ) is a unique value satisfying 𝐹(𝑥( )) =  . 

The NCMs of 𝑟𝑡ℎ-order, 𝜇𝑟, of the GEV distribution are given by Nguyen et al. (2002b):  
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𝜇𝑟 = (𝜉 +
𝛼

𝜅
)
𝑟

+ (−1)𝑟 (
𝛼

𝜅
)
𝑟

Γ(1 + 𝑟𝜅) + 𝑟∑(−1)𝑖 (
𝛼

𝜅
)
𝑖

𝑟−1

𝑖=1

(𝜉 +
𝛼

𝜅
)
𝑟−i

Γ(1 + 𝑖𝜅) 
(3-7) 

in which Γ(. ) is the gamma function.  

For a simple scaling process, it can be shown that the NCMs of two different time scales, 

𝑡 and (𝜆𝑡), are related as follows  (Nguyen et al., 2002b): 

𝜇𝑟(𝜆𝑡) = 𝜆
 𝑟𝜇𝑟(𝑡) = 𝜆

𝑟 𝜇𝑟(𝑡) (3-8) 

where 𝜂𝑟 = 𝑟𝜂, and 𝜂 = 𝜂1  is the scaling exponent of the NCM order 𝑟 = 1 (i.e. the mean) and 𝜆 

is the scaling ratio.  

Furthermore, let 𝑔(𝑡) and 𝑔(𝜆𝑡) denote the skewness of the data samples for two different 

time scales 𝑡 and (𝜆𝑡) respectively. The skewness is the dimensionless version of the third order 

moment. It is obtained by dividing the third-order moment by the second-order moment. Hence, 

for a simple scaling process it can be shown that: 

𝑔(𝜆𝑡) =
[μ3(𝜆𝑡) −  𝜇2(𝜆𝑡)μ1(𝜆𝑡) + 2𝜇1

3(𝜆𝑡)]

[μ2(𝜆𝑡) − 𝜇1
2(𝜆𝑡)]

3
2    

=
𝜆3 

𝜆3 
[μ3(𝑡) −  𝜇2(𝑡)μ1(𝑡) + 2𝜇1

3(𝑡)]

[μ2(𝑡) − 𝜇1
2(𝑡)]

3
2

= 𝑔(𝑡) 

(3-9) 

Equation (3-9) indicates that the skewness is constant over different time scales. 

Consequently, for the simple scaling process, the shape parameter of the GEV distribution 𝜅, 

which is a function of the skewness, is also constant over the time scale, that is,  

𝜅(𝜆𝑡) = 𝜅(𝑡)   (3-10) 

From Eqn. (3-7) and after some mathematical manipulations, the first- and second-order 

NCMs can be written as follows: 
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𝜇1 = 𝜉 +
𝛼

𝜅
{1 − Γ(1 + 𝜅)} (3-11) 

𝜇2 = 𝜇1
2 + [

𝛼

𝜅
]
2

[Γ(1 + 2𝑘) − Γ2(1 + 𝑘)] 
(3-12) 

On the basis of Eqns. (3-8), (3-10)-(3-12) the location and scale parameters of the GEV 

distribution for different time scales can be related as follows:   

𝛼(𝜆𝑡) = 𝜆 𝛼(𝑡)  (3-13) 

𝜉(𝜆𝑡) = 𝜆 𝜉(𝑡) (3-14) 

and the quantiles for different time scales can also be expressed as:   

𝑋𝑇(𝜆𝑡) = 𝜆
 𝑋𝑇(𝑡)   (3-15) 

Hence, on the basis of these equations, for the same scaling regime, it is possible to derive 

the distributions and the quantiles of sub-daily AMSs from those of the daily AMS as presented in 

the next Section. 

3.3.2.2 Quantile estimates 

For estimating sub-daily extreme rainfall quantiles, Figure 3-4 indicates that there are two 

methods: the direct and indirect methods.  

The direct method derives the quantiles for rainfall duration (𝜆𝑡) from those for duration 𝑡 

directly using Eqn. (3-15). Therefore, the parameters of the distributions of sub-daily rainfalls are 

not required by this direct method. However, if necessary, the GEV parameters can be estimated 

using all three equations (3-10), (3-13), and (3-14). Then, the extreme rainfall quantiles can be 

computed using Eqn. (3-2). The results are exactly identical to those given by the direct method 
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using the quantile scaling Eqn. (3-14). Note that from Eqn. (3-8), with 𝑟 = 1, it can be easily 

shown that 𝜆  equals the ratio between the mean of sub-daily AMS and the mean of daily AMS. 

For the indirect method, the first three NCMs of sub-daily AMSs are computed from those 

of the daily AMS based on the scaling relationships of NCMs over different rainfall durations (see 

Figure 3-5a, for example). Once the three NCMs are known, Eqn. (3-7) is then used for estimating 

the three GEV parameters based on the first-, second-, and third-order NCMs. Substitute these 

estimated parameters back into the quantile function to obtain the extreme rainfall quantiles or the 

distributions of the sub-daily AMSs.  

The direct and indirect methods can be therefore thought as the simple scaling and multi 

scaling method, respectively. They can also be referred to as one-moment-based and three-

moment-based scaling methods, respectively. Nguyen (2003) compared the two approaches in 

estimating 5-min and 1-hour AMS from 1-day AMS using data from 88 raingauges located in 

Quebec. His work showed that the three-moment-based method performed better than the one-

moment method since it can extract more information from the observed data.    

3.3.2.3 A special case 

For the special case when the shape parameter 𝜅 = 0, the scaling relationships between the 

scaling parameters (or location parameters) of the sub-daily and daily AMSs indicated by Eqn. 

(3-13) or (3-14) continue to hold true. The quantile scaling relationship provided by Eqn. (3-15) 

also holds true. These properties are referred to as the scaling properties of the GUM distribution 

model (a special case of the GEV model with 𝜅 = 0) based on the NCMs as described in the work 

by Menabde et al. (1999).        
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Figure 3-5. (a) Log-log plot of the first five NCMs (triangle markers) and PWMs (circle markers) over 

different rainfall durations (D = 5 to 1440 minutes). The dash and continuous lines show the regression 

models for the NCM and PWM systems: the first scaling regime from 1440 to 30 minutes and the second 

scaling regime from 30 to 5 minute; (b) Plot of the scaling exponents estimated based on NCMs (diamond 

markers) and PWMs (square markers). The dash and discontinuous lines show the theoretical simple 

scaling exponents for the NCMs and PWMs    
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3.3.3 A novel PWM-based scaling GEV model  

3.3.3.1 Scaling properties 

The probability weighted moment (PWM) method (or method of L-moment, L-MOM) can 

be used for estimating the GEV parameters in consideration of the scaling property of the extreme 

rainfall processes over different rainfall durations. For a distribution of a random variable 𝑋 that 

has a quantile function, 𝑥( ), the PWM of 𝑟𝑡ℎ-order can be expressed as (Hosking and Wallis, 

1997): 

𝛽𝑟 = E(X{𝐹(𝑋)}
𝑟) =  𝑥( ) 𝑟𝑑 

1

 

 
(3-16) 

The PWMs of 𝑟𝑡ℎ-order, 𝛽𝑟, of the GEV distribution are given by Hosking et al. (1985): 

𝛽𝑟 = 𝑀1,𝑟, = 𝐸[𝑋 {𝐹(𝑋)}
𝑟] = (𝑟 + 1)−1 (𝜉 +

𝛼

𝜅
{1 − (𝑟 + 1)−𝜅 Γ(1 + 𝜅)})  (3-17) 

in which 𝜉, 𝛼, and 𝜅 are the location, scale, and shape parameters respectively; 𝐹(𝑋) is the 

cumulative probability of interest, Γ(. ) is the gamma function, and 𝑟 must be non-negative.  

For a simple scaling process, it can be shown that the relation between the rth-order PWMs 

of rainfalls for two different rainfall durations 𝑡 and (𝜆𝑡) can be expressed as:  

𝛽𝑟(𝜆𝑡) = 𝜆
 𝑟𝛽𝑟(𝑡) = 𝜆

 𝛽𝑟(𝑡) (3-18) 

where 𝜂𝑟 = 𝜂  is the scaling exponent and can be estimated based on the means, 𝐸{𝑋}, (that is, 

the PWM of order 𝑟 = 0) of different rainfall durations. 
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This infers that the scaling exponents 𝜂𝑟  are constant for all PWM orders 𝑟 within the same 

rainfall scaling regime. In other words, the plot of the scaling exponents 𝜂𝑟 (y-axis) with the PWM 

order 𝑟 (x-axis) should display a horizontal line rather than a linear sloping line as for the case of 

the NCMs (Nguyen et al., 2002b). 

Furthermore, let 𝜏3(𝑡) and 𝜏3(𝜆𝑡) denote the L-skewness of the data samples for two 

different time scales 𝑡 and 𝜆𝑡 respectively (Hosking, 1990). L-skewness is the dimensionless 

version of the third order L-moment. It is obtained by dividing the third-order L-moment by the 

second-order L-moment. Hence, for a simple scaling process it can be shown that: 

𝜏3(𝜆𝑡) =
 𝛽2(𝜆𝑡) −  𝛽1(𝜆𝑡) + 𝛽 (𝜆𝑡)

2𝛽1(𝜆𝑡) − 𝛽 (𝜆𝑡)
=
𝜆 

𝜆 
.
[ 𝛽2(𝑡) −  𝛽1(𝑡) + 𝛽 (𝑡)]

[2𝛽1(𝑡) − 𝛽 (𝑡)]
= 𝜏3(𝑡) 

(3-19) 

Equation (3-19) indicates that the L-skewness is constant over different time scales. 

Consequently, for the simple scaling process, the shape parameter of the GEV distribution, 𝜅, 

which is a function of the L-skewness, is also constant over the time scale, that is,  

𝜅(𝜆𝑡) = 𝜅(𝑡)   (3-20) 

From Eqn. (3-17) and after some mathematical manipulations, the zero- and first-order 

PWMs can be written as follows: 

𝛽 = 𝜉 +
𝛼

𝜅
{1 − Γ(1 + 𝜅)} (3-21) 

𝛽1 =
1

2
[𝛽 +

𝛼

𝜅
(1 − 2−𝑘)Γ(1 + 𝑘)] 

(3-22) 

On the basis of Eqns. (3-18), (3-20)-(3-22) the location and scale parameters of the GEV 

distribution for different time scales can be related as follows:   
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𝛼(𝜆𝑡) = 𝜆 𝛼(𝑡)  (3-23) 

𝜉(𝜆𝑡) = 𝜆 𝜉(𝑡) (3-24) 

and the quantiles for different time scales can also be expressed as:   

𝑋𝑇(𝜆𝑡) = 𝜆
 𝑋𝑇(𝑡)   (3-25) 

In summary, based on these equations, for a simple scaling regime, it is possible to derive 

the distributions and statistical properties of short-duration extreme rainfalls from those of longer 

durations at a given study site as described in the following section.  

3.3.3.2 Quantile estimates 

Similar to the NCM-based scaling method, there are two different manners to estimate the 

sub-daily extreme rainfall quantiles from the daily ones: the direct and indirect methods. The direct 

method scales the rainfall quantiles for duration (𝜆𝑡) from those for duration 𝑡 directly using Eqn. 

(3-25). Note that the daily extreme rainfall quantiles computed based on the two different PWM 

and NCM methods are not the same. Consequently, the scaled sub-daily extreme rainfall quantiles 

obtained by these two approaches are therefore different. Similarly, even though the parameter 

scaling relationships are identical for both NCM and PWM methods, the computed scaling 

parameters by these two estimation methods could be different. For the indirect method, the first 

three PWMs of sub-daily AMSs are first estimated using the scaling relationships of PWMs over 

different rainfall durations (see Figure 3-5a, for example). These three estimated PWMs are then 

utilized to solve for the three GEV parameters in order to compute the rainfall quantiles using Eqn. 

(3-17). Both methods are investigated and compared in Section 3.4.1. 
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3.3.3.3 Special case 

For the special case when the shape parameter 𝜅 = 0, the scaling relationships between the 

scaling parameters (or location) of the sub-daily and daily AMSs as shown in Eqn. (3-23) (or 

(3-24) continue to hold true. The quantile scaling relationship provided in Eqn. (3-25) also holds 

true. These properties are referred to as the scaling properties of the GUM distribution model  using 

the PWMs (a special case of the GEV/PWM model proposed in this study) as described in the 

work by Yu et al. (2004). 

3.3.4 Model Comparison Criteria 

In the present study, six common goodness-of-fit (GOF) criteria were selected for assessing 

the feasibility and accuracy of the proposed scaling model for estimating short-duration extreme 

design rainfalls at a local site in the context of climate change. These criteria include the root mean 

square error (RMSE), the root mean square relative error (RMSEr), the mean absolute deviation 

(MAD), the mean absolute relative deviation (MADr), the adjusted coefficient of determination 

(𝑅𝑎𝑑𝑗
2 ), and the correlation coefficient (CC).  

𝑅𝑀𝑆𝐸 = {∑
(𝑥𝑖 − 𝑦𝑖)

2

(𝑛 − 𝑚)
}

1
2

   

(3-26) 

𝑅𝑀𝑆𝐸𝑟 =  [
1

(𝑛 − 𝑚)
∑{
(𝑥𝑖 − 𝑦𝑖)

𝑥𝑖
}

2

]

1
2

 

(3-27) 

𝑀𝐴𝐷 =  
1

(n−m)
∑|𝑥𝑖 − 𝑦𝑖|         (3-28) 

𝑀𝐴𝐷𝑟 =  
1

(n − m)
∑ {
|𝑥𝑖 − 𝑦𝑖|

𝑥𝑖
} 

(3-29) 
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𝑅𝑎𝑑𝑗
2 = 1 −

(𝑛 − 1)

(𝑛 − 𝑚 − 1)
× (1 − 𝑅2) 

(3-30) 

𝐶𝐶 = 
∑{(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)}

{∑(𝑥𝑖 − �̅�)2∑(𝑦𝑖 − �̅�)2}
1
2

= 𝑅 
(3-31) 

where 𝑥𝑖 , 𝑖 = 1, 2, … , 𝑛 are the observed values and 𝑦𝑖, 𝑖 = 1, 2, … , 𝑛 are the estimated values for 

the same probability level 𝑝𝑖; 𝑛 is the sample length; �̅� and �̅� denote the average value of the 

observed and estimated quantiles, respectively; 𝑚 is the number of model parameters and by 

default 𝑚 = 0 when comparing between the observed and estimated values. However, for the case 

of comparing the performance of the four scaling models (i.e. GEV/PWM, GEV/NCM, 

GUM/PWM, and GUM/NCM models) in estimating the distributions of sub-daily extreme rainfall 

series from those of the daily extreme rainfall series, the number of model parameters, 𝑚 must be 

taken into account to make a fair comparison. Depending on the approach, 𝑚 =   was used for 

the GEV/PWM and GEV/NCM models, and 𝑚 = 2 for the GUM/PWM and GUM/NCM models.  

The Cunnane’s plotting position formula was used to estimate the non-exceedance 

probabilities, 𝑝𝑖, because of its ability to yield approximately unbiased quantiles for a wide range 

of distributions (Nguyen et al., 2017; Nguyen and Nguyen, 2019a): 

𝑝𝑖:𝑛 =
𝑖 − 0.4

𝑛 + 0.2
 (3-32) 

After computing the six GOF statistical tests, a ranking scheme is utilized to rank all the 

selected distributions.  Ranking scores are assigned to each model according to the value computed 

for each criterion. A distribution with the lowest RMSE, RMSEr, MAD, MADr, MAE, or highest 

R2
adj is given the rank of 1 for the corresponding assessment category. In case of ties, equal ranks 
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are given to those corresponding models. Furthermore, for each numerical criterion, the overall 

rank associated with each distribution is computed by summing the individual ranks. 

3.4 Results and Discussion 

3.4.1 Scaling analysis 

The main objective of the scaling analysis is to be able to identify the scaling behaviour of 

the extreme rainfall processes for different time scales at the location of interest. Extreme rainfall 

events of short durations (e.g., from several minutes to a few hours) may be governed by a totally 

different physical mechanism as compared to those events of longer durations (e.g., several hours 

to a couple of days). The scaling behaviour of these different physical phenomena could be 

discovered through investigating the relationships between the statistical moments of extreme 

rainfall amounts and the rainfall durations.  

Notice that the statistical moments of extreme rainfalls computed based on the NCMs and 

the PWMs are quite different. The conventional (or ordinary) moments involve the increase in the 

powers of the quantile function 𝑥( ) and thus give a higher weight to the outliers in the dataset. 

When the order of the statistical moment increases, the values of the moments increase by an 

amount proportional to the mean raised to the power of the order. For instance, for the Montreal 

P.E.T Intl. Airport Station presented in Figure 3-5a, the first-order NCMs (i.e., the means) of the 

rainfall amounts of different rainfall durations range from 101 mm to 102 mm, while the second-

order NCMs range from 102 mm to 104 mm, and the third-order NCM range from 104 mm to 106 

mm. If the order continues to be raised to a much higher value, for example, to the fifth order, the 

NCM values become very large due to the very large weights applied to the very high outliers. 
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Hence, it can be seen that the differences between the NCMs of rainfall amounts for the smallest 

and the largest rainfall durations become much larger for higher orders of the NCMs. In contrast 

to the ordinary NCMs, the PWMs involve the powers of   and may be regarded as integrals of 

𝑥( ) weighted by the polynomials  𝑟. Since the values of    are between 0 and 1, hence, when the 

order of moment increases, the values of the PWMs of rainfall amounts decrease gradually. For 

instance, for the Montreal P.E.T Intl. Airport Station presented in Figure 3-5a, the zero-order 

PWMs (i.e., the means or the first-order NCMs) of rainfall amounts for different rainfall durations 

varied in a range from 101 mm to 102 mm. However, the first- and second-order PWMs are almost 

in the same range of rainfall values as for the first-order PWMs, while the ranges of values for the 

equivalent second- and third-order NCMs are very much larger as indicated previously. Even when 

the power of the PWMs is raised to the fifth-order, the values of the corresponding PWMs are still 

within a range of low values from 100 mm to101 mm. Therefore, it can be seen that the computed 

PWMs of extreme rainfalls are more robust against the high outliers than the computed NCMs.     

Some previous studies have indicated that extreme rainfall processes for durations ranging 

from several minutes to several days could exhibit one or two distinct scaling regime(s) (see, e.g., 

Nguyen et al., 1998; Yu et al., 2004; Bairwa et al., 2016). In other words, if the log-log plot of 

rainfall statistical moments versus rainfall durations displays a straight line and does not indicate 

any breaking point, one can conclude that there exists only one scaling regime for these extreme 

rainfall processes over the selected time scales. On the other hand, if the plot shows a breaking 

point, for instance at 30-minute duration as shown in Figure 3-5 for Montreal PE Trudeau Airport 

station, then one could identify two different scaling regimes of extreme rainfalls for two distinct 

ranges of rainfall durations; that is, the first scaling regime is defined for the range from 5-minute 
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duration to 30-minute duration, and the second scaling regime for the range from 30-minute 

duration to 1-day duration.  

To avoid the subjectivity in the identification of the breaking point location on the log-log 

plot, a numerical criterion was employed. This criterion relies on the residuals and the ranking of 

the residuals computed by fitting a linear regression model to the log-log plot of rainfall statistical 

moments (i.e., NCMs or PWMs) versus rainfall durations. For each plot, straight lines were fitted 

by a linear regression method such that the group-wide and the total residuals of the first three 

statistical moments are minimized. Hence, the number of fitted lines needed is equal to the number 

of scaling regimes visually identified. Notice also that to estimate the parameters of a three-

parameter distribution such as GEV, only the first three statistical moments are required. In 

addition, this method is limited to the identification of the breaking point at a given observed 

rainfall duration within the range from D1 = 5 minutes to D9 = 1440 minutes and should not be 

used to detect the breaking point location for an unobserved duration (e.g.,  45 minutes) since there 

is no physical basis associated with it. 

For purposes of illustration, Figure 3-5b shows the result of detection of breaking durations 

using both the NCMs and PWMs for the Montreal P.E.T Intl. Airport Station. In this case, results 

are similar for both statistical moments. The breaking point is identified at 30 minutes and there 

are two different scaling regimes: the first scaling regime is from 1440 minutes to 30 minutes and 

the second scaling regime from 30 minutes to 5 minutes. It is also noted that the computed NCM-

based scaling exponents for the orders smaller than three can be well-approximated by a straight 

line representing a given simple scaling regime, while the scaling exponents given by the NCMs 

of orders higher than three display a small deviation from the simple scaling line. For the computed 

PWM-based scaling exponents, notice that this deviation for the higher order PWM is much 



 

66 

smaller. This result indicates that estimation of the scaling exponents using the PWMs are more 

robust than using the NCMs.  

The results of scaling analysis of all 74 study stations are spatially represented in Figure 

3-6. In general, it can be seen that the estimation results using both NCMs and PWMs are highly 

comparable for a larger number (more than 96%) of stations, especially for those with long rainfall 

records. Furthermore, by observing the two plots, the PWM-based breaking point graph indicates 

a more consistent results and a better agreement among the neighboring stations. The PWM-based 

empirical scaling exponents are computed for both scaling regimes of each station. 

In particular, Figure 3-6b indicates that, for the Atlantic region, two stations on the East 

coast of Newfoundland and Labrador show a 15-minute breaking point, while the remaining 

station exhibits the same 360-minute breaking point as many stations in Nova Scotia and New 

Brunswick of the Maritime region. There are two stations located in the North of New Brunswick 

with a 10-minute breaking point; and two stations located in the West of Nova Scotia with a 60-

minute breaking point stations.  

For Quebec and Ontario of Eastern Canada, among the 29 stations, a total of 62% of these 

stations exhibit a 30-minute breaking point. These stations are mainly located in the Southern 

Quebec, Southern Ontario, and Northwestern Ontario. For North-Eastern Ontario, the breaking 

points are located at  15-minute duration or 30-minute duration. There are five stations with a 60-

minute breaking point in Ontario; interestingly, four of them located next to the Great Lakes 

region. In particular, the Kingston Pumping (#44) and Trenton Airport (#56) Stations are situated 

in the Northwest of Lake Ontario; the North Bay (#43) Station is situated in the Northeast of Lake 

Nipissing; the Thunder Bay (#39) Station is situated in the Northwest of Lake Superior. There is 
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only one station with a 120-minute breaking point – the Kenora RCS (#36) Station located on the 

Lake of the Woods. This station has also recorded the largest 120-minute and 360-minute extreme 

rainfall events as described in Section 3.2.  

For the Prairies region, most stations located in Southern Manitoba and Saskatchewan 

show a 30-minute breaking point, while the stations located in the North of these two provinces 

exhibit a 15-minute breaking point. Only station Saskatoon RCS (#27) shows the 60-minute 

breaking point. For Alberta province, all stations exhibit the breaking point at 15-minute rainfall 

duration, except one station shows a 10-minute breaking point. Note that there is one station 

showing the breaking point at 1-hour duration, the Red Deer Regional Airport (#17) Station. 

However, the difference in scaling exponents between the two scaling regimes is less than 1% (see 

Figure 3-7). Thus, this station can be considered to have only a single scaling regime (i.e., from 1-

day to 5-minute).  

The westernmost province of Canada – British Columbia, located between the Pacific 

Ocean and the Rocky Mountains, displays the most complex scaling behaviour. This is due to the 

complicated and diverse geography of the province varying from coastal islands to mountainous 

interiors. The 12 investigated stations indicate that the breaking point ranges from a very short 

duration of 10 minutes to a much longer duration of 6 hours. There are two stations (Station #5 – 

Comox Airport and Station #6 – Tofino Airport located respectively on the West and East Coasts 

of the Vancouver Island bordering with the Pacific) show a 120-minute breaking duration. Similar 

to the province of Alberta, the differences in scaling exponents between the two scaling regimes 

are approximately 5% (see Figure 3-7). Thus, these stations could be considered to have only a 

single scaling regime (i.e., from 1-day to 5-minute). Station #14 – Blue River Airport – shows the 
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breaking point at 360-minute duration with approximately 9% difference in scaling exponents 

between the two scaling regimes.  

For the Territories, the two stations located in Yukon and Northwest Territories exhibit the 

same breaking point at 15-minute duration which are also similar to the stations located in 

Northeastern British Columbia and Northern Prairies provinces.     

 

Figure 3-6. Locations of breaking points of 74 stations based on (a) NCMs (b) PWMs. Circle markers 

with different colors and sizes show the breaking durations 

 

Figure 3-7. The PWM-based empirical scaling exponents for (a) the first scaling regime and (b) the 

second scaling regime. The first and second scaling regimes are defined from 1 day to the breaking point 

and from the breaking point to 5 minutes, respectively.  

To investigate the robustness of the empirical scaling exponent estimates, the first five 

NCM-based and PWM-based empirical scaling exponents are plotted with the theoretical simple 

scaling exponents on Figure 3-8 for both scaling regimes. The first scaling regime is defined from 

the 24-hour duration to the breaking duration, whereas the second scaling regime is defined from 

Dur (min)

(a)   NCM-based (b)   PWM-based
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the breaking duration to the 5-minute duration. Results show that the four- and fifth-order 

empirical scaling exponents divert significantly from the simple scaling exponents, especially for 

the NCM-based estimation. The coefficient of determination R2 between the empirical and simple 

scaling exponents are calculated and provided in Table 3-3. These results point out that the PWM-

based estimation yields a much better result than the NCM-based estimation for all the moment 

estimators and for both scaling regimes. For example, R2 values for PWM-based estimations are 

0.98 for the first scaling regime and 0.87 for the second scaling regime, while the corresponding 

values for the NCM-based estimation are 0.96 and 0.81, respectively. 

Table 3-3. Values of R2 between the empirical and theoretical simple scaling exponents for the first five 

moments. Bold values indicate a higher R2 value between the PWM and NCM methods for each 

scaling regime. Note that the first moments are equal to the means. 

Moments 
1st scaling regime 2nd scaling regime 

PWM NCM PWM NCM 

1 1 1 1 1 

2 0.994 0.990 0.947 0.953 

3 0.982 0.955 0.874 0.812 

4 0.972 0.897 0.812 0.653 

5 0.962 0.834 0.757 0.531 
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Figure 3-8. Empirical versus simple scaling exponent plot for (a) PWM-based first and (b) second scaling 

regimes; (c) NCM-based first and (d) second scaling regimes. The first and second scaling regimes are 

defined from the 24-hour to the breaking duration, and from the break to the 5-min duration, respectively. 

 

3.4.2 Direct and indirect quantile scaling  

In this section, the direct and indirect scaling methods for computing the sub-daily extreme 

rainfall quantiles from those of daily data based on the scaling GEV/PWM distribution model as 

described in Section 3.3.3 are investigated and compared. In particular, they are employed to 

estimate the distributions and quantiles of the sub-daily extreme rainfalls from those daily extreme 

rainfalls. The estimated values are compared to the at-site frequency analysis of the observed 

values using both graphical and numerical comparisons.  

Empirical scaling exponent, 𝜂𝑟
   

T
he

o
re

tic
a

l 
si

m
p

le
 s

ca
lin

g
 e

xp
o

ne
nt

, 
𝜂 𝑟
  

(a) PWMPWM

NCMNCM

(b)

(d)(c)



 

71 

For purposes of illustration, results of four representative stations located in different 

provinces across Canada are presented as shown in Figure 3-9. These stations, which contain one 

of the longest extreme rainfall records and/or contain the largest rainfall amounts in one or several 

durations, are: Montreal P.E.T. Intl. Airport Station (1943-2014), Dauphin CS Station (1954-

2016), Regina Airport Station (1941-1995), and Vancouver Airport Station (1953-2017). For each 

station, the probability plots as shown in Figure 3-9 were used to compare the estimated extreme 

rainfall quantiles given by the scaling-invariant (either direct or indirect) method and those given 

by the at-site frequency analysis for 1-hour and 5-minute AMS. It can be seen that the estimated 

probability distributions for 1-hour and 5-minute AMS by the indirect method provided a better fit 

to the observed points (or closer to the theoretical fitted distribution) than those given by the direct 

method. Thus, the indirect method yields better quantile estimates for these four stations as 

compared to the direct method. More specifically, the direct method tends to over-estimate the left 

tail portion of the distributions, and more importantly, it tends to under-estimate the right tail 

portion, which is a critical area where the extreme rainfall values are often used for the design of 

various hydraulic structures.     



 

72 

  

         

Figure 3-9. Probability plots of 1-hour and 5-minute AMS scaled from 1-day AMS using the direct 

method (DM, dash lines) and indirect method (IM, continuous line). Empirical distribution of observed 

data (OBS, circle markers) and theoretical fitted distribution using at-site frequency analysis (ASF, dotted 

lines) are also plotted for comparisons. Small graph on each plot shows the zoomed-in blue window.    

Figure 3-9 only shows the comparison of the distributions of 1-hour and 5-minute AMS 

for the four representative stations. For a full comparison of all rainfall durations and all stations, 

the graphical comparison using quantile-quantile (Q-Q) plots and numerical comparison using 

different statistical criteria are employed as shown in Figure 3-10 and Figure 3-11, respectively. 

The observed extreme design rainfalls are plotted with the downscaled ones for six return periods 

(T = 2, 5, 10, 25, 50, and 100 years) and for eight rainfall durations (D = 5, 10, 15, 30, 60, 120, 
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360, and 720 minutes). The observed values are estimated based on the at-site frequency analysis 

approach using the GEV distribution. The downscaled values are estimated from the daily extreme 

rainfalls using both the direct and indirect methods.  

The Q-Q plots in Figure 3-10 show a high correlation between the estimated and observed 

values for both methods. However, the indirect method performs better with a narrower spread of 

points along the perfect agreement line (i.e. the 45-degree line). The boxplots in Figure 3-11 

indicate that the indirect method outperforms the direct method for all criteria. This difference in 

accuracy of the estimates between these two methods is due to the form of parameterization that 

each method applied. The direct method used only the zero-order moments of extreme rainfall data 

series to estimate the rainfall quantiles, while the indirect method involved all three moments of 

order 0, 1, and 2 in the estimation. Consequently, the indirect procedure used much more 

information from the data than the direct method and, therefore, produced higher accuracy. 

 

Figure 3-10. Quantile-quantile (Q-Q) plot of the observed (𝑋𝑇
   , mm) and the downscaled (𝑋𝑇

𝑑 𝑐, mm) 

extreme design rainfalls for six return periods (T=2, 5, 10, 25, 50, and 100 years) and for eight rainfall 

durations (D=5, 10, 15, 30, 60, 120, 360, and 720 minutes). The observed values are estimated using the 

at-site frequency analysis approach. The downscaled values are estimated from the daily extreme rainfalls 

using (a) direct and (b) indirect methods. 
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Figure 3-11. Boxplots of numerical comparisons of the estimated extreme design rainfall quantiles 

produced using the direct method (DM, blue box) and indirect method (IM, red box) for 74 stations using 

different statistical criteria: (a) RMSE, MAD, MAD (mm) and (b) RMSEr, MADr, R2 (dmnl).  

3.4.3 Comparison of scale-invariance models 

This section presents the comparison of the performance between the GEV/PWM model 

proposed in this study, the existing scale-invariance GEV/NCM model, and their special cases – 

the scaling GUM/PWM and GUM/NCM models. Furthermore, as indicated in the previous 

section, the indirect scaling methods was used in this comparison since it can produce more 

accurate results than the direct procedure for these scale-invariance models. 

For purpose of illustration, Figure 3-12 presents the graphical comparisons of the 

cumulative distribution functions (CDFs) of the sub-daily AMS (for rainfall duration ranging from 

D = 720 to 5 minutes) derived from the distribution of daily AMS data (D = 1440 minutes) using 

the four scale-invariance models for Montreal P.E.T. Intl. Airport Station. For each model, a visual 

assessment can be performed by visually comparing the estimated CDFs of the sub-daily extreme 

rainfalls to the empirical CDFs of the observed data and to the fitted theoretical CDFs. Note that, 

the scaling model allows to derive the distributions of the sub-daily AMS from the fitted 
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distribution of the daily data by considering the relationship between the PWMs or NCMs of 

extreme rainfall amounts over different rainfall durations. Whereas the ASFA method does not 

take into account this relationship and the theoretical distribution is fitted independently to each 

daily and sub-daily AMS. Results in Figure 3-12 indicate that the extreme rainfall quantiles 

estimated using these scaling models highly agree with the observed values. From the visual 

standpoint, all the scale-invariance models seem to perform well at these two stations. However, 

the significance of the differences between these models is difficult to assess based on the graphical 

display. A more objective evaluation using numerical comparison criteria is thus necessary.  

Different goodness-of-fit test criteria presented in Section 3.3.4 were thus utilized to 

evaluate the performance of the four models. In detail, the six statistical GOF tests were calculated 

based on the estimated and empirical extreme rainfall quantiles of sub-daily data (i.e., the empirical 

CDFs are the same for all four models). The use of different theoretical distributions yields 

different results of extreme rainfall quantiles even using the same parameter estimation method 

(for example, GEV/PWM model versus GUM/PWM model; or GEV/NCM model versus 

GUM/NCM model, see Figure 3-12). Furthermore, assuming that the distributions of sub-hourly 

and sub-daily AMS follow the GEV distribution, different parameter estimation methods yield 

different results of extreme rainfall quantiles (for instance, GEV/PWM model versus GEV/NCM 

model, see Figure 3-12). While the empirical CDF/quantiles are independent with theoretical 

distributions and parameter estimation methods.  

Using these numerical criteria, the results for Montreal P.E.T. Intl. Airport Station 

indicated that the GUM/PWM produced the best results for the RMSE (1.63 mm) and the MAE 

(9.5 mm) criteria, while the GEV/PWM yielded the best results for the RMSEr (5.4 %) and MADr 

(4.3 %) which is the same as the GUM/NCM. For the R2, the GUM/PWM and GUM/NCM models 
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produced slightly better results with R2
adj=0.99. Ranking of these values are also presented in 

Figure 3-13. Similar calculations were carried out for all 74 stations and the results were also 

presented in Figure 3-13 for 5 to 720-minute observed and estimated AMS data. The observed data 

are shown as boxplots on the left for all stations with provincial names. Numerical values of the 

six indices are synthesized and displayed as boxplots on top of Figure 3-13. Note that the 

GEV/PWM, GEV/NCM, GUM/PWM, and GUM/NCM scale-invariance models are denoted as 

M1, M2, M3, and M4, respectively.  

In general, results for the downscaled sub-daily AMS show that all four scale-invariance 

performed well. For instance, as can be seen from the boxplots, to the whisker extents, the worst 

model produces RMSEr and MADr less than 18% and 12% respectively, RMSE and MAD less 

than 4.5 mm and 2.5mm, and R2
adj at least 0.95. On average, as compared to the medians, the worst 

model produces RMSEr and MADr less than 9% and 6% respectively, RMSE and MAD less than 

2.5 mm and 1.5mm, and R2
adj at least 0.98. Based on these boxplots, especially, boxplots of the 

dimensionless indices (i.e., RMSEr, MADr, and R2
adj), it can be seen that the GEV/PWM model 

performs best for these criteria with the smallest box widths, lowest (or highest) medians and 

shortest upper (or lower) whisker extents for the cases of RMSEr and MADr (or R2
adj).  

The ranking of the four candidate scaling models for each of the selected 74 stations based 

on the six indices are also presented in Figure 3-13. Ranking from number 1 to 4 indicates the 

gradual decrease from the best to the worst distributions. On the basis of these goodness-of-fit 

numerical comparison results, it was found that no unique scaling model ranked consistently best 

for all criteria and all locations. However, the proposed GEV/PWM seems to perform well for the 

majority of stations and for all six indices. To investigate this, the overall rank (or total score) of 

each numerical index was obtained by summing the individual point rank at each station for each 
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model. Ranking of the total score (i.e., from 1 to 4) was also computed. Results are shown at the 

bottom of Figure 3-13. In addition, the number of first score was also calculated for each model of 

each criterion. Results are displayed in the form of the bar graphs right below the ranking of the 

total score in Figure 3-13. Note that the equal scores were used for tie cases. Hence, the sum of the 

first score for each numerical index based on the four models can be higher than the total number 

(74) of stations considered.   

In general, based on the three criteria (i.e., RMSEr, MAD, and MADr), the GUM/NCM is 

the least accurate with the total scores (or first scores) for these indices are 249 (7), 257 (6), and 

251 (9), respectively. However, it produces comparable results to the GUM/PWM model for the 

RMSE criterion and performs better than the GUM/PWM model for the MAE index. The R2
adj 

criterion should not be used to compare these two models as the relationship between their 

quantiles can be described by a linear function. In fact, using the same reduced Gumbel variates, 

the quantile functions of the two models are linear. This means that the plots of quantiles estimated 

using the two models with the same Gumbel reduce variates are straight lines on a same graph. In 

contrast to the GUM/NCM, the GEV/PWM is the best model among the four considered models 

with the lowest total scores (or highest first scores) for all six indices (RMSE, RMSEr, MAD, 

MADr, MAE, and R2
adj), which are 122 (49), 110 (51), 102 (55), 99 (56), 150 (38), and 110 (56), 

respectively. If only the MAE criterion is considered, the GEV/NCM model produces comparable 

results with the GEV/PWM model with a close total score (i.e. 155 vs 150), an approximate box 

width and a similar whisker extent. 

The quantile-quantile (Q-Q) plot was also used to visually compare the scaling-based and 

empirical-based 5-to-720-minute extreme rainfall quantiles. Results are shown in Figure 3-14. 
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Results again confirm that the GEV/PWM model is the best model with the smallest spread of 

points along the perfect result line (i.e. the 45-degree line). 

 

Figure 3-12. Probability plots of the estimated sub-daily and sub-hourly AMS (D = 720 to 5 minutes) 

derived from the daily AMS (D = 1440 minutes) for Montreal P.E.T. Intl. Airport Station using the 

scaling approach (SCL, continuous lines) and at-site frequency analysis (ASF, dotted lines) of the 

observed data (OBS, circle markers). 
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Figure 3-13. Statistical test results of observed and estimated 5- to 720-minute extreme rainfall quantiles 

produced using the four scaling models. Observed AMS data from 5 to 720 minutes are shown on the left 

for all stations with provincial names. Numerical values of each criterion for 74 stations are summarized 

in the form of boxplots on the top. For each station, the four scaling models are ranked from the best (rank 

= 1, darkest color with a diamond) to the worst model (rank = 4, white). The total score for a model is 

computed by summing the individual ranks. Equal ranks are used for ties. Similarly, the total first score is 

computed by counting only the number of stations that the model performs best.
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Figure 3-14. Quantile-quantile (Q-Q) plots of the scaling-based (downscaled) and empirical-based 

(observed) extreme rainfall quantiles of 720-minute to 5-minute rainfall duration for (a) GEV/PWM, (b) 

GEV/NCM, (c) GUM/PWM, and (d) GUM/NCM models.   
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3.5 Summary and Conclusions 

Short-duration extreme rainfall data (e.g., a few minutes to hours) are often required for 

the simulation and assessment of runoff and inundation for the fast response areas, such as the 

urban and small rural watersheds. However, this data is often limited or unavailable at the given 

study location while those of daily scale are widely available. The present study proposed a special  

mathematical framework based on the scale-invariance Generalized Extreme Value (GEV) 

distribution model to establish the linkages between the non-central moments (NCMs) or the 

probability weighted moments (PWMs) of extreme rainfalls over different time scales (e.g., from 

several minutes to one day). On the basis of this framework, the distributions and quantiles of 

short-duration extreme rainfalls can be derived from those of longer-duration data.  

The NCM-based mathematical framework and the scaling properties of the GEV 

distribution were critically reviewed and presented in this Chapter. This includes the scaling 

GEV/NCM model proposed by Nguyen et al. (1998) and its special case, the scaling GUM/NCM 

model as described in Menabde et al. (1999). The traditional NCMs have been commonly used to 

estimate model parameters by raising the power of each element in the sample to the same order. 

It is thus considered to be sensitive to outliers, especially for moments of high orders such as 

skewness. In contrast, the PWM system puts the weight on the probability and therefore produces 

a more robust estimate. The PWM-based mathematical framework and scaling properties of the 

GEV distribution (referred to as the GEV/PWM model) was first introduced in this study. The 

GUM/PWM model as suggested in a previous study by Yu et al. (2004) is hence a special case of 

the proposed GEV/PWM model.   
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The long-record short-duration extreme rainfall data from a network of 74 raingages 

located across Canada were used to investigate the feasibility and accuracy of the proposed scaling 

GEV/PWM model. The observed data from each station contains annual maximum rainfall series 

(AMS) of nine different rainfall durations ranging from 5 to 1440 minutes with at least 40 years 

of record. In total, 666 AMS dataset were considered in the present study.  

Firstly, the scaling behaviours of the AMS for all 74 stations were analyzed based on both 

NCMs and PWMs. Results of this scaling analysis have indicated that the estimates of the 

empirical scaling exponents based on the PWMs are more accurate and more robust than those 

given by the NCMs for different extreme rainfall scaling regimes and for higher order rainfall 

statistical moments. For instance, the R2 between the empirical and theoretical scaling exponents 

of the second-order PWM for two distinct scaling regimes are 0.982 and 0.874, respectively, while 

those values given by the third-order NCM are only 0.955 and 0.812, respectively. Note that the 

zero-order PWMs are equivalent to the first-order NCMs and they are both equal to the AMS 

means.   

Secondly, following the scaling analysis, the direct and indirect scaling methods for 

estimating the quantiles of sub-daily AMS from those of daily AMS based on the proposed scaling 

GEV/PWM model were investigated and compared. The direct method estimates the quantiles of 

sub-daily AMS directly from those of daily AMS without the need of estimating the GEV model 

parameters. On the other hand, the indirect method computes the PWMs of sub-daily AMS from 

those of the daily AMS and then used these estimated PWMs to estimate the GEV model 

parameters for computing the quantiles of the sub-daily extreme rainfalls. Results based on 

different graphical displays (probability plots and quantile-quantile plots) as well as six numerical 

indices (RMSE, RMSEr, MAD, MADr, MAE, R2
adj) have indicated that the indirect method 
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outperformed the direct method for all these criteria. This method was then employed to compare 

the performance of the proposed GEV/PWM model with other exisisting scale-invariance models. 

Graphical and numerical comparisons of the performances of the GEV/PWM model and 

three existing scaling models (GUM/PWM, GEV/NCM, and GUM/NCM) were conducted using 

data from a network of 74 stations across Canada. Results of these comparisons have indicated 

that no distribution performed best for all stations and for all criteria. However, it was found that 

the proposed GEV/PWM model was superior to all three existing models for the majority of 

stations and criteria. For example, the model can produce the lowest errors for a large  number of 

stations  (69% and 76% of stations) based on the RMSEr and MADr criteria, respectively. 

In summary, the present study has deveoped an improved method for estimating more 

accurately the extreme rainfalls at a given location of interest by taking into account the 

relationships between the statistical moments of extreme rainfall amounts for different rainfall 

durations as compared to the traditional estimation approach in which the statitical properties of 

extreme rainfalls for different durations were considered independently. Hence, the proposed 

method  could also be used in the regional rainfall estimation context to estimate extreme rainfalls 

at locations with limited or missing data (partially-gauged sites with missing sub-daily data for 

instance) or at locations with no available data (ungaged sites) by transfering the scaling properties 

of AMS from the neighboring stations located within a same homogeneous region. Furthermore, 

the proposed method can also be used to provide projected short-duration extreme rainfalls from 

the projected daily extreme rainfalls for updating the IDF relations in the context of a changing 

climate as described in the following chapters. 
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Chapter 4. Linking Climate Change to Urban Storm 

Drainage System Design: An Innovative Approach to 

Modeling of Extreme Rainfall Processes Over Different 

Spatio-Temporal Scales  

 

4.1 Introduction 

The design of urban storm drainage systems requires a “design storm” that represents the 

time distribution of rainfalls within an extreme storm event. More specifically, in engineering 

practice, the design storm of a specified exceedance probability and duration is commonly 

estimated from the extreme rainfall intensity-duration-frequency (IDF) relations (Hershfield, 

1961; Chow, 1964; WMO, 2009). However, in recent years, climate change has been recognized 

as having a profound impact on the hydrologic cycle at different temporal and spatial scales. The 

temporal scales could vary from a very short time interval of a few minutes (for urban water cycle) 

to a yearly time scale (for annual water balance computation). The spatial resolutions could be 

from a few square kilometers (for urban and rural watersheds) to several thousand square 

kilometers (for large river basins). In particular, the intensity and frequency of extreme 

precipitation events in most regions will be likely increased in the future (Alexander et al., 2006; 

Lenderink and Van Meijgaard, 2008; Kharin et al., 2013; Shephard et al., 2014; Zhang et al., 2017). 

Hence, there exists an urgent need to assess the possible impacts of climate variability and climate 

change on the IDF relations in general and on the design storm in particular for improving the 

design of urban drainage systems in the context of a changing climate (Willems et al., 2012; CSA, 

2012; Madsen et al., 2014; Simonovic et al., 2016).  
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To achieve this, the projected annual maximum rainfall series for different rainfall 

durations from short time scales (e.g., a few minutes) to long time intervals (e.g., one day or longer) 

under different possible climate change scenarios are required. Consequently, global climate 

models (GCMs) have been extensively used currently to provide projected precipitations for future 

periods (e.g., next hundred years) based on different Representative Concentration Pathways 

(RCP) scenarios. These models have been recognized to be able to represent reasonably well the 

main features of the global distribution of basic climate parameters (Lambert and Boer, 2001), but 

could not reproduce well details of regional climate conditions at temporal and spatial scales of 

relevance to hydrological impact studies (Nguyen and Nguyen, 2007). This is because outputs 

from GCMs are usually at resolutions that are too coarse (generally greater than 200 km and mostly 

available at a daily time scale) and are not suitable for many climate change impact studies in 

urban areas. A new rainfall modeling approach is thus needed to establish an accurate linkage 

between climate projections from GCMs and extreme rainfall (ER) processes at a site of interest.  

To refine the GCM coarse grid resolution climate projection data to much finer spatial 

resolutions (regional or local scales) for reliable assessment of climate change impacts, different 

downscaling methods have been proposed (Wilby et al., 2002; Fowler et al., 2007; Maraun et al., 

2010; Gooré Bi et al., 2017). These methods can be classified into two broad categories: dynamical 

downscaling (DD) and statistical downscaling (SD).  The DD techniques involve the extraction of 

regional scale information from large-scale GCM data based on the modeling of regional climate 

dynamical processes (Laprise, 2008; Xue et al., 2014; Xu et al., 2019). These models use physical 

principles to reproduce local climates, thus, are comprehensive physical models, but are 

computationally intensive. Whereas the SD techniques rely on the empirical relationships between 

observed (or analyzed) large-scale atmospheric variables and observed (or analyzed) surface 
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environment parameters (Wilby et al., 2002; Nguyen and Nguyen, 2007, 2008; Bürger et al., 2012, 

2013; Werner and Cannon, 2016). The SD methods are thus flexible to adapt to specific study 

purposes and inexpensive computing resource requirement (Nguyen and Nguyen, 2007). Both 

downscaling methods therefore have their strengths and limitations (Wilby et al., 2002; 

Teutschbein et al., 2011), and both are currently used for downscaling the GCM outputs to the 

regional scales (approximately 10 to 50 km resolutions) for climate-related studies. There are many 

different downscaled climate projection data sources available at the national or global level 

provided by different organizations. For example, in North America, just to list a few, the NA-

CORDEX dataset available at roughly 25 or 50 km resolution covering most of North America 

(NA-CORDEX, 2018), NEX-GDDP dataset available at about 25 km resolution covering the 

entire globe (NEX-GDDP, 2018), the NEX-DCP30 dataset available at approximately 1km 

resolution for the conterminous United States (NEX-DCP30, 2018), PCIC statistically downscaled 

climate scenarios available at roughly 10 km for Canada (PCIC, 2018). However, downscaled data 

from these methods are still considered bias when comparing to observed data at a local site in a 

same grid cell and need to be bias-corrected. A bias-correction method is therefore required to 

correct the data before it can be used for impact assessments and adaptation studies (Willems et 

al., 2012).  

In addition to the spatial downscaling, the temporal downscaling is also required to derive 

the distributions of sub-daily extreme rainfalls from that of the daily values since the climate 

projections are normally available at the daily scale. Several approaches have been developed in 

the literature, such as the chaotic method, the scale-invariance approach, the point-process model, 

the neural networks techniques (Sivakumar et al., 2001; Nguyen et al., 2002b; Coulibaly et al., 

2005; Marani and Zanetti, 2007; Nguyen et al., 2007; Lee and Jeong, 2014; Herath et al., 2016). 
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Among these methods, the scale-invariance (or scaling) concept has increasingly become a new 

methodology in the analysis and modeling of various extreme hydrological processes across a wide 

range of temporal scales (Gupta and Waymire, 1990; Sposito, 1998; Hubert, 2001; Veneziano and 

Furcolo, 2002; Veneziano and Lepore, 2012; Lovejoy and Schertzer, 2012). Scale invariance 

implies that the distributions and statistical properties of ERs over different time scales are related 

to each other by an operator involving only the scale ratio and the scaling exponent (Gupta and 

Waymire, 1990). In particular, the scaling method has been used in the construction of the IDF 

relations for the current and future climates (Burlando and Rosso, 1996; Nguyen et al., 2002b; Yu 

et al., 2004; Bougadis and Adamowski, 2006; Nguyen et al., 2007; Blanchet et al., 2016; Ghanmi 

et al., 2016). More specifically, several scaling models have been proposed in the literature, such 

as the scaling Gumbel (GUM) model based on the non-central moments and the probability 

weighted moments (Menabde et al., 1999; Yu et al. 2004). The scaling Generalized Extreme 

Values (GEV) model based on the non-central moments (Nguyen et al., 1998). More recently, a 

novel scaling probability weighted moments-based GEV model has been shown to outperform 

other existing scaling models (Nguyen and Nguyen, 2018a). 

In view of the above issues, the present paper proposes an innovative SD approach that can 

be used for establishing the linkage between climate change information to extreme rainfall 

estimation for urban storm drainage systems design; a difficult and challenging task in current 

engineering practices. This SD approach was based on a new procedure for modeling the ER 

processes over different spatial and temporal scales. The feasibility and accuracy of the proposed 

approach were assessed for a case study in Ontario (Canada) using the IDF data from a network 

of seven raingauges. These data are provided in Sections 4.2. Details of the proposed methodology 
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are described in Section 4.3. Results are presented and discussed further in Section 4.4. Finally, a 

summary of the research findings is provided in Section 4.5. 

4.2 Study Sites and Data 

The observed IDF data from a network of seven raingauges located in Ontario (Canada) 

were used for this study. The station information and locations are presented in Table 4-1 and 

Figure 4-1. Observed IDF data at each site contain annual maximum rainfall series (AMS) of nine 

different durations (ranging from 5 minutes to 1440 minutes). Note that the observed IDF data 

have been provided by Environment Canada to produce the at-site IDF relations for the various 

practical engineering application purposes (Environment Canada, 2019). The selection of the 

stations relied on the quality of the data, the adequate length of available historical ER records, 

and the representative spatial distribution of the raingauges. To ensure the quality of data, only 

data from recording raingauges provided by the Atmospheric Environmental Service of 

Environment Canada were used. Furthermore, the raingauges were selected from different 

geography locations to represent diverse climatic conditions of Ontario.  

Regarding the climate change information, the climate simulation outputs from 21 global 

climate models (GCMs) conducted under the Coupled Model Inter-comparison Project Phase 5 

(CMIP5) were used. These models are provided by nine different countries from different 

continents, including Canada (one model), USA (five models), Australia (two models), France 

(three models), Germany (two models), Norway (one model), China (two models), Russia (one 

model), and Japan (four models). Details of the 21 GCMs are provided in Table 4-2. These models 

are operated at different spatial resolutions with the finest resolution approximately 1o x 1o (Japan 

and USA) to the coarsest resolution 3o x 3o (Japan, Canada, and France). The grid resolutions of 
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these models are plotted on Figure 4-2. The resolution of a common GCM grid of 2.5o x 2o 

(approximately 250 km x 200 km) is also plotted on Figure 4-1 and Figure 4-2 for the comparison.  

Table 4-1. Information on the seven raingauges used in this study. Note: Lat = latitude (o), Lon = 

Longitude (o), Elv = Elevation (meter), and RCL = record length (from year to year) 

 

No Station ID Station name Lat (o) Lon (o) Elv (m) RCL 

1 6057592 Sault Ste Marie A 46.48 -84.51 192 1961-2007 

2 6104175 Kingston Pumping Stn 44.24 -76.48 76 1961-2007 

3 6137362 St Thomas WPCP 42.77 -81.21 209 1961-2004 

4 6139525 Windsor A 42.28 -82.96 189 1961-2007 

5 6144478 London CS 43.03 -81.15 278 1961-2016 

6 6153301 Hamilton RBG CS 43.29 -79.91 102 1961-2016 

7 6158731 Toronto Intl A. 43.68 -79.63 173 1961-2017 

 

 

Figure 4-1. Locations of the seven study raingauges (red circle markers). The bold black lines show a 

common GCM grid of 2.5ox2o, while the gray lines show the NASA grid of 0.25ox0.25o. The provincial 

digital elevation model was obtained from LIO (2016).  
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Table 4-2. List of the 21 GCMs used in the research, adapted from IPCC (2019), ENES (2019), and CCIA (2019) 

No Model Name Model 

Country 

Model Agency/Institution Grid Resolution 

 Lat (o) Lon (o) 

1 CanESM2  Canada Canadian Centre for Climate Modelling and Analysis 2.79 2.81 

2 CCSM4  

USA 

National Center for Atmospheric Research 0.94 1.25 

3 CESM1-BGC  
National Science Foundation, Department of Energy, National 

Center for Atmospheric Research 
0.94 1.25 

4 GFDL-CM3  

NOAA's Geophysical Fluid Dynamics Laboratory 

2.00 2.50 

5 GFDL-ESM2G  2.02 2.50 

6 GFDL-ESM2M  2.02 2.50 

7 ACCESS1-0 

Australia 

Commonwealth Scientific and Industrial Research Organization 

(CSIRO) and Bureau of Meteorology (BOM), Australia 
1.25 1.88 

8 CSIRO-MK3-6-0 

Commonwealth Scientific and Industrial Research Organization 

(CSIRO) in collaboration with Queensland Climate Change 

Centre of Excellence 

1.87 1.88 

9 CNRM-CM5  

France 

National Centre of Meteorological Research, France 1.40 1.41 

10 IPSL-CM5A-LR  
Institute Pierre-Simon Laplace 

1.89 3.75 

11 IPSL-CM5A-MR 1.27 2.50 

12 MPI-ESM-LR 
Germany Max Planck Institute for Meteorology (MPI-M) 

1.87 1.88 

13 MPI-ESM-MR 1.87 1.88 

14 NorESM1-M Norway Norwegian Climate Centre 1.89 2.50 

15 BCC-CSM1-1 

China 

Beijing Climate Center, China Meteorological Administration 2.79 2.81 

16 BNU-ESM 
College of Global Change and Earth System Science, Beijing 

Normal University 
2.79 2.81 

17 INMCM4  Russia Institute for Numerical Mathematics, Russia 1.50 2.00 

18 MIROC5 

Japan 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), National Institute for Environmental Studies,and Japan 

Agency for Marine-Earth Science and Technology 

1.40 1.41 

19 MIROC-ESM 2.79 2.81 

20 MIROC-ESM-CHEM 2.79 2.81 

21 MRI-CGCM3 Meteorological Research Institute 1.12 1.13 
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Note that the climate simulation outputs used in this study are from these models but have 

been statistically downscaled by NASA to the same regional scale of 0.25o x 0.25o (approximately 

25 km x 25 km) for the Representative Concentration Pathways 4.5 scenario (i.e. RCP 4.5) based 

on the bias-correction spatial disaggregation approach (Thrasher et al., 2012). NASA grid is also 

plotted on Figure 4-1 and Figure 4-2. Each of the precipitation projections contains data for the 

periods from 1950 through 2005 (“Retrospective Run”) and from 2006 to 2100 (“Prospective 

Run”). Note that only the data from 1961 to 1990 (reference period or baseline) were used for the 

calibration processes while those from 1991 to 2005 were used for the validation purposes. The 

prospective precipitation projections were used to construct future IDF relations for three different 

periods, including 2011-2040 (2020s), 2041-2070 (2050s), and 2071-2100 (2080s). 

 

Figure 4-2. Grid resolutions of the 21 GCMs (numbered from 1 to 21 in the plot) from nine different 

countries (different markers and colors). The resolution of a common GCM grid cell (2.5ox2o) is shown in 

the big light gray box for the purpose of illustration. The resolution of the NASA grid cell (0.25ox0.25o) is 

shown in the small dark gray box. The number in bracket in the legend box show the number of GCMs 

corresponding to those countries.  
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4.3 Methodology 

4.3.1 A statistical approach to modeling extreme rainfall processes over different 

spatial and temporal scales 

The proposed statistical modeling approach consists of two main steps. The first step is to 

establish the linkage between projected daily extreme rainfalls (ERs) available at a regional scale 

and daily extreme amounts at a local site of interest; and the second step is to determine the 

distribution of sub-daily ERs from the estimated daily ERs at the given location. A detailed 

description of these two steps is given in Figure 4-3 and in the following sections.   

4.3.1.1 Linking projected regional climate simulations to local daily extreme rainfalls 

As mentioned previously, to construct the extreme rainfall IDF relations at a local site, the 

first step is to derive the distribution of daily ERs at that location using the daily ER series available 

at the regional scale (see Figure 4-3). Hence, a spatial statistical downscaling technique is needed 

to describe the linkage between regional climate variables to weather variables at a local site. In 

the present study, two approaches were employed for linking the NASA extreme rainfalls available 

at the regional 25-km scale, �̂�, to a given local site, 𝑋𝑖. The first method was based on the use of 

a scaling factor (𝛿𝑖) to correct the mean of the regional data and the mean of the at-site data as 

shown by Eqn. (1). The second method relies on a bias correction function [𝑒(𝐹)] to correct the 

differences between the empirical cumulative distribution functions (ECDF) of regional and at-

site daily ERs as indicated by Eqn. (2). This bias correction function can be represented by a 

regression model (i.e., a second-degree polynomial function) as shown by Eqn. (3) (Nguyen and 

Nguyen, 2008; Willems et al., 2012). 
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 𝑋𝑖(𝐹) = 𝛿𝑖 ∙ �̂�(𝐹) ;      (4-1) 

𝑋𝑖(𝐹) = �̂�(𝐹) + 𝑒(𝐹) ;      (4-2) 

𝑒(𝐹) = 𝑐 + 𝑐1 ∙ �̂�(𝐹) + 𝑐2 ∙ [�̂�(𝐹)]
2 + 𝜀 (4-3) 

where 𝑋𝑖(𝐹) is the adjusted daily ER at the local site of interest 𝑖; �̂�(𝐹) is the daily regional 

ER at the grid containing that site; 𝐹 is the cumulative probability of interest; 𝛿𝑖 = 𝜇𝑖  �̂�⁄  is the 

scaling factor at site 𝑖; 𝜇𝑖 and �̂� are respectively the mean of the daily ERs at the local site 𝑖 and 

the mean of the regional values at the grid containing that particular site; 𝑒(𝐹) is the bias correction 

function associated with �̂�(𝐹); 𝑐 , 𝑐1, 𝑎𝑛𝑑 𝑐2 are the coefficients of this function derived using the 

least square technique and 𝜀 is the error term. 

4.3.1.2 Linking estimated local daily to sub-daily extreme rainfalls 

After estimating the daily ER series at the site of interest, the second step is to derive the 

statistical properties of sub-daily ER series from the estimated daily series at the same location 

(see Figure 4-3). In the present study, this sub-daily ER derivation was performed using the scale-

invariance probability weighted moment-based Generalized Extreme Values (GEV/PWM) model. 

The GEV distribution has been widely used for representing the probability distribution of ERs 

and for constructing the rainfall IDF relations as recommended in a number of guidelines for 

hydrological practices by the World Meteorological Organization (WMO, 2009a) as well as by 

many other countries such as Australia, Austria, Germany, Italy, and Spain (Salinas et al., 2014b; 

Ball et al., 2016; Nguyen et al., 2017). In addition, the GEV/PWM model has been recently shown 

to perform superior than other existing scale-invariance models (Nguyen and Nguyen, 2018a). 

More specifically, the quantile, 𝑋𝑇, corresponding to a given return period 𝑇 = 1/(1 − 𝐹), of the 
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GEV model can be estimated using Eqn. (4-4), and the PWM method can be used for estimating 

the GEV parameters as shown in Eqn. (4-5) for the rth-order PWM 𝛽𝑟 (Hosking et al., 1985).  

𝑋𝑇 = 𝜉 +
𝛼

𝜅
 {1 − [− ln(𝐹)]𝜅} (4-4) 

𝛽𝑟 = 𝑀1,𝑟, = 𝐸[𝑋 {𝐹(𝑋)}
𝑟] = (𝑟 + 1)−1 (𝜉 +

𝛼

𝜅
{1 − (𝑟 + 1)−𝜅 Γ(1 + 𝜅)})  (4-5) 

in which 𝜉, 𝛼, and 𝜅 are the location, scale, and shape parameters respectively; and 𝐹 is the 

cumulative probability of interest. Γ(. ) is the gamma function and 𝑟 must be non-negative;  

For a simple scaling process, it can be shown that the relation between the rth-order PWMs 

of rainfalls for two different rainfall durations 𝑡 and 𝜆𝑡 can be expressed by Eqn. (4-6) (Nguyen 

and Nguyen, 2018a).  

𝛽𝑟(𝜆𝑡) = 𝜆
 𝑟𝛽𝑟(𝑡) = 𝜆

 𝛽𝑟(𝑡) (4-6) 

where 𝜂𝑟 = 𝜂 is the scaling exponent and can be estimated based on the mean 𝐸{𝑋} (that 

is, the PWM of order 𝑟 = 0.  

This infers that the scaling exponents 𝜂𝑟  are constant across all PWM orders 𝑟 for the same 

rainfall scaling regime. In other words, the plot of the scaling exponents 𝜂𝑟 (y-axis) with the PWM 

orders 𝑟 (x-axis) should display a horizontal line rather than a linear sloping line as for the case of 

the ordinary statistical moments (Nguyen et al., 2002b). Furthermore, for the simple scaling 

process, it can be shown that the parameters and quantiles of the GEV/PWM model of time scale 

𝜆𝑡 and 𝑡 are related as follows:  

𝜅(𝜆𝑡) = 𝜅(𝑡)   ;   𝛼(𝜆𝑡) = 𝜆 𝛼(𝑡) ;    𝜉(𝜆𝑡) = 𝜆 𝜉(𝑡);      (4-7) 

𝑋𝑇(𝜆𝑡) = 𝜆
 𝑋𝑇(𝑡);   (4-8)  
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In summary, based on these equations, it is possible to derive the distributions and 

statistical properties (quantiles and parameters) of short-duration ERs from those of longer 

durations at a given study site. The indirect method is employed as it yields better result than the 

direct method (see Chapter 3). The first three PWMs of the sub-daily and sub-hourly AMS are 

computed from those of the daily AMS at the local site of interest obtained from the spatial 

downscaling step. These PWMs are then used for estimating the three parameters and the 

distributions as well as quantiles of the GEV/PWM model.  

 

Figure 4-3. Flowchart of the proposed method for assessing climate change impacts on local short-

duration extreme storm 
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4.3.2 Model comparison criteria 

4.3.2.1 Goodness-of-fit tests 

In the present study, six common goodness-of-fit (GOF) criteria were selected for assessing 

the feasibility and accuracy of the proposed spatio-temporal statistical downscaling (STSD) 

procedure for estimating short-duration (sub-daily) extreme design rainfalls (or IDF relations) at a 

local site in the context of climate change. These criteria include the root mean square error 

(RMSE), the root mean square relative error (RMSEr), the mean absolute deviation (MAD), the 

mean absolute relative deviation (MADr), the adjusted coefficient of determination (𝑅𝑎𝑑𝑗
2 ), and the 

correlation coefficient (CC) as follows:  

𝑅𝑀𝑆𝐸 = {∑
(𝑥𝑖 − 𝑦𝑖)

2

(𝑛 − 𝑚)
}

1
2

   

(4-9) 

𝑅𝑀𝑆𝐸𝑟 =  [
1

(𝑛 − 𝑚)
∑{
(𝑥𝑖 − 𝑦𝑖)

𝑥𝑖
}

2

]

1
2

 

(4-10) 

𝑀𝐴𝐷 =  
1

(n−m)
∑|𝑥𝑖 − 𝑦𝑖|         (4-11) 

𝑀𝐴𝐷𝑟 =  
1

(n − m)
∑ {
|𝑥𝑖 − 𝑦𝑖|

𝑥𝑖
} 

(4-12) 

𝑅𝑎𝑑𝑗
2 = 1 −

(𝑛 − 1)

(𝑛 − 𝑚 − 1)
× (1 − 𝑅2) 

(4-13) 

𝐶𝐶 = 
∑{(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)}

{∑(𝑥𝑖 − �̅�)2∑(𝑦𝑖 − �̅�)2}
1
2

= 𝑅 
(4-14) 

where 𝑥𝑖 , 𝑖 = 1,2, … , 𝑛 are the observed values and 𝑦𝑖, 𝑖 = 1,2, … , 𝑛 are the estimated 

values for the same probability level 𝑝𝑖; 𝑛 is the sample length; �̅� and �̅� denote the average value 

of the observed and estimated quantiles, respectively; 𝑚 is the number of model parameters and 
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by default 𝑚 = 0 when comparing between the observed and estimated values. However, for the 

case of comparison of two different approaches used in the bias correction step (Section 4.3.1.1), 

the number of model parameters 𝑚 must be taken into account to provide a fair comparison. 

Depending on the approach, 𝑚 = 1 for the simple scaling factor (i.e. the MEAN approach), and 

𝑚 = 2 for the second-degree polynomial function (i.e. the ECDF approach). Note that for a simple 

linear regression between two variables, the coefficient of determination 𝑅2, also known as 

fraction of the variance explained by regression, equals to the square of the correlation coefficient 

(Helsel and Hirsch, 2002; Berthouex and Brown, 2002). 

4.3.2.2 Multiple comparison tests 

To test whether there is a significant change in the estimated extreme design rainfalls 

between different time periods (reference period and projected periods or between different 

projected periods), a two-stage test for comparing several independent groups are required (Helsel 

and Hirsch, 2002; Berthouex and Brown, 2002). In the first stage, the main purpose of the test is 

to determine if all k groups have the same central value or whether at least one of the groups differs 

from the others. Following this stage, another test is carried out to identify what pairs are 

significantly different in the second stage. To achieve this, different parametric or non-parametric 

approaches can be used. The choice of a parametric or non-parametric method depends upon the 

normality assumption of the data distribution. To check this assumption, the probability plot 

correlation coefficient (PPCC) test is employed in this research (Helsel and Hirsch, 2002).  

When data within each of the groups are normally distributed and possess identical 

variances, the popular parametric test known as an analysis of variance (ANOVA) can be used to 

determine whether each group's mean is identical (Helsel and Hirsch, 2002; Berthouex and Brown, 
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2002). This is an extension of t-test between two groups and often known as a t-test between three 

or more groups. When there are only two groups, the ANOVA becomes identical to a t-test. That 

is, the 𝐹 statistic becomes equal the square of the two-sample t-test statistic 𝐹 = 𝑡2, and will have 

the same p-value. Hence, ANOVA is restricted by the same types of assumptions as is a t-test.  

When every group of data cannot be assumed to be normally distributed or have identical 

variance, a nonparametric test equivalent to ANOVA known as Kruskal-Wallis test should be used 

to determine whether each group's median is identical (Helsel and Hirsch, 2002).  This test is much 

similar to a rank-sum test extended to more than two groups. The exact version of Kruskal-Wallis 

test is only useful for small sample sizes (normally less than or equal to 10). When the sample 

sizes become larger, this is rarely required as the tables of the exact p-values for all sample sizes 

would be huge and cumbersome due to many possible combinations of numbers of groups and 

sample sizes per group. With sample sizes of greater than or equal to 20, the large-sample 

approximation (a chi-square approximation) or the rank transformation test (i.e. by ranking the 

data and performing ANOVA on the ranks, also known as F approximations) are computed. The 

F and chi-square approximations will result in very similar p-values (Helsel and Hirsch, 2002). 

The ANOVA F-test on the original data or on the ranks of the data are thus used in this 

research to detect whether there is a statistically significant difference among the groups. Details 

of how to perform an ANOVA test is provided in the appendix.  

Following the ANOVA step, the Tukey’s HSD (also called Tukey’s range) post-hoc test is 

utilized to identify what pairs are significantly different. Note that if one only wishes to compare 

the difference in extreme rainfalls between the baseline (reference period) and the projected period, 

then the Dunnett’s method can be applied to figure out what treatments are significantly different 
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from the control. In this case, instead of 𝑘 treatments to compare, there are now only (𝑘 − 1) 

treatments. Note that since they are post-hoc tests, hence, if ANOVA is conducted on the ranks of 

data, then Tukey’s or Dunnett’s approach must be performed on the ranks as well. In this paper, 

since we are interested in all possible differences in extreme rainfalls between the reference period 

and the projected periods as well as between different projected periods, the Tukey’s test is 

selected. Details of how to conduct a Tukey’s test is provided in the appendix. 

The magnitude of difference as well as the associated confidence interval for a selected 

pair can also be computed using the Hodges-Lehmann estimator for the non-parametric approach 

or simply the difference between the two mean values for the parametric approach (see the 

appendix). 

4.4 Results and Discussion 

4.4.1 Estimation of bias-corrected daily extreme rainfalls at a local site 

The performance of the two methods for downscaling of daily extreme rainfalls from 

regional to local scale were first investigated and compared using different graphical displays and 

numerical criteria. Historical data from the seven raingauges and the “Retrospective Run” data 

from NASA in the same time period from 1961-2005 were used for the result assessments. The 

split-half sample was employed to compare the two methods. The first half of data were used for 

estimating the scaling factors (𝛿)and the bias correction functions [𝑒(𝐹)]  as described in Section 

4.3.1.1, while the remaining data were employed for validation of these estimations. Note that 

similar to the previous study by Nguyen et al. (2007), the use of a second-order polynomial 
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function in the ECDF method has been found acceptable for correcting the bias between the daily 

extreme regional and at-site rainfall values for all seven study sites.  

For purposes of illustration, Figure 4-4 shows the graphical comparison of the probability 

plots before and after bias corrections for the Windsor Airport Station using the two considered 

bias-correction methods and the data of all 21 climate models. The medians of the ensemble of 21 

models and observed data are also plotted for comparison. Numerical comparisons based on 

different goodness-of-fit (GOF) tests between observed data and estimated values (medians of 21 

models) were also carried out to evaluate the accuracy of the proposed bias-correction methods. 

Results are shown in Figure 4-5 for the Windsor Airport station. Similar plots were produced for 

all other study sites and provided in the supplemental document. 

Based on the graphical and numerical comparisons of all seven stations, it can be concluded 

that the ECDF method produces a more accurate result for the calibration period (i.e. from 1961 

to 1983) than the MEAN method. This is expected since the ECDF approach uses a more complex 

functions with more parameters (i.e. a second-degree polynomial function) to correct the whole 

empirical distribution, it should be able to capture the moments of higher orders of the observed 

data in the calibration step much better than the MEAN method which uses only a simple scaling 

ratio between the regional and local values. The question then arises whether the ECDF is stable 

and continues to perform well for the validation period. This question is critical as the calibrated 

parameters will be then applied to different projected periods to correct the projected daily extreme 

rainfalls. 
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Figure 4-4. Comparison between the distributions of the observed local daily annual maximum series 

(AMS, yellow markers) and the NASA regional daily AMS (gray lines and boxplots of the 21 models) 

before and after bias correction (BC) for calibration (1961-1990) and validation (1991-2005) periods 

using a scaling factor to correct the mean (MEAN) and using a BC function to correct the empirical 

cumulative distribution function (ECDF) at Windsor Airport station. 

 

Figure 4-5. Comparison of goodness-of-fit results of the two bias-correction methods (i.e. MEAN and 

ECDF) for the spatial downscaling at all stations. The green column shows the results before bias 

correction (i.e. NASA gridded data). Units: mm = millimetre, dmnl = dimensionless. 
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Graphical and numerical comparisons of the performance of the two bias-correction 

approaches over the validation period are also presented in Figure 4-4 and Figure 4-5 for the 

Windsor Airport Station. It can be seen that the two methods provide comparable results for this 

station based on the comparison of the median and the observation of the boxplot sizes and 

whiskers. However, this is not the case for other study sites. More specifically, for these sites, it 

was found that the ECDF method not only produces less accurate results (for the median of the 

ensemble of 21 models) but more importantly, this method is highly unstable (see the size of the 

boxes and whiskers of the ensemble of 21 models). The reason is that when using a more complex 

function to correct the bias, this correction could provide a better fit to the calibrated data range 

(i.e., interpolation). Hence, if the data range for the validation period is almost in the same range 

of data used for model calibration (i.e. involving only interpolation), the ECDF method could work 

well as it was shown in Figure 4-4 for the Windsor Airport station.  However, when applying the 

computed bias-correction function to the validation data that are beyond the selected calibrated 

data range (i.e. involving extrapolation), the bias-corrected values obtained might be not in good 

agreement with the observed values and this difference depends on the degree of extrapolation 

required. The bias in that case is thus not reduced but could be inflated instead. The severity of the 

inflation is proportional to the degree of extrapolation. For example, Station #5 – London CS 

Station, is much less severe compared to Station #7 – Toronto International Airport Station. The 

more complex the bias-correction function is (i.e., the better fit to the calibrated data is achieved), 

the less flexible the model can capture the validated data representing different conditions that 

have not been observed in the calibration period. Even with the use of a second-degree polynomial 

in the ECDF approach, the extrapolation could yield very different and unrealistic results, 
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especially under different climate change scenarios under which the future extreme rainfalls are 

expected very likely to increase. 

Hence, the bias correction of the whole empirical distribution function by the ECDF 

method to obtain a perfect agreement with the observations during calibration as suggested in some 

previous studies (Willems et al., 2012) is unnecessary since it may result in less accurate and 

unstable results for validation purposes. Therefore, in the present study, the MEAN method was 

selected to estimate the bias-corrected daily ER series at all seven study sites based on the available 

regional 25-km NASA extreme rainfalls for both the Retrospective Run (from 1961 to 2005) and 

the Prospective Run (from 2006 to 2100). Note that to be consistent, data from the reference period 

(1961-1990) was used to calibrate the model before applying to three future projected periods. The 

split-half sample discussed above is only applied to the comparison of the two bias correction 

methods. 

4.4.2 Estimation of sub-daily extreme rainfalls at a local site 

4.4.2.1 Validation of the scaling GEV/PWM approach 

To estimate the distribution of sub-daily ER series at a given site for future climate, the 

scale-invariance GEV/PWM model presented in Section 4.3.1.2 was used. The feasibility and 

accuracy of the scaling model in reproduction of the historical record data was first assessed using 

the observed daily and sub-daily annual maximum series (AMS) at all study sites. Data from 1961-

1990 at each site were selected for calibration while the remaining data (see Table 4-1) were 

utilized for validation. 
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Figure 4-6 shows the comparison of the distributions of the eight sub-daily AMS (from D 

= 5 to 720 minutes) that were estimated based on the scaling model and the traditional at-site 

frequency analysis (ASFA) approach for two different stations: Sault Ste Marie Airport and 

Windsor Airport stations. According to the at-site frequency analysis method, the theoretical GEV 

distribution was independently fitted to each daily and sub-daily AMS without considering the 

relationships between the statistical properties of these AMS over different rainfall durations. The 

scaling model considers these temporal relationships and computes the distributions of the sub-

daily AMS from the fitted distribution of the daily data. Results from Figure 4-6 indicates that the 

extreme rainfall quantiles estimated using the proposed scaling model agree very well with those 

values given by the independently fitted distributions based on the ASFA approach (with very low 

RMSEr and MADr values, less than 5%;  and high CC values, about 0.99) for both stations even 

the two stations display quite different tail behaviors.  

 

Figure 4-6. Depth-duration-frequency curves derived based on the at-site frequency analysis approach 

(ASF, dash lines) and the scaling GEV/PWM model (SCL, continuous lines) at (a) Sault Ste Marie 

Airport and (b) Windsor Airport stations. Markers shows the observed (OBS) data of rainfall durations 

ranging from D = 1440 to 5minutes 
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Graphical and numerical evaluations of the proposed scaling model in the estimation of the 

sub-daily extreme design rainfalls (for six return periods from T = 2 to 100 years and for eight 

rainfall durations from D = 5 to 720 to minutes) for the calibration period at all seven study sites 

are shown in Figure 4-7(a) and Table 4-3.  Results again point out that the proposed scaling model 

performs very well in reproduction of the historical data with values of RMSEr and MADr ranging 

from 3 to 10%, and CC all higher than 0.98. 

Validation of the proposed scaling model for the remaining data using graphical 

comparison and numerical criteria are presented in Figure 4-7(b) and Table 4-3. Note that the data 

for this period are much shorter with the average sample length is about 20 years. The extreme 

design rainfalls were thus computed for only five short return periods from T = 2 to 50 years. 

Results show a wider range of computed values for all numerical criteria; that is, from 7 to 23% 

for the RMSEr and MADr values, and from 0.97 to 0.99 for the CC values (i.e. lower accuracy 

compared to the calibration period as expected).  

In summary, based on the superior performance of the proposed scaling GEV/PWM model 

in its capability to describe accurately the distribution of historical extreme rainfall data at all sites, 

this scaling model can be used to derive the distributions of projected sub-daily extreme rainfalls.  
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Table 4-3. GOF results of the extreme rainfall quantiles estimated based on the at-site frequency analysis 

and the scaling approach using historical record at each study site. Extreme rainfall quantiles are 

computed for return periods up to T = 100 years for the calibration period and up to T = 50 years 

for the validation period. 

 

Stn Calibration period 

(T = 2, 5, 10, 25, 50, 100 years)   

Validation period 

(T = 2, 5, 10, 25, 50 years) 

Data RMSEr MADr CC  Data RMSEr MADr CC 

1 

1
9
6
1
-1

9
9
0

 

0.05 0.03 0.998  1991-2007 0.14 0.11 0.981 

2 0.06 0.04 0.996  1991-2007 0.15 0.12 0.983 

3 0.07 0.05 0.994  1991-2004 0.16 0.13 0.986 

4 0.04 0.03 0.998  1991-2007 0.13 0.10 0.990 

5 0.10 0.08 0.983  1991-2016 0.23 0.14 0.974 

6 0.08 0.07 0.992  1991-2016 0.09 0.07 0.991 

7 0.06 0.05 0.996  1991-2017 0.15 0.12 0.984 

 

 

 

Figure 4-7. Q-Q plots of the extreme design rainfalls of all seven study stations estimated using the at-

site frequency analysis approach (ASFA design rainfalls 𝑋𝑇
𝐴𝑆𝐹𝐴, mm) and the scaling GEV/PWM model 

(SCL design rainfalls 𝑋𝑇
𝑆𝐶𝐿, mm) for different sub-daily rainfall durations (different marker colors, D = 

720 minutes to 5 minutes) for (a) the calibration period with return periods up to T = 100 years and (b) the 

validation period with return periods up to T = 50 years. Note that the return period values T = 2, 5, 10, 

25, 50, and 100 years.  
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4.4.2.2 Estimation of projected sub-daily extreme rainfalls at a local site 

The proposed scaling model was applied to the bias-corrected daily extreme rainfalls given 

by all 21 models for the “Retrospective Run” data to derive the sub-daily extreme rainfalls. For 

purposes of illustration, Figure 4-8 shows the probability plots of the observed and computed 

extreme rainfalls XT (mm) for different rainfall durations at Windsor Airport Station for the 

reference period (1961-1990). The uncertainties associated with the estimation of these values are 

displayed in the form of standard boxplots based on the ensemble of 21 GCM’s. In general, it can 

be seen that the observed values fall in the range of the estimated values of 21 models. Numerical 

comparisons based on the medians of the 21 models and the observed data indicate a high 

agreement between them with RMSEr, MADr, and CC approximately 7%, 5%, and 0.99, 

respectively. Similar computations were carried out for each study site and for the validation period 

(1991-2005). Results are provided in Table 4-4. 

For all seven study sites, the Q-Q plots of the estimated extreme design rainfalls derived 

based on the scale-invariance GEV/PWM and the at-site frequency analysis using the GEV 

distribution are presented in Figure 4-9. Note that the median values of the results from 21 GCMs 

are used for the computation. There are six plots for six return periods from T = 2 to 100 years. 

Each of these plots contains the design rainfalls values for all nine rainfall durations from D = 5 to 

1440 minutes. Numerical comparisons were also conducted to evaluate the overall results for all 

sites as shown in Table 4-5. 

The low values of RMSEr and MADr as well as the high values of CC indicate that the 

proposed spatio-temporal statistical downscaling procedure are feasible and accurate in estimating 

extreme design rainfalls for a given location. The procedure was then applied for estimating the 



 

108 

projected sub-daily ER series for three future periods using the daily “Prospective Run” (2011-

2100) data at each site. 

 
 

Figure 4-8. Cumulative distribution function (CDF) plots of the computed extreme design rainfalls XT 

(mm) for all nine different durations (nine subplots from D = 1440 to 5 minutes) at station #4 - Windsor 

Airport Station. For each subplot, the yellow markers show the empirical CDF of the observed extreme 

rainfall data from 1961-1990, the red discontinuous lines show the theoretical CDF based on at-site 

frequency analysis using the GEV distribution, and the gray lines show the estimated CDF derived using 

the proposed procedures for all 21 models. In addition, the red cross markers show the extreme design 

rainfalls XT (for return periods T = 2, 5, 10, 25, 50, 100 years) using the at-site frequency analysis, while 

the boxplots show the uncertainty in estimation of those values using the ensemble of 21 models.  
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Table 4-4. GOF results of the estimated and observed IDF data at each study site 

Stn Calibration period 1961-1990   Validation period 1991-2005 

RMSEr MADr CC   RMSEr MADr CC 

1 0.136 0.109 0.989  0.207 0.165 0.932 

2 0.120 0.102 0.987  0.123 0.106 0.985 

3 0.137 0.121 0.991  0.241 0.198 0.987 

4 0.065 0.051 0.995  0.159 0.138 0.984 

5 0.086 0.064 0.980  0.198 0.165 0.956 

6 0.169 0.128 0.973  0.169 0.135 0.948 

7 0.176 0.147 0.967   0.241 0.189 0.968 

 

Table 4-5. GOF results of the estimated and observed IDF data for different return periods 

  Calibration period 1961-1990   Validation period 1991-2005 

T (year) 2 5 10 25 50   2 5 10 25 

RMSEr  0.050 0.058 0.086 0.135 0.172  0.215 0.171 0.143 0.155 

MADr  0.044 0.046 0.072 0.119 0.152  0.165 0.140 0.119 0.126 

CC  0.995 0.996 0.993 0.979 0.961   0.979 0.980 0.974 0.954 

 

 

 

Figure 4-9. Q-Q plots of extreme rainfalls computed using the proposed spatial-temporal statistical 

downscaling procedure (XSTSD, mm) and the at-site frequency analysis (Xat-site, mm) for different rainfall 

durations (from D = 1440 to 5 minutes) and for different return periods (T = 2 to 100 years) of the 1961-

1990 calibration period. 
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4.4.3 Climate change impacts on local extreme storms  

Figure 4-10 shows the projected ERs at Windsor Airport Station for three different return 

periods (T = 10, 50, and 100 years) and three different rainfall durations (D = 5, 60, and 1440 

minutes) for three future periods 2020s (2011-2040), 2050s (2041-2070), and 2080s (2071-2100) 

under the RCP 4.5 scenario as compared to the ERs for the reference “baseline” period (1961-

1990). Similar plots were produced for other stations. It can be seen that, for Windsor Airport 

Station, there are small differences in the median values between the baseline and projected periods 

as well as between the projected periods. However, for other stations, the differences are much 

larger.  

To evaluate whether the differences are statistically significant or not, the multiple 

comparison tests described in Section 4.3.2.2 were used. For each multiple comparison test, there 

are four different groups (i.e. four treatments), including the reference period and three projected 

periods. Each group contains the design rainfalls from 21 models. To decide whether the ANOVA 

test and Tukey’s HSD test should be performed on the data or on the ranks, PPCC tests were first 

conducted with the significant level 𝛼 = 0.05 (i.e. the critical value 𝑟 ∗ = 0.95). 

Results of PPCC tests are presented in Figure 4-11.(a) for Windsor Airport Station as an 

example. For this station, 4% of the data did not pass the test (i.e. the null hypothesis H0 was 

rejected). Similar things occurred to station number #1 – Sault Ste. Marie Airport (17%), number 

#2 – Kingston pumping (8%), number #6 – Hamilton RBG CS (14%), and especially number #7 

– Toronto International Airport (26%). Only station #3 – St. Thomas WPCP and station #5 – 

London CS passed the test at 𝛼 = 5% (i.e. failed to reject H0). Plots similar to Figure 4-11 are 

produced for all other stations and provided in the appendix. Note that if 𝛼 = 1% (𝑟 ∗= 0.9 ) is 
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used instead, then all stations could be considered passing the test. Observation of the distribution 

of each data group (i.e. boxplots in Figure 4-11) indicates that data is not normally distributed and 

there are also outliers. Therefore, the ANOVA and Tukey’s tests were performed on the ranks. 

The tests on the original data were also conducted as a reference. 

 
 

Figure 4-10. Projected extreme design rainfalls at station #4 – Winsor Airport Station, for three return 

periods (T = 10, 50, and 100 years) and for three durations (D = 1440, 60, and 5 minutes) using data for 

the current period of 1961-1990 (Baseline), and for future periods 2011- 2040 (2020s), 2041-2070 

(2050s), and 2071-2100 (2080s) under the RCP 4.5 scenario. The yellow circles show the at-site 

frequency analysis (ASFA) values. 
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Figure 4-11. Multiple comparison tests for station #4 – Windsor Airport station;  (a) Results of PPCC tests for four groups: group 1 (baseline), 

group 2(2020s), group 3(2050s), and group 4 (2080s). For each group, there are nine rainfall durations (D = 1440 to 5 minutes) and six return 

period values (T = 2 to 100 years). Boxplots summarize the PPCC results of all four groups for each return period; (b) and (c) ANOVA F-test 

results for a selected rainfall duration and return period on data and ranks respectively, statistically significant results are highlighted with green; 

(d) and (e) Tukey’s test results for a selected rainfall duration and return period on data and ranks respectively, significant difference pairs are 

displayed on the graph (e.g., 12 means the difference between group 1 and 2 is statistically significant). 

D \ T 2 5 10 25 50 100

1440 11.37 6.65 2.96 0.45 0.13 0.11

720 11.37 6.65 2.95 0.44 0.13 0.10

360 11.37 6.61 2.93 0.44 0.14 0.10

120 11.37 6.61 2.95 0.45 0.14 0.10

60 11.44 6.65 2.97 0.45 0.13 0.10

30 11.44 6.64 2.95 0.44 0.14 0.10

15 11.20 6.63 2.88 0.42 0.12 0.10

10 11.22 6.50 2.85 0.41 0.11 0.10

5 11.01 6.20 2.66 0.40 0.10 0.11

D \ T 2 5 10 25 50 100

1440 7.93 4.46 2.42 0.65 0.20 0.11

720 7.93 4.47 2.43 0.65 0.20 0.11

360 7.94 4.47 2.44 0.65 0.20 0.11

120 7.95 4.48 2.45 0.66 0.20 0.11

60 7.96 4.49 2.46 0.66 0.20 0.11

30 7.96 4.49 2.47 0.67 0.20 0.11

15 7.87 4.43 2.36 0.62 0.19 0.11

10 7.82 4.39 2.29 0.59 0.19 0.11

5 7.74 4.32 2.17 0.55 0.18 0.12

(a) PPCC test
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(e) Tukey’s HSD test on the ranks
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Station #4 Windsor A

Data:

Group 1 = Baseline = 1961-1990

Group 2 = 2020s     = 2011-2040

Group 3 = 2050s     = 2041-2070

Group 4 = 2080s     = 2071-2100

Critical values

Significant level:
𝛼 = 0.05

PPCC test: r*=0.95

ANOVA:   F*=2.73

Tukey test: q*=3.71 

ID: 6139525
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Results of the ANOVA and Tukey’s tests are also presented in Figure 4-11. The critical 

values to make decisions for these tests are 𝐹(1−𝛼),(𝑘−1),(𝑁−𝑘)
∗ = 𝐹 .95,3,8 

∗ = 2.7  and 

𝑞(1−𝛼),(𝑘),(𝑁−𝑘)
∗ = 𝑞 .95, ,8 

∗ =  .7. Note that the Tukey’s test was only carried out if there was a 

statistically significant difference in the F-test (which is highlighted in Figure 4-11). For several 

cases, when 𝐹 is not much bigger than 𝐹∗ (i.e. approximate 10% difference), the F-test still shows 

a significant different, but the post-hoc Tukey’s test does not point out which pair is different 

among the four groups as for the case of T = 10 year in Figure 4-11.(e). Otherwise, the Tukey’s 

test will indicate all possible different pairs. For example, for T = 5 years and D = 5 minutes in 

Figure 4-11(e), the difference between group 1 (baseline) and group 2 (2020s) is statistically 

significant. The same thing happens with group 1 and group 3 (2050s); and group 1 and group 4 

(2080s). However, there is no statistically significant difference between group 2, 3, and 4. As a 

reference, the ANOVA and Tukey tests on the original data were computed for comparison. 

Results showed a high agreement with those performed on the ranks. However, the tests on the 

data (i.e. parametric approach) provided lower power (e.g. lower F-statistic values) than the tests 

on the ranks in making decision of rejection of the null hypothesis due to being applied to non-

normal data. The skewness and outliers in the data inflate the sample standard deviation used in 

those tests. This makes their power to detect differences between groups become weaker than that 

for the equivalent nonparametric test (Helsel and Hirsch, 2002).  

To calculate the magnitude of the difference (i.e. absolute or relative change) of a selected 

pair, the non-parametric Hodges-Lehmann estimator was used. This estimator computes the 

median of the difference as well as the confidence interval associated with 𝛼 = 5%. Results are 

shown in Figure 4-12 for all seven sites. If the difference of a pair is significant (obtained from 



 

114 

Tukey’s test), then it will be displayed as a continuous line. On the other hand, it is plotted with a 

dash line to indicate an insignificant difference.  

Results show that there is an increase in extreme design rainfalls for all stations (based on 

the median values), but these changes are not always statistically significant. For each station, for 

a same return period, the differences in the relative change between different durations are small 

(less than 3%), except station #7 which is about 6%. Among all seven stations, only station #1 

shows a significant increase in extreme design rainfalls between the reference and projected 

periods for different rainfall durations and different return periods. This station is located apart 

(approximately 600 km or more) from the remaining stations. The relative change increases with 

the increase in return periods from T = 2 to 25 years and is approximately 13% to 18% on average. 

However, it is almost the same for higher return period which is about 18% on average. Opposite 

to station #1, the relative change decreases with the increase in return periods for station #4 (by 

10% to 2% on average) and station #2 (by 14% to 8% on average). These changes are however 

only significant for T = 2 to 5 years for station #4, and for T = 2 to 25 years for station #2. For 

station #4, the difference could be also negative for T = 50 to 100 years (meaning that a decrease 

of extreme design rainfalls for future periods). However, the decrease is small (less than 2%) and 

is also not statistically significant. Station #3 and #5 (about 25 km from each other) show pretty 

similar results with the changes are almost the same across all return periods (i.e. approximately 

13% for station #3 and 10% for station #5). These changes are only statistically significant for 

return periods up to T = 25 years. Station #6 and #7 (roughly 60 km from each other) also display 

same behaviour with the changes are almost similar for T = 2 to 10 years (i.e. approximately 10% 

for station #6 and 12% for station #7) and then decrease with the increase of return periods. These 

changes are significant for return periods up to T = 10 years. 
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Figure 4-12. Comparison of relative changes (%) in the future extreme design rainfalls between different rainfall durations (D = 1440, 60, and 5 

minutes) for three periods  (Baseline-2020s, baseline-2050s, and baseline-2080s). A positive change means an increase of extreme rainfall between 

the baseline and the projected period. If a change is statistically significant, the median and confidence interval are displayed with a dot and 

continuous line. Otherwise, they are plotted with a dot and dash line. 
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The confidence intervals were also computed for these changes or differences. As 

presented in Figure 4-12, many of them are asymmetric. This reflected the truth that data used for 

the comparison was non-normal and also confirmed that the use of a nonparametric approach was 

suitable. The widths of the confidence intervals vary between different projected periods, between 

different design rainfall values, and between different stations. In general, the significant 

differences were found to be between 5% to 22%. 

4.5 Conclusion 

An innovative statistical downscaling (SD) procedure was proposed for estimating short-

duration (sub-daily) extreme design rainfalls at a given local site in the context of climate change. 

The proposed approach involves two steps: (i) the spatial downscaling step using the scaling 

factors or the bias correction functions to transfer the daily downscaled global climate model 

(GCM) extreme rainfall projections at a regional scale to a given local site and (ii) the temporal 

downscaling step using the scale-invariance GEV/PWM model to derive the distributions of sub-

daily extreme rainfalls (ERs) from that of daily values at the same study location. Results from a 

case study using the climate simulation outputs from 21 GCMs conducted under the CMIP5 project 

and the observed daily ERs from a network of seven raingauges located in Ontario (Canada) have 

indicated the feasibility, reliability, and accuracy of the proposed SD method. 

To assess the possible differences (i.e., relative changes) between the reference and 

projected periods as well as between different projected periods, several statistical tests were 

conducted in sequence. These tests included the probability plot correlation coefficient (PPCC) 

test to check for the normality of data, the analysis of variance (ANOVA) F-test to detect whether 

there was a significant difference among the groups, and Tukey’s honestly significant difference 
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(Tukey’s HSD) test to indicate what pairs were significant difference. The magnitudes of the 

differences as well as the associated uncertainties (i.e. confidence intervals) were also computed 

for each significant difference pair.  

Using the climate projection outputs from 21 GCMs under the RCP 4.5 scenario, for the 

majority of stations, results showed significant changes between the baseline and three future 

periods for different extreme design rainfall values of different return periods up to T = 25 years, 

and up to T = 50 years for a few stations. It was found that an important increase (varying from 

8% to 18% for the median values) in the estimated extreme design rainfall amounts depending 

upon the station locations and the value of design return periods. For T = 100 years, only Sault Ste 

Marie Airport Station showed a significant increase in the estimated rainfall amounts. There were 

also increases from 3% to 8% in design rainfalls for T = 50 years and T = 100 years for some 

stations, but they were found to be not statistically significant.  

It is important to notice that estimation of rainfall quantiles based on the at-site frequency 

analysis approach for high return periods (i.e. T = 100 years) involve high uncertainty, especially 

for short data samples. Thus, the method is often recommended for estimation of rainfall quantiles 

of return periods that are less than the length of the data sample (i.e. interpolation), and for return 

periods that are as twice as the sample length (i.e. extrapolation) (WMO, 2009a). Hence, for sample 

length of 30 years, the estimation of design rainfalls should be limited to T = 50-year return period. 

To reduce uncertainty and increase the robustness of the at-site estimation, several probabilistic 

models could be used together, such as the generalized normal (GNO) and Pearson type III (PE3) 

distributions as suggested by Nguyen et al. (2017) and Nguyen and Nguyen (2019a) for the Ontario 

region. New scale-invariance models based on these probability distribution models could be 

developed to tackle the temporal downscaling step. Another option is to increase the sample size 
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used for the frequency analysis (e.g. using sample of 45 or 50-year record length). Of course, with 

the advancement of computer, the upgrade of database, and the improvement of physical-based 

modelling, the data sources have been improved significantly for each coming CMIP generation 

with a larger number of embedded GCMs and a longer “Retrospective” and “Prospective” 

simulation periods. For many regions, such a long record of data is often unavailable, regional 

frequency analysis is an alternative option to reduce uncertainty of the estimation by “trading space 

for time”. However, the use of this approach is subject to the difficulty and uncertainty of 

determining the homogeneous regions.  

In summary, further studies could be carried out for other regions with different climatic 

conditions to assess the feasibility and accuracy of the proposed approach. In addition, the 

proposed approach could be used to estimate extreme rainfalls and to construct IDF relations for a 

gauged site or for an ungauged location for the current climate as well as for future climate under 

different climate change scenarios. 
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Chapter 5. Mathematical Frameworks and Scaling 

Properties of Several Probability Distribution Models 

Commonly Used in Hydrologic Frequency Analysis 

 

5.1 Introduction 

The estimation of extreme design rainfalls in the context of potential climate change 

impacts has become essential in current engineering practices due to recent recognition of climate 

variability (Williems et al., 2012; Kharin et al., 2013; Simonovic et al., 2016; Zhang et al., 2017). 

This estimation requires hence a suitable rainfall (spatial) downscaling approach to establishing 

an accurate linkage between daily climate projections from global or regional climate models 

(GCMs or RCMs) and daily extreme rainfall (ER) processes at a local site (Willems et al., 2012; 

Fowler et al., 2007; Maraun et al., 2010; Gooré Bi et al., 2017). Furthermore, this linkage so far 

has been commonly established at the daily timestep since current climate models have some major 

limitations in their detailed physical modeling ability and their limited computational capability. 

Consequently, it requires an improved (temporal) rainfall modeling approach to describe the 

linkages between the ER processes over a wide range of time scales (e.g., from one day to several 

minutes) (Nguyen et al., 2007; Herath et al., 2016; Li et al., 2017; Lee and Park., 2017).  

The spatial resolution problems of GCM and RCM outputs has been examined in detail in 

several previous studies. In particular, several different downscaling methods have been proposed 

to spatially disaggregate GCM or RCM projected outputs to much finer regional scales or 
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local/point scales (single-site or multi-site cases) for reliable assessments of climate change 

impacts (Wilby et al., 2002; Fowler et al., 2007; Maraun et al., 2010; Gooré Bi et al., 2017; Wilby 

and Dawson, 2013; Khalili and Nguyen, 2016; Werner et al., 2016). However, very few studies 

have tackled the temporal downscaling problem of GCM or RCM outputs. More specifically, some 

procedures have been proposed to derive the key statistics of the sub-daily ER series from those 

of the daily series (Herath et al., 2016; Lee and Park, 2017). Among these methods, the statistical 

models based on the scale-invariance (or scaling) concept has recently increasingly become an 

essential tool for modeling ER processes over a wide range of temporal scales (Hubert, 2001; 

Veneziano and Furcolo, 2002; Veneziano and Lepore, 2012; Lovejoy and Scherzer, 2012).  

Scale invariance implies that the statistical properties of ER over different time scales are 

related to each other by an operator involving only the scale ratio and the scaling exponent (Gupta 

and Waymire, 1990). Applications of the scale-invariance (scaling) concept has begun since the 

last decades. However, only a few scale-invariance models have been reported in the literature, 

including the scaling generalized extreme value (GEV) distribution and its special case, the scaling 

Gumbel (GUM) distribution (Nguyen et al., 1998; Nguyen et al., 2002b; Menabde et al., 1999; Yu 

et al., 2004). These scaling models have been extensively applied to the estimation of short-

duration ERs at gauged and ungauged sites, as well as to the construction of IDF curves in the 

current climate and in a changing climate (Nguyen et al., 2007; Nguyen et al., 2002b; Yu et al., 

2004; Bougadis and Adamowski, 2006; Blanchet et al., 2016; Bairwa et al., 2016; Ghanmi et al., 

2016; Vu et al., 2016). Recently, Nguyen and Nguyen (2018a) has introduced a new scaling GEV 

model based on the probability weighted moment system (i.e. the scaling GEV/PWM model). 

Using long record IDF data from a network of 21 raingauged stations located in the Ontario 

province of Canada, they showed that the GEV/PWM model out perform the other existing scaling 
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models, including the GEV/NCM model (Nguyen et al., 1998), and their special cases, the 

GUM/PWM model (Yu et al., 2004) and the GUM/NCM model (Menabde et al., 1999). 

Scaling approach has been applied to the discharge data series too. Gupta and Dawdy 

(1995) showed that, depending on the flood generating mechanism, annual flood flows could 

follow either simple scaling or multi-scaling laws. Snowmelt generating floods tend to exhibit 

simple scaling laws, whereas rainfall generating floods tend to follow multi-scaling laws. Smith 

(1992) stated that the index flood – a well-known method to transfer data from the at-site values 

to the regional values and vice versa, involved the assumption that the regional flood series 

possessed a simple scaling behavior. Pandey (1998) studied many annual maximum flood series 

in Québec and Ontario, Canada, and observes that the first nine NCM orders exhibited a simple 

scaling with the basin areas, while those of PWMs showed a multi-scaling relationship. Vogel and 

Sankarasubramanian (2000) also found that stream discharges in some regions of the United States 

displayed the simple scaling property. Eaton et al. (2002) demonstrated that flood flows in British 

Columbia, Canada, follow a simple scaling law. The scaling properties of Canadian annual stream 

flows were investigated in the studies of Yue and Gan (2004, 2009), while those of regional floods 

in New South Wales, Australia, were studied by Ishak et al. (2011). All of these studies have 

showed that conventional moments of flood data series are scaling with basin areas. Gado and 

Nguyen (2015) applying this property to propose a new method for homogeneous region 

delineations based on the case study of Quebec. Their results showed that the scaling approach 

was more efficient than the two existing techniques known as region of influence and canonical 

correlation analysis. Gupta (2017) presents a scaling theory of floods for developing a physical 

basis of statistical flood frequency relations. 
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In practice, in addition to the GEV and GUM distributions, there are other probability 

models that have been used for describing the distribution of the extreme hydrologic variables in 

general and the annual extreme rainfalls in particular (Stedinger et al., 1993; Hosking and Wallis, 

1997; Rao and Hamed, 2002; WMO, 2009; Nguyen et al., 2017). Some countries recommend the 

use of a specific distribution in their national guidelines for flood or rainfall frequency analyses. 

For example, the GEV distribution is a recommended choice in many countries in Europe, 

including Austria, Germany, Italy, and Spain (Salinas et al., 2014a, 2014b). Log-Pearson Type 3 

distribution has been used in the US in Bulletin 17B for flood frequency analysis (Griffis and 

Stedinger, 2007) while GEV distribution for rainfall frequency analysis (NOAA’s Atlas 14, 2014). 

The GEV and LP3 distribution are also recommended in Australia (Ball et al., 2016). Some other 

distributions have also been used popularly, including the Gumbel (GUM) distribution in Finland 

and Spain, the generalized Pareto (GPA) distribution in Belgium, the generalized logistic (GLO) 

distribution in the UK. In addition, the generalized normal (GNO), which has the same distribution 

as the Log-Normal 3-parameter (LN3) with slight parameter modifications, could also be a suitable 

choice depending on the size of the study area and the climate conditions (Salinas et al., 2014b; 

Faulkner et al., 2016). The Pearson 3 (PE3) is also a good model as it can fit the full daily 

precipitation remarkably well at both the point and catchment scales (Ye et al., 2018). PE3 was 

also identified as the best fitting distribution with GEV is the next candidate based on IDF data 

from 51 station across Canada. The quantiles computed based on both distributions are virtually 

indistinguishable (Burn and Taleghani, 2013). Nguyen et al. (2017) shows that, among the 11 study 

models that could be used for describing the distribution of short-duration AMS in Ontario 

(Canada), the GEV, GNO, and PE3 are the top models and they could be used interchangeably for 

constructing the IDF curves.    
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In view of the above-mentioned issues, the main objective of the present study is therefore 

to derive the mathematical frameworks and scaling properties of several popular probability 

distribution models that are frequently used in the frequency analyses of hydrologic extreme 

variables. These scaling models then can be used as the tools for modelling the extreme rainfall 

processes over a wide range of time scales (e.g., from several minutes to one day) so that the 

quantiles and distributions of short-duration extreme rainfalls can be estimated from those of 

longer durations. These probability models include different types of extreme family distribution, 

including the GLO, GNO, and PE3 distributions. The general mathematical framework as well as 

the scaling properties of these distributions are formulated and derived based on two different 

estimation methods (i.e. the non-central moment (NCM) and probability weighted moment (PWM) 

systems) as presented in Section 5.2. This results in six different scaling models: GLO/NCM, 

GLO/PWM, GNO/NCM, GNO/PWM, PE3/NCM, and PE3/PWM models. The feasibility and 

accuracy of the proposed models are assessed and compared with the existing scaling GEV/NCM 

and GEV/PWM models using IDF data from a network of 74 raingauges across Canada as 

described in Sections 5.3. Results are presented in Section 5.4 along with some discussion. A 

summary of research findings is provided in Section 5.5. 
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5.2 Mathematical frameworks and scaling properties of several probability 

distribution models commonly-used in hydrologic frequency analysis 

This section presents the derivations of mathematical frameworks and scaling properties 

of the GLO, GNO, and PE3 distributions based on both the NCM and PWM systems. Similar to 

the GEV distribution, these probability models also belong to the extreme value family and have 

been used frequently in the frequency of extreme hydrologic variables. 

5.2.1 General mathematical frameworks and scaling properties 

5.2.1.1 Non-central moment system 

For a distribution of a random variable 𝑋 with a probability density function 𝑓(𝑥) and a 

cumulative distribution function 𝐹(𝑥), the 𝑟𝑡ℎ-order non-central moment (NCM) is given by:  

𝜇𝑟 = E(X
r) =  𝑥𝑟𝑓(𝑥)𝑑𝑥 =  𝑥𝑟𝑑𝐹(𝑥)

∞

−∞

+∞

−∞

 
(5-1) 

Applying the transformation  = 𝐹(𝑥) and provided that the integral in the Eqn. (5-1) 

exists, the 𝑟𝑡ℎ-order NCM, 𝜇𝑟, can be expressed as in Eqn. (5-2) (Hosking and Wallis, 1997): 

𝜇𝑟 = E(X
r) =  {𝑥( )}𝑟𝑑 

1

 

 
(5-2) 

where 0 <  < 1 and 𝑥( ) is a unique value satisfying 𝐹(𝑥( )) =  . 

The cumulative distribution function, 𝐹(𝑥), and quantile function, 𝑥(𝐹), of each 

distribution (GLO, GNO, and PE3) are given in the following sub-sections for each distribution 

respectively.  
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The general NCM of 𝑟𝑡ℎ-order, 𝜇𝑟, and the first three NCMs of the study probability 

distribution models (GLO, GNO, and PE3) are derived and/or re-formulated for each distribution 

and are given in the following sub-sections for each distribution respectively. These non-central 

moment (NCM) estimators (and method of moment, MOM) can be used for estimating the 

parameters of these distributions in consideration of the scaling property of these NCMs over 

different rainfall durations. 

For a simple scaling process, it can be shown that (Nguyen et al., 2002b): 

𝜇𝑟(𝜆𝑡) = 𝜆
 𝑟𝜇𝑟(𝑡) = 𝜆

𝑟 𝜇𝑟(𝑡) (5-3) 

where 𝜂𝑟 = 𝑟𝜂1 with 𝜂1 is the scaling exponent which can be estimated based on the 1st-order 

NCM (i.e. the mean).  

In addition, for a simple scaling process, it can be shown that the skewness is constant over 

different time scales. Indeed, let 𝑔(𝑡) and 𝑔(𝜆𝑡) denote the skewness of the data samples for two 

different time scales 𝑡 and (𝜆𝑡) respectively, we have: 

𝑔(𝜆𝑡) =
[μ3(𝜆𝑡) −  𝜇2(𝜆𝑡)μ1(𝜆𝑡) + 2𝜇1

3(𝜆𝑡)]

[μ2(𝜆𝑡) − 𝜇1
2(𝜆𝑡)]

3
2    

=
𝜆3 

𝜆3 
[μ3(𝑡) −  𝜇2(𝑡)μ1(𝑡) + 2𝜇1

3(𝑡)]

[μ2(𝑡) − 𝜇1
2(𝑡)]

3
2

= 𝑔(𝑡) 

(5-4) 

The skewness of each study distribution (GLO, GNO, and PE3 distributions) is a function 

of the shape parameter only. These equations are given in the following sub-sections for each 

distribution respectively. Since the skewness is constant over different time scales, the shape 

parameter, 𝜅 (of the GLO and GNO distributions) and 𝛾 (of the PE3 distribution) of each 

distribution model is also constant over time scales as a result. 
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Using the equations of the first two NCMs of each distribution and the relations between 

NCMs of different time scales, the relationships between the scale parameters, 𝛼 (of the GLO and 

GNO distributions) and location parameters, 𝜇 (of the PE3 distribution) of two different time scales 

can be established. Substitute these parameters into the quantile function of each distribution to 

obtain the scaling relationship between quantiles of two different time scale (see Figure 5-1). In 

summary, for a simple scaling process, it can be shown that the statistical properties (parameters 

and quantiles) of these scaling models of two different time scales 𝑡 and 𝜆𝑡 are related as follows: 

𝜅(𝜆𝑡) = 𝜅(𝑡);  𝛼(𝜆𝑡) = 𝜆 𝛼(𝑡);  𝜉(𝜆𝑡) = 𝜆 𝜉(𝑡);   for GLO and GNO distributions 

𝛾(𝜆𝑡) = 𝛾(𝑡);  𝜎(𝜆𝑡) = 𝜆 𝜎(𝑡);  𝜇(𝜆𝑡) = 𝜆 𝜇(𝑡) ;  for PE3 distribution 

(5-5) 

𝑋𝑇(𝜆𝑡) = 𝜆
 𝑋𝑇(𝑡);   (5-6) 

5.2.1.2 Probability weighted moment system 

Probability weighted moments of a random variable X with a function F(X) are defined by 

(Greenwood et al., 1979): 

Mp,r,s = 𝐸[𝑋
 {𝐹(𝑋)}𝑟{1 − 𝐹(𝑋)} ] (5-7) 

A special case that is particularly useful and commonly used in practice is 𝛽𝑟 = 𝑀1,𝑟, . For 

a distribution of a random variable 𝑋 that has a quantile function, 𝑥( ), the PWM of 𝑟𝑡ℎ-order can 

be expressed as in Eqn.(5-8) (Hosking and Wallis, 1997): 

𝛽𝑟 = E(X{𝐹(𝑋)}
𝑟) =  𝑥( ) 𝑟𝑑 

1

 

 
(5-8) 

The general PWM of 𝑟𝑡ℎ-order, 𝛽𝑟, and the first three PWMs of the GLO, GNO, and PE3 

probability distribution models are derived and/or re-formulated for each distribution and are given 

in the following sub-sections for each distribution respectively. The probability weighted moments 
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(PWMs) and its linear combination forms (L-moments) can be used for estimating the parameters 

of these distributions in consideration of the scaling property of these PWMs over different rainfall 

durations. 

For a simple scaling process, it can be shown that the relation between the rth-order PWMs 

of rainfalls for two different rainfall durations 𝑡 and 𝜆𝑡 can be expressed as: 

𝛽𝑟(𝜆𝑡) = 𝜆
 𝑟𝛽𝑟(𝑡) = 𝜆

 𝛽𝑟(𝑡) (5-9) 

In addition, for a simple scaling process, it can be shown that the L-skewness is constant 

over different time scales. Indeed, let 𝜏3(𝑡) and 𝜏3(𝜆𝑡) denote the L-skewness of the data samples 

for two different time scales 𝑡 and 𝜆𝑡 respectively, we have: 

𝜏3(𝜆𝑡) =
 𝛽2(𝜆𝑡) −  𝛽1(𝜆𝑡) + 𝛽 (𝜆𝑡)

2𝛽1(𝜆𝑡) − 𝛽 (𝜆𝑡)
=
𝜆 

𝜆 
.
[ 𝛽2(𝑡) −  𝛽1(𝑡) + 𝛽 (𝑡)]

[2𝛽1(𝑡) − 𝛽 (𝑡)]
= 𝜏3(𝑡) 

(5-10) 

The L-skewness of each study distribution (GLO, GNO, and PE3 distributions) is a 

function of the shape parameter only. These equations are given in the following sub-sections for 

each distribution respectively.  

Since the L-skewness is constant over different time scales, the shape parameter, 𝜅 (of the 

GLO and GNO distributions) and 𝛾 (of the PE3 distribution) of each distribution model is also 

constant over time scales as a result. Furthermore, using the equations of the first two PWMs of 

each distribution and the relations between PWMs of different time scales, the relationships 

between the scale parameters, 𝛼 (of the GLO and GNO distributions) and location parameters, 𝜇 

(of the PE3 distribution) of two different time scales can be established. Similarly, the quantile 

scaling relationship can also be obtained by substituting these scaling parameters into the quantile 
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functions (see Figure 5-1). The equations received are identical with Eqn. (5-5) and (5-6) provided 

for the NCM system above. 

 

Figure 5-1. Mathematical frameworks and scaling properties of several popular distributions (GEV, 

GLO, GNO, PE3) based on the probability weighted moment and non-central moment systems 

 

5.2.2 Novel Scaling Generalized Logistic (GLO) model 

5.2.2.1 The Generalized Logistic (GLO) distribution 

The cumulative distribution function (CDF) of the GLO distribution, 𝐹(𝑥), and its quantile 

function, 𝑥(𝐹), are defined by (Hosking and Wallis, 1997): 
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𝐹(𝑥) =
1

1+exp(−𝑦)
      where    𝑦 = {

−𝑘−1𝑙𝑜𝑔 {1 −
𝑘(𝑥−𝜉)

𝛼
} , 𝑘 ≠ 0

  
(𝑥−𝜉)

𝛼
                   ,   𝑘 = 0

  

(5-11) 

𝑥(𝐹) =

{
 
 

 
 
𝜉 + 𝛼

{
1 − 𝐹
𝐹
}
𝑘

𝑘
     ,    κ ≠ 0

𝜉 − 𝛼𝑙𝑜𝑔 {
(1 − 𝐹)

𝐹
}    ,   κ = 0

 

(5-12) 

in which 𝜉, 𝛼, and 𝜅 are the location, scale, and shape parameters, respectively. For the special 

case, 𝑘 = 0 is the logistic distribution. 

5.2.2.2 A novel NCM-based scaling GLO model  

The generalized 𝑟𝑡ℎ-order NCM, 𝜇𝑟, of the GLO distribution has been derived in Nguyen 

and Nguyen (2018b) and is presented in Eqn. (5-13): 

𝜇𝑟 = (𝜉 +
𝛼

𝜅
)
𝑟

+ (−1)𝑟 (
𝛼

𝜅
)
𝑟

Γ(1 + 𝑟𝜅)Γ(1 − 𝑟𝜅)

+  𝑟∑(−1)𝑖 (
𝛼

𝜅
)
𝑖

𝑟−1

𝑖=1

(𝜉 +
𝛼

𝜅
)
𝑟−i

Γ(1 + 𝑖𝜅)Γ(1 − 𝑖𝜅) 

(5-13) 

in which Γ(. ) is the gamma function.  

Based on Eqn. (5-13), the first three order NCMs are: 

𝜇1 = (𝜉 +
𝛼

𝜅
) − (

𝛼

𝜅
) Γ(1 + 𝜅)Γ(1 − 𝜅)  (5-14) 

𝜇2 = (𝜉 +
𝛼

𝜅
)
2

−  2 (
𝛼

𝜅
) (𝜉 +

𝛼

𝜅
) Γ(1 + 𝜅)Γ(1 − 𝜅) + (

𝛼

𝜅
)
2

Γ(1 + 2𝜅)Γ(1 − 2𝜅) 

     = 𝜇1
2 + [

𝛼

𝜅
]
2
[Γ(1 + 2𝑘)(1 − 2𝑘) − Γ2(1 + 𝑘)Γ2(1 − 𝑘)]  

(5-15) 

𝜇3 = (𝜉 +
𝛼

𝜅
)
3

−  (
𝛼

𝜅
) (𝜉 +

𝛼

𝜅
)
2

Γ(1 + 𝜅)Γ(1 − 𝜅) 
(5-16) 
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             +  (
𝛼

𝜅
)
2

(𝜉 +
𝛼

𝜅
) Γ(1 + 2𝜅)Γ(1 − 2𝜅) − (

𝛼

𝜅
)
3

Γ(1 +  𝜅)Γ(1 −  𝜅) 

The skewness of the GLO distribution is only a function of the shape parameter, 𝜅, and is 

given by (Rao and Hamed, 2000): 

𝑔(. ) =
κ

|κ|
[−Γ(1 +  𝜅)Γ(1 −  𝜅) +  Γ(1 + 𝜅)Γ(1 − 𝜅)Γ(1 + 2𝜅)Γ(1 − 2𝜅) −

2Γ3(1 + 𝜅)Γ3(1 − 𝜅)]/[Γ(1 + 2𝜅)Γ(1 − 2𝜅) − Γ2(1 + 𝜅)Γ2(1 − 𝜅)]
3

2  

(5-17) 

 

5.2.2.3 A novel PWM-based scaling GLO model 

The generalized 𝑟𝑡ℎ-order PWMs, 𝛽𝑟, of the GLO distribution has been derived in Nguyen 

and Nguyen (2018b) and is presented in Eqn. (5-18): 

𝛽𝑟 = (𝑟 + 1)
−1 (𝜉 +

𝛼

𝜅
[1 −

Γ(1 + 𝜅) Γ(𝑟 + 1 − 𝜅)

Γ(𝑟 + 1)
]) 

(5-18) 

Based on Eqn. (5-18), the first three order PWMs are: 

𝛽 =    (𝜉 +
𝛼

𝜅
[1 − Γ(1 + 𝜅)Γ(1 − 𝜅)]) (5-19) 

𝛽1 =
1

2
 (𝜉 +

𝛼

𝜅
[1 − Γ(1 + 𝜅)Γ(2 − 𝜅)]) 

(5-20) 

𝛽2 =
1

 
 (𝜉 +

𝛼

𝜅
[1 −

1

2
Γ(1 + 𝜅)Γ( − 𝜅)]) 

(5-21) 

The L-skewness of the GLO distribution is a function of the shape parameter, 𝜅, only and 

is given by (Hosking and Wallis, 1997): 

𝜏3(. ) = −𝜅 (5-22) 
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5.2.3 Novel Scaling Generalized Normal (GNO) model 

5.2.3.1 The Generalized Normal (GNO) distribution 

The three-parameter lognormal (LN3) distribution is usually defined by (Hosking and 

Wallis, 1997): 

𝐹(𝑥) = Φ[{log
(x−ζ)−μ}

𝜎
] ,      𝜁 ≤ 𝑥 < ∞  (5-23) 

in which  𝜇, 𝜎, 𝑎𝑛𝑑 𝜁 are model parameters. 

This version only includes the lognormal distributions with positive skewness and a lower 

bound. A re-parameterized version known as GNO that includes both the positive skewness (𝜅 <

0),  negative skewness (𝜅 > 0), and the Normal distribution as a special case (𝜅 = 0) has been 

presented in Hosking and Wallis (1997). With this form, the GNO distribution exhibits many 

similar structures to the GEV and GPA distributions. The CDF of the GNO distribution model are 

defined by Eqn. (5-24). The quantile function, 𝑥(𝐹), has no explicit analytical form and must be 

solved by inversing the CDF function. 

𝐹(𝑥) = Φ(y)      where    𝑦 =  {
−
1

𝑘
log [1 −

𝑘(𝑥−𝜉)

𝛼
] ; 𝑘 ≠ 0

(𝑥 − 𝜉)/𝛼 ;       𝑘 = 0
 

(5-24) 

Φ(𝑥) = ∫ 𝜙(𝑡)𝑑𝑡
𝑥

−∞
  and 𝜙(𝑡) = (2𝜋)−

1

2 exp (−
1

2
𝑡2)  (5-25) 

in which 𝜉, 𝛼, and 𝜅 are the location, scale, and shape parameters, respectively. For the special 

case, 𝑘 = 0 is the normal distribution. These parameters relate to those of the LN3 version as 

follows: 

κ = −σ  ;     α = σ exp(μ)   ;       ξ = ζ + exp(μ)      (5-26) 
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5.2.3.2 A novel NCM-based scaling GNO model 

The generalized 𝑟𝑡ℎ-order NCM, 𝜇𝑟, of the LN3 distribution has been described in Singh 

(1998) and is presented in Eqn. (5-27): 

𝜇𝑟 =∑(
𝑟
𝑖
) exp [(𝑟 − 𝑖)𝜇 +

(𝑟 − 𝑖)2𝜎2

2
] 𝜁𝑖

𝑟−1

𝑖=1

 

(5-27) 

Based on Eqn. (5-27), the first three order NCMs are: 

𝜇1 = 𝑒𝑥𝑝 (𝜇 +
𝜎2

2
) + 𝜁  (5-28) 

𝜇2 = exp(2𝜇 + 2𝜎
2) + 2𝜁 exp (𝜇 +

𝜎2

2
) + 𝜁2   (5-29) 

𝜇3 = exp ( 𝜇 +
9

2
𝜎2) +  𝜁 exp(2𝜇 + 2𝜎2) +  𝜁2 exp (𝜇 +

𝜎2

2
) + 𝜁3  (5-30) 

The generalized 𝑟𝑡ℎ-order NCM, 𝜇𝑟, of the GNO distribution can be re-formulated as 

follows: 

𝜇𝑟 =∑(
𝑟
𝑖
) (−

𝛼

𝑘
)
(𝑟−𝑖)

𝑒𝑥𝑝 [
(𝑟 − 𝑖)2𝑘2

2
] (𝜉 +

𝛼

𝑘
)
𝑖

𝑟−1

𝑖=1

 

(5-31) 

Based on Eqn. (5-27), the first three order NCMs are: 

𝜇1 = (−
𝛼

𝑘
) exp(

𝑘2

2
) + (𝜉 +

𝛼

𝑘
) 

(5-32) 

𝜇2 = (
𝛼

𝑘
)
2

exp(2𝑘2) −
2𝛼

𝑘
exp(

𝑘2

2
) (𝜉 +

𝛼

𝑘
) + (𝜉 +

𝛼

𝑘
)
2

 
(5-33) 

𝜇3 = (−
𝛼

𝑘
)
3

exp (
9𝑘2

2
) +  (

𝛼

𝑘
)
2

exp(2𝑘2) (𝜉 +
𝛼

𝑘
) −  

𝛼

𝑘
exp (

𝑘2

2
) (𝜉 +

𝛼

𝑘
)
2

+ (𝜉 +
𝛼

𝑘
)
3

 

(5-34) 
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The skewness of the LN3 distribution is given by (Singh, 1998): 

𝑔(. ) = [exp(σ2) + 2][exp(σ2) − 1]1 2⁄   (5-35) 

It can be re-formulated for the GNO as follows: 

𝑔(. ) = [exp(κ2) + 2][exp(κ2) − 1]1 2⁄   (5-36) 

Therefore, it is possible to estimate the three parameters of the scaling GNO/NCM 

probability distribution model using the first three NCMs. 

5.2.3.3 A novel PWM-based scaling GNO model 

The PWM expressions for the GNO distribution are difficult to obtain. The first two order 

PWMs of the GNO distribution are given by Hosking and Wallis (1997) as follows: 

𝛽 = 𝜉 +
𝛼

𝑘
[1 − 𝑒𝑥𝑝 (

𝑘2

2
)] 

(5-37) 

𝛽1 =
1

2
𝛽 +

𝛼

2𝑘
exp (

𝑘2

2
) [1 − 2𝜙 (−

𝑘

√2
)] 

(5-38) 

For 𝛽2 and L-skewness, there are no simple expression. Hosking and Wallis (1997) notes 

that L-skewness of the GNO distribution is a function of the shape parameter, 𝜅, alone and can be 

approximated as: 

τ3(. ) = f(κ) ≈ −𝑘
𝐴 + 𝐴1𝑘

2 + 𝐴2𝑘
 + 𝐴3𝑘

6

1 + 𝐵1𝑘2 + 𝐵2𝑘 + 𝐵3𝑘6
 

(5-39) 

where 𝐴𝑖  (𝑖 = 0 𝑡𝑜  ) and 𝐵𝑗  (𝑗 = 1 𝑡𝑜  ) are the coefficients. Their values are provided in Table 

A.1 of Hosking and Wallis (1997) and can be found in Appendix D. 
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5.2.4 Novel Scaling Pearson Type 3 (PE3) model 

5.2.4.1 The Pearson type 3 (PE3) distribution 

The CDF of the PE3 distribution model are defined by Eqn.(5-40) (Hosking and Wallis, 

1997). The quantile function, 𝑥(𝐹), has no explicit analytical form and must be solved by inversing 

the CDF function. 

𝐹(𝑥) =
G(α ,

x−ξ

β
)

Γ(α)
    ;         for 𝛾 > 0 𝑎𝑛𝑑 𝜉 ≤ 𝑥 < ∞;   

𝐹(𝑥) =
G(α ,

x−ξ

β
)

Γ(α)
     ;         for 𝛾 < 0 𝑎𝑛𝑑 −∞ < 𝑥 ≤ 𝜉; 

𝐹(𝑥) = Φ(
x−μ

𝜎
)    ;         for 𝛾 = 0 𝑎𝑛𝑑 −∞ < 𝑥 < ∞; 

(5-40) 

𝐺(𝛼, 𝑥) =  𝑡𝛼−1𝑒−𝑡𝑑𝑡
𝑥

 

 
(5-41) 

𝛼 =
4

𝛾2
, 𝛽 =

𝜎|𝛾|

2
, 𝜉 =  𝜇 −

2𝜎

𝛾
 

(5-42) 

in which 𝜇, 𝜎, and 𝛾 are the location, scale, and shape parameters, respectively. 𝐺(. ) is the 

incomplete gamma function. For the special case, 𝛾 = 0 is the normal distribution. 

5.2.4.2 A novel NCM-based scaling PE3 model 

The generalized 𝑟𝑡ℎ-order NCM, 𝜇𝑟, of the PE3 distribution in term of the standard 

parameters has been described in Singh (1998) and is presented as follows: 

𝜇𝑟 =∑ (
𝑟
𝑖
)
𝛽𝑟−𝑖

𝛤(𝛼)
𝛤(𝑟 − 𝑖 + 𝛼)𝜉𝑖

𝑟

𝑖= 
  

(5-43) 

Based on Eqn. (5-43), the first three order NCMs are: 
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𝜇1 = 𝜉 + 𝛼𝛽  (5-44) 

𝜇2 = (𝜉 + 𝛼𝛽)
2 + 𝛼𝛽2  (5-45) 

𝜇3 = (𝜉 + 𝛼𝛽)
3 +  𝛼𝛽2(𝜉 + 𝛼𝛽) + 2𝛼𝛽3 (5-46) 

The generalized 𝑟𝑡ℎ-order NCM, 𝜇𝑟, of the re-parameterized PE3 distribution in term of 

𝜇, 𝜎, and 𝛾 can be formulated as follows: 

𝜇𝑟 =∑ (
𝑟
𝑖
)
(𝜎|𝛾|/2)𝑟−𝑖

𝛤( 𝛾2⁄ )
𝛤(𝑟 − 𝑖 + 4 𝛾2⁄ )(𝜇 − 2𝜎/𝛾)𝑖 

𝑟

𝑖= 
     

(5-47) 

The first three order NCMs of the re-parameterized version are: 

𝜇1 = 𝜇 (5-48) 

𝜇2 = 𝜇
2 + 𝜎2 (5-49) 

𝜇3 = 𝜇
3 +  σ2μ + 𝜎3|𝛾| (5-50) 

The skewness of the PE3 distribution is given by (Singh, 1998): 

𝑔(. ) = 2/α .5  (5-51) 

It can be re-formulated for the re-parameterized PE3 as a function of the shape parameter, 

𝜅, only as follows: 

𝑔(. ) = γ  (5-52) 

 

5.2.4.3 A novel PWM-based scaling PE3 model 

The PWM expressions for the PE3 distribution are difficult to obtain. The first two order 

PWMs of the PE3 distribution in terms of the standard parameter are given by Hosking and Wallis 

(1997) as follows: 
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𝛽 = 𝜉 + 𝛼𝛽 (5-53) 

𝛽1 =
1

2
(𝛽 + 𝜋

−
1

2𝛽𝛤 (𝛼 +
1

2
) 𝛤⁄ (𝛼))  

(5-54) 

In terms of the re-parameterization, it can be formulated as follows: 

𝛽 = 𝜇 (5-55) 

𝛽1 =
1

2
(𝛽 +

1

2
𝜋−

1

2𝜎|𝛾|𝛤 (
 

𝛾2
+
1

2
) 𝛤⁄ (

 

𝛾2
))  

(5-56) 

For 𝛽2 and L-skewness, there are no simple expression. Hosking and Wallis (1997) notes 

that the L-skewness of the PE3 distribution is a function of the standard parameter, 𝛼, or of the re-

parameterized shape parameter, 𝛾, alone and can be approximated as:  

𝜏3 = f(α) =  𝐼1 3⁄ (𝛼, 2𝛼) −   ;  or    𝜏3 = f(γ) =  𝐼1 3⁄ (
 

𝛾2
,
8

𝛾2
) −   (5-57) 

𝐼𝑥(𝑝, 𝑞) =
𝛤( +𝑞)

𝛤( )𝛤(𝑞)
∫ 𝑡 −1(1 − 𝑡)𝑞−1 ⅆ𝑡
𝑥

 
  (5-58) 

𝜏3 ≈ 𝛼
− .5 𝐴0+𝐴1𝛼

−1+𝐴2𝛼
−2+𝐴3𝛼

−3

1+𝐵1𝛼−1+𝐵2𝛼−2
  ; if 𝛼 ≥ 1 

𝜏3 ≈
1+𝐸1𝛼+𝐸2𝛼

2+𝐸3𝛼
3

1+𝐹1𝛼+𝐹2𝛼2+𝐹3𝛼3
                    ; if 𝛼 < 1   

(5-59) 

where 𝐼𝑥(𝑝, 𝑞) is the incomplete beta function ratio; 𝐴𝑖 (𝑖 = 0 to 3), 𝐵𝑗 (𝑗 = 1 to 2), 𝐸𝑘 (𝑘 = 

1 to 3), and 𝐹𝑘 are coefficients and their values can be found in Table A.2 of Hosking and Wallis 

(1997) and can be found in Appendix D. 
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5.3 Numerical application 

5.3.1 Study sites and Data 

To assess the feasibility and accuracy of the proposed scaling models, the long record IDF 

data from a network of 74 stations located across Canada were selected for this study (see Figure 

5-2). These stations were chosen based on the quality of the data, the adequate length of available 

historical records, and the representative spatial distribution of the raingauges. To ensure the 

quality of data, only data from recording raingauges provided by the Atmospheric Environmental 

Service of Environment Canada were used. Each station contains at least 40 years of record of nine 

rainfall durations (from D = 5 to 1440 minutes). The data must pass the three selected statistical 

tests of the independence and stationarity of the input data series at the 5% significant level. These 

tests include the Mann-Whitney test for homogeneity and stationarity (jumps), the Mann–Kendall 

test for trend detection, and the Wald-Wolfowitz test for independence and stationarity (Rao and 

Hamed, 2000; WMO, 2009a).  

Several sample statistics are calculated, including the maximum, mean, standard deviation, 

and skewness values as shown in Figure 5-3. The range of each statistic (minimum to maximum) 

for each rainfall duration is also summarized based on values from all 74 stations. Color scales are 

used to display and compare these values for each statistic and each duration. For each statistic 

and each duration, color is scaled from white to dark green/blue/purple/brown (i.e. from the 

minimum to maximum value, provided in the table below each column). In addition, for the ease 

of comparison, yellow and red markers are added to the plot to indicate stations with rainfall depths 

greater than or equal to 95 and 99 percentiles respectively.  



 

138 

The AMS maximum values have been analyzed in depth in Chapter 3. Results show that 

the largest short-duration storms (ranging from 5 minutes to 1 hour) were mostly observed in the 

Prairies of Canada. Particularly, at the Lethbridge CDA Station (Alberta), the Regina International 

Airport Station (Saskatchewan), and Dauphin CS Station (Manitoba). Whereas, for longer 

durations (D = 2 to 6 hours), they were mostly recorded in the Western Ontario at the Kenora RCS 

Station. For the longest durations (D = 12 to 24 hours), they were measured in the British Columbia 

coast (Tofino Airport Station) and the Eastern coast (Saint John Airport and Sydney CS Stations).  

For the AMS mean values, the picture is quite different from the AMS max values for 

rainfall durations of 5 minutes to 2 hours. The largest means were mostly recorded in the Western 

Ontario (i.e. Kenora RCS Station) and Southern Ontario (Chatham WPCP and Winsor Airport 

Stations) with the rainfall depths approximately 10 mm (5 minutes), 15 mm (10 minutes), 18 mm 

(15 minutes), 24 mm (30 minutes), 29 mm (1 hour), and 36 mm (2 hours). For longer rainfall 

durations (i.e. 6 hours and more), the largest means were mostly recorded in the Western (Tofino 

Airport Station) and Eastern (Saint John Airport Station) Canada coasts. The rainfall depths are 

approximately 64 mm (6 hours), 94 mm (12 hours), and 133 mm (1 day).   

For the rainfall variation (i.e. standard deviation), on average, it is approximately 40% of 

the mean value for all rainfall durations. However, it can be as small as 19% and can be as large 

as 76%. The largest standard deviation observed based on the 74 stations for different durations 

are: 5 mm (5 minutes), 7 mm (10 minutes), 9 mm (15 minutes), 13 mm (30 minutes), 14 mm (1 

hour), 20 mm (2 hours), 25 mm (6 hours), 29 mm (12 hours), 31 mm (1 day). Regarding the AMS 

skewness, the computed values indicate that many AMS are highly skew. On average, the 

skewness ranges from 1.1 to 1.6 for different rainfall durations. However, they can be extremely 

skew with values range from 2.9 to 4.6.  
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Figure 5-2. (a) Locations and record lengths (circle markers with different sizes and colors) of the 74 study raingauges; (b) map of Canada in the 

world; (c) Histogram of record lengths; (d) Names of 15 different terrestrial ecoregions in Canada. Adapted from Government of Canada (2019) 
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Figure 5-3. Several basic statistics (maximum, mean, standard deviation, and skewness) of 5-minute to 

1440-minute AMS (boxplots on the left) of 74 stations. For each statistic and each duration, color is 

scaled from white to dark green/blue/purple/brown (i.e. from the minimum to maximum value, provided 

in the table below each column). Yellow and red markers are also added to each column to indicate 

stations with values greater than or equal to 95 and 99 percentiles respectively.  
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5.3.2 Model Assessment Criteria 

In this study, five indices are used for comparing the performance of the eight study 

models.  These criteria include the root mean square error (RMSE), the root mean square relative 

error (RMSEr), the mean absolute deviation (MAD), the mean absolute relative deviation (MADr), 

and the correlation coefficient (CC). RMSE and MAD have the same unit with the rainfall depth 

(mm), while RMSEr, MADr, and CC are dimensionless (dmnl). They are calculated as follows: 

𝑅𝑀𝑆𝐸 = {∑
(𝑥𝑖 − 𝑦𝑖)

2

𝑛
}

1
2

   

(5-60) 

𝑅𝑀𝑆𝐸𝑟 =  [
1

𝑛
∑{
(𝑥𝑖 − 𝑦𝑖)

𝑥𝑖
}

2

]

1
2

 

(5-61) 

𝑀𝐴𝐷 =  
1

𝑛
∑|𝑥𝑖 − 𝑦𝑖|         (5-62) 

𝑀𝐴𝐷𝑟 =  
1

𝑛
∑ {
|𝑥𝑖 − 𝑦𝑖|

𝑥𝑖
} 

(5-63) 

𝐶𝐶 = 
∑{(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)}

{∑(𝑥𝑖 − �̅�)2∑(𝑦𝑖 − �̅�)2}
1
2

 
(5-64) 

where 𝑥𝑖 , 𝑖 = 1, 2, … , 𝑛 are the observed values and 𝑦𝑖, 𝑖 = 1, 2, … , 𝑛 are the estimated 

values for the same probability level 𝑝𝑖; 𝑛 is the sample length; �̅� and �̅� denote the average value 

of the observed and estimated quantiles, respectively. The non-exceedance probabilities, 𝑝𝑖, is 

estimated using the Cunnane’s plotting position formula (Nguyen et al., 2017; Nguyen and 

Nguyen, 2019a). 
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5.4 Results and Discussion 

This section compares the performance of the six novel scaling models proposed in Section 

5.2 (i.e. GLO/PWM, GLO/NCM, GNO/PWM, GNO/NCM, PE3/PWM, and PE3/NCM models) 

with two existing scale-invariance models (i.e. GEV/PWM and GEV/NCM models). The 

comparisons were performed based on a number of different graphical displays and numerical 

indices. For all eight scaling models, the model parameters are estimated based on the indirect 

method (i.e. based on the scale-invariance property of the first three statistical moments (PWMs 

or NCMs) over different rainfall durations) as described in Chapter 3. The distributions and the 

quantiles of the sub-daily and sub-hourly extreme rainfalls can be then easily obtained by 

substituting these parameters into the corresponding quantile function of each model. 

Figure 5-4 presents the probability plots of the sub-daily and sub-hourly AMS (D = 5 to 

720 minutes) derived from the distribution of daily AMS data using the eight scale-invariance 

models for the Montreal P.E.T. Intl. Airport Station. For each model (i.e. each sub-plot), a visual 

assessment can be carried out by visually comparing the estimated cumulative distribution 

functions (CDFs) of the sub-daily and sub-hourly extreme rainfalls to the empirical CDFs of the 

observed data or to the theoretical CDFs fitted to the observed data. From the visual point, all 

models seem to fit well to the observed data though they exhibit quite different tail behaviors on 

the right-hand side (i.e. for T = 50 years and up). Even using the same distribution but with 

different moment systems (e.g. GEV/PWM versus GEV/NCM model), the estimated rainfall 

quantiles can be quite different. For this station, it can be seen that the estimations based on the 

PWM system produce higher quantile values, especially for those corresponding to high return 

periods, compared to the estimation using the NCM system. In particular, the GLO distribution 
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yields the highest difference while PE3 distribution produces the least difference for quantiles 

computed using the two different moment systems. Comparing the four distributions, based on the 

PWM system and the observation of the right tail behaviours, the GLO distribution yields the 

largest quantile while the PE3 distribution yields the smallest quantile; the GEV and GNO 

distributions produce almost the same values. However, the differences are much smaller when 

computing the quantile using the NCM system.        

To discriminate these models, the five indices presented in Section 5.3 were used. For the 

results to be comparable among different models, the empirical extreme rainfall quantiles of sub-

daily and sub-hourly data were used as the reference values to compare with the estimated values. 

The empirical values are independent with the theoretical distributions and parameter estimation 

methods and therefore the same for all eight models. Using these numerical indices, results of 

Montreal P.E.T. Intl. Airport Station indicate that, among the eight considered models, the 

PE3/PWM model provided the best fit to the observed data of this station. In detail, it yields the 

best results for the three indices, including RMSE (1.54 mm), MAD (1.01 mm), and CC (0.996), 

and the tied results for the two remaining criteria, including RMSEr (5.4%, tied with the 

GEV/PWM model), and MADr (4.2%, tied with the GEV/PWM and GNO/PWM models). Similar 

calculations were conducted for all 74 stations. Results are presented in Figure 5-5. 
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Figure 5-4. Probability plots of the estimated sub-daily and sub-hourly AMS (D = 720 to 5 minutes) 

derived from the daily AMS (D = 1440 minutes) for Montreal P.E.T. Intl. Airport Station using the 

scaling approach (SCL, continuous lines) and at-site frequency analysis (ASF, dotted lines) of the 

observed data (OBS, circle markers). 



 

145 

Figure 5-5 shows the boxplots of the results of the five numerical comparison indices for 

5- to 720-minute observed and estimated AMS data for all 74 stations. In general, on the basis of 

these goodness-of-fit numerical comparison results, it is found that no unique scaling model ranked 

consistently best for all criteria and all locations. Results based on these models are quite 

comparable, except the GLO/NCM model consistently produces the worst results for all indices. 

For the remaining seven scaling models, as can be seen from the boxplots, to the whisker extents, 

these models produce RMSEr and MADr less than 15% and 10% respectively, RMSE and MAD 

less than 4 mm and 2 mm, and CC at least 0.98. On average, to the medians, these models produce 

RMSEr and MADr less than 8% and 6% respectively, RMSE and MAD less than 2.2 mm and 1.2 

mm, and CC at least 0.99. Based on the boxplots of the dimensionless indices (i.e. RMSEr and 

MADr), it can be seen that for each distribution, the PWM estimators yield better results than the 

NCM estimators. That is, results of PWM-based models display smaller box widths, lower 

medians and shorter upper whisker extents for the cases of RMSEr and MADr than those of NCM-

based models. However, results are almost similar for the four PWM-based scaling models. A 

ranking scheme is utilized to rank all the models.   

Ranking scores (from 1 to 8) are assigned to each model according to the value computed 

for each index. The model with the lowest RMSE, RMSEr, MAD, MADr, or highest CC is given 

the rank of 1 for the corresponding assessment category. Thus, ranking from 1 to 8 indicates the 

gradual decrease from the best to the worst candidates. In case of ties, equal ranks are given to 

those corresponding models. Furthermore, for each numerical criterion, the overall rank (or total 

score) of each numerical index was obtained by summing the individual point rank at each station 

for each model. The total score of each model ranges from 74 (the best) to 592 (the worst) based 

on 74 stations. In addition, the number of first score was also calculated for each model of each 
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criterion by counting only the number of stations with first score. The total first score of each 

model ranges from 74 (the best) to 0 (the worst). Note that equal scores were used for tie cases. 

Hence, for each index, if we sum the total first score across all eight models, the sum can be higher 

than 74. Results are shown in Figure 5-6. The total scores are displayed in the form of bar graph 

to the left, while those of the first score are plotted to the right for each criterion. Ranks of the total 

scores and total first scores are also plotted next to them to help the comparison easier.  

 

Figure 5-5. Numerical comparisons of the performance of eight scaling models in deriving the 

distributions and quantiles of sub-daily and sub-hourly (i.e. 5- to 720-minute) AMS from those of daily 

AMS. The comparisons are based on the real values computed using five criteria: RMSE (mm), RMSEr 

(dmnl), MAD (mm), MADr (dmnl), and CC (dmnl). 
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Figure 5-6. Numerical comparisons of the performance of eight scaling models in deriving the 

distributions and quantiles of sub-daily and sub-hourly (i.e. 5- to 720-minute) AMS from those of daily 

AMS. The comparisons are based on the rankings of the real values computed using five different criteria: 

RMSE (mm), RMSEr (dmnl), MAD (mm), MADr (dmnl), and CC (dmnl). For each index, the scores 

shown on the left are the total score of each model computed by summing the individual rank at each 

station. While the scores shown on the right are the total first score calculated by counting the number of 

stations with the first score.   

Figure 5-6 shows that, in general, the GNO/PWM and GEV/PWM models are the best 

models among the eight considered candidates though they do not always perform best at all study 

stations. In fact, each model performs best for about 1/3 the number of stations (based on RMSE, 

RMSEr, and MAD criteria), and 1/2 the number of stations (based on MADr and CC criteria). This 

could be due to the strong spatial variation of rainfall characteristics across the study region. 

Depending on the criteria, for example, the GNO/PWM model yield the best estimates based on 

the RMSE and MAD indices. Whereas, the GEV/PWM model yield the best estimates based on 
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the RMSEr and MADr. The two models produce almost the same results for the CC category. 

Therefore, these two scaling models can be used interchangeably in deriving the distributions of 

short-duration extreme rainfalls from those of longer duration to improve the accuracy and 

robustness of the results. In addition, it is necessary to note that the difference in quantile estimates 

between the top models are small. These values are investigated and plotted in Figure 5-7 and 

Figure 5-8. 

Figure 5-7 and Figure 5-8 show the comparison of the 1-hour and 5-minute design rainfall 

quantiles for the 100- and 10-year return periods, respectively. These values are estimated using 

the at-site frequency analysis and the scale-invariance approaches based on both GEV/PWM and 

GNO/PWM models. From the figures, it is easy to see that the uncertainty of the design rainfall 

quantiles estimations using two different methods (e.g., ASFA method versus scaling method 

based on the GEV/PWM or the GNO/PWM model) are much larger than using two different 

models (e.g., ASFA or downscaled values based on the GEV/PWM model versus the GNO/PWM 

model). In detail, the difference between the ASFA quantiles and the downscaled quantiles are 

tiny for the two models. For the low return period (T=10 year), the quantiles estimated using the 

GNO/PWM model are mostly higher (between 0 and 4%) than those computed using the 

GEV/PWM model for both rainfall durations. However, for the high return period (T=100 year), 

the GEV/PWM model yield mostly higher quantile values (between 0 and 3%) for both rainfall 

durations. Whereas, comparing between the ASFA and the downscaled methods using either the 

GEV/PWM or the GNO/PWM model show a much larger difference. For the low return period 

(T=10 year) and for the 1-hour duration, about 40% the downscaled quantiles are overestimated 

(between 0 and 15%), while the remaining values are underestimated (between 0 and 10%); while 

for the 5-minute duration, more than 50% values are overestimated (between 0 and 9%), and the 
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remaining values are underestimated (between 0 and 8%).  For the high return period (T=100 year) 

and for the 1-hour duration, about 50% of the downscaled quantiles are either over- or under-

estimated (between 0 and 22%); while for the 5-minute duration, about 60% values are 

overestimated (between 0 and 22%), and the remaining values are underestimated (between 0 and 

14%). 

 

Figure 5-7. Comparison of the 1-hour design rainfalls (mm) estimated using two different distributions 

(i.e. GEV and GNO) in combination with two different estimation methods  (i.e. the at-site frequency 

analysis, ASFA, and the scaling methods, SCL) for two different return periods (T = 100 and 10 years). 
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Figure 5-8. Similar to Figure 5-7 but for 5-minute design rainfalls (mm)  

5.5 Conclusion 

Global and regional climate models along with different (spatial) statistical downscaling 

approaches have been extensively used to link projected climate change simulations to the daily 

extreme rainfalls at a given location of interest. Projected data of high temporal resolutions (i.e. 

sub-daily or sub-hourly) at these local sites are often limited or unavailable due to current 

limitations on detailed physical modelling and computational capability of these climate models. 

A few statistical models based on the scale-invariance concepts have been introduced as a tool to 

overcome this problem. These models can be used for modeling extreme rainfall processes over a 
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wide range of time scales. In particular, in the context of climate change these scaling models can 

be used to describe the linkages between the distributions of sub-daily extreme rainfalls (ERs) and 

the distribution of daily ERs that is commonly provided by global or regional climate simulations. 

From the literature review, it has been found that the scaling GEV distribution (i.e. 

GEV/PWM and GEV/NCM models) and its special cases, the scaling GUM distribution (i.e. 

GUM/PWM and GUM/NCM models) have been used in a number of publications. Nevertheless, 

there is still no general agreement as to which statistical model should be used for describing the 

distribution of annual rainfall extremes over a wide range of temporal scales (e.g., from one day 

to several minutes). The GEV distribution has been widely used as a reasonable candidate. 

However, some countries recommend the use of a specific distribution model other than the GEV 

distribution. The present study therefore introduces several novel scale-invariance models that are 

developed based on some popular probability distributions. These distributions have been 

recommended in several national guidelines and frequently used in the frequency analysis of 

extreme hydrologic variables. They are the generalized logistic (GLO), generalized normal 

(GNO), and Pearson Type 3 (PE3) distributions. Their mathematical frameworks and scaling 

properties are first derived and formulated in this research based on both the non-central moment 

(NCM) and probability weighted moment (PWM) system. This results in six different novel 

scaling models, including the GLO/NCM, GLO/PWM, GLO/NCM, GLO/PWM, PE3/NCM, and 

PE3/PWM models that can be utilized for representing the distributions of AMS over different 

time scales.  

The feasibility and accuracy of the six proposed scaling models in estimating the quantiles 

and distributions of short-duration ERs were assessed and compared with the observed data. In 

addition, they are compared with other two existing scaling models, including the GEV/NCM and 
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GEV/PWM models (Nguyen and Nguyen, 2018). Long record ER data (containing at least 40 

years) of nine different rainfall durations (from 5 minutes to one day) from a network of 74 

raingauges located across Canada were used for the assessments and comparisons. The estimated 

short-duration extreme rainfall quantiles highly agree with the observed data with RMSEr and 

MADr less than 15% and 10% respectively, and CC at least 0.98 for all models, except the 

GLO/NCM model which produced higher errors and lower correlation coefficients. Results also 

showed that the PWM-based scaling models produced better estimations than the NCM-based 

ones. Among the eight candidates considered, the GNO/PWM and GEV/PWM models are the top 

two models. Their results are virtually indistinguishable on graphical displays. Numerical 

comparisons of 5-minute and 1-hour design rainfall quantiles estimated from those of 1-day 

duration showed that for the low return period (T=10 year), the quantiles estimated using the 

GNO/PWM model are mostly higher (between 0 and 4%) than those computed using the 

GEV/PWM model for both rainfall durations. However, for the high return period (T=100 year), 

the GEV/PWM model yielded mostly higher quantile values (between 0 and 3%) for both rainfall 

durations. Hence, in practice, the two scaling models can be used interchangeably or used together 

to enhance the accuracy and reliability of the estimation of extreme design rainfalls in the current 

climate and in the context of climate change.    

The scaling GLO/PWM model though performed poorer than the GEV/PWM and 

GNO/PWM models in terms of goodness-of-fit (GOF) test, it tends to yield more conservative 

results (i.e. higher quantile estimates) for quantiles of return periods beyond the available record 

lengths than the other models (i.e. GEV/PWM and GNO/PWM models). This model thus could be 

used for assessing the climate change impacts on the IDF relations to increase the confidence, 
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especially in the UK where the GLO distribution has been recommended for modeling of extreme 

hydrologic variables. An example could be found in Nguyen and Nguyen (2018b) 

The scaling PE3/PWM model was the third best model after the scaling GEV/PWM and 

GNO/PWM models. It produced better GOF test values compared to the GEV/NCM model that 

has been used as the temporal downscaling model in some water-related climate change impact 

assessments studies (Nguyen et al., 2007; Nguyen and Nguyen, 2008; Herath et al., 2016; 

Hassanzadeh et al., 2019).  It is also better than the scaling GLO/PWM model in terms of GOF 

test. However, the model tends to yield lower quantile estimates (of return periods beyond the 

available record lengths) than the other models (i.e. GEV/PWM and GNO/PWM models). Thus, 

if the AMS is believed to follow the PE3 distribution, then the scaling PE3/PWM model is a good 

choice to modelling extreme rainfall processes across a wide range of time scale for both the 

historical and projected data. Otherwise, it should be used with cautious since the quantiles of high 

return periods could be underestimated.  

This work could be extended in the future to consider the mathematical framework and 

scaling properties of the log-Pearson Type 3 distribution that has not been covered in this research 

yet. This model has been recommended as an appropriate distribution for modelling annual 

maximum peak flow in some national guidelines and the flood process has been shown to possess 

some scaling properties in some publications. In addition, regional flood/rainfall frequency 

analysis based on the scaling approach could be an alternative solution to the current index 

flood/rainfall approach. 
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Chapter 6. Decision-Support Tool for Constructing 

Robust Rainfall IDF Relations in Consideration of Model 

Uncertainty and Climate Change Information for The 

Design and Management of Urban Water Systems 

 

6.1 Introduction 

Rainfall frequency analyses are commonly used for the design of various urban hydraulic 

structures, such as dams, culverts, and storm sewers. Results of these analyses are often 

summarized by “intensity-duration-frequency” (IDF) relations for a given site or they are 

presented in the form of “rainfall frequency atlas”, which provides rainfall accumulation depths 

for various durations and return periods over the region of interest (see, e.g., WMO, 2009a; 

NOAA's Atlas 14, 2014; Environment Canada, 2014). It should be noted that the word "duration" 

refers to the length of a time-window used to statistically characterize the precipitation intensities 

rather than the storm duration. In current engineering practices, the IDF relations are derived based 

on statistical frequency analyses of annual maximum rainfall series (AMS) data where available 

rainfall records of adequate lengths could be used to estimate the parameters of a selected 

probability distribution (WMO, 2009a; CSA, 2012).     

In general, selection of a suitable distribution to representing AMS is the most difficult and 

time-consuming task since there are many recommended probability models available in the 

literature as well as in the national design guidelines from different countries (Stedinger et al., 

1993; Hosking and Wallis, 1997; Rao and Hamed, 2000; WMO, 2009a; CSA, 2012; Salinas et al., 
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2014; Ball et al, 2016). Recently, a systematic approach has been proposed by Nguyen et al. (2017) 

to identify the most appropriate probability distributions among several candidate models for 

providing the most accurate and most robust extreme rainfall estimates. This systematic approach  

has been shown to be more efficient and more robust than the traditional model selection method 

since it was based on two main steps: (i) a detailed evaluation of both descriptive and predictive 

abilities of a probability model as well as its uncertainty (rather than only the descriptive ability as 

in most previous studies); and (ii) a systematic comparison of the accuracy and robustness of all 

candidate models based an extensive set of graphical and numerical performance criteria.  

Descriptive ability relates to the goodness-of-fit of the theoretical probability model to the 

empirical frequency distribution given by the observed extreme rainfall data while the predictive 

ability is concerned with the accuracy and robustness of the extreme rainfall quantile estimates 

given by the selected model using the rainfall data in the validation period (that are different from 

those data used in the calibration of the selected model). This predictive ability assessment, 

however, is a highly time-consuming task since it requires the generation of a large number of 

random rainfall samples (for instance, by bootstrap method) for different rainfall durations (from 

several minutes to hours or days) for establishing the IDF relations for a given site, or for 

constructing the regional rainfall frequency maps using the data from many different locations 

over a given region.  

Consequently, based on the advanced computing capability of existing computer systems 

it is necessary to develop a decision-support tool that could facilitate the application of the 

proposed systematic model selection approach in an efficient manner in order to be able to identify 

automatically and objectively the best probability models for a large number of datasets. There are 

several tools published and available to solve partly the issues, for example, the Rainbow (Raes et 
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al., 2006), RainIDF (Chang et al., 2013), HEC-SSP (Bartles et al., 2016). These tools rely only on 

the descriptive ability with a limited number of goodness-of-fit tests to identify the best 

distribution. In addition, they allow to perform frequency analyses without the IDF construction 

using only a limited number of probability models. The other tools allow construction of IDF 

curves but for only a specific distribution or a specific regression model. 

In addition, climate change has been recognized as having a profound impact on the 

hydrologic cycle at various spatial and temporal scales in recent years. The intensity and frequency 

of extreme rainfall events in most regions will be likely increased in the future (Shephard et al., 

2014, Zhang et al., 2017). Hence, there exists an urgent need to assess the possible impacts of 

climate variability and climate change on the IDF relations for improving the design of urban 

drainage systems in the context of a changing climate (Willems et al., 2012, CSA, 2012, Madsen 

et al., 2014, Simonovic et al., 2016). To assess the potential impacts of climate change and climate 

variability, the global and regional climate models have been extensively used in many studies. 

However, due to current limitations on the detailed physical modelling and computational 

capability, these models could only provide output scenarios at the macro and meso scales and on 

a daily time step which are ineffective to inform decision-making at the micro (or local) scales 

(Nguyen and Nguyen, 2008; 2018a). Thus, resolving the spatial and temporal scale issues are 

crucial for reliable assessment of climate change impacts, so that local decision makers can 

possibly evaluate what the likely climate change impacts are, such as maximum rainfalls, at the 

urban or local scales. Recently, a spatiotemporal statistical downscaling approach has been 

proposed by Nguyen and Nguyen (2019b) to modelling extreme rainfall processes over a wide 

range of space scales (e.g., from regional to local) and time scales (e.g., from several minutes to 
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one day). This procedure allows establishing the linkage between daily extreme rainfalls at 

regional scales and daily and sub-daily extreme rainfalls at a local (point) scale.  

In view of the above issues, the main objective of the present study is to propose a decision-

support tool (hereafter referred to as SMExRain – Statistical Modelling of Extreme Rainfalls). The 

tool has been first developed to consolidate the weather extreme data and to help visualize the 

descriptive and predictive scenarios of different probability distribution models commonly-used 

in modeling extreme hydrologic processes. This aids the decision-makers in identifying the most 

suitable probability models for performing rainfall frequency analyses in general and for 

constructing IDF relations in particular. This user-friendly and freely available tool was developed 

based on the recent publication by Nguyen et al. (2017) and Nguyen and Nguyen (2019a). 

Furthermore, the tool is also capable of establishing the linkage between climate projections of 

climate change available at large-scale to local scales (i.e. to see smaller regional impacts of 

climate change) with or without empirical data.   

Details on SMExRain structure and its methodology are described in Section 6.2. Two case 

studies are presented as the illustrative applications of the decision-support tool in estimating the 

extreme design rainfall values for the current climate and assessing the impacts of climate changes 

on these design values. The first case study, presented in Section 6.3, shows the application of 

SMExRain in identification of the best distribution for Ontario region and for construction of IDF 

relations using a 252 AMS from a network of 84 stations. The second case study, presented in 

Section 6.4, shows the application of SMExRain in assessing climate change impacts on local 

extreme rainfall processes. The climate simulation outputs from 21 global climate models (GCMs) 

and the observed extreme rainfall data over Ontario region, Canada, were used for the case study. 
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Results of these numerical applications have indicated the feasibility and high efficiency of the 

proposed SMExRain software. The conclusions and discussion are then provided in Section 6.5. 

6.2 The Decision-Support Tool: SMExRain 

6.2.1 General description 

SMExRain has been coded in Matlab environment and equipped with a user-friendly 

ribbon interface (see Figure 6-1). It can independently run without any requirement of a Matlab 

version. However, it requires the installation of the free-of-charge Matlab Compiler Runtime 

(MCR) v9.1 corresponding to the Matlab R2016b version (Mathworks, 2016). Note that using an 

incompatible MCR may cause the program to be malfunction. The different steps involved in the 

structure of the SMExRain tool is depicted in Figure 6-2. 

Inputs for SMExRain are annual maxima of different specified rainfall durations. Notice 

however that if rainfall data are collected at fixed observation times, for example clock hours, they 

may not provide the correct maximum amounts for the specified durations. Hence, it is important 

to apply some adjustment procedure to convert the measured (fixed-observation time) constrained 

annual maxima to (moveable observation time) unconstrained values if the dataset has not already 

been adjusted by the providers (CSA, 2012; NOAA’s Atlas 14, 2014). For the climate change 

impact assessment studies, SMExRain also requires the projected extreme rainfall series available 

at the regional scales. 

 



 

159 

 

Figure 6-1. The graphical user interface (GUI) of the SMExRain software 

In the data screening and preliminary analysis step, SMExRain provides users with several 

computed common statistical properties. In addition, it also provides users with many useful 

graphs for statistical analyses, including the histogram plot for empirical probability density 

function analysis, the time series plot for trend analysis, and the boxplot for outlier detection. Note 

that outlier values (i.e. significantly different from the other observations in the sample) are not 

excluded from the frequency analyses of the extreme rainfall series if they pass the quality check 

(CSA, 2012). Furthermore, three statistical tests were included for testing the independence and 

stationarity of the input data series: the Mann-Whitney test for homogeneity and stationarity 
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(jumps), the Mann–Kendall test for trend detection, and the Wald-Wolfowitz test for independence 

and stationarity (Rao and Hamed, 2000; WMO, 2009a). 

 

Figure 6-2. SMExRain structure and functions 
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For selecting a best-fit probability distribution, various numerical and graphical criteria 

could be employed. This descriptive ability assessment includes most common tools such as the 

popular L-moment ratio diagram, different statistical goodness-of-fit (GOF) tests, and various 

graphical displays. In addition, SMExRain provides necessary tools for evaluating the predictive 

ability of a model. For convenience, SMExRain allows users to perform the assessment and 

comparison of up to twelve probability distributions simultaneously rather than to evaluate a single 

distribution at a time. 

6.2.2 Estimation of extreme design rainfalls for the design of urban water systems  

The extreme design rainfall values necessary for the design and management of urban 

water systems at a given small urban watershed could be computed based on the rainfall frequency 

analyses of historical extreme rainfall values available at that location or at the nearby locations. 

The frequency analysis could be carried out by first selecting an appropriate distribution and 

parameter estimation method among many candidates available and then fitting the selected 

distribution to the observed dataset to estimate the design rainfall quantiles corresponding to the 

desired return periods 

6.2.2.1 Probability distributions and parameter estimation procedures 

SMExRain includes several common probability distributions that have been selected 

based on their popularity in hydrologic frequency analyses: Beta-K (BEK), Beta-P (BEP), 

Generalized Extreme Value (GEV), Generalized Normal (GNO), Generalized Logistic (GLO), 

Generalized Pareto (GPA), Gumbel (GUM), Log-Pearson Type III (LP3), Pearson Type III (PE3), 

and Wakeby (WAK) distributions. Other special cases of these distributions, such as exponential 
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(EXP) and normal (NOM) were also included in the software. Regarding the estimation of the 

distribution parameters, the method of L-moments is used for all distributions (Hossking and 

Wallis, 1997) except for the BEK and BEP models that are estimated by the method of maximum 

likelihood (Mielke and Johnson, 1974). GEV parameters are estimated by both the L-moments 

(denotes as GEV) and non-central moments (denotes as GEV*) methods (Nguyen et al., 2017). 

Furthermore, it is noted that the parameter (or quantile) estimates of some distributions, 

such as BEK, BEP, GEV*, GNO, PE3, LP3, are in implicit forms and they require iterative solving 

methods. Numerical methods are thus utilized to obtain approximate solutions. SMExRain relies 

on the accuracy of the f-solve function supported by MATLAB with the three well-known and 

powerful algorithms, including the trust-region dogleg, the trust-region-reflective, and the 

Levenberg-Marquardt to achieve feasible solutions (Mathworks, 2016). For the case of BEK, BEP, 

and GEV*, different initial parameter values other than the default values might be used if the 

solutions do not converge (which can be easily check using the probability or Q-Q plots described 

in the following sub-section). In addition, to enhance the accuracy and to speed up the quantile 

estimates processes of the GNO/NOM and PE3/LP3 distributions, SMExRain was equipped with 

the normal inverse and incomplete gamma inverse functions (Mathworks, 2016). 

6.2.2.2 Goodness-of-fit (GOF) tests for assessing the descriptive ability of a distribution  

To visually assess the GOF of a fitted distribution to an observed rainfall dataset, the 

SMExRain provides probability plots and quantile-quantile (Q-Q) plots. Many commonly-used 

empirical plotting position (EPP) formulas available in the literature are included in this software 

as shown in Table 6-1. In addition, it also provides a general user-customized EPP formula. The 

review and selection of an appropriate EPP formula can be found in several publications, for 
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example, Cunnane (1978), Nguyen et al. (1989), Inna and Nguyen (1989), and Helsel and Hirsch 

(2002).  

Table 6-1. Empirical plotting position formulas equipped in SMExRain 

Method Formula 

Hazen (1914) 
𝑚 − 0.5

𝑁 + 0
 

Weibull (1939) 
𝑚 − 0

𝑁 + 1
 

Beard (1943) 
𝑚 − 0. 

𝑁 + 0. 8
 

Benard and Bos-Levenbach (1953) 
𝑚 − 0. 

𝑁 + 0.2
 

Chegodajev (1955) 
𝑚 − 0. 

𝑁 + 0.4
 

Blom (1958) 
𝑚 −

 
8

𝑁 +
1
4

 

Tukey (1962) 
𝑚 −

1
 

𝑁 +
1
 

 

Gringorten (1963) 
𝑚 − 0.44 

𝑁 + 0.12
 

Cunnane (1978) 
𝑚 − 0.4 

𝑁 + 0.2
 

Adamowski (1981) 
𝑚 − 0.25 

𝑁 + 0.5
 

Nguyen et al. (1989) 
𝑚 − 0.42 

𝑁 + (0. 𝛾 + 0.05)
 

In-na and Nguyen (1989) 
𝑚 − (0.1 𝛾 + 0.27)

𝑁 + (−0.08𝛾 + 0. 8)
 

Note: General formula: 
𝑚−𝐴

𝑁+𝐵
, where m = rank of the data point; N = sample size (or number of data 

points); and 𝛾 = sample skewness coefficient. A and B are constants and receive different values for 

different formulas or can be specified by users. 
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In addition to the visual assessment, SMExRain includes also four popular numerical 

indices to provide a more accurate evaluation of the best fit of a distribution; namely, the root mean 

square error (RMSE), the relative root mean square error (RRMSE), the maximum absolute error 

(MAE), and the correlation coefficient (CC) (see Chapter 2). Furthermore, to facilitate the 

identification of the probability models with the best descriptive ability, a convenient ranking 

scheme has been developed to judge the overall GOF of each distribution. Rankings are assigned 

to each distribution according to the computed values of these numerical indices. For instance, a 

distribution with the lowest RMSE, RRMSE, MAE and highest CC would be given the rank of 1. 

In the case of a tie, average ranks are assigned to those tied distributions.  

6.2.2.3 Bootstrap method for assessing the predictive ability of a distribution 

The bootstrap method repeatedly draws, with replacement, n observations from the 

available data set of size N (N>n) (Efron and Tibshirani, 1994). First, a portion of “n” data points 

from the original sample of size N (n  N) is selected. In SMExRain, two options are provided: 

common validation and cross validation. In the former option, users can select the first or second 

half of a given sample to do bootstrapping. In the latter option, a portion of the sample of size n 

can be extracted with the starting point selected randomly. Then the bootstrap samples (hundreds 

to thousands) are generated based on these “n” selected values.  The default value is 1000 samples 

for reliable results and efficient computation costs. Each candidate distribution is then fitted to the 

generated bootstrap samples and is extrapolated to estimate the right-tail quantiles corresponding 

to the k largest (k=4 by default) observed rainfall amounts in the full data set (N values). The 

variability in the estimation of these extrapolated quantiles is presented in the form of modified 

boxplots by default. However, users can also easily switch to the standard boxplots (Helsel and 
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Hirsch, 2002). Large box widths or long whiskers imply high uncertainty in the estimation of these 

k largest rainfall values. If the observed values fall outside the box, then the distribution fitted to 

the bootstrap samples has overestimated or underestimated the true values and this distribution is 

therefore not recommended since it does not provide accurate rainfall estimates. Note that 

SMExRain allows user to compare the predictive ability of up to twelve models simultaneously 

using the same generated samples to ensure a fair comparison. 

6.2.3 Updating extreme design rainfalls considering climate change information 

for the design and management of urban water systems 

The are two main steps to assess the potential climate change impacts on the local short-

duration extreme rainfalls. The first step is to establish the linkage between projected daily extreme 

rainfalls available at a regional scale and daily extreme amounts at a local site of interest. The 

second step is to determine the distribution of sub-daily extreme rainfalls from the estimated daily 

extreme rainfalls at the given location. A detailed description of these two steps is presented in 

Figure 6-3 and in the following sections. 
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Figure 6-3. The two steps in SMExRain to link the regional daily climate change projections to the local 

sub-daily extreme rainfalls at a given location of interest  

 

6.2.3.1 Linking the projected regional climate simulations to local daily extreme rainfalls 
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of the regional data and the mean of the at-site data as shown by Eqn. (6-1). The second method 

relies on a bias correction function 𝑒(𝐹) to correct the differences between the empirical 
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Willems et al., 2012). For gauged sites, both approaches could be used and estimated based on the 

empirical data at the study sites (Nguyen and Nguyen, 2019b). For ungauged sites, where observed 

data is unavailable, the scaling factors at a given location could be computed based on the 

interpolated mean at that site transferred from those of the neighboring stations located within a 

same homogeneous region (Nguyen et al., 2018).  

𝑋𝑖(𝐹) = 𝛿𝑖 ∙ �̂�(𝐹) (6-1) 

𝑋𝑖(𝐹) = �̂�(𝐹) + 𝑒(𝐹)      (6-2) 

𝑒(𝐹) = 𝑐 + 𝑐1 ∙ �̂�(𝐹) + 𝑐2 ∙ [�̂�(𝐹)]
2 + 𝜀 (6-3) 

where 𝑋𝑖(𝐹) is the adjusted daily extreme rainfall at the local site of interest 𝑖; �̂�(𝐹) is the 

daily regional ER at the grid containing that site; 𝐹 is the cumulative probability of interest; 𝛿𝑖 =

𝜇𝑖 �̂�⁄  is the scaling factor at site 𝑖; 𝜇𝑖 and �̂� are respectively the mean of the daily extreme rainfalls 

at the local site 𝑖 and the mean of the regional values at the grid containing that particular site; 

𝑒(𝐹) is the bias correction function associated with �̂�(𝐹); 𝑐 , 𝑐1, 𝑎𝑛𝑑 𝑐2 are the coefficients of this 

function which can be estimated based on the least square technique and 𝜀 is the error term. 

6.2.3.2 Linking the estimated local daily to sub-daily extreme rainfalls 

In SMExRain, the temporal linkages between local daily and sub-daily extreme rainfalls 

are performed based on the scale-invariance models. Scale invariance implies that the statistical 

properties of extreme rainfalls over different time scales are related to each other by an operator 

involving only the scale ratio and the scaling exponent. In particular, the distributions of sub-daily 

extreme rainfalls are derived using the scale-invariance probability weighted moment-based 

Generalized Extreme Values (GEV/PWM) model. The GEV/PWM model has been recently 

shown to perform superior than other existing scale-invariance models (Nguyen and Nguyen, 
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2018a). More specifically, the quantile, 𝑋𝑇, corresponding to a given return period 𝑇 = 1 (1 − 𝐹)⁄ , 

of the GEV model can be estimated once the parameters are known as in Eqn. (6-4). These 

parameters could be estimated based on the method of PWMs and L-moments (Hosking and 

Wallis, 1997). For a simple scaling process, it can be shown that the rth-order PWMs, 𝛽𝑟, of rainfall 

data, parameters and quantiles of the GEV distribution model for two different rainfall durations 𝑡 

and 𝜆𝑡 can be related as in Eqn. (6-6) and Eqn. (6-7). For gauged sites, the scaling exponents could 

be computed based on the empirical data at the study sites (Nguyen and Nguyen, 2019b). For 

ungauged sites, where observed data is unavailable, the scaling exponents at a given location could 

be interpolated from those of the neighboring stations located within a same homogeneous region 

(Nguyen et al., 2018). 

𝑋𝑇 = 𝜉 +
𝛼

𝜅
 {1 − [− ln(𝐹)]𝜅} (6-4) 

𝛽𝑟 = 𝑀1,𝑟, = 𝐸[𝑋 {𝐹(𝑋)}
𝑟] = (𝑟 + 1)−1 (𝜉 +

𝛼

𝜅
{1 − (𝑟 + 1)−𝜅 Γ(1 + 𝜅)}) (6-5) 

𝛽𝑟(𝜆𝑡) = 𝜆
 𝑟𝛽𝑟(𝑡) = 𝜆

 𝛽𝑟(𝑡) (6-6) 

𝛼(𝜆𝑡) = 𝜆 𝛼(𝑡);  𝜉(𝜆𝑡) = 𝜆 𝜉(𝑡); 𝜅(𝜆𝑡) = 𝜅(𝑡);   𝑋𝑇(𝜆𝑡) = 𝜆
 𝑋𝑇(𝑡); (6-7) 

in which 𝜉, 𝛼, and 𝜅 are the location, scale, and shape parameters respectively; and 𝐹 is the 

cumulative probability of interest. Γ(. ) is the gamma function and 𝑟 must be non-negative; 𝜂𝑟 = 𝜂 

is the scaling exponent and can be estimated based on the mean 𝐸{𝑋} (that is, the PWM of order 

𝑟 = 0). 

6.2.4 Graphical and tabular forms of IDF relations for engineering practice 

In SMExRain, IDF relations are provided in both tabular and graphical forms for the 

computed rainfall intensities (or depths) for different durations (usually from five minutes to one 

day) and for different return periods of interests (commonly from two to a hundred years). 
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Depending upon the empirical mathematical model selected for representing the IDF relations, the 

coefficients (parameters) of this model are computed using the least-square technique. In general, 

the mathematical form of the empirical model is chosen such that it can facilitate the interpolation 

of rainfall intensities for a given observed duration or interpolated (unobserved) duration. 

SMExRain supports many popular regression equations in both real-space (with two or three 

coefficients) and log-space (with polynomial up to order 6) as shown in Table 6-2 based on some 

available practical guidelines (WMO, 2009a; Ball et al., 2016). It is noted that even using the same 

mathematical expression, for example, the well-known model 𝐼 =
𝑎 

𝑡𝑏
 , the computed values of the 

empirical coefficients “a” and “b” could be completely different depending on whether the 

estimation was performed in the real space or in the log-space (see Figure 6-4). A further detail 

related to the use of different regression-based methods in hydrologic frequency analysis can be 

found in Pandey and Nguyen (1999). 

Table 6-2. Regression formulas supported in SMExRain 

Optimization Formula 

Real-space 

least squares 

𝐼 =
𝑎 

𝑡𝑏
  ; 𝐼 =

𝑎

𝑡𝑏+𝑐
 ;  𝐼 =

𝑎 𝑇

𝑡𝑏+𝑐
  ;    𝐼 =

𝑎

(𝑡+𝑐)𝑏
 ;  𝐼 =

𝑎+ .log(𝑇)

(1+𝑡)𝑐
  

Log-space 

least squares log(𝐼) =  ∑𝐶𝑘 (log 𝑡)
 +1−𝑘 

 +1

𝑘=1

 

                = 𝐶1(log 𝑡)
 + 𝐶2(log 𝑡)

 −1 +⋯+ 𝐶 (log 𝑡) + 𝐶 +1   

Note: 𝐼 = average rainfall intensity, that is, depth per unit time (generally expressed in mm/hr); 𝑡 = 

precipitation duration (min or hr); 𝑇 = return period (years), 𝑝 = polynomial order (supported lowest and 

highest orders are 𝑝 = 1 and 𝑝 =  , respectively); and 𝑎, 𝑏, 𝑐, and 𝐶𝑘 (𝑘 = 1,2,… , 𝑝) = coefficients varying 

with the locations and return periods. 
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Figure 6-4. Fitting the regression model 𝑅𝐼 =
𝑎 

𝑡𝑏
  in the log-space (a & c) and real space (b & d). The 

results are displayed in the log(x)-log(y) (a & b) and semi-log(x) (c & d).    

 

 

 

  

(a) (b)

(c) (d)
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6.3 Numerical Application: Estimation of historical extreme design rainfalls  

This section presents the application of SMExRain in supporting users in making decision 

on the best distribution model(s) among several considered candidates for a large number of study 

sites. It also shows the uncertainty of design rainfall estimates using different selected distribution 

models.  

6.3.1 Database 

The feasibility of the proposed decision-support tool SMExRain has been tested using IDF 

data available from a wide-range rain-gauge network located in different provinces of Canada, 

including Quebec (Nguyen and Nguyen, 2015), British Columbia (Lim, 2016), and extensively in 

Ontario (Nguyen et al., 2017). In this paper, for illustrative purposes, only results from the 

application of the SMExRain for Ontario were presented based on a total of 252 rainfall datasets 

for three rainfall durations (5 minutes, 1 hour, and 24 hours) from a network of 84 stations (see 

Figure 6-5). 

Preliminary analysis using L-moment ratio diagrams for all stations and all three durations 

with record lengths of at least 40 years, 30 years, and 20 years were performed. Figure 6-6 shows 

the L-moment ratio diagram of annual maximum series of all study stations and three rainfall 

durations as an illustration. The wide spread of data points from one group of the same rainfall 

duration or from three groups of different durations on the diagram show that no distribution can 

be selected at the best distribution for all the datasets. On average, the GEV and GNO models 

could be considered the most suitable models. 
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Figure 6-5. Locations of the 84 study raingauges in Ontario. Station names are provided in the appendix.  

 

Figure 6-6.  L-moment ratio diagram of 252 AMS from 84 rain-gauges containing at least 20-year 

records. The blue diamond and ‘+’, red triangle and ‘+’, and black rectangle and ‘+’ markers denote 5-

min, 1-hour, and 24-hour dataset L-skewness and L-kurtosis and their corresponding group average 

values respectively  

Km
0    85  170      340       510       680



 

173 

6.3.2 Decision-support process 

6.3.2.1 Descriptive ability assessment results 

The Q-Q plots of all 252 AMS shows that all distributions closely described the left-tail 

and central parts. The right-tail parts, however, are less well described and there are no obvious 

trends. These values can be accurately estimated, over-estimated, or under-estimated by any of the 

11 candidates.  

 

Figure 6-7. Q-Q plots for distributions fitted to 5-min AMS at Toronto Int. Airport station 

For purposes of illustration, Figure 6-7 shows the results for 1-hour AMS from the longest 

rainfall record available at Toronto Int. Airport station. From the visual standpoint, all distributions 

seem to perform well in this case, except the BEK and GPA distributions. However, the 
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significance of the differences between the remaining models is difficult to judge merely based on 

the graphical display, as the differences are minor. A more objective evaluation using numerical 

comparison criteria is thus required. 

The goodness-of-fit tests based on the four statistical criteria (RMSE, RRMSE, MAE, and 

CC) were computed for the 11 candidates for numerical comparisons of the 5-min AMS. These 

criteria were calculated for stations containing at least 40-year, 30-year, and 20-year records, 

respectively. Results are presented in Figure 6-8.       

 

Figure 6-8. Comparing boxplots of RMSE, RRMSE, MAE, and CC results of 11 selected 

candidates using 5-min AMS of stations containing at least 40-year, 30-year, and 20-year records  

Results show that for the 5-min rainfall duration, the WAK model is the best following by 

the PE3, GNO, GEV, and GEV* for the three indices RMSE, MAE, and CC with slight differences 
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in the values between them. On average, for data containing at least 20-year records, these values 

are approximately 0.5 mm for RMSE, 1.5 mm for MAE, and 0.985 for CC. The third quarter values 

(i.e. 75th percentiles) and the whiskers extend to about 0.35 to 1.1 mm for RMSE, 1 to 3 mm for 

MAE, and at least 0.97 to 0.96 for CC. However, for the relative error (RRMSE), the LP3 model 

is the best following by the WAK, GNO, and GEV models. On average, these values are about 5% 

while the third quarter values and the whiskers extend to about 7.5 to 10% for RRMSE. Similar 

plots were produced for 1-hour and 1-day rainfall durations and provided in the appendix. 

Ranking of the 11 candidate distributions for each of the 84 selected stations based on the 

four indices are presented in Figure 6-9. Ranking from number 1 to 11 indicates the gradual 

decrease in accuracy from the best to the worst distributions. On the basis of these GOF numerical 

comparison results, it was found that no unique distribution ranked consistently best for all 

locations and for all three selected rainfall durations. The overall rank for each distribution was 

obtained for each numerical index by summing the individual rank at each location for different 

record lengths (at least 40 years, 30 years, and 20 years). The overall rank for only the 5-min AMS 

is presented at the end of Figure 6-9 and for all three durations is presented in Figure 6-10. 

It can be seen that the WAK model outperforms the others in describing the distribution of 

daily and sub-daily AMS. The GEV, GNO, and PE3 models also performed well overall and their 

scores are close to each other. This can be expected since these models have been recommended 

for use in frequency analyses of the hydrologic extreme variables by many previous studies. It is 

also noticed that the PE3 model performed slightly better than the GEV and GNO models for 5-

min duration data. However, for data set of longer durations – 1-hour and 24-hour, the GEV and 

GNO models are slightly better. The GLO, LP3, and GEV* distributions provided an average 

performance as they stand among the middle positions. Notice in particular that if only RRMSE 
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criterion is considered, the LP3 distribution can be considered as the best candidate for data of all 

durations. However, in practice the use of more than one performance criteria is commonly 

recommended. 

 

Figure 6-9. Ranking of 11 models for 5-min AMS for each station individually and the overall rank for 

84 stations based on the four criteria. Rank = 1 (or close to 1) indicates the best model(s) and rank = 11 

(or close to 11) indicates the worst model(s). Boxplots of the 5-min data are shown on the left. 
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Figure 6-10. Overall rank for all stations containing at least (a) 40-year, (b) 30-year, and (c) 20-year 

records based on the four statistical tests for all three durations of 5-min, 1-hour, and 24-hour AMS (The 

lowest scores or the shortest bar indicates the best models) 

 

6.3.2.2 Predictive ability assessment results  

In this study, one thousand bootstrap samples were generated with replacement. The size 

of a generated bootstrap sample is equal to half (i.e. 50%) of the full sample with a rainfall record 

length of at least 40 years or approximate two third (i.e. 65%) of the full sample size if the record 

length is between 30-40 years. This process is required to ensure that the generated bootstrap 

samples contain at least a sufficient length of 20 years for more reliable statistical results.  Each 

candidate distribution was then fitted to the generated samples and was used to extrapolate the 

(a) Rank
BEK 155 171 156 151 142 140 161 177 165 154 162 150 1
BEP 155 143 144 147 127 130 152 139 146 147 135 148 2
GEV 113 91 93 94.5 92 92 121 100 103 120 91 96 3
GEV* 115 132 141 134 133 157 102 121 137 108 130 137 4
GLO 150 135 136 156 134 125 129 126 132 149 132 133 5
GNO 102 96 92 92 100 103 107 93 108 105 99.5 96 6
GPA 148 155 138 177 173 163 144 140 124 151 158 141 7
GUM 166 167 184 165 160 175 138 176 181 174 169 184 8
LP3 130 112 115 74.5 87 93 161 132 124 129 126 121 9
PE3 97.5 98 114 106 122 130 100 100 96 102 104 116 10
WAK 56 86 73 90.5 118 79.5 71 84 71 48.5 81 68 11

(b)
BEK 376 388 378 334 307 331 391 400 397 366 359 347 Total 
BEP 332 310 328 328 298 281 355 303 332 318 298 333 score
GEV 240 220 217 224 227 199 248 241 242 241 219 216 5m
GEV* 255 304 327 318 322 362 243 279 305 246 302 327

GLO 331 307 314 352 314 263 313 307 318 333 295 290 1h
GNO 233 216 199 214 234 225 243 219 229 231 223 212

GPA 332 323 281 373 343 350 298 281 246 340 330 299 24h
GUM 333 358 387 328 364 385 297 374 380 357 379 395

LP3 292 273 255 170 191 217 323 308 278 290 295 275

PE3 210 229 235 231 260 285 226 216 213 227 239 253

WAK 171 176 181 231 244 207 167 176 163 155 165 158

(c)
BEK 645 714 716 563 551 627 671 732 743 633 639 661

BEP 575 570 613 560 547 565 595 571 616 542 543 611

GEV 409 391 401 394 411 377 428 442 443 417 400 397

GEV* 516 580 578 572 631 638 511 526 549 494 564 567

GLO 566 544 590 558 568 519 537 579 605 555 524 557

GNO 406 369 369 398 393 400 420 399 400 412 390 394

GPA 586 538 431 664 561 538 519 449 375 605 568 462

GUM 623 609 666 593 650 648 611 627 669 670 673 701

LP3 496 472 480 335 325 379 545 526 525 504 516 519

PE3 391 387 390 450 445 461 410 366 347 424 413 430

WAK 335 375 312 459 465 396 298 329 273 291 318 247
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right-tail quantiles corresponding to the four largest values in the full data set.  For instance, Figure 

6-11 shows the results for 5-min AMS at Toronto Int. Airport station. 

 

Figure 6-11. Boxplots of extrapolated right-tail bootstrap data for 5-min AMS at Toronto Int. Airport 

station 

The modified boxplots of 141 AMS show that in general the Beta-K, Beta-P gave 

consistently the worst performance with large sampling variation and bias for all three durations.  

Unlike the BEK and BEP models, the boxplots for the WAK model do not show large box widths, 

however, they reveal long upper whiskers. In addition, results reveal that, the LP3 model produced 

larger box widths than other remaining distributions, yet it was not as poorly performed as the 

BEK, BEP or WAK models. Although the Gumbel model exhibited the lowest sample variation 

in most cases, it tended to over- or under-estimate the observed values most frequently. The GEV, 

GEV*, GLO, GNO, GPA, and PE3 models produced satisfactory results at most stations where 

the box enclosed the observed right-tail values with a reasonable whisker spread and good 
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correlation with the observed values. In particular, the GEV, GNO, and PE3 models produced 

almost identical results. Occurrences of over- or under-estimation of largest rainfall amounts did 

occur for all distributions at several locations. 

6.3.3 Decision-making process  

In general, it can be observed that no one particular distribution performed the best at every 

station for each selected performance criterion. This could be due to the strong spatial variation of 

rainfall characteristics within this Ontario region. While it is difficult to provide a clear physical 

interpretation of the regional variability of the computed model parameters, however based on the 

proposed tool, one is still able to identify in an objective way the GEV, GNO, and PE3 as the best 

candidates for a large number of cases considered. Hence, these three models could be 

recommended as approprite models for use in the frequency analysis of AMS for a given site in 

Ontario as shown in Figure 6-12, for instance for Toronto Int. Airport station.   

 

Figure 6-12. Frequency curves (solid lines) and 90% confidence limits (90% CI, dashed lines) of (a) 5-

minute, (b) 1-hour, and (c) 24-hour AMS (blue circle markers) at Toronto Int. Airport station using the 

top three distributions – GEV, GNO, and PE3  
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The difference in extreme design rainfall estimates produced by these three distributions 

can be also further investigated for those stations containing at least 30-year records as shown in 

Figure 6-13.  Results reveal that the estimated values for return periods within the twice sample 

lengths are almost identical for the three distributions. However, the GEV model tends to provide 

slightly higher values for high return periods, while the PE3 model tends to give slightly higher 

values for low return periods. The three models, therefore, could be used interchangeably in 

computing IDF relations and extreme design rainfalls for Ontario region as shown in Figure 6-14 

for example. Nonetheless, if only one model is preferred, other criteria should be thus considered 

in the choice of an appropriate distribution.  For instance, the GEV model is based on a more solid 

theoretical basis than the other two distributions because it was derived from the statistical theory 

of extreme random variables (Coles, 2001).  In addition, it tends to produce more conservative 

results for high return periods compared to the other models. Therefore, the GEV model could be 

considered as the most suitable distribution if only a unique probability model is required for 

describing the distribution of AMS in Ontario region. 
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Figure 6-13. Comparing 5-min extreme design rainfalls estimates using the top three distributions (GEV, 

GNO, and PE3) for different return periods (T, years) for 47 stations containing at least 30-year records  

 

Figure 6-14. IDF curves for Toronto Int. A. station (T=2 to 200 years) produced using the top three 

distributions and represented as marker symbols (circles for GEV, triangles for GNO, and crosses for 

PE3). Regressions were performed using the sixth order polynomial functions and represented as lines 

(continuous for GEV, discontinuous for GNO, and dot for PE3). 
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6.4 Numerical Application: Updating IDF Relations Considering Climate 

Change Impacts  

This section presents the evaluation of the feasibility and accuracy of SMExRain in 

reproducing the distributions and quantiles of the historical extreme rainfall data at a given location 

of interest. For the gauged sites, the results have been presented in detail in Chapter 4. Therefore, 

this section only focuses on the application of SMExRain to compute the design rainfall quantiles 

at a give ungauged location for the baseline period (e.g. 1961-1990) using the GCM-based data. 

The assessment of climate change impacts on local extreme rainfalls can be done by replacing the 

data of reference period with those of different projected periods (e.g.  2041-2070) as described in 

detail in Chapter 4. 

6.4.1 Study sites and data 

To assess the feasibility and accuracy of the tool in reproducing the distributions and 

quantiles of the historical data at an ungauged site, the NASA climate simulation outputs from 21 

global climate models conducted under the CMIP5 and the observed IDF data in the period of 

1961-2005 from a network of 15 raingauges located in the Ontario province, Canada, were selected 

for this study.   

The climate simulation outputs from 21 global climate models (GCMs) conducted under 

the Coupled Model Inter-comparison Project Phase 5 (CMIP5) and the observed IDF data in the 

period of 1961-2005 from a network of 15 raingauges located in the Ontario province, Canada, 

were selected for this study (see Figure 6-15). The climate simulation outputs have been 

statistically downscaled by NASA (i.e., NASA Earth Exchange) from the global scales (a few 
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degrees or 102 km) to the regional scale (approximately 25 km x 25 km) for two different 

Representative Concentration Pathways scenarios (i.e. RCP 4.5 and 8.5) based on the bias-

correction spatial disaggregation approach (Thrasher et al., 2012).  

 

Figure 6-15. Locations of the 15 study raingages (red circle markers) and 69 neighboring stations (black 

cross markers) used for the study. The bold black lines show a common GCM grid of 2.5ox2o, while the 

gray lines show the NASA grid of 0.25ox0.25o. The provincial digital elevation model was obtained from 

Observed IDF data at each site consists of annual maximum rainfall series for nine different 

durations (ranging from 5 minutes to 1440 minutes).  Note that the observed IDF data have been 

provided by the Environment Canada to produce the at-site IDF relations for the various practical 

engineering application purposes (Environment Canada, 2014). The jackknife technique was used 

to represent the ungauged site condition at the study sites. In addition to these sites, IDF data from 

other 69 neighbouring stations were also used for the interpolation of the means and scaling 

Neighboring stations

Scale bar

Study stations

MarkersElevation (m)
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exponents at the ungauged sites. Data of 1961-1990 were used for the calibration of the scaling 

factors and scaling exponents while those of 1991-2005 were used for the validation of these 

calibrated scaling factors and scaling exponents. Selection of these stations relied on the quality of 

the data, the adequate length of available historical ER records, and the representative spatial 

distribution of raingauges. 

6.4.2 Results 

6.4.2.1 Derivation of local daily extreme rainfalls at an ungauged site 

To transfer the NASA extreme rainfalls at the 25-km regional scale, �̂�, to a given ungauged 

site, scaling factors were used. Figure 6-16 shows the comparisons of different GOF test results 

between the daily estimated (i.e., regional and the bias-corrected values) and the daily observed 

extreme rainfalls for both the calibration (1961-1990) and the validation periods (1991-2005). It is 

important to note that there was a systematic bias between the extreme rainfalls at the regional 

scale and at a local site. Indeed, the correlation coefficients between the regional and observed 

values are high (higher than 0.9) but the errors are also large (about 30%) for both the calibration 

and validation periods. The use of a transfer function (i.e. a scaling factor or areal-reduction factor) 

is thus necessary. Furthermore, it can be clearly seen that the bias-corrected (areal-reduction 

adjustment) extreme rainfalls derived for an ungauged site using the estimated scaling factor 

produced lower values of RMSEr and MADr as well as higher values of CC as compared to the 

raw data (i.e. 25x25 km regional values) obtained directly from NASA. In addition, the low values 

of RMSEr and MADr (about 10% and 15% or less for the calibration and validation respectively) 

and high values of CC (about 0.95 or higher) have indicated the feasibility and accuracy of the 
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proposed spatial downscaling (or areal-reduction adjustment using scaling factors) approach in the 

estimation of extreme design rainfalls for an ungauged location. 

 

Figure 6-16. Comparisons of GOF results between observed and estimated (i.e., regional and bias-

corrected) extreme rainfalls at the 15 study sites for the calibration (1961-1990) and validation (1991-

2005) periods  

6.4.2.2 Derivation of local sub-daily extreme rainfalls at an ungauged site 

To obtain the sub-daily extreme rainfall series from the daily extreme rainfall series at a 

given site, the proposed scale-invariance GEV/PWM method was applied. Different graphical 

visualization and goodness-of-fit (GOF) tests were used to evaluate the feasibility and accuracy of 

this method. For purpose of illustration, Figure 6-17 a presents the probability plots of the 

computed extreme design rainfalls XT (mm) for two different durations at station #13 – the 

Hamilton RBG CS station for both the calibration (1961-1990) and validation (1991-2005) periods 

respectively. Uncertainty associated with the estimation of the extreme design rainfalls is displayed 

in the form of standard boxplots. It can be seen that the distributions of the estimated sub-daily 

extreme rainfalls derived based on the distribution of local daily extreme rainfall (adjusted from 

regional values) using SMExRain agreed well with the observed data.  
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Figure 6-18 shows the Q-Q plots of the estimated extreme design rainfalls derived from 

the NASA regional data using SMExRain and the at-site frequency analysis using the GEV 

distribution for different rainfall durations and return periods for all 15 selected stations. Note that 

the median values of the results from 21 GCMs were used for the computation. A numerical 

comparison was conducted to evaluate the results using the three selected dimensionless GOF 

indices (i.e. RMSEr, MADr, and CC) for all sites as shown in Table 6-3. The low values of RMSEr 

and MADr as well as the high values of CC have indicated the feasibility and accuracy of the 

proposed temporal GEV/PWM statistical downscaling in the estimation of the extreme design 

rainfalls for a given ungauged location. Note that, for accuracy, only the estimated quantiles within 

the twice sample lengths (i.e. up to 50-year and 25-year return periods for the calibration and 

validation respectively) were used for comparisons. 

 

Figure 6-17. CDF plots of the computed extreme design rainfalls XT (mm) for two different durations 

(D=30 and 1440 minutes) at the Hamilton RBG CS station for both the calibration (1961-1990) and 

validation (1991-2005) periods, 

Station: HAMILTON RBG CS

Calibration: 1961-1990 Validation: 1991-2005 
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Figure 6-18. Q-Q plots of the estimated extreme rainfalls using SMExRain (XSTSD, mm) and the at-site 

frequency analysis (Xat-site, mm) for different rainfall durations (D=30 to 1440 minutes) and for different 

return periods (T=2 to 50 years). 

 

Table 6-3. Goodness-of-fit test results for both calibration and validation periods 

 
Calibration period 1961-1990 

 
Validation period 1991-2005 

T (year) 2 5 10 25 50  
 

2 5 10 25 

RMSEr (%) 10.3 10.3 11.4 13.9 16.3  
 

15.9 15.2 16.5 20.2 

MADr (%) 8.0 8.1 9.3 11.8 13.8  
 

13.4 12.5 12.8 15.9 

CC (dmnl) 0.965 0.958 0.950 0.931 0.910  
 

0.929 0.903 0.885 0.866 
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6.5 Conclusion and Discussion 

A decision-support tool (SMExRain) has been developed for evaluating systematically the 

performance of various commonly-used probability distributions in hydrologic frequency analyses 

in order to identify the most suitable model for representing the distribution of extreme rainfalls 

for a study region of interest. Based on an extensive set of several different graphical and numerical 

assessment criteria, and being equipped with a user-friendly ribbon interface, this tool can be used 

to assess in an efficient and objective manner the descriptive and predictive abilities of each 

distribution for a large amount of extreme rainfall datasets of different durations for a given 

location as well as for a large number of sites. It can also be used for constructing robust IDF 

relations based on historical data considering model uncertainty. In addition, the tool can be used 

to update the IDF relations by taking into account the possible impacts of different climate change 

scenarios on the short-duration extreme rainfall process a given local gauged or ungauged site. 

The proposed SMExRain tool has been successfully tested using extreme rainfall data for 

various regions in Canada. In this paper, for illustrative purposes, only results from the application 

of this tool for Ontario region were presented to demonstrate its efficiency and usefulness in the 

selection of the best models for representing accurately the distribution of AMS in this region. 

More specifically, it was found that, among the eleven selected candidates, the GEV, GNO and 

PE3 models provided the most accurate and the most robust extreme rainfall estimates for this 

study area. The estimated rainfall values for different return periods are quite comparable for these 

three distributions. However, the GEV model tends to provide slightly higher values for high return 

periods, while the PE3 model tends to give slightly higher values for low return periods. These 

three models, therefore, could be recommended for use in the construction of the IDF relations and 
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for estimating extreme design rainfalls. Nonetheless, for practical engineering design purposes, 

the GEV model could be preferable to the GNO and PE3 models because it has a more solid 

theoretical basis and it produces more conservative results (i.e., higher design rainfall estimates 

for high return periods).  

It has been demonstrated in this study that SMExRain is a powerful decision-support tool 

that could be conveniently used in engineering practice to identify in an efficient and objective 

manner the best probability models for constructing IDF relations for a given location or for many 

sites over a given region. Furthermore, these IDF relations can provide accurate and robust design 

rainfall estimates since they are based on a detailed evaluation of the descriptive and predictive 

abilities and the uncertainty of various candidate models; and they were also relied on a systematic 

comparison procedure to assess the accuracy and robustness of each selected model using an 

extensive set of graphical and numerical performance criteria. 

SMExRain can be used to perform rainfall frequency analyses and to construct IDF curves 

for a single site or for a number of sites. However, it is necessary to know the credible limits of 

extrapolation of frequency analyses based on site record lengths. In general, it is held that “a 

quantile of return period T can be reliably estimated from a data record of length n only if T≤n" 

(Hosking and Wallis 1997, page 2). For extrapolating distributions, no general guidance is 

available, but “a common rule of thumb is to restrict extrapolation of at-site quantile estimates to 

return periods (years) of up to twice as long as the record length” (WMO, 2009a, page 5-16). As 

an example, in the paper, the estimated design rainfalls for return periods within the twice sample 

lengths are almost identical for the top three distributions in Ontario region.  
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Rather than single point (at-site) IDF curves, regional rainfall frequency analyses and other 

data sources are being used for enhancing knowledge of rainfall IDF characteristics. Regional 

approaches are expected to provide more robust estimates for rainfall quantiles of high return 

periods as compared to those given by the at-site procedures (Hosking and Wallis, 1997; Nguyen 

et al., 2002b; Madsen et al., 2009; Burn, 2014; Goudenhoofdt et al., 2017; Forestieri et al., 2018). 

Regionalization techniques are hence the basis for developing regional rainfall IDF atlases at the 

national level for some countries such as U.S. (NOAA's Atlas 14, 2014), Australia (Ball et al., 

2016), and U.K. (FEH, 1999). However, for Canada, the at-site (or single point) IDF is still one of 

the most commonly used tools for the design of various urban water infrastructure such as urban 

storm drainage systems, detention ponds, and so on (CSA, 2012). Many of these assets are 

typically designed with the return periods of 10 or 25 years. Environment Canada continues to 

provide the at-site IDF of more than 550 sites across Canada (CSA, 2012; Environment Canada, 

2014). Hence, the anticipated common usage of SMExRain is to estimate the rainfall depth-

duration values for return periods lying within twice sample record lengths of an observed series. 

Given that the record lengths tend to be short, normally less than 30 years on average, these values 

are estimated for return periods such as 2, 5, 10, 20, 25, 50-year. For those return periods, 

regionalization techniques are relatively less important than they are for high return periods of 100 

years or more. Notice also that one of the main difficulties in the application of regionalization 

techniques is related to the definition of “homogeneous” regions. Various methods have been 

proposed for determining regional homogeneity, but there is still no generally accepted procedure 

in practice (WMO, 2009a).  

The decision-support tool SMExRain can be also used for assessing the climate change 

impacts on extreme rainfalls for design and management of urban water systems. More 
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specifically, it has been demonstrated that the proposed tool was able to describe accurately the 

linkage between the climate change information at large spatial and temporal scales given by 

global (or regional) climate models and the short-duration extreme rainfalls at a local site where 

observed historical rainfall record are available (a gauged site) or unavailable (an ungauged site). 

To evaluate the feasibility and accuracy of the proposed SMExRain, the climate simulation outputs 

from 21 global climate models and the observed extreme rainfall data over Ontario region, Canada 

were used. These climate simulations have been downscaled by NASA to a regional 25-km scale 

for different climate change scenarios. Results of these numerical applications have indicated the 

feasibility and accuracy of the SMExRain in the assessment of the climate change impacts on the 

extreme rainfalls at a given gauged or ungauged site.  

Finally, the inferences made in this paper are based upon case studies using the observed 

extreme rainfall IDF data from Ontario (Canada) and the daily downscaled climate projections 

available at the 25-km regional scale from NASA. Similar studies should be carried out to assess 

the feasibility and accuracy of the proposed SMExRain tool based on available data in other 

regions with different climatic conditions. 
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Chapter 7. Conclusions and Recommendations 

 

7.1 Conclusions 

The primary purpose of this research is to develop novel methods and tools for improving 

the estimations of extreme design rainfalls in the current climate and in consideration of a changing 

climate at gauged and ungauged locations for the design and management of various water-related 

infrastructures. The following main conclusions can be drawn from the present study: 

(1) A general procedure was developed for assessing systematically the performance of 

descriptive and predictive abilities of many different probability distributions. Based on 

this, the most appropriate candidate was then identified for representing the distribution of 

annual maximum rainfall series (AMS). A case study using 63 long-record short-duration 

AMS data from a network of 21 raingauges located in Ontario have indicated the feasibility 

of the proposed model evaluation method. It was found that, among the 11 models 

considered, the GEV, GNO, and PE3 are the top three distributions that provided the 

greatest goodness-of-fit and robust quantile extrapolations for different rainfall durations 

and for a number of locations in the study region. These distributions can be thus alternately 

used for the frequency analysis of daily and sub-daily annual extreme rainfalls in this area. 

For practical application purposes, the GEV is preferable to the GNO and PE3 due to its 

more solid theoretical basis and the inherent scale-invariance property of its non-central 
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moments over different time scales, which is useful for the modelling of sub-daily extreme 

rainfall processes in the context of climate change. 

(2) A holistic mathematical framework and scaling properties was developed for the scaling 

Generalized Extreme Value (GEV) distribution model based on the probability weighted 

moment (PWM) system. It can be used to estimate short-duration extreme design rainfalls 

of sub-daily or sub-hourly scales from those of longer time scale. The new scale-invariant 

model has a simpler mathematical derivation which helps to reduce the computational costs 

significantly when dealing with a large amount of data. Furthermore, it is more robust and 

accurate compared to the existing models.  Results based on 666 long-record AMS dataset 

from a network of 74 raingauges located across Canada showed that the estimates of PWM-

based empirical scaling exponents are more accurate and robust for different scaling 

regimes and for higher order moments. Additionally, results of various graphical and 

numerical comparisons pointed out that the novel scaling GEV/PWM model is superior to 

the three existing models for the majority of stations and criteria. 

(3) An innovative spatiotemporal statistical downscaling (STSD) procedure was proposed for 

assessing climate change impacts on the short-duration extreme rainfalls processes at a 

given local site in the context of climate change. Climate simulation outputs from 21 global 

climate models conducted under the CMIP5 project and the observed daily extreme 

rainfalls from a network of seven raingauges located in Ontario was used for the case study. 

Results have indicated the feasibility, reliability, and accuracy of the proposed approach. 

In addition, a new procedure using a series of statistical tests in sequence has been proposed 

to test for the magnitudes of the differences as well as to compute the associated 

uncertainties of extreme rainfalls for the current and projected periods as well as between 
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different projected periods. Results showed significant changes (varying from 8% to 18%) 

between the baseline and three future periods for different extreme design rainfall values 

of different return periods up to T = 25 years, and up to T = 50 years for a few stations. For 

T = 100 years, only one station showed a significant increase in the estimated rainfall 

amounts. There were also increases from 3% to 8% in design rainfalls for T = 50 years and 

T = 100 years for some stations, but they were found to be not statistically significant.  

(4) Many procedures have been developed to tackle the spatial downscaling, however, only a 

few methods have been proposed to deal with the temporal downscaling. In this research, 

in addition to the scaling GEV/PWM model, several novel scale-invariance models have 

been developed to enhance the accuracy and reliability of the temporal linkage between the 

low and high temporal resolution extreme rainfalls. In other words, these scaling models 

could be used to derive the distributions and quantiles of the projected sub-daily and sub-

hourly extreme rainfalls from those of projected daily data. Several probability 

distributions commonly-used in the frequency analysis of extreme hydrologic variables 

were selected, including the Generalized Logistic (GLO), Generalized Normal (GNO), and 

Pearson Type III (PE3) distribution models. The mathematical frameworks and scaling 

properties were derived for these distributions based on both the non-central moment 

(NCM) and PWM systems. This results in six novel scaling models. The IDF data from a 

network of 74 raingauges located across Canada were used for investigating the feasibility 

and accuracy of these new scaling models. The results were also compared with the two 

existing scaling models (i.e. GEV/PWM and GEV/NCM models). Results showed that the 

PWM-based scaling models produced better estimations than the NCM-based ones. 

Additionally, among the eight models, the scaling GNO/PWM and GEV/PWM model are 
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the best models with virtually identical results. Hence, in practice, they can be used 

interchangeably or used together to enhance the accuracy and reliability of the estimation 

of extreme design rainfalls in the current climate and in the context of climate change. 

(5) A decision-support tool, referred to as SMExRain, has been developed. The tool can be 

used by professionals and engineers in practice to obtain an accurate and robust estimation 

of a suitable design rainfall for sustainable design of water infrastructure. The tool is highly 

convenient and efficient for performing statistical modeling and analysis of extreme 

rainfall processes for a large number of sites and for estimating accurately extreme rainfalls 

for design purposes. In addition, it assists users, stakeholders, and decision-makers in 

understanding and recognizing the uncertainties and assumptions in projecting how they 

could change in the future under different climate scenarios. The tool includes the standard 

technique and the most recent developments in the area of extreme rainfall modeling and 

frequency analyses to identify the most suitable probability distributions for extreme 

rainfalls in terms of their descriptive and predictive abilities. Furthermore, the tool allows 

users to quantify climate change impacts and their uncertainties on extreme rainfall IDF 

relations using projected climate simulations from many different global or regional 

climate models. The tool has been tested using extreme rainfall data for different regions 

in Canada. 

7.2 Recommendations for Future Research 

Based on the findings of this research, the following recommendations are suggested 

for future studies: 
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(1) The conventional method of construction of extreme rainfall intensity-duration-frequency 

(IDF) relations could be improved based on the new scale-invariance techniques and 

models derived in this research. In particular, the conventional independently-fitting 

technique doesnot take into account the temporal relationships among extreme rainfall 

amounts of different rainfall durations. In the end, a regression model has to be added either 

in the real-space or log-space in order to interpolate and estimate the design values of 

unobserved/missing rainfall durations such as 45 minutes or 3 hours. Based on the results 

from this research, extreme rainfall amounts of different rainfall durations showed an 

inherent scale-invariance property of its non-central moments or probability-weighted-

moments over different time scales. Therefore, this property can be utilized along with a 

scaling model to improve the estimation of the design rainfall quantiles and to construct 

more robust at-site (or point scale) rainfall IDF relations.  

(2) Annual maximum rainfall series (AMS) have been widely used in construction of IDF 

relations due to its simple structure. Beside this, the peak-over-threshold (POT) approach 

has increasingly received attention as it offers more information that may be lost when 

using the AMS approach. However, application of the scaling approach to estimate the 

short-duration POT data from that of long-duration is extremely limited due to the complex 

nature of determining the threshold for different durations (Salvadori and De Michele, 

2001; Rajulapati and Mujumdar, 2017). With the development of the new scaling models 

for different moment systems in this research, this could open a new door to conduct further 

research on the application of the scaling approach to the POT data. 

(3) Regional frequency analysis based on the newly derived scaling models could be a 

promissing technique to improve the estimation of the extreme design rainfalls as partially-
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gauged locations (missing sub-daily data but daily data available) or ungauged location (no 

data available) by transfering the scaling properties from the neigboring stations located 

within a same homogeneous region. In addition, since the area has been shown to possess 

the scaling property in some researches, it is possible to incorporate the areal reduction 

factor into the IDF relations to form a new rainfall intensity-duration-area-frequency 

(IDAF) relations (Gado and Nguyen, 2015; Melese et al., 2019). The IDAF relations has a 

significant advantage over the point scale IDF relations in the simulation of runoff models 

over different spatial resolutions. This is also particularly useful when combining the 

observed data of different spatial resolutions from different measuring sources, such as 

raingauges, radar, and satellite rainfalls (Thorndahl et al., 2017; Mekis et al., 2018; Pathak 

and Teegavarapu, 2018; Ochoa-Rodriguez, 2019). 

(4) For the assessment of climate change impacts on local short-duration extreme rainfall 

processes, further studies could be carried out for other regions with different climatic 

conditions to assess the feasibility and accuracy of the proposed spatiotemporal 

downscaling procedure. In addition, several newly derived scaling models such as scaling 

GNO/PWM and PE3/PWM models could be used along with the scaling GEV/PWM in 

the temporal downscaling step in order to improve the robustness of the estimation and 

construction of IDF relations for a gauged or an ungauged location for the current climate 

as well as for future climate under different climate change scenarios. 

(5) The decision-support tool SMExRain can be upgraded to include a number of design storm 

shapes suggested in a number of design guidelines from different countries. This helps to 

facilitate the uncertainty assessment in the simulation of urban runoff and inundation under 

different climate change scenarios. Additionally, the tool can be expanded to allow the 
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assessment of climate change impacts on some other extreme hydrologic variables. For 

example, the minimum and maximum temperatures have a profound impact on the 

transportation network and public health problems.      
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Chapter 8. Statement of Originality 

 

To the best of the author’s knowledge, the followings are the original contributions from 

the present study to the hydrological science and engineering: 

(1) A systematic procedure has been developed for assessing systematically the performance 

of different commonly used probability distributions in rainfall frequency analyses based 

on their descriptive as well as predictive abilities. This assessment procedure relies on an 

extensive set of graphical and numerical performance criteria to identify the most suitable 

models that could provide the most accurate and most robust extreme rainfall estimates. 

The proposed systematic assessment approach has been shown to be more efficient and 

more robust than the traditional model selection method based on only limited goodness-

of-fit criteria. 

(2) A novel scale-invariance probability-weighted-moment-based Generalized Extreme Value 

(GEV/PWM) probability distribution model has been developed for modeling rainfall 

extremes across a wide range of time scales (e.g., several minutes to one day). The 

mathematical framework and scaling properties of the proposed model are derived. The 

relations to its special case and between the ordinary moment and probability weighted 

moment systems are described.  The scaling behaviours were also analyzed for the two 

moment systems. Results showed that the estimates of PWM-based empirical scaling 

exponents are more accurate and robust for different scaling regimes and for higher order 

moments. In addition, results based on an extensive graphical and numerical comparisons 
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have indicated the superior performance of the proposed model as compared to the other 

existing popular models. 

(3) An innovative spatiotemporal statistical downscaling (STSD) approach has been 

developed for establishing the linkage between daily extreme rainfalls at regional scales 

and daily and sub-daily extreme rainfalls at a local (point) scale. The proposed STSD 

contains two steps: (i) the spatial downscaling step using the scaling factors or the bias 

correction functions to transfer the daily downscaled global climate model (GCM) extreme 

rainfall projections at a regional scale to a given local site, and (ii) the temporal 

downscaling step using the new scale-invariance GEV/PWM model to derive the 

distributions of sub-daily extreme rainfalls from that of daily values at the same study 

location. In addition, a new procedure has been introduced for robust assessment of the 

climate change impacts on the extreme rainfalls for urban drainage system design using a 

series of statistical tests in sequence to evaluate the significant changes of rainfalls among 

different time periods. 

(4) Several novel scale-invariant models have been proposed for modeling rainfall extremes 

across a wide range of time scales in the context of climate change. Their mathematical 

frameworks and scaling properties are first derived in this research. These models are 

developed based on several popular probability distributions that are often used in the 

frequency analysis of extreme hydrologic variable and have been recommended in several 

national guidelines, including the Generalized Logistic (GLO), Generalized Normal 

(GNO), and Pearson Type III (PE3) distribution models. This helps to improve the 

accuracy and reliability of the temporal linkage between extreme rainfall of low and high 
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temporal resolutions. In addition, it helps to facilitate the application of the scaling methods 

in some countries where the use of these distributions are compulsory.  

(5) A decision-support tool, referred to as SMExRain, has been developed for constructing 

robust extreme rainfall intensity-duration-frequency (IDF) relations in consideration of 

model uncertainty and climate change information for the design and management of urban 

water systems. The tool that can be used by professionals and engineers in practice to 

obtain an accurate and robust estimation of a suitable design rainfall for sustainable 

design of water infrastructure. The tool is highly convenient and efficient for performing 

statistical modeling and analysis of extreme rainfall processes for a large number of sites 

and for estimating accurately extreme rainfalls for design purposes. In addition, it assists 

users, stakeholders, and decision-makers in understanding how extreme rainfalls and 

IDF values are changing in the current climate and recognizing the uncertainties and 

assumptions in projecting how they could change in the future. The tool includes the 

standard technique and the most recent developments in the area of extreme rainfall 

modeling and frequency analyses to identify the most suitable probability distributions 

for extreme rainfalls in terms of their descriptive and predictive abilities. Furthermore, 

the tool allows users to quantify climate change impacts and their uncertaint ies on 

extreme rainfall IDF relations using projected climate simulations from many different 

global or regional climate models. The tool has been tested using extreme rainfall data 

for different regions in Canada.  

The list of the peer-reviewed journals and refereed conference papers and their relations to 

different chapters in the thesis are as follows: 
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for Urban Water Infrastructure Design. Proceeding of the CSCE 2017 Annual Conference: 

Leadership in Sustainable Infrastructure, May 31 - June 03, 2017, Vancouver, Canada, pp. 

HYD745-1 – HYD745-10. 
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Nguyen, T.-H., Nguyen, V.-T.-V., Nguyen, H.-L., 2018. A spatio-temporal statistical 

downscaling approach to deriving extreme rainfall IDF relations at ungauged sites in the context 

of climate change. In: La Loggia, G., Freni, G., Puleo, V., De Marchis, M. (Eds.). The 13th 

International hydroinformatics conference HIC 2018. EPiC Series in Engineering, Palermo, Italy, 

pp. 1539-1546 

Nguyen, T.-H., Nguyen, V.-T.-V., 2019c. A Decision-Support Tool for Assessing Climate 

Change Impacts on Design and Management of Urban Water Systems. Proceeding of the CSCE 

2019 annual conference: Growing with youth, June 12 - 15, 2019, Laval, Quebec, Canada, pp. 

HYD023-1 - HYD023-10. 

Nguyen, T.-H., Nguyen, V.-T.-V., 2019a. Decision-Support Tool for Constructing Robust 

Rainfall IDF Relations in Consideration of Model Uncertainty. J. Hydrol. Eng., 24(7): 06019004.  
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Appendix A: Supplementary Materials for Chapter 2 

(A Systematic Approach to Selecting the Best Probability Models for Annual Maximum Rainfalls 

– A case study using data in Ontario, Canada) 

Table A-1. Values of the L-skewness (Lskew) and L-kurtosis (Lkurt) of the 5-minute, 1-hour, 

and 24-hour AMS from the 21 study stations 

No Station ID  5-min AMS  1-hour AMS  24-hour AMS 

   Lskew Lkurt  Lskew Lkurt  Lskew Lkurt 

1 6012199  0.180 0.113  0.170 0.163  0.237 0.162 

2 6016525  0.122 0.096  0.252 0.111  0.248 0.200 

3 6034075  0.060 0.093  0.204 0.101  0.272 0.146 

4 6042716  0.066 0.109  0.133 0.131  0.299 0.250 

5 6048268  0.211 0.115  0.305 0.278  0.368 0.295 

6 6057592  0.111 0.102  0.307 0.241  0.284 0.209 

7 6078285  0.080 0.107  0.298 0.264  0.329 0.208 

8 6085700  0.256 0.159  0.163 0.038  0.230 0.215 

9 6104175  0.089 0.147  0.199 0.139  0.262 0.281 

10 6105978  0.090 0.138  0.280 0.152  0.293 0.229 

11 6127514  0.108 0.263  0.133 0.146  0.120 0.159 

12 6131415  0.214 0.149  0.146 0.124  0.148 0.119 

13 6131983  0.073 0.062  0.218 0.163  0.270 0.177 

14 6137362  0.237 0.236  0.144 0.114  0.223 0.159 

15 6139525  0.177 0.087  0.201 0.137  0.168 0.101 

16 6143090  -0.045 0.076  0.348 0.310  0.236 0.247 

17 6144478  0.239 0.161  0.268 0.195  0.128 0.051 

18 6153301  0.118 0.038  0.106 0.126  0.343 0.171 

19 6158355  0.290 0.159  0.201 0.134  0.226 0.100 

20 6158731  0.149 0.136  0.185 0.207  0.402 0.300 

21 6158875  0.342 0.204  0.326 0.204  0.119 0.057 
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Appendix B: Supplementary Materials for Chapter 3 

(A Novel Scale-Invariance Probability-Weighted-Moment-Based Generalized Extreme Value Distribution for Modeling Rainfall 

Extremes Across A Wide Range of Time Scales) 

 

 

Figure B-1. Observed annual maximum rainfall series (Xobs, mm) from 5 to 1440 minutes (24 hours) of the 74 study stations across Canada 
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Figure B-2. Spatial representation of the AMS means (triangles with different sizes, mm) of different rainfall durations (from 5 to 1440 minutes) 

for the study stations across Canada  
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Figure B-3. Spatial representation of the AMS standard deviations (triangles with different sizes, mm) of different rainfall durations (from 5 to 

1440 minutes) for the study stations across Canada 
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Figure B-4. Spatial representation of the AMS skewness (triangles with different sizes, mm) of different rainfall durations (from 5 to 1440 

minutes) for the study stations across Canada 
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Table B-1. Results of Mann – Kendall trend detection tests. AMS from 74 stations with nine rainfall durations (from 5 to 1440 minutes). Cells 

highlighted show significant results at 5% significant level. 

Stn Mann–Kendall test for trend detection Stn Mann–Kendall test for trend detection 

5 10 15 30 60 120 360 720 1440 5 10 15 30 60 120 360 720 1440 

1 0.64 1.01 0.87 0.72 0.65 0.14 0.65 0.80 1.05 38 0.63 0.72 1.10 1.52 1.70 1.44 1.29 1.74 2.07 

2 -0.10 -0.63 -0.68 -0.80 -0.21 0.01 -0.05 0.25 0.37 39 1.28 1.44 1.34 1.55 0.96 0.20 0.79 1.13 1.29 

3 0.58 0.44 0.36 1.35 2.86 2.27 1.61 1.13 0.87 40 0.60 1.30 1.55 2.17 1.45 0.54 -1.10 -0.70 -0.18 

4 1.48 1.68 1.36 0.04 0.42 0.79 1.14 0.58 0.82 41 0.43 0.06 0.22 0.87 0.25 -0.75 -0.92 -0.88 0.03 

5 -0.43 -0.54 -0.24 -0.33 0.33 1.50 0.82 0.39 0.00 42 0.52 0.80 1.02 0.92 0.97 0.29 -0.49 -0.43 -1.12 

6 0.70 0.11 0.13 -0.98 -0.12 0.97 1.64 2.35 0.67 43 -1.10 -1.64 -1.38 -1.49 -0.77 -0.89 0.08 0.14 0.77 

7 1.35 0.75 0.61 0.63 1.31 1.38 1.78 1.60 2.09 44 0.48 -0.16 -0.37 -0.34 -0.38 -0.80 -0.42 -0.15 -0.67 

8 -1.34 -0.57 -0.16 -0.06 -0.03 -1.11 -1.89 -1.64 -1.48 45 -0.77 -0.76 -0.90 -0.72 -1.38 -0.79 0.45 1.05 2.28 

9 0.82 0.96 1.19 -0.41 -1.16 -0.78 -0.71 0.28 0.18 46 -0.99 -0.91 -0.97 -0.29 0.67 1.05 0.18 -0.41 -0.29 

10 1.00 0.90 0.53 0.68 0.26 0.75 -0.66 -0.69 -0.51 47 0.47 0.48 -0.14 -0.05 0.49 -0.20 -0.47 -0.62 -0.88 

11 1.30 0.49 0.56 0.94 0.57 1.05 -0.40 -0.69 -1.67 48 0.07 1.62 1.61 1.38 1.61 0.82 -0.60 -0.66 -0.99 

12 2.48 1.21 0.61 1.55 2.11 1.86 1.39 2.11 2.10 49 -0.12 -0.56 -0.98 0.06 0.16 0.11 -0.44 0.08 0.10 

13 2.55 2.08 2.58 2.25 1.60 0.42 0.25 0.32 1.17 50 -1.68 -1.90 -1.06 -1.34 -2.24 -2.17 -2.15 -2.47 -0.97 

14 2.02 1.55 1.72 2.08 2.21 1.85 1.59 1.67 2.01 51 -0.02 0.59 0.71 0.84 1.14 0.47 -0.90 -1.74 -2.66 

15 0.68 0.57 0.16 0.49 0.74 0.75 0.06 0.21 0.39 52 -0.20 1.26 1.09 0.57 -0.05 -0.28 -0.94 -1.12 -1.22 

16 -0.38 -0.74 -0.81 -0.94 -1.12 -1.07 -0.59 0.15 0.36 53 -0.32 -0.13 0.14 -0.49 -0.61 -1.14 -0.24 -0.46 0.20 

17 1.87 1.80 1.52 1.12 0.77 0.64 0.15 -0.02 -0.32 54 -1.26 -0.87 -0.94 -0.52 -0.90 -1.39 -1.78 -1.99 -2.30 

18 -0.93 -0.55 -0.13 0.49 1.04 1.17 0.00 0.91 0.98 55 -0.97 -0.50 -0.77 -0.79 -0.19 -0.70 -1.33 -0.98 -0.66 

19 0.33 0.16 0.26 1.16 0.71 0.67 0.49 0.29 0.28 56 -1.45 -0.83 -0.21 0.27 1.80 2.08 1.48 2.07 2.18 

20 -2.11 -1.46 -0.63 -0.12 0.46 0.19 -0.85 -0.92 -1.09 57 1.43 1.50 1.48 1.05 -0.20 0.47 0.05 0.79 -0.14 

21 -0.51 -0.55 -0.51 0.16 0.21 0.26 -0.72 -0.75 -1.06 58 1.06 2.07 3.20 3.55 2.91 2.23 1.47 0.51 1.74 

22 -1.03 -0.79 -0.65 -0.45 -0.44 -0.22 0.00 0.30 0.24 59 1.09 0.73 0.62 1.47 1.53 1.69 2.46 2.20 1.67 

23 1.11 0.54 0.36 0.29 0.13 -0.37 -0.02 -0.01 0.52 60 -2.59 -0.80 -0.45 0.30 -0.03 0.79 1.01 -0.25 -1.18 

24 1.69 1.94 2.25 1.77 1.18 1.53 1.13 -0.53 -1.07 61 0.16 -0.47 -0.73 -0.29 -0.01 -1.15 -0.56 -0.14 0.88 

25 -0.79 -1.48 -1.20 -1.32 -1.04 -1.09 -0.69 -1.00 -0.66 62 0.46 0.00 0.67 0.67 0.44 -0.07 1.09 1.03 0.64 

26 1.29 1.76 1.57 1.52 1.34 0.85 1.62 1.24 1.36 63 0.62 1.15 1.09 0.95 0.55 0.82 0.43 0.71 0.60 

27 -1.32 -1.17 -1.19 -1.31 -1.20 -0.99 -1.93 -1.76 -1.77 64 -2.87 -1.59 -1.34 -0.74 -0.50 0.58 1.15 1.37 0.91 

28 0.78 0.21 0.25 -0.13 0.00 0.61 0.47 0.11 -0.25 65 0.86 0.96 0.55 0.95 1.57 1.26 2.15 2.68 2.80 

29 -2.48 -2.55 -2.44 -2.48 -2.09 -1.35 -1.91 -1.49 -0.71 66 -1.01 -1.85 -1.04 -1.24 -1.10 -0.14 -1.29 -1.99 -1.98 

30 -0.16 0.52 0.10 0.20 0.31 0.14 -0.15 0.00 -0.03 67 -0.56 -1.21 -0.57 -0.20 -1.27 -0.93 -0.37 0.52 0.99 

31 0.47 0.64 0.41 0.43 -0.02 0.20 0.22 0.28 0.52 68 0.23 0.87 1.01 1.57 1.09 0.55 -0.02 -0.04 -0.20 

32 -0.20 -0.74 -0.93 -0.87 -1.21 -0.84 -0.48 -0.32 -1.20 69 -0.94 -0.66 0.06 1.33 1.36 0.98 0.63 1.30 1.59 

33 0.41 0.08 0.12 -0.01 0.00 -0.12 -0.42 0.11 0.42 70 0.02 1.08 1.13 1.34 0.44 0.59 0.33 -0.63 -0.12 

34 0.55 1.16 1.61 1.19 0.25 -0.59 0.49 0.51 0.87 71 -0.35 -1.74 -1.67 -1.86 -0.62 1.46 1.17 0.81 0.15 

35 0.34 0.26 0.47 0.21 0.67 0.80 0.22 -0.43 0.11 72 1.39 1.00 0.95 1.16 1.68 2.56 3.32 3.58 3.65 

36 -0.38 0.68 0.62 0.63 0.07 0.12 0.70 0.72 0.96 73 2.48 1.06 1.81 2.37 1.96 2.55 1.77 1.63 1.22 

37 -0.09 -0.07 0.33 1.07 1.05 1.17 0.90 1.47 0.76 74 0.78 0.56 0.44 0.42 0.70 1.10 -0.13 -0.42 -0.06 
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Table B-2. Results of Mann-Whitney homogeneity and stationarity tests. AMS from 74 stations with nine rainfall durations (from 5 to 1440 

minutes). Cells highlighted show significant results at 5% significant level. 

Stn Mann-Whitney test for homogeneity and stationarity Stn Mann-Whitney test for homogeneity and stationarity 

5 10 15 30 60 120 360 720 1440 5 10 15 30 60 120 360 720 1440 

1 -1.24 -0.96 -0.96 -0.82 -0.35 -0.21 -0.80 -0.89 -1.36 38 -0.09 -0.22 -0.55 -1.15 -1.58 -1.58 -2.11 -2.45 -1.99 

2 -0.21 -0.47 -0.82 -0.67 -0.11 -0.09 -0.06 -0.74 -1.27 39 -0.43 -0.80 -0.84 -1.49 -1.05 -0.48 -0.44 -0.71 -1.12 

3 -0.60 -0.66 -0.13 -0.63 -1.54 -1.38 -0.84 -0.16 -0.09 40 -0.14 -0.43 -0.47 -1.07 -1.13 -0.32 -1.13 -0.87 -0.03 

4 -1.29 -1.39 -1.29 -0.57 -0.65 -1.39 -1.85 -0.79 -1.29 41 -0.77 -0.57 -0.59 -1.02 -0.54 -0.24 -0.29 -0.44 -0.44 

5 -0.24 -0.27 -0.22 -0.11 -0.57 -1.14 -1.19 -1.03 -0.08 42 -1.34 -1.22 -1.53 -0.39 -0.29 -0.16 -0.23 -0.02 -0.72 

6 -0.59 -0.32 -0.30 -0.05 -0.82 -2.11 -2.41 -2.88 -0.77 43 -1.17 -1.36 -1.43 -1.64 -1.30 -0.57 -0.18 -0.29 -0.63 

7 -0.19 -0.02 -0.49 -0.36 -0.45 -0.62 -0.83 -0.96 -1.40 44 -0.60 -0.25 -0.08 -0.16 -0.07 -0.08 -1.31 -1.02 -0.56 

8 -0.63 -0.34 -0.10 -0.18 -0.13 -0.42 -1.36 -0.52 -0.63 45 -1.41 -1.20 -1.27 -0.98 -1.48 -0.80 -0.58 -0.99 -2.26 

9 -1.39 -1.22 -0.91 -0.58 -1.44 -1.31 -1.08 -0.58 -0.35 46 -0.80 -0.62 -0.42 -0.34 -0.94 -1.28 -0.80 -0.60 -0.72 

10 -0.89 -0.62 -0.81 -1.00 -0.65 -0.43 -1.16 -1.54 -1.46 47 -1.38 -1.27 -1.00 -0.92 -1.08 -0.08 -0.03 -0.24 -0.81 

11 -1.58 -1.13 -0.95 -1.47 -1.29 -1.95 -0.01 -0.65 -1.78 48 -0.36 -1.27 -1.83 -1.70 -1.85 -1.50 -0.26 -0.01 -0.30 

12 -2.98 -1.53 -0.92 -1.03 -1.69 -1.90 -1.27 -2.11 -2.79 49 -0.05 -0.88 -1.00 -0.46 -0.41 -0.47 -0.44 -0.73 -0.48 

13 -2.10 -1.67 -1.85 -1.70 -1.22 -0.49 -1.12 -1.45 -2.25 50 -2.29 -2.76 -1.67 -1.74 -2.06 -1.69 -1.83 -1.89 -0.33 

14 -1.88 -2.02 -2.11 -2.58 -2.32 -1.95 -1.31 -1.74 -2.04 51 -0.62 -1.36 -1.36 -1.81 -2.05 -1.24 -0.21 -0.87 -1.60 

15 -0.73 -0.17 -0.13 -0.21 -0.55 -0.60 -0.06 0.00 -0.40 52 -0.25 -0.98 -0.89 -0.87 -0.42 -0.39 -0.22 -0.33 -0.01 

16 -0.26 -0.38 -0.58 -1.00 -1.27 -0.88 -0.25 -0.83 -1.14 53 -0.40 -0.49 -0.40 -0.40 -0.66 -1.04 -0.15 -0.02 -0.08 

17 -1.53 -1.24 -0.95 -0.70 -0.70 -0.66 -0.54 -0.31 -0.19 54 -0.89 -0.35 -0.64 -0.46 -0.85 -1.63 -2.16 -2.35 -2.57 

18 -1.49 -1.23 -0.59 -0.17 -0.36 -1.15 -0.47 -1.11 -0.89 55 -0.71 -0.44 -0.77 -1.03 -0.55 -0.77 -1.34 -1.02 -0.59 

19 -0.02 -0.19 -0.15 -0.32 -0.11 -0.19 -0.06 -0.28 -0.36 56 -1.99 -1.66 -1.13 -0.34 -1.44 -1.46 -0.91 -1.50 -1.68 

20 -1.30 -0.70 -0.10 -0.37 -0.60 -0.47 -0.63 -0.65 -0.44 57 -0.30 -1.26 -1.66 -1.53 -0.03 -0.08 -0.63 -0.32 -0.43 

21 -0.35 -0.16 -0.12 -0.23 -0.06 -0.06 -0.74 -0.87 -0.99 58 -0.36 -1.61 -2.52 -2.88 -2.13 -1.14 -0.86 -0.14 -1.36 

22 -0.60 -0.31 -0.13 -0.16 -0.21 -0.68 -0.39 -1.17 -1.12 59 -1.70 -1.75 -1.49 -2.43 -2.48 -2.06 -2.45 -1.72 -1.56 

23 -0.59 -0.11 -0.18 -0.33 -0.15 -0.13 -0.38 -0.68 -1.19 60 -2.19 -0.89 -0.75 -0.27 -0.61 -0.38 -1.17 -0.17 -0.84 

24 -1.30 -1.14 -1.62 -1.38 -1.20 -1.42 -0.48 -0.92 -1.44 61 -1.34 -0.75 -0.27 -0.59 -1.09 -0.48 -0.52 -0.77 -1.50 

25 -0.04 -0.60 -0.26 -0.66 -0.64 -0.51 -0.66 -0.95 -0.57 62 -0.41 -0.18 -0.82 -1.02 -0.79 -0.25 -1.34 -1.50 -0.68 

26 -0.68 -1.10 -1.48 -1.46 -1.12 -1.26 -1.84 -1.20 -1.14 63 -1.55 -1.96 -1.75 -1.26 -0.85 -0.75 -0.17 -0.19 -0.06 

27 -1.22 -1.08 -1.30 -1.19 -1.30 -0.87 -0.89 -0.84 -0.78 64 -2.43 -1.43 -1.13 -0.70 -0.32 -0.28 -0.60 -0.47 -0.02 

28 -0.18 -0.16 0.00 -0.08 -0.10 -0.39 -0.42 -0.26 -0.10 65 -0.44 -0.58 -0.43 -0.97 -1.38 -0.77 -1.08 -1.40 -1.94 

29 -1.41 -1.62 -1.43 -1.51 -1.22 -0.35 -1.00 -0.60 -0.11 66 -0.30 -1.41 -0.92 -0.81 -0.70 -0.14 -1.35 -1.87 -1.84 

30 -0.30 -0.53 -0.03 -0.11 -0.19 -0.24 -0.29 -0.21 -0.18 67 -0.36 -0.75 -0.05 -0.05 -1.21 -1.29 -0.61 -0.27 -0.51 

31 -0.08 -0.30 -0.41 -0.54 -0.32 -0.30 -0.41 -0.54 -0.49 68 -0.60 -0.87 -0.72 -0.90 -0.73 -0.23 -0.11 -0.38 -0.30 

32 -0.65 -1.04 -1.20 -0.97 -1.15 -0.94 -1.25 -0.70 -1.43 69 -0.39 -0.30 -0.62 -1.08 -0.42 -0.14 -0.38 -0.18 -0.74 

33 -1.00 -0.95 -0.95 -0.83 -0.73 -0.90 -0.78 -0.83 -0.61 70 -0.43 -0.59 -0.87 -0.75 -0.28 -0.53 -0.04 -0.46 -0.28 

34 -0.49 -0.90 -1.23 -0.84 -0.13 -0.82 -0.34 -0.69 -1.23 71 -0.02 -1.04 -1.48 -1.46 -0.80 -1.17 -0.92 -0.58 -0.02 

35 -0.23 -0.37 0.00 -0.37 -0.23 -0.42 0.00 -0.44 -0.29 72 -1.12 -1.13 -1.11 -1.27 -1.87 -2.57 -3.32 -3.51 -4.26 

36 -0.35 -1.15 -1.13 -1.20 -0.66 -0.47 -1.36 -1.74 -2.00 73 -2.41 -1.09 -1.73 -2.45 -2.06 -2.12 -1.28 -1.46 -1.01 

37 -0.60 -0.19 -0.24 -1.35 -1.76 -2.19 -2.00 -2.14 -1.38 74 -1.17 -1.09 -1.07 -1.32 -1.42 -1.09 -0.60 -0.28 -0.44 
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Table B-3. Results of Wald-Wolfowitz independence and stationarity tests. AMS from 74 stations with nine rainfall durations (from 5 to 1440 

minutes). Cells highlighted show significant results at 5% significant level. 

Stn Wald-Wolfowitz test for independence and stationarity Stn Wald-Wolfowitz test for independence and stationarity 

5 10 15 30 60 120 360 720 1440 5 10 15 30 60 120 360 720 1440 

1 0.08 -0.24 -0.32 -0.86 -1.17 -0.79 0.83 0.53 0.52 38 0.00 0.02 0.89 0.13 0.10 0.10 1.32 0.17 0.75 

2 -1.79 -1.94 -1.94 -1.89 -1.58 -1.22 1.04 1.58 1.04 39 -0.94 -0.84 -0.78 -0.34 -0.25 -0.56 -1.35 -1.02 -1.54 

3 0.59 0.90 0.84 0.89 0.19 0.29 0.61 0.33 0.20 40 0.50 1.54 1.35 0.52 -0.18 0.18 0.77 0.49 1.16 

4 0.52 0.32 -0.44 -0.15 0.09 -0.13 -1.20 -0.18 0.35 41 -0.73 0.53 0.82 0.34 0.42 0.97 -0.53 -0.25 -0.32 

5 0.03 -0.32 -0.55 -0.50 0.33 1.39 0.24 0.11 -0.50 42 0.38 1.29 1.04 -0.69 -1.54 -1.10 -0.79 -0.07 -0.01 

6 0.79 0.67 0.73 0.46 -0.11 -0.39 -0.79 1.03 1.11 43 -1.10 -0.41 -0.74 -0.51 -1.09 -0.75 -0.58 0.17 0.08 

7 0.45 0.71 0.39 0.66 -0.07 -0.13 1.92 2.45 2.21 44 -0.09 -0.43 -1.16 -0.79 0.49 0.84 1.06 0.12 0.28 

8 0.36 0.14 -0.14 0.22 0.63 0.32 2.11 2.05 1.61 45 1.08 -0.06 0.04 -0.27 -0.80 -0.26 0.79 0.84 0.30 

9 -1.83 -1.56 -1.68 -1.55 -1.26 -0.19 0.62 0.34 0.57 46 -0.83 -0.91 -0.60 -1.06 -1.77 0.12 -0.18 0.25 -0.09 

10 0.08 -0.20 0.92 1.43 -1.17 -1.25 -0.23 0.89 -0.05 47 0.10 0.16 -0.35 0.74 0.84 1.16 0.64 -0.47 -1.03 

11 3.06 2.49 2.55 2.14 1.11 0.02 0.04 0.25 0.45 48 0.42 -0.65 -1.34 -1.73 -1.26 -1.57 -0.19 0.98 0.96 

12 0.80 -0.46 -0.90 -1.13 -1.24 -0.43 1.58 2.41 2.91 49 0.11 0.22 0.05 -0.70 -0.59 -1.04 0.97 1.78 1.48 

13 0.58 -0.83 -0.28 -0.18 -0.09 -0.27 0.39 0.70 0.91 50 -0.11 0.89 1.09 0.27 0.84 0.27 -0.48 0.00 -0.83 

14 0.87 0.55 0.39 -0.07 -0.52 -1.22 -0.37 1.38 1.15 51 -1.97 -2.11 -1.75 -1.31 -1.20 -0.63 0.74 -0.36 -0.67 

15 -0.86 -0.35 -0.37 -0.69 -0.92 -0.97 -0.89 -0.68 -0.86 52 -0.25 0.39 0.96 1.44 0.52 -0.03 -0.04 -0.18 0.22 

16 -1.30 0.41 0.80 0.15 -0.42 -1.17 0.45 1.33 1.03 53 -0.99 -0.40 -0.61 -0.06 0.49 -0.47 -1.30 -1.09 -0.55 

17 0.77 1.31 2.09 2.27 1.98 2.59 0.08 1.05 0.78 54 -1.39 -1.26 -0.86 -0.48 -0.30 -0.83 -0.43 -0.47 0.30 

18 1.17 0.96 1.41 1.22 1.31 1.27 -0.36 -0.23 -0.52 55 0.57 1.60 2.25 1.85 1.21 1.63 0.37 0.28 -0.17 

19 -1.53 -1.81 -1.78 -1.39 -1.43 -1.37 -0.44 -0.12 -0.09 56 2.15 1.73 1.47 -0.30 0.31 -0.19 0.04 -0.26 -0.53 

20 -0.27 -0.17 0.46 0.92 1.41 1.77 0.53 0.53 -0.01 57 0.78 1.34 0.74 0.35 1.77 2.82 1.53 0.75 0.69 

21 -1.19 -1.46 -0.96 -0.37 -0.31 -0.32 1.41 1.95 0.86 58 1.79 3.40 3.79 2.92 1.81 0.93 1.26 0.70 2.20 

22 -2.05 -1.01 -1.24 -0.78 -0.41 -0.21 -0.02 0.63 0.63 59 0.85 1.14 0.99 1.79 2.11 0.61 -0.21 -0.44 -1.36 

23 -0.15 -0.29 -0.18 -0.10 -0.24 -0.66 -0.49 -0.33 -0.52 60 1.38 0.93 1.39 1.14 0.56 -0.29 -1.38 -1.57 -0.64 

24 1.43 1.27 1.55 1.64 1.61 0.88 0.87 0.46 -0.07 61 0.38 -0.39 -0.71 -0.15 -0.58 -0.64 -0.96 -0.82 -0.80 

25 1.77 1.66 1.34 1.05 0.37 0.72 0.24 0.12 0.61 62 1.24 1.30 1.11 0.44 1.05 1.52 1.12 1.80 0.25 

26 -0.63 -0.14 -0.35 -1.10 -0.92 -1.01 -0.86 -0.64 -0.62 63 0.46 1.26 1.41 0.65 0.87 0.44 -0.92 -0.94 -0.61 

27 0.39 -0.40 -0.15 -0.15 -0.23 0.05 0.71 0.67 0.31 64 -0.49 -1.08 -1.53 -1.16 -1.94 -1.40 -0.81 1.21 1.60 

28 1.84 1.22 1.19 2.46 2.59 2.61 1.44 0.94 1.03 65 0.87 0.31 -0.24 -0.41 -0.91 -1.52 -0.62 0.44 0.59 

29 -0.39 -0.42 -0.16 0.47 0.63 0.31 -0.09 -0.24 0.30 66 0.48 0.59 1.22 0.74 0.60 -0.35 0.87 0.96 0.16 

30 -0.24 -0.23 -0.33 -0.69 -0.72 0.25 -0.22 0.56 0.28 67 -1.76 -1.72 -1.24 -2.15 -1.34 -0.56 -0.42 -0.95 -0.51 

31 1.53 0.84 1.01 0.72 0.62 1.03 0.44 0.15 1.07 68 0.11 0.81 0.84 0.80 0.01 -0.88 -0.76 -0.33 0.44 

32 0.01 -1.24 -1.27 -0.83 -0.59 -0.56 -0.13 -0.56 0.36 69 0.42 1.05 0.46 0.30 0.71 1.92 0.80 0.41 0.22 

33 -0.62 -0.89 -0.78 -0.32 -0.51 -0.70 -1.37 -1.66 -1.45 70 -0.46 0.86 1.12 0.83 0.14 -0.35 -1.04 -1.28 -1.13 

34 1.24 1.05 1.46 1.28 0.13 0.03 1.16 0.58 -1.04 71 0.27 0.22 0.30 0.30 -0.25 0.68 0.80 0.77 0.52 

35 -0.39 0.47 -0.27 0.35 -0.36 -0.44 -0.58 -0.53 -0.77 72 0.60 1.47 1.58 1.57 2.04 1.67 1.57 0.63 0.57 

36 -0.49 0.47 0.40 0.47 0.15 -0.26 0.23 0.24 0.53 73 -0.26 -0.19 -0.45 -0.08 0.32 0.63 -0.70 0.27 0.81 

37 1.39 0.81 0.65 1.45 1.50 0.96 0.53 2.12 1.65 74 1.17 1.51 1.03 0.39 -0.15 -1.04 -0.95 -0.93 -1.50 
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Appendix C: Supplementary Materials for Chapter 4 

(Linking Climate Change to Urban Storm Drainage System Design: An Innovative Approach to 

Modeling of Extreme Rainfall Processes Over Different Spatiotemporal Scales) 

D.1. One factor analysis of variance (ANOVA) 

• Data and situation: 

There are k groups of data are to be compared, to determine if their means are significantly 

different. Each group is assumed to have a normal distribution around its mean. All groups have 

the same variance. Note that when ANOVA is performed on the ranks rather than the original data, 

an average rank is used in case of tied data.  

• Null and alternate hypotheses: 

𝐻 : the k group means are identical 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘 

𝐻𝑎: at least one mean is different 

• Computation: 

The treatment mean square (MST) and error mean square (MSE) are computed as their 

sum of squares divided by their degrees of freedom (df). When the treatment mean square is larger 

than the error mean square as measured by an F-test, the group means are significantly different. 

𝑀𝑆𝑇 =
∑ 𝑛𝑗(𝑦�̅� − �̅�)
𝑘
𝑗=1

𝑘 − 1
 

(D-1) 

𝑀𝑆𝐸 =
∑ ∑ (𝑦𝑖𝑗 − 𝑦�̅�)

𝑛𝑗
𝑖=1

𝑘
𝑗=1

∑ (𝑛𝑗 − 1)
𝑘
𝑗=1

=
∑ ∑ (𝑦𝑖𝑗 − 𝑦�̅�)

𝑛𝑗
𝑖=1

𝑘
𝑗=1

𝑁 − 𝑘
 

(D-2) 
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where (𝑘 − 1) = treatment degrees of freedom; and (𝑁 − 𝑘) = error degrees of freedom 

• F statistic:  

𝐹 =
𝑀𝑆𝑇

𝑀𝑆𝐸
 

(D-3) 

• Decision rule: 

Reject 𝐻  if 𝐹 ≥ 𝐹(1−𝛼),(𝑘−1),(𝑁−𝑘)
∗  the (1 − 𝛼) quantile of an F distribution with (𝑘 − 1) 

and (𝑁 − 𝑘) degrees of freedom; otherwise do not reject 𝐻  

D.2. Tukey’s HSD test 

Two group means 𝜇𝑖 and 𝜇𝑗 can be considered different taking into account that all possible 

comparisons of k treatments if: 

|𝑦�̅� − 𝑦�̅�| > 𝑞(1−𝛼),𝑘,𝑁−𝑘 ∙ √𝑀𝑆𝐸 ∙
𝑛𝑖 + 𝑛𝑗

2𝑛𝑖𝑛𝑗
 

(D-4) 

where 𝑞 is the upper significance level of the studentized range statistic for 𝑘 means and 

(𝑁 − 𝑘) degrees of freedom. The value of 𝑞 could be found in Harter (1960); 𝛼 is the overall 

significant level, 𝑘 is the number of treatment group means compared (𝑁 − 𝑘) are the degrees of 

freedom for the 𝑀𝑆𝐸; and 𝑛 is the sample size per group. 

D.3. Magnitude of differences between two groups 

• Non-parametric approach: 
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In the situation where each group of data is non-normal distribution, the Hodges-Lehmann 

estimator can be used to calculate the absolute and relative difference between the two groups of 

data. It is computed by taking the median of all possible pairwise differences between the 𝑥 and 𝑦 

groups: 

 ̂ = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥𝑖 − 𝑦𝑗) (D-5) 

 �̂� = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑥𝑖 − 𝑦𝑗

𝑥𝑖
) (D-6) 

where 𝑥𝑖 = 1 𝑡𝑜 𝑛; 𝑦𝑗 = 1 𝑡𝑜 𝑚; and there will be 𝑁 = 𝑛 ∙ 𝑚 pairwise differences. 

Confidence interval for  ̂ and  �̂�: 

𝑅𝑙 =
𝑁−𝑧𝛼

2
∙√
𝑁(𝑛+𝑚+1)

3
 

2
   

(D-7) 

𝑅𝑢 =
𝑁+𝑧𝛼

2
∙√
𝑁(𝑛+𝑚+1)

3
 

2
+ 1 = 𝑁 − 𝑅𝑙 + 1   

(D-8) 

where 𝑅𝑙 and 𝑅𝑢 are the lower and upper ranks respectively; and 𝑍𝛼
2
 is from a table of standard 

normal quantiles.  

• Parametric approach: 

In the situation where each group of data closely follow a normal distribution (i.e. the t-test 

is appropriate), the difference between the two groups of data is computed as: 

 ̅ = (�̅� − �̅�) (D-9) 

 𝑟̅̅ ̅ = (
�̅� − �̅�

�̅�
) 

(D-10) 

Confidence interval for  ̅: 

𝐶𝐼 = �̅� − �̅� ± 𝑡𝛼 2⁄ ,(𝑑𝑓) ∙
√𝑠𝑥2

𝑛⁄ +
𝑠𝑦2
𝑚⁄     

(D-11) 
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𝑑𝑓 =
(
 𝑥
2

𝑛⁄ +
 𝑦
2

𝑚⁄ )

2

(
𝑠𝑥
2

𝑛⁄ )

2

(𝑛−1)
+

(
𝑠𝑦
2

𝑚
⁄ )

2

(𝑚−1)

      

(D-12) 

where 𝑠𝑋
2 and 𝑠𝑌

2 is the sample variance of the first and second group respectively; 𝑑𝑓 is 

the approximate degrees of freedom; 𝑡𝛼 2⁄ ,(𝑑𝑓) is from a table of the t-distribution.  

  



 

239 

 

Figure D-1. Similar to Figure 4-4 but Station #1 – Sault Ste Marie Airport Station 

 

Figure D-2. Similar to Figure 4-4 but for Station #2 – Kingston pumping station 
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Figure D-3. Similar to Figure 4-4 but for Station #3 – St Thomas WPCP Station 

 

Figure D-4. Similar to Figure 4-4 but for Station #5 – London CS Station 
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Figure D-5. Similar to Figure 4-4 but for Station #6 – Hamilton RBG CS Station 

 

Figure D-6. Similar to Figure 4-4 but for Station #7 – Toronto International Airport Station 
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Figure D-7. Similar to Figure 4-11 but for Station #1 – Sault Ste Marie Airport Station;  

 

Figure D-8. Similar to Figure 4-11 but for Station #2 – Kingston pumping Station 

D \ T 2 5 10 25 50 100

1440 17.63 19.62 17.60 13.21 9.78 6.94

720 17.40 19.58 17.41 13.20 9.84 7.06

360 17.12 19.88 17.40 13.12 9.89 6.98

120 17.07 19.75 16.86 12.97 9.89 7.10

60 16.89 19.49 16.91 12.88 9.90 7.32

30 16.97 19.59 16.94 12.81 9.90 7.37

15 16.93 19.75 16.73 12.80 9.78 7.71

10 16.91 19.73 16.71 12.73 9.78 7.75

5 16.97 19.64 16.52 12.65 9.79 7.80

(a) PPCC test
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D \ T 2 5 10 25 50 100

1440 13.42 14.47 14.05 10.89 7.84 5.43

720 13.34 14.53 14.04 10.80 7.84 5.52

360 13.26 14.59 14.02 10.73 7.85 5.62

120 13.24 14.65 13.94 10.60 7.85 5.73

60 13.22 14.69 13.88 10.53 7.87 5.82

30 13.21 14.72 13.82 10.48 7.90 5.93

15 13.20 14.75 13.76 10.43 7.95 6.04

10 13.20 14.76 13.72 10.41 7.98 6.11

5 13.20 14.78 13.66 10.39 8.04 6.25

Station #1 Sault Ste Marie A

Data:

Group 1 = Baseline = 1961-1990

Group 2 = 2020s     = 2011-2040

Group 3 = 2050s     = 2041-2070

Group 4 = 2080s     = 2071-2100

Critical values

Significant level:
𝛼 = 0.05
PPCC test: r*=0.95

ANOVA:   F*=2.73

Tukey test: q*=3.71 

ID: 6057592

D \ T 2 5 10 25 50 100

1440 17.76 13.98 10.24 5.64 3.21 1.70

720 17.76 13.97 10.20 5.62 3.21 1.72

360 17.76 13.96 10.16 5.60 3.22 1.74

120 17.74 13.87 10.00 5.51 3.21 1.79

60 17.73 13.80 9.90 5.46 3.22 1.83

30 17.72 13.74 9.80 5.41 3.23 1.87

15 17.71 13.67 9.70 5.37 3.24 1.91

10 17.71 13.62 9.65 5.35 3.25 1.94

5 17.70 13.55 9.55 5.32 3.27 1.99

D \ T 2 5 10 25 50 100

1440 24.71 22.51 17.66 7.65 3.73 1.83

720 24.71 22.33 17.62 7.62 3.73 1.88

360 24.74 22.38 17.49 7.62 3.75 1.92

120 24.87 21.92 16.89 7.58 3.77 1.90

60 24.87 21.98 16.32 7.58 3.75 1.93

30 24.84 22.15 15.78 7.53 3.77 2.02

15 24.84 22.15 15.68 7.49 3.79 2.14

10 24.84 22.17 15.60 7.42 3.79 2.20

5 24.84 22.13 15.44 7.42 3.78 2.24

(a) PPCC test
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(b) ANOVA F-test on the data

(d) Tukey’s HSD test on the data
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Group 1 = Baseline = 1961-1990

Group 2 = 2020s     = 2011-2040

Group 3 = 2050s     = 2041-2070

Group 4 = 2080s     = 2071-2100

Critical values

Significant level:
𝛼 = 0.05
PPCC test: r*=0.95

ANOVA:   F*=2.73

Tukey test: q*=3.71 

ID: 6104175
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Figure D-9. Similar to Figure 4-11 but for Station #3 – St Thomas WPCP Station 

 

Figure D-10. Similar to Figure 4-11 but for Station #5 – London CS Station 
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60 14.40 13.97 11.49 6.21 3.43 1.90

30 14.43 13.90 11.77 6.55 3.59 1.94

15 14.47 13.81 12.00 6.92 3.78 2.01

10 14.50 13.74 12.10 7.16 3.92 2.07

5 14.55 13.60 12.23 7.58 4.20 2.19
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Group 2 = 2020s     = 2011-2040

Group 3 = 2050s     = 2041-2070

Group 4 = 2080s     = 2071-2100

Critical values

Significant level:
𝛼 = 0.05
PPCC test: r*=0.95

ANOVA:   F*=2.73

Tukey test: q*=3.71 

ID: 6137362
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720 10.99 9.17 6.53 3.55 2.24 1.52

360 10.99 9.29 6.71 3.67 2.30 1.54

120 10.98 9.46 7.00 3.87 2.40 1.58

60 10.98 9.56 7.17 4.00 2.48 1.62

30 10.97 9.65 7.35 4.15 2.56 1.66

15 10.96 9.74 7.52 4.30 2.65 1.71

10 10.97 9.66 7.36 4.16 2.57 1.66

5 10.98 9.51 7.07 3.93 2.43 1.59

D \ T 2 5 10 25 50 100

1440 12.06 11.58 7.87 3.61 2.09 1.58

720 12.29 11.63 8.13 3.82 2.12 1.57

360 12.32 11.81 8.32 4.06 2.21 1.57

120 12.25 11.97 8.68 4.33 2.43 1.59

60 12.30 11.39 9.15 4.49 2.48 1.65

30 12.32 11.45 9.42 4.64 2.52 1.69

15 12.30 11.57 9.73 4.83 2.54 1.80
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Group 2 = 2020s     = 2011-2040

Group 3 = 2050s     = 2041-2070

Group 4 = 2080s     = 2071-2100

Critical values

Significant level:
𝛼 = 0.05
PPCC test: r*=0.95

ANOVA:   F*=2.73

Tukey test: q*=3.71 

ID: 6144478
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Figure D-11. Similar to Figure 4-11 but for Station #6 – Hamilton RBG CS Station 

 

Figure D-12. Similar to Figure 4-11 but for Station #7 – Toronto International Airport Station  

D \ T 2 5 10 25 50 100

1440 12.05 8.04 5.33 2.71 1.59 0.99

720 11.99 7.92 5.17 2.62 1.57 1.00

360 11.94 7.77 5.00 2.55 1.56 1.03

120 11.86 7.52 4.74 2.47 1.57 1.09

60 11.81 7.35 4.59 2.43 1.60 1.14

30 11.77 7.16 4.45 2.42 1.64 1.21

15 11.71 6.83 4.23 2.43 1.75 1.35

10 11.68 6.63 4.13 2.46 1.83 1.46

5 11.60 6.29 4.01 2.56 2.00 1.67

D \ T 2 5 10 25 50 100

1440 18.86 12.92 7.17 2.87 1.54 0.73

720 18.97 13.20 7.05 2.76 1.53 0.75

360 18.80 12.95 6.96 2.70 1.50 0.79

120 18.53 12.90 6.58 2.63 1.50 0.84

60 18.53 12.74 6.45 2.64 1.58 0.85

30 18.40 12.56 6.20 2.63 1.64 0.99

15 18.36 12.33 6.01 2.73 1.73 1.35

10 18.10 11.66 5.76 2.76 1.94 1.46

5 17.92 10.20 5.52 2.96 2.27 1.91
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(d) Tukey’s HSD test on the data

D
iff

e
re

n
c
e
s
 o

f 
M

e
a
n
s
 (

m
m

)

D
=

1
4
4
0

D
=

6
0

D
=

5

T=2 T=5 T=10 T=25 T=50 T=100

D
iff

e
re

n
c
e
s
 o

f 
M

e
a
n
s

(c) ANOVA F-test on the ranks

(e) Tukey’s HSD test on the ranks

T=2 T=5 T=10 T=25 T=50 T=100

D
=

1
4
4
0

D
=

6
0

D
=

5

Station #6 Hamilton RBG CS

Data:

Group 1 = Baseline = 1961-1990

Group 2 = 2020s     = 2011-2040

Group 3 = 2050s     = 2041-2070

Group 4 = 2080s     = 2071-2100

Critical values

Significant level:
𝛼 = 0.05
PPCC test: r*=0.95

ANOVA:   F*=2.73

Tukey test: q*=3.71 

ID: 6153301

D \ T 2 5 10 25 50 100

1440 15.30 10.32 6.60 3.04 1.52 0.72

720 15.23 9.92 6.07 2.80 1.50 0.80

360 15.19 9.43 5.59 2.68 1.57 0.95

120 15.18 8.54 5.03 2.72 1.85 1.35

60 15.17 7.98 4.81 2.86 2.13 1.70

30 15.10 7.48 4.71 3.08 2.49 2.13

15 15.13 7.59 4.72 3.03 2.40 2.03

10 15.14 7.65 4.73 3.00 2.35 1.97

5 15.16 7.76 4.76 2.95 2.28 1.88

D \ T 2 5 10 25 50 100

1440 21.77 19.40 11.93 4.30 2.04 0.60

720 21.28 19.87 10.27 3.93 1.98 0.69

360 21.53 18.94 9.10 3.66 2.03 0.99

120 21.85 16.47 7.96 3.62 2.43 1.79

60 21.90 15.29 7.28 3.79 2.98 2.35

30 22.49 14.14 7.26 4.19 3.23 2.98

15 22.48 14.36 7.22 4.14 3.15 2.92

10 22.59 14.52 7.26 4.07 3.17 2.80

5 22.34 14.59 7.28 3.94 3.07 2.66
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(d) Tukey’s HSD test on the data
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Station #7 Toronto Intl A

Data:

Group 1 = Baseline = 1961-1990

Group 2 = 2020s     = 2011-2040

Group 3 = 2050s     = 2041-2070

Group 4 = 2080s     = 2071-2100

Critical values

Significant level:
𝛼 = 0.05
PPCC test: r*=0.95

ANOVA:   F*=2.73

Tukey test: q*=3.71 

ID: 6158731
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Appendix D: Supplementary Materials for Chapter 5  

(Mathematical Frameworks and Scaling Properties of Several Probability Distribution Models 

Commonly Used in Hydrologic Frequency Analysis) 

Table D-1. Coefficients of the approximations 𝐴𝑖(𝑖 = 0 𝑡𝑜  ) and 𝐵𝑗(𝑗 = 1 𝑡𝑜  ) used in Eqn. (5-39). 

These values are extracted from Table A.1 of Hosking and Wallis (1997) 

𝐴 = 4.88 0251 × 10
−1  

𝐴1 = 4.449 07 × 10
−3  

𝐴2 = 8.80270 9 × 10
−   

𝐴3 = 1.1507084 × 10
−6  

𝐵1 =  .4  2924 × 10
−2  

𝐵2 =  . 09040 × 10
−2  

𝐵3 = 7.4290 80 × 10
−5  

 

Table D-2. Coefficients of the approximations 𝐴𝑖(𝑖 = 0 𝑡𝑜  ), 𝐵𝑗(𝑗 = 1 𝑡𝑜 2), 𝐸𝑘 (𝑘 = 1 𝑡𝑜  ), 

and 𝐹𝑘    used in Eqn. (5-59). These values are extracted from Table A.2 of Hosking and Wallis 

(1997) 

𝐴 =  .257 501 × 10
−1  

𝐴1 = 1. 8 9150 × 10
−1  

𝐴2 = 7.8 2724 × 10
−2  

𝐴3 = −2.91205 9 × 10
−3  

 

𝐵1 = 4.  97102 × 10
−1  

𝐵2 = 2.425540 × 10
−1  

𝐸1 = 2. 80757   

𝐸2 = 1.59 1792  

𝐸3 = 1.1 18 71 × 10
−1  

 

𝐹1 = 5.15  299  

𝐹2 = 7.14252 0  

𝐹3 = 1.974505   
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Appendix E: Supplementary Materials for Chapter 6  

(Decision-Support Tool for Constructing Robust Rainfall IDF Relations in Consideration of 

Model Uncertainty and Climate Change Information for The Design and Management of Urban 

Water Systems) 

Table E-1. List of stations used in the study and their record lengths (RCL, years) 

No Station name RCL No Station name RCL No Station name RCL 

1 Big Trout Lake 25 29 Picton 27 57 Waterloo Wel. A. 33 

2 Lansdowne Hou. 21 30 Toronto Booth 26 58 Belleville 37 

3 Red Lake A. 25 31 Toronto Ellesm. 25 59 Bowmanville M. 31 

4 Atikokan (AUT) 24 32 Toronto Island A. 24 60 Burketon Mclag. 31 

5 Rawson Lake (A.) 26 33 Toronto Nor. Y. 29 61 Hamilton A. 33 

6 Caribou Island 22 34 Toronto Old W. R 22 62 Oshawa WPCP 32 

7 Pukaskwa Natl.  20 35 Toronto Butt. A. 20 63 Peterborough A. 33 

8 Slate Island 20 36 Lindsay Filt. P. 24 64 Ear Falls (AUT) 49 

9 Mississagi On. H. 22 37 Peterborough S. 28 65 Pickle Lake (AUT) 41 

10 White River 21 38 Sioux Lookout A. 39 66 Kenora A. 40 

11 Wawa (AUT) 21 39 Sudbury A. 35 67 Geraldton A. 48 

12 Chapleau A. 26 40 Kapuskasing CDA  36 68 Thunder Bay CS 47 

13 Kirkland Lake C. 26 41 Moosonee RCS 30 69 Sault St. Marie A. 45 

14 Pinard 24 42 Brockville PCC 35 70 Timmins Victor P.  47 

15 Combermere 20 43 Cornwall Ont H. 33 71 North Bay A. 41 

16 Smiths Falls TS 21 44 Kemptville CS 34 72 Kingston Pump. Stn 63 

17 Barrie WPCC 26 45 Otta. M.-C. Int'l A. 39 73 Ottawa Cda RCS 50 

18 Beausoleil 24 46 Petawawa Nat F. 33 74 Sarnia Airport 40 

19 Goderich 22 47 Orillia Brain 35 75 Chatham WPCP 40 

20 Harrow CDA A. 28 48 Owen Sound Moe 37 76 Delhi CS 42 

21 Niagara Falls 26 49 Wiarton A. 33 77 St Thomas WPCP 75 

22 Simcoe 23 50 Port Colborne 37 78 Windsor A. 60 

23 Vineland Sta. R. 26 51 Ridgetown RCS 30 79 Guelph Turfgra. 42 

24 Point Pelee Cs 22 52 St Catharines A. 33 80 London CS 57 

25 Preston WPCP 22 53 Brantford Moe 36 81 Hamilton RBG CS 44 

26 Elora RCS 29 54 Fergus Shand D. 37 82 Toronto City 59 

27 Campbellford 24 55 Mount Forest (A.) 30 83 Toronto Intl. A. 60 

28 Main Duck Isl. 21 56 Stratford WWTP 36 84 Trenton A. 41 
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Figure E-1. L-moment ratio diagram of 63 AMS from 21 rain-gauges containing at least 40-year records.  

 

Figure E-2. L-moment ratio diagram of 141 AMS from 47 rain-gauges containing at least 30-year 

records.  
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Figure E-3. Comparing boxplots of RMSE, RRMSE, MAE, and CC results of 11 selected candidates 

using 1-hour AMS of stations containing at least 40-year, 30-year, and 20-year records respectively 

 

Figure E-4. Comparing boxplots of RMSE, RRMSE, MAE, and CC results of 11 selected candidates 

using 24-hour AMS of stations containing at least 40-year, 30-year, and 20-year records respectively 
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Fig. 1. The ranking of 11 distributions for 1-hour AMS for each station individually and the overall rank 

for 84 stations based on the four statistical criteria. Rank = 1 (or close to 1) indicates the best distribution 

and rank = 11 (or close to 11) indicates the worst distribution. Boxplots of the 1-hour data of all 84 

stations are shown on the left 
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Fig. 2. The ranking of 11 distributions for 24-hour AMS for each station individually and the overall rank 

for 84 stations based on the four statistical criteria. Rank = 1 (or close to 1) indicates the best distribution 

and rank = 11 (or close to 11) indicates the worst distribution. Boxplots of the 24-hour data of all 84 

stations are shown on the left 
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Fig. 3. Comparing extreme design rainfalls estimates for different return periods (T=5, 10, 25, 50, 100 

years) using 1-hour AMS of all stations containing at least 30 years of records and the top three 

distributions GEV, GNO, and PE3 
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Fig. 4. Comparing extreme design rainfalls estimates for different return periods (T=5, 10, 25, 50, 100 

years) using 24-hour AMS of all stations containing at least 30 years of records and the top three 

distributions GEV, GNO, and PE3 
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