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ABSTRACT 

Imaging-based quantification and characterization of tumor phenotypes has been the 

main goal of numerous efforts in recent years for developing and integrating precision oncology 

in clinical practice. Identifying optimal quantitative image features and machine learning 

pipelines for computer-aided diagnosis constitute crucial steps towards the development of 

reproducible, standardized, and clinically relevant imaging biomarkers of cancer phenotypic 

characteristics. An “image feature” can be understood as an image-derived descriptor of 

intensity, shape, texture, etc. In radiomics studies, the main hypothesis is that combining many 

of these quantitative features extracted from tumor regions in medical images can predict 

underlying genetic or pathological changes occurring in response to disease activity. Given the 

high variability of processing pipelines in radiomics studies, we first aimed to develop and 

validate a standardized, IBSI-compliant, and evidence-based processing pipeline for radiomics 

studies. Second, we aimed to evaluate the diagnostic performance of the well-established robust 

set of rotationally invariant features from spherical harmonics (SPHARM) decompositions in 

predicting outcomes from volumetric medical images and compare it to radiomics. Pipelines for 

these two methods were built and validated on synthetic 3D texture datasets and in two distinct 

dual-centre diagnostic retrospective studies: i) a study on identifying renal cysts malignancy on 

contrast-enhanced CT, and ii) a study on identifying histopathological features of endometrial 

cancer on multi-parametric MRI. 

For distinguishing benign from malignant renal cysts, a random forest model based on a 

set of five most discriminative and reproducible radiomics features resulted in high diagnostic 

performance (testing area under the receiver operating characteristic curve [AUC] = 0.91). 

Similarly, for SPHARM decomposition coefficients, a tensor logistic regressor resulted in good 

diagnostic performance for predicting malignancy of renal cysts (testing AUC = 0.83). For 

detecting histopathological deep myometrial invasion in endometrial cancer on multi-parametric 

MRI, a random forest model based on our set of five most discriminative and reproducible 

radiomics features resulted in good diagnostic performance (testing AUC = 0.81). For SPHARM 

decomposition coefficients, a tensor logistic regressor resulted in higher diagnostic performance 

using only dynamic-contrast-enhanced MRI images (testing AUC = 0.86). Furthermore, we 



ABSTRACT 

ii 

show that in specific situations, approximate spherical tumor segmentations can rival or even 

outperform painstakingly obtained but accurate tumor segmentations.  

Both radiomics features and SPHARM descriptors show promise as reproducible 

surrogate biomarkers of histopathological features of cancer activity on CT and MRI. 

Implementing such computational pipelines in clinical practice could improve and accelerate 

patients’ stratification and decision-making for radiologists and radio-oncologists in cancer 

diagnosis or treatment. 

 

Keywords : Precision oncology; Radiomics; Spherical harmonics; Cancer; Tumor 

phenotypes; Histopathology; Predictive models; Machine learning; Classification. 
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RÉSUMÉ 

La quantification et la caractérisation des phénotypes tumoraux par l’imagerie médicale 

sont parmi les principaux objectifs de nombreux efforts de recherche des dernières années pour 

développer et intégrer l'oncologie de précision dans la pratique clinique. L'identification de 

descripteurs d'imagerie quantitatifs optimaux et de pipelines d'apprentissage automatique pour 

le diagnostic assisté par ordinateur constituent des étapes cruciales au développement de 

biomarqueurs d'imagerie reproductibles, standardisés et cliniquement adaptés aux 

caractéristiques phénotypiques du cancer. Un « paramètre d'imagerie » peut être défini comme 

un descripteur d'image dérivé de l'intensité, de la forme, de la texture, etc. Dans les études 

radiomiques, l'hypothèse principale est que la combinaison de plusieurs de ces paramètres 

quantitatifs extraits de régions tumorales dans les images médicales cliniques peut prédire des 

altérations génétiques ou pathologiques sous-jacents se produisant en réponse à l'activité de la 

maladie. Compte tenu de la grande variabilité des pipelines de pré-traitement d’images dans les 

études radiomiques, nous avons d'abord cherché à développer et à valider un pipeline 

standardisé, conforme aux recommandations d'IBSI et fondé sur la littérature la plus récente. 

Deuxièmement, nous avons cherché à évaluer et à comparer la performance diagnostique des 

paramètres d’images radiomiques aux ensembles de paramètres robustes, bien établis et 

invariants sous rotation des décompositions d'harmoniques sphériques (SPHARM) pour prédire 

des caractéristiques pathologiques à partir d’images médicales volumétriques. Des pipelines 

pour ces deux méthodes ont donc été développés et validés sur des ensembles de données de 

textures 3D synthétiques et dans deux études diagnostiques rétrospectives distinctes à deux 

centres hospitaliers dans le but de i) prédire la malignité de kystes rénaux sur des images de 

tomodensitométrie avec agent de contraste, et ii) prédire des caractéristiques histopathologiques 

du cancer de l'endomètre avec une approche d’imagerie par résonance magnétique (IRM) multi-

paramétrique. Pour distinguer les kystes rénaux bénins des tumeurs rénales malignes, un modèle 

de forêt randomisée aléatoire basé sur un ensemble de cinq paramètres radiomiques 

discriminants et reproductibles a abouti à des performances diagnostiques élevées (aire sous la 

courbe ROC [AUC] = 0.91). Pour les coefficients de décomposition SPHARM, un modèle de 

régression logistique tensorielle a donné de bonnes performances diagnostiques (AUC = 0.83). 

De même, pour détecter l'invasion myopathique profonde prouvée par histologie dans le cancer 
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de l'endomètre, un modèle de forêt aléatoire basé sur un ensemble de cinq paramètres 

radiomiques discriminants et reproductibles basées sur toutes les séquences d'IRM a abouti à 

des performances diagnostiques élevées (AUC = 0.81). Pour les coefficients de décomposition 

SPHARM, un modèle de régression logistique tensorielle a abouti à des performances 

diagnostiques plus élevées en utilisant uniquement les images d’IRM à contraste dynamique 

(AUC = 0.86). De plus, nous montrons que dans des situations spécifiques, des segmentations 

tumorales sphériques approximatives peuvent rivaliser ou même surpasser les segmentations 

tumorales obtenues avec précision. 

Les caractéristiques radiomiques et les descripteurs SPHARM semblent prometteurs en 

tant que biomarqueurs reproductibles des caractéristiques histopathologiques de l'activité 

cancéreuse sur les images de tomodensitométrie et d’IRM. La mise en œuvre de tels pipelines 

dans la pratique clinique pourrait améliorer et accélérer la prise de décision pour les radiologues 

et les radio-oncologues dans le diagnostic ou le traitement du cancer. 

 

Mots-clés : Oncologie de précision; Radiomique; Harmoniques sphériques; Cancer; 

Phénotypes tumoraux; Histopathologie; Models prédictifs; Apprentissage machine; 

Classification. 
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1. INTRODUCTION 

1.1. Motivations: Precision Oncology 

Precision oncology is a strategy in cancer medicine aiming to identify early in the course 

of treatment which therapeutic option can lead to best outcomes for a given patient based on diverse 

types of clinical data (1). Therapeutic options include targeted therapies, blood-typing, 

immunotherapy, and many others whose efficacy is to be assessed prior to prescribing any specific 

treatment using risk modeling according to big clinical databases integrating imaging, sequencing, 

histopathology, blood tests, and/or descriptive patients’ data. Hence, prognostic studies in precision 

oncology aim to provide risk stratification for patients with specific cancer types to predict 

outcomes such as recurrence after treatment (1). Similar goals are typically defined for diagnostic 

studies as well, given that the grade of a solid lesion as seen on medical images is generally 

associated with the prescription of surgeries or adjuvant treatments such as chemotherapy or 

radiotherapy (2, 3). Implementing precision oncology in clinical practice through the development 

of precise and accurate response monitoring and diagnostic tools could improve decision-making 

and reduce patient exposure to ill-adapted treatments and unnecessary toxicity (4, 5). 

Monitoring of treatment response and diagnoses in solid tumors is done through the 

measurement of biomarkers (6). Imaging biomarkers, especially quantitative imaging biomarkers, 

are of great interest, since they can provide a comprehensive view of the whole lesion while 

capturing clinically relevant biological predictors such as regional tumor intra-heterogeneity (4, 7-

9), thus providing opportunities to tailor treatment decisions based on observed responses (4, 6). 

Imaging-based quantification and characterization of tumoral phenotypes has been the main goal 

of numerous efforts in recent years developing and integrating precision oncology in clinical 

practice (4, 5). Identifying optimal quantitative image features and machine learning pipelines for 

computer-aided diagnosis constitute crucial steps towards the development of reproducible, 

standardized, and clinically relevant imaging biomarkers of cancer phenotypic characteristics (10). 

In recent years, numerous quantitative imaging biomarkers based on different image features have 

been proposed (4, 6). An image feature can be understood as an image-derived descriptor of 

intensity, shape,  texture, or any other visually assessable or quantitatively measurable 

characteristics of image appearance. However, clinical acceptance of novel imaging biomarkers is 
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limited and translation into clinical practice generally takes years if not decades. Currently, tumor 

response and tumor grading is essentially performed through qualitative measurements or using 

1D or 2D descriptors of the size of lesions (11). Subjective visual evaluation of lesions on clinical 

medical images might not capture histopathological or genetic features of disease activity, 

including intra-tumoral heterogeneity, an important biomarker of cancer aggressiveness (12). 

Therefore, improved tumor treatment prescriptions could be achieved with comprehensive 

quantitative imaging biomarkers, overcoming subjectivity of visual interpretation and over-

simplistic assessment of shape markers of pathological structures on medical images (8, 9). Thus, 

standardized and quantitative computational methods have the potential of improving radiology 

and oncology workflows in patient screening, decision support, detection, and interpretation of 

findings to alleviate the current burden on radiologists and radio-oncologists (13-15). 

The aim of this thesis was to develop computational methodologies for quantifying tumor 

appearance in image data, using standard and robust sets of mathematical descriptors. Processing 

pipelines to extract human-defined features from clinical medical images were built and extracted 

image features were then classified using machine learning classification techniques. Two classes 

of human-engineered features were studied in this thesis. The first class was three-dimensional 

(3D) radiomics features and consisted in the computation of a large number of mathematical 

descriptors of intensity, shape, and texture (16). The second class, spherical harmonics (SPHARM) 

decomposition (17), was based on a classical computer vision technique expressing volumetric 

images into weighted sets of mathematically defined 3D spherical harmonics basis functions. 

The main hypothesis of radiomics studies is that combining many quantitative image 

features extracted from tumor regions on medical images can predict underlying genetic or 

pathological changes happening in response to disease activity. These features includes first-order 

statistics, morphological, and second-order textural features (16). On the other hand, the SPHARM 

decomposition method employed is analogous to Fourier frequency decomposition. It encodes the 

information in an image region within a 2D matrix of SPHARM coefficients (17). An initial testing 

and validation of these two descriptors was performed on 3D synthetic dataset in Chapter 3. After 

initial validation, pipelines were tested and validated on two clinical studies: i) predicting renal 

cysts malignancy on contrast-enhanced computed tomography images (Chapter 4), and ii) 

predicting histopathological features of endometrial cancer on multi-parametric magnetic 

resonance images (Chapter 5).  
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1.2. Contributions and Outline of Framework 

This work consisted in methodological developments from the field of computer vision 

applied to medical imaging in clinical retrospective studies. Our contributions are both technical 

and clinical. The main technical contributions were i) adapting spherical harmonics (SPHARM) 

decomposition to medical imaging and comparing it to radiomics, a technique that is widely used 

in the literature and that has shown potential for clinical translation, and ii) the comparison of fast 

spherical segmentations to that of expert radiologists’ segmentations in the diagnosis of histology-

defined lesions’ features. The main clinical contributions are i) the development of a radiomics 

pipeline based on state-of-the-art radiomics literature and on Image Biomarkers Standardization 

Initiative (IBSI)’s recommendations, and ii) the implementation of SPHARM and radiomics 

pipelines in two clinical studies. 

In this thesis, Chapter 2 reviews relevant clinical and technical literature which lead to the 

development of an IBSI-compliant radiomics pipeline. Every step of the proposed pipeline with a 

focus on reproducibility is described in detail, along with the random forests models employed for 

features selection and classification. 

Chapter 3 describes the SPHARM decomposition method, including the spherical 

harmonics mathematical framework and its application to voxelated volumes for the creation of a 

2D mathematical image descriptor. The logistic regularized tensor regressor used for descriptors 

classification is also explained on the basis of regular logistic regression and Lasso regularization. 

A novel segmentation paradigm using spherical regions around tumors is introduced and discussed 

as a solution to alleviate the overloaded workload of radiologists. These spherical regions are 

compared to manual segmentations in the studies detailed below. Finally, this chapter includes 

preliminary analyses on volumetric texture benchmark datasets to assess the ability of SPHARM 

descriptors to capture textural information from volumes where shape does not encode any 

discriminative information. 

Chapter 4 and Chapter 5 – corresponding to retrospective clinical studies – are broader 

versions of manuscripts in preparation for submission to scientific journals. The former is a study 

on both volumetric computational approaches, radiomics and SPHARM decomposition, for 

differentiating benign from malignant  renal cysts on contrast-enhanced computed tomographic 

images. A narrowed-down version of Chapter 4 including solely radiomic analyses has already 
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been submitted as an abstract to the Radiological Society of North America (RSNA) Annual 

Meeting 2020, which I co-authored. These chapters are built upon the work of multiple 

collaborators who have completed essential tasks for the development of this thesis.  

For contributions, I have exclusively written and performed analyses presented in Chapters 

1, 2, 3, and 6 with the support and guidance of Dr Peter Savadjiev and Dr Caroline Reinhold. For 

Chapter 4 and Chapter 5, my contributions were the hands-on development and implementation 

of both computational pipelines using Python and MATLAB based on prior literature on the topic, 

the application of the proposed methods to the labeled and segmented datasets, the preparation and 

presentation of results including tables and figures, and the drafting of the manuscript with a focus 

on the methods, results, and discussion. Detailed contributions from each collaborator for Chapter 

4 are provided here: 

Dr Jeremy Dana is the first author and co-designed this study. Based on inclusion criteria, 

Dr Dana retrospectively gathered a list of eligible patients from the McGill University Health 

Centre to build the training dataset of the study. With collaborators from Assistance Publique des 

Hôpitaux de Paris – Hôpital Necker in Paris, France, Dr Dana has retrospectively gathered another 

list of eligible patients to build the external testing dataset. He performed semi-automated 

segmentations of renal cysts on contrast-enhanced computed tomographic images in both datasets 

and graded renal cysts according to the Bosniak classification system. Dr Dana also drafted the 

submitted RSNA abstract and contributed to the manuscript in preparation. 

Dr Caroline Reinhold is the principal investigator and co-designed the study. Dr Reinhold 

built the protocol, obtained funding, and coordinated the study. She also graded renal cysts 

according to the Bosniak classification system and revised the submitted RSNA abstract and the 

manuscript in preparation. As my co-supervisor, she provided essential support and clinical 

expertise on renal cysts management in the clinic and on current needs. 

Dr Peter Savadjiev is a co-investigator and co-designed the computational methods 

pipelines of the study. As my supervisor, he also provided essential support and guidance 

throughout the development of SPHARM, radiomics, and machine learning pipelines. 

In the publication of Chapter 4 as a journal article, only radiomics analyses will be 

included. Minor changes might be made to the introduction and methods section, but most of these 

sections are expected to be included verbatim, after removing details on SPHARM analyses. The 



INTRODUCTION 

19 

use of other classifiers might also be investigated prior to submission, to assess if linear classifiers 

could outperform the more complex ensemble method (i.e. random forests) selected in this thesis. 

Hence, results might change in the final version of the manuscript along with the Computational 

Methods subsection of the Material and Methods section. Finally, other clinical aims outside of the 

scope of this thesis will be included in the manuscript (i.e. to compare the diagnostic performance 

of the 2008 Bosniak diagnostic classification system with the proposed 2019 Silverman’s updated 

Bosniak classification guidelines, to evaluate the interobserver variability of these two radiological 

classification systems, and to define the most accurate and reproducible visually assessable 

qualitative set of CE-CT features to predict malignancy of Bosniak cysts using the 2019 Bosniak 

classification and adapting it to the widely used American College of Radiology Data System). 

Thus, significant changes are expected to be seen between the manuscript for publication and this 

thesis. 

Chapter 5 is a study on both volumetric computational approaches, radiomics and 

SPHARM decomposition, for predicting deep myometrial invasion and high grade endometrial 

tumors on multi-parametric magnetic resonance images. Detailed contributions from each 

collaborator for Chapter 5 are provided here: 

Dr Yoshiko Ueno was the first author of a preliminary version of this work investigating 

two-dimensional radiomics, which she co-designed (18). According to the study’s inclusion 

criteria, Dr Ueno retrospectively gathered a list of eligible patients from McGill University Health 

Centre to build the training dataset of the study. With Dr Anthony Dohan and collaborators from 

Assistance Publique des Hôpitaux de Paris – Hôpital Lariboisière in Paris, France, Dr Ueno has 

retrospectively gathered another list of eligible patients to build the external testing dataset. She 

performed manual expert segmentations of endometrial tumors on images from all magnetic 

resonance sequences in the training dataset and graded tumors according to the FIGO classification 

system. Dr Sameh Saif contoured endometrial tumors on images from the testing dataset. Dr Ueno 

also drafted a preliminary version of the manuscript in preparation. 

Dr Caroline Reinhold is the principal investigator and co-designed the study. Dr Reinhold 

built the protocol, obtained funding, coordinated the study, and revised the manuscript in 

preparation. As my co-supervisor, she also provided essential support and clinical expertise on 
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magnetic resonance imaging of endometrial cancer and on current needs for the staging of these 

lesions. 

Dr Peter Savadjiev is a co-investigator and co-designed the computational methods pipeline 

of the study. Again, as my supervisor, he provided essential support throughout the development 

of SPHARM, radiomics, and machine learning pipelines. 

In the publication of Chapter 5 as a journal article, only radiomics analyses will be 

included. Minor changes might be made to the introduction and methods section, but most of these 

sections are expected to be included verbatim, after removing details on SPHARM analyses. 

Finally, aims outside of the scope of this thesis will be included in the manuscript (i.e. to compare 

the reproducibility of radiomics features extracted from MR images segmented by an expert 

radiologist and extracted from MR images semi-automatically segmented by a less experienced 

reader, and to evaluate the agreement between radiologists’ staging and that of the developed 

radiomics-based model). Again, significant changes are expected to be seen between this chapter 

of the thesis and the manuscript to be submitted for publication. 

For both studies detailed in Chapter 4 and Chapter 5, Dr Sahir Bhatnagar provided support 

on statistical considerations especially for the development of the regularized tensor logistic 

regressor. Prior to submission for journal publication, both studies will be  

Discussions on clinical and technical considerations for performing radiomics- and 

SPHARM-based characterization of tumor volumes are elaborated in both chapters. This thesis 

concludes with a look forward in what could be expected in future years for such computational 

methods in the field of oncological imaging. 
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2. RADIOMICS 

2.1. Clinical Background 

In the last decade, there has been an increasing interest in quantifying tumor appearance 

using standard-of-care clinical imaging modalities, such as computed tomography (CT) and 

magnetic resonance imaging (MRI). These computational methods automatically quantify whole 

lesions’ image-based phenotypes, according to mathematically defined quantitative descriptors 

(19, 20). This paradigm in medical imaging, called radiomics (8, 10, 19, 21, 22), has been widely 

explored in the last decade to quantify tumor heterogeneity (12) or predict patient outcomes (23-

25). It is also often referred to as radiogenomics when image-extracted mathematical features are 

associated with genes expression from sequencing data (26). Three radiomics features categories 

can be defined: first-order statistics, shape-based, and second-order statistics or texture-based 

features (8, 16) (Table 2.1). In radiomics studies, quantitative image features extracted from a 2D 

slice or from a 3D volume of tumor region on medical images are combined to predict underlying 

genetic or pathophysiological changes. More specifically, by capturing image intensity level 

distributions, volumetric shape characteristics, and statistical interrelationships between image 

contrast values in neighboring voxels, we seek to build reproducible and minimally invasive image-

based signatures of tumors. In recent years, numerous studies have explored capacities of these 

image-based signatures in predicting disease outcomes or grading disease activity (Figure 2.1). 

State-of-the-art biopsies are generally performed to assess histopathological risk factors of tumoral 

Figure 2.1 Number of scientific publications referring to the term “radiomics” in the current 

literature (PubMed data, dated 2020-06-16). 
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activity. Given the invasiveness, the sampling variability of standard-of-care biopsies, and the 

importance of capturing tumoral heterogeneity (12), the need for noninvasive quantitative whole 

tumor assessment is often argued, and radiomics could be one solution (27, 28) (Figure 2.2). The 

use of CT- and MRI-based radiomics for decoding tumor phenotypic characteristics in abdominal 

and pelvic imaging, respectively, are reviewed briefly in the next sections.  

 

Review of Clinical Studies 

CT is widely used in oncology clinics especially in the context of radiotherapy since 

treatment planning and dose distribution assessment are performed based on these images, 

reproducing the treatment conditions on a flat couch (3). CT is also often used for diagnostic 

imaging in diagnostic radiology clinics as a frontline imaging modality to diagnose conditions 

suspected by physicians prior to any treatment prescription. Hence, given the high number of 

available clinical CT data, CT-based radiomics studies have been widely performed (8, 16, 29-32). 

In abdominal imaging, radiomics extracted from standard-of-care CT images have been 

investigated in many different anatomical sites such as the liver, including hepatocellular 

carcinoma (HCC), either to predict response to treatment (prognostic) such as transcatheter arterial 

chemoembolization, or to differentiate lesions’ grades (diagnostic) such as low grade HCC vs. high 

grade HCC (29, 33). Since the filtration of contrast material through liver lesions has been shown 

to be highly predictive of HCC (34), intravenous contrast-enhanced (CE)-CT, typically using 

iodine (35), is also widely studied qualitatively and quantitatively to predict treatment response or 

aggressiveness (36). Thus, radiomics analyses of the different enhancement phases of CE-CT has 

been shown to relate to predictive histopathological features of disease’s activity such as 

microvascular invasion, often associated with bad prognosis (29, 33, 37). Similarly, also in 

abdominal imaging, renal lesions characterization through radiomics analyses of CT and CE-CT 

scans has been explored widely but in an unstandardized manner (31, 38). Kidneys are the body’s 

filters and will enhance clearly on CE-CT images while lesions will show either as hyperattenuating 

or with textured enhancing patterns, which are both characteristics of lesion’s grade (39, 40). 

Therefore, CE-CT is currently the clinically preferred renal imaging technique (39, 40). Radiomics 

features extracted from enhancement phases of CE-CT, especially from the nephrogenic phase as 

it is used for small renal cell carcinomas detection, have been included in predictive models to 
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grade disease activity and in particular to differentiate benign from malignant renal lesions for 

patients’ stratification for surgery (31, 38, 39). 

In pelvic oncological imaging, MRI is one of the preferred imaging technique as it provides 

the soft tissue contrast required for tumor detection and delineation (41-44). The clinical use of 

MRI-based radiomics in prostate cancer for instance has been widely validated in recent years, 

reporting good features reproducibility and accurate detection of tumor hypoxia or tumor 

aggressiveness (45-47). MRI has shown high sensitivity for tumor detection and characterization, 

combining anatomical T2-weighted images with functional imaging such as diffusion-weighted 

imaging (DWI), derived apparent diffusion coefficient (ADC) maps, or dynamic contrast-enhanced 

(DCE)-MRI (43). MRI-based radiomics studies had either diagnostic purposes (e.g. differentiating 

healthy from cancerous tissues or grading biological aggressiveness) or prognostic purposes (e.g. 

predicting pathological response or biochemical recurrence) (48). Such studies have been 

published for cervical, endometrial, prostate, and colorectal cancers (48, 49).  

In endometrial cancer, many studies in the last decade have assessed the ability of radiomics 

features extracted from single sequence or multi-parametric MRI (mpMRI) to diagnose three main 

histopathological features, i.e. lesion’s grade, deep myometrial invasion, and the presence of 

lymphovascular space invasion (18, 50-57). Such noninvasive screening can provide preoperative 

risk stratification to identify which patients should undergo surgery or adjuvant treatments such as 

Figure 2.2 Sampling variability of biopsies in capturing tumoral phenotypes. Scale shows 

angle-dependant fractions of captured phenotypes. Adapted from Poleszczuk J et al 2015 (28). 
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chemotherapy or radiotherapy (2). In all these cancer sites, the interest in using mpMRI was 

twofold. First, the need for high soft tissue contrast in pelvic imaging for detection and 

characterization of lesions has made MRI a clinical standard for grading these tumors. Second, an 

increase in detection sensitivity and grading accuracy has been achieved thanks to MRI's ability to 

assess tissue cellularity or perfusion with DWI or DCE-MRI (48). Moreover, just like in the clinical 

setting where the use of multiple MR sequences helps with patients’ stratification through a more 

comprehensive tumor pathophysiological characterization (41, 43), the use of mpMRI-based 

radiomics compared to that of single sequence MRI-based radiomics was found to lead to better 

predictions or diagnoses of histopathological characteristics or treatment response (45, 58, 59). 

 

2.2. Technical Background 

While the field of radiomics is attracting a lot of attention, it remains in its infancy and has 

several challenges to overcome (29, 60-63). Standardization and reproducibility of computational 

methods are challenging since features extracted through mathematical operations on medical 

images used in radiomics workflows depend on image acquisition parameters and image 

preprocessing which vary between scanner hardware and software (63). In fact, research showed 

variability even in radiomics features themselves when extracted on different platforms (64). All 

these factors limit greatly the translation of radiomics applications into clinical practice. An 

international study group recently published 14 recommendations for the translation of quantitative 

imaging biomarkers such as radiomics into the clinic (6). Among these recommendations were the 

standardization of the extraction of biomarkers and the reassessment of the precision of biomarkers 

across institutions (6). Thus, research on reproducibility and repeatability of radiomic features is 

required to harmonize workflows and to improve radiomics’ precision across modalities and across 

centers. To address these challenges, the Image Biomarker Standardization Initiative (IBSI), an 

international collaboration of 25 research groups across 8 different countries, was initiated in 2016 

to “establish a comprehensive radiomics workflow description, provide verified definitions of 

commonly used features, and provide benchmarking of features extraction and image processing 

steps, as well as reporting guidelines”, and has recently been published in 2020 (65). Another 

chapter in IBSI international efforts for radiomics harmonization has also started in June 2020 

aiming to improve the reproducibility of image filters (i.e. wavelet filters, Laplacian of Gaussian 
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filters, etc.) as a preprocessing step in radiomics studies (66). Image filtering, or local image 

descriptors, was not covered in our work because of the current lack of validation of these filters 

and since we were interested in non-local image descriptors throughout this project. 

Table 2.1 Summary of the 106 radiomics features computed from input images using the 

Pyradiomics extraction platform and used throughout this thesis. 

 

Category Radiomics features 

First-order gray-level statistics: 

Global histogram features (n = 18) 

 

 

Mean, Median, Variance, Skewness, Kurtosis, Entropy, Uniformity, 

Energy, Total energy, Minimum, 10th  percentile, 90th percentile, 
Maximum, Interquartile range, Range, Mean absolute deviation, Robust 

mean absolute deviation, Root mean squared 

Shape-based statistics: 3D shape 

features (n = 14)  

 

 

Mesh volume, Voxel volume, Surface area, Surface area to volume ratio, 

Sphericity, Spherical disproportion, Maximum 3D diameter, Maximum 

3D slice, Maximum 2D column diameter, Maximum 2D row diameter, 

Major axis length, Minor axis length, Least axis length, Elongation, 

Flatness 

Second-order gray-level statistics: 

Gray-Level Co-occurrence Matrix 

(GLCM) texture features (67) (n = 24) 

 

Contrast, Correlation, Sum average,  Autocorrelation, Joint average, 

Cluster prominence, Cluster shade, Cluster tendency, Contrast, 

Difference average, Difference entropy, Difference variance, Joint 

energy, Joint entropy, Informational measure of correlation 1, 

Informational measure of correlation 2, Inverse difference moment, 

Maximal correlation coefficient, Inverse difference moment normalized, 

Inverse difference normalized, Inverse variance, Maximum probability, 

Sum entropy, Sum of squares,  Homogeneity 1 and 2, Dissimilarity, Sum 

variance 

Second-order gray-level statistics: 

Gray-Level Run-Length Matrix 

(GLRLM) features (68) (n = 16) 

Short run emphasis, Long run emphasis, Gray-level nonuniformity, 

Gray-level nonuniformity normalized, Run-length nonuniformity, Run-

length nonuniformity normalized, Run percentage, Gray-level variance, 

Run variance, Run entropy, Low gray-level run emphasis, High gray-

level run emphasis, Short run low gray-level emphasis, Short run high 

gray-level emphasis, Long run low gray-level emphasis, Long run high 

gray-level emphasis 

Second-order gray-level statistics: 

Gray-Level Size-Zone Matrix (GLSZM) 

features (69) (n = 16) 

Small area emphasis, Large area emphasis, Gray-level nonuniformity, 

Gray-level nonuniformity normalized, Size-zone nonuniformity, Size-

zone nonuniformity normalized, Zone percentage, Gray-level variance, 

Zone variance, Zone entropy, Low gray-level zone emphasis, High gray-

level zone emphasis, Small area low gray-level emphasis, Small area 

high gray-level emphasis, Large area low gray-level emphasis, Large 

area high gray-level emphasis, 

Second-order gray-level statistics: 

Gray-Level Dependence Matrix 

(GLDM) features (70) (n = 14) 

Small dependence emphasis, Large dependence emphasis, Gray-level 

nonuniformity, Gray-level nonuniformity normalized, Dependence 

nonuniformity, Dependence nonuniformity normalized, Gray-level 

variance, Dependence variance,  Dependence percentage, Dependence 

entropy, Low gray-level zone emphasis, High gray-level zone emphasis, 

Small dependence low gray-level emphasis, Small dependence high 

gray-level emphasis, Large dependence low gray-level emphasis, Large 

dependence high gray-level emphasis 

Second-order gray-level statistics: 

Neighbouring Gray-Tone Difference 

Matrix (NGTDM) features (71) (n = 4) 

Coarseness, Contrast, Busyness, Complexity 



RADIOMICS 

26 

The first category of radiomics features explored in this project was first-order statistics. 

Histogram-based statistics of the distribution of voxel intensities within the volume of interest 

(VOI) were extracted directly from preprocessed images (Table 2.1). These features included basic 

descriptive statistics such as the mean of voxel intensities, minimum and maximum values, 

variance, as well as kurtosis, skewness, and many others (n = 18). The second category was shape- 

and size-based features. They are descriptors of the 3D topology and morphology of the segmented 

tumor volume. Features included maximum 3D diameter, surface area to volume ratio, or 

sphericity, along with many others (n = 14). The third category explored was second-order 

statistics, or textural features, decrypting gray-level patterns from the spatial distribution of voxels 

intensities. Five subgroups of texture features were extracted from different matrix representations 

of images, namely Gray-Level Co-occurrence Matrix (GLCM, n = 24) (67), Gray-Level Run-

Length Matrix (GLRLM, n = 16) (68), Gray-Level Size-Zone Matrix (GLSZM, n = 16) (69), Gray-

Level Dependence Matrix (GLDM, n = 14) (70), and Neighbouring Gray Tone Difference Matrix 

(NGTDM, n = 4) (71). Mapping the original image into a textural matrix representation requires 

gray-level discretization of intensity values across the image. For example, to assess the co-

occurrence of a given voxel intensity in its neighborhood, intensities have to be discretized in bins 

of a preselected gray-level width to count these co-occurrences, or for any other mathematical 

assessment of inter-relationships of voxel intensities in a VOI (65, 67). Hence, prior to extraction 

of second-order features, voxel intensities must be resampled into gray-level bins. This 

discretization reduces image noise and standardizes voxel intensities across patients (65, 72). One 

textural representation matrix was obtained per texture class from 26-connected voxels considering 

that voxels in 3D images have direct neighbors in all 13 directions (16). Statistical features are 

subsequently extracted from these textural representations of the original image, such as contrast, 

entropy, and many others. 

Briefly, GLCM characterizes gray-level co-occurrences by assessing how often pairs of 

voxels with specific discretized intensity values and in a specified spatial relationship occur along 

a given angle (67). GLRLM characterizes gray-level runs by assessing lengths in number of 

consecutive voxels with the same intensity value along a given angle (68). GLSZM characterizes 

gray-level zones by assessing the number of connected voxels with the same intensity value. 

GLSZM is rotation invariant since zones are assessed with only one matrix for all directions, unlike 

GLCM and GLRLM (69). GLDM characterizes gray-level dependencies by assessing the number 
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of connected voxels within a given distance depending on a center voxel (70). NGTDM 

characterizes differences between an intensity value and the average intensity in its neighbourhood 

within a given distance, by storing the sum of absolute differences for an intensity (71). 

Previous studies have often reported high reproducibility and stability for features in the 

first two radiomics categories, histogram statistics and morphological features while, on the 

opposite, texture features tend to provide lower stability under segmentations variations, since they 

are inherently dependant on regions from which they evaluate voxel intensities spatial distributions 

(30, 73). IBSI recommendations are modality-specific since each imaging modality depends on 

several acquisition-specific parameters. Hence, we briefly review hardware and software 

considerations when performing radiomics studies on CT and MRI. 

 

Radiomics in Computed Tomography 

CT is an anatomical transmission-based imaging modality using photon attenuation inside 

the imaged object to produce an image. It is a tomographic system in the sense that it acquires 

multiple fan beam projections of the object as represented in Figure 2.3 in order to reconstruct 

axial slices typically using iterative algorithms based on filtered backprojection and the Radon 

transform of all acquired projections (74, 75). Axial slices are obtained sequentially, in a helical 

fashion while the table supporting the object moves towards the CT gantry. The reconstructed axial 

Figure 2.3 Fan beam projection of X-ray source (in red) projected on detector array (in dark 

green) in CT grantry (in grey). 
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images of the object can be understood as photon mass attenuation coefficients 𝜇 maps – mainly 

from photoelectric and Compton scattering interactions in CT effective energy regions – or electron 

density maps expressed relative to attenuation in water 𝜇𝑤 in Hounsfield Units (HU) (74): 

HU = 1000
𝜇 − 𝜇𝑤

𝜇𝑤
 (2.1) 

Hence, on CT images, air is represented by -1000 HU, fatty tissues by -120 to -90 HU, 

bones by +400 to +1900 HU, and fluids (water) by about 0 HU. Radiocontrast such as iodine is 

radio-opaque and shows as high intensity signal of about 25-30 HU at 120 kV tube voltage (35). 

Many CT acquisition parameters are adjusted depending on the anatomical region imaged. For 

better soft tissue contrast, lower peak potential is applied to the x-ray tube (kVp) to adjust the peak 

photon energy. Increasing tube milliamperage (mA) and the time of exposure is also important to 

improve the x-ray intensity reaching the detector array. Moreover, different reconstruction kernels 

can be used to enhance edge detection when a high spatial resolution is needed for instance, or on 

the opposite, to provide a smoother and a more uniform reconstructed image. 

In CT radiomics studies, varying CT acquisition parameters including kVp, section 

thickness, tube filters, and reconstruction kernel has been shown to decrease greatly the 

reproducibility of radiomics features when no image preprocessing is performed (30, 76-78). Only 

standard-of-care variable mA, automatically adapting detector exposure, was found to have little 

impact on radiomics features, with all other acquisition parameters equal (79). Thus, prior to 

features extraction, image preprocessing such as voxel size resampling is required to obtain 

reproducible radiomics features (65, 80).  

For reproducibility, IBSI guidelines recommend resampling voxel size to isotropic voxel 

dimensions and performing either absolute or relative gray-level discretization (65). However, the 

choice of these preprocessing steps also influences radiomics features extraction and has been 

shown to impact their reproducibility, especially for second-order statistics or texture features (81). 

Since CT intensity values (HU) are proportional to electronic density of the imaged tissue, the 

range of these values for different anatomic sites are well-known and reproducible between two 

examinations with the same parameters (74). Hence, for similar protocols, CT images have good 

inter-scan reproducibility and provide “quasi-quantitative” measurements (82). For such a 

modality, IBSI currently recommends using absolute gray-level discretization by using fixed gray-



RADIOMICS 

29 

level bin widths between the minimum HU and the maximum HU in the image but removing HUs 

outside of 3 standard deviation range from the mean. This absolute discretization technique enables 

us to maintain a relationship with the original physical signal, e.g. the mass attenuation coefficients 

for CT. Even though there still is intrinsic image variability in different manufacturers scanner (82), 

such preprocessing steps increases reproducibility and harmonizing these steps across radiomics 

studies will enable the translation of radiomics-based diagnosis or response assessment into the 

clinic (76, 77).  

 

Radiomics in Magnetic Resonance Imaging 

MRI is an anatomical imaging technique which produces volumetric images by 

manipulating protons’ magnetic moments within an object by using magnetic fields to produce 

signal (74). In the presence of a strong magnetic field, hydrogen nuclei protons will align with the 

underlying magnetic field B0 due to their spin, an inherent nuclear property arising from quantum 

mechanics giving each nucleus a small magnetic moment. From this arises a net magnetization M 

inside the imaged object, which is going to precess at a resonant frequency, the Larmor frequency, 

due to the nuclear magnetic resonance phenomenon. By tipping this net magnetization with another 

magnetic field oscillating perpendicularly to the main strong magnetic field B1, we can capture this 

signal as inductance in a receiver coil as represented in Figure 2.4 (44). Through slice, phase, and 

Figure 2.4 (a) Net magnetization M of hydrogen nuclei precessing in the presence of a strong 

magnetic field B0 tipped in the transverse plane by the radiofrequency oscillating excitation pulse 

B1 inducing current in inductance loops of MR system’s receiver coils. (b) The net magnetization 

M realigns with the main magnetic field B0 after excitation. Reproduced from Lugauer F et al 2018 

(44), original figures published under the Creative Commons licence. 

a b 
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frequency encoding of signal with magnetic field gradients, we can spatially localize this signal 

and acquire echoes after a pre-selected time, or echo time (TE) after the perpendicular excitation 

magnetic field pulse, while the magnetization recovers its alignment with the main magnetic field, 

according to the Bloch equations (83). Volumetric images are reconstructed from acquisition of 

this signal corresponding to data in k-space, a spatial frequency space, acquired with different 

repeated series of magnetic field gradients, or MR sequences, spaced by a preselected time or 

repetition time (TR) (84). Hence, reconstructions of MR images are based on 3D inverse Fourier 

transforms, mapping the MR signal from k-space to a volumetric image (Figure 2.5).  

MRI is known for providing high soft tissue contrast and for its ability to provide 

physiological information about the underlying pathological processes within tissues. In fact, a 

multitude of MRI protocols are currently clinically available for cancer assessment. Weighting the 

longitudinal recovery time (T1) of the magnetization with short TR and TE (T1-weighted) will lead 

to fatty tissues appearing brighter and fluids appearing darker on MR images while weighting the 

transverse recovery time (T2) of the magnetization with long TR and TE (T2-weighted) will lead 

fluids appearing brighter on MR images. Numerous MR sequences have been developed to acquire 

these signals, some including a refocusing pulse known as spin-echo (SE), some without refocusing 

pulse known as gradient-echo (GRE), some with fast acquisition scheme such as echo planar 

Figure 2.5 MR signal in k-space with (a) full acquired sample, (b) low frequencies only, and 

(c) high frequencies only, and (d-f) their associated reconstructions in spatial domain. Adapted 

from Bushberg JT et al 2012 (74). 

a b c
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imaging (EPI) sequences, and many others with different TE and TR, including or not preparation 

sequences or acceleration methods. All these possibilities offered by MRI technology also come 

with some drawbacks: image intensities don’t have a fixed meaning. 

Other clinical MR sequences can provide physiological information by using contrast 

agents such as DCE-MRI or without contrast agents such as DWI. These MR contrasts can 

interrogate tissues’ perfusion or diffusion processes as biomarkers of blood volume perfusing 

through a VOI or by assessing tissue cellularity, respectively. These sequences also come in a 

variety of implementations to acquire these signals, varying from one implementation to another. 

Thus, in MRI-based radiomics studies, one must be even more careful since the measured 

signal varies between scanners and between repeated examinations. This results in inter-scan and 

inter-vendor variability often leading to poor reproducibility (85, 86). Since radiomics studies tend 

to be retrospectively performed on available clinical MRI data, analyses are performed on standard-

of-care vendor specific MR sequences with different acquisition parameters which can reduce the 

reproducibility of extracted radiomics features when acquisition parameters such as TE and TR 

vary between scans (85, 86). The need for an external testing dataset is therefore even more 

important for such analyses to be confirmed on other vendor machines across centers (6, 87). 

Moreover, gray-level discretization and voxel size resampling is required to obtain reproducible 

radiomics features prior to features extraction according to IBSI recommendations (46, 88). 

The use of an absolute discretization algorithm is not recommended by IBSI guidelines for 

imaging modalities for which image intensity ranges vary from one acquisition to another, like in 

MRI (65). However, some studies observed that applying normalization to MR images prior to 

absolute gray-level discretization increased the reproducibility sets of radiomics features on many 

MR contrasts compared to that of relative discretization with fixed bins number (46, 88). Hence, 

based on these findings, most recent studies first normalized MRI intensity values prior to absolute 

discretization of intensities. Most of them either used either z-score normalization of images or 

rescaled the mean intensity at 300 and the standard deviation at 100 such that gray-level values 

were within a 0-600 range, with or without a reference tissue (46, 86, 88-94). IBSI’s argument on 

relative discretization for MRI data was not justified in the original report, hence based on recent 

evidences, absolute discretization can be employed after appropriate image normalization to 

increase reproducibility (46, 88). Hence, we can conclude that optimizing preprocessing 
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parameters should be done to identify reproducible features prior to any radiomics study, especially 

in MRI-based radiomics studies (62). 

 

Radiomics Platforms 

A variety of radiomics features extraction platforms have been proposed in the literature. 

Throughout this thesis, we chose to employ the Pyradiomics platform (Harvard Medical School, 

Boston, USA, pyradiomics.readthedocs.io) since it is open-source, IBSI-compliant, widely used in 

prior radiomics studies, and since it enables 3D features extraction (16, 95). In the IBSI report (65), 

it is indicated that other open-source radiomics platforms have implemented many or all IBSI-

covered radiomics features and shown high feature reproducibility following the standardization 

steps of the IBSI protocol. These platforms include the Medical Image Radiomics Processor 

(MIRP, OncoRay, HZDR, Dresden, Germany), Medical Imaging ToolKit (MITK) Phenotyping 

(DKFZ, Heidelberg, Germany), RaCat (University Medical Center Groningen, Groningen, The 

Netherlands), Dr Martin Vallières’s MATLAB Radiomics Environment (McGill University, 

Montreal, Quebec, Canada), and Standardized Environment for Radiomics Analysis (SERA, Johns 

Hopkins University, Baltimore, USA) (96-100). However, most of these platforms have been made 

available and/or published in 2018 or 2019 and have been limitedly used or referred to since 

(Google Scholar citations dated 2020-06-16: 14, 9, 9, 143, and 1, respectively). Pyradiomics on the 

opposite, has been widely used and cited since its original publication in 2014 (Google Scholar 

citations dated 2020-06-16: 2023). It is also fully open-source since it is written in the free open-

source Python programming language, and not in MATLAB for example, a popular scripting 

language requiring expensive licenses which has also been widely used to implement radiomics 

features extraction platforms. Even though using Pyradiomics seems overall advantageous, one of 

the major drawbacks is that it implements only about 50% of IBSI-defined radiomics features (65). 

 In the next section, the radiomics pipeline based on the Pyradiomics platform and used 

throughout this thesis is described in detail. The pipeline is presented step-by-step as a method for 

the clinical studies presented in Chapters 4 and 5. 

 



RADIOMICS 

33 

2.3. Radiomics Pipeline 

The radiomics pipeline built in this project consisted of three main steps: i) tumor 

segmentation, ii) computation of radiomics features within the segmented tumoral VOI, and iii) 

feature selection, model building, and classification as represented on Figure 2.6. Table 2.1 shows 

the 106 radiomics features included, as defined and extracted within Pyradiomics. In the 

development of the pipeline for 3D radiomics features extraction and classification, we followed 

the recommendations from IBSI and from the most recent literature on the topic. Since 

recommendations differ for each imaging modality, the pipeline was adapted accordingly. 

First, we retrospectively queried for patients’ images on the Picture Archive and 

Communication System (PACS) fitting the inclusion criteria of the study. Clinical and imaging 

data were stored, and tumors were manually or semi-automatically segmented. Second, in the 

training dataset, many combinations of pre-processing steps were defined on the Pyradiomics 

platform to assess the reproducibility of radiomics features. These preprocessing steps included 

different types of image gray-level normalization (with and without), gray-level discretization, and 

voxel resampling. For each combination of preprocessing steps, we extracted first-order, shape-

based, and textural features. The goal of the fourth step was to define which combination of 

preprocessing parameters resulted in the highest feature reproducibility as assessed by intra-class 

correlation coefficients (ICC) (101). To do so, segmentations were automatically dilated and 

eroded by a single-voxel contour to assess the sensitivity of radiomics features to such changes in 

the VOI. ICC distributions for all radiomics features classes were then compared to select 

preprocessing steps resulting in highest reproducibility. More specifically, ICC for each radiomics 

feature extracted from the three versions of the VOI was assessed as:  

𝐼𝐶𝐶(1,1) =
𝐵𝑀𝑆 − 𝑊𝑀𝑆

𝐵𝑀𝑆 + 2𝑊𝑀𝑆
(2.2) 

where BMS is the between-subjects mean squares (BMS) estimating feature xi variance 

between all N subjects, 𝐵𝑀𝑆 = 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
2 =

1

𝑁
∑ (𝑥𝑖 − �̅�𝑁)2𝑁

𝑖=1 , and WMS is the within-

subjects mean square (WMS) estimating feature xj variance over all M repeated measurements (M 

= 3) in the same subject, 𝑊𝑀𝑆 = 𝜎𝑤𝑖𝑡ℎ𝑖𝑛−𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
2 =

1

𝑀
∑ (𝑥𝑗 − �̅�𝑀)2𝑀

𝑗=1  (101). Features extracted 

from the original VOI with the selected normalization, discretization, and resampling 
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preprocessing steps leading to the highest overall reproducibility (ICC) were further analyzed. Prior 

to further modeling, each radiomics feature 𝑥 was normalized according to its mean �̅� and standard 

deviation 𝜎 across the population i.e. z-score normalized feature 𝑧 =
𝑥−�̅�

𝜎
 , in the training and in the 

testing datasets separately, to enable feature comparison from two different centers (102, 103).  

Radiomics features were then included in a final random forest model if they were i) 

reproducible, ii) uncorrelated as assessed by non-parametric rank correlations, and iii) 

discriminating, as evaluated by random forests’ features selection based on Gini impurity, which 

is discussed in detail in the next section. More specifically, only features with an ICC greater or 

equal to 0.80 were included for reproducibility. To handle multicollinear correlated features, we 

performed hierarchical clustering on features’ Spearman’s rank correlations (Spearman’s ρ < 0.95). 

The feature with the highest variance between classes was kept from each cluster. Finally, up to 5 

most discriminative features selected by random forest modeling were included in a final random 

forest classifier optimized to limit overfitting on our dataset and trained with bootstrapping (1000 

bootstraps) and out-of-bag sample validation on the training dataset (104). To account for 

imbalanced datasets, random undersampling of the majority class in each bootstrapped sample was 

performed such that the ratio of the number of subjects in the majority class to that in the minority 

class was less or equal to 75%, using the Python imbalanced-learn toolbox (105). The model was 

then tested on a testing dataset from another institution to assess its diagnostic performance. 

Diagnostic performance metrics reported in the testing dataset were used as the real model 

performance regardless of that in the training which could still be subject to overfitting. Metrics 

included receiver operating characteristic (ROC) curves with associated areas under the ROC curve 

Figure 2.6 Reproducible radiomics pipeline built for this project. 



RADIOMICS 

35 

(AUC), sensitivity, specificity, balanced accuracy, positive predictive value, and negative 

predictive value for the threshold maximizing Youden’s index (sensitivity+specificity-1). 

Understanding of statistical metrics is left to the reader whom will find extensive literature on the 

topic (106). This pipeline was applied in clinical studies detailed in Chapter 4 and Chapter 5. 

 

2.4. Random Forest Classification  

Throughout this project, we were interested in predicting binary categories from labeled 

data, thus performing supervised classification tasks. Random forest classifiers were selected for 

their many advantageous properties for features selection and classification. The random forest 

model is an ensemble technique combining predictions from multiple randomized decision trees 

which nodes are subsequently split by a subset of randomly selected features from the training 

dataset (25). Random forest classifiers’ advantages include the following: i) ensemble learning 

with multiple randomized trees allow probabilistic classification and reduced training bias; ii) 

individual trees are decorrelated because a random proportion of features are used at each split 

enabling to capture important features even in high-dimensional or noisy data; iii) it is a 

nonparametric flexible feature selector with few hyperparameters to tune, and iv) it intrinsically 

evaluates the generalization error model on an out-of-bag sample (107-111). In fact, since random 

forest classifiers are ensemble-based classifiers using bagging, i.e. generating new training sets 

using sampling with replacement, a part of the training set was always used to assess the 

generalization error, or the out-of-bag (OOB) error, of each random forest model. The OOB error 

was calculated as the mean prediction error on each training sample X, using only the trees that did 

not have X in their bootstrap sample. Therefore, there was no need to rely on a separate validation 

set to perform model selection as we relied on OOB error. To minimize over-fitting, the number of 

trees, the maximum decision trees’ depth, and the number of features to possibly split at each node 

were minimized, along with the OOB error. We briefly explain the decision tree algorithm used to 

build random forests. 

Each binary decision tree is built in a top-down approach following the Classification and 

Regression Tree (CART) algorithm (112). The root is built from a labeled bootstrapped sample of 

the training dataset given as an input to the decision tree. At each decision node of the tree, a 
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randomly selected set of features is made available. The goal is to find the most discriminating 

feature from this set, or split feature 𝜃, enabling to separate as many subjects pertaining to a class 

0 from the other class 1 for a given feature threshold 𝑡𝜃, based on Gini impurity criterion 𝑖𝐺 (Figure 

2.7). Hence, at each node, we aim to minimize the mixture of classes passed at each side of the 

node to further splits such that eventually subjects from the same class are grouped together. Gini 

impurity 𝑖𝐺, a metric similar to entropy, is used to minimize the probability of misclassification at 

a given node and measures how accurately a given split based on a selected feature threshold is 

discriminating between the two classes, 0 and 1, or benign and malignant (112): 

𝑖𝐺 = 1 − 𝑝0
2 − 𝑝1

2 (2.3) 

where 𝑝𝑗 = 𝑛𝑗/𝑛 is the fraction of subjects pertaining to class j ∈ 0,1 out of the total sample 

at this specific node of the tree. Hence, if at a given node all subjects pertain to class 0 and none to 

class 1, then 𝑖𝐺 = 0 and the sample is “pure”. If not, the samples are split at this node according to 

the selected feature threshold and are passed at two other nodes on the left and the right such that 

the difference in Gini impurity ∆𝑖𝐺 is evaluated as: 

∆𝑖𝐺 = 𝑖𝐺 −
𝑛𝑙𝑒𝑓𝑡

𝑛
𝑖𝐺,𝑙𝑒𝑓𝑡 −

𝑛𝑟𝑖𝑔ℎ𝑡

𝑛
𝑖𝐺,𝑟𝑖𝑔ℎ𝑡 (2.4) 

To maximize this decrease in Gini impurity ∆𝐼𝐺, an exhaustive grid search over all features 

𝜃 available for this node to split and across all their possible threshold values 𝑡𝜃 is efficiently 

performed as 𝜃∗ = argmin𝜃(∆𝑖𝐺(𝜃, 𝑡𝜃)) . This optimal split ∆𝑖𝐺,𝜃∗ is then kept in memory for all 

nodes and all trees in the random forest for each feature in order to can define Gini feature 

importance of a given feature as: 

𝐼𝐺(𝜃) = ∑ ∑ ∆𝑖𝐺,𝜃(𝑛𝑜𝑑𝑒, 𝑡𝑟𝑒𝑒)

𝑁𝑛𝑜𝑑𝑒

𝑛𝑜𝑑𝑒=1

𝑁𝑡𝑟𝑒𝑒

𝑡𝑟𝑒𝑒=1

(2.5) 

Decision nodes are split until there is only a single subject on a side of the node, until there 

are only subjects pertaining to a single class on each side of the node, or until maximal tree depth 

is reached. This is where the leaves level is reached and where classes are predicted. Each 

randomized decision tree in the random forest contributes to the final predictions of the forest given 

outputs at the leaves level. Combining these decision trees by taking the mean of predictions results 
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in improved classification accuracy, and is known as ensemble learning which reduces model’s 

bias (111). 

For example, let’s follow one of the branches of the decision tree on Figure 2.7 built during 

preliminary analyses of  the mpMRI of endometrial cancer project for predicting deep myometrial 

invasion (MI), presented in Chapter 5. The blue color wash is proportional to the purity of the 

samples associated with histopathological deep MI while orange is associated to purity of samples 

without deep MI. First, we start at the root with a sample of the training population, 59 lesions 

without deep MI and 40 lesions with deep MI. Thus, the Gini impurity is equal to 𝑖𝐺 = 1 − (
59

99
)

2

−

(
40

99
)

2

= 0.482, indicating impure samples. Using a dependence entropy extracted from GLDM on 

delayed phase DCE-MRI (referred to as PostGado in Figure 2.7 for post-gadolinium) of 0.052, the 

grid search found that it could decrease significantly the impurity of samples, splitting at two nodes 

subjects into “purer” samples without deep MI and with deep MI. Following the left branch of 

subjects mostly without deep MI (48 vs. 5), hence with smaller Gini impurity (𝑖𝐺 = 1 − (
48

53
)

2

−

(
5

53
)

2

= 0.171), a dependence nonuniformity threshold, also extracted from GLDM on delayed 

phase DCE-MRI, of -0.535 resulted in another good node split. Following again the left branch of 

the node, we now almost have a pure sample with 35 subjects without deep MI and only one subject 

with deep MI, thus 𝑖𝐺 = 0.054. We find at this node that a zone entropy threshold extracted from 

GLSZM on delayed phase DCE-MRI of -1.955 enabled us to split perfectly in a pure sample (𝑖𝐺 =

0), on the right side of the node, subjects without deep MI. Thus, if a given lesion without deep MI 

had radiomics features corresponding to each node split condition which lead to this leaf at the end 

of the tree, it would be accurately predicted as without deep MI in a binary manner. 

Extending from single CART binary decision trees, random forest classifiers enable robust 

probabilistic classification. Therefore, resulting probabilities, or risks, generally between 0 and 1 

can be leveraged to interpret how predictions the random forest model are certain based on included 

features. Random forests classifiers decision planes can even be visualized to understand 

probabilistic decision boundaries built during the training process. These boundaries in a N-

dimensional space (depending on the number N of features included in the modeling) are built from 

the combination of randomized decision trees such as the one represented below in Figure 2.7, 

enabling probabilistic classification. 
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Reported diagnostic performance metrics on the training dataset are obtained on OOB 

bootstrapped balanced samples (1000 samples), while that obtained on the testing set is obtained 

by applying the trained model on bootstrapped samples of the testing dataset.  

Figure 2.7 Decision tree built in the random forest classifier for differentiating <50% 

myometrial invasion from deep myometrial invasion in endometrial cancer from radiomics features 

extracted from multi-parametric MRI. 
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3.  SPHERICAL HARMONICS DECOMPOSITION 

3.1. Background 

Spherical harmonics functions arise from the angular solution to Laplace’s equation in 

spherical coordinates introduced at the end of the 18th century (113), and also appear as the angular 

solution to Schrödinger’s equation when modeling atomic orbitals in the hydrogen atom introduced 

at the beginning of the 20th century (Figure 3.1) (114-116). Adapting this mathematical formalism 

for spherical harmonics (SPHARM) decomposition was first introduced to provide compact 

representation of three-dimensional (3D) models for 3D objects search engines in the early 2000’s 

(17, 117). It has been applied in numerous fields since then, including molecular chemistry (118), 

evolutionary biology (119), acoustics (116), and even neuroimaging to characterize the brain’s 

cortical surface (120-123). Because of the spherical topology of some solid tumors, SPHARM 

decomposition is ideally suited for characterizing their harmonic frequency content and therefore 

their textural appearance.  

 To alleviate some of the problems encountered in radiomics studies including the need for 

gray-level discretization and voxel resampling, we propose to compare a standard radiomics 

approach with the SPHARM decomposition method. This paradigm in medical imaging consists 

in computing simple transformations on native medical images based on the mathematical 

framework developed in 1926 to model the hydrogen atom’s electronic orbitals (114). The key idea 

of the SPHARM decomposition approach is to obtain a rotation-invariant representation of tumors 

storing amplitudes of different SPHARM frequency components at different radii (17). The reason 

for adopting this paradigm is threefold.  

First, SPHARM computation is known to be robust to a large variety of image 

transformations, such as rotation, translation, or changes in brightness and contrast (17). These 

invariance properties of SPHARM descriptors make it robust to changes in image signal that are 

caused not by the underlying pathophysiology, but rather by technical differences in image 

acquisition, which can be particularly prominent if images are acquired at different scanning sites 

or institutions or seen in MRI data in general. Hence, it does not require image gray-level 

resampling or normalization such as what is needed in radiomics studies. 
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Second, it is a multi-resolution representation as it represents a 3D object in terms of 

energies at different SPHARM frequencies, with information at lower frequencies representing 

general smoother shape description of the original object and information at higher frequencies 

representing rougher textured variations (17, 124). Hence, it is well-suited for medical imaging and 

does not require image resampling to isotropic voxel sizes such as what needs to be performed in 

radiomics studies. It is also compact as it reduces the dimensionality of the image while allowing 

reconstruction of the initial tumor. 

 Third, the SPHARM technique has been long known to capture structural image 

information that is relevant both for automated image processing, as well as for biological visual 

perception of image content (17, 117). Thus, our hypothesis is that a set of SPHARM features can 

capture predictive tumoral structural and textural intra-heterogeneity and provide similar or better 

performance for predicting histopathological features of solid tumors than a standard radiomics 

approach, computed directly on the original anatomical images.  

Before further developing on the SPHARM decomposition pipeline, a note is made here to 

differentiate this work from implemented image filtering in Pyradiomics built upon the spherical 

harmonics mathematical framework. This filtering process is called 3D local binary pattern (LBP) 

and uses spherical harmonics basis functions to map locally in a voxel-wise manner surrounding 

image content in each voxel for a given spherical harmonic degree and radius (125). As mentioned 

previously, such local filtering methods were not studied throughout this thesis. SPHARM 

decomposition is significantly different: it is not a local voxel-wise image filtering method, but 

rather a non-local image transformation providing a compact 2D mathematical image descriptor of 

a whole volume. Therefore, the SPHARM decomposition pipeline detailed below aimed to provide 

a quantitative volumetric image descriptor to be analyzed as such, and not to be used to further 

extract other mathematical descriptive statistics from the resulting descriptor (e.g. mean, variance, 

kurtosis, etc.), which would be done on 3D LBP-filtered images, or other ISBI-defined image 

filtering processes, in radiomics studies (66).  

Second, we also want to mention that preliminary versions of this work included 

development of more complex SPHARM-inspired volume decompositions. To increase the 

creativity in SPHARM descriptors and to investigate even more interesting mathematical 

properties of these descriptors, a weighted Fourier transform on SPHARM coefficients along the 
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radial dimension in the SPHARM pipeline was tested, for instance, along with other 

transformations inspired by previous work by Skibbe H et al (126, 127). Invariance properties and 

classification accuracies on 3D shape benchmark datasets of these SPHARM-inspired descriptors 

are described elsewhere (126, 127). The slightly improved shape characterization accuracy 

reported with these updated SPHARM descriptors was not worth the major trade-off that had to be 

done when using such additional transformations, losing the localization and reconstruction 

properties of SPHARM descriptors, as presented in this thesis. In fact, the interpretability of 

computer-aided diagnosis methods in diagnostic radiology is of the upmost important for 

translation of such techniques into the clinical pipeline. Another preliminary version of this work 

included the use of 3D spherical Bessel functions as a radial basis, combined with angular 

SPHARM decomposition, as proposed by Galinsky VL and Frank LR (120). This method did not 

require sampling of shells across the volume to describe its content, but rather selecting the order 

of Bessel functions to be included in the decomposition, similar to that of SPHARM’s maximal 

degree expansion Lmax. However, our preliminary implementation was unstable and reconstructions 

using these descriptors lead to unexplained artifacts. Therefore, a similar SPHARM decomposition 

approach than that of the original work by Kazhdan M et al (17) was chosen and exploratory 

analyses with other SPHARM-inspired descriptors were not reported in this thesis. 

 

3.2. SPHARM Pipeline 

Mathematical Framework 

Figure 3.1 Spherical harmonics basis functions 𝑌𝑚
𝑙 (𝜃, 𝜑) of degree 𝑙, from 0 to  3 (top to 

bottom), and order 𝑚, from −𝑙 to 𝑙 (left to right). Reproduced from Zotter F et al 2019 (116), 

original figure published under the Creative Commons licence. 



SPHERICAL HARMONICS DECOMPOSITION 

42 

SPHARM decomposition can be viewed as a spherical analogue of Fourier frequency 

decomposition of any continuous function. A given continuous one-dimensional function can be 

written out as a Fourier series, or a sine and cosine expansion. This frequency decomposition 

expresses the initial function as a weighted sum of sine and cosine functions, up to a given 

expansion degree (128). Similarly, a given 3D spherical function 𝑓(𝑟, 𝜃, 𝜑), for example a shell 

within a tumor volume, can be expressed as a weighted sum of spherical harmonics functions 

𝑌𝑚
𝑙 (𝜃, 𝜑) up to a given expansion degree 𝐿𝑚𝑎𝑥. Hence, spherical harmonics functions in SPHARM 

decomposition are analogous to sine and cosine functions in Fourier analysis. Since their linear 

combination represents any arbitrary spherical topology, they can also be understood as 

eigenfunctions of angular momentum, weighted by coefficients 𝑐𝑙𝑚𝑟 (129), represented as:  

𝑓(𝑟, 𝜃, 𝜑) = ∑ ∑ 𝑐𝑙𝑚𝑟𝑌𝑚
𝑙 (𝜃, 𝜑)

𝑙

𝑚=−𝑙

𝐿𝑚𝑎𝑥

𝑙=0

 (3.1) 

where 𝑓(𝑟, 𝜃, 𝜑) = (𝑥(𝑟, 𝜃, 𝜑), 𝑦(𝑟, 𝜃, 𝜑), 𝑧(𝑟, 𝜃, 𝜑)) is the 3D spherical function of the 

initial voxelated shell in spherical coordinates, 𝜃 ∈ [0, 𝜋] is the polar angle, 𝜑 ∈ [0,2𝜋] is the 

azimuthal angle,  are SPHARM coefficients, and 𝑌𝑚
𝑙 (𝜃, 𝜑) are Laplace’s spherical harmonics 

functions. More specifically, SPHARM coefficients 𝑐𝑙𝑚𝑟 represent the importance or the weight of 

a spherical harmonic function of degree 𝑙 and order 𝑚. These SPHARM expansion degrees and 

orders are integer quantum numbers of orbital angular momentum (114, 115). SPHARM 

eigenfunctions of angular momentum are expressed as a function of associated Legendre 

polynomials 𝑃𝑚
𝑙 (cos 𝜃): 

𝑌𝑚
𝑙 (𝜃, 𝜑) = √ 

2𝑙 + 1

4𝜋

(𝑙 − 𝑚)

(𝑙 + 𝑚)
 𝑃𝑚

𝑙 (cos 𝜃)𝑒𝑖𝑚𝜑 (3.2) 

where associated Legendre polynomials 𝑃𝑚
𝑙 (cos 𝜃) can be written out as:  

𝑃𝑚
𝑙 (cos 𝜃) = (−1)𝑚2𝑙(1 − cos2𝜃)𝑚/2 ∑

𝑘!

(𝑘 − 𝑚)!
cos(𝑘−𝑚)𝜃 (

𝑙
𝑘

) (
𝑙 + 𝑘 − 1

2
𝑙

)

𝑙

𝑘=𝑚

(3.3) 

where (
𝑙
𝑘

) is a binomial coefficient (130). For medical images consisting in voxel grids, 

SPHARM decompositions are performed after expanding concentric shells at different radii from 

the center of the volume of interest (VOI), or tumor, to obtain a collection of 3D spherical functions. 
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Each function defined at a specific radius then has to be mapped separately from a volumetric 

cartesian coordinate system 𝑓(𝑥, 𝑦, 𝑧) to a parametrized spherical mesh coordinate system 

𝑓(𝑟, 𝜃, 𝜑) specifically designed for 3D analysis of volumetric images and using uniform 

icosahedron sampling of shells (131). SPHARM decomposition is performed on these 3D spherical 

functions to store the amplitude of different spherical harmonics frequency components (degree 𝑙 

and order 𝑚) at a given radius and up to a maximal degree , by computing: 

𝑐𝑙𝑚𝑟 = ∫ ∫ sin 𝜃 𝑓(𝑟, 𝜃, 𝜑) 𝑌𝑚
𝑙 (𝜃, 𝜑)𝑑𝜃𝑑𝜑

𝜋

0

2𝜋

0

(3.4) 

where 𝑌𝑚
𝑙 (𝜃, 𝜑) is the complex conjugate of 𝑌𝑚

𝑙 (𝜃, 𝜑). Limiting the degree of the SPHARM 

decomposition  controls the level of details included in the frequency decomposition of the 

tumor, avoids modeling the higher frequency noise component of the image, and provides fast 

computation of compact SPHARM descriptors. Smooth surfaces with lower frequency content can 

be represented with few SPHARM degrees while complex textured surfaces with protrusions and 

deformations must be modeled with higher expansion frequencies. This is done in a 

computationally efficient way by addressing the SPHARM decomposition problem as a non-

equispaced discrete spherical Fourier transform for which fast Fourier transforms are already 

broadly implemented and available (124, 132). Using an implementation in C++ and MATLAB 

with parallelization with OpenMP enabled us to minimize the complexity of SPHARM descriptors 

calculation with Equation 3.4 (computation time < 5s for 64 x 64 x 64 voxelated volumes) (124). 

After decomposing 3D functions for all radii, we take the L2-norm of each  x + 1)  

matrix along the order 𝑚 dimension (of size + 1) for each radius: 

|𝑐𝑙𝑟|2 = √ ∑ |𝑐𝑙𝑚𝑟|2

𝑙

𝑚=−𝑙

(3.5) 

Since any rotation of a spherical function does not change its energy, or L2-norm, resulting 

|𝑐𝑙𝑟|2 are rotation-invariant – among other things – which explains why there is an interest in 

summing on the m dimension to analyze 2D Lmax x Rmax descriptors rather than analyzing a 3D  Lmax 

x Mmax x Rmax descriptors (17). In fact, combining |𝑐𝑙𝑟|2, a 2D representation of the image is 

obtained in terms of SPHARM coefficients, at each radius and frequency or degree 𝑙 (Figure 3.2): 
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𝑪𝑆𝑃𝐻𝐴𝑅𝑀 = [

|𝑐1,1|
2

⋯ |𝑐1,𝑅𝑚𝑎𝑥
|

2

⋮ ⋱ ⋮
|𝑐𝐿𝑚𝑎𝑥,1|

2
⋯ |𝑐𝐿𝑚𝑎𝑥,𝑅𝑚𝑎𝑥

|
2

] (3.6) 

The 2D matrix 𝑪𝑆𝑃𝐻𝐴𝑅𝑀 is referred to as SPHARM descriptor throughout this thesis (17). 

Individual SPHARM coefficient within the 2D matrix corresponds to a relative amount of 

harmonic filter importance, or spherical harmonics basis function weight, at a given radius and 

frequency. Each individual feature does not characterize the whole VOI as such. It is only when 

integrated together in this 2D matrix structure that a complete set of descriptors of the object of 

interest is obtained which allows classification of the volumetric object.  

 By construction, the SPHARM representation is translation and rotation invariant, because 

it does not rely on information depending on the orientation of the tumor. In fact, since we 

investigate the energy of each frequency band up to a limited expansion (by taking the L2-norm), 

SPHARM descriptors are also robust to systematic or small gray-level variations and to noise. 

These invariance properties arise from the fact that any rotation of a spherical function does not 

change its energy, or L2-norm (17). Moreover, knowing the initial 3D cartesian grid of the tumor 

region, SPHARM descriptors can be used to reconstruct the initial volumetric tumor through an 

iterative inverse SPHARM transform (124). SPHARM coefficients as a function of order l and 

degree m, 𝑐𝑙𝑚, thus prior to taking the L2-norm, and at each radius are simply given as an input in 

Figure 3.2 Voxelated volume of a cow decomposed into a SPHARM descriptor. Each 3D 

spherical harmonics function of degree l has a specified weight |𝑐𝑙𝑟|2, corresponding to the L2-

norm of all orders m ∈ [-l, l], and describes image content on the shell at radius r. The resulting 2D 

SPHARM descriptor is built from these weights of as a function of degree l, or frequency, and shell 

radius. Adapted from Kazhdan M et al 2003 (17). 
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Equation 3.1 resulting in 3D spherical functions on spherical parametrized meshes which are then 

mapped back on the known cartesian voxelated grid for each radius. 

For radial sampling, previous studies on 643 voxels 3D objects from the Princeton Shape 

Benchmark dataset (133) used between 25 and 34 radial samples (one shell every 2.5 or 2 voxels) 

and the most discriminating results were obtained using 25 shells and SPHARM decomposition up 

to  (117, 127). Prior to any analyses on clinical data, these expansions terms must be 

selected. Our aim by selecting maximal radial sampling and frequency expansion is to find the 

smallest descriptor which is discriminant in different classification tasks, and which enables 

accurate reconstructions of the original 3D object. For instance, the grade of a solid tumor may be 

related to smooth low frequency contrast changes while detecting the outline or textured patterns 

of a tumor may require higher frequency components to represent edges or small gray-level 

variations. Low frequency components account for the contrast and high amplitude intensity 

information, whereas high frequency components account for fine high-resolution textured details. 

This is analogous to spatial frequency data in the Fourier domain, where the origin of Fourier space 

represents low-resolution spatial information while the periphery represents higher spatial 

frequency accounting for higher resolution and sharp features in the image, similar to MRI data 

represented in Figure 2.5 (84). Hence, selecting these parameters (Lmax and Rmax) is a balance 

between compactness and volume appearance characterization accuracy. 

 

SPHARM Pipeline 

Similarly to the pipeline developed for radiomics in Chapter 2, a pipeline for SPHARM 

decomposition is developed in this section in the context of clinical imaging (Figure 3.3). Briefly, 

retrospective patients’ images queries were performed on the PACS fitting the study’s inclusion 

criteria. Clinical data was stored, and tumors were manually or semi-automatically segmented. 

Second, each segmented volumetric tumor was mapped from a cartesian voxelated grid to a 

spherical mesh using uniform icosahedron sampling of shells (131) on which SPHARM 

decomposition was performed for a chosen level of radial and frequency expansion. To address the 

high dimensional nature of SPHARM descriptors and to preserve and leverage spatial information 

in 2D SPHARM matrices, a regularized tensor logistic regression (TensorReg) technique was 

selected to classify SPHARM descriptors since it fits regression coefficients directly into a matrix 
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or tensor structure while identifying most important coefficients and nulling non-discriminative 

coefficients (134). We performed cross-validated bootstrapped training of the TensorReg model 

on our training dataset to produce a 2D classification matrix, consisting in regression coefficients 

from the TensorReg modeling. From this classification matrix, we computed predictions by taking 

inner scalar product with a given SPHARM descriptor resulting in a risk of pertaining to one of the 

two classes assessed, between 0 and 1 (135). In the next section, more details are provided on the 

TensorReg technique and on the reasons for selecting it. The model was then tested on an external 

testing dataset to evaluate its diagnostic performance. This pipeline was applied in each clinical 

study described in this thesis. 

An additional step can also be taken with SPHARM decomposition by applying an iterative 

inverse SPHARM transform and reconstructing either the whole original tumor, or a given 

harmonic filter at a specific radius and frequency which was predictive based on the TensorReg 

classification matrix, as shown in the last panel of Figure 3.3. Visualizing these filters is analogous 

to the visualization of convolutional filters in convolutional neural networks, since the image 

content which is predictive of a given class will result in an enhancement of this information by 

these filters (136). The reconstruction of whole volumes requires SPHARM coefficients as a 

function of orders l, degrees m, and radii r, and to know the original volume size and resolution. 

The ability of SPHARM descriptors to reconstruct whole volumetric tumors was assessed with 

multiscale structural similarity indexes (MSSI), a similarity measurement of image luminance, 

contrast, and structure (137). The MSSI was chosen since it evaluates the perceived quality between 

the reconstructed volume and the reference volume similarly to mean squared error-based methods 

but at different versions of the volume with various resolution scales, thus more robustly. The 

structural similarity index is first assessed according to intensity mean �̅�, intensity variance 𝜎2, and 

covariance of intensities between each VOI 𝜎𝐴𝐵 as: 

𝑆𝑆𝐼(VOI𝐴, VOI𝐵) =
(2�̅�𝐴�̅�𝐵 + 𝜀1)(2𝜎𝐴𝐵 + 𝜀2)

(�̅�𝐴
2 + �̅�𝐵

2 + 𝜀1)(𝜎𝐴
2 + 𝜎𝐵

2 + 𝜀2)
(3.7) 

with 𝜀, small stability constants (138). It is then assessed at 5 resolution scales, down-

sampling the 3D image resolution by a factor of 2 from one scale to another (e.g. 8 x 8 x 8 voxels 

to 4 x 4 x 4 voxels), such that the MSSI evaluated across this work is finally defined as: 
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𝑀𝑆𝑆𝐼(VOI𝐴, VOI𝐵) = ∏ 𝑆𝑆𝐼𝑖(VOI𝐴,𝑖, VOI𝐵,𝑖)

5

𝑖=1

(3.8) 

 A MSSI close to 1 indicates that the reconstructed VOI is very similar to the original VOI 

in terms of luminance, contrast, and structure, while a MSSI close to 0 indicates significant 

differences between the two objects. 

 

3.3. Tensor Logistic Regression 

Regularized tensor logistic regression, referred to as TensorReg throughout this thesis, was 

employed to perform probabilistic classification of SPHARM descriptors in problems with two 

classes (134, 139). Reasons for choosing TensorReg were twofold. Models such as simple logistic 

regressors or random forest classifiers require as an input a series of labeled 1D vectors of features 

to be trained on. Thus, in the case of SPHARM descriptors, we need to flatten the 2D matrix to a 

1D descriptor which becomes of exceedingly large size (e.g. 25 x 25 = 625), while we might have 

a sample size of with less than 150 patients to train on (number of features ≫ sample size). 

Moreover, in this flattening process, we lose all the structural information encoded in the matrix 

dimensions, i.e. each coefficient is related to its neighbors corresponding to a different frequency 

energy band at a given radius, which is even more critical for reconstruction. Hence, using Hua-

Zhou’s TensorReg (TensorReg Toolbox v1.0, MATLAB 2020a, Mathworks; hua-
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Figure 3.3 SPHARM decomposition pipeline developed for clinical studies. Panel 3 adapted 

from Kazhdan M et al 2003 (17).  
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zhou.github.io/tensorreg/) allowed to address the high dimensionality problem and to preserve 

spatial information in the matrix structure, through robust regularization of matrix-based logistic 

regression (134). For understanding TensorReg, we first describe regular logistic regression and 

Lasso regularization.  

A logistic regressor is a linear classification model in which we aim to fit the logarithm of 

the odds (140):  

log (
�̂�

1 − �̂�
) = 𝛽0 + ∑ 𝛽𝑖

𝑁

𝑖=1

𝑥𝑖 (3.9) 

where �̂� is the probability for the estimated subject of pertaining to class 1, 𝛽𝑖 are the 

regression coefficients we aim to find to maximize classification accuracy, and 𝑥𝑖 are features on 

which we fit the model (N features). The probability of pertaining to class 1 can be expressed as: 

�̂� =
1

1 + 𝑒−(𝛽0+∑ 𝛽𝑖
𝑁
𝑖=1 𝑥𝑖)

(3.10) 

In the training process, regression coefficients 𝛽𝑖 associated to each feature 𝑥𝑖 are adjusted 

to minimize the error throughout the training dataset. The minimization problem is built from the 

maximization of the log likelihood, hence the minimization of the negative log likelihood, also 

known as cross-entropy loss 𝐿𝐶𝐸, which indicates how much the estimated class �̂� differ from the 

true class y: 

𝐿𝐶𝐸(�̂�, 𝑦) = −[𝑦log(�̂�) + (1 − y)log(1 − �̂�)] (3.11) 

Hence given feature vectors 𝑥, we perform a stochastic gradient descent optimization (141) 

on regression coefficients vector 𝛽 to minimize this loss on all subjects in the population M with 

the following optimization formula: 

𝛽∗ = argmin𝛽 (
1

𝑀
∑ 𝐿𝐶𝐸(𝑦(𝑗), 𝑥(𝑗), 𝛽)

𝑀

𝑗=1

) (3.12) 

When the optimal set of regression coefficients 𝛽𝑖
∗ are evaluated in the training phase, we 

can predict a class for given any vector 𝑥 on a continuous scale from 0 to 1. However, the logistic 

regression model will likely overfit the training dataset. To avoid this, we introduce a regularization 

term on the L1-norm of the regression coefficients, a Least Absolute Shrinkage and Selection 
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Operation (Lasso) regularization. By adding a regularization term to the minimization problem, 

our logistic regressor will be less likely to overfit and model noise or random feature fluctuation in 

the training dataset, leading to better model generalization (140). With Lasso regularization, the 

minimization problem for fitting the regression coefficients becomes: 

𝛽∗ = argmin𝛽 (
1

𝑀
∑ 𝐿𝐶𝐸(𝑦(𝑗), 𝑥(𝑗), 𝛽)

𝑀

𝑗=1

) − 𝜆 ∑|𝛽𝑖|

𝑁

𝑖=1

(3.13) 

with a regularization coefficient 𝜆 to be selected. Lasso regularization enables to put some 

regression coefficients to 0 and tends to assign larger weights to discriminating features, providing 

sparse representations of large data. During training, cross-validation bootstrapped validation is 

performed to select regularization coefficient 𝜆 minimizing classification error. 

Therefore, TensorReg is an expansion of this framework to matrices and tensors (134). The 

gradient descent algorithm and Lasso regularization are updated to a tensor formalism, integrating 

spatial interaction of matrix elements, thus providing more accurate classification of matrices or 

tensors such as electroencephalogram or neuroimaging data (134, 139). Interestingly, after training 

a TensorReg model on 2D SPHARM descriptors, we obtain the 2D matrix of regression 

coefficients, weighting each SPHARM coefficient at every radius and expansion frequency. This 

also tells us which SPHARM coefficient was most predictive for each class over the training dataset 

and for every subject in the population, as shown on Figure 3.9 for instance in preliminary 

experiments. From this 2D classification matrix 𝜷𝑇𝑒𝑛𝑠𝑜𝑟𝑅𝑒𝑔, we can compute predictions by taking 

the Frobenius inner scalar product with a given SPHARM descriptor 𝑪𝑆𝑃𝐻𝐴𝑅𝑀 resulting in a risk of 

pertaining to one of the two classes assessed, between 0 and 1 (135): 

⟨𝜷𝑇𝑒𝑛𝑠𝑜𝑟𝑅𝑒𝑔, 𝑪𝑆𝑃𝐻𝐴𝑅𝑀⟩𝐹 = ⟨[

𝛽1,1 ⋯ 𝛽1,𝑅𝑚𝑎𝑥

⋮ ⋱ ⋮
𝛽𝐿𝑚𝑎𝑥,1 ⋯ 𝛽𝐿𝑚𝑎𝑥,𝑅𝑚𝑎𝑥

] [

|𝑐1,1|
2

⋯ |𝑐1,𝑅𝑚𝑎𝑥
|
2

⋮ ⋱ ⋮
|𝑐𝐿𝑚𝑎𝑥,1|

2
⋯ |𝑐𝐿𝑚𝑎𝑥,𝑅𝑚𝑎𝑥

|
2

]⟩

𝐹

= ∑ 𝛽𝑙𝑟𝑐𝑙𝑟

𝐿𝑚𝑎𝑥,𝑅𝑚𝑎𝑥

𝑙,𝑟=1,1

(3.14) 

Reported diagnostic performance metrics on the training dataset are obtained on cross-

validated folds, by taking a 30% balanced bootstrapped sample of the training dataset (1000 

bootstrapped samples) (104). Performance on the testing set was assessed by applying the trained 

TensorReg model on the testing dataset with bootstrapping to produce 95% confidence intervals. 
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3.4. Novel Segmentation Paradigm: Spherical Volumes 

Lesion segmentation is one of the most contentious and critical steps in radiomics 

workflows since subsequently extracted features rely on these regions (63). Recent studies showed 

that tumor delineation in radiomics studies had a large impact on the reproducibility of extracted 

features (142, 143). Hence, the need for expert manual or standardized semi-automatic 

segmentations is even more important for accurately capturing radiomics-based tumor phenotypes 

in tumor regions. However, performing these segmentations corresponds to hours of work which 

would burden the healthcare system and the already overloaded radiologists’ workload (14, 15).  

Given the spherical morphology generally observed in solid tumors emerging from different 

body regions, the SPHARM decomposition method appeared to be an interesting and appealing 

approach to describe structural and textural properties from these tumor regions. We hypothesized 

that SPHARM descriptors would not be confounded by segmentations variability as much as 

radiomics and that faster delineation approaches could be developed to segment these tumors. 

Hence, using our SPHARM pipeline, we were interested in simply creating spherical volumes 

around lesions to extract imaging descriptors from these spherical VOIs and to compare the 

accuracy of our method built in regular segmentations to that in spheres. We also aimed to assess 

the impact on radiomics signatures built in regular segmentations when tested in these new VOIs. 

As can be seen in results in Chapter 5 for instance, SPHARM descriptors in these spherical regions 

performed better than expected, even in the presence of endometrial tumors with morphologies that 

do not tend to be spherical. 

Figure 3.4 Spherical volume of interest extended from an original segmentation on computed 

tomographic images. 
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Spherical VOIs are obtained by selecting the center of the lesion on a central slice and to 

extend a radius on the largest dimension. In cases for which regular segmentations were already 

performed, the center of mass from these segmented regions were obtained along with the radius 

of the maximal dimension and a sphere was generated around the original delineation (Figure 3.4). 

To assess the spatial change in VOI in 3D when moving to spherical VOIs, Dice similarity 

coefficients, also known as the Sørensen-Dice index (144), were used. This metric assesses the 

number of voxel in the first VOI intersecting with the number of voxel in the other VOI, over the 

total number of voxels in both VOI, multiplied by 2:  

𝐼𝐷𝑖𝑐𝑒 = 2
num(VOI𝐴) ⋂ num(VOI𝐵)

num(VOI𝐴) + num(VOI𝐵)
(3.15) 

A Dice coefficient close to 1 indicates that both binary masks have most of their respective 

structure spatially overlapping, while a Dice coefficient close to 0 indicates that there is almost no 

overlap between segmented VOIs. 

 

3.5. Preliminary Experiments with Volumetric Synthetic Textures 

Preliminary Experiments Overview 

Since previous reports assessed the performance of SPHARM descriptors mainly for 

characterizing 3D shapes (117, 127), we first explored and adjusted our SPHARM pipeline on a 

Figure 3.5 Fourier synthetic textures classes from the RFAI dataset from Paulhac L et al 

2009 (145). 
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volumetric synthetic texture benchmark dataset, the RFAI (Reconnaissance de Formes, Analyse 

d’Images) database (145). The set of textures used consisted in fifteen classes of 3D patterns of 643 

voxels in size, with 256 gray-levels, reconstructed from insertions of points in Fourier space, and 

with ten examples per class, as shown in Figure 3.5.  

To characterize the ability of SPHARM descriptors to encode these complex textures, we 

first performed reconstruction tasks on decompositions at different radial and frequency levels and 

compared them to original 3D objects. The quality of reconstructions was assessed with the MSSI, 

an index ranging between 0 and 1 and assessing similarity in luminance, contrast, and structure 

integrated at 5 different resolution scales of the original and reconstructed objects (137, 138). This 

experiment was repeated on provided noisy versions of the Fourier textures with added Gaussian 

noise with signal to noise ratio of 10 (145) and compared to the original objects with the MSSI. 

This enabled us to identify the combination of radial and frequency sampling maximizing mean 

MSSI and  minimizing the MSSI standard deviation across texture classes, while minimizing radial 

and frequency expansions e.g. Lmax and Rmax (to obtain a discriminative descriptor of minimal size).  

With these SPHARM decomposition parameters, an evaluation of the classification 

performance of SPHARM descriptors was performed, according to the pipeline developed and 

discussed in previous sections. 

 

Figure 3.6 (a) Mean and (b) standard deviation of multi-scale structural similarity indexes 

across different SPHARM expansion and radial sampling in the 3D Fourier texture dataset. 

a b 
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Preliminary Experiments Results and Discussion 

Mean MSSI across all texture classes increased with radial sampling, being at the lowest 

with 1 sampled shell every 4 voxels (or 8 shells total), and at the highest with 2 sampled shells per 

voxel (or 64 shells total, which correspond to oversampling). Similarly, MSSI increased with 

maximal frequency of SPHARM decomposition (Lmax), being at the lowest with Lmax = 5 and at the 

highest with Lmax = 75 (Figure 3.6; Figure 3.7). The optimal combination of radial and frequency 

sampling was found with a radial sampling of 1 shell every voxel (32 shells total) and with 

frequency decomposition up to Lmax = 25 (Figure 3.6; Figure 3.7), since it maximized mean MSSI 

and  minimized the MSSI standard deviation across texture classes, while minimizing Lmax and 

Rmax. Interestingly, the same combination was also identified on another dataset of geometric 

textures for which results are reported in the Appendix. It can be noted on Figure 3.7 that there is 

no significant gain in MSSI with radial sampling over 32 shells total and over Lmax = 25. Examples 

of a reconstructed volumetric Fourier texture is shown on Figure 3.8 for different sampling 

combinations, corresponding to a middle view of the first texture on the left of the one represented 

on the uppermost right corner of Figure 3.5. We can visually observe a significant gain in 

reconstruction accuracy from radial sampling 8 to 32 and from frequency decomposition 5 to 25, 

but not from radial sampling 32 to 64 (oversampling) and frequency decomposition 25 to 75. In 

Figure 3.7 Boxplots of multi-scale structural similarity indexes across (a) radial sampling for 

fixed Lmax = 25 and (b) SPHARM expansions for fixed radial sampling of 32 in the Fourier dataset. 

a b 
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fact, complex details are smoothed off the image at low radial and frequency reconstructions, while 

these complex textures seem adequately captured with the selected optimal decomposition 

parameters (with 32 shells and with Lmax = 25; central reconstructed volume on Figure 3.8). 

The mean MSSI (± standard deviation) for reconstructed volumetric Fourier textures dataset 

was 0.960 ± 0.032 with 32 sampled shells and with frequency decomposition up to Lmax = 25. With 

the same SPHARM decomposition parameters but now reconstructing noisy textures (145), the 

mean MSSI was 0.946 ± 0.033. Thus, the difference was not significant between reconstructing 

noisy and normal Fourier textures with this set of SPHARM decomposition parameters. Therefore, 

we can confirm that this expansion catches just enough textural details through each SPHARM 

frequency component to model important textural information, without modeling noise. This also 

indicates that there is a smoothing effect of most important information after SPHARM 

reconstruction which wipes out noise speckles. 

For classification, cross-validation with 3 out of 10 examples was used for measuring 

validation accuracy after fitting models on the bootstrapped samples of the 7 out of 10 examples 

from each Fourier texture class (with a total of 15 classes to classify). The validation classification 

accuracy was very high for SPHARM descriptors using multi-class TensorReg (98% [93%-100%]; 

Table 3.1).  The most important harmonics filters of SPHARM descriptors picked up by the 

TensorReg all modeled high frequency content with l ≥ 6, with some shown on Figure 3.9. The 

classification 2D matrix also shows which SPHARM coefficients were the most important on 

Figure 3.9. Again, each individual SPHARM descriptor (Figure 3.9) corresponds to a relative 

amount of harmonic filters importance at a given radius and it does not characterize the whole VOI 

as such. When integrated together, a complete description of the VOI is obtained which enables 

accurate classification.  

The fact that most important coefficients were at higher SPHARM degrees indicates that 

higher frequency of spherical harmonics basis functions were required to encode rougher textured 

patterns. However, the characterization of the 3D Fourier texture dataset, seemed overall to require 

the contribution from most SPHARM coefficients. The fact that the model was highly predictive 

across texture categories also suggest that SPHARM descriptors could capture relevant information 

to differentiate complex textures, leveraging the use of comprehensive distributed SPHARM 

coefficients. 
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These preliminary results on a synthetic texture dataset suggest that SPHARM descriptors 

provide accurate encoding of complex volumetric textures. Similar results on the volumetric 

geometric dataset of the RFAI synthetic textures database can be found in Appendix I. Therefore, 

the proposed SPHARM pipeline was further applied in the two clinical studies detailed in Chapter 

4 and Chapter 5. 

 

Table 3.1 Accuracy of SPHARM descriptors for classifying volumetric Fourier textures. 

 Accuracy (%) 

SPHARM Training 96 (91–100) 

Validation 98 (93–100) 

Figure 3.8 SPHARM reconstructions of an example from the first class of the 3D Fourier 

texture dataset with different radial sampling (8, 32, and 64 from left to right) and SPHARM 

expansions (5, 25, 50 from top to bottom). 
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Figure 3.9 (a) TensorReg 2D classification matrix of regularized regression coefficients on 

SPHARM descriptors of the volumetric Fourier texture dataset. (b) Predictive SPHARM filters 

with l, m, r = (23,22,21), (17,16,31), (18,12,6), and (26,13,31), respectively. 

a b 
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4. CONTRAST-ENHANCED CT OF RENAL CYSTS 

4.1. Background 

Management and long-term follow-up of renal cysts is an important burden on the 

healthcare system in terms of cost and utilization of imaging resources and as a result of 

unnecessary procedures and related decreased renal function or morbidity (146-150). Fifty percent 

of adults over 50 years have renal cysts (39, 151, 152). Most cysts appear benign on imaging, but 

one tenth of renal cell carcinomas are cystic (40). Increased sensitivity is always desirable for 

predicting malignancy, but false positives may result in incidental morbidity (153). With the 

associated morbidity in decreased renal function in long-term, strategies sparing nephrons are 

currently a priority in treating patients with renal lesions (146, 147). Moreover, given the sampling 

variability of biopsy and the importance of capturing tumoral heterogeneity, quantitative 

noninvasive techniques assessing the whole tumoral region could improve the grading of renal 

cysts (27, 28). Hence, validated quantitative imaging-based methods will be required to limit the 

amount of false positive and accurately stratify renal cysts.  

Figure 4.1 Representation of renal cysts’ Bosniak categories. Source:radiopaedia.org/articles/ 

bosniak-classification-system-of-renal-cystic-masses. Accessed 2020-07-02. 
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Qualitative criteria for risk stratification in complex cystic renal lesions (CCRL), known as 

Bosniak criteria, were introduced over 30 years ago to provide classification guidelines for 

distinguishing nonsurgical from surgical cystic lesions seen on computed tomographic (CT) images 

(Figure 4.1) (151, 152). More specifically, these are guidelines for radiological assessment of renal 

cysts based on their morphology as characterized by attenuation, enhancement, calcifications, and 

septations (39, 40, 154). This CT image-based classification system enables to grade the extent of 

cysts complexity and malignancy on an ordinal scale ranging from I to IV (39, 151). Lesions that 

appear benign are typically classified in Bosniak category I or II, while lesions with increased risk 

of malignancy based on image appearance and potentially subject to surgical removal are classified 

in Bosniak category III or IV. Over the years, these criteria have helped physicians and radiologists 

with patient’s stratification and have set the basis for predicting malignancy on renal cysts images. 

After two updates in the late 90’s and early 00’s, Bosniak criteria now include a fifth category, 

Bosniak category IIF (follow-up), accounting for numerous misclassifications of benign lesions in 

category III which should have been classified as Bosniak II according to previous guidelines 

(Table 4.1) (155). According to recent meta-analyses, malignancy rates of renal cysts within these 

categories are of 3% in Bosniak category I, 6% in Bosniak II, 7% in Bosniak IIF, 55% in Bosniak 

III, and 91% in Bosniak category IV (153, 156). 

For classification of CCRLs in categories I and IV, Bosniak criteria have proven to be 

highly reliable. However, limitations have been pointed out in numerous previous reports (153, 

157, 158), especially for the grading of lesions’ complexity in category IIF and III, still including 

overlapping features leading to bad inter-reader agreement, and complicating the management of 

surgeries prescriptions. This increases the overall burden of renal cysts on the healthcare system 

through unnecessary surgeries or follow-up (39). 

To improve the specificity of category IIF and III, the 2019 update of Bosniak criteria was 

introduced with more accurate and discriminative definitions for cysts classification and novel 

quantitative criteria (Table 4.2) (39). These changes have yet to be validated to assess their 

accuracy for predicting malignancy risk and inter-observer variability. Since previous Bosniak 

criteria relied mostly on visually assessed anatomical features, the proposition of including non-

structural information in the 2019 update, including iodine content and perfusion on contrast-

enhanced (CE)-CT, might provide better risk stratification for follow-up and surgery, especially 

for high-risk categories. 
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Table 4.1 Bosniak Classification 2008. Adapted from Silverman SG et al 2008 (39). 

Bosniak 

class 

Classification guidelines 

I -Hairline-thin wall that does not contain septa, calcification or solid components 

-Water density and attenuation 

-No enhancement with contrast material 

II Two types: 

1. Few hairline-thin septa with or without fine calcification in the wall or septa 

2. Uniformly high-attenuation lesions of  < 3 cm sharply marginated that do not enhance 

IIF Two types: 

1. More hairline-thin septa, minimal enhancement of hairline-thin septum or wall, minimal 

thickening of septa or wall with or without slightly thickened calcification  

2. Intrarenal non-enhancing high-attenuation renal lesions of  ≥ 3 cm 

III -Indeterminate cystic masses 

-Thickened irregular walls or septa in which enhancement can be seen 

IV -Malignant cystic lesions 

-Enhancing soft-tissue components (i.e. nodules) 

 

In this study, we hypothesized that quantitative image analysis using radiomics extracted 

from CE-CT images and spherical harmonics (SPHARM) decomposition of cystic regions could 

predict malignancy in CCRLs with high accuracy and with a high degree of reproducibility. 

Therefore, our aim was to retrospectively determine and compare the diagnostic performance of a 

radiomics-based random forest model with that of a SPHARM-based regularized tensor regressor 

(TensorReg) for the differentiation of benign from malignant complex renal cysts using 

histopathological analyses of resected surgery specimens or biopsy as the reference standard. Our 

secondary aim was to assess the discriminative ability of both methods in spherical volumes of 

interest (VOI) compared to semi-automatic segmentations. 

 

4.2. Materials and Methods 

This international dual-center retrospective study included patients over 18 years old with 

complex renal cysts. Institutional review board approval was obtained at both institutions, McGill 

University Health Centre (Montreal, Canada) and Necker-Enfants Malades Hospital (Paris, 

France). An institutional review board approval and waiver for informed consent were obtained at 

both participating institutions. A search for CE-CT studies between January 1998 and December 

2018 containing the keywords “renal cyst”, “kidney cyst”, “Bosniak”, “cystic RCC” or “cystic 

renal cell carcinoma” either in the body or impression of the report, was conducted using the McGill 
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University Health Centre’s Imaging Database (PACS) and the Department of Radiology search 

engine. The CE-CT report had to indicate the presence of a renal cyst with a minimal diameter of 

1 cm, and categorized as Bosniak I, II, IIF, III or IV. Follow-up over 4 years by CE-CT or MRI 

also had to be available without any changes in the Bosniak classification, in the absence of 

pathology proof from surgery or biopsy to provide reference standard. CE-CT examinations had to 

be performed with a renal dedicated protocol including non-enhanced phase, arterial phase, 

nephrographic phase and delayed phase or including at least a nonenhanced and nephrographic 

phase between 80 and 120 seconds on CE-CT. More than one cystic lesion could be included for 

each patient. Patients with cysts nonvisible on CE-CT, with CE-CT images degraded by artifacts, 

or with any history of interventions on the cyst prior to CT examination were excluded. Finally, if 

patients had any condition associated with multiple renal cysts, or if a delay in renal enhancement 

was observed due to obstruction or renal artery stenosis, patients were subsequently excluded. 

From clinical reports, demographic data, medical history regarding kidneys and pathology reports 

were collected. Data were deidentified and processed according to European and Canadian Laws. 

An external independent CE-CT dataset was obtained from Necker-Enfants Malades Hospital for 

quantitative models testing following the same inclusion and exclusion criteria. 

 

Table 4.2 Bosniak Classification 2019. Adapted from Silverman SG et al 2019 (40). 

Bosniak 

class 

Computed tomography classification guidelines 

I -Well-defined, thin (≤ 2 mm) smooth wall 

-Homogeneous simple fluid (-9 to 20 HU) 

-No septa or calcifications 

-Wall may enhance 

II Six types, all well-defined with thin (≤ 2 mm) smooth walls 

1. Cystic masses with thin (≤ 2 mm) and few (1–3) septa; septa and wall may enhance; may have 

calcification of any type 

2. Homogeneous hyperattenuating (≥ 70 HU) masses at noncontrast CT 

3. Homogeneous nonenhancing masses > 20 HU at 

 renal mass protocol CT, may have calcification of any type 

4. Homogeneous masses -9 to 20 HU at noncontrast CT 

5. Homogeneous masses 21 to 30 HU at portal venous phase CT 

6. Homogeneous low-attenuation masses that are too small to characterize 

IIF -Cystic masses with a smooth minimally thickened (3 mm) enhancing wall, or smooth minimal 

thickening (3 mm) of one or more enhancing septa, or many (≥ 4) smooth thin (≤ 2 mm) enhancing 

septa 

III -One or more enhancing thick (≥ 4 mm width) or enhancing irregular (displaying ≤ 3-mm obtusely 

margined convex protrusion[s]) walls or septa 

IV -One or more enhancing nodule(s) (≥ 4-mm convex protrusion with obtuse margins, or a convex 

protrusion of any size that has acute margins) 
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Contrast-enhanced Computed Tomographic Examinations 

CE-CT scans were obtained using 16-64 channel on VCT Light Speed systems (General 

Electric [GE] Healthcare) known for having low image noise and good image uniformity (82). All 

images were acquired at 120 kVp and with variable adapting tube current (mA) to limit image 

acquisition variability (79). Pitch varied from 0.8 to 1.5. Standard-of-care CT images were 

reconstructed in the axial plane and with a section thickness ranging from 1.0 to 3.25 mm. Standard 

iterative backpropagation-based reconstruction with abdominal reconstruction kernel was used 

(159). During four-phase renal studies, patients underwent unenhanced scanning first. After 

intravenous injection of 100-150 mL of nonionic iohexol (Omnipaque 350, GE Healthcare) based 

on the patient’s weight with a power injector at a rate of 3 mL per second as per standard-of-care 

protocol, a bolus tracking algorithm (SmartPrep, GE Medical Systems) was used to determine the 

onset of imaging of corticomedullary (40-45s), nephrographic (100-120s), and excretory (≈8min) 

phases. For bolus tracking, a VOI was manually positioned in the thoracoabdominal aorta junction, 

with a trigger to start acquisitions at 150 HU. 

  

Radiologists’ Visual Assessment of Renal Cysts 

Qualitative visual assessment of renal cysts on the nephrographic phase of CE-CT images 

was performed by two trained readers with over 5 years of experience in renal CT imaging (J.D., 

C.R.). Readers assessed the presence of multiple morphological features as outlined in the 2019 

Bosniak classification system and reported Bosniak categories according to the updated system 

Figure 4.2 CE-CT axial slices of three different cysts with Bosniak category (a) IIF, (b) III, and 

(c) IV, and their contours: the inner and outer contours. 

a b c 
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(Table 4.2). Finally, renal cysts were classified as benign or malignant according to pathology 

reports or according to follow-up of at least 4 years by CE-CT or MRI without any changes or were 

classified as malignant according to pathology report. Radiologists were blinded to pathology 

results and imaging follow-up. Pathologists were blinded to radiology results. 

 

Renal Cysts Segmentation 

CCRLs were segmented semi-automatically on CE-CT images at the nephrographic phase. 

The nephrographic phase was defined as the time point at which the cortex and the medulla both 

enhanced uniformly. Lesions segmentation was performed semi-automatically using a commercial 

research software (Myrian Intrasense, Montpellier, France) with an implemented algorithm 

developed at McGill University. The algorithm delineated the outer and inner edges of the entire 

cyst on every axial section showing the tumor as represented on Figure 4.2. After initial automatic 

segmentations, VOIs were manually corrected around the gross cystic volume by an experienced 

radiologist in renal CT imaging (J.D.).  

 

Computational Methods 

Both computational pipelines described in Chapter 2 and Chapter 3 were applied in this 

clinical study to extract radiomics features and SPHARM descriptors as surrogate biomarkers of 

malignancy on CE-CT. Prior to radiomics features extraction, images and VOIs were resampled to 

achieve isotropic voxels and gray levels were discretized. Each feature was calculated with 12 

different sets of extraction parameters (4 gray-level bin widths x 3 isotropic voxel sizes). Gray-

level bin width sizes were 15, 20, 25, and 30 HU; and resampled voxel sizes were 0.5, 1, and 2 

mm3. Gray-levels resampling in bins of fixed width (absolute gray-level discretization) was 

selected to increase reproducibility of radiomics features and the set of pre-processing parameters 

which led to the highest radiomics features reproducibility, based on intraclass correlation 

coefficients (ICC), was identified. ICCs were obtained by comparing features extracted from three 

VOIs: inner, outer, and eroded inner VOIs. Inner and outer VOIs were obtained directly from semi-

automatic segmentations while the eroded VOI was obtained by removing a one voxel-thick 

surface from the delineated inner volume. B-spline interpolation was used for image resampling to 

isotropic voxel size in Pyradiomics (160). After selecting the set of preprocessing parameters 
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leading to the highest features’ reproducibility and robustness to these VOI variations, 106 

radiomics features were extracted from both inner and outer segmented VOIs separately (as shown 

on Figure 4.2), to evaluate if including features from outer rims of cysts could provide increased 

performance. From this set of 212 features, unstable (ICC > 0.80) and multicollinear correlated 

(Spearman’s ρ > 0.95) radiomics features were removed prior to random forest feature selection. 

All random forest modeling was conducted in Python 3.7.4 using the Scikit-learn machine 

learning package (109). The 5 most important radiomics features for the diagnosis of malignancy 

with a random forest model were identified after minimizing trees’ depth, number of trees, and 

maximal features possibly splitting at each node. Training and validation were performed using 

bootstrapped out-of-bag samples with random undersampling of majority class to balance training 

dataset (such that Nmalignant/Nbenign = 0.75). 95% confidence intervals were reported. 

SPHARM decomposition was performed by sampling 25 shells at equispaced radii which 

were decomposed up to a maximal SPHARM degree of Lmax = 25, resulting in 25 x 25 matrices. 

The ability of SPHARM descriptors to encode and reconstruct renal cysts’ volumes was assessed 

by comparing original volumes to inverse SPHARM-reconstructed volumes with the multi-scale 

structural similarity index (MSSI). A tensor logistic regressor (TensorReg) was used to fit a 

classification matrix of SPHARM coefficients for classifying malignancy. All SPHARM and 

TensorReg analyses were performed in MATLAB (2020a, Mathworks, Natick, MA, USA). 

Training and validation were performed using stratified 5-fold cross-validation and using 

bootstrapping of training folds to produce 95% confidence intervals and randomly undersampling 

majority class to balance training dataset (Nmalignant/Nbenign = 0.75) while adjusting the regularization 

parameter to minimize both training and validation error. Both models were independently tested 

with an external testing dataset from the Necker-Enfants Malades Hospital. Developed models 

were applied on descriptors extracted from spherical VOIs extended from semi-automatic 

segmentations. Original segmentations were compared to spherical VOIs with Dice coefficients. 

 Receiver operating characteristics (ROC) curves were reported based on models’ 

predictions on the training and testing datasets. Thresholds maximizing Youden’s index 

(sensitivity+specificity-1) were identified and associated diagnostic performance metrics of models 

were reported, i.e. sensitivity, specificity, balanced accuracy, positive predictive values, and 

negative predictive values. 
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4.3. Results 

Population characteristics 

From the population of patients fitting inclusion criteria between 2005 and 2018, we included 149 

CCRL in the training dataset and 50 CCRL in the testing dataset (Table 4.3). Twenty three percent 

(n = 33) of the lesions were malignant in the training dataset, and 32% (n = 16) in the testing 

dataset. All lesions categorized as Bosniak I or II were benign. Malignancy rates in each Bosniak 

categories were similar to those published in a recent meta-analysis including 35 studies with 2578 

lesions (153). In the training dataset, average patient age was 63 years (range: 28-89 years) and 

34% (n = 46) of patients were women. In the testing dataset, mean age was 59 years (28-80 years) 

and 30% (n = 13) of patients were women. All Bosniak IV lesions were malignant in the external 

testing dataset.  

 

Table 4.3 Distribution of Bosniak categories and malignancy across the population. 

  Bosniak I  Bosniak II  Bosniak IIF  Bosniak III  Bosniak IV  Total  
 

Train  Test Train  Test Train  Test Train  Test Train  Test Train  Test 

Total 

Cysts 

32 10 36 9 35 12 23 9 23 10  149 50 

Benign 

Cysts   

32  

(100%) 

10 

(100%)  

36 

(100%)  

9 

(100%)  

32 

(91%) 

11 

(92%) 

13 

(56%) 

4 

(44%) 

3 

(13%) 

0 

(0%) 

115 

(77%) 

34 

(68%) 

Malignant 

Cysts  

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%)  

3 

(9%)  

1 

(8%)  

10 

(44%)  

5 

(56%) 

20 

(87%)  

10 

(100%) 

34 

(23%)  

16 

(32%)  
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4.3.1. Analyses in Segmented Tumors 

 

 

Radiomics Analysis 

The reproducibility analysis revealed that the preprocessing parameters which led to the 

highest overall ICCs were resampled isotropic voxel size of 1 mm3 and unnormalized absolute 

discretized CE-CT images with fixed bin size of 30 HU (Figure 4.3). Using this set of 

preprocessing steps, 17 radiomics features were excluded from further analysis since their 

Figure 4.4 Intra-class correlation coefficients for assessing reproducibility of radiomics 

features for each class extracted from preprocessed CE-CT images with fixed bin width of 30 

and resampled isotropic voxels of 1mm3. 

Figure 4.3 (a) Mean and (b) standard deviation of intra-class correlation coefficients for 

assessing reproducibility of radiomics features evaluated on CT of renal cysts. 

a b 
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associated ICC under VOI variations were below the predefined 0.80 reproducibility threshold as 

shown on Figure 4.4. Among excluded features, 1 was a first-order statistic, none were shape-

based features, and 16 were second-order statistics: 

• firstorder_Minimum 

• glcm_Autocorrelation 

• glcm_Idmn 

• gldm_HighGrayLevelEmphasis 

• gldm_LargeDependenceHighGrayLevelEmphasis 

• gldm_LargeDependenceLowGrayLevelEmphasis 

• gldm_LowGrayLevelEmphasis 

• gldm_SmallDependenceLowGrayLevelEmphasis 

• glrlm_LongRunHighGrayLevelEmphasis 

• glrlm_LongRunLowGrayLevelEmphasis 

• glrlm_LowGrayLevelRunEmphasis 

• glrlm_ShortRunLowGrayLevelEmphasis 

• glszm_LargeAreaHighGrayLevelEmphasis 

• glszm_LargeAreaLowGrayLevelEmphasis 

• glszm_LowGrayLevelZoneEmphasis 

• glszm_SmallAreaLowGrayLevelEmphasis 

• ngtdm_Coarseness 

Prior to further feature selection, each reproducible radiomics feature used alone for 

differentiating benign from malignant renal cysts and those with an area under the ROC curve 

(AUC) greater than 0.75 in the training dataset were reported (Table 4.4). Twelve of these single 

features were first-order statistics, none were shape-based features, and 13 were texture features. 

These radiomics features were all evaluated in the inner VOI of the cystic lesions. Interestingly, 

simple and easily assessed histogram mathematical descriptors such as mean, median, 10th and 90th 

percentiles, or root mean squared of voxel intensities in the inner VOI led to AUC greater than 

0.88. These highly discriminating first-order statistics suggested that simple mathematical analysis 

of HU distributions in the VOI might lead to improved classification of cystic lesions of the 

kidneys. After the exclusion of multicollinear correlated features, 112 (112 of 212, 52.8%) features 

were included in the random forest feature selection. To limit overfitting and to minimize out-of-

bag error in the model, the number of trees included in random forest modeling was limited to 20, 

the depth of each decision tree was limited to 5, and the number of features to possibly split at each 
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node was limited to the logarithm base 2 of the number features after exploring combinations of 

these hyperparameters (Figure 4.6). 

Table 4.4 Most discriminative radiomics features for predicting malignancies on renal cysts 

contrast-enhanced CT in the training set (AUC ≥ 0.75). 

# Radiomics features AUC 

1 gldm_DependenceEntropy 0.902 

2 firstorder_Median 0.890 

3 firstorder_Mean 0.888 

4 glcm_Correlation 0.885 

5 firstorder_10Percentile 0.883 

6 firstorder_90Percentile 0.883 

7 firstorder_RootMeanSquared 0.881 

8 glcm_Imc1 0.880 

9 glcm_SumEntropy 0.835 

10 glcm_ClusterTendency 0.833 

11 glrlm_RunEntropy 0.823 

12 firstorder_TotalEnergy 0.818 

13 glszm_ZoneEntropy 0.813 

14 firstorder_InterquartileRange 0.811 

15 firstorder_RobustMeanAbsoluteDeviation 0.810 

16 firstorder_MeanAbsoluteDeviation 0.809 

17 glcm_SumSquares 0.806 

18 firstorder_Entropy 0.803 

19 gldm_GrayLevelVariance 0.801 

20 glcm_MCC 0.801 

21 firstorder_Variance 0.800 

22 glrlm_GrayLevelVariance 0.791 

23 glcm_JointEntropy 0.788 

24 glcm_ClusterProminence 0.784 

25 firstorder_Energy 0.774 

The random forest features selection process based on Gini impurity led to the inclusion of 

a total of 5 radiomics features, over which the diagnostic performance was not significantly 

increased by the inclusion of more features discriminative. These radiomics features were 3 first-

order statistics – median, 10th percentile, and 90th  percentile –  and 2 texture features – dependence 

entropy from gray-level dependencies matrices (GLDM) and informational measure of correlation 

1 from gray-level co-occurrence matrices (GLCM) – and were all obtained in the inner VOI. In 

fact, the inclusion of features evaluated in outer rims of the lesions did not impact the diagnostic 

performance in the final random forest modeling. Interestingly, included features were all in the 

top 10 most discriminating single features when simply using one feature in ROC analysis (Table 

4.4). Their distributions against one another are represented in pair plots in Figure 4.5 where blue 

dots represent malignant and orange dots represent benign CCRLs.  
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Figure 4.6 Out-of-bag error as a function of (a) the number of trees and (b) the maximal depth 

of each tree in the random forest. Minimizing these hyperparameters decreases over-fitting. 

Figure 4.5 Distributions of the 5 most important radiomics features picked up by the random 

forest model for classifying benign from malignant renal cysts on contrast-enhanced CT. 
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Bootstrapped training on balanced samples of the training dataset with the random forest 

classifier resulted in high diagnostic performance for predicting malignancy of CCRL as shown by 

ROC analysis (Figure 4.7; Table 4.5). This model was then applied to the external training dataset 

on which the random forest classifier performed robustly. When using the 5 most reproducible and 

discriminative features, the random forest model gave consistent diagnostic performance from 

training to testing with an AUC of 0.91. In the final model, sensitivity, specificity and balanced 

accuracy were respectively 82%, 94% and 90% when applied on the testing dataset.   

Table 4.5 Estimates of diagnostic performance of random forest model for distinguishing 

benign from malignant renal cysts using 5 radiomics features with 95% confidence intervals. 

 

Two-dimensional planes of the random forest classification decision boundaries are 

represented in Figure 4.8, where orange and red are associated with benign cysts and blue with 

malignant cysts. More specifically, these decision boundaries are obtained from the combination 

of binary decision trees’ classification in the 5D space of selected radiomics features during 

  AUC  
Sensitivity 

(%)  

Specificity 

(%)  

Accuracy 

(%)  

PPV  

(%)  

NPV  

(%)  

Training 0.91  

(0.84–0.95)  

79  

(63–90)  

91  

(85–96)  

89  

(82–0.94)  

72  

(60–84)  

94  

(88–98)  

Testing  0.91  

(0.75–0.97)  

82  

(60–98)  

94  

(83–100)  

90 

(79–95)  

87  

(61–97)  

92  

(76–98)  

Figure 4.7 Training and testing ROC curves for predicting malignancy in renal cysts with 5 

most important features picked up by the random forest classifier on contrast-enhanced CT. 
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training. Since a 5D space cannot be represented by the human eye, we took 2D cross-sections just 

for the visualization of the training dataset distribution, similar to what was shown in pair plots on 

Figure 4.5, but now including random forest’s decision boundaries. In darker red regions, cysts’ 

features are classified as benign with certainty and as malignant in darker blue regions. The overall 

smooth classification heatmap confirms that overfitting was limited in our random forest modeling.  

 

Based on the final model in the testing dataset, Bosniak I and II cystic lesions were all 

correctly classified as benign. Benign Bosniak IIF lesions (11 of 12 Bosniak IIF lesions) were all 

correctly classified with an average risk of 0.11. The only Bosniak IIF malignant lesion in the 

testing dataset was predicted as benign with a risk of 0.37. Benign Bosniak III lesions (4 of 9 

Figure 4.8 Visualization of the random forest classifier’s 2D classification planes on the most 

important features when predicting renal cysts malignancy on CE-CT images. Red decision 

boundaries are associated with renal cysts classified as benign while blue decision boundaries are 

associated with cysts classified as malignant. 
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Bosniak III lesions) were all correctly classified with an average risk of 0.17. Three of the five 

malignant Bosniak III lesions were correctly classified with an average risk of 0.61. The two 

misclassified Bosniak III lesions had respectively a predicted risk of 0.32 and 0.37. Among Bosniak 

IV lesions (all malignant), only one lesion was predicted as benign with a risk of 0.21. The average 

risk of the other Bosniak IV lesions was 0.84.  

Examples of well classified cystic lesions with radiomics features are shown in Figure 4.9. 

Notable quantitative features of these cystic lesions on CE-CT were the more enhanced appearance 

seen in the malignant cyst than in the benign cyst (median [10th-90th percentile], 70 [8-125] HU vs. 

16 [-14-47] HU, respectively). For texture features, the informational measure of correlation 1 

quantifies the complexity of texture in the image, as assessed by the correlation of intensity 

probability distributions on GLCMs, between 0 and -1. The dependence entropy quantifies the 

statistical randomness of neighboring voxels with similar intensities, or of gray-level dependencies, 

in the VOI (67, 70). More specifically, the former reflects how complex is the texture is, based on 

the assessment of repeated voxel intensities, while the latter reflects the extent of chaotic textured 

patterns by assessing if regions of similar or smooth intensity distributions are observed. Hence, 

the correctly classified benign cyst showed lower texture complexity and less chaotic or random 

intensity distributions than that of the malignant cyst (IMC1, -0.017 vs. –0.274; dependence 

Malignant (Bosniak IV), Predicted Risk = 0.94

Median = 70 HU

10th percentile = 8 HU

90th percentile = 125 HU

Dependence entropy (GLDM) = 6.47 

IMC1 (GLCM) = -0.274

Benign (Bosniak IIF), Predicted Risk = 0.04

Median = 16 HU

10th percentile = -14 HU

90th percentile = 47 HU

Dependence entropy (GLDM) = 5.40 

IMC1 (GLCM) = -0.017

Figure 4.9 Radiomics features in correctly classified malignant and benign renal cysts with 

random forests’ predicted risks. 
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entropy, 5.40 vs. 6.47, respectively). This trend in texture features distributions between benign 

and malignant cysts was also observed in pair plots across the training population (Figure 4.5). 

This indicates that more complex enhancement patterns were seen in the inner segmentations of 

malignant CCRLs. In fact, increased CE-CT intensity in HU and more complex textured 

enhancement, which can be related to the development of microcalcifications, were identified as 

highly discriminative features for predicting malignancy of renal cysts. 

 

SPHARM Analysis 

A subpopulation of patients including lesions with minimal radius of 10 mm was analyzed 

for SPHARM analyses (Table 4.6). Therefore, we also reported the diagnostic performance of 

radiomics features with random forest modeling presented in the previous section to enable 

comparisons in this subset of the population. This was due to our choice of sampling 25 shells for 

SPHARM decomposition, which optimized information encoded within descriptors. MSSI of 

SPHARM reconstructions based on extracted descriptors across the included population was 0.95 

± 0.04 (range: 0.85-0.99) on average, indicating high and robust encoding of original volumetric 

image content of renal cysts from native nephrographic phase CE-CT images. 

Figure 4.10 (a) Training and testing ROC curves for predicting malignancy in renal cysts with 

SPHARM descriptors on contrast-enhanced CT, and (b) classification matrix picked up by the 

TensorReg model. 
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Table 4.6 Distribution of Bosniak categories and malignancy in a subgroup with renal cysts 

with minimal radius of 10 mm. 

  Bosniak I  Bosniak II  Bosniak IIF  Bosniak III  Bosniak IV  Total  
 

Train  Test Train  Test Train  Test Train  Test Train  Test Train  Test 

Total 

Cysts  

32 4 32 8 33 12 23 9 23 10 133 43 

Benign 

Cysts   

32 

(100%) 

4 

(100%)  

32 

(100%)  

8 

(100%)  

32 

(97%) 

11 

(92%) 

13 

(56%) 

4 

(44%) 

3 

(13%) 

0 

(0%) 

101 

(76%) 

27 

(63%) 

Malignant 

Cysts  

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%)  

1 

(3%)  

1 

(8%)  

10 

(44%)  

5 

(56%) 

20 

(87%)  

10 

(100%) 

32 

(24%)  

16 

(37%)  

 

Cross-validated training with bootstrapping on balanced samples of the training dataset with 

a TensorReg model resulted in high diagnostic performance for predicting malignancy of CCRL 

as shown by ROC analysis (Figure 4.10; Table 4.7). This model was then applied to the external 

testing dataset on which the resulting AUC was of 0.83 with TensorReg modeling. In the final 

model, sensitivity, specificity and balanced accuracy were respectively 91%, 73% and 81% in the 

testing dataset. The Lasso-regularized TensorReg estimator (2D classification matrix) used for 

classification is shown on Figure 4.10.  

Table 4.7 Detailed diagnostic performance of SPHARM descriptors and radiomics features 

for predicting malignancy of renal cysts on CE-CT. 

 

On this 2D classification matrix, positive regression coefficients were used for predicting 

malignancy while negative coefficients were predictors for benign lesions. Lower frequency 

content located in the cysts’ center seemed to capture contrast material enhancement related to 

malignancy. On the opposite, lower frequency content on the wall of the CCRL appeared to relate 

to benign characteristics of these lesions, as captured by SPHARM descriptors on the training 

dataset. The frequency content describing the center of renal cysts in SPHARM descriptors must 

 AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

SPHARM, 

Training 

0.89 

(0.81–0.94) 

88 

(67–96) 

85 

(75–93) 

86 

(77–92) 

75 

(58–87) 

93 

(84–98) 

SPHARM, 

Testing 

0.83 

(0.64–0.92) 

91 

(67–100) 

73 

(55–88) 

81 

(64–91) 

65 

(33–83) 

94 

(65–100) 

Radiomics, 

Training 

0.92  

(0.83–1.00)  

85  

(71–98)  

87  

(73–99)  

86  

(66–1.00)  

65  

(61–69)  

95  

(91–99)  

Radiomics, 

Testing 

0.92  

(0.78–0.99)  

88  

(60–98)  

92  

(82–100)  

90  

(82–98)  

82  

(61–97)  

94  

(81–100)  
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have been associated with the development of microcalcifications and enhanced nodules as 

represented in Figure 4.1 and Figure 4.2. These are both characteristics of malignancy (Table 4.1; 

Table 4.2). Enhancement on the wall, on the opposite, is a characteristic of low grade benign cysts, 

which seemed to be captured by SPHARM descriptors on outer shells, as shown by negative blue 

regression coefficients of low frequency (l = 1). 

On Figure 4.11 and Figure 4.12, two examples of correctly classified malignant and benign 

cysts, respectively, are represented with slices through their 3D SPHARM reconstructions, and 

representative harmonic filters for predicting malignancy are also reported. A large nodule in the 

first represented malignant cyst is observed and was captured by harmonic filters (yellow-orange 

overlay) on Figure 4.11. In fact, recalling the analogy to convolutional neural networks, 

SPHARM’s harmonic filters enhanced regions of the VOI which led to increased prediction 

accuracy during the training process. This cyst was accurately classified as malignant. On the 

opposite, enhancement in the wall is observed on Figure 4.12 and seemed also to be captured by 

harmonic filters (blue overlay) and correctly classified as benign. 

Based on the final SPHARM model in the subset of the testing dataset, Bosniak I and II 

cystic lesions were all correctly classified as benign. Seven of the benign Bosniak IIF lesions (11 

of 12 Bosniak IIF lesions) were correctly classified with an average risk of 0.31. The four other 

benign Bosniak IIF CCRL that were misclassified had predicted average risk of 0.59. The only 

Bosniak IIF malignant lesion in the testing dataset was correctly predicted as malignant with a risk 

of 0.72. Two of the benign Bosniak III lesions (4 of 9 Bosniak III lesions) were correctly classified 

with an average risk of 0.32. The two other benign Bosniak III CCRLs that were misclassified had 

predicted average risk of 0.61. All five malignant Bosniak III lesions were correctly classified with 

an average risk of 0.72. Among Bosniak IV lesions (all malignant), only one lesion was predicted 

as benign with a risk of 0.41 (the same than for the radiomics model). The average risk for other 

Bosniak IV malignant lesions was 0.89.  

Also, removing lesions with radius smaller than 10 mm slightly increased the diagnostic 

performance of radiomics for predicting malignancy (testing AUC of 0.92 vs. 0.91). Thus, 

radiomics-based random forest modeling was more accurate for characterizing malignancy than 

SPHARM descriptors (testing AUC of 0.92 vs. 0.83; testing balanced accuracy of 0.90 vs. 0.81).  
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Figure 4.11 (a) Contrast-enhanced CT of a malignant renal cyst (Bosniak IV), (b) segmented 

tumor with overlayed full reconstructed classification matrix of SPHARM descriptor, (c) 

segmented CT image and its (d) reconstruction with SPHARM coefficients (Lmax, Rmax = 25, 25), 

and (e) harmonic filters (l, m, r = 2, 2, 7) and (l, m, r = 4, 4, 9), expressed within the spherical 

yellow overlay in panel (b) as predictors of malignancy. Predicted risk from the tensor logistic 

regression model was 0.89. 

a b 

c d 
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Figure 4.12 (a) Contrast-enhanced CT of a benign renal cyst (Bosniak IIF), (b) segmented tumor 

with overlayed full reconstructed classification matrix of SPHARM descriptor, (c) segmented CT 

image and its (d) reconstruction with SPHARM coefficients (Lmax, Rmax = 25, 25), and (e) harmonic 

filters (l, m, r = 5, 4, 16) and (l, m, r = 7, 2, 18), expressed within the blue overlay in panel (b) as 

predictors of benign category. Predicted risk from the tensor logistic regression model was 0.22. 

a b 

c d 

e 
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4.3.2. Analyses in Spherical Volumes of Interest 

Radiomics and SPHARM Analyses 

When applying our pipelines in spherical VOIs, a significant decrease in diagnostic 

performance was observed for both methods. The average Dice coefficient between segmented 

VOIs and spherical VOIs was 0.76 ± 0.12 (range: 0.54-0.91) across the population, indicating 

significant changes in VOI. A bigger decrease in AUC was observed for radiomics features 

extracted from these spherical VOIs, going from 0.92 to 0.68 in AUC on the testing dataset, while 

that of SPHARM coefficients decreased to a lesser extent from 0.83 to 0.73 (Figure 4.13). This 

decrease in performance observed for radiomics features meant that the 3 first-order statistics 

features – median, 10th percentile, and 90th  percentile –  and the 2 texture features – dependence 

entropy (GLDM) and informational measure of correlation 1 (GLCM) – changed nonlinearly from 

segmented VOIs to spherical VOIs. In fact, including surrounding tissue such as bowels could 

induce significant changes in histogram statistics, especially if air is found in bowel areas (-1000 

HU). Similarly, for texture features, the interrelationships of voxel intensities when including more 

image content from larger volumes will change, even though included features were selected for 

their stability when subject to such VOIs changes. A similar decrease in performance was seen for 

SPHARM descriptors. This could be direct results that discriminative information captured in cysts 

walls must have changed significantly on spherical VOIs, now including surrounding tissue.  

Figure 4.13 Training and testing ROC curves for differentiating benign from malignant renal 

cystic lesions in spherical volumes of interest with (a) the 5 most important radiomics features and 

(b) SPHARM descriptors. 

a b 
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4.4. Summary of Findings and Discussion 

Summary of Findings 

The radiomics-based random forest and the SPHARM decomposition-based TensorReg 

models achieved high diagnostic performance in distinguishing benign from malignant CCRLs. 

The radiomics model was more accurate for characterizing malignancy than the SPHARM model. 

Simple descriptive statistics (median, 10th and 90th percentiles) combined with one co-occurrence 

and one dependence of gray-level matrices texture features provided the high and robust diagnostic 

accuracy observed for radiomics features in this study. In fact, overall higher enhancement values 

and more complex and chaotic textures were directly associated to cysts’ malignancy in the 

developed radiomics signature. The SPHARM decomposition matrices seemed to capture the 

presence of enhancing nodules and microcalcifications in the inner part of the cysts as predictors 

of malignancy, and enhancement of outer wall of the cysts as a predictor for benign cysts. This 

localization property of SPHARM descriptors enabled us to analyze the underlying information 

captured by the decomposition coefficients of the SPHARM method. While both SPHARM and 

spherical VOIs explored in this study underperformed compared to radiomics in semi-automated 

segmentations, experiments in the next chapter (Chapter 5) show cases where there are advantages 

to using SPHARM and also spherical VOIs. 

 

Reproducibility 

Stringent inclusion criteria on CE-CT protocols were used to limit the inter-scan variability 

of acquired CE-CT images. Our inclusion of CE-CT scans with standard-of-care variable tube 

current (mA) automatically adapting detector exposure, but with fixated tube kilovoltage (kVp) 

might explain the good radiomics features reproducibility observed in this study. In fact, varying 

mA was previously found to have little impact on radiomics features’ stability while having fixated 

kVp was associated with good features reproducibility (79). Only 17 radiomics features were 

excluded from analyses. Almost all excluded features were textural features (16 of 17, 94%), as 

reported in previous studies (30, 73). Selection of optimized preprocessing steps did increase 

features reproducibility extracted from CE-CT images at the nephrographic phase. For instance, 

up-sampling CE-CT images to a isotropic size of 0.5 x 0.5 x 0.5 mm3 with bin width of 15 HU 
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would have resulted in a smaller number of included features, going from average ICC (± standard 

deviation) of 0.896 ± 0.134 to 0.876 ± 0.178 (Figure 4.3). The significance of this difference also 

lies in the standard deviations of these ICCs since the increase in standard deviation indicates that 

more features were below the inclusion threshold, going from 17 to 27 excluded features. This 

shows that comprehensive analyses of preprocessing parameters are required and should be 

reported for all radiomics studies, since selecting default settings of a given platform will not lead 

to optimal feature reproducibility. Unreproducible features should always be reported and the 

inclusion of all implemented radiomics features of the employed platform as a default should be 

avoided. It also supports that care should be taken when designing radiomics studies and defining 

inclusion criteria of CT acquisition parameters. Including scans at different kVp or with different 

reconstruction kernels might not provide in the end comparable radiomics features (30, 76-78).  

For SPHARM decompositions, the pipeline was developed according to previously 

reported methods on volumetric shapes (117, 127) and according to our preliminary results on 

volumetric texture benchmark datasets. The absence of need for image preprocessing makes 

SPHARM an interesting approach in the context of harmonization of imaging data analysis. These 

invariance properties emerge as a direct result of the modeling of intensities distribution on shells 

based on spherical harmonics functions. By evaluating the L2-norm of SPHARM coefficients 

along order m for each degree l, SPHARM descriptors represent energies at each frequency band 

and radius, hence become comparable across varying image intensities from which they are 

extracted. SPHARM descriptors were also optimized to capture relevant image information 

without modeling noise in the image, as shown by reconstructions in preliminary analyses on 3D 

textures and by the high MSSI obtained for SPHARM descriptors-based reconstructions of renal 

cysts. However, further studies including different CT acquisition parameters should be performed 

to assess if SPHARM descriptors are significantly confounded by the use of different kVp or 

reconstruction kernels, since image contrast and physical signal acquired change when such 

parameters vary (30, 76-78). 

 

Radiomics and SPHARM Analyses 

We did not expect any added clinical value from these analyses in Bosniak categories I, II, 

or IV since Bosniak classification is highly associated with benignity for Bosniak categories I and 
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II and malignancy for Bosniak category IV. However, it is interesting to note that both models 

showed high diagnostic performance in these categories. In fact, in the testing dataset, all benign 

CCRL were correctly predicted in Bosniak categories I and II. For the radiomics model, 12 of the 

16 malignant CCRL were correctly predicted, while 15 of the 16 malignant CCRL were correctly 

predicted by the SPHARM model, although with increased false positive rate. Interestingly, the 

four incorrectly classified malignant lesions by the random forest were low grade tumors compared 

to other malignant lesions. The radiomics model was more accurate than the SPHARM model and 

appeared to be more specific, while SPHARM modeling was more sensitive. Although increased 

sensitivity is desired in the prediction of malignancy, associated increase in false positives may 

result in incidental morbidity (153). The current clinical specificity of radiologists using the 

Bosniak classification system was evaluated at 74% (95% confidence interval: 64%-82%) in a 

recent meta-analysis including 2578 lesions (153). Thus, since high accuracy and increased 

specificity compared to that of radiologists (94% [83-100]) were obtained through radiomics-based 

random forest modeling, implementation of such a computational framework could provide 

improved decision-making for clinicians in the stratification of patients for surgery. One of the 

strengths of this radiomics-based model was also that most important features were first-order 

features (global distribution of pixel values within the tumor) within the core VOI. They also reflect 

radiological features proposed in the 2019 Bosniak classification update, as low grade benign cysts 

tend to be hyperattenuating and homogeneous while high grade malignant cysts tend to show 

enhanced textured appearance due to the development of cysts’ nodules and microcalcifications 

(Figure 4.1; Table 4.2) (39). Moreover, the consistent diagnostic performance from training to 

testing on an external dataset showed the high robustness of the radiomics pipeline and of the 

random forest model developed in this study. Robustness is also achieved through the choice of 

feature since 10th and 90th percentiles are more stable under VOI changes for instance than 

maximum or minimum values which could pick up random fluctuations of high or low HU 

intensities. After optimized preprocessing of images, z-score normalization of features before 

random forest modeling also enabled us to provide comparable features across institutions (102, 

103). 

Our interpretation of SPHARM descriptors was highly associated to clinical features of 

malignancy as seen on CE-CT images, i.e. textured enhancement patterns in cysts’ nodules and 

microcalcifications, and of features observed in benign renal cysts, i.e. wall enhancement with 
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minimal texture and no enhancement in cysts’ center. Thus, it even related to radiological 

signatures proposed in the 2019 Bosniak classification update (Table 4.2), similar to what was 

reported for the proposed radiomics signature. 

 

Analyses in Spherical Volumes of Interest 

The significant drop in AUC observed for radiomics features in the diagnosis of malignancy 

in spherical VOIs supported the need for expert precise manual or semi-automated segmentations 

to capture tumoral characteristics (142, 143). However, VOI variations going from original 

segmentations to spherical VOIs were significantly greater than that made in VOI variations during 

the radiomics feature selection process, as indicated by poor Dice coefficients. Thus, most features 

might not have been deemed reproducible under such changes in VOIs. Because of the spherical 

topology observed in renal cysts, we expected that the added material outside of accurately 

segmented tumors, but within spherical VOIs, would not have altered SPHARM descriptors in a 

way that would have drastically affected its discriminatory power. However, the significant 

decrease in performance also observed for the SPHARM decomposition method does support the 

need for accurate delineation of tumor volumes for adapted characterization of cysts’ malignancy. 

However, as detailed in Chapter 5, there are situations in which this hypothesis holds, indicating 

that accurate predictive models do not always need precise time-consuming segmentations. On the 

other hand, since we simply repeated the pipelines developed for segmented tumors to features 

extracted from spherical VOIs, it was expected that the classification performance would change. 

Conceptually, the underlying pathophysiological information captured in the original signal from 

the core of segmented cysts have changed by including signal unknown to the developed models 

coming from surrounding tissues included in spherical VOIs. Thus, using the same classification 

models initially fitted to signal coming solely from within the cysts might not reflect the 

radiological signature associated with the change in segmentation. However, we also wanted our 

methods to capture information that was solely associated with tumoral information and not with 

surrounding organs. Therefore, pipelines and random forest models for both methods were not built 

again from the beginning after extracting descriptors from these novel spherical VOIs. 
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Limitations 

Our study had the following limitations. First, we did not analyze the diagnostic 

performance of both pipelines applied on CE-CT images at the available non-enhanced, 

corticomedullary, or excretory delayed phases. Radiomics features or SPHARM descriptors 

extracted from these images or dynamic analyses of how extracted features evolved across phases 

might provide relevant underlying information on pathological processes (161). On the other hand, 

since it is at the nephrographic phase of CE-CT that relevant enhancement patterns are seen and 

used for visual classification by radiologists, using features extracted from nephrographic phase 

was more consistent with clinical standard of care. Second, in the current version of our work, 

diagnostic performances of radiologists’ classification using the Bosniak system 2008 and its 2019 

Silverman’s update were not compared to that of histopathological analyses or against one another. 

To fully assess if our models can provide support to radiologists, and improve specificity and 

performance, we will need these comparisons. This was a secondary aim of the study in preparation 

which will be included in the manuscript for publication. In fact, our team aimed at comparing the 

diagnostic performance of the 2008 Bosniak diagnostic classification system with the proposed 

2019 Silverman’s updated Bosniak classification guidelines and to evaluate the interobserver 

variability of these two radiological classification systems. We also aimed to define the most 

accurate and reproducible visually assessable qualitative set of CE-CT features to predict 

malignancy of Bosniak cysts using the 2019 Bosniak classification and to propose a new 

classification for renal cysts in the widely used American College of Radiology Data System. These 

goals were separate from my contributions but will be included in the final version of the 

manuscript to be submitted for journal publication. Third, SPHARM descriptors analyses were not 

performed on the whole study population. In fact, small lesions made of few voxels cannot be 

sampled by up to 25 shells. This was a limitation of the SPHARM method, which is also observed 

in radiomics texture analyses. For texture features extraction, a voxel neighborhood is required to 

assess mathematical inter-relationships of voxel intensities in a VOI. A recent study suggested that 

the minimal VOI size for texture features to be evaluated was 1000 mm3
 (e.g. 10 x 10 x 10 mm3) 

(162). In our study, all cysts had at least a diameter of 10 mm. Thus, all cysts respected this limit 

and this issue did not arise in radiomics analyses. However, slightly increased performance was 

still observed in the subpopulation with cysts of minimal radius of 10 mm for radiomics features. 

Future studies will need to assess the minimal VOI size needed for SPHARM decomposition, given 
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preselected radial and frequency expansions. Finally, we did not report comparisons of SPHARM 

descriptors for different radial and frequency decompositions. Instead, the frequency 

decomposition selection was guided by preliminary analyses on 3D textures and by previous work 

on 3D shapes (17, 127), which all consistently indicated that Lmax = 25 resulted in optimized VOI 

encoding for reconstruction and classification. Similarly, radial sampling every voxel on a radius 

extending from tumor center was found to be accurate for reconstruction and classification in 

preliminary analyses. Thus, given that renal cysts of category IIF and increasing have minimal radii 

of 15 mm (156), 30 shells would perfectly sample cysts imaged with 0.5 x 0.5 mm2 in-plane 

resolution on CE-CT, with one shell every voxel on the radius. To provide an intermediate radial 

sampling to account for the distribution of cysts’ sizes, a radial sampling of 25 shells was found to 

be optimal for SPHARM-based reconstruction and classification. This was shown by high MSSI 

between inverse SPHARM-reconstructed VOIs compared to original VOIs and by good 

classification performance of SPHARM descriptors in the training and testing datasets. 

 

Discussion 

We anticipate that quantitative image analysis of renal cysts based on CE-CT images will 

help nephrologists to optimize patient management. Proposed methods could lead to better 

malignancy risk stratification of CCRLs in order to reduce unnecessary surgery or follow-up (false 

positive Bosniak IIF to IV cysts). In addition, quantitative image analysis could help with the 

detection of missed malignancies (false negative Bosniak I and II cysts). Since CE-CT is commonly 

used for the detection of enhancement within renal lesions, this work is clinically translatable and 

could help with clinical decision-making and avoiding unnecessary surgeries due to cysts 

misclassification. 

This work could form the basis of automated renal cyst risk stratification and potentially 

become a physician-assisting tool that can be deployed at imaging workstations. Bosniak 

classification is well correlated with the increase of malignancy risk but is limited for grading lesion 

complexity using the IIF and III categories, resulting in unnecessary surgeries or follow-up (39). 

Our models may help avoiding these procedures which add to the burden on the healthcare system. 

Combining SPHARM decomposition with radiomics in future work could harness the 
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discriminatory ability of radiomics found in this study to the localization ability of SPHARM 

descriptors providing robust interpretable modeling of malignancy in CCRLs. 

In conclusion, proposed models have achieved high diagnostic performance in 

distinguishing benign from malignant complex cystic renal lesions. Future studies should reassess 

patient management based on Bosniak classification and on the risk of malignancy predicted by 

our models, especially the radiomics-based classification which led to the highest diagnostic 

performance with increased specificity compared to that of radiologists as reported in the literature. 

Extracting descriptors from spherical VOIs decreased significantly this performance which suggest 

that computational methods – at least in the context of CE-CT of CCRL – should extract 

information from signal coming from the tumor itself, and not roughly including surrounding 

tissues. Finally, this study relies on its robustness through the development of a state-of-the-art 

radiomics pipeline using the well-established open-source Pyradiomics platform, and of a 

SPHARM pipeline with interesting invariance properties, which could both help to produce more 

reliable and reproductible analyses in the future. Including genomic profiles of lesions in the 

modeling could further allow to predict malignancy and differentiate disease subtypes, extending 

this work to so-called radiogenomics (163, 164).  
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5. MULTI-PARAMETRIC MRI OF ENDOMETRIAL 

TUMORS 

5.1. Background  

In developed countries, endometrial cancer is currently the most common gynecological 

malignancy and the fourth most common cancer in women (165). After diagnosis, the mainstay of 

treatment is total hysterectomy with bilateral salpingo-oophorectomy (166-170). Treatment may 

include surgical removal of pelvic and para-aortic lymph nodes, adjuvant chemotherapy, or 

radiotherapy (171, 172). Over the years, the International Federation of Gynecology and Obstetrics 

(FIGO) staging system has shown high prognostic value for determining risk groups in endometrial 

cancer (169, 173, 174). Prognostic risk factors include histologic grade, intra-tumoral 

heterogeneity, presence of myometrial invasion (MI), and lymphovascular space invasion (LVSI), 

visually assessed by trained radiologists on medical images or by pathologists on histology 

specimens (166-169, 175). To provide a comprehensive staging of these factors, state-of-the-art 

histopathological analyses are currently performed in clinical settings as the reference standard 

either on preoperative biopsies or on the surgical specimen (170, 176-179). For preliminary 

screening and risk stratification, preoperative biopsies tend to underestimate of tumor grade (176, 

177). Given the high sampling variability of biopsy and the importance of capturing endometrial 

intra-tumoral heterogeneity (12), noninvasive quantitative whole tumor assessment could provide 

comprehensive staging of the depth of MI, the presence of LVSI, and of tumor grade (27, 28). 

Hence, there is a need for noninvasive assessment of histopathological prognostic risk factors in 

endometrial cancer which could help with patients’ stratification for surgeries. 

Many meta-analyses have shown the diagnostic value of magnetic resonance imaging 

(MRI) for assessing histopathological features of endometrial cancer, especially deep MI (a 

representation of an invasion of the myometrium is seen on Figure 5.1) (42, 180-183). Since the 

depth of MI is known to be the most important morphologic prognostic factor for endometrial 

cancer and MRI’s high soft tissue contrast enables to differentiate the extent of MI, MR 

examinations have became essential in preoperative staging (41, 184). Current recommendations 

for staging endometrial carcinoma on imaging are mostly qualitative and do not provide 

comprehensive guidelines for stratifying patients based on all histopathological features. 
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Therefore, the development of comprehensive noninvasive diagnostic tools based on MRI for 

preoperative risk stratification is required to provide reliable and reproducible methods for 

determining tumors’ stage and aggressiveness. 

To address this urgent need, many studies in the last decade have assessed the capacity of 

radiomics features extracted from single sequence or multi-parametric MRI (mpMRI) to diagnose 

three main outcomes i.e. high grade, deep myometrial invasion, and lymphovascular space invasion 

(18, 50-57). In these studies, expert segmentations were required to delimit the extent of 

endometrial tumors on MR images from many sequences which correspond to hours of work 

burdening the already overloaded radiologists’ workload (14, 15).  

Since high intra-tumoral heterogeneity is generally associated with tumor's inherent 

aggressiveness (185), radiomics texture features used in various cross-sectional imaging modalities 

have been studied as a detection, diagnosis, prognosis, characterization, and response assessment 

method for various tumor types (185-192). Our group previously proposed a mathematical model 

using 2D MRI-based texture features for risk assessment in endometrial cancer (18). In this 

previous study, the proposed model was highly associated with deep MI and could distinguish low 

grade from high grade tumors. Interestingly, the model achieved similar performance to that of 

subspecialty radiologists in the assessment of deep MI. One could argue that the absence of an 

external testing dataset to validate these results cannot show the robustness of 2D radiomics 

analysis method in this previous study. Therefore, the main goal of our study was to build upon 

Figure 5.1 (a) Anatomical representation of endometrial cancer and (b) schema of myometrial 

invasion, where pale purple represents the endometrium, dark purple is the lesion, and pink is the 

myometrium. Adapted from National Cancer Institute 2012 and van der Putten LJM 2017 (179).  

a b 

Endometrial cancer 
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previous work and retrospectively evaluate the utility of 3D mpMRI-based radiomics features and 

of spherical harmonics (SPHARM) descriptors in endometrial cancer to predict deep MI and high 

grade endometrial tumors using histology as the reference standard. Our secondary aim was to 

assess the ability of both methods to perform in spherical VOIs extended from expert manual 

segmentations. 

Table 5.1 2009 revised International Federation of Gynecology and Obstetrics (FIGO) staging 

for endometrial cancer. Adapted from Creasman W 2009 (193, 194). 

FIGO  Pathological changes MRI findings 

Stage I Tumor confined to the uterus -Normal or thickened endometrial stripe with diffuse or 

focal abnormal signal intensity 

-Intact junctional zone with smooth endometrial-

myometrial interface 

IA No or less than half myometrial 

invasion. 

-Signal intensity of tumor extends into myometrium <50% 

-Partial thickness disruption of junctional zone with 

irregular endometrial-myometrial interface 

IB Invasion equal to or more than half of 

the myometrium. 

-Signal intensity of tumor extends into myometrium ≥50% 

-Partial or full thickness disruption of junctional zone with 

irregular endometrial-myometrial interface 

Stage II Tumor invades cervix but does not 

extend beyond uterus 

-Internal and endocervical canal are widened 

-Disruption of enhancing endocervical mucosa 

Stage III Tumor extends beyond uterus but not 

outside the pelvis 

 

IIIA Invasion of serosa, adnexa, or 

positive peritoneal cytology 

-Disruption of continuity of outer myometrium 

-Irregular uterine configuration 

IIIB Vaginal and/or parametrial 

involvement 

-Segmental loss of hypointense vaginal wall 

IIIC Metastases to pelvic and/or para-

aortic lymph nodes 

-Regional lymph nodes larger than 1cm in diameter 

Stage IV Tumor extends outside of the pelvis 

or invades bladder or rectal mucosa 

 

IVA Invasion of bladder or rectal mucosa -Tumor signal disrupts normal tissue planes with loss of 

low signal intensity of bladder or rectal wall 

IVB Distant metastases (includes intra-

abdominal or inguinal lymph nodes) 

-Tumor masses in distant organs or anatomic sites 

 

5.2. Materials and Methods 

Study Population 

This international dual-center retrospective study included patients over 18 years old with 

endometrial lesions. An institutional review board approval and waiver for informed consent were 

obtained at both participating institutions, McGill University Health Centre (Montreal, Canada) 

and Hôpital Lariboisière, Assistance Publique-Hôpitaux (Paris, France). MRI and clinical data of 
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patients who underwent an MR examination with pelvic protocol before surgery between January 

2011 and July 2015 were included. All included female patients had histology-proven endometrial 

cancer as assessed by surgical staging. Patients were excluded if the lesion measured less than 1cm 

in diameter or if it was nonvisible on MRI; if the MRI examination or the pathologic report was 

incomplete; if they had any history of neoadjuvant therapy prior to surgery; or if patients had other 

malignancies. Data from included patients were deidentified and processed according to European 

and Canadian Laws. Patients from the first institution from which originated this study were 

included in the training dataset while patients from the second institutions formed the external 

testing dataset. 

 

Magnetic Resonance Imaging Examinations 

All MRI studies were performed on 1.5 T MRI scanner (training dataset: Signa Excite; 

General Electric [GE] Healthcare, Waukesha, WI, USA; testing dataset: Magnetom Avanto, 

Siemens Healthcare, Erlangen, Germany) using the vendor specific phased-array pelvic surface 

coils.  Fasted patients were scanned in supine position and administered intramuscularly 40mg of 

hyoscine butyl bromide (Buscopan, Boehringer, Ingelheim, Germany) prior to acquisition to 

decrease peristalsis.  MR examinations included the following standard-of-care diagnostic 

sequences for pelvic protocols:  fast spin echo T2-weighted imaging, echo planar imaging 

diffusion-weighted imaging (DWI) at b = 0 and 1000 s/mm2, and 3D gradient echo T1-weighted 

dynamic contrast-enhanced (DCE)-MRI (Figure 5.2; Table 5.2). Administration of 0.1 mmol of a 

gadolinium contrast agent (Gadovist, Bayer, Leverkusen, Germany) per kg of body weight was 

performed intravenously prior to DCE-MRI. DCE-MRI acquisitions were performed at pre-

contrast in sagittal and axial oblique planes, at post-contrast at 25 seconds, 60 seconds, and 120 

seconds in the sagittal plane, and at delayed phase 240 seconds in the axial oblique plane). The 

axial oblique plane was positioned perpendicularly to the endometrial cavity (i.e. short axis view). 

 

Histopathological Analysis 

Histopathological sampling of surgical specimen was obtained for all patients. Analyses of 

specimens were used to determine tumor subtype, histopathological grade, and the presence of 

deep (≥ 50%) MI. The low grade category included FIGO grades 1 and 2, while high grade category 
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included FIGO grade 3 and non-endometrioid subtypes. The percentage of MI depth was assessed 

as a function of the penetration depth of the tumor between the endometrium and the serosa, where 

50% was considered at the middle of the myometrium (Figure 5.1). Pathologists were blinded to 

imaging results and radiologists were blinded to pathology results. 

Table 5.2 MR examinations acquisition parameters. 

 

MRI Segmentation 

Segmentations of 3D endometrial tumor volume of interest (VOI) were manually drawn in 

consensus by two experienced radiologists in pelvic MRI on image volumes from 6 different MR 

sequences: T2-weighted MRI, DWI (at b = 1000 s/mm2), apparent diffusion coefficient (ADC) 

maps generated from the voxel-wise combination of b = 0 s/mm2 and 1000 s/mm2 (as ADC = 

−
1

𝑏
ln (DWI𝑏=1000s/mm2/DWI𝑏=0s/mm2), and second phase (at 60s [DCE2]), third phase (120s 

[DCE3]), and delayed phase (240s after injection, often referred to as post-gadolinium [PostGado]) 

of DCE-MRI. Pre-contrast and first phase (25s) DCE-MRI were not included analyses due to 

insufficient contrast between the endometrial lesion and the surrounding myometrium. VOIs were 

delineated avoiding peripheral borders of lesions to avoid including adjacent myometrium or 

healthy endometrium. For DWI and ADC, the plane between sagittal and oblique axial with best 

quality was used. Spherical VOIs were extended from these original manual segmentations based 

on the largest radius of each tumor. 

 

 

 MR 

Sequence 

Acquisition plane TR/TE 

(msec) 

Acquisition 

matrix 

Field of view 

(cm) 

Slice 

thickness 

(mm) 

T2w 

MRI 

FSE axial, sagittal, coronal, 

oblique axial* 

4000-

4575/100 

512×256 24 4 

DWI EPI sagittal, oblique axial* 5000/69 128×256 32 6 

DCE-MRI  3D GRE  sagittal, oblique axial* 3.6/1.75 320×192 26 4 
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Figure 5.2 Segmented endometrial tumor on the 6 MR contrasts included. 

 

Computational Methods 

Both computational pipelines described in Chapter 2 and Chapter 3 were applied in this 

clinical study to extract radiomics features and SPHARM descriptors as surrogate biomarkers of 

histopathological features of endometrial cancer. Prior to radiomics features extraction, images and 

VOIs obtained in each MR sequence were resampled to achieve isotropic voxels and gray levels 

were discretized. Each feature was calculated with 16 different sets of extraction parameters (4 

gray-level bin width sizes x 4 isotropic voxel sizes). Gray-level bin width sizes were 15, 20, 25, 

and 30; and resampled voxel sizes were 0.5, 1, 2, and 3 mm3. Fixed bin size (absolute gray-level 

discretization) was used to increase reproducibility of radiomics features which are known to be 

confounded by gray-level discretization on MR images (88). Thus, as discussed in Chapter 2, we 

had to perform image intensity normalization prior to absolute gray-level discretization. 

Pyradiomics-integrated normalization was used to rescale the mean of voxel intensities across the 

whole image at 300 and their standard deviation at 100, similar to what recent studies recommended 

(46, 86, 88-94). B-spline interpolation was used for image resampling to isotropic voxel size in 

Pyradiomics (160). The set of preprocessing steps leading to the highest radiomics features 

reproducibility was then assessed based on intraclass correlation coefficients (ICC) of radiomics 

features under VOI variations. ICC were obtained by comparing features across three VOIs: 

original, dilated, and eroded VOIs. Dilated and eroded VOIs were obtained from the original 
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manual segmentation by adding or removing a one voxel-thick surface, respectively. Unstable (ICC 

< 0.80) and multicollinear correlated radiomics features (Spearman’s ρ > 0.95) were removed prior 

to random forest feature selection. All modeling was conducted in Python 3.7.4 using the Scikit-

learn package (109). The 5 most important radiomics features across all MR sequences for the 

diagnosis of each histopathological feature were identified with a random forest model after 

minimizing trees’ depth, number of trees, and maximal features possibly splitting at each node. 

Training and validation were performed using bootstrapped out-of-bag samples and 95% 

confidence intervals were reported. 

SPHARM decomposition was performed by sampling 25 shells at different radii which 

were decomposed up to a maximal SPHARM degree Lmax = 25, resulting in 25 x 25 matrices for 

each MR contrast on native images. The ability of SPHARM descriptors to encode and reconstruct 

endometrial tumors’ volumes was assessed by comparing these original volumes to inverse 

SPHARM-reconstructed volumes with the multi-scale structural similarity index (MSSI). A tensor 

logistic regressor (TensorReg) was used to fit a classification matrix of SPHARM coefficients for 

classifying histopathological features of endometrial cancer. All SPHARM and TensorReg 

analyses were performed in MATLAB (2020a, Mathworks, Natick, MA, USA). Using SPHARM 

decomposition of each MR contrast’s images, training and validation were performed using 

stratified 5-fold cross-validation and using bootstrapping of training folds to produce predictions 

while adjusting the regularization parameter to minimize both training and validation error. The 

obtained SPHARM predictions of each contrast were subsequently combined by fitting a simple 

regularized logistic regression model using bootstrapping to produce 95% confidence intervals. 

Both models were independently tested with an external testing dataset from the Hôpital 

Lariboisière using descriptors extracted i) from expert segmentations and ii) spherical VOIs. Expert 

segmentations were compared with spherical VOIs with Dice coefficients across MR sequences. 

Receiver operating characteristics (ROC) curves were reported based on models’ 

predictions on the training and testing datasets. Thresholds maximizing Youden’s index 

(sensitivity+specificity-1) were identified and associated diagnostic performance metrics of models 

were reported, i.e. sensitivity, specificity, balanced accuracy, positive predictive value, and 

negative predictive value. 



MULTI-PARAMETRIC MRI OF ENDOMETRIAL TUMORS 

92 

5.3. Results 

Population characteristics 

Between January 2011 and July 2015, 94 patients who underwent 1.5 T MRI examination 

before surgery for endometrial carcinoma at McGill University Health Center were included (mean 

age: 65.5 years [range: 43-90 years]).  In this training dataset, 43 patients (43 of 94, 45.7%) had 

deep MI, and 33 (33 of 94, 35.1%) had high FIGO grade as assessed by histology (Table 5.3). At 

Hôpital Lariboisière, a total of 63 patients were included (mean age: 67.1 years [range: 44-88 

years]). In this external testing dataset, 36 patients (36 of 63, 57.1%) had deep MI, and 15 (15 of 

63, 23.8%) had high FIGO grade as assessed by histology (Table 5.3). 

Table 5.3 Patient surgical histopathological findings. 

 Training dataset (n = 94) Testing dataset (n = 63) 

Deep myometrial invasion 

  < 50% myometrial invasion 51 (54.3%) 27 (42.9%) 

  Deep (> 50%) myometrial invasion 43 (45.7%) 36 (57.1%) 

Histopathological grade 

  Low (grade 1and 2) 61 (64.9%) 48 (76.2%) 

  High (grade 3 and non-endometriod) 33 (35.1%) 15 (23.8%) 

5.3.1. Multi-parametric MRI Results 

Reproducibility 

The reproducibility analysis revealed that the preprocessing parameters which led to the 

highest overall ICC across all MR sequences were resampled isotropic voxels size of 1 mm3 and 

normalized absolute discretized MR images with fixed bin size of 25 (Figure 5.3 and Figure 5.4). 

Using this set of preprocessing steps, 56 radiomics features were excluded from further analysis 

since their associated ICC were below the predefined 0.80 reproducibility threshold as shown on 

Figure 5.5, 19 extracted from ADC maps, 20 from DWI, 1 from second phase DCE-MRI, 1 from 

third phase DCE-MRI, 15 from delayed phase DCE-MRI, and none from T2-weighted MRI. There 

were 11 first-order features excluded (2 extracted from ADC maps, 4 from DWI, and 5 from 

delayed phase DCE-MRI), no shape-based features excluded, and 45 textural features excluded (17 

extracted from ADC maps, 16 from DWI, 1 from second-phase and 1 from third-phase DCE-MRI 

(both large area high gray-level emphasis [GLSZM]), and 10 from delayed-phase DCE-MRI). 

Thus, there were 580 features left from the 636 (91%) originally extracted features (i.e 106 features 
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per sequence) after this first feature selection step. Secondly, highly correlated multicollinear 

features were removed (Spearman’s rho > 0.95) resulting in keeping only 361 features of the 580 

selected reproducible features (62%, or 57% of originally extracted features).  

Figure 5.3 Mean intra-class correlation coefficients for assessing reproducibility of 

radiomics features evaluated in mpMRI of endometrial tumours. 
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Figure 5.4 Standard deviation of intra-class correlation coefficients for assessing 

reproducibility of radiomics features evaluated in mpMRI of endometrial tumors. 
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Figure 5.5 Intra-class correlation coefficients for assessing reproducibility of radiomics 

features in each class extracted from preprocessed MR images with fixed bin width of 25 and 

resampled isotropic voxels of 1 mm3. 
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Radiomics in Deep Myometrial Invasion 

Prior to feature selection, each radiomics feature used alone for differentiating <50% MI 

from deep MI with an area under the ROC curve (AUC) greater than 0.75 in the training dataset 

were reported in Table 5.4. Fifty features of the set of reproducible features were identified (6 

extracted from ADC maps, 6 from DWI, 7 from second phase DCE-MRI, 9 from third phase DCE-

MRI, 17 from delayed phase DCE-MRI, and 5 from T2-weighted MRI). Four were first-order 

statistics, 24 were shape features, and 22 were texture features. Interestingly, simple and easily 

assessed morphological descriptors extracted from different MR contrasts such as lesions’ least 

axis length, minor axis length, or maximum 2D diameter slice led to AUCs greater than 0.77. These 

highly discriminating shape-based features suggested that basic analysis the segmented VOI shape 

might lead to improved classification of the depth of MI. 

 

 

 

Figure 5.6 Out-of-bag error as a function of (a) the number of trees and (b) the maximal depth 

of each tree in the random forest. Minimizing these hyperparameters decreases over-fitting. 

a 

 

b 
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Table 5.4 Most discriminative single radiomics features for predicting deep myometrial 

invasion (AUC ≥ 0.75). 

# Radiomics features AUC 

1 PostGado_shape_LeastAxisLength 0.812 

2 T2_shape_LeastAxisLength 0.800 

3 PostGado_gldm_DependenceEntropy 0.795 

4 DCE3_shape_LeastAxisLength 0.785 

5 DWI_shape_LeastAxisLength 0.785 

6 DCE3_glszm_ZoneEntropy 0.782 

7 PostGado_glcm_Idn 0.777 

8 ADC_shape_MinorAxisLength 0.777 

9 PostGado_shape_MeshVolume 0.775 

10 PostGado_shape_VoxelVolume 0.775 

11 PostGado_shape_MinorAxisLength 0.772 

12 PostGado_glcm_Correlation 0.772 

13 T2_ngtdm_Busyness 0.771 

14 ADC_shape_Maximum2DDiameterSlice 0.771 

15 DCE2_shape_LeastAxisLength 0.770 

16 DCE3_glcm_Correlation 0.769 

17 PostGado_glcm_Idmn 0.768 

18 ADC_shape_LeastAxisLength 0.768 

19 PostGado_gldm_LargeDependenceHighGrayLevelEmphasis 0.766 

20 DWI_shape_MinorAxisLength 0.766 

21 DWI_glszm_LargeAreaHighGrayLevelEmphasis 0.765 

22 T2_glrlm_GrayLevelNonUniformity 0.764 

23 DCE3_glcm_Idmn 0.764 

24 T2_gldm_GrayLevelNonUniformity 0.763 

25 PostGado_glrlm_RunLengthNonUniformity 0.760 

26 PostGado_glszm_ZoneEntropy 0.759 

27 DCE2_glcm_Idmn 0.759 

28 DCE3_shape_Maximum2DDiameterColumn 0.758 

29 DWI_gldm_GrayLevelNonUniformity 0.758 

30 PostGado_shape_SurfaceArea 0.757 

31 DCE3_glcm_MCC 0.757 

32 DWI_shape_Maximum2DDiameterSlice 0.757 

33 ADC_shape_SurfaceArea 0.756 

34 PostGado_glszm_LargeAreaHighGrayLevelEmphasis 0.755 

35 ADC_shape_VoxelVolume 0.755 

36 ADC_shape_MeshVolume 0.755 

37 DWI_shape_VoxelVolume 0.755 

38 DCE2_glcm_Idn 0.754 

39 DCE3_glcm_Idn 0.753 

40 DCE2_shape_Maximum2DDiameterColumn 0.753 

41 PostGado_gldm_DependenceNonUniformity 0.753 

42 DWI_shape_MeshVolume 0.753 

43 DCE3_gldm_DependenceNonUniformity 0.752 

44 T2_shape_MinorAxisLength 0.752 

45 DCE2_firstorder_Energy 0.752 

46 DCE2_firstorder_TotalEnergy 0.751 

47 PostGado_firstorder_TotalEnergy 0.751 

48 PostGado_shape_Maximum2DDiameterSlice 0.751 

49 DCE2_gldm_DependenceNonUniformity 0.750 

50 DCE3_firstorder_TotalEnergy 0.750 
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After the exclusion of unreproducible and multicollinear correlated features, the random 

forest features selection process based on Gini impurity led to the inclusion of a total of 5 radiomics 

features, over which the diagnostic performance was not significantly increased by the inclusion 

of more features. To limit overfitting and to minimize out-of-bag error in the model, the number of 

trees included in random forest modeling was limited to 20, the depth of each decision tree was 

limited to 5, and the number of features to possibly split at each node was limited to the squared 

root of the number of features (Figure 5.6). The selected discriminative radiomics features were 2 

shape-based features – least axis length extracted from delayed phase DCE-MRI and maximum 2D 

diameter slice extracted from ADC maps – and 3 second-order texture statistics – zone entropy 

from gray-level size zone matrices (GLSZM), dependence entropy from gray-level dependencies 

matrices (GLDM), and dependence nonuniformity from GLDM all extracted from delayed phase 

DCE-MRI. Included features were all among the single most discriminating (AUC > 0.75) when 

simply using one feature in ROC analysis in the training dataset as reported in Table 5.4. Their 

distributions against one another are represented in pair plots in Figure 5.7 where blue dots 

represent subjects with deep MI and orange dots represent subjects without deep MI (<50% MI). 

The final random forest model was built including only these 5 features (ADC maps-based 

maximum 2D diameter slice and delayed phase DCE-MRI-based least axis length, zone entropy 

[GLSZM], dependence entropy [GLDM], and dependence nonuniformity [GLDM]). Cross-

validated training with bootstrapping on balanced samples of the training dataset with the random 

forest classifier resulted in high diagnostic performance for predicting deep MI as shown by ROC 

analysis (Figure 5.8; Table 5.5). This model was then applied to the external testing dataset on 

which the random forest classifier also provided high performance. When using the 5 most 

reproducible and discriminative features, the random forest model resulted in diagnostic 

performance on the testing dataset with an AUC of 0.81. Sensitivity, specificity and balanced 

accuracy were respectively 86%, 75% and 81% in the testing dataset.   

2D planes of the random forest classification decision boundaries are represented in Figure 

5.9, where orange and red are associated again with <50% MI and blue with deep MI. The overall 

smooth classification heatmaps confirm that overfitting was limited in our random forest modeling. 

It also shows that using combination of only 2 radiomics features might not fully allow to assess 

the depth of MI, as seen from significant overlap between classes. 
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Table 5.5 Diagnostic performance of random forest classifier on radiomics 

features to predict deep myometrial invasion. 

 AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

Deep 

MI 

Training 0.86 

(0.75–0.93) 

84 

(71–93) 

88 

(77–95) 

86 

(78–92) 

84 

(71–93) 

88 

(75–94) 

Testing 0.81 

(0.68–0.88) 

86 

(68–94) 

75 

(60–93) 

81 

(70–91) 

82 

(67–91) 

80 

(60–90) 

Figure 5.7 Distributions of the 5 most important radiomics features picked up by the random 

forest model for classifying deep myometrial invasion. 
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Figure 5.8 Training and testing ROC curves for predicting deep myometrial invasion with a 

radiomics-based random forest model. 

Figure 5.9 Random forest classifier visualization of 2D classification planes of most important features for 

the classification of deep myometrial invasion on mpMRI. 
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Examples of well classified depth of MI on endometrial lesions with radiomics features are 

shown in Figure 5.10. Notable quantitative features of these lesions on ADC maps and delayed 

phase DCE-MRI were that the lesion with deep MI was larger than that without deep MI (maximum 

2D diameter slice, 70.9 mm vs. 38.9 mm, respectively; least axis length, 26.0 mm vs. 14.5 mm, 

respectively). For texture features, entropy was used as a measure of randomness and uncertainty 

in two matrix representations, GLSZM and GLDM. Dependence nonuniformity measured the 

similarity of GLDMs, with higher values associated to more heterogeneity among dependencies. 

Thus, tumors with deep MI appeared to show more textured appearance on delayed phase DCE-

MRI, with more heterogeneous zones and chaotic voxel intensities dependencies compared to that 

of the lesion without deep MI. 

  

Deep MI (FIGO IIIA), Predicted Risk = 0.92

Zone Entropy (GLSZM, PG) = 7.16

Dependence Entropy (GLDM, PG) = 7.47

Maximum 2D Diameter Slice (ADC) = 70.9mm

Least Axis Length (PG) = 26.0mm  

Dependence NonUniformity (GLDM, PG) = 2625

<50% MI (FIGO IA), Predicted Risk = 0.11

Zone Entropy (GLSZM, PG) = 6.73

Dependence Entropy (GLDM, PG) = 7.62

Maximum 2D Diameter Slice (ADC) = 38.9mm

Least Axis Length (PG) = 14.5mm  

Dependence NonUniformity (GLDM, PG) = 790

Figure 5.10 Radiomics features extracted on delayed phase DCE-MRI and ADC maps in two 

subjects with and without deep myometrial invasion. PG = PostGado. 
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Radiomics in High Grade 

For differentiating low from high grade endometrial cancer, no radiomics features resulted 

in AUC > 0.75 when simply using one feature in ROC analysis. Only 14 resulted in AUC > 0.72 

(Table 5.6). The selected 5 most discriminative radiomics features for predicting high grade 

incorporated radiomics features only from second-order statistics but from 5 different MR 

sequences: contrast from neighbouring gray-tone difference matrix (NGDTM) extracted from T2-

weighted MRI, gray-level variance from GLCM extracted from ADC maps, and large run high 

gray-level emphasis from gray-level run-length matrix (GLRLM) extracted from third phase DCE-

MRI, inverse difference moment normalized from GLCM extracted from DWI, and gray-level 

nonuniformity from GLDM extracted from second phase DCE-MRI. Their distributions against 

one another are represented in pair plots in Figure 5.11 where blue dots represent subjects with 

high grade and orange dots represent subjects with low grade. 

Bootstrapped training on balanced samples of the training dataset with our random forest 

classifier on these 5 features resulted in good diagnostic performance for differentiating low grade 

from high grade endometrial cancer (Figure 5.12; Table 5.7). In fact, the classifier robustly 

performed from training to testing with AUC of 0.74. Sensitivity, specificity and balanced accuracy 

were respectively 65%, 84% and 75% in the testing dataset.   

Table 5.6 Most discriminative radiomics features extracted from mpMRI for predicting high 

grade endometrial cancer (AUC ≥ 0.72). 

# Radiomics Features AUC 

1 DWI_glcm_ClusterTendency 0.734 

2 DCE2_firstorder_Median 0.732 

3 DCE3_firstorder_Median 0.732 

4 DCE2_firstorder_RootMeanSquared 0.731 

5 DCE2_firstorder_Mean 0.729 

6 DCE3_firstorder_RootMeanSquared 0.727 

7 DWI_glcm_SumEntropy 0.727 

8 DCE3_firstorder_Mean 0.726 

9 DCE2_firstorder_90Percentile 0.723 

10 DWI_glcm_ClusterProminence 0.722 

11 DWI_glcm_SumSquares 0.722 

12 DWI_glcm_JointEntropy 0.721 

13 DWI_glrlm_HighGrayLevelRunEmphasis 0.720 

14 DWI_gldm_HighGrayLevelEmphasis 0.720 
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However, as seen on features distribution on Figure 5.11, we cannot simply discriminate 

linearly lesions based on these selected features. Complex discriminating decision trees had to be 

combined to produce accurate classification. However, one could argue that an AUC of 0.74 is not 

good, especially in the staging of cancerous lesions. Examples of endometrial tumors with low and 

with high grade are represented on Figure 5.13 for visualization. 

Table 5.7 Diagnostic performance of random forest classifier on radiomics 

features to predict high grade endometrial cancer. 

 AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

High 

Grade 

Training 0.74 

(0.63–0.83) 

90 

(76–98) 

60 

(52–72) 

74 

(57–86) 

55 

(41–69) 

92 

(80–98) 

Testing 0.74 

(0.61–0.86) 

65 

(46–84) 

84 

(70–92) 

75 

(65–86) 

56 

(41–68) 

89 

(75–95) 
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Figure 5.11 Distributions of the 5 most important radiomics features picked up by the random 

forest model for classifying low grade from high grade endometrial tumors. 
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Figure 5.13 Radiomics features extracted on mpMRI (T2-weighted MRI and ADC maps on the 

left panels) in two subjects with low grade and high grade endometrial tumors. 

High Grade (FIGO IIIA), Predicted Risk = 0.76

Contrast (NGTDM, T2w) = 0.023

GL Variance (GLSZM, ADC) = 28.3

LRHGLE (GLRLM, DCEt3) = 564.6

IDMN (GLCM, DWIb1000) = 0.998

GL Nonuniformity (GLDM, DCEt2)= 1491.6

Low Grade (FIGO IA), Predicted Risk = 0.22

Contrast (NGTDM, T2w) = 0.058

GL Variance (GLSZM, ADC) = 17.1

LRHGLE (GLRLM, DCEt3) = 426.0

IDMN (GLCM, DWIb1000) = 0.996

GL Nonuniformity (GLDM, DCEt2)= 400.0

Figure 5.12 Training and testing ROC curves for predicting high grade endometrial cancer with the 

5 most important radiomics features picked up by the random forest classifier. 
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SPHARM in Deep Myometrial Invasion 

Table 5.8 Patient surgical histologic findings in subgroup with endometrial tumors with 

minimal radius of 10 mm. 

 

For this section of analyses, a subset of the population with a minimal endometrial lesions’ 

radius of 10 mm was selected to assess the diagnostic performance of SPHARM descriptors. Using 

SPHARM decomposition with 25 shells and up to Lmax = 25, the reconstruction ability of SPHARM 

descriptors was assessed with MSSI. Mean MSSI across the population was 0.92 ± 0.05 (range: 

0.73-0.99) for ADC maps, 0.96 ± 0.04 (0.80-0.99) for DWI, 0.90 ± 0.06 (0.67-0.98) for T2-

weighted MRI, 0.89 ± 0.04 (0.79-0.97) for second phase DCE-MRI, 0.89 ± 0.04 (0.79-0.96) for 

third phase DCE-MRI, and 0.90 ± 0.05 (0.76-0.98) for delayed phase DCE-MRI. Thus, SPHARM 

ability for encoding volumes and their content from MR images was high across all MR sequences 

and could adequately reconstruct these volumetric images. SPHARM decomposition was 

performed for each MR contrast and predictions from trained TensorReg model on these extracted 

SPHARM descriptors were combined with a simple logistic regressor. The set of previously 

identified 5 most discriminative radiomics features were used in the same random forest model to 

enable comparisons on this subset of the population. 

Table 5.9 Detailed diagnostic performance of radiomics features and SPHARM descriptors 

for predicting deep myometrial invasion combining all MR sequences. 

 Training dataset  

(n = 89 [94.7%]) 

Testing dataset  

(n = 60 [95.2%]) 

Deep myometrial invasion 

  < 50% myometrial invasion 48 (53.9%) 25 (41.7%) 

  Deep (> 50%) myometrial invasion 41 (46.1%) 35 (58.3%) 

Histopathological grade 

  Low (grade 1 and 2) 60 (67.4%) 45 (75.0%) 

  High (grade 3 and non-endometriod) 29 (32.6%) 15 (25.0%) 

 AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

DMI SPHARM, 

Training 

0.94 

(0.85–0.98) 

82 

(68–93) 

93 

(73–100) 

88 

(77–94) 

93 

(78–100) 

82 

(64–92) 

SPHARM, 

Testing 

0.94 

(0.85–1.00) 

100 

(100–100) 

74 

(51–92) 

90 

(78–98) 

88 

(71–98) 

100 

(100–100) 

Radiomics, 

Training 

0.92 

(0.82–0.95) 

93 

(82–98) 

75 

(62–85) 

82 

(75–90) 

74 

(60–85) 

94 

(82–98) 

Radiomics, 

Testing 

0.92 

(0.81–0.98) 

82 

(65–93) 

80 

(51–94) 

81 

(70–91) 

89 

(70–97) 

72 

(55–91) 
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Combined predictions from mpMRI-SPHARM decompositions resulted in high diagnostic 

performance for differentiating <50% MI from deep MI as shown by ROC analysis on training and 

testing datasets (Figure 5.14; Table 5.9). In fact, the proposed model robustly performed from 

training to testing with a consistent AUC of 0.94. These results and their robustness arise from the 

combination of SPHARM decompositions from multiple MR contrasts. The logistic regression 

model combining predictions from each SPHARM descriptor for predicting deep MI was: 

log (
�̂�𝑀𝐼

1 − �̂�𝑀𝐼
) = −2.66 + 1.92𝑥𝐴𝐷𝐶 + 0.01𝑥𝐷𝑊𝐼 + 0.47𝑥𝑇2 + 2.12𝑥𝐷𝐶𝐸2 + 0.75𝑥𝐷𝐶𝐸3 + 0.47𝑥𝑃𝑜𝑠𝑡𝐺𝑎𝑑𝑜 

Thus, the most relevant MR contrasts for the prediction of the depth of MI with SPHARM 

decomposition were ADC maps (𝛽𝐴𝐷𝐶 = 2.12) and the second phase DCE-MRI (𝛽𝐷𝐶𝐸2 = 2.12), 

based on regularized regression coefficients β. Interestingly, most important radiomics features 

were also extracted from ADC maps, but not from second phase DCE-MRI. Also, removing lesions 

with radius smaller than 10 mm also increased the diagnostic performance of radiomics for 

predicting deep MI (testing AUC of 0.92 vs. 0.81; testing balanced accuracy of 0.81 vs. 0.81). 

SPHARM was more accurate in this subset of the population for characterizing the depth of MI 

than radiomics (testing AUC of 0.94 vs. 0.92; testing balanced accuracy of 0.90 vs. 0.81).  

Further analyses in important single MR contrasts – ADC maps and second phase DCE-

MRI – are provided in the next sections to investigate the high diagnostic performance observed 

when using SPHARM for predicting deep MI. 

Figure 5.14 Training and testing ROC curves for predicting deep myometrial invasion with 

SPHARM descriptors combining all MRI sequences. Predictions for each sequence were combined 

with a linear logistic regressor. 



MULTI-PARAMETRIC MRI OF ENDOMETRIAL TUMORS 

107 

SPHARM in High Grade 

Table 5.10 Detailed diagnostic performance of radiomics features and SPHARM descriptors 

for predicting high grade endometrial cancer combining all MR sequences. 

 

Combined predictions from mpMRI SPHARM decomposition resulted in high diagnostic 

performance for differentiating low grade from high grade as shown by ROC analysis on training 

and testing datasets (Figure 5.15; Table 5.10). The proposed model resulted in high AUC at 

training (0.89) and testing (0.81). The logistic regression model combining predictions for 

predicting high grade from each SPHARM descriptor was: 

log (
�̂�𝐻𝐺

1 − �̂�𝐻𝐺
) = −3.63 + 1.25𝛽𝐴𝐷𝐶 + 0.01𝛽𝐷𝑊𝐼 + 0.51𝛽𝑇2 + 0.71𝛽𝐷𝐶𝐸2 + 1.22𝛽𝐷𝐶𝐸3 + 2.03𝛽𝑃𝑜𝑠𝑡𝐺𝑎𝑑𝑜 

Thus, the most relevant MR contrast for the prediction of the tumor grade with SPHARM 

decomposition was delayed phase DCE-MRI (𝛽𝑃𝑜𝑠𝑡𝐺𝑎𝑑𝑜 = 2.31), based on regularized regression 

coefficients β. Interestingly, no radiomics features extracted from delayed phase DCE-MRI were 

included in the final random forest model reported above including the 5 most discriminative 

radiomics features. Removing lesions with radius smaller than 10 mm decreased the diagnostic 

performance of the previously selected 5 most discriminating radiomics features for predicting high 

grade (testing AUC of 0.74 vs. 0.72; testing balanced accuracy of 0.75 vs. 0.66). In fact, smaller 

lesions are often related to lower grade, which might explain this decrease in performance (41). 

Thus, SPHARM was more accurate in this subset of the population for characterizing the depth of 

MI than radiomics (testing AUC of 0.81 vs. 0.72; testing balanced accuracy of 0.78 vs. 0.66). 

Further analyses only on delayed phase DCE-MRI are provided in next sections to address more 

in-depth reasons for this high diagnostic performance observed when using SPHARM for 

predicting high grade endometrial cancer. 

 AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

High 

grade 

SPHARM, 

Training 

0.89 

(0.76–0.96) 

92 

(74–100) 

82 

(67–92) 

86 

(75–92) 

76 

(59–90) 

82 

(64–92) 

SPHARM, 

Testing 

0.81 

(0.64–0.90) 

93 

(67–100) 

63 

(45–79) 

78 

(64–86) 

58 

(37–86) 

95 

(68–100) 

Radiomics, 

Training 

0.79 

(0.72–0.88) 

90 

(76–97) 

68 

(56–79) 

76 

(68–86) 

60 

(48–75) 

94 

(83–98) 

Radiomics, 

Testing 

0.72 

(0.58–0.83) 

93 

(65–100) 

55 

(41–69) 

66 

(52–78) 

41 

(25–58) 

96 

(80–100) 
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5.3.2. Single Contrast MRI Results 

After combining predictions from all available MR contrasts, we explored single contrasts 

based on current literature and on important MR contrasts identified by regression models. More 

specifically, we found that ADC maps extracted from DWI and also DCE-MRI could be highly 

predictive of the depth of MI quantitatively, but also visually to delineate the extent of endometrial 

tumors (41, 42, 180, 181, 183, 184, 195-199). Similarly, DCE-MRI is widely used clinically for 

staging endometrial tumors (41, 184). Thus, we went further and propose here three single MR 

sequence analyses for predicting deep MI and high grade in endometrial cancer. This was also 

performed to further analyze SPHARM results presented in previous sections on mpMRI. 

Table 5.11 Detailed diagnostic performance of radiomics features and 

SPHARM descriptors for predicting deep myometrial invasion on ADC maps. 

ADC AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

DMI SPHARM, 

Training 

0.91 

(0.81–0.97) 

75 

(56–87) 

93 

(77–100) 

82 

(71–90) 

93 

(74–100) 

74 

(56–87) 

SPHARM, 

Testing 

0.85 

(0.71–0.94) 

62 

(43–80) 

93 

(70–100) 

78 

(62–88) 

94 

(65–100) 

60 

(41–76) 

Radiomics, 

Training 

0.77 

(0.63–0.88) 

74 

(61–87) 

72 

(59–86) 

74 

(61–86) 

67 

(63–71) 

79 

(70–87) 

Radiomics, 

Testing 

0.76 

(0.65–0.84) 

92 

(78–98) 

52 

(35–72) 

74 

(61–84) 

72 

(58–84) 

82 

(58–100) 

Figure 5.15 Training and testing ROC curves for predicting high grade endometrial cancer with 

SPHARM descriptors combining all MRI sequences. Predictions for each sequence were combined 

with a linear logistic regressor. 
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5.3.2.1. Analyses in ADC Maps for Predicting Deep MI 

The SPHARM pipeline was repeated using solely ADC maps for predicting deep MI. For 

comparison, radiomics analyses’ diagnostic performance was also assessed by evaluating the set 

of 5 most important features on ADC maps with random forest modeling. Briefly, these radiomics 

features consisted in two first-order statistics – skewness and kurtosis – and three shape-based 

features – minor axis length, surface volume ratio, and maximum 2D diameter slice. 

SPHARM decomposition on ADC maps resulted in high diagnostic performance for 

predicting deep MI as shown by ROC analysis on training and testing datasets (Figure 5.16; Table 

5.11). The proposed model resulted in high AUC at training (0.91) and testing (0.85). Using 

SPHARM descriptors extracted solely from ADC maps still decreased diagnostic performance for 

predicting deep MI compared to combining all MR contrasts (testing AUC of 0.94 vs. 0.85; testing 

balanced accuracy of 0.90 vs. 0.78). Using features extracted solely from ADC maps also decreased 

the diagnostic performance of radiomics for predicting deep MI (testing AUC of 0.92 vs. 0.76; 

testing balanced accuracy of 0.81 vs. 0.74). The drop in AUC was higher for radiomics than for 

SPHARM. Thus, SPHARM was more accurate on ADC maps for characterizing the depth of MI 

than radiomics (testing AUC of 0.85 vs. 0.76; testing balanced accuracy of 0.78 vs. 0.74). 

On Figure 5.16 is also represented the 2D classification matrix of TensorReg regression 

coefficients. We see that lower frequency content (blue negative coefficients) was predictor of 

<50% MI across all radii of ADC maps. Higher frequency content (red positive coefficients) was 

Figure 5.16 (a) Training and testing ROC curves for predicting deep myometrial invasion with 

SPHARM descriptors on ADC maps, and (b) classification matrix picked up by the logistic tensor 

regressor trained on the SPHARM descriptors. 
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predictor of deep MI, mostly around middle-outer radii. Examples of reconstruction and important 

harmonic filters in lesions showing deep MI or <50% MI are shown on Figure 5.17 and Figure 

5.18, respectively. Harmonic filters predictors of deep MI show higher frequency repeated patterns 

compared to those seen for the lesion without deep MI. In fact, harmonics of lower order and 

especially at lower radius might have captured the more uniform and overall smaller lesions seen 

in endometrial tumors with shallow MI or without MI. This is also consistent with shape-based 

features selected through random forest features selection which were highly correlated with the 

presence of deep MI. With both techniques, it seemed that rougher textured patterns in larger VOI 

were associated with deep MI while shallower uniform appearances in smaller VOI were associated 

with < 50% MI. SPHARM decomposition was the most accurate technique for differentiating 

absence or shallow MI (<50%) from deep MI using all MR contrasts and only ADC maps. 
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Figure 5.17 (a) ADC map of endometrial tumor with deep MI, (b) segmented tumor with 

overlayed full reconstructed classification matrix of SPHARM descriptor, (c) segmented ADC 

maps and its (d) reconstruction with SPHARM coefficients (Lmax, Rmax = 25, 25), and (e) harmonic 

filters with (l, m, r = 11, 10, 15) and (l, m, r = 7, 5, 20), expressed within the spherical yellow 

overlay in panel (b) as predictors of deep myometrial invasion. 

a b 

c d 

e 
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Figure 5.18 (a) ADC map of endometrial tumor without deep MI, (b) segmented tumor with 

overlayed full reconstructed classification matrix of SPHARM descriptor, (c) segmented ADC 

maps and its (d) reconstruction with SPHARM coefficients (Lmax, Rmax = 25, 25), and (e) harmonic 

filters with (l, m, r = 2, 2, 3) and (l, m, r = 3, 2, 12), expressed within the spherical blue overlay in 

panel (b) as predictors of <50% myometrial invasion. 

a b 

c d 

e 
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5.3.2.2. Analyses in DCE-MRI for Predicting Deep MI 

Table 5.12 Detailed diagnostic performance of radiomics features and SPHARM descriptors 

for predicting deep myometrial invasion on second enhancement phase of DCE-MRI. 

 

The SPHARM pipeline was repeated using solely second phase DCE-MRI for predicting 

deep MI. For comparison, radiomics analyses’ diagnostic performance was also reassessed by 

evaluating the set of 5 most important features on second phase DCE-MRI with random forest 

modeling. These radiomics features consisted in three shape-based features – least axis length, 

flatness, and mesh volume – and 2 second-order statistics – inverse difference moment normalized 

from GLCM and dependence nonuniformity from GLDM. 

SPHARM decomposition on second phase DCE-MRI resulted in high diagnostic 

performance for predicting deep MI as shown by ROC analysis on training and testing datasets 

(Figure 5.19; Table 5.12). The proposed model robustly performed from training to testing as 

shown by high consistent AUCs of 0.87 and 0.86, respectively. Using SPHARM descriptors 

extracted solely from second phase DCE-MRI still decreased in diagnostic performance for 

predicting deep MI compared to when combining all MR contrasts (testing AUC of 0.94 vs. 0.86; 

testing balanced accuracy of 0.90 vs. 0.82). Using features extracted solely from second phase 

DCE-MRI also decreased the diagnostic performance of radiomics for predicting deep MI but to a 

higher extent (testing AUC of 0.92 vs. 0.68; testing balanced accuracy of 0.81 vs. 0.65). In fact, 

this drop in AUC was higher for radiomics than for SPHARM. Overall, SPHARM was more 

accurate on second phase DCE-MRI for characterizing the depth of MI than radiomics (testing 

AUC of 0.86 vs. 0.68; testing balanced accuracy of 0.82 vs. 0.65). 

On Figure 5.19 is also represented the resulting 2D classification matrix of TensorReg 

regression coefficients. Interestingly, low frequency content narrowly located around radius 15 was 

DCE2 AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

DMI SPHARM, 

Training 

0.87 

(0.77–0.94) 

67 

(51–83) 

90 

(72–97) 

79 

(64–86) 

87 

(65–96) 

71 

(54–84) 

SPHARM, 

Testing 

0.86 

(0.63–0.96) 

95 

(73–100) 

58 

(30–86) 

82 

(65–94) 

81 

(63–96) 

88 

(40–100) 

Radiomics, 

Training 

0.70 

(0.54–0.82) 

86 

(68–100) 

55 

(40–72) 

71 

(60–81) 

60 

(54–64) 

85 

(67–100) 

Radiomics, 

Testing 

0.68 

(0.53–0.81) 

70 

(50–82) 

60 

(40–76) 

65 

(53–75) 

70 

(53–82) 

59 

(41–78) 
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predictor of <50% MI on second phase DCE-MRI. For predicting deep MI, both high and lower 

frequencies were used for classification across different radii. Examples of lesions’ reconstructions 

on DCE-MRI and important harmonic filters with deep MI or with <50% MI are shown in Figure 

5.20 and 5.21, respectively.  

 

 

Figure 5.19 (a) Training and testing ROC curves for predicting deep myometrial invasion with 

SPHARM descriptors on second phase DCE-MRI, and (b) classification matrix picked up by the 

logistic tensor regressor. 
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Figure 5.20 (a) Second DCE-MRI phase images of endometrial tumor with deep MI, (b) 

segmented tumor with overlayed full reconstructed classification matrix of SPHARM descriptor, 

(c) segmented second phase DCE-MRI and its (d) reconstruction with SPHARM coefficients (Lmax, 

Rmax = 25, 25), and (e) harmonic filters (l, m, r = 7, 3, 15) and (l, m, r = 2, 1, 22), expressed within 

the spherical yellow overlay in panel (b) as predictors of deep MI. 

a b 

c d 

e 
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Figure 5.21 (a) Second DCE-MRI phase images of endometrial tumor with deep MI, (b) 

segmented tumor with overlayed full reconstructed classification matrix of SPHARM descriptor, 

(c) segmented second phase DCE-MRI and its (d) reconstruction with SPHARM coefficients 

(Lmax, Rmax = 25, 25), and (e) harmonic filters (l, m, r = 2, 0, 15) and (l, m, r = 3, 1, 16), expressed 

within the spherical yellow overlay in panel (b) as predictors of <50% MI. 

a b 

c d 

e 
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5.3.2.3. Analyses in DCE-MRI for Predicting High Grade 

Table 5.13 Detailed diagnostic performance of radiomics features and SPHARM descriptors 

for predicting high grade on delayed enhancement phase of DCE-MRI. 

 

The SPHARM pipeline was repeated using solely delayed phase DCE-MRI for 

differentiating low from high grade endometrial cancer. For comparison, radiomics analyses’ 

diagnostic performance was also assessed by evaluating the set of 5 most important features on 

delayed phase DCE-MRI with random forest modeling. Briefly, these radiomics features consisted 

in one first-order statistic – total energy – and four texture features –  size zone nonuniformity 

normalized from GLSZM, long run high gray-level emphasis from GLRLM, dependence variance 

from GLDM, and small dependence low gray-level emphasis from GLDM. SPHARM 

decomposition on delayed phase DCE-MRI maps resulted in good diagnostic performance for 

predicting high grade with AUC of 0.77 at training and of 0.79 at testing (Figure 5.22; Table 5.13). 

The estimated performance from training to testing increased, suggesting that the developed 

SPHARM signature was highly robust and accurate across centers. Using SPHARM descriptors 

extracted only from delayed phase DCE-MRI decreased diagnostic performance for predicting high 

grade compared to when combining all MR contrasts (testing AUC of 0.81 vs. 0.79; testing 

balanced accuracy of 0.78 vs. 0.75). The same was observed for radiomics but to a higher extent 

as modeling with only delayed phase DCE-MRI features was similar to that of random 

classification (testing AUC of 0.72 vs. 0.51; testing balanced accuracy of 0.66 vs. 0.53). Indeed, 

the drop in AUC was higher for radiomics than for SPHARM. Therefore, SPHARM decomposition 

was significantly more accurate on delayed phase DCE-MRI for predicting high grade than 

radiomics (testing AUC of 0.79 vs. 0.51; testing balanced accuracy of 0.75 vs. 0.53). 

PostGado AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

High 

Grade 

SPHARM, 

Training 

0.77 

(0.62–0.88) 

91 

(68–100) 

58 

(45–76) 

74 

(64–84) 

58 

(44–76) 

91 

(70–100) 

SPHARM, 

Testing 

0.79 

(0.62–0.94) 

82 

(55–100) 

68 

(54–84) 

75 

(65–86) 

59 

(45–77) 

89 

(66–98) 

Radiomics, 

Training 

0.61 

(0.54–0.82) 

58 

(40–74) 

69 

(58–81) 

62 

(60–81) 

47 

(33–64) 

74 

(65–85) 

Radiomics, 

Testing 

0.51 

(0.53–0.81) 

31 

(10–56) 

79 

(78–97) 

53 

(53–75) 

43 

(14–80) 

72 

(58–93) 
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On Figure 5.22 is also represented the 2D classification matrix of TensorReg regression 

coefficients. Interestingly, the SPHARM signature developed for predicting high grade 

endometrial cancer was different than that for deep MI. We see that lower frequency content (red 

positive coefficients) was predictor of high grade on inner radii of delayed DCE-MRI. Higher 

frequency content, especially at Lmax = 5 (blue negative coefficients), was predictor of low grade, 

mostly around middle-outer radii. Indeed, homogeneous low frequency inner content seemed to be 

associated to high grade tumors on delayed phase DCE-MRI. This suggests that an overall 

clearance of enhancement of the inner compartment of the tumor leading to more homogeneous 

and dark appearance might have been caught as predictive by the SPHARM decomposition. On 

the opposite, the higher frequency textured patterns which was associated with low grade lesions 

might reflect residual contrast material, especially at tumor edges, revealing tumor substructures. 

Since, healthier tissue will enhance more than highly cellular cancerous tissue, this might explain 

textured patterns caught on outer rims of endometrial tumors as predictors of benignity. 

Examples of reconstruction and important harmonic filters in high grade and low grade 

lesions MI are shown on Figures 5.23 and 5.24, respectively. Harmonic filters predictors of high 

grade show smooth uniform appearance, while those predictors of low grade show textured 

repeated patterns. 

 

Figure 5.22 (a) Training and testing ROC curves for differentiating low from high grade 

endometrial cancer with SPHARM descriptors on delayed phase DCE-MRI, and (b) classification 

matrix picked up by TensorReg modeling. 

a b 
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Figure 5.23 (a) Delayed phase DCE-MRI of endometrial tumor with high grade, (b) segmented 

tumor with overlayed full reconstructed classification matrix of SPHARM descriptor, (c) 

segmented delayed phase DCE-MRI and (d) its reconstruction with SPHARM coefficients (Lmax, 

Rmax = 25, 25), and (e) harmonic filters (l, m, r = 1, 0, 6) and (l, m, r = 1, 1, 8), expressed within the 

spherical yellow overlay in panel (b) as predictors of high grade. 

a b 

c d 

e 
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Figure 5.24 (a) Delayed phase DCE-MRI of endometrial tumor with low grade, (b) segmented 

tumor with overlayed full reconstructed classification matrix of SPHARM descriptor, (c) 

segmented delayed phase DCE-MRI and (d) its reconstruction with SPHARM coefficients (Lmax, 

Rmax = 25, 25), and (e) harmonic filters (l, m, r = 5, 0, 15) and (l, m, r = 5, 1, 20), expressed within 

the spherical blue overlay in panel (b) as predictors of low grade. 

a b 

c d 

e 



MULTI-PARAMETRIC MRI OF ENDOMETRIAL TUMORS 

121 

5.3.3. Analyses in Spherical Volumes of Interest 

Radiomics and SPHARM Analyses for Predicting Deep MI 

 

After performing analyses in single contrasts, we assessed the ability of both methods to 

perform in spherical VOIs extended from expert manual segmentations using all MR sequences. 

Previously developed models for both computational methods were applied again without any 

changes, using the same 5 most important radiomics features with the same random forest classifier 

and the same logistic regression model based on TensorReg predictions from SPHARM 

decompositions of MR contrasts.  

The average Dice coefficient across the population between segmented VOIs and extended 

spherical VOIs was 0.71 ± 0.12 (range: 0.63-0.93) for ADC maps, 0.70 ± 0.13 (0.60-0.92) for DWI, 

0.67 ± 0.15 (0.54-0.91) for T2-weighted MRI, 0.61 ± 0.12 (0.40-0.92) for second phase DCE-MRI, 

0.61 ± 0.16 (0.38-0.88) for third phase DCE-MRI, and 0.71 ± 0.12 (0.52-0.94) for delayed phase 

DCE-MRI. These poor Dice coefficients indicated significant region changes from manual to 

spherical VOI. 

For predicting deep MI, there was a significant decrease in performance going from expert 

segmentations to spherical VOIs for SPHARM-based modeling (testing AUC = 0.94 vs. 0.80) and 

for radiomics-based modeling (testing AUC = 0.81 vs. 0.69) (Figure 5.25; Table 5.14). 

Figure 5.25 Training and testing ROC curves for predicting deep myometrial invasion with (a) 

SPHARM descriptors and (b) radiomics features combining all MRI sequences in spherical VOIs 

extended from manual segmentations. 

a b 
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Interestingly, even when using these rougher segmentations including surrounding tissue around 

endometrial lesions, the SPHARM decomposition method still robustly performed with good 

AUCs from training to testing. This was not observed for radiomics-based modeling which showed 

poor performance on the testing dataset. This meant that the 5 most important features selected, 

ADC maps-based maximum 2D diameter slice, and delayed phase DCE-MRI-based least axis 

length, zone entropy (GLSZM), dependence entropy (GLDM), and dependence nonuniformity 

(GLDM), changed nonlinearly from segmented VOIs to spherical VOIs. This can be understood 

especially for texture features which are computed from interrelationships of voxel intensities. 

Hence, when including signal from neighboring voxels outside the tumor which have a completely 

different appearance on delayed phase DCE-MRI (i.e. healthy endometrium and myometrium 

compared to tumoral tissue), the textural representation matrices from which texture features are 

extracted must have changed accordingly. However, we could have expected that shape-based 

feature would not have been altered as much, even though maximum 2D diameter slice and least 

axis length values evaluated on a sphere become redundant information in the model. 

Table 5.14 Detailed diagnostic performance of SPHARM descriptors and radiomics features 

for predicting deep MI on mpMRI in spherical VOIs. 

 

Radiomics and SPHARM Analyses for Predicting High Grade 

For differentiating low grade from high grade tumors, there was an increase in diagnostic 

performance going from expert segmentations to spherical VOIs for the SPHARM-based model 

(testing AUC = 0.81 vs. 0.87) (Figure 5.26; Table 5.15). This appeared very curious compared to 

what was observed for predicting deep MI, and in the previous study on CE-CT of renal cysts. The 

performance of the radiomics-based model decreased as seen for deep MI but to a greater extent, 

turning the random forest classifier into a random classifier with testing AUC approaching 0.50 

 AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

DMI SPHARM, 

Training 

0.81 

(0.71–0.89) 

77 

(52–93) 

79 

(62–97) 

79 

(64–86) 

82 

(64–98) 

69 

(51–84) 

SPHARM, 

Testing 

0.80 

(0.47–0.97) 

81 

(55–94) 

73 

(45–100) 

78 

(62–91) 

86 

(58–100) 

65 

(38–90) 

Radiomics, 

Training 

0.82 

(0.72–0.89) 

84 

(72–93) 

63 

(48–78) 

75 

(64–81) 

71 

(58–80) 

80 

(66–91) 

Radiomics, 

Testing 

0.69 

(0.50–0.77) 

77 

(58–92) 

45 

(33–65) 

63 

(50–77) 

42 

(25–58) 

84 

(63–94) 
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(testing AUC = 0.74 vs. 0.52). Since only texture features were extracted for predicting high grade, 

signal changes associated with the inclusion of healthy myometrium and endometrium in the 

spherical VOIs changed nonlinearly extracted features, even though they were deemed 

reproducible under similar VOI changes initially. However, these selected texture features were 

not highly discriminating in the first place, as shown in pair plots on Figure 5.11. 

The increased performance of the SPHARM-based TensorReg model in spherical VOIs for 

predicting high grade endometrial cancer emerged from the robustness of the regularized logistic 

regression model combining SPHARM predictions from each sequence. The most important 

sequence was found to be the delayed phase of DCE-MRI on which good contrast is obtained 

between lesions and surrounding healthy myometrium and endometrium. Thus, if this contrast was 

high on most sequences, SPHARM decompositions might have been able to captured the shape 

and intensity differences related to tissue pertaining to the tumor compared to that of surrounding 

tissues and enhanced this tumoral information based on the previous modeling on segmented 

tumors. Moreover, since SPHARM coefficients which were highly predictive of malignancy on 

delayed phase DCE-MRI were mainly located on inner radii of endometrial lesions as shown on 

Figure 5.22, most of this information was not impacted and still captured during classification of 

low grade from high grade endometrial tumors using SPHARM descriptors. 

 

Table 5.15 Detailed diagnostic performance of SPHARM descriptors and radiomics features 

for predicting high grade on mpMRI in spherical VOIs. 

 AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

High 

grade 

SPHARM, 

Training 

0.91 

(0.86–0.96) 

82 

(66–97) 

92 

(81–100) 

88 

(76–96) 

94 

(74–100) 

72 

(56–86) 

SPHARM, 

Testing 

0.87 

(0.76–0.97) 

72 

(56–94) 

99 

(82–100) 

86 

(70–99) 

81 

(55–100) 

78 

(58–89) 

Radiomics, 

Training 

0.62 

(0.49–0.73) 

88 

(72–97) 

41 

(31–53) 

58 

(35–68) 

44 

(32–56) 

87 

(70–97) 

Radiomics, 

Testing 

0.52 

(0.34–0.67) 

80 

(55–100) 

38 

(26–53) 

48 

(35–61) 

29 

(15–46) 

85 

(66–96) 
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5.4. Summary of Findings and Discussion 

Summary 

Radiomics- and SPHARM-based diagnostic models have been developed in this thesis for 

assessing histopathological features of endometrial cancer on mpMRI. We focused on standardized 

validation and reproducibility of these two computational methods, notably by using an 

independent testing dataset, confirming the robustness of radiomics and SPHARM pipelines. 

Indeed, models applied on the testing dataset from another center demonstrated consistently 

clinically acceptable performance. For the prediction of deep MI, combined shape and texture 

features extracted from ADC maps and delayed phase DCE-MRI resulted in high diagnostic 

performance, similar to that of SPHARM decomposition. For predicting high grade, combination 

of texture features extracted from almost all available MR contrasts resulted in good diagnostic 

performance, while SPHARM decomposition coefficients provided higher performance on a single 

contrast, the delayed phase DCE-MRI. The SPHARM-based modeling provided good diagnostic 

performance for predicting deep MI or high grade endometrial cancer in spherical VOIs, while the 

diagnostic performance of the radiomics-based modeling was significantly decreased when tested 

in these rougher and approximative VOIs. 

Figure 5.26 Training and testing ROC curves for predicting high grade endometrial cancer with (a) 

SPHARM descriptors and (b) radiomics features combining all MR sequences in spherical 

segmentations extended from manual segmentations. 
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Reproducibility 

There were no radiomics features extracted from T2-weighted images excluded from 

analyses. In fact, T2-weighted MRI-extracted features showed high reproducibility given the 

preprocessing steps selected. This is consistent with a study by Bianchini et al which reported 

excellent reproducibility of radiomics features when extracted from T2-weighted images 

acquired with small differences in echo time (TE) (< 5 ms) and repetition time (TR) (< 600 ms) 

(86). In fact, our study’s inclusion criteria reflected this, which might explain the high overall 

reproducibility of T2-weighted MRI-based radiomics features (Table 5.2). TE and TR changes 

alter the weighting between T1 and T2 relaxation times and modify image contrast, which lead 

to non-linear signal differences that might not be removable even through image normalization 

(86). Thus, choosing narrow ranges of TE and TR in the inclusion criteria of radiomics studies 

might lead to better reproducibility. The choice of optimized preprocessing steps increased the 

reproducibility of radiomics features across MR sequences, similar to what was previously 

reported (88). For example, down-sampling T2-weighted images to a isotropic size of 3 x 3 x 3 

mm3 with bin width of 20 would have resulted in features exclusion, going from average ICC 

(± standard deviation) of 0.957 ± 0.039 to 0.931 ± 0.076 (Figure 5.3; Figure 5.4). For features 

extracted from DCE-MRI phases, only one radiomics feature was excluded for second phase 

(60 s) and third phase (120 s) DCE-MRI acquired in sagittal view, showing overall excellent 

reproducibility (average ICC = 0.959 ± 0.033 and 0.956 ± 0.036, respectively). However, this 

was not observed for the delayed phase (240 s) DCE-MRI acquired in axial oblique view, for 

which a total of 15 features were excluded (average ICC = 0.909 ± 0.084). The same T1-

weighting than for second and third phase DCE-MRI was used for acquiring images at the 

delayed phase. This suggests that the change in acquisition plane might have impacted features 

reproducibility (sagittal vs. axial oblique). Since the axial oblique plane is manually selected to 

be perpendicular to the endometrial cavity on the scout scan during acquisitions, there is an 

operator dependence introduced in this step of the MR examination. This would be consistent 

with the lower feature reproducibility also observed for ADC and DWI (average ICC = 0.885 ± 

0.102 and 0.872 ± 0.142; and excluded features = 19 and 20; respectively) which were also 

reconstructed with an axial oblique view. Even though some features had to be excluded because 

of poor reproducibility, the overall ICC for each sequence was at least very good on MR 
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contrasts of endometrial cancer (mean ICC > 0.85). Preprocessing of images and z-score 

normalization of features before random forest modeling enabled us to provide comparable 

features across institutions, as shown by the proposed robustly performing models from training 

to testing on datasets from different institutions (102, 103). Moreover, controlling 

hyperparameters of random forest classifiers minimized overfitting on the training dataset, 

providing good translation from training to testing. In fact, leaving the random forest algorithm 

building as many trees of uncontrolled depth will necessarily lead to high diagnostic 

performance during the training phase, with “pure” samples of each binary category at the leaf 

level of each tree. This hyperparameter control step should be carefully performed whenever 

using ensemble learners such as random forests. 

SPHARM decompositions were performed according to previously reported methods on 

volumetric shapes characterization (117, 127) and according to our preliminary results on 

volumetric texture benchmark datasets. SPHARM also avoided several of the preprocessing 

steps associated with radiomics studies, not just the resampling to isotropic voxel size, but also 

the signal discretization in bins, as detailed previously in Chapter 4. High MSSI were obtained 

for SPHARM descriptors-based reconstructions of endometrial lesions across all MR sequences. 

This indicated that SPHARM descriptors could accurately capture and encode structural and 

textural information in SPHARM coefficients given the selected frequency and radial 

expansions of decompositions, and even reconstruct these structures. Further standardization of 

SPHARM descriptors will be required to assess the impact of MR acquisition parameters on the 

SPHARM decomposition method. If coefficients could robustly encode the structural and 

textural information from 3D volumetric images acquired with different TE or TR, or with spin 

echo vs. gradient echo sequences, these quantitative imaging biomarkers could provide 

significant clinical value. 

To address the need for standardization in imaging biomarkers extracted from MRI data 

in oncology, a task group report from the American Association of Physicists in Medicine 

(AAPM) is currently being written at the time of the redaction of this thesis, which is expected 

to be published before 2020-12-31 (AAPM Task Group 294 Magnetic Resonance Biomarkers 

in Radiation Oncology, aapm.org/org/structure/?committee_code=TG294). Expert 
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recommendations from groups like these will allow further harmonization of mpMRI-based 

radiomics or SPHARM biomarkers of different cancer sites, including endometrial cancer. 

 

Radiomics and SPHARM Analyses 

With SPHARM decomposition coefficients, the diagnostic performance was high for 

detecting deep MI using all MR contrasts, but also when using only ADC maps or second phase 

DCE-MRI. On ADC maps which are often related to tissue cellularity (41, 184), SPHARM 

coefficients which were the most predictive of deep MI were on higher radii and at higher 

frequencies, i.e. more textured, while coefficients predictors of the absence of deep MI were at 

more inner radii and were associated with lower frequency content, i.e. more uniform. In fact, 

lower order harmonics at lower radius seemed to capture the overall more uniform appearance 

of smaller endometrial lesions without deep MI. For detecting deep MI, higher order SPHARM 

decomposition coefficients were required to fully capture the radiological signature of MI. This 

is consistent with findings from our radiomics analyses in which textural features were also 

important, as extracted from delayed phase DCE-MRI, but also morphological features since 

larger tumors were associated with greater depth of MI also extracted from ADC maps. Even 

though some prior reports reported good diagnostic performance for mean ADC in tumors’ VOI 

for predicting deep MI (195, 199), mean ADC was not represented in the group of predictive 

features for this outcome in Table 5.4. In fact, the mean ADC obtained in our population was 

not predictive of MI, similar to what Rechichi G et al also reported (200). Again, in radiomics 

analyses, the set of 5 most discriminative features for predicting deep MI were texture and shape 

features extracted from either ADC maps or delayed phase DCE-MRI.  

SPHARM decompositions on second phase DCE-MRI were even more predictive of the 

depth of MI. This phase of DCE-MRI is the actual phase used clinically to evaluate the extent 

of MI, since high contrast is obtained between the myometrium and the lesion (184). Thus, it is 

conceptually even more clinically relevant to perform our analyses on this specific time point 

of the DCE-MRI series. The high diagnostic performance revealed by SPHARM coefficients 

was not observed in radiomics features which led to poor classification of deep MI when using 

solely features extracted from second phase DCE-MRI. Although high feature reproducibility 
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was seen for radiomics as extracted on this phase, selected features did not reflect the 

pathological signature of deep MI even though they were shape-based and textural features, 

similar to what was found in the mpMRI radiomics model. Thus, SPHARM decomposition was 

the most accurate method for detecting deep MI on ADC maps (testing AUC = 0.85) and on 

second phase DCE-MRI (testing AUC = 0.86), and increased diagnostic performance was 

observed when combining predictions from all MR contrasts (testing AUC = 0.94). Since the 

depth of MI is known to be the most important morphologic prognostic factor in endometrial 

cancer, an accurate and robust preoperative mpMRI-based quantitative biomarker could provide 

clinical benefit in patients stratification for surgery (41, 184). Another advantage of the 

SPHARM method is that the orientation of the invasion of the lesion in the myometrium will 

not affect its diagnostic performance since SPHARM coefficients are rotation-invariant by 

construction. Hence, lesions can be compared with this technique from one patient to another, 

no matter the lesion’s orientation.  

Clinically, the FIGO grade of endometrial tumors is assessed based on morphological 

features seen on T2-weighted MRI and on DCE-MRI where excellent contrast is obtained 

between hyperenhancing myometrium and nonenhencing endometrial tumors (41, 184). Since 

morphological features are generally used in the clinical setting for tumor staging, it might 

explain why the radiomics signature built only from texture features did not provide high 

diagnostic performance for differentiating low grade from high grade endometrial tumors. 

Interestingly, there were no shape features included in the set of single most discriminative 

radiomics features in Table 5.6. Some prior studies found good diagnostic performance of 

radiomics features extracted from ADC maps for differentiating low grade from high grade 

endometrial cancer (52, 55). In our population, the only feature extracted from ADC maps which 

was included in the final radiomics model to differentiate high grade from lower grade 

endometrial tumors was gray-level variance from GLSZM. Interestingly, a recent study by 

Yamada I et al also included ADC-based GLSZM texture features in their final random forest 

model for differentiating low from high grade endometrial cancer (55), suggesting consistent 

radiomics-based signature of higher grade tumors. Since ADC maps characterize the extent of 

tissue cellularity by assessing the impedance of water molecules diffusion, the discriminative 

capacity of variance of ADC zones decoded the more heterogeneous cellularity seen in high 
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grade endometrial lesions (41), as assessed by radiomics-based modeling. The mpMRI-based 

SPHARM decomposition method provided significantly improved diagnostic performance 

compared to radiomics (testing AUC = 0.81 vs. 0.72 in the subset of the population). In fact, 

combining predictions of TensorReg models for each MR contrast decomposition resulted in a 

predictive signature of tumor grade. SPHARM decompositions on single contrast delayed phase 

DCE-MRI were also very predictive of high grade endometrial lesions, where the homogeneous 

nonenhancing core of the lesions associated with low frequency content captured in SPHARM 

descriptors seemed to correlate with high grade tumors while textured enhancing edges with 

low grade. 

 

Analyses in Spherical Volumes of Interest 

Decreases in AUC when changing from expert segmentations to spherical VOIs were 

observed both for SPHARM and radiomics models for predicting deep MI. This decrease in 

performance was also observed for radiomics-based modeling for predicting high grade 

endometrial cancer, but not for SPHARM decompositions for predicting this same outcome 

which performance increased. During expert segmentations, tumor contour was defined as areas 

of intermediate signal intensity on T2-weighted images that were different from the normal 

adjacent low signal intensity myometrium. On DCE-MRI, areas of lower signal intensity in the 

adjacent myometrium were considered to be the tumor. Restricted diffusion areas represented 

as high signal intensity on DWI or low signal intensity on ADC maps were also regarded as 

tumor areas (41). When extending a sphere from these initial contours, no considerations of such 

signal changes were used since only the longest tumor radius was extended from the 

segmentation’s center of mass. Thus, if the endometrial tumor had an ovoid shape rather than a 

spherical morphology, then the sphere-shaped segmentation included more surrounding tissue. 

This explains the low Dice coefficients between manual segmentations and spherical VOIs 

obtained across MR contrasts. This also explains the observed decreased discriminative power 

of texture features originally assessed as relevant for each classification task, i.e. < 50% MI vs. 

deep MI and low grade vs. high grade. However, the ability of SPHARM coefficients to 

accurately differentiate low (1 and 2) from high FIGO grades (3 and non-endometroid type) in 

spherical VOIs was an interesting finding. In fact, through robust modeling of SPHARM-based 



MULTI-PARAMETRIC MRI OF ENDOMETRIAL TUMORS 

130 

TensorReg predictions from each sequence with a regularized logistic regressor, SPHARM 

decompositions were able to encode tumoral shape and intensity differently than that of 

surrounding healthy myometrium and endometrium. As these healthy tissues tend to be more 

enhanced than the lesion (41, 184), SPHARM seemed to be able to separately describe less 

enhanced tumor content on DCE-MRI from enhancing healthy tissue, most notably. As 

predictive SPHARM coefficients for high grade tumors were mainly located in central radii of 

lesions, this signature was not influenced by including surrounding tissue in the sphere VOI. 

Textured patterns on outer shells were predictor for low grade endometrial tumors on delayed 

phase DCE-MRI. Including more tissue in a sphere where high contrast is seen between the 

lesions and the healthy myometrium might also have increased the performance if these contrast 

differences were captured as textured patterns by SPHARM decomposition. This contrast 

between tumoral tissue and healthy tissue also enables the descriptors to use the previously 

developed signature in segmented tumors as predictive information. In fact, the relevant tumoral 

signal captured previously was coming from the hypoenhancing region in the novel spherical 

VOI, while the enhancing regions, now included in the sphere, used to be voxels which values 

were set to 0. Therefore, the same contrast is seen by the computational method and the 

radiological signature developed previously by SPHARM coefficients for predicting high grade 

in segmented lesions is still relevant even in rougher approximative spherical VOIs. 

An advantage of spherical VOIs is that they have the potential of drastically reducing 

inter-observer variability while accelerating analyses. In fact, there are not many ways to 

position a sphere englobing a tumor based on its maximal diameter. Thus, we can envision that 

a physician could simply measure the 2D maximal diameter of an endometrial tumor, which is 

often used as a metric of treatment response (11), and a sphere would automatically be created 

from this measurement. A SPHARM decomposition of the spherical VOI would then be applied 

to identify tumoral grade, with the possibility of producing harmonic “heatmaps” of important 

SPHARM filters on the 3D MR image. Thus, the physician or radiologist could interpret what 

information was captured by SPHARM descriptors locally on the image, in a similar manner 

than convolutional filters from convolutional neural networks might be used to interpret 

important image features characterizing a cancerous lesion picked up during training (136). 
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Limitations 

Our study had the following limitations. First, in the VOIs drawn by two radiologists in 

consensus, the inter-reader agreement was not evaluated. Further studies are needed to evaluate 

the interobserver agreement in terms of the VOI placement. In fact, an additional aim of the 

manuscript in preparation that was not included in this thesis was to compare the interobserver 

agreement of faster semi-automated segmentations to that of expert time-consuming manual 

segmentations. These goals were part of my contributions but will only be included in the final 

version of the manuscript to be submitted. However, analyses in spherical VOIs have shown the 

importance of extracting information from tumor regions to capture relevant radiomics-based 

signatures of deep MI or high grade endometrial cancer, which was not observed for the 

SPHARM method in predicting high grade. Second, the proposed radiomics model did not 

provide excellent diagnostic accuracy for the prediction of high grade endometrial cancer. 

Combined textural features identified through random forest modeling could not linearly 

discriminate low from high grade tumors. Nevertheless, the radiomics-based modeling on 

mpMRI still demonstrated a stable accuracy in the diagnosis of high grade lesions, from training 

to testing. However, multi-parametric and single contrast MRI-based SPHARM modeling 

seemed to be a better diagnostic solution for the staging of endometrial cancer, with increased 

diagnostic performance compared to that of radiomics. Limitations of the SPHARM 

decomposition method have been more extensively discussed in the previous chapter. Hence, 

we refer the reader to this section for further analyses of computational methods’ limitations. 

 

Discussion 

Deep MI and tumor grade have been widely used to stratify patients according to the risk 

of local, regional, or distant recurrence, enabling patients’ selection for surgeries including 

pelvic and para-aortic lymphadenectomy (172, 201). Since radiomics features and SPHARM 

descriptors can provide information regarding these high-risk factors from standard-of-care 

MRI prior to surgery, it may help with preoperative risk stratification and optimal selection of 

patients who require more extensive surgery while avoiding overtreatment of low-risk patients 

(2). 
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For diagnosis of deep MI and high grade tumors, our study demonstrated comparable 

diagnostic accuracy with that of the prior study using 2D mpMRI-based radiomics features by 

our team (81% and 78%, respectively) (18). However, since we did not directly compare 3D 

radiomics to 2D radiomics, it remains to be evaluated whether models using 3D radiomics 

features can yield better diagnostic performance than 2D models, even though the former 

provide more comprehensive characterization of the lesion (10). Moreover, in the previous 

report by Ueno Y et al, the average performance of radiologists for predicting deep MI was 

estimated at an accuracy of 81% (18). Hence, the radiomics model on the whole population 

achieved the exact same accuracy (81%) on the whole population and the SPHARM model did 

even better on the subset of the population (90%). This suggests that such computational 

methods could provide clinical benefit for preoperative risk stratification in patients with 

endometrial cancer. To further assess if the inclusion of these methods could really benefit the 

current clinical pipeline, the agreement of radiologists’ staging with that of radiomics and 

SPHARM will be assessed in the final version of this study to be submitted for journal 

publication. 

While many MR contrasts are generally acquired to provide comprehensive 

characterization of endometrial cancer (41, 184), using single contrasts has been shown to 

provide accurate predictions of deep MI and of high grade with the SPHARM decomposition 

method, especially on single phases from multiphase DCE-MRI. Since MR examinations tend 

to be time-consuming and expensive, the acquisition of a single MR sequence instead of a full 

set of clinically available sequences could accelerate clinical workflow while only losing little 

accuracy as a trade-off. Computational enhancement of underlying pathological information 

encoded in medical images with proposed methods could be a clinically acceptable and viable 

option in some settings where scanning time is limited. The same reasoning can be applied on 

spherical VOIs. In some contexts, not having to spend weeks and months to precisely contour 

tumors slice-by-slice on numerous MR contrasts (if MRI units are available) may be worth the 

decrease in performance. Indeed, a simpler model that is clinically efficient might be more 

translatable than a better performing model that cannot be implemented due to practical time 

constraints (10), or that can be implemented but only after unreasonable delays which could 

impact clinical care or delay treatments. This is especially applicable to community or rural 
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clinics that may lack radiological expertise for accurate tumor delineation or time-consuming 

scans. 

In conclusion, even though more clinical evidence and research efforts for harmonization 

are required before these computational methods can be used for actual clinical decision-

making, this study suggested that radiomics-based and SPHARM-based modeling may become 

relevant comprehensive tools for preoperative risk stratification in patients with endometrial 

cancer. Our results showed that volumetric mpMRI-based computational methods could 

diagnose histopathological features of endometrial cancer, deep MI and high FIGO grade, which 

are important prognostic factors. Hence, such techniques could offer clinical benefit for 

preoperative risk stratification in patients with endometrial cancer.  
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6. CONCLUSION 

This thesis presented methodological developments from the field of computer vision 

applied to the field of diagnostic radiology in clinical retrospective studies. Our contributions 

are both technical and clinical. The main technical contributions are i) adapting spherical 

harmonics (SPHARM) decomposition to medical imaging and its comparison to radiomics, and 

ii) the comparison of fast spherical segmentations to that of expert radiologists’ manual 

segmentations in the diagnosis of histology-defined features of the disease. The main clinical 

contributions are i) the development of a radiomics pipeline based on state-of-the-art radiomics 

literature and on the Image biomarkers standardization initiative (IBSI)’s recommendations, and 

ii) the implementation of SPHARM and radiomics pipelines in two clinical studies, identifying 

renal cysts malignancy on contrast-enhanced computed tomography, and identifying 

histopathological features of endometrial cancer on multi-parametric magnetic resonance 

imaging. 

 Throughout both studies, we observed the importance of preprocessing of images prior 

to radiomics features extraction. Radiomics studies should always report these analyses of 

optimal preprocessing parameters following IBSI’s recommendations and literature on 

reproducibility of these mathematical descriptors. In the SPHARM pipeline, those steps were 

not necessary given the properties of SPHARM decompositions. More simple and reproducible 

analyses could make computational methods easier to translate into clinical practice (10). Thus, 

in the case of radiomics, filtering of images to obtain invariance properties is desirable and might 

be an interesting recommendation, discussed in IBSI’s second chapter (66). However, these 

local image descriptors, such as filtered images after convolutional filtering used in other 

radiomics studies, were not studied in this work given the lack of standardization guidelines at 

the time of redaction of this thesis. Now that the publication of a first version of IBSI’s second 

chapter on these analyses is out in preprint, there should be further explorations of these 

computational approaches and their properties for radiomics studies, while focusing on 

harmonization (66). Furthermore, we have shown that it is possible in some cases to reduce the 

burden associated with long multi-sequence MRI scans and time-consuming manual 

segmentations, by using single MR contrast or a simple spherical volume of interest with the 
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proposed SPHARM decomposition method. In clinical practice, since time is money (202), it is 

of high importance for clinical translation that such computer-aided diagnosis techniques relieve 

the burdened radiologists’ and radio-oncologists’ workload (14, 15), especially in settings where 

radiological expertise may be lacking and/or resources may be limited, such as in developing 

countries. 

The proposed methods also have the potential of addressing a clinical need in risk 

stratification of low-risk patients. Currently, it is not clinically feasible to have histopathological 

confirmation for each patient with preoperative image-based diagnosis of low-risk renal cyst or 

endometrial lesion since it is costly and would require an invasive surgical procedure or a 

biopsy. Thus, if a quantitative imaging biomarker highly associated with disease’s grade or 

malignancy supports the radiological finding that a given lesion has a lower risk of progression, 

then this patient will not be undergoing such procedures since both assessments are concordant. 

On the opposite, a lesion with radiological assessment indicating low risk but with a quantitative 

biomarker suggesting high risk will be sent for a biopsy to obtain histopathological analyses of 

this lesion to inform further decisions. The proposed computational methods have been shown 

to relate with high-risk factors from standard CE-CT and MR images before surgery. Thus, they 

could provide support with risk stratification early in the clinical decision pipeline for optimal 

patient selection for surgery and to avoid overtreatment of low-risk lesions with concordant 

radiological and computational assessments. 

Otherwise, the field of radiomics is moving towards deep learning-based features 

extraction (47, 203). In fact, radiomics features can be implemented as part of a deep learning 

framework, combining predictions from three-dimensional convolutional neural networks with 

clinical outcomes to construct more complex and predictive tumor signatures, but also to 

preprocess or adapt image resolution prior to features extraction (72). Comprehensive 

predictions integrating features from clinical data and deep learning approaches to characterize 

tumor regions could also provide insight on which part of the tumor lead to the diagnosis made, 

using convolutional filters, hence addressing the interpretability issue of radiomics studies by 

providing information localization in volumes of interest (136), analogous to what was proposed 

with the SPHARM pipeline. Such methods could also encompass inter-lesions heterogeneity 

and not only intra-tumoral heterogeneity of the primary tumor – as we did throughout this thesis 
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– to encompass all important clinical variables and to enable precision oncology (1). 

Implementing radiogenomics in future computational pipelines could also improve diagnoses 

and add another dimension based on genomic signatures of pathological features of cancer 

(204). For SPHARM decompositions, future work should investigate the use of radial basis 

functions instead of shell sampling at equispaced radii, to provide 3D mathematical descriptors 

of tumors independent tumor size, thus not limited to larger tumors. Computational approaches 

like the one proposed by Galinsky VL and Frank LR combining SPHARM decompositions as 

angular basis functions and 3D spherical Bessel functions as radial basis functions could better 

characterize 3D volumes as a whole, at different angular and radial frequency expansions, while 

avoiding the need for sampling of shells (120). 

Finally, across the two clinical studies explored in this thesis, we have discussed the need 

for standardization of radiomics features extraction and analyses. However, there is also an 

urging need for harmonizing the reporting of results in radiomics studies (205). Following 

guidelines from consortiums such as the Transparent Reporting of a multivariable prediction 

model for Individual Prognosis Or Diagnosis (TRIPOD) initiative is required for the translation 

of radiomics into the clinic and to enable precision oncology (206). This is also a strong 

argument for open science since we will need to have access to computational methods 

developed by different research groups and to more clinical imaging data from multiple 

institutions to build models and compare their efficacy across centers and modalities. The 

development and implementation of surrogate imaging biomarkers such as those discussed in 

this thesis will require multi-centre technical and clinical validation following clear guidelines. 

Thus, there are exciting opportunities for medical physicists in imaging biomarkers metrology 

awaiting! 



REFERENCES 

i 

REFERENCES 

1. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793-5. 

2. Sala E, Rockall AG, Freeman SJ, Mitchell DG, Reinhold C. The added role of MR imaging in treatment 

stratification of patients with gynecologic malignancies: what the radiologist needs to know. Radiology. 

2013;266(3):717-40. 

3. DeVita Jr VT, Lawrence T, Rosenberg SA. Cancer: principles & practice of oncology: annual advances 

in oncology: Lippincott Williams & Wilkins, 2012. 

4. Harry VN, Semple SI, Parkin DE, Gilbert FJ. Use of new imaging techniques to predict tumour response 

to therapy. Lancet Oncol. 2010;11(1):92-102. 

5. Kyle SD, Law WP, Miles KA. Predicting tumour response. Cancer Imaging. 2013;13(3):381-90. 

6. O'Connor JP, Aboagye EO, Adams JE, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin 

Oncol. 2017;14(3):169-86. 

7. Amin S, Bathe OF. Response biomarkers: re-envisioning the approach to tailoring drug therapy for cancer. 

BMC Cancer. 2016;16(1):850. 

8. Aerts HJ. The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review. JAMA Oncol. 

2016;2(12):1636-42. 

9. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using 

a quantitative radiomics approach. Nat Commun. 2014;5:4006. 

10. Savadjiev P, Chong J, Dohan A, et al. Image-based biomarkers for solid tumor quantification. Eur Radiol. 

2019;29(10):5431-40. 

11. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised 

RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228-47. 

12. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by 

multiregion sequencing. N Engl J Med. 2012;366(10):883-92. 

13. Choy G, Khalilzadeh O, Michalski M, et al. Current Applications and Future Impact of Machine Learning 

in Radiology. Radiology. 2018;288(2):318-28. 

14. Bhargavan M, Kaye AH, Forman HP, Sunshine JH. Workload of radiologists in United States in 2006-

2007 and trends since 1991-1992. Radiology. 2009;252(2):458-67. 

15. Khan SH, Hedges WP. Workload of consultant radiologists in a large DGH and how it compares to 

international benchmarks. Clin Radiol. 2013;68(5):e239-44. 

16. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using 

a quantitative radiomics approach. Nature communications. 2014;5:4006. 

17. Kazhdan M, Funkhouser T, Rusinkiewicz S. Rotation invariant spherical harmonic representation of 3D 

shape descriptors.  Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing: 

Eurographics Association, 2003; p. 156-64. 

18. Ueno Y, Forghani B, Forghani R, et al. Endometrial Carcinoma: MR Imaging-based Texture Model for 

Preoperative Risk Stratification-A Preliminary Analysis. Radiology. 2017;284(3):748-57. 

19. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using 

a quantitative radiomics approach. Nat Commun. 2014;5:4006. 

20. Huang Y, Liu Z, He L, et al. Radiomics Signature: A Potential Biomarker for the Prediction of Disease-

Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer. Radiology. 2016;281(3):947-57. 

21. Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W. Quantitative radiomics studies for tissue 

characterization: a review of technology and methodological procedures. Br J Radiol. 2017;90(1070):20160665. 

22. Savadjiev P, Chong J, Dohan A, et al. Demystification of AI-driven medical image interpretation: past, 

present and future. Eur Radiol. 2019;29(3):1616-24. 

23. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 

2016;278(2):563-77. 

24. Fournier LS, Oudard S, Thiam R, et al. Metastatic renal carcinoma: evaluation of antiangiogenic therapy 

with dynamic contrast-enhanced CT. Radiology. 2010;256(2):511-8. 

25. Ronot M, Clift AK, Vilgrain V, Frilling A. Functional imaging in liver tumours. J Hepatol. 

2016;65(5):1017-30. 



REFERENCES 

ii 

26. Lo Gullo R, Daimiel I, Morris EA, Pinker K. Combining molecular and imaging metrics in cancer: 

radiogenomics. Insights into Imaging. 2020;11(1):1. 

27. Poleszczuk J, Enderling H. Tumor Composition Depends on the Viewing Angle. In: Matthäus F, Matthäus 

S, Harris S, Hillen T, eds. The Art of Theoretical Biology. Cham: Springer International Publishing, 2020; p. 130-

1. 

28. Poleszczuk J, Hahnfeldt P, Enderling H. Evolution and phenotypic selection of cancer stem cells. PLoS 

Comput Biol. 2015;11(3):e1004025. 

29. Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C, et al. Radiomics in hepatocellular carcinoma: a 

quantitative review. Hepatol Int. 2019;13(5):546-59. 

30. Traverso A, Wee L, Dekker A, Gillies R. Repeatability and Reproducibility of Radiomic Features: A 

Systematic Review. Int J Radiat Oncol Biol Phys. 2018;102(4):1143-58. 

31. Ursprung S, Beer L, Bruining A, et al. Radiomics of computed tomography and magnetic resonance 

imaging in renal cell carcinoma-a systematic review and meta-analysis. Eur Radiol. 2020. 

32. Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ. CT Texture Analysis: Definitions, 

Applications, Biologic Correlates, and Challenges. Radiographics. 2017;37(5):1483-503. 

33. Hu W, Yang H, Xu H, Mao Y. Radiomics based on artificial intelligence in liver diseases: where we are? 

Gastroenterol Rep (Oxf). 2020;8(2):90-7. 

34. Liu YI, Shin LK, Jeffrey RB, Kamaya A. Quantitatively defining washout in hepatocellular carcinoma. 

AJR Am J Roentgenol. 2013;200(1):84-9. 

35. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and 

approaches. Radiology. 2010;256(1):32-61. 

36. McEvoy SH, McCarthy CJ, Lavelle LP, et al. Hepatocellular carcinoma: illustrated guide to systematic 

radiologic diagnosis and staging according to guidelines of the American Association for the Study of Liver 

Diseases. Radiographics. 2013;33(6):1653-68. 

37. Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular 

invasion and outcome in hepatocellular carcinoma. J Hepatol. 2019;70(6):1133-44. 

38. Kocak B, Durmaz ES, Erdim C, Ates E, Kaya OK, Kilickesmez O. Radiomics of Renal Masses: 

Systematic Review of Reproducibility and Validation Strategies. AJR Am J Roentgenol. 2020;214(1):129-36. 

39. Silverman SG, Pedrosa I, Ellis JH, et al. Bosniak Classification of Cystic Renal Masses, Version 2019: 

An Update Proposal and Needs Assessment. Radiology. 2019;292(2):475-88. 

40. Silverman SG, Israel GM, Herts BR, Richie JP. Management of the incidental renal mass. Radiology. 

2008;249(1):16-31. 

41. Beddy P, O'Neill AC, Yamamoto AK, Addley HC, Reinhold C, Sala E. FIGO staging system for 

endometrial cancer: added benefits of MR imaging. Radiographics. 2012;32(1):241-54. 

42. Bi Q, Chen Y, Wu K, et al. The Diagnostic Value of MRI for Preoperative Staging in Patients with 

Endometrial Cancer: A Meta-Analysis. Acad Radiol. 2019. 

43. Gupta RT, Kauffman CR, Polascik TJ, Taneja SS, Rosenkrantz AB. The state of prostate MRI in 2013. 

Oncology (Williston Park). 2013;27(4):262-70. 

44. Lugauer F, Wetzl J. Magnetic Resonance Imaging. In: Maier A, Steidl S, Christlein V, Hornegger J, eds. 

Medical Imaging Systems: An Introductory Guide. Cham: Springer International Publishing, 2018; p. 91-118. 

45. Sun Y, Reynolds HM, Parameswaran B, et al. Multiparametric MRI and radiomics in prostate cancer: a 

review. Australasian Physical & Engineering Sciences in Medicine. 2019;42(1):3-25. 

46. Schwier M, van Griethuysen J, Vangel MG, et al. Repeatability of Multiparametric Prostate MRI 

Radiomics Features. Sci Rep. 2019;9(1):9441. 

47. Khalvati F, Zhang J, Chung AG, Shafiee MJ, Wong A, Haider MA. MPCaD: a multi-scale radiomics-

driven framework for automated prostate cancer localization and detection. BMC Medical Imaging. 2018;18(1):16. 

48. Schick U, Lucia F, Dissaux G, et al. MRI-derived radiomics: methodology and clinical applications in the 

field of pelvic oncology. The British Journal of Radiology. 2019;92(1104):20190105. 

49. Horvat N, Bates DDB, Petkovska I. Novel imaging techniques of rectal cancer: what do radiomics and 

radiogenomics have to offer? A literature review. Abdominal Radiology. 2019;44(11):3764-74. 

50. Ghosh A, Singh T, Singla V, Bagga R, Srinivasan R, Khandelwal N. DTI histogram parameters correlate 

with the extent of myoinvasion and tumor type in endometrial carcinoma: a preliminary analysis. Acta Radiol. 

2020;61(5):675-84. 

51. Luo Y, Mei D, Gong J, Zuo M, Guo X. Multiparametric MRI-Based Radiomics Nomogram for Predicting 

Lymphovascular Space Invasion in Endometrial Carcinoma. J Magn Reson Imaging. 2020. 



REFERENCES 

iii 

52. Nougaret S, Reinhold C, Alsharif SS, et al. Endometrial Cancer: Combined MR Volumetry and Diffusion-

weighted Imaging for Assessment of Myometrial and Lymphovascular Invasion and Tumor Grade. Radiology. 

2015;276(3):797-808. 

53. Stanzione A, Cuocolo R, Del Grosso R, et al. Deep Myometrial Infiltration of Endometrial Cancer on 

MRI: A Radiomics-Powered Machine Learning Pilot Study. Acad Radiol. 2020. 

54. Xu X, Li H, Wang S, et al. Multiplanar MRI-Based Predictive Model for Preoperative Assessment of 

Lymph Node Metastasis in Endometrial Cancer. Front Oncol. 2019;9:1007. 

55. Yamada I, Miyasaka N, Kobayashi D, et al. Endometrial Carcinoma: Texture Analysis of Apparent 

Diffusion Coefficient Maps and Its Correlation with Histopathologic Findings and Prognosis. Radiology: Imaging 

Cancer. 2019;1(2):e190054. 

56. Yan B, Liang X, Zhao T, Ding C, Zhang M. Is the standard deviation of the apparent diffusion coefficient 

a potential tool for the preoperative prediction of tumor grade in endometrial cancer? Acta Radiol. 

2020:284185120915596. 

57. Ytre-Hauge S, Dybvik JA, Lundervold A, et al. Preoperative tumor texture analysis on MRI predicts high-

risk disease and reduced survival in endometrial cancer. J Magn Reson Imaging. 2018;48(6):1637-47. 

58. Lecler A, Duron L, Balvay D, et al. Combining Multiple Magnetic Resonance Imaging Sequences 

Provides Independent Reproducible Radiomics Features. Sci Rep. 2019;9(1):2068. 

59. Schick U, Lucia F, Dissaux G, et al. MRI-derived radiomics: methodology and clinical applications in the 

field of pelvic oncology. Br J Radiol. 2019;92(1104):20190105. 

60. Vallières M, Zwanenburg A, Badic B, Cheze Le Rest C, Visvikis D, Hatt M. Responsible Radiomics 

Research for Faster Clinical Translation. J Nucl Med. 2018;59(2):189-93. 

61. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and 

personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-62. 

62. Papanikolaou N, Matos C, Koh DM. How to develop a meaningful radiomic signature for clinical use in 

oncologic patients. Cancer Imaging. 2020;20(1):33. 

63. Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol. 2016;61(13):R150-66. 

64. Fornacon-Wood I, Mistry H, Ackermann CJ, et al. Reliability and prognostic value of radiomic features 

are highly dependent on choice of feature extraction platform. European Radiology. 2020. 

65. Zwanenburg A, Vallieres M, Abdalah MA, et al. The Image Biomarker Standardization Initiative: 

Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 

2020;295(2):328-38. 

66. Depeursinge A, Andrearczyk V, Whybra P, et al. Standardised convolutional filtering for radiomics. arXiv 

preprint arXiv:200605470. 2020. 

67. Haralick RM, Shanmugam K, Dinstein I. Textural Features for Image Classification. IEEE Transactions 

on Systems, Man, and Cybernetics. 1973;SMC-3(6):610-21. 

68. Galloway MM. Texture analysis using gray level run lengths. Computer Graphics and Image Processing. 

1975;4(2):172-9. 

69. Thibault G, Fertil B, Navarro C, L., et al. Texture indexes and gray level size zone matrix. Application to 

cell nuclei classification.  10th International Conference on Pattern Recognition and Information Processing, PRIP 

2009. Minsk, Belarus2009; p. 140--5. 

70. Sun C, Wee WG. Neighboring gray level dependence matrix for texture classification. Computer Vision, 

Graphics, and Image Processing. 1983;23(3):341-52. 

71. Amadasun M, King R. Textural features corresponding to textural properties. IEEE Transactions on 

Systems, Man, and Cybernetics. 1989;19(5):1264-74. 

72. Marcadent S, Hofmeister J, Preti MG, Martin SP, Ville DVD, Montet X. Generative Adversarial Networks 

Improve the Reproducibility and Discriminative Power of Radiomic Features. Radiology: Artificial Intelligence. 

2020;2(3):e190035. 

73. Welch ML, McIntosh C, Haibe-Kains B, et al. Vulnerabilities of radiomic signature development: The 

need for safeguards. Radiother Oncol. 2019;130:2-9. 

74. Bushberg JT, Seibert JA, Leidholdt Jr. EM, Boone JM, Goldschmidt Jr. EJ. The Essential Physics of 

Medical Imaging. Medical Physics. 2003;30(7):1936-. 

75. Radon J. On the Determination of Functions from Their Integral Values along Certain Manifolds. IEEE 

Trans Med Imaging. 1986;5(4):170-6. 

76. Berenguer R, Pastor-Juan MDR, Canales-Vazquez J, et al. Radiomics of CT Features May Be 

Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology. 2018;288(2):407-15. 



REFERENCES 

iv 

77. Zhao B, Tan Y, Tsai WY, Schwartz LH, Lu L. Exploring Variability in CT Characterization of Tumors: 

A Preliminary Phantom Study. Transl Oncol. 2014;7(1):88-93. 

78. Lu L, Liang Y, Schwartz LH, Zhao B. Reliability of Radiomic Features Across Multiple Abdominal CT 

Image Acquisition Settings: A Pilot Study Using ACR CT Phantom. Tomography. 2019;5(1):226-31. 

79. Mackin D, Ger R, Dodge C, et al. Effect of tube current on computed tomography radiomic features. 

Scientific Reports. 2018;8(1):2354. 

80. Mackin D, Fave X, Zhang L, et al. Harmonizing the pixel size in retrospective computed tomography 

radiomics studies. PLoS One. 2017;12(9):e0178524. 

81. Shafiq-Ul-Hassan M, Zhang GG, Latifi K, et al. Intrinsic dependencies of CT radiomic features on voxel 

size and number of gray levels. Med Phys. 2017;44(3):1050-62. 

82. Roa AM, Andersen HK, Martinsen AC. CT image quality over time: comparison of image quality for six 

different CT scanners over a six-year period. J Appl Clin Med Phys. 2015;16(2):4972. 

83. Nishimura DG. Principles of magnetic resonance imaging: Standford Univ., 2010. 

84. Paschal CB, Morris HD. K-space in the clinic. J Magn Reson Imaging. 2004;19(2):145-59. 

85. Rai R, Holloway LC, Brink C, et al. Multicenter evaluation of MRI-based radiomic features: A phantom 

study. Med Phys. 2020. 

86. Bianchini L, Santinha J, Loução N, et al. A multicenter study on radiomic features from T2-weighted 

images of a customized MR pelvic phantom setting the basis for robust radiomic models in clinics. arXiv preprint 

arXiv:200506833. 2020. 

87. Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic 

review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging. 2019;46(13):2656-72. 

88. Duron L, Balvay D, Vande Perre S, et al. Gray-level discretization impacts reproducible MRI radiomics 

texture features. PLoS One. 2019;14(3):e0213459. 

89. Sun C, Tian X, Liu Z, et al. Radiomic analysis for pretreatment prediction of response to neoadjuvant 

chemotherapy in locally advanced cervical cancer: A multicentre study. EBioMedicine. 2019;46:160-9. 

90. Stanzione A, Ricciardi C, Cuocolo R, et al. MRI Radiomics for the Prediction of Fuhrman Grade in Clear 

Cell Renal Cell Carcinoma: a Machine Learning Exploratory Study. J Digit Imaging. 2020. 

91. Scalco E, Belfatto A, Mastropietro A, et al. T2w-MRI signal normalization affects radiomics features 

reproducibility. Med Phys. 2020;47(4):1680-91. 

92. Moradmand H, Aghamiri SMR, Ghaderi R. Impact of image preprocessing methods on reproducibility of 

radiomic features in multimodal magnetic resonance imaging in glioblastoma. J Appl Clin Med Phys. 

2020;21(1):179-90. 

93. Um H, Tixier F, Bermudez D, Deasy JO, Young RJ, Veeraraghavan H. Impact of image preprocessing on 

the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional 

glioblastoma datasets. Phys Med Biol. 2019;64(16):165011. 

94. Lacroix M, Frouin F, Dirand A-S, et al. Correction for Magnetic Field Inhomogeneities and Normalization 

of Voxel Values Are Needed to Better Reveal the Potential of MR Radiomic Features in Lung Cancer. Frontiers in 

Oncology. 2020;10(43). 

95. Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI 

texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Physics in Medicine 

& Biology. 2015;60(14):5471. 

96. Ashrafinia S. Quantitative Nuclear Medicine Imaging using Advanced Image Reconstruction and 

Radiomics. Baltimore, Maryland, USA: Johns Hopkins University, 2019. 

97. Gotz M, Nolden M, Maier-Hein K. MITK Phenotyping: An open-source toolchain for image-based 

personalized medicine with radiomics. Radiother Oncol. 2019;131:108-11. 

98. Pfaehler E, Zwanenburg A, de Jong JR, Boellaard R. RaCaT: An open source and easy to use radiomics 

calculator tool. PLoS One. 2019;14(2):e0212223. 

99. Zwanenburg A, Leger S, Agolli L, et al. Assessing robustness of radiomic features by image perturbation. 

Sci Rep. 2019;9(1):614. 

100. Vallières M, Kay-Rivest E, Perrin LJ, et al. Radiomics strategies for risk assessment of tumour failure in 

head-and-neck cancer. Scientific Reports. 2017;7(1):10117. 

101. Bartko JJ. The intraclass correlation coefficient as a measure of reliability. Psychological reports. 

1966;19(1):3-11. 



REFERENCES 

v 

102. Chatterjee A, Vallières M, Dohan A, et al. Creating Robust Predictive Radiomic Models for Data From 

Independent Institutions Using Normalization. IEEE Transactions on Radiation and Plasma Medical Sciences. 

2019;3(2):210-5. 

103. Upadhaya T, Vallières M, Chatterjee A, et al. Comparison of Radiomics Models Built Through Machine 

Learning in a Multicentric Context With Independent Testing: Identical Data, Similar Algorithms, Different 

Methodologies. IEEE Transactions on Radiation and Plasma Medical Sciences. 2019;3(2):192-200. 

104. Efron B. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics. 1979;7(1):1-26. 

105. Lemaître G, Nogueira F, Aridas CK. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced 

datasets in machine learning. The Journal of Machine Learning Research. 2017;18(1):559-63. 

106. Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters. 2006;27(8):861-74. 

107. Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 

2007;23(19):2507-17. 

108. Menze BH, Kelm BM, Masuch R, et al. A comparison of random forest and its Gini importance with 

standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics. 

2009;10(1):213. 

109. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python. the Journal of 

machine Learning research. 2011;12:2825-30. 

110. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification and 

regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43(6):1947-58. 

111. Breiman L. Random Forests. Machine Learning. 2001;45(1):5-32. 

112. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees: CRC press, 1984. 

113. Laplace PS. Traité de mécanique céleste. Paris: Imprimerie de Crapelet. Chez J.B.M. Duprat, Libraire 

pour les Mathématiques, 1798. 

114. Schrödinger E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review. 

1926;28(6):1049-70. 

115. Berezin FA, Shubin M. The Schrödinger Equation: Springer Science & Business Media, 2012. 

116. Zotter F, Frank M. Ambisonic Amplitude Panning and Decoding in Higher Orders.  Ambisonics: A 

Practical 3D Audio Theory for Recording, Studio Production, Sound Reinforcement, and Virtual Reality. Cham: 

Springer International Publishing, 2019; p. 53-98. 

117. Funkhouser T, Min P, Kazhdan M, et al. A search engine for 3D models. ACM Trans Graph. 

2003;22(1):83–105. 

118. Yoshii N, Nimura Y, Fujimoto K, Okazaki S. Spherical harmonics analysis of surface density fluctuations 

of spherical ionic SDS and nonionic C12E8 micelles: A molecular dynamics study. The Journal of Chemical 

Physics. 2017;147(3):034906. 

119. Shen L, Farid H, McPeek MA. Modeling three-dimensional morphological structures using spherical 

harmonics. Evolution. 2009;63(4):1003-16. 

120. Galinsky VL, Frank LR. Automated segmentation and shape characterization of volumetric data. 

Neuroimage. 2014;92:156-68. 

121. Kainz B, Keraudren K, Kyriakopoulou V, Rutherford M, Hajnal JV, Rueckert D. Fast fully automatic 

brain detection in fetal MRI using dense rotation invariant image descriptors.  2014 IEEE 11th International 

Symposium on Biomedical Imaging (ISBI)2014; p. 1230-3. 

122. Styner M, Oguz I, Xu S, et al. Framework for the Statistical Shape Analysis of Brain Structures using 

SPHARM-PDM. Insight J. 2006(1071):242-50. 

123. Chung MK, Dalton KM, Davidson RJ. Encoding Neuroanatomical Information using Weighted Spherical 

Harmonic Representation.  2007 IEEE/SP 14th Workshop on Statistical Signal Processing2007; p. 146-50. 

124. Keiner J, Kunis S, Potts D. Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier 

Transforms. ACM Trans Math Softw. 2009;36(4):Article 19. 

125. Banerjee J, Moelker A, Niessen WJ, van Walsum T. 3D LBP-Based Rotationally Invariant Region 

Description. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013; p. 26-37. 

126. Skibbe H, Reisert M, Ronneberger O, Burkhardt H. Increasing the Dimension of Creativity in Rotation 

Invariant Feature Design Using 3D Tensorial Harmonics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009; p. 

141-50. 

127. Skibbe H, Wang Q, Ronneberger O, Burkhardt H, Reisert M. Fast computation of 3D spherical Fourier 

harmonic descriptors - a complete orthonormal basis for a rotational invariant representation of three-dimensional 



REFERENCES 

vi 

objects.  2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops2009; p. 

1863-9. 

128. Müller M. Fourier Analysis of Signals.  Fundamentals of Music Processing: Audio, Analysis, Algorithms, 

Applications. Cham: Springer International Publishing, 2015; p. 39-114. 

129. Brechbühler C, Gerig G, Kübler O. Parametrization of Closed Surfaces for 3-D Shape Description. 

Computer Vision and Image Understanding. 1995;61(2):154-70. 

130. Weisstein EW. Binomial coefficient. mathworld.wolfram.com/BinomialCoefficient. Accessed on 2020-

08-16. Wolfram Mathworld. 

131. Li S, Makedon F. Spherical parameterization for 3D surface analysis in volumetric images.  International 

Conference on Information Technology: Coding and Computing, 2004 Proceedings ITCC 20042004; p. 643-9 

Vol.1. 

132. Dutt A, Rokhlin V. Fast Fourier transforms for nonequispaced data. SIAM Journal on Scientific 

computing. 1993;14(6):1368-93. 

133. Shilane P, Min P, Kazhdan M, Funkhouser T. The Princeton Shape Benchmark.  Proceedings Shape 

Modeling Applications, 20042004; p. 167-78. 

134. Zhou H, Li L. Regularized matrix regression. J R Stat Soc Series B Stat Methodol. 2014;76(2):463-83. 

135. Amir-Moéz AR, Davis C. Generalized Frobenius inner products. Mathematische Annalen. 

1960;141(2):107-12. 

136. Li Q, Cai W, Wang X, Zhou Y, Feng DD, Chen M. Medical image classification with convolutional neural 

network.  2014 13th International Conference on Control Automation Robotics & Vision (ICARCV)2014; p. 844-

8. 

137. Wang Z, Simoncelli EP, Bovik AC. Multiscale structural similarity for image quality assessment.  The 

Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 20032003; p. 1398-402 Vol.2. 

138. Zhou W, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to 

structural similarity. IEEE Transactions on Image Processing. 2004;13(4):600-12. 

139. Zhou H, Li L, Zhu H. Tensor Regression with Applications in Neuroimaging Data Analysis. Journal of 

the American Statistical Association. 2013;108(502):540-52. 

140. Jurafsky D, Martin JH. Speech and Language Processing: An Introduction to Natural Language 

Processing, Computational Linguistics, and Speech Recognition: Prentice Hall PTR, 2000. 

141. Tsuruoka Y, Tsujii Ji, Ananiadou S. Stochastic gradient descent training for L1-regularized log-linear 

models with cumulative penalty.  Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and 

the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 1 - Volume 1. 

Suntec, Singapore: Association for Computational Linguistics, 2009; p. 477–85. 

142. Zhang X, Zhong L, Zhang B, et al. The effects of volume of interest delineation on MRI-based radiomics 

analysis: evaluation with two disease groups. Cancer Imaging. 2019;19(1):89. 

143. Qiu Q, Duan J, Duan Z, et al. Reproducibility and non-redundancy of radiomic features extracted from 

arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability. Quant 

Imaging Med Surg. 2019;9(3):453-64. 

144. Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297-302. 

145. Paulhac L, Makris P, Ramel J-Y. A solid texture database for segmentation and classification experiments.  

VISAPP (2)2009; p. 135-41. 

146. Sun M, Bianchi M, Hansen J, et al. Chronic kidney disease after nephrectomy in patients with small renal 

masses: a retrospective observational analysis. Eur Urol. 2012;62(4):696-703. 

147. Sun M, Trinh QD, Bianchi M, et al. A non-cancer-related survival benefit is associated with partial 

nephrectomy. Eur Urol. 2012;61(4):725-31. 

148. Van Poppel H, Da Pozzo L, Albrecht W, et al. A prospective randomized EORTC intergroup phase 3 

study comparing the complications of elective nephron-sparing surgery and radical nephrectomy for low-stage 

renal cell carcinoma. Eur Urol. 2007;51(6):1606-15. 

149. Tan HJ, Norton EC, Ye Z, Hafez KS, Gore JL, Miller DC. Long-term survival following partial vs radical 

nephrectomy among older patients with early-stage kidney cancer. JAMA. 2012;307(15):1629-35. 

150. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, 

cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296-305. 

151. Bosniak MA. The current radiological approach to renal cysts. Radiology. 1986;158(1):1-10. 

152. Ascenti G, Mazziotti S, Zimbaro G, et al. Complex cystic renal masses: characterization with contrast-

enhanced US. Radiology. 2007;243(1):158-65. 



REFERENCES 

vii 

153. Sevcenco S, Spick C, Helbich TH, et al. Malignancy rates and diagnostic performance of the Bosniak 

classification for the diagnosis of cystic renal lesions in computed tomography - a systematic review and meta-

analysis. Eur Radiol. 2017;27(6):2239-47. 

154. Wood CG, Stromberg LJ, Harmath CB, et al. CT and MR imaging for evaluation of cystic renal lesions 

and diseases. Radiographics. 2015;35(1):125-41. 

155. Bosniak MA. The use of the Bosniak classification system for renal cysts and cystic tumors. J Urol. 

1997;157(5):1852-3. 

156. Smith AD, Remer EM, Cox KL, et al. Bosniak category IIF and III cystic renal lesions: outcomes and 

associations. Radiology. 2012;262(1):152-60. 

157. Weibl P, Klatte T, Kollarik B, et al. Interpersonal variability and present diagnostic dilemmas in Bosniak 

classification system. Scand J Urol Nephrol. 2011;45(4):239-44. 

158. Graumann O, Osther SS, Karstoft J, Hørlyck A, Osther PJ. Bosniak classification system: inter-observer 

and intra-observer agreement among experienced uroradiologists. Acta Radiol. 2015;56(3):374-83. 

159. General Electric (GE) Medical Systems GE. LightSpeed™ VCT, Technical Reference Manual, 5340596-

1EN, Revision 5. 2011. 

160. Lehmann TM, Gonner C, Spitzer K. Addendum: B-spline interpolation in medical image processing. IEEE 

Trans Med Imaging. 2001;20(7):660-5. 

161. Mazzei FG, Mazzei MA, Cioffi Squitieri N, et al. CT perfusion in the characterisation of renal lesions: an 

added value to multiphasic CT. Biomed Res Int. 2014;2014:135013. 

162. Lee S-H, Cho H-h, Lee HY, Park H. Clinical impact of variability on CT radiomics and suggestions for 

suitable feature selection: a focus on lung cancer. Cancer Imaging. 2019;19(1):54. 

163. Karlo CA, Di Paolo PL, Chaim J, et al. Radiogenomics of clear cell renal cell carcinoma: associations 

between CT imaging features and mutations. Radiology. 2014;270(2):464-71. 

164. Alessandrino F, Shinagare AB, Bosse D, Choueiri TK, Krajewski KM. Radiogenomics in renal cell 

carcinoma. Abdom Radiol (NY). 2019;44(6):1990-8. 

165. Parkin D, Whelan S, Ferlay J, Storm H. Cancer Incidence in Five Continents, vol. 1–8, no. 7 of. IARC 

Cancerbase. 2005. 

166. Briet JM, Hollema H, Reesink N, et al. Lymphvascular space involvement: an independent prognostic 

factor in endometrial cancer. Gynecol Oncol. 2005;96(3):799-804. 

167. Huijgens AN, Mertens HJ. Factors predicting recurrent endometrial cancer. Facts Views Vis Obgyn. 

2013;5(3):179-86. 

168. Uharcek P, Mlyncek M, Ravinger J, Matejka M. Prognostic factors in women 45 years of age or younger 

with endometrial cancer. Int J Gynecol Cancer. 2008;18(2):324-8. 

169. Sorbe B. Predictive and prognostic factors in definition of risk groups in endometrial carcinoma. ISRN 

Obstet Gynecol. 2012;2012:325790. 

170. Amant F, Mirza MR, Koskas M, Creutzberg CL. Cancer of the corpus uteri. Int J Gynaecol Obstet. 

2015;131 Suppl 2:S96-104. 

171. Braun MM, Overbeek-Wager EA, Grumbo RJ. Diagnosis and Management of Endometrial Cancer. Am 

Fam Physician. 2016;93(6):468-74. 

172. Bogani G, Dowdy SC, Cliby WA, Ghezzi F, Rossetti D, Mariani A. Role of pelvic and para-aortic 

lymphadenectomy in endometrial cancer: current evidence. J Obstet Gynaecol Res. 2014;40(2):301-11. 

173. Lewin SN. Revised FIGO staging system for endometrial cancer. Clin Obstet Gynecol. 2011;54(2):215-

8. 

174. Endometrial Cancer Treatment (PDQ(R)): Patient Version.  PDQ Cancer Information Summaries. 

Bethesda (MD)2002. 

175. Ruz-Caracuel I, Ramon-Patino JL, Lopez-Janeiro A, et al. Myoinvasive Pattern as a Prognostic Marker in 

Low-Grade, Early-Stage Endometrioid Endometrial Carcinoma. Cancers (Basel). 2019;11(12). 

176. Helpman L, Kupets R, Covens A, et al. Assessment of endometrial sampling as a predictor of final surgical 

pathology in endometrial cancer. Br J Cancer. 2014;110(3):609-15. 

177. Leitao MM, Jr., Kehoe S, Barakat RR, et al. Comparison of D&C and office endometrial biopsy accuracy 

in patients with FIGO grade 1 endometrial adenocarcinoma. Gynecol Oncol. 2009;113(1):105-8. 

178. Dimitraki M, Tsikouras P, Bouchlariotou S, et al. Clinical evaluation of women with PMB. Is it always 

necessary an endometrial biopsy to be performed? A review of the literature. Arch Gynecol Obstet. 

2011;283(2):261-6. 



REFERENCES 

viii 

179. van der Putten LJ, van de Vijver K, Bartosch C, et al. Reproducibility of measurement of myometrial 

invasion in endometrial carcinoma. Virchows Arch. 2017;470(1):63-8. 

180. Frei KA, Kinkel K, Bonel HM, Lu Y, Zaloudek C, Hricak H. Prediction of deep myometrial invasion in 

patients with endometrial cancer: clinical utility of contrast-enhanced MR imaging-a meta-analysis and Bayesian 

analysis. Radiology. 2000;216(2):444-9. 

181. Das SK, Niu XK, Wang JL, et al. Usefulness of DWI in preoperative assessment of deep myometrial 

invasion in patients with endometrial carcinoma: a systematic review and meta-analysis. Cancer Imaging. 

2014;14:32. 

182. Wu LM, Xu JR, Gu HY, Hua J, Haacke EM, Hu J. Predictive value of T2-weighted imaging and contrast-

enhanced MR imaging in assessing myometrial invasion in endometrial cancer: a pooled analysis of prospective 

studies. Eur Radiol. 2013;23(2):435-49. 

183. Andreano A, Rechichi G, Rebora P, Sironi S, Valsecchi MG, Galimberti S. MR diffusion imaging for 

preoperative staging of myometrial invasion in patients with endometrial cancer: a systematic review and meta-

analysis. Eur Radiol. 2014;24(6):1327-38. 

184. Sala E, Rockall A, Rangarajan D, Kubik-Huch RA. The role of dynamic contrast-enhanced and diffusion 

weighted magnetic resonance imaging in the female pelvis. Eur J Radiol. 2010;76(3):367-85. 

185. Davnall F, Yip CS, Ljungqvist G, et al. Assessment of tumor heterogeneity: an emerging imaging tool for 

clinical practice? Insights Imaging. 2012;3(6):573-89. 

186. Kassner A, Thornhill RE. Texture analysis: a review of neurologic MR imaging applications. AJNR Am 

J Neuroradiol. 2010;31(5):809-16. 

187. O'Connor JP, Rose CJ, Jackson A, et al. DCE-MRI biomarkers of tumour heterogeneity predict CRC liver 

metastasis shrinkage following bevacizumab and FOLFOX-6. Br J Cancer. 2011;105(1):139-45. 

188. Parikh J, Selmi M, Charles-Edwards G, et al. Changes in primary breast cancer heterogeneity may 

augment midtreatment MR imaging assessment of response to neoadjuvant chemotherapy. Radiology. 

2014;272(1):100-12. 

189. Bayanati H, R ET, Souza CA, et al. Quantitative CT texture and shape analysis: can it differentiate benign 

and malignant mediastinal lymph nodes in patients with primary lung cancer? Eur Radiol. 2015;25(2):480-7. 

190. Waugh SA, Purdie CA, Jordan LB, et al. Magnetic resonance imaging texture analysis classification of 

primary breast cancer. Eur Radiol. 2016;26(2):322-30. 

191. Hodgdon T, McInnes MD, Schieda N, Flood TA, Lamb L, Thornhill RE. Can Quantitative CT Texture 

Analysis be Used to Differentiate Fat-poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced 

CT Images? Radiology. 2015;276(3):787-96. 

192. De Cecco CN, Ganeshan B, Ciolina M, et al. Texture analysis as imaging biomarker of tumoral response 

to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance. Invest Radiol. 

2015;50(4):239-45. 

193. Chaudhry S, Reinhold C, Guermazi A, Khalili I, Maheshwari S. Benign and malignant diseases of the 

endometrium. Top Magn Reson Imaging. 2003;14(4):339-57. 

194. Creasman W. Revised FIGO staging for carcinoma of the endometrium. Int J Gynaecol Obstet. 

2009;105(2):109. 

195. Deng L, Wang QP, Yan R, et al. The utility of measuring the apparent diffusion coefficient for peritumoral 

zone in assessing infiltration depth of endometrial cancer. Cancer Imaging. 2018;18(1):23. 

196. Guo Y, Wang P, Wang P, et al. Myometrial invasion and overall staging of endometrial carcinoma: 

assessment using fusion of T2-weighted magnetic resonance imaging and diffusion-weighted magnetic resonance 

imaging. Onco Targets Ther. 2017;10:5937-43. 

197. Meissnitzer M, Forstner R. MRI of endometrium cancer - how we do it. Cancer Imaging. 2016;16:11. 

198. Otero-Garcia MM, Mesa-Alvarez A, Nikolic O, et al. Role of MRI in staging and follow-up of endometrial 

and cervical cancer: pitfalls and mimickers. Insights Imaging. 2019;10(1):19. 

199. Takeuchi M, Matsuzaki K, Nishitani H. Diffusion-weighted magnetic resonance imaging of endometrial 

cancer: differentiation from benign endometrial lesions and preoperative assessment of myometrial invasion. Acta 

Radiol. 2009;50(8):947-53. 

200. Rechichi G, Galimberti S, Signorelli M, et al. Endometrial cancer: correlation of apparent diffusion 

coefficient with tumor grade, depth of myometrial invasion, and presence of lymph node metastases. AJR Am J 

Roentgenol. 2011;197(1):256-62. 

201. Fotopoulou C, El-Balat A, du Bois A, et al. Systematic pelvic and paraaortic lymphadenectomy in early 

high-risk or advanced endometrial cancer. Arch Gynecol Obstet. 2015;292(6):1321-7. 



REFERENCES 

ix 

202. Franklin B. Advice to a young tradesman (1748). George Fisher: The American Instructor: or Young 

Man’s Best Companion The Ninth Edition Revised and Corrected Philadelphia: Printed by B Franklin and D Hall, 

at the New-Printing-Office, in Market-Street. 1748:375-7. 

203. Afshar P, Mohammadi A, Plataniotis KN, Oikonomou A, Benali H. From Handcrafted to Deep-Learning-

Based Cancer Radiomics: Challenges and Opportunities. IEEE Signal Processing Magazine. 2019;36(4):132-60. 

204. Herold CJ, Lewin JS, Wibmer AG, et al. Imaging in the Age of Precision Medicine: Summary of the 

Proceedings of the 10th Biannual Symposium of the International Society for Strategic Studies in Radiology. 

Radiology. 2016;279(1):226-38. 

205. Park JE, Kim D, Kim HS, et al. Quality of science and reporting of radiomics in oncologic studies: room 

for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol. 2020;30(1):523-36. 

206. Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for 

Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-73. 

 

 



APPENDIX 

x 

APPENDIX 

Preliminary Experiments on Volumetric Geometric Synthetic Texture Datasets 

Supplemental Figure 2 (a) Mean and (b) standard deviation of multi-scale structural 

similarity indexes across different SPHARM expansion and radial sampling in the 3D geometric 

texture dataset. 

Supplemental Figure 1 Geometric synthetic textures classes from the RFAI dataset from 

Paulhac L et al 2009 (145). 

a b 
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Since previous reports mainly assessed the performance of SPHARM descriptors for 

characterizing 3D shapes (117, 127), we explored and adjusted the SPHARM pipeline on a 

volumetric synthetic texture benchmark dataset, the RFAI (Reconnaissance de Formes, Analyse 

d’Images) database (145). The second set of textures used consisted in 25 classes of 3D patterns 

of 643 voxels in size with 256 gray-levels built from random insertions of shapes, with 10 

examples per class, as shown in Supplemental Figure 1. To characterize the ability of 

SPHARM descriptors to encode these complex textures, the same reconstruction tasks detailed 

in Chapter 3 were repeated on decompositions at different radial and frequency levels 

For geometric textures, mean MSSI across all classes increased with radial sampling, 

being at the lowest with 1 sampled shell every 4 voxels (or 8 shells total), and at the highest 

with 2 sampled shells per voxel (or 64 shells total, which correspond to oversampling). 

Similarly, MSSI increased with maximal frequency of SPHARM decomposition (Lmax), being 

at the lowest with Lmax = 5 and at the highest with Lmax = 75 (Supplemental Figure 2; 

Supplemental Figure 3). The optimal combination of radial and frequency sampling was found 

with a radial sampling of 1 shell every voxel (32 shells total) and with frequency decomposition 

up to Lmax = 25, similar to what was found on the volumetric Fourier texture dataset in Chapter 

3. It can be noted that there was no significant gain in MSSI with radial sampling over 32 shells 

Supplemental Figure 3 Boxplots of multi-scale structural similarity indexes across (a) radial 

sampling for fixed Lmax = 25 and (b) SPHARM expansions for fixed radial sampling of 32 in the 3D 

geometric texture dataset. 

a b 
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total and over Lmax = 25. The mean MSSI (± standard deviation) for reconstructed volumetric 

geometric textures was 0.971 ± 0.018 with 32 sampled shells and with frequency decomposition 

up to Lmax = 25. With the same SPHARM decomposition parameters but now reconstructing 

noisy textures (Gaussian noise) provided in the RFAI database (145), the mean MSSI was 0.942 

± 0.025. Thus, the difference was not significant between reconstructing noisy and normal 

geometric textures with the optimal set of SPHARM decomposition parameters. Therefore, this 

expansion was deemed to catch just enough textural details through each SPHARM frequency 

component to model important textural information, without modeling noise, enabling accurate 

reconstructions.  

For classification, cross-validation with 3 out of 10 examples was used for measuring 

validation accuracy after fitting models on the bootstrapped samples of the 7 out of 10 examples 

from each geometric texture class (with a total of 25 classes to classify). The validation 

classification accuracy was high for SPHARM descriptors using multi-class TensorReg (98% 

[93%-100%]; Supplemental Table 1).  

 

Supplemental Table 1  Accuracy of SPHARM descriptors for classifying the 3D 

geometric texture dataset. 

 Accuracy (%) 

SPHARM Training 96 (90–100) 

Validation 98 (93–100) 
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Predictive harmonics filters of SPHARM descriptors picked up by TensorReg all 

modeled SPHARM frequencies across all the expansion. These individual SPHARM descriptors 

correspond to a relative amount of harmonic filters importance at a given radius (Supplemental 

Figure 4). These preliminary results suggested that SPHARM descriptors could provide 

accurate encoding of complex volumetric textures. 

Supplemental Figure 4 (a) TensorReg 2D classification matrix of regularized regression 

coefficients on SPHARM descriptors of the volumetric geometric texture dataset. (b) Predictive 

SPHARM filters on the 3D geometric dataset included orders l, m, r = (24,15,27), (15,3,24), 

(18,3,25), and (17,3,15), respectively. 

a b 
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