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Abstract 

Mining operations are highly affected by risk, where commodity price and geology 

can be considered as the most relevant ones, as they will define the pit’s design 

and the operation’s ability to meet production plans. Considering these 

uncertainties at an early stage is key for project success, and doing so by 

including managerial flexibility to annually re-evaluate the project allows a more 

realistic approach, and increases the operation’s ability to react timely to change. 

The current study presents a real-option based evaluation approach to assess 

the effects of commodity price and geological uncertainty over the performance of 

a mining operation and the potential life of mine and consecutive pit limit 

modifications that may occur. The case study presented shows the value of 

flexibility when dealing with stochastic scenarios, in contrast with conventional 

evaluation methods. It was found that the stochastic method better assesses the 

project’s potential to expand and provide useful information that traditional 

methods ignore. A Geometric Brownian motion with Poisson jumps model is used 

to forecast price, and direct block simulation is used to model geological 

uncertainty. The model was optimized using the commercial software ILOG-

Cplex. Results show that including the option to stop mining, or expand increase 

the operation’s value, but only if expensive infrastructure relocations are 

prevented, which makes it necessary to study these options at an initial stage, as 

they allow management to prepare for changes and provides a clearer image of 

the project’s real potential.  
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Resume 

Les opérations minières sont hautement affectées par les risques. Le prix des 

métaux et la géologie sont considérés comme ayant le plus d'impact puisqu'ils 

définissent le design de la mine et la capacité des opérations à atteindre les 

plans de production. La planification sous incertitude est utilisée pour créer 

un projet performant sous ces risques de sorte que les objectifs de production 

seront encore atteints. À cette fin, considérer de la flexibilité dans les opérations 

et dans la gestion ajoute un bénéfice important afin de répondre profitablement 

aux changements. 

Cette thèse présente une approche basée sur l’analyse par options réelles pour 

évaluer les effets de l’incertitude des prix des métaux et de la géologie sur les 

performances des opérations minières, la  durée potentielle de la vie de la mine 

et les modifications de la taille définitive du site d’excavation. L’étude de cas 

présentée montre la valeur qu’ajoute la flexibilité lorsque des simulations de 

géologie sont considérées, par opposition aux méthodes conventionnelles. Il a 

été constaté que la méthode présentée permet une meilleure évaluation du 

potentiel d’expansion du projet et fournie des informations importantes que les 

methodes traditionnelles ignorent. Les résultats montrent qu’inclure l’option 

d’arrêt ou d’expansion de la mine à chaque année augmente la valeur des 

opérations, mais seulement si les dépenses de relocalisation d’infrastructures 

importantes sont prévues. Ceux-ci rendent nécessaire l’étude de ces options 
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dans une étape initiale puisqu’ils permettent aux gestionnaires de se préparer 

aux changements et produisent une meilleure vue du potentiel du projet. 
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1 Introduction 

 

Mining reserves are function of both internal and external variables, most of 

which are highly uncertain. This fact makes mining projects some of the riskiest 

investments in the market, and at the same time, one of the most profitable. This 

risk can be divided into two groups: internal uncertainties and external 

uncertainties. The first ones consider all variables which are intrinsic to the 

project, productivity, metallurgical recovery, and most importantly, geology. On 

the other hand, external risks affect all projects equally, such as market volatility, 

price uncertainty and exchange rates. The complex combination uncertainties 

make it impossible for mine planners to determine strategic design variables such 

as production capacity and life of mine with certainty at the planning stage of the 

project. In response, later adjustments to the mine plan take place according to 

the context of the project, both technically and economically; however, these 

adjustments are not considered in the initial evaluation processes, which 

undervalues the project and prevents decision-makers to prepare in advance and 

take full advantage of opportunities. 

Currently, the traditional way to deal with these uncertainties is by assuming the 

worst case scenario (usually chosen conservatively) and optimizing the project as 

if everything was known and stable, which leads to obvious deviations from target 

and highly suboptimal mine plans. This procedure creates robust designs which 

reduce risk, as they allow the project to perform faced with most of the 
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unfavorable scenarios, but, robustness is expensive, and it doesn’t provide any 

information on what will actually happen in the future. In other words, it is a heavy 

static response to a continuously changing industry. An alternative approach is to 

consider the ‘stochastic condition’ of the variables, which provides probabilistic 

information of the project’s performance. This stochastic mine planning facilitates 

designing flexible operations, allowing the planning process to include decision-

maker’s reactions to future conditions and simultaneously optimize the timing of 

the reaction’s costs. As stated in Sabour and Dimitrakopoulos (2010), an 

important aspect of stochastic planning, is that it helps answering questions such 

as “what is the probability that the mine closes early?” or “what is the probability 

of expanding the operation and when?” Probabilistic approaches provide a tree of 

possible outcomes and, with them, a range of potential project values which 

constitute a better representation of the project’s actual performance. However, 

because of the correlation complexity of the variables that affect the mining 

industry, there is still much work to be done in order to build a user-

comprehensive and computationally efficient stochastic model that accounts for 

multiple sources of uncertainty. 

The goal of open pit mine planning is to first determine an optimal extraction 

schedule that maximizes project value and subsequently, to decide where/when 

to stop mining. The latter defines the ultimate pit limit of the deposit and the 

infrastructure location for the operation. The current study focuses on the second 

stage of the mine planning process, assuming that the initial stage has already 

been optimized. Continuing the work of Sabour and Dimitrakopoulos (2010), this 
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study will center in creating a model that considers metal price and geological 

uncertainties to determine the life of mine (LOM) of a mining operation and with 

this, a stochastically-defined ultimate pit limit. To do this, it is necessary first to 

fully understand the effects that these variables have over the project, and at the 

same time, consider the correlation that exists between them.  
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2 Approach to Uncertainty Modeling 

 

2.1 Geological Uncertainty 

Because of the high costs associated with exploration, the limited information 

obtained from composites and flawed sampling systems, the geology of the 

deposit is highly uncertain, being one of the main sources of risk in a mining 

operation (Godoy and Dimitrakopoulos, 2004). Thus, many efforts have been put 

in developing a method that allows the integration of this uncertainty into the 

design and evaluation of the project at acceptable time limits. One of the 

developed methods is conditional simulation; to date this method has been 

successfully implemented in various projects, and will be used in the study 

described in Section 4. 

The limitation of conventional approaches can be summarized in two parts: first, 

estimations don’t account for the data’s local variability, and second, they don’t 

consider that the processes of mine design and production scheduling are non-

linear transfer processes, and therefore assume that the optimum estimation of 

each component will provide the optimum solution for the whole. In contrast, 

conditional simulation can be used to generate equally probable representations 

of the orebody, which respect the spatial correlation and variability of the deposit, 

providing a probabilistic assessment over a group of blocks (Ravenscroft, 1992; 

Dowd 1994, 1997; Groovaerts, 1997).  

Godoy and Dimitrakopoulos (2004) state that geological uncertainty is the major 

contributor to not meeting project expectations; in their study, the authors 
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demonstrate that including this uncertainty significantly reduces the deviation 

from production targets, and at the same time, increases the total value of the 

project. The importance of geological uncertainty was first accounted for by 

Journel (1988), who introduced the term of stochastic simulation for modeling 

spatial uncertainty to include the geological risk of the deposit into the mine 

planning process. To date, this method has been successfully implemented in 

various projects, providing a probabilistic approach of the metal content of each 

block by generating multiple equiprobable simulations of the deposit. Further 

applications of the method in comparison with the deterministic assessment can 

be found in Ramazan and Dimitrakopoulos (2012), Albor and Dimitrakopoulos 

(2009, 2010) and Dimitrakopoulos and Grieco (2009). 

Among the different stochastic simulation techniques, an efficient and 

straightforward method to generate multiple equiprobable representations of a 

deposit is Direct Block Simulation (DBSim), thoroughly described in Godoy 

(2003). DBSim is a step forward from generalized sequential Gaussian simulation 

(GSGS) described in Luo (1998), which mixes the upside characteristics of LU 

decomposition method (Davis, 1987), with the qualities of the well-known 

sequential Gaussian simulation (SGS). The first method (LU), it is capable of 

simulating simultaneously and in a fast way a group of nodes; however, it is a 

computationally expensive method as the decomposition of the covariance matrix 

requires O(n3) computations for a 'n x n' matrix. On the other hand, SGS has the 

upside of being easily implemented, but can turn to be very slow as the number 

of nodes (n) to simulate increase.  
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DBSim method divides the volume to be simulated into groups of nodes, 

generally accordant with the selective mining unit (SMU) defined by the operation 

(for details in how to choose the optimal group size, refer to Dimitrakopoulos and 

Luo, 2004). Subsequently, each of the groups is visited following a random path, 

as in SGS, and inside each group, the internal nodes are simulated by LU 

decomposition, which in these conditions is a fast and feasible method given the 

reduced size of the groups. The main difference between this DBSim and the 

previous GSGS, is that in this case, once the internal nodes of a group are 

simulated, they are averaged and only this value is stored, liberating the memory 

of storing each individual node, which at the end, would be averaged up anyway 

once the re-blocking process takes place. Because of this memory liberation, 

DBSim becomes computationally inexpensive and simple to implement. It’s 

important to note that, once the nodes of a group are averaged, we are left with a 

block value which must be used to condition subsequent blocks being simulated, 

so the covariance of block to block and block to node support are needed. This is 

a straightforward step; however, it is an important difference between this method 

and its predecessors.  

Together with this, DBSim can easily be extended to the simulation of polymetalic 

deposits, by using the minimum/maximum autocorrelation factors (MAF). In this 

case however, a double storage of the data must be done: once the internal 

nodes of a block are simulated, they must be back transformed to their original 

coordinates, and subsequently averaged and stored outside of the simulation 

process, and on the other hand, the nodes in the simulation space must also be 



17 
 

averaged (in their transformed coordinates) to be used to condition the remaining 

simulation. Clear examples of this process can be seen in Benndorf and 

Dimitrakopoulos (2007) and Boucher and Dimitrakopoulos (2009, 2012), as its 

implementation is outside the scope of this study. 

 

2.2 Market Uncertainty 

In addition to geological uncertainty, despite the fact that market risk is widely 

acknowledged, for simplification purposes, projects are traditionally evaluated 

assuming certainty in the price trend. Regardless, price shifts have a decisive 

effect over the project, and although they can’t be controlled, it is possible to 

increase the flexibility of the project in order to be prepared to react timely to 

them, and overall assess the probability of alternative outcomes that can mean 

greater or smaller profit (Dixit and Pindyck, 1994).  

Generally, a fall in the commodity price will make the ore content of the final pit 

be less valuable and also, cause that less material will be profitable to extract 

(some ore blocks are now considered as waste), triggering the final pit limit to 

shrink and the life of mine to decrease. In other words, the operation may close 

early due to a drop in price. Similarly, if the commodity price rises, the life of mine 

will likely increase, as there is new material that now is profitable to extract that 

wasn’t with the previous price (waste is considered as ore after the rise in price). 

This ore/waste relation is mainly defined by the cut-off grade, which is function of 

price, as well as operational capacities and costs, and there has been a lot of 

work done to optimize its value in order to obtain desired targets, mainly 
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maximize the NPV, as it is the link between geological and price variability. 

Details on cut-off strategies may be found in Asad (2007) and Asad 

and Dimitrakopoulos (2012).  

If the operation, however, is not prepared for these expansions or contractions, 

decision-makers will not be able to take full advantage of positive scenarios, or 

protect the project form negative ones. Potential problems that prevent the 

project from benefiting from opportunities may be caused for example, because 

infrastructure is placed in strategic spots where the pit could expand, requiring 

great relocation costs. On the other hand, it may be hard for decision makers to 

hedge from unfavorable scenarios if contracts and leases are done over too-long 

term, reducing their managerial flexibility. From here, it is apparent that flexibility 

is highly valuable and efforts must therefore be concentrated on including it in the 

project’s engineering design as well as in its strategic planning. 

McCarthy and Monkhouse (2003) state that not considering the commodity 

price’s uncertainty and the managerial flexibility in the evaluation process results 

in underestimations of the optimal LOM, that lead to plants with extra capacity,  

with higher initial investments, and a loss of capital in general. The authors also 

clarify that this can be handled by using real options valuation approach; in their 

paper, the option of re-opening or permanently closing a stand-by copper mine is 

evaluated. Similarly, Moel and Tufano (2002) use real options to study the 

operational state dynamics of a group of 285 North American gold mines (open 

pit and underground operations), defining when to exercise and when to hold on 
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to options of temporary or permanent closing, subject to uncertain commodity 

prices.  

To account for the effects of market uncertainty over the project’s value, real 

option valuation (ROV) has shown to provide successful alternative results. This 

method, developed as an extension of financial options into investment projects, 

complements the NPV and addresses many of the limitations of the DCF analysis 

(Lee and  Strang, 2003; Samis et al. 2006). In a standard real options model, the 

underlying state variable (in this case the commodity price) is formulated as a 

stochastic process, enabling the examination of the uncertain behavior of the 

variable (Shibata, 2006).  With this, the model is capable of quantifying the value 

of flexibility as a response to the uncertainty, and integrates it into the project by 

considering the value of decision-making along the LOM.  

This valuation method has been successfully implemented in various industries, 

with many applications in mining to consider, principally, the metal price and 

exchange rate uncertainties. Brennan and Schwartz (1985) evaluated the option 

of closing a mining operation early. Amram and Kulatilaka (1999), present a 

general overview or RO with an example to develop and operate a gold mine; 

both proving that considering the option’s value provides a more reliable image of 

the project’s performance. Sabour and  Wood (2009) and Dimitrakopoulos 

and  Sabour (2007) consider commodity price uncertainty and demonstrate that 

ROV method incorporates the ability of the project’s management to react to 

change based on new information; in their study, the authors show that ROV 

provides substantial improvements in the mine planning and evaluating process 
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compared to traditional methods. Samis et al. (2006) use RO based on forward 

contracts for copper to consider the commodity’s market variability and obtain 

better information to select a project to invest in. Sabour and  Dimitrakopoulos 

(2010) use RO to incorporate the option of expanding, closing early, or stopping a 

mining project, subject to price variability, and with this, they define a stochastic 

method to calculate the ultimate pit limit of the project, showing that traditional 

methods consistently underestimate the size of the ultimate pit. Other examples 

can be seen in Mardones (1993), Samis and Poulin (1998), Cardin et al. (2008), 

Cortazar et al. (2008), Sabour and Poulin (2010), among others. 

To incorporate price uncertainty in project evaluation, however, it is necessary 

first to generate a reliable stochastic model that expresses this uncertainty. An 

extensive description of econometrics and price forecasting models based on 

random walks is given in Dixit and Pindick (1994) and Campbell et al. (1996). 

Newer and more sophisticated models are also available, which examine the use 

of neural networks (Mingming and Jinliang, 2012), wavelets (Jammazi and Aloui, 

2012), auto-regressive models such as ARIMA, AARMA, ARMAX, GARCH, etc. 

(Meade, 2010; Tan et al. 2010), trend stationary processes and random walk 

simulations with diffusion jumps (Shafie and Topal, 2010), among others. 

The inclusion of this ‘jump’ component to complement the variable’s modeling 

has proven to generate a better representation of price behaviors when applied to 

energy and commodities such as gold and copper, without the requirement of 

extensive assumptions as input (Shafie and Topal, 2010; Blanco and  Soronow, 

2001), and as such, it will also be incorporated in the following study. This was 
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first noticed by Merton (1976), who derives an option pricing formula that 

continues the work of Black and Scholes (1973), and considers stock returns as a 

mixture of a continuous behavior with a jump-Poisson process, both of which only 

depend on the current price, respecting the Markov properties of the models. 

Oldfield et al. (1977) introduced empirical data to support the idea of modeling 

stock returns as a combination of a continuous process with discrete jumps. Even 

though these studies are focused on stock returns, they can as well be applied 

for commodity price forecasting, as they also behave as market derivatives. This 

was carried out by Mendez and  Lamothe (2009), who modeled copper price by 

incorporating Gaussian Poisson exponential stochastic processes (or ‘jumps’) to 

the usual mean reverting process, and by Blanco and  Soronow (2001), who 

incorporated a jump-diffusion process to a geometric mean reverting process to 

forecast energy prices.  

To prepare the operation for uncertainty it is necessary to have an idea of the 

range of values that can be obtained; in the case of market risk, this is done by 

forecasting models that examine the uncertainty. Studies that look to integrate 

market variability into the valuation process classically model price and stock 

returns as random walks, with different corrections and sophistications according 

to the characteristics of the asset being evaluated. Dixit and Pindyck (1994) state 

that precious metals’ behavior, such as gold or platinum, are better represented 

by geometric Brownian motions (GBM) shown in Eq. (1), whereas base metals 

such as copper or lead follow a mean reverting process (MRP) resented in Eq. 
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(2), which means that they have a cyclical behavior, and tend to shift back to a 

long term price.  

                                                                 (1) 

       ̅                                                          (2) 

In Eq. (1),   represents the drift or trend of the price, and   the variability, both of 

which depend on the initial price  . In Eq.(2), the main difference in the model is 

given by  , which is the price’s reversion speed towards the long-term price. 

Even though these methods may seem simplistic compared to newer financial 

models, they allow for an adequate representation with a small number of 

parameters required, thus are easy to interpret and calibrate from market data 

and reduces the likelihood of model errors. For these reasons, these models 

have been used for decades, and are the basis of newer methods (Blanco et al., 

2001; Shafiee and Topal, 2010).  

Although these models perform competitively compared to far more complex 

ones, they do, however, have some important limitations, such as 

underestimating extreme price changes, or jumps (Blanco and Soronow, 2001). 

The mathematical formulation to incorporate these jumps is by adding a Poisson 

diffusion process into the random walk, or Geometric Brownian Motion in this 

case, and is presented in Eq. (3). The regressive model is also given in Eq. (4). 

                                                               (3) 

                  (   √  )                                (4) 
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Mathematically, as presented in Eq. (3), this jump is integrated into the model just 

by adding an extra diffusion term      in the previous random walk models. In the 

regressive form shown in Eq. (4):  

-   {
                                   

                                         
  

-        , total frequency of jump (up and down) 

Here,   is a binary variable that takes the value of 0 if there is no jump and 1 if 

there is a jump;   represents the total frequency of jumps per year, and   

represents the average of the percentual sizes of these jumps. All this values can 

be obtained by inspection of the historical data. To simulate these jumps, if    , 

a uniform random variable          is used where if       ⁄   the price jump 

is upwards, and if         ⁄       ⁄  , the jump is considered to go 

downwards. 

The forecasting model described in Eq.(4) will be used in the current case study, 

to incorporate gold price’s uncertainty in the valuation process. Details on the 

implementation and parameters used will be given in Section 4.2.2. 

 

2.3 Integrating Uncertainties 

Because of the existence of these two strong sources of uncertainty (price and 

geology) where one highly affects the other, it is necessary to create a joint 

model that considers both variables simultaneously, as they will mostly define the 

overall performance of the operation. Some authors have already attempted to 
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generate mine planning approaches that include both sources of uncertainty, 

Sabour et al. (2008) refer to price, exchange rate and geological uncertainty, and 

develop a process to rank the simulated mine designs, in order to select the most 

favorable one. Meagher et al. (2009) include price and exchange rate variability, 

as well as geological simulations for pushback design by using minimum cut 

algorithm; applying their methodology to a copper open pit mine, their results 

show an increase in project value of 10 to 50% along the life of the mine. Another 

approach is proposed by Dimitrakopoulos et al. (2007), who considered price and 

geological uncertainties, and define a “Minimum Acceptable Return” on 

investment to rank and decide over different schedules, considering for each 

option the range between the design’s capacity of hedging from downside risk 

and taking advantage of upside potential. Other examples can be seen in Sabour 

and Poulin (2006), Musingwini et al. (2007); Dimitrakopoulos and Sabour (2007). 

The objective of this study is to asses the variability range of an operation’s size, 

and its corresponding life of mine, given the different technical and economical 

uncertainties that govern the context of the project. With this, we wish to find a 

straightforward way of allowing the operation to seize the opportunities that arise 

for expanding the mine, given the probability this occurring, and at the same time, 

prevent unnecessary expenses due to late decision-making of stop mining early, 

or relocating infrastructure. We wish to answer questions such as ‘Where should 

important infrastructure be located to avoid future relocations?’, and ‘What is the 

probability of expanding or contracting from the operation’s original planned 

design?’ 
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The current study will consider the two main sources of risk: geological and 

commodity price uncertainty, to assess the optimal ultimate pit limits of a mining 

project and obtain a quantitative method to calculate the potential value of further 

expansions and with this, the operation’s actual value and life of mine (LOM). To 

account for this uncertainty, conditional simulation will be used in the case of 

geology, to generate multiple representations of the deposit, and a random walk 

with Poisson-exponential jump model will be applied to generate a price 

forecasting model that accounts for price variability.  

The next section of this thesis starts by describing the existing methodologies to 

model the different types of uncertainty, and finishes by explaining the proposed 

method to assess the potential of pit expansion options. After this, Section 4 

provides a case study used to show the benefits of the method, and further 

explain the implementation of the proposed method. Finally, Section 5 presents 

the conclusions and implications of this study and the guidelines for future 

research. 
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3 Proposed Uncertainty-Modeling Methodology 

 

To allow for the joint consideration of market and geological uncertainties in the 

mine planning process, a three-step methodology is proposed. The first step 

consists of creating an analytical review of the project, such as its costing 

structure, financing requirements, flexibility opportunities, etc., thus generating a 

base case scenario. The second step looks to both create flexibility in the 

engineering design of the project at hand, and model the uncertainties acting 

over the project by generating stochastic price paths and orebody models. 

Finally, the third step consists of developing a flexible mine planning evaluation 

model considering an annual re-evaluation of the mine’s operational state by 

integrating managerial flexibility and the option of re-deciding the destination of 

extracted blocks at each period, according to the ‘current’ circumstances, both 

technical and economic. This last step can be also represented as the value of 

keeping the ‘option of closing’, instead of exercising it on a previous period. 

Step 1: Project Review and Operational Assumptions 

To create the base case model, it is first necessary to clearly specify the costing 

model (CAPEX and OPEX), the initial mining and processing capacities of the 

operation, the metal price (assumed constant) and processing recovery, etc. in 

order to design an optimal schedule for the estimated orebody model. 

Additionally, other financial data is required such as the operation’s required 

continuing expenses, the depreciation method, taxes, financing agreements, etc. 
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With this information, the mining schedule is generated, which provides the ‘base 

case’ ultimate pit limit, as well as initial project value. This corresponds to the 

conventional pit design and project evaluation, and will be used as point of 

comparison for the subsequent stochastic analysis.  

For simplicity, the schedule generated in this step is kept constant over the whole 

study, dividing the deposit into fixed ‘extracted blocks per period’, with changing 

value depending on the geology (grade) and the commodity price, so the 

subsequent optimization analysis will be carried out to re-define the destination of 

the blocks within each period, according to the changing scenarios. 

Step 2: Stochastic Modeling and Creation of Flexibility 

The second step is divided in two sections: firstly, the creation and inclusion of 

flexibility options into the project’s design, in order to make the operation more 

responsive in case the expected context changes; and secondly, the generation 

of multiple equiprobable orebody simulations to account for geological 

uncertainty, and the forecasting of metal price to account for market variability. 

The last is done by using a price model chosen depending on the commodities 

involved and the historical information available (as mentioned in Section 2.2).  

Flexibility is included in the mine design by modifying the pit design and ultimate 

pit limit defined by the schedule generated in the base case. As the study looks to 

assess the possibility of the operation expanding or contracting from its original 

design, avoiding infrastructure replacements and other arrangements, there must 

be a mining sequence available in case the operation decides to expand. To do 

this, the initial ultimate pit is removed from the orebody model, and the 
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commodity price is increased over its regular value, in order to generate 

subsequent nested pits that contain the blocks considered in the initial pit limit 

(Whittle, 1999). Finally, as there is no common rock between the initial base-case 

and the expanded schedules, they can be combined to create an ‘expanded 

ultimate pit limit’. This keeps the base case’s schedule, pushback design and 

ultimate pit limit unchanged, and at the same time, defines an optimized mining 

sequence in case the operation decides to expand. Depending on the deposit, 

this process may be carried out to allow for different pit expansion.  

Just as in the base-case schedule, the scheduled expansions are also 

considered fixed over all the analysis. It must be noted that keeping the schedule 

fixed no matter what scenario is being evaluated is a strong limitation of the 

model, as the designed schedule is only optimal for the context in which it was 

created, and a change in geology or price would signify in scheduling changes. 

However, it will be used as an initial step, and further studies on this subject are 

proposed as future research. 

Step 3: Flexible Expansion Evaluation  

To evaluate a mine plan and assess the possibility of expansion, the ‘expanded 

schedule’ generated in the previous step is run over multiple equiprobable 

scenarions, where a scenario consists on one of the orebody simulations and a 

price path forecasted, which account for ore grade and commodity price 

uncertainties respectively. This way, for each period, simulation and current metal 

price, it is possible to obtain the annual revenue of the base case, as well as for 

each scenario. 



29 
 

Together with this, managerial flexibility is considered by re-defining the 

destination of each block in every period: mill if rock grade is over cut-off and 

waste dump if it is not. This decision is taken by maximizing the project value 

based on a changing cut-off grade, which depends on the current selling price as 

well as the grade-tonnage curve of the orebody model. All the optimization work 

is done with the optimization tool CPLEX from IBM (ILOG CPLEX v12.1 User’s 

Manual for CPLEX, 2010). 

For this study, the project evaluation is done in an annual basis, so the decision 

to extract or stop mining is revised at the end of each year, considering the 

capital and operational expenses on the first case and the closing costs on the 

second. The actual project evaluation is done as a financial American option by 

considering the flexibility of being able to close (or exercise the option to stop 

mining) at any time, incurring in the corresponding costs (Hull, 1997). This means 

that for a given scenario the project is evaluated backwards, from the ultimate 

(expanded) pit limit, when the operation stops mining and the LOM is reached, 

along the whole forecasted price path. The evaluation is done sequentialy for 

consecutively decreasing closing years and, by optimizing with the objective of 

maximizing the value of the mining operation, it is possible to obtain the 

probability of being operational or closed at time t, what provides a reliable range 

of feasible project values.  

The previous methodology is represented in Fig. 1, where Mine ‘X’ is evaluated 

from its ultimate pit limit, achieved by year ‘ N ’ (where   is the maximum LOM, or 

max LOM including all the expansions available), until ‘today’, for decreasing 
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values of N . Every year, the operation has the probability of expanding ( Ep
), or 

stopping mining ( C Ep 1 p 
), and the project value is calculated as the maximum 

between the sunk costs, and the total project value of closing on year ‘ t ’ ( (t)CTPV

), for {0,..., }t N . This way, the evaluation process looks backwards, one year at 

a time, checking if the project’s value would increase if the operation closed 

earlier (i.e. if ( 1) ( )C t C tTPV TPV 
), considering the ore available and the time value 

of money.  

With this analysis, the LOM distribution is obtained by taking the argument of the 

project’s maximum value, which, assuming that the current time is ‘ *t ’, the 

orebody is simulation ‘ S ’ and the price path is forecast ‘ p ’, is represented in 

equation 5.  

                  ⏟    
               

(∑   
   
            )        ⏟    

               

(       )    (5) 

Where: 

                                   (                                   ) 

                                       (∑        

 

   
|         ) 

                                                          

For example, if the operation decides to stop mining at period   (      , with 

    ), this means that (i) there is an overall positive value for continuing 

extracting, and (ii) that the maximum profit (considering the costs) is obtained by 
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operating until the end of year ‘ ’ (i.e.                              ), even if at 

any given time ‘ ’ extracting is temporarily not profitable (with       ). This 

means that even if the costs of extracting on a given year are higher than the 

revenues obtained, the operation should continue if there is a subsequent period 

that presents a ‘minimum profit’, which can be user defined, but must be high 

enough to pay for the costs and the previous year’s losses. That is, to continue 

the operation past a current moment ‘  ’, the following condition must be met: 

( ∑   

   

        

)                           {              }            

If this condition is satisfied for any ‘ ’ (   {              }), then the 

operation ‘expands’ to the next period (‘    ’), if not, it means that no 

combination of future extractions will increase the value of the project, and so the 

operation should stop mining in that period. In any case, the reclamation costs 

are considered to be incurred in time ‘ ’, and are calculated depending on the 

cumulative ore production up to that year (Sabour and Dimitrakopoulos, 2010). 

To obtain the ultimate pit limit and LOM probability distribution (i.e. the probability 

to stop mining at each year, together with the range of project values), this 

process is repeated for all simulations and for thousands of price paths. This 

practice provides useful information by periodically allowing new external 

information to be included and used in the planning process. For example, if the 

mine is in operation on a given year, it is useful to know what is the probability of 

obtaining a higher project value if the production continues (and for how long 
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should it continue), in order to plan for infrastructure and equipment 

arrangements ahead of time.  

It is assumed that the decision to stop mining is irreversible, and that if the 

operation decides to continue in production, this decision is maintained until the 

next year’s re-evaluation (i.e. if production continues, the whole tonnage 

considered in that period must be extracted). Metal price is also assumed 

constant throughout one period. This way, an optimum LOM which maximizes the 

project value is obtained for each simulated price path and simulated orebody. 

To assess the influence of each individual variable in the performance of the 

operation and the ultimate pit limit, the case study will perform separate analysis 

for each variable: first, considering multiple orebody realizations over a constant 

price path; second, evaluating the performance of the basic estimated orebody 

model over multiple stochastic price paths, and finally a joint evaluation that 

integrates both uncertainties. 
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(RC) 

  
 

CC = Capital Costs 

      
 

SC = Sunk Costs 

Project Value = Max { SC, TPVC(1), …, TPVC(n), …, TPVC(N) } 

  

Figure 1. Evolution of the proposed stochastic mine planning evaluation model 
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4 Case Study 

 

The proposed methodology is demonstrated with an open pit gold mine to show 

how these concepts can be applied in a real world problem, and the advantages 

that the information obtained can provide for the strategic decision-making and 

mine planning processes. The gold mine being evaluated has an extraction 

capacity of 15Mtpa, and a processing capacity of 5Mtpa. The operation doesn’t 

consider stockpiling, so at each period the extracted material is either taken to 

the mill to be processed at a cost of 13 US$/t, or to the waste dump, at only a 

transportation cost; in any case, material is extracted and transported at a cost of 

1.8 US$/t. Additionally, it is assumed that the mining targets of each period are 

met, and that the mill will be fed until the rock’s grade is lower than the cut-off 

grade of that period. For this case study, the block destination is defined by using 

optimum cut-off grades based on the work of Asad  (2007), who starts from 

Lane’s formulas and maximizes the NPV according to the mine and mine-mill 

capacity relation (   and     respectively, below). Here, the maximum cut-off 

value between them is selected, and corresponds to the minimum grade that a 

block must have to be transported to the mill instead of to the waste dump. The 

equations used to define these cut-offs are shown next. 

     
               

                                       
                                              

    (
         

           
 

       

          
)   

              

(
                 

          
)
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Calculating mg
for each period from equation (3) is straightforward. However, to 

obtain cmg
, the grade-tonnage curve is used (see Fig.4 as reference). Let 

* ,  {1,..., }k K K k   be a certain section defined by two consecutive cut-offs (‘x’ 

axis in Fig. 4); in the previous equation, ( *)g k  and ( * 1)g k   correspond to the 

lowest grades (cut-off grades) of two consecutive sections, and ( *)Ore k  and 

( * 1)Ore k   correspond to the total amount of ore available with those 

corresponding cut-offs (Asad, 2007; Asad and Dimitrakopoulos, 2012a).  

From the previous equations we can see that mg
provides the minimum cut-off 

grade for the operation to profit from the processing of the rock (in order to cover 

all the corresponding expenses), and cmg
 makes sure that, given the amount of 

ore available for a given cut-off grade, the capacities are met but not exceeded. 

This way, if for example the price is high, cmg
will probably define the cutoff, as the 

tonnage of profitable rock may exceed the mill’s capacity, and if the price is low, 

mg
will define the cut-off, as it may be not profitable to process most of the rock, 

even if there is mill capacity left. 

The operational expenses, together with the initial investment and the present 

value of the continuing capital costs (equipment, infrastructure and closing costs) 

are shown in Table 1. For simplicity, it is assumed that the project is fully founded 

by its owners, and the depreciation is done linearly over 5 year period.  
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Table 1. Case study’s cost structure 

 Cost Structure 

OPEX 

Mining US$/t rock 1.8 

Processing US$/t ore 13.0 

Marketing US$/oz. 5.0 

CAPEX 

Initial Investment MUS$ 350 

Infrastructure 

MUS$ 

(r = 8%) 
70 

Maintenance 

Equipment 

Closure 

Tax over Revenue % 18 

 

 

4.1 Base Case 

For the base case, there is no uncertainty taken into account, and the project is 

evaluated in the conventional way of static discounted cash flow. An initial gold 

price of 700 US$/oz. is considered, which increases linearly to 900 US$/oz. with 

an annual growth of 50 US$/year. The deposit is discretized in eleven thousand 

blocks of 15x15x10 meters, and the base-case orebody model is assumed 

perfectly known (and referred to as “E-type”), and is obtained by averaging the 

grades of 20 conditional simulations of the orebody. This averaging generates a 

smoothed representation of the data that generally presents errors related to an 
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overestimation of the amount of ore and an underestimation of the ore’s grade, or 

vice-versa (for further details on effects of estimated vs. simulated orebody 

models see Albor and Dimitrakopoulos, 2009). To define the destination of each 

block (waste dump or mill), the cut-off grade is calculated for every period, as 

explained in Eq. (3) and (4), according to the gold’s current selling price and the 

mine’s global grade-tonnage curve obtained by the schedule designed using the 

Milawa NPV Algorithm of the Whittle software (Whittle 2009), generated by 

optimizing over the mentioned price trend. In this case, the average cut-off grade 

is of 0.39ppm, that results in a total of 53.2 million tons of ore; this and other base 

case assumptions are presented in Table 2.  

 

Table 2. Base Case data and operational assumptions 

 Base Case 

Price of Au US$/oz. 700 - 900 

Reserves Mt 53.3 

Extraction Rate Mtpa 15.0 

Processing Rate Mtpa 5.0 

Discount Rate % 8 

Recovery % 90 

Average grade of ore ppm 1.20 

Average cut-off grade ppm 0.39 

NPV  MUS$ 89.2 
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With this information, a base cash flow is elaborated, which presents a net 

present value (NPV) of 89.2M USD$ for the initial pit limit, which presented an 

optimum LOM of 11 years according to the base case schedule generated by 

Milawa algorithm, included in the Whittle Optimization Software. 

To create and include flexibility in the mine design, a revenue factor from 0.3 to 3 

was used to increase the metal price and schedule further extractions past the 

ultimate pit limit. This was carried out by exporting the blocks from the initial pit, 

and re-scheduling the remaining ore using again the Milawa NPV Algorithm in 

Whittle software. Figure 2, shows a cross-section of the deposit with the initial 

ultimate pit limit, and the flexibility of possible expansions, presented as two 

further stages. This scheduling increases the operation’s life up to 15 and 16 

years respectively, however, according to this static net present value evolution, 

they are not profitable to extract, reducing the project’s value by 2.4% and 2.5% 

(exact values are presented in Table 3). Even though these value reductions may 

seem marginal, they do cause the rejection of the expansions with the traditional 

scheduling process, and leave the ultimate pit limit at the 11-year design. 

The previous discounted cash flow (DCF) results show that there is a 100% 

probability of the mine operating until year 11 and a 0% chance of expanding any 

further. If the variable’s evolution was perfectly known, this would be the case; 

however, the mine’s context will certainly change, and decision-makers will adapt 

the operation accordingly. This is why the main evaluation advantage of real 

options is that, in comparison to the static DCF valuation, they do consider this 

dynamic decision-making process, quantify it, and include it in the project’s value,  
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Figure 2. Cross section of the deposit pro the initial pit and the available 

expansions 

 

 

Table 3. Economic evaluation results for the base case analysis 

Base Case (DCF) 

Initial Ultimate Pit (LOM=11)  $     89,238,244   

Value Expansion 1 (LOM=15) -$       2,120,700  

Value Expansion 2 (LOM=16) -$       2,250,100  

 

  

Initial Pit 

Expansion 1 

Expansion 2 
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instead of ignoring it and assuming nothing will change from the moment of 

evaluation until the end of the project’s life. 

 

4.2 Stochastic Case  

4.2.1 Case of Stochastic Geology  

To account for the stochasticity of the grade in the orebody, Direct Block 

Simulation was used to create 20 equiprobable representations of the orebody 

(Boucher and Dimitrakopoulos, 2009). It has been shown that after a certain 

number of simulated orebodies, results converge to a given distribution (Albor 

and Dimitrakopoulos, 2009), and considering the computational intensity of 

generating these simulations, given the data available and the variability 

perceived in this deposit, 20 simulations is an acceptable number to express the 

uncertainty. What means that adding more realizations will not greatly affect the 

distribution of the grades, which will ultimately define the probability of a given 

block of being considered ore or waste for a given cut-off grade. 

Just as in the base case, the cut-offs are calculated for each of the orebody 

simulations by using Lane’s formulas and are re-estimated in every period. This 

means that the destination of each block is re-defined subject to the geology that 

is encountered in the orebody simulation, and managerial flexibility is considered 

by having the option to expand the operation past its initial limits if the conditions 

are favorable (this will be referred to as the flexible case ‘FC’).  
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The difference between the initial base case and the simulations is presented in 

Fig. 3a for ore quantity and 3b for NPV. The simulated models present in average 

14% less ore than the base case, but at the same time, more than a 21% 

increase in the NPV. This happens because the smoothness of the estimated 

model (E-type in graphs) causes the deposit to contain more medium grade 

blocks, and in this case, it increases the total ore tonnage (as the block’s grade 

distribution is mostly over the selected cut-off grade), what causes extra 

processing costs without the benefit of more metal being produced. Simulations 

present higher grade dispersion with extreme values, making ore blocks more 

profitable to process, as there are fewer blocks with higher grade (more revenue 

with fewer costs).  

This if further presented in Fig. 4, where it is possible to see the grade tonnage 

curve for each of the 20 simulations, as well as for the estimated model. This 

graph shows, for different cut-off grades, the amount of ore available (over that 

given cut-off), as well as the average grade of the ore considered. Thus, for 

higher cut-offs, there is less tonnage available, but the average grade increases. 

The 20 simulations tend to have a similar behavior, with a maximum variability of 

about 25 thousand tons, and a maximum grade variability of 0.5ppm.  

However, there is a high difference between the simulations and the estimated 

model, with almost a 75 thousand ounce difference of gold and 1ppm difference 

in average grade. We can see that the E-type model tends to overestimate the 

tonnage for low to medium cut-off grades (between 0.6 and 1.3ppm), but strongly  
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Figure 3. Results of the base case and stochastic orebody simulations over the 

(a) Ore tonnage and (b) NPV 
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Figure 4. Grade tonnage curve for the average E-type model, and for the 20 

orebody simulations for different cut-off grades 
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underestimates the tonnage of high grade material (over a cut-off grade of 

1.5ppm). In summary, as explained before, the estimated model overestimates 

medium grade tonnage, but at the same time, underestimates the average grade 

of the ore available. 

The evaluation is done considering the initial ultimate pit, or base case (BC) 

design of 11 years of LOM, and the expanded schedule of up to 16 years. 

Results show that, if the flexible option is considered, 50% of the time the 

operation will decide to expand up to the 15-year LOM pit limit. As mentioned 

earlier, just by considering geological simulations, project value is in average, 

increased in a 21%. If together with this the option to expand is included, this 

difference increases to a 22% compared to the initial evaluation (as presented in 

Table 4). Even though the increased value due purely to the expansion may 

seem marginal, longer projects allow for new opportunities, and usually have a 

better social acceptance. These results are presented in the right-most columns 

of Fig. 3a and 3b, under the label of ‘FC’. In this case, the second stage 

expansion is not profitable for any of the simulations.  

For clarification purposes, the ROV of the geological uncertainty case was 

calculated by considering the optimal state of each simulation, considering that 

decision-makers have free will to close the operation early or keep extracting past 

the initial limits.  

Table 5 details the annual operational and capital costs, the ore production 

tonnage and average grade for the initial pit limit, the two possible expansions for 

the estimated model (‘E-TYPE’), and the 50% exceedance probability value of 
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the simulated orebodies (‘SIM P50’), what means that half of the simulations 

present exceed this value. The reclamation costs are specified in the final 

column, which are calculated proportionally to the cumulative ore tonnage 

extracted, and correspond to the costs that the project must incur only on the 

year that they decide to stop mining and close the operation. This table also 

shows that the first year of any of the two expansions requires extra capital 

expenses, mainly for mining works, accesses, scaling and support. 

 

Table 4. Economic evaluation results for the uncertain geology case 

ROV - GEOLOGY CASE 

Initial Ultimate Pit (LOM=11) $        113,281,947   

Value Expansion 1 (LOM=15) $               506,450  

Value Expansion 2 (LOM=16) $                          -    

 

A summary of the project’s cash flow for each of the cases studied is presented 

in Table 6. The first section shows the base case’s results, and the second case 

presents the results of the stochastic geology case just described. Even though 

the NPV case presents higher revenues, the costs are also higher. This is caused 

for two reasons: first, the overestimation of ore tonnage in the estimated model 

depicted in Fig. 3a which make the processing costs to peak (OPEX), and 

second, because this static evaluation does not consider the possibility that the 

project’s value may actually increase if the operation closes later or earlier than   
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Table 5. Operational data of the initial pit and available expansions for the estimated model and simulated models 

 
YEAR 

ORE (Mt) GRADE (ppm) OPEX (US$/t) CAPEX (MUS$) 
RECLAMATION 

(MUS$) 

E-TYPE 
SIM 

(P50) 
E-TYPE 

SIM 

(P50) 
E-TYPE 

SIM 

(P50) 
E-TYPE 

SIM 

(P50) 
E-TYPE 

SIM 

(P50) 

Initial 

Ultimate 

Pit 

 

0       350.00 350.00   

1 4.83 4.17 1.34 1.51 90.79 82.23 15.60 14.55 0.80 0.70 

2 4.78 4.23 1.44 1.64 90.20 83.04 7.80 7.30 1.60 1.40 

3 4.95 3.90 0.97 1.14 83.13 69.33 3.73 3.31 2.43 2.05 

4 4.99 4.05 1.04 1.18 76.67 64.41 9.09 8.72 3.26 2.73 

5 4.99 4.40 1.27 1.41 90.39 82.62 5.96 5.72 4.09 3.46 

6 4.97 4.17 1.30 1.50 92.64 82.13 5.49 5.16 4.92 4.15 

7 4.96 4.22 1.01 1.14 80.13 70.35 3.42 3.13 5.75 4.85 

8 4.87 4.51 1.51 1.60 91.50 86.83 9.45 9.31 6.56 5.61 

9 4.96 4.03 0.96 1.11 92.29 80.09 6.36 5.99 7.39 6.28 

10 3.85 3.63 1.46 1.53 77.92 74.97 5.04 4.95 8.03 6.88 

11 4.99 4.43 1.18 1.29 91.03 83.67 4.44 4.22 8.86 7.62 

Exp. 1 

12 1.20 1.07 1.20 1.31 41.88 40.21 17.37 17.32 9.06 7.80 

13 2.92 2.58 1.08 1.18 65.47 61.04 5.54 5.41 9.55 8.23 

14 1.24 1.03 0.93 1.08 43.33 40.52 4.00 3.91 9.75 8.40 

15 2.94 2.46 0.96 1.11 65.64 59.41 3.21 3.12 10.24 8.81 

Exp. 2 16 0.15 0.14 0.94 1.06 9.68 9.45 3.21 3.09 10.27 8.83 



47 

 

Table 6. Cash flow summary for the four stages of the analysis 

Cash Flow 
(MUS$) 

(1) NPV - BASE CASE 

 Init Pit Exp 1 Exp 2 

 Revenue 1,790.08 2,006.40 2,016.08 

 OPEX 956.68 1,173.00 1,182.68 

 CAPEX 432.88 463.01 466.22 

 NPV 89.24 87.12 84.87 

 
     

 

 
Cash Flow 

(MUS$) 

(2) ROV - GEOLOGY 

 

 

Init Pit Exp 1 Exp 2 

 

 

Revenue 1,750.59 1,851.19 1,960.86 

 

 

OPEX 858.47 959.07 1,068.74 

 

 

CAPEX 428.74 458.48 461.60 

 

 

NPV 113.28 113.78 111.21 

 

 
    

 

 
Cash Flow 

(MUS$) 

(3) ROV - PRICE 

 

 

Init Pit Exp 1 Exp 2 

 

 

Revenue 1,342.58 1,819.96 1,898.21 

 

 

OPEX 854.35 967.77 968.36 

 

 

CAPEX 421.51 447.83 448.56 

 

 

NPV 123.92 140.22 145.95 

 

 
    

 

 
Cash Flow 

(MUS$) 

(4) ROV - GEO & PRICE 

 

 

Init Pit Exp 1 Exp 2 

 

 

Revenue 1,265.09 1,741.89 1,820.30 

 

 

OPEX 774.96 887.80 888.43 

 

 

CAPEX 424.60 444.89 445.62 

 

 

NPV 135.64 158.39 158.58 
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expected, depending on the turn of events. This last possibility is also considered 

in cases 3 and 4 in Table 6, which will be described in the following sections. 

 

4.2.2 Case of Stochastic Market  

The following case looks at the effect of gold price variability over the project’s 

evaluation, and the influence this has over the operation’s size and potential 

expansions. In this case, the orebody is represented by the estimated model, so 

the only difference from the base case is the inclusion of a stochastic price 

forecasting model.   

Historical data can be used to obtain the required parameters of the formulation. 

Figure 5 shows the monthly gold price from January 1990 to December 2012, 

where the positive drift as well as the occasional jumps can be clearly perceived. 

For this case study, gold prices where simulated using a Geometric Brownian 

Motion with Poisson exponential jump diffusion model, in order to include the 

sudden extreme changes in price that have been seen recently in gold’s price 

behavior. The parameters for the model where obtained by maximum likelihood 

over the past 15 years of price data, presenting a volatility of 13.8%, and a drift of 

2.8%. In this case, we define a jump as a change of price in two consecutive 

periods of more than 3 standard deviations along the 10 year period. If a jump is 

found, its value is removed from the time series and the standard deviation is re-

calculated to study the presence of more jumps. In this case, this process is done 

three times, what gives a frequency of 0.1 jumps per year, with a jump size of 

10% (difference in size between the moment after the jump and its previous  
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Figure 5. Historical monthly gold price data from January 1990 to December 2012 
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period), and a jump volatility of 15% (difference in size between different jumps). 

In this case, the direction of the jump used for the simulation was 50% probability 

upwards and 50% probability downwards.  

For clarification purposes, one price simulation is a price path or vector of annual 

gold prices, which starts form ‘today’ at the current initial price of 700 US$/oz. (as 

in the base case), and evolves stochastically until time ‘T’, which corresponds to 

the maximum life of mine considering all expansions available. This means that 

all simulations share the same starting point of 700 US$/oz. and after spread out 

proportionally to time, according to the model and its parameters. Figure 6 

presents 10 price paths that show the price evolution along the periods, where it 

is possible to see the effect of the added “jumps” into the model. Price forecast 1 

(PF 1) presents an upwards jump along year 10, and has a favorable trend 

overall. PF 2 shows an upwards jump along year 1, and a downwards jump 

during year 8, what reduces the overall variability of that particular path. Finally, 

PF 3 shows a downwards jump along year 2, and steady variability from there on, 

providing a negative scenario to evaluate. With this, it can be seen that the 

forecasting model developed will provide an overall analysis of the possible price 

behaviors along the evaluation period. 

The previous stochastic price model is applied over the operation, and the project 

is evaluated as explained in Section 3, assuming that the schedule is fixed for the 

initial pit limit as well as for the expansions. In this case, 20,000 price simulations 

where generated; as the computational cost of generating each forecast is 

marginal, and given the high variability of price, more simulations will provide a  
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Figure 6. Example of 10 price forecasts generated with parameters obtained from 

historical data. 
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better range to represent the commodity price’s distribution, which after 16 years 

(time span of the forecasts), varies considerably. However, it was seen that 

results already converge to a distribution with half the number of forecasts. 

The summary of the obtained cash flow for this case is presented in the third 

case of Table 6, showing that having the flexibility to expand until year 15 can 

increase the project’s value in more than a 13%, and almost 18% if the second 

expansion is considered. This suggests that according to the described 

conditions, both expansions would be feasible and profitable for the project.  

It must be noted that these values consider having the flexibility to expand until 

year 15 or 16, what doesn’t mean that the mine will actually be operating 

invariantly until years 15 or 16. It does mean that management can decide to stop 

mining whenever is considered optimal, and also expand past the initial pit’s limit. 

This is clearly presented in Fig. 7, where the left axis shows the mine’s probability 

of being in operation from year to year (with curves labelled ‘Prob. Open’), and 

the right axis shows the frequency of optimal life of mine for each of the 20,000 

price simulations (labelled ‘LOM Freq.’). This is shown for the current case of 

price uncertainty (‘E-TYPE’), and for comparison, Fig. 7 also includes the base 

case’s annual probability of being operational, labelled ‘Prob. Open (BC)’. This 

figure shows that there is a 10% chance that the mine closes beforetime by year 

8 due to the price fluctuations, a 45% probability of the mine expanding to 15 

years and a 5% to 16 years, and only a 30% chance of closing as expected by 

year 11. In contrast, the base case shows an absolute 100% - 0% probability shift  
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Figure 7. Probability of the mine being open and frequency of LOM considering 

uncertain price for the estimated model and stochastically simulated models 
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of being open by year 11, where none of the expansion stages available are of 

any interest.  

An advantage of ROV is that it allows obtaining result distributions, such as the 

one presented in Fig. 7, which can’t be obtained by the traditional evaluation 

methods. The information provided here can be highly valuable for the strategic 

decision-making process, allowing resolutions such as making sure that the 

operation has enough flexibility and contractual freedom to review the option of 

closing by year 8 if the price scenario is unfavorable, but also, that the plant and 

any other fixed infrastructure is located away from the 16-year LOM pit limit, to 

avoid relocations in case gold price increases and the operation chooses to 

expand. In both cases there may be some additional costs involved, such as 

extra transportation if the plant is further, or less-favorable contract negotiations if 

the lease terms are shorter, however these costs are marginal compared to the 

probable profits obtained or the losses prevented. All these may be considered 

as the cost of having (and maintaining) the ‘option of closing’, which is quantified 

and included in the evaluation process. 

 

4.2.3 Joint Stochastic Model 

This final step combines geological uncertainty with the stochastic price model in 

order to create a global stochastic evaluation model. In this case, the procedure 

is the same as the one described in Section 3, where the expanded schedule is 

applied over each of the orebody realizations and price paths to obtain different 

project values and expected LOMs. In order to obtain comparable results with the 
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previous case of market uncertainty, the 20 simulated orebody models are 

evaluated over the same 20,000 price paths generated in step 4.2.2, i.e. for each 

estimated model evaluation, there are 20 other evaluations done over the same 

price path - one for each of the orebody simulations. 

This case’s cash flow is summarized in the final case of Table 6, where the first 

and second expansions have potential of increasing the project’s value in a 16% 

and 17% respectively over the initial ultimate pit’s value. The actual LOM 

frequency and the operation’s probability of being open are presented in the right-

most column of Fig. 8, where it shows that the probability of expanding to 15 and 

16 years is even higher than in case 4.2.2 (46% and 6% respectively); however, 

the overall conclusions are the same.  

Figure 9 presents the independent value of each of the individual stages, and for 

each of the evaluation cases, showing that there is an important value difference 

between considering or not considering the different uncertainty. However, the 

ROV of the three stochastic cases agree in the same thing: that there is an 

important profit to be made if the option of delaying or advancing the mine 

closure is considered given the underlying uncertainties, a fact that goes 

unnoticed by the traditional DCF method presented in the leftmost column of Fig. 

9. So by accounting for uncertainty, it is possible to obtain higher rewards for an 

operation that presents less risk. 

It is also noted from Fig. 9 that, if the price is considered stochastic (cases 3 and 

4), the value difference between taking or not taking into account the geological 

uncertainty reduces from the initial pit to the 1st and 2nd expansions. This is  
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Figure 8. Probability of the mine being open and frequency of LOM considering (i) 

uncertain price (dark grey) and (ii) price and geology (light grey) for the estimated 

and stochastically simulated models 

 

  

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
ro

b
a
b

il
it

y
 o

f 
B

e
in

g
 O

p
e
ra

ti
o

n
a
l 

(%
) 

LOM (years) 

LOM Freq. (ETYPE)

LOM Freq. (SIM)

Prob. Open (BC)

Prob. Open (ETYPE)

Prob. Open (SIM)

F
re

q
u

e
n

c
y

 



57 

 

expected, given that if the mine decides to expand, there has been a favorable 

economic and technical development of the uncertainties, with probably high 

prices, what causes more material to be classified as potential ore in both the 

estimated model and the simulated models, making the ‘smoothness’ of the 

estimated model less damaging to the overall project value. However, this only 

occurs if the prices are ‘high enough’ to make the low grade blocks of the 

simulations profitable to process. 

For a more detailed evolution of the project’s performance, Fig. 10 shows a risk 

analysis of the project’s annual cash flow for the initial pit and the two following 

expansions, for cases (3) and (4), considering only price uncertainty in the first 

case (‘E-TYPE’), and geology as well as price in the second (‘SIM’). In the figure, 

‘Stopped Mining’ represents the annual probability of the operation having 

decided to stop the operation, which after that is irreversibly closed. ‘Negative CF’ 

shows the probability of having a negative net cash flow on a particular period, 

which implies that even though there is negative net cash flow, the overall project 

value is higher if the mine is operating during that period, what suggests that 

extracting may cover some of the closing costs, or that subsequent years will pay 

for that year’s losses. For example, years 13 and 15 show that if the operation is 

open, extracting those years will generate positive net cash flows in almost every 

case, what would pay for the losses incurred on the previous years (12 and 14), 

where the probability of having negative cash flow is almost the same as the one 

of profit. This risk analysis helps managers to have a better understanding of the 
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possible behavior of the operation, and to detect the crucial periods where 

strategic decisions (such as expand or stop mining) will have to be taken. 

From Fig. 10 it is possible to see that even though the estimated model with price 

uncertainty case described in Section 4.2.2 behaves similarly to the simulations 

analyzed in this section, there is a consistent gap between the two cases, where 

the estimated model has a constantly lower probability of annual positive cash 

flow and a higher probability of a negative one. Together with this, the estimated 

model presents a higher probability of closing in comparison with the simulated 

orebodies. The difference, however, diminishes past the initial pit limit as the 

favorable price scenario shadows the consequences of smoothing over the 

project’s evaluation. 
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Figure 9. Value of individual expansions for each of the four stage analysis  

Initial Ultimate Pit
(LOM=11)

Value Expansion 1
(LOM=15)

Value Expansion 2
(LOM=16)

(1) BASE CASE $89,238,168 -$2,120,700 -$2,250,100

(2) ROV - GEOLOGY CASE $113,281,871 $506,456 $-

(3) ROV - PRICE CASE $123,919,763 $21,876,089 $156,221

(4) ROV - JOINT CASE $135,639,184 $22,751,901 $191,568

-$10

$0

$10

$20

$30

$40

$50

$60

$70

$80

$90

$100

$110

$120

$130

$140
V

a
lu

e
 (

M
U

S
$
) 

M
il

li
o

n
s

 



60 
 

 

Figure 10. Risk analysis of the annual cash flows for the initial pit and two expansions, considering uncertain price for the 

estimated and stochastically simulated orebodies 
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5 Conclusions and Future Work 

The current study analyzed the efficiency of the traditional evaluation methods to 

assess the performance of a mining operation under uncertain geological and 

price scenarios, and provided an alternative real option-based method that 

includes the option of expanding or contracting the initial ultimate pit limit, subject 

to these uncertainties.  

A case study on an open pit gold mine is used to describe the methodology and 

show the benefits of the method. Experimental results indicate that traditional 

methods tend to underestimate the size of the final pit, ignoring possibly 

profitable expansions, as documented only for geological uncertainty (Albor and 

Dimitrakopoulos, 2010), and that considering uncertainties in the evaluation 

model and allowing for the operation to react to these uncertainties greatly 

increases the project value.  

The proposed methodology accounts for the value that management and 

decision-makers generate by taking advantage of opportunities and hedging from 

unfavorable scenarios which are unknown at initial stages of the project. It was 

shown that real options are able to include this flexibility value in the global 

evaluation model. Together with this, it was shown that uncertainty-based 

analysis provide probabilistic results, which help decision makers be prepared to 

react to the continuously changing context of a mine project. 

This analysis can be considered as a comprehensible way of including different 

sources of uncertainty in project evaluation and design, allowing to approximate 
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the potential pit limit modifications at an early planning stage of the project, 

defining infrastructure-free zones and providing highly valuable information to 

decision makers so that slight adjustments can be done to the design at no or 

very low cost, in order to facilitate the execution of these flexibilities, and prevent 

huge losses in the future. 

Even though the actual metal price, or the exact ore grade can’t be known with 

certainty, accounting for their uncertainty helps analyze the possible range of 

outcomes that the project might have when faced to the certain changes in 

context. To do this, direct block simulation proved to be an effective method to 

represent the geological uncertainty of the deposit, and the geometric Brownian 

motion with Poisson jumps provided a reasonable range of market values to 

evaluate the effect of price uncertainty in the initial mine design. 

However, there are some important limitations to the method: mainly assuming 

that the schedule is fixed over all the evaluation stages, as, subject to price and 

geological changes, the schedule ceases to be optimal, what limits the 

applicability of the study to only asses the performance of one given schedule. 

Another limitation is the relevance that the inputs and parameters fed to the 

model have over the final value, which characterize the different uncertainties 

considered in the analysis. Together with this, processing costs are also 

assumen constant along the whole optimization process, which is not realistic in 

the cases of stochastic geology, as  grades fluctuate, and with that, the costs of 

processing the material also change. 
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Further studies should focus on creating a stochastic integer programing model 

to generate an uncertainty-based schedule that includes price and geological 

uncertainty, in order to expand the applicability of the previous methodology. 

Together with this, the following step of this study should be to include the 

different complexities that mine operations contain, such as multi-pits, multiple 

products and/or multiple processing methods, as well as stockpiling options.  
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