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Introduction 

In an industrial process we usually set up a standard far the 

quality of a given kind of product. That is, we lay down 

specifications for weight, thickness, diameter, breaking strength, 

finish, etc. by which an article can definitely be classed as 

conforming or nonconforming, even if in Many cases the specifications 

are partly arbitrary. We then try to make all units of the product 

conform with this standard. However, it is impossible to make aIl 

units exactly alike. Therefore, there is bound to be some variation 

in the quality of the product. The problem then is: how much May 

the quality of a product vary and yet be controlled? We say that the 

quality is in statisbical control if aIl of the observed variations 

lie within certain limits. Thus we see that a controlled quality is 

not a constant quality but a variable quality. 

We recognize two more or less distinct types of causes of 

variability in the quality of a manufactured product. These are 

random, or chance, causes and assignable causes. By random, or 

chance, causes we Mean the whole host of small influences lying 

behind the particular measuremant or result we happen to obtaln. 

These causes are very large in number and the effect of each on the 

industrial process is very slight. It is not possible to track down 

and eliminate these chance causes. On the other hand, assignable 

causes are those which come in intermittently or perhaps permanently 

to make changes in the process of such magnitude as to be of 

practical importance. Assignable causes, if they exist, are very 

few in number and the effect of each on the industrial process is 

marked. These causes May be found and eliminated. 
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The control chart, by helping us to locate and eliminate 

assignable causes, is a most powerful tool in achieving a state of 

statistical control in the various stages of the industrial process. 

The control chart was discovered and developed in 1924 by W. A. 

Shewhart of the Bell Telephone Laboratories. He realized that some 

of the observed variation in performance was natural to a process and 

unavoidable. But fram time to time there would be variations which 

could not be so explained. He reached the conclusion that it would be 

desirable and possible to set limits upon the natural variation of any 

process. Fluctuations within these limits could be readily explained 

by chance causes, but any variation outside these limits would 

indicate the presence of an assignable cause. The development of the 

control chart followed, whiCh provides a reasonable test for 

determining when a process can be considered to be in control. 

There are many advantages to be gained through control. As we 

proceed to eliminate assignable causes of variability, the quality ot 

the product usually approaches a state of stable equilibrium. As the 

quality approaches this comparatively stable state, the need for 

inspection is reduced. Thus there is a reduction in the cost of 

inspection. Furthermore, we have a more standard product since the 

quality of the finished product will exhibit minimum variability. 

Finally, by eliminating assignable causes of variability, we reduce 

the proportion of defectives to a minimum with a resulting reduction 

in the cost of rejection. 

Once a state of statistical control has been achieved in the 

various stages of the industriel process, as evidenced by the control 

charts, we cao be quite certain about the quality of the finished 

product. Nevertheless, a final verification of quality May be 
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desirable. Procedures such as single and double sampling inspection 

and the sequential method afford calculated protection to producer 

and consumer independently of the state of control in the industrial 

process. These are methods whereby lots of merchandise are accepted 

or rejected on the basis of a sample drawn fram the lot. This 

practice arises fram the fact that it is often more economical to 

tolerate a small percentage of defecti ves than to bear the cost of 

100 per cent inspection. 

In the statistical methods discussed above, we have assumed that 

the observations constitute a random sample from a fixed population. 

If any doubt exists concerning the rando.mness of a set of observation2 

it is necessary to test the randamness of the observations before the 

usual statisticalmethods based on randomness can be applied. The 

theory of runs provides us with a method for testing randomness which 

is based on frequency functions of runs. This method does not depend 

on the frequency function of the basis variable and ls therefore 

known as a nonparametric Methode 
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Chapter l 

Some Mathematical Definitions and Theorems 

We assume a knowledge of mathematical statistics at the 

undergraduate level. However, we introduce the following definitions 

and theorems for the sake of clarity of terminology and because some 

of these notions are not usually covered in Most texts on statistics. 

Frequency Function 

(a) Discrete Variable 

A function f(x) that yields the probability that the discrete 

random variable x will assume any particular value in its range is 

called the frequency function of the discrete random variable x. 

(b) Continuous Variable 

A frequency function (probability density) for a continuous 
• random variable x is a function f{x) that possesses the following 

properties: 

(i) f(x)!. 0 

(ii) 
.0 f t(x) dJt = l (1) 

_.0 

(iii) 
b 1 f{x)dx~P(a(,xc:.b) 

0-

where a and b are any two values of x, with a ~ b and P(a c:. X<" b) is 

the probability that x will assume a value between a and b. 

Joint Continuous Frequency Function 

A frequency function for n continuous random variables 

xl'x2' •••• 'xn is a function f{xl'x2' •••• 'Xn ) that possesses the 

following properties: 
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(i) f(xl'x2' •••• 'xn)~ 0 

QO GD 

(11) J······f f(xl'X2' •••• 'xn) dxl dx2 •••• dxn"l 
( 2) 

_ 00 - oC 

l
b", b, 

(11i) . ....... ff(X1 'X2 ' .... ,"'n) dxldx2 •• •• dxn 

&c." 40, = P(al' Xl < bl, •••• ,an <'xn <. bn} 

This is a straightforward generalization of a frequency fUnction for 

one variable. 

Cumulative Distribution Function 

(a) Discrete Variable 

The cumulative distribution function F(x) is closely related to 

the frequency function f(x}. It is defined by the relation 

F(x)= Z f(t) (3) 
r~x 

where the summation occurs over aIl those values of the random 

variable that are less than or equal to the specified value of x. 

F(xo) gives the probability that the random variable X will assume 

a value less than or equal to xo, as contrasted to f(xo) which gives 

the probability that x will assume the particular value xo. 

(b) Continuous Variable 

The cumulative distribution function, F(x), for the continuous 

random variable x is defined by 
)(. 

F(x)~ )( f(t)dt 

-00 

( 4) 

In this case F(xo} gives the probability that the random variable x 

will assume a value less than xo· 
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Change of Variable 

Ii' x::. h(y) ls a strietly monotonie funetlon of y and If f(x) is 

the frequeney funetion of eontinuous variable x, then g(y), the 

frequeney funetion of y is given by the formula 

(5) 

If f(u,v) is the joint frequeney funetion of u,v and if 

z::.g(u,v),w:.h(u,v) are f1.Uletions of u,v then the joint frequency 

funetion, k(w,z), of w,z is given by 

k(w,z) = f(u,v)1 ~(u,v) \ 
l~(w,z) (6) 

where u,v in f(u,v) are expressed in terms of w,z_ It is assumed 

\ ~I~o_ ~ 
that 

Two Types of Errors 

Consider the random variable x whose frequency funetion f(x;9) 

depends upon the parameter &_ Suppose we wish to test, on the basis 

of one observation, the hypothesis that the parameter 9 has the value 

90 against the alternative hypothesis that it has the value 91- We 

assume that there is only one alternative_ Let Ho be the hypothesis 

that 8:.ao and let Hl be the alternative hypothesis that aIL81_ 

Rejection of Ho is equlvalent to acceptanee of Hl-

To test Ho we choose a number A and make an observation Xl­

If Xl t. A we accept Ho and if Xl'7 A we re ject Ho, that ls we aceept 
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The interval X"7 A is called the cri tical region of the test. This 

is the region which corresponds to the rejection of the hypothesis 

Ho· To construct the test we have divided the x-axis into two 

regions, and this can be done quite arbitrarily. As a critical 

region we could have chosen a finite interval on the x-axis or some 

other region which wauld depend on the type l and type II errors 

discussed below. 

There are two kinds of errors possible in this test. We May 

reject Ho when it is in fact true; that is, the parameter e May have 

the value 8 0 even though the observed value of x did exceed A. This 

is called the type l error of the test. The size of the type l 

error is the probability that the sample point will fall in the 

critical region When Ho is true. This probability is given by 
00 

0( : f t{X;6o)dx (7) 

~ 

A second possible error is the acceptance of Ho when it is false; 

that is, the observed value of x May be less than A even though the 

true value of e is 91. This is called the type II error of the 

test. The size of the type II error is the probability that the 

sample point will !all in the noncritical ragion when Hl is true. 

This probability is given by 
ff 

~ ~ ~f{X;61)dX 
-00 

(8) 

A good test is considered to be one which minimizes the sizes of 

both errors. However, it is impossible to reduce both errors 

simultaneously with a single observation. The common procedure is 

to fix the type l error arbitrarily and then choose the critical 

region so as to minimize the size of the type II error. 
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We May generalize these results to samples of size n. The 

sample observation (Xl,x2, •••• 'Xn) May be plotted as a point in an 

n-dimensional space. The sample space is divided into two regions, 

the critical region R and the acceptance region A. If the sample 

point falls in R, Ho is rejected; otherwise Ho is accepted. The 

probability of a type l error is 

~, ~r(Xl;eo)r(X2;80) •••• r(Xn;eO)dxldx2 •••• dxn (9) 

The probability of a type II error is 

p' ~ r(xl;91)r(x2;91)· ••• r(xn;81)dx,dx ••••• dxn (10) 

Power Function 

The power function is defined as 

pee) : ~r(Xl;9)r(X2;e) •••• r(Xn;9)dxldX2 •••• dxn (11) 

It is easy to notice that p(eo) is type l error and peel) is 

I-type II error. 

Likelihood Function 

Consider the random variable x whose frequency function r(x;9) 

depends upon the parameter 9. Let xl,x2, •••• ,xndenote the n random 

variables corresponding to n observations of the variable x. Then 

the function given by 

~ 

L(xl'x2, •••• ,xn ;e) = nrf(X~;9) (12) . ~ 
~~I 

defines a function of the random variables xl'x2, •••• ,xn and the 

parame ter e which is known as the likelihood function. 

Suppose that the observations are obtained from n independent 

trials of an experiment for which f(x;9) is the frequency functlon 

of a discrete random variable x. Then, for any particular set of 
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values the l1kelihood functlon glves the probabl11ty of obta1n1ng 

that set of values, lncluding their order of occurrence. If, 

however, x ls a contlnuous var1able, the likellhood function glves 

the probabillty denslty at the sample point (Xl,X2, •••• 'xn)' where 

the sample space is n dimensional. 

Expected Value (Mean Value) 

(a) Discrete Variable 

The expected value of the function h(x) of the random variable 

x whose frequency functlon ls f(x)ls glven by 

E~(X)J: Z. h(x)f(x) 
x. 

(13) 

where the sum is taken over the whole range of x. 

(b) Continuous Variable 

The expected value of the functlon g(x) of the continuous 

random variable x whose frequency function is f(x) is given by 
00 

E[g(xD = !g(X)f(X)dx (l4) 

-cl> 
It Can be proved that the expected value has the following 

propertie s: 

(1) E(x+ y) = E(x) -t- E(y) 

(11) E(xy) ~ E(x)E(y) when x,y are independent 

(ili) E(ax) : aE(x), a constant 

(iv) E(a) ; a, a constant 

Unbiased Estlmate 

(15) 

Consider a random variable x whose frequency functlon ftx;S) 

depends upon a parameter S. Let xl'x2' •••• 'Xn represent a random 

sample of size n from the corresponding population and let 

t(xl'x2' •••• Xn) be any statistic being contemplated as an estimator 

of 9. The statistlc t; t(xl,x2, •••• ,xn) ls called an unbiased 

estlmate of the parameter 9 if E(t): 9. This means that the random 
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variable t possesses a distribution whose Mean is the parameter e 

being estimated. 

(a) Unbiased Estimate of the Population Mean~ 

Let XI ,xz, •.•• ,x'1 represent a random samp1e of size rf from a 
2-

population wi th Mean fA' and variance €> • Sy properties (i) and 

(iii) of the expected value we have 

feR) :: 

l'Z 
~ ~ 1 

E(.Li Xi ) ::. ~ ?-é(Xi) = ~ ~#-
1'\1- _, (~ .-1 ,_ 

Thus the samp1e Mean X possesses a distribution whose Mean is the 

population Mean jJ.' 

estimate of r-' 
Consequently, we May use x as an unbiased 

'Z,.. 

(b) Unbiased Estimate of the Population Variance' 
"-

Consider the expected value of a samp1e variance 5 based on a 

random samp1e of size n. 

E ( S ~) ::: E [ -t 10Ci - )( ) 1. ] 

= E [~ i~ ( (X'-f'-) - (x-A r J 
: E [..!... ~ (~i - fA) 1- - (i - f'-) 1. J 

'1 ,_/ 

11\ ~ 

= 1- 2.. ,l- 'x V1 "'':., 

:: 
,1._ ,,~ 

-.., 

::. h-I ,'l--
- V1 
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Thus S2 is not an unbiased estimate 
"&. 

Now E(~2} -=- n E(S2):.'. 
n-l- n-l 

'L 
of G • 

~ 

Therefore, we May use -E-.S2 as an unbiased estimate of'· If the 
n-l 

'J,.. 

sample is very large, we May estimate (; by S2 since ~.!! ... "~l. Since 
n-.L 

'" -)'"" .!!.. S'L ::. .~ (Xi. - X 

h - J '_=_1 _---:-..,-1 
we can avoid the bias in estimating variances by dividing the sum 

of the squared deviations by n-l rather than by n. 

Moments 

(a) Discrete Variable 

The kth moment about the origin of a discrete random variable 

x with frequency tunction f(x) is given by 

The kth moment about the Mean of a di8crete random variable x 

with frequency function f{x} is given by 

00 Z. ()f. -~) R ftx-) 
)( :: f) 

where ~ i8 the mean of the distribution. 

(b) Continuous Variable 

The kth moment ab out the origin of a c ontinuous random variable 

x with frequency function f{x) is defined by 
00 

~) :: lX Jc\fex) dx ~~ :: E (X 
-00 

(2.. 0) 

The kth moment about the origin of a function g(x) of a 

continuous random variable x with frequency function f(x) 18 deflned 

by 
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If g(x):. x-~ then the kth moment about the origin of g(x) would be 

the kth moment of x about its Mean. 

Moment Generating Function 

(a) Discrete Variable 

The moment generating function of a discrete random varlable x 

wlth freqlency functlon f(x) ls glven by 
~ 

2.- L 8)C. + ()<.) 

x=o 
• 

Thls serles ls a functlon of the parameter e only. The subscrlpt ls 

placed on M(e) to show what variable is being consldered. 

(b) Contlnuous Varlable 

The moment generatlng function of a continuous random variable 

x with frequency functlon f(x) ls glven by 

j"o..e. e J<. ff:!.) ,J.. )( 

-<10 

It can be proved that the moment generatlng function, Mx(e), 

consldered as a function of a real varlable, possesses derivatives 

at e ~ 0, if i t exists in a nelghbourhood including the origine It 

can also be proved that all moments exist and that Mx(e) can be 

expanded in a Maclaurin's series. We shall always assume that Mx(e) 

exists in sorne open interval about the orlgln. It can also be proved 

that, when M~(e) exlsts, differentlation under the lntegral sign ia 

permissible. 
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If we differentiate the members of the above relation k times 

wi th respect to e and evaluate the resultlng derivati ve at e ... 0, 

we have 

~ :: f x."tl><.) J X 

-fIC 

Thus the moments of a distribution may be obtalned from the moment 

generating function by differentiation. 

Properties of the Moment Generating Function Mx(O) 

If a,b are constants, then 

( i) Max ( 9) ::. Mx ( a9 ) 

(ii) Max~b(e)a eb9Mx (a9) 

(iii) MX1~X2"' •••• ~xn(9) :: MXl (9)Mx2 (9) •••• Mxn(e) 

where xl,x2, •.•• ,xn are independent variables. 

We state the uniqueness theorem and continuity theorem without 

proof. 

Uniqueness Theorem 

If F(x) has the moment generating function M(a), and M(a) exists 

for ,9\~h,h70, and if the cumulative distribution function G(x) has 

the srune moment generating function, then G(x) ::. F(x) • 
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Continuity Theorem 

Let Fn{x) and Mn(8) be respectively the cumulative distribution 

~unct1on and moment generating function of a randam variable 

Xn{n:l,2,3, •••• ). If Mn(e) exists for tel'-h for aIl n and if there 

exists a function M(9) such that lim Mn (9)= M(8) for 191'-h', then 
n-?oPO 

lim Fn(x}: F(x), where F(x) is the cumulative distribution function 
... ..:;,c:c 

of a random variable X with moment generatlng function M(8). 

The uniqueness theorem states that the distribution function of 

a variable is uniquely determined by its moment generating function 

when the moment generating function exists. The continuity theorem 

states that if one variable has a moment generating function which 

approaChes the moment generati~g function of a second variable, then 

the distribution function of the first variable approaches that of 

the second variable. 

Central Limit Theorem 
,"l.. 

For an arbitrary population with meanfV and finite variance w 

the variable à = li -:-) ~ has a distribution that approachds the 

standard normal distribu tion (''=0, b = ( ) as n ~ oI!) • 

Proof: Let Mx (8) be the moment generating function of the original 

distribution. We assume Mx(9) exists for (el~h) h?o- p~ 1:: x-J-'--

ê. -::., 

Let Mz(e) be the moment generating function of z. By properties 

Ci) and (iii) of (25) 

= 
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Mr(: '") ~ 1 +(6 ~ )!-L/ + ~ (/""rjÂ~ + ~ (69 
... r)-(, ....... 

wk )A, =- D, f-<'- :::. (S,"'L. 

~ 

T k,....." ,vr c (: Ji\) :: 1 + .!V\"1. +- Œ ' 11 ~/~ ~ ~ fi. ~ +- . . . -. 

""J(a) c...- l,.ct. ~ 

...t~(e) ~ [Mr(-fv.;)r ~ (1 .... ~ + W-}~ r 

C) 6 ;(\1\ -":> 0 

W, y\ -=> 00 (e rt>-el ) . 
L..r ~ ( J + ~ "') :: J ~ 
M Il te) = (,.,.. ~ + w- ~ .. ) VI - (1 + J" ) '" 

( 

\ l.<..r ( ,.... ~ "') 

::. 1 + ~'" ) b'" 
\.J"" w- 1 ';3 

~ (l''Ô''') 6" (1+6") ~., 
.L \..r-[ _1 J \Ar Â", 

~[cI+J.,)~~J (l''~,,)~'' 

~, ~ ..e.:: ~ (, +--k) "' . )~ J...r '" n--U~.:~rL. L-D 
tt-")oO , . /1r~-7 r 



- 16 -

w-~"" [ J- ] ...-~" 3 '-U~ .... 1 w'J"" 1- ~ ( 1 + Ô "'-) ~'" ~ -::> 0 

~ 
~ [ J-. J w-~" ~W" '" ~ (,+~",) 0'" L.. 2 

w-A"" 
1 W- A "" L. 0 

lAS'" ~"" 1 ~ ~W-A.~0 1. 
-=;:> 00 ) ~ "" ---=;> 0 ) 

. , 2 -7 n\)1....l" ~ 11\ 

. . tv\3 (ê) ~..e. 

a: 
w-

However, L"a- is the moment generating function of the standard 

normal variable (fA:'01 (9:.1 ). The central limit theorem then 

fol1ows from the continuity theorem. 

The central limit theorem states that if an arbitrary 

" population has a fini te variance G and me an p--, then the 

distribution of the sample Mean, for large n, i8 approximately 
". 

normal wi th Mean f-- and variance -t · Nothing is assumed about the 

forro of the population distribution function. 
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Chapter 2 

Control Charts 

The control chart provides a reasonable test for determining 

when an industrial process can be considered to be in control. To 

construct a control chart we take a three standard deviation band 

about the Mean of the statistic in question. We then sample the 

process periodically and plot the successive sample points on the 

control chart. The process is said to be in statistical control if 

aIl of the sample points lie within the control band. 

Consider the control chart for the Mean (figure 1). By the 

central limit theorem we know that, for large samples, the 

distribution of the sample Mean ia approximately normal with mean~ 

(population Mean). Now the control band is a three standard deviatiœ 

band about the population mean~. Thus the probability that a 

sample Mean, when plotted on the control chart, will faIl outside 

the control band is approximately equal to the probability that a 

normal variable will assume a value more than three standard 

deviations away from its Mean. This probability is .003. The 

sample size should, of course, be large (at least 50). Because of 

this small probability there will be, by chance causes alone, very 

few sample points outside of the control band. When a sample point 

does fall outside of the control band, it ia reasonable to assume 

that the production process is no longer behaving properly. That is, 

points outside of the control band indicate the presence of 

assignable causes which May be found and eliminated. We thus 

investigate only those points that fall outside of the control band. 

The control chart, by helping us to locate and eliminate assignable 

causes, is a MOSt powerful tool in controlling the industrial process. 
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We now use the results of the central l1m1t theorem to construct 

a control chart for the mean. Th1s chart 1s 1llustrated below. 

1 1 • • 
s 7 , '0 " 

Because of the results that we have estab11shed, 1t 1s not essent1aI 

that the basic var1able be normally d1str1buted for such charts; 

consequently they are of w1de app1icab111ty. The m1ddle 11ne 1s 

thought of as corresponding to the process average, although 1t 1s 

usually merely the Mean of past sample means and by (16) of chapter l 

1s expected to be a very good est1mate of the process average. 

S1m11ar1y, by (17) of chapter l we May arr1ve at a good est1mate ofb 

by tak1ng the Mean of past sample standard dev1at1ons. The other 

two I1nes serve as control I1mits for the sample means. It will be 

observed that these two control lines are spaced three standar« 

deviations fram the mean line. T1me units for successive samples 
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are recorded along the x-axis. By the argument presented above we 

know that the process is in statistical control if all of the sample 

points lie within the control band. The chart in figure l shows 

that this process is in statistical control. 

We can apply the central limit theorem to show that the 

variable ~ where x is distributed according to the binomial 
Jn ~ rtJ 

law, has a distribution that approaches the standard normal 

distribution (fA-=Oj f,-=I ) as n -::> cD. We May write 

y.-n,r- ( .~ J< i - r-) .r.1 (1 ) :: ,-1 -
J JIl 1"-1) "" 

"r-t 
where xl,x2, •••• 'xn are independently distributed according to the 

law f(x) :: r'" (1-1" Y->' (){::= 0 in Case of failure, or l in case of 

success). The Mean of this distribution ls 

1 

2. >< ",1- (. -ft-) 1-)'- == ft-
~::.o 

and the variance ls 

Thus we see that ":..:::....!!. has the sarne form as z in the central lim1 t 
itt" 11 

theorem. The theorem May then be applled. 

We May wr1te 

= 

Thusthe propertlon x/n will be approximately normally distributed 

with Mean p and variance pqfn if n is sufficiently large. 

We can use this result to construct a control chart for the 

fraction defective. This chart is illustrated below. 
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1 1 

8 10 " 

The middle line is thought of as eorresponding to the process 

proportion defective, although it is usually merely the Mean of past 

sample proportions and as such is expected to be a very good 

approximation of the process proportion defective. The other two 

lines serve as control limits for sample proportions. These control 

lines are spaced three standard deviations from the Mean line. 

Along the x-axis are recorded true units for successive samples. By 

the same argument that we used for the mean we know that the process 

is in statistical control if all of the sample points lie within the 

control band. The chart in figure 2 shows that the process is not 

in statistical control because the seventh sample point lies outside 

the control band. 

The Range 

We mentioned earlier in the chapter that we must estimate b 

by means of the sample standard deviation. Now, the repeated 

computation of standard deviations is undesirable because the amount 

of computation becomes burdensome. It is customary to use the range, 

whicA is the difference between the largest and smallest value in 

the sample, as a substitute for the sample standard deviatlon in 
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estimating ". Not only is the range easy to compute, but it can be 

shown that, for small samples fram a normal population, the range is 

nearly as efficient for estimating , as is the sample standard 

deviation. 

We will now investigate the relationship between the range and 

the standard deviation for a normal distribution. This relationship 

may be found by calculating the mean of the range R. 
f>- 0-

E(R)~ [ Rg(R)dR 

o 

(3) 

where g(R) ls the frequency function of the range and the basic 

variable x assumes values in the interval (a,b). The distribution of 

the range is developed in chapter 5. It is clear from (7) of chapter 

5 that the evaluation of E(R) will give rise to a complicated double 

Integral. When f(x) is a normal frequency function, these 

Integrations cannot be performed directly for general n; therefore 

numerical methods of Integration are required. Tables are available 

for the normal variable case which express E(R) ::}if{ in terms of " 

for various values of n. The following are a few entries from such 

a table to indicate the nature of the relationship. 

TA~LE. 

t1 '2- ~ '-1 ç 10 Su 100 

J.A.p.. 
1., ~ g 1· (,';; 2..oS9 2..~z. .. 3.o7~ ~·'/1g ~.DI:; -, 
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As an illustration of the use of the above table, consider once 

more the technique of constructing a control chart for the sample 

mean i as ~iven above. There, a three standard devlation band was 

constructed for controlling x. If the range is taken as the measure 

of varlability, , will be replaced by jJ.(l./rÂvt where dn is the value 

obtained from the table, that ls, the value of the ratio J.A.R./' 
correspondlng to the gi ven value of n. The value of J.1.R.. cao be 

estimated by using the sample Mean of the R values obtained for a 

fairly large number of sampI es of size n each. n ls usually chosen 

to be an integer near 4. Sinc~ PA is estimated on the basis of a 

large numberof samples of thls size, thls estimate ls usually quite 

accurate. 

The range has two important disadvantages. First, lts value 

usually lncreas,ss wlth n because there ls a better chance of 

obtalning extreme values lf a large sample of data ls taken than if 

a small sample is taken. Secondly, tAe range ls usuaIIy quite 

unstable ln repeated sampling experiments of the sarne slze wh en n 

ls large. But lf n is chosen less than 10, the estimation of " by 

means of the range, rather than the sample standard deviation, ls 

quite accurate. We, therefore, conclude that the range is nearly as 

good as the sample standard devlation as an estimate of ~ for 

small samples. 
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Chapter 3 

Single and Double Sampling Inspection by Method of Attributes 

In a mass production process, suppose articles are produced in 

lots of N articles each, and suppose each article, upon inspection, 

can be classified as defective or nondefective. It is often 

uneconomical to carry out a program of 100 per cent inspection. As 

an alternative, sampling methods of inspection applicable to each 

lot have been developed which have the property of guaranteeing that 

the percentage of defectives remaining after applying the sampling 

inspection procedure in the long run (that is to a large number of 

lots) is not more than some preassigned value. Such sampling 

methods have been developed and put into operation by Dodge and 

Romig of the Bell Telephone Laboratories. It should be noted that 

those sampling methods are essentially screening devices for 

reducing defectives after production, and are not devices for 

removing the causes of defectives. Dodge and Romig have developed 

two types of inspection sampling, single sampling and double 

sa~pling, which will be considered in turbe 

Sihgle Sampling Inspection 

Let p be the fraction of defectives in a lot of size N. The 

number of defectives will be pN. Now let a random sample of size n 

be drawn from the lot. The probability of obtaining m defectives 

(and n-m nondefectives) in the sample is 

::. 
( r:) . ( :-_::) 

(~ ) 

(1) 
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m:.0,1,2, •••• ,r where r is the smaller of n anG. Np. Let 

c.. 
p (tcA. ~ c.) ::: 2... P .... , t1 J ft ~ J '" 

.." ::'0 

CL...) 

If any two values of p and p' (pN and pIN being integers) are such 

that p 4:; p', then i t can be shown that 

F(~ lA &In) '7 F(C,n',tJ.l1) ),., "'.1 ,. , 

Let Pt be the lot tolerance fraction defective, that is the maximum 

allowable fraction defective in a lot, whiCh i5 arbitrarily chosen 

in advance (that is, .01 or .05). Let 

Pc. -:.. 1- ( C. J ft, ) tJ) l'1 ') 

PL is known as the consumer's risk; it is approximately the 

probability that a lot with lot tolerance fraction defective Pt 

will be accepted without 100 per cent inspection. It follows from 

(3) that if the lot fraction defective p exceeds Pt then the 

probability of accept,ing such a lot on the basis of the sample is 

less than the consumer's risk. The probability of subjecting a lot 

with fraction defective actually equal to ~ (process average) to 

100 per cent inspection is 

= (5"" ) 

which is called producer's risk. It will be noted from (3) that the 

smaller the value Of~ , the smaller will be the producer's risk. 

The producer's risk and consumer's risk are highly analogous to 

type l and type II errors, respectively, in the theory of testing 

statistical hypotheses as developed by Neyman artl Pearson. 

Suppose we make the following rules of action with reference to 

a sampled lot where C. is chosen for given values of Pc,pt,N,n: 
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(a) Inspect a sample of n articles. 

(b) If the number of defectives in the sample does not exceed c, 

accept the lot. 

(c) If the number of defectives in the sample exceeds c, inspect 

the remainder of the lot. 

(d) Replace all defectives found by nondefective articles. 

Let us consider the problem of determining the mean value of 

the fraction defectives remaining in a lot having fraction defective 

p, after applying rules (a) to (d). The probability of obtaining m 

defectives in a sample of size n is given by (1). If these m 

defectives are replaced by nondefective articles and the sample is 

returned to the lot, the lot will contain pN-m defectives. The 

fraction of defectives reamining after applying rules (a) to (d) has 

ttN'- ~ the distribution w with probability Pm,n,pN,N for 

m:.O,l,2, •••• ,c. Thus the Mean value of the fraction defectives 

reamining after applying rules (a) to (d) is 
c.. 

- 2. 0:- M

) p~J~)"W/~ 
tI1 =0 

(lJ,) 

Note that when m~c the fraction of defectives after inspection is 

equal to zero since aIl defectives are replaced by nondefectives. 

The statistical interpretation of (6) is as follows: If a large 

number of lots each with fraction defective pare inspected 

according to rules (a) to (d), then the average fraction defective 

"'"' in all of these lots after inspection is ~. For given values of 
,.".... 

c,n, and N, r is a tunction of p, defined for those values of p for 

which Np is an integer, which has a maximum with respect to p • 
.-,... 

Denoting this maximum by rL ) it is called average outgoing ~ality 

limite Tt can be shown that the larger the value of p, beyond the 
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""" "'" value maximlzing r the smaller w.;ll be the value of r . The 

reason for thls ls that the greater the value of p the greater the 

probabillty that each lot will have to be inspected 100 pel' cent. 

If the consumer's risk, n, and N are chosen ln advance, then c 

"" and hence hL. ls determined. Thus, we are able to make the 

following statlstical Interpretation of those results: If rules 

{a} to (dl are followed for lot after lot and for given values of 

c,n,N, the average fraction defective per lot after inspecti on never 

"" exceeds ft", no matter what fractions defective exist ln the lots 

before the inspection. 

There are various combinations of values of c and n, each 
"'" ""'" having a ~ wi th maximum l'tL. (approxlmately) wi th respect to p. 

The Mean value of the number of articles inspected per lot 

for lots having fraction defective p is given by 

I -= ~ ..... (Al - Y\ ) [ 1 - f (c) ~ J Il J ~) ] (7 ) 

since n (the number in the sample) will be inspeeted in every lot 

and N-n (the remainder in the lot) will be inspected if the number 

of defectives in the samp1e exceeds c. 

There are two methods of specifying consumer protection. 

(1) Lot Quality Protection 

By consldering the varlous combinations of values of c and n 

corresponding to a glven consumer's risk, Pc, and lot tolerance 

fraction defectlve, Pt, there Is, in general, a unique comblnatlon 

for p = J'l and for glven N for which l ls minlmlzed. 

(2) Average Quality Protection 

Slmilarly by conslderlng the varlous comblnatlons of values of c 

""'" and n corresponding to a glven average outgolng quallty 11mlt'r~) 

there ls, ln general, a unlque comblnation for p::; J1 and for glven N 
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for which l is minimized. 

In both Cases the amount of inspection is reduced to a 

minimum which is valuable trom a practical point of view. Extensive 

tabulations of pairs of values of c and n, for given values of 

"'" consumer' s risk, Pc, and outgoing quali ty limit, PL) have been 

prepared by Dodge and Romig. 

As an illustration consider a lot of 1000 piaces for which the 
-

process average fraction defective is p = .o( and for which the 

consumer is wUling to assume a risk ot Pc = .10 of accepting a lot 

wi th a fraction defective of Pt:. .05. . By allowing c to assume small 

integral values and working numerically by trial and error methods~ 

it will be found that the minimum amount of inspection will occur if 

a sample of 130 is taken and if the maximum allowable number of 

defectives is 3. With these values of n and c, it will also be found 

that the mean number of pieces inspected will be 164 so long as 

production remains in cantrol. If the consumer requests an average 

"'" outgoing quality limit of, say, h~ : .O~) the minimum amount of 

inspection will occur if c ~ 2 and n:: 44. These results are easily 

obtained by consulting the Dodge and Romig tables. 

Double Sampllng Inspection 

In double sampling inspection from a given lot of size N, the 

procedure for taklng action regarding a given lot is as follows: 

(a) A first sample of size n, ls drawn from the lot. 

(b) If the number of defectlves is ~ c" the lot is accepted 

without further sampling. 

(c) If the number of defectives in the first sample exceeds c2, 

inspect the remalnder of the lot. 
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(d) If the number of defectives in the first sample exceeds cl 

but not c2' inspect a second sample of size n2. 

(e) If the total number of defectives in both samples does not 

exceed c2, aCcept the lot. 

(f) If the total number of defectives in both samples exceeds c2' 

inspect the remainder of the lot. 

(g) Heplace aIl defectives found by nondefective articles. 

As in the case of single sampling, we have two kinds of 

consumer protection: (i) lot quality protection and (ii) average 

quality protection. 

Consumer risk, the probability of accepting a lot with fraction 

defective Pt without 100 per cent inspection, is given by 

Co • . (;"'_(. ',,--c, - f. 

Pc:.: 2.. PM,rtl)~t~)~ .... ,z.. ~(PC.,+L) rt,,;'r/,"') C p~)~'")jtrp-c,-t.,jV-rl,) Lg) 
t-\:O ,~I "'-0 

The single run in this formula is simply the probability of 

accepting the lot on the basis of the first sample and the double 

sum is the probability of accepting the lot on the basis of the 

first and second samples cambined after having failed to accept on 

the basis of the first sample alone. 

The mean value of the fraction defectives remaining after the 

defectives have been removed by the double sampling procedure, for 

lots having fraction defective p originally, is given by 

(~) 
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The Mean value of the number of articles inspected per lot for 

lots having fraction defective p is 

where Pc is the value of the probability given in (8) with Pt 

replaced by p. 

'" Far given values of N,nl,nZ,cl,cZ, p is a function of p, 

defined for those values of p for which Np is an integer, and has a 
1\..-

maximum value J'l L-) the average outgoing quali ty limite For a given 

value of N there are 

yield the sarne value 

Many valUds of nl,nZ,cl, and c'2,. which will 
"l-

of ft L (approximately), or will yield the sarne 

consumer risk (approximately) for a given lot tolerance fraction 

defective. Dodge and Romig have arbitrarily chosen as the basis for 

the relationship between n's and c's the following rule: To 

determine nI and nZ such that for given v&ues of Cl and cZ,nland Cl 

provides the sarne consumer risk (approximately) as nlTnz and cZ. 

Even after this restriction there Is enough choice left for 

combinations of nl,nZ,cl,cZto minimize 1. To determine the n's and 

c's under these conditions for given N, for given consumer risk, 

(or average outgoing quallty) involves a considerable amount of 

computation. Dodge and Romig have prepared tables for double 

sampling analogous to those for single sampling. 

For a given amount of consumer protection, a smaller average 

arnount of inspection ls required under double sampling than under 

single sampllng, particularly for large lots and low process average 

fraction defective p. 
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Chapter 4 

Seqgentlal Method 

In industrial sampling inspection we are interested in 

minimizing the amount of inspection needed to attaln certain 

objectives. We stated in the preceding chapter that double sampllng 

requlres, on the average, fewer observations than single sampling to 

achieve the sarna results. However, these methods requlre that the 

sample size be fixed in advance. In the sequential method the sample 

size is not fixed in advance but is determined durlng the course of 

the sampllng which May terminate at any observation. Using thls 

method we often arrive at a decislon with fewer observations, on the 

average, than the fixea size sample method possessing the sarne 

type l and type II errors. The saving in observations ls sometimes 

more than 50 per cent with a resulting decrease in the cost of 

sampling. Sequential testing has been developed only for the case 

of testing an hypothesis Ho against a single alternative Hl. 

However, in practical problems this restriction is not serious since 

we can almost always frame the test in terms of a single alternative. 

The reason for the advantage of the sequential approach over the 

fixed size sample approach lies in the ability of the sequentlal 

method to reach an early declsion for sam~les that are extremely 

favorable to either Ho or Hl. This ability to arrive at an early 

decision is very useful in sampling inspection where it is not 

uncommon for lots to be very bad when they are bad or very good 

when they are good. 
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For the purpose o~ describing a sequentiel test, consider a 

continuous random variable x whose frequency ~nction f(x;e) depends 

upon the parameter 9. Although the sequential test will be described 

~or a continuous variable, it may be applied to either discrete or 

continuous variables. Suppose we wish to test the hypothesis that 

9:. 9 0 against the alternative hypothesis that e: 91. Let Ho be the 

hypothesis 9c 9 0 and let Hl be the alternative hypothesis that e =-91. 

Observations are denoted by xl,x2, •••• where the subscripts give the 

order in whiah the observations are taken. 

The sequentiel test employs the likelihood ratio 
~ 

TT t(X, j e,) 
è..:"1 

) 
( Wt ~ 1) 'Z..) •••• ) 

"'" rr t (x~ ) eo) 
L~I 

and two positive numbers A and B, with A7 1 and B' 1. As 

observations are made, we compute the ratios AI) ~'\".J ~~) •••• and 

continue taking observations as long as 

(2.-) 

I~ for some m Â~ ~ B)Ho is accepted and the test is completed. I~ 

A",,!A ~or some m, Ho is rejected (that is Hl is accepted) and the 

test is completed. The procedure then is to continue sampling until 

Â~ ~alls outside the interval speci~ied by (2). The sampling then 

ceases. Thus we must decide at every stage o~ the sampling whether 

to accept the hypothesis, to reject the hypothesis, or to continue 

sampling. 



- 32 -

We will now show that the sampling cannot go on indefinltely. 

Let 

= 

Then ~ will have sorne frequency function, say g(b)' whiCh is 

determined by the frequency function of x. The sequence of 

observations xl'x2' •.•• determines a sequence of b observations 

dl , ~ ... , . . .... The inequality (2) becomes 

MIt 

~fl ~ (3 L ,~ ~~ L 

where log B is negative and log A is posi ti ve (sinee B "- l and A 71) • 

Let e = log A-log B and let p be the area under g(~) between -c and e 

,(}) 

FIGrVAE. 1. 

If any one of the ~i falls outside the interval -e to e, the 

inequality (4) will be violated. Of course the inequality (4) May 

be violated even though aIl the à'S do fall in the interval -c to c. 

Thus if (4) is to hold for all m, at the very least everYJ~ must 

fall between -e and e. The probability that every à~ falls in the 

interval ls pm for the first m observations. This probability 

approaehes zero as m increases, since p is less than 1. Thus (4) 

cannot remain true indefinitely. It follows that the sampling will 

terminate after a finite number of observations. However~ we never 

know how large a sample will be required to arrive at a declsion 

because n, the sample size, ls a random variable. A general formula 
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does ex1st for calculat1ng the Mean value of n, so tbat we can 

determ1ne 1n advance how large n 1e likely to be. We state thie 

formula without proof. 

P(8) ~ A + [1 - pœ) ] ~ B 

E(~) 

where p(&) ie the power fUnction ( (11) of chapter 1 ) of the test 

and J ,A,B are def'ined by formulas (3), (6), (7) respectively. 

The exact values of A and B are not available. However, 

excellent approximations are given by choosing 

-~ 
01.. 

where ~ is the type l error and p i8 the type II error. It ie 

beyond the scope of this thesis to discuss in detail the derivation 

of' formulas (6) and (7). However, we can indicate briefly, if' not 

completely, how these formulas are obtained. Suppose A.~ were a 

continuous functi on of a continuous variable m so tha t Â"" could be 

plotted as a curve aga1nst m. Suppose the test were performed by 

moving out along the maxis until Â"", first equaled A or B. That 

is, the test is continued as long ae (2) 1s true and ceases when 

ei tber Â~: B (Ho accepted) or ~",,: A (Hl accepted). At aIl points 

of the sample space where Ho ls accepted, the likellhood of Hl, 
~ L,,:, El 

say Ll, is exactly B times the likelihood Lo of Ho, since 1\: ILo 

at these points. Therefore, the integral of LI, over these points 

is exact1y equa1 to B times the integra1 of Lo over those points. 

But the first integra1 is ~, by (10) of chapter 1, and the second 

is l-o«the probability of accepting Ho when it ia true). So we 

--- -------- - --- - -----------------------------
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would have ~ exactly equa1 to B(l~) ir continuous sampling were 

possible, and (7) wou1d hold exactly. By a siml1ar argument at 

Â"" ':. A, (6) would be an exact equali ty 1r m were a continuous 

variable. Since m is a discrete variable, rormu1as (6) and (7) are 

approximations. Investigations show that the error in using 

rormu1as (6) and (7) ls qulte small when both ~ and pare 1ess than 

one-haIt. 

Equations (6) and (7) make the actua1 performance of a 

sequential test very simple. We merely select ~ and p arbitrarily, 

compute A and B, and proceed with the test. The sequential test May 

be summarized as rollows. To test the hypothesis Ho against the 

alternative hypothesis Hl, calculate the likelihood ratio ~"'" and 

proceed as follows: 

(i) 9t 1~ '"" P CL~u,x J-l o - - ) 
1-0( 

,~ Â"", ;1 tJ3 7;;;< Il. (~ If,) (g) 
(L~ ) -

~ 

~ -

Using this method we can decide in advance what size type l and 

type II errors to tolerate, rather than fix the type l error and 

then be forced to calculate the type II error as is usually done 

in rixed size samp1e tests. 
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As an example or how a sequential test is constructed, 

conslder the problem or testing whether the mean or a normal 

variable with variance l has the value eo or the value 910 Ho ls 

the hypothesis that e:. eo and Hl is the alternative hypothesis that 

-f ('1- j 6l) = 

li) 

::. 

it ,e.- ~ (X t - e o) '-

~ :., 

~ C .. ) ') (g) .~ 
n~ '-c.' 

~ ~ 
<:- ~ A~ 

J -0(. 

1 
-"î 

M-I 1.. 

'2-. (Xi - 6,) 
t.';., 

~ t; 

L ea ~ 0<.. 

~ ~ ~ ~ ~ 1-tN 
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As a numerical illustration, suppose that 

c( ::. • 0'; 1 P. = .10 J 8 0 :: '1. 'i" J éJ 1:: 10 

The last inequality then becomes 
~ 

-4.5"0 't" 'f.7~ ~ ~ ZX~ <::.. !l-.7~ ~ 9·7:;wr 
i. :0, 

The test now proceeds as follows:-

1/1.-\ 

(ii) 7~ ~ X ~ ~ - e ~ 10 

( :. c 

(iii) If neither inequality is satisfied take another observation. 

As a second example, consider the problem of testing whether 

p:. Po or P :. Pl for a binomial distribution. If we choose x:: l for 

success and x = 0 for failure, f(Xie) will be given by f(l;p) :: p and 

f(O;p) = q. Suppose that the first m trials of the event produced 
M 

dm successes. Then the likelihood function Tf f(xi;e) will consist 
i.:., 

of the product of pts and q's, a p occurring as a factor whenever 

a success occurred and a q otherwise. The likelihood ration (1) 

then becomes 

",<AM 
M-cJ.W\. 

A"-\ - U' -

c.(~ tf;t - cl. -. 
(t0 7;0 
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If we substitute this expression in the sequential test and assign 

numerica1 values to Po,PI,~,r, we May proceed as we did in the 

previous examp1e. 

Suppose Po':: .5, Pl':: .7, 1( = .10, F= .20 

~ ~ J - P' g 
~ J =. 

,-1( 'ï 0( 

cl"", Wl-cf.""" (~) '" ~) J "" 
.Â~ :: (.7) ~~) ::.. 

_) ~_ _) ",-olw.. 
(.~ (.~ 

Inequality (i) in the sequential test gives 

~ ,-0( 
L. ~. (;. )M (~) c1~ ?.. -

'1 

This can be written more convenient1y in the forrn 

lso 
'Z. 

~ 
.L 

c1~ 
(;.. '1 W1 ~ 

+ 

~ 
1.. ~ 

:L 
~ ~ 

In a simi1ar manner inequality (ii) in the sequential test gives 

A~ 7 1- ~ - 0<. 

l ~ 
~ 

, 
t:Â nA 

"7 ~ 
<.. • .Il. . ~ 

"..., 

l ~ 
Î 

'1 ~ ":?> 
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If these logs are evaluated, the test proceeds as follows : 

~ CI. ~-c~ ft:..~-c. -
(ic') 't d~:7 2-.y{ + ' ~o~"'" J ~ ft ~ .1 

. . ~,-r-A _"/ -ca.k ~ ~ 
(l~n 76 ~ ~ v, (~,---

For the purpose of determining when one of the inequalities la 

satlsfled, It ls convenlent to represent these inequalities 

graphically (Figure 2). If m,dm are treated as the coordinates of 

a point, the straight lines 

cJ.'M.. '=- - 1.1 g +-. (,03 t\i 

will serve to divlde the m,dm plane into :3 regions corresponding to 

the 3 possible deciaions at each trial. 
coi",,-

The testing is continued only until the sample point crosses one 

or other of the two decision boundaries. These boundaries may be 

infinitely long, but in practice they are usually curtailed to 

force a deeision one way or the other after so many trials. We 

proved that the probability is l that the sequential test will be 

eompleted after a finite number of observations. 
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As we stated earlier, sequential methods orten reduce 

considerably the smnple size needed to arrive at a reliable decision. 

In the preceding example it can be shown that a fixed size sample of 

approximately ~~ will be sufficient to arrive at a decision. It 

can also be shown, in the theory of sequential analysis, that the 

average size sample needed to arrive at a decision in this example 

is approximately 13. 
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Chapter 5 

Range and Tolerance Limita 

Range 

In chapter 2 we saw that the range waa useful as a substitute 

for the standard deviation as a measure of variability in industrial 

quality control work. We will now derive an expression for the 

frequency tunction of the range. 

C i d d l t 1 t d f l ti ons er a ran om samp e xl'x2' •••• ,xn rawn rom a popu a on 

whose frequency function is f(x), which is assumed to be continuous. 

Let these sample values be arranged in order of increasing magnitude, 

and denote the ardered set by xl'x2' •••• ,xn • Now consider the 

problem of finding the probability that the smallest value XJ. and the 

largast value xn will fall wi thin specified intervals. The 

frequency tunctlon of the range can be found qulte easlly by means 

of this probability. 

Let the x-axis be divided into 5 intervals (-GO} 0..), «(.(.,(4.,..4",,-), 

(u.. .... D14, \or), (\T) u-+t:l\r») Cu-+aU')CIO),where uc..v are 8Il'Y two values of x. 

The probabl1lty that x will fall in any particular one of these 

lntervals is given by the integral ot tex) over that interval; hence 

the probabl1ities corresponding to these 5 intervala can be written 

down even though they cannot be eval uated unless the form of f(x) i8 

known. Let 

v-+a~ 
v-

p~ = f +C)C)d.l< ) r~ , 1 tl!<) J )(. ( 1 ) 

u. ... Ol..\. \}'" 
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Now let us determine the probability that in a sample of n 

values of x we will obtain no value in the first interval, at least 1 

value in each of the second interval and the fourth interval, and no 

value ln the fifth interval. This procedure ls equlvalent to findlng 

the probability that the smalles t value in the sample will fall 

between u and u+4",- while the largest value falls between v and \1"+(1,,_ 

The deslred probability can be obtained directly :t'rom the multinomlal 

distribution by treating x as a discrete variable which can assume 

only 1 of S possible values corresponding to the S intervals. If Pl 

and Ps denote the probabilities that x will fal1 ln the flrst and 

flfth Intervals, respectlvely, tke desired probabl1ity ls given by 

the following sum 

For the last sum of (2) at least one of i,j should be greater than l, 

while the .first term of (2) corresponds to the case when i ::. j :.1 and 

consequently n-i-j :. n-2. Now (2) reduces to 
. .. -'-~ Pif ~ ,,- }.. 

2. rd F'l..e. ~ (~-I) Pl.. PLI ~ + '-! (~- i.-~) ~ ~ '. 
p~ (3) 

. . 
(.)~ 

(3) can be simplified somewhat by simplifying the integrals of lI). 

Sinee f(x} is assumed to be a contlnuous function, the Mean value 

theorem for integrals May be apnlied here. This theorem states that 

if f (x) is continuous on the interval (fl) (3 ), then 

p f -H~),,{ 'A. ~ (p -ot.) f<l:) J 

0( 
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a direct application or this theorem to (1) gives, 

P"1. = Au.,· f C CA 'T (J, a ~ ) } 
o = 6, ~ , 

L\,,". f(v-+ ~I- ~ v-) o = e)..!:: \ 

P"t ;. ) 

\r"' \.T' u.+ Ll Lt. 

r~ -:: [+fa:~~ ~ I!(k)d~ f f(y.) d~ 
L..L. 

""' 
= f fil<) d. .. - du..· f ( u.. of- e, LI u.. ) 

"-

If these values for PI-' p~ , P't are inserted in (3), it becomes ft-l.-

"( ,,_,) + (v-+ ~.a",) + (t.r+ eL 4 1r{/f)o/~ -Ll"'+-( .... + e,4"'~A ... 4" 

where at least one of i,j in the above summation is greater than 1. 

This expression is the probability that the smallest value of 

the sample, xl' will lie between u and u +4l.(., and at the same time 

the largest value of the sample, xn, will lie between v anàu-+Llv-. 

X, 
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Geometrically (4) gives the probability that the point (Xl,Xn) 

will lie inside the rectangle sketchdd above. In order to find the 

rrequency function or the two variables xl and Xn at the point (u,v) 

it i8 necessary to divide (4) by the area of the rectangle, namely 

A Lt. A.r ) and t ak e the 1 imi t or the re al 1 t ing quot ien t as A lA.. and Ll v­

approach O. Ir this frequency function is denoted by f(u,v), it 

following trom (4) that 
\r ~-"'1-

t(u,v) = n(n-l)f(u)f(v) [ lIA.. ft~) d.)( J 
In the second term of (4) at least one of i, j ~ 1. Therefore, as 

c1 \A. and ll\r approach 0 so does this terme 

Since f(u,v) is the rrequency function of the variables xl and 

Xn at the arbitrary point (u,v),(5) gives the desired joint frequency 

function of the smallest and largest values of a sample of size n. 

We May state our results as follows: 

If u and v denote the smallest and largest values, respectively, in 

a random srumple of size n from a population with the continuous 

rrequency runction r(x), then the joint rrequency function of u and v 

is given by (5). 

The frequency function ror the range can be obtained very 

quickly from this result. Let R = v-u represent a change of variable 

tram v to R with u held rixed. Then by (6) or chapter 1 the joint 

distribution of u and R is glven by 

lA-t~ 

., (., -,) t l"'-) t (IA+R) [ i f .. )d ... ] ((, ) 
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In order to obtain the frequency function of R, say g(R), it is 

necessary to integrate g(u,R} wlth respect to u over the range of u 

when R Is fixed. If the range of x is from a to b, then the range 

of u with R fixed will be from a to b-R. This upper limit arises 

from the fact that u is always R units smaller than v and v cannot 

exceed the upper limit b for x. We may express these results as 

follows: If the continuous variable x has the frequency function 

f(x) and if x assumes values in the interval (a,b) only, then the 

frequency function of the range, g(R). for a randam sample of size n 

is gi ven by 

Toleranc~ Limits 

Consider the problem of determining the range of v.riability 

of sorne quality characteristic of a product coming off a production 

lins. The producer is interested in knowing how this characterlstic 

varies, because the consumer may reject a purchased lot if the 

variation is beyond certain limits. If it is known that the 

characteristic is approximately normally distributed, normal curve 

methods based on the sample mean and sample standard deviation can be 

used to determine an interval within whiCh the characteristic wou14 

be expected to lie. Experience might show, however, that the 

distribution of the characteristic differs considerably from 

normality. Therefore, we require a method for determining such an 

lnterval without the necessity of a normality assumption. We will 

now discuss a method whiCh does not require a knowledge of the form 
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of the frequency function. Such a method ls called non-parametrlc. 

Let a sample of size n be drawn from a population with the 

frequency function f(x) whiCh is known to be continuous but otherwise 

unspecified. Consider two functions of the sample, Ll(xl'x2' •••• 'Xn) 

and L2(xl'x2' •••• ,Xn), such that ],1 ~ lL2, and sucll that a fixed 

percentage of the population may be expected to lie in the lnterval 

(Ll,L2) regardless of f(x). Functions such as LI and L2 are called 

tolerance limits. By Choosing the functions LI and L2 so that a 

high percentage of the population will ordinarily be found to lie in 

the interval (Ll,L2), the desired interval will be obtained. If 

LI and L2 are chosen as the smallest and largest value s, 

respectively, that occur in the sample, it will be found that the 

percentage of the population which can be expected to lie between 

LI and L2 does nct depend on the form of f(x). 

Since the variable x possesses the continuous frequency function 

f(x), we may apply the relationship (5) establiShed in the preceding 

section. Thus if u and v denote the smallest and largest values, 

respectively, in a random sample of size n from a population with 

the continuous frequency function f(x), the joint frequency function 

of u and v wl11 be given by 
\..r-

f (IA)"-) ~ .. ( ... - ,) t(u.) t 6,) [[ +I.XJ cl", J .. -"L 

Now the integral ~~x ia precisely the desired proportion of the 

population lying between the extreme values of the sample. 
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Consider the frequency functlon of w and J' say k(W'J}' where 

: !flX) dx 
-00 

(8) 

By (6) of chapter 1 lt follows that 

Now the frequency functlon of z, say h(z), may be obtained by 

lntegratlng k(w,z) with respect to w over the range of w when z is 

flxed. Observe that w~z ls the probabl1ity that x will not exceed v. 

Theref ore, w+ z = 1. Since z is fixed, w can assume value s fram 0 to 

l-z only. Thus 

We May state our results as follows: 

'1 (~-I) ~~-1.. ( 1-3) 

Qo) 

If a varlable possesses a continuous frequency function and if z 

denotes the proportion of the population that lies between the 

extrema values of a random sample of size n drawn from this 

population, then the frequency function of z 1s glven by (10). 

As an example conslder the problem of determining how large a 

sample must be taken ln order to be certain with a probability of 

0.95 that at least 99~ of the population will lie between the 

extreme values of the sample. The solution is given by determining 

the value of n that satisfies the equation 
, 

f h[~) db : 
, 9 'i 
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If the value of h(z) given in (10) is inserted and the integration 

is performed, this equation becomes 

· 9~ 
.... -, 

which simplifies to 

It will be found by trial and error methods that the integer that 

most nearly satisfies this equation is n = 473. Thus a sample of 

size 473 is required in order to he certain with a probabi1ity of 

0.95 that at 1e8st 99% of the population will Ile between the 

extreme values of the sample. It ls clear from thls example that a 

very large sample is necessary before the extrema values will suffice 

to set limits withln which practlcally aIl the population would be 

expected to lie. 

The transcendental equation that arises ln determinlng the 

value of n for problems of this type ls not easy to solve. 

Consequently a simple approximate solution is hlghly desirable. Such 

an approximation, whiCh ls surprlsingly good, ls given by the formula 

V1 -
_1 X-~ I+J + ..L 
Y I-J"'1- (II) 

Where , is the proportion of the population to be covered by the 
. L 

sample range, 0( is l minus the deslred probability, and 1-0( ls the 
~ 1,.. 1. J 

value of JL for 4 degrees of freedom for which p(~ 7 ll~ ) = ~. 

If formula (11) is applled to the above problem, we get 

V1 
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Chapter 6 

The ory of Runs 

In the statistical methods that we have considered in the 

preceding chapters, we have assumed that the observations constitute 

a random sample fram a fixed population. However, we May suspect, 

when we take a set of observations over some time interval, that 

these observations do not behave like a random. sample. It then 

becomes necessary to test the randomness of the sample before the 

usual statistical methods based on randamness can be applied. The 

object of this chapter is to discuss a method for testing randomness 

which is based on frequency functions of runs. This method does not 

depend on the frequency function of the basic variable and is 

therefore known as a nonparametric Methode 

Consider an arbitrary sequence of n elements, each element being 

one of several mutually exclusive kinds. Each sequence of elements 

of one kind, bounded by elements of another kind or no element, is 

called a rune The simplest case is that in which there are two 

kinds of elements. We Sha1l consider this case in detail, and also 

briefly mention some results for the case of several kinds of 

elements. 

Two Kinds of Elements 

Suppose we have nI a's and n2 b's (nl .... n2= n). Let rIj denote 

the number of runs of a's of Iength j and r2j denote the number of 

runs of b's of length j. For ~xample, if the arrangement is 

aaabbaabaabbab 

then rll':. l, r12:' 2, r13:: l, r2l:' 2, r22:' 2 and the other r' sare 

zero. 



- 49 -

Observe that ~ jrlj :: nI' the number of a' s, and ~ jr2j : n2' the 
a ) 

number of b' s. Let rI ~ f rI j and r2:: rr2j denote the total number 

of runs of a's and b's respectively. For a given set of numbers 

rlnl there are Vi l ways of arranging 
Yi, ~ Yi,..! .. ' . Yi",,! 

the 

rI runs of ais. Similarly there are y", ! ways of 
V'J" ~ Yz,,1- ! ... . .. Yl.t'J1. ~ 

arranglng the r2 runs of b's. 

Since the runs of a's and b's alternate, elther rl= r2,rl= r2-1, 

or rI:' r2+1. If rI:: r2+1, the sequence must begin and end wi th 

an a. If rI:: r2-1, the sequence must begin and end with ab. 

However, if rI:: r2 the sequence can begin wlth elther letter. For 

the first two cases there Is no cholce of beginning letter. However, 

for the third case (rI = r2) a glven arrangement of runs of a' s can 

be fltted Into a given arrangement of runs of b's ln two ways, either 

with a run of aIs flrst or with a run of bIs first. Therefore, for 

the third case the number of arrangements Is twice as large. In 

every case the total number of ways of gettlng the set rij (i:: 1,2; 

j=1,2, •••• ,ni) is 

v;! 
'1" ! Y, ... ' ...... . y, ri, 1. 

} l.. 1 Y, = .y t.. 

l , . ~ Y, ~ y,.. 

(1 ) 

Since there are possible arrangements of aIs and bIs, each 
tt, ~ n'a. ~ 

of which is equally likely, the joint frequency function of the 

glven set rlj Is 

Y, '. • F (VZ' Y'I.) 
tt 1. 

11,'.111 ..... '. 

Yi, ~ y. ~ ~ ., .. . Y, ri l '. 
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Now let us determine the joint frequency function of the rl~ • 

It is easier at tirst to f'ind the joint frequency function of r.~ 

and rz.. To do this we sum (2), for fixed r/~ and rz.., with respect 

Y'L '. to aIl r~~. We wish to sum the multinomial coefficient 
'1'-" "h.. y1.I!Y" ... )..! •. . . '(~" ... ! 

for aIl rl-~ such that ~ ~ y"&. ~ : Vh.. o.-J. 2. y"'l.~ ~ Y.,.. 
~:, ~::'I 

In order to do this, consider the muItinomial expression 

rh.) y~ (X i-)( l.. + . ... ~ >( 
- 4( Y ... '. 

h, + 1... 'l'a.'- +- .... T J'h .. 'Il.. /11 '"' 

L. y. 1., l' • .. Y. oA \ 'LI. ,~,.. . _ri"" . 
X 

It is obvious that the coefficient of x~~ in this expansion is 
"~ "'~ 

under the condition 2. ~ y)..~ = n).. J 2. Y .... ~ ~ Y'J,. • 
a:' ~:'I 

111 .... However, it is clear that this is also the coeff'icient of x in 

(
"L Y .... 

the infini te expression x.x •••• ) • Now 

(x+')(.l..~· ... . )" ... ( ~ )YI- = ,-,x. 

= 

The coefficient of x~~ in the expression on the right hand side is 

the coefficient of the term for which rz' T t :n~, that is t = nz...-rz.. 

Therefore 

2.. Y'L ! 
Y"LI' '(''''1..' •..• T~", l " ..... 

::.. 

(Yl,...-I -r., ..... -y1.-)! 

(Y ... _ 1 ) 1. (~l.. - Y" L-) 1. 

Therefore the joint frequency function of the r,~ and r'l- is 

• (~ 1. - ,) ~ • F ( Y/Zr''''') (3 \ 
(l"'1.. -,) '. (vt~- y .... ) ' . t1 f. ) -

YI, ! t11.. I. 

Y" 1. """l. '. . . . -Y', VI. '. 
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Now we sum (3) with respect to r2 

+ (vt ... -l) '. . 1 
Y, ~ (t1 &. - Y, - 1) ! 

(VI ..... + 1) .1 

Y,! (",--v. ri) ! 

This gives us the joint frequency function of the rlj 

p ( y,.) ~ Y, ~ • 
~ VII! YI"'~ - _ .. -Y.r\,! 

with a similar expression holding for the joint frequency function 

of the r2j. 

Another important distribution is the joint frequency function 

of rI and r2. We get this by summing (3), for fixed rI and r2' with 

respect to aIl rlje This is the sarne method that we used to obtain 

(3) by summing (2) with respect to all r2j. The result is 

(Vl,-,)~ . (VI,--')! • F(Y,,{-v~ 
(\,", -,) ! ("', - Y, ) ! (\'". - t) '. (11.-<.)! ,1.,,-; '. 

VI, ~ ri\.- ~ 

We find the frequency function of rI by summing (5) with respect to 

p (y,) = 
((', - Il! (n, - v, ) ~ 
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The frequency function of the total number of runs of a's and 

b's is of considerable interest in the application of run theory. 

Let u = rI +r2, the total number of runs. To find the frequency 

function of u we must sum (5) over aIl values of rI and r2 such that 

rrt"r2:u. vve have two cases, (1) u=2k (even) and (2) u=2k-l (odd). 

If u c 2k (even), there is one pair of values to consider, rI = r2 = k. 

If u = 2k-1 (odd), there are two pairs of values to consider, 

rI ::. k, r2 -:. k-l or rI -= k-l, r2::' k. Renee, from (5) we have 

p(u..:::2.A.) = (
rt, -') (VI a. - 1 ) L / 

~-J • ~-I • / (~~~"L) 

(11,- ') . (~h .. -,) +- ('11 -1) . ( 
12.-1 J,..-"Z.. }a.-l.. 

v.! 

lIh ... -I) 
f'L - , 

The function p{u ~u') ': i P(u) has been tabulated for various 

values of nI and n2 and u'. SuCh tables enable us to test whether 

a sample value of u is unusually large or small as compared to 

what would be expected if the sequence of values constituted a 

random sequence. 

Another probability function of considerable interest in the 

application of the theory of runs is the probability of getting at 

least one run of a's of length s or greater, or in other words the 

probability that at least one of the variables r n , r l ST' ' r, S+'l.' •••• 

in the distribution (4) is.!.l. Mosteller has solved this problem 

for the case nI:::' n2 = n. To obtain this probabili ty we put nI = n2':. n 

in (4), thus obtaining 

v.'. • (~ ) 
Y'. ,,, ,·····y'n' " . 1, ~ . . 



- 53 -

and sum over aIl terms such that at least one of the variables 

Y,~ ., Y, s+, ) ..... :z. ,. We can accomplish the srune thing by summing 

over aIl terms su ch that aIl of these variables are zero, and 

subtracting the result from unity. To do this we must sum the 

multinomial coefficient in (8) over aIl values of 

r" , r,1. , ••• , r'rI such that r\~ :. r, s+, = •..• = r,., = 0, 

'" ~ 
2. ~ Y, ~ = ~) 2. y, ~:: Y, ) 
~::, ~-:., 

and then suro with respect to ri. 

By the sarne argument used to der~ve (3), we see that the suro of 
VI the multinomlal coefficient is glven by the coefficient of x in the 

expansion of 

('1.. + )( '"1. +-
~-') y, . + x. 

~ )( V, ( /_ X $-1 ) Y, ( 1- x) ---r, 

Y, _ $-') -.r, ~ ("'f' -, + r) X T 
:.)( (1 X L Y-J 

't-:"o 1 

" KY' i (-J)~ (;,) 'i ~(s-,) ~ C,;~;T) )( 1: 

~=o L~D 

_ ~ ~ (_')~ G') (Y~-~ ~T ) 'A 1:+ >', "'3(5-') 

{'"::'O ~-:..o 

Therefore, the sum of the multinomial coefficient là given by 

n - ~(S- ,) - 1 ) 

Y. - , 

Thus the deslred probability of at least one run of length s or 

greater Is 
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Applying similar methods to each of the multinomial coefficients in 

(2), Mosteller has obtained the probability of getting at least one 

run of a's or biS of length s or greater. 

In order to indicate how to find moments of run variables, let 

us consider the case of r,. We shall first find the factorial 

moments E ['J....ltA..) 1 where xl"') = X ( )(-1) ()( -7..) - - --- - ( X-G..+') .:. E:-
J ()( - 40) '. 

for they are easier to f1nd than ordinary moments in the present 

problem. From them the ordinary moments may be found sinee E [X<i>J 
is a linear function of the first i ordinary moments. Letting 

i = 1,2,3, •••• , a we obtain a system of a linear equati ons which may 

be solved to obtain the ordinary moments as 1inear functions of the 

factorial moments. We have 

= 
" 1 2. y,(O-) ;:'(1',) :. 

-Y, ! P (y,) 

0", - a...)! 
Y, :: , y, :: , 

In order to evaluate (10) \'le use the fo1lowing identity: 

13 
B '. e f1't-B ) ! R '. -:: 

Z (Cof-é)! CA -c - n'. • 1 (B-L)~ (c of- ~) ~ ( fl- c) ! <.. 
l.=- 0 

c. 
which follows at once by equating coefficients of x in the 

expansion of 
fi ) fJ."t-13 0+>< 

(II ) 

Substituting P(rl) from (6) into (10), simplifying, and using (11), 

we have 

(CA..) (L )'! ~(t'h .. +I) 'l\-Co... 1 

(n,-a.)! t1-r..! ~ 
", '. Yh ... ', 
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From this result we find 

E (-YI) -:0. (Yl,. + ,) rt 1 

t1 

(."1..) ("1..) 
1... 

\Vl"1.. + 1) YI, 
C, Y, = 

VI • .., ta-) 

E [ ", (.Q..)J • a slmilar expression holds for r~ 

K Kinds of Elements 

The the ory of runs has been extended to the case of several 

kinds of elements by Mood. If there are k klnds of elements, 

say al'aZ, •••• ,ak' denote by rij the number of runs of ai of length 

j. Let ri be the total number of runs of a1. Mood has Shown that 

the joint frequency function of the r1j 1s given by 

where F(rl,r2, •••• ,~) 1s the number of ways rI objects of one k1nd, 

rZ objects of a second kind, and so on, can be arranged so that no 

two adjacent objects are of the sarne kind. The argument for 

estab11shing (14) is very similar to that for the Case of k -= 2. 

The joint frequency function of ~,rZ, •••• ,~ is given by 

pU., y-~) .. - ,Y',,) = ft. (:~ ~,' ) F (V; ,>', ,-- , ~ .. ~ :~, ___ ~ .. I_ Ci -;:) 

which we state without proof. 

Application of Run Theory 

population with a continuous frequency function. 
..... 

Let x be the 
....... 

Median value of the sample. Each sample value greater than x will 
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~ 

be called a and each sample value less than x will be called b. 

In mat follows we will assume that n ia an aven number, say n :. 2k, 

so that there will be the sarns number of values (k) above and below 

the median. 
'\; 

In this case we choose the Median, x, to be the 

arithmetic Mean of the two middle values in the sample. If n is an 

odd number, say n:: 2k+-l, then we ignore the Median and the seme 

arguments apply. Thus we have k afs and k bIs in the sample. 

Denote by xl,x2' •••• ,xn the ordered set of values corresponding 

to the above sample. Now any particular random variable in the 

sample has the sarna probability of occurring in a specified order 

position in the ordered set as any other variable. For example, 

the first sample value to be drawn, xi, has the sarne probability 

of being the largest value, Xn, in the ordered set as the second 

sample value, x2 1 hase Thus each of the n1 possible permutations of 

the variables xi,x2' •••• ,Xri has the sarna probability of being the 

ordered set of values denoted by xl'x2, •••• ,xn • 

Let babbaa •••• a denote any permutation of the ka' s and the 
, 

k bts. Consider the number of the nl permutations of the x)~ 

that will yield this particular permutation of aIs and bIs. The 

first b in this perHRltation means that the first semple value xi 

waS smaller than the median. Thus xi could have occupied any one of 

the first k order positions in the ordered set. The first a in this 

permutation me ans that the second sample value X2 was larger than 

Median. Thus x2 could have occupied any one of the last k order 

positions in the ordered set. Hence, there are k choices of order 

positions for the first b and also for the first a. In a similar 

manner there are k-l remaining choices of order positions for the 

second b and the second a. Filling order positions in this 

the 
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manner, there are k! k! choices of order positions for the x Us 

to yield the above arrangement of aIs and biS. This number ot 

choices does not depend upon the particular permutation ot aIs and 

biS. Furthermore, all order permutations of the x"~ have the same 

probability of occurring. Thus aIl distinct permutations ot the ais 

and bIS have the sarne probability of occurring. 

It follows from the above discussion that all ot the run 

frequency functions (2), (3), (4), (5), (6), (7) are applicable, 

for nI':. n2':.. n, to all possible arrangements of the afs and biS. 

Thus we see that by classifying sample values into aIs and biS 

and using the theory of runs we have a method for testing randomness 

in a sample as tar as order is concerned. 

The more commonly used tests of randomness based on run the ory 

are: 

(1) Number of runs of ais, for which the distribution is (6). For 

given values of nl and n2' the test consists of finding the largest 
o value of rl (the number of runs of afs), say rl' for which 

r [YI 2. Y, 0) ~ é 1 ~. 3 . Fr t: =- .o~. A similar staterœnt may be made 

conc~rning runs of biS. 

(2) Total number of rlIDS of ais and b' s having distribution (7). 

~ain, the test consists of finding the largest value of u, say u O
, 

for which p[u... ~ lA"l~f;}for given values of nI and n2. 

(3) At least one run of a's (or bIS) of at least length s, for 

nl=n2,:n, basad on the distribution (9). The test consists of 

finding the smallest value of s for which the probability (9) Is ~ f:: • 

. As an illustration ot the application of the preceding theory 

comi der the following example. Samples are taken every morning 

and afternoon from a production line to check the diameter of a 
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part. Suppose the following diameters are obtained • 

• 220, .213, .221, .214, .219, .214, .222, .216, .212, .221, .223, 

.214, .221, .216, .217, .215. 

The medlan value of this sample is .218. If each value above the 

median is assigned the letter a while each value below the madian is 

assigned the letter b, we obtain the following sequence of letters. 

abaaababbaababbb 

We will now use the total number of runs, u, in order to test 

the hypothe sis of randomness in the above sequence. Rere u --- 10. 

We wish to see whether this value of u is large or small as canpared 

to the number of runs expected ln a randamly selected sequence of the 

same length. 
",-1 

We stated earl1er in the chapter that the function 

p(u ~ut):: [peu) 
14= 1. 

has been tabulated for various values of nI and n2 

and u'. Below we have a few entries from one of these tables. 

n,~"a. S- '0 ,s- 2.0 2~ ~o ,-#0 50 (,0 70 80 t;o 100 

c.t.·OlO ~ f. l , IS }li 1.~ ~~ lf'L. Ç} (,0 70 ft; Fg 

"-'IIS' ~ ,S" 1..0 1.<0 31- ~I 4S S"Cf 70 tl tU 1 al.. 113 

In this table u.05 ls the value of u such that p(u!. U.05) ~ .05 and 

u.95 ls the value of u such that p(u!: U.95).! .95. These values may, 

therefore, be used as 5 per cent critic~ values for testing 

randamness agalnst the alternative of too few or too many runa. In 

our example u = 10, nI: 8, and n2 -::. 8. By interpolation we find that 

u.05 ls approximately 5 and u.95 la approximately 12. The sample 

value of 10 is not crltlcal. Thus we have no reason to doubt the 

randomness of the sample. 
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Too Many runs May occur if the machines have a tendency to 

turn out larger parts in the morning and smaller parts in the 

afternoon. In this case we would get a sequence like the following. 

abababa ••••••••• Too few runs May occur if the machines gradually 

produce larger parts trom day to day. In this case the earlier 

observations would be mostly below the median and the later ones 

above. We would then get a sequence like the following. 

bbbbaaaaaaa •••••••••• 
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