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ABSTRACT. MIN-MAX treces have been studied for thirty years as models of game tiees in atiticul
intelligence. Judea Pearl intioduced a popular probabilistic model that assigns tandom mdependent
and identically distributed values to the leaves. Among the dependent models, ctemiental models
assume that terminal values are computed as sums of edge values on the path fiom the oot to a leat.
We study a special case called the SUM model where the edge values follow a Betnoulln distiibution
with mean p. Let V,, be the root’s value of a complete b-ary, n-level SUM tice. We prove that K17, /n
tends to a uniformly continuous function V(p). Suiprisingly, V() 1s very nonhinear and has some
parts. More formally, for all b, there exist a, /3 € (0, 1) such that,

if p € {0, a} : EVS, has afinite himt

ifpell —a,1] :n-EV] hasa fimte limit .

itpe (3,1 =41 EV,/n tends to 172

Finally 3 and o tend to zero when b tends to infinity.

RESUME. Depuis trente ans les arbres MIN-MAX sont souvent étudiés pour modéliser les arbres de
jeux en intelligence artificielle. Judea Pearl a introduit le modtle probabiliste généralement utihsé
qui attribue des valeurs aléatoires, indépendantes ct identiquement distribuées aux feuilles. Parmi les
modeles dépendants introduits, les modeles incrémentiels supposent que les valeurs termnales sont
égales a la somme des valeurs des branches du chemin rehant la racine & la femlle. Nous ¢tudions
un cas particulier de ces modeles, appelé SUM-modele ol les branches suivent une distuibution de
Bernoulli de moyenne . Soit V, la racine d’un SUM-arbre b-aire 4 n niveaux. Nous montions que
EV,./n converge vers une fonction V(p) uniformément continue en prquand r tend vers 'mfing. V(p)
possede la carastéristique surprenante de présenter des paliers. Ceci s’explique par I'existence pour
tout bde o, 3 € (0,1) tel que

sip € [0, ] : EV,, a une limite finie
stpe [l =, 1] :n—EV, aune hmite finic
sipe[3,1=05] :EV,/ntend vers 172

De plus, « et 3 tendent vers zero quand b tend vers I’ infini.
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INTRODUCTION

In this thests, we study the asymptotic properties of random MIN-MAX trees with a given
number of levels. Itis well known that the efficiency of a game tree search algorithm depends very
much on the undetlying probabilistic model.  For this reason, we are studying a model that 1s more
realistic tian the catly models considered in the literature. The model most frequently studied is the
one in winch the leal nodes are independent adentically distributed random variables. Judea Pearl
[Pearl8O]|PearS-4] thoroughly <tudied the asymiptotic behavior of these trees Chapter 11 of this thesis
presents some of these results. The mdependence assumption has been challenged as it does not
seem to model real games very well, As a result, other models have been proposed. Some of these
are presented i the fust chapter They have been studied to compute the efficiency of the alpha-beta
ptumng, for example. The model we study belongs to a class catled incremental models. In these
models a leal value is computed as the sum of the edge values of the path from the root to the leaf, We
study a particular case introduced by Nau [Nau82a] where the edge values are independent Bernoulli
tandom vanables tahing the value one with probability p» and zero with probability 1 — p. We call
this the SUM model

The asymptotic behavior of these models s largely unknown. To compound matters, numer-
ical simulattons are only possible for small trees with less than twenty levels, In this thesis we give
a method to compute the distribution function of the value of the root of such a tree in polynomial
time as a function of the depth. ' With this method we simulate trees with up to one thousand levels.
We also prove the following results on the asymptotic behavior of V,, the value of the root of a b-ary
SUM tree with o levels:

- For all p, EV,,/n converges as 7 tends to infinity, and the limit is uniformly continuous
in p.

- There is a range for p close to zero where V,, tends to a bona fide distribution with a
finite expected value.

- When bis fixed and greater than 2, there is a range for paround 1/2 where the expected
value E15,, is asymptotic to n and this range tends to fill the interval (0, 1) when b tends

to infinity

These results can be summarized by the graph below. It shows EV,, /21 as a function of p
for a tree with ten children per node and with 7 = 200,
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EV,,/2n for b=10, n=200.

In chapter I1, we study the asymptotic behavior of the ron for the SUM model for small p
The proofs combine probability theoretical mguments, with analysis of some tecutrences. In chapte
IV we prove the convergence of EV,, /i for general p as well as the existence of the flat part asound
1/2.

The nonlinear behavior of the limit of EV,,/n as a function of ; may come as a surpiise to
some. The work presented here could be used elsewhere in the study of various scarch algorithm for
the SUM model. It could also form the basis of future resei. ch on SUM models for general edge value

distributions, and for generalized SUM models in which the number of children per node 1s 1andom,
as in a Galton-Watson branching nrocess.




MIN-MAX TREES AND
GAME-PLAYING PROGRAMS

Smce tue beginning of computers we have tried to compare human intelligence to the com-
puter’s capacity trough game-playmng programs. Games like chess and checkers have always been
used as prototypes in this comparison. At the center of these game-playing programs arc the MIN-MAX
trees. In tus chapter, we give some basic defintions and discuss various probabilistic models. For
mote detals, the teader 1s referied to Pearl [Pearl84].

1. Game-playing programs.

The games we consider are two-player perfect information games such as chess, checkers
o1 GO match  There are two adversaries that we call MAX and MIN - We aie on MAX’s side. Play
alternates between the players. For each position there 1s a finite number of possible moves defined
by the sles. The game must end after a fimte number of turns. To model these games we use trees
called game trees or MIN-MAX trees. Each node represents a position and each edge a move. Thus a
node has a child for cach possible move. The root node represents the current position. A terminal
node 18 a position i which the player cannot move any further.

First we consider WIN-1OSS trees  Each terminal node is a WIN, LOSS or DRAW position
according to the game rules  Such nodes are called WIN, LOSS or DRAW nodes. The problem is to
know if from the cunient position one can force a win. If you can force a win, we call the corresponding
node a WIN node When 1t ss your turn you can force a win if one of the possible moves lead you
to a win noge  And if 1t 1s your opponent’s turn you can force a win if all the moves lead to a WIN
node. We call S, the function which assigns to the node « its WIN, LOSS or DRAW status. If uisa
terminal node, S, is the status of the corresponding terminal position according to the rules. If uisa
nonterminal MAX node we have,

WIN if one of u’s successors is a WIN node
S, = ¢ LOSS if all of «'s successors are LOSS nodes
DRAW if at lcast one of «'s successors is a PRAW and none is a WIN,

If « 1s a nonterminal MIN node we have,

WIN if all of «’s successors are WIN nodes
Su =< LOSS if one of «'s successors is a LOSS node
DRAW if at Ieast one of u's successors is a DRAW and none is a LOSS.

3



Chapter | MIN-MAX TREES AND GAME-PLAYING PROGIRAMS

If we give the value 1 to a WIN node, 0 to a DRAW node and -1 to a 1088 node then we have when o
. is a nonterminal MAX node with 4, the set of its children,

S, =max S,.
v€

C \"
And for a nonterminal MIN node,
S, = min S,.

veL,
[ ] max @ lcaves C Y MmN
MAX
MIN
D ¢ Co> -«
W w W MAX
W] 8 0] W] [ >

D O W : D) MIN
\0 MAX
D

L L w L w w
A WIN-LOSS-DRAW game tree evaluated with MIN MAN 1ules

The solution tree T in boldtace

The above figure shows such a tree evaluated with the MiN-MAX 1ules. The Tabel below the
leaves represents the leaf values, and the label side the nodes represents the MIN-MAX status. The
root label of this example is WIN: this means that for each possible move of MIN, MAX has a stratepy
to force the win. This strategy 1s represented by a sub tree 7% called a solution tree It stuts at the
root of T. At the MIN levels it has all the children of 7" and at the MAX levels 1t has only one child
which is the best move for MAX.

We can also consider trees with numerical terminal values. These values give a certam weight
to each terminal position, and the goal of MAX is to get the biggest value To compute the toot’s value
we use the MiN-MAX rules. Let v be a node of T If w is terminal then V,, 1s it value given as part of
the data. If u is a nonterminal MAX node with A, the set of its children,

7
LN

it

max V,,.

vEAy
For a nonterminal MIN node,
V.= mnV,.

vEA,
The root’s value is the guaranteed value MAX can get regardless how well MIN plays. ‘The sUM model
we study belongs to this class of trees.




Chapter I MIN-MAX TREES AND GAME-PLAYING PROGRAMS
2. Game strategices.

If we compute the root value and the winning MAX strategy of the entire game tree and if this
value 1s WIN we are sure to win against any player. For a game such as chess or checkers itis virtually
unpossible to compute the root label of the game tree. For chess the size of the game tree 1s estimated
at about 10729 nodes (10 for checkers). If 3 billion nodes can be generated cach second it will take
101 (107" for checkers) centuries to generate 1t. Even af you find the solution tree by chance, you
will need to store about 102 moves for asingle certified checkers strategy. Thus we cannot cxpect to
find a solution tiee which guarantees the optimal strategy.

Another strategy uses evaluation functrons, An evaluation function is a function that assigns
a value to any posthon according to static charactenstics of the position. The greater the function, the
better the position One just computes the values of the children of the current position and chooses
the gicatest one This strategy gives rather poor results as it 1s hard to get an accurate evaluation
function based on static charactenstcs

The stratepy pencrally used 1s the bounded look-ahead strategy, which 1s a muxture of the
precedimg concepts, The idea 1s o generate the game tree up to a fixed number of levels, to compute
the value of the leaf nodes with a statse evaluation function, and to compute the value of the root and
the solution tiee with the min-rax rules One picks the move which guarantees the best value. The
leaf values candeally be considered as the probability for MAX to win. And the root’s value is the
probability for MAX to win 1if MIN plays optimally.

A practical problem we won't consider here, is related to the efficient computation of the
toot’s value  Alpha-beta pruming for example (see, e.g.,[ KM75], [Peail84], [Newb77]) allows one (o
find the 100t°s value without generating the entire tree. For other computationally efficient methods,
we refer to [Pearl84], |CM83].

3. Probabilistic models.

In order to study the probabilistic behavior of an algorithm we need a random model for the
data. In general, we may introduce a random variable B, possibly depending upon the depth, that
gives the number of children of a node. One may also introduce random leaf values. We restrict
owmselves to complete b-ary trees with u levels.

The standard probabilistic model assumes that the leaf values are independent identically
distributed (see chapter 1) Many argued that the independence hypothesis was not realistic. In
chapters TEand 1V, a model with dependent leaf values in introduced.

wn




Chapter !: MIN-MAX TREES AND GAME-PLAYING PROGRAMS

4, Incremental models.

scremental models, such as the model of Nau[Nau82]. introduce dependent leat values.
With the incicmental model we assign a random value to cach edge, and define the value of g leaf
as the sum of the edge values of the path from the root o the noade In the few examples trom the
literature given below, the tiees are b-ary

Model 1: This model. proposed by Knuth and Moore| KM75], assumes that the edge values
atlevel k form a umform random permutation of {0, 1/04,2/b% . (b — 1)/BA Y This imphies that
all leaf uades bave disunct values. This model weighs branches near to the oot more than branches
deep in the tree.,

[ ] m™ax (D) nN

]

r
=
[

M

=

E

0 2 2 9 1 pd 0 | |
1 0 3
o Y ° L ] [ ] *
1o 112 Ill. 102 100 10 210 212 I‘Il. 20020 221 o000 ooty 0N g0 g0
120 121 122 202 00 201 Oty 01 mi

Model 1 totaly dependent (proposed by Knath and Moaore)

Model 2: Proposed by Fuller[Newb77], this model assumes that the edge values at level bare
randomly assigneda distinct value from the set {0,1,2,. ,0— 1} Inmoadls Tand 2 the 1oot’s value
is not random. In fact, as all the set values are taken, we know thatif we are in a MAX node we pick
the edge with the biggest value, i.e., b — 1 for model 2 and (b — 1)/0* tor model 1 and m s MIN node,
we choose the edge with the smallest value, 1.e, 0 If we constder aree with depth 2 and s the top
level 1s a MAX node, the root's value is always n(h — 1) formodel 2and 27, ./, ne 1)/b" 1o
model 1. Nevertheless, these models iemann iteresting in the study of alpha-beta prunmyg because
the pruning depends only on the random order of the nodes.

Model 3: Inthis model proposed by Nau [Nau82], the edge values are assigned liom § - 1)1}
without the hypothesis of distinction. In this model the root's value s random  Up to a translation
and rescaling it is cquivalent to a special case of the model studied i this thesis.

Allthe above models have been used to study the pruning factor of thealpha-betamethod, The
results of these studics are reviewed by Newbomn [Newb77] It has been shown that the independent

6



Chapter I. MIN-MAX TREES AND GAME-PLAYING PROGRAMS

model brings about a pathological situation (a pathology occurs if by increasing the depth of the
search n the game tree we decrease the quality of the decision). Pathologies do not appear with
mcremental models. They also seem to be absent in real games like chess or checkers. In such games
strong positions have often strong children. This creates some strong “sections” 1n the tree where
there are a lot of strong nodes. That1s why the dependent model scems to fit better this kind of game.

The model we will study is related to model 3 We consider an n-level h-ary tree, and we
assign to each edge ¢ an mdependent drawing of a basic random vanable X, denoted by X,. Then if
e s aleaf, and P, the path from the root to v, we assign to v the value

Y X

ceP,

This defines the suM model with random edge varnable X. The root value is computed with the
MIN-MAX rules The SUM model in which X is Bernoulli with parameter p is called the SUM model
with patamieter p. 1t will be studied in Chapters 111, IV and V.




ASYMPTOTIC BEHAVIOR OF THE
STANDARD PROBABILISTIC MODEL

In this chapter we consider complete b-ary trees with independent and identically distributed
leaf values. We present a WIN-LOSS model and a model with arbitrary distribution of termmal values,
and we give a short summary of the results given in [Pearl84].

1. The wiN-LOsS model.

Let G,, be an u-level b-ary tree and we assign to each leaf node a WIN status with probability
P, and a LOSS status with probability 1 — I%. The bottom level is a MIN level. We denote by 1,
the probability that MAX can force a WIN with a game tree Gra,,, 1t which MAX has to play first and
MIN plays last. We denote by %, the probability that MAX can force a WIN with a game tice Gy,
noting that MIN will play the next and the Izst turn. With the MIN-MAX rules we can assign values to
all the nodes of the tree. A MAX node 1s a WIN posttion 1f one of 1ts b children is a WIN node. We
recall that such a tree is called a b-ary Pearl tree with parameter 1. We have

Py =1-(1 = Pyy).
A MIN node is a WIN position if all b children are WIN nodes. Thus we have,
Py =P .
Using the two preceding equations we obtain the following recurrence for /%,

Po=1=Q =P VY f(Panpy).




Chapter ll: ASYMPTOTIC BEHAVIOR OF THE STANDARD PROBABILISTIC MODEL

[0 0 4 06 0.8 1 X
The steration function f{ 1), for different b between 2 and 10.

This is a simple functional iteration. f has three fixed points on [0,1], one at zero, one at one and one
at &, € (0,1). We can show that if

1 ifF>&
lim P, =¢ & ifF=¢& .
n=—0o0 .
0 ifFR<é
Furthermore,
A 1 if Py > &
lim Poy = (lim Pp) =4 €& ifP=§ .
n—o0 =00 .
0 if Po < Eb
Lh P,
0.8
0.6
0.4 =0
0.2 l
2
3/4
. PO
0.2 0.4 0.6 & 0.8 1
Probability of winming an n cycle game Py, as a function of Py, with b=4




Chapter ll: ASYMPTOTIC BEHAVIOR OF THE STANDARD PROBABILISTIC MODEL

For b = 2 we find & = (/5 — 1)/2 & .61803. The convergence of I, 1s supet-eaponential. The next
lemma gives an explicit upper bound for the probability of a WiN at the oot of a Pearl tree. Pearl
[Pearl84] has obtained similar inequalities with sharper a thieshold for &, but for our purposes, the
explicit bound derived here suffices.

Sometmes, 1t is convenient to work with node values. In that case, a WIN 18 assigned the
value 1 and a LOSS the value O The value of the root of an n-level Peart tiee is denoted by V5.

LEMMA 1. Let T be a b-ary Pearl tree with parameter q < € = 1=, and let Vi, be the value of a

3
node n levels away from the leaves. Then regardless of whether we begin with MIN or MAX nodces,
and regardless of the parity of n,

P{V,=1} <",

PROOE. V,, is maximal if we begin with a MAX level. Let 14 be the value of a leaf (corntesponding to
a tree with = levels of edges and with a MAX level at the bottom), so that

P{Vo=1}=q.
Define P, = P {V,, = 1}. Then the following recursion holds: I = ¢, and
Po= (1= (1= Posn)’)’ < 0P
Therefore,

log I, < blogb + blog I, -,
< (b+b*)logb + b log Pyn_4

SO+ +0> 4 +0")logh + 0" log I

< b™'logh+ b" logy.
Thus we have,

P, < b"mq"n.
And for P, we get
P <1 - (l - bl’wqbn)b < I)b""”q"".

Let ¢ such that b*g < 1. Then

P €27, and Py, <0277,

and in general, regardless of whether we start with a MIN or a MAX level,

P, < 27"

10




Chapter ll. ASYMPTOTIC BEHAVIOR OF THE STANDARD PROBABILISTIC MODEL

2. Limit results for trees with arbitrary distribution of the leaf values.

We consider a h-ary tree of depth 2u, and we assign to each terminal node an independent
value drawn from the distributon of .X. We denote by V), the root value of such a tree. It is easy
to see that since we are using only maxima and minmima, the propertics of Vy remain mvariant under
monotone transformations of the X's. In fact, if every X 1s replaced by F(.X), where F 1s strictly
monotone, then Vi s replaced by F(Vy). If X has a density, then we can let F* be the distribution
function of X, so that F(X') is uniform on [0, 1]. We denote by F3,, the distribution function of V5,,.

Then we have the following recurrence:

Fan= (1= (1 = o))’

and

Fo=F.
One can show that F,, converges to a step-function F, as n tends to infinity. We have
0 if F(o) < 1§,
Fowy={1-¢& ifFw)=1-§& ,
1 if F(o) > 1-&,
where £, is the solution of
P=&=(1-¢

. , . . . def .
T'hus the root’s valuc is almost certain to be very close tov™ = F™(1 — &,). Note the &, is the same
as for the WIN-1.0SS model discussed earlier.

If the leaf values are discrete taking values in {uy,xa,. .., 20}, and if forall 4, F(x;) # 1-§,,
the root's value converges to a limit which 1s the smallest z, satisfying

F(-T:—l) <l- Eb < F(wl)

All these results are due to Pearl [Pearl80, Pearl84]

11




THE SUM MODEL: DEFINITION
AND DISTRIBUTION

The weakness of the classical model stems from the fact that 1t provides independent dis-
tributed values for the leaf nodes. It is more realistic to assume dependence between close nodes.
Incremental models, and in particular the SUM model, provide a strong dependence between close
nodes.

1. Definition and notation.

Consider an n-level b-ary tree in which each node at depths O thiough 1 — 1 has b children,
and each node at depth = is a leaf. Let « be an internal node, and let A, be the set of its children.
Forallv € A, we associate with the edge («, v) an independent drawing F(u, 0) of a given random
variable X. Let F be the distribution function of .X':

F()=P{X < z}.

With each node u we associate a value according to the following recurience: af u is a leaf, then
V(u) = 0. The level of a node is determined by its distance from the leaf level. For an internat node
u we define,

Vi) = { max,ea, {V()+ E(u, 1)} 1f wateven level

mingea, {V(0)+ E(u,0)b if watodd level

To make things simpler, we will speak of MAX and MIN nodes. All nodes at path distance 1 fiom
the leaf level are independent and 1dentically distnbuted. A genenc random variable of this kind is
denoted by V.. It1s casy to see that this 1s the value of the root of a tree of height 1 which follows
an incremental model with edge distnbution F. Thus, V4 = 0. Clearly, we have the following
distributional 1dentities:

VL maxi<;<p {Vaor, + X} ifniseven
"7 mingg, < {Vaor, + X))} ifnisodd
where X, denotes an independent copy of the random variable X, and V,,_, , denotes an independent
copy of V,,_.;. Let F,, be the distribution function of V,;:
F.(x)=P{V <u}.

Clearly, we see that
0 ifi<0

Fy(i) =
1) {1 if2>0

12




Chapteril THE SUM MODEL: DEFINITION AND DISTRIBUTION

When X is a continuous random variable, the distribution function of V;,,_; , + X i3 the convolution
. of F and F,,_;. Thus, we have the following relations:

b
F‘ln(-".) = (/ F2n—l(:‘: - t)dF(t)) )
b
Fz,”](.'l,') =]~ (l - ‘/FZn(-'K - t)dF(t)) .
To understand the process, we will study the model! in which X is a Bernoulli random variable:
P{X=1}=pe€ (1),
P{X=0}=¢qg=1~p.
We call this model the SUM model with parameter p. The recurrence becomes
b

Fan@ = (pFan-aGi = 1) + (1 = P)Pauci ()

b (1)
Faa@=1= (p( = Bl = 1)+ (1= p)(1 = Fou@) ) .

[ ] wMax O MmN

A SuM model.

We may consider this model also as a classical MIN-MAX tree with the values of leaf nodes equal to the
sum of the edge values of the path from the root to the leaf. These leaf values then follow a binomial
distribution with 2n trials and success probability p. Notice, however, that the binomial leaf values
are heavily dependent.

®



Chapter lll: THE SUM MODEL DEFINITION AND DISTRIBUTION

2. Asymptotic behavior for small p,

In this part V,, denotes the root value of the n-level b-ary SUM model with parameter p. The
graph of EV,,/2 for b = 2 and large n has two “flat” parts, one for small p and one for pnear 1. In
these flat parts small variations of p do not influence the limit of EV, /1. We observe the same kind
of behavior for other ). All of this 1s captured in Theorem 1.

EV,/2n
0.015
S
rd
0.01 e
‘/
.‘J
’P
5
0.005% s
J
: »
0.05 0 0%2 0.054 0 0% 0 048 0 06
EV,,/2n for n=1000 and b=2.

As n — oo, the behavior of V,, depends very much on b and p. We consider fust small values of
p. Below some threshold value « which itself is a function of b, we see that V,, tends to a limut
distribution that depends upon p in the sense that for all i > 0,

lim Fyu(i) = Foo(i)
and
lim F:.’rn-l(i) = Hoo(i) ’
=00

where F,, and H, are bona fide distribution functions that put positive mass on all nonnegative
integers. The limit distributions will be described below. It is noteworthy that such a limit result is
only possible because the zeros overwhelm the ones for small values of . For p > o, we will show
that V,, — oo in probability. Thus, at p = «v, there is an abrupt change in the asymptotic behavior of
V.. In this section, we show the following:

14




Chapter Ill: THE SUM MODEL: DEFINITION AND DISTRIBUTION

THEOREM 1. Forallb there exists v < (0, 1) such that, for pp € [0, «], there exist bona fide distribution
functions F, and H ., with finitc expected values that put positive mass on all the nonnegative integers,
such that

lim Fyu (1) = Fiofi)

and
}”20 Firnl(i) = Hoo(z) .

Furthermore, for pp > «v, we have for all fixedi > 0,

lim F3,() = hm F3,,() =0,
| ande &) n-— 00
and V,, — oo almost surcly when i — oo, Finally,
o < 1= btz g
The remainder of this section contains the proof of this result. We first show a small useful

rcsult about recurrences.
1.EMMA 2, Let:r,, be a sequence defined by

Iy = f(-l'n—l) ) and ro=ug [O’ 1]’

where f is a continuous increasing function from [0, 1] to {0, 11. Then f has at least one fixed point. If
f(a) < a then x,, converges to the greatest fixed point smaller than «. If f(u) > u then x,, converges
to the smallest fixed point greater than «.

= 1
O 1) 8 1 A0 Xy X2 1
Two sequences reccurently define.

PrOOE. f :[0,1] — [0, 1] implies f(0) > 0and f(1) < | and then f has at least one fixed point on
[0.1]. Since f is increasing we have by induction,

ifiwy 2 aq, 1w, 2 kp_ forall u >0,

ifuas <@g, n € pey forall 1 > 0.

15




Chapter lll: THE SUM MODEL: DEFINITION AND DISTRIBUTION

Thus x,, is monotone and bounded, and it converges. Let ! be the limit. By continuity of f we have
f{) =1. To see that this limit is L the smallest fixed point greater than a, we aigue by conttadiction.
Assume that «,, is increasing and it converges to a limit { not equal to L. Thus [ is a fixed point and
I > L and there exists N such that vy < L and wn,y > L. This implies that f(ix) = oy > L. As

fisincreasing and 'y < L we have f(on) < f{L) = L. Contradiction! For.,, decreasing the proof
is similar. O

Part 1: Limit of F,,(0).

We first prove Theorem 1 for7 = 0.

LEMMA 3. For all b there exists o € {0, 1) such that for p € [0, ],

'li_pgo £ (0) > 0.
Ifp>a,
lim F5,(0) =0.
n—oo

1
p<o
0.8
0.6
0.4
Jiadi
0.2
5 10 18 20 R
F3,(0) for p=0to p=0.1, b=2.

PROOF. We assume p € [0, ). We consider the recurrence (1) fori =0O:
FO)=1,

Fu(0) = ((1 = 1)Fou1(0))

Fann (@ = 1= (1 = (1 = pFou(0))

Combining all this, we note that for > 1,

b
3

2

AN
Fu@) = (1 - p)’ (1 - (1= 4= PFa) ) = Go(Faua0))

16
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. b=2 . b=6

0.8 08

0.¢ 0.6

0.4 04

0.3 6.2
6 0.2 0.4 06 0.8 1 o 0.2 0.4 0.6 0.8 1
. be12 L b=20

08 08

06 0.6

0.4 0.4

0.2 02 !
| /
o 0.2 04 06 0.8 1 0 02 0.4 0.6 0.8 1

Gp(r) for p=0 07, and for different b.

where Go(r) = (1 - p)"(l - (1= =p r)">h. This 1s a simple functional iteration, the solution of
which depends upon the behavior of the mapping Go. Go(a ) 1s an order h? polynomial that1s a strictly
mcreasing mapping: [0, 1] — {0, 1], since Gy(0) = 0 and Go(1) < 1. Gy satisfies the hypotheses of
Lemma 2, Thus F5,,(0) converges and as Fyp(0) = |, it converges to Lg, the greatest fixed point on
[0, 1]. Define the set of p such that Gy(¢) has a non-zero fixed point on [0, 1]:

r= {[) = [0, l]lL() > O}

Define also ,
(x, p) = -C-'—O-(i)-:—i
€
As Go(0) = O, h is a (b — 1)-th order polynomial function of p and . As G4(0) = 0, the derivative
of Go(x) — & is equal to -1 at « = 0, and thus zero is a simple root of Go(x) — « and it is not a root of
h. Thus we have,

I'={p € [0, 1]]Ah(x,p) has a root in [0, 1]}.

Since I is continuous, the inverse image of {0} is a closed set of 2, and I too is a closed set. Since
(7o 18 decreasing i p, hi is also decreasing in p. We also have that 0 € T since h(1,0) = 0. We will
prove that there exists o € R such that T = [0, ««] We already know that " is a closed set containing
rero. Thus, we just have o prove that T 1s convex  Assume that p € T". Thus there exists Ly > 0
such that h(Lg, p) = 0. Then for all p/ € (0, p] we have,

h(LOaI)’) 2 01 h(ld”) S 0.

Thus hi(, p') has a non-zero root in [ Ly, 1] and p' € T'. This implies that I" is convex. Thus Lemma 3
1s proved for p < a,

17
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Gof1) for b=2 and p between 0an 0 |

If p > « then G has only zero as fixed point. Thus according to Lemma 2, F5.,(0) converges to zero,
If b = 2, Gy becomes a fourth order polynomial and we can get the exact value of «v. For general
b > 2 we will derive a theoretical upper bound of «v. We get simular 1esults with Fi,,, (0). It tends to
a positive limit if an only if p € [0, «]. These facts can be shown using

Foun©@ =1—=(1=(1 = pFu®)".0

Part 2: Value of a.

We first prove that «v > 0. Then we give the exact valuc of «v when & = 2 and an upper bound
for general b.

LEMMA 4. Forallb > 2,

1 - ""\/E—)2cy>0.

a=1—2 (2—7) ~ 0.05506.

And forb =2,

32

PROOF. We first prove that « > 0. For p =0, we have
Go(w) = (1 = (1 —2)*)", Gol) =1, Giy(1) =0 < 1.

As Gy is differentiable and Gg(1) = 0, there exists 0 < y < 1 such that Gy(y) > y. And by continuity
of Gy in p, there exists an € > 0 such that for all p < €, Go(y) > . This implies that for p < £, G,
has a fixed point on (0, 1) and then we have «v > € > 0. Thus the first part of L.emma 4 15 proved.

18
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For general b > 2, we denive an upper bound for «, and an upper bound for F>,,(0) when p is
greater than «'s upper bound. We have :

b

Golx) = q"(l - (1- qa:)b)
<q'(1-(1-qz))

< ¢(1= (1 - bg))

= byl

Thus if by**! < 1, Ga(z) < x for all 2 > 0. This implies that it cannot have a non-zero fixed point

1
< ] _ be) -,
o < ‘/b

‘This implics that cv tends to zero when b tends to infinity.

and thus p > «. Thus we have

0 0% F’\
afb)

0 50 100 150 200 b

The valee of o and its upper bound .

19
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1 1
|

§

0.8 | '

i

0.6 ! !
! t

1 1

0.4 { 1 i

t 1 I

0.2 1 t !

] ] !

1 5 ..._,._|_._ X
0.2 0.4 0.6 0.8 ' 1
L'g Yy Loy

Golx) for p=0.03 and h=2

Assume b = 2, We have

Go(@)=(1 —p)a* (2~ (1 = pl }’

Zero is a fixed point for Gy, thus, in order to find the other fixed points we study
et Go(w) —
h(x) = " .

We note that

h(z) = (1 — pYe(2 - a(l - /)))2 -1
and 1(0) = —1, h(1) = (1 — p)*(1 + p)* = 1 < 0. Observe that

W(x) =1 - pGU = p)a? — 8(1 — p)r +4)

the roots of which are
€y = 2 €y = 2 .
31 —-p) 1 —-p
The second root is greater than 1 for all p, and is thercfore of no consequence. A little thought shows
that z;, < 1 forp < 1/3 and that

2\
i) = (27(1 —m) -
This implies that i(x;) > 0 if and only if

27
' =1 - | =] & 0.05506.
p < (32) 5506

If p € (0, ), h has two roots on (0, 1), and G has two fixed points Ly, , Ly sausfying

O<Log<a<Ly<1.0d

Remark: We have also shown that
Fau(0) < (™')™

20
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Part 3: A study of the variation of the fundamental recurrence.

Using (1) we get the fundamental recurrence:
FZN(7) = G'(F2n~2(l - ])~ [;‘211—2(2 - 2)7 F’.’u—l(i)) = G(u, U, IL) y 1L 2 1,

Fy) {0 ifr<0 (2)
D (1) = ,
¢ I 20

where

VG (u, v, 1) -] P (l - (p(l — )+ -1 - u))b)
b
+( =) (1 — (1~ wy+(1 = (1 - ) ) :

According to the definition of Gy we have,

Go(a) = G(0,0,.x).

LEMMA 5. Weassumep € (0, 1). G isastrictly increasing function of u, v andx for(u, v, x) € [0, 1]°.
For all (u,v) € 0,11, G(u, v, ) has a unique inflection point z(u,v) € [0, 1], where z(u,v) is a
decreasing function of u and v. Finally G(u, v, x) has at most three fixed points in x: on [0, 1] and at
most two fix points on [z(u, v), 1],

PRrROOF. The increasing or decreasing nature of G(u, v, x) is the same as that of

Hu,o,0)% 1 - ,)(,,(1 — )+ (1 = p)1 - u))b ~(1 —[))(])(I —w)+(1 =) - ;u))b .

Since (u, v, ) € [0, 1], and p € (0,1) the values nside the powers always stay positive, and these
values are strictly decreasing with u, v, x. Thus H is strictly increasing inu, v and 2 when p € (0, 1).

Defining
A=l-p@U =)+ =-p)1 =-w)’,
B=p(l —w)+(1 = p)(1l - ),
we have B
e AT
B = dx (1 =p)
and
H=4-(1 —p)B".
Thus,
G/ = _d_c_;_ = bH/Hb—l
d ’
and
&G

G" =

7 =bH" (H"H +(b - DH")

du

21
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where
H' =(1-p)bB
and
H'=—1 = p)*bb - DB,
Therefore

G" = (1 = p)'W(b = DH'B*2((1 = p)(1 + HB" — A).

The sign of G” is determined by the sign of (1 — p)(1 + b)B* — A. Since B is a strictly decreasing
function of @, we have equality for at most one . Thus GG has at most one inflection point, and at
most three fixed points.

The second derivative G vanishes for

1 A def
r=1- Y — (1 — )} = z(u,v).
(1-,;)( A=pa+h ! ) (e, 0)
As A is an increasing function of w and v, z(u, ) is a decrecasing function of w, v. The second
derivative of G is negative on [z{(«u, v), 1] and this implies that G has at most two fixed poimnts on

[2(u,0),1]. O

LEMMA 6. Ifp = «, Go(x) has two fixed pointson [0, 1]): O, L,,. L., isa double fixed point. Forp < a,
Go(x) has exactly three simple fixed points on xz € [0,1]: O, L, Lo. And for all (u,v) € [0,1)?,
G(u, v, x) has exactly one simple fixed pomnt on {Ly, 1] denoted L(u, v). Fuitheimore forp € (0, ev},
L(u, v) is a continuous function of (u,v) on [0, 1)* when (u, v) # 0,0and (u,¢) # (1, 1).

PROOF.

Assume p = a, then by the definition of «+, Go(r) has a fixed pont on (0, 1). We denote by
L, the largest one. We prove by contradiction that it 1s the only one  This would imply that it is a
fixed point of multiphcity 2. Assume that L is a fixed point not cqual to O o1 L, Then (7 has three
simple fixed points, 1.e., 0, L, L,. And as Go(x) has a umque nfiection pomnt on [, 1] this mmphes
that for some : € (L. L,) we have Go(«) > + Then using the contunuity of G m pp we can show
that there exists € such thatfor p = a +¢,Go(u) > a. As Go(1) < |, this imphes the existence of a
non-zero fixed point, contradicting the definttion of «x. Hence, L, is the only fixed point of (7y(v) on
(0, 1) when p = a2 and it 1s a double fixed point
Assume 0 < p < «. We will show that Gy(:) has three simple fixed points on [0, 1]. We
have
Go=(=pt (1 = (1 =1 = pa)t)

and

Go(0) =0, (-l(-z—_o(())=0 <1, Go(l) < L.
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1
0.8 |
1
0.6 :
]
0.4 : \
! !
0.2 ! l
i
' !
. ) .
072 0.4 Ly 0.6 0.8 Iy 1
G(0,0,2) and G(1,1,x) for p=0 03.

We alicady know that zero is a fixed point and according to the pieceding Lemma, G¢ has at niost
three fixed points. Since G(0) = 0 and G(0) = 0, there exists € < L, such that

Go(e) < . 3)
Since for all .« > 0, G is strictly decreasing with p, we have
G()(L(,) > L, for all P e (0, 0’). (4)

Using (3) and (4), Go(.r') has a fixed pomnt Ly, € (¢, L,) and a fixed point Lo € (L4, 1], and these are
simple fixed points. This also implies (0, 0) < Lo as G'(Lgy) > 1 and G'(Lo) < 1.

Next, we study the fixed points of G(u, v, ) inx for 0 < p < «. We already know that for
all (i, 0) 2 [0, 1] with (u, 0) £ (0,0) and (u, v) #(1, 1),

Gu,o,Lo) > Ly, G(uyu,1) < 1, (5)

As z(u,v) is strictly decreasing with «, v, we have z(u,v) < Lo. Thus G(u,v,2) does not have
an inflection point on (L, 1], and 1t has at most two fixed points on this interval. (5) implies that
G/(u, v,) has an odd number of fixed point on (Lo, 1]. Thus it has exactly one simple fixed point on
(Lo, 1] denoted by L, v). L(u, ) is also the only fixed point on (Lg, 1] . We have

L=L(u,v)=max{c € [0, 11]G(u,v,2)=r}.

For p =0, G(u, v, 1) has three simple fixed points which are independent of uand v. The largest is 1.

In order to prove the continuity of I we use the thcorem of implicit functions [Schw67)
(p. 278). L is defined as the greatest solution of G(u.e,a) — o = 0 on [0,1]. Recall that G 1s
polynomial.  According to this theorem the implicit funcuion exists and is continuous at the point
(u, v) if the denvative of G(u. v,4) - . on + 18 non-zero at the pomt (u, v, L(u, v)). This derivative
is zeroaf and only 1f L 1s not a stmple root. We just proved that for 0 < p < wwand (u, v) # (0,0), L

is a simple fixed pomnt. Thus if p < o the implicit function exists and is continuous and Lemma 6 is
proved. [
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Part 4: Convergence of Fy,(i) for 0 < p < av.

LEMMA 7. Forallp € (0, o], there are numbers F,(i) € (0, 1) such that

lim Fi,(2) = F(2),allt > 0.

n—oo

These values can be computed by the recurrence

Foo(o) = L()a
Foo(1) = L(Ly,0),
FoY=L(Fo(i = 1), Foc (0 = 2)) foralli > 1

PROOF. We prove that Fy, (i) converges to a limit F...(1) € (0, 1) by induction on 1, For 1 =0,
according to Lemma 3, F3,,(0) is a decreasing sequence with 12 and itconverges to F,(0) = Ly € (O, 1)
when n tends to infinity. Thus, for all ¢ there exists a /N such that forall » > N

Foo(O)S FQn(O) S Fo::(o)"'f <1

We define the two sequences w1, and ya, by
def def
tan =y = Fan(l),
Yan d__if G(Foo(o): 01 ?/2"—2) n>N

Tan o G(Fo(0) +€,0, r1,22), n > N.
As G(u, v, ) is increasing with v and v,
an S F‘2n(l) S Lo

According to Lemma 6, G(F(0), 0, ) and G(F i, (0) +¢,0, :) have only one fixed point (L(F©.,(0),0)
and L(F(0) +¢,0) respectively) on [Lo, 11. Thus, since G is increasing and yan and i, are greater
than Ly, using Lemma 2 we have,

"]Lngo Yo = L(Foo(o)a 0)
rllion;o Ly = L(Foo(o) + £, 0)

Using the continuity of L, for all € there exists an NV such that forall v > N,
|F2n(l) - Foo(])l S £.

Thus F5,(1) tends to F(1) when = tends to infinity. For p > 0 we have F,,(1) > F.,.(0).

Suppose that F3, (2 — 1) and Fy,(i — 2) converge to Fi (¢ — 1) and F..(i — 2) respectively.
We prove that F, (i) converges to Fo,(1) = L(Foo(i - 1), F (2 — 2)). Since L is a continuous
function from (0, 1) x [0, 1] to (0, 1), we see that for all 5 > 0, there exists g5 > O such that for all
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(w, w') € ((0, 1)x [0, 1])* with ||w—w']| < €2, we have |L(w)—L(w')| < 6. Wesete = min{e,/4, §}.

Hence
|L(Fo(i — 1) 46, Foo(i — 2) + €) = Fou (1) < 6,

|L(Foo@ = 1) — €, Foo(i — 2) — £) = Fo o (3)| < 6,
where Fi (1) = L(F (i ~ 1), Foo (i = 2)).
Using the convergence of F3,,(2') for i’ < 14, there exists a finite NV such that for n > N,

(6)

[Fou(t = )= Fuoi = D} S < 6, N
[Fon(t =2)~ Fou(i - 2)] <€ < 6.

Let xa, and y,, be sequences defined for #n > N by the recurrences

def defl .

v = an = Fan(),
o S G (Fooli — 1) = €, Fooli = 2) = €, Yan-2), 0> N
dian = G (Fooli — 1)+ €, Foo(i = 2) +€,820-2), > N.
Then as G is increasing and using (7) we know that for all n > N,
Y < F2,(2) < wap . (8)

Since, for all n, F,,(1) 2 F,(1), we have F (i — 1) > Fo.(1) > Ly.We can choose 6 small enough to
have

Fn@) 2 Fan(i = 1) 2 Foo(i = 1) — 6 2 L.

Thus, since the starting values of w,,, and y,, are Fyn (i) > Lo, using Lemma 6 and Lemma 3, we
have

m ara, = L(Fso(D) + €. Fo(2) + €)

n-—00

and

"li_p; Yan = L(Foo(1) — €, Fiuu(2) — €). )
Using (7),(8) and (9), there exists a finite N’ such that for = > N',

Fo(1) — 26 < F5,(1) < Fo(1) + 26 .
By the arbitrary nature of 6 we conclude that for p < o,

"lingo F(@)=LFu(i = 1), Fuu(i = 2)) > 0.
Using
Faun(@) = 1= {p(1 = Fauli = 1)+ (1 = )1 = Bnt@))”

one can show the convergence of Fj,,.1(7) when # tends to infinity to a non-zero limit. ]
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Part 5: The limit of F.(Z) when i tends to infinity.

Assume 0 < p < . Inorder to have a bona fide distiibution we have to prove that Fi (4)
tends to 1 when ¢ tends to infimty. As G is a continuous function we can take the limit in the
fundamental recurrence on both sides of the equality. Then we get the following recurtence:

F(0) = Lo.
F.(1) = L(Ly,0),
Fo(i) = G(Foo(i = 1), Fou (i = 2), Fia (1)).
Thus
Fo1) 2 G(Fooi = 2), Fouli — 2), Fiiu (0 = 2))
since
Foo(i"‘z)SFoo(l“l)SFm(’) (10)

We define J(x) = Gz, x, ) = (1-(i — :1:)”)". J has Oand 1 as fixed points, and a third one on (0, 1)
denoted A.

1 -
//
0.8 ”
0.6 e
e
0.4
0.2 \
. 2
0.2% 0.4 0.6 0.8 1
J(x) for b=5.

We define the sequence ¥,:

Yo 0 an
yo = J(yiz1), fori > 1.
Thus using (10)
12 Fo(2i 4+ 1) 2 Foo(29) 2 o, (12)

Since G is strictly increasing in (u,v) when p > 0, we have J(x) > Gy(r) and thus yy > A. Then
according to Lemma 2, y, converges to 1. Thus, from (12),

lim F,(G)=1.0
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Part 6: The expected value when p < o,

G 25
0.2
0 15
01
u"l’"

-

Jou” l)

0 0.00% 0 0l 0.027 0.036 0.045 0 054
EVay for 212400, b=2.

[.EMMA 8, Ifp < v, BV is finite.

ProoF. Define y, as in (11). Using

EVoo =) (1 = Fool(i).

120
(10), and (12) we see that EV, is finite if
2 (1=y) < oco.
120
But
l-’!/m =] - (1"(1_'!/1)6)"3
S b(l - ?/.)ba
1=y
< — 7
- 2
if

1

Let I be the smallest integer 1 — y; < Fb_)"%m (This exists because y; — 1 as i — o0o.) Then for
1> 1,
1=y,
V=9 < 5
Therefore,
Do =y) <2l = yp).
2]
The remainder of the proof is trivial. [J
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Part 7: The limit of F,,(¢) forp > «.

We know that G is increasing in v, v and u, if w,v,0 € [0,1]. We studied G(0,0, )
during the study of F,(0), and we showed that by definition of «, if p > «, G(0,0, ) has zero

-

as unique fixed point on {0, 1]. Thus for all & € (0, 1), there exists € > 0, such that for all
x € [6,1], G(0,0,x) < & —¢. Also there exists €, > 0 such that for all . € [, 1] and for all
(u,v) € [0,6,], G(u,v,z) < r— /2. Since G(u,v,0) > 0, we sec that for all (u, ¢) € 10, )3,

G(u, v, z) has a unique fixed point L(x,v) € [0, 8].

1
0.8
0.6
0.4}
0.2}
0.2 0.4 0.6 0.8 i
G(0,0,2) and G(0.1, 0.1,x) for p=0.1,

We prove the convergence of F3,,(7) to zero by induction on i. According to Lemma 2, F3,,(0)
converges to zero. The following proof is valid for: = 1 noting F,,(=1) = 0. We begin the induction

with ¢ 2> 1. Suppose that F5,(i — 1) and F3,,(z — 2) converge to zero. Then we know that for all
€1 > 0 there exists /V such thatforall n > N,

FZn(l e l) S &y, F2n(2 _2) S £y.

Let @1, be a sequence defined by the recurrence

def

Loy = G(£Ia£la£2n—2))
def .

oy = Fan(i).

As G is increasing in uand v we have forn > IV, 0 < F5,,(2) < w3,. The sequence iy, converges (o
L(g\,&,). Thus there exists N, > N such that for all u > NV,

lw2n - L(€1€)| S b.
Thus for all § there exists /N, such that for all = > N,

FZn(i) .<_ 26.

By the arbitrary nature of 6,
"]ln;o F2n(i) = O .
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This implies V5, — oo in probability. [J

3.pclosetol.

This part generalizes the results of the preceding part for the case p close to one by a

symmetrical argument,

THEOREM 2, For p € [0, 1 — o), and i fixed,

lim F5,2n —~1) = 1.

H—= OO0
Irpe [t —wmly,
lim Fy,(2n— t) < lforalli > 0.

PROOE. We recall the definition of V,, in the SUM model:

Vo =05

v £ max;¢,<p {Va-1, +X,} ifnis even
n = . » . .
' miny¢, <y {‘/,,-1‘]4'/\]} if n1s odd !

where the .X,’s denote independent Bernoulli (42) random variables corresponding to adjacent edges.
- , . . c , c

The Vi, , s are independent copies of 1,_;. Letusdefine Y, =1 — X, and V' =n — V,,. Then we
have the following distributional identitics:

s L _ TR 2L _
! T 2 lng]]ﬂ%([] {(2” 1) V.’n—',] +1 YJ} )
s L : "
Vi =20+ 1~ [, {2:: -Von, +1- y)} )
From this, we obtain
mini,q {ViiL,;+Y,}  ifnis even
mﬂXlg;gb{V,('_,'j'FY,} if n is odd

Here the Y)'s are i.i.d. Bernoulli with parameter 1 — p. Thus for n > 2, V!, follows the same

[
st
Ln =

recutrence as V,,. We denote by F,/ the distribution function of V,!’. The recurrence for Fj,,(?) is
FO)=1-p,
F'(h=1,
F‘.Z,:nl(i) = G(F‘ll:x—lo - l)’an-—l(i - 2)’ F;:l—l(i))°
If p < 1 —«then ¢ > « and the recurrence function only has zero as fixed point and Fj,,, (%)

converges to 0. If pp > 1 — « one can show that the proof for convergence remains valid, and F/ (%)
converges to a pon-zero limit, [0




THE SUM MODEL:
EXPECTED VALUE

1. The main theorem.

In this chapter we prove that the expected value of the 100t divided by 1 converges and that
limit is a continvous function of p. To prove this we first show that the distribution of the 1oot value
is highly concentrated around the expected value.

THEOREM 3. For every p, EV, /1 converges to a finite limit V(ps), and V is a uniformly continuous

function of p. Furthermote if « < p < | —a then 0 < V(p) < 1 and V,,[EV,, — 1 almost suiely
when . — oo,

2. Construction and notation.

We recall the definition of V,,, the root value of a complete b-ary tree with i levels of edpes
in which we associate with each edge 1 or 0 with probability p and | — p respectively. The values
of the nodes are found by the following recursive rule: all leaves have value 0, and for every node u
with A, us its set of childien we have

Ve maxXyea, {V(0) + E(u,0)} if « ateven level
u) =
Minge 4, {V(v) + E(e,v)}  if wat odd level
where E'(u,v) is the value of the edge (u,v). This defines the n-level b-ary SUM tree with parameter

p. Vi is the random variable defined as the root value of such a tree. Then we get the following
distributional identities: V; £ 0,
VoL {maxlgsb {Vaar, + X} ifniseven
" T minggycp {Vaor, + X} ifnisodd
where X, are i.i.d. Bernoulli random variables with parameter p, and {V,_, ,} are i.id. copies of
Va-1.
We obtain a b-ary Pearl tree with parameter ¢ € (0, 1) if in the previous construcion we set
E(u,v) = 0,and V4 = 1 with probability ¢ and V = O with probability 1 — ¢. Finally, in our proof, we
need an associated tree. We fix the integers N > 1 and k > 1, and we consider a b-ary SUM tree with
parameter p. A node « in the associated tree has value V'(u). The associated tree has the property
that for every node ¢, V(1) > V(u). The leaves have value zero. Atany level ¢ that is not a maltiple
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of N, we follow the standard rules as for a b-ary SUM tree with parameter p. If 7 is a multiple of IV,
say z = [N, then we set for any node u at level i

W maxyea, {V'(v) + E(u,v)} ifiiseven
()= min,ea, {V'(v)+ E(u,v)}  if21s0dd

and,

, IEVNy+ Q- Dk it W) <IEVAN +20 — Dk
Vi(u) = {

if W) >IEVn +20 — Dk

Note that many nodes may have the value infinity. We call this the (k, N) associated tree. Let V) be
the random variable defined as the root value of such a tree with # levels of edges. Note that for all
nodes at levels that are multiple of N, the values of V' are either co or a given fixed finite value.

3. The fundamental incqualities.

The following lemma is the main part of the proof of convergence. The proof uses results on
Pearl trees. Consider a SUM tree with [N levels, and cut it into pieces of IV levels each. In each part
the lowest & levels arc used as a filter. The following Lemma forms the basis of the entire chapter.

I.LEMMA 9, Let V, be the root value of a ni-level b-ary SUM tree with parameter p € [0, 1}. For all
¢ > 0 we have,
P{|V,—EV,|>¢€} <272/

Furthermore, for N large enough and for alll > 0,
P {Viy 2 IEVy + (20 - Dk} < 0¥V p¥ T g R, N),
where k = [N2/3]. Finally for all € > O there exists an N such that forall o > N,
P{|V. - IEVy|2 (2 - Dk+N} <¥¢,
wherel = |n/N| and k = [N*¥3].

PROOFE. Consider an n-level h-ary SUM tree with root «. At the it" level of edges, starting from the
topmost level, we find b' independent edge values. These are collected in a random vector U,. Clearly
then, V(u) = f(U,,...,U,) for some function f. Furthermore, if U, is replaced by a different vector
{7/, V(u) changes by at most 1. Thus, we can apply the McDiarmid's inequality (1989)[McDi89]:
foralle >0,

P{|V, - EV,| > ¢} < 2e7/ (13)

The fitst bound is proved.
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- IN

The constiuction

We now assume that the SUM tree has n = [V levels. We consider the (k, N) associated tree
with &k = [N*/3]. Let N be so large that R(b, N) < (1/2)b~". We will prove by induction that for
such N we have for alli > 1,

P {Vly = 0o} < I¥b, N). (14)

For1 =1, we obtain

P{Vy =co} =P {Vy > EVy+},
< 207 WIN (accordimg 1o (13))
< 2{,—-21\'”’

< R, N).

Now we assume that P {V(’,_,)N = oo} < R(b, N). The nodes at level iV are i.i.d. distributed as
V!y. Let T' be an associated tree with iV levels and s its root node. Then look at the 1 << N levels
of this tree from depth N — rni to depth N. This part consists of b¥ =™ in-level subtrees. Let 7}, be
one of these subtrees and let v,, be 1ts root. Thus V'(v,) is distributed as Vi, _ n,,.- The leaves of
T, are nodes of T at level (2 — 1)V, Thus their values arc i.i.d. distnbuted as Vi )y, Let wbe a
leaf of T,,,. V'(w) is distributed as 1/ _,, independently of the other leaves.
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~ iN

WY subtrees

We assign to cach leaf node w of T, a value V"' (w) as follows:
oo ifV'(w)=o0
V'(w) = { . /( ) .
0 ifV'(w)<oo
And to cach internal node « of T,, we assign a value V'(u) using the MIN-MAX rules:

V() max.ea, {V"(v)} ifuisaMAaX nodeof T’
i) =
minge 4, {V"()} if u1sa MIN node of T

Then V'(v,,) is distributed as the root of a imn-level b-ary Pearl tree, where the leaves take value oo
with probability ¢ = P {V"(w) = co}. The bottom level is a MIN or a MAX according to the parity of
(i— DN. Thusas g =P {V"(w)=c0} =P {V((_,,N = oo} < R(b,N) < (1/2)b~*, according to
Lemma | about Pearl trecs

P {V"(,) =0} < po-botn

Let o be aninternal node of 7,,. As it is not at a level that is a multiple of NV in T", V’(u) is computed
with the standard rules of the SUM model. Thus V'(«) is infinity if and only if V"(w) is infinity. If
V"0, = 0then

VV'(w) <@ —1DEVy +2i — Dk + . (15)

Thus,
tmra)

P{V'(v,) =co} < h27°

Furthermore we have

Qm “p {V"(v,4) = oo for at least one node v,, at depth N — rn from the top of T}

. mory
S 1)‘\ ™ pim .
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Now we takem = k = [N?/3]. If there is no infinity node at depth IV — kn 77, then each V'(r,,,) 1
less than (i - NEVy + (20 — 3)k+ K, and V'(s) 1s stochastically less than V(o) + V. Thus

P {V|'N = OO} =P {V’(S) > (EVy + (21 - l)]\}
<Qu+P{( — DEVy + @i - 3k k4 Vi > BV + 21 — D)k]
S Qk + {":\r > E‘/’N + I\'}

< bV =N 2“"1:{-2’11_I + 20~
= R(bv N)
1
< =b"b
< 21)

Thus the induction proof of (14) is finished and we have
P{Vin > EVN + (21 = DI} < R(b, N).

Now we consider b-ary SUM trees with « levels, # not a multiple of NV, and we setl = | .
Using (13) withrre =n — IIN < N we get

P {V,2 IEVy+@ — Dk+m} <P {V"(0,) = 0} < h2-0""",
Thus if IV > m > N'* we have,
P {V,>IEVy+@ — )+ N} <iz=t™"n, (16)

If i < N'the probability thatV,, > [EVy + (21 - 1)k 4 N is less than the probability that there i
at least an infinity node at level IN of the associated tree. Thus,

P{V,2IEVy+Q@l — )+ N} <0"R(b,N)
<M RO, N). (17
Finally using (16) and (17) we have for all 1,

114 .
P{V,>IEVy+ Q2 -k + N} < 1)24[" | + N Rb, N,

The right hand side tends to zero when N tends to infinity. Thus, for alle > O, there exists an /V such
that for ro > N,

P{V,, > IEVNn + (2 - Dk + N} < ¢,
where k = [N**] and! = | 7:/N|. Using the same method, one can easily show that we also have
P{V, <IEVw — (2~ Dk -N} < ¢

under the same conditions. [J
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4. Convergence.

LEMMA 10. For every p, EV,, /i has a limit V(p) when n tends to infinity. Furthermore for all
£y,€2 > 0, there exists an N such that forn > N/ey,

r { ‘/n EVN

1n -
Finally for all £, #, there exists a N such that forn > N/g,,
‘ n
V)| 23} s e

,
o
I

2 251} S £9.

ProO. We show that

EV, . . .EV,
limsup < liminf —, (18)

NG 11 n—oc n

by showing that for given - > 0,

an Vi
lim sup EV. < EN
n—00 1

for all AV large enough. Then, by definition of the limit infimum we can find an N so large that

EVy . . ~EV,
< —_—
NS h,znmf ~ +¢€,

+ 3¢

so that we may conclude (18) by the arbitrary nature of €.

We use the notations of the preceding part: u is the root of an n-level b-ary SUM tree
with parameter p, and V'(u) is its value for the (k, V) associated tree. Let set | = ln/N]. If
Vi) < N +1EVy + (21 = Dk then

V)< N+ H{—,J EVy+ (2 l-;{;J - l) k
n nk
< N+ 1—\;EVN + 2N’
so that (recalling b = [N?/1)),
V(u) N EVy k
PR G
N EVy (1\’2/3 + 1)

IN

IN

+
n N N

EVy
< 3
SN +2 (19)

for " large enough and 1 > N'/e. Thus using Lemma 9, we can find N large enough such that
P{V,2/EVy+@ - Dk+N}<e
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for all p and for n > N. Thus we have,

E‘/n ‘/—n E"v,\' E ‘:\
~ <P {T > N +2v} + N + 2

. . EVx

<P, <IEVy+Q-Dk+N}+ ~ 2e

EVy
< Nt 3s,
for IV large enough and n > N/e. This implics that
EV, Vy

Ihimsup — < El + 3¢

n—ao N N

as required. Thus EV,,/n has a limit V() when u tends to infinity. The second pait of Lemma 10
follows easily from the above argument. O

5. An embedding lemma.

We consider a b-ary tree with n levels of edges and with cach edge ¢ of this tice we associate
a uniform [0, 1] random variable U,. Let [j;<,) be the indicator function taking the value one if

U < e. We denote by P, the collection of all b" paths from the root to the leaves.

LEMMA 11. There exists a positive function p such that for all ¢ > 0,

1
lim sup ;E { max » I,,,,SE]} < @(e).

n-—00 rer, c€ )

Furthermore, p(c) — 0ase — 0. Fore 2 1/h, () = |, while for e < 1/b, p(€) < 1.

PROOF. For ¢ > 1/) the statement is trivial. We assume € < 1/h. Forevery P € P, B =
2 eer llu. <) is binomial (n, €) distributed. Thus, by Bonferroni's inequahty, for | > u > ¢,

P {Png;))i ZIlesel > :l;n} < z P{B > xn}

cel rep,

< ()7 )

where we use the Chernoff’s bound for the tail of a binomial distribution (see for example Hoeflding,
[Hoeff63], Theorem 1). Let = ©(¢) be defined as follows:

== r
<,9=inf{w:l>.v2€,b<] E) (-E-) gl}.
I - g
-7 r
(1297 ()
} — T

We denote
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’ Thus p(g) is the smallest solution greater than € and smaller than 1 of
H(e,z)=1/b.

It is a simple analytical exercise to show that H (g, x) is monotonically decreasing from 1 atz =€ to
£at x = | (sce figure below).

0 € 0.2 0.4 0.6 0.8 1
(e, x), for e=0.1

We see that () is well-defined and that for € < 1/b, ¢ < (¢) < 1. Furthermore,
) —0ase—0

because

H(, fe)~ e’ —0ase—0
for any increasing function f(g) with f(e)log(l/e) — oo, and f(g) — 0, as € — 0 (f(e) =
1A/ log(1 75) will do). For £ small enough, () < f(e) — 0. We have forall 6 > 0

Leerdw <a .
E{;}g}n ———”——-———} <P }}E}S‘;Iw‘sel 2 (p(e) + 6y p + p(e) + 6
<o(l) + () + 6.

By the arbitrary nature of 6, Lemma 11 follows. [

®
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6. Continuity.

LEMMA 12. Let V,(p) be the root value of an n-level b-ary SUM tree with paameter p. Then

Va n
lim  sup limsup EV.@) — EVuta)

€= Ip—gl<e n—co n n

[}

and thus EV,.(p)/n is uniformly continuous in p for all n. IfV(p) is the limit of BV, /n when i tends
to infinity, then V(p) is uniformly continuous in p as well.

PROOF. We use an embedding argument, associating with each edge in a b-ary tiee an mdependent
copy of a uniform [0, 1] random variable U. To obtain V,,(p), we associate with cach edge the value
Tiw<pp» where [ is the indicator function. In this manner, 1.,() and V(). although both andom
quantities, are heavily coupled. Also, if ¢ > p, then V,,(¢) > V,,(p). Next, let I? be a path fiom
the root to a terminal node, let ¢ be a typical edge, and let U, be the umform [0, 1} random variable
associated with that edge. Let P, be the collection of all b paths from the oot to a feal i a b-ary tee

of height r.. The embedding construction shows immediately the followmng: of p4¢ > ¢ > p, then

0 < EV.(») — EVi(¢) =E {V,(») = Vi(p)} <E { m.lx L Npeur,« ,,,}

‘el
<E {Il)ld,g(. ,>77 L, (I}
Thus,
sup EVa() EV..((/) {qu S h.< } < p(e) +o(l)
pelp—glgel N n

cep
by Lemma 11. Recall that ¢(¢) — 0 as e — 0. This implics dircctly the uniform continuity of
EV,(p)/n in p. This also implies the uniform continuity of V(). [J
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7. A law of large numbers for p € (o, 1 - ).

LIMMA 13, Forp € (v, | — «), we have

O< V(<
where EV
A
V(p) = lim —=,
n—os

and V,, [EV,, — | almost surely as 1 tends to infinity.

PrROOE. Let v be a node of T an n-level b-ary SUM tree with parameter p. We associate with « the
value V'(u) 1elated to V(u) in the following manner: V'(u) < V(u). The idea is to cut the tree into
picces of N levels cach, and for every second piece, we force all edge values to be zero. On those
preces, we use the results about Pearl trees. The exact definition is given below. We denote by V! the
’ random vanable defined as the value V/(w) when « 1s the root of the ni-level model. We will show
’ that liminf,, ... EV!/u > 0.
| Let N be a large fixed positive integer. For all nodes w at level ¢, we determine V'7u) from
| V'), 0 € A, as follows forl = [n/(2N)]:
D If Q2 - 2N < i< (20 - )N, then V'(«) is determined from V'(v),v € A, as in the
SUM tree with parameter p.
2) If 2 = (2] — 1)N, then first W («) is determined from V'(v),v € A, as in the SUM tree
with parameter p, ané we set
—-oo W) <!
! if W) >1"
(Thus, at this level, V'(w) is bi-valued!)
3) If 21 - )N < i < 2IN, then the edge values are considered to be zero and thus V' (u)
is determined by the MIN-MAX rules

V'i(u) = {

Vi) = { maxeeq, {V'(v)} ifuatevenlevelinT 20)

minge, {V'(v)} ifuatoddlevel inT

It is easy to verify by induction that V'(u) < V(u) for every node. Now we will prove by induction
that if p > «, for all € > 0 we can find N such that for all integer [ > 0 we have

P {V/y = —o0} < min (5, %b“") . (21)
Forl = 1, this is true since

P {V} = —co} =P {IWy =0} = Fx(0)

‘ 39



Chapter IV: THE SUM MODEL: EXPECTED VALUE

where Fly is the distribution function of the value of the root of an N-level sSunt tree with patameter
» and Wy = W(u) is the value of the root of an N-level tree defined above (recall that for p > «,
Fn(0) — 0as N — c0.) Thus we choose N so large that

1 M l -b
Fn(0) < -2-'mll\ <~., Eb ) .

For the induction we have to distinguish between two cases. First we consider a node « ata level 20N,
We assume (21) to be truc for all I’ < 2[. All nodes ¢ at level (21 — 1N have a value V() equal
to ! or —oo. We consider the NV-level subtree T'a rooted at the node v and in which the leaf values
are the V'(v) from level 21 — 1)N of T, Also /(1) 1s distiibuted as the root of a Pearl tiee where
the leaves have value ! or —oo. By the induction hypothesis the value —co occuts with probatility
q < (1/2)b~%. Thus by Lemma 1 we have,

1
P {V'(1) = ~0c0} < - < min (5, 51)"’) . for N large enough
Forallwn > O,
) 1
P {Vansm <1} < min (s, 51)“’) . (22)
This concludes the first part. Let us now consider a node « at level (21 — DN, Acconding to the
hypothesis, at level (21 — 2)N, there are nodes with value (! — 1) and nodes with value ~ oo, The

probability that at least one node v at Ievel (21 —2) N has value V(1) = —oco is less than H¥ 12 RN

the b™ nodes at level (21 — 2)N have thevalue / — 1, then P {V'(1) = ~c0} = P{Wyx =0} = Fy(0)

Thus if we choose N such that b¥+1 2~ < 2 nune, 3070),

- 2

P {V'(u) = —oc0} < b¥'27"™ 4 Fy(0)

< 1min( Il””)+]min (E lI“"
2 ©2” 2 '2” )

= min (e, -;—b“’) .
Thus the induction is shown and we have for all integer [,
P{Viy=-oo} <e.
Thus foralll > 0,
P{Van 21} 2P {Vyn =1} 21 —¢.
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- n
L oIN n-2(1-1)N
- 2(1-1)N
- (21-3}N
- 2N
- N
oL
Inside the gray parts we assume the edge values to be zero.

We now generalize the result for SUM tree with a number of levels that is not a multiple of N. Let u
be the 100t of 77, an n-level b-ary SUM tree with parameter p > . Letl = | n /2N |. Using (22), with

m=n— 2N, we have
l
P {V(u) <1} < min (5, Eb—b) ;
Thus,
EV, > (1 —¢).

As a consequence,

= ——
N n
l—¢
BT
50 that
EV, I—-¢
limi >
l'}!llc)gf n T 2N’

and finally
. EV,
lim —= > 0.
n—oo 1

We can similarly prove thatforp < 1 - q,

EV,
lim — < 1.

n—oo 1}
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Thus for all p > « there exist ¢ > 0 and 1 > 1 such that for all # > ny, EV,, > en.
According to Lemma 9, for any p, and any € > O,

P {|V, — EV,| > ¢} < 2e7%/",

Thus for rv > 1y,

p {I_‘_ - 1| > 5} =D {|V, — EV;| > ¢BV,}
< P{|Vi - EV,| > ecu}
S 2—25’1‘211.

Thus by the Borel-Cantelli Lemma, V,,/EV,, — 1 when # — oo almost sutely, (7]

8. Symmetry.

So far we proved that the EV,, /u converges to a continuous function of p. Now we study
some characteristics of this function.

THEOREM 4. For all p € [0, 1} we have

V(= p)=1-V(Q),

where

7
V()= hm —th
1]

1H—s0u

This implies that
V(1/2) = 1/2

0 MAX 0 MIN

A

Wi ‘/< Vi
® ® e

The random variables V,, and W,
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Proor, Consider the random variables W,, defined recursively as follows:

Wy =0;
W c min.s,sb {l’Vn_l'] +XJ} if nis even
" maxyc,<p {Waot, +X,} ifnisodd ’

where all W,,_, , are independent and identically distributed as W,,_,. Let V, and W/, be defined as
V,, and W, respectively but with all edge values flipped (O to 1 and 1 to 0). We use the definition of
V' used at the end of chapter 111, V' £n—V,and Y, =1 —AX,. Then we have

. " e
Y min; <, < {V,‘_,'J + Y,} if 1 is even
! max;<,<s {V,{’_,'J + YJ} if n is odd

A C e .
Hence, V" £ W/ and nn — V, = 1V’. By definition of the W 's 1t is also easy to sce that

W, &V 46,

n+l

for some {0, 1}-valued random variable 6,,. In fact the tree of W), can be created from V! by adding
a MAX level at the bottom level, so this will influence the root’s value by 0 or 1. Therefore,

E‘/:: S ELV:HI S E‘/v: +1.

Recall also that EW, =n — EV,,. Thus,

EV, 1 EV,a EV! 1
— < l+—+ < —2 4~
n n 7 n 7"
Since
. EV, . EV!
lim —= = V(p), and lim —2& = V(1 - p),
n—oo n—soco 7}
we have

Vi-p=1-V@p.O3
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9. Behavior of the expected value around p=1/2.

The figure below shows the behavior of EVa,, /21 as a function of p for different values of
b. We notice the flat part around p = 1/2 which grows with b and tends to fill the entire tange of p
when b tends to infimity. This means that in this range of p the eapected value almost does not depend
on p. This section mcludes a proof of this behavior. The idea is to prove that when the number of
children becomes big the MAX nodes will almost always add a one to the value and the MIN nodes
almost always a zero. Thus, for a 21 depth tree the expected value is close to . The computations

show that this behavior appears for h > 2.
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EVy,/2n function of p for different b,
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THEOREM 5. For all b there exists 3 € (0,1/2] such that

=L Jfpelp =Pl

ifp e [0,3)

ifpe( -p,1]

When /3 < 1/2, the range [3,1 — 3] is called the flat part around p = 1/2. Forp € (0,1/2) let
L(p,b) be the largest root of 1 — (1 — pa*)* = 2 on [0, 1]. Assume that L(p,b) # 0. Then, for
n > 2/ Lbp,b),

N
[SYTSRY

[%J ~ nlogn < EV, < l’—ZLJ ++vnlogn,

(3> p,and V, [u — 1/2 almost surely. Furthermore, 3 tends to zero as b tends to infinity. Thus the
flat part exists and tends to the full range asb — oo. Finally, forh > 8, we have 0 < 3 < 1/2 (hence,
the Mat part exists).

PROOE,

Part. 1: The lower bound.

LLEMMA 14. Assume that L(p,b) # 0 where L(p, b) be the largest root of 1 — (1 — pa®)® = x. Then,
forn > 2/ LY, D),
[%J ~ /riogn < EV,.

PROOF. We consider a random 2n-level b-ary SUM tree with parameter p. The nodes in the tree are
marked good or bad. The leaves are all good. Consider a node at an odd level 21+ 1 with b children at
level 212, Such a node corresponds to a MIN node in the tree. We mark it good only if all the children
are good; otherwise, it is marked bad. For a node at level 21 (a MAX node) with b children, we mark
it good 1f there exists at least one good child whose edge value 1s one. Thus, the root « is good if and
only if there 1s a path from the root to bottom level where all the MAX nodes bring a one.
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1 wmax O wMnN - - - - Badnodes

7
v

v,

Tree with good and bad nodes.

Consider the value V(u) of the root of the tree, provided that it is marked good. Clearly,
V(u) > n. Also, for a node v at level 2u + 1 we have V(1) > n. Let p,, denote the probability that a
node at level 1« is marked as good. Then, by the previous discussion,

P{Vy, >2nu}>p,.

Furthermore, we have a simple recursion:

po=1,
and
P = f(pan-2)
where
f)E 1= (1= )

The function f is continuous and increases monotonically from 0 to f(1) = 1 ~ (I — p)*. We note
therefore that p,, decreases monotonically in 7 to a limit which is either zero or a positive number,

The limut is the largest root on [0, 1) of the equation f(x) = x. Let us call this limit L(p, b). Thus, the
following interesting inequalities are truc:

in'fP {Va, 2 n} > L(p,b),
inf P {Va,,, > n} > LU, D).
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Therefore,

inf P {v,. > [%J} > L, b).
Continuing this discussion, we consider the set of all p for which L(p,b) > 0. We know by
McDiarmid’s inequality that

P{|v,, ~EV,] > v log'u} < %

Therefore, 1f 2/n® < L¥p, b), we see that

EV, > [%J - vVnlogn . J

Part 2: The upper bound.

In the b-ary trec we mark the node good or bad according to the following rules. The leaves
are all good. A MAX node is marked good if all the childien are good. A MIN node is marked good if
there exists at least one good child whose edge is zero. Thus, the root is marked good if there exists a
path from the root to the bottom where all the MIN nodes bring a zero. If a node at height 2n is good
we have Vs, < n. Also Vi, < n. Let ¢, denote the probability that a node at fevel « is good. We
setg=1~—p Then

P{Vi, <n} 24,

And the recursion is

qo =1 =1,
fany) = f(‘]!n-—l)v

with
F@)E 1= = guty.

Just as for the lower bound, we get the inequality

EV, £ [%J + nlogn. O
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Part 3: Behavior when b tends to infinity.

LEMMA 15. Forb > 8, 3 < 1/2. Also,
blim B8=0.

Thus the fiat part exists and tends to the full range as b — oo.

0. 5T,
0.4
0.3
0.2
0.1
R b
2 50 100 150 200
An upper bound for B as a function of b.

PROOF. We show that for all p € (0, 1/2], there exists B such that L(p, b) > 0 for all b > I3, This
implies 3 < p. Define y(x) = f(x) — x. Forxz € (0,1/2], we have

glr)=1—u ~ (1 - p:l:")".

2 20\

b — - — )*IOS§ - —— _.I..

g ( 3) | —¢ (l 3)
., logB/2) (] _ @)”

b—oo b 3

_ log(3/2)

b= 00 b

2
(]
y (\/;) > 0.

g(1) <1, y(0)=0, ¢'©0) = —1.
Thus for b > B, g has a fixed point in [{/2/3, 1), and 8 < p. Finally for p = 1/2and b = &, we have

(i)
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Taking @ = \’/g, we see that

There exists B such that forall b > B,

Note also that for any b,
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Thus for b = 8, 3 < 1/2. Then Lemma 15 is preved. The figure above shows an upper bound of 3
‘ computed as the smatlest g2 such that L(p, b) > 0. The numerical computations show that the flat part
appears for b = 3. Sec also the figure below.

0.s5} EV;,/2n
%)
0 51
0.49
0.47
Y046 0.48 0.5 0.52  0.54 P
EVy,/2n for b=3 and p between 45 and .55 and n=500.
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NUMERICAL RESULTS
AND DISCUSSION

Simulation of MIN-MAX trces does not provide reliable results, as the number of computation
needed for such simulation 1s exponential in the depth of the tree. In fact, simulations can only he
performed for depths up to 20. We are therefore forced to use a numenical method based on the
recurrences given in the text We can compute the various disttibution functions m polvnomial tme
as a function of the depth. The results are 1eliable and the convergence 1s fast These funchons have
been computed with a Pascal program. We used Mathematica to analyze the data. The distnbution
function and the expected value of 1, are computed for trees up to 2000 levels {or 500 ditferent
values of p These numerical results give a good llustration of the theoretical properties of the St

model proved 1n the preceding parts and allow some conjectures on other properties  In this chapter
we use the notation introduced before:

Ve
F,:
V(p):

(4K

the root’s value of the n-level h-ary SUM model with parameter p,
distribution function of V,, and f,, its discrete density,
the limit of EV,, /1 as n tends to infinity,

the smallest p such that F,,(0) has a non-zero limit as » tends to infinity

1. Expected value for h = 2.

First we present the evolution of the expected value EV, /n as a function of the depth o
for fixed p. We have three different cases as a function of p, depending upon whether p € [0, v,
pE(l —w)orpe[l —aull

EV, .
2 02 EV,,-2n
012 00
018
o1 EVy,-n 0o
0 08 0 1€ o 06
0,06
EVs, 014 0 68
0o v n
012 EVan.1-(n-1) TR T T n
0 02 .
/f M n oo EV,, ;-(2n-1)
s 10 15 FE) P 1 1 2% e
p=0.04 p=05 p=096
The thiee different cases.
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Chapter V NUMERICAL RESULTS AND DISCUSSION

For p = 1/2 we can observe that EV;,, — 1. converges to a finite limit. For general p we observe
. that EV,, — nV(p) stays fimite when # tends to infinity. When p slightly bigger than o, EV,, — nV(p)
oscillates as we can see in the next figure.

15
124
R n
16 50 100 | 1%0 00\ 25p \ 300
-0.1
I p=0 056
. 0.2
p=0.055120+10° o
2 h t7
B e nooo.4
T zon 400 600 800 1000
EV,, for p>a close to o and b=2 EVy,-nV(p) for p=0 056>a

The congecture that KV, — nV(p) is finite has not be proved Instead, we only proves that EV, /n
has a limit V(p) when 1 tends to infinity and that this limit is continuous. The figure below shows a
numerical approximation of the function V(p) computed for n = 2000. The function has breakpoints
atp=aand p =1 - a as expected. At these points the function looks non differentiable but it is
continuous. For p € [0, ] the function is equal to zero, and for p € [1 — o, 1], 1t is equal to 1.
Between the two breakpoints the function is close to a line with a slope of 1.062. The slope of the
fine jorng the pomts (0.3,V(0.3)) and (0.7, V(0.7)) is a little bit over one. Also, as V(1/2) = 1/2,
we see that BV, < pn for p < 1/2, BV, > prforp > 1/2, when n is large enough.

1+

10.97

I
0.871 ‘

t

t

]
0.6 :

[}

]
0.41 ;

]

\
0.2¢ '

1

]

003 : : : ; 'fp
(=0 055 0.25 0.5 0.75 Ia~.945 1
EV2000/2000 as a function of p (500 points), slope of the line: 1,062,
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The next figure shows the convergence of EV,,/n for different pp. We notice that the convergence is
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not monotone when pis neara or 1 — «.

0.01
0.01
0.008
0.006
0.004
0.002
" 10 20 30 40 50 60
0.336667
0.36
0.34\\\‘
0.3 — ——==—=
0.28/ /10 20 30 40 50 60
0.26
0.24
0.22
0.859333
0.92\L
0203040 50 4
0.88- = 0
0.86
0.84

[oloXolole]

0.0753333

10720 30 40 50 60
0.532667

0.475/10 20 30 40 50 60

0.924667
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N ~J X

[ololelelelwled

""10 20 30 40 50 60

limite forcast by the hinc

SO OoOO00Oo
Y ~I~I~I-d-

0.140667

14

. 2\\~'“::::‘:~' DT A%
“ISQA‘ 30 40 50
2 3 ¢ )
08 0 30 40 %0 60
06
0.728667

8

8\\’3,/)::

6 .

4 T e - -

2 Voot F2n4 1

B/Zb 20 30 40 50 60

6

0.99

999" 10-°0730740 40 60
998

997

99¢

995

994

993

EV3,/2n and EVy,,, ;/20+1 function of n, for 9 values of p between 0 01 and 099, h=2,

2. Distribution functions for b=2.

value of the leaves tends to infinity (the expected value of the leaves is np). The probabihty that the
root’s value 1s greater than one is less than 1.4%, and 1t is virtually impossible that its value s greater

First we constder the case p € [0,«] (v = 0.055). As we proved, for all «, F5,,(1) converges
to a non-zero limit Fi.,(2). Since F.,,(0) 1s the root of a fourth-order polynomial, one could compute
(e.g., with Mathematica) its symbolic formulation as a function of p. Then via recurrences we may
obtain a symbolic formulation of all Fi,(7). This has been done and the graphs are shown n the figure
below. F.(0) 1s smallest when p = o 1n which case F,,(0) = \Vﬁ(;/‘) = (.705512. Tlas imphies that
if p < «, the probability of having zero as root’s value is greater than 70% even when the expected

than two.
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Fanl2) :
1
Faul)
Fp(0) :
07 .
P p
Limut of F(0), Fu(1), Fou(2), b=2

We now look at the case p = 1/2. F,(7) tends to zero for all i. We observed that fa,(n + 2)
and fa,-y(n + i) have non-zero limits as n tends to infinity. The figures below show the estimated
limits of fa,(n + 1) and fa,. (1 +1). The distributions are highly concentrated: V,,, and V,,,, are
very hikely m [0 — 2,1 + 2} while P {V3,, = n} > 45%. Notealso that fy,_;(n + i) looks similar to
Sfanln+17 — 1), With the graphs we can compare these distributions with the distributions of the leaf
values, which are much less concentrated. Furthermore we observe that f,,, (1t + 2) has a limit for all
1, and that the vanance of V,, stays finite when 1 tends to infinity.

04 0 492
Jan 1(0) Sanli)

0 8 Binomial 0 206
distribution
of the leaf

0 162 nodes 0 182

o o2 - \ 0 om\ i

0 0102 it N .0 0102 i

20 24 30 35 40 20 25 30 kLY 40|

Sonli) and fo,_5(1),for n=30 and p=0.5.

For general p > «, the distribution of Vi, is concentrated around the value 2nV(p). The
figure below shows density functions of the leaf values and of the root’s value for p = 0.3. The
variance of 1, scems to stay finite when n tends to infimity. Since V(p) is close to p, the distributions
of the 1oot’s value and of the leaf values look concentrated around the same values. Note however
that V(p) # patall pexceptp=1/2, p=0andp = 1.

53




Chapter V: NUMERICAL RESULTS AND DISCUSSION

n=30

0.5 0.5 0.5 n=3i2
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
10 15 20 25 i
0.5 n=33 0.5 n=34 05 n-1%
04 0.4 0.4
0.3 0.3 03
0.2 0.2 0 2
0.1 0.1 — 0.1 P AR T
10 15 20 25 10 15 20 25 10 1% 200 2%
Jan(i), for p=0.3 and n from 30 10 35.
3. Results for b>2.
1 ;;-— 1 =4
4
P4
0.8 0.8 »
it
}-l
0.6 0.6 /
0.4 0.4 /
¢
r
[) N I)
) 0.25 0.5 0.75 1. ) 0.25 0.5 0.75 1
EV,¢/20 and EV,,/21, for b=10 E V2¢/20 and EVy,/21, for h=20

Numerical results about the flat part around p = 1/2 have already been presented n the
preceding chapter (page 44). One could argue that this behavior appears only for huge tiees and that
it is not reliable for real game trees. This is not the fact. Asthe convergence is very fast, this behavior

appears quickly for small tree as we can see in the above figure.

54




Chapter V: NUMERICAL RESULTS AND DISCUSSION

1 p=0.3 fom 1 p=02  f,
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
—
20 25 30 35 10 15 20 25 30
0.8 p=01 Don 0.6 fon p=005
0.5
0.6 0.4
0.4 03
0 0.2
2 0.1
5 10 15 20 2 4 6 8 10
>, and the density of the leave value, 2n=60 and b=20.

The figute above presents density functions of Vi, for b = 20 and different y. The first
observation 1s that the distnbution of the root’s value and of the leaf values are concentrated around
totally different values, and that the distribution of the root’s value is always more concentrated than
the leaf’s. The first graph shows the density for p = 0.3 (this p is inside the flat part around 1/2). We
proved that in this case EVy,, /ni — 1. In the graph we see that = 1s almost the only value likely for

b P{VL, =30} > 0.999, while the probability for a leaf value to be 30 1s less than 0.6%. The
second and thud giaphs show the density tunctions for two values of p outside the flat pait These
densities are also concentrated around the value 2nV(p). The last graph considers a p smaller than
a. We can see that the most likely value 1s 1. In order to have an idea of the distributions for small p
we look at the distributions when p = o1 for different b’s. The figure below shows these distribution

functions.

f2/l(i)

»

3 4

The density functions f3,(i) of V,, with n=60 and p=q.
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The table below gives the first four values of the density function of V3, when p=a and 1 = 60. It
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is noteworthy that for b less than five the most likely value 1s zero and for bigget bt s 1,

[0 t(0) t(n t(2) TR bV
b=2 00551636 |0 7133162 [0273374 "[0010747 RIS 08 [0 2oun00280
b=3 00755082 0631249 |0 352287 | 00164401 1 ROSO2E 0S| 0 ARS2118
b=4 0083527 [0S65341 |0 4a1681s T T [om911y 257674 06 [0 182067510
b=5 0 0RG34SS |OSI1780 | 0469898 “[0018VI ¥4 04000 07 [0 800828715
b=6 0OORG7173 | 0 4GR24 0513625 (00181384 VI4SITL OR [0 S 19R0SR0

=7 0 ORS874 0431733 | 0550518 00177491 2016281 09 {0 SRGOL6200
b=8 008344099 (040108~~~ O S8I711 (00172083 2517001 10 10616327601
B=9  [00B26302° |0 374655 | 0 60Re8S 00166615 2007391 11 [0 6d2%))
B=10 7 [0080TAI2 O ASIR0T T 062101 T 006008 1S3 12 [oosay
b=11 |0 O787R43° [0 3318827~ | 0652991 0015527 ¢ LOSO27TE 18 Lo eaN3edsy
b=12 00768188 {0 114287 0 670733 “Toorwwwo 7993140 15 |0 700000
=13 T [0 079957 T o208644 T [0 6R6VOT T O014158 0 0715811
b=14 00731283 |0281391 0701591 00140140 0 TR
=15 00713662 [0271809 | 0 714059 001K 0 0211220
B=16 | 00696786 | 0200233~ | 0 726648 Toonim 0 0 75 28K0
b=17 | 00680631 [0249773 ° 0737152 00127071 0 07020012
b=I8 00665200 0240137 7 [0 747928 0012314R 0 01721970
b=19 00650465 {0231383 | 07560601 00 9566 0 0 7ROS 742
b=20 00636392 0223285 ~ 7 [0 76501 00116053 0 0 TRR 1200
b=21 | 0062294% [0 2158297 © 10772909 00112622 0 07951341
b=22 00610111 7|0 208769 ~ 0 780256 00109752 0 0 KO2200:)
=23 | 00597852 | 0202008 0 787172 “100107305 0 0 RORGIA
b=24 00586105 [0 TU60R2 [0 7938~ T 100104383 0 0 K1 13506
b=25 00574854 | 0 190524 0799336 00101394 0 0’1901 IR
b=26 00564009 {0 185013~ | 0 ROS046 7 000994096 0 082402 )0
b=27 00553763 |0 180135~ [0'810201 " Joomeoiao 0 O R2052/02
b=28 00543866 {0 17528 |[ORTS245 ~ “[000wa7s1 0 0B AI10S
b=29 0053435 |0 170848~ [0 819901~ T[000w2s0813 0 0 RIR K200
=30 [003252i6 10 T665{7 [0824404 "~ [0 0000IRGH 0 0 RAY50112

Density function f,(i), for p=a, and n=60

The existence of the flat parts has some feasible explanation. Let us recall the meaning of the
MIN-MAX tree as a game tree, using the bounded look-ahead strategy presented in chapter H. In such
a tree with n levels, a leafl node represents the value of a position computed by a static evaluation
function. If we assume that the game follows the SUM model, the difference between the efficiencies

It is interesting to see what happens if we consider the standard probabilistic model with a
binomial distribution for the leaf nodes m order to compare the results with the SUM model. Let V be
the random variable which defincs the leaf values, and assume that,

4. Some remarks.

p & Yo
n’
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of the evaluation functions of both players influences the value of g In fact if your function s better
than your opponent’s then p is greater than 1/2. According to the previous results, if the number of
children is big, the variations of p do not have a lot of influence if 1t stays side the flat part around
1/2: the effictency of the evaluation 1s dampened. Thus 1if two perfect players or computers can

search down to the same depth and 1f the efficiency of their evaluation functions e ditferent, they
are equally likely to win,
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where Y, follows a binomial distribution with 21 trials and success probability p. 'We have
[C1.91,p.19],

log 1 1
ogn <L

n Vv

This implies that when re tends to infinity, the distribution function of V tends to a function with a

PV —pl2

jurnp at p from 0 to 1. Thus according to chapter 2 the expected value of the root tends to p. It can
appear logical that when the leaf values are concentrated around p the expected value of the root is
this value. With the SUM model we are far from this behavior. For example, the probability to have
seroat a fixed leaf of a re-level SUM tree with parameter p > 01s (1 — ). This clearly tends to zero
when n tends to infinity. In spite of this, the probability of having zeio at the root tends to a non-zero
lint il p < v Forexample, for a 120-level SUM tree with b = 2 and p = o = 0.055, the probability

for a leal value to be zero 1s less than 0.2% and the probability for the root’s value to be zero is more
than 71%.

5. An example: The board-splitting game.

The hypotheses of the SUM model can appear quite far from real games as we assume the
game (o end after exactly 21 moves and that for each move there are exactly b choices. Judea
Pcarl invented a class of games that matches these hypotheses for the standard probabilistic model.
This game is called the board-sphitting game or P-game. Nau [Nau82] used this kind of game with
dependent nodes

The pame consists of an N x N board (N = ") and each cell contains an mteger between
setoand 2n. We eall the two playeis MAX and MIN. A move for MAX consists of cutting the board 1n
b vertical parts and keeping only one of these. MIN does the same but horizontally. The goal of MAX
1s that the last number after 2 turns is the greater, and MIN has the opposite goal. If the value in the
last cell is &+ € 10,2n], MAX wins 1 — x points and MIN wins .. — 1 points. The figure below shows
an example.

1 {2111 112 | x| %
291113 0)=——]2]1]x ] X — 1 (0 — i — | X | X
1103 12 [Max) i O x i x MIN 1]1 MAX 1| x MIN 1 | %
111312 111 x| %

An illustrative play.

With Pearl's example the cell values aie independent and have the same distribution. In our
model the cell values are dependent according to the SUM model. Let B,,, bea b™ x b" board for such
a game when MAX plays the next turn. Let By, be a b"~! x b™ board when MIN plays the next tumn.
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The recurrence to build such boards is
Bo(1,1) =0
BZvl(l,j) = B ([Z/b.l,]) +u, for 1 < (I,_)) < bt

Bano1(iy J) = Banea (1, [3/0]) + ¢, for 1 i < b™ 1, 1< j < b",

where it is an independent drawing of a Bernoulli variable with mean p. The table below shows one
example of such board for b =2,p=1/2and n =3,

] 3 3 3 1 2 3 :
2 2 3 4 1 2 2 2
3 3 2 3 3 2 1 2
2 3 2 3 2 1 2 2
3 3 ] ] 3 5 4 4
3 2 1 0 3 4 4 3
2 2 2 2 4 4 2 2
2 3 | 2 3 4 2 3

A board for the SUM model, p = 1/2,b=2,n = 3.
We can simulate bigger random boards with Mathematica. For b =2 we took n = 7, 1.e., 0
128 x 128 board. For h = 4 we took n = 4, 1e., 2256 x 256 board. To repiesent these boards we
represent the cell values by a gray level, the correspondences between the values and the gray levels
being given 1n the insets. The first figure shows a simulation for b = 2 It 15 interesting (0 compare
this board with an cquivalent board simulated with independent values corresponding (o the standand
model, which independent cell values, each binomial with mean p = 5 and fourteen tials For both

models the cell values have the same distnibution with mean 2pr2, but m the SUM maodel they are
dependent.
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Bowd for the SUM model with b=4, N=256, n=4 and p=.5.

According to our results, if b is big, there 15 an interval for p around 1/2 where the 100t’s
value 1s highly concentrated around ni. For b = 20, p =03 and 1 = 30, if MAX and MIN play best
possible the final cell’s value is 30 with a probability greater than 99.9%, even through this value
appeats only in very few cells (less than 0.6%). However, if MIN and MAX play randomly, the last

cell’s value is near 10,
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