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ABSTRACT

In-season sensing of crop architectonics is important for identifying and preventing
potential stresses as well as optimizing crop management logistics. Measurements of
chlorophyll content, size, density, and/or temperature of the canopy have been used as
primary in situ diagnostic tools. The goal of this study was to develop a prototype sensor
system that would integrate laser proximity measurements as the basis for a low-cost
instrumented system for green vegetable production. The system involves circular scanning

of crop canopies to identify fresh biomass under different soil and management conditions.

The first experiment was conducted in a greenhouse with lettuce and kale. Biomass
was estimated from the sensor system’s measurements resulting in R’ values between 0.74
and 0.93, percentage error between 25% and 55%, and root mean squared error (RMSE)
between 0.295 In(g) and 0.441 In(g). These values include both dry and fresh biomass for
lettuce and kale. The second experiment in a spinach field on a commercial farm produced
similar results. Two approaches for processing the laser-based height profiles are discussed:
regression of profile-representative features and inference of a canopy density function.
Depending on the processing method, the R’ was either 0.78 or 0.94, and the RMSE was 4.18
t/ha and 2.16 t/ha for each case. The mean absolute percentage error (MAPE) was around
30% for both methods. The second experiment featured improved hardware in terms of ease

of operation.

Proper use of this technology will allow farm managers to improve harvest plans and

shipment schedules under variable plant growth dynamics.



RESUME

La détection saisonnicere de l'architectonique des plantes cultivées est importante pour
discerner et prévenir les contraintes potentielles ainsi que pour optimiser la logistique de la
gestion des cultures. Des mesures de la teneur en chlorophylle, de la taille, de la densité ou
de la température de la canopée ont été utilisées comme principaux outils de diagnostic in
situ. La présente étude avait pour objectif de faire le point sur le développement d'un
prototype de systéme de capteurs intégrant les mesures de proximité au laser comme base
d'un systétme muni d’équipement a faible colit pour la production de légumes verts. Le
systéme nécessite le balayage circulaire des canopées pour identifier la biomasse fraiche de

sols différents et de conditions de gestion variées.

La premiére expérience a été réalisée dans une serre avec de la laitue et du chou frisé.
Dans cette étude, la biomasse a été estimée a partir des mesures du systéme de capteurs. Les
valeurs R’ obtenues étaient entre 0.74 et 0.93, le pourcentage d’erreur oscillait entre 25% et
55%, et ’erreur quadratique moyenne (RMSE) était entre 0.295 In(g) et 0.441 In(g). Ces
valeurs incluent la biomasse fraiche et seéche pour la laitue et le chou frisé. Ensuite, la
deuxieme étude a été menée, cette fois-ci dans un champ d'épinards d'une ferme
commerciale. Les résultats obtenus ont été similaires a ceux de 1’é¢tude précédente. Deux
approches différentes pour traiter les profils de hauteur basés sur le laser sont discutées: la
régression des caractéristiques représentatives du profil et l'inférence d'une fonction de
densité de la canopée. Les mesures de R’ obtenues étaient de 0.78 ou de 0.94, selon la
méthode de traitement utilisée, et le RMSE était de 4.18 t/ha, et de 2.16 t/ha. L’erreur
moyenne absolue en pourcentage (MAPE) était d’environ 30% pour les deux méthodes. Cette

deuxiéme expérience faisait également appel a un matériel amélioré.

L'utilisation appropriée de cette technologie permettra aux gestionnaires des fermes
d'améliorer leurs plans de récolte et les calendriers d'expédition dans des conditions de

croissance variables.
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1. INTRODUCTION

Crop biomass is used as an indicator of plant growth in plant phenotyping and as a
way to estimate yield in agriculture (Golzarian et al., 2011; Van Henten, 1994). Crop biomass
refers to the mass of the crop composed of live cells. In the present document, when biomass
is mentioned, it refers to aboveground biomass. From the perspective of precision agriculture
(PA), it would be useful to identify zones of the field where there are variabilities in the soil
or where the crop produces different levels of biomass. This information could provide an

improvement in the way in which local heterogeneities are addressed.

According to Catchpol & Wheeler (1992), aboveground biomass is usually measured
by destructive methods. Several plants are wasted using this procedure to have sufficient data
to determine plant growth in the field. Non-destructive methods for measuring biomass are
desirable, especially with a sensor-to-plant concept, as stated by Golzarian et al. (2011). Such
a procedure would make high-throughput data collection possible, where the final users could

take advantage of a practical implementation.

The present work is relevant for considering the integration of lasers with other
sensors and for a comparison with ultrasonic measurements; furthermore, its use is justified
as a possible way to avoid the increased costs of 3D laser devices. Also, the application of

this technique in lettuce and other horticultural products is seldom found in the literature.

1.1. OBJECTIVES

The objective of this study was to develop and evaluate a laser-based sensor system
for the indirect measurement of aboveground crop biomass suitable for in sifu deployment.
The completion of this objective would be a step closer to the ultimate goal of equipping
farmers with a tool for the rapid, non-destructive, and reliable assessment of their crops.
Specific objectives were: (1) to develop the system prototype, (2) to evaluate the performance
of the system in controlled and in field growth environments, and (3) to study the most

significant methods for retrieving the biomass estimate from the laser measurements.
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2. LITERATURE REVIEW

“Estimation of plant biomass is a central part of many ecological investigations. For
instance, plant biomass is used to characterize biomes and ecosystems, to measure
productivity, grazing pressure, and many other processes” (Jonasson, 1988). Traditionally,
farmers have relied on manual measurements and visual estimations to keep track of the
biomass changes across their fields. Although experienced farmers can conduct this
estimation with relative accuracy, the advantages of having sensor systems performing these
operations are evident. With sensor systems, the subjectivity of the estimation is removed,
allowing for improved repeatability, as well as a reduction in labour-intensive and time-

consuming sampling activities (Fricke, Richter, & Wachendorf, 2011).

One solution comes in the form of Yield Monitors (YM), which measure the
production of the crop as it is harvested (Borgelt, 1993; Vansichen and DeBaerdemacker,
1993; Plant, 2001; Fulton et al., 2009). Similar approaches have been extended to
measurements to be taken before harvesting, but they all share the common factor of
removing the whole plant or part of it per measurement, limiting the maximum number of

measurements that can be taken in a field.

Most of the current non-destructive alternatives exploit the relationship between crop
aboveground biomass and canopy properties like plant height, total volume or Leaf Area
Index (LAI), all of which can be reliably measured without harming the crop (Freeman et al.,
2007; Eitel et al., 2014; Biskup et al., 2007; Rosell et al., 2009; Moorthya et al., 2010). With
this approach, high accuracy can be achieved, depending on the technology used and the
number of degrees of freedom involved in the measurement. The main limiting factor for this

scenario is cost, driven by the increasing complexity of the developed systems.

Reusch (2009) used an ultrasonic sensor to estimate the dry mass density for four
varieties of wheat. The sensor measured multiple echoes as they were reflected from different
layers in the canopy while mounted on a vehicle. The collected information was used to

determine which wheat variety was more convenient in terms of the variety which produced
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the highest yield. Reusch (2009) found that the relationship between dry mass density and
height changed with growth stage. He then proposed the separation of this behavior into three
groups to fit linear models for each of the growth stages, as a way of avoiding nonlinear

models.

Ehlert et al. (2008) took a similar approach by using a modified laser rangefinder
mounted on a vehicle. The laser rangefinder worked using the principle of laser triangulation,
producing a height profile across the path of the vehicle. The mean of the profile was taken
as related to the biomass yield using linear and quadratic regressions. Fresh and dry biomass
yield was estimated for oilseed rape and winter rye, while comparing the effect of the angle

of incidence of the laser.

In an earlier work, Tumbo et al. (2001) made a comparison between laser and
ultrasonic technologies for the estimation of canopy volume in citrus trees. Both types of
sensors were mounted on moving platforms. The volume was computed as a numeric
integration of the sensors’ measurements for the ultrasonic technology. They found that the

laser provided slightly better results, especially in defoliated trees.

Lasers with 3D capabilities were mounted on a tripod (Keightleya and Bawdenb,
2010; Eitel et al., 2014), rather than on a moving vehicle as was explained in the previously
mentioned works. The former focused on retrieving a measurement of canopy volume for
grapevine, while the latter estimated biomass based on a similar calculation of volume for
wheat. The type of sensor used in both studies is referred to as Light Detection And Ranging
(LiDAR), operating on time-of-flight principle.

Kjaer and Ottosen (2015) mounted a 3D laser on an automated boom, which allowed
it to move along one axis, hence, covering a larger area of observation. The scan provided
height, 3D leaf area, and projected leaf area. These measurements were used as predictors of
properties usually measured destructively, including dry and fresh mass. The results were
later used to identify the most convenient cultivars of rapeseed. Also, studying leaf movement

and changes in canopy configuration was proposed as an application of the device.
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The possibility of improving the estimation of biomass by adding multispectral
sensors has been considered (Tilly et al., 2015; Schaefer and Lamb, 2016). The former study
used a 3D laser scanner in a barley field, while the latter used a 2D LiDAR sensor mounted
on a moving vehicle in a tall fescue field. After examination of NDVI and other vegetation
indexes, it was determined that they produced better results. However, the improvements
were small in both cases, casting doubt on the relevancy of this complementary sensor in

relation to the added cost and complexity.

Extending this idea to larger scales has been tested in (Zarco-Tejada, Diaz-Varela,
Angileri, & Loudjani, 2014) and (Torres-Sanchez, Lopez-Granados, Serrano, Arquero, &
Pefia, 2015), where the canopy properties are computed from camera images taken from a
UAV. This is different from the use of reflectance-based sensors mounted in UAV, as in
(Engstrom et al., 2009), where the canopy architectonics are not considered explicitly, yet
the biomass or other plant properties can be estimated non-destructively. In (Tang & Shao,
2015) and (Elaksher, Bhandari, Carreon-Limones, & Lauf, 2017) canopy measurements are
measured with a LIDAR system mounted on an UAV, but no other plant properties are further

derived from the results of the direct measurement.

Biomass estimation is not the only application of this principle that has been
presented. Further work has been done in using canopy properties as feedback within a
control loop. For example, in (Zaman, Schumann, & Miller, 2005), prescription maps for
fertilization were built based on the measured canopy volume. Similarly, in (Escola et al.,
2009), a foliar index was created and related to a cross-sectional area and height of tree
canopies. The results were fed to a scheduler for festilizer and pesticide applications. In tree
orchards, the size of the tree canopy can be related to fruit yield, as was done in (Zaman,

Schumann, & Miller, 2006) with citrus.

The work presented in this manuscript is a continuation of Chapter 3 of (Su, 2017),
where an ultrasonic proximity sensor was used in a similar setup, characterized by the
rotating sensor head, used for arugula and spinach, and its measurements were related with

fresh and dry biomass. The base hypothesis is that the increased accuracy of using a laser
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sensor would improve biomass estimation (Tumbo, Salyani, Whitney, Wheaton, & Miller,
2001). Additionally, the height profiles resulting from the rotating sensor head are expected
to rank between simple height and volume-based estimations. In (Arno et al., 2009), the
intuition that volume-based estimates produce better results than height-based is confirmed.
Nonetheless, given the results from (Su, 2017), height profiles may be a more practical option
to handle the trade-off between accuracy and cost of the sensor system, given the restrictions
that need to be followed for implementations meant to be operated in a farm environment. In
(Moorthy, Miller, Hu, Chen, & Li, 2008), it is shown that canopy properties can be readily

determined in a lab setting.

Other agricultural applications and characteristics of Light Detection And Ranging
(LiDAR) are presented in (Omasa, Hosoi, & Konishi, 2006) and (Ehlert, Heisig, & Adamek,
2009). Among the aforementioned, the optimization of combined parameters during
harvesting for current crop conditions and the improvement in guidance of agricultural
machinery based on the detection of crop edges are some of the previously least explored

topics.
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3. MATERIALS AND METHODS

3.1. DESIGN AND CONSTRUCTION OF THE DEVICE

The device combined laser, ultrasonic and thermal infra-red (IR) measurements from
the following commercially available sensors': IL-600 (Keyence Corporation, Itasca, IL,
USA), ToughSonicl4 (Senix Corporation, Hinesburg, VT, USA), and SSS-LT (Process
Sensors Corporation, Milford, MA, USA), respectively. The idea was to position these
sensors above the crop at a determined height in nadir view and move them in a circular path
parallel to the ground plane. Because of this, and to keep the general setup of a hand-held
device, a tripod was selected as the main frame for the entire system (AX620B100 62-Inch
Proline, Dolica, Rancho Cucamonga, CA, USA).

A stepper motor (T-NM17C04, Zaber Technologies, Vancouver, BC, Canada) was
located below the top of the tripod. The sensors were mounted in a 3D-printed holder which
allowed for changes in their position along the holder’s central axis. The holder was
connected from an edge to the shaft of the controlled stepper motor. In this configuration, the
sensors were arranged to spin in a circular path with a specific radius. The motor itself had
another 3D-printed holder that was attached to the tripod. Both holders were designed in
Inventor 2017 (Autodesk Inc., San Rafael, CA, USA) and their strength was validated with
a Finite Element Analysis simulation under the expected loads. The testing field laps were
taken with alternating clockwise and counter clockwise directions to avoid stress on the
wiring. The capability of the holder to change the position of the sensors allowed the radius

to be modified between 7 cm and 15 cm.

The three included sensors had analog output. The laser and ultrasonic outputs were
received by a data acquisition board (NI myDAQ, National Instruments Corporation, Austin,
TX, USA), while the thermal IR measurements were read by an Arduino UNO board
(Arduino AG, Chiasso, Switzerland). Both boards were working as Analog-to-Digital

! Mention of a trade name, proprietary product, or company name is for presentation clarity and
does not imply endorsement by the author or McGill University, nor does it imply exclusion of
other products that may also be suitable.
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Converters, transmitting the resulting signal to a laptop computer. LabView 2013 (National
Instruments Corporation, Austin, TX, USA) was used to read and log the sensors’
measurements along with a corresponding time stamp, send commands to the motor, and
provide a user interface. The block diagram is shown in Figure 1. The sensors and their
accompanying circuitry, as well as the motor, were powered by a 6-cell LiPo battery with
voltage converters. A separate box was built with High-Density Polyethylene (HDPE) to

contain the circuitry. Figure 2 shows the complete arrangement.

User input

Laser

Ml myDACQ

Ultrasonic

PC

h i

Stepper motor

Thermal IR > Arduino UNO /

Fig. 2. Picture illustrating the complete device in the greenhouse setup
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3.2. CONTROLLED ENVIRONMENT EXPERIMENT DESIGN

The controlled environment experiment took place within a greenhouse located at
Macdonald Campus of McGill University, Montreal, Canada. On March 28" 2017, four
hydroponic beds were allocated with 29 plants each (15 lettuce and 14 kale) plus one of 28
plants (14 of each type), as depicted in Figure 3. This was the maximum number of plants
each hydroponic bed could fit. Initially, all 5 beds were meant to have 29 plants, but there
were not enough seedlings available. Each plant was placed in a 4°x4”°x4” Rockwool cube.
The cubes were distributed in 4 rows of 7, and in those beds with 29, there was a single cube
on the edge. The crop varieties employed were romaine lettuce (Lactuca sativa L. var.
longifolia) and red Russian kale (Brassica napus subsp. pabularia). They were germinated
for two weeks in a growth chamber before being transferred into the hydroponic system. The
beds were irrigated by an ebb and flow system, where the half-strength Hoagland solution
was added periodically. Each bed had an independent ON/OFF controller to activate the
water pumps with soil moisture sensors as feedback. Each bed had different lower and upper

thresholds for the controller, as depicted in Table 1, to simulate the effect of water stress.

Table 1. Thresholds used to simulate water stress

Bed Lower limit [%] Upper limit [%]

1 50 100
2 50 85
3 50 75
4 10 100
5 25 85

Fig. 3. Illustration of the Rockwool cubes’ distribution in the hydroponic bed
18



On April 25™, the plants were harvested and the following properties were measured:
fresh aboveground biomass, dry aboveground biomass, maximum height, maximum
extended height, and the number of leaves. Since in all cases the measured biomass considers
only the aboveground components, the term will no longer be specified. Both fresh and dry
mass were measured using an electronic scale MXX-612 (Denver Instrument Inc., Bohemia,
NY, USA). Maximum height was measured between the soil level (the top face of the
Rockwool cube) and the highest point of the plant, without interfering with the plant’s pose.
Maximum extended height was measured between the soil level and the highest point of the
plant, while manually straightening the plant as vertical as possible without breaking it.
Intermediate harvesting was done at three earlier dates throughout the experiment where
fewer plants were collected, as stated in Table 2. Figure 4 shows the state of the beds at 42

Days After Seeding (DAS).

Table 2. Schedule for data collection and plant harvesting

Date DAS Plants harvested per bed

April 14" 32 5
April 171 35 N/A
April 18" 36 4
April 191" 37 N/A
April 20" 38 N/A
April 211" 39 6
April 22 40 N/A
April 24" 42 N/A
April 25" 43 14
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Fig. 4. Picture illustrating experimental setup in greenhouse

The experiment design was a completely randomized design with temporal repeated
measurements. It was assumed that the temporal repeated measurements were done over the
beds instead of the plants. The setup was a part of a hydroponic system designed for a
different experiment (Tikasz & Lefsrud, 2017). The treatment for this experiment was the
water stress in each bed. Equation (1) describes this design, where Y;;; denotes any of the

measured plant properties i.e. mass and height, for bed i, plant j, and day t.

€Y

Dt e+ (@) + ey (1)

In the above equation, u is the overall mean, a; is the effect of treatment i, c; is the

effect of time, (ac);; is the effect of the interaction between treatment and time, and el.(jl) and

sl(JZt) are error terms. Under the scope of this experiment, the treatment was done solely to
provide a wide range of biomass values to test the device. It was of interest to prove that the

system can provide meaningful predictions across the whole range of values attained.
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The developed device was used throughout the experiment according to the schedule
shown in Table 2. Each sensor provided a measurement every 45 min. The motor was set to
spin at a constant speed of 20°/s, providing a point every 0.9° that contains information from
the three sensors. Consequently, a complete lap provided a profile of 400 points. The sensor
holder was set at the maximum radius of 15 cm for all cases. In each bed, three locations
were used, labeled Close, Middle, and Far, in terms of the ends of the beds. In each of these
locations, around 5 laps were recorded with the device, covering both the kale and lettuce

sides.

For the reported dates, other sensors were used to keep track of the ambient state,
which were not part of the developed device. These sensors included thermal camera (C2,
FLIR Systems Inc., Wilsonville, OR, USA), PAR/quantum sensor (QMSS-ELEC, Apogee
Instruments Inc., Logan, UT, USA), ambient temperature and moisture (DHT22, Adafruit
Industries, New York, NY, USA), and multispectral (Crop Circle ACS-430, Holland
Scientific Inc., Lincoln, NE, USA). This last sensor, the Crop Circle, outputs the reflectance
of the crop to light at different wavelengths: red, red-edge, and NIR. Additionally, two
Vegetation Indexes (VI) are computed from those reflectance values: NDVI and NDRE. One

measurement was taken per day per bed from each of the previously mentioned sensors.

3.3. CONTROLLED ENVIRONMENT ANALYSIS

The estimation of biomass M;;; is usually based on canopy characteristics, e.g. plant
height H; ¢, as presented in Equation (2). A regression, either linear or nonlinear, can be used
to test how well a certain type of function fits the data. Some error €;;, is always present, but

by testing several functions from a set of candidate functions, the best representative can be

found by selecting the one which minimizes the error.
Mije = f1(Hije) +€i(j3t) (2)

The idea behind the device’s design was to define a relationship from several height
values, i.e. the height profile h;;;, and improve the ability to accurately predict biomass. This
is expressed in Equation (3).
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Mijt — f3 (hi?tser, hyjlttrasonic) + gl(ft) (3)
Furthermore, it may be the case that the biomass model described in Equation (3) can
be improved by including other sensor measurements Xx;j., as stated by the following

equation.

Myje = fo(REGEET REETOME 33, o (7)) 4 27 )

The goal was then to find some f,: R™ X R™ = Ror f5: R*" X R™" X RX .. X R+

R such that o, (25) <o (24) <o (23) , under the assumption that the errors were normally distributed

5) 2 ) 2 (3) 2 ). : :
&y~ N(O, 0'(5)), Ej ~ N(O, 0'(4)) and &, ~ N(O, 0'(3)) ; where m is the number of points

recorded in a lap by either laser or ultrasonic sensors. One disadvantage of this approach was

that the existence of a physical interpretation for the chosen f, could not be guaranteed.

The data were imported into MATLAB R2017a (MathWorks Inc., Natick, MA, USA)
and SAS University Edition (SAS Institute Inc., Cary, NC, USA) for this analysis. With SAS,
the procedure GLM (Generalized Linear Model) was used. First, the profiles were separated
depending on the type of plant observed. Then, from the sets of laser and ultrasonic
measurements, a scalar value was derived for each lap using different processing methods,
which might be used as inputs to the function f,. Table 3 describes the alternatives
considered. The values of 0, corresponding to spots with no crop (soil level), were filtered
out for the median and mode. For the IR thermal measurement, only the mean value was
computed. Finally, linear and exponential regressions were performed between the plant
properties measured directly and the sensor measurements. The coefficient of determination
(R?) and root mean squared error (RMSE) were calculated as indicators of the system
performance related to the ability to predict fresh biomass, and used to compare methods.
For cases where the number of parameters varied, the adjusted R* was used as the decision
criterion. Finally, when a working model was achieved, the mean absolute percentage error
(MAPE) was computed to indicate the precision of the system using Equation (5). This was

not used as a criterion to choose between different models. When exponential regression was
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used, instead of MAPE, the PE was computed as presented in Equations (6) and (7) for the

cases of overestimation and underestimation, respectively.

Table 3. Definition of processing methods for controlled environment experiment

Name in MATLAB Description
Computes numeric definite
Average crop height integral and divides by the size

Average filtered crop height

Average recorded crop height

of the integration interval

Applies median filter with
window size 10, then computes
average crop height

Computes arithmetic mean

Max Finds the maximum value
) Removes all 0 values, then
Median )
computes median
Mode Removes all 0 values, then

computes mode

Finds maxima between sets of

Mean of max .
10 points, then averages them

100 v actual; — estimate;
MAPE = Z | (5)
n 2 actual;
=1
PE yerestimation = eRMSE 1 (6)
PE nderestimation = 1 — e~RMSE (7)

3.4. DEVELOPMENT OF A FIELD SYSTEM

Several improvements were implemented before taking the device to a field
environment. For instance, the sensor holder was changed to incorporate a fixed angle with
respect to the vertical axis. The new holder is presented in Figure 5. The new holder design
was sturdier and more rigid. By using shorter beams, the bending load was diminished,
reducing the risk of mistakes in the sensor position due to deformation of the holder. In this

configuration, the radius of the circular paths could be adjusted by changing the height of the
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middle bar of the tripod. In any case, for the production field experiment, a fixed radius was

used.

The laptop computer that was used to run the control system via LabVIEW was
replaced by a Raspberry Pi 2 Model B (Raspberry Pi Foundation, Cambridge, UK) with a
python script, shown in Appendix A. This change had multiple benefits for the
implementation: use of free software, reduced weight, reduced cost, increased portability,
increased battery life. About the latter, the power supply was taken from the same LiPo
battery that powered the rest of the electronics rather than the computer internal battery; the
power consumption of the Raspberry Pi was minimal when compared to a regular laptop
computer. On the other hand, the disadvantage was the loss of the user interface. The new

block diagram is shown in Figure 6.

Fig. 5. Picture illustrating the new holder
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Fig. 6. Block diagram of modified system

A Bluetooth serial communication protocol was enabled to allow the user to send
commands to the Raspberry Pi with a smartphone, as well as to receive information from it.
Any of the free serial monitor apps available for smartphones can be paired with the
Raspberry Pi. In particular, Serial Bluetooth Terminal v1.12 (Kai Morich, Hockenheim,
Germany) was used on an Android 6.0.1 smartphone during the production field experiment.
On the Raspberry Pi side, a HC-05 Bluetooth module (Dilson Enterprises, Maharashtra,
India) was added for this purpose. More recent versions of the Raspberry Pi come with a

built-in Bluetooth transceiver.

As a consequence of the change from laptop to Raspberry Pi, the NI myDAQ
acquisition board and the Arduino UNO were replaced by two ADS1115 (Adafruit Industries,
New York, NY, USA). These ADC offer two differential 16-bit channels that communicate
with the Raspberry Pi via 12C protocol. Again, this helped to reduce the weight of the device.
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Another modification was that the box containing the circuitry was fixed on top of the tripod.
This step could only be done at this stage thanks to the reduced weight of the electronic

components. In Figure 7, the modified device is presented.

Fig. 7. Picture illustrating setup for the production field experiment

3.5. PRODUCTION FIELD EXPERIMENT DESIGN

Data were collected in a field of VegPro International near Sherrington, Quebec,
Canada on October 4", 10", and 11" 2017. The field featured raised beds in organic soil
with Stanton spinach (Spinacia oleracea Hyb. Stanton) at different growth dates. The
presence of several growth dates allowed for the data collection over a shorter time span,
only requiring three days because of the time-consuming sampling of the fresh biomass. In
this experiment, only fresh biomass was considered. A 50 cm x 50 cm frame was used to
denote each zone for sampling. A total of 30 of these zones were measured manually and

with the device over the three days.
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Each of the sensors included in the device provided a measurement every 0.8°,
creating a profile of 450 points per lap. For each location, about 6 laps were recorded, around
3 different centers inside the frame. From the set of complementary sensors used in the
controlled environment experiment, only the ambient temperature and moisture (DHT22)
was also used in the production field experiment. It was found that moisture was the best

complement for the laser in the previous experiment.

3.6. PRODUCTION FIELD ANALYSIS

For the production field experiment, a pre-treatment was performed on the height
profiles. First, points considered outliers were removed. Second, the replicates of the same
location were averaged to produce a more significant profile. All the measurements that were
taken around the same center point produced one height profile. Within each square frame,

3 different centers were used, as mentioned in Section 3.5.

Two approaches were taken to analyze the data from the production field experiment.
The first approach (regression of profile-representative features) was the same as that used
in the controlled environment experiment, where the function providing the best fit was
considered. Here, the process was extended by considering a larger pool of processing
methods, as well as functions that mathematically combined more than one of these methods.
The regressions that were performed were linear, exponential, and polynomial up to degree
5. Table 4 contains the complete list of processing methods used in this approach. The code
for these methods is presented in Appendices B to AA. The last two methods are the
processing methods used by Su (2017).
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Table 4. Definition of processing methods for production field experiment

Name in MATLAB Description
Integral Compute numeric definite integral
Average recorded crop height Compute arithmetic mean
Max Find the maximum value
Energy Compute numeric definite integral of the square
Variance

Average trimmed crop height

Trimmed variance

Energy wavelet
Lower envelope
Lower envelope integral
Lower envelope energy
Upper envelope
Upper envelope integral
Upper envelope energy
Derivative
Derivative variance

Derivative energy
Count
Peak count
Frequency
Bandwidth
SFDR

SNR
THD

Mean of max

Pseudo-max

Compute sample variance

Compute arithmetic mean only in-between 5 to 95-
percentiles

Compute sample variance only in-between 5 to 95-
percentiles
Compute Energy after applying a wavelet filter

Find lower envelope and compute arithmetic mean
Find lower envelope and compute Integral
Find lower envelope and compute Energy

Find upper envelope and compute arithmetic mean
Find upper envelope and compute Integral
Find upper envelope and compute Energy

Estimate derivative and compute arithmetic mean

Estimate derivative and compute sample variance
Estimate derivative and compute Energy

Find the number of points where abrupt changes
happen

Find the number of local maxima
Estimate the median normalized frequency of the
power spectrum
Estimate bandwidth of the power spectrum

Estimate ratio between fundamental frequency and
first spurious peak in power spectrum

Estimate Signal-to-Noise Ratio
Compute Total Harmonic Distortion

Find the maxima between sets of 10 points, then
average them

Find the value of 95-percentile
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The second approach (inference of a canopy density function) relied on the
formulation indicated in Equation (8), as follows. A cylindrical coordinate system was used
because it relates directly with the circular paths followed by the device. In this case, the z
axis was perpendicular to the ground plane and aligned with the center point of the circular
path, while the angular position 6 corresponds to the placement of the sensors by the stepper
motor and the radius r to the distance between any point in the ground plane to the center of
the circular path. The key assumptions were that the height profile measured along the
circular path was representative of the entire frame and that the density of the crop only varies
on a noticeable scale with the height. About the former, one way that the assumption could
be included was by considering concentric circles where the height profile was repeated, so

that the height of the i plant (labeled H;) depended only on the angular position, and not on

the radius.
Ry 27 Hi(O)7) Ry 27 Hi(6)
Ml-=jpdV=ff f rp(z,0,r)dz db dr=jj j rp(z)dz dO dr + ¢
00 0 00 0
Ry 2m Hi(6) ) 2m Hi(6)
R,
=jrdr*j j p(z)dzd9+si=7*f J p(z)dz dé + ¢ (8)
0 0 0 0 0

where M; denotes the mass of the i plant, R; is the maximum radius used for the lap
measurements, p is the density, and &; the error produced from the assumptions in the i
plant. It is worth noting that Equation (8) can be rewritten as Equation (9) based on the
Fundamental theorem of calculus. Here the M;;; notation was dropped to improve readability,

but it would also hold if added consistently.

R.2 27 Hi(6) R 2 2m
Mi:Tl*f f p(2) dz d9+€i=71*ff(Hi(9))d9+€i 9
0 0 0

for some function f:R ~ R such that f'(x) = p(x). This step allows for a single
integration instead of a double integration. Different candidates for this function fwere tested.

To compare with the manually measured biomass, which was sampled within the square
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frame, the biomass yield can be found by dividing over the area, which for the case of each
measurement was that of the circle with the largest radius. Thus, Equation (9) becomes

Equation (10).

R—lz* o H;(8)) do i i
D =Mi= 2 fo f( i( )) +812%J f(Hi(Q)) d9+gi(6) (10)

A mR?

Finally, it is worth mentioning that this approach can be analogous to the first

approach taken, depending on the selection of the function /. For example, assuming p(z) =
p—-D; = %fozn H;(60) d6 = a * Integral + b, where Integral refers to one of the

processing methods from the first approach, which was used in a linear regression model to

relate to D;, with some parameters a and b, taking a = 2% and b = 0. Another example, taking

fx)=x?->D; = ifozn[Hi (0)]? dO = a * Energy + b, where the same situation is

found to occur with a different processing method. The advantage of this second approach
was that it guarantees the existence of a physical interpretation for the model once an
appropriate function f has been selected. Appendices AB and AC present the code used for

this approach, with a specific example of a candidate function.
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4. RESULTS AND DISCUSSION

4.1. CONTROLLED ENVIRONMENT EXPERIMENT

Significant differences were found over time and with water stress (bed).
Consequently, a diverse set of biomass and canopy properties was present, providing an
adequate setup for the evaluation of the designed device. Figures 8 and 9 compare the growth

of the plants across the beds.
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Fig. 8. Evolution of average lettuce dry biomass against bed
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Fig. 9. Evolution of average kale dry biomass against bed
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Similar results were obtained for fresh mass, maximum height and number of leaves.
It was observed that the best performance for kale was in bed 4, while for lettuce, beds 2 and
3 were similar to each other. For both plants, bed 5 had the lowest yield recorded. It is
believed that the mass increases monotonically, despite cases like the kale dry mass in bed
1, and it just happened that the samples collected were particularly large by chance. This
could be explained by the increasing the variability in the measurements with time; as well,

the samples for the intermediate harvesting were relatively small.

Additionally, by considering the mass against the manually measured maximum plant
height, it was found that an exponential model provided the best fit. This proved the existence
of function f; from Equation (2) and gives hints about the possible form of f,. In the
following steps of the analysis, the exponential case was considered. Figures 10 and 11

present this regression for lettuce and kale, respectively.

All the beds were included alike in these regressions. Better fitting could be found by
considering each bed separately. Also, improved results were found when using maximum

extended height, increasing the R? values to 0.93 and 0.94 for lettuce and kale, respectively.
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Fig. 10. Exponential regression of lettuce fresh biomass vs maximum height
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Fig. 11. Exponential regression of kale fresh biomass vs maximum height

As mentioned in the previous sections, a profile of plant height measurements was
taken along a circular path. Figures 12 and 13 illustrate an example of a lap for bed 1 in DAS
36 and bed 2 in DAS 43, and some of the processing methods evaluated. With 0 being the
ground level, some negative values were found due to gaps between the Rockwool blocks,
which can be seen as holes in the soil. These negative values were replaced by zeros before
applying the different processing methods mapping to single scalars. In an average sample,

these values less than or equal to 0 made up 5% of the available data. Later, the scalars were

averaged with those of the same bed in the day.
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Fig. 12. Picture illustrating circular path over the crops at middle location for (a) DAS 36
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Fig. 13. Example of height profile as recorded by ultrasonic sensor and calculated

processing methods
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Table 5 provides the R’ values found for the exponential regression, based on each of

the considered processing methods. The best case is highlighted with bold font.

Table 5. Coefficients of determination from exponential regression between the biomass

and processed ultrasonic height measurements for each processing method

Function Fresh lettuce Dry lettuce Fresh kale Dry kale
Average crop height 0.80 0.75 0.63 0.56
Average filtered crop height 0.69 0.63 0.54 0.50
Average recorded crop height 0.80 0.74 0.56 0.53
Max 0.69 0.62 0.55 0.52
Median 0.80 0.75 0.48 0.47
Mode 0.69 0.63 0.65 0.58
Mean of max 0.78 0.71 0.57 0.48

Figures 14 and 15 present the best fit for each case. Similar to what was presented for

the ultrasonic sensor, Figure 16 shows an example of a profile of measurements for bed 4 in

different days of the experiment. The profile from ultrasonic is retained for comparison.
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Fig. 14. Best model of exponential regression for (a) lettuce and (b) kale fresh biomass

based on ultrasonic
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Fig. 16. Example of height profiles as recorded by laser and ultrasonic sensors for different

days of the experiment

The smaller spot size of the laser allowed for the identification of canopy structures
that might have passed unseen by the ultrasonic sensor, as well as provided a better
determination of the ground level. The ultrasonic signal was noisy compared to the laser
measurement; however, the laser had more failed readings. This could happen for a variety

of reasons, among them, that the reflected laser beam did not reach the lens or excessive
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sunlight saturated the sensor. Table 6 shows the R’ values for the regression based on the
laser, and highlights the best processing method in bold letters. Figures 17 and 18 show the

calibration step based on the laser measurements, with the best fitting processing methods.

Table 6. Coefficients of determination from exponential regression between the biomass

and processed laser height measurements for each processing method

Function Fresh lettuce Dry lettuce Fresh kale Dry kale
Average crop height 0.87 0.80 0.51 0.50
Average filtered crop height 0.75 0.66 0.67 0.58
Average recorded crop height 0.88 0.81 0.60 0.48
Max 0.75 0.66 0.52 0.44
Median 0.87 0.80 0.56 0.43
Mode 0.75 0.66 0.69 0.61
Mean of max 0.78 0.73 0.61 0.49
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Fig. 17. Best model of exponential regression for (a) lettuce and (b) kale fresh biomass

based on laser
At this point, the advantage of considering the information from both sensors at the

same time was evaluated. From the previous sections, it was known what functions worked

best for each sensor, as reported in Table 7, and labeled as f; and f;. Then, the two sensors
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were combined in the way depicted in Equation (11). This was an extension of the

exponential regression.
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Fig. 18. Best model of exponential regression for (a) lettuce and (b) kale dry biomass based

on laser

Table 7. Processing methods found to produce the best results in exponential regression

Case Method for laser Method for ultrasonic

Lettuce fresh mass Average recorded crop height  Average crop height

Lettuce dry mass Average recorded crop height  Average crop height
Kale fresh mass Mode Mode
Kale dry mass Mode Mode

In [fz (hg?tser’ hzizjlttrasonic)] =p + qfk (hij_tger)
+rfl (hzizjlttrasonic) + ka (hg?tser)fl (hziijlttrasonic) (1 1)

With this procedure, Table 8 was built. This table allows for a comparison of the
performance of using the ultrasonic sensor, the laser, or both sensors. It was found that, while
having both sensors offers the best results, the difference against having only the laser was
not very large. There was a clear difference between the laser and ultrasonic sensors, with

the advantage favoring the former. The RMSE values were found in the logarithmic scale.
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Table 8. Comparison of fitting in exponential regression between laser, ultrasonic and both

Ultrasonic Laser Both
RMSE RMSE RMSE
Case 2 2 R?
[In(g)] [In(g)] [In(g)]
Lettuce 0.80 0.511 0.88 0.394 0.90 0.356
fresh mass
Lettuce
0.75 0.623 0.81 0.541 0.83 0.523
dry mass
Kale fresh ) o 0.483 0.69 0.456 0.71 0.443
mass
Kale dry 0.58 0.545 0.61 0.529 0.62 0.525
mass

The following steps were taken supposing that the function in Equation (11) may be

further improved by adding other types of sensors, as anticipated in Equation (4). Table 9

presents correlation values for the different sensors other than the laser and ultrasonic sensor.

For brevity, they are not presented in the usual form of a symmetric matrix.

Table 9. Pearson correlation values between plant biomass and other measured properties

Sensor In(lettuce In(lettuce In(kale In(kale
measurement freshmass) drymass) freshmass) drymass)
IR thermal* -0.564 -0.655 -0.486 -0.617
IR th;“:Vfl Std: -0.195 -0.196 0.002 -0.050
PAR/Quantum -0.278 -0.343 -0.061 -0.189
Moisture* 0.800 0.795 0.790 0.755
. rﬁ‘;‘;’;‘:ﬁ;e* -0.898 -0.913 -0.830 -0.808
Red-Edge* -0.897 -0.901 -0.855 -0.850
NIR* 0.905 0.899 0.836 0.796
Red* -0.827 -0.831 -0.750 -0.750
NDRE* 0.500 0.527 0.510 0.589
NDVI 0.051 0.108 0.108 0.251

*: Indicates variables whose correlation have p-values below 0.0001
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By producing a regression model after having added an extra measurement besides
the laser and ultrasonic, it was possible to test the improvement that each type of sensor
produced. Table 10 shows the obtained R’ values. Only those sensors with a significant

correlation were evaluated.

For lettuce, the most important effect was achieved when adding the moisture
measurement into the estimation. For kale, on the other hand, it occurred when Red-Edge
was added. Moisture would be selected, due to its reduced size and cost as compared to the
multispectral sensor. No major changes in the design would be required to incorporate the

moisture sensor into the device.

Table 10. Coefficients of determination from exponential regression between the biomass

and combination of laser and ultrasonic height measurements with other measured

properties
Case No IR as  Temperature as Moisture as Red-Edge NIR as
extra extra extra extra as extra extra
Letuee =590 0.1 0.93 0.94 0.93 0.92
fresh mass
Lettucedry o os a4 0.87 0.88 0.88 0.88
mass
Kale fresh 071 071 0.75 0.77 0.83 0.80
mass
Kaledry 0 (6a 0.73 0.74 0.78 0.76
mass

In Table 11, the calibration RMSE and Percentage Errors (PE) for underestimation
and overestimation are reported. While the former was based on logarithmic scale, the latter
was with respect to grams. These were used to show how each step provided progress in
further improving the estimations. Figures 19 and 20 present the estimated values against the
actual mass values found in the experiment, using the final approach where the moisture

measurements were included.
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Table 11. Summary of results from exponential regressions

RMSE PE Under PE Over

C A h R’ Rl
e bproac Y [In()] [%] [%]
Maximum oo (63 0469 374 59.8
height
Ultrasonic ~ 0.80 0.80  0.511 40.0 66.6
Lettuce fresh Laser 0.88 0.88 0.394 32.6 48.3
mass
Laser & 090 090 0356 30.0 42.8
Ultrasonic
Moist
OISHICAS — h94 093 0295 255 343
extra
Maximum
) 075 0.74  0.624 46.4 86.7
height
Ultrasonic 0.75 0.75 0.623 46.4 86.5
Lettuce dry Laser 0.81 0.81 0.541 41.8 71.8
mass
Laser & 083 082  0.523 40.7 68.8
Ultrasonic
Moistureas ) ce (e 0437 35.4 54.7
extra
Maximum
) 075 074 0413 33.8 51.1
height
Ultrasonic 0.65 0.65 0.483 38.3 62.1
Kale fresh Laser 069 0.68 0456 36.6 57.7
mass
Laser & 071 070  0.443 358 55.8
Ultrasonic
Moistureas 2 (75 0402 33.1 49.5
extra
Maximum
) 060 059 0535 41.5 70.8
height
Ultrasonic 0.58 0.58 0.545 42.0 72.5
Laser 061 0.60  0.529 41.1 69.8
Kale dry mass . &
aser & 0.62 0.61  0.525 40.9 69.1
Ultrasonic
Moistureas o (00 0441 35.7 555

extra
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Fig. 19. Actual fresh biomass against fresh biomass predicted by the device for lettuce

N W B O

—
T

Fresh mass [In(g)]

K
...
"""
""""
.
....

0 1 2 3 4 5

Estimated fresh mass [In(g)]

Fig. 20. Actual fresh biomass against fresh biomass predicted by the device for kale
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4.2. PRODUCTION FIELD EXPERIMENT

Figure 21 presents the fresh biomass yield manually measured within the square
frame for all dates. This yield was simply the biomass divided by the area of the square frame
(0.25 m?) and transformed to t/ha units. These data have a mean value of 10.77 t/ha and
standard deviation of 7.93 t/ha. The difference between the maximum and minimum values
was 32.88 t/ha, proving that a varied range of biomass yield had been recorded. It seemed to
not be normally distributed, but rather similar to a log-normal. Whatever the case, the exact
distribution was not relevant for the analysis. A drawback of the experiment was the absence

of samples in the range of 20 t/ha to 30 t/ha.
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Fig. 21. Normalized histogram of fresh biomass yield

Given the results found in section 4.1, it was decided to consider only the laser
measurements. Next, taking the first approach, regression of profile-representative features,
the same as in the controlled environment experiment, Table 12 was built with the processing
methods described in Table 4. The RMSE values are in t/ha. The best performing method
was Lower envelope integral with linear regression. Figure 22 illustrates the best performing

regression at this stage.
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Table 12. Summary of results from regressions by processing method

Linear Quadratic Exponential

RMSE RMSE RMSE

Name in MATLAB R? 2 i R? 2 i R? 2 i
ame Riadi g Readi Roadi
Integral 054 052 594 056 0.52 596 056 0.54 5.76
Averagerecorded ) o3 5, 596 055 051 598 056 054 578

crop height

Max 001 -0.03 867 002 -007 88 001 -003 866
Energy 051 0.49 610 052 048 619 052 0.50 6.07
Variance 001 -003 869 001 -008 888 001 -003 869
Average;;g?ed P53 051 599 055 051 598 056 0.54 5.76

Trimmed variance 0.00 -0.04 8.72 0.02 -0.07 8.82 0.00 -0.04 8.72
Energy wavelet 0.54 0.52 5.89 0.54 0.50 6.02 0.53 0.51 5.99
Lower envelope 0.62 0.60 5.39 0.62 0.59 5.48 0.61 0.59 5.45

Lowerenvelope o &) .60 538 062 059 548 061 059 545
integral

Lowerenvelope ¢\ 059 546 061 057 556 059 057 558

energy

Upper envelope 0.44 042 6.54 0.46 041 6.55 0.48 046 6.31

Upperenvelope 0 042 654 046 04l 656 048 046 632
integral

Upper envelope 012 0.08 821 013 005 834 010 0.06 8.26
energy

Derivative 000 -004 873 000 -009 892 000 -004 873

Derivative variance ~ 0.00 -0.04 8.72 0.15 0.07 8.25 0.00 -0.04 8.73
Derivative energy 0.00 -0.04 8.73 0.14 0.06 8.29 0.00 -0.04 8.73

Count 0.02 -0.02 8.64 024 0.17 7.76 0.01 -0.03 8.67
Peak count 0.00 -0.04 8.72 0.03 -0.06 8.77 0.00 -0.04 8.72
Frequency 0.13  0.09 8.15 0.18 0.11 8.09 0.18 0.14 7.92
Bandwidth 0.15 0.11 8.04 0.15 0.07 8.22 0.14 0.10 8.08

SFDR 0.27 0.24 7.44 0.32 0.26 7.36 0.33  0.30 7.15

SNR 0.13  0.09 8.14 0.14 0.06 8.30 0.11 0.07 8.22

THD 0.04 0.00 8.54 0.06 -0.03 8.66 0.05 0.01 8.51

Mean of max 0.44 042 6.52 046 041 6.52 0.48 0.46 6.28
Pseudo-max 037 0.34 6.90 043 0.38 6.75 0.44 042 6.50

44



40

—_ y=7145x+1891 | |
© 2-
R2: 0.62
£ 30
S
©
=20~ 7
(2]
(/2] | : .
: °
E s |
..... e

[ ]
0\ 1 1 1 1 1 1 |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Lower envelope integral (cm)

Fig. 22. Linear regression of biomass and lower envelope integral

The resulting RMSE of 5.38 t/ha with that processing method was still relatively high.
Because of this, new factors that included combinations of the mentioned processing methods

were considered.

The combination of processing methods gave rise to an improved fitting, but in order
to avoid overfitting, the number of parameters was limited to a maximum of 6. This constraint
in the complexity of the model would prove useful in a validation experiment. Table 13 and

the following equations summarize the most relevant findings.

Table 13. Summary of results from regressions by equation

Equation number R’ R%g RMSE [t/ha] Number of parameters

(12) 0.68 0.65 5.06 3
(13) 0.83 0.81 3.72 4
(14) 0.92 0.90 2.71 5
(15) 0.93 0.91 2.55 6

—

Lower envelope energy

f(hi*") =a+b

| —

Upper envelope energy
Lower envelope energy

(12)

+c[Mean of max]

| —
e |

Upper envelope energy
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f(hi*¢") = a + b[SFDR] + c[Lower envelope energy]? + d[SFDR]? (13)

F(hisser) = q [Integral]? N [Average recorded crop height]?
: [Max]? [Variance]?
[Integral]*[Average recorded crop height]
[Max]?[Variance]
[Integral][Average recorded crop height]?
[Max][Variance]?
[Average recorded crop height]?

(14)

+e
[Variance]?

f(hi*¢") = a[Lower envelope energy] + b[Lower envelope energy]?
+c[Lower envelope energy]® + d[SFDR] + e[SFDR]? + f[SFDR]3 (15)

4':' T T T T T T
. Equation (15) ot
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Fig. 23. Best fit achieved with the first approach

The best fitting regression, expressed in Equation (15) and used to build Figure 23,
relied on two processing methods that are relatively hard to find physical meaning.
Nonetheless, an intuition about what SFDR and Lower envelope energy mean can be
provided for this context. SFDR is a ratio between the power at the fundamental frequency
of a signal and the power at a significant higher frequency. This ratio is then a measure of

how important the higher frequency components are, where typically the spurious peak is
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due to noise. On the other hand, the envelope of a signal provides information about the low
frequency components. By considering low frequency and high frequency components
separately, the processing method could produce a more reliable estimation. In the context
of height profiles, low frequency components referred to large-scale sections of the canopy,

as opposed to sections of the profile with larger local variability.

Regarding the second approach, inference of a canopy density function, the
performance of different density functions is summarized in Table 14. In order to achieve
results comparable to those of the first approach, a relatively large number of parameters was
required. For example, the best fitting of a density function used 9 parameters, as specified
in Equation (16). Figures 24 and 25 illustrate this density function, while Figure 26 shows
the fitting of the data using this approach. It was expected that the density at lower parts of
the canopy was higher, since the stems are heavier than the leaves. The elements of this

approach have a clear physical meaning.

Table 14. Summary of results from density functions

Density function R’  R’%¢ RMSE [t/ha] Number of parameters

Constant 0.44 0.44 6.27 1
Linear 0.45 043 6.21 2
Quadratic 0.49 0.44 5.98 3
Cubic 0.50 0.43 5.94 4
Exponential 0.44 0.42 6.25 2
Gaussian 0.48 0.43 6.03 3
Sinusoidal 0.50 0.45 5.90 3
Rational 0.52 048 5.80 3
Rational 0.54 0.47 5.70 4
Logistic* 0.49 0.44 5.98 3
Generalized logistic* 0.49 0.42 5.97 4
Rational tanh* 0.63 0.58 5.10 4

Modified logistic*  0.74 0.61 4.24 9
*: referring to the cumulative density, of which the density function is the derivative
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+g* Sin(p(Hi(H) + l))
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Fig. 24. Best fit for cumulative density function
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Fig. 25. Best fit for density function

48

(16)



N Equation (13) ¢ e

‘5" 30 R2:0.74 1

S 20~ |

= . ® .. o

A 10 - Lo s |

© e

E [ ] (Y [ ]

Q ¢ o ®

m 0 - |
-10! ! ! I | I ! | j

-5 0 5 10 15 20 25 30 35

Estimated biomass yield (t/ha)
Fig. 26. Best fit achieved with the second approach

At this point, it was considered the effect of the measurements where the biomass
yield was above 30 t/ha, which could be regarded as outliers. It is important to consider that
with the current results, removing these higher yield points from the computation of RMSE
would turn the value of this indicator into 2.70 t/ha. By removing the higher yield points and
using the second approach to retry the fitting of the density function, Table 15 was built. For
all the considered cases, the fitting improved, resulting in a reduction of the gap among the
best and worst density functions. These results seemed to show that removing the higher
yield points is convenient for simpler models, which could be explained by considering that
the whole range of the function was significantly reduced. The case of having a logistic
cumulative density function produced the best results in terms of adjusted R’, and the RMSE
was lower than the corresponding best case when the higher yield points were included.
Nonetheless, in spite of the convenience of these results, this process proved itself
inconclusive regarding the determination of the outlier status of the higher yield points. Thus,
it was assumed that the higher yield was produced by the natural variability of the crop, and

was retained in the final analysis.
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Table 15. Summary of results from density functions without higher yield points

Density function R’  R%¢ RMSE [t/ha] Number of parameters

Constant 0.65 0.65 2.72 1
Linear 0.67 0.65 2.62 2
Quadratic 0.69 0.66 2.57 3
Cubic 0.69 0.64 2.57 4
Exponential 0.66 0.64 2.65 2
Gaussian 0.69 0.66 2.54 3
Sinusoidal 0.69 0.66 2.55 3
Rational 0.58 0.54 2.97 3
Rational 0.58 0.51 2.97 4
Logistic* 0.70 0.67 2.52 3
Generalized logistic* 0.70 0.65 2.52 4
Rational tanh* 0.71 0.66 2.23 4
Modified logistic*  0.78 0.65 2.14 9

*: referring to the cumulative density, of which the density function is the derivative

Finally, Table 16 compares the best case of both approaches. The percentage error
was considerably high for both cases, which was troubling, but was partially explained by
the large range covered by the measured biomass. Whatever the case, the coefficient of
determination was significant, showing that the laser measurements explained the biomass
behavior. There was a possibility that the uncertainty of the manual biomass measurement
was also playing a role in this discrepancy. The moisture sensor information remained a good
complement for the laser measurements. The moisture was linearly combined with the
current estimations made with the first and second approaches by themselves, as stated by

equation (17).

[final estimate] = a * [first or second approach] + b * [moisture] + ¢ a7)
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Table 16. Summary of best results by approach

RMSE MAPE
A h R? R
pproac dj [t/ha] %]
Regression of profile-representative features  0.93 0.91 2.55 34.08
Inference of a canopy density function 0.74 0.61 4.24 35.82
. ) . N
Regression of profile r.epresentatlve features 0.94 0.92 516 31.44
Moisture

Inference of a canopy density function + 078 0.62 418 32,09

Moisture
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5. SUMMARY AND CONCLUSIONS

The model described in Equation (10), when the moisture measurements were added,
was found to be the best fit for the controlled environment experiment. The calibration RMSE
was around 0.3 In(g) and 0.4 In(g) for the estimation of fresh biomass in lettuce and kale,
respectively. Similarly, the RMSE was 0.44 In(g) for dry biomass in both lettuce and kale.
The percentage error was between 25.5% and 55.5% for the final calibration. These results
proved that the developed device is a viable tool for measuring biomass in an easy and fast
way. There were strong indicators that the device is not only more convenient than traditional
manual measurement of plant height, i.e. with ruler or measuring tape, but also more accurate

in the estimation of biomass.

During the development of this controlled environment experiment, it was found that
the laser sensor outperforms the ultrasonic sensor, and the integration of both provides a
method to further improve the estimation of biomass, especially when accompanied by
moisture measurements. Computing the average crop height, average recorded crop height,
and mode proved to be simple yet useful transformations for the signal processing step. This
resulted in better fitting than other processing methods. It was also clear that this was

dependent on the crop species under consideration.

The production field experiment streamlined the setup and featured a more thorough
analysis method. Two different approaches were considered, providing R’ of 0.94 and 0.78,
respectively. These values were comparable to those of the controlled environment
experiment, showing that the performance was not diminished in an open field environment.
The modifications done on the prototype produced even more convenient handling of the
data collection. This would result in faster and more frequent sampling becoming available

for the final users.
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APPENDICES

APPENDIX A: Python script run in Raspberry Pi

#lusr/bin/env python

import time

import serial

import numbers

import os.path

import Adafruit DHT
import Adafruit ADSIxI15
from subprocess import call

from zaber.serial import BinarySerial, BinaryDevice, BinaryCommand

def newLogFile():
filename="file1.txt'
while(os.path.isfile('/home/pi/Laser/'+filename)):
filename="file'+str(int(filename[4:-4])+1)+".txt'

return open('/home/pi/Laser/+filename,'w")

def readFast(adc1, adc2, GAIN, RATE):
# - 0 = Channel 0 minus channel 1
# - 1 = Channel 0 minus channel 3
# - 2 = Channel 1 minus channel 3
# - 3 = Channel 2 minus channel 3

valueLaser=60-

0.1*(200*0.00018751*adc1.read_adc_difference(0,gain=GAIN,data _rate=RATE)-600.7)

valueUltrasonic=2.54*(3.5+68*0.000187*adc2.read adc_difference(3,gain=GAIN,data_rat
e=RATE)/4.5)
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valueThermal=100*0.000187*adc2.read _adc_difference(0,gain=GAIN,data_rate=RATE)+
0.2

return [valueLaser,valueUltrasonic,valueThermal]

serBluetooth=serial.Serial('/dev/tty AMA(',9600)

logFile=newLogFile()

sensor = Adafruit DHT.DHT22
pin =23

adcl = Adafruit ADS1x15.ADS1115()

adc2 = Adafruit ADS1x15.ADS1115(address=0x49)
GAIN =2/3

RATE =475

speed=73

direction=True

full lap=12800
updatePosition=BinaryCommand(1,60)

flag=True

while(flag):
serBluetooth.write('idle\n")
message=serBluetooth.readline().strip()
print(message)
if message=="new":
serBluetooth.write(logFile.name)
serBluetooth.write(str(os.path.getsize(logFile.name)))

logFile.close()
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logFile=newLogFile()
elif message=='test":
data=[]
for k in range(10):
sensorOutput=readFast(adc1,adc2,GAIN,RATE)
data+=[sensorOutput]
serBluetooth.write('1: {:.2f} | {:.2f} | {:.2f}\n".format(sensorOutput[0],
sensorOutput|[ 1],
sensorOutput[2]))
time.sleep(0.005)
elif message=="lap":
serBluetooth.close()
data=[]
logFile.write('New Lap\n')
port=BinarySerial('/dev/ttyUSB0',timeout=200)
device=BinaryDevice(port, 1)
lap=False
initialPosition=device.stop().data
currentPosition=initialPosition
while(abs(currentPosition-initialPosition)<=full lap):
if(direction):
device.move_vel(speed)
else:
device.move_vel(-1*speed)
currentPosition=device.send(updatePosition).data
sensorOutput=readFast(adc1,adc2, GAIN,RATE)
data+=[sensorOutput+[currentPosition]]
device.stop()
port.close()
serBluetooth=serial.Serial('/dev/tty AMA0',9600)

for i in range(5):
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serBluetooth.write('1:{} | {} | {} | {}\n'.format(str(data[-5+i][0]),
str(data[-5+i][1]),
str(data[-5+1][2]),
str(data[-5+1][3])))
serBluetooth.write(str(len(data)))
for point in data:
logFile.write('1:{},{},{},{} \n'.format(str(point[0]),
str(point[1]),
str(point[2]),
str(point[3])))
serBluetooth.write('finished")
direction=not direction
elif message=="humid":
for 1 in range(10):
s=Adafruit DHT.read(sensor,pin)
if isinstance(s[0],numbers.Number):
valueHumidity=s[0]
valueTemperature=s[ 1]
else:
valueHumidity=0
valueTemperature=0
serBluetooth.write('2: {} | {}\n".format(str(valueHumidity),
str(valueTemperature)))
logFile.write('2:{},{}\n".format(str(valueHumidity),
str(valueTemperature)))
time.sleep(1)
elif message=='stop":
if not logFile.closed:
logFile.close()
flag=False

elif message=="off":
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serBluetooth.close()
if not logFile.closed:
logFile.close()

call(""sudo nohup shutdown -h now", shell=True)
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APPENDIX B: MATLAB code for computing Integral in first approach

function [ output ] = JIntegral( vector, angles )
A=vector;

A(isnan(A))=0;

output=trapz (pi*angles/180,R) ;

end
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APPENDIX C: MATLAB code for computing Average recorded crop height in first
approach

function [ output ] = JMean( vector )
A=vector;

A (A<0)=0;

output=nanmean (A) ;

end
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APPENDIX D: MATLAB code for computing Max in first approach

function [ output ] = JMax( vector )
output=max (vector) ;

end
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APPENDIX E: MATLAB code for computing Energy in first approach

function [ output ] = JEnergy( vector, angles )
A=vector;

A(isnan(A))=0;

output=trapz (pi*angles/180,A."2);

end
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APPENDIX F: MATLAB code for computing Variance in first approach

function [ output ] = JVar( vector )
A=vector;

A (A<0)=0;

output=nanvar (A) ;

end
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APPENDIX G: MATLAB code for computing Average trimmed crop height in first
approach

function [ output ] = JTrimmean( vector )
output=trimmean (vector, 50) ;

end
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APPENDIX H: MATLAB code for computing Trimmed variance in first approach

function [ output ] = JTrimvar( vector )
A=vector;

aux=A (A>prctile(A,25));
output=nanvar (aux (aux<prctile (A,75)));

end
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APPENDIX I: MATLAB code for computing Energy wavelet in first approach

function [ output ] = JEnergyW( vector, angles )
A=vector;

A(isnan(A))=0;

n=5;

w="'haar';

[c,l]=wavedec (A,n,w);

thr=[max (abs(c(sum(1(1:5))+1:sum(1(1:6))))),max (abs(c(sum(1l(1l
:4))+1l:sum(1(1:5))))),0.75*max (abs(c(sum(l(1:3))+1l:sum(l(1:4)
)))),0.5*max (abs (c(sum(1l(1:2))+1:sum(1(1:3))))),0.25*max (abs (
c(l(1)+1:sum(1(1:2)))))];

[Af,~,~,~,~]=wdencmp ('lvd',c,1l,w,n,thr,'s");

output=trapz (pi*angles/180,Af."2);

end

69



APPENDIX J: MATLAB code for computing Lower envelope in first approach

function [ output ] = JLmean( vector )
[~,aux]=envelope (vector, 10, "peaks"') ;
output=nanmean (aux) ;

end
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APPENDIX K: MATLAB code for computing Lower envelope integral in first
approach

function [ output ] = JLintegral ( vector, angles )
[~,aux]=envelope (vector, 10, "peaks') ;
output=trapz (pi*angles/180, aux) ;

end
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APPENDIX L: MATLAB code for computing Lower envelope energy in first
approach

function [ output ] = JLenergy( vector, angles )
[~,aux]=envelope (vector, 10, "peaks') ;
output=trapz (pi*angles/180, aux."2);

end

72



APPENDIX M: MATLAB code for computing Upper envelope in first approach

function [ output ] = JUmean( vector )
[aux, ~]=envelope (vector, 10, "peaks') ;
output=nanmean (aux) ;

end
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APPENDIX N: MATLAB code for computing Upper envelope energy in first

approach
function [ output ] = JUenergy( vector, angles )
[aux, ~]=envelope (vector, 10, "peaks"') ;

output=trapz (pi*angles/180, aux."2);

end
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APPENDIX O: MATLAB code for computing Derivative in first approach

function [ output ] = JDmean( vector, angles )
derivative=diff (vector)./diff (pi*angles/180) ;
aux=derivative (derivative>prctile (derivative,25));
output=nanmean (aux (aux<prctile (derivative,75)));

end
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APPENDIX P: MATLAB code for computing Derivative variance in first approach

function [ output ] = JDvar( vector, angles )
derivative=diff (vector)./diff (pi*angles/180) ;
aux=derivative (derivative>prctile (derivative,25));
output=nanvar (aux (aux<prctile (derivative,75)));

end
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APPENDIX Q: MATLAB code for computing Derivative energy in first approach

function [ output ] = JDenergy( vector, angles )
derivative=diff (vector)./diff (pi*angles/180) ;
thr=prctile (derivative, [25,75]);

derivative (derivative<thr (1l))=0;
derivative (derivative>thr (2))=0;
derivative (isnan (derivative) )=0;

output=trapz (pi*angles (l:end-1) /180,derivative.”2);

end
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APPENDIX R: MATLAB code for computing Count in first approach

function [ output ] = JCount( vector )
aux=findchangepts (vector, '"MinThreshold', 1) ;
output=length (aux) ;

end
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APPENDIX S: MATLAB code for computing Peak count in first approach

function [ output ] = JPcount( vector )
aux=findpeaks (vector) ;
output=length (aux) ;

end
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APPENDIX T: MATLAB code for computing Frequency in first approach

function [ output ] = JFreqg( vector )
output=medfreqg(vector) ;

end
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APPENDIX U: MATLAB code for computing Bandwidth in first approach

function [ output ] = JPBW( vector )
output=powerbw (vector) ;

end
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APPENDIX V: MATLAB code for computing SFDR in first approach

function [ output ] = JSFDR( vector )
output=sfdr (vector) ;

end
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APPENDIX X: MATLAB code for computing SNR in first approach

function [ output ] = JSnr( vector )
output=snr (vector) ;

end
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APPENDIX Y: MATLAB code for computing THD in first approach

function [ output ] = JTHD( vector )
output=thd (vector);

end
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APPENDIX Z: MATLAB code for computing Mean of max in first approach

function [ output ] = JMeanmax( vector )
n=floor (length (vector) /10);
aux=zeros(n,1l);
for i=l:n

aux (i)=max (vector (10* (i-1)+1:10*1));
end
output=mean (aux) ;

end
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APPENDIX AA: MATLAB code for computing Pseudo-max in first approach

function [ output ] = JPsmax( vector )
output=prctile (vector, 95);

end
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APPENDIX AB: MATLAB code defining error function for second approach

function [ e ] = errorD( mv, mystruct, params )

a=params (1) ;

b=params (2) ;

c=params (3) ;

d=params (4) ;

e=params (5) ;

f=params (6) ;

g=params (7) ;

h=params (8) ;

l=params (9) ;

positions=fieldnames (mystruct) ;

mestimate=zeros (length (positions)-2,1);

for i=2:length (positions) -1
maux=zeros (l,size (mystruct. (positions{i}),2));
for j=l:size (mystruct. (positions{i}),2)

xx=mystruct. (positions{i}) (:,7);

maux (Jj)=trapz (pi*mystruct.x/180,a*tanh (b* (xx+f) ./ (xx+h)) .* (xx
+c) ./ (xx+d) +e*sin (1* (xx+g)) )/ (2*pi);
end
mestimate (i-1)=nanmean (maux, 2) ;
end
e=rms (mv-mestimate) ;

end

87



APPENDIX AC: MATLAB script in second approach

cle;
clear all;
load('dataj2.mat');
load('shortForTrain.mat');
positions=fieldnames (JData) ;
ai=91.6872;
bi=0.4049;
ci=-1.5183;
di=2.822;
ei=6.1028;
£i=1.9798;
gi=0.1399;
hi=3.1413;
1i=0.1;
[coef, fval]l=fminsearch (@ (u)
errorD(dd,JdJDbata,u), [ai,bi,ci,di,ei,fi,gi,hi,1i]);
rmse=fval;
a=coef (1) ;
b=coef (2) ;
c=coef (3);
d=coef (4) ;
e=coef (5);
f=coef (6);
g=coef (7) ;
h=coef (8);
l=coef (9);
mestimate=zeros (length (positions)-2,1);
for i=2:length(positions) -1
maux=zeros (1,size (JData. (positions{i}),2));

for j=1l:size(JData. (positions{i}),2)
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xx=JData. (positions{i}) (:,7);

maux () =trapz (pi*JData.x/180,a*tanh (b* (xx+f) ./ (xx+h)) .* (xx+C)
L/ (xx+d) te*sin (1* (xx+qg) ) )/ (2*pi) ;

end

mestimate (1i-1)=nanmean (maux, 2) ;
end

r2=1-sum( (dd-mestimate) .”2) /sum( (dd-mean(dd)) .”2);
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