
Hamiltonian Structures for Evolution
Equations Describing Pseudo-Spherical

Surfaces

Amanda Maria Petcu

Department of Mathematics and Statistics
McGill University, Montreal

October 2021

A thesis submitted to McGill University in partial fulfillment of the
requirements of the degree of a Master of Science in Mathematics.

© Amanda Maria Petcu 2021



Acknowledgements

I would like to express my deepest gratitude to my supervisor Niky Kamran for the many
hours he spent working with me to facilitate my understanding of the subject at hand, and for
believing in me even when I didn’t. I would also like to thank the professors I have had during
my master’s degree for a learning experience that I will never forget. Lastly, I would like to thank
my friends, my family and my partner Jacob for supporting me every step of the way and for
happily listening to me go on and on about my thesis and related work without having any clue
what it all means.

1



Abstract

The notion of an evolution equation which admits a multi-Hamiltonian structure is introduced.
We review the algorithm given in Magri’s theorem to compute an infinite hierarchy of conservation
laws for the evolution equation. Then the notion of an evolution equation that describes pseudo-
spherical surfaces is introduced and we use an algorithm given in [2] to compute an infinite
sequence of conservation laws for the equation. Since these two classes of evolution equations
share this property, the question of whether or not there exist evolution equations that describe
pseudo-spherical surfaces and also admit a multi-Hamiltonian structure is explored in the case
of the KdV equation and another quintic evolution equation.
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Résumé

La notion d’équation d’évolution qui admet une structure multi-hamiltonienne est introduite.
Nous utilisons l’algorithme donné dans le théorème de Magri pour calculer une hiérarchie infinie de
lois de conservation pour une telle équation d’évolution. Ensuite, la notion d’équation d’évolution
décrivant une surface pseudo-sphérique est introduite et nous utilisons un algorithme donné dans
[2] pour calculer une suite infinie de lois de conservation pour l’équation. Puisque ces deux
classes d’équations d’évolution partagent cette propriété la question de savoir s’il existe ou non
des équations d’évolution qui décrivent des surfaces pseudo-sphériques et admettent également
une structure multi-hamiltonienne est explorée pour l’exemple de l’équation KdV et d’une autre
équation d’évolution quintique.
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1 Introduction

The calculation of conservation laws for a differential equation has been a problem of interest for many
researchers. The conservation laws that arise naturally from physics such as conservation of mass and
momentum are but a drop in a bucket. This is why we are very interested in algorithms that could provide
an infinite sequence of conservation laws for certain classes of evolution equations. This thesis explores two
classes of evolution equations for which there exist algorithms that create an infinite hierarchy of conservation
laws for the equation. The first class, explained in section 3 are evolution equations that describe pseudo-
spherical surfaces. The second class, explained in section 2 are evolution equations which admit a multi-
Hamiltonian structure. The fact that these two classes of evolution equations both admit an infinite sequence
of conservation laws begs the question of whether or not there exists a large overlap between these classes.
One such example is the KdV equation

ut = uxxx + uux

which describes a pseudo-spherical surface and also admits a multi-Hamiltonian structure. This will be used
as the running example in this thesis. Following Chern and Tenenblat in [1] an evolution equation for u(x, t)
describes pseudo-spherical surfaces if there exist smooth real valued functions fab, 1 ≤ a ≤ 3, 1 ≤ b ≤ 2
depending on u and finitely many derivatives, such that the 1-forms

ωa = fa1dx+ fa2dt a = 1, 2, 3

satisfy the relations:
dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 = ω1 ∧ ω2

where ω1, ω2 define the metric g = (ω1)2 +(ω2)2 and ω3 is the connection form that determines the Gaussian
curvature to be K = −1 making these the structure equations for a pseudo-spherical surface. In this thesis
we require that f21 = η be a real parameter. By allowing all the other differential functions to be analytic
in η we use the algorithm given in [2] to create an infinite sequence of conservation laws for the equation.
This algorithm, explained in section 3 works by creating a single conservation law that is analytic in η and
then expanding that law in a power series thus giving us an infinite sequence. In the paper [1] by Chern and
Tenenblat a few theorems that help in creating evolution equations that describe pseudo-spherical surfaces
are provided. These theorems made it possible to describe large classes of p.s.s. equations leading to a very
large list of evolution equations for which we can compute an infinite sequence of conservation laws. The
same cannot be said about the second class of evolution equations, those which admit a multi-Hamiltonian
structure. These equations are much harder to find, this in part due to the many requirements for the
existance of a Hamiltonian structure. A Hamiltonian structure depends upon a differential operator D that
we use to define a Poisson bracket on the space of functionals F as

{P,Q} =

∫
δP ·DδQ dx

where P =
∫
P dx, Q =

∫
Q dx are functionals in F and δ is the variational derivative. The Poisson

bracket for an operator D has requirements that are further explained in section 2. We call such an operator
D a Hamiltonian operator. Then we can define an evolution equation u(x, t) = K[u] to be Hamiltonian if
there exists a Hamiltonian operator D and a functional H =

∫
H dx such that

ut = K[u] = DδH .

Remarkably an evolution equation can admit more than one structure, such an evolution equation is said
to be multi-Hamiltonian. For example the KdV equation that is further explored in section 2 admits a
bi-Hamiltonian structure, thus it can be written in the form above using two distinct Hamiltonian operators
and functionals. An algorithm for the computation of an infinite hierarchy of conservation laws for an
evolution equation admitting a multi-Hamiltonian structure relies on a ladder-like application between the
Hamiltonian symmetries of the evolution equation and the Poisson bracket of each operator. This ladder-like
application rests heavily upon a Noether relation between the Hamiltonian symmetries and the conservation
laws of the evolution equation that is further explored in section 2.
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These two methods of computing an infinite sequence of conservation laws are quite different and share
no obvious overlap. However the fact that we are even able to find an infinite number of conservation laws
for both these classes of evolution equations is a very unique property. It is thus an interesting problem to
see if these two classes overlap. Therefore in addition to the KdV equation, in section 4 of this thesis we
explore an example of a quintic evolution equation that is p.s.s and also bi-Hamiltonian. This thesis focuses
on just these two examples and this is due in part to the difficulty of finding not only one but at least two
Hamiltonian structures for an evolution equation. However, the hypothesis that there exists a large subset
of evolution equations which are both p.s.s and multi-Hamiltonian remains.

This thesis is organized as follows: in section 2 we review the background material on Hamiltonian
structures for evolution equations. We introduce Poisson brackets, Hamiltonian operators, bi-Hamiltonian
systems and Magri’s fundamental theorem on the generation of an infinite hierarchy of conservation laws
through the above ladder-like relation. In section 3 we introduce the class of evolution equations describing
pseudo-spherical surfaces following the foundational work of Chern and Tenenblat in [1]. We review the
algorithm due to Cavalcante and Tenenblat in [2] for generating infinite sequences of conservation laws for
p.s.s. equations. Section 4 contains the original contribution of this thesis which explores a quintic p.s.s.
equation that is also bi-Hamiltonian. The conservation laws for this equation are computed by both the
above methods. The thesis concludes in section 5 with some perspectives for further research.
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2 Hamiltonian Structures for Evolution Equations

2.1 Background Material

In this section we will give some background information for the set up of this thesis, specifically we will
provide key definitions and theorems that will help us in constructing Hamiltonian structures for evolution
equations. The information in this section is paraphrased or directly quoted from [4].

Suppose we have a system of partial differential equations S that involves p independent variables x =
(x1, ..., xp) and q dependent variables u = (u1, ..., uq) where ua = fa(x1, ..., xp) for a = 1, ...q. Then we can
let X ' Rp with coordinates x be the space representing the space of independent variables and let U ' Rq
with coordinates u be the space representing the space of dependent variables. Furthermore, for each ua

there are pk =
(
p+k−1
k

)
different k-th order partial derivatives, we employ the multi-index notation

uaJ = ∂Jf
a =

∂kfa

∂xj1 , ..., ∂xjk

to represent these derivatives. In this notation J = (j1, .., jk) is an unordered k-tuple of integers with
1 ≤ jk ≤ p, where the order of the multi-index indicates how many derivatives are being taken. With this
notation, we let Uk ' Rq·pk with coordinates uaJ corresponding to a = 1, .., q and all multi-indices J of order
k be the space that represents all the different k-th order derivatives of the components of u at a point x.
For example in the case where p = 2, q = 1, we have u = f(x, y), then U1 ' R2 with coordinates (ux, uy)
and U2 ' R3 with coordinates (uxx, uxy, uyy).

Given a smooth function u = f(x), f : X → U , the n-th prolongation of f denoted u(n) = pr(n)f(x),
can be thought of as lifting the function f : X → U to a function from X to U (n) where

U (n) = U × U1 × ...× Un

is the space whose coordinates represent all the derivatives of the function u = f(x) from 0 to n. For example
in the case where p = 2 and q = 1, u(2) = pr(2)f is given by

(u, ux, uy, uxx, uxy, uyy)

evaluated at (x, y). The space X×U (n) whose coordinates represent the independent variables, the dependent
variables and the derivatives of the dependent variables up to order n is called the n-th order jet space of
the underlying space X × U . If M ⊂ X × U is an open subset then we define

M (n) = M × U1 × ...× Un

to be n-jet space of M .

Let (x,u(n)) ∈ M (n), L(x,u(n)) : M (n) → R is a smooth function of x,u and the derivatives of u up
to order n, L(x,u(n)) is called a differential function. We use the notation L[u] if we do not care as to
precisely how many derivatives of u the function L depends on.

Given a differential function L(x, u(n)) and an open, connected subset Ω ⊂ X with smooth boundary ∂Ω, a
variational problem consist of finding the extrema of a functional

L [u] =

∫
Ω

L(x, u(n)) dx

in some class of functions u over Ω. In this notation dx = dx1 · ... · dxp where p is the dimension for X.
The integrand L(x, u(n)) is called the Lagrangian of L [u]. In finite dimensions, the extrema of a smooth
real valued function f(x) are determined by looking at the points where the gradient vanishes. The gradient
itself is found by seeing how the function f changes under variations in x. For functionals L [u] the role of
the gradient is played by the variational derivative and is constructed by looking at how L [u] changes under
small variations in u. To define the variational derivative we must first define the total derivative and the
Euler operator.
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Definition 2.1.1. The total derivative DiL of L[u] is defined by

DiL =
dL

dxi
+

q∑
a=1

∑
J

uaJ,i
dL

duaJ

uaJ,i =
duaJ
dxi

where J is the multi-index for the different order derivatives with respect to the independent variables. We
sum over all J ’s from order 0 to the highest order derivative appearing in L.

Definition 2.1.2. For 1 ≤ a ≤ q, the a-th Euler Operator is given by

Ea =
∑
J

(−D)J
∂

∂uaJ

where J sums over all multi-indices.

Let u = f(x) be a smooth function defined over Ω and n(x) = (n1(x), ..., nq(x)) a smooth function with
compact support in Ω. We observe how L [u] changes under u by the following computation

d

dε

∣∣∣
ε=0

L [f + εn] =

∫
Ω

{ d
dε

∣∣∣
ε=0

L(x,pr(n)(f + εn)(x))
}
dx

=

∫
Ω

{∑
a,J

∂L

∂uaJ
(x,pr(n)f(x)) · ∂Jna(x)

}
dx.

Since n has compact support we can use the divergence theorem and integrate by parts so that the terms
evaluated on ∂Ω vanish. The partial derivative ∂

∂xi
when applied to the derivatives ∂L

∂ua
J

becomes the total

derivative Di. Therefore we obtain

d

dε

∣∣∣
ε=0

L [f + εn] =

∫
Ω

{ q∑
a=1

[∑
J

(−D)J
∂L

∂uaJ
(x, pr(n)f(x))

]
na(x)

}
dx

=

∫
Ω

{ q∑
a=1

Ea(L) · na(x)
}
dx

=

∫
Ω

{
E(L) · n(x)

}
dx.

Using this and the Euler Operator we are now ready to define the variational derivative of L [u].

Definition 2.1.3. Let L [u] be a variational problem. The variational derivative of L [u] is the unique
q-tuple

δL [u] = (E1(L), ..., Eq(L))

with the property that

d

dε

∣∣∣
ε=0

L [f + εn] =

∫
Ω

{ q∑
a=1

Ea(L) · na(x)
}
dx

whenever u = f(x) is a smooth function defined over Ω, and n(x) = (n1(x), ..., nq(x)) is a smooth function
with compact support in Ω. The component Ea(L) is the a-th Euler operator applied to the Lagrangian L.

The Euler operator applied to the Lagrangian L(x, u(n)) is denoted E(L) = (E1(L), ..., E2(L)) and by
our definition above is equal to the variational derivative δL [u]. Therefore we will interchangeably use the
notation δL [u] and E(L) to mean the same thing.

8



Finding the possible extrema of a variational problem boils down to solving the Euler-Lagrange equations

δL [u] = E(L) = 0

for u = f(x). Of course, not every solution to the Euler-Lagrange equations is an extremal, the other
solutions will correspond to other types of critical points for the functional. However functionals L[u] whose
Euler-Lagrange equations vanish identically are of interest.

Definition 2.1.4. A function L(x, u(n)) defined everywhere on X × U (n) is called a null Lagrangian if the
Euler-Lagrange equations E(L) = 0 are satisfied identically for all x, u.

Example. Let L [u] =
∫ b
a
uux dx a, b ∈ R be a variational problem, then L = uux is a null Lagrangian since

E(L) = ux −Dx(u) = 0

for all x, u.

Definition 2.1.5. Let P (x, u(n)) = (P1(x, u(n)), ..., Pp(x, u
(n))) be a p-tuple of smooth functions of x, u and

the derivatives of u. We define the total divergence of P to be

DivP = D1P1 +D2P2 + ...+DpPp

where Di is the total derivative with respect to xi.

The total divergence and the Euler-Lagrange equations are very closely related. We won’t use this idea
very often in practice, however it will be used in many of the proofs we give in this section. It is for that
reason that we quote the following theorem from [4].

Theorem 2.1.1. A function L(x, u(n)) defined on X × U (n) is a null Lagrangian if and only if it is a total
divergence: L = DivP for some p-tuple of functions P = (P1, ..., P2) of x, u and the derivatives of u.

Now we have all the tools to introduce the spaces we will primarily be working with in this paper. We
define A to be the space of differential functions, we note that A is an algebra and we can add and multiply
differential functions together. We extend this to A q, the space of q-tuples of differential functions. Each
differential function L ∈ A , determines a functional L [u] =

∫
Ω
L[u] dx defined over any region Ω ⊂ X in

it’s domain. In this thesis we will ignore the boundary conditions and only consider functions u = f(x) that
vanish sufficiently rapidly near the boundary. This, in combination with the theorem above allows us to say
that two differential functions L,L′ ∈ A determine the same functional i.e.

∫
Ω
L[u] dx =

∫
Ω
L′[u] dx if and

only if they differ by a total divergence:

L′ = L+ Div P, for some P ∈ A p.

We can now define an equivalence relation on A by the above condition. It is then reasonable to define F as
the set of equivalence classes of A under the image of total divergence, thus F = A /Div(A p). The natural
projection from A to F associates to each differential function L an equivalence class of functionals which
will be denoted by

∫
L dx ∈ F . Now that we have an understanding of our underlying spaces we are ready

for more definitions.

Definition 2.1.6. A differential operator D : A → A is a finite sum

D =

n∑
i=0

Pi[u]Di
J

where the coefficients Pi[u] ∈ A . The set of differential operators is a ring under composition [4]. A q × q
matrix differential operator D : A q → A q is a matrix whose entries are differential operators.
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Definition 2.1.7. Let D =
∑
J PJ [u]DJ , PJ ∈ A be a differential operator, its adjoint is the unique

differential operator D∗ which satisfies ∫
Ω

P ·DQ dx =

∫
Ω

QD∗P dx (2.1.1)

for every pair of differential functions P,Q ∈ A which vanish when u ≡ 0, every domain Ω ⊂ Rp and every
function u = f(x) of compact support in Ω. Using integration by parts, the formula for the adjoint becomes

D∗ =
∑
J

(−D)J · PJ .

If D : A q → A q is a matrix differential operator with entries Dij , the adjoint D∗ : A q → A q has entries
D∗ij = (Dji)

∗, the adjoint of the transposed entries of D∗.

Definition 2.1.8. A differential operator D is skew-adjoint if D∗ = −D and self-adjoint if D∗ = D .

Example. Let E = D3
x + 2

3uDx + 1
3ux, then the adjoint of E is

E ∗ = −D3
x −

2

3
uDx −

2

3
ux +

1

3
ux

= −D3
x −

2

3
uDx −

1

3
ux.

Furthermore, E is skew-adjoint since E ∗ = −E .

From here it is important to introduce certain vector fields and the differential forms of interest on the
space M (n). Much like the spaces A and F , we will introduce two kinds of differential forms, the later being
the quotient of the first under the image of total divergence.

Definition 2.1.9. A generalized vector field is an expression of the form

v =

p∑
i=1

ξi[u]
∂

∂xi
+

q∑
a=1

φa[u]
∂

∂ua
(2.1.2)

where ξi and φa are smooth differential functions that depend on x, u and the derivatives of u.

Given a vector field v on X ×U , the n-th prolongation of v can be thought of as lifting the vector field v to
a vector field on X ×U (n). Suppose v is of the form (2.1.2) where the coefficients ξi and φa depend only on
x and u, we define the n-th prolongation of v to be the vector field

pr(n) v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
a=1

∑
J

φaJ
∂

∂uaJ
(2.1.3)

whose coefficients are determined by the formula

φaJ = DJ

(
φa −

p∑
i=1

ξiuai

)
+

p∑
i=1

ξuaJ,i where uai =
∂ua

∂xi
, uaJ,i =

∂uaJ
∂xi

(2.1.4)

and J sums over all multi-indices up to order n and φaJ are functions of x, u and derivatives of u up to order
n.

In analogy with the finite dimensional case, we can also prolong a generalized vector field. Given that it
is infinite-dimensional it makes sense for the prolongation to be an infinite sum. Suppose v is a generalized
vector field as in (2.1.2) the infinite prolongation (prolongation for short) of v is the infinite vector field

pr v =

p∑
i=1

ξi[u]
∂

∂xi
+

q∑
a=1

∑
J

φaJ
∂

∂uaJ
(2.1.5)

whose coefficients are determined by the same formula (2.1.4) where now J sums over all multi-indices.
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Definition 2.1.10. Let Q[u] = (Q1[u], ..., Qq[u]) ∈ A q be a q-tuple of differential functions. An evolutionary
vector field is a generalized vector field of the form

vQ =

q∑
a=1

Qa[u]
∂

∂ua.
(2.1.6)

The differential function Q is called its characteristic.

Note that the prolongation of an evolutionary vector field takes the simple form

pr vQ =
∑
a,J

DJ(Qa)
∂

∂uaJ
. (2.1.7)

Any generalized vector field as in (2.1.2) has an associated evolutionary representative vQ in which the
characteristic Q has entries

Qa = φa −
p∑
i=1

ξiuai a = 1, ..., q

where uai = ∂ua

∂xi .

If v is a generalized vector field it is important to address the issue of exponentiating v, which arises due
to the fact that the exponential is not defined in general when working in infinite dimensions. The easiest
way to resolve this is to define the action of the group exp(εv) on the space of smooth functions as follows:
we first replace v by its evolutionary representative vQ and consider the system of equations

∂u

∂ε
= Q(x, u(n)),

the solution (provided it exists) to the Cauchy problem u(x, 0) = f(x) determines the group action:

[exp(εv)f ](x) ≡ u(x, ε).

We assume that the solution to this Cauchy problem is uniquely determined by choosing f(x) in an appro-
priate space of functions for at least ε sufficiently small. Then the resulting flow exp(εv) will determine a
local one-parameter group of transformations on the given function space.

Definition 2.1.11. A vertical k-form is a finite sum

ω̂ =
∑

P aJ [u]dua1J1 ∧ .... ∧ du
ak
Jk
, (2.1.8)

in which the coefficients P aJ ∈ A . We use
∧̂k

to denote the space of vertical k-forms.

The analogue of the differential of the de Rham complex on
∧̂k

is the vertical differential defined as

d̂ω̂ =
∑ ∂P aJ [u]

∂ubK
dubK ∧ du

a1
J1
∧ .... ∧ duakJk . (2.1.9)

Example. ω̂ = xuxxdu ∧ dux is a vertical 2-form and its vertical differential is d̂ŵ = xduxx ∧ du ∧ dux.

The vertical differential holds much of the same properties as the de Rham differential, ω̂ lives on the finite
jet space M (n) and the vertical differential can be thought of as the de Rham differential on these variables.
Then, a vertical k-form ω̂ determines an alternating k-linear map from the space T0 of evolutionary vector
fields to the space A of differential functions. When ω̂ is of the form (2.1.8), this map is written explicitly
as

< ω̂; pr vQ1 , ...,pr vQk >=
∑
a,J

P aJ det(< duaiJi ,pr vQj >) (2.1.10)
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where the determinant is taken over the k × k matrix with (i, j) entry

< duaiJi ,pr vQj >= duaiJi(pr vQj ) = DJi(Q
j
ai).

Furthermore, we can let the total derivative DJ act on vertical k-forms. For each i = 1, ..., p Di acts on the
vertical one-forms duaJ by

Di(du
a
J) = d(Diu

a
J) = duaJ,i. (2.1.11)

We allow it to act as a kind of Lie-derivative on general vertical k-forms, determined by the following rules:

1. Di(cω̂ + c′ω̂′) = cDi(ω̂) + c′Di(ω̂′)

2. Di(ω̂ ∧ η̂) = (Diω̂) ∧ η̂ + ω̂ ∧ (Diη̂)

3. Di(d̂ω̂) = d̂(Diω̂)

for all c, c′ ∈ R and ω̂, η̂ ∈
∧̂k

.

Example. Let ω̂ = xuxxdu ∧ dux, then

Dx(ω̂) = Dx(xuxx)du ∧ dux + xuxxDx(du) ∧ dux + xuxxdu ∧Dx(dux)

= (uxx + xuxxx)du ∧ dux + xuxxdux ∧ dux + xuxxdu ∧ duxx
= (uxx + xuxxx)du ∧ dux + xuxxdu ∧ duxx.

The middle term vanishes for the reason that dua1J1 ∧ du
a1
J2

= 0 if J1 = J2, same as in the de Rham complex.

Defining total derivatives over vertical forms allows us to extend the equivalence relation we defined on the

space of differential functions to vertical k-forms. We define an equivalence relation on the space
∧̂k

by
saying ω̂ ∼ ω̂′ if they differ by a total divergence i.e.

ω̂ = ω̂′ + Div η̂ = ω̂′ +

p∑
i=1

Diη̂i (2.1.12)

where η̂i ∈
∧̂k

.

Definition 2.1.12. Let ω̂, ω̂′ ∈
∧̂k

and let ω̂ ∼ ω̂′ if they satisfy (2.1.12). The space of equivalence classes
denoted ∧k

∗
=
∧̂k

/Div
(∧̂k)p

(2.1.13)

is the space of functional k-forms. The natural projection is denoted by an integral sign. So ω =
∫
ω̂ dx

stands for the equivalence class containing ω̂ ∈
∧̂k

. This notation is reasonable since the divergence theorem
tells us that

∫
Div(η̂) = 0 and a functional k-form has coefficients in F .

This definition, along with the second rule of the total derivative above, allows us to state following formula
for integration by parts ∫

ω̂ ∧Di(η̂) dx = −
∫

(Diω̂) ∧ η̂ dx (2.1.14)

for ω̂ ∈
∧̂k

and η̂ ∈
∧̂l

.

Similar to vertical k-forms, functional k-forms determine an alternating k-linear map from the space T0

of evolutionary vector fields to the space of functionals F , defined so that

< ω; v1, ..., vk >=

∫
< ω̂; pr v1, ...,pr vk > dx vi ∈ T0 (2.1.15)

whenever ω =
∫
ω̂ dx, ω̂ ∈

∧̂k
. In fact, functional k-forms are uniquely determined by their action on T0,

this is stated precisely in the following lemma quoted from [4].
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Lemma 2.1.2. If ω and ω′ are functional k-forms, then ω = ω′ if and only if

< ω, v1, ..., vk >=< ω′, v1, ..., vk >

for all evolutionary vector fields v1, ...vk ∈ T0.

Now, we finish this background section by focusing on functional one-forms and two-forms. This is
because they have a nice canonical form. Any functional one-form

ω =

∫ {∑
a,J

P Ja [u]duaJ

}
dx

can be written in multiple ways, this is due to the fact that we can write duaJ = DJ(dua) and integrate by
parts. We want to find a way to write the functional one-forms in a unique way and to do this to ω we
integrate each summand by parts which leads to the expression

ω =

∫ { q∑
a=1

Pa[u]dua
}
dx =

∫ {
P · u

}
dx (2.1.16)

where Pa =
∑
J(−D)JP

J
a . The expression (2.1.16) is called the canonical form of ω. Each functional one-

form has a uniquely determined canonical form, this is stated in the following proposition we quote from
[4].

Proposition 2.1.1. Let ω =
∫
{P · du} dx and ω′ =

∫
{P ′ · du} dx be functional one-forms in canonical

form with P, P ′ ∈ A q. Then ω = ω′ if and only if P = P ′.

Then in a similar fashion we take a functional two-form and apply integration by parts on each summand of
our two-form to be able to write it in a canonical form. The details of this can be found in section 5.4 of [4].
We omit these details at the moment since we will give an example in the next section and things should be
clear then. For now, we write that if ω is a functional two-form, then ω has canonical form

ω =
1

2

∫
{du ∧Ddu} dx (2.1.17)

where D is a skew-adjoint q × q matrix differential operator that depends on the coefficients in ω and its
derivatives. Lastly, the canonical form above is unique to ω and we quote the following proposition from [4].

Proposition 2.1.2. Let ω = 1
2

∫
{du ∧ Ddu} dx and ω′ = 1

2

∫
{du ∧ D ′du} dx be functional two forms in

canonical form, so D and D ′ are skew-adjoint q × q matrix differential operators. Then ω = ω′ if and only
if D = D ′.
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2.2 Poisson Brackets and Hamiltonian Operators

In this section we will start by defining Poisson brackets on the space of functionals F . A Poisson bracket
of this kind is defined using a differential operator D satisfying certain properties. We will then define
Hamiltonian operators as differential operators which define a true Poisson bracket by our definition. We
will use this to explain what it means for an evolution equation to be Hamiltonian. The information in this
section is again paraphrased or directly quoted from [4].

A Poisson bracket on F is infinite dimensional, so we shall begin by recalling Poisson brackets in finite
dimensions and what it means for a system of ordinary differential equations to be Hamiltonian.

Definition 2.2.1. A Poisson Bracket on a smooth manifold M is an operation that assigns a smooth real-
valued function {F,H} on M to each pair of smooth, real-valued functions F,H, with the basic properties:

1. Bilinearity: {cF + P,H + c′T} = c{F,H}+ {P,H}+ cc′{F, T}+ c′{P, T} for c, c′ ∈ R.

2. Skew Symmetry: {F,H} = −{H,F}

3. Jacobi Identity: {{F,H}, P}+ {{P, F}, H}+ {{H,P}, F} = 0

4. Leibniz’ Rule: {F,H · P} = {F,H} · P +H · {F, P}

where F,H, P, and T are arbitrary smooth real valued functions on M . A manifold equipped with a Poisson
bracket is called a Poisson manifold.

Definition 2.2.2. Let M be a Poisson manifold, let x = (x1, ..., xm) be local coordinates on M . The basic
brackets

J ij = {xi, xj}, i, j = 1, ...,m

are called the structure functions of M relative to the given local coordinates. We assemble the structure
functions into a skew-symmetric m×m matrix J(x) called the structure matrix for M .

The local coordinate form for the Poisson bracket is

{F,H} =

m∑
i=1

m∑
j=1

{xi, xj} ∂F
∂xi

∂H

∂xj
(2.2.1)

thus by using ∇H to denote the column gradient vector for H, (2.2.1) can be written as

{F,H} = ∇F · J∇H. (2.2.2)

Definition 2.2.3. Let M be a Poisson manifold and H : M → R a smooth function. The Hamiltonian
vector field associated with H is the unique smooth vector field v̂H on M satisfying

v̂H(F ) = {F,H}

for every smooth function F : M → R.

The Hamiltonian flow corresponding to H is obtained by exponentiating the vector field v̂H(F ) and thus
leads to a natural definition of a Hamiltonian system of ordinary differential equations.

Definition 2.2.4. A system of first order ordinary differential equations is said to be a Hamiltonian system
if there exists a smooth function H(x) and a skew-symmetric matrix of functions J(x) that determine a
Poisson bracket (2.2.2) whereby the system takes the form

dx

dt
= J(x)∇H(x).
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We wish to build on this idea and determine what it means for a system of partial differential equations
to be Hamiltonian, more specifically what it means for a system of evolution equations

ut = K[u] K ∈ A q

to be Hamiltonian. Here K depends only on the spatial variables x and the spatial derivatives of u. Let
M ⊂ X × U be an open subset of the space of independent and dependent variables x = (x1, ..., xp) and
u = (u1, ..., uq). Recall A is the algebra of differential functions P (x, u(n)) = P [u] over M and F is the
quotient space of A under the image of the total divergence. In analogy with the finite dimensional case,
we define the Poisson bracket on the space of functionals to be to be a skew symmetric, bi-linear map from
F ×F → F that satisfies the Jacobi identity. We replace the gradient operation ∇H by the variational
derivative δH , for H ∈ F and the skew-symmetric matrix J(x) by a skew-adjoint linear differential operator
D : A q → A q, leading to the expression for a Poisson bracket between P =

∫
P dx and Q =

∫
Q dx ∈ F

to be

{P,Q} =

∫
δP ·DδQ dx. (2.2.3)

In order for this to be a true Poisson bracket, meaning that its definition coincides with our definition in
finite dimensions, we must put some restrictions on the operator D . Specifically, we require that D be a
Hamiltonian operator according to the following definition.

Definition 2.2.5. A linear operator D : A q → A q is called Hamiltonian if its Poisson bracket (2.2.3)
satisfies the following conditions

1. Skew-Symmetry:
{P,Q} = −{Q,P} (2.2.4)

2. Jacobi Identity:
{{P,Q},R}+ {{R,P},Q}+ {{Q,R},P} = 0 (2.2.5)

for all P,Q,R ∈ F .

The differences between the definition above and the finite-dimensional definition 2.2.1 are the lack of bilin-
earity and Leibniz’ rule. We omit bilinearity since it is obvious from the form (2.2.3) as D and the variational
derivative are linear. There is no Leibniz rule because there is no well defined multiplication rule between
functionals.

Before we define what it means for an evolution equation to be Hamiltonian, we state a few propositions
and definitions that we will need.

Proposition 2.2.1. Let vQ be an evolutionary vector field, Q ∈ A q and let L [u] =
∫
L(x, u(n)) dx ∈ F .

Then,
pr vQ(L) = Q · E(L) + Div A (2.2.6)

where A = (A1, ..., Ap) is some p-tuple depending on Q,L and their derivatives.

Proof. Since vQ is evolutionary, its prolongation is of the form:

pr vQ(L) =
∑
a,J

DJ(Qa)
∂L

∂uaJ
.

Using integration by parts, we get the following∫ {
DJ(Qa)

∂L

∂uaJ

}
dx = Qa

∂L

∂uaJ
−
∫ {

QaDJ(
∂L

∂uaJ
)
}
dx

=⇒ DJ(Qa)
∂L

∂uaJ
= −QaDJ(

∂L

∂uaJ
) +DJ(Qa

∂L

∂uaJ
),
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and thus we have

pr vQ(L) =
∑
a,J

DJ(Qa)
∂L

∂uaJ
=

q∑
a=1

Qa
∑
J

(−D)J(
∂L

∂uaJ
) + DivA

=

q∑
a=1

QaEa(L) + DivA

= Q · E(L) + DivA

where A is a p-tuple of differential functions that depends on Q,L and their derivatives. The precise form
of A is not required in this thesis so we omit it, however it is provided in section 5.4 of [4].

Proposition 2.2.2. Let D be a Hamiltonian Operator with Poisson bracket (2.2.3). For each functional
H =

∫
H dx ∈ F , there is an evolutionary vector field v̂H called the Hamiltonian vector field associated

with H , which satisfies
pr v̂H (P) = {P,H }

for all functionals P ∈ F . The characteristic of v̂H is DδH = DE(H).

Proof.
Let P =

∫
P dx, P ∈ A and let H =

∫
H ∈ F . The Poisson bracket between these two functionals is

given by

{P,H } =

∫
δP ·DδH dx =

∫
E(P )DE(H) dx.

Using proposition 2.2.1. we can write the last integral in the following way∫
E(P )DE(H) dx =

∫ {
pr vDE(H)(P )−Div A

}
dx.

Since we are working in F and two functional are the same if they differ by a total divergence, we obtain∫ {
pr vDE(H)(P )−Div A

}
dx =

∫
pr vDE(H)(P ) dx = pr vDE(H)

(∫
P dx

)
.

Therefore
{P,H } = pr vDE(H)(P) = pr v̂H (P).

In analogy with the finite dimensional case, we wish to define the Hamiltonian flow corresponding to
H [u] as the flow that is obtained by exponentiating the corresponding Hamiltonian vector field v̂H . This
leads us to a natural definition of a Hamiltonian system of evolution equations.

Definition 2.2.6. A system of evolution equations

∂u

∂t
= K[u] K ∈ A q

is Hamiltonian if there exists a functional H [u] =
∫
H dx, H ∈ A and a Hamiltonian operator D such that

the equation can be written in the form
∂u

∂t
= D · δH

where δ is the variational derivative. Here H is called a Hamiltonian functional.

Out of the large class of differential operators, we would like to know which ones satisfy our definition of
Hamiltonian. Thus we will discuss some properties that will help us in discerning if a differential operator
is Hamiltonian.

Proposition 2.2.3. Let D be a q × q matrix operator with bracket (2.2.3) on F . Then the bracket is
skew-symmetric if and only if D is skew-adjoint.
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Proof.

The bracket being skew-symmetric implies

{P,Q} = −{Q,P} ∀Q,P ∈ F

=⇒
∫
E(P )DE(Q) dx = −

∫
E(Q)DE(P ) dx

We rewrite the right hand side of the equation using the definition 2.1.7 of the adjoint D∗.

=⇒
∫
E(P )DE(Q) dx = −

∫
E(P )D∗E(Q) dx

=⇒
∫
E(P )(D + D∗)E(Q) dx = 0

The integral above is 0 for all Q,P ∈ A if and only if D∗ + D = 0 which implies D∗ = −D and therefore D
is skew-adjoint.

Example 2.2.1. The KdV equation
ut = uxxx + uux

is Hamiltonian and can be written in two distinct Hamiltonian forms. The first form is

ut = DδH1

where D = Dx and

H1 =

∫ (
− 1

2
u2
x +

1

6
u3
)
dx

with associated Poisson bracket

{P,Q} =

∫
δPDx(δQ) dx.

The second form is
ut = E δH0

where E = D3
x + 2

3uDx + 1
3ux and

H0[u] =

∫
1

2
u2 dx

with associated Poisson bracket

{P,Q} =

∫
δP(D3

x +
2

3
uDx +

1

3
ux)δQ dx.

The bracket is skew symmetric, since obviously D = Dx is skew-adjoint and E = D3
x + 2

3uDx + 1
3ux was the

differential operator from our example in the previous section where we showed the skew-symmetry of E .
To truly claim that these are Hamiltonian operators we must show the Jacobi identity (2.2.5) is satisfied.
However, this computation is quite tedious and thus we will put this on hold until we can state an easier
version of the Jacobi identity.

Before we dive into a few different versions of the Jacobi identity, we must introduce a few definitions
and theorems to use in our proofs later on.

Definition 2.2.7. Let P [u] ∈ A r, the Fréchet derivative of P is the differential operator DP : A q → A r

defined as

DP (Q) =
d

dε

∣∣∣∣
ε=0

P [u+ εQ] (2.2.7)

for Q ∈ A q.

Example. For P = uxuxx, DP = uxxDx + uxD
2
x.
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Let P [u] ∈ A r. If we evaluate DP at Q = (Q1, ...., Qq) a q-tuple of differential functions, we get the r-tuple
with entries

(DP (Q))i =

q∑
a=1

∑
J

∂Pi
∂uaJ

DJ(Qa) for i = 1, ..., r (2.2.8)

If Q[u] = (Q1, ..., Qq) is the characteristic of an evolutionary vector field, then pr vQ =
∑
a,J DJ(Qa) ∂

∂ua
J
. If

we apply the prolongation to the r-tuple of differential functions P = (P1, ..., Pr) we obtain the r-tuple with
entries

(pr vQ(P ))i =

q∑
a=1

∑
J

DJ(Qa)
∂Pi
∂uaJ

. for i = 1, ..., r. (2.2.9)

Comparing (2.2.8) and (2.2.9), we conclude that

DP (Q) = pr vQ(P ) (2.2.10)

for P [u] ∈ A r and Q[u] ∈ A q. We also remark that we can find the adjoint of the Fréchet derivative as well.
If P [u] ∈ A r, the adjoint D∗P : A r → A q is a r × q matrix differential operator with entries

(D∗P )ji =
∑
J

(−D)J ·
∂Pj

∂ujJ
j = 1, ..., q and i = 1, ..., r.

Theorem 2.2.1. Let P [u] ∈ A p be defined over a vertically starshaped region M ⊂ X×U . Then P = E(L)
for some variational problem L [u] =

∫
L dx if and only if the Fréchet derivative DP is self adjoint. i.e.

DP = D∗P .

We omit the proof of this theorem, it can be found in section 5.4 of [4].

In finite dimensions, we can evaluate the Lie derivative of certain geometric objects, such as functions and
differential forms with respect to a vector field v. This represents the infinitesimal change in the object under
the flow exp(εv) induced by v. An analogous concept exists for generalized vector fields, we are particularly
interested in the Lie derivative of a differential operator D with respect to an evolutionary vector field.

Definition 2.2.8. Let vQ be an evolutionary vector field and D =
∑
PK [u]DK a differential operator. The

Lie derivative of D is a differential operator computed by evaluating the time derivative of D

Dt =
∑
K

Dt(PK)DK

on solutions ut = Q, which leads to the formula

pr vQ(D) =
∑
K

pr vQ(PK)DK . (2.2.11)

The Lie derivative extends to matrix differential operators by having pr vQ act on the individual entries of
the matrix. Furthermore, the Lie derivative satisfies the following Leibniz rule

pr vQ(DP ) = pr vQ(D)P + D(pr vQ(P )). (2.2.12)

We will use the definition of the Fréchet derivative and the remarks made above in the proof of the
following theorem. This theorem provides an easier formula for satisfying the Jacobi identity.

Theorem 2.2.2. Let D be a skew-adjoint q × q matrix differential operator. The bracket

{P,Q} =

∫
δP ·DδQ dx.

satisfies the Jacobi identity if and only if∫ {
P · pr vDR(D)Q+R · pr vDQ(D)P +Q · pr vDP (D)R

}
dx = 0 (2.2.13)

for all q-tuples P,Q,R ∈ A q.
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Proof.
Let P,Q,R be functionals, with variational derivatives δP = P , δQ = Q and δR = R. The first term in
the Jacobi identity (2.2.5) is

{{P,Q},R} = pr v̂R({P,Q})

= pr v̂R

(∫
P ·D(Q) dx

)
=

∫
pr vD(R)(P ·DQ) dx

=

∫ {
pr vD(R)(P ) ·DQ+ P · pr vD(R)(DQ)

}
dx

=

∫ {
pr vD(R)(P ) ·DQ+ P · pr vD(R)(D)Q+ P ·D(pr vD(R)(Q))

}
dx by (2.2.12)

=

∫ {
DP (DR) ·DQ+ P · pr vD(R)(D)Q+ P ·D(pr vD(R)(Q))

}
dx by (2.2.10)

=

∫ {
DP (DR) ·DQ+ P · pr vD(R)(D)Q+ pr vD(R)(Q)) ·D∗P

}
dx by (2.1.1)

By our assumption that D is skew-adjoint, we can rewrite last term in the integral and obtain:

{{P,Q},R} =

∫ {
DP (DR) ·DQ+ P · pr vD(R)(D)Q− pr vD(R)(Q)) ·DP

}
dx

=

∫ {
DP (DR) ·DQ+ P · pr vD(R)(D)Q−DQ(DR) ·DP

}
dx by (2.2.10).

We can do this for the other two brackets as well.

{{R,P},Q} =

∫ {
DR(DQ) ·DP +R · pr vD(Q)(D)P −DP (DQ) ·DR

}
dx

{{Q,R},P} =

∫ {
DQ(DP ) ·DR+Q · pr vD(P )(D)R−DR(DP ) ·DQ

}
dx

Since δP = P , δQ = Q and δR = R, theorem 2.2.1 tells us that DP , DQ and DR are self-adjoint. This
allows us to write the brackets in the following way:

{{P,Q},R} =

∫ {
DP (DR) ·DQ+ P · pr vD(R)(D)Q−DR ·DQ(DP )

}
dx,

{{R,P},Q} =

∫ {
DR(DQ) ·DP +R · pr vD(Q)(D)P −DQ ·DP (DR)

}
dx,

{{Q,R},P} =

∫ {
DQ(DP ) ·DR+Q · pr vD(QP (D)R−DP ·DR(DQ)

}
dx.

Adding all the integrals above together to form the left hand side of the Jacobi identity we obtain some
cancellations in the first and third terms of the integrals above. The last term in the first integral cancels
with the first term of the last integral, the last term in the second integral cancels with the first term in the
first integral and the last term in the last integral cancels with the first term of the second integral. This
gives us the following

{{P,Q},R}+ {{R,P},Q}+ {{Q,R},P} =

∫ {
P · pr vDR(D)Q+R · pr vDQ(D)P

+Q · pr vDP (D)R
}
dx.

If the equality above is equal to 0 on all variational derivatives, it must be equal to 0 on all differential
functions in A q. Since this integral depends only on P,Q,R and their total derivatives, we obtain that
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this vanishes on all variational derivatives if and only if it vanishes on all q-tuples of differential functions
P,Q,R ∈ A q. Therefore the Jacobi identity is satisfied if and only if

{{P,Q},R}+ {{R,P},Q}+ {{Q,R},P} = 0 for all functionals P,Q,R ∈ F

⇐⇒
∫ {

P · pr vDR(D)Q+R · pr vDQ(D)P +Q · pr vDP (D)R
}
dx = 0 ∀ δP = P, δQ = Q, δR = R

⇐⇒
∫ {

P · pr vDR(D)Q+R · pr vDQ(D)P +Q · pr vDP (D)R
}
dx = 0 ∀P,Q,R ∈ A q.

The theorem above provides a nice formula for the computation of the Jacobi identity, however the right
hand side of equation (2.2.13) still involves a very tedious computation.

Recall the vertical and functional k-forms we introduced in the previous subsection. A vertical k-form
determines an alternating k-linear map from the space T0 of evolutionary vector fields to the space A of
differential functions. Similarly a functional k-form determines an alternating k-linear map from T0 to the
space F of functionals. Now we will introduce the idea of a vertical and functional multi-vector. A functional
k-vector is defined like the dual object of a functional k-form, however it is important to note that they are
not naturally dual vector spaces for k > 1. Functional k-forms and k-vectors have coefficients in F but F is
not a ring, let alone a field due to our inability to define multiplication of functionals. Therefore, the space
of functional k-forms and k-vectors cannot be dual vector spaces since they are not vector spaces to begin
with.

A vertical k-vector is an alternating k-linear map from the space
∧1
∗ of functional 1-forms to the space A

of differential functions. As mentioned in the previous section, each functional one form can be uniquely
determined by its canonical form, therefore we can identify

∧1
∗ with A q. We also introduce a new notation

and let θaJ denote the vertical 1-vector corresponding to the 1-form duaJ , it defines the linear map

< θaJ ;P >= DJ(Pa) whenever P = (P1, ...., Pq) ∈ A q. (2.2.14)

Similar to vertical k-forms the total derivatives act as Lie derivatives on the space of k-vectors with

Di(θ
a
J) = θaJ,i.

This allows us to write certain vertical k-vectors as images of total divergence. Since each functional k-form
arises from a vertical k-form, we would like that each functional k-vector arises from a vertical k-vector.
Therefore, we define the space

∧∗
k of functional k-vectors to be the quotient space of vertical k-vectors under

the image of total divergence. A general functional k-vector is thus a finite sum

Θ =

∫ {∑
a,J

RaJ [u] θa1J1 ∧ ... ∧ θ
ak
Jk

}
dx

with RaJ ∈ A and defines a k-linear map on the space of functional 1-forms
∧1
∗

< Θ;P 1, ..., P k >=

∫
<
∑
a,J

RaJ [u] θa1J1 ∧ ... ∧ θ
ak
Jk
, P 1, ..., P k > dx =

∫ [∑
a,J

RaJ det(DJiP
j
ai)
]
dx (2.2.15)

where P j ∈ A q (here we have replaced
∧1
∗ by A q).

Example. For Θ =
∫
{θ ∧ θxxx + uθ ∧ θx} dx

< Θ;P,Q > =

∫ { ∣∣∣∣ P Q
D3
x(P ) D3

x(Q)

∣∣∣∣+ u ·
∣∣∣∣ P Q
Dx(P ) Dx(Q)

∣∣∣∣ } dx
=

∫ {
PD3

x(Q)−QD3
x(P ) + uPDx(Q)− uQDx(P )

}
dx.
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At this point, we must note the uncanny resemblance between functional k-vectors and functional k-
forms. A functional k-form is defined on the space T0 of evolutionary vector fields. Since each evolutionary
vector field is uniquely determined by its characteristic [4], we can identity T0 with A q the space of q-tuples
of differential functions on M . In [4] Olver mentions that all the theorems that hold for functional k-forms
also hold for functional k-vectors, once we replace duaJ by θaJ . In particular this allows us to give functional
uni-vectors and bi-vectors a canonical form. Before we continue we must mention that in this thesis, the
later sections will only depend on evolution equations with a single spatial variable x and a single dependent
variable u(x, t). Therefore, at this point we restrict to this situation.

In the situation where we have a single spatial variable x and a single dependent variable u(x, t), a functional
uni-vector will be of the form

γ =

∫ {∑
J

RJθJ

}
dx =

∫ {∑
J

RJDJ(θ)
}
dx. (2.2.16)

Then each term in the summand can be integrated by parts and put into canonical form

γ =

∫ {
R · θ

}
dx where R =

∑
J

(−D)J(RJ). (2.2.17)

Similarly, any functional bi-vector has the canonical form

Θ =
1

2

∫ {
θ ∧Dθ

}
dx (2.2.18)

where D is a skew-adjoint differential operator.

Example. Let ω =
∫ {

1
2θ ∧ θxxx + 1

3uθ ∧ θx
}
dx , we can write ω in two ways

ω =

∫ {
θ ∧ (

1

2
D3
x +

1

3
uDx)(θ)

}
dx

ω =

∫ {
− 1

2
D3
x(θ) ∧ θ − (

1

3
uxθ +

1

3
uθx) ∧ θ

}
dx

=

∫ {
− (

1

2
D3
x +

1

3
uDx +

1

3
ux)(θ) ∧ θ

}
dx

=⇒ ω =
1

2

∫ {
θ ∧ (

1

2
D3
x +

1

3
uDx)(θ)

}
dx+

1

2

∫ {
− (

1

2
D3
x +

1

3
uDx +

1

3
ux)(θ) ∧ θ

}
dx

ω =
1

2

∫ {
θ ∧ (D3

x +
2

3
uDx +

1

3
ux)(θ)

}
dx

ω =
1

2

∫ {
θ ∧ E (θ)

}
dx

where E = D3
x + 2

3uDx + 1
3ux is the skew-adjoint operator for the KdV equation we mentioned earlier.

It is important to notice that the operator E = D3
x + 2

3uDx + 1
3ux, was created by taking an operator

D = 1
2D

3
x + 1

2uDx and subtracting its adjoint D∗ = − 1
2D

3
x − 1

2uDx − 1
2ux thus giving us a skew-adjoint

differential operator.

A functional bi-vector in canonical form (2.2.18), defines a bilinear map for P,Q ∈ A

< Θ;P,Q >=
1

2

∫
(P ·DQ−QDP ) dx =

1

2

∫
(P ·DQ− PD∗Q) dx =

∫
P ·DQ dx (2.2.19)

where we used the skew-adjoint property of D to get the last equality. Notice that if we let P = δP,
Q = δQ, for P,Q ∈ F , then

< Θ; δP, δQ >=

∫
(δP ·DδQ) dx (2.2.20)
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reproduces the Poisson bracket {P,Q} for the skew-adjoint operator D .

The reader might start to notice at this point that the left hand side of the Jacobi identity in the form∫ {
P · pr vDR(D)Q+R · pr vDQ(D)P +Q · pr vDP (D)R

}
dx = 0

is an alternating, tri-linear function of P,Q,R ∈ A . This determines a functional tri-vector, which we will
denote by

Ψ =
1

2

∫
{θ ∧ pr vDθ(D) ∧ θ} dx

where < Ψ;P,Q,R > is the left hand side of the Jacobi identity above. Here vDθ is the evolutionary vector
field with Dθ as it’s characteristic. If D =

∑
K PK [u]DK is a skew-adjoint differential operator then

pr vDθ(D) =
∑
K

pr vDθ(Pk)DK (2.2.21)

is a skew-adjoint differential operator [4]. The coefficients here are functional uni-vectors in that they involve
the θJ ’s. The notation for Ψ is deceiving, so we will run through an example to better understand the integral
Ψ.

Example 2.2.2. Let E = D3
x + 2

3uDx + 1
3ux be the skew-adjoint operator from the KdV example.

pr vE θ(E ) = pr vE θ(1)D3
x +

2

3
pr vE θ(u)Dx +

1

3
pr vE θ(ux)

=
2

3
E θ ·Dx +

1

3
Dx(E θ)

=
2

3
(θxxx +

2

3
uθx +

1

3
uxθ) ·Dx +

1

3
(θxxxx +

2

3
uθxx + uxθx +

1

3
uxxθ)

Now the second wedge in Ψ, is telling us to apply pr vE θ(E ) to θ by evaluating the differential operator
pr vE θ(E ) at θ and then wedging the coefficients of the operator since they are functional uni-vectors. Thus
the tri-vector Ψ for E is

Ψ =
1

2

∫
{θ ∧ pr vDθ(D) ∧ θ} dx

=
1

2

∫ {
θ ∧

(2

3
(θxxx +

2

3
uθx +

1

3
uxθ) ∧Dx(θ) +

1

3
(θxxxx +

2

3
uθxx + uxθx +

1

3
uxxθ) ∧ θ

)}
dx

=

∫ {1

3
θ ∧ (θxxx +

2

3
uθx +

1

3
uxθ) ∧ θx +

1

6
θ ∧ (θxxxx +

2

3
uθxx + uxθx +

1

3
uxxθ) ∧ θ

}
dx

=

∫
−1

3
θ ∧ θx ∧ θxxx dx

where we used the skew-symmetry of the wedge product and the fact that θJ1 ∧ θJ2 = 0 if J1 = J2. We can
further simplify the integral, by integrating by parts∫

−1

3
θ ∧ θx ∧ θxxx dx =

1

3

∫
Dx(θ ∧ θx) ∧ θxx dx

=
1

3

∫ {
θx ∧ θx ∧ θxx + θ ∧ θxx ∧ θxx

}
dx

= 0.

Therefore the tri-vector Ψ is trivial for E , this is a unique property of E being Hamiltonian, not all differential
operators will give a trivial tri-vector Ψ.

Using the example above as a guide for how to compute the tri-vector Ψ, we state a proposition that
gives us a new way of computing the Jacobi identity.
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Proposition 2.2.4. Let D be a skew-adjoint differential operator. Then D is Hamiltonian if and only if
the functional tri-vector

Ψ =
1

2

∫
{θ ∧ pr vDθ(D) ∧ θ} dx (2.2.22)

is trivial i.e. Ψ = 0.

Proof.
Recall that all the theorems we mentioned earlier about functional k-forms carry over to functional k-vectors.
Therefore we can say that the functional tri-vector Ψ is uniquely determined by its action on differential
functions P,Q,R. Thus Ψ = 0 if and only if < Ψ;P,R,Q >= 0 for all P,R,Q ∈ A . Following the same
notation for Ψ that we used in the example above, if we evaluate Ψ on P,Q,R ∈ A we obtain

< Ψ;P,Q,R >=
1

2

∫ {
P · pr vDR(D)Q−Q · pr vDR(D)P +R · pr vDQ(D)P − P · pr vDQ(D)R

+Q · pr vDP (D)R−R · pr vDP (D)Q
}
dx.

Since D is skew-adjoint so is pr vQ(D) for any evolutionary vector field vQ. Thus we replace the prolonged
operator above by its adjoint to obtain

< Ψ;P,Q,R > =
1

2

∫ {
P · pr vDR(D)Q− P · [pr vDR(D)]∗Q+R · pr vDQ(D)P −R · [pr vDQ(D)]∗P

+Q · pr vDP (D)R−Q · [pr vDP (D)]∗R
}
dx

=
1

2

∫ {
P · pr vDR(D)Q+ P · pr vDR(D)Q+R · pr vDQ(D)P +R · pr vDQ(D)P

+Q · pr vDP (D)R+Q · pr vDP (D)R
}
dx

=

∫ {
P · pr vDR(D)Q+R · pr vDQ(D)P +Q · pr vDP (D)R

}
dx

the left hand side of (2.2.13), the second version of our Jacobi identity. Therefore given a skew-adjoint
operator D , D is Hamiltonian if and only if < Ψ;P,Q,R >= 0 for all P,Q,R ∈ A , however this is true if
and only if Ψ = 0. Therefore the triviality of Ψ is equivalent to satisfying the Jacobi identity.

This proposition leaves us with an easier way to compute the Jacobi identity. However, it might be easier
to use the functional bi-vector (2.2.18) which determines the Poisson bracket (2.2.20) in our computation of
the Jacobi identity. In order to do this we extend the definition of a prolonged vector field pr vDθ to the
space of vertical uni-vectors by setting

pr vDθ(θJ) = 0

for all multi-indices J and we require it to act on vertical multi-vectors as a derivation. Therefore if Φ =∫
Φ̃ dx is any functional k-vector , then

pr vDθ(Φ) =

∫
pr vDθ(Φ̃) dx (2.2.23)

is a functional (k + 1)-vector. Now we are ready to introduce the last version of the Jacobi identity. This
theorem will be the one used the most in this thesis to show the Jacobi identity is satisfied.

Theorem 2.2.3. Let D be a skew-adjoint differential operator, and let Θ = 1
2

∫
{θ ∧ Dθ} dx be the

corresponding functional bi-vector. Then D is Hamiltonian if and only if

pr vDθ(Θ) = 0 (2.2.24)
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Proof.
Let D be a skew-adjoint operator, then D =

∑
K PK [u]DK . Evaluating the left hand side of (2.2.24) gives

pr vDθ(Θ) = pr vDθ

(1

2

∫
θ ∧Dθ dx

)
=

1

2

∫
pr vDθ(θ ∧Dθ) dx

=
1

2

∫ {
pr vDθ

(
θ ∧ (

∑
K

PKθK)
)}

dx

=
1

2

∫ {
pr vDθ

(∑
K

PKθ ∧ θK
)}

dx

=
1

2

∫ {∑
K

pr vDθ(PK) ∧ θ ∧ θK
}
dx

=
1

2

∫ {
− θ ∧

(∑
K

pr vDθ(Pk) ∧ θK
)}

dx

=
1

2

∫ {
− θ ∧ pr vDθ(D) ∧ θ

}
dx

= −Ψ

where Ψ is the same as in proposition 2.2.4. Therefore by proposition 2.2.4, we conclude that D is Hamil-
tonian if and only if pr vDθ(Θ) = 0.

Example 2.2.3. Now using the theorem above, we can finally return to our example of the KdV equation.
It remains to prove that the operators D = Dx and E = D3

x + 2
3uDx + 1

3ux satisfy the Jacobi identity. We
will show that (2.2.24) is satisfied for both operators. Starting with D = Dx,

pr vDθ(Θ) =

∫
pr vθx(θ ∧ θx) dx = 0.

Let us do the same for E = D3
x + 2

3uDx + 1
3ux. Recall from our earlier example,

Θ =
1

2

∫
θ ∧ E (θ) dx =

∫ {1

2
θ ∧ θxxx +

1

3
uθ ∧ θx

}
dx.

Then verifying (2.2.24) we get

pr vE θ

(∫ 1

2
θ ∧ θxxx +

1

3
uθ ∧ θx dx

)
=

∫ {
pr vE θ(

1

2
θ ∧ θxxx +

1

3
uθ ∧ θx)

}
dx

=

∫
1

3
pr vE θ(u) ∧ θ ∧ θx dx

=
1

3

∫
E (θ) ∧ θ ∧ θx dx

=
1

3

∫ {
θxxx ∧ θ ∧ θx +

2

3
uθx ∧ θ ∧ θx +

1

3
uxθ ∧ θ ∧ θx

}
dx

=
1

3

∫
θ ∧ θx ∧ θxxx

= 0

by our calculation in example 2.2.2. Since E ,D are skew-symmetric and (2.2.24) holds, we can conclude
that E ,D are Hamiltonian. Therefore, we can finally truly say that the KdV equation ut = uxxx + uux is
Hamiltonian with two distinct Hamiltonian operators.

This concludes our section on Poisson Brackets and Hamiltonian structures. We have multiple theorems
which help us in discerning if our differential operator is Hamiltonian. We will use these theorems in the
later sections when we need to show that a particular pde admits a Hamiltonian Structure.
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2.3 A Noether Theorem

Calculating the symmetries and conservation laws for a partial differential equation has been a problem of
interest for many researchers. A theorem that helps researchers in computing conservation laws is Noether’s
theorem. Noether’s theorem creates a relation between the conservation laws and symmetries of a partial
differential equation. In this section we will introduce another Noether theorem that relates the Poisson
bracket, the generalized symmetries and conservation laws of a Hamiltonian evolution equation. Furthermore,
as we mentioned earlier we will assume that we are working with a single spatial variable and a single
dependent variable u(x, t). We begin by recalling some important definitions.

Definition 2.3.1. Consider a system of differential equations ∆ = 0. A conservation law is an identity of
the form

Div P = 0 (2.3.1)

which holds for all solutions u = f(x) of the system. Where P = (P1, ..., Pp) is a p-tuple of differential
functions.

A conservation law can trivially hold for a differential equation in two different ways. A trivial conserva-
tion law of the first kind is an expression like (2.3.1) that vanishes for all solutions u = f(x) of the system.
In this case, we use the differential equation ∆ = 0 and make substitutions for different partial derivatives.
For example in a system ut = K[u], we substitute all the partial derivatives of u with respect t with K[u]
and it’s various derivatives.

Example. The system ut = vx, vt = ux has trivial conservation law

Dt(
1

2
u2
t −

1

2
v2
x) +Dx(vxux − utux) = Dt(

1

2
v2
x −

1

2
v2
x) +Dx(vxux − vxux) = 0

which was obtained by substituting the time derivatives with the equations of our system.

A trivial conservation law of second kind occurs when (2.3.1) holds for all functions u = f(x) and does not
depend on the structure of the given differential equation.

Example. In the case where we have two independent variables (x, y) and one dependent variable u,

Dx(uy)−Dy(ux) = 0

is trivial conservation law as it holds true for all smooth functions u = f(x, y). We did not even need to
define a system to obtain this conservation law.

In the case of an evolution equation, we can separate the time and spatial variables and give an alternate
form for the conservation law.

Definition 2.3.2. In an evolution equation, where one of the independent variables is distinguished as time
t and the remaining variable x is a spatial variable, the conservation law takes the form

Dt(T ) + Div(X) = 0. (2.3.2)

Here Div is the spatial divergence of X with respect to the variable x. T is called the conserved density and
X is called the conserved flux, they are both functions of x, t, u and the derivatives of u with respect to both
t and x.

Trivial conservation laws of the first and second kind are still conservation laws of the system of evolution
equations, even though the form is written differently. In general, we can say that two conservation laws are
equivalent is they differ by a trivial conservation law. Therefore we are only interested in finding conservation
laws up to an equivalence class. Furthermore, if an evolution equation has a Hamiltonian form, then there
is a way to obtain conservation laws for the system just by observing its Poisson bracket.

Definition 2.3.3. Let D be a Hamiltonian differential operator. A distinguished functional for D is a
functional C ∈ F satisfying

DδC = 0 (2.3.3)

for all x, u.

25



The Hamiltonian operator corresponding to a distinguished functional is trivial i.e. ut = 0. If we combine
(2.3.3) with the definition of a Poisson bracket, we obtain that a functional C is distinguished if and only if

{C ,H } = 0 (2.3.4)

for all functionals H ∈ F . Observing this we can see the conserved nature of the distinguished functionals,
leading us to quote the following proposition from [4].

Proposition 2.3.1. Let D be a Hamiltonian operator. If C is a distinguished functional for D , then C
determines a conservation law for every Hamiltonian system ut = DδH relative to D .

Now we can introduce a new criteria for a functional to give rise to a conservation law.

Proposition 2.3.2. Let ut = P [u] be an evolution equation, and let T [t;u] =
∫

Ω
T (x, t, u(n)) dx be a

functional for Ω ⊂ X. Then T is the density for a conservation law of our equation if and only if it’s
associated functional T satisfies

∂T

∂t
+ pr vP (T ) = 0 (2.3.5)

where pr vP (T ) :=
∫

Ω
pr vP (T ) dx.

Proof.
Let us start with the forward implication, assume that T is a conserved density for a conservation law and
let T [t;u] =

∫
Ω
T (x, t, u(n)) dx be its associated functional. T can be assumed to depend only on the

x-derivatives of u since we can substitute the time derivatives by our equation. If u is a solution to the
evolution equation ut = P [u] then

Dt(T ) =
∂T

∂t
+ ut

∂T

∂u
+ utt

∂T

∂ut
+ utx

∂T

∂ux
+ ...

=
∂T

∂t
+ P

∂T

∂u
+ (P )t

∂T

∂ut
+ (Px)

∂T

∂ux
+ ...

=
∂T

∂t
+ pr vP (T )

here ∂T
∂t denotes the partial t-derivative. Since T is a conserved density we must have that

Dt(T ) + DivA = 0

for some A ∈ A , where Div is the spatial divergence. Integrating both sides over Ω we obtain using the
divergence theorem ∫

Ω

{
Dt(T ) + Div A

}
dx = 0

=⇒
∫

Ω

Dt(T ) dx = 0.

If we expand the Dt(T ) under the integral using our computation we obtain (2.3.5) as follows∫
Ω

Dt(T ) dx = 0

=⇒
∫

Ω

{∂T
∂t

+ pr vP (T )
}
dx = 0

=⇒ ∂

∂t

(∫
Ω

T dx
)

+ pr vP

(∫
Ω

T dx
)

= 0

=⇒ ∂T

∂t
+ pr vP (T ) = 0.
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Now we prove the reverse direction, assume that (2.3.5) holds, if u is a solution to the evolution equation
ut = P [u], we can expand the left hand side of (2.3.5) and obtain the following

∂T

∂t
+ pr vP (T ) = 0

=⇒ ∂

∂t

(∫
Ω

T dx
)

+ pr vP

(∫
Ω

T dx
)

= 0

=⇒
∫

Ω

Dt(T ) dx = 0.

Since we are working over the space of functionals F and the integral above is equal to 0, we can say that
the integrand is equivalent to a total divergence Div A. Therefore

Dt(T ) = Div A =⇒ Dt(T ) + Div (−A) = 0

on solutions u of of ut = P [u] and thus T is a conserved density.

Now that we have established a criteria for conservation laws, we wish to determine a relation between
conservation laws and symmetries of the evolution equation. Before we introduce this Noether theorem we
will prove a proposition that relates the Lie bracket of two Hamiltonian vector fields and their corresponding
Poisson bracket. This will be used later in the proof of our Noether theorem.

Definition 2.3.4. Let v and w be generalized vector fields. Then their Lie bracket [v,w] is the unique
generalized vector field satisfying

pr [v,w] (P ) = pr v[pr w(P )]− pr w[pr w(P )] (2.3.6)

for all P ∈ A .

Proposition 2.3.3. Let {·, ·} be a Poisson bracket determined by a Hamiltonian operator D . Let P,Q ∈ F
be functionals with corresponding Hamiltonian vector fields v̂P and v̂P . Then the Hamiltonian vector field
corresponding to the Poisson bracket {P,Q} is the Lie bracket of the two vector fields;

v̂{P,Q} = [v̂Q, v̂P ]. (2.3.7)

Proof.
Let R be an arbitrary functional, we begin by applying the prolongation of v̂{P,Q} to R and using proposition
2.2.2 to obtain the following:

pr v̂{P,Q}(R) = {R, {P,Q}}
= {{R,P},Q}+ {{Q,R},P} By the Jacobi identity and skew-symmetry of the bracket.

= {{R,P},Q} − {{R,Q},P}
= pr v̂Q({R,P})− pr v̂P({R,Q})
= pr v̂Q ◦ pr v̂P(R)− pr v̂P ◦ pr v̂Q(R)

= (pr v̂Q ◦ pr v̂P − pr v̂P ◦ pr v̂Q)(R)

= pr [v̂Q, v̂P ](R). By definition 2.3.4.

The above implies that
pr v̂{P,Q}(R)− pr [v̂Q, v̂P ](R) = 0

=⇒ pr (v̂{P,Q} − [v̂Q, v̂P ])(R) = 0

for all functionals R ∈ F . This can only happen if the two vector fields are equal, therefore we can conclude
that v̂{P,Q} = [v̂Q, v̂P ].
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The reader is probably familiar with symmetries of differential equations. We now introduce the idea
of generalized symmetries. Generalized symmetries are very much like classical symmetries only that the
infinitesimal generator of the symmetry is a generalized vector field. Thus its coefficients can depend on the
various derivatives of u, up to any order. The definition of a generalized symmetry is a direct analogue of
the definition of a point symmetry (classical symmetry).

Definition 2.3.5. A generalized vector field v is a generalized infinitesimal symmetry of the differential
equation ∆[u] = 0 if and only if

pr v(∆) = 0 (2.3.8)

for every smooth solution u of ∆ = 0.

It is important to note that any classical symmetry of a differential equation is also a generalized symme-
try. By classical symmetry we mean that the symmetry group has infinitesimal generator with coefficients
depending only x, t, and u. Now let us quote another proposition from [4] that gives a new criteria for
checking that an evolutionary vector field is a symmetry of an evolution equation.

Proposition 2.3.4. An evolutionary vector field vQ is a symmetry of the evolution equation ut = P [u] if
and only if

∂ vQ
∂t

+ [vP, vQ] = 0 (2.3.9)

holds identically in (x, t, u(n)). Here
∂ vQ

∂t is the evolutionary vector field with characteristic ∂Q
∂t .

Remark. By symmetry, we mean generalized symmetry, however since the vector field is evolutionary we
could also call it an evolutionary symmetry. These are interchangeable since evolutionary vector fields are
also generalized vector fields.

Finally, we quote one last proposition from [4].

Proposition 2.3.5. A generalized vector field v is a symmetry of a differential equation if and only if its
evolutionary representative vQ is.

Now we have all the tools to state and prove the main theorem in this section. It is a Noether theorem
in the sense that it creates a relation between the generalized symmetries of an evolution equation and its
conservation laws. If a Hamiltonian vector field v̂H is a symmetry of an evolution equation, we call it a
Hamiltonian symmetry. The theorem we are about to state uses the Hamiltonian nature of the evolution
equation to create a relation between Hamiltonian symmetries and conservation laws.

Theorem 2.3.1. Let ut = DδH be a Hamiltonian evolution equation. A Hamiltonian vector field v̂P with
characteristic DδP, P ∈ F , determines a generalized symmetry of the equation if and only if there is an
equivalent functional P ′ = P − C , differing only from P by a time-dependent distinguished functional
C [t;u], such that P ′ determines a conservation law.

Proof.
A time dependent distinguished functional means a functional

C [t;u] =

∫
C(t, x, u(n)) dx

where C depends on t, x, u and the x-derivatives of u such that for each fixed t0, C [t0;u] is a distinguished
functional i.e. DδC = 0.

Assume that the Hamiltonian vector field v̂P determines a symmetry of ut = DδH . By proposition
2.3.4 v̂P is a symmetry of ut = DδH if and only if

∂v̂P

∂t
+ [v̂H , v̂P ] = 0 (2.3.10)
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where v̂H is the Hamiltonian vector field associated with H and ∂v̂P

∂t is the Hamiltonian vector field

associated to the functional ∂P
∂t . According to proposition 2.3.3., [v̂H , v̂P ] is the Hamiltonian vector field

for the Poisson bracket {P,H }. Since the vector field in (2.3.10) is equal to 0 its characteristic is equal to
0, namely

Dδ
(∂P

∂t
+ {P,H }

)
= 0.

However, this is precisely the definition of a distinguished functional for D . Hence we can say

∂P

∂t
+ {P,H } = C ′

where C ′ is a time distinguished functional

C ′[t;u] =

∫
C ′(t, x, u(n)) dx.

Now we set

C [t;u] =

∫ t

t0

C [s;u] ds =

∫ (∫ t

t0

C ′(s, x, u(n)) ds
)
dx.

Let P ′ = P − C , this differs from P by a time dependent distinguished functional. We are left to prove
that P ′ determines a conservation law. Using Proposition 2.3.2 all we need to show is

∂P ′

∂t
+ pr v̂H (P ′) = 0 (2.3.11)

in order to claim P ′ determines a conservation law. Let us do the computations.

∂P ′

∂t
=
∂P

∂t
− ∂C

∂t
=
∂P

∂t
− C ′

{P ′,H } = {P − C ,H } = {P,H } − {C ,H } = {P,H }

Therefore

∂P ′

∂t
+ pr v̂H (P ′) =

∂P

∂t
− C ′ + {P ′,H }

=
∂P

∂t
− C ′ + {P,H }

= C ′ − C ′

= 0

proving that P ′ determines a conservation law.

Now we prove the reverse implication, assume that P ′ = P − C determines a conservation law, where
C is a distinguished functional. Then by proposition 2.3.2

∂P ′

∂t
+ pr v̂H (P ′) =

∂P ′

∂t
+ {P ′,H } = 0. (2.3.12)

We need to prove that v̂P is a generalized symmetry of ut = DδH , thus we need to show

∂v̂P

∂t
+ [v̂H , v̂P ] = 0.

The characteristic of the vector field above is

Dδ
(∂P

∂t
+ {P,H }

)
.
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Since P = P ′ + C , if we explicitly calculate the characteristic above we obtain

∂P

∂t
=
∂P ′

∂t
+
∂C

∂t

{P,H } = {P ′ + C ,H } = {P ′,H }+ {C ,H } = {P ′,H }

=⇒ Dδ
(∂P

∂t
+ {P,H }

)
= Dδ

(∂P ′

∂t
+
∂C

∂t
+ {P ′,H }

)
= Dδ

(∂C

∂t

)
by 2.3.12

=
∂

∂t

(
DδC

)
= 0

where the second last equality is obtained because D does not explicitly depend on t and the last equality is
true because C is a distinguished functional. Therefore the characteristic of the vector field on the left hand
side of equation (2.3.10) is equal to 0 and thus the vector field itself is equal to 0. Therefore we obtain the
equality in (2.3.10), which implies that v̂P is a generalized symmetry of ut = DδH .

Example 2.3.1. Let us return to our running KdV example and see how this Noether theorem is applied.
Recall the KdV equation

ut = uxxx + uux

that had two Hamiltonian structures corresponding to differential operators

D = Dx and E = D3
x +

2

3
uDx +

1

3
ux.

In section 2.4 of [4], Olver computes the algebra of classical symmetries of the KdV equation, it is spanned
by

v1 = ∂x, v2 = ∂t, v3 = t∂x − ∂u, v4 = x∂x + 3t∂t − 2u∂u.

with replacing x by −x. We compute their evolutionary representatives to be

vQ1
= −ux∂u, vQ2

= (−uxxx − uux)∂u, vQ3
= (−1− tux)∂u, vQ4

= (−2u− xux − 3tuxxx − 3tuux)∂u.

Now let us determine which of these symmetries are Hamiltonian and thus lead to a conserved density. These
symmetries are Hamiltonian if their characteristic Qi can be written in a Hamiltonian structure with respect
to either operator D or E . Let us start with the first operator D = Dx, out of the four vector fields above,
the first three have characteristics which are Hamiltonian

Qi = DxδPi, i = 1, 2, 3

with conserved functionals

P1 =

∫
−1

2
u2 dx, P2 =

∫ {1

2
u2
x −

1

6
u3
}
dx, P3 =

∫ {
− xu− 1

2
tu2
}
dx.

For the second operator E = D3
x + 2

3uDx + 1
3ux, Q1, Q2 and Q4 are Hamiltonian,

Qi = E δNi i = 1, 2, 4

with conserved functionals

N1 =

∫
−3u dx, N2 =

∫
−1

2
u2 dx, N4 =

∫ {
− 3xu− 3

2
tu2
}
dx.
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The functional N1 is a distinguished functional for D since DδN1 = 0 and thus cannot give us a new
symmetry for the system. The other conserved functionals for E are either the same or a multiple of the
conserved functionals for D . However, the functional P2 did not arise from one of the classical symmetries
in the case of E but it still determines a conservation law for the KdV equation. Therefore by our Noether
theorem 2.3.1, this should give rise to a Hamiltonian symmetry v̂P2

that has characteristic

E δP2 = (D3
x +

2

3
uDx +

1

3
ux)(−uxx −

1

2
u2)

= −uxxxxx −
5

3
uuxxx −

10

3
uxuxx −

5

6
u2ux.

We start to notice a pattern at this point, if the characteristic above could be written in Hamiltonian form
with respect to the operator D then this would provide another conserved functional for the KdV equation.
Then we could apply E to this new conserved functional and so on. This phenomenon is not necessarily true
for all evolution equations that admit a Hamiltonian structure. For the KdV equation it is due in part to the
fact that we have two distinct Hamiltonian structures. In the next section we will discuss this phenomenon
and explain why the operators D and E for the KdV equation are special enough to do this.

31



2.4 Bi-Hamiltonian Systems and Magri’s Theorem

In the previous section we saw what it means for an evolution equation to be Hamiltonian. We examined the
example of the KdV equation, which had two distinct Hamiltonian structures. This leads to the natural ques-
tion, does an evolution equation that has multiple Hamiltonian structures have more interesting properties?
The answer to this question is yes. In this section, we will explore what happens when an evolution equation
can be written in two distinct Hamiltonian forms, such an evolution equation is called bi-Hamiltonian. The
consequence of this gives rise to the main theorem in this section, Magri’s theorem. This theorem allows
us to create an infinite hierarchy of conservation laws by applying our Noether theorem from the previous
section to the different symmetries of both Hamiltonian structures. Again, the information in this section is
paraphrashed or directly quoted from [4].

Definition 2.4.1. Let D and E be a pair of skew-adjoint q× q matrix differential operators. They are said
to form a Hamiltonian pair if every linear combination aD + bE , for a, b ∈ R is a Hamiltonian operator.

Definition 2.4.2. A system of evolution equations ut = K[u], K[u] ∈ A q is bi-Hamiltonian if it can be
written in the form

ut = K[u] = DδH0 = E δH1 (2.4.1)

where H0,H1 are Hamiltonian functionals and D and E form a Hamiltonian pair.

Lemma 2.4.1. Let D and E , be skew adjoint differential operators, they form a Hamiltonian pair if and
only if D ,E and D + E are all Hamiltonian operators.

Proof.
The forward implication is trivial and comes from the definition of a Hamiltonian pair. So we assume that
D ,E and D + E are all Hamiltonian operators and we need to prove every linear combination of D ,E also
is a Hamiltonian operator. We know that a linear combination of skew-adjoint operators is skew-adjoint,
so what is left to prove is that the Jacobi identity is satisfied. As we have shown earlier there are multiple
ways of stating the Jacobi identity. Let P,Q,R ∈ A q and let J(D ,D ;P,Q,R) be the left hand side of the
equation (2.2.13). Recall we can write this as a functional tri-vector evaluated at P,Q,R, this allows us to
write

J(D ,D ;P,Q,R) =
1

2

∫ {
P · pr vDR(D)Q+R · pr vDQ(D)P +Q · pr vDP (D)R

+ P · pr vDR(D)Q+R · pr vDQ(D)P +Q · pr vDP (D)R
}
dx.

Thus we can define a symmetric bilinear form J(D ,E ;P,Q,R) by

J(D ,E ;P,Q,R) =
1

2

∫ {
P · pr vDR(E )Q+R · pr vDQ(E )P +Q · pr vDP (E )R

+ P · pr vER(D)Q+R · pr vEQ(D)P +Q · pr vEP (D)R
}
dx

this is obviously symmetric and bilinear, where bilinearity comes from the prolongation formula (2.2.11).
This allows us to say that for any a, b ∈ R

J(aD + bE , aD + bE ;P,Q,R) = J(aD + bE , aD ;P,Q,R) + J(aD + bE , bE ;P,Q,R)

= a · J(aD + bE ,D ;P,Q,R) + b · J(aD + bE ,E ;P,Q,R)

= a2 · J(D ,D ;P,Q,R) + ab · J(E ,D ;P,Q,R)

+ ba · J(D ,E ;P,Q,R) + b2 · J(E ,E ;P,Q,R)

=⇒ J(aD + bE , aD + bE ;P,Q,R) = a2 · J(D ,D ;P,Q,R) + 2ab · J(E ,D ;P,Q,R) + b2 · J(E ,E ;P,Q,R).

Since J(D ,D ;P,Q,R) is the left hand side of the Jacobi identity, it is equal to 0 when D is a Hamiltonian
operator. Since D ,E and D + E are all Hamiltonian operators we can say

J(D ,D ;P,Q,R) = J(E ,E ;P,Q,R) = J(D + E ,D + E ;P,Q,R) = 0.
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Expanding the last equality using the bilinearity property of J(D ,E ;P,Q,R) we obtain the following result

J(D + E ,D + E ;P,Q,R) = 0

=⇒ J(D ,D ;P,Q,R) + 2 · J(E ,D ;P,Q,R) + J(E ,E ;P,Q,R) = 0

=⇒ J(E ,D ;P,Q,R) = 0.

Using this result, the fact that D and E are Hamiltonian and the bilinearity of J , allows us to say for any
a, b ∈ R

J(aD + bE , aD + bE ;P,Q,R) = a2 · J(D ,D ;P,Q,R) + 2ab · J(E ,D ;P,Q,R) + b2 · J(E ,E ;P,Q,R) = 0.

Since J(aD + bE , aD + bE ;P,Q,R) is the left hand side of the Jacobi identity with respect to the operator
aD + bE , we conclude that the Jacobi identity is satisfied for all linear combinations aD + bE , a, b ∈ R.
Therefore D and E form a Hamiltonian pair.

Corollary 2.4.1. Let D and E be Hamiltonian operators. Then D ,E form a Hamiltonian pair if and only
if

pr vDθ(ΘE ) + pr vE θ(ΘD) = 0 (2.4.2)

where

ΘD =
1

2

∫
{θ ∧Dθ} dx and ΘE =

1

2

∫
{θ ∧ E θ} dx

are the functional bi-vectors that represent the Poisson bracket of each operator.

Proof.
Let P,Q,R ∈ A q, recall from section 2.2 that the functional tri-vector evaluated at P,Q,R〈

pr vDθ(ΘD);P,Q,R
〉

is the negative of the left hand side of the Jacobi identity. Therefore we can equate the above with the form
we used in the lemma above to say

−J(D ,D ;P,Q,R) =
〈

pr vDθ(ΘD);P,Q,R
〉

−J(D ,E ;P,Q,R) =
〈

pr vDθ(ΘE );P,Q,R
〉

=⇒ −2 · J(D ,E ;P,Q,R) =
〈

pr vDθ(ΘE ) + pr vE θ(ΘD);P,Q,R
〉
.

By the proof of the lemma above, we know that if D ,E form a Hamiltonian pair then

J(D ,E ;P,Q,R) = 0

=⇒
〈

pr vDθ(ΘE ) + pr vE θ(ΘD);P,Q,R
〉

= 0

since a functional k-vector is uniquely determined by its action on elements of A q, we can conclude that
pr vDθ(ΘE ) + pr vE θ(ΘD) = 0.

Similarly, if (2.4.2) holds and D ,E are Hamiltonian operators then for all P,Q,R ∈ A q〈
pr vDθ(ΘE ) + pr vE θ(ΘD);P,Q,R

〉
= 0

=⇒ J(D ,E ;P,Q,R) = 0

=⇒ J(D + E ,D + E ;P,Q,R) = J(D ,D ;P,Q,R) + J(E ,D ;P,Q,R) + J(E ,E ;P,Q,R) = 0.

Therefore the Jacobi identity is satisfied for D + E , and skew-symmetry is obvious thus D ,E and D + E are
Hamiltonian operators. By the lemma above D and E form a Hamiltonian pair.
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Example 2.4.1. Let us return to our earlier example of the KdV equation, we recall that it had two distinct
Hamiltonian forms

ut = uxxx + uux = DδH1 = E δH0

where

D = Dx H1 =

∫ {
− 1

2
u2
x +

1

6
u3
}
dx

and

E = D3
x +

2

3
uDx +

1

3
ux H0[u] =

∫
1

2
u2 dx.

This leads to the natural question, does this gives us a bi-Hamiltonian system? To answer this question we
must determine if these operators form a Hamiltonian pair. We can do this by checking that the operators
satisfy the previous corollary. Recall the functions ΘE and ΘD and the prolongations from our examples in
the earlier sections and compute

pr vDθ(ΘE ) + pr vE θ(ΘD) =

∫ {
pr vθx(

1

2
θ ∧ θxxx +

1

3
uθ ∧ θx) + pr vE θ(θ ∧ θx)

}
dx

=

∫
1

3
θx ∧ θ ∧ θx dx

= 0

(2.4.3)

which gives us that E and D form a Hamiltonian pair and thus the KdV equation is bi-Hamiltonian.

Definition 2.4.3. Let D be a q×q matrix differential operator. The (1, 1)- Lie -derivative of D with respect
to a generalized vector field vQ is the differential operator

vQ[[D ]] = Dt + [D ,DQ] = pr vQ(D) + [D ,DQ] (2.4.4)

where [D ,DQ] is the Lie bracket and Dt is being evaluated on solutions of ut = Q[u], as in definition 2.2.8.

Definition 2.4.4. Let ∆[u] = 0 be a system of evolution equations. A recursion operator for ∆ = 0 is a
linear operator R : A q → A q such that whenever vQ is a generalized symmetry for ∆ = 0, so is vQ′ , where
Q′ = R(Q).

This begs the question of which differential operators are recursion operators, for that we quote the following
criteria for recursion operators, this is theorem 5.29 in [4].

Theorem 2.4.2. Suppose ∆[u] = 0 is a differential equation. If R : A → A is a linear operator such that

D∆ ·R = R̃ ·D∆ (2.4.5)

for all solutions u of ∆ = 0, where R̃ : A → A is a linear differential differential operator, then R is a
recursion operator for the system.

In the case where ∆ = ut −K[u], corresponding to an evolution equation we have D∆ = Dt + DK . In
this case if R is a recursion operator, we see that the operator in (2.4.5) must be the same as R. Thus the
condition (2.4.5) reduces to

D∆ ·R = R ·D∆ ⇐⇒ (Dt + DK)(R)−R(Dt + DK) ⇐⇒ Rt − [DK ,R] = 0 ⇐⇒ Rt = [DK ,R] (2.4.6)

where Rt is as in definition 2.2.8, and [·, ·] is the regular Lie bracket.

Before we state the main theorem of this section, Magri’s theorem, we must prove a few more propositions.
The last section introduced a Noether theorem that created a relation between the Hamiltonian symmetries
of our differential equation and its conservation laws. In particular, if we have a bi-Hamiltonian system

ut = K1[u] = DδH1 = E δH0

34



then we can apply our Noether theorem (theorem 2.3.1) to both the differential operators. This creates
a ladder-like algorithm that bounces between the symmetries and conservation laws with respect to both
operators, meaning that if P is any conserved functional for our equation above then both Hamiltonian
vector fields vDδP and vE δP are symmetries of our equation. Since H1 and H0 are conserved functionals
for the equation above, the vector field vK1

= vDδH1
= vE δH0

as well as the vector fields vDδH0
, vE δH1

are
generalized symmetries. Now if say one of these new vector fields is a Hamiltonian vector field for the other
Hamiltonian structure i.e.

E δH1 = DδH2

for some functional H2. Then H2 is a conserved functional and thus again by our Noether theorem we
obtain another symmetry vE δH2 . We should start to notice the recursive pattern here. If we repeat this
algorithm at the n-th stage, we determine a new functional Hn where

Kn = DδHn = E δHn−1 (2.4.7)

thus giving us a new conservation law for the original system, and another symmetry with characteristic
Kn+1 = E δHn. So we can imagine that if we define an operator R = E ·D−1, then we write

Kn+1 = RKn

and here since Kn and Kn+1 are symmetries, we suspect that R is probably a recursion operator. However it
is important to note that the algorithm above relies on the fact that at each step we can find a functional Hn

such that (2.4.7) holds. This is essentially the content of Magri’s theorem, however before we explicitly prove
and state this, we must first prove that R is truly a recursion operator. Furthermore, we must introduce the
requirement of non-degeneracy for at least one of the operators, and we know the operators are invertible
since they form a ring.

Definition 2.4.5. A differential operator D is degenerate if there is a non-zero differential operator D ′ such
that D ′ ·D ≡ 0.

Lemma 2.4.3. Let ut = K = DδH be a Hamiltonian evolution equation with corresponding vector field
vK = v̂H . Then

pr v̂H (D) = DK ·D + D ·D∗K . (2.4.8)

Proof.
Following the notation in [4], we let L = δH , so K = DL. Let P = δP, Q = δQ be arbitrary variational
derivatives. Then using the Jacobi identity in the form (2.2.13) and recalling the fact that the Hamiltonian
vector field v̂H has characteristic DδH we obtain∫
P · pr v̂H (D) ·Q dx =

∫ {
− L · pr v̂Q(D)L−Q · pr v̂P(D) · L

}
dx

=

∫ {
P · pr v̂Q(D) · L−Q · pr v̂P(D) · L

}
dx Since D is skew-adjoint, so is pr v̂Q(D).

=

∫ {
P · [pr v̂Q(DL)−D(pr v̂Q(L)] By (2.2.12).

−Q · [pr v̂P(DL)−D(pr v̂P(L))]
}
dx

=

∫ {
P · [DK(DQ)−D(DL(DQ))] By (2.2.10).

−Q · [DK(DP )−D(DL(DP ))]
}
dx

=

∫ {
P ·DK(DQ)− P ·DDL(DQ)−Q ·DK(DP ) +Q ·DDL(DP )

}
dx

=

∫ {
P ·DK(DQ)−QDK(DP )

}
dx
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the last equality coming from the fact that D is skew adjoint and since L is a variational derivative DL is
self adjoint by theorem 2.2.1. Thus∫

QDDL(DP ) dx =

∫
−D(Q) ·DL(DP ) dx =

∫
−DL(DQ)D(P ) dx =

∫
DDL(DQ) · P dx.

Returning back to the integral, we obtain

∫
P · pr v̂H (D) ·Q dx =

∫ {
P ·DK(DQ)−QDK(DP )

}
dx

=

∫ {
P ·DK(DQ)−DP ·D∗K(Q)

}
dx

=

∫ {
P ·DK(DQ) + P ·DD∗K(Q)

}
dx

=

∫ {
P · (DKD + DD∗K) ·Q

}
dx

=⇒
∫
P · (pr v̂H (D)−DKD −DD∗K) ·Q dx = 0

and since P,Q were arbitrary variational derivatives, the above holds if and only if

pr v̂H (D) = DK ·D + D ·D∗K .

Theorem 2.4.4. Let ut = K = DδH1 = E δH0 be a bi-Hamiltonian evolution equation. Then the operator
R = E D−1 is a recursion operator for the equation.

Proof.
In order to show R is a recursion operator for ut, we must show it satisfies (2.4.6). On solutions u of our
evolution equation we have the following

Rt = pr vK(R) By definition 2.2.8

= pr vK(E ) ·D−1 − E ·D−1 · pr vK(D) ·D−1

= (DK · E + E ·D∗K) ·D−1 − E ·D−1(DK ·D + D ·D∗K)D−1 By the last lemma.

= DK · E ·D−1 − E ·D−1DK

= DKR −RDK

= [DK ,R]

which satisfies (2.4.6). Therefore R = E ·D−1 is a recursion operator for our evolution equation.

Now that we can actually prove that R is a recursion operator, we quote one more technical lemma from
[4] that we use in the proof of Magri’s theorem. This is lemma 7.25 from [4].

Lemma 2.4.5. Suppose D ,E form a Hamiltonian pair, with D non-degenerate. Let P,Q,R ∈ A satisfy

EP = DQ, EQ = DR. (2.4.9)

If P = δP, Q = δQ are variational derivatives of functionals P,Q ∈ F , then so is R = δR for some
R ∈ F .

Finally, we have all the tools to state and prove Magri’s Theorem, which is theorem 7.24 in [4].
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Theorem 2.4.6 (Magri’s Theorem). Let

ut = K1[u] = DδH1 = E δH0 (2.4.10)

be a bi-Hamiltonian system of evolution equations. Assume that the operator D of the Hamiltonian pair is
non-degenerate. Let R = E ·D−1 be the corresponding recursion operator, and let K0 = DδH0. Assume
that for each n = 1, 2, ... we can recursively define

Kn = RKn−1 n ≥ 1 (2.4.11)

meaning that for each n, Kn−1 lies in the image of D . Then there exists a sequence of functionals
H0,H1H2, .... such that

1. for each n ≥ 1, the evolution equation

ut = Kn[u] = DδHn = DδHn−1 (2.4.12)

is a bi-Hamiltonian system;

2. the corresponding evolutionary vector fields vn = vKn
all mutually commute;

[vn, vm] = 0 n,m ≥ 0 (2.4.13)

3. the Hamiltonian functionals Hn are all in involution with respect to either Poisson bracket:

{Hn,Hn}D = 0 = {Hn,Hm}E , n,m ≥ 0 (2.4.14)

and hence provide and infinite collection of conservation laws for each of the bi-Hamiltonian systems
(2.4.12).

Proof.
(1): Since by our assumption D ,E form a Hamiltonian pair, the only thing we need to prove is the equality
(2.4.12). Let us prove this by induction on n. First we let Kn = DQn where Qn ∈ A . Let us start with our
base case of n = 1. For n = 1, let Q0 = δH0 and Q1 = δH1. Then by our assumptions

ut = K2[u] = RK1 = E ·D−1DδH1 = E δH1 = DQ2

Now since
E δH0 = DδH1 and E δH1 = DQ2

lemma 2.4.5 tells us that Q1 is a variational derivative of some functional. Therefore Q2 = δH2 for H2 ∈ F
and

ut = K2[u] = DδH2 = E δH1.

Now, let us assume that
ut = Kn[u] = DδHn = E δHn−1

is a bi-Hamiltonian system, we must show the same is true for Kn+1. By our assumption Kn+1 = DQn+1

and
ut = Kn+1 = RKn = E ·D−1 ·DδHn = E δHn = DQn+1

then since
E δHn−1 = DδHn and E δHn = DQn+1

lemma 2.4.5 implies that Qn+1 = DδHn+1. Therefore

ut = Kn+1[u] = DδHn+1 = E δHn

is a bi-Hamiltonian system. We can conclude that (1) is true for all n = 1, 2, ....
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(3): The proof for the second point following from part (3), therefore we will prove (3) first. Recall the
notation from the theorem vm = vKm = vDδHm = vE δHm−1 , then according to proposition 2.2.2

{Hn,Hm}D = pr vDδHm
(Hn) = pr vm(Hn)

{Hn,Hm}E = pr vE δHm
(Hn) = pr vm+1(Hn)

therefore,

{Hn,Hm}D = pr vm(Hn) = pr vDδHm
(Hn) = pr vE δHm−1

(Hn) = {Hn,Hm−1}E .

Without loss of generality assume that n < m. We will use the equality above we created and the skew
symmetry of the Poisson bracket to obtain the sequence of equalities

{Hn,Hm}D = {Hn,Hm−1}E = −{Hm−1,Hn}E
= −{Hm−1,Hn+1}D = {Hn+1,Hm−1}D = ...... = {Hk,Hk} = 0.

By subtracting 1 from m and adding 1 to n every time, we will eventually reach a middle point k where the
integers are equal. The bracket we get at the end depends on the integers m and n, but we will either have
the E or D Poisson bracket evaluated at the same functional Hk and thus the Poisson brackets are all equal
to 0. Therefore the third part of the proof is proved.

(2): Now we finally conclude with the proof of the second part. Let m,n ≥ 0 be arbitrary then proposition
2.3.3 tell us

[vn, vm] = [v̂Hn
, v̂Hm

] = v̂{Hn,Hm}D
= 0

and
[vn, vm] = [v̂Hn

, v̂Hm
] = v̂{Hn,Hm}E

= 0

where the equality to 0 is thanks to the third part of the theorem. Therefore we have proved all three parts
of Magri’s theorem.

We should mention a technical point at this stage. In Magri’s theorem we required that Kn−1 lies in the
image of D , this is quite a powerful assumption. As Olver mentioned in [4], in most of the examples to date
this seems to be true, however we don’t quite have a theorem to state the effect that we can always find a
differential function in the image of D that gives us the equality to Kn.

Example 2.4.2. Let us return to our example of the KdV equation, earlier in this section we showed that
the KdV equation is a bi-Hamiltonian system. Now we wish to apply Magri’s theorem to the KdV equation.
We start by recalling the bi-Hamiltonian form

ut = uxxx + uux = DδH1 = E δH0

where

D = Dx H1 =

∫ {
− 1

2
u2
x +

1

6
u3
}
dx

and

E = D3
x +

2

3
uDx +

1

3
ux H0[u] =

∫
1

2
u2 dx.

The recursion operator R = E ·D−1 = D2
x+ 1

3uxD
−1
x + 2

3u, then we apply R recursively to the KdV equation
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to obtain new symmetries. The first stage in this recursion is

ut = R(uxxx + uux) = E ·D−1DδH1 = E δH1 = (D3
x +

2

3
uDx +

1

3
ux)δ(−1

2
u2
x +

1

6
u3)

= (D3
x +

2

3
uDx +

1

3
ux)(uxx +

1

2
u2)

= uxxxxx +
10

3
uxuxx +

5

3
uuxxx +

5

6
u2ux

= Dx(uxxxx +
5

3
uuxx +

5

6
u2
x +

5

18
u3)

= Dx(δH2)

= DδH2

where H2[u] =
∫ {

1
2u

2
xx − 5

6uu
2
x + 5

72u
4
}
dx, thus by Magri’s theorem this is a conservation law.
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3 Pseudo-Spherical Surfaces

In the previous section, given a multi-Hamiltonian evolution equation we used an algorithm to compute an
infinite hierarchy of conservation laws for the system. However finding evolution equations that admit a
multi-Hamiltonian structure is not easy. This is why when Cavalcante and Tenenblat in [2] provided an
algorithm for finding a sequence of conservation laws for an evolution equation describing pseudo-spherical
surfaces the question of whether or not such equations are also multi-Hamiltonian arose naturally. In this
chapter we will focus on the algorithm provided in [1] and [2] that creates an infinite sequence of conservation
laws for evolution equations describing pseudo-spherical surfaces.

3.1 What is a Pseudo-Spherical Surface?

In this section we will introduce the notion of a pseudo-spherical surface. The material in this section will
be paraphrased or directly quoted from [1], [2], [3], [7] and [8].

Let (M, g) be a Riemannian surface, the structure equations for M are

dω1 = ω3 ∧ ω2

dω2 = ω1 ∧ ω3

dω3 = Kω2 ∧ ω1

(3.1.1)

where ω1 and ω2 are the one-forms that determine the metric g = (ω1)2 + (ω2)2. Furthermore, ω3 is
the connection form determined by the Levi-Civita connection and K is the Gaussian curvature. Thanks
to Gauss’s Theorema Egregium, which says that the Gaussian curvature K depends only on g and its
derivatives, we know that Gaussian curvature is an isometry invariant. Now we are ready to define what we
mean by a pseudospherical surface.

Definition 3.1.1. Let M be a two dimensional C∞ manifold. M is a pseudo-spherical surface (p.s.s.) if M
has constant negative Gaussian curvature K = −1.

In this case the structure equations (3.1.1) become

dω1 = ω3 ∧ ω2

dω2 = ω1 ∧ ω3

dω3 = −ω2 ∧ ω1 = ω1 ∧ ω2.

(3.1.2)

Furthermore, Minding’s theorem [7] says that any two surfaces with the same constant Gaussian curvature
are locally isometric, therefore all p.s.s are locally isometric. It is important to note, when we locally embed
these surfaces isometrically into E3 that even though all pseudo-spherical surfaces are isometric, they are
not necessarily congruent under the rigid motions of E2.

For example two of the most common pseudo-spherical surfaces are the pseudo-sphere and Dini’s surface,
shown in Figure 1 and 2 below. Dini’s surface and the pseudo-sphere of radius 1 both have Gaussian Curva-
ture K = −1. Dini’s surface is obtained by twisting the pseudo-sphere [3], obviously it cannot be transformed
by using any of the rigid motions of E2 therefore the surfaces are not congruent.
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Figure 1: The Pseudo-Sphere

From ”Modern Differential Geometry of
Curves and Surfaces with Mathematica”
(pg. 480) by Gray, A., Abbena, E., and
Salamon, S.Chapman and Hall CRC. Copy-
right 2006 by Taylor and Francis Group.

Figure 2: Dini’s Surface

From ”Modern Differential Geometry of
Curves and Surfaces with Mathematica”
(pg. 482) by Gray, A., Abbena, E., and
Salamon, S.Chapman and Hall CRC. Copy-
right 2006 by Taylor and Francis Group.
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3.2 Evolution Equations Describing Pseudo-Spherical Surfaces

In the previous section we defined a pseudo-spherical surface as having constant Gaussian curvature K = −1.
In this section, we will introduce the notion of a differential equation that describes a pseudo-spherical surface.
In the paper [1] by Chern and Tenenblat, there exists a large classification of differential equations which are
p.s.s., we will examine one such example, the KdV equation. The information and examples in this section
will be paraphrased or directly quoted from [1] and [2]. Let us first begin with some definitions.

Definition 3.2.1. Let M be a two-dimensional differential (C∞) manifold, with coordinates (x, t). We say
that a differential equation for a real valued function u(x, t) describes a pseudo-spherical surface if there
exists differential functions fab, 1 ≤ a ≤ 3, 1 ≤ b ≤ 2 depending on u and finitely many derivatives, such
that the 1-forms

ωa = fa1dx+ fa2dt a = 1, 2, 3 (3.2.1)

satisfy the structure equations of a p.s.s.

This definition is motivated in part by the inverse scattering problem introduced by Ablowitz, Kaup, Newell
and Segur in paper [12] where they considered the integrability of the system

dv = Ωv (3.2.2)

where v is a vector valued function and Ω is a traceless matrix of one-forms given by

Ω =

[
−iξdx+Adt qdx+Bdt
rdx+ Cdt iξdx−Adt

]
where q, r, A,B,C are functions of (x, t) and ξ is a spectral parameter which is central to the solution of
evolution equations by method of inverse scattering. The integrability condition for the system is then
dΩ− Ω ∧ Ω = 0. Now suppose we had the 1-forms

ω1 = (r + q)dx+ (C +B)dt

ω2 = ηdx+ 3Adt

ω3 = (r − q)dx+ (C −B)dt

where η = iξ, then the integrability condition of (3.2.2) is equivalent to saying that these one-forms satisfy
the equations (3.1.2). If we suppose that M is a two dimensional C∞ manifold with coordinates (x, t) and
require that ω1 ∧ ω2 6= 0 we can define a metric on M as g = (ω1)2 + (ω2)2. Then the first two equations in
(3.1.2) define the connection form ω3 and the last equation determines the Gaussian curvature of M to be
K = −1, so M is a p.s.s.. This justifies our definition 3.2.1.

In [1], Chern and Tenenblat restrict to the case where f21 = η where η is a real parameter (which
can be interpreted as a spectral parameter in the method of inverse scattering). We will do the same thing
in this thesis, thus giving us the following definition.

Definition 3.2.2. A differential equation u(x, t) describes a pseudo-spherical surface if there exists differ-
ential functions fab, 1 ≤ a ≤ 3, 1 ≤ b ≤ 2, f21 = η, depending on u and its derivatives such that the
1-forms

ω1 = f11dx+ f12dt

ω2 = ηdx+ f22dt

ω3 = f31dx+ f31dt

(3.2.3)

satisfy the structure equations (3.1.2) with the further imposition that ω1∧ω2 6= 0. We call such a differential
equation a p.s.s. equation.

Remark. In the definition above, we restrict to the solutions u(x, t) of the differential equation for which
ω1 ∧ ω2 6= 0 in order for the metric g = (ω1)2 + (ω2)2 to be positive definite.
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The other differential functions fab can also depend on η. In fact if the functions fab are analytic in
η using the algorithm in [2] we can compute a infinite sequence of conservation laws for the differential
equation. This will be done in the next section but at this moment we regard η as a constant and that is all.
Let us work through an example from [1] so that we can understand how differential equations that describe
psuedo-spherical surfaces arise.

Example 3.2.1. Let M be a Riemmanian surface parametrized by coordinates x, t. Consider the 1-forms
given by

ω1 = (1− u)dx+ (−uxx + ηux − η2u− 2u2 + η2 + 2u)dt

ω2 = ηdx+ (η3 + 2ηu− 2ux)dt

ω3 = −(1 + u)dx+ (−uxx + ηux − η2u− 2u2 − η2 − 2u)dt.

(3.2.4)

We plug these into the structure equations (3.1.2), since we want these equations to determine some pseudo-
spherical surface. We start with the last structure equation.

dω3 = −utdt ∧ dx+ (−uxxx + ηuxx − η2ux − 4uux − 2ux)dx ∧ dt
= (ut − uxxx +xx −η2ux − 4uux − 2ux) dx ∧ dt

ω1 ∧ ω2 = (1− u)(η3 + 2ηu− 2ux)dx ∧ dt+ η(−uxx + ηux − η2u− 2u2 + η2 + 2u)dt ∧ dx
= (−2ux + 2uux + ηuxx− η2ux)dx ∧ dt

The structure equations will be satisfied if and only if

dω3 = ω1 ∧ ω2

(ut − uxxx +xx −η2ux − 4uux − 2ux) dx ∧ dt = (−2ux + 2uux + ηuxx− η2ux)dx ∧ dt
⇐⇒ ut − uxxx +xx −η2ux − 4uux − 2ux = −2ux + 2uux + ηuxx− η2ux

⇐⇒ ut = uxxx + 6uux

therefore, the last structure equation is satisfied if and only if u satisfies the KdV equation. We also check
the first two structure equations.

dω1 = (ut − uxxx + ηux − η2ux − 4uux + 2ux)dx ∧ dt

ω3 ∧ ω2 = (2ux + 2uux + ηuxx − η2ux)dx ∧ dt

dω1 = ω3 ∧ ω2 if and only if

ut − uxxx + ηux − η2ux − 4uux + 2ux = 2ux + 2uux + ηuxx − η2ux

⇐⇒ ut = uxxx + 6uux

the first structure equation is satisfied if and only if u is a solution of the KdV equation. Computing the
pieces of the second structure equation

dω2 = (2ηux − 2uxx)dx ∧ dt

ω1 ∧ ω3 = (−2uxx + 2ηux)dx ∧ dt

we see that the second structure equation is trivially satisfied. Therefore since there exists 1-forms that
satisfy the structure equations (3.1.2) on solutions u of the KdV equation, we satisfy definition 3.2.2 and
thus the KdV equation is a p.s.s. equation.
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There are many more examples in [1] of differential equations which describe p.s.s., many of these equa-
tions are well known, such as the Sine Gordon equation and the MKdV equation. Furthermore in [1], Chern
and Tenenblat introduce a variety of theorems that can help describe classes of evolution equations which
describe pseudo-spherical surfaces. Many papers since then use these theorems to write explicit formulas
for evolution equations which describe pseudo-spherical surfaces. In the later sections we will examine an
example from [5], this paper uses the theorems in [1] to classify some fifth order evolution equations which
describe a p.s.s.
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3.3 P.S.S. Equations and Conservation Laws

In [1], Chern and Tenenblat explain that a differential equation which describes a p.s.s. can give rise to
conservation laws. They use an algorithm that is further explained by Cavalcante and Tenenblat in [2] to
find such conservation laws. If we restrict to the case where the functions fab are analytic in η where η is
a parameter we can create an infinite sequence of conservation laws. In this section we will go through the
algorithm explained in [2] which gives rise to an infinite hierarchy of conservation laws.

Let M be a two dimensional Riemannian manifold with coordinates (x, t) and Gaussian curvature K = −1.
Let e1, e2 and v1, v2 be two orthonormal frame fields. Then

e1 = cosφv1 + sinφv2

e2 = − sinφv1 + cosφv2

(3.3.1)

where φ is the rotation angle of the frames. Suppose a differential equation for u(x, t) describes a p.s.s then
there exists differentiable functions fij , 1 ≤ i ≤ 3, 1 ≤ j such that the one forms

ωi = fi1dx+ fi2dt

satisfy the structure equations for a p.s.s.. These structure equations are satisfied if and only if

d(f11dx+ f12dt) = (f31dx+ f32dt) ∧ (f21dx+ f22dt)

(f12,x − f11,t) dx ∧ dt = (f31 · f22 − f21 · f32) dx ∧ dt
=⇒ f12,x − f11,t = f31 · f22 − f21 · f32

d(f21dx+ f22dt) = (f11dx+ f12dt) ∧ (f31dx+ f32dt)

=⇒ f22,x − f21,t = f11 · f32 − f31 · f12

d(f31dx+ f32dt) = (f11dx+ f12dt) ∧ (f21dx+ f22dt)

=⇒ f32,x − f31,t = f11 · f22 − f21 · f12.

(3.3.2)

We now have the proper set up we need to quote the main theorem from [2], that serves as the building
blocks to the algorithm which allows us to compute an infinite hierarchy of conservation laws. In particular
if we allow the differential functions fab to be analytic in a parameter η, a single conservation law is analytic
in η and thus every coefficient in the infinite series gives us a new conservation law.

Theorem 3.3.1. Let ∆[u] = 0 be a differential equation that describes a pseudo-spherical surface with
associated one forms

ω1 = f11dx+ f12dt

ω2 = f21dx+ f22dt

ω3 = f31dx+ f32dt

(3.3.3)

then, the following statements are true.

1. For every solution u(x, t) of the differential equation, the system of equations for φ(x, t)

φx = f31 + f11 sinφ+ f21 cosφ

φt = f32 + f12 sinφ+ f22 cosφ
(3.3.4)

is completely integrable.

2. For any solution φ of (3.3.4),

ω = (f11 cosφ− f21 sinφ)dx+ (f12 cosφ− f22 sinφ)dt (3.3.5)

is a closed one-form.
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3. If the fij ’s are analytic functions of a parameter η at zero, then the solutions φ(x, t, η) of (3.3.4) and
the one form ω are also analytic in η at zero.

Proof.
(1): To prove the system (3.3.4) is integrable, we need only show φt,x = φx,t in view of the Frobenius
theorem. Let us verify this.

φx,t = f31,t + f11,t sinφ+ f11 cosφ · φt + f21,t cosφ− f21 sinφ · φt
= f31,t + f11,t sinφ+ f21,t cosφ+ (f11 cosφ− f21 sinφ)(f32 + f12 sinφ+ f22 cosφ)

= f31,t − f13f21 + sinφ(f11,t − f21f32) + cosφ(f11f32 + f21,t) + cos2 φ(f11f22 + f21f12)

+ cosφ sinφ(f11f12 − f21f22)

φt,x = f32,x + f12,x sinφ+ f12 cosφ · φx + f22,x cosφ− f22 sinφ · φx
= f32,x + f12,x sinφ+ f22,x cosφ+ (f12 cosφ− f22 sinφ)(f31 + f11 sinφ+ f21 cosφ)

= f32,x − f11f22 + sinφ(f12,x − f22f31) + cosφ(f22,x + f12f31) + cos2 φ(f12f21 + f22f11)

+ sinφ cosφ(f12f11 − f22f21)

Here we make a substitution with some of the equations in (3.3.2) and we obtain

φt,x = f31,t − f12f21 + sinφ(f11,t − f21f32) + cosφ(f11f32 + f21,t) + + cos2 φ(f12f21 + f22f11)

+ sinφ cosφ(f12f11 − f22f21)

= φx,t

which tells us the system (3.3.4) is integrable.

(2): To show that ω is a closed one-form, we need to show d(ω) = 0.

d(ω) = (f11,t cosφ− f11 sinφ · φt − f21,tφ− f21 cosφ · φt) dt ∧ dx
+ (f12,x cosφ− f12 sinφ · φx − f22,x sinφ− f22 cosφ · φx) dx ∧ dt

= (f12,x cosφ− f12f31 sinφ− f12f11 sin2 φ− f12f21 sinφ cosφ− f22,x sinφ− f22f31 cosφ

− f22f11 cosφ sinφ− f22f21 cos2 φ− f11,t cosφ+ f11f32 sinφ+ f11f12 sin2 φ+ f11f22 cosφ sinφ

+ f21,t sinφ+ f21f32 cosφ+ f21f12 cosφ sinφ+ f21f22 cos2 φ) dx ∧ dt

=
(
f11f12 − f12f11 + cosφ(f12,x − f22f31 − f11,t + f21f32) + sinφ(f21,t + f11f32 − f22,x − f12f31)

cos2 φ(f12f11 − f22f21 − f11f12 + f21f22) + sinφ cosφ(f11f22 + f21f12 − f12f21 − f22f11)
)
dx ∧ dt

= 0

by substituting the equations in (3.3.2) when necessary. Thus ω is a closed one-form.

(3): Assume that the fij ’s are analytic functions of the parameter η at zero. Then, we can view the
equations in (3.3.4) as two ordinary differential equations whose right hand side is analytic in (φ, η). The
first part of the theorem says the solution φ(x, t, η) exists, therefore by theorem 8.4 in [6], which relates the
solutions of an ode to its parameters, we obtain that φ(x, t, η) is an analytic function in η for an appropriate
neighbourhood of zero. Since both φ and all the f ′ijs are analytic in η, it follows that ω is also analytic in η
at zero just by substituting the f ′ijs and φ with their respective power series.

Here is where idea of conservation laws come into play. Note that in the theorem above, the second
statement about ω being a closed one-form is equivalent to the statement

Dt(f11 cosφ− f21 sinφ) +Dx(f12 cosφ− f22 sinφ) = 0
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on all solutions φ of (3.3.4) and all solutions u(x, t) of our differential equation. Therefore this is a conser-
vation law for our differential equation ∆[u] = 0 that describes a p.s.s. We will assume that the functions
fij are analytic in η, then we can write out (3.3.4) and ω as a power series of η. This allows us to describe
the solutions φ as a power series of η and to define ω as a power series of η for which the coefficients are
conservation laws of our p.s.s. differential equation ∆ = 0. We will summarize this all in a corollary, but
first we introduce the notation used in [2] and do a few calculations to write φx, φt and ω as a power series
of η.

Since fij and φ are analytic in η we can write them both as

fij(x, t, η) =

∞∑
k=0

fkij(x, t)η
k φ(x, t, η) =

∞∑
j=0

φj(x, t)η
j . (3.3.6)

For fixed x, t, we consider the following functions of η.

C(η) = cos(φ) = cos
( ∞∑
j=0

φjη
j
)

S(η) = sin(φ) = sin
( ∞∑
j=0

φjη
j
) (3.3.7)

We evaluate these functions and their derivatives at η = 0.

C(0) = cos(φ0)

S(0) = sin(φ0)

dkC

dηk
(0) = −(k − 1)!

k−1∑
i=0

k − i
i!

diS

dηi
(0)φk−i

dkS

dηk
(0) = (k − 1)!

k−1∑
i=0

k − i
i!

diC

dηi
(0)φk−i

(3.3.8)

We write C(η) and S(η) as a Taylor series centered at η = 0 and then substitute this and the power series
of the fij ’s into the equations for φx and φt to write them as analytic functions at η = 0.

φx =

∞∑
k=0

fk31η
k +

( ∞∑
k=0

fk11η
k
)
·
( ∞∑
n=0

S(n)(0)

n!
ηn
)

+
( ∞∑
k=0

fk21η
k
)
·
( ∞∑
n=0

C(n)(0)

n!
ηn
)

=

∞∑
j=0

(
f j31 +

j∑
a=0

fa11

S(j−a)

(j − a)!
(0) +

j∑
a=0

fa21

C(j−a)

(j − a)!
(0)
)
· ηj

=⇒ φ0,x = f0
31 + f0

11S(0) + f0
21C(0)

and

φj,x = f j31 +

j∑
a=1

1

(j − a)!
[fa11S

(j−a)(0) + fa21C
(j−a)(0)] +

1

j!
· (j − 1)!

j−1∑
i=0

(j − i)
i!

[f0
11 · C(i)(0)− f0

21S
(i)(0)]φj−i

= f j31 +

j∑
a=1

1

(j − a)!
[fa11S

(j−a)(0) + fa21C
(j−a)(0)] + [f11C(0)− f21S(0)] · φj

+
1

j

j−1∑
i=i

(j − i)
i!

[f0
11 · C(i)(0)− f0

21S
(i)(0)]φj−i
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for j ≥ 1. If we repeat this process for φt we obtain

φt =

∞∑
k=0

fk32η
k +

( ∞∑
k=0

fk12η
k
)
·
( ∞∑
n=0

S(n)(0)

n!
ηn
)

+
( ∞∑
k=0

fk22η
k
)
·
( ∞∑
n=0

C(n)(0)

n!
ηn
)

=

∞∑
j=0

(
f j32 +

j∑
a=0

fa12

S(j−a)

(j − a)!
(0) +

j∑
a=0

fa22

C(j−a)

(j − a)!
(0)
)
· ηj

=⇒ φ0,t = f0
32 + f0

12S(0) + f0
22C(0)

and

φj,t = f j32 +

j∑
a=1

1

(j − a)!
[fa12S

(j−a)(0) + fa22C
(j−a)(0)] + [f12C(0)− f22S(0)] · φj

+
1

j

j−1∑
i=i

(j − i)
i!

[f0
12 · C(i)(0)− f0

22S
(i)(0)]φj−i

for j ≥ 1. If we do the same thing to the one-form ω we obtain

ω =
[( ∞∑

k=0

fk11η
k
)
·
( ∞∑
n=0

C(n)(0)

n!
ηn
)
−
( ∞∑
k=0

fk21η
k
)
·
( ∞∑
n=0

S(n)(0)

n!
ηn
)]
dx

+
[( ∞∑

k=0

fk12η
k
)
·
( ∞∑
n=0

C(n)(0)

n!
ηn
)
−
( ∞∑
k=0

fk22η
k
)
·
( ∞∑
n=0

S(n)(0)

n!
ηn
)]
dt

=
[ ∞∑
j=0

( j∑
i=0

1

(j − i)!

(
f i11C

(j−i)(0)− f i21S
(j−i)(0)

))
· ηj
]
dx

+
[ ∞∑
j=0

( j∑
i=0

1

(j − i)!

(
f i12C

(j−i)(0)− f i22S
(j−i)(0)

))
· ηj
]
dt

=

∞∑
j=0

( j∑
i=0

1

(j − i)!

([
f i11C

(j−i)(0)− f i21S
(j−i)(0)

]
dx+

[
f i12C

(j−i)(0)− f i22S
(j−i)(0)

]
dt
))
· ηj

=⇒ ωj =

j∑
i=0

1

(j − i)!

([
f i11C

(j−i)(0)− f i21S
(j−i)(0)

]
dx+

[
f i12C

(j−i)(0)− f i22S
(j−i)(0)

]
dt
)

and since ω is a closed one form, each of the coefficients ωj in the power series is also a closed one-form.
Before we summarize this all into a corollary, for the sake of efficiency we will define some functions to
represent pieces of the equations we computed above. In order to be cohesive, we use the same notation as
in [2] for this and we define

Hij
k = f i1k

dj−iC

dηj−i
(0)− f i2k

dj−iS

dηj−i
(0)

Lijk = f i1k
dj−iS

dηj−i
(0) + f i2k

dj−iC

dηj−i
(0)

F1k = f1
3k + L11

k

Flk = f l3k +
1

l
·
l−1∑
r=1

l − r
r!

H0r
k φl−r +

l∑
r=1

1

(l − r)!
Lrlk
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where i, j, l are non-negative integers such that j ≥ i, l ≥ 2 and k = 1, 2. Then

φ0,x = f0
31 + L00

1 and φ0,t = f0
32 + L00

2

φj,x = H00
1 φj + Fj1 and φj,t = H00

2 φj + Fj2

and

ωj =

j∑
i=0

1

(j − i)!
(Hij

i dx+Hij
2 dt).

We summarize this all in the following corollary which is quoted from [2].

Corollary 3.3.1. Let fij(x, t, η), 1 ≤ i ≤ 3, 1 ≤ j ≤ 2 be differentiable functions of x, t that are analytic
at η = 0 and satisfy the equations (3.3.2), then using the notation above, the following two statements are
true.

1. The solutions φ of (3.3.4) are analytic at η = 0 and φ0 is determined by

φ0,x = f0
31 + L00

1 and φ0,t = f0
32 + L00

2 (3.3.9)

and, for j ≥ 1, φj is recursively determined by

φj,x = H00
1 φj + Fj1 and φj,t = H00

2 φj + Fj2. (3.3.10)

2. For any solution φ and any integer j ≥ 0

ωj =

j∑
i=0

1

(j − i)!
(Hij

i dx+Hij
2 dt) (3.3.11)

is a closed one form.

If we have an evolution equation ∆[u] = 0 for which its solution u(x, t) is a p.s.s, and we let the fij ’s be
analytic functions of η, then the previous theorem and corollary say that ωj in (3.3.11) are closed one forms.
Therefore for each j, we obtain a conservation law for our evolution equation, where the conserved densities
and fluxes are given by

Dj =

j∑
i=0

1

(j − i)!
Hij

1 and Fj = −
j∑
i=0

1

(j − i)!
Hij

2

for j ≥ 0, thus giving us a infinite sequence of conservation laws.
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4 Classes of Pseudo-Spherical Surface Equations that are Multi-
Hamiltonian

4.1 A Quintic P.S.S. Equation that is Bi-Hamiltonian

In the previous sections we explained how using the algorithm in [2] allows us to create an infinite hierarchy
of conservation laws for a differential equation describing a p.s.s.. We also showed how differential equations
that have a bi-Hamiltonian structure can admit an infinite hierarchy of conservation laws. This begs the
question of whether there is a large class of p.s.s. equations that are bi-Hamiltonian. Throughout this thesis
we have followed the running example of the KdV equation. We saw that it is bi-Hamiltonian, and it is
also a p.s.s. equation. In this section we examine an example of a quintic p.s.s. equation from [5] that is
bi-Hamiltonian. We will apply the algorithm from [2] and the algorithm provided by Magri’s theorem to
determine an infinite hierarchy of conservation laws for the equation.

In this chapter we will interchangeably use two different kinds of notation for the partial derivatives of
u.

z0 = u, z0,t = ut, z1 =
∂u

∂x
, ...., zk =

∂ku

∂xk

The evolution equation

ut = uxxxxx − 5uuxxx − 10uxuxx +
15

2
u2ux (4.1.1)

obtained from [5] describes a pseudo-spherical surface. The associated 1-forms ωi = fi1dx + fi2dt for
1 ≤ i ≤ 3, are given by

f11 =
z0

2
+ 1 f21 = η 6= 0 f31 =

z0

2
− 1

f12 =
1

2

[
z4 − ηz3 + z2(−4z0 + η2 − 2)− 3z2

1 − ηz1(−3z0 + η2)− 2(
z0

2
+ 1)(−3

2
z2

0 + η2z0 − η4)
]

f22 = z3 − 3z0z1 + η2z1 − η(z2 −
3

2
z2

0 + η2z0 − η4)

f32 = f12 + 2z2 − 3z2
0 + 2η2z0 − 2η4.

where η is a parameter. This equation is example 2.8 from [5], which was obtained by using theorem 2.3
from [5]. This theorem proves that the equation (4.1.1) is a p.s.s equation. We will check that the one-forms
above satisfy the structure equations of a p.s.s.

dω1 =
[ d
dt

(f11)− d

dx
(f12)

]
dt ∧ dx

=
[
− 1

2
z0z3 +

3

2
z2

0z1 + z3 − 3z0z1 + η(
1

2
z4 −

3

2
z2

1 −
3

2
z0z2) + η2(−1

2
z3 + z0z1 + z1)

+
1

2
η3z2 −

1

2
η4z1

]
dt ∧ dx

ω3 ∧ ω2 =
[
f31 · f21 − f31 · f22

]
dt ∧ dx

=
[
− 1

2
z0z3 +

3

2
z2

0z1 + z3 − 3z0z1 + η(
1

2
z4 −

3

2
z2

1 −
3

2
z0z2) + η2(−1

2
z3 + z0z1 + z1)

+
1

2
η3z2 −

1

2
η4z1

]
dt ∧ dx

Therefore the first structure equation dω1 = ω3 ∧ ω2 is satisfied.
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dω2 =
[ d
dt

(f21)− d

dx
(f22)

]
dt ∧ dx

=
[
z4 − 3z2

1 − 3z0z2 + η(3z0z1 − z3) + η2z2 − η3z1

]
dx ∧ dt

ω1 ∧ ω3 =
[
f11 · f31 − f31 · f12

]
dx ∧ dt

=
[
z4 − 3z2

1 − 3z0z2 + η(3z0z1 − z3) + η2z2 − η3z1

]
dx ∧ dt

Therefore the second structure equation dω2 = ω1 ∧ ω3 is satisfied.

dω3 =
[ d
dt

(f31)− d

dx
(f32)

]
dt ∧ dx

=
[
− 1

2
z0z3 +

3

2
z2

0z1 + 3z0z1 − z3 + η(
1

2
z4 −

3

2
z2

1 −
3

2
z0z2) + η2(−1

2
z3 + z0z1 − z1)

+
1

2
η3z2 −

1

2
η4z1

]
dt ∧ dx

ω1 ∧ ω2 =
[
f12f21 − f11f22

]
dt ∧ dx

=
[
− 1

2
z0z3 +

3

2
z2

0z1 + 3z0z1 − z3 + η(
1

2
z4 −

3

2
z2

1 −
3

2
z0z2) + η2(−1

2
z3 + z0z1 − z1)

+
1

2
η3z2 −

1

2
η4z1

]
dt ∧ dx

Finally the last structure equation dω3 = ω1 ∧ ω2 6= 0 is satisfied.

The equation (4.1.1) has bi-Hamiltonian form

ut = DδH0 = E δH1

where

D = Dx , H0 =

∫ {5

8
u4 +

1

2
u2
xx +

5

2
uu2

x

}
dx

and,

E = D3
x − 2uDx − ux , H1 =

∫ {
− 1

2
u2
x −

1

2
u3
}
dx

with associated Poisson brackets

{P,Q}D =

∫
δP ·DxδQ dx

{P,Q}E =

∫
δP · (D3

x − 2uDx − ux)δQ dx

(4.1.2)

Proof.

δH0 =
5

2
u3 +

5

2
u2
x −Dx(5uux) +D2

x(uxx)

=
5

2
u3 − 5

2
u2
x − 5uuxx + uxxxx

DδH0 = Dx(δH0) = Dx(
5

2
u3 − 5

2
u2
x − 5uuxx + uxxxx)

=
15

2
u2ux − 10uxuxx − 5uuxxx + uxxxxx
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This is the left hand side of equation (4.1.1), thus ut = DδH0.

δH1 = −3

2
u2 −Dx(−ux)

= uxx −
3

2
u2

E δH1 = (D3
x − 2uDx − ux)(uxx −

3

2
u2)

= uxxxxx − 2uuxxx − uxuxx −D3
x(

3

2
u2) + 2uDx(

3

2
u2) +

3

2
u2ux

= uxxxxx − 5uuxxx − 10uxuxx +
15

2
u2ux

This is the left hand side of equation (4.1.1), thus ut = E δH1. In order to claim that this truly is a bi-
Hamiltonian system, we must show that the operators D and E are a Hamiltonian pair. We start by showing
that they are both Hamiltonian operators. As we mentioned in an earlier section this amounts to showing
that the operators are skew-adjoint and that the Jacobi identity is satisfied. We begin by showing they are
skew adjoint.

D = Dx then, D∗ = −Dx. =⇒ D∗ = −D

E = D3
x − 2uDx − ux then, E ∗(Q) = −D3

x(Q)−Dx(−2uQ)− uxQ
= −D3

x(Q) + 2uDx(Q) + 2uxQ− uxQ
= −D3

x(Q) + 2uDx(Q) + uxQ

Therefore E ∗ = −D3
x + 2uDx + ux =⇒ E ∗ = −E .

Now we must show that the Jacobi identity is satisfied for both operators. As we mentioned earlier this
amounts to showing

pr vDθ(ΘD) = 0 and pr vE θ(ΘE ) = 0

where

ΘD =
1

2

∫
{θ ∧Dθ} dx and ΘE =

1

2

∫
{θ ∧ E θ} dx.

Let us start with D = Dx.

D(θ) = Dx(θ) = θx =⇒ ΘD =
1

2

∫
{θ ∧ θx} dx

pr vDθ(ΘD) = pr vθx

(1

2

∫
{θ ∧ θx} dx

)
=

1

2

∫
pr vθx(θ ∧ θx) dx

= 0

We show the same is true for E = D3
x − 2uDx − ux.

E (θ) = θxxx − 2uθx − uxθ
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ΘE =
1

2

∫
{θ ∧ E θ} dx.

=
1

2

∫ {
θ ∧ (θxxx − 2uθx − uxθ)

}
dx

=
1

2

∫ {
θ ∧ θxxx − 2uθ ∧ θx

}
dx

pr vE θ(ΘE ) = pr vE θ

(1

2

∫
θ ∧ θxxx − 2uθ ∧ θx dx

)
=

1

2

∫
−2(E (θ)) ∧ θ ∧ θx dx

= −
∫
θxxx ∧ θ ∧ θx dx

= −
∫
θ ∧ θx ∧Dx(θxx) dx

=

∫
Dx(θ ∧ θx) ∧ θxx dx By integrating by parts.

=

∫ {
(θx ∧ θx + θ ∧ θxx) ∧ θxx

}
dx

= 0

We can conclude that both D and E are skew-adjoint and their Poisson brackets satisfy the Jacobi identity,
therefore they are both Hamiltonian operators. The last thing we must show is that D and E form a
Hamiltonian pair. To do this we need to show that

pr vDθ(ΘE ) + pr vE θ(ΘD) = 0.

pr vDθ(ΘE ) + pr vE θ(ΘD) = pr vDθ

(1

2

∫ {
θ ∧ θxxx − 2uθ ∧ θx

}
dx
)

+ pr vE θ

(1

2

∫
{θ ∧ θx} dx

)
= −

∫
D(θ) ∧ θ ∧ θx dx

= −
∫
θx ∧ θ ∧ θx dx

= 0

Therefore D and E form a Hamiltonian pair. We can now safely say that equation (4.1.1) is bi-Hamiltonian
and can be written in the form below.

ut = DδH0 = E δH1

Since D and E form a Hamiltonian pair, we can now create the recursion operator R = E D−1 and use
Magri’s theorem to compute an infinite hierarchy of conservation laws for (4.1.1). We will compute a few in
the next section.
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4.2 Calculation of Conservation Laws by the Method of Magri’s Theorem

In the previous section we saw that the equation

ut = uxxxxx − 5uuxxx − 10uxuxx +
15

2
u2ux

has a bi-Hamiltonian form
ut = DδH0 = E δH1

where

D = Dx and H0 =

∫ {5

8
u4 +

1

2
u2
xx +

5

2
uu2

x

}
dx

and

E = D3
x − 2uDx − ux and H1 =

∫ {
− 1

2
u2
x −

1

2
u3
}
dx.

We will now compute the recursion operator R = E D−1 and a few conservation laws for the system. To
begin the first conserved densities for the system are namely

H0 =

∫ {5

8
u4 +

1

2
u2
xx +

5

2
uu2

x

}
dx and H1 =

∫ {
− 1

2
u2
x −

1

2
u3
}
dx.

The recursion operator R = E D−1 is

R = E D−1 = (D3
x − 2uDx − ux)D−1

x = D2
x − uxD−1

x − 2u.

Now we can apply R successively to the left hand side of our equation to obtain new conservation laws. The
first step in this recursion is

ut = R(uxxxxx − 5uuxxx − 10uxuxx +
15

2
u2ux) = R(DδH0) = E D−1DδH0 = E δH0

E δH0 = (D3
x − 2uDx − ux)(

5

2
u3 − 5

2
u2
x − 5uuxx + uxxxx)

= D3
x(

5

2
u3 − 5

2
u2
x − 5uuxx + uxxxx)− 2uDx(

5

2
u3 − 5

2
u2
x − 5uuxx + uxxxx)

− 5

2
u3ux +

5

2
u3
x + 5uuxuxx − uxuxxxx

= uxxxxxxx +
35

2
u3
x + 70uuxuxx +

35

2
u2uxxx − 35uxxuxxx − 21uxuxxxx − 7uuxxxxx −

35

2
u3ux

According to Magri’s theorem we should be able to write E δH0 as DδH2 for some functional H2 ∈ F . We
claim that

ut = E δH0 = DδH2

where

H2 =

∫ {
− 1

2
u2
xxx −

35

4
u2u2

x +
7

2
uuxuxxx −

7

8
u5
}
dx.

δH2 =
7

2
uxuxxx −

35

2
uu2

x −
35

8
u4 −Dx(

7

2
uuxxx −

35

2
u2ux)−D3

x(
7

2
uux − uxxx)

= uxxxxxx +
35

2
uu2

x − 14uxuxxx − 7uuxxxx +
35

2
u2uxx −

21

2
u2
xx −

35

8
u4
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DδH2 = Dx(uxxxxxx +
35

2
uu2

x − 14uxuxxx − 7uuxxxx +
35

2
u2uxx −

21

2
u2
xx −

35

8
u4)

= uxxxxxxx +
35

2
u3
x + 35uuxuxx − 14uxxuxxx − 14uxuxxxx − 7uxuxxxx − 7uuxxxxx

+ 35uuxuxx +
35

2
u2uxxx − 21uxxuxxx −

35

2
u3ux

= uxxxxxxx +
35

2
u3
x + 70uuxuxx +

35

2
u2uxxx − 35uxxuxxx − 21uxuxxxx − 7uuxxxxx −

35

2
u3ux

= E δH0

Thus the first step of the recursion gives us

ut = E δH0 = DδH2

= uxxxxxxx +
35

2
u3
x + 70uuxuxx +

35

2
u2uxxx − 35uxxuxxx − 21uxuxxxx − 7uuxxxxx −

35

2
u3ux

with consequent conserved density

H2 =

∫ {
− 1

2
u2
xxx −

35

4
u2u2

x +
7

2
uuxuxxx −

7

8
u5
}
dx.

The next step would be to apply R to DδH2 and follow in the same fashion as we have above to obtain
another conserved density for the system. By Magri’s theorem, we know that we can recursively do this and
thus we obtain an infinite hierarchy of conservation laws for our equation.
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4.3 Calculation of Conservation Laws Using P.S.S. algorithm

Given a p.s.s. equation, we can use the algorithm in [1] and [2] to compute an infinite hierarchy of conservation
laws. The equation we gave in the previous two subsections is a p.s.s. equation, thus we will use this algorithm
to compute a few of the conserved densities. Recall our equation

ut = uxxxxx − 5uuxxx − 10uxuxx +
15

2
u2ux

we rewrite it as

z0,t = z5 − 5z0z3 − 10z1z2 +
15

2
z2

0z1

and its associated 1-forms ωi = fi1dx+ fi2dt for 1 ≤ i ≤ 3.

f11 =
z0

2
+ 1 f21 = η 6= 0 f31 =

z0

2
− 1

f12 =
1

2

[
z4 − ηz3 + z2(−4z0 + η2 − 2)− 3z2

1 − ηz1(−3z0 + η2)− 2(
z0

2
+ 1)(−3

2
z2

0 + η2z0 − η4)
]

=
1

2
z4 − 2z0z2 − z2 −

3

2
z2

1 +
3

4
z3

0 +
3

2
z2

0 + η(−1

2
z3 +

3

2
z0z1) + η2(

1

2
z2 −

1

2
z2

0 − z0) + η3(−1

2
z1)

+ η4(
1

2
z0 + 1)

f22 = z3 − 3z0z1 + η2z1 − η(z2 −
3

2
z2

0 + η2z0 − η4)

= z3 − 3z0z1 + η(
3

2
z2

0 − z2) + η2z1 + η3(−z0) + η5

f32 = f12 + 2z2 − 3z2
0 + 2η2z0 − 2η4

=
1

2
z4 − 2z0z2 + z2 −

3

2
z2

1 +
3

4
z3

0 −
3

2
z2

0 + η(−1

2
z3 +

3

2
z0z1) + η2(

1

2
z2 −

1

2
z2

0 + z0) + η3(−1

2
z1)

+ η4(
1

2
z0 − 1)

Since these are all analytic in η we can apply the algorithm in [2] to find the conserved densities. Recall the
algorithm from the earlier section. Suppose we have two orthonormal frames for our surface, then recall φ
is the rotation angle of the frames. Recall φ and the fij ’s are analytic in η so

fij(x, t, η) =

∞∑
k=0

fkij(x, t)η
k and φ(x, t, η) =

∞∑
j=0

φj(x, t)η
j .

Now we recall all the pieces of the algorithm. For fixed x, t

C(η) = cos(φ) = cos
( ∞∑
j=0

φj(x, t)η
j
)

and S(η) = sin(φ) = sin
( ∞∑
j=0

φj(x, t)η
j
)

C(0) = cos(φ0) and S(0) = sin(φ0)

dkC

dηk
(0) = −(k − 1)!

k−1∑
i=0

k − i
i!

diS

dηi
(0)φk−i

dkS

dηk
(0) = (k − 1)!

k−1∑
i=0

k − i
i!

diC

dηi
(0)φk−i

for k ≥ 1, and,
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Hij
k = f i1k

dj−iC

dηj−i
(0)− f i2k

dj−iS

dηj−i
(0)

Lijk = f i1k
dj−iS

dηj−i
(0) + f i2k

dj−iC

dηj−i
(0)

F1k = f1
3k + L11

k

Flk = f l3k +
1

l

l−1∑
r=1

l − r
r!

H0r
k φl−r +

l∑
r=1

1

(l − r)!
Lrlk

where i, j, l are non-negative integers such that j ≥ i, l ≥ 2 and k = 1, 2. φ0 is determined by

φ0,x = f0
31 + L00

1 and φ0,t = f0
32 + L00

2

and, for j ≥ 1, φj is recursively defined by

φj,x = H00
1 φj + Fj1 and φj,t = H00

2 φj + Fj2.

Lastly the conserved densities and fluxes are given by

Dj =

j∑
i=0

1

(j − i)!
Hij

1 and Fj = −
j∑
i=0

1

(j − i)!
Hij

2

for j ≥ 0.

We will use the above algorithm to compute a few of the conserved densities for our equation (4.1.1).

φ0,x = f0
31 + L00

1

= f0
31 + f0

11S(0) + f0
21C(0)

=
z0

2
− 1 + (

z0

2
+ 1) sin(φ0)

φ0,t = f0
32 + L00

2

= f0
32 + f0

12S(0) + f0
22C(0)

=
1

2
z4 − 2z0z2 + z2 −

3

2
z2

1 +
3

4
z3

0 −
3

2
z2

0 + sin(φ0)(
1

2
z4 − 2z0z2 − z2 −

3

2
z2

1 +
3

4
z3

0 +
3

2
z2

0)

+ cos(φ0)(z3 − 3z0z1)

For j ≥ 1,

φj,x = H00
1 φj + Fj1

=
(z0

2
+ 1
)

cos(φ0) · φj + f j31 +
1

j!

j−1∑
r=1

[(z0

2
+ 1
)
· j − r

r!
· d

rC

dηr
(0) · φj−r

]
+

1

(j − 1)!
· d

j−1C

dηj−1
(0)

φj,t = H00
2 φj + Fj2

=
[(1

2
z4 − 2z0z2 − z2 −

3

2
z2

1 +
3

4
z3

0 +
3

2
z2

0

)
cos(φ0)−

(
z3 − 3z0z1

)
sin(φ0)

]
φj + f j31

+
1

j

j−1∑
r=1

j − r
r!

[(1

2
z4 − 2z0z2 − z2 −

3

2
z2

1 +
3

4
z3

0 +
3

2
z2

0

)drC
dηr

(0)−
(
z3 − 3z0z1

)drS
dηr

(0)
]
φj−r

+

j∑
r=1

[
fr12

dj−rS

dηj−r
(0) + fr22

dj−rC

dηj−r
(0)
]
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These equations make it quite difficult to solve for φ0 or φj for any j ≥ 1. However we know a solution
exists by the Frobenius theorem, this was proved in section 3.3. The first few terms in the sequence of
conserved densities for (4.1.1) using the algorithm are given by

D0 = H00
1

= f0
11C(0)− f0

21S(0)

= (
z0

2
+ 1) cos(φ0)

D1 = H01
1 +H11

1

= f0
11

d1C

dη1
(0)− f0

21

d1S

dη1
(0) + f1

11C(0)− f1
21S(0)

= (
z0

2
+ 1)(−S(0)φ1)− sin(φ0)

= − sin(φ0)(1 +
1

2
z0φ1 + φ1)

D2 =
1

2
H02

1 +H12
1 +H22

1

=
1

2
f0

11

d2C

dη2
(0)− 1

2
f0

21

d2S

dη2
(0) + f1

11

d1C

dη1
(0)− f1

21

d1S

dη1
(0) + f2

11C(0)− f2
21S(0)

=
1

2
(
z0

2
+ 1)

d2C

dη2
(0)− d1S

dη1
(0)

=
1

2
(
z0

2
+ 1)(−2 sin(φ0)φ2 + φ2

1 cos(φ0))− cos(φ0)φ1.

To check that these are indeed conserved densities for our equation (4.1.1), we need to check that they satisfy

Dt(Dj) +Dx(Fj) = 0 j = 0, 1, 2...

for all solutions u where Fj is the respective conserved flux from the algorithm in [2] shown above. We omit
this since we proved this condition is true in general in the previous chapter. What is more interesting is
whether or not the conservation laws computed using this algorithm from [2] are the same as the conservation
laws we computed in the previous subsection using Magri’s theorem. If we could have solved the earlier
equations for φ0 or φ1 in closed form, then we might have been able to determine if this is true. However
the Frobenius Theorem that we applied to the system of first-order pdes governing φ0 and φ1 is an existence
theorem rather than a method for obtaining closed form solutions. Such solutions are generally very rare
and difficult to obtain. Furthermore, since there is potential for an enormous amount of conservation laws
for some evolution equations the chance that these conservation laws are the same is probably quite low.
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5 Perspectives

Up until this point, we have only considered evolution equations whose solutions are smooth real valued
functions. If we loosen our restrictions and consider evolution equations whose solutions are smooth complex
valued functions we can actually apply the algorithm from [2] to evolution equations describing spherical-
surfaces, that is surfaces of Gaussian curvature K = −1. This is exactly what the authors in [9] did and
thus we quote their definition below.

Definition 5.0.1. A complex evolution equation for q(x, t), or equivalently a system of evolution equations
for real valued functions u(x, t) and v(x, t) describe pseudo-spherical surfaces (respectively spherical-surfaces)
if and only if there exists smooth real valued functions fab, 1 ≤ a ≤ 3, 1 ≤ b ≤ 2 depending only on u, v and
their derivatives, such that the one-forms ωa = fa1dx+ fa2dt, a = 1, 2, 3 satisfy the relations

dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 = cω1 ∧ ω2 6= 0 (5.0.1)

where c = 1 (respectively c = −1).

For example in [9] the authors consider the non-linear Schrödinger equation

iqt + qxx + 2k|q|2q = 0

where k is a real constant. This equation can be written in real form using two evolution equations

ut + vxx + 2k(u2 + v2)v = 0

−vt + uxx + 2k(u2 + v2)u = 0

when q = u+ iv. For k = 1 this system describes spherical-surfaces with associated one-forms:

ω1 = (2v)dx+ (−4ηv + 2ux)dt,

ω2 = (2η)dx+ (−4η2 + 2u2 + 2v2)dt,

ω3 = (−2u)dx+ (4ηu+ 2vx)dt.

where η is a real parameter (which can be interpreted as a spectral parameter in the method of inverse
scattering).

The class of evolution equations that describe a s.s. arise by generalizing the following set of inte-
grability conditions satisfied by the forms ω1, ω2, ω3 that satisfy the structure equations of a p.s.s.. Indeed
the structure equations (3.1.2) are equivalent to the integrability of the linear system

da =
(

Ω(c=1)

)
a (5.0.2)

where a is a vector valued function and Ω(c=1) is the real valued traceless matrix of one-forms

Ω(c=1) =
1

2

[
ω2 ω1 − ω3

ω1 + ω3 −ω2

]
.

If we allow for complex evolution equations, then the linear system (5.0.2) can alternatively depend on the
complex valued traceless matrix of one-forms

Ω(c=−1) =
1

2

[
iω2 ω1 + iω3

−ω1 + iω3 −iω2

]
and the linear system (5.0.2) extends to either of the linear systems

da =
(

Ω(c=±1)

)
a

whose integrability conditions
dΩ(c=±1) − Ω(c=±1) ∧ Ω(c=±1) = 0
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determine a pseudo-spherical surface if the relations (5.0.1) are satisfied for c = 1 and a spherical-surface if
they are satisfied for c = −1. This reflects in part the work of Ablowitz, Kaup, Newell and Segur in [12].

In [9] the authors build upon the work of Chern and Tenenblat in [1] and provide theorems for clas-
sifying systems of evolution equations of two real functions

z0,t = F (z0, ..., zk, y0, ..., yr)

y0,t = G(z0, ..., zk, y0, ..., yr)

that describe pseudo-spherical and spherical-surfaces. This categorizes systems of two evolution equations
describing surfaces with constant non-zero Gaussian curvature. In [10] the authors further expand the
work done in [9] by looking at evolution equations that describe 3-dimensional hyperbolic space (see [10]
for the definitions of these classes of equations). They examine the non-linear Schrödinger equations in
(2+1)-dimensions

iqt + qxy ± 2q∂−1
x ∂y|q|2 = 0

and use a geometric approach in a similar manner as Cavalcante and Tenenblat did in [2] to give rise to an infi-
nite sequence of conservation laws. This naturally begs the question of the overlap between these new classes
of differential equations admitting new conservation laws and the existance of a multi-Hamiltonian structure.

In this thesis we only focused on a single evolution equation, but recall our definitions for Hamilto-
nian structures included systems of evolution equations. Thus it would be very interesting to explore these
papers and ideas more to see if these classes of systems of evolution equations admit some Hamiltonian
structure.

Finally in [11] Krichever and Phong provide a construction for the symplectic form which arises in
the solutions of both the N = 2 supersymmetric Yang-Mills theories and soliton equations. They show that
the reductions of N = 2 supersymmetric gauge theory provide the Poisson brackets for a set of partial differ-
ential equations, many of which describe pseudo-spherical surfaces. An interesting avenue to explore would
be to see if there is a more precise link between the class of evolution equations describing pseudo-spherical
surfaces and the geometric framework of Krichever and Phong.
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