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Introduction

In an Industrial process we usually set up a standard for the
quality of a given kind of product. That is, we lay down
specifications for weight, thickness, diameter, breaking strength,
finish, etec. by which an article can definitely be classed as
conforming or nonconforming, even if in many cases the specifications
are partly arbitrary. We then try to make all units of the product
conform with this standard. However, it 1s impossible to make all
units exactly alike. Therefore, there is bound to be some variation
in the quality of the product. The problem then 1s: how much may
the quality of a product vary and yet be controlled? We say that the
quality is in statisbical control if all of the observed variations
lie within certain 1limits. Thus we see that a controlled quality is
not a constant quality but a variable quality.

We recognize two more or less distinct types of causes of
variabllity in the quality of a manufactured product. These are
random, or chance, causes and assignable causes. By random, or
chance, causes we mean the whole host of small influences lylng
behind the particular measurement or result we happen to obtain.
These causes are very large in number and the effect of each on the
industrial process 1s very slight. It 1s not possible to track down
and eliminate these chance causes. On the other hand, assignable
causes are those which come in intermittently or perhaps permanently‘
to meke changes in the process of such magnitude as to be of
practical importance. Assignable causes, if they exist, are very
few 1n number and the effect of each on the industrial process is

marked. These causes may be found and eliminated.
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The control chart, by helping us to locate and eliminate
assignable causes, 1s a most powerful tool in achleving a state of
statistical control in the various stages of the industrial process.
The control chart was discovered and developed in 1924 by W. A.
Shewhart of the Bell Telephone Laboratories. He realized that some
of the observed variation in performence was natural to a process and
unavoidable. But from time to time there would be variations which
could not be so explained. He reached the conclusion that it would be
desirable and possible to set limlits upon the natural variation of any
process, Fluctuations within these limits could be readily explained
by chance causes, but any varlation outside these limits would
indicate the presence of an assignable cause. The development of the
control chart followed, which provides a reasonable test for
determining when a process can be considered to be in control.

There are many advantages to be gained through control. As we
proceed to eliminate assignable causes of varliability, the quality of
the product usually approaches a state of stable equilibrium. As the
Qquality approaches this comparatively stable state, the need for
inspection is reduced. Thus there is a reduction in the cost of
inspection. Furthermore, we have a more standard product since the
quality of the finished product will exhibit minimum varigbility.
Finally, by eliminating assignable causes of variasbility, we reduce
the proportion of defectives to a minimum with a resulting reduction
In the cost of rejection.

Once a state of statistical control has been achieved in the
various stages of the industrial process, as evidenced by the control
charts, we can be quite certain about the quality of the finished

product. Nevertheless, a final verification of quality may be
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desirable. Procedures such as single and double sampling inspection
and the sequential method afford calculated protection to producer
and consumer independently of the state of control in the industrial
process. These are methods whereby lots of merchandise are accepted
or rejected on the baslis of a sample drawn from the lot. This
practice arises from the fact that 1t is often more economical to
tolerate a small percentage of defectives than to bear the cost of
100 per cent inspection.

In the statistical methods discussed above, we have gssumed that
the observations constitute a random sample from a fixed population.
If any doubt exists concerning the randomness of a set of observation:
it 1s necessary to test the randomness of the observations before the
usuel statistical methods based on randomness can be applied. The
theory of runs provides us with a method for testing randomness which
is based on frequency functions of runs. This method does not depend
on the frequency function of the basls variable and 1s therefore

known as a nonparametric method.



Chapter 1

Scme Mathematlcal Definitions and Theorems

We assume a knowledge of mathematical statistics at the
undergraduate level. However, we introduce the following definitions
and theorems for the sake of clarity of terminology and because some

of these notions are not usually covered in most texts on statistics.

Frequency Function

(a) Discrete Variable

A function f(x) that ylelds the probability that the discrete
-random variable x will assume any particular value in its range is
called the frequency function of the discrete random varlable x.

(b) Continuous Variable

A frequency function (probablility density) for a continuous

random variable x is a function.f(x) that possesses the following

properties:

(1) f(x)2 o

(i1) /{f(x)dx= 1 (1)
-h

(111) jf(x)dx= P(a<x <b)

where a and b are any two values of x, with a<b and P(a<x<b) is
the probability that x will assume a value between a and b.

Joint Continuous Frequency Function

A frequency function for n continuous random variables

X15X2seeessXn 18 a function f(Xx3,Xgy....,Xpn) that possesses the

following properties:



(i) f(XI,xz,ooo-’Xn)Z_ 0

e o0

(ii) /""‘"/f(xl,XQ,...-,Xn)dxldXQ....an:l (2)
- 00 - oD

bn b,
(iii) / """" ff(xl,XQ, ) .,Xn)dX]_dXQ.. oodxn
%n e = P(aj ¢ X3 <bj,eeeesapy <Xpn <bp)
This is a straightforward generalization of a frequency function for
one varigble.

Cumilative Distribution Function

(a) Discrete Varisble

The cumulative distribution function F(x) is closely related to
the frequency function f(x). It is defined by the relation
F(x)= & £(t) (3)
TEX

where the summation occurs over all those values of the random
variable that are less than or equal to the specified value of x.
F(xo) gives the probability that the random variable x will assume

a value less than or equal to Xy, as contrasted to f(x,) which gives
the probebility that x will assume the particular value x,.

(b) Continuous Variable

The cumulative distribution function, F(x), for the continuous

random varigble x is defined by

X
F(x)= / f(t)dt (4)

- 00

In this case F(x,) gives the probebility that the random variable x

will assume a value less than X4.



Change of Variable

If x=h(y) is a strictly monotonic function of y and if f(x) is
the frequency function of continuous variable x, then g(y), the
frequency function of y is given by the formula

g(¥) = [ a(m)] |n' (3| ()

If f(u,v) is the joint frequency function of u,v and if
z = g(u,v),w=h(u,v) are functions of u,v then the joint frequency
function, k(w,z), of w,z is given by
d(u,v)

YW, z) (6)

where u,v in f(u,v) are expressed in terms of w,z. It 1s assumed

that \g(u,v)
Y(w, 2

Two Types of Errors

k(w,z) = £(u,v)

x O.

Consider the random variable x whose frequency function f(x;0)
depends upon the parameter €. Suppose we wish to test, on the basis
of one observation, the hypothesis that the parameter € has the value
@0 against the alternative hypothesis that 1t has the value 8. We
assume that there 1s only one alternative. Let Hy be the hypothesis
that 8= 8, and let H; be the alternative hypothesis that 6= 9;.
Rejection of Hy is equivalent to acceptance of Hj.

To test Hy we choose a number A and make an observation X).
If x3 ¢ A we accept Hg and if X317 A we reject Hy, that is we accept

Hi.

/ 58 $(:©)

FitovRrE I,



The interval x> A is called the critical region of the test. This
is the reglon which corresponds to the rejection of the hypothesis
Ho. To construct the test we have divided the x-axis into two
regions, and this can be done quite arbitrarily. As a critical
region we could have chosen a finite interval on the x-axis or some
other region which would depend on the type I and type II errors
discussed below.

There are two kinds of errors possible in this test. We may
reject Hy when it is in fact true; that is, the parameter © may have
the value 8o even though the observed value of x did exceed A. This
is called the type I error of the test. The size of the type I
error is the probability that the sample point will fall in the

critical region when Hy is true. This probability is given by

o0

X = /f(xseo)dx (7)
A
A second possible error is the acceptance of Hy when it is false;

that 1s, the observed value of x may be less than A even though the
true value of © 1s ©3. This is called the type II error of the
test. The size of the type II error is the probability that the
sample point will fall in the noncritical region when Hj is true.

This probability 1s given by
a

P = /[f(xgel)dx (8)
- oD

A good test is consldered to be one which minimizes the sizes of
both errors. However, it 1s impossible to reduce both errors
simultaneously with a single observation. The common procedure 1is
to fix the type I error arbitrarily and then choose the critical

region so as to minimize the size of the type II error.



We may generalize these results to samples of size n. The
sample observation (x31,Xg9,....,Xn) may be plotted as a point in an
n-dimensional space. The sample space is divided into two regions,
the critical region R and the acceptance region A. If the sample
point falls in R, Hy 18 rejected; otherwise Ho is accepted. The

probability of a type I error 1is
o = £(x1390)£(X2;60) ¢ o« o £(Xn;300)dx1dx2e 0« «dXp (9)

R
The probability of a type II error is

P = /f(xl;el)f(xg;el)....f(xn;el)dx, dX,eeeedxp (10)
a

Power Function

The power function is defined as
P(e) =}f(x1;9)f(x2;e) eeeof(X030)dx1dX0e ... dXp (11)
R

It is easy to notice that P(8p) is type I error and P(67) is
1-type II error.
Likelihood Function

Consider the random variable x whose frequency function f(x;8)
depends upon the parameter 8. Let Xj,Xo,....,Xpdenote the n random
varliables corresponding to n observations of the varlable x. Then
the function given by

n
L(xl,xz,....,xn;e)=.Trf(x5;9) (12)
defines a function of the random va?iables X]1sX2s:0ee3Xy and the
parameter 8 which is known as the likelihood function.
Supprose that the observations are obtained from n independent

trials of an experiment for which f(x;6) is the frequency function

of a discrete random variable x. Then, for any particular set of



values the likelihood function gives the probability of obtaining
that set of values, including their order of occurrence. If,
however, x 1s a continuous variable, the likelihood function gives
the probability density at the sample point (X1,X2,.e..,Xn), where
the sample space is n dimensional.

Expected Value (Mean Value)

(a) Discrete Variable

The expected value of the function h(x) of the random variable
X whose frequency function is f(x)is given by
g[b(x)]= £ h(x)£(x) (23)
X
where the sum 1s taken over the whole range of x.

(b) Continuous Variable

The eXpected value of the function g(x) of the continuous

random variable x whose frequency function is f(x) is given by
o0

E[g(x)] = g(x)f(x)dx (14)

-0
It can be proved that the expected value has the following

properties:

(1) E(x+ y) = E(x)+ E(y)

(11) E(xy) = E(x)E(y) when X,y are independent (15)
(111) E(ax) = aE(x), a constant

(iv) E(a) = a, a constant

Unblased Estimate

Consider a random variable x whose frequency function f(x;8)
depends upon a parameter 8. Let Xj,Xg9,....,Xn represent a random
sample of size n from the corresvonding population and let
t(Xy,Xg,.+44X,) be any statistic being contemplated as an estimator
of . The statistic t = t(X],X2,es.4,%Xn) 18 called an unbiased

estimate of the parameter © if E(t)= 6., This means that the random
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variable t possesses a distribution whose mean is the parameter o
being estimated.

(a) Unbiased Estimate of the Population Mean/

Let Xy 9Xys0000,X, represent a random sample of sizen from g
2
population with mean m and variance 6", By properties (i) and
(i11) of the expected value we have

v n
E(X) = E(REX) = —y"—‘_g_:‘E(Xz) =R EM = m (16)

= (=
Thus the sample mean x possesses a distribution whose mean is the
population mean U - Consequently, we may use X as an unbiased
estimate of M.

2
(b) Unblased Estimate of the Population Variance 6

e Y
Consider the expected value of a sample variance 5 based on a
random sample of size n.

E(s*) = E[£ 2]

=

E['y'? :% (xi-m) - (557*)§L]
E[4 g () = (o) ]

]

[ £

s E(xi-m) ~ E(X-)T ()

L
n ¢

'
= -:-n- Zél - 6)'(_
et
= él'- 61
n
= -t ¢V
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kA
Thus s2 18 not an unblased estimate of 6 -

n o2 n 2y = 6"
Now E(ETIS )=.E:I E(S®) = 6. 1
Therefore, we may use _ETSZ as an unbiased estimate of 6. If the
I~

T
semple is very large, we may estimate & by S2 since HEI?El. Since

n .

n ot f_(X;_—x)

n-! €= —
n-1

we can avoid the bias in estimating variances by dividing the sum
of the squared deviations by n-l1 rather than by n.

Moments

(a) Discrete Variasble

The kth moment about the origin of a discrete random variable

x with frequency function f(x) is given by

0
] k - R X 8
Moy = E (X ) éi X -f-( ) ( )
X=0
The kth moment about the mean of a discrete random varisble x

with frequency function £(x) is given by

My = E[(xw)h:’ = g(x'ﬂ)hf-(") (19)

where fb i1s the mean of the distribution.

(b) Continuous Variable

The kth moment about the origin of a continuous random variable

x with frequency function f(x) is defined by
o0

e - [ o

- of
The kth moment about the origin of a function g(x) of a

continuous random variable x with frequency function f(x) is defined
by

, k _ ooh Ax (Ll)
/"Lh:atx) - E[ acx)] ) 300 ‘J'(X)
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If g(x)= X-p4 then the kth moment sbout the origin of g(x) would be
the kth moment of x about its mean.

Moment Generating Function

{a) Discrete Variable

The moment generating function of a discrete random variable x

with freqiency function f(x) is given by

x s ex
Mx(e) = E(Le ) - xéo)c 7L00 C"")

This series is a function of the parameter 8 only. The subscript is
placed on M(8) to show what variable is being considered.

(b) Continuous Variable

The moment generating function of a continuous random variable

x with frequency function f(x) is given by

o - E(e7) 2 [ podn @)

Lo
It can be proved that the moment generating function, Mx(e),

considered as a function of a real variasble, possesses derivatives

at 6= 0, if it exists in a neighbourhood including the origin. It
can also be proved that all moments exist and that Mx(8) cah be
expanded in a Maclaurin's series. We shall always assume that Mx(®)
exists In some open interval about the origin. It can also be proved
that, when My(8) exists, differentiation under the integral sign is

permissible.
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If we dAifferentiate the members of the above relation k times

with respect to © and evaluate the resulting derivative at =0,

we have o0
R
(R) = d &x a)dx}
Me® | [O—L—gh ff f o0
o0 (z%)
. [i'_‘h 4_9":[ F00y ok
A€ =0
Zb
o0 A - /
=/xb‘-/—l>0°‘7‘ = E(X ) /(Ah
- o0

Thus the moments of a distribution may be obtained from the moment
generating function by differentiation.

Properties of the Moment Generating Function Mx(O)

If a,b are constants, then
(1) Max(e) =Mx(ae)
(11)  Maxz+p(©) = oPONx(a0)
where Xj1,X9,....,Xp are independent variables.

We state the uniqueness theorem and continulty theorem without
proof.

Uniqueness Theorem

If F(x) has the moment generating function M(®), and M(©) exists
for |61<h,h»0, and if the cumulative distribution function G(x) has

the same moment generating function, then G(x) = F(x).
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Continuity Theorem

Let Fp(x) and Mp(®) be respectively the cumalative distribution
function and moment generating function of a random variable
Xnin=1,2,3,.040)s If Mp(©) exists for (6l<«h for all n and if there
exists a function M(8) such thaﬁwgig Mn(8)= M(8) for [Bl<h', then
lgg Fn(x) = F(x), where P(x) is the‘cumulative distribution function
Zf a random variable X with moment generating function M(8).

The uniqueness theorem states that the distribution function of
a variable is uniquely determined by its moment generating function
when the moment generating function exists. The continuity theorem
states that if one variable has a moment generating function which
approaches the moment generating function of a second variable, then
the distribution function of the first variagble approaches that of
the second variable.

Central Limit Theorem

T
For an arbitrary population with mean/w,and finite variance 6

the variable é =SZ:££l£ﬁ has a distributlon that approaches the

standard normal distribution (u=0, 6=( ) ag n — o®
Proof: Let Mx(®) be the moment generasting function of the original
distribution. We assume Mx(6) exists for @) h, h»0. Pul T = X=A.
v 7}
[ ;Z—(,, R lé(x;—,u) - £U
6 In 6 dn
Let Mz(®) be the moment generating function of z. By properties

(1) and (1ii) of (25)

"
M4 ©) = M3, ©) M3z, (&) - [Mt(&%a)]

r'Ed
m—

6m



M (br') = | *63"')/# -c-é—(éem.)"/,(,_ t+ E’i—(ZQTE’);/‘s* .....

T

wl\m.,u,=o/u,_=(9

! =)
T M () = 1+ S T o AT

MS(e) Com Lo el

3@-[/\/\( ] (l+—__t;‘£+w_~_;‘2_n)"

% An = an N —D> 0,
hy =D 0 (eotmul)
L.ni'%()-fzv\):gn
no_ w
M ®) - ('*“’*”2") = ('*5“)

UJ’ I‘i‘ 2\«\)

= (14 3)
() ('*6“3—3%3
[ F] L]
P A e = By (1KY Db for el Ty Lo

n-=>do

1
T < (li'%n)%“ < 3
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Corvrm s Ty [C“’Bu)%:]wlh—é/ o M2 P
_ {efz. an hh =D oD

. wWr
P Ms(e) _9 _2' -
a8
However, _¢ * is the moment generating function of the standard

normal veriable (@=0, 6=/ ), The central limlt theorem then
follows from the continuity theorem,

The central 1limit theorem states that if an arbitrary
population has a finite variance 6% and mean g4, then the
distribution of the sample mean, for large n, 1s approximately
normal with mean/A,and variance JE:. Nothing is assumed about the

[a)

form of the population distribution function.
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Chapter 2
Control Charts

The control chart provides a reasonable test for determining
when an industrial process can be considered to be in control. To
construct a control chart we take a three standard deviation band
about the mean of the statistic in question. We then sample the
process periodically and plot the successive sample points on the
control chart. The process 1is said to be in statistical control if
all of the sample points lie within the control band.

Consider the control chart for the mean (figure 1). By the
central limit theorem we know that, for large samples, the
distribution of the sample mean 1s approximately normal with mean
(population mean). Now the control band is a three standard deviatior
band about the population mean u . Thus the probability that a
sample mean, when plotted on the control chart, will fall outside
the control band is approximately equal to the probablility that a
normal variable will assums a value more than three standard
deviations away from its mean. This probability is .003. The
sample size should, of course, be large (at least 50). Because of
this small probability there will be, by chance causes alone, very
few sample points outside of the control band. When a sample point
does fall outside of the control band, 1t 1s reasonable to assume
that the production process is no longer behaving properly. That is,
points outside of the control band indicate the presence of
assignable causes which may be found and eliminated. We thus
Investigate only those polnts that fall outside of the control band.
The control chart, by helping us to locate and eliminate assignable

causes, is a most powerful tool in controlling the industrial process.
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We now use the results of the central limilt theorem to construct

a control chart for the mean. This chart is illustrated below.

38
i
x
* X b S
m X X X
X
X ¥ »
-3
"=
1 I} i L L L [l i 1 i i
] 2 > Y s [ 7 8 9 10 "

FleuaE |. CONTRDL CHART FoR THE MEAN.

Because of the results that we have established, it is not essential
that the bagsic variable be normally distributed for such charts;
consequently they are of wide applicability. The middle line is
thought of as corresponding to the pfocess average, although it is
usually merely the mean of past sample means and by (16) of chapter 1
is expected to be a very good estimate of the process average.
Similarly, by (17) of chapter 1 we may arrive at a good estimate of 6
by taking the mean of past sample standard deviations. The other

two lines serve as control 1limits for the sample means. It will be
observed that these two control lines are spaced three standard

deviations from the mean line. Time units for successive samples
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are recorded along the x-axis. By the argument presented gbove we
know that the process is in statistical control if a1l of the sample
points lile within the control band. The chart in figure 1 shows
that this process is in statistical control.

We can apply the central 1limlt theorem to show that the
variagble '%;gff where x is distributed according to the binomial
law, has aﬁgf;tribution that approaches the standard normal

distribution (w=0, 6=1) as n->e2. We may write

X-nrhp o ('%‘F _’”) )

Viy
where X1,X2,....,%n are independently distributed according to the

X -
law f(x) = pr (l‘/v)' X (x.= O in case of failure, or 1 in case of
success). The mean of this distribution is
1
® =%
m= EC(x)= S xp CG-p) = [
%0
and the variance is
Ll E(kepyt = B (-p) TR T
= X - = - - =
6 E r) 2k p r9
Thus we see that filﬂﬁ has the same form ags z in the central limit
mpy
theorem. The theorem may then be applied.
We may write
A -
)("“ = —V_l- }" (7—)
Vrnhy Vhu/n '

Thus the propertion x/n will be approximately normally distributed

with mean p and variance pg/n if n is sufficiently large.
We can use this result to construct a control chart for the

fraction defective. This chart is illustrated below.
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p * 3 pym -
* . .
* -~ * x
F P
»~
P 3 dpym
t T 3 :4 ; (: . ; ; I.O :’

FIGORE 2. CoNTROL CHART FOR FRAcTION DEFECTIVE

The middle line is thought of as corresponding to the process
proportion defective,'although it 1is usually merely the mean of past
sample proportions and as such is expected to be a very good
approximation of the process proportion defective. The other two
lines serve as control limits for sample proportions. These control
lines are spaced three standard deviations from the mean line.
Along the x-axis are recorded true units for successive samples. By
the same argument that we used for the mean we know that the process
is in statistical control if all of the sample points lie within the
control band. The chart in figure 2 shows that the process is not
in statistical control because the seventh sample point lies outside
the control band.
The Range

We mentioned earlier in the chapter that we must estimate 6
by means of the sample standard deviation. Now, the repeated
computation of standard deviations is undesirable because the amount
of computation becomes burdensome. It is customary to use the range,
which is the difference between the largest and smallest value in

the sample, as a substitute for the sample standard deviation in
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estimating 6 . Not only is the range easy to compute, but it can be
shown that, for small samples from a normal population, the range is
nearly as efficient for estimating 6 as 1s the sample standard
deviation.

We will now Investigate the relatlionship between the range and
the standard deviation for a normal distribution. This relationship

may be found by caleulating the mean of the range R.
b-o

E(R)= Rg(R)dR (3)

[}
where g(R) is the frequency function of the range and the basic

varigble X assumes values in the interval (a,b). The distribution of
the range 1is developed in chapter 5. It 1is clear from (7) of chapter
5 that the evaluation of E(R) will give rise to a complicated double
integral. When f(x) is a normal frequency function, these
integrations cannot be performed directly for general n; therefore
numerical methods of integration are required. Tables are avalilable
for the normal variable case which express E(R) < Mgin terms of 6
for various values of n. The following are a few entries from such

a table to indicate the navure of the relationship.

TAanLE |

n |zt 3 1Y | s |10]so |00

_R1128]1693|2.059] 2.32L{3.078] 4. y98| S015
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As an illustration of the use of the above table, consider once
more the technique of constructing a control chart for the sample
mean X as given above. There, a three standard deviation band was
constructed for controlling X. If the range is taken as the measure
of variability, 6 will be replaced by Ug /a(.,. where dn is the value
obtained from the table, that is, the value of the ratio //(R/C
corresponding to the given value of n. The value of Mg cen be
estimated by using the sample mean of the R values obtalned for a
fairly large number of samples of size n each. n is usually chosen
to be an integer near 4. Since (g 18 estimated on the basis of a
large number of samples of this size, this estimate 1s usually quite
accurate,

The range has two lmportant disadvantages. First, its value
usually increascss with n because there is a better chance of
obtalning extreme values if a large sample of data 1s teken than if
a small sample 1is taken. Secondly, the range 1s.usually quite
unstable in repeated sampling experiments of the same size when n
is large. But if n is chosen less than 10, the estimation of 6 ‘by
means of the range, rather than the sample standard deviation, is
qulte accurate. We, therefore, conclude that the range 1is nearly as
good as the sample standard deviation as an estimate of & for

small samples.
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Chapter 3
Single and Double Sampling Inspection by Method of Attributes

In a mass production process, suppose articles are produced in
lots of N articles each, and suppose each article, upon inspection,
can be classified as defective or nondefective. It is often
uneconomical to carry out a program of 100 per cent inspection. As
an alternative, sampling methods of inspection applicable to each
lot have been developed which have the property of guaranteeing that
the percentage of defectives remalning after applyling the sampling
inspection procedure in the long run (that is to a large number of
lots) is not more than some preassigned value. Such sampling
methods have been developed and put into operation by Dodge and
Romig of the Bell Telephone Laboratories. It should be noted that
those sampling methods are essentially screening devices for
reducing defectives after production, and are not devices for
removing the causes of defectives. Dodge and Romig have developed
two types of inspection sampling, single sampling and double
sampling, which will be considered in turh.

Sihgle Sampling Inspection

Let p be the fraction of defectives in a lot of size N. The
number of defectives will be pN. Now let a random sample of size n
be drawn from the lot. The probability of obtaining m defectives

(and n-m nondefectives) in the sample is

A - pVM
e,
(%)

\:)M,n,hp/,ol
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m=0,1,2,....,7 where r is the smaller of n and Np. Let

F(C,Iﬂ,ﬁf,n) = P(m=zc) =m2~ Pm,n,fu/,/\/ 2.)

If any two values of p and p' (pN and p'N being integers) are such
that p<p', then it can be shown that

FCC)yll N/V‘) 2 F(Cl,\‘) M}") (33
Let pt be the lot tolerance fraction defective, that i1s the maximum

allowable fraction defective in a lot, which is arbitrarily chosen.
in advance (that is, .0l or .05). Let

Pc. = ’:CC),"I’)A‘I}M3 (q)

P. is known as the consumer's risk; it is approximately the

probability that a lot with lot tolerance fraction defective pg
will be accepted without 100 per cent inspection. It follows from
(3) that if the lot fraction defective p exceeds py then the
probablility of accepting such a lot on the basis of the sample is
less than the consumer's risk. The probgbllity of subjecting a lot
with fraction defective actually equal to ;Z (process average) to

100 per cent inspection is
a‘ = | - F (C)F)N/”) ' (§)

which is called producer's risk. It will be noted from (3) that the

smaller the value of}[ s the smaller will be the producer's risk.
The producer's risk and consumer's risk are highly analogous to
type I and type II errors, respectively, in the theory of testing
statistical hypotheses as developed by Neyman amd Pearson.

Suppose we make the following rules of action with reference to

g sampled lot where C 1s chosen for given values of Ps,p¢,N,ne
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(a) Inspect a sample of n articles.

(b) If the number of defectives in the sample does not exceed c,
accept the lot.

(¢) If the number of defectives in the sample exceeds ¢, inspect
the remainder of the lot.

(d) Replace all defectives found by nondefective articles.

Let us consider the problem of determining thé mean value of
the fraction defectives remaining in a lot having fraction defective
ps after applying rules (a) to (d). The probability of obtaining m
defectives in a sample of size n is given by (1). If these m
defectives are replaced by nondefective articles and the sample is
returned to the lot, the lot wlll contain pN-m defectives. The
fraction of defectives reamining after applying rules (a) to (d) has

the distribution V-

with probability Pm,n,pN,N for
m=0,1,2,¢c.05¢c. Thus the mean value of the fraction defectives

reamining after applying rules (a) to (d) is

A}: = Cé:(h—t;,—-"m) Fm)n)'\ﬂ,lu ()

Note that when m>c¢ the fraction of defectives after inspection is
equal to zero since all defectives are replaced by nondefectives.
The statistical interpretation of (6) is as follows: If a large
number of lots each with fraction defective p are inspected
according to rules (a) to (d), then the average fraction defective
in all of these lots after inspection is F'- For given values of
c,n, and N,‘F’is a function of p, defined for those values of p for
which Np is an integer, which has a maximum with respect to p.

g ™
Denoting this maximum b it 1s called average outgoing quality
T e

limit. It can be shown that the larger the value of p, beyond the
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value maximizing F the smaller will be the value of ;./ The
reason for this is that the greater the value of p the greater the
probability that each lot will have to be inspected 100 per cent.

If the consumer's risk, n, and N are chosen in advance, then ¢
and hence ;;L is determined. Thus, we are able to make the
following statistical Interpretation of those results: If rules
(a) to (d) are followed for lot after lot and for given values of
¢,n,N, the average fraction defective per lot after inspection never
exceeds FL, no matter what fractions defective exist in the lots
before the inspection.

There are various combinations of values of ¢ and n, each
having a.; with maximum ;;,(approximately) with respect to p.

The mean value of the number of articles inspected per lot

for lots having fraction defective p is given by

T = n +(~-n)[|—F(<)}H""")] (7)

——

since n (the number in the sample) will be inspected in every lot
and N-n (the remainder in the lot) will be inspected if the number
of defectives in the sample exceeds c.

There are two methods of specifying consumer protection.

(1) Lot Quality Protection

By considering the various combinations of values of ¢ and n
corresponding to a given consumer's risk, Pec, and lot tolerance
fraction defective, pt, there 1s, in general, a unique combination
for p=p and for given N for which I is minimized.

(2) Average Quality Protection

Similarly by considering the various combinations of values of ¢
(4
snd n corresponding to a glven average outgolng quality limit,ﬁb,

there is, in general, a unique combination for p==F and for given N



for which I i1s minimized.

In both cases the amount of inspection is reduced to a
minimum which is valuable from a practical point of view. Extensive
tabulations of pairs of values of ¢ and n, for glven values of
consumer's risk, Pc, and outgoing quality limit, F;J have been
prepared by Dodge and Romig.

As an illustration consider a lot of 1000 pieces for which the
process average fraction defective is F = .0l and for which the
consumer is willing to assume a risk of Pc = .10 of accepting a lot
with a fraction defective of pt = .05. By allowing ¢ to assume small
integral values and working numerically by trial and error methods,
i1t will be found that the minimum amount of inspection will occur if
a sample of 130 is taken and 1f the maximum allowable number of
defectives 1s 3. With these values of n and ¢, it will also be found
that the mean number of pileces inspected will be 164 so long as
production remains in control. If the consumer requests an average
outgoing quality limit of, say,'FL = .0%, the minimum amount of
inspection will occur if ¢ =2 and nx 44. These results are easily
obtained by consulting the Dodge and Romig tables.

Double Sampling Inspection

In double sampling inspection from g given lot of size N, the
procedure for taking action regarding a given lot is as follows:
(a) A first sample of size n, is drawn from the lot.

(b) If the number of defectives is < ¢, , the lot is accepted
without further sampling.
(¢) If the number of defectives in the first sample exceeds co,

inspect the remainder of the lot.
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(d) 1If the number of defectives in the first sample exceeds c3
but not cg, lnspect a second sample of size no.

(e) If the total number of defectives in both samples does not
exceed cgo, accept the lot.

(f) 1If the total number of defectives in both samples exceeds co,
inspect the remainder of the lot.

(g) Replace all defectives found by nondefective articles.

As in the case of single sampling, we have two kinds of
consumer protection: (i) lot quality protection and (ii) average
quality protection.

Consumer risk, the probabllity of accepting a lot with fraction

defective py without 100 per cent inspection, 1s given by

<, A
Pcz ZPM)“.)"’C“)M +.Z é—(PCi*L)n.,’\tp/,lJ)(PM)""),"CM-C'-‘:)N-"') (8)
m=0 (| m=0

The single run in this formula 1s simply the probabllity of
accepting the lot on the basis of the first sample and the double
sum 1is the probability of accepting the lot on the basis of the
first and second samples combined after having failed to accept on
the baslis of the flrst sample alone.

The mean value of the fraction defectlves remaining after the
defectives have been removed by the double sampling procedure, for

lots having fraction defective p originally, is given by

F2, (557) Prompenr (1)

_ c,=C,-¢ _ C, +c+vu .
€, -C, E O | M}t ( ' ¢ ) (PCV".‘-)"U" I‘I,N)(PW\,V\\_)"\N'CI-")N-"I)

+22_ v

=t M=o




The mean value of the number of articles inspected per lot for

lots having fraction defective p 1is

<y
L=n+ " <l - 2 Pm,n‘,r\n,/\/) + (N'":’WL)O*&) (10)
m=0

where Pc is the value of the probability given in (8) with pg
replaced by p.

For given values of N,nl,ng,cl,CQ,'E is a function of p,
defined for those values of p for which Np 1s an integer, and has a
maximum value ;;L_)the average outgoing quality limit. For a given
value of N there are many values of nj,ng,cj, and ¢, which will
yield the same value of ;tg (approximately), or will yield the same
consumer risk (approximately) for a given lot tolerance fraction
defective. Dodge and Romig have arblitrarily chosen as the basis for
the relationship between n's and c's the following rule: To
determiné ny and ng such that for given vd ues of ¢] and cg,njand ¢3
provides the same consumer risk (approximately) as ni+ng and co.
Even after this restriction there is enough choice left for
combinations of ny,ng,cq,coto minimize I. To determine the n's and
c's under these conditions for given N, for given consumer risk,

(or average outgoing quality) involves a considerable amount of
computation. Dodge and Romig have prepared tables for double
sampling analogous to those for single sampling.

For a given amount of consumer protection, a smaller average
amount of inspection is required under double sampling than under
single sampling, particularly for large lots and low process average

fraction defective p.
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Chapter 4
Sequential Method

In industrial sampling inspection we are interested in
minimizing the amount of inspection needed to attain certain
objeectives, We stated in the preceding chapter that double sampling
requires, on the average, fewer observations than single sampling to
achleve the same results. However, these methods require that the
sample size bhe fixed in advance. In the sequential method the sample
size 1s not fixed in sdvance but is determined durling the course of
the sampling which may terminate at any observation. Using this
method we often arrive gt a decision with fewer observations, on the
average, than the fixed slze sample method possessing the same
type I and type II errors. The saving in observations is sometimes
more than 50 per cent with a resulting decrease in the cost of
sampling. Sequential testing has been developed only for the case
of testing an hypothesis H, against a single alternative Hj.
However, in practlical problems this restriction is not serious since
we can almost always frame the test in terms of a single alternative.
The reason for the advantage of the sequential agpproach over the
fixed size sample approach lies in the ability of the sequential
method to reach an early decision for samples that are extremely
favorable to either Hy or Hy. This ability to arrive at an early
decision is very useful in sampling inspection where it is not
uncommon for lots to be very bad when they are bad or very good

when they are good.
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For the purpose of describing a sequential test, consider a
continuous random variable x whose frequency function f£(x;®) depends
upon the parameter 6. Although the sequential test will be described
for a continuous varlable, it may be applied to elther discrete or
continuous variables. Suppose we wish to test the hypothesls that
©= 0, against the alternative hypothesis that 6=067. Let Ho be the
hypothesis €= 8, and let Hj be the alternative hypothesis that 6=6;,
Observations are denoted by Xj,X2,.... Where the subscripts give the
order in which the observations are taken.

The sequential test employs the likelihood ratio

EZ?.f-(Xi)GQ,)

(m=b%“”) ()
ﬁ!-‘{’(xi y 6.,)

and two positive numbers A and B, with A> 1 and B<1l., As
observations are made, we compute the ratlos 2.,;(L,X3,.n- and
continue taking observations as long as

BLXM <z f (L)
If for some m Aw £B,Ho is accepted and the test is completed. If
Aw2A for some m, Hy is rejected (that is Hy is accepted) and the
test is completed. The procedure then is to continue sampling until
Aw falls outside the interval specified by (2). The sampling then
ceases. Thus we must declde at every stage of the sampling whether
to accept the hypothesis, to reject the hypothesis, or to continue

sampling.



We will now show that the sampling cannot go on indefinltely.

£(x38)
q &a 4 (x,80) )

Then é will have some frequency function, say g(b), which is

determined by the frequency function of x. The sequence of
observations Xj,Xg9,.... determines a sequence of 5 observatlions

3.,51, ... --- The inequality (2) becomes

ZfaB C;-_g,éL < Zﬂ'aﬁ “)

where log B is negative and log A is positive (since B<1l and A~>1).

Let c=log A-log B and let p be the area under g(s) between -c and ¢

9G)

- C ‘3
FIGUuRE .

If any one of the 5; falls outside the interval -c¢ to ¢, the
inequality (4) will be violated. Of course the inequality (4) may
be violated even though all the 3’5 do fall in the interval =~-e¢ to c.
Thus if (4) is to hold for all m, at the very least every 3l mst
fall between -c¢c and ¢. The probabllity that every 5; falls in the
interval is pM for the first m observations. Thils probability
approaches zero as m increases, since p is less than 1. Thus (4)
cannot remain true indefinitely. It follows that the sampling will
terminate after a finite number of observations. However, we never
know how large a sample will be required to arrive at a decision

because n, the sample size, is a random variable. A general formula



does exist for calculating the mean value of n, so that we can
determine in advance how large n is likely to be. We state this

formula without proof.

Eoy = PO Lna +[1-PO] Ly (5)
EQR)

where P(©) is the power function ( (11) of chapter 1 ) of the test

ands sA,B are defined by formulas (3),(6),(7) respectively.
The exact values of A and B are not avallable. However,

excellent approximations are given by choosing

Az 1 -@ (&)

‘mkl

6 = (7)

where « is the type I error and B is the type II error. It 1is

|~

beyond the scope of thls thesis to discuss in detall the derivation
of formulas (6) and (7). However, we can indicate briefly, if not
completely, how these formulas are obtained. Suppose Xha were a
continuous function of a continuous variable m so that ZAm could be
plotted as a curve against m. Supvose the test were performed by
moving out along the m axis until A, first equaled A or B. That
is, the test 1s continued as long as (2) is true and ceases when
either Aw =B (Hy accepted) or Awz A (H] accepted). At all points
of the sample space where H, is accepted, the likelihood of Hj,

say L1, is exactly B times the likelihood Lo of Hp, since A= “,° 6
at these points. Therefore, the integral of Lj, over these points
1s exactly equal to B times the integral of Ly over those points.
But the first integral isf, by (10) of chapter 1, and the second
is 1-« (the probability of accepting Ho when it is true). So we
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would have B exactly equal to B(l-x) if continuous sampling were
possible, and (7) would hold exactly. By a similar argument at
Am= A, (6) would be an exact equality if m were a continuous
variable. Since m is a discrete variable, formulas (6) and (7) are
approximations. Investigations show that the error in using

formulas (6) and (7) is quite small when both « and p are less than

one -half.

Equations (6) and (7) make the actual performance of a
sequential test very simple. We merely select X and p arbitrarily,
compute A and B, and proceed with the test. The sequential test may
be summarized as follows. To test the hypothesis Ho agalnst the
alternative hypothesis Hy, calculate the likelihood ratio A, and

proceed as follows:

(1)%?,.\&1%_ RSy S

| —al

. ' 8)
@) I Am 2 =B, rpF Ho (oecapl Hi) (

A

@) I P oo Qm e 2B, he an oddiTod medon

|- o

Using this method we can decide in advance what size type I and
type II errors to tolerate, rather than fix the type 1 error and
then be forced to calculate the type II error as is usually done

in fixed size sample tests.
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As an exgmple of how a sequential test 1s constructed,
consider the problem of testing whether the mean of a normal
variable with variance 1 has the value 8, or the value 6. Hg is

the hypothesis that © =8 and H] is the alternative hypothesis that

8 =907. *
(-
£
-)l (x;©) = e
w 2
w (rbcamm "‘—Cx _3'> L 5_ (x‘--e,)
2 - M < ) 2 .
M (-.-"| - [2%] T
™ _'?‘(X‘~6°)1— _-'— ZLXL-GO)
' 2 £ L3
=i
m L= ks
Ce,— e_o) é XL + m Ceo el

>

ha
P+ (ef-eo") < (e, ‘eo)éxi =
-k r «

. e
769'7901‘0“—,”

g ! 1" + £ (6,7 @)
O ﬁ +%(90+9')4_§x;<e’_60ﬁ“a " ,,( o
=)
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As a numerical illustration, suppose that
«=.05 , 3 =.10, 60=9Y,8,=1/0

The last inequality then becomes

wt
-4 50 +97Sm & 3X; « 528+ 975 m

]
The test now proceeds as follows:-

© 9 _‘2)(; £ -y.50 r 975 w1 acopl O

n

9.5

€<) 76_ EX; 2 58+ 7.7 m a.c.u.r]’ e =/0

¢

(11i) If neither inequality is satisfied take another observation.
As a second example, consider the problem of testing whether
p=p, or p=pj for a binomial distribution. If we choose x=1 for
success and x=0 for failure, £(x;8) will be given by f(1;p)=p and
£(0;p) = q. Suppose that the first m trials of the event produced
dp successes. Then the likelihood functionﬁ:t f(xi;e) will consist
of the product of p's and q's, a p occurrinéﬁgs a factar whenever

a success occurred and a8 q otherwise. The likelihood ration (1)

then becomes
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If we substitute this expression in the sequential test and assign

numerical values to po,pl,o{,[ﬁ, we may proceed as we did in the

previous example.

Suppose py = .5, p1= .7, & = .10, £= .20

(>=% , A

) = X
(" m — ks ™M O(M
2. - (24 2 - (2)"63)
)4 L 9) -l

Inequality (i) in the sequential test gives

2 = P
| — X

AL
(.e. (%)M(j_;) = %

This can be written more convenliently in the form

hm < 2"3%+“”&3
1 “ 3

W)

In a similar manner inequality (ii) in the sequential test gives

2. z =F

le. day, 2 Ij]_f_ ~ m eﬂo
% “

U/)d U"V’

=
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If these logs are evaluated, the test proceeds as follows !

@) 9 ckn & =178+ o3 m , teeapT p 2§
(‘-(.) 7& a(h.\ 2 2.4s + 60> ny ) M‘/\T /l:_.')

(uayémwh@;fmwm

For the purpose of determining when one of the inequalities is
satisfied, it is convenient to represent these inequalities
graphically (Figure 2). If m,dy are treated as the coordinates of
a point, the straight lines

Ame = =178 +.bo3 m

Adna = 2.5 +.0603 m
will serve to divide the m,dp plane into 3 regions corresponding to
the 3 possible decisions at each trial,

m Apw = 2.45 F-603m

Vﬂf/‘)) Ang = =178+ 603m

FlbuRnE 2. m

Q
v\

The testing 1s continued only until the sample point crosses one
or other of the two decision boundaries. These boundaries may be
infinitely long, but in practice they are usually curtailed to
forée a decision one way or the other after so many trials. We
proved that the probability 1s 1 that the sequential test will be

completed after a finite number of observations.
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As we stated earller, sequential methods often reduce
considerably the sample size needed to arrive at a reliable decision.
In the preceding example it can be shown that a fixed size sample of
approximately 2L will be sufficient to arrive at a decision. It
can also be shown, in the theory of sequentiael analysis, that the
average size sample needed to arrive at a decision in this example

is spproximately 13.



- 40 -

Chapter 5
Range and Tolerance Limits

Range

In chapter 2 we saw that the range was useful as a substitute
for the standard deviatlon as a measure of variability in industrial
quality control work. We will now derive an expression for the
frequency function of the range.

Consider a random samplé X1sXBses0e,X) drawn from a population
whose frequency function is f(x), which is assumed to be continuous.
Let these sample values be arranged in order of increasing magnitude,
and denote the ordered set by Xj,Xgy...¢,Xn. Now consider the
problem of finding the probability that the smallest value Xxj and the
largest value x, will fall within specified intervals. The
frequency function of the range can be found quite easily by means
of this probability.

Let the x-axis be divided into 5 intervals (-, w), (w,u+dw),

(wraw, v), (v w+4du), (r+dv,0) where u< v are eny two velues of X,
The probablility that x will fall in any particular one of these
intervals is given by the integral of f(x) over that interval; hence
the probabilities corresponding to these 5 intervals can be written
down even though they cannot be evaluated unless the form of f(x) is

known. Let

w+av
U

wt Bu
Pﬁ/mdx, Py = | poodx , Fy= [ ook (1)

we@u v
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Now let us determine the probability that in a sample of n
values of X we will obtain no value in the first interval, at least 1
value in each of the second intervel and the fourth interval, and no
value in the fifth interval., This procedure is equivalent to finding
the probablility that the smalles t value in the sample will fall
between u and u+4w while the largest value falls between v and v+dv.
The desired probability can be obtained directly from the multinomial
distribution by treating x as a discrete variable which can assume
only 1 of 5 possible values corresponding to the 5 intervals. If Py
snd Pg denote the probabilities that x will fall in the first and
fifth intervals, resvectively, the deslred probabllity 1s given by
the following sum

n! PoR BT PR P
olil(n-2)!t It o! (7-3
. . : 0
n' p,° P, &"-‘-J Pq) Ps
+ 2 o! Ll (n-i-L )t 0!
“r)

For the last sum of (2) at least one of i,j should be greater than 1,
while the first term of (2) corresponds to the case when 1 =j=1 and

consequently n-i-j=n-2. Now (2) reduces to

h-2 <
D PP R S et
L’b

(3) can be simplified somewhat by simplifying the integrals of (1).

TR @)

Since f(x) is assumed to be a continuous function, the mean value
theorem for integrals mey be apvlied here. This theorem states that

if £(x) is continuous on the interval («,(3 ), then

P _
/+(>00(x - ((}—o&)-]—(l') 5  «<C<f
” ‘
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a direct application of this theorem to (1) gives,

2
P = A\r.7’—(\f+ QLAU—) y 0 < 6, £\
Iy
v w+A4u
Py ~ _/-(x)o(x -{-(&)olx _ -/-(x)o()(
we S " N
- .

= 7(4*)0(& — (_\u-f(umt—e,ﬂw)

w

If these values for P,,P, ,B, are inserted in (3), it becomes

n(wn-1) ./_(u_+ 6 Auw) ‘/»(U--f- e, A U')[/-/:;)dx- 4‘*-}-(“"‘5’:4“-):(Aunv

+ é_ Ta;) (u,v; 4w, Av) (Au)é (aw)?

(4)
&4

where at least one of 1,j in the above summation is greater than 1.
This expression is the probability that the smallest value of

the sample, x;, will lie between u and u+4dw, and at the same time

the largest value of the sample, xp, will lie between v and v+ A v,

Xn

u.,\r+4“‘ w+lu, -+ 4 v

Ww,v w+au, v

FICVRE . Sample Space fo Sneallsd wear,x Valus, X
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Geometrically (4) glves the probability that the point (x3,xp)
will lie inside the rectangle sketchcd above. In order to find the

frequency function of the two varlables x; and x, at the point (u,v)
it 1s necessary to divide (4) by the area of the rectangle, namely
Auw Av,and take the 1limit of the resulting quotient as 4w and A v
approach 0. If this frequency function is denoted by f(u,v), it
following from (4) that

u n-1
£(u,v) = n(n—l)f(u)f(v)[/ £0) JﬂJ (s)
“w
In the second term of (4) at least one of i,j »1. Therefore, as
Aw and A gagpproach 0 so does this term.

Since f(u,v) is the frequency function of the variables x; and
Xp at the arbitrary point (u,v),(5) gives the desired joint frequency
function of the smallest and largest values of a sample of size n.

We may state our results as follows:

If u and v denote the smallest and largest values, respectively, in

a random sample of size n from a population with the continuous
frequency function f(x), then the joint frequency function of u and v
is given by (5).

The frequency function for the range can be obtained very
quickly from this result. Let R=v-u represent a change of variable
from v to R with u held fixed. Then by (6) of chapter 1 the joint
distribution of u and R is given by

g(«,) = o (w,usR) 2((:":) = 4 (wurR)

w+ R h-v

(4, = n(n-‘>+<~«>+<u+ﬂ>[/f*>°‘* @)
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In order to obtain the frequency function of R, say g(R), it is
necessary to integrate g(u,R) with respect to u over the range of u
when R 1s fixed. If the range of x is from a to b, then the range
of u with R fixed will be from a to b-R. This upper 1imit arises
from the fact that u is always R units smaller than v and v cannot
exceed the upper limit b for x. We may express these results as
followss: If the continuous variable x has the frequency function
£(x) and if x assumes values in the interval (a,b) only, then the

frequency function of the range, g(R), for a random sample of size n

is given b
! b-R w+R n-2-
a((z) = nin-0) 7(_[“)+(.u+g) Fo> Ax | g (7)

o

Tolerance Limits

Consider the problem of determining the range of variability
of some guality characteristic of a product c¢amning off a production
line. The producer is interested in knowing how this characteristiec
varies, because the consumer may reject a purchased lot if the
variation is beyond certain limits. If it is known thaé the
characteristic is approximately normally distributed, normal curve
methods based on the sample mean and sample standard deviation can be
used to determine an intervel within which the characteristic would
be expected to lie. Experience might show, howvever, that the
distribution of the characteristic differs considerably from
normality. Therefore, we require a method for determining such an
interval without the necessity of a normallity assumption. We will

now discuss a method which does not require a knowledge of the form



of the frequency functlion. Such a method is called non-parametric.

Let a sample of size n be drawn from a population with the
frequency function f£(x) which is known to be continuous but otherwise
unspecified. Consider two functions of the sample, Lj(Xj,Xgye«..,Xp)
and Lo(X1,X0,+..45Xn), such that L] <Lg, and such that a fixed
percentage of the population may be expected to lie in the lnterval
(Ly,Lo) regardless of f(x). Functions such as Lj and Lg are called
tolerance limits. By choosing the functions Lj and Lo so that a
high percentage of the population will ordinarily be found to lie in
the interval (Lj,Lg), the desired interval will be obtained. If
Ll and L, are chosen as the smallest and largest values,
respectively, that occur in the sample, it will be found that the
percentage of the population which can be expected to lie between
L, and Ly does not depend on the form of £f(x).

Since the variable X possesses the continuous frequency function
£(x), we may apply the relationship (5) established in the preceding
section. Thus if u and v denote the smallest and largest values,
respectively, in a random sample of size n from a population with
the continuous frequency function f(x), the joint frequency function

of u and v will be given by

FCuey = n(ne) ﬂﬂ[/u;f«x)dx]

-2

-
Now the integral /{ fdx is precisely the desired proportion of the
A

population lying between the extreme values of the sample.



Consider the freguency function of w anﬁ.g, say k(w,é), where

’)(> = /_{,‘)d)ﬂ , w- = [%Lx) A x (8)

-0

By (6) of chapter 1 it follows that

b(u;v') h-
h(w3) = 4 (9w Ibm)’ = n(n-1)3 : (7)

Now the frequency function of z, say h(z), may be obtained by
integrating k(w,z) with respect to w over the range of w when z is
fixed. Observe that w+z 1s the probability that x will not exceed v.
Therefore, wtz $1. Since z is fixed, w can assume values from O to
1l-z only. Thus
I'S {’3
h(}) = h(w’.ﬁD dw = “(K_’)Sn-lo(ur = Vl(u-c)—éu ‘?—(1'5)

0 0 (10)

We may state our results as follows:

If a varliable possessss a continuous frequency function end if 2z
denotes the proportion of the population that lles between the
zXtreme values of a random sample of size n drawn from this
population, then the frequency function of z is given by (10).

As an example conslder the problem of determining how large a
sample must be taken in order to be certain with a probablility of
0.95 that at least 99% of the population will lie between the
extreme values of the sample. The solutlion is given By determining

the value of n that satisfles the equation
i

L\(}) db = .95

‘99
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If the value of h(z) given in (10) is inserted and the integration

is performed, this equation becomes

n-—/ 9
n(n-!)[h(T, ":,7 - (99) + (“:i) ] = .95

n-—I

which simplifies to

(.79)“ = ‘4‘?5'

n+99

It will be found by trial and error methods that the integer that
most nearly satisfies this equation is n =473, Thus a sample of
size 473 1s reqgquired in order to be certain with a probability of
0.95 that at least 99% of the population will lie between the
extreme valués of the sample. It is clear from this example that a
very large sample is necessary before the extreme values will suffice
to set limits within which practically all the population would be
expected to lie.

The transcendental equgtion that arises in determining the
value of n for problems of this type 1s not easy to solve. |
Consequently a simple approximate solution is highly desirable. Such
an approximation, which is surprisingly good, is given by the formula

kS
A R - ()

Where § is the proportion of the population to be covered by the
. 2.
sample range, « 1s 1 minus the desired probability, and X« is the
T 5
value of X for 4 degrees of freedom for which P(L 7 X« ) = XK.

If formula (11) is applied to the above problem, we get

1.9 [ =
n > _%*_ (?.998’) v L 473
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Chap ter 6
Theory of Runs

In the statistical methods that we have considered in the
preceding chapters, we have assumed that the observations constitute
a random sample from a fixed population. However, we may suspect,
when we take a set of observations over some time interval, that
these observations do not behave like a random sample., It then
becomes necessary to test the randomness of the sample before the
usual statistlical methods based on randomness can be applied. The
object of this chapter 1s to discuss a method for testing randomness
which is based on frequency functions of runs. This method does not
depend on the frequency function of the baslc varigble and 1is
therefore known as a nonparametric method.

Consider an arbitrary sequence of n elements, each element being
one of several mutually exclusive kinds. Each sequence of elements
of one kind, bounded by slements of another kind or no element, is
called a run. The simplest case 1ls that in which thers are two
kinds of elements. We shall consider this case in detail, and also
briefly mention some results for the case of several kinds of
elements.

Two Kinds of Elements

Suppose we have ny a's and n, b's (nl*n2= n). Let T3 denote
the number of runs of a's of length J and roj denote the number of
runs of b's of length jJ. For example, if the arrangement is

agabbaabaabbab
then vy =1, rj0=22, Py3=1, rogj =2, rgg =2 and the other r's are

ZeTr O,



Observe that g_jrlj=nl, the number of a's, and {ijr23=n2, the
number of b's. Let ry-= Jirlj and rg = %.rgj denote the total number

of runs of a's and b's respectively. For a given set of numbers

!
r P10gesesy I there are vi - ways of arranging the
11ls T19s s Tiny S B I y ging
riy runs of a's. Similarly there are Y ! ways of
: Var! Yeu tee-oes Yan, !

arranging the ro runs of b's.

Since the runs of a's and b's alternate, elther ry=ryo,r = ro-l,
or ry=ro+l, If ryj= rotl, the sequence must begin and end with
an a. If ryj=ro-1, the sequence must begin and end with a b.
However, if rj = ro the sequence can begin with elither letter. For
the first two cases there 1s no choice of beginning letter. However,
for the third case (rj =rg) a gilven arrangement of runs of a's can
be fitted into a glven arrangement of runs of b's in two ways, either
with a run of a's first or with a run of b's first. Therefore, for
the third case the number of arrangements is twice as large. In
every case the total number of ways of getting the set ryj (1=1,2;
J=1,2,c0..onq) 1is

N () = y; ! . va ! E £ (v, *)
Y,,'Yn_' ce e Yot {l-l,.Y‘LI—’."“YLnL. )
. ] l
. Y,=Y2 (
";’t Y.XY-.—

posslble arrangements of a's and b's, each

whee  F(¥,1) = {
n'

N
of which 1s equally likely, the joint frequency function of the

Since there are

given set Ty is

Y, l. Ya ! . F (V' ) Y")
Vil i Lo Yo, Yol aaloe Yo d

F(YL'3) = ( <L)

) N,
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Now let us determine the joint frequency function of the r,s .
It is easier at first to find the joint frequency function of Ty

end ;. To do this we sum (2), for fixed r; and r,, with respect

2]
to all r,_b We wish to sum the multinomial coefficient Ya !
Py Yar! Yon tees Yano !
for all ryy such that 53 yr=j = "~ ool ZY:. = Yo
3! 07!

In order to do this, consider the multinomial expression
Yi Yo, 4L o+ NV,

(x".x.‘_*’ s Kn\.) = é . Y. !

Ll'. Y-.,;,! o “Y'I-V'\_\.

It is obvious that the coefficient of x""‘ in this expansion is

N
f_ th'Y‘;,-._l Yool under the condition 2 BY\.() = M, ?—Y‘O = Yo
9! il
However, it 1s clear that this is also the coefficient of x™ in
Yo
the infinite expression (x+x  ....) . Now
Yo
Ya
(X“'*L*-'-“.) - <—)_(_ )YLz X S
- U-x)"™

Y o0
= X2 Yo-n1 T!
T=0

The coefficient of x"" in the expression on the right hand side 1is
the coefficient of the term for which r,+ t =n,, that is t=n,-r,.

Therefore

Y. { _ (Y\_."’ + N —YI—)'.
é Yaul Yo looooYau, ¢ (a-i)L (=Y L

_ (no-01!

(Y,_—I)', ( V‘L_YL)'.

Therefore the joint frequency function of the r,é and r, 1is

Y '- . (n"'—')” N F(Y:){\—)
P (Ylb ’ (L) ) Yl Yol ----Yin, ! (Y“L-’) (W vl

(3)

ni

nint
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Now we sum (3) with respect to ro

(na-) . F(T,,?'-.,) = (.-n ! A+ Ln‘:;'..)_’_. .2
Z(a DRNCURIY (=) (g -Y40)], (Y-t (m-n)!
[Vlt"”)'- o= (V’v‘l").’
il (n-vi-1)! Y, (Y1) !

This gives us the joint frequency function of the r1j

P(YWB «v., N AN O AL (4)
o el

with a similar expression holding for the joint frequency function
of the roye

Another important distribution 1s the joint frequency function
of r{ and ro. We get this by summing (3), for fixed ry and rg, with
respect to all rjj. This is the same method that we used to obtain

(3) by summing (2) with respect to all rgj. The result is

) (v, -1 (n.-1)! F (¥, )
o)rf- - . ’ ' "
P(Y ) (Y'.-l)‘.CVt.-V.)‘. (YL-‘)'-(“':"')! ""

nind

(LGS T ey

We find the frequency function of rj by summing (5) with respect to

ro, obtaining

“)! (ne+1)!
PCn) = (f,_(.")'z (')vv.-v.)!' Y (wa'—f.)'./"f

TN

G ey

!

(¥

Wa wae Mo nelliow w Cy ’(3)
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The frequency function of the total number of runs of a's and
b's 1s of considerable interest in the application of run theory.
Let u=ry+ro, the total number of runs. To find the frequency
function of u we must sum (5) over all values of rj and rg such that
ry+ro = u. we have two cases, (1) u= 2k (even) and (2) u=2k-1 (odd).
If u= 2k (even), there is one pair of values to consider, rj=rg=k.
If u=2k-1 (odd), there are two palrs of values to consider,

ry=k, ro=k-1 or ry=k-1, rg=k. Hence, from (5) we have
n|'l V),_—l
- h - . . 7_
P(w=2h) (h-'> (h~') /<Vl.+”t-)
n-1 M. - n, -1 m—l>
— - _ . + .
?(L&-Zk ‘) = (h-{) (k-z) ( _)_> (k_-‘

The function P(uSu')= t?__?_P(u) has been tabulated for various
values of n; and no and u'. Such tables enable us to test whether
a sample value of u 1s unusually large or small as compared to
what would be expected if the sequence of values constituted a
random sequence.

Another probabillity function of considerable interest in the
a_pplication of the theory of runs is the probability of getting at
least one run of a's of length s or greater, or in other words the
probabllity that at least one of the varliables r; i, T . s Lyser s
in the distribution (4) is21. Mosteller has solved this problem
for the case nj=ng=n, To obtain this probability we put nj =ng=n

in (4), thus obtaining
(n+1)!

P(Ylh) = L — Y,! (|4-V’,+l)’, (ZM)" (8)

Vu!{n-'-”“'y'“" (ld‘,)"
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and sum over all terms such that at least one of the variables-
Yis sy Yise) 5 ----- 2 1. We can accomplish the same thing by summing
over all terms such that all of these variables are zero, and

subtracting the result from unity. To do this we must sum the

multinomial coefficient Y. ! in (8) over all values of
Yil‘,Yu;’. [ Ydﬂa‘.
I'“ » I’"_ g00ey I'." SuCh that I"W - r's+' = ceese = I““ :O,
ﬁ—éY') =N, 2‘43 A end then sum with respect to r.
a ]

By the same argument used to derive (3), we see that the sum of
the multinomial coefficient is given by the coefficient of x" in the

expansion of -,

)6 e xs) " (10

X" (1-x )" 2 (Y'—Ht)xt

-1
T=o i

h

X+x* & ---+X

_ .)(Y' é(-')b (:{,) 3(5 ')2 <~(,—l+(.) 'C
g Zed () ()T
I‘-—o d=¢

Therefore, the sum of the multinomial coefficient i3 given by
5 Yoo NS y(s-0 !
- (7)
2( ) Y, - |
¥=o

Thus the desired probability of at least one run of length s or

greater is

P(ax BT on ¥y 25 32%) ()(™ acw-me o)

£ 2 "
(Z:)

l —_ Y}
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Applying similar methods to each of the multinomial coefficieﬁts in
(2), Mosteller has obtained the probability of getting at least one
run of a's or b's of length s or greater.

In order to indicate how to find moments of run variables, let
us consider the case of r;. We shall first find the factorlal

moments E[x@")J where xu"'3 = x( x-) (x-2)-..... (x-a+1) = __’_<__,‘_l
X-e)l

for they are easier to find than ordinary moments in the present
problem. From them the ordinary moments may be found since E [_X(L)_]
is a linear function of the first i ordinary moments. Letting
1=1,2,3,.c..,8 we obtain a system of a linear equations which may
be solved to obtaln the ordinary moments as linear functions of the

factorial moments. We have

ny [
7 - @ P - Yi: P (o)
ECYI ] - 2 Y, I7() v -a)!
Y.:' Y’.:;
In order to evaluate (10) we use the following identitys:
i Al B! - (A+re)! ()
_2 (c+i)l (A-c=-DI i (B! (c+B)' (A-)!
=0 ’

which follows at once by equating coefficients of xC in the
eXpansion of
A+
A B = + X
G0 Creg) U+x) ()
X >
Substituting P(rj) from (6) into (10), simplifying, and using (11),

we have
n,-1)! o (nerg-adl

@) 2
E[Y'(a.) ] = (VIL#'I) é (=08 (A Y (n-a) ! (Nasr =Yl

nl

min,t

()
:(V\-;_“f") Q\—-&)'

()t nat )20 (3)
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From thilis result we find

E(v) = (ny+ 1) Ny

n
y () @)
é Y, = (V‘ 2 +’) nl
' PP

(G
a similar expression holds for EEY,_“)J .

K Kinds of Elements

The theory of runs has been extended to the case of several
kinds of elements by Mood. If there are k kinds of elements,
S8y 81582, .08y, denote by r4j the number of runs of ay3 of length
jo Let ri be the total number of runs of ai. Mood has shown that
the joint frequency function of the rij is given by

k. (9
P(Yc-) - ]T Y ! . FCT"YH'“)Y'&) ni ( )
° Yl Yol - Yo AL - AL

L=

where F(rl,rg,....,rk) is the number of ways r; objects of one kind,
ro objects of a second kind, and so on, can be arranged so that no
two adjacent objects are of the same kind. The argument for
establishing (14) is very similar to that for the case of k=2,

The joint frequency function of rj,rg,....,ry is given by

R
P(Y\,f,_).---,fh) = -H—("i-') . F(T-)Y‘-Y”) Y'L) ni (IS’-)

Yoo —_—

= nina .ot

which we state without proof.

Application of Run Theory

Let x]'.,xé,....,xr'ldenote a random sample of ‘size n from a
population with a continuous frequency function. Let X be the

medlan value of the sample. Each sample value greater than X will
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be called a and each sample value less than §'wi11 be called b,

In what follows we will assume that n is an even number, say n =2k,
so that there will be the same number of values (k) above and below
the median. In this case we choose the median, %; to be the
arithmetic mean of the two middle values in the sample. If n is an
odd number, say n= 2k+l, then we ignore the median and the same
arguments apply. Thus we have k a's and k b's in the sample.

Denote by X1,X9,....3Xp the ordered set of values corresponding
to the gbove sample. Now any particular random variable in the
sample has the same probsbility of occurring in a specified order
position in the ordered set as any other varigble. For example,
the first sample value to be drawn, xi, has the same probability
of being the largest value, X, in the ordered set as the second
sample value, Xb, has. Thus each of the n! possible permutations of
the varisbles xi,xé,....,xﬁ has the same probabllity of being the
ordered set of values denoted by Xj1,X9seesssXpne

Let babbag....a denote any permutation of the k a's and the
k b's. Consider the number of the n! permutations of the x“s
that will yield this particular permutation of a's and b's. The
first b in this permutation means that the first sample value x{
was smaller than the median. Thus xi could have occupled any one of
the first k order positions in the ordered set. The flrst a in this
! was larger than the

2
median. Thus xé could have occupled any one of the last k order

permutation means that the second sample value Xx

positions in the ordered set. Hence, there are k cholces of order
positions for the first b and also for the first a. In a similar
manney there are k-1 remaining choices of order positions for the

second b and the second a. Fllling order positions in this
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manner, there are k! k! choices of order positions for the x'’s
to yield the above arrangement of a's and b's. This number of
choices does not depend upon the particular permutation of a's and
b's. Furthermore, all order permutations of the x'’S have the same
probability of occurring. - Thus‘all distinct permutations of the a's
and b'!'s have the same probability of occurring.
It follows from the above discussion that all of the run
frequency functions (2), (3), (4), (5), (6), (7) are applicable,
for ny= ng=n, to all possible arrangements of the a's and b's.
Thus we see that by classifying sample values into a's and b's
and using the theory of runs we have a method for testing randomness
in a sample as far as order 1is concerned.
The more commonly used tests of randomness based on run theory
are:
(1) Number of runs of a's, for which the distribution is (6). For
given velues of n; and ng, the test consists of finding the largest
value of rq (the number of runs of a's), say rg, for which
P[y, 2Y,°%) < €, 2.9 f€=-05 A simllar statement may be made
concerning runs of b's.
(2) Total number of runs of a's and b's having distribution (7).
Again, the test consists of finding the largest value of u, say u°,
for which Pl W2 U\"]ff,for given values of nj and ng.
(3) At least one run of a's (or b's) of at least length s, for
ny = ng =n, based on the distribution (9). The test consists of
finding the smallest value of s for which the probability (9) is < €.
. As an illustration of the application of the preceding theory
comslider the following example. Samples are taken every morning

and afternoon from a production line to check the diameter of a



part. Suppose the following diameters are obtained.
.220, .213, .221, .214, .219, .214, .222, .216, .212, .221, .223,
.214, .221, .216, .217, .215,
The median value of thils sample is .218., If each value gbhove the
median is assigned the letter a while each value below the median 1is
assigned the letter b, we obtain the following sequence of letters.
abaagbabbaababbb

We will now use the total number of runs, u, in order to test
the hypothesis of randomness in the above sequence. Here u-= 10.
We wish to see whether thils value of u is large or small as 6ompared
to the number of runs expected in a randomly selected sequence of the
same length: We stated earlier in the chapter that the function

W
P(u &u')= “ZP(u) has been tabulated for various values of nj and ng
=L

and ut. Below we have a few entries from one of these tables.

TeALE )
M= S | 10 |1S | 20|25 |30 [Yo | So| 6o]| 70| 80 |90 | 100
Wosl 3 (A 1S [19 (24 |33 [y |S) |[bo |70 |79 | B8

Uesl G | IS |z0of26 32|37 |yg sy | 70|%1 |91 |102|n13

In this table u,gs is the value of u such that P(uzu,gs) £ .05 and
u,g5 1s the value of u such that P(ufu,gs) Z .95. These values may,
therefore, be used as 5 per cent criticuai values for testing
randamess against the alternative of too few or too many runs. In
our example u=10, ny= 8, and np=8. By interpolation we find that
u g5 1s approximately 5 and u gg is approximately 12. The sample
value of 10 1s not critical. Thus we have no reason to doubt the

randomness of the sample.
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Too many runs may occur if the machines have a tendency to
turn out larger parts in the morning and smaller parts in the
afternoon. In thls case we would get a sequence like the followlng.
abgbabaccceseeee Too few runs may occur if the machines gradually
produce larger parts from day to day. In this case the earlier
observations would be mostly below the median and the later ones

gabove. We would then get a sequence like the following.

bbbbanasagas.cceccacae
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