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ABSTRACT

This thesis presents inverse kinodynamics (IKD), an animator friendly kinematic

workflow that both encapsulates short-lived dynamics and allows precise space-time

constraints. Kinodynamics (KD), defines the system state at any given time as

the result of a kinematic state in the recent past, physically simulated over a short

temporal window to the present. KD is a well suited kinematic approximation to an-

imated characters and other dynamic systems with dominant kinematic motion and

short-lived dynamics. Given a dynamic system, we first formulate an appropriate

kinodynamic window size based on kinematically defined accelerations in the kine-

matic trajectory and physical properties of the system. We then present an inverse

kinodynamics (IKD) algorithm, where a kinodynamic system can precisely attain a

set of animator constraints at specified times. Our approach solves the IKD problem

iteratively, and is able to handle full pose or end effector constraints at both posi-

tion and velocity level, as well as multiple constraints in close temporal proximity.

Our approach can also be used to solve position and velocity constraints on passive

systems attached to kinematically driven bodies. We show IKD to be a compelling

approach to the direct kinematic control of character, with secondary dynamics via

examples of skeletal dynamics and facial animation.
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ABRÉGÉ

Cette thèse présente kinodynamique inversé (IKD) qui est un procédé kinema-

tique très pratique utilisable pour l’animateur qui consiste à la fois d’une dynamique

de courte durée et qui permet des contraintes spatio-temporelles précises. Kino-

dynamique (KD) définit l’état du système à un moment donné comme le résultat

d’un état kinematique dans un passé récent, physiquement simulé dans une fenêtre

temporelle de courte durée du temps présent. KD est une approximation kinema-

tique bien adaptée aux caractères animés et à d’autres systèmes dynamiques avec un

mouvement kinematique dominant et une dynamique de courte durée. En ayant un

système dynamique on peut d’abord formuler une taille de fenêtre kinodynamique

appropriée, basée sur des accélérations définies kinematiquement dans la trajectoire

kinematique et sur les propriétés physiques du système. Nous présentons ensuite

un algorithme kinodynamique inversé (IKD) dans lequel un système kinodynamique

peut satisfaire un ensemble de contraintes des animateurs à des moments précis.

Notre approche résout le problème IKD de manière itérative et permet de gérer une

pose complète ou des contraintes des points fixés sur le corps à la fois au niveau

de la position et de la vitesse ainsi que de multiples contraintes dans une courte

proximité temporelle. Notre approche peut également être utilisée pour résoudre

des contraintes de position et de vitesse dans des systèmes passifs attachés à des

corps kinematiquement entrainés. Nous démontrons qu’IKD peut être une approche

convaincante pour le contrôle kinematique direct des caractères avec des dynamiques

secondaires par des exemples de dynamiques du squelette et d’animation faciale.
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CHAPTER 1
Introduction

Physical simulation is now a robust and common approach to recreating reality

in virtual worlds and is almost universally used in the animation of natural phe-

nomena, ballistic objects, and character accessories like clothing and hair. Despite

these strides, the animation of primary characters continues to be dominated by the

kinematic techniques of motion capture and above all traditional keyframing. Two

aspects of a primary character in particular, skeletal and facial motion, are often

laboriously animated using kinematics.

We note from conversations with about half a dozen master animators that

there are perhaps three chief reasons for this. First, kinematics, unencumbered by

physics, provides the finest level of control necessary for animators to breathe life and

personality into their characters. Second, this control is direct and history-free, in

that the authored state of the character, set at any point in time, is precisely observed

upon playback and its impact on the animation is localized to a neighborhood around

that time. Third, animator interaction with the time-line is WYSIWYG (what-you-

see-is-what-you-get), allowing them to scrub to various points in time and instantly

observe the character state without having to playback the entire animation.

The same animators expressed the utility and importance of secondary dynamics

overlaid on primarily kinematic character motion to enhance the visceral feel of their

characters. Various approaches to such secondary dynamics have been proposed
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in research literature [7, 11], some of which are available in commercial animation

software. Overlaid dynamics, unfortunately compromise the second and third reasons

animators rely on pure kinematic control.

A kinematic solution incorporating secondary dynamics called kinodynamic skin-

ning [3] was suggested in the context of volume preserving skin deformations. With

this approach, a kinodynamic state at any time is defined as a kinematic state in

the recent past, physically simulated forward to the given time. In this thesis we

develop this idea of kinodynamics (KD) as a history-free kinematic technique that

can incorporate short-lived dynamic behavior. Note that the above usage of the

term “kinodynamic”, while similar in spirit, is distinct from its use in the context

of robot motion planning where it addresses planning problems where velocity and

acceleration bounds must be satisfied [9].

We begin by formulating an appropriate KD window size for a given kinematic

motion and physical parameters: both long enough to ensure a temporally coher-

ent KD trajectory that captures the nuances of system dynamics, and short enough

for interactive WYSIWYG computation and temporal localization of the influence

of animation edits on system state. Many goal directed actions such as grasping,

reaching, stepping, gesticulating, and even speaking, however, involve spatial rela-

tionships between the character and its environment, that are best specified directly,

as targets states that the character (or parts of the character) must observe at given

times. Techniques such as inverse kinematics (IK) and space time optimization algo-

rithmically infer the remaining system states and animation parameters from these

animator specified spatio-temporal targets. Though IK does not give the secondary
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dynamics, and space time optimization is typically computationally expensive. Anal-

ogous to these techniques we develop an inverse kinodynamics (IKD) algorithm al-

lowing animators to prescribe position and velocity constraints at specific points in

time within a KD setting.

The contribution of this thesis is thus the development of a usable kinodynamic

framework for interactive character animation with real-time performance, where

animators can leverage a direct history-free kinematic workflow, coupled with the

benefits of arbitrary physically simulated secondary dynamics. Toward this, we de-

velop a formulation for KD window size and present the first IKD algorithm. While

we impose no explicit restrictions on the physical simulation of characters, our ap-

proach is largely suited to well-conditioned and continuous simulations.
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CHAPTER 2
Related work

Secondary dynamics provides a significant amount of visual realism in kinemat-

ically driven animations and is an important technique for animators. In the case of

tissue deformations produced by the motion of an underlying skeleton, various meth-

ods can be used to produce this motion through simulation or using precomputation

[7, 11]. With respect to secondary dynamics of skeletal motion, it has similarly been

demonstrated that tension and relaxation of the skeletal animation can be altered

through physically based simulation [17]. These techniques provide an important

richness to an animation; while the style of the results are controllable by adjusting

elastic parameters or gains of controllers used for tracking, precise control of the

motion itself to satisfy given constraints or key frames is typically left to be treated

as a separate problem.

The related work can be categorized into two groups. First, there are approaches

which try to control a physically based simulation to have it meet some desired

constraints. Second, there are approaches which use kinematic editing techniques to

produce animations that meet desired constraints and exhibit physically plausibility.

2.1 Controlling physically based simulations

There has been a significant amount of work in this area on controlling rigid

bodies [20, 19], fluids [24, 14], and cloth [27, 5]. Other recent successes on controlling

physically based animation use gentle forces to guide an animation along a desired
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trajectory, accurately achieving desired states, but also allowing physical responses to

perturbations [4]. Physically based articulated character control has received a vast

amount of interest. Building on the seminal work of locomotion control [21], it is now

possible to have, for instance, animation of physically based motions that respond

naturally to perturbations [29, 28, 30], and editable animations of dynamic manip-

ulation which respects the dynamic interaction between characters and objects [1].

Allen et al. [2] change PD control parameters to produce skeletal animations that

interpolate key-frames at specific times. In contrast, we keep the control parameters

fixed and alter the kinematic trajectory. Jain and Liu [10] show a method for inter-

actively editing interaction between physically based objects and a human. In this

work, it is the motion of the dynamic environment which is edited through kinematic

changes of a captured human motion. In comparison, we focus on altering and edit-

ing a kinodynamic motion with different styles (tension and relaxation) and different

constraints. Directly related to the problem of authoring motion, physically correct

motion can be achieved by solving optimizations with space-time constraints [26].

2.2 Kinematic editing techniques

In contrast to the work on controlling fully dynamic simulations, we are address-

ing a simplified problem due to the finite temporal window involved in simulating

the state at a given time in a kinodynamic trajectory [3]. This leads to benefits in

the context of animation authoring, and allows for a straightforward solution to the

inverse kinodynamic problem we present in this thesis. In a different approach, with

similar objectives to our own work, Kass and Anderson [12] propose a method for
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including physically based secondary dynamics in a key frame style editing environ-

ment through interactive solutions of space time optimization problems. They focus

on linear or linearized space-time constraints problems, while our work in contrast

looks primarily at non-linear skeletal animation problems. Within a purely kine-

matic setting, Coleman et al. [8] create handles to edit motion extrema of different

joints clustered in time. The visual impact of secondary dynamics is often captured

in these temporal relationships. Such an approach can, however, only exaggerate or

diminish a dynamic effect already present in the motion and cannot introduce new

forces and dynamic behaviors that the mixing of kinematics and dynamics allows.

Such mixing to get the best of both worlds also has promise for authoring motion in

real time. For instance, Nguyen et al. [18] blend kinematic animation and dynamic

animation via a set of forces which act like puppet strings to pull the character back

to the kinematic trajectory. Also of note is the work on editing kinematic motion

through momentum and force [22], or with biomechanically inspired constraints [13].

While these different approaches use dynamic principles to control accelerations and

velocity, they deal with dynamic systems which are not necessarily short lived, and

these approaches do not share our objective of a scrubbing interface for animation

editing which computes states largely in a history free manner.
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CHAPTER 3
Overview

In this chapter we provide an overview of our approach. The animation is prin-

cipally driven by a kinematic trajectory xK(t), typically authored and edited using

traditional keyframe and motion capture techniques. The kinodynamic trajectory of

the system xKD(t) at a time t is the result of a physical simulation run over a time

window δ starting from an initial position xK(t − δ) and velocity ẋK(t − δ). The

simulation uses a PD (Proportional-Derivative) controller to follow the kinematic

trajectory, so the xK(t) can be thought of as the target or desired trajectory. The

PD controller output (fout) is proportional to the error which is the difference be-

tween the set point (xk) and the process variable (x). In our simulation xk is the

desired target or trajectory and x is the current state of the system. So the equation

of the PD controller can be written as follows:

fout = Kp ∗ error = Kp ∗ (xk − x), (3.1)

where the tension and relaxation gain is denoted by the parameter Kp.

We will have kinodynamic states which deviate from the kinematic trajectory

because we are using a simulation with control forces to generate the KD trajectory.

This is desirable because we want to include the effects of secondary dynamics in the

animation (see Figure 3–1). However, there may be specific times in the animation

where we need constraints to be met.
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Figure 3–1: KD trajectories for the green ball: Kinematically the green ball is rigidly
connected to the keyframed red ball, with spring dynamics overlaid. A number of
frames of the KD trajectory (δ = 15) are shown, with the full dynamics solution
for the green ball overlaid in blue (top). KD trajectories with 3 window sizes are
shown in relation to a full dynamics solution (bottom). Note how the history-free
KD trajectories capture the visual behavior of the actual dynamics over a wide range
of window sizes.

Suppose we have an target pose xi that must be produced at time ti. This target

state could be a pose in the original kinematic trajectory, or something different. If

the pose belongs to the original kinematic trajectory, a simple solution would be to

stiffen the PD control in the vicinity of the desired pose so that it is tracked precisely.

Note, however, that stiffness is an inherent attribute of the motion’s secondary dy-

namics under animator control and altering it to interpolate a target pose imbues

the animation with a different style. Instead, we iteratively compute a modification

to the kinematic trajectory which results in a KD state that satisfies the constraint.
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Example trajectories are illustrated in Figure 3–2, where a red kinodynamic

trajectory follows a green kinematic trajectory, but is lower due to gravity pulling

the system down. At left we can see an illustration of how the temporal window

for computing kinodynamic state must be long enough for any impulse (smaller

than a given maximum) to come sufficiently close to rest that it is not perceptual

(e.g., based on screen pixels). At right in the figure we can see a dotted green

kinematic trajectory with an added bell shape correction, which produces the dotted

red kinodynamic trajectory satisfying the constraint at time ti.

Time

x

xKD(t) kinematic

xK(t-δ)

δ

ti

kinodynamic

simulated trajectory
∆ x

δ δ

Figure 3–2: An illustration of how we modify a kinematic trajectory to create a
kinodynamic trajectory that satisfies the constraint that the original kinematic state
be produced at time ti.

3.1 Inverse kinodynamics

Let SimulateKD(xK , ti, δ) (see Algorithm 1) be the procedure of computing

xKDi, the KD state at ti for kinematic trajectory xK . We first compute the IKD
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error in meeting the target as

ei = xi − xKDi, (3.2)

and from this we form bell shaped correction curves eiφi(t) (i.e., the state is a vector

and each coordinate of the state will have a bell shaped correction of a different

magnitude) that we will add to kinematic trajectory. The bell shaped basis function

φi(t) provides a local correction, has its peak value of 1 at ti, and can be defined as

a low degree polynomial or Gaussian. More importantly, it has a local support (i.e.,

a small temporal width) which is selected by the artist.

Algorithm 1 SimulateKD

Input: xK , ti, δ
Output: xKDi, the KD state at ti for xK
1: xKinit = xK(ti−δ)
2: ẋKinit = ẋK(ti−δ)
3: xKDi ← simulate and compute the state xKD up to time ti

Conceptually, this IKD error correction introduces an additional spring force

proportional to eiφi(t) in a small temporal neighborhood around ti. This correction

will not be sufficient, however, and our modified KD state x̃KDi = SimulateKD(xK +

eiφi, ti, δ) will not meet the constraint. This is because the correction did not take

into account the dynamics of the system, but we can fix this by boosting the correc-

tion to account for the dynamics, assuming that the system dynamics are approxi-

mately locally linear (see Figure 3–3). Letting di = x̃KDi − xKDi, we simply project

the error onto this initial correction result to get an improved correction function

f(t) = ∆xiφi(t), (3.3)
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where ∆xi = (ei · di/||di||) ei.

Using xK + f, the process is repeated, until the system state converges to within

a numerical threshold of xi at ti. That is, we find the new kinodynamic state at

ti, compute the error ei, the modified kinodynamic state using xK + f + eiφi, the

correction result di, and finally an update to the correction function

∆xi ← ∆xi + (ei · di/||di||) ei. (3.4)

Figure 3–3: Illustration showing one step of the IKD iteration at time ti. xKDi0
shows the initial KD state of the system at time ti trying to reach target xi. A
correction function computes the modified KD state x̃KDi1 which does not take into
account the dynamics of the system. We can find the projection of the error onto
the initial correction result (a prediction of the state we would get on adjusting the
correction if the system was linear). Using the scaled correction (Equation 3.4), we
produce the new KD state xKDi1 . The next iteration involves computing the new
correction function resulting in the modified KD state x̃KDi2 to reach target xi. The
iteration continues until the error e falls below a numerical threshold.
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3.2 Inverse kinematics

We use Inverse Kinematics (IK) to compute the joint displacements that will

account for the error of a skeletal pose, i.e., the difference between the end effector

of the articulated character and the desired target. IK involves solving a nonlinear

equation for the joint angles that an articulated character must have in order to

reach a given target.

We use Gauss-Newton iteration to solve the nonlinear equation f(θ) = fdesired.

Specifically, each step involves linearizing the system, so we compute a Jacobian

which relates joint velocities to a velocity of the end effector given the end effector

position of the character, meaning ṗ = Jθ̇. The end effector can be the hand, feet

or any other part of the character body. Now assume that we have a character pose

θ with an end effector p(θ) that is not reaching pi, the desired target constraint set

at time i. The Jacobian can be used to compute the joint angles’ changes to get the

end effector to the target such that p(θ) = pi. For linear cases of p(θ) the Jacobian

J = ∂dp/∂dθ will give us the desired solution. note that J is typically not square, so

we will typically need to use a pseudoinverse to find a least squares solution.

But in our skeletal examples the relationship between joint angles and the end

effector is nonlinear so we need to find the final solution by using the iteration. Since

the transpose of our Jacobian relates forces at the end effector to torques at the

joints, as an alternate way of using pseudoinverse at each iteration we can use the

transpose of the Jacobian. That can be used as a way of controlling joint angles,

because applying a force at the end effector to reach the target would cause joint

torques which is what we need to update joint angles.

12



In cases where the target is out of reach, the Jacobian can become singular and

the better solution will be to use regularized pseudoinverse or truncated singular value

decomposition. We use above techniques in our SolveIK algorithm (see Chapter 4.1)

to compute the end effector error or state displacement ei for our IKD algorithm

(see Algorithm 2). For more information, refer to a survey by Buss et al. [6].
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CHAPTER 4
KD animation and IKD scenarios

In this thesis, we look at a number of scenarios that can largely be described

as either pose constraints (as described earlier and Chapter 4.2) or end effector con-

straints (Chapter 4.1). For instance, we may want a kinodynamic skeletal animation

of a dance to produce some key poses (see Figure 4–3), or a kinodynamic skeletal

animation of a punch that actually hits the desired target at a specific time. Alter-

natively, another scenario which is important to consider is the case where we drive

a deformable mesh animation to follow a target mesh animation. In contrast to joint

angles, in this case the state is the Cartesian position of verticies in the mesh. In

Chapter 4.5, we show how this approach can be used for facial animation. Later in

Chapter 4.6 we show how the techniques used for skeletal and facial animation can be

used to control secondary dynamics of deformable objects attached to kinematically

driven bodies.

We note that the blending of the correction can be done in a number of ways. If

we only have one position constraint to satisfy in the entire animation, then it would

be possible to naively apply a constant offset to the kinematic trajectory in order to

meet the constraint at time ti. Typically we will have several constraints at different

times, so we only make a local edit to the desired trajectory (see Chapter 4.3). Any

number of smoothly shaped curves with compact support will serve this purpose, as

discussed in Chapter 7. The shape and width of the correction basis functions are

14



an important artist control, much like setting ease in ease out properties in a key

frame animation.

4.1 Skeletal animation end effector IKD

In the case of an articulated character, the state x is a set of joint angles, and

the simulation uses a PD (Proportional-Derivative) controller to follow the kinematic

trajectory (we can think of it as the target or desired trajectory). The gains of the

controller set the level of tension or relaxation of the character [17].

When editing a skeletal motion, we may wish to set constraints on the entire

pose, as described earlier, but it is also important that we are able to constrain only

part of the state, for instance an end effector at the time of a contact event. Suppose

end effector position p(x) of an articulated character must reach position pi at time

ti. In this case we have the constraint p(xKDi) = pi, and we use an inverse kinematics

solution to map the end effector error to an error in the state.

Figure 4–1 shows an example of how we solve the IKD problem of punching a

target. While the motion in Figure 4–1(a) hits the target at the desired time, we

change the motion style by adjusting the tracking gains of the physically simulated

character shown in orange, to produce the more relaxed KD motion show in Fig-

ure 4–1(b). This relaxed motion fails to hit the target, but we can solve an inverse

kinematics problem to adjust the joints of our relaxed character so that the end effec-

tor does hit the target. This IK solution pose is shown in dark blue in Figure 4–1(c).

We could make a purely kinematic fix to our KD trajectory by simply layering this

IK solution on top our KD trajectory, using a bell shaped curve to slowly ease the

correction in and out. However, this does not respect the relaxed dynamics of the

15



(a) (b) (c) (d) (e)

Figure 4–1: Illustration of how IKD is used to produce an animation of a relaxed
character that punches a target. (a) shows the motion capture at the time of contact
in both wire-frame and solid orange. (b) the solid orange character shows the KD
state of the relaxed character, which fails to reach the target at the time of contact.
(c) inverse kinematics produces the pose of the character in dark blue. (d) iteratively
computing the error and modifying the kinematic trajectory produces a KD state
which hits the target (orange). Here the modified motion capture pose is shown in
wire-frame. (e) shows the result of using a smaller temporal width for the bell shaped
correction curve, which results in more of an upper cut.

character as seen in the accompanying video1 . Instead, we modify the kinematic

trajectory used to produce the kinodynamic animation. By editing the kinematic

trajectory, we ensure a natural looking motion that exhibits a relaxed style and pro-

duces a natural follow through motion. This modification is shown in Figure 4–1(d)

and (e) for two bell shaped curves of different widths.

1 http://www.cs.mcgill.ca/˜crahgo/thesis/
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The algorithm iterates as described in the previous chapter, using an update to

the correction curve that is based on an inverse kinematics solution,

ei = SolveIK(xKDi, pi) (4.1)

where SolveIK computes a state displacement ei such that p(xKDi + ei) = pi. The

IK solver has many possible options for satisfying the constraint, and we take the

solution which has the minimum norm, but we can change the norm so that some

joints are favoured over others, and we could choose that weighting based on the

stiffness of the joint controllers. Note that the correction function update must be

modified to use the end effector error, ∆pi = pi − p(xKDi), instead of the state

displacement ei. The update becomes

∆xi ← ∆xi + (∆pi · di/||di||) ei. (4.2)

where di = p(x̃KDi)− p(xKDi).

4.2 Skeletal animation full pose IKD

As mentioned earlier in the beginning of the chapter, we can set constraints

on the state of the characters while editing the skeletal motion. So the constraint

becomes the set of all desired joint angles of the character that must be achieved to

satisfy the desired pose. The IKD can be used to compute a correction function to

satisfy the constraints as mentioned in previous section. In our examples we tested

the pose constraint on the skeletal animation of the YMCA dance.

We initially started by designing four YMCA key poses of the four letters of

the dance (see Figure 4–2) and created an animation that blends between the four
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(Y) (M) (C) (A)

Figure 4–2: The keyframed pose of the four letters of the YMCA dance.

(Y) (M) (C) (A)

Figure 4–3: YMCA dance Pose Constraints on skeletal animation. Blue charac-
ter shows the desired pose and orange character shows the KD without the Pose
Constraints.

poses. As seen in Figure 4–3, the KD animation follows the keyframe in a relaxed

way and secondary dynamics in character motion is visible due to the nature of KD

animation; however, the motion fails to achieve the correct pose. The IKD solution

gives the correction functions to satisfy the YMCA poses at the specified keyframes

and therefore a desired dance scenario.

4.3 Multiple constraints

The process of designing an animation typically involves setting multiple con-

straints at different times throughout the animation. If these events are sufficiently
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far apart, we can treat each as an independent IKD problem. However, constraints

in close temporal proximity may need to be solved simultaneously. This can happen

in a variety of ways. If the bell shaped correction curve necessary to satisfy one

constraint modifies kinematic states that fall within the temporal window used to

simulate the KD state at a another constraint, then the solution of the latter con-

straint will depend on the solution of the former. This dependence can be one way,

or both ways, depending on the temporal width of the bell shaped curves used for

each constraint, and the temporal window size used for the kinodynamic simulation.

While we may be able to solve some constraints independently, or in a specific order,

for simplicity we will make the assumption in this section that all of our constraints

are temporally coupled and must be solved simultaneously. In our multi-constraint

examples, we typically choose correction function widths that provide an ease-in tra-

jectory with a duration of approximately one or two seconds, so constraints that fall

within one or two seconds of one another will need to be addressed simultaneously.

The correction f that we must add to the kinematic state to satisfy a number of

constraints can now be seen as an interpolation function. That is, f interpolates a

set of corrections ∆xi at ti, for i = 1..N where N is the number of constraints. The

correction function interpolates using a sum of basis functions,

f(t) =
N∑
i

λiφi(t), (4.3)

where the basis function coefficients λi are computed by solving a linear system of

equations,

f(ti) = ∆xi, for i = 1..N. (4.4)
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Note that the coefficients λi are vectors with the same dimension as f, i.e., the

dimension of the state.

The adjustment necessary for the multi-constraint IKD solver is that each itera-

tion must produce an appropriate update to each ∆xi. In Chapter 3.1, we computed

numerical partial derivatives with respect to the bell shaped basis magnitude, and

found a least squares solution for the update with a projection (computed with a

dot product). In the case of two constraints i and j we have di influenced by a mag-

nitude adjustment for constraint j, but we avoid the expense of computing all the

numerical partial derivatives by fixing only one constraint at a time. Thus we have

an inner loop that consists of computing the KD state at ti, the error ei, the updated

KD state for trajectory xK + f + eiφi, the update for ∆xi (using Equation 3.4 or

Equation 4.2), and then finally recomputing the interpolation function weights. This

approach, similar to Gauss Seidel iteration, works well because the effect of φi on

xKDi is typically much larger than at xKDj.

The technique we use to solve the multi-constraint IKD problem is summarized

in Algorithm 2, and consists of a nested loop of adjusting the correction f to fix

each of the violated constraints, until all constraints are sufficiently satisfied or a

maximum number of iterations is reached.

Solving for the basis function coefficients λi is fast. To solve the interpolation

function, we can compute an LU decomposition [23], from which we can find λi

using a back solve. Repeated solves of the interpolation function can be done quickly

because we can reuse the same decomposition (the basis functions and their centers

do not change).
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Algorithm 2 Inverse Kinodynamics Multi-Constraint Solve

Input: constraints xi or pi at ti, for i = 1..N , δ
Output: state correction curve f

1: itr ← 0
2: E ←∞
3: ∆xi ← 0, for i = 1..N
4: f← SolveInterpolation( ∆x )
5: while itr++ < maximum and E > threshold do
6: for i = 1→ N do
7: xKDi ← SimulateKD( xK + f, ti, δ )
8: ei ← compute using Equation 3.2 or 4.1
9: x̃KDi ← SimulateKD( xK + f + eiφi, ti, δ )
10: ∆xi ← compute using Equation 3.4 or 4.2
11: f← SolveInterpolation( ∆x )
12: end for
13: E ← 0
14: for i = 1→ N do
15: xKDi ← SimulateKD(xK + f, ti)
16: E ← E + ‖p(xKDi)− pi‖ or ‖xi − xKDi‖
17: end for
18: end while

Note that the inner loop update could skip an update for a given constraint if

its contribution to the error was known to be small. However, the size of this error

can only be verified by recomputing the KD state as it is influenced by other changes

to f. The computation of xKDi is the bulk of the cost.

4.4 Constraining velocities

When constraining a pose or an end effector position, we might also want to set

constraints on velocities. For instance, we may want the hand of a character to touch

the surface of an immobile object. The hand end effector must satisfy both position

and velocity constraints, meaning it must reach the target at the time of contact
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and have zero velocity. The desired velocity can follow the original velocity of the

animation or can be set to achieve a different velocity at the time of the constraint.

We can solve the IKD problem for constrained velocities in a similar manner to

the position problem, and likewise solve for simultaneously constrained position and

velocity. Again, the IKD solution comes from layering a correction overtop of the

kinematic trajectory.

Suppose that at time ti we have desired state velocity ẋi, or alternatively, a

desired end effector velocity ṗi. Instead of adding a bell shaped curve to change the

velocity, we will add a wiggle to change the velocity ẋK(ti) without changing xK(ti).

We use the derivative of the bell shaped position correction basis function as a basis

function for setting the derivative,

ψi(t) =
∂

∂t
φi(t), (4.5)

though this function could likewise be selected by the animator.

For simplicity, suppose we are dealing with a set of N constraints on both

position and velocity at times ti, for i = 1...N . To deal with N position and velocity

constraints in close proximity we use an interpolation of the corrections ∆xi with

velocities ∆ẋj necessary to correct the kinematic trajectory. Thus, the interpolation

function has the form

f(t) =
N∑
i

(λiφi(t) + βiψi(t)). (4.6)

Again, the basis function coefficients λ and β can be found by solving the system of

2N linear equations for each dimension of the state, given by the required corrections
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and correction velocities:

f(ti) = ∆xi, for i = 1..N, (4.7)

∂f(ti)

∂t
= ∆ẋi, for i = 1..N. (4.8)

It is important to observe that we update the desired velocity correction ∆ẋj

by comparing the desired velocity ẋ with the velocity of the KD trajectory. The

velocity of the dynamic simulation which produces xKD(t) does not give us this KD

velocity (i.e., it is not the dynamic simulation velocity which we want to control).

Instead, we must approximate this KD state velocity from successive frames of the

KD state,

ẋKD(ti) ≈
1

h
(xKD(ti)− xKD(ti − h)). (4.9)

We measure the difference to set the velocity error ėi, with which we compute a

new KD state, and ultimately find an update to the required velocity correction ∆ẋi

(with a computation similar to Equation 3.4).

In the above example, we are considering a target velocity on the entire state. If

instead our constraint is only on the end effector of a skeleton, then the approach is

slightly different. In this case, we compute the approximate KD end effector velocity,

ṗKD(ti) ≈
1

h
(p(xKD(ti))− p(xKD(ti − h))). (4.10)

The difference between this velocity and the artist requested end effector velocity ṗi

is then mapped to a state error,

ėi = J+(ṗi − ṗKD(ti)). (4.11)
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where J+ is a pseudoinverse of the end effector Jacobian J = ∂p/∂x evaluated at

pose xKD(ti). Again, this error is used to update the required velocity correction

∆ẋi, and the process is repeated until our IKD algorithm has converged or we reach

a maximum number of iterations.

4.5 Dynamic blend shape IKD

While the previous sections focus on skeletal animation, the same ideas are ap-

plicable to elastic tissue deformation. Particularly in the context of facial animation,

this articulated deformation is tediously authored by animators by keyframing lin-

early blend shape targets. Overlaying secondary jiggle and other dynamic nuance

currently comes at the cost of letting dynamics have the “final word” on the anima-

tion, with no guarantees of hitting certain expressions. IKD allows one to overlay

this desired secondary dynamics in a kinematic setting and further specify critical

poses as target shapes to be precisely interpolated, independent of the kinematically

authored blend shape animation. A loosened facial animation can also be kept in

sync with the environment (like taking a puff from a cigarette or sip from a glass) or

an audio track by adding checkpoints from the kinematic trajectory as IKD targets,

so the final facial trajectory has a limited deviation from the kinematic input. We

implement IKD as a deformation that tracks control points on a shape using springs

and dampers as in Müller et al. [16]. Figure 4–4 shows examples of pose constraints

applied to a kinodynamic trajectory for two different characters.

The inverse kinodynamic solution follows the same algorithm presented above.

Note that the correction update follows Equation 3.4, and is very easy to compute

as we simply need the difference between the kinodynamic state and the target. The
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Figure 4–4: Two facial animation IKD examples (see accompanying video). Left,
a temporal pose constraint produces a head tilt. Right, a temporal pose constraint
produces a smile.

techniques for dealing with multiple constraints and velocity constraints are likewise

similar to those describe in previous sections.

4.6 Deformable objects secondary dynamics IKD

While skeletal motion plays an important role in character animation, the motion

of the character is not the only concern of the animators. Animators need to have

complete control over the elements in their scenes. Such elements can consist of

passive deformable objects attached to kinametically driven bodies.

Controlling secondary dynamics of such deformations can be tricky since the

motion purely relies on the kinematic motion driving them and creating their de-

formation. For example, consider a scenario where a character with a floppy hat

must walk through a door at a specific time in the animation without the floppy hat

hitting any part of the door frame.
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In such cases, the IKD can be used to control the deformable object by altering

the kinematic motion which is driving the secondary dynamics. In our test case, a

deformable hat (see Figure 4–5 a) was driven by the motion of our character’s head.

The technique for skeletal IKD described in Section 4.1 can be used here, to control

the position and velocity of the hat.

(a) (b)

Figure 4–5: KD Deformation of the hat before (a) and after (b) the IKD solution.

In order to control the position of the tip of the hat, at each time frame the tip

was considered as an end effector (see Figure 4–6) with a defined distance from the

head and the IKD was deriving the appropriate kinematic deformation to achieve the

desired scenario. As shown in the results (see Figure 4–5 b), a change in the char-

acter’s posture allows the hat to clear the door frame. The time windows selection

plays an important role in the simulation result. A good time window will produce
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a KD approximation that end up matching well enough the true dynamics and the

produced trajectory will appear to be physically correct. For the hat example, we

chose the time window based on a visual threshold where the hat vibrations caused

by the maximum acceleration of the walk motion were not visible anymore. By this

the trajectory of the hat looked natural. (see Chapter 5 for more details).

Figure 4–6: The tip of the hat is considered as an end effector of the character to
solve the IKD problem.
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CHAPTER 5
Temporal window selection

Setting the size of the temporal window δ has an important influence on the

quality and cost of the kinodynamic trajectory. We want a small window to make it

cost effective to simulate kinodynamic states on the fly, but the window also needs to

be long enough to produce the desired secondary dynamics effects. In this chapter,

we show how analysis can guide us in the selection of the temporal window size

though in many cases, it is possible to select the temporal window by hand.

5.1 Selecting temporal windows manually

While it is useful to have guidelines for choosing a good temporal window, it is

often easy to select a reasonable window by hand. This can be done by simulating

the physical system in response to an impulse and visually selecting the time at

which vibrations are no longer visible. This is the technique we use for all of our

skeletal animations. For the passive deformable systems attached to kinematically

driven bodies (our hat example in Chapter 4.6), we selected our temporal window

based on a visual threshold where vibrations caused by the maximum acceleration

of the system (i.e., the walk motion) were not visible.

5.2 Selecting temporal windows based on system’s physical analysis

The temporal window can also be computed based on the physical parameters of

the system. Consider the one dimensional example of a particle of mass m attached
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to a damped spring,

mẍ+ cẋ+ kx = 0, (5.1)

and let the initial position be zero, x0 = 0. Let Jmax be the maximum impulse

that we require to follow a given kinematic trajectory. We can also view this as

the maximum acceleration in the trajectory where ẍmax = Jmax

hm
with h being the

simulation step size. Selecting this maximum impulse as acting just before time zero

gives us a velocity initial condition for our differential equation, ẋ0 = Jmax/m, and

the exact solution (see [15] for more details) will have the form

x(t) = Aeγt sinh(ωt), (5.2)

where γ is the decay rate, ω is the frequency, and A is the amplitude,

γ = − b

2m
, (5.3)

ω =

√
b2 − 4mk

2m
, (5.4)

A =
2Jmax√
b2 − 4mk

. (5.5)

Based on the physical parameters of the system, when the trajectory is under damped

or critically damped, the function Aeγt provides a bound on magnitude of the simu-

lation. Given a minimum perceptual magnitude xmin, we can choosing our temporal

window δ by solving Aeγδ = xmin,

δ =
1

γ
ln
(xmin

A

)
. (5.6)
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When the solution is over damped, the only difference is that we must then solve for

δ as the root of a sum of exponential decays minus xmin.

Systems with multiple degrees of freedom such as our hat example in Chap-

ter 4.6, can be analyzed in a similar way, provided that we can assume that the

equations of motion are a linear ODE, or that a linearized version of the system pro-

vides good predictive behavior. Using linear (or linearized) forces at the equilibrium

pose of the system, we can diagonalize the system to compute decay rates γi and

frequencies ωi for a set of independent oscillators (see [25] for more details).

For systems with multiple degrees of freedom the equation of motion can be

written as follows:

Mẍ+ Cẋ+Kx = 0 (5.7)

where M , K and C are mass, stiffness and damping matrix. In order to simplify

the solution of our multiple DOF system to multiple superimposed linear 1 DOF

systems, we diagonalize the system by taking the eigenvalue decomposition of the

stiffness matrix (with the assumption that, the mass matrix is identity and masses

are all equally distributed). So the general form of the equation of motion can be

written such that

M̃ẍ+ C̃ẋ+ K̃x = 0 (5.8)

in which M̃ and K̃ are diagonal matrix and C̃ is dense, but can be sparse if we use

Rayleigh damping. That is, the damping will be a proportion of diagonalized M and
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K matrices:

C = (αM + βK)⇒ C̃ = diag(αmi + βki). (5.9)

The eigenvalues of the stiffness matrix will tell us about the natural vibration fre-

quencies of the system. We can do a change of coordinates using the vibration

modes Φ (the eigenvectors of our stiffness matrix) such that x = Φq. By applying

the coordinate change in our ODE we will have a new equation of motion:

miq̈i + (αmi + βki)q̇i + kiqi = 0. (5.10)

In this case the system will consist of superimposed linear systems which are inde-

pendent from each other and they can be each solved as 1 DOF systems therefore

we can rewrite the equation of motion for our system as

qi(t) = Aeγit sinh(ωit) < Aeγit (5.11)

where qi is the ith mode displacement at time t. Given the maximum impulse

(based on the accelerations of the kinematic trajectory) on each diagonalized degree

of freedom, we can then compute a conservative bound for our temporal window by

solving for δ as the root of a sum of exponential decays such that

∑
i

(Aeγiδ)2 < xmin
2. (5.12)
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CHAPTER 6
Workflow interface

In this chapter we present a workflow example. We explain how animators can

use IKD to create desired animations and we describe the types of controls they have

for editing the animations. Figure 6–1 shows a workflow for creating an animation

of a character punching a target.

Figure 6–1: Workflow frame work showing tools for animators to scrub back and
forth in animation and change animation parameters.
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The interface has a time frame slider (see Figure 6–2) that the animators can

scrub back and forth to get to a desired frame of the animation. To play the anima-

tion, three buttons can be used: play forward, play backward, and stop. They allow

the animator to play the animation and observe the result. The play speed of the

animation can be set manually. Finally, a Compute IKD Solution button is used to

compute the new IKD solution for the animation after the edits. Other parameters

such as the physical parameters of the character, correction function parameters and

animation parameters, are included within the simulation platform.

Figure 6–2: Workflow Control Panel

To start, the animator loads the punch example either by keyframing it or

importing the motion capture. The kinematic trajectory is then shown by a wirecube

character and the KD character is displayed by an orange character. The animator

can change the parameters which will influence the final pose and dynamics (for

instance, to produce a drunk character). To see the effect of the edits on the final

KD animation the animator can scrub back and forth between animation frames. If

further local edits must be done they can be performed in real-time on the character

joint angles and the KD results will be displayed realtime to the animator. This is

the WYSIWYG concept that was introduced in Chapter 1.

The animator might also need more control over the animation such as setting a

specific target in the animation for the punch (See Figure 6–3). Imagine the motion
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capture initially punches a target pi at time ti but then after changing relaxation

and tension parameters, it would not satisfy the target anymore (Figure 6–3-a). The

animator scrubs to the specific frame (ti) and sees the error in the punch and can

correct it by computing the correct IKD solution (Figure 6–3-b). If new target points

must be set, the animator sets them (Figure 6–3-c) and computes new IKD solutions

and interface displays them (Figure 6–3-d).

(a) (b) (c) (d)

Figure 6–3: (a) shows a KD state (orange) failing to punch a target. (b) is a modified
motion capture pose (wire-frame) that produces a KD state which hits the target.
The previous solution fails to punch a modified target position (c). A satisfied punch
can be achieved by recomputing the IKD solution for the new target (d).

The ability to see the effect of edits in real-time is what makes the interface a

powerful tool for animators. Besides character animation, we also include deformable

objects in our simulation and control their pose (see Chapter 4.6). We use the

interface to generate all our results as explained in the next chapter.
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CHAPTER 7
Results and discussion

Please refer to the accompanying video for examples of our results. We provide

a short description of these results, referring to Figure 7–1 which shows snapshots of

the different scenarios.

7.1 Convergence

It is important to discuss issues with the convergence of our IKD algorithm. If

there are lots of abrupt motions in the kinematic trajectory, then the resulting simu-

lation could be chaotic in nature. As such, we might not expect a small change in the

joint angles to produce a predictable result, even if we smoothly and slowly blended

in and out of this desired trajectory. While we do not assume linear dynamics, we

do assume that the function mapping xK to xKD is smooth “enough”.

While the convergence rate of our IKD algorithm depends on the actual scenario,

Figure 7–2 compares the convergence rates achieved using different temporal widths

of the correction function. Here, the IKD problem is the target punching example

from Figure 4–1, and the example motions with the two different σ can be seen in

the accompanying video.

7.2 Limitations

We note that in articulated character scenarios where we are constraining the

end effector at specific moments in time, our implementation of the IKD algorithm
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(a) (b) (c) (d)

Figure 7–1: From left to right, (a) punch, (b) control panel, (c) YMCA’s ”C” pose ,
(d) position constraint for grasp.

converges quickly, but does not make any progress once the error falls into the sub-

millimeter range. This is because we are using the Open Dynamics Engine (ODE) to

compute the simulations that produce our KD states. While repeating simulations

using the same initial conditions should produce the same results, aggressive opti-

mizations within ODE make use of randomization. This does not present a problem

as the error in end effector placement is significantly smaller than the overall size of

the articulated character.

We note that there are sometimes situations where the algorithm does not con-

verge, specifically in the case where position and velocity constraints are solved

together, for instance, when we ask for a high velocity punch that hits a target. We

can address this by only using partial updates to ∆x and ∆ẋ, and we have observed

successful convergence using half steps, though at the cost of slower convergence.
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Figure 7–2: IKD convergence rates for the punch scenario using a bell shaped cor-
rection function with different temporal widths (2, 1, 0.5 and 0.4 sec). The error
represents end effector error, measured in cm. IKD convergence can be slower when
a small temporal width is used for the correction function. Error threshold was set
to be 10−2 cm.

7.3 Timings

In our discussion of time window selection, we noted that the maximum accelera-

tion in the kinematic trajectory will influence the size of the temporal windows (large

accelerations will require longer temporal windows in order for oscillations produced

by these accelerations to become imperceptible). This is also true for the altered

trajectory which includes the correction to solve a given IKD problem. We are using

smooth bell shaped curves to add this displacement, so generally the accelerations
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due to the correction will be small. But if we set the temporal width of this curve

to be small, then the IKD solution will need to involve a very large displacement to

the kinematic trajectory to force the dynamic trajectory to the desired target, thus

requiring larger temporal windows for computing a KD state.

IKD Skeletal animation examples were generated with our Java implementation

which uses ODE (Open Dynamics Engine) to simulate the forward dynamics. Motion

capture data was obtained using a 12 camera optical tracking system. On an Intel(R)

Core i7, 3.2 GHz processor, the KD takes roughly 0.01 s to generate the resulting

frame for a time window of 0.3 s (30 frames), which allows for interactive scrubbing of

the time line. The IKD solution however depends on the complexity of the scenario

and the size of the time window and it may vary from case to case. In the example

of punch scenario the IKD takes roughly 0.2 s to compute the new solution for a

time window of 0.3 s. Figure 7–2 shows the number of iterations (i.e., time elapsed)

for the IKD algorithm to converge for correction functions with different temporal

widths.

IKD has also been implemented as a Maya 2011 deformer for control point shapes

that track a kinematic trajectory using a spring and damper simulation. On an Intel

i7, 1.87 GHz processor, the model in Figure 4–4 (approximately 1200 vertices) takes

13.56 s (of which 7.34 s is external to the KD algorithm) to update 50 frames with

a KD window of 1 s (25 frames) resulting in a reasonable interactivity of 8.03 fps.

7.4 Discussion

The shape of the bell shape curve we use to modify the kinematic motion directly

affects the motion which is produced. We use Gaussian shaped curves in our examples
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because they are simple and smooth. We effectively treat them as if they have

compact support, and could easily use any other ease-in-ease-out curve of a desired

shape and support, and we leave the selection of this curve to the animator. That is,

the width of the Gaussian is selected by the animator; a wide curve will produce a

smooth anticipatory motion, while a short curve will produce a motion that abruptly

moves to meet the constraint with a larger acceleration (and in turn, a larger follow

through). While we only look at symmetric curves, any smooth artist created ease-

in ease-out curve can be used. For instance, a non-symmetric correction curve can

be designed to create a quick reaction followed by a slow return to the unmodified

trajectory.

While we are adding constraints to deal with contact, we require the artist

to specify these constraints. While contacts may naturally happen in the dynamic

simulations that produce our kinodynamic states, we will only have a “memory” of

contacts that happen in the temporal window. For instance, we cannot correctly

handle a braid of hair which is normally at rest down the back of a character but

flips over a shoulder with the turn of a head.
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CHAPTER 8
Conclusions

In this thesis, we developed an inverse kinodynamics algorithm and created a

usable interactive kinodynamic framework for animators allowing them to control

their animation. A demonstration of the Maya implementation to a few keyframe

animators was positively received. From a workflow standpoint, the animators felt

they would have to consciously omit keyframing dynamic nuances but this would be

a welcome change allowing them focus on the primary motion. For the approach to

be used in practice they expressed a need for interface tools that make the addition

and management of IKD targets user friendly. Our current implementation, while

interactive for skeletal animation, is only interactive for shapes up to around 1000

control vertices. The vectorizable nature of our algorithm, however, makes it a good

candidate for an faster GPU implementation.

The techniques in this thesis can be used in domains where history of the simu-

lation can be omitted in order to achieve faster and computationally less expensive

results. IKD can be used in computer games where secondary dynamics need to be

added to the animation of the game objects and characters. Since computing defor-

mations and new states is history free, the game engines can benefit from IKD to

have a more physically realistic and visually plausible animation even though char-

acters and objects are changing motion by abrupt user decisions and without the

anticipation of the game engine.
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As explained in Chapter 6, IKD can also play an important role in the domain of

animation. Animators can have full power over their animations and receive instant

feedback about their changes and perform further edits. The platform can be used

as editing tools for animators to control and create new animations without worrying

about the history of their past edits and give them freedom of working on purely

kinematic animations and creating the secondary dynamics results desired in their

animation.

8.1 Future work

In future work we would like to address the coupling of kinodynamic trajectories

with fully dynamic environments via adaptive kinodynamic window sizes that are

aware of collision events and other discontinuities in a full physical simulation. The

IKD algorithm must determine the dynamic environment impulses to the system

and based on them chose appropriate time windows. The adaptive window size

calculation can be also used for convergence improvement with some limitations

(discussed in Chapter 7).

Another direction for future work includes the problem of controlling velocity.

Animators should be able to express their needs of positional constraints and the

IKD should be able to give them not only solution for those constraints and optimum

trajectory but also further edits over the proposed trajectory. They should be able

to edit the proposed path while still maintaining all the constraints.

Other future work can be in exploring the biomechanic knowledge of human

body postures in the IK solve mechanism of the IKD algorithm. The algorithm

should give the most efficient solution while taking into account the biomechanical
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human body postures. Further to this, the study of the biomechanic information

can be used as a tool to create predefined human poses for different expressions and

feelings so the algorithm can use such data while finding the optimum solution for

the problem. As an example, the solution for the punch scenario can be tailored to

represent people of different ages, body posture and state of mind while the algorithm

is using the same motion capture data and still giving the accurate results.

An implementation of the IKD algorithm can also be done in animation software

platforms such as Maya. This can help animators create their desired animations and

control the edits while adding secondary dynamics to their keyframed animation. In

summary, we propose the concept of Inverse Kinodynamics and present a first algo-

rithm which opens up new possibilities for editing traditional keyframe animations

that are augmented with secondary dynamics.
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