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ABSTRACT 

 

In-season sensing of crop architectonics is important for identifying and preventing 

potential stresses as well as optimizing crop management logistics. Measurements of 

chlorophyll content, size, density, and/or temperature of the canopy have been used as 

primary in situ diagnostic tools. The goal of this study was to develop a prototype sensor 

system that would integrate laser proximity measurements as the basis for a low-cost 

instrumented system for green vegetable production. The system involves circular scanning 

of crop canopies to identify fresh biomass under different soil and management conditions. 

 

The first experiment was conducted in a greenhouse with lettuce and kale. Biomass 

was estimated from the sensor system’s measurements resulting in R2 values between 0.74 

and 0.93, percentage error between 25% and 55%, and root mean squared error (RMSE) 

between 0.295 ln(g) and 0.441 ln(g). These values include both dry and fresh biomass for 

lettuce and kale. The second experiment in a spinach field on a commercial farm produced 

similar results. Two approaches for processing the laser-based height profiles are discussed: 

regression of profile-representative features and inference of a canopy density function. 

Depending on the processing method, the R2 was either 0.78 or 0.94, and the RMSE was 4.18 

t/ha and 2.16 t/ha for each case. The mean absolute percentage error (MAPE) was around 

30% for both methods. The second experiment featured improved hardware in terms of ease 

of operation. 

 

Proper use of this technology will allow farm managers to improve harvest plans and 

shipment schedules under variable plant growth dynamics. 
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RÉSUMÉ 

 

La détection saisonnière de l'architectonique des plantes cultivées est importante pour 

discerner et prévenir les contraintes potentielles ainsi que pour optimiser la logistique de la 

gestion des cultures. Des mesures de la teneur en chlorophylle, de la taille, de la densité ou 

de la température de la canopée ont été utilisées comme principaux outils de diagnostic in 

situ. La présente étude avait pour objectif de faire le point sur le développement d'un 

prototype de système de capteurs intégrant les mesures de proximité au laser comme base 

d'un système muni d’équipement à faible coût pour la production de légumes verts. Le 

système nécessite le balayage circulaire des canopées pour identifier la biomasse fraîche de 

sols différents et de conditions de gestion variées. 

 

La première expérience a été réalisée dans une serre avec de la laitue et du chou frisé. 

Dans cette étude, la biomasse a été estimée à partir des mesures du système de capteurs. Les 

valeurs R2 obtenues étaient entre 0.74 et 0.93, le pourcentage d’erreur oscillait entre 25% et 

55%, et l’erreur quadratique moyenne (RMSE) était entre 0.295 ln(g) et 0.441 ln(g).  Ces 

valeurs incluent la biomasse fraîche et sèche pour la laitue et le chou frisé. Ensuite, la 

deuxième étude a été menée, cette fois-ci dans un champ d'épinards d'une ferme 

commerciale. Les résultats obtenus ont été similaires à ceux de l’étude précédente. Deux 

approches différentes pour traiter les profils de hauteur basés sur le laser sont discutées: la 

régression des caractéristiques représentatives du profil et l'inférence d'une fonction de 

densité de la canopée. Les mesures de R2 obtenues étaient de 0.78 ou de 0.94, selon la 

méthode de traitement utilisée, et le RMSE était de 4.18 t/ha, et de 2.16 t/ha. L’erreur 

moyenne absolue en pourcentage (MAPE) était d’environ 30% pour les deux méthodes. Cette 

deuxième expérience faisait également appel à un matériel amélioré. 

 

L'utilisation appropriée de cette technologie permettra aux gestionnaires des fermes 

d'améliorer leurs plans de récolte et les calendriers d'expédition dans des conditions de 

croissance variables. 
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1. INTRODUCTION 

 

Crop biomass is used as an indicator of plant growth in plant phenotyping and as a 

way to estimate yield in agriculture (Golzarian et al., 2011; Van Henten, 1994). Crop biomass 

refers to the mass of the crop composed of live cells. In the present document, when biomass 

is mentioned, it refers to aboveground biomass. From the perspective of precision agriculture 

(PA), it would be useful to identify zones of the field where there are variabilities in the soil 

or where the crop produces different levels of biomass. This information could provide an 

improvement in the way in which local heterogeneities are addressed. 

  

According to Catchpol & Wheeler (1992), aboveground biomass is usually measured 

by destructive methods. Several plants are wasted using this procedure to have sufficient data 

to determine plant growth in the field. Non-destructive methods for measuring biomass are 

desirable, especially with a sensor-to-plant concept, as stated by Golzarian et al. (2011). Such 

a procedure would make high-throughput data collection possible, where the final users could 

take advantage of a practical implementation. 

 

The present work is relevant for considering the integration of lasers with other 

sensors and for a comparison with ultrasonic measurements; furthermore, its use is justified 

as a possible way to avoid the increased costs of 3D laser devices. Also, the application of 

this technique in lettuce and other horticultural products is seldom found in the literature. 

 

1.1. OBJECTIVES 

The objective of this study was to develop and evaluate a laser-based sensor system 

for the indirect measurement of aboveground crop biomass suitable for in situ deployment. 

The completion of this objective would be a step closer to the ultimate goal of equipping 

farmers with a tool for the rapid, non-destructive, and reliable assessment of their crops. 

Specific objectives were: (1) to develop the system prototype, (2) to evaluate the performance 

of the system in controlled and in field growth environments, and (3) to study the most 

significant methods for retrieving the biomass estimate from the laser measurements.  



12 
 

2. LITERATURE REVIEW 

 

“Estimation of plant biomass is a central part of many ecological investigations. For 

instance, plant biomass is used to characterize biomes and ecosystems, to measure 

productivity, grazing pressure, and many other processes” (Jonasson, 1988). Traditionally, 

farmers have relied on manual measurements and visual estimations to keep track of the 

biomass changes across their fields. Although experienced farmers can conduct this 

estimation with relative accuracy, the advantages of having sensor systems performing these 

operations are evident. With sensor systems, the subjectivity of the estimation is removed, 

allowing for improved repeatability, as well as a reduction in labour-intensive and time-

consuming sampling activities (Fricke, Richter, & Wachendorf, 2011). 

 

One solution comes in the form of Yield Monitors (YM), which measure the 

production of the crop as it is harvested (Borgelt, 1993; Vansichen and DeBaerdemaeker, 

1993; Plant, 2001; Fulton et al., 2009). Similar approaches have been extended to 

measurements to be taken before harvesting, but they all share the common factor of 

removing the whole plant or part of it per measurement, limiting the maximum number of 

measurements that can be taken in a field. 

 

Most of the current non-destructive alternatives exploit the relationship between crop 

aboveground biomass and canopy properties like plant height, total volume or Leaf Area 

Index (LAI), all of which can be reliably measured without harming the crop (Freeman et al., 

2007; Eitel et al., 2014; Biskup et al., 2007; Rosell et al., 2009; Moorthya et al., 2010). With 

this approach, high accuracy can be achieved, depending on the technology used and the 

number of degrees of freedom involved in the measurement. The main limiting factor for this 

scenario is cost, driven by the increasing complexity of the developed systems. 

 

Reusch (2009) used an ultrasonic sensor to estimate the dry mass density for four 

varieties of wheat. The sensor measured multiple echoes as they were reflected from different 

layers in the canopy while mounted on a vehicle. The collected information was used to 

determine which wheat variety was more convenient in terms of the variety which produced 
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the highest yield. Reusch (2009) found that the relationship between dry mass density and 

height changed with growth stage. He then proposed the separation of this behavior into three 

groups to fit linear models for each of the growth stages, as a way of avoiding nonlinear 

models. 

 

Ehlert et al. (2008) took a similar approach by using a modified laser rangefinder 

mounted on a vehicle. The laser rangefinder worked using the principle of laser triangulation, 

producing a height profile across the path of the vehicle. The mean of the profile was taken 

as related to the biomass yield using linear and quadratic regressions. Fresh and dry biomass 

yield was estimated for oilseed rape and winter rye, while comparing the effect of the angle 

of incidence of the laser.  

 

In an earlier work, Tumbo et al. (2001) made a comparison between laser and 

ultrasonic technologies for the estimation of canopy volume in citrus trees. Both types of 

sensors were mounted on moving platforms. The volume was computed as a numeric 

integration of the sensors’ measurements for the ultrasonic technology.  They found that the 

laser provided slightly better results, especially in defoliated trees. 

 

Lasers with 3D capabilities were mounted on a tripod (Keightleya and Bawdenb, 

2010; Eitel et al., 2014), rather than on a moving vehicle as was explained in the previously 

mentioned works. The former focused on retrieving a measurement of canopy volume for 

grapevine, while the latter estimated biomass based on a similar calculation of volume for 

wheat. The type of sensor used in both studies is referred to as Light Detection And Ranging 

(LiDAR), operating on time-of-flight principle. 

 

Kjaer and Ottosen (2015) mounted a 3D laser on an automated boom, which allowed 

it to move along one axis, hence, covering a larger area of observation. The scan provided 

height, 3D leaf area, and projected leaf area. These measurements were used as predictors of 

properties usually measured destructively, including dry and fresh mass. The results were 

later used to identify the most convenient cultivars of rapeseed. Also, studying leaf movement 

and changes in canopy configuration was proposed as an application of the device. 
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The possibility of improving the estimation of biomass by adding multispectral 

sensors has been considered (Tilly et al., 2015; Schaefer and Lamb, 2016). The former study 

used a 3D laser scanner in a barley field, while the latter used a 2D LiDAR sensor mounted 

on a moving vehicle in a tall fescue field. After examination of NDVI and other vegetation 

indexes, it was determined that they produced better results. However, the improvements 

were small in both cases, casting doubt on the relevancy of this complementary sensor in 

relation to the added cost and complexity. 

 

Extending this idea to larger scales has been tested in (Zarco-Tejada, Diaz-Varela, 

Angileri, & Loudjani, 2014) and (Torres-Sánchez, López-Granados, Serrano, Arquero, & 

Peña, 2015), where the canopy properties are computed from camera images taken from a 

UAV. This is different from the use of reflectance-based sensors mounted in UAV, as in 

(Engström et al., 2009), where the canopy architectonics are not considered explicitly, yet 

the biomass or other plant properties can be estimated non-destructively. In (Tang & Shao, 

2015) and (Elaksher, Bhandari, Carreon-Limones, & Lauf, 2017) canopy measurements are 

measured with a LiDAR system mounted on an UAV, but no other plant properties are further 

derived from the results of the direct measurement. 

 

Biomass estimation is not the only application of this principle that has been 

presented. Further work has been done in using canopy properties as feedback within a 

control loop. For example, in (Zaman, Schumann, & Miller, 2005), prescription maps for 

fertilization were built based on the measured canopy volume. Similarly, in (Escolà et al., 

2009), a foliar index was created and related to a cross-sectional area and height of tree 

canopies. The results were fed to a scheduler for festilizer and pesticide applications. In tree 

orchards, the size of the tree canopy can be related to fruit yield, as was done in (Zaman, 

Schumann, & Miller, 2006) with citrus. 

 

The work presented in this manuscript is a continuation of Chapter 3 of (Su, 2017), 

where an ultrasonic proximity sensor was used in a similar setup, characterized by the 

rotating sensor head, used for arugula and spinach, and its measurements were related with 

fresh and dry biomass. The base hypothesis is that the increased accuracy of using a laser 
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sensor would improve biomass estimation (Tumbo, Salyani, Whitney, Wheaton, & Miller, 

2001). Additionally, the height profiles resulting from the rotating sensor head are expected 

to rank between simple height and volume-based estimations. In (Arnó et al., 2009), the 

intuition that volume-based estimates produce better results than height-based is confirmed. 

Nonetheless, given the results from (Su, 2017), height profiles may be a more practical option 

to handle the trade-off between accuracy and cost of the sensor system, given the restrictions 

that need to be followed for implementations meant to be operated in a farm environment. In 

(Moorthy, Miller, Hu, Chen, & Li, 2008), it is shown that canopy properties can be readily 

determined in a lab setting.  

 

Other agricultural applications and characteristics of Light Detection And Ranging 

(LiDAR) are presented in (Omasa, Hosoi, & Konishi, 2006) and (Ehlert, Heisig, & Adamek, 

2009). Among the aforementioned, the optimization of combined parameters during 

harvesting for current crop conditions and the improvement in guidance of agricultural 

machinery based on the detection of crop edges are some of the previously least explored 

topics. 
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3. MATERIALS AND METHODS 

 

3.1. DESIGN AND CONSTRUCTION OF THE DEVICE 

The device combined laser, ultrasonic and thermal infra-red (IR) measurements from 

the following commercially available sensors1: IL-600 (Keyence Corporation, Itasca, IL, 

USA), ToughSonic14 (Senix Corporation, Hinesburg, VT, USA), and SSS-LT (Process 

Sensors Corporation, Milford, MA, USA), respectively. The idea was to position these 

sensors above the crop at a determined height in nadir view and move them in a circular path 

parallel to the ground plane. Because of this, and to keep the general setup of a hand-held 

device, a tripod was selected as the main frame for the entire system (AX620B100 62-Inch 

Proline, Dolica, Rancho Cucamonga, CA, USA). 

 

A stepper motor (T-NM17C04, Zaber Technologies, Vancouver, BC, Canada) was 

located below the top of the tripod. The sensors were mounted in a 3D-printed holder which 

allowed for changes in their position along the holder’s central axis. The holder was 

connected from an edge to the shaft of the controlled stepper motor. In this configuration, the 

sensors were arranged to spin in a circular path with a specific radius. The motor itself had 

another 3D-printed holder that was attached to the tripod. Both holders were designed in 

Inventor 2017 (Autodesk Inc., San Rafael, CA, USA) and their strength was validated with 

a Finite Element Analysis simulation under the expected loads. The testing field laps were 

taken with alternating clockwise and counter clockwise directions to avoid stress on the 

wiring. The capability of the holder to change the position of the sensors allowed the radius 

to be modified between 7 cm and 15 cm. 

 

The three included sensors had analog output. The laser and ultrasonic outputs were 

received by a data acquisition board (NI myDAQ, National Instruments Corporation, Austin, 

TX, USA), while the thermal IR measurements were read by an Arduino UNO board 

(Arduino AG, Chiasso, Switzerland). Both boards were working as Analog-to-Digital 

                                                           
1 Mention of a trade name, proprietary product, or company name is for presentation clarity and 

does not imply endorsement by the author or McGill University, nor does it imply exclusion of 

other products that may also be suitable. 
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Converters, transmitting the resulting signal to a laptop computer. LabView 2013 (National 

Instruments Corporation, Austin, TX, USA) was used to read and log the sensors’ 

measurements along with a corresponding time stamp, send commands to the motor, and 

provide a user interface. The block diagram is shown in Figure 1. The sensors and their 

accompanying circuitry, as well as the motor, were powered by a 6-cell LiPo battery with 

voltage converters. A separate box was built with High-Density Polyethylene (HDPE) to 

contain the circuitry. Figure 2 shows the complete arrangement. 

 

 

Fig. 1. Block diagram of the system 

 

 

Fig. 2. Picture illustrating the complete device in the greenhouse setup 
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3.2. CONTROLLED ENVIRONMENT EXPERIMENT DESIGN 

The controlled environment experiment took place within a greenhouse located at 

Macdonald Campus of McGill University, Montreal, Canada. On March 28th, 2017, four 

hydroponic beds were allocated with 29 plants each (15 lettuce and 14 kale) plus one of 28 

plants (14 of each type), as depicted in Figure 3. This was the maximum number of plants 

each hydroponic bed could fit. Initially, all 5 beds were meant to have 29 plants, but there 

were not enough seedlings available. Each plant was placed in a 4”x4”x4” Rockwool cube. 

The cubes were distributed in 4 rows of 7, and in those beds with 29, there was a single cube 

on the edge. The crop varieties employed were romaine lettuce (Lactuca sativa L. var. 

longifolia) and red Russian kale (Brassica napus subsp. pabularia). They were germinated 

for two weeks in a growth chamber before being transferred into the hydroponic system. The 

beds were irrigated by an ebb and flow system, where the half-strength Hoagland solution 

was added periodically. Each bed had an independent ON/OFF controller to activate the 

water pumps with soil moisture sensors as feedback. Each bed had different lower and upper 

thresholds for the controller, as depicted in Table 1, to simulate the effect of water stress. 

 

Table 1. Thresholds used to simulate water stress 

Bed Lower limit [%] Upper limit [%] 

1 50 100 

2 50 85 

3 50 75 

4 10 100 

5 25 85 

 

 

Fig. 3. Illustration of the Rockwool cubes’ distribution in the hydroponic bed 
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On April 25th, the plants were harvested and the following properties were measured: 

fresh aboveground biomass, dry aboveground biomass, maximum height, maximum 

extended height, and the number of leaves. Since in all cases the measured biomass considers 

only the aboveground components, the term will no longer be specified.  Both fresh and dry 

mass were measured using an electronic scale MXX-612 (Denver Instrument Inc., Bohemia, 

NY, USA). Maximum height was measured between the soil level (the top face of the 

Rockwool cube) and the highest point of the plant, without interfering with the plant’s pose. 

Maximum extended height was measured between the soil level and the highest point of the 

plant, while manually straightening the plant as vertical as possible without breaking it. 

Intermediate harvesting was done at three earlier dates throughout the experiment where 

fewer plants were collected, as stated in Table 2. Figure 4 shows the state of the beds at 42 

Days After Seeding (DAS). 

 

Table 2. Schedule for data collection and plant harvesting 

Date DAS Plants harvested per bed 

April 14th 32 5 

April 17th 35 N/A 

April 18th 36 4 

April 19th 37 N/A 

April 20th 38 N/A 

April 21th 39 6 

April 22th 40 N/A 

April 24th 42 N/A 

April 25th 43 14 
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Fig. 4. Picture illustrating experimental setup in greenhouse 

 

The experiment design was a completely randomized design with temporal repeated 

measurements. It was assumed that the temporal repeated measurements were done over the 

beds instead of the plants. The setup was a part of a hydroponic system designed for a 

different experiment (Tikasz & Lefsrud, 2017). The treatment for this experiment was the 

water stress in each bed. Equation (1) describes this design, where 𝑌𝑖𝑗𝑡 denotes any of the 

measured plant properties i.e. mass and height, for bed i, plant j, and day t. 

 

𝑌𝑖𝑗𝑡 = 𝜇 + 𝑎𝑖 + 𝜀𝑖𝑗
(1)

+ 𝑐𝑡 + (𝑎𝑐)𝑖𝑡 + 𝜀𝑖𝑗𝑡
(2) (1) 

 

In the above equation, 𝜇 is the overall mean, 𝑎𝑖 is the effect of treatment i, 𝑐𝑡 is the 

effect of time, (𝑎𝑐)𝑖𝑡 is the effect of the interaction between treatment and time, and 𝜀𝑖𝑗
(1)

 and 

𝜀𝑖𝑗𝑡
(2)

 are error terms. Under the scope of this experiment, the treatment was done solely to 

provide a wide range of biomass values to test the device. It was of interest to prove that the 

system can provide meaningful predictions across the whole range of values attained. 
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The developed device was used throughout the experiment according to the schedule 

shown in Table 2. Each sensor provided a measurement every 45 min. The motor was set to 

spin at a constant speed of 20°/s, providing a point every 0.9° that contains information from 

the three sensors. Consequently, a complete lap provided a profile of 400 points. The sensor 

holder was set at the maximum radius of 15 cm for all cases. In each bed, three locations 

were used, labeled Close, Middle, and Far, in terms of the ends of the beds. In each of these 

locations, around 5 laps were recorded with the device, covering both the kale and lettuce 

sides. 

 

For the reported dates, other sensors were used to keep track of the ambient state, 

which were not part of the developed device. These sensors included thermal camera (C2, 

FLIR Systems Inc., Wilsonville, OR, USA), PAR/quantum sensor (QMSS-ELEC, Apogee 

Instruments Inc., Logan, UT, USA), ambient temperature and moisture (DHT22, Adafruit 

Industries, New York, NY, USA), and multispectral (Crop Circle ACS-430, Holland 

Scientific Inc., Lincoln, NE, USA). This last sensor, the Crop Circle, outputs the reflectance 

of the crop to light at different wavelengths: red, red-edge, and NIR. Additionally, two 

Vegetation Indexes (VI) are computed from those reflectance values: NDVI and NDRE. One 

measurement was taken per day per bed from each of the previously mentioned sensors. 

 

3.3. CONTROLLED ENVIRONMENT ANALYSIS 

The estimation of biomass 𝑀𝑖𝑗𝑡 is usually based on canopy characteristics, e.g. plant 

height 𝐻𝑖𝑗𝑡, as presented in Equation (2). A regression, either linear or nonlinear, can be used 

to test how well a certain type of function fits the data. Some error 𝜀𝑖𝑗𝑡 is always present, but 

by testing several functions from a set of candidate functions, the best representative can be 

found by selecting the one which minimizes the error. 

 

𝑀𝑖𝑗𝑡 = 𝑓1(𝐻𝑖𝑗𝑡) + 𝜀𝑖𝑗𝑡
(3) (2) 

 

The idea behind the device’s design was to define a relationship from several height 

values, i.e. the height profile 𝒉𝑖𝑗𝑡, and improve the ability to accurately predict biomass. This 

is expressed in Equation (3). 
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𝑀𝑖𝑗𝑡 = 𝑓3(𝒉𝑖𝑗𝑡
𝑙𝑎𝑠𝑒𝑟 , 𝒉𝑖𝑗𝑡

𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑛𝑖𝑐) + 𝜀𝑖𝑗𝑡
(4) (3) 

 

Furthermore, it may be the case that the biomass model described in Equation (3) can 

be improved by including other sensor measurements 𝑥𝑖𝑗𝑡, as stated by the following 

equation. 

 

𝑀𝑖𝑗𝑡 = 𝑓3(𝒉𝑖𝑗𝑡
𝑙𝑎𝑠𝑒𝑟 , 𝒉𝑖𝑗𝑡

𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑛𝑖𝑐 , 𝑥𝑖𝑗𝑡
(1)

, … , 𝑥𝑖𝑗𝑡
(𝑛)

) + 𝜀𝑖𝑗𝑡
(5) (4) 

 

The goal was then to find some 𝑓2: ℝ𝑚 × ℝ𝑚 ↦ ℝ or 𝑓3: ℝ𝑚 × ℝ𝑚 × ℝ × … × ℝ ↦

ℝ such that 
2 2 2

(5) (4) (3)    , under the assumption that the errors were normally distributed 

 (5) 2

(5)~ 0,ijt N  ,  (4) 2

(4)~ 0,ijt N   and  (3) 2

(3)~ 0,ijt N  ; where m is the number of points 

recorded in a lap by either laser or ultrasonic sensors. One disadvantage of this approach was 

that the existence of a physical interpretation for the chosen 𝑓2 could not be guaranteed. 

 

The data were imported into MATLAB R2017a (MathWorks Inc., Natick, MA, USA) 

and SAS University Edition (SAS Institute Inc., Cary, NC, USA) for this analysis. With SAS, 

the procedure GLM (Generalized Linear Model) was used. First, the profiles were separated 

depending on the type of plant observed. Then, from the sets of laser and ultrasonic 

measurements, a scalar value was derived for each lap using different processing methods, 

which might be used as inputs to the function 𝑓2. Table 3 describes the alternatives 

considered. The values of 0, corresponding to spots with no crop (soil level), were filtered 

out for the median and mode. For the IR thermal measurement, only the mean value was 

computed. Finally, linear and exponential regressions were performed between the plant 

properties measured directly and the sensor measurements. The coefficient of determination 

(R2) and root mean squared error (RMSE) were calculated as indicators of the system 

performance related to the ability to predict fresh biomass, and used to compare methods. 

For cases where the number of parameters varied, the adjusted R2 was used as the decision 

criterion. Finally, when a working model was achieved, the mean absolute percentage error 

(MAPE) was computed to indicate the precision of the system using Equation (5). This was 

not used as a criterion to choose between different models. When exponential regression was 
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used, instead of MAPE, the PE was computed as presented in Equations (6) and (7) for the 

cases of overestimation and underestimation, respectively. 

Table 3. Definition of processing methods for controlled environment experiment 

Name in MATLAB Description 

Average crop height 

Computes numeric definite 

integral and divides by the size 

of the integration interval 

Average filtered crop height 

Applies median filter with 

window size 10, then computes 

average crop height 

Average recorded crop height Computes arithmetic mean 

Max Finds the maximum value 

Median 
Removes all 0 values, then 

computes median 

Mode 
Removes all 0 values, then 

computes mode 

Mean of max 
Finds maxima between sets of 

10 points, then averages them 

 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑖

𝑎𝑐𝑡𝑢𝑎𝑙𝑖
|

𝑛

𝑖=1

(5) 

 

𝑃𝐸𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑒𝑅𝑀𝑆𝐸 − 1 (6) 

 

𝑃𝐸𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 1 − 𝑒−𝑅𝑀𝑆𝐸 (7) 

 

3.4. DEVELOPMENT OF A FIELD SYSTEM 

Several improvements were implemented before taking the device to a field 

environment. For instance, the sensor holder was changed to incorporate a fixed angle with 

respect to the vertical axis. The new holder is presented in Figure 5. The new holder design 

was sturdier and more rigid. By using shorter beams, the bending load was diminished, 

reducing the risk of mistakes in the sensor position due to deformation of the holder. In this 

configuration, the radius of the circular paths could be adjusted by changing the height of the 
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middle bar of the tripod. In any case, for the production field experiment, a fixed radius was 

used. 

 

The laptop computer that was used to run the control system via LabVIEW was 

replaced by a Raspberry Pi 2 Model B (Raspberry Pi Foundation, Cambridge, UK) with a 

python script, shown in Appendix A. This change had multiple benefits for the 

implementation: use of free software, reduced weight, reduced cost, increased portability, 

increased battery life. About the latter, the power supply was taken from the same LiPo 

battery that powered the rest of the electronics rather than the computer internal battery; the 

power consumption of the Raspberry Pi was minimal when compared to a regular laptop 

computer. On the other hand, the disadvantage was the loss of the user interface. The new 

block diagram is shown in Figure 6. 

 

 

Fig. 5. Picture illustrating the new holder 
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Fig. 6. Block diagram of modified system 

  

A Bluetooth serial communication protocol was enabled to allow the user to send 

commands to the Raspberry Pi with a smartphone, as well as to receive information from it. 

Any of the free serial monitor apps available for smartphones can be paired with the 

Raspberry Pi. In particular, Serial Bluetooth Terminal v1.12 (Kai Morich, Hockenheim, 

Germany) was used on an Android 6.0.1 smartphone during the production field experiment. 

On the Raspberry Pi side, a HC-05 Bluetooth module (Dilson Enterprises, Maharashtra, 

India) was added for this purpose. More recent versions of the Raspberry Pi come with a 

built-in Bluetooth transceiver. 

 

As a consequence of the change from laptop to Raspberry Pi, the NI myDAQ 

acquisition board and the Arduino UNO were replaced by two ADS1115 (Adafruit Industries, 

New York, NY, USA). These ADC offer two differential 16-bit channels that communicate 

with the Raspberry Pi via I2C protocol. Again, this helped to reduce the weight of the device. 
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Another modification was that the box containing the circuitry was fixed on top of the tripod. 

This step could only be done at this stage thanks to the reduced weight of the electronic 

components. In Figure 7, the modified device is presented. 

 

 

Fig. 7. Picture illustrating setup for the production field experiment 

 

3.5. PRODUCTION FIELD EXPERIMENT DESIGN 

Data were collected in a field of VegPro International near Sherrington, Quebec, 

Canada on October 4th, 10th, and 11th, 2017. The field featured raised beds in organic soil 

with Stanton spinach (Spinacia oleracea Hyb. Stanton) at different growth dates. The 

presence of several growth dates allowed for the data collection over a shorter time span, 

only requiring three days because of the time-consuming sampling of the fresh biomass. In 

this experiment, only fresh biomass was considered. A 50 cm x 50 cm frame was used to 

denote each zone for sampling. A total of 30 of these zones were measured manually and 

with the device over the three days. 
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Each of the sensors included in the device provided a measurement every 0.8°, 

creating a profile of 450 points per lap. For each location, about 6 laps were recorded, around 

3 different centers inside the frame. From the set of complementary sensors used in the 

controlled environment experiment, only the ambient temperature and moisture (DHT22) 

was also used in the production field experiment. It was found that moisture was the best 

complement for the laser in the previous experiment. 

 

3.6. PRODUCTION FIELD ANALYSIS 

For the production field experiment, a pre-treatment was performed on the height 

profiles. First, points considered outliers were removed. Second, the replicates of the same 

location were averaged to produce a more significant profile. All the measurements that were 

taken around the same center point produced one height profile. Within each square frame, 

3 different centers were used, as mentioned in Section 3.5.  

 

Two approaches were taken to analyze the data from the production field experiment. 

The first approach (regression of profile-representative features) was the same as that used 

in the controlled environment experiment, where the function providing the best fit was 

considered. Here, the process was extended by considering a larger pool of processing 

methods, as well as functions that mathematically combined more than one of these methods. 

The regressions that were performed were linear, exponential, and polynomial up to degree 

5. Table 4 contains the complete list of processing methods used in this approach. The code 

for these methods is presented in Appendices B to AA. The last two methods are the 

processing methods used by Su (2017). 
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Table 4. Definition of processing methods for production field experiment 

Name in MATLAB Description 

Integral Compute numeric definite integral 

Average recorded crop height Compute arithmetic mean 

Max Find the maximum value 

Energy Compute numeric definite integral of the square 

Variance Compute sample variance 

Average trimmed crop height 
Compute arithmetic mean only in-between 5 to 95-

percentiles 

Trimmed variance 
Compute sample variance only in-between 5 to 95-

percentiles 

Energy wavelet Compute Energy after applying a wavelet filter 

Lower envelope Find lower envelope and compute arithmetic mean 

Lower envelope integral Find lower envelope and compute Integral 

Lower envelope energy Find lower envelope and compute Energy 

Upper envelope Find upper envelope and compute arithmetic mean 

Upper envelope integral Find upper envelope and compute Integral 

Upper envelope energy Find upper envelope and compute Energy 

Derivative Estimate derivative and compute arithmetic mean 

Derivative variance Estimate derivative and compute sample variance 

Derivative energy Estimate derivative and compute Energy 

Count 
Find the number of points where abrupt changes 

happen 

Peak count Find the number of local maxima 

Frequency 
Estimate the median normalized frequency of the 

power spectrum 

Bandwidth Estimate bandwidth of the power spectrum 

SFDR 
Estimate ratio between fundamental frequency and 

first spurious peak in power spectrum 

SNR Estimate Signal-to-Noise Ratio 

THD Compute Total Harmonic Distortion 

Mean of max 
Find the maxima between sets of 10 points, then 

average them 

Pseudo-max Find the value of 95-percentile 
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The second approach (inference of a canopy density function) relied on the 

formulation indicated in Equation (8), as follows. A cylindrical coordinate system was used 

because it relates directly with the circular paths followed by the device. In this case, the z 

axis was perpendicular to the ground plane and aligned with the center point of the circular 

path, while the angular position θ corresponds to the placement of the sensors by the stepper 

motor and the radius r to the distance between any point in the ground plane to the center of 

the circular path. The key assumptions were that the height profile measured along the 

circular path was representative of the entire frame and that the density of the crop only varies 

on a noticeable scale with the height. About the former, one way that the assumption could 

be included was by considering concentric circles where the height profile was repeated, so 

that the height of the ith plant (labeled Hi) depended only on the angular position, and not on 

the radius. 

 

𝑀𝑖 = ∫ 𝜌 𝑑𝑉 = ∫ ∫ ∫ 𝑟 𝜌(𝑧, 𝜃, 𝑟) 𝑑𝑧

𝐻𝑖(𝜃,𝑟)

0

 𝑑𝜃

2𝜋

0

 𝑑𝑟

𝑅𝑙

0

= ∫ ∫ ∫ 𝑟 𝜌(𝑧) 𝑑𝑧

𝐻𝑖(𝜃)

0

 𝑑𝜃

2𝜋

0

 𝑑𝑟

𝑅𝑙

0

+ 𝜀𝑖

= ∫ 𝑟 𝑑𝑟

𝑅𝑙

0

∗ ∫ ∫ 𝜌(𝑧) 𝑑𝑧

𝐻𝑖(𝜃)

0

 𝑑𝜃

2𝜋

0

+ 𝜀𝑖 =
𝑅𝑙

2

2
∗ ∫ ∫ 𝜌(𝑧) 𝑑𝑧

𝐻𝑖(𝜃)

0

 𝑑𝜃

2𝜋

0

+ 𝜀𝑖 (8)

 

 

where Mi denotes the mass of the ith plant, Rl is the maximum radius used for the lap 

measurements, 𝜌 is the density, and 𝜀𝑖 the error produced from the assumptions in the ith 

plant. It is worth noting that Equation (8) can be rewritten as Equation (9) based on the 

Fundamental theorem of calculus. Here the Mijt notation was dropped to improve readability, 

but it would also hold if added consistently. 

 

𝑀𝑖 =
𝑅𝑙

2

2
∗ ∫ ∫ 𝜌(𝑧) 𝑑𝑧

𝐻𝑖(𝜃)

0

 𝑑𝜃

2𝜋

0

+ 𝜀𝑖 =
𝑅𝑙

2

2
∗ ∫ 𝑓(𝐻𝑖(𝜃)) 𝑑𝜃

2𝜋

0

+ 𝜀𝑖 (9) 

 

for some function 𝑓: ℝ ↦ ℝ such that 𝑓′(𝑥) = 𝜌(𝑥). This step allows for a single 

integration instead of a double integration. Different candidates for this function f were tested. 

To compare with the manually measured biomass, which was sampled within the square 
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frame, the biomass yield can be found by dividing over the area, which for the case of each 

measurement was that of the circle with the largest radius. Thus, Equation (9) becomes 

Equation (10). 

 

𝐷𝑖 =
𝑀𝑖

𝐴
=

𝑅𝑙
2

2 ∗ ∫ 𝑓(𝐻𝑖(𝜃)) 𝑑𝜃
2𝜋

0
+ 𝜀𝑖

𝜋𝑅2
=

1

2𝜋
∫ 𝑓(𝐻𝑖(𝜃)) 𝑑𝜃

2𝜋

0

+ 𝜀𝑖
(6) (10) 

 

Finally, it is worth mentioning that this approach can be analogous to the first 

approach taken, depending on the selection of the function f. For example, assuming 𝜌(𝑧) =

𝜌 → 𝐷𝑖 =
𝜌

2𝜋
∫ 𝐻𝑖(𝜃) 𝑑𝜃

2𝜋

0
= 𝑎 ∗ 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 + 𝑏, where Integral refers to one of the 

processing methods from the first approach, which was used in a linear regression model to 

relate to Di, with some parameters a and b, taking 𝑎 =
𝜌

2𝜋
 and 𝑏 = 0. Another example, taking 

𝑓(𝑥) = 𝑥2 → 𝐷𝑖 =
1

2𝜋
∫ [𝐻𝑖(𝜃)]2 𝑑𝜃

2𝜋

0
= 𝑎 ∗ 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝑏, where the same situation is 

found to occur with a different processing method. The advantage of this second approach 

was that it guarantees the existence of a physical interpretation for the model once an 

appropriate function f has been selected. Appendices AB and AC present the code used for 

this approach, with a specific example of a candidate function. 
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4. RESULTS AND DISCUSSION 

 

4.1. CONTROLLED ENVIRONMENT EXPERIMENT 

Significant differences were found over time and with water stress (bed). 

Consequently, a diverse set of biomass and canopy properties was present, providing an 

adequate setup for the evaluation of the designed device. Figures 8 and 9 compare the growth 

of the plants across the beds. 

 

 

Fig. 8. Evolution of average lettuce dry biomass against bed 

 

 

Fig. 9. Evolution of average kale dry biomass against bed 
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Similar results were obtained for fresh mass, maximum height and number of leaves. 

It was observed that the best performance for kale was in bed 4, while for lettuce, beds 2 and 

3 were similar to each other. For both plants, bed 5 had the lowest yield recorded. It is 

believed that the mass increases monotonically, despite cases like the kale dry mass in bed 

1, and it just happened that the samples collected were particularly large by chance. This 

could be explained by the increasing the variability in the measurements with time; as well, 

the samples for the intermediate harvesting were relatively small.  

 

Additionally, by considering the mass against the manually measured maximum plant 

height, it was found that an exponential model provided the best fit. This proved the existence 

of function 𝑓1 from Equation (2) and gives hints about the possible form of 𝑓2. In the 

following steps of the analysis, the exponential case was considered. Figures 10 and 11 

present this regression for lettuce and kale, respectively. 

 

All the beds were included alike in these regressions. Better fitting could be found by 

considering each bed separately. Also, improved results were found when using maximum 

extended height, increasing the R2 values to 0.93 and 0.94 for lettuce and kale, respectively. 

 

 

Fig. 10. Exponential regression of lettuce fresh biomass vs maximum height 
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Fig. 11. Exponential regression of kale fresh biomass vs maximum height 

 

As mentioned in the previous sections, a profile of plant height measurements was 

taken along a circular path. Figures 12 and 13 illustrate an example of a lap for bed 1 in DAS 

36 and bed 2 in DAS 43, and some of the processing methods evaluated. With 0 being the 

ground level, some negative values were found due to gaps between the Rockwool blocks, 

which can be seen as holes in the soil. These negative values were replaced by zeros before 

applying the different processing methods mapping to single scalars. In an average sample, 

these values less than or equal to 0 made up 5% of the available data. Later, the scalars were 

averaged with those of the same bed in the day. 
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Fig. 12. Picture illustrating circular path over the crops at middle location for (a) DAS 36 

and (b) DAS 43 

 

 

 

Fig. 13. Example of height profile as recorded by ultrasonic sensor and calculated 

processing methods 
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Table 5 provides the R2 values found for the exponential regression, based on each of 

the considered processing methods. The best case is highlighted with bold font. 

 

Table 5. Coefficients of determination from exponential regression between the biomass 

and processed ultrasonic height measurements for each processing method 

Function Fresh lettuce Dry lettuce Fresh kale Dry kale 

Average crop height 0.80 0.75 0.63 0.56 

Average filtered crop height 0.69 0.63 0.54 0.50 

Average recorded crop height 0.80 0.74 0.56 0.53 

Max 0.69 0.62 0.55 0.52 

Median 0.80 0.75 0.48 0.47 

Mode 0.69 0.63 0.65 0.58 

Mean of max 0.78 0.71 0.57 0.48 

 

Figures 14 and 15 present the best fit for each case. Similar to what was presented for 

the ultrasonic sensor, Figure 16 shows an example of a profile of measurements for bed 4 in 

different days of the experiment. The profile from ultrasonic is retained for comparison. 

 

 

Fig. 14. Best model of exponential regression for (a) lettuce and (b) kale fresh biomass 

based on ultrasonic 
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Fig. 15. Best model of exponential regression for (a) lettuce and (b) kale dry biomass based 

on ultrasonic 

  

 

Fig. 16. Example of height profiles as recorded by laser and ultrasonic sensors for different 

days of the experiment 

 

The smaller spot size of the laser allowed for the identification of canopy structures 

that might have passed unseen by the ultrasonic sensor, as well as provided a better 

determination of the ground level. The ultrasonic signal was noisy compared to the laser 

measurement; however, the laser had more failed readings. This could happen for a variety 

of reasons, among them, that the reflected laser beam did not reach the lens or excessive 
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sunlight saturated the sensor. Table 6 shows the R2 values for the regression based on the 

laser, and highlights the best processing method in bold letters. Figures 17 and 18 show the 

calibration step based on the laser measurements, with the best fitting processing methods. 

 

Table 6. Coefficients of determination from exponential regression between the biomass 

and processed laser height measurements for each processing method 

Function Fresh lettuce Dry lettuce Fresh kale Dry kale 

Average crop height 0.87 0.80 0.51 0.50 

Average filtered crop height 0.75 0.66 0.67 0.58 

Average recorded crop height 0.88 0.81 0.60 0.48 

Max 0.75 0.66 0.52 0.44 

Median 0.87 0.80 0.56 0.43 

Mode 0.75 0.66 0.69 0.61 

Mean of max 0.78 0.73 0.61 0.49 

 

 

Fig. 17. Best model of exponential regression for (a) lettuce and (b) kale fresh biomass 

based on laser 

 

At this point, the advantage of considering the information from both sensors at the 

same time was evaluated. From the previous sections, it was known what functions worked 

best for each sensor, as reported in Table 7, and labeled as 𝑓𝑘 and 𝑓𝑙. Then, the two sensors 
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were combined in the way depicted in Equation (11). This was an extension of the 

exponential regression. 

 

 

Fig. 18. Best model of exponential regression for (a) lettuce and (b) kale dry biomass based 

on laser 

 

Table 7. Processing methods found to produce the best results in exponential regression 

Case  Method for laser Method for ultrasonic 

Lettuce fresh mass  Average recorded crop height Average crop height 

Lettuce dry mass  Average recorded crop height Average crop height 

Kale fresh mass  Mode Mode 

Kale dry mass  Mode Mode 

 

𝑙𝑛[𝑓2(𝒉𝑖𝑗𝑡
𝑙𝑎𝑠𝑒𝑟 , 𝒉𝑖𝑗𝑡

𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑛𝑖𝑐)] = 𝑝 + 𝑞𝑓𝑘(𝒉𝑖𝑗𝑡
𝑙𝑎𝑠𝑒𝑟)

+𝑟𝑓𝑙(𝒉𝑖𝑗𝑡
𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑛𝑖𝑐) + 𝑠𝑓𝑘(𝒉𝑖𝑗𝑡

𝑙𝑎𝑠𝑒𝑟)𝑓𝑙(𝒉𝑖𝑗𝑡
𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑛𝑖𝑐) (11)

 

 

With this procedure, Table 8 was built. This table allows for a comparison of the 

performance of using the ultrasonic sensor, the laser, or both sensors. It was found that, while 

having both sensors offers the best results, the difference against having only the laser was 

not very large. There was a clear difference between the laser and ultrasonic sensors, with 

the advantage favoring the former. The RMSE values were found in the logarithmic scale. 
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Table 8. Comparison of fitting in exponential regression between laser, ultrasonic and both 

 Ultrasonic Laser Both 

Case R2 
RMSE 

[ln(g)] 
R2 

RMSE 

[ln(g)] 
R2 

RMSE 

[ln(g)] 

Lettuce 

fresh mass 
0.80 0.511 0.88 0.394 0.90 0.356 

Lettuce 

dry mass 
0.75 0.623 0.81 0.541 0.83 0.523 

Kale fresh 

mass 
0.65 0.483 0.69 0.456 0.71 0.443 

Kale dry 

mass 
0.58 0.545 0.61 0.529 0.62 0.525 

 

The following steps were taken supposing that the function in Equation (11) may be 

further improved by adding other types of sensors, as anticipated in Equation (4). Table 9 

presents correlation values for the different sensors other than the laser and ultrasonic sensor. 

For brevity, they are not presented in the usual form of a symmetric matrix. 

 

Table 9. Pearson correlation values between plant biomass and other measured properties 

Sensor 

measurement 

ln(lettuce 

freshmass) 

ln(lettuce 

drymass) 

ln(kale 

freshmass) 

ln(kale 

drymass) 

IR thermal* -0.564 -0.655 -0.486 -0.617 

IR thermal Std. 

Dev. 
-0.195 -0.196 0.002 -0.050 

PAR/Quantum -0.278 -0.343 -0.061 -0.189 

Moisture* 0.800 0.795 0.790 0.755 

Ambient 

temperature* 
-0.898 -0.913 -0.830 -0.808 

Red-Edge* -0.897 -0.901 -0.855 -0.850 

NIR* 0.905 0.899 0.836 0.796 

Red* -0.827 -0.831 -0.750 -0.750 

NDRE* 0.500 0.527 0.510 0.589 

NDVI 0.051 0.108 0.108 0.251 

*: Indicates variables whose correlation have p-values below 0.0001 
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By producing a regression model after having added an extra measurement besides 

the laser and ultrasonic, it was possible to test the improvement that each type of sensor 

produced. Table 10 shows the obtained R2 values. Only those sensors with a significant 

correlation were evaluated. 

 

For lettuce, the most important effect was achieved when adding the moisture 

measurement into the estimation. For kale, on the other hand, it occurred when Red-Edge 

was added. Moisture would be selected, due to its reduced size and cost as compared to the 

multispectral sensor. No major changes in the design would be required to incorporate the 

moisture sensor into the device. 

 

Table 10. Coefficients of determination from exponential regression between the biomass 

and combination of laser and ultrasonic height measurements with other measured 

properties 

Case 
No 

extra 

IR as 

extra 

Temperature as 

extra 

Moisture as 

extra 

Red-Edge 

as extra 

NIR as 

extra 

Lettuce 

fresh mass 
0.90 0.91 0.93 0.94 0.93 0.92 

Lettuce dry 

mass 
0.83 0.84 0.87 0.88 0.88 0.88 

Kale fresh 

mass 
0.71 0.71 0.75 0.77 0.83 0.80 

Kale dry 

mass 
0.62 0.64 0.73 0.74 0.78 0.76 

 

In Table 11, the calibration RMSE and Percentage Errors (PE) for underestimation 

and overestimation are reported. While the former was based on logarithmic scale, the latter 

was with respect to grams. These were used to show how each step provided progress in 

further improving the estimations. Figures 19 and 20 present the estimated values against the 

actual mass values found in the experiment, using the final approach where the moisture 

measurements were included. 
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Table 11. Summary of results from exponential regressions 

Case Approach R2 R2
adj 

RMSE 

[ln(g)] 

PE Under 

[%] 

PE Over 

[%] 

Lettuce fresh 

mass 

Maximum 

height 
0.83 0.83 0.469 37.4 59.8 

Ultrasonic 0.80 0.80 0.511 40.0 66.6 

Laser 0.88 0.88 0.394 32.6 48.3 

Laser & 

Ultrasonic 
0.90 0.90 0.356 30.0 42.8 

Moisture as 

extra 
0.94 0.93 0.295 25.5 34.3 

Lettuce dry 

mass 

Maximum 

height 
0.75 0.74 0.624 46.4 86.7 

Ultrasonic 0.75 0.75 0.623 46.4 86.5 

Laser 0.81 0.81 0.541 41.8 71.8 

Laser & 

Ultrasonic 
0.83 0.82 0.523 40.7 68.8 

Moisture as 

extra 
0.88 0.88 0.437 35.4 54.7 

Kale fresh 

mass 

Maximum 

height 
0.75 0.74 0.413 33.8 51.1 

Ultrasonic 0.65 0.65 0.483 38.3 62.1 

Laser 0.69 0.68 0.456 36.6 57.7 

Laser & 

Ultrasonic 
0.71 0.70 0.443 35.8 55.8 

Moisture as 

extra 
0.77 0.75 0.402 33.1 49.5 

Kale dry mass 

Maximum 

height 
0.60 0.59 0.535 41.5 70.8 

Ultrasonic 0.58 0.58 0.545 42.0 72.5 

Laser 0.61 0.60 0.529 41.1 69.8 

Laser & 

Ultrasonic 
0.62 0.61 0.525 40.9 69.1 

Moisture as 

extra 
0.74 0.72 0.441 35.7 55.5 
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Fig. 19. Actual fresh biomass against fresh biomass predicted by the device for lettuce 

 

 

Fig. 20. Actual fresh biomass against fresh biomass predicted by the device for kale 
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4.2. PRODUCTION FIELD EXPERIMENT 

Figure 21 presents the fresh biomass yield manually measured within the square 

frame for all dates. This yield was simply the biomass divided by the area of the square frame 

(0.25 m2) and transformed to t/ha units. These data have a mean value of 10.77 t/ha and 

standard deviation of 7.93 t/ha. The difference between the maximum and minimum values 

was 32.88 t/ha, proving that a varied range of biomass yield had been recorded. It seemed to 

not be normally distributed, but rather similar to a log-normal. Whatever the case, the exact 

distribution was not relevant for the analysis. A drawback of the experiment was the absence 

of samples in the range of 20 t/ha to 30 t/ha. 

 

  

Fig. 21. Normalized histogram of fresh biomass yield 

 

Given the results found in section 4.1, it was decided to consider only the laser 

measurements. Next, taking the first approach, regression of profile-representative features, 

the same as in the controlled environment experiment, Table 12 was built with the processing 

methods described in Table 4. The RMSE values are in t/ha. The best performing method 

was Lower envelope integral with linear regression. Figure 22 illustrates the best performing 

regression at this stage. 
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Table 12. Summary of results from regressions by processing method 

 Linear Quadratic Exponential 

Name in MATLAB R2 R2
adj 

RMSE 

[t/ha] 
R2 R2

adj 
RMSE 

[t/ha] 
R2 R2

adj 
RMSE 

[t/ha] 

Integral 0.54 0.52 5.94 0.56 0.52 5.96 0.56 0.54 5.76 

Average recorded 

crop height 
0.53 0.51 5.96 0.55 0.51 5.98 0.56 0.54 5.78 

Max 0.01 -0.03 8.67 0.02 -0.07 8.82 0.01 -0.03 8.66 

Energy 0.51 0.49 6.10 0.52 0.48 6.19 0.52 0.50 6.07 

Variance 0.01 -0.03 8.69 0.01 -0.08 8.88 0.01 -0.03 8.69 

Average trimmed crop 

height 
0.53 0.51 5.99 0.55 0.51 5.98 0.56 0.54 5.76 

Trimmed variance 0.00 -0.04 8.72 0.02 -0.07 8.82 0.00 -0.04 8.72 

Energy wavelet 0.54 0.52 5.89 0.54 0.50 6.02 0.53 0.51 5.99 

Lower envelope 0.62 0.60 5.39 0.62 0.59 5.48 0.61 0.59 5.45 

Lower envelope 

integral 
0.62 0.60 5.38 0.62 0.59 5.48 0.61 0.59 5.45 

Lower envelope 

energy 
0.61 0.59 5.46 0.61 0.57 5.56 0.59 0.57 5.58 

Upper envelope 0.44 0.42 6.54 0.46 0.41 6.55 0.48 0.46 6.31 

Upper envelope 

integral 
0.44 0.42 6.54 0.46 0.41 6.56 0.48 0.46 6.32 

Upper envelope 

energy 
0.12 0.08 8.21 0.13 0.05 8.34 0.10 0.06 8.26 

Derivative 0.00 -0.04 8.73 0.00 -0.09 8.92 0.00 -0.04 8.73 

Derivative variance 0.00 -0.04 8.72 0.15 0.07 8.25 0.00 -0.04 8.73 

Derivative energy 0.00 -0.04 8.73 0.14 0.06 8.29 0.00 -0.04 8.73 

Count 0.02 -0.02 8.64 0.24 0.17 7.76 0.01 -0.03 8.67 

Peak count 0.00 -0.04 8.72 0.03 -0.06 8.77 0.00 -0.04 8.72 

Frequency 0.13 0.09 8.15 0.18 0.11 8.09 0.18 0.14 7.92 

Bandwidth 0.15 0.11 8.04 0.15 0.07 8.22 0.14 0.10 8.08 

SFDR 0.27 0.24 7.44 0.32 0.26 7.36 0.33 0.30 7.15 

SNR 0.13 0.09 8.14 0.14 0.06 8.30 0.11 0.07 8.22 

THD 0.04 0.00 8.54 0.06 -0.03 8.66 0.05 0.01 8.51 

Mean of max 0.44 0.42 6.52 0.46 0.41 6.52 0.48 0.46 6.28 

Pseudo-max 0.37 0.34 6.90 0.43 0.38 6.75 0.44 0.42 6.50 
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Fig. 22. Linear regression of biomass and lower envelope integral 

 

The resulting RMSE of 5.38 t/ha with that processing method was still relatively high. 

Because of this, new factors that included combinations of the mentioned processing methods 

were considered. 

 

The combination of processing methods gave rise to an improved fitting, but in order 

to avoid overfitting, the number of parameters was limited to a maximum of 6. This constraint 

in the complexity of the model would prove useful in a validation experiment. Table 13 and 

the following equations summarize the most relevant findings. 

 

Table 13. Summary of results from regressions by equation 

Equation number R2 R2
adj RMSE [t/ha] Number of parameters 

(12) 0.68 0.65 5.06 3 

(13) 0.83 0.81 3.72 4 

(14) 0.92 0.90 2.71 5 

(15) 0.93 0.91 2.55 6 

 

𝑓(𝒉𝑖
𝑙𝑎𝑠𝑒𝑟) = 𝑎 + 𝑏

[𝐿𝑜𝑤𝑒𝑟 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝑒𝑛𝑒𝑟𝑔𝑦]

[𝑈𝑝𝑝𝑒𝑟 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝑒𝑛𝑒𝑟𝑔𝑦]

+𝑐[𝑀𝑒𝑎𝑛 𝑜𝑓 𝑚𝑎𝑥]
[𝐿𝑜𝑤𝑒𝑟 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝑒𝑛𝑒𝑟𝑔𝑦]

[𝑈𝑝𝑝𝑒𝑟 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝑒𝑛𝑒𝑟𝑔𝑦]
(12)
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𝑓(𝒉𝑖
𝑙𝑎𝑠𝑒𝑟) = 𝑎 + 𝑏[𝑆𝐹𝐷𝑅] + 𝑐[𝐿𝑜𝑤𝑒𝑟 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝑒𝑛𝑒𝑟𝑔𝑦]2 + 𝑑[𝑆𝐹𝐷𝑅]2 (13) 

 

𝑓(𝒉𝑖
𝑙𝑎𝑠𝑒𝑟) = 𝑎

[𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙]2

[𝑀𝑎𝑥]2
+ 𝑏

[𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑐𝑟𝑜𝑝 ℎ𝑒𝑖𝑔ℎ𝑡]2

[𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒]2

+𝑐
[𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙]2[𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑐𝑟𝑜𝑝 ℎ𝑒𝑖𝑔ℎ𝑡]

[𝑀𝑎𝑥]2[𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒]

+𝑑
[𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙][𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑐𝑟𝑜𝑝 ℎ𝑒𝑖𝑔ℎ𝑡]2

[𝑀𝑎𝑥][𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒]2

+𝑒
[𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑐𝑟𝑜𝑝 ℎ𝑒𝑖𝑔ℎ𝑡]3

[𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒]3
(14)

 

 

𝑓(𝒉𝑖
𝑙𝑎𝑠𝑒𝑟) = 𝑎[𝐿𝑜𝑤𝑒𝑟 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝑒𝑛𝑒𝑟𝑔𝑦] + 𝑏[𝐿𝑜𝑤𝑒𝑟 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝑒𝑛𝑒𝑟𝑔𝑦]2

+𝑐[𝐿𝑜𝑤𝑒𝑟 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝑒𝑛𝑒𝑟𝑔𝑦]3 + 𝑑[𝑆𝐹𝐷𝑅] + 𝑒[𝑆𝐹𝐷𝑅]2 + 𝑓[𝑆𝐹𝐷𝑅]3 (15)
 

 

 

Fig. 23. Best fit achieved with the first approach 

 

The best fitting regression, expressed in Equation (15) and used to build Figure 23, 

relied on two processing methods that are relatively hard to find physical meaning. 

Nonetheless, an intuition about what SFDR and Lower envelope energy mean can be 

provided for this context. SFDR is a ratio between the power at the fundamental frequency 

of a signal and the power at a significant higher frequency. This ratio is then a measure of 

how important the higher frequency components are, where typically the spurious peak is 
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due to noise. On the other hand, the envelope of a signal provides information about the low 

frequency components. By considering low frequency and high frequency components 

separately, the processing method could produce a more reliable estimation. In the context 

of height profiles, low frequency components referred to large-scale sections of the canopy, 

as opposed to sections of the profile with larger local variability. 

 

Regarding the second approach, inference of a canopy density function, the 

performance of different density functions is summarized in Table 14. In order to achieve 

results comparable to those of the first approach, a relatively large number of parameters was 

required. For example, the best fitting of a density function used 9 parameters, as specified 

in Equation (16). Figures 24 and 25 illustrate this density function, while Figure 26 shows 

the fitting of the data using this approach. It was expected that the density at lower parts of 

the canopy was higher, since the stems are heavier than the leaves. The elements of this 

approach have a clear physical meaning. 

 

Table 14. Summary of results from density functions 

Density function R2 R2
adj RMSE [t/ha] Number of parameters 

Constant 0.44 0.44 6.27 1 

Linear 0.45 0.43 6.21 2 

Quadratic 0.49 0.44 5.98 3 

Cubic 0.50 0.43 5.94 4 

Exponential 0.44 0.42 6.25 2 

Gaussian 0.48 0.43 6.03 3 

Sinusoidal 0.50 0.45 5.90 3 

Rational 0.52 0.48 5.80 3 

Rational 0.54 0.47 5.70 4 

Logistic* 0.49 0.44 5.98 3 

Generalized logistic* 0.49 0.42 5.97 4 

Rational tanh* 0.63 0.58 5.10 4 

Modified logistic* 0.74 0.61 4.24 9 

*: referring to the cumulative density, of which the density function is the derivative  
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𝑓(𝐻𝑖(𝜃)) = 𝑎 ∗ 𝑡𝑎𝑛ℎ (𝑏 ∗
𝐻𝑖(𝜃) + 𝑐

𝐻𝑖(𝜃) + 𝑑
)

𝐻𝑖(𝜃) − 𝑒

𝐻𝑖(𝜃) + 𝑓
+ 𝑔 ∗ 𝑠𝑖𝑛(𝑝(𝐻𝑖(𝜃) + 𝑙)) (16) 

 

Fig. 24. Best fit for cumulative density function 

 

 

Fig. 25. Best fit for density function 
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Fig. 26. Best fit achieved with the second approach 

 

At this point, it was considered the effect of the measurements where the biomass 

yield was above 30 t/ha, which could be regarded as outliers. It is important to consider that 

with the current results, removing these higher yield points from the computation of RMSE 

would turn the value of this indicator into 2.70 t/ha. By removing the higher yield points and 

using the second approach to retry the fitting of the density function, Table 15 was built. For 

all the considered cases, the fitting improved, resulting in a reduction of the gap among the 

best and worst density functions. These results seemed to show that removing the higher 

yield points is convenient for simpler models, which could be explained by considering that 

the whole range of the function was significantly reduced. The case of having a logistic 

cumulative density function produced the best results in terms of adjusted R2, and the RMSE 

was lower than the corresponding best case when the higher yield points were included. 

Nonetheless, in spite of the convenience of these results, this process proved itself 

inconclusive regarding the determination of the outlier status of the higher yield points. Thus, 

it was assumed that the higher yield was produced by the natural variability of the crop, and 

was retained in the final analysis.  
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Table 15. Summary of results from density functions without higher yield points 

Density function R2 R2
adj RMSE [t/ha] Number of parameters 

Constant 0.65 0.65 2.72 1 

Linear 0.67 0.65 2.62 2 

Quadratic 0.69 0.66 2.57 3 

Cubic 0.69 0.64 2.57 4 

Exponential 0.66 0.64 2.65 2 

Gaussian 0.69 0.66 2.54 3 

Sinusoidal 0.69 0.66 2.55 3 

Rational 0.58 0.54 2.97 3 

Rational 0.58 0.51 2.97 4 

Logistic* 0.70 0.67 2.52 3 

Generalized logistic* 0.70 0.65 2.52 4 

Rational tanh* 0.71 0.66 2.23 4 

Modified logistic* 0.78 0.65 2.14 9 

*: referring to the cumulative density, of which the density function is the derivative 

 

Finally, Table 16 compares the best case of both approaches. The percentage error 

was considerably high for both cases, which was troubling, but was partially explained by 

the large range covered by the measured biomass. Whatever the case, the coefficient of 

determination was significant, showing that the laser measurements explained the biomass 

behavior. There was a possibility that the uncertainty of the manual biomass measurement 

was also playing a role in this discrepancy. The moisture sensor information remained a good 

complement for the laser measurements. The moisture was linearly combined with the 

current estimations made with the first and second approaches by themselves, as stated by 

equation (17). 

 

[𝑓𝑖𝑛𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒] = 𝑎 ∗ [𝑓𝑖𝑟𝑠𝑡 𝑜𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ] + 𝑏 ∗ [𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒] + 𝑐 (17) 
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Table 16. Summary of best results by approach 

Approach R2 R2
adj 

RMSE 

[t/ha] 
 

MAPE 

[%] 

Regression of profile-representative features 0.93 0.91 2.55  34.08 

Inference of a canopy density function 0.74 0.61 4.24  35.82 

Regression of profile-representative features + 

Moisture 
0.94 0.92 2.16  31.44 

Inference of a canopy density function + 

Moisture 
0.78 0.62 4.18  32.09 
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5. SUMMARY AND CONCLUSIONS 

 

The model described in Equation (10), when the moisture measurements were added, 

was found to be the best fit for the controlled environment experiment. The calibration RMSE 

was around 0.3 ln(g) and 0.4 ln(g) for the estimation of fresh biomass in lettuce and kale, 

respectively. Similarly, the RMSE was 0.44 ln(g) for dry biomass in both lettuce and kale. 

The percentage error was between 25.5% and 55.5% for the final calibration. These results 

proved that the developed device is a viable tool for measuring biomass in an easy and fast 

way. There were strong indicators that the device is not only more convenient than traditional 

manual measurement of plant height, i.e. with ruler or measuring tape, but also more accurate 

in the estimation of biomass. 

 

During the development of this controlled environment experiment, it was found that 

the laser sensor outperforms the ultrasonic sensor, and the integration of both provides a 

method to further improve the estimation of biomass, especially when accompanied by 

moisture measurements. Computing the average crop height, average recorded crop height, 

and mode proved to be simple yet useful transformations for the signal processing step. This 

resulted in better fitting than other processing methods. It was also clear that this was 

dependent on the crop species under consideration. 

 

The production field experiment streamlined the setup and featured a more thorough 

analysis method. Two different approaches were considered, providing R2 of 0.94 and 0.78, 

respectively. These values were comparable to those of the controlled environment 

experiment, showing that the performance was not diminished in an open field environment. 

The modifications done on the prototype produced even more convenient handling of the 

data collection. This would result in faster and more frequent sampling becoming available 

for the final users. 
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APPENDICES 

 

APPENDIX A: Python script run in Raspberry Pi 

#!usr/bin/env python  

  

import time  

import serial  

import numbers  

import os.path  

import Adafruit_DHT  

import Adafruit_ADS1x15  

from subprocess import call  

from zaber.serial import BinarySerial, BinaryDevice, BinaryCommand  

  

def newLogFile():  

  filename='file1.txt'  

  while(os.path.isfile('/home/pi/Laser/'+filename)):  

    filename='file'+str(int(filename[4:-4])+1)+'.txt'  

  return open('/home/pi/Laser/'+filename,'w')  

  

def readFast(adc1, adc2, GAIN, RATE):  

  # - 0 = Channel 0 minus channel 1  

  # - 1 = Channel 0 minus channel 3  

  # - 2 = Channel 1 minus channel 3  

  # - 3 = Channel 2 minus channel 3  

  valueLaser=60-

0.1*(200*0.00018751*adc1.read_adc_difference(0,gain=GAIN,data_rate=RATE)-600.7)  

  

valueUltrasonic=2.54*(3.5+68*0.000187*adc2.read_adc_difference(3,gain=GAIN,data_rat

e=RATE)/4.5)  
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valueThermal=100*0.000187*adc2.read_adc_difference(0,gain=GAIN,data_rate=RATE)+

0.2  

  return [valueLaser,valueUltrasonic,valueThermal]  

    

serBluetooth=serial.Serial('/dev/ttyAMA0',9600)  

  

logFile=newLogFile()  

  

sensor = Adafruit_DHT.DHT22  

pin = 23  

  

adc1 = Adafruit_ADS1x15.ADS1115()  

adc2 = Adafruit_ADS1x15.ADS1115(address=0x49)  

GAIN = 2/3  

RATE = 475  

  

speed=73  

direction=True  

full_lap=12800  

updatePosition=BinaryCommand(1,60)  

  

flag=True  

while(flag):  

  serBluetooth.write('idle\n')  

  message=serBluetooth.readline().strip()  

  print(message)  

  if message=='new':  

  serBluetooth.write(logFile.name)  

  serBluetooth.write(str(os.path.getsize(logFile.name)))  

    logFile.close()  
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    logFile=newLogFile()  

  elif message=='test':  

    data=[]  

    for k in range(10):  

      sensorOutput=readFast(adc1,adc2,GAIN,RATE)  

      data+=[sensorOutput]  

      serBluetooth.write('1:{:.2f} | {:.2f} | {:.2f}\n'.format(sensorOutput[0],  

                     sensorOutput[1],  

                                sensorOutput[2]))  

      time.sleep(0.005)  

  elif message=='lap':  

    serBluetooth.close()  

    data=[]  

    logFile.write('New Lap\n')  

    port=BinarySerial('/dev/ttyUSB0',timeout=200)  

    device=BinaryDevice(port, 1)  

    lap=False  

    initialPosition=device.stop().data  

    currentPosition=initialPosition  

    while(abs(currentPosition-initialPosition)<=full_lap):  

      if(direction):    

        device.move_vel(speed)  

      else:  

        device.move_vel(-1*speed)  

      currentPosition=device.send(updatePosition).data  

      sensorOutput=readFast(adc1,adc2,GAIN,RATE)  

      data+=[sensorOutput+[currentPosition]]  

    device.stop()  

    port.close()        

    serBluetooth=serial.Serial('/dev/ttyAMA0',9600)  

    for i in range(5):  
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      serBluetooth.write('1:{} | {} | {} | {}\n'.format(str(data[-5+i][0]),  

                                      str(data[-5+i][1]),  

                                  str(data[-5+i][2]),  

                                        str(data[-5+i][3])))  

    serBluetooth.write(str(len(data)))  

    for point in data:    

      logFile.write('1:{},{},{},{}\n'.format(str(point[0]),  

                          str(point[1]),  

                          str(point[2]),  

                          str(point[3])))  

    serBluetooth.write('finished')  

    direction=not direction  

  elif message=='humid':  

    for i in range(10):  

      s=Adafruit_DHT.read(sensor,pin)  

      if isinstance(s[0],numbers.Number):  

        valueHumidity=s[0]  

        valueTemperature=s[1]  

      else:  

        valueHumidity=0  

        valueTemperature=0  

      serBluetooth.write('2:{} | {}\n'.format(str(valueHumidity),  

                        str(valueTemperature)))  

      logFile.write('2:{},{}\n'.format(str(valueHumidity),  

                       str(valueTemperature)))  

      time.sleep(1)  

  elif message=='stop':  

    if not logFile.closed:  

      logFile.close()  

    flag=False  

  elif message=='off':  
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    serBluetooth.close()  

    if not logFile.closed:  

      logFile.close()  

    call("sudo nohup shutdown -h now", shell=True)  
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APPENDIX B: MATLAB code for computing Integral in first approach 

 

function [ output ] = JIntegral( vector, angles ) 

A=vector; 

A(isnan(A))=0; 

output=trapz(pi*angles/180,A); 

end 
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APPENDIX C: MATLAB code for computing Average recorded crop height in first 

approach 

 

function [ output ] = JMean( vector ) 

A=vector; 

A(A<0)=0; 

output=nanmean(A); 

end 

  



64 
 

APPENDIX D:  MATLAB code for computing Max in first approach 

 

function [ output ] = JMax( vector ) 

output=max(vector); 

end 
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APPENDIX E:  MATLAB code for computing Energy in first approach 

 

function [ output ] = JEnergy( vector, angles ) 

A=vector; 

A(isnan(A))=0; 

output=trapz(pi*angles/180,A.^2); 

end 
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APPENDIX F:  MATLAB code for computing Variance in first approach 

 

function [ output ] = JVar( vector ) 

A=vector; 

A(A<0)=0; 

output=nanvar(A); 

end 
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APPENDIX G:  MATLAB code for computing Average trimmed crop height in first 

approach 

 

function [ output ] = JTrimmean( vector ) 

output=trimmean(vector,50); 

end 
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APPENDIX H:  MATLAB code for computing Trimmed variance in first approach 

 

function [ output ] = JTrimvar( vector ) 

A=vector; 

aux=A(A>prctile(A,25)); 

output=nanvar(aux(aux<prctile(A,75))); 

end 
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APPENDIX I:  MATLAB code for computing Energy wavelet in first approach 

 

function [ output ] = JEnergyW( vector, angles ) 

A=vector; 

A(isnan(A))=0; 

n=5; 

w='haar'; 

[c,l]=wavedec(A,n,w); 

thr=[max(abs(c(sum(l(1:5))+1:sum(l(1:6))))),max(abs(c(sum(l(1

:4))+1:sum(l(1:5))))),0.75*max(abs(c(sum(l(1:3))+1:sum(l(1:4)

)))),0.5*max(abs(c(sum(l(1:2))+1:sum(l(1:3))))),0.25*max(abs(

c(l(1)+1:sum(l(1:2)))))]; 

[Af,~,~,~,~]=wdencmp('lvd',c,l,w,n,thr,'s'); 

output=trapz(pi*angles/180,Af.^2); 

end 
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APPENDIX J:  MATLAB code for computing Lower envelope in first approach 

 

function [ output ] = JLmean( vector ) 

[~,aux]=envelope(vector,10,'peaks'); 

output=nanmean(aux); 

end 
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APPENDIX K:  MATLAB code for computing Lower envelope integral in first 

approach 

 

function [ output ] = JLintegral( vector, angles ) 

[~,aux]=envelope(vector,10,'peaks'); 

output=trapz(pi*angles/180,aux); 

end 

  



72 
 

APPENDIX L:  MATLAB code for computing Lower envelope energy in first 

approach 

 

function [ output ] = JLenergy( vector, angles ) 

[~,aux]=envelope(vector,10,'peaks'); 

output=trapz(pi*angles/180,aux.^2); 

end 
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APPENDIX M:  MATLAB code for computing Upper envelope in first approach 

 

function [ output ] = JUmean( vector ) 

[aux,~]=envelope(vector,10,'peaks'); 

output=nanmean(aux); 

end 
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APPENDIX N:  MATLAB code for computing Upper envelope energy in first 

approach 

 

function [ output ] = JUenergy( vector, angles ) 

[aux,~]=envelope(vector,10,'peaks'); 

output=trapz(pi*angles/180,aux.^2); 

end 
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APPENDIX O:  MATLAB code for computing Derivative in first approach 

 

function [ output ] = JDmean( vector, angles ) 

derivative=diff(vector)./diff(pi*angles/180); 

aux=derivative(derivative>prctile(derivative,25)); 

output=nanmean(aux(aux<prctile(derivative,75))); 

end 
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APPENDIX P:  MATLAB code for computing Derivative variance in first approach 

 

function [ output ] = JDvar( vector, angles ) 

derivative=diff(vector)./diff(pi*angles/180); 

aux=derivative(derivative>prctile(derivative,25)); 

output=nanvar(aux(aux<prctile(derivative,75))); 

end 
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APPENDIX Q:  MATLAB code for computing Derivative energy in first approach 

 

function [ output ] = JDenergy( vector, angles ) 

derivative=diff(vector)./diff(pi*angles/180); 

thr=prctile(derivative,[25,75]); 

derivative(derivative<thr(1))=0; 

derivative(derivative>thr(2))=0; 

derivative(isnan(derivative))=0; 

output=trapz(pi*angles(1:end-1)/180,derivative.^2); 

end 
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APPENDIX R:  MATLAB code for computing Count in first approach 

 

function [ output ] = JCount( vector ) 

aux=findchangepts(vector,'MinThreshold',1); 

output=length(aux); 

end 
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APPENDIX S:  MATLAB code for computing Peak count in first approach 

 

function [ output ] = JPcount( vector ) 

aux=findpeaks(vector); 

output=length(aux); 

end 
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APPENDIX T:  MATLAB code for computing Frequency in first approach 

 

function [ output ] = JFreq( vector ) 

output=medfreq(vector); 

end 
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APPENDIX U:  MATLAB code for computing Bandwidth in first approach 

 

function [ output ] = JPBW( vector ) 

output=powerbw(vector); 

end 
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APPENDIX V:  MATLAB code for computing SFDR in first approach 

 

function [ output ] = JSFDR( vector ) 

output=sfdr(vector); 

end 
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APPENDIX X:  MATLAB code for computing SNR in first approach 

 

function [ output ] = JSnr( vector ) 

output=snr(vector); 

end 
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APPENDIX Y:  MATLAB code for computing THD in first approach 

 

function [ output ] = JTHD( vector ) 

output=thd(vector); 

end 
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APPENDIX Z:  MATLAB code for computing Mean of max in first approach 

 

function [ output ] = JMeanmax( vector ) 

n=floor(length(vector)/10); 

aux=zeros(n,1); 

for i=1:n 

    aux(i)=max(vector(10*(i-1)+1:10*i)); 

end 

output=mean(aux); 

end 
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APPENDIX AA:  MATLAB code for computing Pseudo-max in first approach 

 

function [ output ] = JPsmax( vector ) 

output=prctile(vector,95); 

end 
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APPENDIX AB: MATLAB code defining error function for second approach 

 

function [ e ] = errorD( mv, mystruct, params ) 

a=params(1); 

b=params(2); 

c=params(3); 

d=params(4); 

e=params(5); 

f=params(6); 

g=params(7); 

h=params(8); 

l=params(9); 

positions=fieldnames(mystruct); 

mestimate=zeros(length(positions)-2,1); 

for i=2:length(positions)-1 

    maux=zeros(1,size(mystruct.(positions{i}),2)); 

    for j=1:size(mystruct.(positions{i}),2) 

        xx=mystruct.(positions{i})(:,j); 

        

maux(j)=trapz(pi*mystruct.x/180,a*tanh(b*(xx+f)./(xx+h)).*(xx

+c)./(xx+d)+e*sin(l*(xx+g)))/(2*pi); 

    end 

    mestimate(i-1)=nanmean(maux,2); 

end 

e=rms(mv-mestimate); 

end 
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APPENDIX AC:  MATLAB script in second approach 

 

clc; 

clear all; 

load('dataj2.mat'); 

load('shortForTrain.mat'); 

positions=fieldnames(JData); 

ai=91.6872; 

bi=0.4049; 

ci=-1.5183; 

di=2.822; 

ei=6.1028; 

fi=1.9798; 

gi=0.1399; 

hi=3.1413; 

li=0.1; 

[coef,fval]=fminsearch(@(u) 

errorD(dd,JData,u),[ai,bi,ci,di,ei,fi,gi,hi,li]); 

rmse=fval; 

a=coef(1); 

b=coef(2); 

c=coef(3); 

d=coef(4); 

e=coef(5); 

f=coef(6); 

g=coef(7); 

h=coef(8); 

l=coef(9); 

mestimate=zeros(length(positions)-2,1); 

for i=2:length(positions)-1 

    maux=zeros(1,size(JData.(positions{i}),2)); 

    for j=1:size(JData.(positions{i}),2) 



89 
 

        xx=JData.(positions{i})(:,j); 

        

maux(j)=trapz(pi*JData.x/180,a*tanh(b*(xx+f)./(xx+h)).*(xx+c)

./(xx+d)+e*sin(l*(xx+g)))/(2*pi); 

    end 

    mestimate(i-1)=nanmean(maux,2); 

end 

r2=1-sum((dd-mestimate).^2)/sum((dd-mean(dd)).^2); 


