
A Multi-Abstraction Level Platform for
the Validation and Verification

of Complex Digital Designs

Jean-François Boland

Doctor of Philosophy

Electrical and Computer Engineering

McGill University

Montreal,Quebec

2007-02-07

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Doctor of Philosophy

Jean-François Boland, 2007

DEDICATION

To my parents and Marie-Hélène

ii

ACKNOWLEDGMENTS

After all the years and effort, it seems that my student “career” is finally coming

to an end. It is a wonderful feeling when I think of all the people who made this

work possible.

First and foremost, I wish to thank my advisers, Professor Zeljko Zilic and

Professor Claude Thibeault for their support and encouragement throughout my

doctoral studies. While allowing me considerable freedom to conduct research on my

own, Dr. Zilic taught me the skills to successfully formulate and approach a research

problem. Dr. Thibeault gave me the chance to work with a highly qualified team on

the PROMPT project. His advice and precious suggestions helped steer this work

in the right direction.

I would also want to thank Professor François Gagnon for his encouragement.

He was the first person to incite me to start my Ph.D. studies. I would like to thank

Professor Nicholas Rumin for taking precious time to serve on my thesis committee.

His wisdom and great mind have had a positive influence on me.

I am also grateful to the MAME project team for their helpful contributions.

Without their experience and help, I would not have been able to conduct experi-

ments on real complex designs. I keep very good memories of the many constructive

brainstorming sessions with Dr. Yvon Savaria and Alexandre Chureau. I am also

thankful to my office-mates, Henry Chan, Stephan Bourduas, and Françis Beaudoin

for their pleasant company. I had great time with them and they make the life as a

graduate student much more enjoyable and unforgettable.

iii

I thank the Regroupement Stratégique de Microéletronique du Québec (ResMiQ)

for its generosity in providing financial support for my travels to present my research

results at international conferences. Special thanks go to the university École de

Technologie Supérieure for their trust in me. They provided me with funding sup-

port throughout my stay at McGill, so I could spend my entire time on my research

activities.

Special thanks go to all the undergrad students which I taught during my mas-

ter’s degree. You were the main reason for me to do a PhD, so I could come back

later as a professor and continue a stimulating career. Without you all, I would

not have been so perseverant during all those years. I also appreciate many of my

personal friends who always keep faith in me. Thank you all for those tremendous

party nights who help me keep a good balance between my professional hard work

and the pleasure of life.

I thank my parents for always being supportive and encouraging in my pur-

suit of academic excellence. I would like to express my deepest gratitude for their

constant care and love. And the last but not the least, I would like to thank my

girlfriend Marie-Hélène who has shaped my life more than anyone else. We met at

the beginning of my Ph.D. and she stays always close to me, providing constant sup-

port, comprehension, and motivation. She is an extraordinary person with always

the might words for both good times and bad. Without her, I do not think I would

ever have completed this dissertation.

iv

ABSTRACT

Design verification is one of the most challenging tasks in hardware development.

With the ever increasing complexity of digital systems, validation and verification

have become the primary bottleneck in circuit design, consuming up to 70% of the

total effort in a project. Most of this time is spent on testbench creation and de-

bugging. Complex digital system design is a process that spreads across multiple

abstraction levels, using various software tools and languages.

This dissertation addresses the validation and verification problem using a uni-

fied approach, which utilizes new mechanisms to bridge the gap between abstraction

levels and provides a new simulation-based verification methodology. The goal is to

reduce the time spent on verification while increasing the testbench quality.

The first mechanism is a cosimulation interface between MATLAB/Simulink

and SystemC called SimSyC. The goal of SimSyC is to bridge the abstraction gap

that exists between the algorithmic level and the lower levels. By providing a con-

figurable communication link between MATLAB/Simulink and SystemC, it is now

possible to reuse high abstraction level models to validate and verify system-level and

register transfer-level representations. The time spent on testbench development is

considerably reduced by reusing Simulink’s data generators and data analysis mod-

ules. The pre-verified building blocksets library in Simulink dramatically increases

the quality and the efficiency of the testbench. Moreover, SimSyC opens up a wide

range of visualization and data analysis capabilities to the SystemC simulation ker-

nel. Experiments on three case studies have shown that SimSyC provides between

v

one and two orders of magnitude speedup for testbench development and enables

verification strategies that were simply not possible before.

Secondly, we present a generalized version of the transactor used for transaction-

based verification. Called segmented adapter, this novel mechanism addresses the

migration problem inherent to transactors. Our proposed partitioning into three

specific segments provides the modularity necessary for reuse and migration across

abstraction levels and projects. A SystemC realization is proposed for these seg-

mented transactors. We demonstrate the capabilities and efficiency of segmented

adapters through the validation and verification of a multi-equalizer design succes-

sively refined across three abstraction levels.

These two mechanisms are the foundation of a multi-abstraction level verification

methodology integrated within a framework of abstraction-refinement based design.

This methodology promotes early verification and vertical testbench reuse across

abstraction levels. The verification platform that we have developed in this thesis

has proven to be a valuable addition to the range of simulation-based methods already

available.

vi

ABRÉGÉ

La validation et la vérification de circuits numériques sont aujourd’hui con-

sidérées comme les plus imposants défis que doivent relever les ingénieurs de con-

ception. D’une complexité toujours croissante, les circuits numériques sont devenus

depuis quelques années des systèmes entiers sur puce de silicium. Composés de

plusieurs fonctions et d’une capacité de calcul phénoménale, la vérification de ces

systèmes-sur-puce peut consommer près de 70% du temps total alloué à un projet.

La conception de systèmes numériques complexes exige une modélisation à plusieurs

niveaux d’abstraction, ce qui exige l’utilisation de plusieurs langages et outils de

conception. Ceci a pour conséquence d’alourdir considérablement le développement

d’environnement de vérification fiable et efficace.

Cette dissertation concerne la problématique de la validation et la vérification de

systèmes numériques complexes. De nouveaux mécanismes pour concilier les niveaux

d’abstraction ainsi qu’une méthodologie de vérification basée sur la simulation sont

développés dans le but de réduire le temps associé à la vérification tout en augmentant

la qualité de cette dernière.

Le premier mécanisme développé est une interface de cosimulation entre MAT-

LAB/Simulink et SystemC appelée SimSyC. Le but premier de cette interface est de

relier le niveau d’abstraction algorithmique aux niveaux inférieurs. De cette façon, il

est possible de réutiliser les modèles haut niveau pour la validation et la vérification

des modèles au niveau de l’architecture du système ou du transfert des registres.

Le temps de développement des bancs d’essais est considérablement réduit par la

vii

réutilisation des modules d’analyse et de génération de données. L’utilisation de

la librairie de blocs pré-vérifiés de Simulink augmente la qualité et l’efficacité du

banc d’essais. De plus, SimSyC permet d’utiliser les librairies spécialisées ainsi

que l’interface graphique de Simulink pour analyser de façon plus efficace le com-

portement d’un modèle SystemC. Les résultats expérimentaux de trois études de

cas démontrent que le temps consacré à l’élaboration des bancs de test est réduit

d’un facteur pouvant varier de un à deux ordres de grandeur. De plus, SimSyC per-

met d’élaborer une stratégie de vérification à multi-niveaux d’abstraction jusqu’ici

irréalisable.

Dans un deuxième temps, une version généralisée des transateurs est présentée.

Appelé adaptateur segmenté, ce mécanisme nouveau genre offre une solution inno-

vatrice au problème de migration des transacteur traditionnels. Nous proposons un

partitionnement du transacteur en trois segments distincts pour ainsi permettre une

réutilisation partielle de ce dernier pour pouvoir le migrer facilement d’un niveau

d’abstraction à un autre. La réalisation d’adaptateurs segmentés en langage Sys-

temC est aussi démontrée dans le cadre d’une étude de cas portant sur la validation

et la vérification d’un multi-équaliseur développé par raffinements successif sur trois

niveaux d’abstractions.

Ces deux mécanismes forment la base d’une méthodologie de validation et de

vérification sur plusieurs niveaux d’abstraction, intégrée à un processus de conception

par raffinement successif. Les éléments clef de cette méthodologie sont la vérification

hâtive du modèle du système ainsi que la réutilisation verticale du banc de test

d’un niveau d’abstraction à l’autre. La plateforme de vérification développée par

viii

ces travaux de recherche a prouvée être une addition substantielle aux méthodes et

outils de vérification déjà disponibles.

ix

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

ABSTRACT . v

ABRÉGÉ . vii

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

1 Introduction . 1

1.1 Main contributions . 5
1.2 Organization of the thesis . 7

2 Background and related work . 8

2.1 Validation and Verification of complex digital systems 8
2.1.1 Verification Challenges . 9
2.1.2 Verification Methods . 11
2.1.3 Evolution of Simulation-based Verification Environments . 12

2.2 Multi-Level Simulation . 15
2.2.1 Programming Paradigms 16
2.2.2 Abstraction Levels . 17
2.2.3 Simulation Modes . 18
2.2.4 Time Representation . 19
2.2.5 Scheduling Policy . 19

2.3 Co-Simulation Framework . 20

3 Multi-Abstraction Level Verification . 24

3.1 The Design Flow . 24
3.1.1 Algorithmic Level Modeling 25

x

3.1.2 System-Level Modeling . 28
3.1.3 Register Transfer Level Modeling 30

3.2 Design Verification . 30
3.2.1 Testbench Creation . 31
3.2.2 SystemC Verification Platform 35

3.3 The SimSyc Cosimulation Interface 38
3.3.1 Typical Applications . 39
3.3.2 Related work . 42
3.3.3 Master-Slave Relationship 44
3.3.4 Modes of Communication 44

3.4 SimSyC Implementation Details 48
3.4.1 MATLAB Engine Library 49
3.4.2 Simulink C-MEX S-Function 51
3.4.3 Simulators Synchronization 58

3.5 Verification Platform . 59
3.6 Summary . 61

4 Vertical Testbench Reuse . 62

4.1 Layered Verification Environment 62
4.2 Transaction-Based Verification . 64

4.2.1 Transactor Structure . 68
4.2.2 SystemC Implementation 69
4.2.3 Limitations of transactors 75

4.3 Transactor Migration Problem . 77
4.3.1 Requirements . 77
4.3.2 Segmented Adapter . 80
4.3.3 Platform Integration . 81

4.4 Summary . 82

5 Case Study . 84

5.1 Manchester Encoding System . 84
5.1.1 Simulink modeling . 85
5.1.2 SystemC decoder modeling 86
5.1.3 SystemC decoder verification using SimSyC 88

5.2 Software Defined Radio Multi-Equalizer Architecture 93
5.2.1 SDR Design Challenge . 95
5.2.2 SDR Architecture . 96

xi

5.2.3 MAME’s Design Flow . 97
5.2.4 Results . 102

6 Conclusions and Future Work . 106

6.1 Contributions . 106
6.1.1 Segmented Adapter . 107
6.1.2 SimSyc Cosimulation Interface 108
6.1.3 Multi-Abstraction Levels 109

6.2 Future Directions . 109

References . 111

xii

LIST OF TABLES
Table page

3–1 Main characteristics of communication modes 47

3–2 MATLAB engine library routines . 50

3–3 Data types equivalency . 56

5–1 Design effort using the improved design flow (days) 102

5–2 Design effort using a traditional design flow (days) 103

xiii

LIST OF FIGURES
Figure page

1–1 Verification gap [6] . 2

1–2 First silicon IC failure (source: Collett International Research) 4

2–1 Verification techniques . 12

2–2 Verification environment with HDL 13

2–3 Verification environment with HVL 13

2–4 Verification productivity gain with HVLs [30] 15

2–5 Design abstraction levels . 17

3–1 Design Flow . 26

3–2 Model Simulation . 33

3–3 Testbench Creation . 33

3–4 Improved Design Flow . 37

3–5 Simulink and SystemC Cosimulation 39

3–6 Application scenarios . 41

3–7 SimSyC internal components . 50

3–8 Simulink simulation stages (c©1994-2006 The MathWorks, Inc.) . . . 52

3–9 SimSyC synchronization commands 59

3–10 Cosimulation Interface . 60

4–1 Layered verification environment . 64

4–2 Transactor based verification . 69

xiv

4–3 SystemC Transactor Implementation 70

4–4 Adapter Configurations . 78

4–5 Adapter components . 79

4–6 Segmented adapter . 80

4–7 Segmented adapter example . 82

4–8 Segmented adapter implementation 83

5–1 Manchester encoding system . 85

5–2 Simulink model of the Manchester encoding system 86

5–3 SystemC Manchester decoder . 87

5–4 SystemC output window . 88

5–5 Manchester example verification framework 89

5–6 Simulation execution flow . 91

5–7 SystemC testbench . 92

5–8 Simulink model with a SystemC manchester decoder 93

5–9 Simulation run example . 94

5–10 Software defined radio architecture 96

5–11 MAME’s Design Flow . 98

5–12 Multi-equalizer Verification Framework 101

5–13 Vertical Testbench Reuse Productivity Gain 104

5–14 Verification productivity gain using SimSyC 105

xv

Chapter 1
Introduction

Over the last 40 years, integrated circuit (IC) complexity has increased drasti-

cally. By complexity, we refer here to the number of transistors that can be integrated

on a single chip, regardless of what they do. The well known Moore’s law [42] pre-

dicts that this number is doubling every 18 months. Started by Jack Kilby in 1958

with a single transistor, today’s integrated circuits contain up to 1 million transistors

per mm2. These thoughts are stimulated by the latest update of the International

Technology Roadmap for Semiconductors published by the Semiconductors Industry

Association (SIA) [61]. This report indicates that integrated circuits will continue

to become smaller and denser through the year 2020.

With this increased number of transistors, design size grows as more functional-

ities are being integrated onto a single chip. Microprocessors, memory, digital signal

processors, programmable logic and custom logic, just to name a few, are now inte-

grated onto a single chip to form systems-on-a-chip (SoC). Nevertheless, tools and

methodologies used to design these complex systems have not advanced as fast as

fabrication. A design gap began to appear quickly between the number of transis-

tors that can be integrated on a single chip and the number that can be used in a

design. The Electronic Design Automation (EDA) industry has contributed signif-

icantly over the last two decades to shortening this gap and maximizing hardware

resources usage. Having more transistors available than what we are able to handle

1

1988 1992 1996 2000 2004

0
10
20
30

40

50

60

70

80

Verification Gap

Ability to Verify Ability to Design Ability to Fabricate

Design
Gap

Verification
Gap

D
es

ig
n

si
ze

 (M
ill

io
ns

 o
f g

at
es

)

Figure 1–1: Verification gap [6]

is a problem with relatively moderated consequences. These transistors left unused

do not interfere with the design performance and quality. A more critical problem

faced by IC designers concerns the validation and verification of these complex dig-

ital systems. Design validation and verification (V&V) is the process of ensuring

correctness of the design throughout the design stages. Verification complexity is

growing proportionately with the square of the increase in design complexity [6].

With next-generation process technologies of 0.06 µm capable of supporting beyond

100 million transistors per mm2, the verification problem is only getting worse over

the years. In a similar way to what we observed with the ability to fabricate, there

is a more important gap between the ability to design and the ability to verify. How-

ever, the consequences here are much more risky. Instead of unused transistors, we

are talking about partially verified designs. IC performance and quality are now

2

directly affected. Designer productivity and design possibilities are severely reduced

by this verification gap. Figure 1–1 summarizes graphically the integrated circuit

design reality.

This dissertation is concerned with the verification of complex digital systems.

These systems are described with a variety of tools and languages at different levels

of abstraction, resulting in complex verification problems. Software Defined Radio

(SDR) is a good example of such systems. It includes hardware and software com-

ponents that require rigorous verification all along the design flow. The verification

requirements of such systems become quickly more challenging than the design it-

self. SDR design usually begins at a high-level of abstraction and it is being refined

down to lower levels. This causes problems and discontinuities with the verification

environment that have to be adapted at each abstraction level.

It is widely accepted that functional verification is the most imposing obstacle

to meeting time-to-market schedules [4, 32]. Common industry estimates are that

functional verification constitutes near 70% of the total effort on a project. With IC

getting bigger and more complex, the verification process is more time-consuming and

expensive [53]. Design size has a dramatic effect on controllability and observability

of the design. Because they scale inversely with design complexity, more tests need

to be created to reach some internal states of the design. For example, if a design

complexity doubles, observability will half and controllability will also be reduced

by half, resulting in verification efforts that are around four times as difficult. New

scalable verification solutions that handle multiple levels of design abstraction are

required to cut verification time.

3

2001 2003 2005
0,00%

10,00%
20,00%
30,00%
40,00%
50,00%
60,00%
70,00%
80,00%
90,00%

100,00%
First silicon failures

Logical or
functional flaws

Figure 1–2: First silicon IC failure (source: Collett International Research)

Despite all the time and money that are concentrated on design verification,

first-silicon fabrication success is still difficult to achieve. According to a recent sur-

vey by Collett International Research [52], 71% of all IC designs contains logic or

functional flaws on first silicon fabrication. These designs thus require at least one

costly silicon re-spin. Around 60% of these faulty designs have functional errors that

could certainly have been detected with a more appropriate verification solution.

Incorrect or incomplete specifications, corner cases simply not covered during veri-

fication or changes in design specifications are a few causes of these flaws. Figure

1–2 contrasts 2005 data to previous surveys done in 2001 and 2003. We clearly see

that the percentage of faulty circuits has increased from 47% in 2001 to 71% in 2005.

Detecting flaws this late in the design cycle is expensive. According to Maxfield and

4

Edson [40], it is an order of magnitude more expensive to fix a design problem for

each delay introduced in its detection and correction.

Integrated circuit design complexity has led to a verification crisis. Engineers

can no longer manually write testbenches that cover all of the possible corner-case

behaviors. There are simply too many cases and it is hardly feasible to even imagine

all of them. The research presented in this dissertation focuses on the development

of a new technique to supplement traditional functional verification methods. The

goal is to provide new mechanisms to stimulate the design with real world scenarios

to verify precisely and quickly that the system operates as expected. It is important

to perform this verification as early as possible in the design flow to reduce the cost

of finding errors.

Traditional methods of verification have proven to be insufficient for complex

digital systems. Register transfer level testbenches have become too complex to man-

age and slow to execute. New methods and verification techniques began to emerge

over the past few years. High-level testbenches, assertion-based verification, for-

mal methods, hardware verification languages are just a few examples of the intense

research activities driving the verification domain.

The goal of this research is to develop new mechanisms to create a multi-

abstraction level platform that will be used for the validation and verification of

complex digital systems.

1.1 Main contributions

The main contributions of this dissertation are:

5

• A cosimulation interface between MATLAB/Simulink and SystemC is pre-

sented. This interface is principally used for the verification of lower abstraction

level designs with a high level model of the design environment. Our contri-

bution can also be used for a wide range of applications. For example (non

exhaustive list):

— Data visualization and analysis for SystemC models

— Distributed model simulation

— Heterogeneous prototyping

• An evolved version of transactors is presented. This dissertation tackles the

problem of transactor migration in transaction-based verification systems. Trans-

actor migration is defined as the capability to reuse transactors across abstrac-

tion levels with minimal changes.

• A verification methodology based on SystemC is proposed. The MATLAB/Simulink

to SystemC interface and the evolved version of transactors are combined in a

scalable multi-abstraction level verification platform.

All the work in this research has been published in four conference papers with

a reviewing committee. The paper presented at DVCon 2005 received the best paper

award.

1. A. Chureau, J.F. Boland, C. Thibeault, Y. Savaria, F. Gagnon, Z. Zilic, “Build-

ing Heterogeneous Functional Prototypes Using Articulated Interfaces”, Proc.

of 4th Northeast Workshop on Circuits and Systems, Gatineau, Quebec, Canada,

June 2006.

6

2. J.F. Boland, C. Thibeault, Z. Zilic, “Using MATLAB and Simulink in a Sys-

temC Verification Environment”, Proc. of Design and Verification Conference

& Exhibition, San Jose, Californie, February 2005, Best Paper Award.

3. J.F. Boland, C. Thibeault, Z. Zilic, “Efficient Multi-Abstraction Level Func-

tional Verification Methodology for DSP Applications”, Proc. of Global Signal

Processing Expo, Santa Clara, Californie, September 2004.

4. J.F. Boland, A. Chureau, C. Thibeault, Y. Savaria, F. Gagnon, Z. Zilic, “An

Efficient Methodology for Design and Verification of an Equalizer for a Software

Defined Radio”, Proc. of 2nd Northeast Workshop on Circuits and Systems,

Montreal, Quebec, Canada, June 2004, pp. 73-76.

I was also invited to present the SimSyC interface at the 2nd North American

SystemC Users Group meeting (2nd NASCUG), held in September 2004 at the Santa

Clara convention center in California.

1.2 Organization of the thesis

This thesis is organized into six chapters. Chapter two presents background

information on validation and verification of complex digital systems. Also presented

is related work and current approaches to V&V. Chapter three presents a novel

cosimulation interface used for multi-abstraction level verification. Chapter four

presents an improved transaction-level verification method. Chapter five presents

two case studies and demonstrates the performances and usefulness of the verification

platform presented in this work. Chapter six concludes with results of the research

and future directions.

7

Chapter 2
Background and related work

This chapter provides background information to clearly assess the worthiness of

this research. In the following sections, the key concepts of validation and verification

will be presented. The terminology used in this work will be defined and a succinct

review of the related work will be presented. This review presents briefly other

commercially available verification tools to put our contributions into the verification

context.

2.1 Validation and Verification of complex digital systems

The words validation and verification are frequently used alternatively to ex-

press the same thing. However, there is a subtle difference between the two terms to

mean two different types of analysis. According to the IEEE Standard Glossary of

Software Engineering Terminology, verification is defined as “The process of evaluat-

ing a system or component to determine whether the product of a given development

phase satisfy the conditions imposed at the start of that phase.” On the other hand,

validation is defined as “The process of evaluating a system or component during or

at the end of the development process to determine whether it satisfies specified re-

quirements.” In other words, V&V attempt to answer to two following fundamental

questions:

• Validation: Did we build the right product?

• Verification: Did we build the product right?

8

In this work, we consider validation and verification as two distinct activities

applied to find and correct errors in designs. Each of these activities has specific

requirements and strategies to find problems in designs [35]. For example RTL

design verification requires a testbench capable of creating input stimuli to verify

if the design architecture behaves correctly. The same design can also be validated

according to the system specifications to confirm that the design is doing the right

thing. Validation usually requires a complete model of the environment to create

real world validation scenarios.

Another important distinction must be done between testing and verification

of digital systems [62]. In the literature, both words are often used alternatively

to refer to verification activities. However, careful research indicates two distinctive

disciplines. Testing usually refers to the activities involved in the process of finding

errors and faults in the integrated circuit after the fabrication step. A physical chip

is connected to an automatic test equipment (ATE) and a program sends test vectors

to the device. Verification on the other hand uses models of the design and applies

simulation-based or formal methods to verify the correctness of the implementation.

In this circumstance, the word test refers to the testbench program used to verify

the design. This thesis is about simulation-based verification.

2.1.1 Verification Challenges

With today’s multi-million gate devices coupled with the desire to achieve faster

time-to-market, verification engineers have to perform exponentially more complex

verification tasks in a shorter time [33]. The success of a functional verification

project relies on tools, languages, and methodologies that try to overcome a number

9

of challenges [5]. These challenges broadly consist of the following [29]:

Verification productivity - is the capability with which verification engineers

can deal with increasingly larger designs with regard to time-to-market window. This

means developing complex testbenches to stimulate the design under verification in

short time period. One way to address this challenge is to move the verification

environment to a higher level of abstraction.

Verification efficiency - is the skillfulness in avoiding wasted time and effort

to complete the verification task. With the increasing complexity of designs, human

intervention is frequently the most important factor that causes a waste of time.

Therefore, new mechanisms and techniques are required to automate parts of the

verification process.

Verification reusability - can be seen in two ways. (1) Capacity of com-

ponents in a verification environment to be reused in new projects. (2) Ability to

reuse verification components, like testbenches, across abstraction levels in the same

project. Both definitions imply a modular and flexible verification environment.

Verification completeness - is a measure of the proportion of the design that

has been verified. This issue is one of the most difficult one with today’s complex

designs. How to know when to stop? Some tools offer ways of measuring verification

10

progress through code coverage and other techniques [16].

This dissertation explores new methods and mechanisms to address the first

three challenges. Nevertheless, improving verification productivity, efficiency and

reusability will give more time to the verification engineer to focus on verification

completeness.

2.1.2 Verification Methods

The verification crisis faced by the industry and the lack of complete and efficient

verification solutions have stimulated research activities in this domain. To tackle

this complex problem, several verification techniques have been developed over time.

The result is a variety of approaches, based on different languages and tools. None

of them can pretend to solve the verification problem. They have to be combined

together in a verification plan to obtain good results. Figure 2–1 summarizes the

principal verification techniques according to two categories: simulation-based and

formal method-based [32, 4]. Literature also uses dynamic and static verification

when referring respectively to simulation-based and formal method-based verification

[48]. Methodologies using formal methods are said to be output driven. There is

no need for input stimuli. The verification engineer specifies the output behaviors

expected from the design and lets the formal checker prove or disprove it. On the

other hand, methodologies using simulation runs rely on input stimuli and are then

input driven. The simulation-based functional verification process typically proceeds

by creating generators to produce the simulation stimuli and a simulation monitor

to verify the correctness of the circuit responses [13]. To date, simulation remains

11

Transactors Assertions

Coverage

Formal-based

Stimulus

Simulation-based

Equivalence
checking

Property
verification

- Satisfiability (SAT)
- Binary decision
diagram

- Model checker
- Theorem-proving

- Protocol monitoring
- Temporal assertions

- Code coverage
- Functional coverage

- Data generation
- Constrainted random

- Transactions
- High level testbench

Design Verification
techniques

Figure 2–1: Verification techniques

the most popular method of verification to find functional design errors [60, 4]. This

research concentrates on improving simulation-based verification. More precisely, we

develop new mechanisms for transaction-based verification and stimuli generation.

The check marks in Figure 2–1 indicate our research focus and the dashed lines

represents the other verification techniques available.

2.1.3 Evolution of Simulation-based Verification Environments

To clearly understand the purpose of this research, it is important to present how

the verification of digital systems has quickly evolved over the past few years. Like

the evolution of design entry from schematic based tools to hardware description

languages (HDL), verification has also changed in a similar way [30]. Figure 2–2

12

HDL Simulator

Tesbench
Stimuli
Generator

Checking
DUV

Figure 2–2: Verification environment with HDL

shows a typical verification system configuration used in the mid eighties for relatively

simple designs. The design under verification (DUV) is modeled using a low level

HDL language like Verilog or VHDL. The testbench consists of directed test cases,

written with the same language as the design. Both programs run inside the HDL

simulator and the DUV is stimulated with the test cases. This approach is sufficient

for small designs which have a limited number of test cases. As design complexity

increases, the number of test cases simply explodes and becomes unmanageable.

Studies show that for every line of HDL used in a design, verification engineers

have to write approximately five lines of HDL testbench code (or even more). In

Hardware Verification
Language

HDL Simulator

Tesbench
Stimuli
Generator

Checking
DUV

Coverage

L
i
n
k

Figure 2–3: Verification environment with HVL

13

the mid nineties, proprietary Hardware Verification Languages (HVLs), like Vera

[27], came to the rescue. These languages provided powerful constructs to simplify

and accelerate the verification process. The verification code is then written using

HVLs and runs in an independent simulator attached to the HDL simulator, as

shown in figure 2–3. HVLs also add constrained-random test generation to the

verification system. This technique enables automatic test case generation; reducing

the amount of work to be done manually. A functional coverage module completes

this verification system, by providing a measure for the quality of the verification.

With this information, it is then possible to adjust the stimuli generator to orient

the testbench toward uncovered scenarios.

The impact on verification productivity is considerable. Figure 2–4 compares

the time required to achieve verification goals using HDL and HVL. With HDL, test

cases are written manually, one at a time. The verification phase progresses slowly

toward the goal in a staircase manner. On the other hand, HVL requires a certain

amount of time to develop the constrained-random testbench. This extra time is

well invested, since testcases will then be generated automatically and verification

will progress more rapidly. The result is a welcome productivity gain.

Hardware verification languages are part of most verification environments for

complex digital systems. However, according to the Collett International Research

survey presented in chapter one [52], there is a lot of faulty integrated circuits fab-

ricated, considering that almost 70% of the total effort on a design project is spent

on verification. Digital design involves many software tools and modeling languages.

The design process does not start with RTL languages anymore. High abstraction

14

Time

Ve
rif

ic
at

io
n

co
ve

ra
ge

Verification goal
Productivity gain

HVL HDL

Testbench
development

Figure 2–4: Verification productivity gain with HVLs [30]

models are created first and refined down to the RTL level. Electronic System Level

(ESL) is the new level of abstraction used for complex digital systems [43]. The

verification environment has to move up the same way. As discussed in chapter one,

verification must begin as early as possible in the design process to find errors before

they become too costly to change. One way to achieve this goal is to move some parts

of the functional verification environment upward to a higher level of abstraction,

while maintaining its connection to lower levels.

2.2 Multi-Level Simulation

Multi-level co-simulation has a great potential to efficiently simulate large sys-

tems containing hardware and software components, with portions of the system

described at different levels of abstraction. With the growing availability of powerful

parallel processing machines, parallel co-simulation is a viable approach to speed up

the simulation of large systems. This section explores the important elements of a

mixed-level simulation environment.

15

2.2.1 Programming Paradigms

In computer science, a programming paradigm refers to the view that a pro-

grammer has of the execution of the program [67]. Different programming languages

implies multiples programming paradigms. Most of the programming languages sup-

port multiple paradigms. For example, the C++ programming language can be used

for procedural programming, object-oriented programming, object-based program-

ming and generic programming [67]. Other languages are designed to support only

one particular paradigm. Java, for example, is designed to support object-oriented

programming.

T3he design of complex digital designs is performed at multiple levels of ab-

straction using different programming languages. Therefore, multiple programming

paradigms are used to create models of the system. When it comes to the verification

of these models, problems arise when trying to make them to communicate together.

We will see in chapter 3 that one way to help reducing the verification effort is to cre-

ate interconnection mechanisms between abstraction levels. Representation of time

and data type format are examples of important differences that exist between pro-

gramming paradigms. These differences are posing challenges for the unification of

abstraction levels for verification. In this work, we will have to manage the paradigm

differences between MATLAB/Simulink and SystemC. The former belonging to the

data flow and visual programming paradigms while SystemC support mainly the

object oriented programming paradigms.

16

2.2.2 Abstraction Levels

To handle the increasing complexity, the design process of digital systems uses

multiple levels of abstraction to represent the system. It is important at this point

to define these levels. In the literature, abstraction levels are presented differently

according to the application domain. They are also often separated in multiple sub-

abstraction levels. Figure 2–5 gives a typical abstraction level division commonly

used for hardware designs. Since there is no standard concerning the terminology

Specifications

Algorithmic

System

RTL

Gate

Transistor

Figure 2–5: Design abstraction levels

to use or the number of abstraction levels that exist between the specifications and

the final chip, we have decided to use three abstraction levels for this work based on

verification requirements.

• Algorithmic level

• System Level

17

• RTL Level

According to [4], the verification effort can be reduced substantially through abstrac-

tion. Working at higher abstraction levels implies using less low-level implementation

details. This results in faster testbench development and more manageable verifica-

tion environment. However, high abstraction level designs are always refined down

to the implementation level. The verification environment has to follow up in the

same way. Instead of having independent verification platform, it may be necessary

to navigate across abstraction levels. This thesis present a novel approach to this

new verification problematic.

2.2.3 Simulation Modes

Different simulation modes describe different levels of a signal’s physical accu-

racy:

• Electrical mode. Represents physical electrical values such as voltages, cur-

rents, and impedances as waveforms described by a set of real numbers.

• Logic mode. The physical values are represented by a logic abstraction of

the corresponding state values. The most common discrete logic values are:

O, 1, floating, and undefined. Floating is used in modeling high impedance

states. The pure abstraction from electrical waveforms to logic states loses

information necessary to accurately model hazards, illegal states, and races.

There is a tradeoff between physical accuracy and simulation speed. Physical

accuracy may also be traded for simulation complexity. Additional states are

sometimes introduced to increase model accuracy, but they result in an increase

in complexity and a decrease in speed.

18

2.2.4 Time Representation

At different levels of abstraction, time is generally represented either in terms

of real numbers or integers:

• Real numbers. Are used to express time in electrical-mode simulation, which

is measured in the same units as it is in the real world. For example, time can

be expressed as hours, seconds, nanoseconds, or picoseconds. Real numbers

make it possible to express small time steps that usually occur in integrated

circuit simulations.

• Integers. Are used to represent time at higher levels of abstraction, in which

time is generally an integer multiple of a basic unit of time. For example, gate

delays and clock periods correspond to a multiple of the basic time unit.

2.2.5 Scheduling Policy

Simulation scheduling specifies how often elements are evaluated:

• Time driven. In the most direct electrical-mode simulation (direct methods),

all the elements are simulated at every time-step. The step size could vary,

but independently of the activity of the signals. The simulation in this case is

driven by the time steps.

• Event driven. There is a notion of event in the simulation, a change in state

of some node in the circuit. Only device elements that are affected by a node

event are scheduled to be re-evaluated. The simulation in this case is driven

by events. In the particular case where an event is not associated with a given

time, the simulation sometimes is also referred as data-driven.

19

2.3 Co-Simulation Framework

As mentioned before, a primary objective of this research is to reduce the total

effort put in simulation-based verification. Verification is a simulation-intensive task.

As expected, simulation time grows as the square function of the system complexity

[4]. Since there is a need for longer, larger and more realistic simulations performed

within a finite time-to-market, complex VLSI systems chips currently require millions

of hours of simulation time to validate and verify designs. Usually several simulators

are used in the design pass [65] because no single simulator addresses all levels of

abstraction, modeling, performance and verification issues during all stages of design.

This includes early software development, system-level exploration and design, logic-

level simulation, and circuit-level simulation. Another reason for the use of multiple

simulators in the design stage is that models sometimes are only available in certain

languages, and companies want to reuse this models, sharing them across company

groups and even with other companies. To address this heterogeneous simulation re-

ality, several commercial tools and co-simulation methods have been proposed. This

section presents an extensive state-of-the art study of both co-simulation methods

and commercial tools that are related to the proposed solution.

In the past decade, extensive work has been done in the field of co-simulation,

especially in the field of simulation-based verification. The result is a plethora of

co-simulation frameworks (e.g., [65, 58, 71, 22, 3]), coming from both academic and

commercial worlds. To our best knowledge, none of the prior work addresses the

multi-abstraction level verification problem and vertical testbench reuse for complex

digital designs.

20

One approach of performing co-simulation is by adopting high-level languages

such C/C++ and Java. When applying these techniques, the hardware-software co-

simulation can be performed by compiling the designs using their high-level language

compilers and running the executable files resulting from the compilation process.

There are several commercial tools based on C/C++. Examples of such co-simulation

techniques include Catapult C from [26] and Impulse C, which is used by the CoDe-

veloper design tool from [66]. In addition to supporting the standard ANSI/ISO C,

both Catapult C and Impulse C provide language extensions for specifying hardware

implementation properties. An application designer describes his/her designs using

these extended C/C++ languages, compile the designs using standard C/C++ com-

pilers, generate the binary executable files, and verify the functional behavior of the

designs by analyzing the output of the executable files. To obtain the cycle-accurate

functional behavior of the designs, the application designer still needs to generate

the VHDL simulation models of the designs, and perform low-level simulation us-

ing cycle-accurate hardware simulators. The DK Design Suite tool from Celoxica

supports system level development using Handel-C [1] and SystemC [34], extensions

of C/C++ language. While Handel-C and SystemC allows for the description of

hardware and software designs at different abstraction levels. However, to make a

design described using Handel-C or SystemC suitable for direct register transfer level

generation, the designer needs to write his/her designs at nearly the same level of

abstraction as handcrafted register transfer level hardware implementations.

Cadence Design Systems [10] proposes the Incisive Functional Verification plat-

form. Their unified verification methodology is centered on the creation and use

21

of a transaction-level “golden” representation of the design and a verification envi-

ronment called the functional virtual prototype. Others, such as Mentor Graphics

Scalable Verification Solution [18], propose tools that scale with design complexity

and utilize multiple levels of abstraction. Synopsys on their side offers the Discovery

Verification Platform [59] that is an integrated system, RTL, equivalence checking,

and mixed-signal verification solution. Finally, Verisity Verification Process Automa-

tion (VPA) Systems [68] automates the entire verification process through the use of

their proprietary language e.

All these tools support the SystemC language for the design process, but none of

them actually use it as the central component for functional verification. As it will be

presented in Chapter 3, SystemC is a powerful open source language that can be used

efficiently as a backbone for the whole verification system. SystemC is abstraction

level-independent, making vertical testbench reuse a reality. Furthermore, none of

these commercial tools proposed to use Matlab and Simulink to assist the verification

system. Each of these tools barely support third party software to retain their own

proprietary control. These big companies are making really good tools, but we have

to remember that the main objective behind all these products and unified solutions

is the profit.

In the next chapters, we present new mechanisms that will be the foundation

of a novel verification platform based on the open-source language SystemC. This

new verification methodology aims at using the right tool for the right task by pro-

viding modular and flexible interfaces. The complexity of current digital systems

22

necessitates a variety of specialized tools, so it is important for a verification plat-

form to provide the right mechanisms and methodology to be considered a successful

verification solution.

23

Chapter 3
Multi-Abstraction Level Verification

This chapter describes a comprehensive infrastructure to efficiently address chal-

lenges faced by designers when trying to verify designs represented at multiple ab-

straction levels. As we saw in previous chapter, various challenges encountered in

verification require new methodologies to solve the verification bottleneck. The next

sections present a platform combined with a novel methodology that provides effi-

cient mechanisms to considerably reduce the time spent on verification. The design

flow targeted with this methodology will be presented first and then the verification

challenges will be highlighted. The key element of this platform is the interface used

by our verification system to bridge the gap between algorithmic modeling and lower

abstraction levels.

3.1 The Design Flow

Increasing complexity of digital systems forces designers to move up across ab-

straction levels. They no longer start the design at the register transfer level using

VHDL or Verilog languages. Many architectural issues, like hardware-software par-

titioning, need to be undertaken well before physical implementation can be done.

As a result, system design starts from handwritten specifications and will go all the

way through multiple abstraction refinement stages.

At a very high level, designers are concerned with the general architecture of the

system and finding the optimal way to implement the specifications. While register

24

transfer level design tasks benefit from robust methodologies and a restricted choice of

design languages, higher abstraction level activities have less limitation. Depending

mainly on the application domain, a large variety of languages and tools are used to

explore the design space. In this work, we address the specific application domain of

digital design. The conception of these kinds of systems usually begin with tools like

MATLAB and Simulink to create and optimize the algorithm in order to meet specific

performances. Figure 3–1 depicts a typical design flow where the modeling stages are

separated into three abstraction levels: algorithmic level, system-level, and register

transfer level. This design flow shows a top-down approach that has been simplified

to reveal only the key tasks that need to be done in order to design, validate, and

verify at each abstraction level. The reality of an industrial development may be

more complex, involving more steps and many iterations through various portions

of this flow, until the final design converges to a form that meets the specification

requirements of functionality, area, timing, power, and cost. The following sections

will present, in more detail, each of these modeling phases and how they will affect

the overall system validation and verification.

3.1.1 Algorithmic Level Modeling

The first modeling step in the design flow, as shown in Figure 3–1, is to create

an algorithmic model of the system to explore different ways of processing the input

data. Designers are given the system specifications; a document describing a set of

functionalities that the final solution will have to provide and a set of constraints

that it must satisfy. In this context, the algorithmic model development is the initial

process of deriving a potential computational procedure for solving the problem

25

Te
st

be
nc

h
System

Specifications

Algo model
development

Stimuli
module

development

Algo model
verification

Optimization
Analysis
module

development

Te
st

be
nc

h

System model
development

Stimuli
module

development

System model
verification

Optimization
Analysis
module

development

Te
st

be
nc

h

RTL model
development

Stimuli
module

development

RTL model
verification

Optimization
Analysis
module

development

IP
reuse

IP
reuse

Synthesis

Place
& Route

Fabrication

Algorithmic Level Model

(MATLAB/Simulink)

(SystemC)

System Level Model

(SystemC/VHDL/Verilog)

RTL Level Model

Figure 3–1: Design Flow

26

resulting from the design specifications and requirements. At this level of abstraction,

the system is represented with individual processing elements that constitute the

algorithm. There is no distinction between what will be the hardware component or

the software program since no partitioning has been done yet.

MATLAB [38], a product of Mathworks Inc., is a popular programming lan-

guage and development environment for numeric applications. The MATLAB prod-

uct family provides a high-level programming language and an interactive technical

computing environment perfectly adapted to our algorithmic level modeling needs.

It includes a variety of functions for algorithm development, data analysis and vi-

sualization, and numeric computation. The main strengths of MATLAB lie both

in its interactive nature, which makes it a handy exploration tool, and the richness

of its precompiled libraries and toolboxes, which can be combined to solve complex

problems.

MATLAB is further enhanced with Simulink; a platform for multi-domain simu-

lation and model-based design for dynamic systems. It provides an interactive graph-

ical environment and a customizable set of block libraries that can be extended for

specialized applications. Simulink is integrated with MATLAB, providing immediate

access to an extensive range of tools.

Designers of complex numerical applications commonly use MATLAB and Simulink

as a preliminary modeling medium to quickly experiment with different algorithms

that will best represent the system [7, 54]. Using the convivial graphical user inter-

face, the system is built by dragging and dropping blocks from the library browser

onto the graphical editor and connecting them with lines that establish mathematical

27

relationships between the blocks. The result of this modeling phase is an easy way to

manipulate the graphical model of the system that can be dynamically simulated to

prove or refute the validity of the initial concept. The model is also used to fine-tune

various parameters or to help find potentially intensive computing blocks in the sys-

tem. Once the algorithmic model has been extensively simulated and is considered

satisfactory, the design is then further refined to the next abstraction level in the

design flow.

3.1.2 System-Level Modeling

The design team proceeds to the system-level modeling phase using the algo-

rithm and simulation results, previously created with MATLAB and Simulink, and

the system specifications. During this phase, all aspects of the system are modeled

using a hierarchal approach, so that a single designer can concentrate on a portion of

the model at any given time. Thus, the architectural description provides a partition

of the design in distinct modules, each of which contributes a specific functional-

ity to the overall design. These modules have well defined input/output interfaces

and protocols for communicating with the other components of the design. In order

to save development time and cost, some of these modules come from a library of

pre-design blocks. This technique is referred to as Intellectual Property (IP) reuse.

Recently, the industry has put emphasis on the importance of Electronic System-

Level (ESL) [14] design tools and methodologies in the development of complex

devices like system-on-chip (SoC). A broad range of ESL design tools have emerged on

the market in the past few years from a variety of companies like Celoxica, CoWare,

28

Summit, Cadence, Mentor Graphics, Synopsys etc., to name only a few. This work

uses SystemC for system level modeling.

SystemC is an open-source system-level modeling language based on C++. It

provides hardware-oriented constructs as a class library implemented in standard

C++. The SystemC design flow starts from a highly abstract algorithmic system

description and applies an iterative refinement process. Details regarding algorithm

partitioning, timing, process scheduling, data representation, hardware and software

partitioning are progressively added. The multi-level abstraction design methodology

is one of the most important properties of SystemC. To support modeling at different

levels of abstraction, from the system-level to the component level, SystemC supports

a rich set of port and signal types. Using this approach, system-level designers

can create detailed descriptions and perform faster cycle-accurate simulations, when

compared to an equivalent RTL simulation. The gain in simulation time approaches

an order of magnitude [11].

The result from this design phase is an executable specification of the system

that simulates the behavior of the design. It is used for architectural exploration and

performance analysis. Critical issues like hardware/software tradeoffs and interfaces

optimization are investigated with this model. After extensive validation and verifi-

cation, both hardware and software development can ramp up simultaneously. The

system-level model becomes both the “golden” reference design and the prototype.

The golden reference design drives the hardware development. Meanwhile, embed-

ded software is developed on the prototype. Using the SystemC language, hardware

designers refine the system-level model to the register transfer level.

29

3.1.3 Register Transfer Level Modeling

From the refined system level model, the hardware design team proceeds to the

Register Transfer Level (RTL) design phase. Hardware Design Languages (HDL), like

VHDL and Verilog, are used to design each functional component of the system-level

model. To save time manually translating SystemC to HDL, a subset of SystemC

allows designers to use it as an HDL. Some SystemC compilers have begun to emerge

on the market like the Celoxica Agility Compiler that provide behavioral design and

synthesis for SystemC. This phase also sees the development of the clocking system

of the design and architectural trade-offs such as speed/power.

These HDL descriptions are then successively transformed into block-level, gate-

level, transistor-level and finally into mask-level layout for fabrication. Computer

Aided Design (CAD) software tools such as synthesis and place/route are extensively

used throughout this design process. Most of the activities are semi-automatic or at

least heavily supported by CAD tools.

3.2 Design Verification

As discussed in the previous chapter, the correctness of a digital circuit is a ma-

jor consideration in the design of digital systems. Manufacturing microchips involves

extremely high and increasing costs, so the consequences of flaws going unnoticed in

system designs until after production phase are very expensive. At the same time,

verification of digital systems is still one of the most challenging activities in chip

development [70]. As of today, verification is still carried out mostly with ad-hoc

test, scripts and tools developed by the design and verification teams specifically

30

for the current design [47]. In the best case, these verification infrastructure de-

velopments can be amortized among a family of designs with similar architecture

and functionality [55]. Moreover, verification methodology still lacks any standard

or even a commonly accepted approach, with the consequence that each hardware

engineering team has its own distinct verification practices which often change with

subsequent designs by the same team, due to the insufficient “correctness confidence

level” that any of the current approaches provide. Given this scenario, it is easy to

see why many digital integrated circuit (IC) development teams report that around

70% of the design time and engineering resources are spent in verification, and why

verification is thus the bottleneck in the time-to-market for IC development. In this

section, we will examine the verification tasks associated with the design flow pre-

sented in the previous section. Time consuming steps will be highlighted and a novel

solution will be presented.

3.2.1 Testbench Creation

At each abstraction level in the design flow, extensive verification of the model

needs to be done in order to eliminate design flaws as soon as possible. Errors

related to system architecture and functionality are easier and less expensive to find

early in the design flow. As more and more abstraction details are added to the

model, it becomes difficult and time-consuming to find them. As presented in the

previous chapter, one way to verify our model is through simulation; and simulation

implies testbench. Figure 3–2 shows the basic environment required in order to

verify a model using simulation. We will refer to this model as the Design Under

Verification (DUV). A testbench is created around the DUV to send stimuli to the

31

inputs and analyze the response at the outputs. The stimulus generator portion

of the verification environment is responsible for creating the right stimuli required

to completely exercise the design. All possible behaviors of the DUV should be

demonstrated during the simulation. To confirm that these behaviors have been

exercised and to verify that they conform to the device specification, a response

checking module is connected to the outputs of the DUV. The testbench emulates

the system environment of the design. Depending on the complexity of the DUV,

the testbench consists of different test techniques to efficiently verify the design.

As an example, random test generation is often used in the stimuli generator for

a DUV having lots of system states. Reference model comparison is a technique

used to compare output responses of the DUV against a “golden” reference model.

The challenge of testbench creation is how to offer efficient stimuli that can achieve

high coverage of a design’s function and self-checking mechanism to compare outputs

with what is expected. A comprehensive testbench can, in fact, be more complex

and lengthy (and take longer to develop) than the synthesizable circuit being tested

[46].

The design flow of figure 3–1 clearly shows that the model of the design needs

to be verified at each abstraction level to ensure that it behaves as expected. As a

result, a testbench is also required at each abstraction level to simulate the model.

Figure 3–3 recalls the testbench creation steps from the design flow presented in the

previous section. The two most important tasks are the stimuli module development

and the analysis module development.

32

Output
Analysis

Input
Stimuli

Figure 3–2: Model Simulation

Te
st

be
nc

h

model
development

Stimuli
module

development

model
verification

Optimization

Analysis
module

development

Figure 3–3: Testbench Creation

33

The main difficulty when working with a multi-abstraction design flow, like the

one shown in Figure 3–1, is that each abstraction level uses its own language and

software tool. Therefore, when it comes to verification, a completely new testbench,

consisting of a stimuli module and an analysis module, needs to be created with the

abstraction level language and software. There are two major problems related to

this situation:

• Wrong software tool used for verification

• Testbench duplication across abstraction levels

The consequences are an inefficient testbench and time-consuming verification

environment development. Using the design tool to verify the model of the system

has proven to have many limitations for complex designs. As discussed in the pre-

vious chapter, hardware verification has undergone multiple transformations in the

past years. One of them is using hardware verification languages (HVL) instead of

hardware design language (HDL) to address complex testbench programming issues.

Multi-abstraction level verification also needs to address this issue. The verification

environment needs to be extracted from the design environment so it can tackle

the verification problem with appropriate methodologies and verification techniques.

Moreover, creating a new testbench at each abstraction level is a time-consuming

task that results in duplicated verification components. Since each level deals with

the same system, described in more or less detail, some elements in the testbench

can be reused across the abstraction levels. For example, data generated at the algo-

rithmic level, to verify that the algorithm behaves as specified, is also required at the

system-level or register-transfer level to verify the hardware implementation of the

34

algorithm. The next section will demonstrate how we tackle these problems using

the SystemC modeling language.

3.2.2 SystemC Verification Platform

In section 3.1.2, we presented SystemC as a system-level design language based

on C++. Recently, a working group within the Open SystemC Initiative (OSCI)

released the SystemC Verification (SCV) standard that extends the language to ver-

ification. This working group includes a number of EDA companies, semiconductor

developers, and system/IP companies. It includes ARM, Cadence Design Systems,

CoWare, Forte, Fujitsu, Mentor Graphics, Motorola, ST Microelectronics, and Syn-

opsys. In addition, representatives from a variety of academic institutions made key

contributions. These individuals performed extensive research in SystemC and ver-

ification. Among the institutions represented were the University of Chemnitz and

the University of Tuebingen, both located in Germany.

Originally, the developers of SystemC provided a platform upon which devel-

opers could build various design methodologies. This working group has achieved

a similar result for verification. Its goal was to define a set of verification classes

within SystemC. These classes would provide a basis for developing various verifi-

cation methodologies. This work uses the SystemC Verification Library v1.0 that is

composed of the following features:

Data introspection: manipulation of arbitrary data types.

Randomization: generation of random values through the scv random class that

support advanced seed management and generation algorithm selection.

35

Constraints for randomization: creation of constraint expressions, with the

scv constraint base class, to specify the range of legal values.

Weight for randomization: possibility to bias the random values generation

process, with the scv bag class, so that some values are generated more often

than others.

Transaction-based verification: modeling style for test bench with transactors

and transaction recording through scv tr db, scv tr stream, and scv tr stream.

A verification methodology can be build using these key capabilities within Sys-

temC [45, 64, 17]. Our platform uses SystemC as the backbone for the verification

environment. Figure 3–4 presents an improved version of the design flow using our

novel verification platform. The key characteristic of this platform is its ability to

verify the design at multiple abstraction levels. Looking at figure 3–4, we see how

the verification environment spreads out vertically and overlaps abstraction levels

boundaries. There are three main advantages of this layout. First, verification be-

gins earlier in the development cycle. With design complexity rapidly increasing,

designers need to verify performance as early in the lifecycle as possible. Verifying

performance as the product transitions between each phase reduces risk by finding

critical issues early in simulation, instead of later on in the product development

cycle, where it is more time-consuming and costly to fix. The next advantage is to

use the same language for verification all along in the design flow. It is easier to make

verification components communicate together when they are written in the same

36

Algorithmic
Level

(MATLAB/Simulink)

System
Specification

Algo model
development

Stimuli
module

development

Algo model
verification

Analysis
module

development

Stimuli
Module

Analysis
Module

Optimization

System model
development

System model
verification

RTL Model
development

RTL model
verification

Model refinement

Synthesis

System
Level

(SystemC)

Register Transfer
Level

(SystemC/VHDL/Verilog)

Testbench
creation

Place
& Route

Fabrication

Optimization

Optimization

S
ys

te
m

C
 V

er
ifi

ca
tio

n
E

nv
iro

nm
en

t

S
ys

te
m

C
 V

er
ifi

ca
tio

n
E

nv
iro

nm
en

t

Figure 3–4: Improved Design Flow

37

language. Using SystemC as the central element of the verification environment en-

sures uniformity among the testbench. Also, having only one language to learn helps

verification engineers to maintain testbenches. The third benefit, where lots of time

can be saved, is the reuse of verification components. In the typical design flow pre-

sented in the previous section, testbenches tends to be separated by the abstraction

levels having almost no interaction between them. In this context, reuse is almost

impossible because each testbench is written explicitly for a particular abstraction

level, using different languages. Our platform provides the right mechanisms such

that all abstraction level verification components can communicate together to share

their specific resources. The central testbench in SystemC reuses the verification ele-

ments scattered at each abstraction level. As an example, a data generator modeled

in MATLAB/Simulink can be reused by the SystemC verification environment to

produce relevant stimuli to the DUV described in HDL. Data exchange between Sys-

temC and MATLAB/Simulink is possible through our novel co-simulation interface

SimSyC. The next section presents in detail the structure of this interface and how

it can be used to considerably reduce the time spent on model verification.

3.3 The SimSyc Cosimulation Interface

The first discontinuity in the verification flow happens when the design is taken

from the algorithmic level to the system level. As a result of the programming

paradigm shift, traditional verification is performed independently with two distinc-

tive testbenches. As presented in the previous section, this approach is error prone

and time consuming. In an effort to bridge the verification gap that exists between

these abstraction levels, we created a novel cosimulation interface between Simulink

38

Figure 3–5: Simulink and SystemC Cosimulation

and SystemC called SimSyC. In this section, we present the underlying details of

SimSyC and how it is used to improve the verification task. The goal of the interface

is to cosimulate a Simulink model with a SystemC model. Figure 3–5 represents

the cosimulation connection between both software tools. Simulink is embedded in

the MATLAB software. Therefore, SimSyC will first establish a connection between

SystemC and MATLAB and then get access to Simulink. SimSyC’s main task is

to exchange data between Simulink and SystemC and to synchronize both simula-

tion kernels. There are multiple application scenarios for this interface that will be

discussed in the following section.

3.3.1 Typical Applications

The SimSyC cosimulation interface can be used in different ways. There are

four primary application scenarios that were identified and illustrated in figure 3–6.

All these scenarios were elaborated with one objective in mind: to assist the designer

in his verification efforts. Therefore, the design to verify is the central component

of each of these scenarios. Figure 3–6 (a) shows that SimSyC can be used to verify

a SystemC design with a model of the system environment running in Simulink.

This configuration helps the verification task in two different ways. First, the time

spent on testbench creation is considerably reduced by using the interactive graphical

39

environment of Simulink and the variety of a customizable set of block libraries. A

complex model of the system environment can be created in a few hours by using

predefined blocks. Moreover, the quality of the testbench is increased because the

Simulink blocks used have been already verified. Therefore, the testbench creation

step is less prone to errors and provides a robust model to stimulate the design

under verification. In the second scenario of Figure 3–6 (b) Simulink is used as a

graphical display to enhance SystemC simulation. Stand alone SystemC simulator

only offers text based output. Limited verification and debugging can be done in this

context. SimSyC opens up to a wide range of graphical tools that can be used to

display SystemC output data directly in Simulink. For example a SystemC digital

signal processing design can use the discrete-time eye diagram scope found in the

communication blockset of Simulink to plot a modulated signal. This eye diagram

can be used to reveal the modulation characteristics of the signal, such as pulse

shaping or channel distortions.

The third configuration shown in Figure 3–6 (c) is used to simulate a design frag-

mented across two different abstraction levels. One part of the design is a SystemC

model while the other part is a Simulink model. The advantage of this layout is to

start the verification of the SystemC section of the design earlier. Even if the other

part is still in Simulink and not yet available in SystemC, this provides continuous

verification during the transition from a higher abstraction level to a lower one.

Figure 3–6 (d) shows the last application scenario where two versions of the same

design are simulated together. The first version (Design v1) is an algorithmic model

in Simulink. The second one (Design v2) is a SystemC model obtained through the

40

System
Environment

Design

(a)

Graphical
DisplayDesign

(b)

Design
part 1/2

Design
part 2/2

(c)

Design
v1

Design
v2

Conformance
checker

(d)

SystemC design simulation with
a Simulink model of the system
environment

Simulink graphical display for
SystemC Design simulation

Design simulation across
abstraction levels

Conformance checking of a Simulink
design with a refined SystemC version

Figure 3–6: Application scenarios

41

refinement process. The outputs of both designs are collected to perform conformance

checking. For instance, the Simulink design can represent a golden model to verify a

lower level SystemC implementation. Important information is collected during this

verification step to insure that the transformation from Simulink to SystemC has been

done properly. This section has only presented the four application scenarios where

SimSyC can be used. More examples and experimental results will be presented in

chapter 5.

3.3.2 Related work

Connecting Simulink and SystemC together has already been tried in the liter-

ature. Authors in [12] propose a solution to integrate SystemC models in Simulink.

A wrapper is created using S-Functions to combine SystemC modules with Simulink.

This wrapper initializes the SystemC kernel and converts Simulink data type to Sys-

temC signals and vice versa. Simulation control is entirely handled by Simulink.

Some extensions of the SystemC kernel are required for initialization and simulation

tasks. In [69], SystemC calls MATLAB using the engine library. MATLAB provides

interfaces to external routines written in other programming languages. Using the C

engine library, it is possible to share data between SystemC models and MATLAB.

This simple working demo shows how to use the library to send and retrieve data

from the MATLAB workspace and plot some results. The main difference with [12]

is with the simulation control: SystemC is now the master of the simulation and

MATLAB operates as a slave process. Also, Simulink is not supported in this exam-

ple. In a similar way, MathWorks provides a commercial solution to close the gap

between algorithmic domain and the hardware design. The link for ModelSim [39] is

42

a cosimulation interface that integrates MATLAB and Simulink into the hardware

design flow. It provides a link between MATLAB/Simulink and Model Technology’s

HDL simulator, ModelSim. This interface makes the verification and cosimulation of

RTL-level models possible from within MATLAB and Simulink. As opposed to the

two previous techniques, there is no support for system level languages like SystemC.

These approaches [69, 12, 39] all try to reduce the barrier that exist between higher

level modeling and existing hardware design flow. While [39] is a fully functional

commercial tool for RTL verification, [69, 12] suffer from their embryonic stage (i.e.

incomplete solutions for hardware design and verification).

The authors in [8] have look at the problem of cosimulating continuous systems

with discrete systems. The increasing complexity of continuous/discrete systems

makes their simulation and validation a demanding task for the design of heteroge-

neous systems. They propose a cosimulation interface approach based on Simulink

and SystemC. The main objective of the proposed solution is to provide a framework

to evaluate continuous/discrete systems modeling and simulation.

SimSyC tries to push the idea a step further than just a cosimulation interface;

it is a complete verification solution. It uses MATLAB external interfaces, similar

to the example described in [12], to exchange data between SystemC and Simulink.

Once this link is established, it opens up a wide range of additional capability to

SystemC, like stimulus generation and data visualization. The first advantage of our

technique is to use the right tool for the right task. Complex stimulus generation

and signal processing visualization are carried out with MATLAB and Simulink while

hardware verification is performed with SystemC verification standard. The second

43

advantage is to have a SystemC centric approach allowing greater flexibility and

configurability.

3.3.3 Master-Slave Relationship

All the scenarios presented in section 3.3.1 show how Simulink and SystemC

interact together. Both simulation kernels can send and receive data through the

SimSyC interface. However, to insure proper coordination of the cosimulation, we

must define who will be the master and who will be the slave. The master will have

two additional tasks to take care of beside design simulation. It must first initial-

ize the different components of the system before starting the simulation. Then, it

must continually control and monitor simulation execution. As an example, Math-

Works’ link for Modelsim [39] presented in chapter 1 uses Simulink as the master

and ModelSim as the slave. This configuration is Simulink centric and thus vendor

dependent. Initialization and simulation control is performed by Simulink over the

foreign language interface (FLI) of ModelSim. SimSyC takes a different approach.

SystemC is the master while Simulink is the slave. This topology has the advantage

of being vendor independent. The core of the cosimulation interface is written using

the open source language SystemC.

3.3.4 Modes of Communication

Communication between Simulink and SystemC can be done in various ways.

Three options were considered for this interface. Data transfer can be done through

hard disk files, TCP/IP Ethernet connection and shared memory. To choose the

optimal mode of communication, several criteria were analyzed.

44

First, data transfer between Simulink and SystemC must be fast enough to sus-

tain the amount of information to be exchanged. There are basically two categories

of information that transit through this link. First, control data assures proper sim-

ulator initialization and synchronization. The bandwidth required for these tasks is

relatively low. Initialization commands are used off line, having no direct impact on

the simulation run time. Regarding synchronization, a simple handshake protocol

has been defined to minimize the interface usage. Section 3.4.3 gives more details

about how simulator synchronization has been implemented. The second type of

information that travels over the link is the actual simulation data. Transfer speed

is now an important issue if we want to minimize the impact on simulation run-

time. According to the typical applications presented in section 3.3.1, simulation

data comes from either Simulink data generator models or SystemC data analysis

modules. Depending on the design application field and complexity, the simulation

data can be of various sizes and have more or less real time requirements. For ex-

ample, consider a data generator, used to verify an image processing design, which

sends a burst of data when required by the design. This data transfer does not occur

on each simulation clock, thus have minimal real time requirements. On the other

hand, data processing intensive designs, like telecommunication signal processing,

may require a continuous real time data flow from the generator. This will have a

significant impact on simulation time if the interface between MATLAB and Sys-

temC is not fast enough. Since the transfer speed is closely related to the design

application, the fastest communication mode will be preferred to support a wider

range of application.

45

The second criterion considered for the communication mode was flexibility. As

stated previously, the application that will use this cosimulation link is unknown

at this point. Therefore, the communication mode of the interface must be flexible

enough to be customized for application specific requirements. For example, the

number of input and output ports and their corresponding data type are variable from

one design to another. Consequently, inherent flexibility within the communication

mode is an important issue if we want to minimize software processing overhead

converting data types or manipulating data structures.

The last decisive factor taken into consideration was the potential of integration

within MATLAB and SystemC. To be efficient, the co-simulation link has to be

easily connected to MATLAB and SystemC without any major modification to both

environments. Moreover, co-simulating these two programs is only possible with

a good hand-shake mechanism. The communication mode must be able to access

simulation parameters to control data exchanges.

Table 3–1 below summarizes the main characteristics of each communication

mode regrouped according to the decision criteria just presented. On the second

line we have the hard disk approach which consists of transferring data between

MATLAB and SystemC using a file system that resides on the hard disk. This

technique suffers seriously from its poor transfer speed and lack of flexibility. Access

to the computer hard disk is definitively a slow operation that will have a big impact

on long real time simulation runs. Also, data organization into multiple files will have

to be managed manually; adding unwanted development time and complexity to the

interface. On the other hand, limited simulation control can be achieved using the file

46

Communication
modes

Speed Flexibility Integration

Hard disk

Read and write
to hard disk is a
relatively slow
operation

Limited control
through files -
Complex data
organization - Large
files to manipulate

Native file
access support
in both
MATLAB and
SystemC

TCP/IP
(Ethernet)

- Speed depends
on network
congestion -
Requires an
efficient protocol

- Protocol dependent
- Requires data types
conversion functions -
Multiple computers

Integration to
MATLAB and
SystemC using
WinSock library

Shared Memory
- Fast memory
access - No
protocol needed

- Unlimited flexibility
through memory
allocation - Native
data types conversion
functions - Data
organization simplify
with MATLAB
workspace - Direct
MATLAB
configuration

Native support
in both
MATLAB and
SystemC
through the
Engine library

Table 3–1: Main characteristics of communication modes

system. Access to simulation parameters will have to be managed by additional sub-

routines, thus adding complexity and processing overhead to the interface. Finally,

both MATLAB and SystemC include native support for file access.

The next method presented in table 3–1 uses an Ethernet connection to exchange

data between MATLAB and SystemC using TCP/IP. The main advantage of this

approach is that MATLAB and SystemC can run on two different computers. This

may be a valuable feature for large designs with complex testbenches that involve

very long simulation runs. However, transferring data over an Ethernet link requires

47

an efficient protocol. Simulation data must be converted into network packets and a

well organized hand-shake must be implemented. Transfer speed will depend on the

efficiency of this protocol and the network congestion of the link. Simulation control

over TCP/IP can be done in a more efficient way than with the hard disk method.

Integration to MATLAB and SystemC can be done using windows sockets through

the WinSock library.

The last method showed in Table 3–1 uses shared memory. This communication

mode offers the fastest data transfer speed using direct memory access. No protocol

is required since data is written directly in software’s local variables. Data transfer

between MATLAB and SystemC is thus considerably simplified. MATLAB includes

an application programming interface (API) to communicate with external third

party software. This API is rich in features and provides a solid infrastructure

to build on. The only restriction of shared memory is that both MATLAB and

SystemC must be executed on the same host computer. This will result in simulation

execution speed limitations for larger designs. Computing intensive designs and

testbenches should use TCP/IP communication mode instead of shared memory

to take advantage of distributed simulation execution. SimSyC assumes that both

MATLAB and SystemC can run on the same computer to obtain satisfactory results.

As a result, we chose shared memory to implement the cosimulation interface.

3.4 SimSyC Implementation Details

The SimSyC interface is made of two separated programs. One of them is writ-

ten using the SystemC language and the other is a MATLAB C-MEX S-function.

These two programs exchange data through the engine interface and MATLAB’s

48

workspace. Figure 3–7 shows all the elements that are part of the SimSyC interface.

First, a SystemC module (sc module) uses the engine C++ library to manage all

the initialization and control tasks. It will also ensure the synchronization between

both simulators. Then we have the MATLAB command window where SystemC can

execute MATLAB commands through the engine interface. SystemC now has ac-

cess to the workspace of MATLAB; where all variables are stored. Using read/write

commands, SystemC can freely read and write data to this workspace. The last ele-

ment is Simulink, where the data generator/analysis model is simulated. A C-MEX

S-Function block is added to the Simulink model to exchange data with MATLAB

workspace. This block is written using the C++ language and is configurable ac-

cording to the design requirements.

3.4.1 MATLAB Engine Library

Shared memory communication mode between MATLAB/Simulink and Sys-

temC will be implemented using the MATLAB C language external interface. The

engine library contains several routines to allow a C program to call MATLAB.

Table 3–2 summarizes the routines available in this library. Using these routines,

it is possible to control the MATLAB computation engine from a C program. On

Microsoft Windows, the engine library communicates with MATLAB using a Com-

ponent Object Model (COM) interface (UNIX uses pipes). The SystemC module

employs these routines to remotely control MATLAB and exchange data back and

forth between SystemC and the MATLAB workspace.

The MATLAB language works with only a single object type: MATLAB ar-

ray. These arrays are manipulated in SystemC using the mx prefixed application

49

MATLAB

sc_module

sc_module
SimSyC

MATLAB engine

C-MEX
S-Function

C
-M

E
X

 S
-F

un
ct

io
n

Figure 3–7: SimSyC internal components

Function Description
engOpen Start MATLAB engine
engClose Shutdown MATLAB engine
engGetVariable Get a MATLAB array from the engine
engPutVariable Send a MATLAB array to the engine
engEvalString Execute a MATLAB command
engOutputBuffer Create a buffer to store MATLAB text output
engOpenSingleUse Start MATLAB engine for non shared use
engGetVisible Determine the visibility of MATLAB engine session
engSetVisible Show or hide the MATLAB engine session

Table 3–2: MATLAB engine library routines

50

programming interface (API) routines included in the MATLAB engine. This API

consists of over 60 routines to create, access, manipulate, and destroy mxArrays.

3.4.2 Simulink C-MEX S-Function

An S-Function is a program description of a Simulink block. S-functions can

be written in MATLAB, C, C++ or Fortran, and are compiled as MATLAB EXe-

cutable (MEX) files using the mex utility. A C-MEX program can be compiled to

a dynamically linked library (DLL) and linked during simulation. Simulink inter-

acts with a MEX file S-Function by invoking callback methods that the S-Function

implements. Callback methods performed tasks required at each simulation stage.

During the simulation of a model, Simulink calls the appropriate callback methods

at each simulation stage. Figure 3–8 shows the main callback methods involve in a

typical simulation run. All callback methods names have the mdl prefix.

Each method performs a predefined task, such as computing block outputs,

required to simulate the block whose functionality the S-Function defines. M-files

(written in MATLAB) have the advantage of avoiding the time-consuming compile-

link-execute cycle required by development in a compiled language. However, the

set of callback methods that C-MEX files can implement is much larger than the

ones available for M-file S-Functions. Hence, C-MEX files can implement a wider

set of block features such as the ability to handle matrix signals, complex inputs

and multiples data types (fixed point data types). Moreover, the compiled C-MEX

program can be dynamically linked with SystemC. That is the main reason we wrote

SimSyC using a C-MEX S-Function.

51

mdlProcessParameters

mdlGetTimeOfNextVarHit

mdlInitializeConditions

mdlOutputs

mdlDerivatives

mdlOutputs

mdlDerivatives

mdlOutputs

mdlZeroCrossings

End Simulation

mdlUpdate

Initialize Model

Simulation Loop

Called when

parameters change

Called if sample time

of this S-function

varies

Called if this S-

function has

continuous states

Called if this S-

function detects

zero crossings

Called when

parameters change

m
d

lC
h

e
c
k
P

a
ra

m
e

te
rs

mdlTerminate

m
in

o
r

ti
m

e
 s

te
p

m
a

jo
r

ti
m

e
 s

te
p

S
im

u
li
n

k
 E

n
g

in
e

Zero-crossing detection

Figure 3–8: Simulink simulation stages (c©1994-2006 The MathWorks, Inc.)

The easiest way to create a C-MEX S-Function is to use the S-Function Builder

which is located in the Simulink Function and Table library. This eliminates the

need to write an S-Function from scratch. However, its functionality is limited in

the kinds of S-Functions that it can produce. For example, the S-Function Builder is

limited to S-Functions that have no more than one input or one output. Also, data

type is limited to non complex input or output signals and double precision signals

manipulation. It is preferable to use skeleton implementations of callback methods,

52

called templates. The templates contain skeleton implementations of callback meth-

ods. The file matlabroot/simulink/scr/sfuntmpl doc provides a detailed description

of a C-MEX S-Function template. A general format of a C-MEX S-Function is shown

below:

#define S_FUNCTION_NAME your_sfunction_name_here

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

static void mdlInitializeSizes(SimStruct *S)

{

}/* end mdlOutputs */

static void mdlOutputs(SimStruct *S, int_T tid)

{

} /* end mdlOutputs */

static void mdlTerminate(SimStruct *S)

{

}

/*=============================*

* Required S-function trailer *

=============================/

53

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

The mdlnitializeSizes(SimStruct *S) method should specify the dimensionality,

the data type, and the numeric type of each input and output port. It is also used

to handle the parameters that are passed to the S-function through the dialog box.

It accesses the parameters using the ssGetSFcnParam macro. We now describe how

a programmer can specify the dimensionality , data type, and numeric type of each

input/output port.

DIMENSIONALITY

The following methods exist for setting the input port dimensions:

• If the input signal is one-dimensional, and the input port width is w, the

following method sets the dimension of the input port with index inputPortIdx:

ssSetInputPortVectorDimension(S, inputPortIdx, w)

• If the input signal is a matrix of dimension m x n, then use the following

method:

ssSetInputPortMatrixDimensions(S, inputPortIdx, m,n)

54

If the S-Function does not require that an input signal has a specific dimension-

ality, we could set the dimensionality of the input port to match the dimensionality

of the signal actually connected to the port. The following choices are available:

• If the input port can accept a signal of any dimensionality, the following method

sets the dimensionality of the input port to the dimensionality of the signal

connected to that port:

ssSetInputPortDimensionInfo(S, inputPortIdx, DYNAMIC_DIMENSION)

• If the input port can only accept vector (1-D) signals but signals can be of any

size, invoke the following method:

ssSetInputPortWidth(S, inputPortIdx, DYNAMICALLY_SIZED)

• If the input port can only accept matrix signals but can accept any row or

column size, invoke this method:

ssSetInputPortMatrixDimensions(S, inputPortIdx, m,n)

where m and n are DYNAMICALLY_SIZE

The programmer should also provide a mdlSetInputPortDimensionInfo method

that sets the dimensions of the input port to the size of the signal connected to the

input port. Simulink invokes this method during signal propagation when it has

determined the dimensionality of the signal connected to the input port.

Finally, we have to provide a mdlSetDefaultPortDimensionInfo method

that sets the dimensions to a default value, when Simulink cannot determine the

dimensionality of the signal connected to some or all of the block’s input ports. The

55

same macros (ssSetOutput(...), instead of ssSetInput(...)) are used to set the di-

mensionality of each output ports.

DATA TYPE

In order to set the data type of an input port we should invoke the method ssGet-

InputPortDataType(S, inputPortIdx, DTypeId id). The enumerated type DTypeId,

is defined in simstruct.h file. The following table shows the equivalency of some

Simulink, MATLAB, and C data types.

Simulink Data Type
DtypeId

MATLAB Data Type C-Data Type

SS DOUBLE mxDOUBLE CLASS real T
SS INT8 mxINT8 CLASS int8 T
SS INT16 mxINT16 CLASS int16 T

SS UINT16 mxUINT16 CLASS uint16 T
Table 3–3: Data types equivalency

If the input data type is inherited from the block connected to the port, set the

data type to DYNAMICALLY TYPED. The data type of an input port is double

(real T) by default.

NUMERIC TYPE

The method mdlInitializeSizes is also used to set the numeric type of each input

and output port. The following options are available:

• If the numeric type of the input port is real then invoke the method

ssSetInputPortComplexSignal(S, inputPortIdx, COMPLEX_NO)

• If the numeric type of the input port is complex then invoke the method

56

ssSetInputPortComplexSignal(S, inputPortIdx, COMPLEX_YES)

• If the numeric type of the input port is ingerited from the block it is connected

to, use the method

ssSetInputportComplexSignal(S, inputPortIdx, COMPLEX_INHERITED)

The purpose of the mdlOutputs is to compute the signals that the block emits.

Simulink invokes this required method at each simulation time step. The method

should compute the S-Function’s outputs at the current time step and store the re-

sults in the S-function’s output signal arrays. Inside the mdlOutputs method the

S-Function accesses the signals appearing in the input ports. An S-Function accesses

input signals via pointers, as it is now described.

Accessing Signals Using Pointers

During the simulation loop, the S-Function can access the input signals by invoking

the following method:

InputRealPtrs uPtrs==ssGetInputPortRealSignalPtrs(S, portIndex)

This is done for each input port whose index is PortIndex starting at 0 (first

input port). Thus, there is an array of pointers, one for each input port. To access

an element of this signal, you must use the method ssGetInputPortRealSignalPtrs.

If the incoming signal at port i is complex, then the real and imaginary parts

are accessed as follow:

real_T real_part = uPtrs[i][0]; // real part

real_T im_part = uPtrs[i][1]; // imaginary part

57

The S-Function can write to the output port by invoking the method ssGetOut-

putPortSignal. The output signal is retrieved by using the code:

real_T *y = ssGetOutputPortSignal(S, outputPortIndex)

After obtaining a pointer to a signal appearing at an output port, you can specify

its real part by using the code:

*y++ = real_part_of_signal; // write the real part

Similarly, the imaginary part is specified as:

*y++ = imag_part_of_signal; // write the imaginary part

The C-MEX S-Function created for SimSyC allows a Simulink model to read

and write data to MATLAB workspace while maintaining synchronization with the

SystemC simulator.

3.4.3 Simulators Synchronization

The representation of simulation time differs significantly between SystemC and

Simulink. SystemC is a cycle-based simulator and simulation occurs at multiples of

the SystemC resolution limit. The default time resolution is 1 picosecond; this can

be changed with the function sc set time resolution. Simulink maintains simulation

time as a double-precision value scaled to seconds. This time representation accom-

modates continuous and discrete models. SimSyC uses a one-to-one correspondence

between simulation time in Simulink and SystemC. The Simulink solver is set to

discrete fixed-step type, so one time step in Simulink correspond to one tick in Sys-

temC. As mentioned previously, SystemC is the master of the simulation. Simulink

is controlled from SystemC through the SimSyC interface. Using MATLAB com-

mands set param and get param (with the appropriate arguments) it is possible to

58

Figure 3–9: SimSyC synchronization commands

have complete external control over Simulink. SystemC uses set param to start, stop,

and continue Simulink execution. Simulation is suspended at each time step by the

C-MEX S-Function. For that purpose, the same command (set param) is used at the

end of the S-Function, but with the pause argument. On the other hand, SystemC re-

quests Simulink status with the command get param to synchronize both simulators.

Figure 3–9 provides the SystemC code snippet of the command get param.

The set param command can also be used by SystemC to adjust Simulink sim-

ulation parameters between each simulation runs.

3.5 Verification Platform

SimSyC is one of the key components of the verification platform. It allows

system validation and verification across abstraction levels. The primary strength

of MATLAB and Simulink is not hardware verification. As mentioned, this tool

is intended for algorithm development, numerical computing and data visualization.

The verification platform proposed takes this into consideration and uses Mathworks’

tool to assist the SystemC testbench upon request. This way the tools and languages

are used for their intended purpose. Figure 3–10 gives an overview of how SimSyC

is integrated in the verification flow. Since MATLAB and Simulink are used early

in the design flow, it makes sense to reuse as much as possible some components

59

Simulink

DUV
.sc

DUV
.hdl

TR
TR

TR
TR

MATLAB

M
A

TL
A

B

M
A

TL
A

B

Data
Generator

Data
Analysis

Golden
Reference

Sy
st

em
C

SystemC

Sy
st

em
C

Cosimulation Interface

Figure 3–10: Cosimulation Interface

of these high level models to improve lower level hardware verification. The main

objective with SimSyC is to simulate at lower abstraction level only those portions

of the system that are part of the design. This results in faster simulation execution

because the rest of the system can run at a higher abstraction level. The second

objective is to provide additional flexibility and robustness to the SystemC testbench

with pre-validated data generator and data analysis modules. Real life data can be

quickly generated with the Simulink models using the various Blocksets available in

the Simulink environment. Moreover, output data from the DUV can be forwarded

by the testbench to Simulink. The verification engineer can now use graphical tools,

like scopes, X-Y graphs or other mathematical operations of Simulink to further

analyze the response of the system. One last benefit of using Matlab and Simulink

in the verification flow is for a golden reference. A Simulink golden model can be

used as a reference model by the verification system to compare the expected to the

actual behaviors.

60

3.6 Summary

The design flow for complex numerical designs usually begins at a very high level

of abstraction with tools like MATLAB and Simulink. The design flow involves the

refinement of the model across multiple abstraction domains. Individual testbenches

have to be created at each abstraction levels, resulting in a time-consuming and error

prone process. We proposed a novel cosimulation interface called SimSyC to bridge

the gap between the algorithmic domain and lower abstraction levels. This interface

is used mainly in four application scenarios, connecting MATLAB and Simulink with

SystemC. This constitute the basis for our verification platform.

61

Chapter 4
Vertical Testbench Reuse

The key element of an efficient multi-abstraction level verification environment is

its reuse potential.The SimSyC interface described in chapter 3 gives the possibility to

reuse Simulink stimulus and analysis modules for lower abstraction level verification.

However, the SystemC testbench is specific to the design under verification and must

be adapted at each abstraction level to reflect changes in the design. The purpose

of this chapter is to add another element in our verification strategy to maximize

the reuse aspect of the verification environment. Transactors will be inserted to

enable complete vertical testbench reuse. Even though transactors are not a new

strategy for verification, we found that by organizing the transactor into independent

functions and by creating standard interfaces between these functions, we were able

to reuse almost all the testbench across abstraction levels. Section 4.1 discusses how

a layered verification environment can address complex verification projects. Section

4.2 presents the transaction-based verification technique followed with a detailed

description in section 4.2.2 of how to implement transactors using SystemC. Section

4.3 presents our novel segmented adapter concept and its SystemC implementation.

4.1 Layered Verification Environment

A key objective in simulation-based verification is to find as many errors as

possible within a limited time frame. Direct verification of large digital systems is

almost impossible for several reasons [32]: verification tools, memory limitation, long

62

simulation runs, and limited controllability and observability. Consequently, large

digital systems and the associated testbenches have to be decomposed into smaller

components. A layered verification environment is partitioned into a set of functions

that allow the overall complexity to be broken into manageable parts [9]. As with any

complex design project, there are many advantages to using a structured approach

for verification. Among those advantages are:

• The capacity to manage complex test scenarios.

• The reuse of verification tests and modules.

• The ability to scale projects.

• The ease of test writing.

• The understanding of functionality.

• The isolation of bugs.

This verification strategy uses a technique well known in microelectronic design:

divide to conquer. By decomposing the verification environment and the design under

verification into different layers, it is possible to create manageable testbenches and

it is easier to detect individual bugs in smaller sub-designs before they are combined

with bugs in the whole system.

A layered verification environment consists of both a layered testbench and a

layered design. Figure 4–1 shows the typical decomposition used for this verification

strategy. The design under verification is divided into three levels: system level,

unit level, and module level. Each level has its own specifications. They can be

verified individually or has a whole to insure that they meet their specifications.

Hardware designers are already familiar with this kind of hierarchical decomposition.

63

System

Unit 1

Module
1.A Module

1.B
Module

1.C

Unit 2

Module
2.A Module

2.B

Test cases

Operational
Unit

Signaling
module

Design Under VerificationTest bench

Figure 4–1: Layered verification environment

Large systems are already developed using this method. On the other hand, the

testbench is usually considered as a whole. A simple testbench used to verify a

small design does not requires modularity to be manageable. However, with the

increasing complexity of testbenches, layered decomposition is becoming a necessity

for larger design verification. The testbench in Figure 4–1 has three different levels:

test cases, operational unit, and signaling unit. A new verification technique has

emerged over the past few years to enable layered testbench creation. The following

section introduces this technique known as transaction-based verification.

4.2 Transaction-Based Verification

The idea of transaction-based verification (TBV) is to create a verification envi-

ronment that is proportionate with the system architecture under design. As the ar-

chitecture of ASIC and FPGA gets more complex, the verification environment must

be constructed with more abstract and layered methods to implement the verifica-

tion scheme. Transaction-based verification was introduced first in 1998 [24, 20, 63]

64

and then included in commercial tools one year later [57, 25]. The main particular-

ity of TBV is to begin the verification at the transaction level where the design is

represented in terms of its functionality rather than specific implementation details.

At this level, the design can be verified in a most effective way using transactions.

The creation of test scenarios is simplified and other task like debugging and the

measurement of functional coverage is facilitated. Transaction-based verification al-

lows the verification engineer to use transactions at each stage of the verification

cycle [2]. This technique is quite different from yesterday’s design verification where

HDL-based testbenches and waveforms were adequate to capture and debug de-

signs. At this time, digital circuits were relatively simple hardware functions and

it was possible to thoroughly verify the design with simple stimulus generators and

response checkers. Today’s system designs include complex hardware components

and rigorous verification must be performed on a variety of modules and interfaces.

System conformance of hardware-to-software (HW-SW) interfaces, signal processing

and multimedia algorithms, and communications and bus interface protocols are just

a few examples that illustrate the wide range of functionality that requires thorough

verification. Previous verification methods are not adequate for the complexity of

the design. Transaction abstraction is a promising way to capture tests and debug

designs. New methods and technologies are required to construct test generators,

transactors, monitors and protocol verifiers at the transaction level.

An effective transaction-level verification environment comprises several basic

methods and principles [9]:

65

• Separate test program content and signal-level interfaces

High-level sequences of instructions are used to express tests. A transactor

handles the timing details associated with stimulating interface signals. More

comprehensive and rigorous test suites are created by elevating test specifica-

tions to a high-level of abstraction. The time to develop and revise tests is also

dramatically reduced. Transaction-level tests rely on being able to use a high-

level data model to represent transaction type classes and rely on user-defined

data structures. This is one reason why C/C++ has become popular for test

development.

• Constrained random test case generation

Design architectures are made of complex operational behaviors that have many

variable parameters and operational modes. Generating comprehensive test

cases is not practical and requires too much simulation time. On the other

hand, generating only directed (explicit) test cases which the designer can

think up and implement is too restrictive and incomplete. Using constrained

random test case generation, it is possible to obtain sufficient tests without

the overhead of manually generating them. The key to random verification is

to define a general transaction data model that takes into account all of the

possible test parameters before writing the test generator.

• Formal protocol verification

Hardware processing modules are coordinated by protocols to ensure the de-

sired outcome. Protocol verification can be a time-consuming task at the signal

66

level [15]. Only simple relationships between signals can be verified leaving sys-

tem level relationships unchecked [9]. TBV enables protocol verification at the

transaction level through passive verifiers like bus monitors and watchers. Sys-

tem and signal interface protocol verification is implemented using temporal

function extensions to today’s simulation-based verification approach. Design

violations are detected continuously without requiring any additional test case

development. They run in background of every simulation run, providing a

comprehensive coverage.

• Dynamic self-checking tests and transaction recording

The verification of complex digital systems usually involve test programs that

employ tens of thousands of transactions. It is impossible to expect a human

to inspect the results manually and find all possible design violations. Auto-

mated result checkers are required in order to verify correct system operation.

There are two types of result checkers: static and dynamic. The former rely on

current results compared against expected results generated in advance. This

technique is similar to comparing with golden test vectors. Dynamic checkers

use transaction recording to verify transaction results during simulation. Ver-

ification takes place for each transaction or after a pre-determined sequence.

Transaction recording is used to buffer intermediate transaction results which

are then evaluated by the result checker. High level verification languages pro-

vides specific functions for transaction logging and high-level data models to

simplify data collection and access.

67

• System level verification using HW-SW co-simulation

Modern complex digital systems always involve hardware and software interac-

tions through system protocols. These HW-SW system operations often need

to be modeled in a transaction-based verification environment.

In summary, transaction-based verification is a promising verification technique

that increases productivity and results in more rigorous verification. Reuse is also

closely integrated with this verification approach. The following illustrates a com-

prehensive transaction-level verification environment.

4.2.1 Transactor Structure

Transaction based verification raises the level of abstraction from signals to

transactions, thus easing the development of reusable testbenches. Figure 4–2 shows

a typical transaction based verification architecture. The testbench is separated into

two modules: the test program and the transactor. The test program is written at

a higher level of abstraction than the DUV and the transactor is the mechanism

that translates the test from transactions to signals activity. A transaction is defined

as a high-level data transfer characterized by its begin time, end time, and all the

pertinent data related to the transaction [9]. These data represent the parameters

of the transaction. As an example, a Read transaction will include the memory

address as the transaction’s parameter. This example represents a relatively simple

transaction. However, a more complex transaction format will be used to describe a

complete communication channel structure.

There are two key interfaces to the transactor: an interface to the design under

verification and an interface to the test program. The former interface is closely

68

Test Program Transactor Design Under
Verification

Transactions

Signals

duv.write(addr,
data);
duv.read(addr);
...

duv.write {
ctrl.write(0xA5);
addrbus.write = addr;
data_bus.write = data;
...

Abstraction
Transaction level RTL level

Figure 4–2: Transactor based verification

dependent on the design while the interface to the test program can be relatively

generic. In addition to encoding and decoding transactions, the transactor performs

the following functions:

• Negotiate the handshaking signals by which data flow is managed

• Implement clock control of the DUV

4.2.2 SystemC Implementation

A transactor can be implemented using the SystemC Verification Standard

(SCV) [44]. Transaction-based verification is directly supported by SCV through

a comprehensive API for transactor modeling. The following demonstrates how to

create a simple transactor using the SCV modeling style [44]. Figure 4–3 shows the

general architecture of a SystemC transaction-based testbench. Because SystemC is

built on top of the C++ language, it provides the right mechanism to separate the

testbench in a modular fashion. Using the object oriented nature of C++, the test

69

Transactor Class
Test

Class
Design
Class

SignalInterface
Function

Port

Interface
Signal
level
ports

RTL
designTe

st
P

ro
gr

am

Figure 4–3: SystemC Transactor Implementation

program is encapsulated in the Test Class, the transactor in the Transactor Class,

and the RTL design in the Design Class. In this example, the RTL design is modeled

using the same language as the transactor and the test program. We will see in the

next section how to interconnect a VHDL design to a SystemC transactor.

A SystemC program representing a transaction level testbench has four main

components:

• The transactor’s interface.

• The transactor’s signal-level ports.

• The test program.

• The RTL design.

Transactor’s interface

The transactor is made of two sub-classes. We can see on the left side of the transactor

of Figure 4–3 the interface of the transactor. This interface will provide subroutines

to be used by the test program. The transactor interface is modeled in SystemC

70

using C++ abstract methods. SystemC provides the class sc interface from which

our custom interface will be derived. The following code example shows how we

create the transactor interface in SystemC:

class transactor_if:virtual public sc_interface{

public:

typedef sc_uint<16> address_type; // ‘‘Address’’ data type

typedef sc_uint<8> data_type; // ‘‘Data’’ data type

struct write_type{ // Write operation format

address_type addr;

data_type data;

};

// Read method

virtual data_type read(const address_type*) = 0;

// Write method

virtual void write(const write_type*) = 0;

};

In this code snippet, two virtual methods are declared for this transactor: a

Read() and Write() methods. These subroutines will be available to the test program

and will abstract away all lower level details.

71

The transactor’s signal-level ports

On the other end of the transactor (right side) depicted in Figure 4–3 are the signal-

level ports. These ports handle the communication between the RTL design and the

transactor. They are captured in another class named design ports:

class design_ports:public sc_module{

public:

sc_in<bool> clock; // Design ports definition

sc_inout<bool> rw_ctrl;

sc_inout<bool> addr_req;

sc_inout<bool> addr_ack;

sc_inout<sc_uint<8>> addr_bus;

sc_inout<bool> data_ready;

sc_inout<sc_uint<8>> data_bus;

};

This class is closely dependent on the design. Any changes on the design interface

will have to be reflected in this class. All the signals in this class correspond to the

interface of the DUV used to communicate with the external environment.

The next step is to create the transactor with these two sub-classes. A new class

is defined using inheritance; a key feature of the C++ language. The transactor class

is derived from the transactor if and the design ports classes:

class transactor:public transactor_if,public design_ports{

public:

SC_CTOR(transactor){}

72

virtual data_type read(const address_type *);

virtual void write(const write_type *);

};

We now have a transactor definition with an interface to communicate at the

transaction level with the test program and a collection of signal-level ports to com-

municate at the RTL level with the design under verification. The content of the

read() and write() functions have to be defined according to the design operational

mode. These functions will convert the transactions into signal-level activities. The

detailed implementation of read() and write() is not shown here in this simple exam-

ple, but a more complete running case study is presented in chapter 5.

The test program

The test program can now be written at the transaction level rather than RTL level.

With all the signals abstracted by the transactor, the verification engineer can write

a more efficient test program focusing on important system behaviors. The next code

snippet shows a simple test program using a counter.

// Testbench module definition

class testbench:public sc_module{

public:

// The testbench has only one port

sc_port<transactor_if>transactor;

// to communicate with the transactor

SC_CTOR(testbench){SC_THREAD(main);}

73

void main();

};

// Testbench main() function definition

void test:main(){

for(char i=0; i<10; i++){ // Generate 10 addresses

transactor_if::address_type address = i;

// Next address to read from

// Read data from the address’ location

transactor_if::data_type data = transactor->read(&address);

// Print the result to the screen

cout << ‘‘Read result:’’ << data << endl;

}

}

This test program generates ten read transactions and sends them to the trans-

actor one at a time. The transactor will convert each read request by stimulating

the proper signals of the design under verification. The data is then collected by the

transactor and sent back to the test program.

The RTL design

The design under verification is a register transfer level (RTL) model of the circuit.

It has the same signal-level ports used by the transactor. Therefore, the duv class is

74

derived from the design ports class previously created for the transactor. Here is an

example of the code for the RTL design class:

class duv:public design_ports{ // Class duv derived from design_ports

... // Other variables go here

public:

SC_CTOR{duv};

SC_THREAD(addr_cycle); // Address cycle thread

SC_THREAD(data_cycle); // Data cycle thread

... // Other functions go here

}

//Address cycle operations go here

void addr_cycle(){while(1) ...}

//Data cycle operations go here

void data_cycle(){while(1) ...}

};

This simple example has demonstrated how SystemC offers the right mechanisms

to create efficient transactors. More complex transactors can be built using the same

technique presented above.

4.2.3 Limitations of transactors

Transaction-based verification aims to facilitate functional verification of RTL

designs by raising the testbench to a higher level of abstraction. A transactor is

required to bridge the abstraction gap between the testbench and the design. Trans-

actor is an efficient solution for the verification of complex RTL designs. However,

75

transactors have some intrinsic limitations that make them difficult to use in a multi-

abstraction level verification platform. We have identified three major limitations to

transactors:

• Applicable only to RTL designs.

• Impossible to reuse.

• Design language specific.

A transactor makes the connection between an RTL design and the testbench.

As a first limitation, this implies that the verification begins late in the design flow,

when an RTL version of the design is available. However, as presented in section 3.1

the design of complex digital system begins at a higher level of abstraction and is

refined down to the RTL level. Thus, to be efficient verification must also start early

in the design flow and follow the design across abstraction levels. Transactors do not

provide the right mechanism to handle this kind of vertical verification.

The second limitation of transactors is related to their reuse capability. Since

the transactor has a signal-level interface to communicate with the design, it is

impossible to reuse it, even if the other design has similar functionalities but a

different signal-level interface. For example, two equivalent IP core designs, one

using an AMBA interface [19] and the other a Core Connect [28] interface, will each

have their own transactor; even if the design and the testbench are the same. The

transactor behavior is equivalent, but we cannot reuse it without major modifications

to its internal structure.

Finally, transactors are specifically created to communicate with the language

used for the design. As an example, the same design represented with two different

76

languages will have two dedicated transactors. Therefore, a more generic interface is

required in a multi-abstraction level framework, where the design can be represented

with different languages.

Transaction-based verification is an efficient verification technique. However, it

cannot be integrated in our multi-abstraction level verification platform according

to the limitations of transactors presented above. In the following section, we pro-

posed to generalize the transactor concept to overcome its’ limitations and make it

integrable in our verification framework.

4.3 Transactor Migration Problem

A designer must be able to migrate transactors with minimal modifications to be

able to connect it to different simulation tools and abstraction levels. When migrating

a transactor, some changes are required to re-host the transactor. This is different

from reuse where the whole transactor can be reused without modifications. To recall

section 4.2.3, the actual organization of a transactor does not allow easy migration.

Several limitations confine transactors to a single simulation tool and abstraction

level. One way to migrate a transactor, without the need to completely re-write a

new one, is to generalize its definition to create a more flexible solution. This new

adapter will be integrated in our multi-abstraction level verification platform.

4.3.1 Requirements

The design flow presented in section 3.1 shows that the design is being refined

across abstraction levels using different tools and languages. Therefore, an adapter

is required between the testbench and the design to make them compatible. This

adapter has to be flexible so it can be configured throughout the refinement process.

77

SystemC

Adaptor

Algorithmic
Level

Testbench

Language e

System
Verilog

C/C++

Vera

System
Level

RTL
Level

Design

Abstraction
Levels

Adaptor

Simulation Tool

Modeling
Language

Simulation Tool

Modeling
Language

Simulation Tool

Modeling
Language

Figure 4–4: Adapter Configurations

The diagram of Figure 4–4 shows the different configurations taken by the

adapter. On the left side, the adapter communicates with the testbench, which

can be written using different high level verification languages. On the right side,

the adapter communicates with the design under verification, which can be modeled

using different languages and run on different simulation tools. At each abstraction

level, several modeling languages and tools can be used to represent the design.

The goal of the adapter is to provide a configurable bridge between the testbench

and the design under verification. As the design is being refined across abstraction

levels, the adapter migrates in the same direction to provide the right communication

78

mechanism. Therefore, the testbench can be created early in the design process and

reused at each abstraction level.

The adapter to be designed will have two main functionalities. It will:

1. Link the testbench to the design simulation engine.

2. Translate data across abstraction levels.

Depending on the simulation scenario, these functionalities may be implemented

or not. If both functionalities are not implemented, the adapter is not required at

all. For example, a VHDL testbench used to verify a VHDL design does not require

this kind of adapter. The same simulation engine is used and both the testbench and

the design are represented at the same abstraction level. If we raise the testbench to

the transaction level using the SystemC language, the adapter will have to first, link

together both the SystemC and the VHDL simulation engines, and then translate

SystemC transactions into VHDL signals. In this example, the adapter is thus a

transactor, as defined in the previous section.

With these configurations defined, the internal components of the adapter begin

to emerge. As shown in Figure 4–5, the adapter will have two distinct link layers

and a central translator module. It is important to recall at this point that each of

these components may be optional depending on the simulation scenario.

Testbench Translator LinkLink Design

Adaptor

Figure 4–5: Adapter components

79

Segmented Adapter

Test
interface

Abstraction
translator

Design
interface

Figure 4–6: Segmented adapter

4.3.2 Segmented Adapter

Considering the requirements in a multi-abstraction level verification framework

we proposed a novel solution, called segmented adapter, to link the design under

verification to the testbench across abstraction levels. Based on the requirements

presented in section 4.3.1, a segmented adapter is divided into three segments, as

shown in Figure 4–6. The test interface segment (TIS), the abstraction translator

segment (ATS), and the design interface segment (DIS). Each segment has a specific

role according to the following definitions:

• Test Interface Segment

The TIS has an external port to communicate with the testbench. The main

function of this segment is to provide the proper communication link and a set

of high level routines accessible by the testbench.

• Abstraction Translator Segment

The ATS has only two internal ports to communicate with the TIS and the

DIS. This segment role is to translate high level commands received from the

TAS into a lower level representation that will match with the design. The

ATS achieves this by manipulating the design interface segment.

80

• Design Interface Segment

The DIS has an external port to communicate with the design under verifica-

tion. This segment is closely related to the design. It implements the commu-

nication details to connect the adapter with the simulation medium through

abstraction-specific objects.

A segmented adapter has several advantages over traditional transactors. Firstly,

its modular organization enables the substitution of individual segments. As the de-

sign is being refined across abstraction levels, only the design interface segment needs

to be replaced to reflect the abstraction changes. Figure 4–7 shows how a segmented

adapter can be migrated easily. In this example, the same segmented adapter is

being used to verify two representations of the same design under verification. To

migrate the transactor between the SystemC and the VHDL description of the DUV,

only the design interface segment needs to be changed while the ATS and TIS remain

the same. In some cases, the abstraction translator segment might also be replaced

if the abstraction level of the DUV has changed significantly.

4.3.3 Platform Integration

The segmented adapter construct has been integrated in our verification plat-

form to link together the design and the testbench across abstraction levels. Figure

4–8 shows how we used SystemC to implement individual segments of the adapter. It

relies on SystemC interface specification. All segments are connected together using

abstract interfaces and ports. The modular organization favors the replacement of

single segment.

81

Segmented Adapter

TIS

Test
Interface

ATS

Write
Operation

DIS

Bus
Driver

Bus
Driver

Read
Operation

Other
Operations

SystemC

VHDL

Test
Program

DUV

DUV

Figure 4–7: Segmented adapter example

4.4 Summary

The validation and verification of complex systems involves the creation of multi-

ple testbench components. Reuse is an important issue when it comes to verification

time and efforts. We proposed an evolved version of traditional transactors called

segmented adapters. This mechanism is inserted between the testbench and the de-

sign and enables vertical reuse across abstraction levels. The segmented adapter is

partitioned into three segments that can be changed independently according to the

abstraction level requirements. SystemC provides the right structure to efficiently

implement segmented transactors with the interface specification.

82

Segmented Adapter
Test

Test
Interface
Segment

Design

Abstraction
Translator
Segment

Design
Interface
Segment

Figure 4–8: Segmented adapter implementation

83

Chapter 5
Case Study

The verification platform presented in this dissertation has been evaluated through

the verification of two telecommunication design examples. The key components of

the platform have been validated independently as a proof of concept. The first ex-

ample is a Manchester encoding system that will be verified with MATLAB/Simulink

through the SimSyC cosimulation interface. The second example is a multi-equalizer

design used in a software defined radio. It is important to consider at this point that

the verification platform proposed is not restricted to this kind of circuits. It can be

used for the verification of all kind of complex digital design that are represented at

multiple levels of abstraction.

5.1 Manchester Encoding System

To evaluate the SimSyC cosimulation interface presented in this work, a Manch-

ester encoding system with clock recovery capabilities has been used as a first case

study. An existing Manchester example from Mathworks [37] has been adapted for

our needs. Manchester encoding is a technique employed to modulate digital data

transmitted over a physical communication channel [21]. This technique is widely

used in Ethernet applications to convert baseband digital data into an encoded wave-

form with no DC component. A particularity of this technique is that the clock can

be extracted from the received data, so a separate clock is not required. Figure 5–1

84

shows a typical Manchester encoder-decoder configuration. For this example, the

objective was to design a hardware version of the decoder module.

5.1.1 Simulink modeling

As a first step, a Simulink model of the entire system has been created. This high

abstraction level representation was used to validate the algorithm of the decoder.

A delay lock loop (DLL) will monitor the received data to maintain synchronization.

The decoder will oversample the received signal with a clock period of 1/16th the

encoder clock. Original data will be extracted from this signal without any additional

information about the transmitter module. The DLL will manage the differences

between the clock used to encode the signal and the clock in the receiver module. By

adjusting the period of the receiver clock, minor differences between the transmitter

and receiver clock will be compensated. Drifts in the channel delay will also be

corrected.

Figure 5–2 shows the Simulink model created. The Manchester decoder block is

an M-Sfunction written using the MATLAB language. To verify this block, a Manch-

ester encoder will generate a continuous data stream. This encoder has a phase offset

input connected to a phase and frequency error controller to disturb the transmitted

signal. Performances of the Manchester decoder will then be analysed with multiple

Manchester
Encoder

Manchester
Decoder

Communication
Channel Data

Encoder
Clock

Decoder
Clock

Transmiter Receiver

Data

Figure 5–1: Manchester encoding system

85

Phase/Frequency Error Controls

1. Bit Error Rate
2. Errors
3. Total Samples

Signals Scope

Phase

Phase Event

Phase Offset
Input Data

Encoded

Manchester Encoder

In1

odata

dclk

dvalid

sync

isum

qsum

Manchester Decoder

LE

I

Q

IQ*

IQ Capture

0.82488

Frequency
Error Slider

1/128

Frequency
Error Range

 Error Rate
 Calculation

Tx

Rx

Sel

Discrete-Time
Scatter Plot

Scope

Orig Raw

Decoded Raw

Dclk

Orig Data

Decoded Data

Sel

Data Align

0
Bit Errors

dvalid

isum
qsum

odata

dclk

samp

data

sync

Figure 5–2: Simulink model of the Manchester encoding system

analysis modules. Bit error rate is measured by comparing the decoded data streams

to the original ones. The Simulink communication blockset library is also used to

display the results graphically to facilitate performance analysis. A discrete-time

scatter plot scope displays useful information about the signal to reveal the mod-

ulation characteristics, such as pulse shaping or channel distortions of the signal.

Finally, a signal scope displays binary signals in a timing diagram format. Several

simulation runs were performed to verify each component of this high abstraction

level model and to validate and optimize the Manchester decoder algorithm.

5.1.2 SystemC decoder modeling

Once the high level model has been extensively verified, we can proceed to a

lower abstraction level implementation. For this example we choose the SystemC

language to implement the decoder module. With SystemC it is possible to refine

86

I/Q
Convolution Decoder

State
Machine

sample

enable
clock

dvalid

reset

data

is
um

sync

dclk

qs
um

Manchester decoder

q_
w

f

i_
w

f

sy
nc

adjustment

Figure 5–3: SystemC Manchester decoder

the model down to the register transfer level and then synthesize the design into

real hardware. In addition, the SimSyC interface will be used to verify the design by

reusing already created Simulink data generator and analysis modules. The SystemC

Manchester decoder is composed of three modules: the I/Q convolution, the decoder,

and the state machine. The bloc diagram of this SystemC design is depicted in Figure

5–3. The decoder extracts the data and the original clock in a two step process. The

convolutions of the in phase i wf and quadrature q wf signals are calculated, and

the results are processed by the decoder combinational circuit. The state machine

generates the i wf and q wf signals and makes the proper correction to the phase

errors with the adjustment factor provided by the decoder.

87

The SystemC Manchester decoder model has been created using Microsoft Vi-

sual Studio 2005. Programming a SystemC model is similar to pure C++ program-

ming. Visual Studio provides all the tools required to edit, compile, link, and debug

the program. Since the program is linked with the SystemC library, the final ex-

ecutable file includes the OSCI simulation kernel. A simulation run is carried out

simply by running the executable file. As can been seem in Figure 5–4 the output

window of a SystemC simulation run is quite simple. Only basic program debugging

can be done. More advanced digital system verification is possible with our novel

cosimulation interface SimSyC.

Figure 5–4: SystemC output window

5.1.3 SystemC decoder verification using SimSyC

The verification of the Manchester decoder SystemC model has been done with

SimSyC. To verify the correctness of our design, a continuous flow of encoded data

is required. Perturbations must be applied to this data stream to assess the perfor-

mances of the decoder. Analysis requires the proper monitoring modules to throughly

measure and evaluate the decoder operational behaviors. It is possible to manually

88

program the data generator and analysis modules using the SystemC language. How-

ever, it will necessitate a lot of time and the process is error prone. SimSyC is an

efficient solution to this problem. Figure 5–5 shows how SimSyC is used in this

example.

Sy
st
em
C

Simulink

DUV
Manchester
Decoder

MATLAB

M
A
TL
AB

M
A
TL
AB

Manchester
Encoder

Signals
Scope

SystemC
Testbench

Sy
st
em
C

SimSyC

Figure 5–5: Manchester example verification framework

The design under verification (DUV) is surrounded by a SystemC testbench.

SystemC is the central component of the verification platform. All the verification

scenarios are written in SystemC. For simple designs, the SystemC testbench can be

sufficient for a complete verification. In this example, we used the SimSyC cosimu-

lation interface to extend the testbench capabilities. With SimSyC, MATLAB and

Simulink can be used to assist the SystemC testbench. Since we already have a

Simulink model of the entire Manchester system, we can quickly reuse this model

as a data generator and data analysis unit. Figure 5–5 shows how the data path

between the Simulink model and the DUV. In Simulink we have the Manchester en-

coder that generates the data stream for the SystemC testbench. Outputs from the

89

DUV are analyzed with the existing Simulink visualization blocks previously created.

SimSyC serves as a data transport layer to exchange data back and forth between

Simulink and SystemC. The complete simulation execution flow is shown in Figure

5–6.

The SystemC testbench is composed of severals modules as shown in Figure

5–7. The controller module is in charge of the simulation execution. Initialization,

synchronization, and verification commands are issued by this module. The monitor

unit acquires a series of signals from the DUV and then regroups them for further

analysis by Simulink. The SimSyC module encapsulates the SystemC part of the

SimSyC interface. It is connected to the testbench and the monitor so it can generate

data when requested by the testbench and proceed to the analysis of the data coming

from the monitor.

As can been seen in Figure 5–8 the Simulink model is almost the same one that

was used previously. Only the Manchester decoder block has been replaced by the

Simulink part of the SimSyC cosimulation interface. To recall from Chapter 3, this

block is a MEX S-Function written using the C language that can be customized

according to the inputs and outputs of the current design. In this example, all the

signals captured by the SystemC testbench are mapped to the Simulink SimSyC

block so they can be routed to the different analysis elements.

The verification of the SystemC Manchester decoder was done by running mul-

tiple simulation runs. For each simulation, different testbench scenarios were tried.

All the test scenarios are written using SystemC. The Simulink model never has to

90

SystemC
Starts

Testbench modules
are initialized

SystemC loads
Simulink’s model

SystemC testbench starts
MATLAB and Simulink

SystemC testbench requests
a data burst from Simulink

DUV is simulated with the
data burst generated

DUV outputs are captured
by the testbench

Simulink analyzes
DUV outputs

End of
simulation

Simulink generates
next data burst

Simulation completed ?

Figure 5–6: Simulation execution flow

91

data
dvalid
dclk

samp

reset

enable

clk

Manchester Decoder

enable

reset

clk

Controller

danalysis

dgenerated

SimSyC

dgen

rq

rq

clk

Monitor

dr

samp isum
qsum
sync

data
dvalid
dclk
isum
qsum
sync

danalysis

dr

clk

TBClk

DUV

Figure 5–7: SystemC testbench

be modified manually since all Simulink parameters, including individual block vari-

ables, can be changed from the SystemC testbench. For example, the phase/frequency

error controls in Simulink are initialized by SystemC, through the SimSyC interface,

before each simulation run. This simplifies the testbench scripting, since all the sim-

ulation parameters are unified in the same language and in the same place. Figure

5–9 shows an example of the graphical user interface available to the verification

engineer during a simulation run. All experiments were run on a 2.4 GHz Pentium

4 computer with 1G RAM, running Windows XP. We can see in the background the

Simulink model running and in the foreground we have the signal scope, the discrete-

time scatter plot, and the SystemC output window. Experimental results show that

the SimSyC cosimulation interface significantly reduces the time spent on testbench

creation when the design has to be refined across abstraction levels. The reuse of

92

Phase/Frequency Error Controls

1. Bit Error Rate
2. Errors
3. Total Samples

Terminator1

Terminator

Signals Scope

Phase

Phase Event

cosimsc

Manchester Receiver

Phase Offset
Input Data

Encoded

Manchester Encoder

LE

I

Q

IQ*

IQ Capture

0.82488

Frequency
Error Slider

1/128

Frequency
Error Range

 Error Rate
 Calculation

Tx

Rx

Sel

Discrete-Time
Scatter Plot

Scope

Orig Raw

Decoded Raw

Dclk

Orig Data

Decoded Data

Sel

Data Align

0
Bit Errors

dvalid
sync
isum
qsum

odata

dclk

samp

data

AEnable

G-Enable

Figure 5–8: Simulink model with a SystemC manchester decoder

high-level Simulink models to assist a SystemC testbench is now possible. The time

spent on verification is thus reduced and the quality of the testbench is increased.

By reusing already verified components, the verification effort is less prone to errors.

This example has been used as a proof of concept of the SimSyC interface. SimSyC

can be scale up without problems for larger designs.

5.2 Software Defined Radio Multi-Equalizer Architecture

A second case study as been developed as a proof of concept for the segmented

adapters mechanism and the SimSyC interface. The verification platform presented

in this work has been used by a design team located at the Ecole de Technologie

Superieure, in Montreal. They worked on a project called MAME [50] (Methodology

and Architecture of a Multi-Equalizer). This team is looking for new design method-

ologies and architectures to build a multi-equalizer; one of the key components in the

93

Figure 5–9: Simulation run example

94

receiver module of a software defined radio [41]. Our proposed verification platform

and methodology have been designed to cooperate seamlessly with this design flow.

5.2.1 SDR Design Challenge

A Software-Defined Radio (SDR) is a combination of digital filters, analog com-

ponents and processors, each requiring different design approaches with a different

tool or language. As an ideal candidate for System-on-Chip implementation, SDR

combines heterogeneous processes operating within strict functional and physical

constraints. The design of such complex systems requires traditional VLSI tools to

be complemented by an instruction set simulator. In addition, high-level specifica-

tions and early prototyping of the system is mandatory in order to evaluate risks

and detect design flaws. Problems arise when the variety of tools and languages

used to develop individual SDR modules must be interconnected in order to build

a functional prototype. Up to half a dozen specialized tools and languages may be

involved, depending on the heterogeneity of a design [36]. Further complications

arise when the design goes through refinement and hardware/software partitioning

iterations. Re-design is often necessary across abstraction levels. The need for a

holistic approach is imperative. This approach must preserve tool heterogeneity

while providing a design path from specifications to implementation. A design and

verification methodology has been developed for an important SDR subsystem, the

equalizer. This multi-language based methodology uses the Unified Modeling Lan-

guage (UML) to build an executable specification with stem connections to SystemC,

Simulink and simulation tools. Validation and verification is enabled at all points in

95

AGC ADC DSP DAC

Equalizer

Figure 5–10: Software defined radio architecture

the design, through segmented adapters and SimSyC, in order to assert specification

conformance and constraint compliance.

5.2.2 SDR Architecture

An SDR is a wireless communication device in which the physical and link

layer functions are implemented or maybe configured by software [41]. Basically, a

wideband ADC or DAC is placed as close as possible to the antenna, so most of

the data processing is done by DSP techniques. This adds more flexibility to the

radio so it can be easily reprogrammed to support different modulation, coding or

access protocols. Figure 5–10 shows a simplified diagram of the architecture of an

SDR receiver. The received signal is digitalized by the Analog-to-Digital Converter

(ADC) just after the Automatic Gain Control (AGC) stage. Next, the Digital Signal

Processing (DSP) block may be implemented with a Digital Signal Processor or with

a combination of a processor and FPGAs. One of the key elements of the DSP block

is the equalizer. In order to compensate the phase and amplitude distortion of the

signal that occurs during transmission over the channel, an equalizer is included in the

data processing flow [49]. There are three main equalizer architectures used today;

96

the linear equalizer [49], the decision-feedback equalizer [56] and the interference

canceler [23]. Theses equalizers are made of adaptive digital filters, whose coefficients

are updated according to specific algorithms [31]. These algorithms depend on the

impulse response of the channel [51]. The difficulty with equalization is the strong

dependency between the equalizer architecture/algorithm and the telecommunication

scenario. In other words, the best equalizer architecture changes over time and

with receiver location. Another concern is that an equalizer usually combines fast

operations, that are performed at Intermediate or Radio Frequency, with much slower

feedback loops. The coexistence of these different clock domains, which differ by

orders of magnitudes in frequency values, involve a very rigorous approach to the

design and verification process. Considering the different equalizers to implement,

the rigor of this methodology should not entail a reduced flexibility in terms of

hardware-software partitioning and migration of the algorithms.

5.2.3 MAME’s Design Flow

The design flow used in the MAME project is shown in Figure 5–11. The flow is

divided into three main design steps, distributed across multiple levels of abstraction.

The first step is to build a Platform Independent Model (PIM) of the system. Next

the model goes through a partitioning process to generate a Platform Specific Model

(PSM). This PSM is then refined down to the RTL level for integration on the target

board. Our verification environment is connected to this flow from the early design

steps and reused throughout the flow.

After the preliminary modeling with UML, an algorithmic model of the multi-

equalizer is created with Simulink. This model is simulated with another model

97

System
Specifications

Algorithm
Design & Analysis

HW/SW
Partitioning

Hardware
Design
Flow

Software
Design
Flow

TARGET

UML-RT
C++

FPGA CPU

System
Design & Modeling

Matlab &
Simulink

Preliminary
Modeling UML-RT

HW/SW
CoVerification

P
IM

 L
an

gu
ag

es

System
C VHDL

UML-RT
C/C++

P
S

M
 L

an
gu

ag
es

HW Specs SW Specs

(P
la

tfo
rm

 In
de

pe
nd

en
t M

od
el

in
g)

(P
la

tfo
rm

 S
pe

ci
fic

 M
od

el
in

g)

Stimuli

Checking

Coverage

Verification Environment

S
egm

ented
A

dapter

SystemC Backbone

Matlab/Simulink

D
at

a
G

en
er

at
or

D
at

a
A

na
ly

si
s

G
ol

de
n

M
od

el

S
im

S
yC

IP
Reuse

Figure 5–11: MAME’s Design Flow

representing the conditions in which the multi-equalizer operates. At this early

stage in the design process, the SystemC verification environment is developed. A

segmented adapter is defined between MATLAB/Simulink and SystemC. A design

interface segment for MATLAB (DIS.mat) is created. This DIS.mat uses SimSyC as

the communication layer. The algorithmic model of the multi equalizer is then vali-

dated and optimized using the SystemC verification system. Multiple test scenarios

98

are written in SystemC and the simulation execution is controlled from the SystemC

testbench. For example, the testbench will change dynamically the communication

channel model to check how the multi equalizer behaves.

Once the multi equalizer algorithm satisfies the requirements of the specifica-

tions, the next step in the design process is to create a system level model of the

architecture of the multi equalizer. SystemC is used for this design step. In order

to reuse the same verification system, the MATLAB DIS.mat is replaced with a

SystemC version called DIS.sys. This design interface do not has to use any spe-

cial communication mechanism since both the design and the testbench are written

using SystemC. To efficiently validate and verify the SystemC model of the multi

equalizer, the verification environment reuses the Simulink model of the operating

conditions through the SimSyC cosimulation interface. Realistic equalization scenar-

ios were produced to stimulate the design. While Simulink provided the symbol train

to equalize, the real-time performance of the executable model was profiled. This

provided guidance regarding which parts of the equalizer would be implemented in

hardware.

The last design step is the creation of a VHDL model of the selected SystemC

modules that will be implemented in hardware. The same verification environment

is reused by changing the DIS.sys with the DIS.vhd. The Simulink model of the

operating conditions is also reused is a similar way as in the previous step. Figure

5–12 shows the general organization of the verification platform. The evolution of

the platform is indicated by the encircled numbers, representing the three majors

steps of the verification process, and is summarized below:

99

Step 1 • The multi equalizer and the operating conditions are modeled using Simulink

• A segmented adapter is created using SystemC

• The SystemC verification environment is defined

• Preliminary verification of the Simulink algorithmic model is performed

by the SystemC verification system through the segmented adapter

Step 2 • The multi equalizer architecture is modeled using SystemC

• The segmented adapter is migrated to a lower abstraction level by redefin-

ing the DIS segment

• The Simulink model representing the operating conditions of the multi

equalizer is reused by the SystemC verification environment throught the

SimSyC interface

• Verification of the SystemC architectural model is performed by the Sys-

temC verification system through the segmented adapter

Step 3 • The multi equalizer hardware components are modeled using VHDL

• The segmented adapter is migrated to a lower abstraction level by redefin-

ing the DIS segment

• The Simulink model representing the operating conditions of the multi

equalizer is reused by the SystemC verification environment throught the

SimSyC interface

• Verification of the VHDL models is performed by the SystemC verification

system through the segmented adapter

100

SystemC Verification
Environment

Stimuli
Generator

Response
Checker

Coverage

Segmented

TISATS
DIS.
sys

DIS.
vhd

Adapter

MATLAB/Simulink

SimSyC
SimSyC

Data Generator

Transmitter

Channels

DIS.
mat

Multi
Equalizer
Algorithm

Multi
Equalizer

Architecture

Multi
Equalizer
Hardware

R
eu
se

Si
m

ul
in

k
Sy

st
em

C
VH

D
L

S
im
S
yC

1

1
2

1

2

2

3

Figure 5–12: Multi-equalizer Verification Framework

101

Abstraction
Level

Design Verification Total

Algorithmic 14 25 39
System 21 21 42
RTL 25 25 50
Total 60 71 131

Table 5–1: Design effort using the improved design flow (days)

5.2.4 Results

The verification platform has been used throughout the design flow to detect

design flaws and specification violations as soon as possible. The advantage of this

platform compared to other verification solutions, is the possibility to reuse the high

level algorithmic model to assist the verification environment. The design of the

multi-equalizer took approximately 131 days (6.5 months) to complete with two

engineers working full time on the project. Table 5–1 summarizes the breakdown

of the design time across the whole project. At the algorithmic level, it took 14

days to create the Simulink model used to design and optimize the algorithm of the

multi-equalizer. Next, a testbench has been created and multiples simulation runs

where conducted to verify the model. This verification process took approximately

25 days for a total of 39 days. At this level of abstraction, the verification platform

does not provides any additional gain. As the design is being refined at the system

level and the RTL level, the verification platform efficiency begins to pay off. As we

can see from Table 5–1, the verification effort is equal to the design effort.

Using a traditional design flow, where the verification effort represents 70% of

the total design time, will yield in more time spent on testbench development and

simulation runs. Table 5–2 shows the expected design effort repartition using a

102

Abstraction
Level

Design Verification Total

Algorithmic 14 25 39
System 21 (30%) 49 (70%) 70
RTL 25 (30%) 58 (70%) 83
Total 60 132 192

Table 5–2: Design effort using a traditional design flow (days)

traditional design flow with 70% of the design time spent on verification (at the

system and RTL levels). The result is 192 days as the total developpment time for

this project, compared to 131 days using the improved design flow. This represents

a productivity gain of around 32% over a traditional design flow that has limited

testbench components reuse and software interroperability.

Figure 5–13 shows graphically how the vertical testbench reuse strategy reduces

the development time of a design. Using a traditional design flow (upper half of

Figure 5–13), the verification effort of this project counts for 70% of the total design

time at each abstraction level. Using the improved design flow (lower half of Figure

5–13), the verification effort gets reduced to 50%. Testbench development time is

considerably reduced by reusing testbench components already created at higher

abstraction level. This results in a productivity gain of around 32%. The whole

verification process is also less error prone by eliminating manual intervention. The

testbench is not anymore subservient to the design efforts, but it is now part of it.

The SimSyC interface enables verification strategies that were not possible be-

fore. Figure 5–14 compares the verification productivity gain of SimSyC against

HVL and HDL testbenches. With SimSyC, it is possible to reuse a complete model

of the environment of the design, right at the beginning of the verification tasks. The

103

30% Design 35% Testbench

Development time

Productivity gain

Simulink Modeling SystemC Modeling RTL Modeling

Tr
ad

iti
on

al
de

si
gn

 fl
ow

Im
pr

ov
ed

de
si

gn
 fl

ow

35% Simulation

50% 25
%

25
%

Verification VerificationVerification

50% 25
%

25
% 32%

Figure 5–13: Vertical Testbench Reuse Productivity Gain

design can be simulated quickly with real world test scenarios; compared to other

verification methods that required some time to create the testbench environment

and test cases. Combining segmented adapters, SystemC verification library and

Matlab/Simulink we created a unified verification framework that cuts verification

time and increases the quality of functional verification.

104

Time

V
e

ri
fi
c
a

ti
o

n
 c

o
v
e

ra
g

e

Verification goal
Productivity gain

HVL
HDL

SimSyC

Figure 5–14: Verification productivity gain using SimSyC

105

Chapter 6
Conclusions and Future Work

This thesis studies a systematic approach to validate and verify complex digital

system designs. The key contributions are summarized in section 6.1. In section 6.2

we conclude with a discussion of some of the future directions of this research.

6.1 Contributions

In this thesis we developed mechanisms and a platform for the verification of

complex digital systems. With today’s complex designs, the verification task has be-

come the primary bottleneck in the design flow. The verification challenge is growing

at a double exponential rate; that is, exponential with respect to Moore’s law. A

big part of verification is simulation. In spite of many research activities in de-

sign verification methodology, verification-by-simulation is still the major approach

for its simple and intuitive way to address functional behavior of a hardware de-

sign. However, with multi-million gate digital systems, simulation requires complex

testbenches. Manually coding all possible verification scenarios quickly becomes a

fastidious and error prone task.

Our approach is to start the verification early in the design flow and to promote

vertical testbench reuse across abstraction levels. Validation and verification are

done in parallel to design with feedback and interaction between the two as the

design progresses. The verification approach that we developed in this thesis has

proven to be a valuable addition to the range of simulation-based methods already

106

available. The case study presented have shown the potential and main benefits of

our contribution. However, the application domain of our platform is not restricted

to these specific kind of circuits. It can be used for all kind of complex digital design

that are represented at multiple levels of abstraction.

Four key challenges are identified [29] in the context of functional verification

of digital designs: productivity, efficiency, reusability and completeness. We provide

new and innovative solutions to the three former problems and these solutions are

summarized in the next sections.

6.1.1 Segmented Adapter

The usage of transactors as presented in our verification methodology is an origi-

nal contribution of this thesis. Transaction-based verification (TBV) uses transactors

as an interface between the testbench and the design under verification. TBV raises

the level of abstraction from signals to transactions, thus easing the development of

reusable testbenches. However, with modern design flow starting at higher levels of

abstraction, transactors need to be rewritten as the design is refined across abstrac-

tion levels. Time consuming transactor development is obviously making TBV less

attractive in a multi abstraction level validation and verification environment. This

problem was addressed in this thesis. We proposed a solution which generalizes the

transactor concept. Segmented adapter are partitioned into three specific segments

providing the modularity necessary for reuse and migration across abstraction levels

and projects.

Our contribution has four main advantages:

107

• Transactor development time is reduced from project to project since only some

segments need to be changed.

• The same segmented adapter can be used as the design is refined from one

abstraction level to another. Only minor modifications need to be done with

the abstraction translation segment and the design interface segment.

• The same segmented adapter can be used for designs represented in different

design languages. Only the design interface segment needs to be changed.

• Modularity makes the maintenance and debugging of the segmented adapter

much faster than traditional transactors.

6.1.2 SimSyc Cosimulation Interface

MATLAB/Simulink and SystemC are widely used for the design and verification

of digital systems. Algorithmic models are created and optimized with Simulink

while SystemC can be used for system-level modeling or as a functional verification

language. To make the validation and verification environment truly reusable and

scalable, the gap that exists between the algorithmic level and lower abstraction levels

had to be bound. Hence, we proposed a co-simulation interface between SystemC

and Simulink, namely SimSyC.

Using the SimSyC co-simulation interface we presented a method for reducing

the time spent on validation and verification while improving overall testbench qual-

ity. MATLAB/Simulink assists the SystemC verification environment in a unified

approach. It has been shown that SimSyC allows complex stimulus generation and

exhaustive data analysis for the design under verification. As SoC designs encom-

pass larger and larger systems, the need to efficiently model the complex external

108

environment during the architecture and verification phases becomes greater. More-

over, SimSyC is extremely valuable for SystemC users as it allows visualization of

SystemC data through MATLAB/Simulink graphical toolboxes.

One last benefit of using SimSyC in the verification flow is for golden reference.

A Simulink golden model can be used as a reference model by the verification system

to compare the expected behaviours. Experiments show that our approach is able to

validate and verify a SystemC design accurately and quickly using a golden reference.

6.1.3 Multi-Abstraction Levels

In order to solve the verification problem efficiently, it is desirable to create a

methodology where the verification process starts as early as possible while provid-

ing the flexibility to move across abstraction levels. Such a requirement implies that

multiple software tools and modeling languages will need to exchange data with the

verification system. We proposed to use the SystemC modeling language with the

verification library SCV to build the verification platform. Different from any other

existing verification framework, our platform includes segmented interfaces and a

verification backbone. The former link designs are represented at multiple levels

of abstraction to the verification backbone. The backbone is the central element

of the verification system where the testbench is created. Stimulus generation, re-

sponse checking and the SimSyC co-simulation interface are all sub-components of

this backbone.

6.2 Future Directions

The work in this dissertation can be extended in a number of areas. The SimSyC

interface can be integrated in Simulink as a toolbox to facilitate its manipulation and

109

integration in various projects. A graphical user interface (GUI) is also required on

top of the C-MEX S-Function, so it can be configured efficiently according to the

design requirements. It would be interesting to investigate and incorporate a UNIX

version of SimSyC. On Unix, MATLAB and Simulink do not have to run on the same

computer as SystemC. This opens up the possibility of parallel processing between

the data generator/analysis model and the design. Simulation performances can be

substantially improved for application that requires computing intensive data gen-

eration models. Regarding the segmented adapter mechanism, the possible future

research includes the development of a generic SystemC model that can be automati-

cally configured according to design specifications. The process is actually performed

manually and can be the source of errors. Another avenue would be to extend the

verification platform with a hardware-in-the-loop interface to complete the link be-

tween abstraction levels. With this hardware interface, the testbench will be reused

for in-circuit validation and verification. Finally, it would be interesting to try the

verification platform with other data processing intensive applications that require

complex data generation environment like video processing.

110

References

[1] M.A. Al-Qutayri, H.R. Barada, and A. Al-Kindi. Comparison of multiplier archi-
tectures through emulation and Handle-c FPGA implementation. In Computer
Systems and Applications, 2006. IEEE International Conference on., pages 240–
247, March 8, 2006.

[2] K. Ara and K. Suzuki. A proposal for transaction-level verification with compo-
nent wrapper language. In Design, Automation and Test in Europe Conference
and Exhibition, 2003, pages 82–87suppl., 2003.

[3] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Poncino. SystemC
cosimulation and emulation of multiprocessor SoC designs. Computer, 36(4):53–
59, April 2003.

[4] Janick Bergeron. Writing Testbenches using SystemVerilog. Springer, 2006.

[5] Janick Bergeron, Eduard Cerny, Alan Hunter, and Andy Nightingale. Verifica-
tion Methodology Manual for SystemVerilog. Springer, 2005.

[6] Victor Berman. A tale of two languages: SystemC and SystemVerilog. In Chip
Design Magazine. Extension Media, July 2005.

[7] T.M. Bhatt and D. McCain. Matlab as a development environment for FPGA
design. In Design Automation Conference, 2005. Proceedings. 42nd, pages 607–
610, 13-17 June 2005.

[8] F. Bouchhima, M. Briere, G. Nicolescu, M. Abid, and E.M. Aboulhamid. A
SystemC/Simulink co-simulation framework for continuous/discrete-events sim-
ulation. In Behavioral Modeling and Simulation Workshop, Proceedings of the
2006 IEEE International, pages 1–6, 2006.

[9] Dhananjay S. Brahme, Steven Cox, Jim Gallo1, Mark Glasser, William Grund-
mann, C. Norris Ip, William Paulsen, John L. Pierce, John Rose, Dean Shea,
and Karl Whiting. The transaction-based verification methodology. Technical
Report CDNL-TR-2000-0825, Cadence Berkeley Labs, August 2000.

111

112

[10] Inc. Cadence Design Systems. The unified verification methodology.
http://www.cadence.com/whitepapers, 2005.

[11] N. Calazans, E. Moreno, F. Hessel, V. Rosa, F. Moraes, and E. Carara. From
VHDL register transfer level to systemc transaction level modeling: a compara-
tive case study. In Integrated Circuits and Systems Design, 2003. SBCCI 2003.
Proceedings. 16th Symposium on, pages 355–360, 2003.

[12] F. Czerner and J. Zellmann. Modeling cycle-accurate hardware with mat-
lab/simulink using systemc. 6th European SystemC Users Group Meeting (ES-
CUG), October 2002.

[13] K. Datta and P.P. Das. Assertion based verification using hdvl. In VLSI Design,
2004. Proceedings. 17th International Conference on, pages 319–325, 2004.

[14] Design and Reuse. Esl design corner, 2005.

[15] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol
verification as a hardware design aid. In International Conference on Computer
Design, pages 522–525, 1992.

[16] L. Drucker. Verification metrics - how you know when you’re done. Electronics
Systems and Software, 1(2):22–25, 2003.

[17] A. Fin, F. Fummi, and D. Signoretto. The use of systemc for design verification
and integration test of ip-cores. In ASIC/SOC Conference, 2001. Proceedings.
14th Annual IEEE International, pages 76–80, 2001.

[18] Tom Fitzpatrick. Functional verification technology and methodology back-
grounder. Mentor Graphics, 2005.

[19] D. Flynn. Amba: enabling reusable on-chip designs. Micro, IEEE, 17(4):20–27,
1997.

[20] Steve Forde, Steve Bishop, and Ramnath S. Velu. Streamlining hdl code cover-
age analysis. Integrated Systems Design, December 1998.

[21] R. Forster. Manchester encoding: opposing definitions resolved. Engineering
Science and Education Journal, 9(6):278–280, 2000.

113

[22] P. Gerin, Sungjoo Yoo, G. Nicolescu, and A.A. Jerraya. Scalable and flexible
cosimulation of SoC designs with heterogeneous multi-processor target architec-
tures. In Design Automation Conference, 2001. Proceedings of the ASP-DAC
2001. Asia and South Pacific, pages 63–68, 30 Jan.-2 Feb. 2001.

[23] A. Gersho and T. Lim. Adaptative cancellation of intersymbol interference
for data transmission. Bell System Technical Journal, 60:1997–2021, November
1981.

[24] Richard Goering. Dai introduces test-generation tool. EE Times, November
1998.

[25] Richard Goering. Intelligent testbenches gaining ground. EE Times, August
1999.

[26] Yuanbin Guo and D. McCain. Rapid prototyping and VLSI exploration for
3g/4g MIMO wireless systems using integrated Catapult-c methodology. In
Wireless Communications and Networking Conference, 2006. WCNC 2006.
IEEE, volume 2, pages 958–963, 3-6 April 2006.

[27] Faisal Haque, Jonathan Michelson, and Khizar Khan. The Art of Verification
with Vera. Verification Central, 2001.

[28] R. Hofmann and B. Drerup. Next generation coreconnect/spl trade/ processor
local bus architecture. In ASIC/SOC Conference, 2002. 15th Annual IEEE
International, pages 221–225, 2002.

[29] Sasan Iman and Sunita Joshi. The e hardware verification language. Kluwer
Academic Publishers, 2004.

[30] Peet James. Verification plans: the five-day verification strategy for modern-
hardware verification languages. Kluwer Academic Publishers, 2004.

[31] J. Labat, O. Macchi, and C. Laot. Adaptive decision feedback equalization:
can you skip the training period? In IEEE Trans. Commun, volume 46, pages
921–930, July 1998.

[32] William K. Lam. Hardware Design Verification. Pearson Education, Inc., 2005.

[33] Luciano Lavagno, Grant Martin, and Louis Scheffer. Electronic Design Automa-
tion for Integrated Circuits Handbook, volume 2. CRC, 2006.

114

[34] G. Martin. Systemc: from language to applications, from tools to methodologies.
In Integrated Circuits and Systems Design, 2003. SBCCI 2003. Proceedings. 16th
Symposium on, page 3, 8-11 Sept. 2003.

[35] G. Martin. Verification by the pound. Design & Test of Computers, IEEE,
22(5):478–479, Sept.-Oct. 2005.

[36] Grant Martin. Systemc’s role in a multilingual world. 8th European SystemC
Users Group, November 2003.

[37] The MathWorks. Link for modelsim user’s guide. http://www.mathworks.com/,
December 2004.

[38] The MathWorks. Matlab and simulink, 2005.

[39] The MathWorks. Link for ModelSim 2.0, 2006.

[40] Clive Maxfield and Kuhoo Goyal Edson. EDA: Where Electronics Begins. Tech-
Bites Interactive, 2001.

[41] J. Mitola. The software radio architecture. IEEE Communications Magazine,
44(5):26–38, May 1995.

[42] Gordon E. Moore. Cramming more components onto integrated circuits. In
Electronics Magazine, volume 38, pages pp. 114–117. McGraw-Hill, April 1965.

[43] A. Naumann. Esl - the next leadership opportunity for india? In VLSI Design,
2005. 18th International Conference on, page 26, 2005.

[44] Members of the SystemC Verification Working Group. SystemC Verification
Standard Specification. OSCI, 1.0e edition, May 2003.

[45] Sanggyu Park and Soo-Ik Chae. A c/c++-based functional verification frame-
work using the systemc verification library. In Rapid System Prototyping, 2005.
(RSP 2005). The 16th IEEE International Workshop on, pages 237–239, 8-10
June 2005.

[46] David Pellerin and Douglas Taylor. VHDL made easy! Pearson Education Inc.,
1997.

[47] C. Pixley, A. Chittor, F. Meyer, S. McMaster, and D. Benua. Functional veri-
fication 2003: technology, tools and methodology. In ASIC, 2003. Proceedings.
5th International Conference on, volume 1, pages 1–5Vol.1, 21-24 Oct. 2003.

115

[48] Andrew Piziali. Functional verification coverage measurement and analysis.
Kluwer Academic Publishers, 2004.

[49] J. Proakis. Digital Communications. McGraw-Hill, 1995.

[50] MAME Project. Methodology and architecture of a multi-equalizer.
http://www.ele.etsmtl.ca/projets/PROMPT/, June 2006.

[51] S. Qureshi. Adaptive equalization. In Proceeding of the IEEE, volume 73, pages
1349–1387, 1985.

[52] Collett International Research. 2005 ic/asic design closure study. Technical
report, Collett International Research, 2005.

[53] A. Rose. System verification comes to systemc. Wireless Systems Design,
September 2003.

[54] Sanghamitra Roy and Prith Banerjee. An algorithm for trading off quantization
error with hardware resources for matlab-based fpga design. Computers, IEEE
Transactions on, 54(7):886–896, July 2005.

[55] A. Sagahyroon, G. Lakkaraju, and M. Karunaratne. A functional verification
environment. In Circuits and Systems, 2005. 48th Midwest Symposium on, pages
108–111Vol.1, 7-10 Aug. 2005.

[56] J. Salz. Optimum mean-square decision feedback equalization. Bell System
Technical Journal, 8:1341–1373, October 1973.

[57] Michael Santarini. Cadence moves toward intelligent testbench. EE Times, June
1999.

[58] A. Sayinta, G. Canverdi, M. Pauwels, A. Alshawa, and W. Dehaene. A mixed
abstraction level co-simulation case study using systemc for system on chip veri-
fication. In Design, Automation and Test in Europe Conference and Exhibition,
2003, pages 95–100suppl., 2003.

[59] Rindert Schutten and Tom Fitzpatrick. Design for verification. Synopsys, Inc.,
2003.

[60] E. Segev, S. Goldshlager, H. Miller, O. Shua, O. Sher, and S. Greenberg. Eval-
uating and comparing simulation verification vs. formal verification approach
on block level design. In Electronics, Circuits and Systems, 2004. ICECS 2004.

116

Proceedings of the 2004 11th IEEE International Conference on, pages 515–518,
13-15 Dec. 2004.

[61] SIA. International technology roadmap for semiconductors. Technical report,
ITRS, http://public.itrs.net, 2005.

[62] Gary Smith. The dream - communications/core-based design. Integrated System
Design Magazine, December 2000. EETimes news.

[63] Ann Steffora. Dai enters transaction-based verification market. Electronic News,
November 1998.

[64] S. Swan. Systemc transaction level models and rtl verification. In Design Au-
tomation Conference, 2006 43rd ACM/IEEE, pages 90–92, 24-28 July 2006.

[65] M. Thompson, A.D. Pimentel, S. Polstra, and C. Erbas. A mixed-level co-
simulation method for system-level design space exploration. In Embedded
Systems for Real Time Multimedia, Proceedings of the 2006 IEEE/ACM/IFIP
Workshop on, pages 27–32, Oct. 2006.

[66] Justin L. Tripp, Maya B. Gokhale, and Kristopher D. Peterson. Trident: From
high-level language to hardware circuitry. Computer, 40(3):28–37, March 2007.

[67] Allen B Tucker and Robert Noonan. Programming Languages: Principles and
Paradigms. McGraw-Hill Science, 2001.

[68] Inc. Verisity Design. A promising approach to overcome the verification gap of
modern soc designs. http://www.verisity.com, 2004.

[69] C. Warwick. Systemc calls matlab. MATLAB Central, March 2003.

[70] Lin Yi-Fan, Zeng Xiao-Yang, Wu Min, Chen Jun, and Bao Rencheng. New
methods of fpga co-verification for system on chip (soc). In ASIC, 2005. ASI-
CON 2005. 6th International Conference On, volume 1, pages 219–222, 24-27
Oct. 2005.

[71] S. Yoo and A.A. Jerraya. Hardware/software cosimulation from interface per-
spective. In Computers and Digital Techniques, IEE Proceedings-, volume 152,
pages 369–379, 6 May 2005.

