
Iterated Medial Triangle Subdivision
in Surfaces of Constant Curvature

Florestan Brunck

Department of Mathematics & Statistics

McGill University, Montreal

July 2021

A thesis submitted to McGill University in
partial fulfilment of the requirement of

the degree of Masters of Science

©Florestan Brunck



Abstract

Consider a geodesic triangle on a surface of constant curvature and subdivide it recursively

into 4 triangles by joining the midpoints of its edges. We show the existence of a uniform

δ ą 0 such that, at any step of the subdivision, all the triangle angles lie in the interval

pδ, π´ δq. Additionally, we exhibit stabilising behaviours for both angles and lengths as this

subdivision progresses.
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Abrégé

Considérons un triangle géodésique sur une surface de courbure constante et subdivisons-le

de manière récursive en 4 triangles en joignant les milieux de ses arêtes. On montre alors

l’existence d’un δ ą 0 uniforme tel que, à n’importe quelle étape de la subdivision, tous les

angles des triangles de la subdivision appartiennent à l’interval pδ, π´ δq. De plus, on étudie

le comportement et la stabilisation des angles ainsi que des longueurs quand la subdivision

progresse.
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Chapter 1

Introduction

In this section, we motivate the study of this subdivision in a non-Euclidean setting, introduce

some notation, and state our main results.

We first define what we call the iterated medial triangle subdivision (see Figure 1.1). In

our setting, all geodesics will be taken to be minimal. A geodesic triangle T in the surface

M2
κ of constant curvature κ is defined as a triple of points of M2

κ , together with a choice

of three geodesic segments joining each pair of points. If κ ď 0, M2
κ is uniquely geodesic

and any triple of points defines a unique geodesic triangle. If κ ą 0 however, there exists

a unique geodesic between two points if and only if the distance between them is strictly

less than π?
κ

([BH99]). For our subdivision to be well-defined in the positive curvature case,

we then require the three vertices of our triangle to lie in the same open hemisphere (the

largest uniquely geodesic convex set in M2
κ , see [BH99]). Equivalently, we could require the

perimeter of our triangles to be strictly less than 2π. In the positive curvature setting, we

shall then understand the meaning of “geodesic triangle” to include these restrictions on the

possible triples of points. For all κ, we define the iterated medial triangle subdivision of

a geodesic triangle T Ă M2
κ inductively, as the following sequence T0, T1, T2, . . . of refining

triangulations:

• T0 “ T
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• Tn`1 is obtained from Tn by adding the midpoints of the edges of Tn and, within each

triangle of Tn, pairwise connecting its 3 midpoints by geodesic segments (this creates

4 new sub-triangles for each triangle of Tn).

Figure 1.1: The first two medial triangle subdivisions of a triangle in H2, E2 and S2.

Our main work is to show that this elementary subdivision behaves “nicely” with respect

to both lengths and angles, in a sense made precise by our three main theorems, A, B and

C. Before stating our theorems, we point out that it is enough to prove each theorem in the

specific case where κ “ ˘1. The general case can be reduced to the previous one by rescaling

the spherical/hyperbolic metric by a constant |κ|´
1
2 . Indeed, doing so the curvature becomes

κ, but angles are not affected.

Theorem A. For any geodesic triangle T in M2
κ , there exists δ ą 0 such that, for all n, all

the angles of Tn lie in the interval pδ, π ´ δq.

This theorem will be derived as an immediate consequence of our Theorem B. However,

we point out to the reader that Theorem A does not require the full strength of Theorem B

and can be obtained through a faster route (see Remark 5.0.2). Before stating our remaining

theorems, we first need to introduce some notation to make clear the statements of Theorems

B and C.

To fix our notation, we will consider a sequence of nested triangles t0, t1, . . . with

ti P Ti, i P N, such that tn`1 is one of the 4 triangles of the medial triangle subdivision
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of tn. We name the sides of t0 as a0, b0, and c0 and use the following notation scheme, by

analogy with the Euclidean case (c.f. Figure 1.2):

(a) If tn`1 is obtained as the innermost triangle in the medial decomposition of tn (as seen

on the left diagram), then we name each of its edges according to the only edge of tn it

does not intersect, e.g. an`1 denotes the side of tn`1 not intersecting an. In this case,

we call an`1 the parallel side of an in tn`1.

(b) If tn`1 is obtained from tn as one of the three outer triangles of the medial subdivision

(as seen on the right diagram), then two of its sides are contained in tn. Those sides

inherit their letter from the associated side in tn, e.g. the side of tn`1 contained in the

side labelled an of tn is named an`1. The remaining side of tn is to be named according

to the convention of case (a).

As for angles, αn (resp. βn, γnq will denote the angle opposite an (resp. bn, cn).

Figure 1.2: Case (a) on the left and (b) on the right. In both cases tn is the outer triangle and
the nested triangle tn`1 is highlighted in grey.

Theorem B. For any sequence of nested triangles t0, t1, . . . and for all n P N, there exists

lα, Lα ą 0 such that:

α0 ¨ lα ă αn ă α0 ¨ Lα
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In addition, lα (resp. Lα) approaches 1 from below (resp. above) as all the side lengths of t0

become smaller.

This theorem itself will be obtained as a consequence of Theorem C and a similar state-

ment regarding the heights of triangles in our triangulations (Proposition 4.0.1).

Theorem C. For any sequence of nested triangles t0, t1, . . . and for all n P N, there exists

la, La ą 0 such that:

a0 ¨ la ď 2n ¨ an ď a0 (Hyperbolic geometry)

a0 ď 2n ¨ an ď a0 ¨ La (Spherical geometry)

In addition, in the non-trivial cases where there exists at least some integer n P N such that

an`1 is obtained as the parallel side of an in tn`1, the inequalities are strict and la (resp. La)

approaches 1 from below (resp. above) in the hyperbolic (resp. spherical) setting as all the

side lengths of t0 become smaller.

In addition to bringing light on a very natural and elementary object, the study of the

medial triangle subdivision in the non-Euclidean setting is motivated by our ongoing work

on acute triangulations of Riemannian triangle complexes. A Riemannian triangle complex

is a 2-dimensional simplicial complex in which each simplex is given its own individual Rie-

mannian metric. While acute triangulations have been extensively studied in the Euclidean

planar setting, the only existing result in the Riemannian setting is a highly non-constructive

existence result for 2-dimensional Riemannian manifolds ([CdVM90]). Even in the constant

curvature setting, it is currently unknown whether complexes of spherical or hyperbolic poly-

gons can be acutely triangulated or not. In a follow-up article, we will lay out a constructive

existence result for the class of spherical and hyperbolic triangle complexes with finite isom-

etry types. Our methods will exploit Theorem A to explicitly transport a new particular

Euclidean acute triangulation scheme due to Chris Bishop ([Bis21]) onto a fine enough me-

dial triangle subdivision of the triangle complex to control the angle distortion occurring

during the transport (Fig. 1.3 illustrates this heuristic for a hyperbolic triangle complex).
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Figure 1.3

Before we proceed with the proof, we provide examples to convince the reader of the

unusual behaviours exhibited by the medial triangle subdivision in the non-Euclidean cases.

Indeed, in the Euclidean case, this subdivision yields 4 congruent triangles that are obtained

from the original one by a similarity with scale factor one half. Therefore each iteration

preserves the angles and halves the lengths, making our results trivial remarks. However,

in the presence of non-zero curvature, the situation is not so straightforward. In fact, as we

set off to showcase, a surprising fact about this subdivision in curved spaces is that a single

step of the subdivision can be “arbitrarily degenerate”. This should make our result perhaps

slightly more surprising to the reader.
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Chapter 2

Examples

Example 1. We first show how to construct a family of triangles for which the ratio α1{α0

is unbounded (for one of the 4 possible choices of α1). More strikingly, α0 can be taken

arbitrarily small and α1 arbitrarily close to π. Consider the following example of an isosceles

triangle t0 in the hyperbolic plane (seen in the Poincaré disk model on Figure 2.1). We label

its vertices A,B,C and its midpoints D,E, F , as indicated on the figure. In the Euclidean

case, the angle α0 and α1 would be equal. Here however, fixing A, we can extend the geodesic

segment BC to a line and have the points B and C move further apart from each other at

equal speed on this line. Doing so will drag the midpoints F and E arbitrarily close to B and

C (in the Euclidean metric), making the angle α1 arbitrarily close to π. This construction

is valid for any choice of A, and in particular we can choose A to be arbitrarily close to the

boundary, making the angle α0 arbitrarily close to 0.
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Figure 2.1

Example 2. The second surprising phenomenon about the medial triangle subdivision in

non-Euclidean geometries is that its behaviour with respect to the angles depends on the

initial triangle, namely: in certain triangles it will increase the corresponding angles while

it will decrease it in others. To showcase this behaviour, we will provide a quantitative geo-

metric criterion for isosceles triangles to exhibit either one behaviour or the other. Consider

an isosceles triangle with vertices A,B,C and sides of length 2a and 2b (see Figure 2.2). Let

D,E, F be the midpoints of the sides BC,CA and AB. Let Q be the point of intersection

of the geodesic segments FE and AD; let α, β, α1, β1 be the angles described on Figure 2.2.

By symmetry, the triangle DCA has a right angle at D. For the same reason, DEQ has

a right angle at Q. Let u denote the length of the geodesic segment DE and h that of the

segment DA. Hyperbolic trigonometry identities ([Thu97], p81) in the right-angled triangle

DEQ give us:

cot β1 cotα1 “ coshu (1)
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Likewise, the hyperbolic sine rule in the triangles DCE and DEA give us the two iden-

tities:

sin β

sinhu
“

sinpπ
2
´ α1q

sinh a
“

cosα1

sinh a

sinα

sinhu
“

sinα1

sinh a

which, combined, give us:

tanα1 “
sinα

sin β
(2)

Show SVG Down
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Show SVG Downl

Figure 2.2

Finally, the dual hyperbolic cosine rule ([Thu97]) applied to the triangle DBC informs

us that:

cos β “ sinα sin
π

2
coshh´ cos

π

2
cosα “ sinα coshh (3)

We are looking for a condition on the isosceles triangle ABC to ensure that either β1 ą β

or its converse is true, or equivalently that tan β1 ą tan β or otherwise. Combining equations

(1), (2) and (3), we obtain:
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tan β1 ą tan β ðñ

ˆ

sinα

sin β
coshu

˙´1

ą
sin β

cos β
ðñ coshh ą coshu

There are thus two distinct and opposite scenarios possible, in which either:

• u ą h, in which case the medial subdivision produces a smaller angle, i.e. β1 ă β (left

diagram of Figure 2.3 shows an example in the Poincaré disk model).

• u ă h, in which case the medial subdivision produces a larger angle, i.e. β1 ą β (right

diagram of Figure 2.3).

Figure 2.3

Remark 2.0.1. The exact same reasoning works transposed in the spherical setting but

yields the opposite inequalities and behaviours, namely the two cases on Fig. 2.3 are re-

versed. This is because equalities (2),(3) and (1) all remain the same with regular sines and

cosines instead of their hyperbolic counterpart. The two scenarios previously highlighted are

however to be swapped, since the cosine function is decreasing on the interval r0, πs, while

the hyperbolic cosine function is increasing on that same interval.

To briefly address how the subdivision behaves with respect to lengths, we provide two

particularly striking examples in the spherical case.
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Example 3. We first show that, for certain spherical triangles, lengths can be arbitrarily

distorted by the medial subdivision. Consider a spherical isosceles triangle ABC, with right

angle at A and equal sides |AB| “ |AC|. As B and C approach the antipodal point of A,

|BC| becomes arbitrarily small, while |EF | will approach a quarter of the equatorial circle

between those two poles. In that sense, the spherical upper bound of Theorem B should

perhaps appear less natural, as we can create triangles in which one of the sides will have

its corresponding side in the next step of the medial triangle subdivision arbitrarily larger.

Figure 2.4

Example 4. Lastly, we provide an example to show that, for any ε ą 0 and for any given

N P N, we can find a triangle T ε0 for which every edge of T εN lies in the ε-neighbourhood of

the union of the sides of T ε0 . Moreover, diampT εNq ą
π
2
. We first remark, that, while our

subdivision is not defined for a triangle on the equator circle, one can nevertheless imagine

what the subdivision would resemble in the case where the three vertices A, B and C are

equidistributed on the equator, as there is still a unique geodesic between all midpoints in

this case. It is easy to see that taking the midpoints of this triangle gives another triple of

points of the equator which are also equidistributed. By continuity, if we consider a triangle

T ε0 whose vertices are all equidistributed on a latitude circle close to the equator and let its

vertices approach A, B and C respectively, we see that its midpoints will also stay close to
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the midpoints of ABC. By induction, for any finite number N of subdivisions and any ε ą 0,

choosing T ε0 to lie on a latitude circle sufficiently close to the equator then guarantees that

all edges of T εN remain within the ε-neighbourhood of the union of the sides of T ε0 . Because

of this, it is clear that for ε sufficiently small, diampT εNq ą
π
2
.

Figure 2.5: This figure illustrates Example 4, with the hatched annulus corresponding to the
ε-neighbourhood of the union of the sides of T0 and N “ 3. Smaller values of ε and larger values

of N are achieved by choosing the vertices of T0 closer to those of ABC.
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Chapter 3

Stabilisation of Lengths

Despite the various unusual behaviours showcased by our previous examples, we claim that

as n grows, the refining triangulations eventually “stabilise” to the limiting Euclidean case,

in the sense of Theorem B and Theorem C. In this section, we establish our notation and

focus on the behaviour of the edge-lengths of the subdivision. The core of this section is our

proof of Theorem C, which gives a precise sense to the “stabilisation of lengths” observed

in the medial triangle subdivision. Theorem C will also play a crucial part in our proofs of

Proposition 4.0.1 and Theorems A and B.

While the study of the behaviour of the heights in the subdivision is delayed to Section

4, the constructions used towards the proof of Theorem C rely heavily on taking orthogonal

projections and measuring heights. We thus begin by making clear the meaning of “height”

in the positive curvature setting. Indeed, while there is a unique orthogonal projection from

any point to any line in the non-positive curvature setting, the situation is slightly more

subtle in the spherical case. In the spherical setting, if we fix a point p and a great circle C,

there are two possible cases, depending on whether p is a pole of the sphere for C considered

to be the equator circle. If it is not (left diagram of Fig. 3.1), there is a unique geodesic arc

which realises the distance of p to C. This arc is what we refer to as the altitude drawn from

p onto C and we call its length the height of p to C. The point of intersection between this
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arc and C is referred to as the orthogonal projection of p onto C. Note that, in this case, the

height is always strictly less than π
2
. If p is a pole of the sphere for C considered to be the

equator circle (right diagram of Fig. 3.1), the height of p to C is defined to be equal to π
2
,

while both the altitude from p to C and its orthogonal projection on C are undefined. Notice

that in both cases, the height is the minimal distance from p to any point on the line C.

Fortunately, all our proofs relying on altitudes and orthogonal projections will take place in

a setting where the distance between any two points is strictly less than π
2
, therefore ensuring

the second case where p is a pole with respect to the equator circle C cannot happen.

Figure 3.1: A point on the sphere has either two (left diagram) or uncountably many (right
diagram) orthogonal projections to a line.

We begin by stating the following lemma:

Lemma 3.0.1. For any sequence of nested triangles t0, t1, . . ., and for all n P N, the following

inequalities hold:

an`1 ď
an
2

(Hyperbolic geometry)

an`1 ě
an
2

(Spherical geometry)

(and similarly for bn`1 and cn`1). The inequalities are strict when an`1 is obtained as the

parallel side of an in tn`1.

Proof. The two cases where an`1 is contained in an are trivial. The only case of interest is

thus when an`1 is obtained as the parallel side of an in tn`1. In that case, it is a consequence
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of the observation that the hyperbolic plane (resp. the Euclidean plane) is a CAT(-1) space

(resp. a CAT(0) space), and thus also CAT(0) space (resp. a CAT(1) space) ([BH99, II.1.13]).

The lemma follows directly from the CAT(κ) inequality.

While this observation is a well known fact, a later construction of ours will provide an

elegant alternative proof of Lemma 3.0.1 later on in this section, see Remark 3.0.8 in our

proof of Theorem C.

Lemma 3.0.2. In the spherical case, there exists an integer N and a positive constant C ă 2

depending only on t0, such that, for all n ą N , we have an`1 ď C an
2
.

We now note that Lemma 3.0.2 clearly holds in the hyperbolic case because of Lemma

3.0.1, choosing C “ 1 and N “ 0 in the statement. But we also wish to establish an upper

bound in the spherical case. For that purpose, we will think of a geodesic triangle T on the

sphere as a Jordan curve and define its interior as the connected component of S2 ´ T that

is contained in the open hemisphere containing T .

Lemma 3.0.3. Given a geodesic c : r0, ls Ñ S2 joining two points u “ cp0q and v “ cplq on

a geodesic triangle T , the restriction of c to the open interval p0, lq lies in the interior of T .

Proof. To fix the notation, PQR will denote a geodesic triangle and X, Y, Z the midpoints

of its three edges QR, RP and PQ. Note that we have that dS2pX,Y q ă π and likewise for the

other two pairs. There is then a unique minimal arc joining joining X and Y and this arc is

the intersection of S2 with the positive cone in E3 spanned by X and Y , seen as unit vectors

in E3. Thus all the points of this geodesic arc are of the form xX ` yY , with x, y ě 0 and

x ` y ą 1. Since X is the midpoint of QR, it can be expressed as λpQ ` Rq, with λ ą 1
2
.

Likewise Y can be expressed as µpP `Rq, µ ą 1
2
. This shows that each point on the geodesic

segment joining X and Y can be written as a sum xλpP `Qq` yµpQ`Rq “ αP `βQ` γR

with α` β` γ ą 1 and α, β, γ ě 0. The entire geodesic segment thus lies in the intersection

between the positive cone in E3 spanned by P,Q and R and S2 and is thus contained within
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the triangle PQR. For any points of the geodesic distinct from X and Y , we have α, β, γ ą 0,

which shows that these points lie in the interior of the triangle PQR.

We shall now need the following important lemma to prove Lemma 3.0.2:

Lemma 3.0.4. For all ε ą 0, there exists N P N such that all the edge-lengths of tn, for

n ą N , are smaller than ε.

We point out here that this is still a weaker statement than that of Lemma 3.0.2,

which tells us that any sequence of edge lengths panqnPN not only converges to 0 but is also

bounded above by a geometric sequence.

Proof. Given a sequence of nested triangles t0, t1, . . ., we define the sequences of points

pAnqnPN, pBnqnPN and pCnqnPN consisting, for each n, of the vertices of tn incident to the

angles αn, βn and γn respectively. In our setting, t0 is a closed compact subset of the open

hemisphere, thus each of the three sequences pAnq, pBnq and pCnq have subsequences pAnkq,

pBnkq and pCnkq converging to A, B and C respectively, with all three points lying in t0 (by

Lemma 3.0.3).

Figure 3.2
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Suppose now by contradiction that the sequences pAnkq, pBnkq and pCnkq do not converge

to the same point. There are two possible cases.

Case 1: A ‰ B ‰ C. Lemma 3.0.3 guarantees that the vertices of T “ ABC and the

innermost triangle T 1 of T in the medial triangle subdivision form two disjoint closed sets.

Denote then by d the minimum of the three distances between T 1 and each of the points A, B

and C. Then the d{2-neighbourhoods of A and T 1 are disjoint (likewise for B and C). Since

geodesics between any two points of the open hemisphere are unique and continuous with

respect to their endpoints, we have that there exists N such that the d{2-neighbourhood

of each edge in the medial triangle subdivision of T contains the corresponding edge of

AnNBnNCnN (see Fig. 3.2). Assuming that tnN`1 is the innermost triangle of tnN , we can

then guarantee that A and tnpN`1q
are disjoint. But this is impossible as A lies in tnpN`1q

. If

instead tnN`1 were not the innermost triangle but (for example) the triangle BnN`1AnNCnN`1

(the bottom-left triangle on Fig. 10), then we could now guarantee that B (or C) and tnpN`1q

are disjoint. This is again impossible as B (and C) lies in tnpN`1q
. The other two cases are

dealt with in the exact same fashion.

Figure 3.3

Case 2: A ‰ B and B “ C (the other two possible cases are symmetric up to a relabelling

of the vertices). We proceed with a similar argument as in the first case, replacing T by

the geodesic segment joining A and B, T 1 by the geodesic segment joining the midpoint M

of AB to B “ C and letting d “ dS2pA,Bq{2. In this degenerate case, we consider the
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“medial triangle subdivision” of T where the midpoints of AB and AC coincide with M ,

the midpoint of BC coincides with B, and the tree edges joining the three midpoints of

BC, CA and AB are the point M and the edge MB (counted twice). We then similarly

obtain an integer N such that the d{2-neighbourhood of each edge in the “medial triangle

subdivision” of T contains the corresponding edge of AnNBnNCnN . For the three possible

choices of tnN`1 that do not contain AnN , we can consider the d{2-neighbourhoods of T 1 and

A to guarantee that A and tnpN`1q
are disjoint. But this is impossible since A lies in tnpN`1q

.

If instead tnN`1 was the triangle containing AnN (see Fig. 3.3), then we could now consider

the d{2-neighbourhoods of AM and B “ C to guarantee that B “ C and tnpN`1q
are disjoint.

This is again impossible since B “ C lie in tnpN`1q
. This concludes the proof of Case 2.

Remark 3.0.5. Owing to Lemmas 3.0.3 and 3.0.4, we now know that, in the spherical

setting, we can assume our triangles to be small enough to lie inside an open ball of radius

π
4
, so that the distance between any two points is strictly less than π

2
. This guarantees that

the height from any point lying on such a triangle to any line (great circle) intersecting the

triangle must be strictly less than π
2
. Indeed, as we noted before, the height from a point to

a line is the minimal distance from this point to any point on the line. The second case of

Figure 3.1 will thus be safely averted from there on.

We now introduce some notation. For convenience, we write an (resp. bn, cn) as BC

(resp. CA, AB) and the midpoints of BC, CA and AB by D,E and F (see Fig. 3.4).

In the following proofs, we let A1, B1, C 1, D1 be the orthogonal projections of A,B,C,D on

the geodesic line (i.e. the great circle in the spherical setting) FE. We also consider the

orthogonal projections F 1 and E 1 of F and E on the line BC. Note that these are all

well-defined in light of Remark 3.0.5.
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Figure 3.4: The construction for an acute spherical triangle (left) and an obtuse hyperbolic
triangle (right).

In the following discussion, we define a quadrilateral XY Y 1X 1 as the union of the geodesic

segments XY , Y Y 1, Y 1X 1 and X 1X, provided that every pairwise intersection of the four

interiors of these segments is empty. We remind the reader that a quadrilateral XY Y 1X 1

for which the oriented angles =Y 1Y X and =Y XX 1 are right angles (for the two possible

orientations of the hyperbolic plane or the sphere) and the lengths of its sides XX 1 and Y Y 1

are equal is called a Saccheri quadrilateral with base XY and summit X 1Y 1 (sometimes called

a Saccheri isosceles birectangle). Saccheri quadrilaterals have a unique line of symmetry

cutting both their base and summit sides perpendicularly through their midpoints (see for

example [Mar96, §21]). Likewise, a quadrilateral XY Y 1X 1 in which the angles at X, Y and

X 1 are right is called a Lambert quadrilateral (sometimes called Lambert trirectangle) with

apex at Y 1.

We first give a short proof of a trigonometric identity in Lambert quadrilaterals which will

prove to be very useful in our proof of the main theorem and which we shall use throughout

this article.

Lemma 3.0.6. In a hyperbolic Lambert quadrilateral XY Y 1X 1 with apex Y 1, the following

identity holds:

sinh |X 1Y 1| “ sinh |XY | ¨ cosh |Y Y 1|

18



The identity in spherical geometry is obtained by replacing hyperbolic trigonometric func-

tions by spherical trigonometric functions:

sin |X 1Y 1| “ sin |XY | ¨ cos |Y Y 1|

Figure 3.5

Proof. From the dual hyperbolic law of cosines in the right triangle XY 1Y ([Thu97, 2.4.9]),

we obtain cosh |Y Y 1| “ cosφ
sinα

. Morevoer, from the hyperbolic law of sines we obtain that

sinα
sinh |XY |

“ 1
sinh |XY 1|

. Combining the two and using the fact that cosφ “ sinψ, we get:

sinh |XY | cosh |Y Y 1| “ sinψ sinh |XY 1|. Using the hyperbolic law of sines a second time in

the right triangle XX 1Y 1, we obtain sinψ
sinh |X 1Y 1|

“ 1
sinh |XY 1|

. Substituting for sinψ using this

identity, we reach the desired equality.

We now get back to our proof of Lemma 3.0.2 and start by establishing the following

fact:

Lemma 3.0.7. There exists N P N such that, for all n ą N , the quadrilateral C 1B1BC is

a Saccheri quadrilateral with base B1C 1 of length 2|FE|, symmetry line DD1 and base and

summit midpoints D1 and D.

Proof. In the spherical setting, we refer to Remark 3.0.5 to select N P N such that all the

edge-lengths of tn and all heights are strictly less than π
2
. In the hyperbolic setting, we select

N “ 0.

19



By construction, the triangles FB1B and FA1A share an angle and two edge-lengths,

and are therefore congruent. Likewise for the triangles EAA1 and ECC 1. This shows that

|AA1| “ |CC 1| “ |BB1|. Since B1 and C 1 are the orthogonal projections of B and C on the

line FE, there only remains to show that C 1B1BC is indeed a quadrilateral. This is clear in

the hyperbolic case, but requires more care in the spherical case.

In the spherical setting, we first observe that B1C 1 and BC cannot intersect. Indeed,

|B1C 1| ď π, |B1B|, |C 1C| ă π
2

and =C 1B1B “ =B1C 1C “ π
2
. We cannot have B1 “ B or

C “ C 1 as it would imply that all points in fact lie on a single great circle. Therefore, it must

be that B and C are two distinct interior points of the same right-angled spherical lune with

one of its half great circles passing through B1 and C 1 (see Fig. 3.6). However, the geodesic

joining any two interior points of a right-angled spherical lune does not cross either boundary

edge (a right-angled spherical lune can be completed to a hemisphere sharing either half great

circle of the lune as its boundary great circle, and open hemispheres are convex). The only

possibility is then that BB1 and CC 1 intersect. But since =C 1B1B “ =B1C 1C “ π
2
, this

would imply that both |BB1| and |CC 1| are greater than π
2
, which contradicts our definition

of orthogonal projections. This argument proves that C 1B1BC is a Saccheri quadrilateral.

Figure 3.6

We now prove that D1 is the midpoint of B1C 1 and not its antipodal point. Denote by

D2 the midpoint of B1C 1. In the previous paragraph, we have shown all four points B, C,

B1 and C 1 to all lie in the same right-angled spherical lune. Since C 1B1BC is Saccheri, we
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now also know that the line through the midpoints of its base and summit is perpendicular

to both base and summit (and is its only line of symmetry). Because of this, we can choose

the right-angled lune containing all four points to have D2 as the midpoint of one of its two

boundary half great circles. The edge DD2 can then be seen as a strict sub arc of the lune’s

equatorial arc (see Fig 3.6), which proves that |DD2| ă π
2

and confirms that D2 “ D1.

Lastly, we justify why the base B1C 1 has length 2|FE|. By construction, we have that

|B1C 1| “ |B1A1| ` |A1C 1| (resp. |B1C 1| “ ´|B1A1| ` |A1C 1|, |B1C 1| “ |B1A1| ´ |A1C 1|) when βn

and γn are acute (resp. when βn is obtuse, γn is obtuse). Note that the case where both βn

and γn are obtuse is impossible since a spherical triangle with all its edge-lengths smaller than

π
2

has at most one obtuse angle (this is a direct consequence of the spherical law of cosines).

Observe then that |FE| “ |FA1|`|A1E| (resp. |FE| “ ´|FA1|`|A1E|, |FE| “ |FA1|´|A1E|)

and we have |B1A1| “ 2|FA1| and |A1C 1| “ 2|A1E| in all cases, since 2|FA1|, 2|A1E| ă π
2
.

Thus, |B1C 1| “ 2|FA1| ` 2|A1E| “ 2|FE| (resp. |B1C 1| “ ´2|FA1| ` 2|A1E| “ 2|FE|,

|B1C 1| “ 2|FA1| ´ 2|A1E| “ 2|FE|).

Proof of Lemma 3.0.2. Using Lemma 3.0.4, we first show that the statement of Lemma 3.0.2

is true for the sines of the edge lengths and the added constraint that C ě 1, namely:

Claim. There exists an integer N and a positive constant 1 ď C ă 2 depending only

on t0 such that, for all n ą N , sin an`1 ď C sin an
2
.

Proof of Claim. The only cases of interest are the two non-trivial cases where an`1 is obtained

as the parallel side of an in tn`1. In both of these cases, we can appeal to Remark 3.0.5 and

use Lemma 3.0.7 and the formulae of Lemma 3.0.6 to obtain:

sin
an
2
“ sin |DC| “ sin |D1C 1| ¨ cos |CC 1| “ sin an`1 ¨ cos |CC 1| (‹)

If we now suppose by contradiction that our claim is false, then for all N P N and for all

1 ă C ă 2, there exists n ą N such that sin an`1 ą C sin an
2

. Using p‹q, this implies that:
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cos |CC 1| “
sin an

2

sin an`1

ă C´1

which in turn implies that:

|CC 1| ą arccosC´1
ą 0

However, in positive curvature, the sides of a Lambert quadrilateral incident to the

apex are strictly smaller than than their opposite side in the quadrilateral. Therefore,

|CC 1| ă |DD1| (using the Lambert quadrilateral C 1D1DC). Applying the spherical ver-

sion of Pythagoras’ theorem in the right angled triangle DD1F , we see that |DD1| ď |FD|,

since |DD1|, |DF | ď π
2
. As Lemma 3.0.4 guarantees that |FD| Ñ 0 when n Ñ 8, we have

shown that |CC 1| Ñ 0 when n Ñ 8. This contradicts |CC 1| ą arccosC´1 and proves the

claim.

To get back to the proof of the lemma, we first note that, for all x ą 0, we have sinx ă x.

On the other hand, for any ε ą 0, we have p1 ´ εqx ă sinx, for x small enough. Using the

particular value of C and N given by the previous claim, we can choose an ε ą 0 small

enough to guarantee that C{p1 ´ εq ă 2. There is then an integer N 1 ą N large enough to

guarantee that, for all n ą N 1:

p1´ εqan`1 ă sin an`1 ă C sin
´an

2

¯

ă C
an
2

which gives the following desired inequality:

an`1 ă
C

1´ ε

an
2

and finishes the lemma, as C{p1´ εq ă 2.

We now get back to the proof of Theorem C, which we state again below.
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Theorem C. For any sequence of nested triangles t0, t1. . . . and for all n P N, there exists

la, La ą 0 such that:

a0 ¨ la ď 2n ¨ an ď a0 (Hyperbolic geometry)

a0 ď 2n ¨ an ď a0 ¨ La (Spherical geometry)

and similarly for bn, cn. In addition, in the non-trivial cases where there exists at least some

integer n P N such that an`1 is obtained as the parallel side of an in tn`1, the inequalities

are strict and la (resp. La) approaches 1 from below (resp. above) in the hyperbolic (resp.

spherical) case as all the side lengths of t0 become smaller.

Proof of Theorem C (Hyperbolic Setting). Hyperbolic Upper Bound. Note first that

Lemma 3.0.1 tells us that the sequence p2nanqnPN is decreasing as 2n`1an`1

2nan
“

2an`1

an
ď 1.

Since the sequence is bounded below by 0, this guarantees its convergence to a non-

negative limit. Applying Lemma 3.0.1 n times also directly gives us the a0 upper bound:

2nan “ 2n´1p2anq ď 2n´1an´1 ď . . . ď 2a1 ď a0.

Hyperbolic Lower Bound. Our task is to show that the sequence p2nanqnPN converges

to a strictly positive limit. Let us start by rewriting the previous limit as the following

infinite product:

lim
nÑ8

2n ¨ an “ lim
nÑ8

2an
an´1

¨
2an´1

an´2

¨ . . . ¨
2a1

a0

¨ a0

The convergence to a strictly positive value of this infinite product is equivalent to the

finiteness of the infinite sum of the logarithm of its factors. Namely:

a0

8
ź

n“1

2an
an´1

ą 0 ðñ |lnpa0q| `

8
ÿ

n“1

ˇ

ˇ

ˇ

ˇ

ln

ˆ

2an
an´1

˙
ˇ

ˇ

ˇ

ˇ

“ |lnpa0q| `

8
ÿ

n“1

ln

ˆ

an´1

2an

˙

ă 8

Note that Lemma 3.0.1 tells us the sign of the ratio inside the absolute value. In order to
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prove that this sum is indeed finite, we will show that the following inequality holds:

ln

ˆ

an´1

2an

˙

ă
bn
2

(‹)

The convergence of the geometric series pb0 2´pn`1qqnPN then ensures the convergence of

the logarithm sum, as bn
2
ď b0 2´pn`1q. It then also provides us with a uniform bound:

8
ÿ

n“1

ln

ˆ

2an
an´1

˙

“ ´

8
ÿ

n“1

ln

ˆ

an´1

2an

˙

ą ´

8
ÿ

n“1

bn
2
ą ´

1

2

8
ÿ

n“1

b0 ¨ 2
´n
“ ´

b0

2

This gives us that la “ e´
b0
2 is a valid choice, since after taking the exponential on both

sides in the previous inequality, we obtain:

2n ¨ an ą lim
nÑ8

2n ¨ an “ a0

8
ź

n“1

2an
an´1

ą a0 e
´ b

2

Note that la indeed approaches 1 from below when all side lengths of t0 become smaller (thus

approaching the Euclidean case for small triangles). We now proceed to prove inequality (‹).

Note that this inequality is trivially satisfied for the terms of the sequences where an`1 is

contained in an, since the logarithms of their corresponding ratio are then each equal to zero

and do not contribute to the sum. It is thus enough to prove it in the case where an`1 is

obtained as the parallel side of an in tn`1.

We shall use the same notation as on Figure 3.4, with the added simplification that we

will write a in place of an and a1 in place of an`1, and similarly for the other sides. We

begin by extending the geodesic segment joining E and F on either side of the triangle

and introduce points G and H such that |GE| “ |EF | “ |FH| “ a1. The resulting figure,

resembling a “jester hat”, can be seen on Figure 3.7. The geodesic triangle GEC and FEA

share two equal sides and an angle and are therefore congruent. For the same reason, the

triangle FHB is also congruent to FEA and therefore also to GEC.
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Figure 3.7: The hyperbolic and spherical “jester hats”.

Remark 3.0.8. We take this opportunity to give a short elegant proof of Lemma 3.0.1,

stating that 2a1 ă a in hyperbolic triangles and 2a1 ą a in spherical triangles. Indeed,

with this construction we know that there is a hyperbolic translation, with axis the geodesic

line going through E and F and translation distance 2a1, taking the triangle GEC to the

triangle FHB. Since the minimum translation distance of a hyperbolic translation is realised

for points on its axis, we can conclude that a ą 2a1. We can of course replicate the exact same

construction in the spherical case, where the hyperbolic translation along the line EF now

becomes the rotation of the sphere whose axis has the great circle passing through EF as its

equator circle. Since the maximum translation distance of a rotation of the sphere is realised

along its associated equator circle (see Fig. 3.7), this concludes the proof of Lemma 3.0.1.

We now turn our attention to the geodesic quadrilateral EHBC. There is a unique

equidistant curve γ staying within a fixed distance h from the geodesic line EF and passing

through B and C (Figure 3.8). Since h ă b
2

and the length LγpB,Cq of γ between B and C

is more than that of the geodesic segment joining B and C, it is enough to show that
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ln

ˆ

LγpB,Cq

2a1

˙

ă h

Figure 3.8

in order to show (‹). The key to the demonstration is now to notice that the figure in

invariant under translation along pEHq, so that we may look at the ratio of infinitesimal

displacements along pEHq and γ instead of that between LγpB,Cq and 2a1. If we consider

the quadrilateral EHBC in the upper half-plane model (Figure 3.9), the equidistant curve

γ is now a line meeting the geodesic line pEHq on the boundary. Denote by θ the angle

between pEHq and γ. Since the metric in the upper half-plane is scaled by the inverse of

the y-coordinate, the ratio between infinitesimal displacements along pEHq and γ is simply

given by cos´1 θ.

26



SShow SVG Download SVG

HEnter LaTeX

Figure 3.9

On the other hand, we can compute the distance h between the geodesic line pEHq and

the equidistant curve γ using the metric of the upper half-plane model:

h “

ż θ

0

1

cos t
dt

Putting both together, it then remains to prove the following inequality:

ln

ˆ

LγpB,Cq

2a1

˙

“ ln
`

cos´1 θ
˘

ă

ż θ

0

1

cos t
dt “ h

To obtain that inequality, it is enough to differentiate both sides with respect to θ and

show that the derivatives verify the inequality. After differentiating and simplifying, we

reach the following equivalent inequality:

sin θ ă 1

Note that the previous inequality need in fact only be strict at one point to guarantee the
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strict inequality after integration (the point θ “ 0, for example, is then enough). Alterna-

tively, we can also observe that the only possibility for equality is when θ “ π
2
. However, the

line EH and γ are at finite distance h from each other, which implies precisely that θ ă π
2
.

Proof of Theorem C (Spherical Setting). Spherical Lower Bound. We start with the op-

posite observation than in the hyperbolic case, namely that Lemma 3.0.1 here gives us the

lower bound instead of the upper bound: 2nan ě a0. Likewise, it also informs us that the

sequence p2nanqnPN is increasing as 2n`1an`1

2nan
“

2an`1

an
ě 1. Our task is thus to show that the

sequence p2nanqnPN is bounded above.

Spherical Upper Bound. In the spherical case, we give a shorter, purely trigonometric

proof (note that this proof is also available in the hyperbolic case). It will prove easier to

exhibit an upper bound for the sequence p2n sin anqnPN instead, which will transfer to our

original sequence via a small correction term. As in the hyperbolic setting, we start by

rewriting the n-th term of the sequence as the following product:

2n ¨ sin an “
2 sin an
sin an´1

¨
2 sin an´1

sin an´2

¨ . . . ¨
2 sin a1

sin a0

¨ sin a0

Finding an upper bound for this product of n terms is again equivalent to finding an

upper bound to the sum of the logarithm of its factors. Namely:

a0

n
ź

i“1

2 sin ai
sin ai´1

ą δ ą 0 ðñ |lnpa0q| `

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ln

ˆ

2 sin ai
sin ai´1

˙
ˇ

ˇ

ˇ

ˇ

ă ∆ ă 8

Where e∆ “ δ. There again, Lemma 3.0.1 tells us the sign of the ratio inside the absolute

value. To prove an upper bound on this sum of logarithms, we take up again the notation

of Figure 3.4 and focus on the non-trivial case where an`1 is obtained as the parallel side

of an in tn`1. Lemma 3.0.7 guarantees that for a large enough n, the quadrilateral C 1B1BC

is Saccheri and the quadrilateral C 1D1DC is Lambert. For such an n, we can now use the

spherical Pythagoras theorem in the triangle D1CC 1 and Lemma 3.0.6 in C 1D1DC to obtain
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the two following identities:

cos |D1C| “ cos |CC 1| ¨ cos |D1C 1| (3.1)

sin |DC| “ sin |D1C 1| ¨ cos |CC 1| (3.2)

Using equation (3.2) together with the double angle formula for the sine, we reach the

following inequality:

2 sin an`1

2

sin an
2

“

´

cos
´an`1

2

¯

cos |CC 1|
¯´1

ą 1 (3.3)

Combining equation (3.3) with equation (3.1), we obtain, for tn small enough:

2 sin an`1

2

sin an
2

“
cos an`1

cos |D1C| ¨ cos an`1

2

ă

´

cos
an`1

2

¯´1

(3.4)

The last inequality is obtained by noticing that, for small enough spherical triangles, the

length of the hypotenuse |D1C| in the right-angled spherical triangle D1CC 1 is larger than

that of the leg |D1C 1| “ an`1. This can be shown to be true of any spherical triangle

contained in a spherical octant and thus, in particular, for any triangle with side lengths

smaller than π
3
. By Lemmas 3.0.4 and 3.0.2, we can pick N P N such that for all n ą N ,

all three sides of tn are smaller than π
3

and the inequality an`1 ď Can{2 holds. Since all

side-lengths are strictly less than π
2
, our choice of N was large enough to guarantee that

the quadrilateral C 1B1BC is Saccheri, allowing us to make use of the previous derivations.

Writing CN “
řN
i“1

´

2 sin ai`1

2
{ sin ai

2

¯

, we can now write the following inequality:

n
ÿ

i“1

ln

ˆ

2 sin ai`1

2

sin ai
2

˙

ă ´

n
ÿ

i“N

ln cos
ai`1

2
` CN ă

n
ÿ

i“N

ai`1

2
` CN (3.5)

where the last inequality stems from the observation that ´ ln cospxq ă x for x P p0, π
3
q.
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Indeed, the first function is strictly convex and has vanishing derivative at 0. It is then enough

to check that the inequality is true in π
3
: a quick computation gives cos π

3
“ 1

2
ą 1

e
ą 1

e
π
3

,

which is the desired inequality after taking logarithms and changing signs. Using Lemma

3.0.2 and after multiplying inequality (3.5) by ln sin a0
2

and taking the exponential, we obtain

the following chain of inequalities:

2n sin
an
2
ă sin

a0

2
exp

˜

a0

2

n
ÿ

i“N

ˆ

C

2

˙i

` CN

¸

ă sin
a0

2
exp

˜

a0
pC{2qN

2´ C
` CN

¸

For all n P N, let us consider the quantity εn “ an{ sin an ´ 1. it is easy to see that this

quantity is always strictly positive, goes to 0 as nÑ 8 and pεnqnPN is a monotone decreasing

sequence. Noting that sin an ă 2 sin an
2

and sin a0
2
ă a0

2
, we obtain:

2nan “ 2np1` εnq sin an ă p1` ε0q a0 exp

˜

a0
pC{2qN

2´ C
` CN

¸

From this, we conclude that la “ p1`ε0q exp
´

a0 pC{2q
N
{p2´ Cq ` CN

¯

is a valid choice.

Indeed, by construction, both N and CN become zero for a0 small enough. Since C is fixed,

we also have that both p1 ` ε0q and the exponential term approach 1 from above when a0

becomes small.
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Chapter 4

Stabilisation of Heights

In this section, we investigate the behaviour of heights in the subdivision and show that they

also “stabilise” to the Euclidean case as our triangulations refine. The exact meaning of this

expression is made precise by the statement of the following proposition:

Proposition 4.0.1. For any sequence of nested triangles t0, t1, . . ., and for all n P N, there

exists lh, Lh ą 0 such that:

h0 ¨ lh ď 2n ¨ hn ď h0 ¨ Lh

where hn denotes the height from the vertex incident to αn onto the line prolonging the side of

length an in tn. In addition, in the non-trivial cases where there exists at least some integer

n P N such that an`1 is obtained as the parallel side of an in tn`1, the inequalities are strict

and lh (resp. Lh) approaches 1 from below (resp. above) as all the side lengths of t0 become

smaller.

The following lemma will prove to be useful to simplify our proof of Proposition 4.0.1:

Lemma 4.0.2. In the hyperbolic setting (resp. in the spherical setting, for n large enough),

the height of the vertex incident to αn`1 to the line prolonging the side of length an`1 in tn`1

is minimal among all 4 choices of tn`1 (resp. maximal) when the innermost triangle of tn is

selected.
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Proof. We stated the theorem and give the proof only for the height associated to αn`1

in the hyperbolic setting, the spherical proof is obtained by simply reversing each conclu-

sion/inequality and the other cases are derived in the same fashion. Recall that |A1A| “ |C 1C|

and consider the Lambert quadrilateral D1C 1CD. In the hyperbolic case, we have that

|C 1C| ą |DD1|, as the sides incident to the apex are larger than their opposite sides in

hyperbolic Lambert quadrilaterals (this opposite conclusion is true for spherical Lambert

quadrilaterals). The same inequality can be derived for each of the other two heights by

using the Lambert quadrilaterals FDD1F and DE 1ED1.

Proof of Proposition 4.0.1 (Hyperbolic Setting). There again, we shall only give the proof

regarding the heights associated to αn, the proofs of the other cases are derived in the same

fashion. We once again take up our notation for Lemma 3.0.2. In addition, let A2 be the

orthogonal projection of A onto the line BC and denote by E2 the midpoint of A2C (see Fig.

4.1). For the sake of brevity, we shall disregard the similar but easier case where A2 “ C.

Figure 4.1

Once again, we begin by writing the quantity 2nhn as the following product:
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2n ¨ hn “
2hn
hn´1

¨
2hn´1

hn´2

¨ . . . ¨
2h1

h0

¨ h0 “ h0

n
ź

n“1

2hi
hi´1

Hyperbolic Upper Bound. Note first that, 1
2
|A2A| ą |EE2| by Lemma 3.0.1.

Using the hyperbolic Pythagoras theorem we then have that |EE2| ą |EE 1|. Lemma

4.0.2 then guarantees that |EE 1| ą |DD1|. Putting everything together, we obtain that

1
2
hn “

1
2
|A2A| ą |EE2| ą |EE 1| ą |DD1|, which shows that each factor (other than h0q in

the previous product is strictly less than 1. This shows the upper bound in the two cases

where tn`1 “ CED (where hn`1 “ |EE
1|) and tn`1 “ FDE (where hn`1 “ |DD

1|). The case

where tn`1 “ DFB is symmetrical to the case tn`1 “ CED, but a slightly more circumvo-

luted argument is required to derive the upper bound when tn`1 “ EAF . Let us denote by

γ the angle =E 1CA and by γ1 the angle =A1EA “ =C 1EC (see Fig. 4.2). Note that γ “ γn

and γ1 “ =FEA if γn ď π
2
, but otherwise we instead have γ “ π ´ γn and γ1 “ π ´=FEA.

Applying hyperbolic trigonometric identities in the triangles EE 1C and ECC 1, we obtain:

sinh |EE 1| “ sin γ ¨ sinh |EC| (4.1)

sinh |CC 1| “ sin γ1 ¨ sinh |EC| (4.2)

Figure 4.2

Using the hyperbolic sine law in the triangles ABC and AFE and making use on their

shared angle αn, we get:
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sin γ1 “
sinh cn

2

sinh cn

sinh an
sinh an`1

sin γ (4.3)

Let us denote by ρn`1 the factor preceding sin γ in the previous equation, i.e. such that

we have sin γ1 “ ρn`1 sin γ. Combining equations (4.1), (4.2) and (4.3) now gives us:

sinh |CC 1| “ ρn`1 sinh |EE 1| (4.4)

Using the observation that for all x ą 0, we have sinh x
2
ă 1

2
sinhx, we reach:

ρn`1 ă
sinh an

2

2 sinh an`1

2

cosh
an
2

(4.5)

Using inequality (‹) in the proof of Theorem C and noting that, for all x ą 0, we have

sinhx ą x and sinhx{x ă expx, we obtain that:

sinh an
2

2 sinh an`1

2

ă
sinh an

2

an`1

“
an

2 an`1

sinh an
2

an
2

ă exp

ˆ

bn`1

2

˙

sinh an
2

an
2

ă exp

ˆ

bn`1

2
`
an
2

˙

which leads us to the following upper bound on ρn (noting that for all x ą 0, we have

coshx ă expx):

ρn`1 ă exp

ˆ

bn`1

2
`
an
2

˙

cosh
an
2
ă exp

ˆ

bn`1

2
` an

˙

Observing that, for all n ą 0, we have exp
´

bn`1

2
` an

¯

ą 1, we obtain the following inequality

(for any choice of tn`1):

2 sinhhn`1 ă 2 maxtρn`1, 1u sinh |EE 1| ă exp

ˆ

bn`1

2
` an

˙

sinhhn

From this we conclude that:
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2nhn ă 2n sinhhn “ sinhh0

n
ź

i“0

2 sinhhi`1

sinhhi
ă sinhh0

n
ź

i“0

exp

ˆ

bi`1

2
` ai

˙

Making use of Lemma 3.0.1, we obtain:

2nhn ă sinhh0 ¨ exp

˜

n
ÿ

i“0

ˆ

bi`1

2
` ai

˙

¸

ă
sinhh0

h0

e
b0
2
`2a0h0

We have thus shown that Lh “ sinhh0
h0

e
b0
2
`2a0 ą 1 is a valid choice as Lh indeed approaches

1 from above as the edge lengths of t0 become smaller.

Hyperbolic Lower Bound. We now want a lower bound for the product
śn

n“1
2hi
hi´1

.

Because of Lemma 4.0.2, we know that it is enough to derive the lower bound in the case

where tn`1 is obtained as the innermost triangle. Once again, it is equivalent to derive an

upper bound for the sum of the absolute values of the logarithm of its factors, namely:

2n ¨ hn “ h0

n
ź

i“1

2hi
hi´1

ą δ ą 0 ðñ |lnph0q| `

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ln

ˆ

2hi
hi´1

˙
ˇ

ˇ

ˇ

ˇ

ă ∆ ă 8

Where e∆ “ δ. However, it will prove easier to bound the ratio sinhhn{ sinhhn´1 instead.

We start by applying Lemma 3.0.6 in the Lambert quadrilateral DE 1ED1:

sinhhn`1 “ sinh |DD1| “
sinh |E 1E|

cosh |D1E|
(4.6)

We can also establish the following identity through the hyperbolic sine rule applied to

the triangles CAA2 and CEE 1:

sinhhn
sinh |EE 1|

“
sinh |A2A|

sinh |EE 1|
“

sinh |CA|

sinh |CE|
“

sinh 2bn
sinh bn

(4.7)

Combining both identities (4.6) and (4.7), we obtain:

2 sinhhn`1

sinhhn
“

2 sinh bn ¨ sinh |EE 1|

sinh 2bn ¨ sinh |EE 1| ¨ cosh |ED1|
“

1

cosh bn cosh |ED1|
(4.8)
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This shows that 2 sinhhn`1{ sinhhn ă 1 and tells us that we need a

lower bound on the ratios 2 sinhhi{ sinhhi´1 instead of an upper bound as

|ln p2 sinhhi{ sinhhi´1q| “ ln psinhhi´1{2 sinhhiq. Since |ED1| ď bn`1, as the leg is

always less than the hypotenuse in hyperbolic geometry, we obtain:

2 sinhhn`1

sinhhn
ě

1

cosh bn ¨ cosh bn`1

ě pcosh bnq
´2 (4.9)

As ln cosh bn ă bn and the sequence pbnqnPN is bounded above by the geometric series

pb0 ¨2
´nqnPN, inequality (4.9) gives us the desired logarithm convergence criterion for sinhhn:

n
ÿ

i“0

ˇ

ˇ

ˇ

ˇ

ln

ˆ

2 sinhhi`1

sinhhi

˙ˇ

ˇ

ˇ

ˇ

ă 2
n
ÿ

i“0

lnpcosh biq ă 2
n
ÿ

i“0

bi

Taking the exponential of both sides and multiplying by sinhh0, we now get back to the

original product:

2n sinhhn “ sinhh0

n
ź

i“0

2 sinhhi`1

sinhhi
ą sinhh0 exp

˜

´ 2b0

n
ÿ

i“1

2´i

¸

ą sinhh0 e
´2b0

For any n P N, we can choose εn “ phn ´ sinhhnq{ sinhhn so that hn ą p1 ´ εnq sinhhn.

It is easy to see that, for all n P N, εn ą 0 and limnÑ8 εn Ñ 0. Moreover, one can show the

sequence pεnqnPN to be monotone decreasing. This allows us to write, for all n P N:

2nhn ą 2n sinhhnp1´ εnq ą lim
nÑ8

2n sinhhnp1´ ε0q ą sinhh0 e
´2b0p1´ ε0q

As t0 becomes smaller, both expp´2b0q and p1 ´ ε0q approach 1 from below. Taking

lh “ expp´2b0qp1´ ε0q and noticing that sinhh0 ą h0 thus finishes the proof.

Proof of Proposition 4.0.1 (Spherical Setting). Some of the arguments used to derive the

hyperbolic upper bound unfortunately do not translate to the spherical lower bound, which

is why we take a slightly different approach here.
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Spherical Lower Bound. In the proof of the hyperbolic lower bound, we showed

equality (4.8) using only hyperbolic trigonometry, this result is thus also valid in the spherical

case (switching hyperbolic functions for the spherical ones) as long as Lemma 3.0.7 holds.

Selecting the integer N given by Lemma 3.0.7, we have that, for all n ą N for which tn`1 is

obtained as the innermost triangle of tn:

2 sinhn`1

sinhn
“

1

cos bn cos |ED1|
(4.10)

For such values of n, we thus have 2 sinhn`1{ sinhn ą 1.

In the case where tn`1 “ CED, we make use of the spherical equivalent of identity (4.6)

and the spherical Pythagoras theorem in triangle DED1 to obtain, for all n ą N :

sinhn`1 “ sin |DD1| cos |D1E| ą
sinhn

2

cos |DE|

cos |DD1|
ą

sinhn
2

cos cn`1 (4.11)

which shows that for such values of n, we have 2 sinhn`1{ sinhn ą cos cn`1. The case where

tn`1 “ DFB is symmetrical. The case where tn`1 “ EAF is dealt with in the exact same

way as the hyperbolic upper bound case, substituting spherical functions for the hyperbolic

ones, reversing all the inequalities used and making use of (3.4) instead of (‹). In this fashion,

we reach the inequality:

sinhn`1 ą sin |EE 1| cos
an
2

cos
an`1

2
ą

sinhn
2

cos cn`1

´

cos
an
2

¯2

Putting all the cases together and observing that, for all n ą N , we have

cos cn`1

`

cos an
2

˘2
ă cos cn`1 ă 1, we obtain the following inequality (for all choices of tn`1q:

2 sinhhn`1 ą min

"

cos cn`1

`

cos an
2

˘2
, cos cn`1, 1

*

sinhn “ cos cn`1

`

cos an
2

˘2
sinhn

Noting that for all x ą 0, we have x ą sinx, we obtain:

37



2nhn ą 2n sinhn “ sinh0

N´1
ź

i“0

2 sinhi`1

sinhi

n
ź

i“N

2 sinhi`1

sinhi
ą CN sinh0

n
ź

i“N

2 sinhi`1

sinhi

where CN “
śN´1

i“0
2 sinhi`1

sinhi
. Combining this last inequality with our lower bound for

2 sinhi`1{ sinhi, we obtain:

2nhn ą CN sinh0

n
ź

i“N

cos ci`1

´

cos
ai
2

¯2

Adjusting our choice of N to ensure that, for all n ą N , we have cos cn`1, cos an
2
ă π

3
, we

can make use of the inequality cosx ą e´x, for all x P p0, π
3
q. Using Theorem C, we obtain:

2nhn ą CN sinh0 exp

˜

´

n
ÿ

i“0

pci`1 ` aiq

¸

ą
sinh0

h0

CNe
´pc0Lc`2a0Laqh0

We have thus shown that lh “ sinh0
h0

CNe
´pc0Lc`2a0Laq ă 1 is a valid choice as lh indeed

approaches 1 from below as the edge lengths of t0 become smaller.

Spherical Upper Bound. Just like for the lower bound in the hyperbolic setting,

Lemma 4.0.2 allows us to deal only with the case where tn`1 is the innermost triangle of

tn. Since we showed that for all n ą N , we have 2 sinhn`1{ sinhn ą 1, we now need an

upper bound as |ln p2 sinhi`1{ sinhiq| “ ln p2 sinhi{ sinhi´1q. But since the cosine function

is decreasing on r0, πs, we still desire an upper bound on |ED1| in (4.10). Our previous

remark that |ED1| ď bn`1, for all n ą N , is again enough to yield the desired upper bound:

2 sinhn`1

sinhn
ď

1

cos bn ¨ cos bn`1

ď pcos bn`1q
´2 (4.12)

Lemma 3.0.2 allows us to adjust our choice of N such that the series pbnqnąN is bounded

above by the geometric series pb0¨p
C
2
qnqnąN . Adjusting one last time our choice of N to ensure

that all edge lengths are smaller than π{3, we can once again guarantee that ´ ln cos bn ă bn,

for all n ą N . Writing C 1N “
řN
n“0 ln p2 sinhn`1{ sinhnq, we can write:
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n
ÿ

i“0

ˇ

ˇ

ˇ

ˇ

ln

ˆ

2 sinhi`1

sinhi

˙
ˇ

ˇ

ˇ

ˇ

ă ´2
n
ÿ

i“N

lnpcos bi`1q ` C
1
N ă 2

n
ÿ

i“N

bi`1 ` C
1
N

which gives us:

|lnph0q| `

n
ÿ

i“0

ˇ

ˇ

ˇ

ˇ

ln

ˆ

2 sinhi`1

sinhi

˙ˇ

ˇ

ˇ

ˇ

ă |lnph0q| ` 2b0

n
ÿ

i“N

ˆ

C

2

˙i

` C 1N

After taking the exponential of both sides, we retrieve:

2n sinhn “ h0

n
ź

i“0

2 sinhi`1

sinhi
ă h0 exp

ˆ

4b0
pC{2qN

2´ C
` C 1N

˙

Let then εn “ hn{ sinhn ´ 1. It is straightforward to check that for all n, we have εn ą 0

and limnÑ8 εn Ñ 0. It is also easy to establish that pεnqnPN is a monotone and decreasing

sequence. Because of these observations, we can write:

2nhn ă p1` εnq 2n sinhn ă h0 p1` ε0q exp

ˆ

4b0
pC{2qN

2´ C
` C 1N

˙

Choosing lh “ p1` ε0q exp
´

4b0
pC{2qN

2´C
` C 1N

¯

finishes the proof. Indeed, both N and C 1N

converges to zero for t0 small enough and the exponential goes to 1 as b0 grows smaller and

C is fixed. Both p1 ` ε0q and the exponential approach 1 (the exponent is always strictly

positive).
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Chapter 5

Stabilisation of Angles

In this section, we quickly derive the proof of our main result as a corollary of Proposition

4.0.1 and Theorem C and show that the angles in the subdivision behave “nicely” in the

limit, in a sense made precise by the following proposition:

Theorem B. For any sequence of nested triangles t0, t1, . . . and for all n P N, there exists

lα, Lα ą 0 such that:

α0 ¨ lα ă αn ă α0 ¨ Lα

In addition, lα (resp. Lα) approaches 1 from below (resp. above) as all the side lengths of t0

become smaller.

Proof. We derive the proof in the hyperbolic case, the spherical case is obtained in the exact

same fashion by swapping hyperbolic trigonometric functions for spherical ones and reversing

the appropriate inequalities.

Let hn denote the height of the altitude drawn from the vertex incident to αn onto the line

prolonging the side of tn of length cn. Trigonometric identities ([Thu97], p.81) give us that

sinαn is simply the ratio of sinhhn by sinh bn. Let εn “ 1´ sinhph0 lh 2´nq{plh 2´n sinhh0q. It

is easy to check that εn ą 0 for all n P N, and limnÑ8 εn “ 0. Similarly, we define ε1n as the

quantity 1 ´ sinhpb0 lb 2´nq{plb 2´n sinh b0q and make the same observations. We remark as
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well, that, for all x ą 0 and all 0 ă ε ă 1, we have sinhpεxq ă ε sinhx. Putting the previous

observations together with Theorem C and Proposition 4.0.1 gives us the two following two

chains of inequalities:

sinαn “
sinhhn
sinh bn

ă
sinhph0 2´nq

sinhpb0 lb 2´nq
ă

psinhh0q 2´n

p1´ ε1nq lb 2´n sinh b0

“ sinα0p1´ ε
1
nq
´1l´1

b

sinαn “
sinhhn
sinh bn

ą
sinhph0 lh 2´nq

sinhpb0 2´nq
ą
p1´ εnq lh 2´n sinhh0

psinh b0q 2´n
“ sinα0p1´ εnqlh

It is easy to show that both pεnqnPN and pε1nqnPN are monotone sequences decreasing to 0.

Putting together both previous inequalities, we obtain:

sinα0p1´ ε0qlh ă sinαn ă sinα0 pp1´ ε
1
0qlbq

´1 (5.1)

Choosing l1α “ p1´ ε0qlh and L1α “ pp1´ ε
1
0qlbq

´1 then yields the desired inequality on the

sines of the angles. Indeed, both 1´ ε0 and lh approach 1 from below as t0 becomes smaller.

Likewise, both p1´ ε10q and lb approach 1 from above as t0 becomes smaller.

While the sine function is monotonous and continuous, each element of the open interval

p0, 1q has two pre-images under it, one in the interval p0, π
2
q and the other in the interval

pπ
2
, πq. The following claim will allow us to differentiate between these two pre-images and

establish the equivalent of inequality (5.1) for the angles:

Claim. In the hyperbolic setting, for any sequence of nested triangles t0, t1, . . . such that

α0 ą
π
2
, and for all n P N, we have αn ą π

2
. In the spherical setting, for any sequence of

nested triangles t0, t1, . . ., there exists N P N such that if αN ă π
2
, for all n ą N , we have

αn ă
π
2
.
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Figure 5.1

Proof of Claim. In order to allow us to reuse some of our previous constructions and nota-

tions, we prove our claim for βn instead of αn. It is enough to show that, for all n P N and

any choice of tn`1, we have that βn ą π
2

implies βn`1 ą
π
2
. Suppose not, and there exists

an integer n and a choice of tn`1 such that βn ą π
2

but βn`1 ď
π
2
. There are three possible

cases. Let us first investigate the case where tn`1 was chosen as the innermost triangle of tn.

Following the notation of Figure 3.4, where tn`1 “ DEF , we see that if βn`1 “ =FED ď π
2
,

D1 must be positioned on the closed half-line starting at E and containing the edge FE (see

Fig. 5.1). Since |B1D1| “ |FE|, this entails that B1 lies on the closed half-line starting at F

and not containing the open edge FE. But since βn is obtuse and the angle at the apex of a

hyperbolic Saccheri quadrilateral is acute, B1 must in fact lie on the open half-line starting

at F and containing the open edge FE. A similar contradiction is derived for the other

two cases: if tn`1 “ EDC, D1 must also be positioned on the half-line starting at E and

containing the edge FE and the same contradiction is derived; the case where tn`1 “ AFE

is symmetric with the previous case, exchanging A and C.

The exact same argument solves the spherical case, selecting N P N according to Lemma

3.0.7 and reversing all the inequalities. To derive the contradiction, this time, we appeal to

the fact that βn is acute and that the angle at the apex of a spherical Saccheri quadrilateral

is obtuse.
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Figure 5.2

Remark 5.0.1. Interestingly, in both the hyperbolic case and the spherical case (as long as

|DD2| ‰ π
2
), whenever one of the angles =FED, =EFA or =CDE is right, they must in

fact all be simultaneously right (see Fig. 5.2). Indeed, if =EFA is right, then B1 “ F and

thus D1 “ E which forces both other angles to be right. Likewise, if =CDE (resp. =FED)

is a right angle, we have D1 “ E which means that =FED (resp. =EFA) is a right angle

and also forces B1 “ F , which implies =EFA is also right.

As an immediate consequence of Theorem B, we deduce our main theorem:

Theorem A. For any geodesic triangle T in M2
κ , there exists δ ą 0 such that, for all n P N,

all the angles of Tn lie in the interval pδ, π ´ δq.

Proof. Let t0 “ T0 and δα “ mintα0lα, pπ ´ α0Lαqu, δβ “ mintβ0lβ, pπ ´ β0Lβqu and

δγ “ mintγ0lγ, pπ ´ γ0Lγqu. By construction, δ :“ mintδα, δβ, δγu ą 0 and every angle

of Tn lies in the interval pδ, π ´ δq.

Remark 5.0.2. Both in the hyperbolic and spherical case, there is an easier route to proving

Theorem A without the full strength of Theorem B. We briefly explain here why, in both

cases, a lower bound on the angles in fact also gives an upper bound. Indeed, in the hyperbolic
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case, to establish the upper bound in Theorem A we need only remember that the sum

of the angles of a hyperbolic triangle is always less than π. Therefore if we assume by

contradiction that for all ε ą 0, there exists N P N such that αN ą π´ ε, since for all n P N,

we have βn, γn ą δ, we are lead to a contradiction for ε ă 2δ as we would then obtain that

αn ` βn ` γn ą 2δ ` π ´ 2δ ą π for some choice of n. In the spherical case, the sum of the

angles of a triangle is allowed to exceed π, but the amount by which it does is exactly the area

of the triangle. To derive a contradiction we thus need to consider a second parameter to

utilise the key property that our triangulations are getting arbitrarily small. Let An denote

the area of the triangle tn. Suppose then by contradiction that, for all ε, ε1 ą 0, there exists

N P N such that αN ą π ´ ε and An ă ε1. Let us pick ε1 ă 2δ and ε ă 2δ ´ ε1. Since for all

n P N, we have βn, γn ą δ, this leads us to the following contradiction:

αn ` βn ` γn ą 2δ ` π ´ ε ą π ` ε1

Because of this observation, and using our approach to proving Theorem B, readers

interested solely in proving Theorem A need only refer to the proofs of the lower bounds in

the proof of Proposition 4.1 and the proofs of the upper bounds in the proof of Theorem C.
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nal of Differential Geometry 32 (1990).

[Zam02] Tudor Zamfirescu, Acute triangulations: a short survey, Proceedings of the VI Annual Conference

of the Romanian Society of Mathematical Sciences, 2002, pp. 10–18.

45


