
•

•

•

Optimizations for Automatic Speech Recognition
Systems

Philippe Boucher
School of Computer Science
McGill University, Montreal

A Thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of M.Sc in Computer Science.

Copyright @ Philippe Boucher 1995

•

•

•

Abstract

This thesis introduces an architecture for a generic automatic speech recognition
(ASR) system which is easily adapted to specific tasks. It then expands the base
system to include a Vector Quantizer (VQ) preprocessor and a speaker adaptation
(SA) procedure. The VQ preprocessor reduces the amount of computation which
must be done on multivariant gaussian mixtures contained within hidden Markov
models (HMMs) in order to achieve a realtime speedup. The SA procedure increases
the accuracy of the ASR system when the same speaker uses it for a period of time.
Both improvements to the base architecture are then tested and evaluated using the
TIMIT test set, an Air Traffic Control task set, and a single speaker test set for
speaker adaptation .

Cette these presente une architecture pour un systeme pour la Reconnaissance Au
tomatique de la Parole (RAP) qui peut etre facilement adapte a une tache specifique.
Ce systeme est alors agrandi pour comprendre un pre-processeur a base de quantifica
tion de vecteurs et une methode d'adaptation a l'utilisateur. Le pre-processeur reduit
le nombre de calculs necessaire pour reconna;tre la parole, ce qui ameliore la vitesse
du systeme. L'adaptation a l'utilisateur ameliore !'exactitude du systeme. Ces deux
modifications sont evaluees avec la base de donnees TIMIT, con tenant des paroles de
controleurs de trafic aerien, et une base de donnees d'un seul utilisateur pour verifier
1 'adaptation .

•

•

•

Acknowledgments

I would like to thank Dr. Renato De Mori for his assistance and guidance, without
which, this thesis wouldn't be. I would also like to thank Charles Snow and Michael
Galler for their patient help, as well as everyone else in the Speech lab. Last but not
least, the SOCS system staffers who do whatever it takes to keep the machines up
and running no matter what and sometimes against great odds ;-)

•
Contents

0 Introduction 1

1 Speech Generation 2
1.1 The Vocal Tract . 2
1.2 Phonemes 4

1.2.1 Consonants 4
1.2.2 Vowels ... 6
1.2.3 Phonetic features of consonants and vowels . 7

1.3 Acoustic Features 11

• 2 Feature Extraction 18
2.1 Data Acquisition 18
2.2 Acoustic Features 19
2.3 Feature Extraction 21

2.3.1 Pre-Emphasis 21
2.3.2 Frames 21
2.3.3 Features ... 22

2.4 Fast Fourier Analysis 22
2.5 Windowing 25
2.6 Mel-Cepstral Coefficients . 26

3 Acoustic Modeling and Phoneme Recognition 27
3.1 Hidden Markov models 27

3.1.1 Elements of an HMM 28
3.1.2 HMM training and the Baum-Welch Algorithm 29

3.2 Finite State Networks for Phonemes. 31
3.3 Beam Search 32

4 Software Architecture of a Speech Recognition System 34
4.1 Architecture 34

4.1.1 Data Acquisition 35

• 4.1.2 Feature Extraction 40

11

•

•

•

4.1.3 HMM Recognizer
4.2 Interface

4.2.1 Control Window
4.2.2 Result Window

4.3 Parameter settings
4.4 Datafiles

5 Vector Quantization for Selecting a Gaussian in Mixture
5.1 Introduction
5.2 Requirements

5.2.1 K-Means Algorithm.
5.2.2 Binary Split

5.3 Distance and Distortion Measures
5.4 Application of Vector Quantization to the Roger ASR system

6 Adaptation
6.1 Introduction .
6.2 Me?-n Adaptation
6.3 Other Methods .
6.4 Generalized Adaptation

7 Experiments and Results
7.1 Test and Training Sets .

7.1.1 ATS Task Test Set ..
7.1.2 Personal Training Set .
7.1.3 TIMIT

7.2 Experiments
7.2.1 Vector Quantization Experiments
7.2.2 Mean Adaptation Experiments

8 Conclusions and Future Work

Bibliography

lll

40
41
41
46
46
52

58
58
60
60
61
62
63

66
66
66
68
69

73
73
74
74
75
76
76
78

81

82

•
List of Figures

1.2 Vowel Articulation •• 0 •••••••• 7
1.3 Standard Canadian English consonants 9
1.4 Standard Canadian English vowels 10
1.5 Waveform and spectrogram for /a/ 11
1.6 Waveform and spectrogram for /s/ 12
1.7 Waveform and spectrogram for /z/ 13
1.8 Waveform and spectrogram for /ta/ . 14
1.9 Waveform and spectrogram for /da/ 15
1.10 Waveform and spectrogram for /la/ . 16
1.11 Waveform and spectrogram for /ma/ 17

• 2.1 Sound waveform for the utterance Air Canada 19
2.2 Spectrogram for the utterance Air Canada 20

3.1 A Hidden Markov Model •••• 0 0 0 0 0 28

4.1 Basic process architecture of the Roger speech recognition system 35
4.2 Roger's main control window 42
4.3 Roger's main recognition result window 46

5.1 Structure of the Vector Quantizer preprocessor . 59

7.1 Vector Quantization results 0 ••• 0 • 77
7.2 Automatic Speaker Adaptation results 79

• lV

•

•

•

Introduction

This thesis introduces an architecture for a generic speaker independent Auto

matic Speech Recognition (ASR) system called Roger. It is capable of being easily

and quickly adapted to new tasks simply by updating a lexicon and a grammar de

scription. This thesis then adds two improvements to the basic system, a vector

quantizer preprocessor and speaker adaptation. The Vector Quantizer (VQ) prepro

cessor reduces the overall amount of computation required for recognition by predict

ing which gaussian distributions are likely to be useful for phoneme Hidden Markov

Models and ignoring those gaussians that are not. The speaker adaptation system im

proves the overall accuracy of the recognizer over time for users who access the system

for a period of time. This produces an ASR system which is both fast, accurate, and

easily adapted to specific tasks. This document is divided into 7 chapters. The first

3 provide a basic overview of the theory behind standard speech recognition systems.

The fourth introduces the Roger system, its interface and configuration. The fifth

and sixth chapters describe vector quantization and mean adaptation. The seventh

provides results showing the improvements obtained by adding vector quantization

and speaker adaptation to Roger .

1

•

•

•

Chapter 1

Speech Generation

Before an Automatic Speech Recognition (ASR) system is described in detail, a

brief overview is first presented on how speech is generated, which components and

features are relevant to speech recognition, and how these can be represented. By

understanding the structure of speech at the level at which it is generated, we can

find proper ways to represent it and recognize it.

1.1 The Vocal Tract

Figure 1.1 is a simplified representation of the human vocal tract (adapted from

[Gold89]). It consists of the region between the glottis and the lips. The nasal

tract is the region which begins at the soft palate (velum) and ends at the nostrils.

Lowering the soft palate links both tracts, thus enabling the speaker to produce nasal

speech sounds. Speech is generated by first forcing air from the lungs through the

windpipe. Tensing the vocal cords in the glottis to various degrees will cause them

to vibrate during the flow of air, thus creating voiced sounds. The air flow is then

forced through the larynx, oral cavity, and the nasal cavity. Transient sounds can be

generated by a partial or complete closure of the vocal tract at various points .

2

•

•

•

_ _,_
/

,. .. -- --...... ~ ,,
,/

,/ \
! Alveolar Ridge \
' ~

) .~¥·····-n-,, Nasal Cavity ~l
(/_~:.~ _ _ Hard Palat~

Lip~A ~Y __ ::_:·::,:-·4---S;tft P ate

Teeth~r.:-~T---~~OraiC ity . -\ ~0 ongue J
L1p~ ' I , (t +- Phao/nx

~ I I
~ -..... ; ~

~ '
! Eso ~ a us

Vocal Cords ¥,611 lf' 9

l 1 1ft-Glo~is
• r , I 1 i

The Vocal Tract

Figure 1.1: The human vocal tract [Gold89]

3

•

•

•

1.2 Phonemes

Phonemes are the smallest units of speech. They are the basic building blocks which

make up the sounds of every spoken human language. Phonemes can be broken

down into various groups based on their particular characteristics. These include

the manner and place in which the phoneme is articulated as well as whether or not

it is voiced. The two main groups are vowels and consonants, which differ in their

mode of articulation. Consonants are generated when the airflow in the vocal tract

is momentarily blocked or restricted, so that the noise is generated mostly when

the closure is opened and the airflow is abruptly released. Vowels are generated

by a continuous flow of air through the vocal tract and can be produced without

interruption for significant lengths of time.

1.2.1 Consonants

In order to generate any kind of sound, the various components of the vocal tract

must be set in some sort of configuration. The configuration of the vocal tract can

be described using key positions, known as places of articulation. Altering these

configurations will produce the following specific classes of sounds

1. Labial phonemes are produced by a partial or complete closure of the lips. If the

sound involves both lips, then the sound is said to be bilabial. Sounds generated

by using the lower lip and the upper teeth are called labiodentals. Examples of

labial sounds are fp/, /b/, /v/, and///

2. Dental sounds are produced by placing the tongue against or near the teeth.

This produces sounds such as /s/ and /z/ If the tongue is placed between the

teeth, the sound is called interdental. The English sound jth/ is an interdental.

3. Alveolar sounds are generated by touching the tongue near the alveolar ridge

which protrudes behind the upper front teeth. The English phonemes ft/ and

4

•

•

•

/d/ are alveolar sounds.

4. Alveopalatal and Palatal sounds are generated by placing the tongue on or near

various positions in the roof of the mouth. An example phoneme is /shj.

5. Velar sounds are produced when the back of the tongue is placed on or near the

velum. In English, such sounds tend to come at the beginning of a word, such

as the /c/ in cat. If the lips are rounded during the production of the sound, it

is called labiovelar. An example of this is the jwj in wet.

6. Uvular sounds are made by placing the tongue on or near the uvula, the fleshy

flap of tissue which hangs down from the velum. There are no such sounds in

English, however, the European French /r/ is a uvular sound.

7. Pharyngeal sounds are produced by retracting the tongue or constricting the

pharynx. These sounds are present in dialects of Arabic but not English .

8. Glottal sounds are made by closing or constricting the vocal chords and building

up pressure behind them. An example of these is the /h/ sound at the beginning

of such words as heave and hog.

The way in which air is pushed through the vocal tract will also affect the kind of

consonant which is produced, depending on the current place of articulation being

use.d by the speaker.

1. Oral vs Nasal. Sound can be generated by pushing air either solely through the

oral cavity, or through both the oral and nasal cavities by lowering the velum.

2. Stops (sometimes referred to as plosives) are created by building up pressure

behind a total constriction then releasing it. They can be voiced or unvoiced.

3. Fricatives are generated by a steady air flow through the vocal tract. This

generates such unvoiced sounds as /s/ and /f/ or voiced sounds like /z/ and

5

•

•

•

jv j. Since fricatives require a partial constriction of the vocal tract in order to

be generated, they are not classed as vowels.

4. Affricates are plosive/fricative pairs. They are usually modeled as single phonemes

since the duration of the trailing fricative is relatively short.

5. Liquids (sometimes referred to as glides or semi-vowels) are produced by a

constriction in the vocal tract smaller than that of vowels, but still large enough

to not generate a fricative sound.

1.2.2 "ovvels

Vowels are produced by opening the vocal tract and varying the position of the body

of the tongue and the shape of the lips. There exists two major types of vowels in

English, diphthongs and simple vowels. Diphthongs exhibit a distinct change in the

sound of the phoneme over time. Simple vowels, however, are constant.

Vowel Articulation

Vowels are not articulated the same way as consonants. They are instead generated

by positioning the tongue in a particular place and rounding the lips. If the tongue

is placed high within the oral cavity, the vowels which are generated are classed as

high. If the tongue is low within the oral cavity, the vowels generated are classed

as low. If the tongue is in the middle, the vowel class is called mid. Similarly, the

position of the tip of the tongue, front, central, or back also determines the vowel

class. Vowels which are rounded are generated by placing the lips in an 0 shape. An

/ow/ sound is therefore a mid-back rounded vowel. Nasal vowels are produced with

a lowered velum so that air passes through the nasal cavity as well as the oral cavity

Figure 1.2 (adapted from [Dobr87]) shows the place (horizontal) and manner

(vertical) of the articulation of the vowels of Canadian English. The trapezoid is a

6

•

•

Front (Central) Back

ay a aw @

Figure 1.2: Vowel Articulation [Dobr87)

rough approximation of the space in which the tongue is able to move. Note that the

lower the tongue goes in the oral cavity, the more restricted the space in which it can

move. Vowels which are circled are lax, all others are tense. Lax vowels are sounds

which are generated with little constriction of the tongue. Tense vowels require the

musculature of the tongue to be tensed. Vowels within the dotted line are formed by

a rounding of the lips during the vowel's production.

1.2.3 Phonetic features of consonants and vowels

Features are the units of phonological structure which make up the phonemes. They

directly represent the phoneme and how it is generated. Each feature is independently

controlled by the vocal tract. Linguists describe phonemes in term of a feature

matrix. A + sign indicates that the feature is present in the particular phoneme,

whereas a - shows the feature is not used. Certain features can be used to classify

phonemes into groups called natural classes. Such classes will share one or more

common feature. This method also permits comparisons between groups of phonemes.

Allophones (variants of a standard phoneme) can be explained merely by changing

the specification of one or more features for a given phoneme, not by substituting one

phoneme for another. Current linguistic theory defines 24 distinct phonetic features

which describe the whole of human phonological behaviour. The basic features of the

7

•

•

•

English language form a subset of those 24 and are arranged as follows:

1. Major Class features are used to classify phonemes into obstruents, vowels,

glides, liquids and nasals. This set contains 3 specific features. Consonantal

phonemes entail a major obstruction of the vocal tract. Vocalic phonemes are

some vowels and liquids. Sonorant phonemes are the "singable" vowels, glides,

liquids and nasals.

2. Laryngeal phonemes are those which are generated by changing the state of the

larynx. Voice are those sounds which are actively voiced. Spread glottis are

those consonants which are aspirated.

3. Place Features. These are labial , round , coronal, anterior , and strident.

4. Dorsal features represent the position of the body of the tongue. These include

high, back, low, tense for certain vowels which are tensed instead of lax, and

reduced.

5. The manner features are Nasal, where the velum is lowered, and continuant,

where there is relatively free airflow through the oral cavity. The lateral feature

includes only the varieties of /1/. The delayed release feature is for all of the

affricate consonants and nothing else.

Figure 1.3 contains a table adapted from [Dobr91] g1vmg, for each consonant in

Canadian English, the standard phonetic symbol, a word containing the sound, and

a list of the phonetic features which create the particular sound. The feature groups

are organized as follows: The Major Class features contain the consonantal, sonorant,

and vocalic features. The second set, Laryngeal , contains the voiced, constricted

glottis, and spread glottis features. The third set, Place, consists of the labial, round,

coronal, anterior, and strident features. The fourth set are the Dorsal features: high

and back. The fifth, Manner, are the nasal, continuant, lateral, and delayed release

features.

8

•
Symbol Word Major Laryngeal Place Dorsal Manner
p spit +-- --- +--+- -- ----
ph pit +-- --+ +--+- -- ----
th tick +-- --+ --++- -- ----
t stuck +-- --- --++- -- ----
kh keep +-- --+ ----- ++ ----
k skip +-- --- ----- ++ ----
c chip +-- --- --+-+ -- ---+

J judge +-- +-- --+-+ -- ---+
b bib +-- +-- +--+- -- ----
d dip +-- +-- --++- -- ----
g get +-- +-- ----- ++ ----
f fit +-- --- +--+- -- -+--
V vat +-- +-- +--+- -- -+--

• () thick +-- --- --++- -- -+--
a though +-- +-- --++- -- -+--
s Sip +-- --- --+++ -- -+--
z zap +-- +-- --+++ -- -+--
s ship +-- --- --+-+ -- -+--
z azure +-- +-- --+-+ -- -+--
h hat --- --+ ++--- ++ -+--
y yet -+- +-- ----- +- -+--
w witch -+- +-- ++--- ++ -+--
w which -+- --- ++--- ++ -+--
l leaf +++ +-- --++- -- -++-
m moat ++- +-- +--+- -- +---
r rent +++ +-- --++- -- -+--
? (Glottal stop) --- -+- ----- -- ----
n note ++- +-- --++- -- +---
7] smg ++- +-- ----- ++ +---

Figure 1.3: Standard Canadian English consonants

• 9

•

•

•

Symbol Word Major Laryngeal Place Dorsal manner
1 fee -++ + - +--+- +

I fit -++ + - +--+- +
eY fate -++ + - ---+- +

€ let -++ + - ----- +

ae bat -++ + - --+-- +

u boot -++ + - +++-+ +

u book -++ + - +++-- +
ow note -++ + - +-+-+ +

a saw -++ + - -+++- +

~ shut -++ + - -+--- +

e roses -++ + - -+--+ +

Figure 1.4: Standard Canadian English vowels

Figure 1.4 shows the features of the English vowels. The features of the Major

class are the same as those of figure 1.3. The Laryngeal class contains only the voice

feature, and the Manner class has only the continuant feature. The Place class is

represented by the features high, back, low, tense, and reduced .

10

•

•

•

Figure 1.5: Waveform and spectrogram for /a/

1.3 Acoustic Features

The following represents examples of particular kinds of phonemes previously dis

cussed. The spectrograms and waveforms contain features which are particular to

each phonetic class. The curve which accompanies the waveform plot represents the

amount of energy present in the speech sample (see Chapter 2). The spectrograms

are scaled from OHz to 8000Hz and the waveforms are scaled from -32768 to 32768.

First, the spectrogram for a vowel will be shown, in this case, jaj. As can be seen

above, vowels are characterized by constant straight lines in the spectrogram, called

formants. All vowels have formant structure. The positions of the formants and the

distances between them will vary according to the phoneme itself and the voice pitch

of the speaker .

11

•

•

•

Figure 1.6: Waveform and spectrogram for /s/

We now look at the spectrograms for two fricatives. Figure 1.6 represents a

spectrogram for the phoneme /s/ Note that it is characterized by a broad band

noise in the high frequency range only. This shows up as the dark layer in the upper

area of the spectrogram .

12

•

•

•

Figure 1.7: Waveform and spectrogram for /z/

This spectrogram represents the phoneme /z/. Note that, like /s/, it is charac

terized by a broad band high frequency noise component. However, you will see a

small energy band underneath. This is caused by voicing and constitutes the only

difference between /s/ and / z/ Because of this, these phonemes are referred to as

cognates .

13

•

•

•

Figure 1.8: Waveform and spectrogram for jtaj

Figures 1.8 and 1.9 are examples of plosives. The above images for jta/ first

begin with a segment of silence, followed by a burst of energy for jtj which generates

two small bands of high frequency sound. The vowel sound, /a/, produces the two

formants, f 1 and h near the bottom of the spectrogram .

14

•

•

•

Figure 1.9: Waveform and spectrogram for /da/

The / da/ sound is similar to /ta/, these plosives are cognates and differ only in

that /d/ component is voiced .

15

•

•

•

Figure 1.10: Waveform and spectrogram for /la/

The spectrogram for /la/ in Figure 1.10 demonstrates two continuous sounds, l

and a and the transition from one set of formants to another. Note the transitions

for the first two formants .

16

•

•

•

Figure 1.11: Waveform and spectrogram for /ma/

Lastly, Figure 1.11 shows a spectrogram for a nasal phoneme, jmaj. One can

notice that the first half of the spectrogram has many weak lines. This is caused

by the nasalisation of the m sound. This corresponds to resonance of air through

the nostrils. There is then a sharp transition as the velum gets closed. This can be

seen by the sudden rise in amplitude in the waveform, as well as the appearance of

dark areas on the spectrogram. The beginning of the /a/ sound can also be seen as

voicing begins, indicated by the two dark formants in the bottom of the image .

17

•

•

•

Chapter 2

Feature Extraction

The purpose of feature extraction is to obtain information from a speech spectrum

in order to recognize what was spoken. Cepstral coefficients are computed from the

spectrum. These coefficients are used to represent the features a speech signal's

spectrum, as shown in Chapter 1, in the form of a vectors for a sequence of discrete

time intervals.

2.1 Data Acquisition

Data acquisition is required in order to input the speech signal from the user into the

computer. This will usually involve a microphone and an analog to digital converter.

These are the only components which might have to be added to a general purpose

computer in order to do ASR work on it. The converter will transform sounds into

a digital form which consists of a sequence of signed integers. The quality of the

digitized sound depends on the sampling rate (higher is better) and the number of

bits in the representation. Because the bandwidth of speech is at approximately

8kHz, the signal must be sampled at at least 16kHz in order to fully capture the

signal. The greater the number of bits in the sample size, the higher the res~lution

18

•

•

•

Figure 2.1: Sound waveform for the utterance Air Canada

of the sampling will be. Current systems, including Roger tend to use 16 bits as a

standard quantization.

2.2 Acoustic Features

The initial sampling of a speech signal generates a vector of numbers representing the

waveform of the signal. This represents the amplitude of the signal as time progresses.

The waveform is of limited use, however, since two different people speaking the same

word will generate different waveform plots. To make matters worse, the waveform

is generally not the same for one person speaking the same word twice! In order to

reduce variabilities during different pronunciations of the same word, a spectrum is

computed from the waveform. For a given word, peaks and valleys within the spec

trum will tend to maintain the same positions and can therefore be correlated to the

utterance which produced the speech signal. Because of this, it is the spectrum which

must be analyzed in order to recognize speech. A spectrogram is a plot of energy

distributed over frequency and time, where darker areas represent a higher amount of

energy. When trying to recognize speech, we wish to identify acoustic cues, specific

components of the speech signal which characterize a phoneme. Theoretically, these

cues can be found by analyzing frequency patterns in a spectrogram computed for

an utterance. One must look for patterns which are constant for a given phoneme,

19

•

•

•

Figure 2.2: Spectrogram for the utterance Air Canada

these would be invariant acoustic cues. In the larger context of the entire spectrum

of an utterance, these do not exist; researchers note that the spectrum for a phoneme

changes depending on its context and its speaker. This is acoustic variability . One

can look for acoustic cues for vowels in the formants which can be seen on a spectro

gram as dark smeared lines of energy. The spectrogram for the vowel /a/ in Figure

1.5 provides a good example. An acoustic cue can be useful in a certain context. If

a short silence, for example, is inserted between /s/ and /i/ a listener will usually

perceive the sound ski whereas if a short silence is inserted between the sounds /s/

and /u/ the same listener will perceive spu. In the first case, the silence is an acoustic

cue for a /k/ sound, yet in the second, the same silence cues a fpf [Jusc86]. The

frequencies of particular formants will also depend on the speaker. Generally, male

speakers will generate a formant at a lower frequency than a female speaker for the

same vowel.

20

0

0

•

2.3 Feature Extraction

From this point on, we will assume that the signal is represented as a sequence of

signed 16 bit integer values, each of which represents an amplitude for a duration of

0.0000625 seconds (this from a 16kHz sampling rate).

2.3.1 Pre-Emphasis

The signal must first be pre-emphasized. This will amplify the spectral components

above 1000 Hertz, where humans are known to be more perceptive. It will compensate

for the attenuation of spectral peak energies at higher frequencies. This partially

normalizes peak amplitudes [Pico93). Pre-emphasis is performed using the following

equation which is applied to each sample of a digitized utterance.

Sve(i) = S(i)- o:S(i -1) 1 ::; i ::; Ns (2.1)

where S(i) is the ith sample in the signal, N8 is the number of samples in the complete

signal, and o: is some constant. A common value foro: is 0.95.

2.3.2 Frames

Now that the samples have been pre-emphasized, they must be grouped into frames

using a sliding window system. A frame contains a number of samples required to

represent a particular length of time and will generally overlap with the previous and

subsequent frames. The duration of the frame represents a tradeoff between accuracy

of pitch characterization, typified by a larger frame, and rapid detection of spectral

changes, which comes about by using a smaller frame. The Roger ASR system (see

Chapter 4) generally uses a 20ms frame with a lOms overlap. A Hamming window

is used in order to filter the samples in a given frame [Rab93] .

21

0

0

•

2.5 Windowing

In order to capture the dynamic cues of speech, the sampled signal must be analyzed

in windows. The size of a window depends on a tradeoff. First and foremost, very

small windows will reduce the accuracy of the DFT since there will be fewer samples

available. A small window will be able to catch rapidly changing features in the

speech signal, but features which require a significant length of time to be completely

represented will not be easily spotted. A large window switches this around so that

rapidly changing features of the spectrum become hard to notice, but slowly evolving

ones stand out more readily. The Roger ASR system (see Chapter 4) uses a 20ms

window with a 10ms window overlap. Several windows can be used in order to

preprocess the sample frame. The simplest window has of course a rectangular shape:

{

1 for 0 < n < N - 1
w(n) = r(n) = - -

0 otherwise
(2.12)

A window introduces distortions in the short-time spectra. It has been observed

that the best results tend to come when a Hamming window is used. It resembles a

gaussian which doesn't quite reach zero at its edges. It is specified using the following

function:

{

0.54- 0.46cos(~1r';_) for 0 < n < N -1
w(n) = h(n) = - - -

0 otherwise
(2.13)

Other window types are of course possible. A window function need only have a

domain of 1 ton and its range must be between 0 and 1. Applying a window filter

to the samples in a frame is nothing more than multiplying the value of the filter at

position n with the value of sample n in the frame .

25

0

c

bility that if at timet the HMM is in state qt, it will jump to state qt+l at time

t + 1. Therefore:

(3.1)

If any state can be reached from any other state in the model, then we have

the property that aii > 0 for all i and j. If a state can not be reached from

another, then the probability of that transition is 0.

• Observation symbol probability distribution

The Observation symbol probability distribution, B = [bi(k)], describes the

probability that symbol k will be observed while the model is in state j. This

can be expressed as

where Ot is the observation symbol at time t

• Initial state distribution The initial state distribution, II = { 1rll 1r2 , ••• , 1l"N}, is

a list which indicates the probability that the HMM will start in state i

1ri = P(q1 = i) 1 :;S; i::; N (3.3)

3.1.2 HMM training and the Baum-Welch Algorithm

In order to compute probabilities for a sequence of events, using HMMs, one can

use the forward-backward procedure [Pico90]. The following equations illustrate how

29

c

c

this is done. We wish to have a probability measurement from a model G given a

particular observation sequence 0. This probability is the sum of the probabilities of

all the paths within G which could have been taken to arrive at 0. Essentially,

N

P(OjG) = L aT(i) (3.4)
i=l

where

and

/h(i) = 1 1 5: i 5: N (3.7)

N

f3t(i) = La&ibi(Ot+t)f3t+I(j) (3.8)
i=l

Hidden Markov Models can be trained iteratively to estimate their parameters. A

Maximum Likelihood Estimation (MLE) procedure [Pico90] recomputes a new model

which will improve the probability of the input vector given a previous model. An

initial model can be established initially with random parameters. First, we must

compute the expected number of times that the system will start in state Si.

30

c

0

7h al(i)/h(i) (3.9)

Now we must compute the state transition probability matrix. For entry (i,j) the

probability of going from state si to state sj is the expected number of transitions

from Si to Si divided by the total number of transitions from state Si.

(3.10)

The next value to compute is the probability of observing a given symbol while in

a given state. This is the expected number of times that we observe the symbol Vk

while in the state Si divided by the number of times we expect to be in state Si.

(3.11)

By using this method with a large training set, a set of phoneme Hidden Markov

Models can be built which will be used for ASR.

3.2 Finite State Networks for Phonemes

In order to increase the accuracy of the recognizer and reduce the amount of required

computation, a finite state network (FSN) of phonemes is used. This FSN is built by

analyzing the grammar of the required task. Each transition in the network represents

a phoneme model. During recognition, every node in the network is associated with a

probability updated based on the input vector. When the end of utterance is reached,

this network is traversed using backtracking so that the highest scoring path is found.

This path represents the most likely phoneme sequence for the given utterance. By

31

0

0

0

s

0 t

Figure 3.2: A simplified version of a finite state phoneme network [Gall92]

using such a network, the recognition is constrained to sentences accepted by the given

grammar. The drawback to this is that any utterance will map into the grammar, so

a speaker saying something which is unrelated to the task will still get a recognition

which matches the task grammar. An alternative consists in considering an FSN with

all the words in a lexicon and connecting each pair of words with an arc to which a

bigram probability is associated.

The result of recognition is a lattice consisting of the most likely list of phonemes

or words in the utterance. The Viterbi Algorithm (Vite67] is used in order to find

the highest scoring sequence of phonemes or words. This algorithm is a dynamic

programming method for maximum likelihood decoding.

3.3 Beam Search

Beam search is a non-admissible but effective search method used to speed up the

computation time by speeding up the Viterbi search (Lowe76J. It works by restricting

32

0

0

c

the search to nodes which have a likelihood greater than some fraction of the max

imum likelihood of a partial hypothesis in the search. If Ptax is the maximum log

likelihood of a partial hypothesis, only those nodes whose log-likelihoods are greater

than Prax - ~ are kept in the list of nodes to search. The parameter ~ is called the

beam width. The smaller the beam, the faster the search since more nodes are pruned.

However, a very small beam will remove nodes which would create highly probable

paths because those nodes might have a poor local acoustic match, hence a low local

likelihood. A proper beam width is therefore a tradeoff between speed and accuracy.

Lee [Lee90] observes that the speed up is almost inversely linearly proportional to ~.

33

c

c

c

ues and causes a rereading of the parameter file as specified in SA_p ARM..FILE

(see section 4.3). Once this is done, a RESET code is sent down the recognition

stream so that the other processes can do the same.

• samplerate CODEC or 16 or 22 or 44

This command which must be issued before mikeon alters the recording sam

pling rate. It will currently accept CODEC (8kHz), 16, 22, or 44. The default

is to leave it at 16 since all models in the system were trained for this rate.

• save filename

This command will save the last complete utterance in a NeXT format sound

file.

• duration time

This command identifies the length of time that a signal must remain below the

silence threshold in order to stop the automatic recording. The time is specified

in half second blocks.

• noise threshold

The noise threshold is the level which the signal must reach before Recorder

will automatically start recording. The range is from 0 to 1 where 0 will au

tomatically start recording as soon as mikeon is issued and 1 will never record

anything.

• calibrate

Causes the Recorder to recalibrate itself when the record parameters have been

changed.

• gain -!W to 20

Alters the current recording gain. For soft speakers, the gain should be set

37

c

c

higher, for loud speakers, it should be lower. The value must is interpreted in

decibels.

• playback

This command will use the system's native sound play command to playback

the last complete recorded utterance.

• line line or mike

This command determines the signal input source. Line is the system's linein,

whereas mike is the microphone jack.

• mode burst or realtime

The mode command controls the fashion in which the speech signal is delivered

down the recognition stream. In burst mode, the Recorder will wait until the

end of utterance is reached then send the entire signal in one burst. In realtime

mode, buffers containing signal data are immediately sent down the stream as

soon as they are available. The default mode is realtime.

• rogermode on or off

Rogermode informs Recorder if the Roger interface is attached to the stream.

Recorder generates a standard output format on its stdout stream. Each packet of

information consists of 32 bits. If the high order 16 bits are all zero, then the low

order 16 bits represent an individual sample from the current signal being recorded.

If the high order 16 bits are non zero, then the 32 bit sequence represents a control

code. These are as follows (Actual numbers are not given for the sake of brevity)

• RESET

This code forces all the processes which receive it to reset their parameters to

default values and reread the parameter file.

38

0

c

• sou
This code indicates that there is now a new utterance being sent down the

recognition stream.

• NOP

This is a null control code. It should be ignored by anything that receives it.

• EOU

This code indicates the end of the current utterance. When it is received by

recogniier, it should begin backtracking in order to compute a complete recog

nition string.

• QUIT

This code should cause everything to receive it to terminate gracefully.

• MADAPT

MADAPT will cause the recognizer to update its HMMs based on the contents

of the feature vector caches maintained for each Hidden Markov ModeL It

forces speaker adaptation on the current utterance.

• INFO

This packet passes information from one process to another. The low order 16

bits of the code represent the particular type of information and the next 32

bits represent additional data, such as a parameter. These next 32 bits should

not be used as signal data.

• CALffiRATEON

Indicates to the feature extractor that the sample data which follows is recorded

silence. This is used by the feature extractor (SA) in order to calibrate itself.

• CALffiRATEOFF

This indicates the end of the recorded silence.

39

c

c

c

More codes can be added to Recorder and passed down the recognition stream. Re

gardless of whether or not a process recognizes one of these control codes, it must

always pass it downstream to the next process without modifying it. This way a new

command could be added to the recognizer and controlled by the Recorder without

ever having to modify the feature extractor. Unrecognized control codes by default

are ignored and passed on.

4.1.2 Feature Extraction

Feature extraction is performed by a program called SA. It will expect data on its

stdin stream in the format described for the output of the Recorder process. SA

will break the signal down into frames then compute various features from those

frames. The features are then output to SA's stdout as a list of IEEE format floating

point numbers. SA uses a special floating point number to indicate that what follows

is actually a control code and not frame data. These floating point numbers will

generally have the low order 16 bits all set to 1. SA will currently accept and process

all control codes which can be output by Recorder with the exception of MADAPT.

This unit implements the basic theory presented in chapter 2.

4.1.3 HMM Recognizer

The basic recognition engine is called recognizer and is written by Michael Galler

and Philippe Boucher. Recognizer expects feature vectors from SA and uses them to

update internal structures using Hidden Markov Models (HMM) in order to compute

a recognition string for the original signal. Recognizer does not recognize any com

mand line switches. The basic theory behind the recognition algorithm is described

in chapter 3.

40

c

c

4.2 Interface

In addition to the parser provided by the Recorder module, Roger also has an X Win

dows based interface. This interface is written entirely in Tcl/Tk [Oust94][0ust93]

and allows the user to control all aspects of the recognizer, including several additional

tools in order to manipulate sound files, spectrograms, system audio parameters and

HMMs. The interface attaches itself as two additional processes in the speech recog

nition stream. The Control window is attached directly to Recorder's parser and

will in fact pass commands to Roger by placing text commands on Recorder's stdin

stream. The Results window is attached to the stdout of the Recognizer process. It

will parse and format the output of Recognizer, display it and pass the result further

down the stream in case another process is attached to it.

4.2.1 Control Window

Roger's main control window is shown in Figure 4.2. The various functions which it

can perform are described below. Each subsection represents one of the submenues

associated with the entries on the menu bar (which contains Recorder, Sound, Pa

rameters, an4 Help).

Recorder

This button creates a menu whose functions control all of the data acquisition pa

rameters. These are as follows:

• Settings

This option allows the user to alter the record parameters. Noise Threshold

controls the loudness which a sound must initially have before it will cause

the Recorder to automatically pick up the voice. The higher the threshold the

louder the initial sound must be. At a threshold of 0, the Recorder will start

41

c

-

Figure 4.2: Roger's main control window

c
42

0
automatically, while at a threshold of 1, the Recorder will never pick anything

up. The Silence Threshold indicates the level below which sound must lie for

it to be considered silence. As before, a threshold of 1 would make any sound

considered to be silent, while a threshold of 0 would cause any level of sound to

be non silent. the Duration Length is the amount of time in half second intervals

that the sound must be below the silence threshold before the the Recorder· will

turn itself off. Gain Level is the system's recoding gain, measured in db. For

best results the thresholds should be kept low, with the silence threshold lower

than the noise threshold. A recommended setting is 3% for the noise threshold,

2% for the silence threshold, a silence duration of 2 and a gain of 7. In noisy

environments, the noise and silence thresholds should be raised. The gain also

needs to be adjusted upwards for speakers with soft voices and downwards for

loud speakers. Pressing the Set button will cause the system to calibrate its

sound hardware using the new parameters.

• Calibrate

This option will cause the system to recalibrate its sound hardware based on

the current record parameters defined in Settings above. This operation is

automatically done whenever Roger is launched, but should be repeated if a

loud noise occurred during calibration.

• Repeat

Repeat allows the user to repeat his or her last utterance by playing back the

recorded sound into the recognition stream.

• Feed

This option allows the user to feed a prerecorded sound file into the recognition

stream. Currently, the only format supported is signed 16 bit linear sampling

data, similar to the NeXT sound format without the header. The file will be

43

c

c

c

interpreted according to the current system sampling rate.

• Lineln

This switches the input source to a device attached to the linein of the com

puter's audio hardware. When the input source is switched, the system should

be recalibrated.

• Microphone

This switches the input source to the microphone device attached to the com

puter. As for linein, the system has to be recalibrated when this option is

used.

Sound

The Sound menu gives the user access to the stored sound files of Roger, as well as

access to the native audio applets which are provided with the computer on which

Roger is running. These functions are as follows:

• Playback

This will play back the last recorded utterance using the computer's native

sound play utility.

• Save

This will save the last recorded utterance to a NeXT format sound file (.snd)

• Sgram

Sgram will display a waveform and spectrogram of the last recorded utterance.

• AControl

This will launch the audio control software native to the computer on which

Roger is running.

44

c

c

c

• AudioEditor

This will launch the native audio file editor of the computer on which Roger is

running.

Parameters

The Parameters menu is used to edit the values which are present in the parameter

file SA_pARM_FILE (see section 4.3). It provides the following functions:

• Edit

This option will popup a window which will display the current parameters as

defined in the current parameter file. Double clicking on a parameter will bring

up a second window which will allow you to edit it. Choosing the Apply button

will cause Roger to be reinitialized using these new parameters but they will

not be saved in the permanent parameter file. Choosing Cancel will of course

cancel any changes which you have made to the current parameters

• Save

This will save the current parameters held by the interface to the current pa

rameter file in use.

• Load

Help

Allows the user to load a new parameter file and reinitialize Roger based on

their values.

This is a standard Help menu, its two functions are:

• Help This function will present a general help document on how to use Roger,

the list of parameters that it understands, suggested settings for data acquisi

tion, preparing grammars and transcription files, as well as a troubleshooting

45

c

c

c

Figure 4.3: Roger's main recognition result window

guide in case the user hits some difficulty.

• About About will create a standard information window giving the name of

the program, the version and revision numbers, as well as the list of authors.

4.2.2 Result Window

The Result window will display an enumerated list of all utterances which Roger has

attempted to recognize, as the example in Figure 4.3 demonstrates. A slider on the

right of the window allows the user to review all of the sentences. The interface will

also output the recognized sentence string to stdout so that other processes can be

attached to Roger and know what the recognition was. Common attachments at this

point would be a speech synthesizer or a dialogue system so that responses can be

spoken to the user.

4.3 Parameter settings

The parameters which are understood by the various components of Roger are de

scribed below. They can be accessed either by editing the library version of the pa-

46

c

c

rameter file, or, they can be altered during recognition using the Parameters submenu

from the control window. These parameters control the behaviour of the recognition

system following the theory set forth in the previous 2 chapters.

• SampleRate=integer

The sampling rate at which audio data is being required. This should be set

to the same value which was used to generate the models which will be loaded

into the recognizer.

• Advance= integer

The amount of time by which the window is to be moved ahead in order to

generate the next frame.

• HmmDictFile filename

The path and file name of the phoneme dictionary file

• HmmPrefix=directory

The directory where the HMM binary files are to be found

• MaxSentLen=integer

This is the maximum number of labels or tokens which can be generated in the

recognition of an utterance.

• MaxObsLen=integer

This is the maximum number of frames in an utterance. Once an utterance

reaches this number, a recognition up to that point will be automatically pro

duced, regardless of whether or not there is more utterance to come.

• FsnFile-filename

The path and file name of the task grammar file

47

0

• RecBuffSize=integer

This is the maximum number of frames which will be passed to the Viterbi

algorithm at one time.

• BeamThreshold=reaLnumber

The BeamThreshold is the initial threshold value used by the beam search in

the recognition module.

• FinalBeamThreshold=reaLnumber

The FinalBeamThreshold is the final threshold value which is used by the beam

search in the recognition module. Setting both beam threshold values to zero

will cause the beam search to be disabled during recognition. Beam thresholds

are usually set to be very small values. The higher the value of the threshold,

the quicker the recognition will be, but at the cost of accuracy. The Final

BeamThreshold is only used when the system is on the last unit or phoneme of

a word.

• SegmentDump=integer_flag

Setting SegmentDump to 1 will cause a segmentation file to be written out at

the end of each recognized utterance. The file will always be ftmpfsave.seg.

This file contains the the start and end sample numbers of each recognized

token, as well as the token itself.

• ThreshFile filename

This file contains threshold values for model specific beam search.

• SegFileList filename

This specifies a list of segmentation files for the recognizer. This parameter

is used mostly during a training run: It lists where the label files for a given

sentence recording can be found, so that the recognized labels can be compared

48

c

c

c

with the actual labels of the utterance. This permits the system to automati

cally evaluate its performance.

• TransFile filename

The path and file name for the phoneme to word transcription list. This file

consists of a token as it is referred to in the appropriate grammar file, fol

lowed by the phoneme models which make it up. There can be more than one

representation for each token.

• StatsFile filename

This setting allows the user to specify a file in which statistics about the entire

recognition run can be stored.

• QuickStep=integer_ftag

This controls which evaluation function is used for the Viterbi algorithm. A

setting of 0 will cause all distributions of a transition to be used in scoring the

transition, whereas a setting of 1 will cause the highest valued distribution to

be used in order to score the transition. If you wish to use the vector quantizer

optimization, this setting must be set to 1 (see chapter 5).

• OffLine=integer_ftag

OffLine recognition is done when the recognizer is used to run a large set of

test utterances. Setting this flag to 1 therefore puts the recognizer in batch

mode. Setting the flag to 0 or not specifying this flag will allow the recognizer

to function with an interface and a human speaker.

• NormFsnProbs=integer_ftag

Normalizes the probabilities of the transitions in the fsn file

• BestPath=integer_ftag

Controls the behaviour of the Viterbi search

49

0

0

• V qdFile filename

This indicates which distribution usage file to use. This file works in conjunction

with the vector quantizer so that the recognizer will know which distributions it

should look at in order to evaluate each transition in the HMMs. The V qdFile

must be specified.

• VQCodeBook jilename

This file contains the list of codewords which the vector quantizer uses. You

must be sure to specify a codebook which matches the VQD file you have

selected. The Codebook file must be specified.

• U sedDistributionList filename

Specifies a file which contains a list of distributions to use during the evaluation

of mixtures in the HMMs.

• LatticeDump= integer _flag

This forces the recognizer to print out the phoneme lattice at the end of each

completed recognition of an utterance.

• AutoAdapt=integer_fiag

Setting AutoAdapt to 1 will force the recognizer to update the model distri

bution means automatically after each utterance is recognized. If this setting

is not specified or set to 0, then the model distribution means will only be

updated when the recognizer module receives an ADAPT control packet. This

packet can be sent either by clicking on the adapt button on the X windows

interface or by entering the command adapt in the command line interface after

a successful recognition.

• SilThresh=integer

This silence threshold is used by Recorder in order to zero out long sections of

a sampled speech signal. If the samples from the signal are below this value for

50

c

0

the number of samples indicated by SilA vg then they will all be changed to 0.

If this setting is used, it must be accompanied by SilA vg.

• SilA vg= integer

This setting determines the minimum number of samples which must lie below

SilThresh in order to zero out the particular block of the signal. The signal

will continue to be zeroed out until a sample is received was absolute value is

greater than SilThesh. Note that under no circumstance will a sample which

is greater than the threshold be canceled.

• lnputChannels=integer

This indicates the number of audio input channels. Currently, the Roger ASR

system can only use a single input channel (mono).

• SampleBits=integer

This is the size in bits of each sample which is received by the feature extractor.

This value should stay set to 16 as it properly represents a signed short integer.

• TimeOut=integer

The maximum length of time that the feature extractor will wait for a complete

block of audio data to be sent from the Recorder process. H this timeout expires,

then the feature extractor will use whatever sampled data it has received at that

point.

• WindowSize=integer

This is the length a window in milliseconds. The size in samples of a window

depends on the sample rate, for example, a 20 ms window at a sample rate of

16kHz would contain 320 samples.

• Coding=label

Coding describes the format of the sound data received by the feature extractor.

51

0

This setting should always stay at linear

• PreEmph=reaLvalue

This is the multiplier applied to samples in order to pre-emphasize them.

• MelCoefs=integer

This is the number of Mel coefficients.

• Filters= integer

This is the number of filters

• U ndersample=integer_ftag

This setting is used when the Recorder is forced by the audio hardware to

sample at a rate which is different than the one with which the models were

trained.

• DFTlen=integer

This is the size of the discrete Fourier transform, measured in distinct data

points.

4.4 Datafiles

Roger requires a number of files in order to operate correctly. The most important

ones are now described.

• Model files

These files are the most important of Roger. They contain the model descrip

tions for each phoneme. There are currently two formats, one binary and the

other text. The text format consists first of a header describing the name, size,

and type of the HMM. This is followed by a list of transitions from one state

to another. The format describes a complete transition per line, starting with

52

c

the initial state followed by the destination state (note that in this format, the

states are labeled starting from 1, not 0). The probability of the transition is

next, written in exponential notation. The last item on the line is a distribution

index. Groups of transitions which have a common origin state and a common

destination state form a mixture and are usually stored in sequence. The rec

ognizer will try to read the number of transitions denoted by Transitions in

the model header. Once the transition list is complete, the distributions must

be added. First is the tag name Distribution XXX where XXX is the distribu

tion index. Each distribution is merely a list of parameters represented by 2

exponential notation numbers. The first is the mean value of a gaussian, the

second, its variance. There is one line per feature used in the models. In the
' current implementation of Roger, each model uses 26 features, therefore, every

distribution list has 26 lines. The number of entries required per distribution is

denoted by DistribParam in the header. A very simple text HMM file would

look like:

Jla.me Sample
Type Continuous
DistribParam 2
Size 2
Transitions 2 0
#From To Probability Distribution
1 1 2.63269614537241440e-02
1 2 1.89403992991330460e-02
2 2 1.49167526867538000e-02
Distribution 1
7.07089867052442810e-02 4.24948756519003010e+OO
1.02406544091708970e+OO 1.25866403969781900e+OO
Distribution 2
-2.33432155436842520e+01 1.26886179241306650e+02
2.01287064721203680e+OO 1.08698623688947710e+02

1
1
2

The binary HMM files follow a similar format. There is first a 1024 byte block

which stores the name of the model. This is followed by a 4 byte integer which

represents the type. For Continuous HMMs, this value must be set to 2. The

53

c

c

c

number of parameters per distribution is next, as well as the number of states

and the number of transitions. Each of these is a 4 byte integer. After the

header is the transition list, as in the text format this consists of the origin and

destination states, each represented by an integer, the transition probability, a

double, then the distribution index, an integer. The transition list is terminated

by a 4 byte field which is unused. The next integer indicates the number of

distributions which must be read. The distributions consist first of the list of

mean values followed by the list of variance values. All are stored as doubles.

All integers in this format are 4 bytes, signed, and big endian. All doubles

used are in 8 byte IEEE format. The model distributions are generated with a

separate system which uses the Baum-Welch training algorithm [Gall92]. The

training is done using a database of speech utterances where the phonemes have

been labeled. The particular database used for training Roger is TIMIT. The

number of states present in a model is actually arbitrarily set as a parameter

when training is begun. A complete description of how the models are generated

is beyond the scope of this work.

• Parameter file

This file controls the behaviour of Roger by setting all parameters and values

described below. This file is specified to the system by setting the environment

variable SA_p ARM...FILE to the file and path name required before launching

Roger. Parameters are set by entering the parameter name in the file, followed

by an = and a value. Comments are denoted by a ; character, anything be

tween this and a newline is ignored. The following example is the file used by

the demonstration version of Roger for the ATS Air Traffic Control Task.

SampleRate=16000
InputChannels=1
SampleBits=16

samples per second
number of input channels
bits per sample

54

c

c

c

Time0ut=10
WindowSize=20
Advance= tO
Coding= linear
PreEmph=0.95
Me1Coefs=12
Filters=24
MaxObsLen=800
MaxSentLen=200
DFTlen=512
Undersample=O
RecBuffSize=20
HmmDictFile=phonemes.dic
FsnFile=ATS

timeout tor something
width of window in milliseconds
window advance in milliseconds
encoding of samples
pre-emphasis factor
number of mel coefficients
number of filters
max frames per utterance
max labels per output string
Size of Discrete Fourier Transform

max frames per call to viterbi
phoneme list

TransFile=ATS.tran transcription file
BeamThreshold=1.0e-46 beam search parameters for ATS task
FinalBeamThreshold=1.0e-30 beam search parameters for ATS task
HmmPrefix=/continuous/phonemes/
QuickStep=! ; '1' algorithm for quick viterbi steps
OffLine=1
BestPath=1

• Phoneme Dictionary File

This file must be specified as an entry in the parameter file. It indicates to

Roger which HMM files must be loaded into the system. It must have a header

describing the number of models, the type, the size of each distribution in the

models and the actual model names.

lame
Type
DistribParam
Models {

66
Continuous
26

garbage
a a
ae
ah
ao

}

• Grammar file

The grammar file describes where and when phoneme models are likely to ap

pear. It is generated from another utility. Its purpose is to constrain the

55

-r ..._,.

c

c

recognition run so that it will be faster and more accurate within the context

of the desired task for which Roger has been set. The grammar file describes at

which positions recognition tokens can appear. It is used in conjunction with

the transcription file, so that the structure of the individual recognition tokens

(like UA in the example below) can be known.

sil. (

) .sil

((AC.sil+AC).(3+3.sil).(9+9.sil).(1+1.sil))
+((AC. sil+AC). (8+8. sil). (5+6. sil). (9+9. sil))
+((AC.sil+AC).(8+8.sil).(7+7.sil).(8+8.sil))
+((AC.sil+AC).(8+8.sil).(7+7.sil).(9+9.sil))
+((UA.sil+UA).(8+8.sil).(8+8.sil).(5+5.sil)}
+(tailnumber)

The above file fragment is a piece of the ATS task grammar which represents

a silence, followed by an airline designation and 3 digits. In this particular

example, AC is Air Canada and UA is United, which is also described below

in the transcription file example. The notation of the grammar is specific to

Roger. Units are surrounded by parenthesis. A+ sign represents an OR and a

. represents an AND. ANDs have precedence over ORs.

• Transcription File

This file is a dictionary which will convert from a list of phonemes to a word

token, thus making it easier to use the output of the recognizer since it will be

simpler to read and multiple word pronunciations can be given the same final

word token.

lW n ao r th v eh s tcl t
UA jh uv n ey tcl t iy del d
UA y uv n ay tcl t iy del d
Patrol pcl p ae tcl t r ov 1
Patrol pcl p ih tcl t r ov 1
9 n ao ay n ih ix r

56

c

c

The above file fragment represents the utterances Northwest, United, United,

Patrol, Patrol, and Niner. The phonetic symbols used come from the TIMIT

speech database.

57

c

Chapter 5

Vector Quantization for Selecting

a Gaussian in Mixture

5.1 Introduction

Vector Quantization {VQ) is a commonly used method to reduce the amount of

redundancy in a set of data [Gray84]. In imaging, it is used to reduce the number of

colors in a picture while minimizing the distortion that this reduction would cause.

This allows pictures to be displayed on systems with a small colour palette, as well

as permitting the image to be compressed with minimal alteration to its appearance.

In speech applications, it can be used to represent a set of audio samples using either

a single value or a vector. Likewise, it can be used to represent a set of extracted

features from a speech signal using a single value or vector, as is often done with

discrete HMM systems. Vector quantization a method which can be used to cluster

data. Using VQ will significantly reduce a system's storage requirement for the input

data that it must analyze. The drawback to this however is that the information thus

stored will have some level of distortion which is inversely proportional to the number

of vectors to which the Vector Quantizer can map it's input. This list of vectors is

58

c

c

Speech
Feature
Vector

Code book
Contains codewords
derived from HMM

distribution mean vectors

Distribution Lists
Derived from training

runs and linked to
matching codewords

Feature Vector
nd suggested

distribution list

HMM
Recognizer

Hidden Markov Models
Finite State Network

Token Transcription File
Speaker Adaptation System

Figure 5.1: Structure of the Vector Quantizer preprocessor

referred to as the quantizer's codebook. The output of VQ is one of the vectors which

are contained in that list. The amount of computation required to process data and

determine the similarity of two vectors is much smaller. There is also the advantage

that a discrete representation of the data (ie, by codeword) makes the data easier to

manipulate. In order for a vector quantizer to have real usefulness, it usually will

require a large codebook. This will induce its own overhead both for storage and

for computation time required to search it. A properly designed codebook is then a

tradeoff between the competing attributes of size, speed, and distortion, the cost of

which must be compared to the gain that it gives over a more brute force approach to

dealing with the input data. Small codebooks are easy to store and quick to search

but have a large amount of distortion. Similarly, a large codebook will have a low

amount of distortion but will be more difficult to store and time consuming to search.

59

c

c

c

5.2 Requirements

In order to build a proper codebook, a large set of training vectors is required. This

data should match as closely as possible the kind of data that the final vector quantizer

will be required to process. All cases of the data should be covered in the training

set. Rabiner suggests that the training set should be at least 10 times as large as the

desired codebook size [Rab93]. A measure of similarity between two data vectors is

required so that the vectors can be clustered as well as classified into unique codebook

entries. The similarity function is usually nothing more than a distance function

between two vectors. It must have the following general form:

d(u, v) = {
0

2::0

ifu = v

otherwise
(5.1)

A centroid computation procedure is required. The codewords are merely the cen

troids of each vector cluster which make up the quantizer. Finally, a classification

procedure is necessary in order to match an arbitrary input vector to a codeword.

This is usually accomplished with a nearest neighbour search. A fairly standard way

of building codebooks which fit the above requirements is to use the Binary Split

algorithm, which is based on the K-means algorithm.

5.2.1 K-Means Algorithm

K-Means is the basic VQ codebook building procedure [Gray84]. It requires the

following definitions: M is the set of cluster codewords (the actual codebook). L is

the set of training vectors. R is some arbitrary distance threshold which is used to

terminate the procedure. This value depends entirely on the data being analyzed and

the desired accuracy of the final codebook.

60

c

c

0

The K-Means algorithm now requires the following steps in order to build a general

code book.

1. Initialize the codebook by taking M vectors at random from the set of training

vectors. Each of these vectors will act as the initial codeword of a vector cluster.

2. For each vector in the training set, use a nearest neighbour search in order to

assign each one to the cluster to which it is closest.

3. For each cluster, generate its new codeword using the centroid computation

procedure on the set of vectors assigned to it.

4. Compute the average distance between the set of training vectors and each's

respective cluster codeword. If this distance is above some arbitrary threshold,

re-iterate the procedure from step 2.

The K-Means algorithm will often generate a codebook with less than M codewords,

since it is possible for no vectors to be grouped into a specific cluster. If this happens,

then a new cluster can be generated depending on whatever criteria the user of the

codebook wishes to use or the cluster can simply be discarded. An alternative is

to use the Binary Split algorithm which guarantees to generate a codebook of the

desired size.

5.2.2 Binary Split

L Build a 1 cluster codebook. This is merely applying the centroid computation

procedure to the entire vector training set.

2. Double the current size of the codebook. For each vector in the codebook,

create two new codewords using the following rule:

Y+n = Yn(l + t:)

61

(5.2)

0

c

c

Y-n = Yn(l -c) (5.3)

c is a constant value used to split the codeword in two. Its size should be fairly

small [Rab93] between 0.01 and 0.05.

3. Apply the K-Means algorithm to the current codebook in order to optimize the

current set of codewords to the data set.

4. Continue from step 2 until the code book has reached the desired size M.

5.3 Distance and Distortion Measures

The distortion measure represents the cost or change which occurs when one goes from

the input vector to the quantizer's output vector or codeword [Gray84). In practice,

the performance of a vector quantizer is represented using the average distortion over

time in the long term. A good system will have a low average distortion, ie, the limit

in Equation 5.4 is minimized.

(5.4)

There are various ways of computing the actual distortion from an input vector to a .

codeword. The particular method used will vary depending on the type of data being

quantized. An example measure is as follows:

• The squared error distortion measure

This computation can be applied to k-dimensional Euclidean vectors. It is

merely the square of the distance between the two vectors

62

c

c

c

d(u, v) = llu- vW

~k-1()2 = L.Ji=O Ui - Vi

(5.5)

Input dependent weights can also be used and have proved useful [Gray84]

When using this type of distortion measure, it is common to represent the

performance of the system using the signal to noise ratio.

SNR = 10log10 E(u
2

)

E[d(u, v)]

A large SNR corresponds to a small average distortion and vice versa.

(5.6)

Rabiner describes a large set of other distance and distortion measures, such as the

The Itakura-Saito distortion, likelihood-distortions, the COSH distortion and Cep

stral distances.

5.4 Application of Vector Quantization to the Roger

ASR system

We now describe in detail how the vector quantization preprocessor (VQPP) was

added to the Roger ASR system. Roger uses continuous HMMs where each transi

tion from one state to the next is represented by a set of one or more multivariant

gaussians. This set of gaussians is referred to as the mixture for that transition.

When evaluating the score for a particular transition, one will usually sum the score

of each individual gaussian in the mixture given the observation in order to arrive at

some value. However, an analysis of this sum reveals that most of the value comes

from one or two gaussians in a particular mixture. We can therefore increase the

63

c

c

c

speed of the computation with almost no loss of accuracy by merely computing the

log-likelihood scores of each individual gaussian and assigning it as the score for the

mixture given a feature vector. This method compresses the computation for an in

dividual gaussian and removes the need to expand and sum the values. However, all

gaussians must still be evaluated individually, yet most are thrown away. This can be

extremely wasteful as some of the models used by Roger may have over 40 gaussians

per mixture!

First a codebook needs to be built. The raw data for it is extracted from the

gaussian mean vectors found in the set of HMMs used by the speech recognition sys

tem itself. These vectors are generally representative of the kinds of feature vectors

that one would expect from sampled speech. Codewords are then derived using the

previously described Binary Split algorithm. The size of the codebook is determined

experimentally. Now that we have a proper codebook, a special training speech rec

ognizer is used. This recognizer maintains a record of each gaussian in each transition

in each HMM which the system uses, indexed by codeword. These records will count

the number of times that a particular gaussian has been used during training. As

each feature vector is pushed through the recognizer, it is associated to the appropri

ate codeword in the VQPP's codebook. Recognition is then done normally on it, but

once the winning gaussians and models are known for that vector, the appropriate

records for those gaussians in the vector's codeword are incremented. At the end

of a training run, their records are then output. From this data, a list of suggested

gaussians per codeword per model can be generated given a minimum number of

times that a gaussian must have been used in order to be included.

Now that we have a suggested gaussian list and a codebook, we can do normal

recognition runs. The feature vector is first preprocessed in order to find its appro

priate codeword. This codeword is then used in conjunction with the list of active

models at the time in order to find which gaussians need to be evaluated for a par

ticular transition, given the gaussian list. The recognizer then only evaluates those

64

c

0

gaussians given the input vector and keeps the maximum score for the particular tran

sition. The experiments described in chapter 7 demonstrate that approximately 66%

of the amount of computation can thus be removed with minimal loss of accuracy.

65

0

c

c

Chapter 6

Adaptation

6.1 Introduction

One way to improve the accuracy of a speech recognition system is to be able to

make it adapt to the various speakers that it encounters. This is useful for Speaker

Independent (SI) systems which will still be primarily used by the same user over an

extended period of time, such as air traffic control simulators. On a system which

uses continuous distribution HMMs, an easy way to do this is to dynamically adapt

the distribution means of the models to the feature vectors extracted from the user's

speech signal.

6.2 Mean Adaptation

Speaker adaptation can be done easily and without supervision by adapting the mean

vectors of multivariant gaussians. In order to adapt the models to a given speaker,

each transition from one state to another is associated with a cache. This cache holds

the feature vectors which caused that transition to "win" at a particular point in the

duration of the signal. At the end of an utterance, an average mean vector for each

66

c

c

c

cache is computed and the associated gaussian's mean vector is then updated using

N

U = I:ui (6.1)
i=l

and

X=(l-a)X+aU (6.2)

where X is the gaussian's original mean vector, X is the new mean vector, and U

is the mean vector computed from the contents of the gaussian's cache. Ui is a

vector from the cache and N is the size of the cache. a is the adaptation parameter.

It is generally very small, around 0.01. Selecting a particular value for this variable

represents a tradeoff between retaining knowledge in the model and quickly acquiring

new information from the environment. Shinoda and Watanabe [Shin94] use a similar

method and obtain a decrease in the error rate from 15.5% to 8. 7% using unsupervised

adaptation. Dragon Systems inc [Drag94] use the following algorithm in order to

adapt models to speakers:

1. Assign a relevance R for the original models in the system.

2. For each frame, the recognition module will compute the likelihood that the

frame was generated by the component i.

3. This probability is added to the accumulator for the counts, Ci.

4. This probability times the frame data is added to the accumulator for the

means, fi

5. New means can then be computed for the models at any time using the following

formula:

67

c

0

c

(6.3)

Where ui is a mean vector. Other parameters in the models can be adapted in

the same way.

Using this method, Dragon Systems reports a drop in the percentage word error

from 20.1% to 15.2% for unsupervised adaptation and a further drop to 13.6% for

supervised adaptation on their evaluation test corpus.

6.3 Other Methods

There are other methods for adapting speaker independent recognition systems to a

given environment or speaker. One of these is the REALISE system [Taka94] which

attempts to deal with environmental factors in the spectrum of a signal. It will try

to remove additive and multiplicative noise in a signal by comparing the spectra of

a single test utterance from the training environment and a reference utterance. All

incoming utterances are then adjusted to compensate using the results of the test.

Additive noise is background noise from the environment itself, whereas multiplicative

noise is caused by linear filters such as microphones, transmission channels, and

different vocal tracts. REALISE assumes that a signal x(t) is first corrupted by a

linear filter a(t), then by an uncorrelated additive noise b(t). The spectrum of what

the recognizer then sees is described by

Y(w) = A(w)X(w) + B(w) (6.4)

where A(w), X(w), and B(w) are the spectra of a(t), x(t), and b(t). Given test and

reference utterances, REALISE tries to estimate A(w) and B(w) without supervision.

68

c

0

c

Results on a demi-syllable HMM based Japanese recognizer show that a single ref

erence utterance was enough to raise the word recognition accuracy from 55.2% to

77.2%. Another technique is called cepstral high-pass filtering. It is very robust and

has a minimal computation cost (Herm91]. The RASTA method [Herm93] involves

applying a high-pass filter to a log-spectral representation of speech feature vectors.

Cepstra1 means normalization can be high-pass filtered simply by subtracting the

short-term average of the speech feature vectors from the incoming speech feature

vectors. These methods are intended to compensate directly for the unknown effects

of linear filtering which can occur to the speech signal as it is being acquired.

6.4 Generalized Adaptation

When performing adaptation in an ASR system, we would like to be able to gener

alize the information that we gather to gaussian mixtures which have not yet been

encountered in the input signal. There are many ways to do this. Maximum Likeli

hood Linear Regression (MLLR) is a method which allows adaptation to be performed

with a very limited set of data by extending its knowledge about adapted gaussians to

previously unseen gaussians. The following overview of MLLR is adapted from a pa

per by Leggetter and Woodland [Legg95]. During adaptation, the mean of a gaussian,

u is mapped to an unknown speaker adapted mean, u, using a linear regression-based

transform based on the adaptation data:

u=Wv (6.5)

where W is an nX (n + 1) transformation matrix and v is the extended ~ean vector

v = [1, Ut, u2, ••• , un]T. In order for the method to be effective with small amounts

of adaptation data, each regression matrix is associated with a set of state distri

butions and estimated from the combined data. This way, distributions which were

69

0

c

not present in the adaptation data can be updated given what was already seen of

other distributions in the same set. This also permits this method to work without

supervision. After the transformation, the probability density function of a state j

generating an observation vector of 0 of size n is

(6.6)

We now need to estimate the MLLR matrices for each regression class. These matrices

must maximize the likelihood of the adaptation data. The probability of being in

state j while generating the observation sequence 0 at time t is then

·(t) = J(O!Ot = j!>.)
13 f(O!>.)

(6.7)

where J(O!Ot = jl>.) is the likelihood of being in state j at time t and creating

the observation sequence 0. f(Ol>.) is the overall probability that the model >. will

generate the observation 0. The matrix W.; can now be computed column by column .

using

G-1
Wi = i Zi

where Zi is the ith column of the matrix

T R -1

Z = L I: /jr (t) L OtVJr
t=l t=l ir

and Gi isgiven by

70

(6.8)

(6.9)

c

c

R

G. - "'c(r)v · v' • - L..J ii Jr ir
r=l

where c~;) is the ith diagonal element of the matrix

T -1

c<r) =I: lir(t) 2::
t=l ir

(6.10)

(6.11)

These equations have been derived by Leggetter and Woodland in [Legg94]. The

above represents one MLLR iteration. The probabilities can be further updated by

using more iterations. It is also possible to alter these equations so that adaptation

can be done incrementally, without an explicit reference to the time component.

Now that the regression matrices are available, the regression classes must be defined.

There are two basic methods to do this. The classes can either be predetermined based

on the mount of adaptation data available or they can be generated dynamically. In

the first case, a clustering method applied to the gaussian mixtures is required. This

requires that the amount of adaptation data is known in advance. The second case,

however, does not have that limitation. The mixture components are arranged in a

tree structure where the leaves of the tree are actual mixtures and the internal nodes

represent groupings of those mixtures. The tree is then used to get the most specific

set of regression classes, given the current amount of adaptation data. By using

MLLR, Leggetter reports a 40% decrease in word error rate on the Spoke S3 test for

native English speakers ([Legg94]). Another method for generalizing adaptation is to

use transformation parameters obtained through the maximum likelihood criterion,

combined with Bayesian techniques, as is done in SRI's speech recognition system

By tying mixtures together, gaussians can be adapted for which no observations have

yet been made. In their paper, Digalakis and Neumeyer [Diga95] fully describe such

a method of estimating parameters based on the Expectation-Maximization (EM)

71

0

0

c

algorithm [Demp77]. Once the parameters have been estimated, the transformations

must be tied in order to efficiently adapt gaussians. A tree based method as described

previously is sufficient for this. Bayesian techniques are now applied so that limited

adaptation data can be combined with prior knowledge. This technique will only

modify gaussians in a speaker independent system if they are likely to have generated

adaptation data.

72

0

0

c

Chapter 7

Experiments and Results

Vector quantization of gaussians in a mixture was introduced in order to reduce the

amount of computation required in order to get proper recognition with a minimal

loss in accuracy. All methods applied were specially designed for Hidden Markov

models which use a set of continuous distribution~ to represent a single transition

between states

Mean adaptation was introduced to increase the recognition accuracy. As the

application was for a relatively small vocabulary (approximately 500 words) in a

system used by the same speaker for an extended period of time, mean adaptation

was considered adequate for the purpose. The application in question is a simulated

air traffic control (ATC) system.

7.1 Test and Training Sets

Three test and training sets were used in the context of these experiments. The first

two sets were created at the Mcgill Speech Lab

73

0

0

c

7.1.1 ATS Task Test Set

The ATS Task Training Set (ATTS) is a set of 135 sentences with a total of 1109

labels. It contains 8 different speakers from various nationalities who at one time or

another have been members of the McGill SOCS Speech Lab, thus the English used

is somewhat accented. Each speaker has 17 utterances which conform to a subset of

the standard international ATC grammar which is used in the demo version of Roger.

The sentences given for the Personal Training Set are representative of the kinds of

utterance which conform to this grammar.

7.1.2 Personal Training Set

In order to test out the speaker adaptation system, a special training set was created

using a single speaker and the following sentences, which are derived from the Air

Traffic Control simulation task.

AAL 1 11 descend and maintain flight_level 1 9 0
ACA 1 12 fly heading 1 5 0 degrees
Eilf 3 13 turn left 2 4 0 degrees
AMX 3 14 increase speed 1 8 0 knots
AVA 5_15 cleared_for ils 0 4 left approach
COA 2 16 resume ovn navigation via solberg
DAL 4 17 affirmative 5 thousand
JAL 6 18 report reaching flight_level 2 9 0
IVA 1 19 contact n_y_center on 1 2 0 point 9
SAB 6 11 traffic 12 o'clock 6 miles northbound airbus at 1 0 thousand
BAV 7 12 roger contact tower 1 2 3 point 9
USA 1 13 climb 2 flight_level 3 5 0 altimeter 2 9 9 2
UAL 7 14 maintain heading 0 4 0
UAL 7 14 maintain heading 0 4 0
VRG 2 16 turn right heading 1 4 6
KAL 8_16 reduce speed 2 2 0
AAL 9 17 cleared_for visual 0 4 left approach
ACA 9 18 resume own navigation via J 1 7 4
Ell 4
AHX 4
AVA 6
COA 3
DAL 6
JAL 7
IWA2

19 affirmative flight_level 1 8 0
11 report reaching flight_level 1 8 0
12 contact n_y approach on 1 2 4 point 9
13 traffic 7 o'clock 10 miles southbound boeing 7 60 7 at 2 7 0
14 roger contact tower 1 2 0 point 9
15 descend and maintain 1 1 thousand
16 fly heading 1 0 0 vector for n_y approach

74

C,

0

c

SAB 6
BAW 8
USA 9
UAL 8
VRG 3
KAL 9
AAL 1
ACA 1
EIN 3
AMX 4
AVA 5
COA 2
DAL 4
JAL 6
NWA 1
SAB 5
BAW 7
USA 1
UAL 7
VRG 2
KAL 8
AAL9
EIN 4

17 turn left heading 2 0 5 degrees
18 increase speed 3 2 0
19 cleared_for ils 0 4 right approach
11 resume own navigation via wavey
12 affirmative flight_level 3 9 0 ident
13 report flight_level 4 1 0
14 contact n_y_center on 1 2 3 point 9
16 traffic 8 o'clock 9 miles eastbound m d 80 at flight_level 3 3 0
16 roger contact tower 1 2 4 point 9
17 resume own navigation via bermuda
18 resume own navigation via champ
19 resume own navigation via east_texas
11 resume own navigation via carmel
12 resume own navigation via bergh
13 resume own navigation via dixie
14 resume own navigation via j_f_k
15 resume own navigation via modena
16 resume own navigation via linnd
17 resume own navigation via carmel
18 resume own navigation via coyle
19 resume own navigation via flann
11 resume own navigation via daner
12 resume own navigation via J 6 0

7.1.3 1rl1VII1r

The TIMIT speech corpus is a database of recorded and labeled utterances which has

been collected by Texas Instruments and MIT. The corpus consists of 6300 sentences,

where 10 sentences were spoken by 630 speakers from 8 major dialect regions in the

United States. The database is split with 70% of the recordings from males, the

remaining 30% from females. For the purposes of building the VQ preprocessor's

distribution lists, the TIMIT test set was used. This set consists of a group of 192

sentences and has been designed so that every phoneme is used extensively. The test

set contains 24 speakers representing the 8 dialect zones.

75

c

c

7.2 Experiments

7.2.1 Vector Quantization Experiments

These experiments were intended to measure the amount of computation reduction

and resultant accuracy loss from using various codebooks. First a codebook must be

generated. These are usually created by obtaining sequences of expected data and

clustering them into a desired number of nodes. In this case, data was extracted from

the distribution mean vectors of the HMMs themselves. The resulting codebooks

represent clusters of the HMM's distribution mean vectors. Once a codebook is

generated, a special version of the recognizer is used to build up a distribution list for

it. Feature vectors are pushed through the vector quantizer, then evaluated normally

using HMM's. The distributions which were found to be useful in evaluating the

feature vector are then associated with the codeword to which the feature vector

was mapped. Figure 7.1 shows the results of applying the VQ preprocessor. The

codebooks where all generated using the standard HMMs for the recognizer. The

training set used to generate the list of gaussians to associate with each codeword

was TIMIT and the results come from testing the system on the ATS Task Test

Set. The table is organized as follows: Size represents the number of codewords in

the VQ codebook. Cutoff represents the minimum number of times that a gaussian

needs to have been used before it is considered for inclusion in the suggested gaussian

list. RedEval is the average percentage reduction in the number of gaussians which

had to be evaluated when compared to the baseline for the test set. RedUsed is

the average percentage reduction in the number of gaussians which where used when

compared to the baseline of the test set. String Accuracy represents the correct

string accuracy rate over the test. In order for a string to be considered correct, all

the labels which make it up must have been correctly recognized. Unit Accuracy

is the percentage of unit labels which were correctly recognized and were in the

76

0

Size Cutoff RedEval Red Used String Unit Percent Correct Error
Accuracy Accuracy Correct Labels Labels

Baseline (no codebook) 88.15 97.57 97.93 [1086 27
16 0 49.0865 51.5368 86.67 97.39 97.57 1082 29
16 25 60.2797 62.4355 85.93 97.39 97.57 1082 29
16 50 63.7942 65.8746 83.70 96.84 97.11 1077 35
16 75 65.7311 67.7333 84.44 96.93 97.20 1078 34
16 100 67.3302 69.2347 85.19 97.20 97.39 1080 31
32 0 52.9405 55.3571 86.67 97.39 97.57 1082 29
32 25 65.1098 67.0854 84.44 97.02 97.20 1078 33
32 50 67.9829 69.7624 84.44 96.93 97.20 1078 34
32 75 69.8534 71.4914 85.93 97.02 97.29 1079 33
32 100 71.1080 72.5694 84.44 96.93 97.29 1079 34

0
64 0 56.3389 58.6742 86.67 97.39 97.57 1082 29
64 25 68.4937 70.2329 84.44 96.93 97.11 1077 34
64 50 71.4220 72.8729 85.19 96.93 97.29 1079 34
64 75 73.0277 74.2603 82.22 96.21 96.66 1072 42
64 100 74.1801 75.2132 81.48 96.12 96.48 1070 43
128 0 59.8202 62.0545 85.93 97.29 97.48 1081 30
128 25 72.0754 73.4713 85.93 97.11 97.29 1079 32
128 50 74.4654 75.5147 84.44 96.57 96.93 1075 38
128 75 75.9559 76.7243 81.48 95.67 96.12 1066 48
128 100 76.9669 77.5000 77.78 95.22 95.58 1060 53
256 0 62.0863 64.1596 85.93 97.29 97.48 1081 30
256 25 98.5243 98.2676 00.00 00.00 00.00 0 1109
256 50 98.5243 98.2676 00.00 00.00 00.00 0 1109
256 75 98.5243 98.2676 00.00 00.00 00.00 0 1109
256 100 98.5243 98.2676 00.00 00.00 00.00 0 1109

Figure 7.1: Vector Quantization results

c
77

0

0

right position in a sentence. Percent Correct represents the number of correctly

recognized labels which were in the right sequence but might have had incorrect

labels in between the correct ones. Correct Labels is the total number of correctly

recognized labels in the test. Error Labels represents the number of incorrectly

recognized labels which were generated during the test. The speech recognizer can

generate 3 types of errors. The first is substitution where one label is replaced by

another. The second is insertion where an incorrect label is inserted somewhere in

the recognition string. The last is a deletion, where a label is overlooked completely

and thus not output. Because of these possibilities, the number of correct labels and

the number of error labels do not necessarily sum to the total set of true labels in

the test set. Now if we look at the table, we can analyze the performance of the

preprocessor. Essentially, any codebook will reduce the amount of computation by at

least 50%. If we use codebooks with a higher cutoff of gaussians, then the amount of

reduction in computation increases, at a cost of some accuracy. The larger codebooks

perform increasingly worse with higher cutoffs because the gaussians are more spread

across each codeword, they are used less often for each entry. This explains why a

codebook of 256 entries is completely useless even with a cutoff of 25. As can be

seen, the selection of a proper codebook amounts to a tradeoff between accuracy and

computation reduction. However, the size of the codebook itself is also an issue, as

it must be searched every time an feature vector is processes. Therefore, a smaller

codebook is always preferred. Increasing the cutoff reduces the number of gaussians

which are in the suggested gaussian list for each codeword, thus reducing the amount

of computation even more, although at a loss of some accuracy.

7 .2.2 Mean Adaptation Experiments

In order to test out dynamic mean adaptation to a specific speaker, a data set con

taining a a large number of utterances from a single speaker is required.

78

0

c

Adapt Parm String Unit Percent Correct Error Percent
Accuracy Accuracy Correct Labels Labels Improve

0.0 (baseline) 48.94 86.29 87.19 388 60 0.0
0.00625 46.81 88.31 88.99 396 52 2.34
0.01250 48.94 91.91 92.58 412 36 6.52
0.0140625 48.94 91.91 92.58 412 36 6.52
0.015625 48.94 91.91 92.58 412 36 6.52
0.01875 44.68 91.24 92.13 410 39 5.74
0.025 40.43 89.93 90.83 406 45 4.21
0.05 38.30 88.59 89.71 401 51 2.67

Figure 7.2: Automatic Speaker Adaptation results

A data set of sentences spoken by the author was used in order to test out the

effectiveness of the speaker adaptation system. The first test consists simply of run

ning the sentence list through the recognizer in order to get a base measure for the

accuracy which can be achieved, then, the set is run again through the recognizer

using different adaptation parameters in order to see if there is an increase or decrease

in the overall accuracy.

The table in figure 7.2shows the results of speaker adaptation. The table headings

are the same as those in figure 7.1 with the addition of Adapt Parm which is the

adaptation parameter, the a in equation 6.2. Percent Improve is the percentage

increase in unit accuracy over the baseline given the particular adaptation parameter

value. As has been mentioned in chapter 6, the goal is to find a parameter value

which optimizes the accuracy by using the right amount of information from the

feature vectors while keeping in mind the current state of the gaussian means in the

model. In effect, one can zero in on the ideal parameter which in the case of the

test run for Figure 7.2 is 0.0140625. Experiments were run with permutations of the

sentence lists. In all cases, the results were similar. The improvements were almost

identical to the numbers presented in Figure 7.2 and the ideal parameter remains

approximately 0.014. The string accuracy of this test is low because the speaker was

a francophone using American English models.

79

0

0

Because of the particular application, an ATC simulator, where the speaker will

use it for an extended period of time, there is no generalization required for gaussians

that have not yet been seen.

80

0

0

Chapter 8

Conclusions and Future Work

An architecture has been designed and implemented with a suitable interface for

a generic speech based application called Roger. The current application of Roger

is that of an interface for an Air Traffic Control (ATC) simulator. The system is

designed, however, so that new applications can be quickly and efficiently designed

once the required vocabulary and grammar are known. The system's multi-process

stream design allows concurrent processing of data as it becomes available. This also

permits more complicated applications to be built simply by adding new processes in

the stream. As long as the communication protocol is known, no other knowledge of

the internals of each module is required.

By adding a VQ preprocessor to the HMM based ASR system, a significant amount of

computation can be removed with extremely minimal loss of accuracy. This reduction

of computation can be translated into a real time speedup, thus improving the overall

response time of the system. Another possibility is to give the ASR more complex or

bigger models. This would increase the accuracy of the system and it would still be

possible to maintain the speed as it was before the addition of the VQ preprocessor.

As the VQ system currently stands, it could be further improved by exploring different

internal structures for the codebook. A tree based approach to storing codewords,

81

0

0

c

for example, could make the search to find a matching codeword for a feature vector

much faster.

Unsupervised speaker adaptation adds a simple yet powerful method of increasing the

accuracy of the ASR system. It is especially useful in light of the demo application

developed by the McGill Speech Lab, an Air Traffic Control simulator interface where

a single speaker will be using the system for an extended period of time. Because

of this kind of usage, a generalization system for adaptation, as described in chapter

6, was deemed unnecessary. For further development of more general applications in

speech, however, the theory described should be implemented.

82

0

0

Bibliography

[Algo] T. H. Cormen, C. E. Leiserson, R. L. Rivest, "Introduction to Algorithms",
MIT Electrical Engineering and Computer Science Series, MIT Press, Cambridge,
Massachusetts, 1990

[AlpBer] Paul van Alphen, Dick R. van Bergem, "Markov Models and Their Appli
cation in Speech Recognition"

[Aust92J S. Austin, R. Schwartz, P. Placeway, "Speech Recognition Using Segmantal
Neural Nets", Proceedings of the IEEE ASSP conference, pages 1-625-628, San
Francisco, March 1992

[BBN94] C. Lapre, F. Kubala, R. Schwartz, J. Makhoul, "Speaker Adaptation for
Non-Native Speakers", ARPA Spoken Language Technology Workshop, March 8,
1994

[Bocc93] Enrico Bocchieri, "A study of the Beam-Search Alogorithm for Large Vo
cabulary Continuous Speech Recognition and Methods for Improved Efficiency",
Proceedings of Eurospeech 1993, pages 1521-1524

[Bocc93] Enrico Bocchieri, ''Vector Quantization for the Efficient Computation of
Continuous Density Likelihoods", IEEE reprint number 0-7803-0946-4/93, 1993

[ColeEtAl) R. Cole, J. Mariani, H. Uszkoreit, A. Zaenen, V. Zue, "Survey of the
State of the Art in Human Language Technology", Draft, sponsored by the NSF
and the Directorate XIII-E of the Commission of European Communities, August
3, 1995

[Demp77) A.P. Dempster, N.M. Laird, D.B. Rubin, "Maximum Likelihood Estima
tion from Incomplete Data", Journal of the Royal Statistical Society (B), Volume
39, pages 1 - 39, 1977

[Diga95) V. Digalakis, L. Neumeyer, "Fast Speaker Adaptation Using Constrained
Estimation of Gaussian Mixtures", SRI International, Speech Technology and
Research Laboratory, Menlo Park, CA, 1995

83

0

0

0

[Dobr87) W. O'Grady, M. Dobrovolsky, "Contemporary Linguistic Analysis", 1st
Edition, Copp Clark Pitman Ltd., 1987

[Dobr91] W. O'Grady, M. Dobrovolsky, "Contemporary Linguistic Analysis", 2nd
Edition, Copp Clark Pitman Ltd., 1919

[Drag94] J. Orloff, J. Baker, L. Gillick, R. Roth, F. Scattone, "Speaker Adaptation",
ARPA Spoken Language Technology Workshop, 1994

[Gall92) Michael Galler, "Improving Phoneme Models for Speaker-Independent Au
tomatic Speech Recognition", Master's thesis, Mcgill University, School of Com
puter Science, October 1992

[Gold89] E. Bruce Goldstein, "Sensation and Perception", Wadsworth, Inc, 3rd edi
tion, 1989

[Gray84) Robert M. Gray, "Vector Quantization", IEEE ASSP Magazine, April1984,
pages 4 29

[Herm91] H. Hermanski, N. Morgan, A. Bayya, P. Kohn, "Compensation for the
effects of the communication channel in auditory-like analysis of speech", Pro
ceedings of Eurospeech '91, pages 1367 - 1370, Genova Italy, 1991

[Herm93) H. Hermanski, N.Morgan, H.G. Hirsch, "Recognition of speech in additive
and convolutional noise based on RASTA signal spectral processing", Proceedings
of ICASSP '93, pages 83 - 86, Minneapolis, MN, 1993

[Jusc86] P. Jusczyk, "Speech Perception", Handbook of Perception and Human Per
formance, "Wiley Ltd.", 1986

[Lamp86) L. Lamport, "LATEX reference manual", Addison-Wesley Publishing
Company, 1986

[Lee90] C.H. Lee, L.R. Rabiner, R. Pieraccini, J.G. Wilpon, "Accoustic Modeling for
Large Vocabulary Speech Recognition", Computer Speech and Language, vol 4,
no 2, April 1990

[Legg94] C.J. Leggetter, P.C. Woodland, "Speaker Adaptation Using Linear Regres
sion", Technical Report CUED/FINFENG/TR.181., Cambridge University Engi
neering Department, June 1994

[Legg95] G.J. Leggetter, P~C. Woodland, "Flexible Speaker Adaptation using Maxi
mum Likelihood Linear Regression", Cambridge University Engineering Depart
ment, UK, 1995

84

0

0

c·

[Lowe76] B.T. Lowerre, "the HARPY Speech Recognition System", PhD disserta
tion, Department of Computer Science, Carnagie-Mellon University, Pittsburgh,
PA, 1976

[Makh95] John Makhoul, Richard Schwartz, "State of the Art in Continuous Speech
Recognition", Book chapter, pages 165 - 198

[Norm91] Yves Normandin, "Hidden Markov Models, Maximum Mutual Information
Estimation, and the Speech Recognition Problem", PhD Thesis, Department of
Electrical Engineering, McGill University, March 1991.

(NumC] W. H. Press, B. P. Flannery, S. A. Teukolsky, W.T. Vetterling, "Numerical
Recipes is C - The Art of Scientific Computing", Press Syndicate of the University
of Cambridge, 1988

[Oust93] John Ousterhout, "Tk", Motif-like toolkit for Tcl, freeware software exten
sion for tcl available from ftp:/ /ftp.cs.berkeley.edu/ucb/tcl/tk3.6.tar.Z, Version
3.6, University of California, November 23, 1993

[Oust94] John Ousterhout, "Tcl- Tool Command Language", freeware software pack
age available from ftp:/ /ftp.cs.berkeley.edu/ucb/tcl/tcl7.3.tar.Z, Version 7.3, Uni
versity of California, June 25, 1994

[Pico90] Joseph Picone, "Continuous Speech Recognition Using Hidden Markov Mod
els", IEEE ASSP Magazine, July 1990, pages 26-41

[Pico93] Joseph W. Picone, "Signal Modeling Techniques in Speech Recognition",
Proceedings of the IEEE, Volume 81, No. 9, pages 1215- 1247, September 1993

(Rab89] L. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition", Proceedings of the IEEE, Volume 77, No. 2, pages 257-
286, February 1989

[Rab93} L. Rabiner, B. Juang, "Fundamentals of Speech Recognition", PTR
Prentice-Hall Inc., 1993

[Rena92] S. Renals, N. Morgan, M. Cohen, H. Franco, "Connectionist Probability
Estimation in the Decipher Speech Recognition System", Proceedings of the IEEE
ASSP conference, pages I 601-603, San Francisco, March 1992

(Ricc93] Enrico Bocchieri, Giuseppe Riccardi, "Use of the Forward-Backward Search
for Large Vocabulary Recognition with Continuous Observation Density HMM's",
1993 IEEE ASR Workshop

85

c

c

c

[Saga94] Jun-Ichi Takahashi, Shigeki Sagayama, "Telephone Line Characteristic
Adaptation Using Vector Field Smoothing Technique", Proceedings of the ICSLP
conference, pages S18-2.1 - SlS-2.4, Yokohama, 1994

[Shau87] D. O'Shaughnessy, "Speech Communication - Human and Machine",
Addison-Wesley Series in Electrical Engineering: Digital Signal Processing,
Addison-Wesley Publishing Company, 1987

[Shin94] Koichi Shinoda, Takao Watanabe, "Unsupervised Speaker Adaptation for
Speech Recognition Using Demi-Syllable HMM", Proceedings of the ICSLP con
ference, pages S09-2.1 - S09-2.4, Yokohama, 1994

[Taka94] K. Takagi, H. Hattori, T. Watanabe, "Speech Recognition with Rapid En
vironment Adaptation by Spectrum Equalization", proceedings of the I CS LP con
ference, pages S18-10.1 - S18-10.4, Yokohama, 1994

[Vite67] A.J. Viterbi, "Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm", IEEE Transactions on Information Theory, Vol
ume 13, number 2, April1967

[Zava95) G. Zavaliagkos, R. Schwartz, J. Makhoul, "Adaptation Algorithms for
BBN's Phonetically Tied Mixture System", BBN Systems and Technologies, Cam
bridge, MA, 1995

86

