
Supersingular isogeny graphs with level N structure and

path problems on ordinary isogeny graphs

Megan Roda

Department of Mathematics and Statistics, McGill University, Montreal

∗

A thesis submitted to McGill University in partial fulfillment of the requirements of the

degree of Master of Science.

April 2019

Copyright © Megan Roda 2019

∗https://usamo.wordpress.com/2015/07/05/linniks-theorem-for-sato-tate-laws-on-cm-elliptic-curves/

1



Acknowledgements

I would first like to thank my advisor, Professor Eyal Z Goren, for his support and mathe-

matical insights, and for introducing me to such a beautiful subject. It has been an honour

and privilege to have begun my journey in number theory with such a knowledgable mentor.

Another big thank you to Professors Louigi Addario-Berry and Adrian Vetta for taking the

time to mentor me in the beautiful subjects of combinatorics and random walk theory. Also,

thank you to Professors Henri Darmon and Mike Lipnowski for being part of my committee.

Last but not least, I would like to thank Professors Vojkan Jaksic, Dave Stephens, Jessica

Lin, Jacques Hurtubise, Rustum Choksi, and Linan Chen for their guidance, either profes-

sionally or personally.

Thank you to my mother and grandparents for raising me to follow my dreams. Thank to

my loving friends Cynthia, Michelle, Jinah, Andrea, Calla, Macarena and Tudor for their

support (and french translation skills), and for reminding me to believe in myself during this

intense year. Thank you to all my math buddies especially Aram, Reginald, Joe, and the

number theory group, and my amazing officemates Wissam and Vincent.

Lastly, thank you to McGill University and NSERC for the financial support over this past

year during this thesis, and during my undergraduate years.

2



Contents

0 Introduction 6

1 Background 8

1.1 Number theory fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Absolute Values and the p-adics . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.2 Adeles and Ideles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Tate module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Graph theory fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2 Covering Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.3 Expander Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Isogeny graphs 21

2.1 Ordinary `-isogeny graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Supersingular Isogeny Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Strong Approximation 23

3.1 Algebraic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Strong approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Application: number of connected components in supersingular isogeny graphs

with level N structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Path problem on the ordinary `-isogeny volcano 34

4.1 Path counting on the d-infinite tree . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Path counting on the isogeny volcano . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Fixed vertex v0 is on the rim . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Fixed vertex v0 is some depth s within the volcano . . . . . . . . . . . . 39

4.4 Limiting measure r →∞ in the d-infinite tree and `-isogeny volcano . . . . . . 41

4.5 Characterizing the random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3



5 Discussion 49

5.1 Constructing Hash Functions – An application of SSI graphs . . . . . . . . . . 49

5.2 Extremal cases of the supersingular isogeny graphs with level N structure . . 50

4



Abstract

This thesis investigates both the structure of supersingular isogeny graphs with full level

N structure, and random walks on the volcano-like graphs arising from ordinary isogeny

graphs (known as isogeny volcanoes). In particular, this thesis uses strong approximation

to explore the number of connected components in supersingular isogeny graphs with full

level N structure and analyses a probability measure defined on the vertices of an isogeny

volcano. This measure describes the probability that a certain vertex is reached in a simple

random walk on the graph. The random walk represents the action of the Hecke operator

on the ordinary elliptic curves given by the vertices of the graph.

Background to the problems described in this thesis is provided in the first chapter, thus

making this thesis relatively self-contained. The constructions of the supersingular and

ordinary isogeny graphs are provided, and are based on those of [Gor]. In the discussion we

describe the interest in supersingular isogeny graphs in terms of cryptographic hash functions,

and make comparisons between extremal cases of supersingular isogeny graphs with full level

N structure (and variants of them) with a particular construction of the Ramanujan graphs

given by [Lub].

Abrégé

Cette thèse porte sur la structure de graphes d’isogénies supersingulières avec structure de

niveau N plein, ainsi que sur les balades aléatoires sur les volcans d’isogénies. En particulier,

nous étudierons le nombre de composantes connexes dans les graphes d’isogénies supersin-

gulières avec structure de niveau N plein et nous analyserons une mesure de probabilité

definie sur les sommets d’un volcan d’isogénie. Cette mesure indique la probabilité qu’un

certain sommet est atteint par une balade aléatoire sur le graphe. Cette balade aléatoire

représente l’action d’un opérateur de Hecke sur les courbes elliptiques ordinaires obtenues à

partir des sommets du graphe.

Le contexte des problèmes abordés dans cette thèse est décrit dans le premier chapitre.

Les constructions de graphes d’isogénies ordinaires supersingulières sont basées sur celles de
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[Gor]. De plus, nous décrirons dans la conclusion l’application des graphes d’isogénies super-

singulières à la construction de fonctions de hashage cryptographique, et nous comparerons

certains cas particuliers de graphes d’isogénies supersingulières avec structure de niveau N

plein avec la construction de graphes de Ramanujan définie par [Lub].

0 Introduction

This thesis focuses on supersingular and ordinary isogeny graphs resulting from elliptic curves

and isogenies between them. The exploration of these graphs in this thesis required a variety

of different areas of mathematics spanning number theory, graph theory and combinatorics.

Our focus on ordinary isogeny graphs is almost strictly combinatorial. We investigate prob-

lems dealing with paths on these volcano-like graphs (known as isogeny volcanoes). These

paths have relations to the action of the Hecke operator on the ordinary elliptic curves repre-

senting each vertex. In terms of the supersingular isogeny graphs, we rely on number theory

and graph theory to analyse these graphs when they have added layers of structure, i.e. level

N structure (which will be defined and discussed in section 2.2. Lastly, in our discussion

we make comparisons between variants of these supersingular isogeny graphs with level N

structure and the construction of the Ramanujan graphs of [Lub].

The first section of this thesis strictly contains the background information necessary to

establish the setting and notation, as well as important facts used in this thesis. Since a

variety of facts used belong to a variety of different areas of math, we considered it necessary

as most readers will most likely only have sufficient knowledge in one of these fields. We

begin with a review of basics in number theory. We define adeles and ideles, and crucial

information about elliptic curves and isogenies which make up the vertices and edges of our

isogeny graphs. Further, we discuss basic definitions in graph theory and covering spaces,

introduce the theory of expander graphs, and give the Ramanujan bound. The Ramanujan

bound is the defining feature of Ramanujan graphs, which are optimal expander graphs and

a serious object of interest in this thesis.

In the following section of this thesis, we give the construction of the ordinary and supersin-
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gular isogeny graphs that will be examined. The setting and basic structure is established

for each. In the third section, we begin with a description of a tool needed to calculate the

number of connected components of supersingular isogeny graphs with level N structure,

namely, strong approximation. We discuss algebraic groups and establish the necessary the-

orems for our calculations, and subsequently perform this calculation.

In the fourth section, we begin by examining two probability measures defined on the or-

dinary `-isogeny volcano and its covering space, the (` + 1)-infinite tree. In each case the

probability measure is meant to demonstrate the weight held by a vertex in a random walkof

fixed length starting from some fixed vertex, i.e. the probability the random walk ends on

that vertex. We attempt to further characterize this random walk for the covering space and

our isogeny volcano.

Lastly, our fifth section takes us into a discussion of the importance of supersingular isogeny

graphs and their applications to pseudorandomness and cryptographic hash functions. In the

third section we examined properties of supersingular isogeny graphs with level N structure

and ask if they offer more security that the standard supersingular isogeny graph. Further,

we derive a variant of these supersingular isogeny graphs with level N structure and draw

comparisons with the construction of [Lub].
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1 Background

Here we cover the concepts, theorems and notation required to understand the results pre-

sented in this thesis. This section contains no original material.

1.1 Number theory fundamentals

Throughout this subsection, we follow the presentation of [Gold] to establish the required

notation.

1.1.1 Absolute Values and the p-adics

Definition 1. Let K be a field, we define an absolute value to be a non-negative function

∣ ⋅ ∣ ∶K → R≥0 satisfying the following properties:

1. ∣a∣ = 0 ⇐⇒ a = 0

2. ∣ab∣ = ∣a∣ ⋅ ∣b∣ for all a, b ∈K

3. ∣a + b∣ ≤ ∣a∣ + ∣b∣ for all a, b ∈K.

There are two types of absolute value. One says that an absolute value is non-archimedian

if for all a, b ∈K it satisfies

∣a + b∣ ≤ max{∣a∣, ∣b∣},

otherwise we say its archimedian. The most obvious example of an archimedian absolute

value would be the standard one on any field K ⊆ R, i.e.

∣a∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a a > 0

−a a < 0
.

More importantly, for every prime p, we can define the non-archimedian absolute value ∣ ⋅ ∣p
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on Q as follows: for every a ∈ Q, a = pk mn , such that m,n ∈ Z, gcd(p,m) = gcd(p, n) = 1,

∣a∣p = p−k.

By a theorem of Ostrowski, we know that {∣ ⋅ ∣p ∶ p prime}, and the previously defined archi-

median absolute value are the only absolute values on Q up to equivalence [Kn67].

One can analytically construct the p-adic field, denoted Qp, by completion of Q with respect

to ∣ ⋅ ∣p. We denote the Zp the closure of Z in Qp. Note also that the completion of Q with

respect to the standard archimedian absolute value that we defined is simply R. We shall

denote this Q∞.

1.1.2 Adeles and Ideles

We define the ring of adeles over Q, denoted AQ or A, as

AQ = R ×∏
p

′Qp = {{x∞, x2, x3, . . .} ∶ xv ∈ Qv ∀ v ≤ ∞, xp ∈ Zp (∀ but finitely many p)},

where ∏′ denotes the restricted product, meaning that all but finitely many xv ∈ Zv. Multi-

plication and addition of adeles is defined in the obvious component-wise manner.

The ideles are very similar, they are denoted A×
Q or A× and are defined as

A×
Q = {{x∞, x2, x3, . . .} ∈ AQ ∶ xv ∈ Q×

v ∀ v, xp ∈ Z×
p (∀ but finitely many p)}.

We also need the notion of finite adeles and ideles, denoted Af and Af × respectively,

and defined as

Af = {{x2, x3, . . .} ∶ xv ∈ Qv ∀ v < ∞, xp ∈ Zp (∀ but finitely many p)},

Af × = {{x2, x3, . . .} ∶ xv ∈ Q×
v ∀ v < ∞, xp ∈ Z×

p (∀ but finitely many p)}.
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1.2 Elliptic Curves

1.2.1 Basic definitions

In this thesis we work with elliptic curves in characteristic p for some fixed prime p, in

particular we define them over F̄p. In this subsection, our discussion of elliptic curves uses

results from [Sil]. Further information can be found in [Sil].

Firstly, every such curve over a field k (in our case F̄p) is defined as a non-singular curve

of genus one and can be written as the locus in P2 of a cubic equation with the base point

O ∈ E(k) on the line at infinity. We can write it in Weierstrass form,

E ∶ y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

regardless of p.

Taking our Weierstrass form we can go further, via a simple tranformation when the char-

acteristic of the field is not 2. We can write it as

E ∶ y2 = 4x3 + b2x2 + 2b4x + b6.

We can then define the j-invariant of an elliptic curve as

j(E) = c
3

∆
,

where

c = b22 − 24b4, ∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6, b8 = a21a6 + 4a2a6 − a1a3a4 + a2a23 − a24.

The importance of this function for our purposes stems from the well-known fact that elliptic

curves defined over F̄p with the same j-invariant are isomorphic over F̄p.

Morphisms ϕ ∶ E1 → E2 between elliptic curves (defined over F̄p) that fix the base point O of
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the elliptic curve are called isogenies. Isogenies also have duals; if ϕ ∶ E1 → E2, the dual,

denoted ϕ̂, is the map ϕ̂ ∶ E2 → E1 such that

ϕ ○ ϕ̂ = ϕ̂ ○ ϕ = [`],

where ` is the degree of the morphisms ϕ and ϕ̂, and [`] denotes a multiplication by ` map.

This map [`] is defined for every natural number `:

[`]P = P ⊕ P ⊕ P ⋅ ⋅ ⋅ ⊕ P
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

` times

.

For an elliptic curve E over F̄p, and a positive integer m we define

E[m](F̄p) = {P ∈ E ∶ [m]P = O}.

However, we will mostly write E[m] for E[m](F̄p). If m is non-zero in F̄p and p /∣ m then

E[m] ≅ Z/mZ ×Z/mZ.

In fact, since the characteristic of the base field is p, one of the following is true; either

E[pe] = {O}, ∀ e ∈ N,

or

E[pe] = Z/peZ, ∀ e ∈ N,

where per our notational convention, E[pe] is E[pe](F̄p). In the first case the elliptic curve

is called supersingular and in the second case the elliptic curve is called ordinary.

We define Hom(E1,E2) to be the group of isogenies between E1 and E2. Hence End(E)
denotes the isogenies that are endomorphisms of E. It is important to note that the mul-

tiplication by m isogenies give an embedding of Z into the ring End(E) for every elliptic

curve E.
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With the exception of the zero isogeny, every isogeny is a finite map of curves and gives us

an injection of the function fields,

ϕ∗ ∶ K̄(E2) → K̄(E1).

If the extension K̄(E1) over ϕ∗(K̄(E2)) is seperable, then we say the isogeny ϕ is seperable,

and its degree is the degree of the extension.

Chapter 3 of [Sil] gives us the following result about seperable isogenies:

Proposition 1. Let ϕ ∶ E1 → E2 be a non-zero isogeny then

ker(ϕ) = ϕ−1(O)

is a finite group. In particular, if ϕ is seperable, and ϕ is unramified, then

∣ker(ϕ)∣ = deg(ϕ).

In our case we will be considering `-isogenies of elliptic curves for some fixed prime `. The

following theorem gives us a way to construct these isogenies [Velu], see [Wash].

Theorem 1. Let

E ∶ y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

be an elliptic curve with the ai in field k. Let C be a finite subgroup of E(k̄), there exists

E2, an elliptic curve, and I ∶ E → E2, a seperable isogeny such that C = ker(I). The isogeny

I can be explicitly given as follows: Let Q = (xQ, yQ) ∈ C, Q ≠ ∞, and define the following

quantities,
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gxQ = 3x2Q + 2a2xQ + a4 − a1yQ
gyQ = −2yQ − a1xQ − a3

vQ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

gxQ if 2Q = ∞

2gxQ − a1g
y
Q if 2Q ≠ ∞

uQ = (gyQ)2

Now decompose the subgroup C as follows. Let C2 be the set of points of order 2 in C, then

pick R such that

C = {∞} ∪C2 ∪R ∪ (−R),

and denote S = R ∪C2. Let

v = ∑
Q∈S

vQ, w = ∑
Q∈S

(uQ + xQvQ).

Then we can write E2 as

Y 2 +A1XY +A3Y =X3 +A2X
2 +A4X +A6

where the A1 = a1, A2 = a2, A3 = a3 and

A4 = a4 − 5v, A6 = a6 − (a21 + 4a2)v − 7w.

One then writes the isogeny I as

X = x + ∑
Q∈S

(
vq

x − xQ
+

uQ
(x − xQ)2

)

Y = y − ∑
Q∈S

(uQ
2y + a1x + a3
(x − xQ)3

+ vQ
a1(x − xQ) + y − yQ

(x − xQ)2
+
a1uQ − gxQg

y
Q

(x − xQ)2
) .

Conversely, given any isogeny of elliptic curves, the kernel is a finite subgroup.

Further, for our cases, given ` prime, ` ≠ p, there exists an ` + 1 subgroups in E[`] of order

`. Each is the kernel of a seperable isogeny of degree ` (an `-isogeny). Every `-isogeny arises

this way [Sut].
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1.2.2 Tate module

We have the following definition:

Definition 2. Let E be an elliptic curve defined over F̄p and let ` ∈ N be a prime. The

(`-adic) Tate module of E is the group

T`(E) = lim←n E[`n].

The inverse limit is taken with respect to the maps

[`] ∶ E[`n+1] → E[`n].

Since each E[`n] is a Z/`nZ-module, the Tate module has a Z` structure.

The inverse limit topology of the Tate module is equivalent to the `-adic topology given

by the Z`-module structure. As Z` modules, the Tate module has the following structure

theorem:

Theorem 2. As a Z`-module, the Tate module has the following structure:

T`(E) ≅ Z` ×Z`.

Further if E is supersingular and p = Char(F̄p), then

Tp(E) ≅ {0}

and if E is ordinary

Tp(E) ≅ Zp

as a Zp-module.
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1.3 Graph theory fundamentals

1.3.1 Basic definitions

We keep our definitions consistent with those of [Gor].

Let G = (V,E) be a graph, where V is the vertex set, and E is the set of edges. The degree

of a vertex in the case that the graph G is undirected, is equal to the number of edges

coming from the vertex. If there is a loop at a vertex (i.e. an edge between the vertex and

itself) it only contributes one to the degree. If this undirected graph has the same degree,

k, for each vertex we can define the degree of the graph to be k and we say the graph is

k-regular.

Let G be an undirected graph. A walk on such a graph is a sequence of edges {ei ∶ vi →
wi}i=1,...d ⊂ E where wi = vi+1 for all i. It is closed if v1 = wd, and open otherwise. In the case

that the walk does not have repeated vertices or edges we call this a path. By this definition,

paths are inheritantly open walks. If for every pair of vertices, (v,w), there exists a path, i.e.

a sequence of edges starting at v and ending at w, e1, . . . ed, such that ed ○ed−1 ○ . . . e1 ∶ v → w,

then we say the graph is connected.

We say a graph is infinite if the number of vertices it has is infinite. Using the same definition

as [Gor], for a prime `, we say that an infinite, connected, undirected graph G = (V,E) is an

`-volcano if there exists a function b ∶ V → N such that

1. G is (` + 1)-regular.

2. b−1(0) with induced subgraph structure (which we call the rim) is a finite, regular,

connected graph of degree at most 2

3. For each i > 0 each vertex in b−1(i) is connected to a unique vertex in b−1(i − 1) and

these edges account for every edge appearing outside the rim.

This structure will become important when we study ordinary isogeny graphs.
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Figure 1: A `-isogeny volcano with ` = 3.

1.3.2 Covering Graphs

The theory of covering spaces is very applicable to connected graphs. Following [Mas], we

can view an undirected graph as a Hausdorff space X, where the set of vertices V is a

discrete, closed subspace and the following conditions are satisfied:

1. X ∖V is the disjoint union of open subsets ei such that each ei is homeomorphic to an

open interval of R. These ei are the edges.

2. the boundary of each edge ei, ēi ∖ ei is a subset of V containing either 1 or 2 points,

i.e. either the edge is a loop or it connected two vertices. In the case it connects

two vertices, ēi is homeomorphic to [0,1] ⊂ R and ei is homeomorphic to ]0,1[⊂ R.

Otherwise ei is homeomorphic to S1 ∖ {1} and ēi is homeomorphic to S1.

3. X has the weak topology, i.e. for A ⊂ X, it is closed if and only if ēi ∩A is closed for

every edge ei. Similarily for open.
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Making this connection, we can define covering graphs, which are covering spaces of

graphs when they are viewed as topological spaces.

Definition 3. A covering space of a topological space X is a topological space Y equipped

a surjective continuous map ρ ∶ Y → X such that for each x ∈ X there exists U , an open

neighbourhood of x such that ρ−1(U) is a union of disjoint open sets in Y , each isomorphic

via ρ to U .

Covering spaces of graphs are also graphs in the natural way: for X a graph with vertex set

V viewed as a Hausdorff space, if Y is a covering space associated continuous map p, then

Y is a graph and p−1(V ) = U is its vertex set [Mas].

The following theorem from [Mas], helps us understand the fundamental groups of graphs.

Theorem 3. The fundamental group of any graph is a free group.

From the basics of covering space theory, we know that the universal covering space of

a topological space X is the covering space of X with trivial fundamental group (i.e. it is

simply connected).
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Figure 2: In the above figures, H is a graph and C is its covering space. In the second and
third photos, one can see how exactly C maps surjectively onto H †

For our purposes, the best example is the universal covering of a k-regular graph, which is

the k-infinite tree. It is well-known that the k-regular infinite tree has trivial fundamental

group.

1.3.3 Expander Graphs

We digress to an important representation of a finite graph, its adjacency matrix. For such

a graph we can enumerate the vertices in V as {v1, . . . vn} and say v1 ∼ v2 if there exists ei

in E, an edge between them. We define the matrix {aij} as follows:

aij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 vi ∼ vj

0 otherwise

Definition 4. A Symmetric matrix M is a matrix equal to its transpose, MT . Note that

M is symmetric if and only if with respect to the standard inner product on Rn we have

⟨x,My⟩ = ⟨Mx,y⟩ for all x and y ∈ R

Definition 5. A Hermitian Matrix M is a matrix equal to its own conjugate transpose

denoted M∗.

The following theorem is attributed to Augustin Cauchy:

Theorem 4. (Spectral Theorem) Every real symmetric matrix M can be diagonalized by an

orthogonal matrix, i.e. there exists an orthogonal matrix P such that M = PDP T . Further,

the diagonal entries of D are real valued.

†https://en.wikipedia.org/wiki/Covering graph
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For a finite, undirected graph, the adjacency matrix is symmetric. Since it has real entries

(0’s and 1’s) it is a Hermitian matrix, hence we can apply the spectral theorem. If M is an

n × n adjacency matrix, then we have n real eigenvalues.

The eigenvalues of the adjacency matrix are of vital importance. We use the eigenvalues of

an adjacency matrix to determine whether it is a “good expander”. Intiutively, good ex-

pander graphs are such that any “small” set of vertices chosen from the graph has a “large”

boundary (is connected to many other points). For this discussion, we concern ourselves

with k-regular graphs and ask what makes them good expanders.

Consider a subset A ⊆ V of vertices. Denote ∂A as the boundary of A defined to be the

set of all edges going from a vertex in A to a vertex outside of A, i.e.

∂A = {(v, v′) ∈ E ∶ v ∈ A, v′ ∈ V ∖A}.

For our k-regular graphs we define the Cheeger constant (or the expansion ratio), de-

noted h(G), as follows:

h(G) = min{∣∂A∣
∣A∣

∶ A ⊆ V,0 < ∣A∣ ≤ 1

2
V (G)}.

Define the spectral gap to be k − λ2 where λ2 is the second largest eigenvalue. It turns out

that h(G) is bounded away from zero if and only if the spectral gap is bounded away from

zero [Hoo]. Results of [Alon] and [Che]‡ prove the following inequality for k-regular graphs:

1

2
(k − λ2) ≤ h(G) ≤

√
2k(k − λ2).

We see that the spectral gap provides an estimate on the expansion of a graph [Hoo]. Hence,

a good expander graph is one with a small value for λ2 (note that if our graph is not k-

regular, this is not always enough).

‡Cheeger defined the “Cheeger constant” in the context of Riemannian manifolds and established the
analogous inequality for eigenvalues of the Laplacian operator of such a manifold.
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The Alon-Boppana theorem says that for all k-regular graphs “large enough” satisfy

λ2 ≥ 2
√
k − 1 − on(1),

where on(1) → 0 as n→∞ (for fixed k) and n is the number of vertices [Hoo]. This motivates

the following definition.

Definition 6. A Ramanujan graph is a k-regular graph that satisfies the bound

λ2 ≤ 2
√
k − 1

This is consistent with the definition found in [Lub]. These Ramanujan graphs are very

difficult to construct, but their uses are vast. These graphs are optimal expander graphs

and have a wide variety of applications, for example, error-correcting codes, construction of

fault-tolerant networks, and as we will see, post-quantum cryptography [Vad].
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2 Isogeny graphs

As we have previously discussed, there are two different types of elliptic curves. These give

rise to two different types of isogeny graphs: ordinary and supersingular. For both, we shall

follow the construction of [Gor]; see also [Sut].

2.1 Ordinary `-isogeny graphs

For this thesis, we are only interested in the simplest case of ordinary `-isogeny graphs. In

[Gor] one will notice that the construction is more complicated. We are concerned with the

“level 1” construction of these graphs.

Fix two distinct primes ` and p. Consider an ordinary elliptic curve E defined over F̄p. We

may assume throughout that End0(E) /≅ Q(i) or Q(ω), then all elliptic curves in the volcano

have Aut(E) = {±1}. Now we construct our graph ordinary `-isogeny graph Λ(p, `,E) (for

which we will simply write Λ(p, `)). Define the first vertex to be E, or its j-invariant.

Since E is ordinary, E[p] is non-trivial and isomorphic to (Z/pZ). Additionally, since ` is

coprime to p, we have

E[`] ≅ (Z/`Z)2 .

Consider the `-isogenies of E. All non-zero isogenies induce a surjective group homomor-

phism with finite kernel; in this case the kernels have size ` and the isogenies are seperable.

We distinguish isogenies up to an equivalence relation, we say ϕ ∼ ψ if they are isogenies

between elliptic curves E1 and E2 with the same kernel.

It is a well-known fact that every finite subgroup of E(F̄p) is the kernel of a seperable

isogeny and its uniquely determined up to the equivalence relation. Since we are concerned

with `-isogenies, we note that there are ` + 1 cyclic subgroups of E[`] each of which defines

a seperable isogeny over F̄p [Sut]. As discussed before, every `-isogeny of E arises this way.

With this fact, we finish the construction of Λ(p, `). We define the vertices to be elliptic
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curves that arise in the graph when there is an `-isogeny between it and another elliptic

curve already existing in the graph. The edges are defined as these `-isogenies. When com-

puting the isogeny graph, we use Velu’s formulae from the previous section to compute such

isogenies.

Additionally, every `-isogeny has a unique dual isogeny [Sut]. By identifying the `-isogenies

with the corresponding dual isogeny we construct an undirected graph that we still denote

Λ(p, `). This concludes our discussion of the construction of the graph. In terms of the

structure of this graph, we have the following theorem (see [Sut]):

Theorem 5. For E an ordinary elliptic curve defined over F̄p such that End0(E) /≅ Q(i) or

Q(ω), the graph Λ(p, `) is an `-volcano and is hence an infinite ` + 1-regular graph.

2.2 Supersingular Isogeny Graphs

The construction of the supersingular isogeny graphs is very similar to that of the ordi-

nary ones. One fixes p and `, two distinct primes, but this time we require p ≡ 1 mod 12

to ensure that for any E, a supersingular elliptic curve defined over F̄p, we still have that

Aut(E) = {±1}. One still defines the vertices of the graph to be those elliptic curves `-

isogenous to another elliptic curve in the graph and the edges to be these `-isogenies. To

compute the graph, one still considers the ` + 1 subgroups of E[`] and uses Velu’s formulae

to construct `-isogenies (and hence ends up with a ` + 1-regular graph). However, for our

purposes, we need to state a slightly more generalized construction in terms of the vertices,

we call these supersingular isogeny graphs with “level N” structure.

Definition 7. For N such that gcd(N, `) = 1, we say a graph has level Γ(N) structure

(full level N structure) if associated to every vertex is a pair (E,α) where E is an elliptic

curve with the structure discussed above and α is an isomorphism

α ∶ (Z/NZ)2 → E[N].
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Again, these α are defined up to composition with automorphisms. An `-isogeny, f , between

elliptic curves E and E′ defines an edge between the pairs (E,α) and (E′, f ○ α).

3 Strong Approximation

3.1 Algebraic Groups

We follow [Kn67] Chapter 10 by M. Kneser.

Definition 8. Let k be an algebraically closed field. An algebraic group defined over k is

an algebraic variety G defined over k together with mappings (x, y) ↦ xy of G ×G into G

and x ↦ x−1 of G into G which are morphisms of algebraic varieties and satisfy the usual

group axioms.

An algebraic subgroup is a closed subgroup with respect to the Zariski topology. An

algebraic group is linear if it is affine as an algebraic variety. An example of a linear

algebraic group is GLn(k). The structure of GLn(k) as an affine algebraic group is [Pra]:

GLn(k) =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
A 0

0 an+1

⎞
⎠
∶ detA ⋅ an+1 = 1

⎫⎪⎪⎬⎪⎪⎭

where the multiplication map m ∶ GLn(k) ×GLn(k) → GLn(k) takes (A)ij ⋅ (B)ij ↦ (C)ij.

A linear algebraic group G is called unipotent if every algebraic representation of G consists

of unipotent matrices. A unipotent matrix A is a matrix such that A − I is nilpotent,

where I is the identity matrix [W]. A connected algebraic group that is projective as

an algebraic variety is an abelian variety. Abelian varieties, as one would expect, are

commutative. The best example of an abelian variety is an elliptic curve. Any algebraic

group G has a connected component denoted G0. It turns out that G0 has a unique maximal

linear connected algebraic subgroup denoted G1. It is normal and G0/G1 is an abelian variety.

A homomorphism ϕ ∶ G→H of connected groups of the same dimension is called an isogeny

if the kernel of ϕ is finite. To exclude unpleasant phenomena, we define a central isogeny
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to be an isogeny whose kernel is contained in the center of G. If ϕ ∶ G → H is a central

isogeny, we say that G is a central covering of H.

Definition 9. An almost simple group G is a group with finite center C such that G/C
is a simple group (i.e. has no non-trivial normal subgroups).

Definition 10. An algebraic group G over a field of characteristic zero is simply connected

if there is no non-trivial central isogeny H → G where H is a connected algebraic group.

3.2 Strong approximation

There are many perspectives we can consider when it comes to strong approximation. The

first we consider will deal with the adeles over Q, AQ.

Following along with [Gold], we begin with a new definition:

Definition 11. Let a group G act on a set X (say, on the left). We define a fundamental

domain of this group action to be a subset D of X satisfying:

1. For each x ∈X, there exists d ∈D and g ∈ G such that gx = d

2. The choice of d is unique.

Remark 1. One could say that the fundamental domain is really a set of representatives

from each orbit of G under the group action.

Examining the fundamental domain is key to understanding this perspective on strong ap-

proximation. We let Q act on AQ as follows: embed Q in AQ by taking each q ∈ Q and

viewing it as {q, q, . . .}. Since ∣q∣v > 1 for only finitely many v ≤ ∞, we have q ∈ Zp for all but

finitely many p and hence {q, q, . . .} is a valid element of AQ. Then our action of Q on the

set of adeles is defined to be additive, i.e. for q ∈ Q and x = {x∞, x2, x3 . . .} ∈ AQ the action

is q + x = {q + x∞, q + x2, q + x3, . . .}.

Still following [Gold], constructing the fundamental domain for the above action turns out

to be equivalent to a version of the Chinese Remainder Theorem in terms of p-adic absolute

values. Also, we have the following theorems (theorem 1.4.4 and proposition 1.4.5 resp.
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[Gold]) completing our discussion of strong approximation from the perspective of funda-

mental domains.

Theorem 6. (Weak Approximation) Let p1, p2, . . . pn be distinct primes. Let ci ∈ Qpi. For

every ε > 0, there exists α ∈ Q such that

∣α − ci∣pi < ε.

Theorem 7. (Fundamental domain for the action of Q× on A×
Q) A fundamental domain D

for the action of Q on AQ is

D = {{x∞, x2, x3, . . .} ∶ 0 ≤ x∞ < 1, xp ∈ Zp for all finite primes p}.

There is also a strong approximation for the ideles, (proposition 1.4.6 [Gold]):

Theorem 8. A fundamental domain D for Q× ∖A×
Q is

D = {{x∞, x2, x3, . . .} ∶ 0 < x∞ < ∞, xp ∈ Z×
p for all finite primes p} .

Now, following [Rap] we consider a different perspective on strong approximation by viewing

it as a lift of solutions to polynomial equations mod m to integer solutions.

Suppose we have a family of polynomials {fα(x1, . . . xd)}α ∈ Z[x1, . . . xd] where the α ∈ I. We

can use these polynomials to define a closed affine subscheme X = Spec(Z[x1, . . . xd]/fα) ↪
Spec(Z[x1, . . . xd]). Pick a Z-algebra R, then

X(R) = {(a1, . . . ad) ∈ Rd ∶ fα(a1, . . . ad) = 0 ∀ α ∈ I},

is the set of R-valued points of the scheme X.

Obviously, Z and Z/mZ are Z-algebras for any m. Let

ρm ∶X(Z) →X(Z/mZ),
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denote the map induced by the natural reduction map Z → Z/mZ. The question we deal

with in strong approximation is whether this map is surjective (if its even a well-posed ques-

tion, i.e. X(Z/mZ) ≠ ∅). If the map ρm is surjective for all m, then we say X has strong

approximation. For example, GL2 does not have strong approximation, but SL2 does.

To see that GL2 does not have strong approximation is simple, note that for m = 5 the above

map is not surjective. Matrices in the image of ρ5 have determinant ±1 mod 5 because the

matrices of GL2(Z) have determinant ±1. However, a matrix such as

⎛
⎝

1̄ 0̄

0̄ 2̄

⎞
⎠

belongs to GL2(Z/5Z) but does not belong to the image under ρ5 of GL2(Z).

To see that SL2 has strong approximation is not as trivial but is still simple, see [Rap] pg.

271.

Note that, if m∣n then we have a natural map πnm ∶ Z/nZ→ Z/mZ. We get an inverse system

{Z/mZ, πnm} with inverse limit denoted

Ẑ = lim←m Z/mZ = {(ai) ∈ ∏
m∈Z

Z/mZ ∶ πji (ai) = aj}.

Endowing each group Z/mZ with the discrete topology and ∏mZ/mZ the product topology,

we let Ẑ have the induced topology as a subspace of ∏mZ/mZ [Klop].

Remark 2. In fact, this makes Ẑ into a profinite group, i.e. a totally disconnected, compact,

Hausdorff topological group, but this is not needed for our discussion [Klop].

By [Rap], the condition given in order to have strong approximation is proven to be equivalent

to the condition that the natural embedding X(Z) → X(Ẑ) has a dense image under the

topology we just described.

Remark 3. There are some necessary but not sufficient conditions for X to satisfy if it

is to have strong approximation. We see in GL2 that there is an obstruction preventing

it from having strong approximation! In order for an affine Q-variety X to have strong
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approximation, X(Z) must be Zariski-dense in X.

From [Kn66] and [Plat], we now take an approach to strong approximation that doesn’t

focus on algebraic varieties. Following [Kn66], let k be a finite extension of Q, and S a finite

set of places of k. Let G be an algebraic group over k, define the adele group of G as

GA = {g = (gv) ∈ ∏
v

′G(kv)},

where ∏′ denotes the restricted product meaning that all but finitely many gv ∈ G(Zv).
Denote the S-adele group of G as

GS = {g = (gv) ∈ ∏
v∈S

′G(kv)}.

Lastly, let Gk be the set of k-rational points of G. Here we define strong approximation to

be when GkGS ⊆ GA is dense in GA.

[Kn66] describes the necessary conditions for which an algebraic group may have strong

approximation to be

1. G is simply connected as an algebraic group

2. GS is not compact

Going further, we have the following theorem of [Plat] that generalizes that of [Kn66]:

Theorem 9. Let G be a simple, simply connected algebraic group such that GS is not com-

pact. Then G has the strong approximation property relative to S.

Remark 4. The theorem of [Kn66] is the same statement except we replace simple with

absolutely almost simple. Note that because we are considering algebraic groups over an

algebraically closed field, our definition of “almost simple” is the same as “absolutely almost

simple”. We will need this version in future discussions.

In the following discussion, we will focus on the case that we will require for our application.

Let B1 be the norm 1 elements of a definite quaternion algebra B over Q; this is an algebraic
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group. Let ` be prime and let S = {`,∞} be the set of places.

Lemma 1. B1 is simply connected.

Proof. Consider the map Φ ∶X → B1 where X is a connected group and Φ is a central isogeny.

i.e. ker(Φ) is contained in the center. Over C, B1(C) ≅ SL2(C) because B(C) ≅ M2(C)
(note that the norm 1 elements translate to determinant 1 elements when we view it as a

matrix ring). Now, it is well known that SL2(C) has fundamental group {1} and hence is

simply connected as a topological manifold [Kna], and hence as an algebraic group because

every central isogeny is a topological covering map. Because we have that X(C) is connected

and π1(SL2(C)) = {1}, we get that Φ is an isomorphism over C. Thus ker(Φ)(C) = {1} and

hence ker(Φ) is trivial, and Φ is an isomorphism. Hence there are no non-trivial central

isogenies to B1 and it is simply connected.

Remark 5. G = B1 is absolutely almost simple. This is because

Z(B1) ⊆ Z(SL2(C)) = {±1}

(which gives us that the center is finite) and B1/{±1} is a simple group because SL2(C)/{±1}
is simple.

Lemma 2. If B is unramified at `, then GS is not compact.

Proof. Since we are dealing with S = {`,∞}, we have GS = G`G∞. B is a definite quaternion

algebra not split at infinity, and hence is equal to H (the Hamilton quaternion algebra).

Taking the units we see that G∞ = H1 which is well known to be S3, the unit sphere in

4-dimensional Euclidean space [Krish]. Now note that G` is not compact as it is equal to

G(Q`) ≅ SL2(Q`) (because B is unramified at `). So GS = G(Q`)H1 is the product of a

compact topological group with a non-compact topological group. Altogether we see that

the result is not compact because we can take the open cover of G(Q`) that has no finite

subcover and take its product with H1. It still does not have any finite subcover.
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Remark 6. If B is not unramified at prime p, then

B1(Qp) =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a b

pbσ aσ

⎞
⎠
∶ aaσ + pbbσ = 1, a, b ∈ Qp2

⎫⎪⎪⎬⎪⎪⎭
.

Then val(aaσ) = 2val(a), val(pbbσ) = 1 + 2val(b). Hence

val(aaσ + pbbσ) = val(1) = 0,

but this is also equal to

min{2val(a), (1 + 2val(b))}.

So we see that val(a) = 0 and val(b) ≥ 0, and so a ∈ Z×
p2
, b ∈ Zp2. Hence B1(Qp) is a closed

subset of Z×
p2
×Zp2 which is compact. Hence B1(Qp) is compact.

By [Kn66] we have that G = B1 has strong approximation when B is unramified at `.

Now choose positive integers a1, . . . an and primes p1, . . . pn and consider pa11 ⋅ ⋅ ⋅ ⋅ ⋅ pann where

pi ≠ ` ∀ i. Let O be a maximal order in B, and for all q define G(Zq) as the set of elements

of norm 1 in O ⊗Zq. Let U = ∏q Uq, where

Uq =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

G(Zq) q ≠ pi

A ∈ G(Zq) ∶ A ≡ I mod paii q = pi

This is an open subset in the adelic topology.

Now consider a supersingular elliptic curve E defined over Fp. Since its supersingular, its

endomorphism ring is an order O of a definite quaternion algebra B. We now take B1 to be

the norm 1 elements of this quaternion algebra and O to be End(E).

Using the theory of elliptic curves ([Sil], chapter 3, section 7) for all r ≠ p we can choose a

basis for the Tate module and get

Tr(E) = lim←n

E[rn] ≅ Zr ×Zr.
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Using Theorem 7.7 from [Sil] we get

O ⊗Zr = End(E) ⊗Zr ≅ Hom(Tr(E), Tr(E))

and Hom(Tr(E), Tr(E)) ≅M2(Zr).

Extending this, we get B ⊗Qq ≅M2(Qq) and from before, O ⊗Zq ≅M2(Zq), q = paii . Hence

we can write our open set from before as when q = pi:

Uq = {A = I + paii M2(ZPai
i
) ∶ det(A) = 1}

and

UG` = {(uq)primes q ∶ upi ∈ Upi , u` ∈ G`, else uq ∈ G(Zq)}.

For any such choice of U = ∏q Uq, given A ∈ B1, we can represent A as A = (A,A,A . . . ) ∈
B1(Af).

Strong approximation gives us that

B1(Q) ∩A ⋅UG(Q`) ≠ ∅.

We use the elements in this set to approximate elements of ∏iB
1(Zpi) whose reduction is

our path of interest in the super-singular isogeny graph.

3.3 Application: number of connected components in supersingu-

lar isogeny graphs with level N structure

We begin with the same setup; E is a supersingular elliptic curve over Fp, such that

End(E) = O is an order in a definite quaternion algebra B, B1 is the subset of B of

norm 1 elements and has strong approximation as explained above. We are given α,

β ∶ (Z/NZ)2 ∼Ð→ E[N] and want to see if the vertices (E,α) and (E,β) are connected in

the supersingular isogeny graph with level N structure, i.e. we want to see if they are in the

same connected component. Note that for every (E′, α′) in the graph, there is an α such
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that (E,α) is connected to (E′, α′) since the level 1 supersingular isogeny graph is connected

[Gor].

Let N = pa11 . . . pann , pi ≠ ` for all i, α ∶ (Z/NZ)2 ∼Ð→ E[N]. By the Chinese Remainder

Theorem, we get

α = αpa11 × ⋅ ⋅ ⋅ × αpann

where the αpaii ∶ (Z/paii Z)2 → E[paii ].

We are given a map β and we want f ∈ End(E) such that deg(f) = `r for some r and

β = f ○α. Viewing f as a matrix on E[N], this occurs if and only if α−1 ○β = f . We see that

α−1 ○ β ∈ Aut(E[N]) ≅ GL2(Z/NZ).

For all r we can choose a sympletic basis (relative to the Weil pairing) for Tr(E), Tr(E) ≅
Zr ⊕Zr then

O ⊗Zr ≅M2(Zr).

Then for all N there is a basis for E[N] providing the isomorphism

E[N] ≅ Z/NZ⊕Z/NZ,

such that the Weil pairing is sympletic, i.e. ⟨(1,0), (0,1)⟩Weil = ζN . Then any map α ∶
(Z/NZ)2 ∼Ð→ E[N] = (Z/NZ)2 is some matrix

⎛
⎝
a b

c d

⎞
⎠
∈M2(Z/NZ)×.

So we define the determinant of α to be ad − bc as per usual.

Case 1

Suppose that α−1β has determinant 1. Then α−1 ○ β ∈ SL2(Z/NZ).
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Note that
n

∏
i=1
SL2(Zpi) =

n

∏
i=1
B1(Zpi),

and then by [Shim] we have

SL2(Z/NZ) ≅
n

∏
i=1
SL2(Z/paii Z).

Also, there is a natural surjective map

n

∏
i=1
SL2(Zpi) ↠

n

∏
i=1
SL2(Z/paii Z).

Choose γ ∈ ∏n
i=1B1(Zpi) such that the reduction of γ is α−1β. We want to use strong

approximation to approximate γ by an element x of B1(Q) such that x ∈ ∏n
i B

1(Zpi) reduces

to α−1β i.e.

x ≡ γ mod paii ∀ i

and x is integral at all q ≠ `.

This x ∈ B is a rational endomorphism of E of norm 1, integral at any prime except perhaps

at `. Also, x ∈ B(Q`) ≅ M2(Q`). For all k >> 0, `k ⋅ x integral at all q, hence we have that

`k ⋅ x ∈ O = End(E) and has norm `2k.

Choose k such that `k ≡ 1 mod N and large enough to satisfy integrality as before. Let

y = `k ⋅ x ∈ End(E). This has degree `2k and y ≡ α−1β mod N . Hence we have that α and β

connected by a path in the `-isogeny graph, i.e. the points (E,α) and (E,β) are connected

by a path.

Case 2

Now we generalize to allow det(α−1○β) to not necessarily be 1, i.e. we don’t necessarily have

that det(α) = det(β) mod N . Let f = [`], then det(β) = `2 det(α). For all r >> 0 there exists

f such that deg(f) = `2r+1, this is because the supersingular isogeny graph is connected and

bipartite [Gor]. Hence we get that det(β) = det(f ○α) = `2r+1 det(α) in (Z/NZ)×. Now note
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that ⟨`2, `2r+1⟩ ⊆ (Z/NZ)× is equal to ⟨`⟩. We arrive at the conclusion that α is connected

to β if det(α−1β) ∈ ⟨`⟩ and vice versa. So we see that as sets, the set of all path connected

components is the same as (Z/NZ)×/⟨`⟩.
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4 Path problem on the ordinary `-isogeny volcano

Let p and ` be distinct primes, and let d = ` + 1. Pick an ordinary elliptic curve E such

that End0(E) ≠ Q(i) or Q(ω). Recall the construction of the ordinary isogeny graph Γ(p, `),
giving us an undirected `-isogeny volcano as described previously. The universal covering

space of this graph is the d-regular tree.

We consider the action of the Hecke Operator T`. It takes an ordinary elliptic curve E and

maps it to one of the d = ` + 1 adjacent vertices defined by the `-isogeny graph. If we raise

it to the power of r, we are taking a path of length r from our starting vertex represented

by E to some other vertex within range. Obviously, there are dr paths in total because each

step along the path has d choices (allowing backtracking). The vertices within range have

certain multiplicities associated to them, i.e. there may be more than one path of length r

that exists to reach them. In this section, we are interested in the probability that we reach a

vertex (represented by some E′) of some exact distance m away from the fixed starting vertex.

Let multiv0(r, v) be the number of paths of length r reaching a vertex v from some fixed

starting vertex v0. We define our probability measure to be

P(v, r) = 1

dr
multiv0(r, v).

Note that this is a probability measure because for fixed r

∑
v∈V

P(v, r) = 1.

This is because dr is the total number of possible paths of length r. Since our infinite tree

has symmetries, if v is a vertex of exact distance m away from v0, the quantity multi(v, r)
depends only on r and m =distance(v, v0), which we denote µ(m,r). We will explore this

function µ to achieve our ultimate goal, which is to analysis this measure.
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4.1 Path counting on the d-infinite tree

Fix two integers m,r ≥ 0, and fix a vertex v0 in the d-regular tree. Define ν(m,r) to be the

number of paths of length r from the vertex v0 to a vertex of exact distance m from it.

Proposition 2. The function ν(m,r) has the following obvious properties:

1. If m = 0, ν(m,r) counts the number paths of length r that start and end at v0.

2. If r = 0, these are paths of length zero which we define as

ν(m,0) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if m = 0

0 otherwise
.

3. Along the same lines, it is easily seen that ν(m,r) = 0 if m > r, and ν(m,r) = 1 if m = r.

4. If m is even and r is odd, or vice versa, ν(m,r) = 0.

5. Further, our function satisfies the following recursion equations:

ν(0, r) = dν(1, r − 1),

ν(m,r) = ν(m − 1, r − 1) + (d − 1)ν(m + 1, r − 1),

for m > 0 and r > 0.

We will now hand compute a few of the values and then use the recursion equations from

property 5 of our proposition to generate a table of values. Property 2 in the proposition

generates all values for r = 0. From property 3, we see that if r = 1 we get 0 if m = 0 and

m > 1, and 1 if m = 1. For r = 2, if m = 0 we are making cycles back to v0 and hence have d

choices. If m = 1, property 4 tells us this is 0, and if m = 2 we use property 5 to tell us that

this is 1. Then all other values of m give ν(m,2) = 0. We now have the following information:
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r/m 0 1 2 3 4 5

0 1 0 0 0 0 0

1 0 1 0 0 0 0

2 d 0 1 0 0 0

Now applying the recursion relation, we can get a larger table of initial values.

r/m 0 1 2 3 4 5 6

0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

2 d 0 1 0 0 0 0

3 0 2d − 1 0 1 0 0 0

4 2d2 − d 0 3d − 2 0 1 0 0

5 0 5d2 − 6d + 2 0 4d − 3 0 1 0

6 5d3 − 6d2 + 2d 0 9d2 − 13d + 5 0 5d − 4 0 1

7 0 14d3 − 28d2 + 20d − 5 0 14d2 − 22d + 9 0 6d − 5 0

Finding explicit formulae for ν(m,r) proved challenging, however there are many patterns

in the coefficients of the polynomials that give us ν(m,r) with d as the variable. We will

address this later. First we shall connect the number of paths of length r on the d-infinite

tree to the paths on the isogeny volcano it covers.

4.2 Covering

Consider the `-isogeny volcano, it is a d = ` + 1-regular graph and has a rim of some length

n > 0. Label the vertices on the rim 1 through n and pick an arbitary, infinite length path

in the d-infinite tree with no backtracking. Along this path pick a vertex and label it 1, on

one side of this vertex label it n, then n−1,... so on. On the other side of the 1 vertex, label

it 2, 3,... and so on. See the diagram below for an illustration using colors.
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Figure 3: Mapping the infinite 4-regular tree onto the 4-regular 3-isogeny volcano with rim
length 7

4.3 Path counting on the isogeny volcano

Let n > 0 be the length of the rim of the isogeny volcano. We need more variables to describe

the location of vertices relative to the fixed vertex v0.

4.3.1 Fixed vertex v0 is on the rim

We begin by setting our initial vertex v0 to be on the rim of the isogeny volcano. As ex-

plained in the previous section, we can cover the isogeny volcano with the d-infinite tree

where the 1 label is placed at v0. We need variables m1 ≥ 0, m2 ≥ 0 to describe another

vertex’s distance from v0, so we call our function µ(m1,m2, r). m2 is the depth within the

volcano from the rim, and m1 describes where on the rim we begin our descent. We only

define m1 ∈ {0,1, . . . n+12 − 1} if n is odd or m1 ∈ {0,1, . . . n2 − 1} if n is even. To better un-

derstand this, consider the following example. If n = 7 a vertex on the rim that is four steps

away clockwise from our fixed vertex v0 that is also on the rim is really only three steps away

counter-clockwise. We exploit the symmetries present in our graph and let m1 = 3 in this case.
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We shall start with the m1 = m2 = 0 case. It is easy to see that for the first n values of r,

r = 0, . . . n − 1 we will have the same result as we did for the infinite d-regular tree, i.e.

µ(0,0,0) = ν(0,0), µ(0,0,1) = ν(0,1), . . . µ(0,0, n − 1) = ν(0, n − 1).

Exploring further, we see that when we reach n we now have two new paths to deal with,

i.e. a full turn clockwise around the rim of the volcano and a full turn counter-clockwise.

We can write this as follows

µ(0,0, n) = ν(0, n) + 2ν(n,n).

We can say this because the full turn described before is the same as reaching a point of

distance n away from our original, but doing so clockwise or counter-clockwise gives us a

factor of two. Following the same pattern we see

µ(0,0, n + 1) = ν(0, n + 1) + 2ν(n,n + 1)

⋮

µ(0,0,2n) = ν(0,2n) + 2ν(n,2n) + 2ν(2n,2n)

⋮

In general we find the following proposition

µ(0,0, kn + `) = ν(0, kn + `) + 2ν(n, kn + `) + ⋅ ⋅ ⋅ + 2ν(kn, kn + `).

Now dealing with the more general case, it is not hard to see that if we write r = kn + a, in

general, our function µ satisfies the relation stated in the following proposition:

Proposition 3. For the function µ(m1,m2, r), r = kn + a (a, k ∈ N0), where the starting

vertex v0 is on the rim of length n, we have the following relation:

µ(m1,m2, r) = ν(m1 +m2, kn + a) + ν((n −m1) +m2, kn + a)+
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ν(m1 +m2 + n, kn + a) + ν((2n −m1) +m2, kn + a) + . . .

=
∞
∑
t=0
ν(tn +m1 +m2, kn + a) + ν(((t + 1)n −m1) +m2, kn + a) < ∞.

Remark 7. This converges because r = kn+a is fixed and as t increases, eventually the value

for ‘m’ in the formula for ν is larger than the value of r, and hence contributes zero. Hence

there are only finitely many terms in the sum.

4.3.2 Fixed vertex v0 is some depth s within the volcano

Now consider v0, our fixed vertex, with some depth s within the volcano. As explained in the

section on covering the isogeny volcano with the d-infinite tree, because of all the symmetries

at play, we can always label the rim with 1 starting at the location directly above v0.

We consider a more general function µ(s,m1,m2, r) which is the number of paths of length

r of distance m1 along the rim and m2 is the depth of the other vertex away from the rim.

We have handled the case s = 0, so now we handle the cases for s > 0:

Case 1: m1 = 0,m2 ≥ 0

Since m1 = 0, we are on the same branch from the rim, we are simply moving up or down the

branch from our starting vertex. If m2 < s then the other vertex v is above our fixed v0, and

if m2 > s then v0 is above v. The exact distance between our vertices is ∣s −m2∣. Hence we

need to include the term ν(∣s−m2∣, r). Then we need to take the rim into account, we can go

from v0 up and all away around the rim clockwise or counter-clockwise after n+s+m2 steps.

Another turn around the rim gives us 2n + s +m2, and so forth. We find that in general

µ(s,0,m2, r) = ν(∣s −m2∣, r) +
∞
∑
t=0

2ν(tn + s +m2, r).

Case 2: m2 = 0, m1 > 0 (for the restrictions on m1 as described previously)
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Now let us consider the case where were are trying to reach v, a vertex on the rim that m1

distance away from the label 1 (where 1 is the place on the rim that branches down s steps

to our fixed vertex v0).

The exact distance between fixed vertex v0 and v is m1+s. However, for m1 ≠ 0, the opposite

direction around the rim gives a distance s + n −m1. Continuing like this we find

µ(s,m1,0, r) =
∞
∑
t=0
ν(tn +m1 + s, r) + ν((t + 1)n −m1 + s, r).

Case 3: For general s, m2 and m1 > 0 (for the restrictions on m1 as described previously)

Our vertices v0 and v in this case have exact distance s+m1 +m2. After that, one must take

into account turns along the rim. The first to consider is of course s +m2 + (n −m1), then

s +m2 +m1 + n, and so forth.

We find that

µ(s,m1,m2, r) =
∞
∑
t=0
ν(tn +m1 +m2 + s, r) + ν((t + 1)n −m1 +m2 + s, r).

Note that this formula does not hold for m1 = 0 unless m2 = 0 too (where it reconciles with

Case 1). For the case where m1 = 0, m2 > 0 then the case 1 formula is the only formula that

works.

Ultimately Case 1 and 3 are the best we can do to have a general formula (Case 2 reconciles

with Case 3). We have fully related the path problem on the isogeny volcano to that of the

d-infinite tree and we state it as the following theorem:

Theorem 10. Let ν(m,r) be the function counting the number of paths in the d-infinite tree

between a fixed vertex and a vertex of exact distance m with r steps. Let µ(s,m1,m2, r) be

the function counting the number of paths in the `-isogeny volcano (where d = ` + 1) between

a fixed vertex with depth s in the volcano and another vertex in a branch m1 steps away on

the rim and m2 steps down that branch. The following relation exists:
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If m1 > 0,

µ(s,m1,m2, r) =
∞
∑
t=0
ν(tn +m1 +m2 + s, r) + ν((t + 1)n −m1 +m2 + s, r).

If m1 = 0,

µ(s,0,m2, r) = ν(∣s −m2∣, r) +
∞
∑
t=0

2ν(tn + s +m2, r).

Now that we have characterized µ(s,m1,m2, r) in terms of ν we can look at our probability

measure and its properties.

4.4 Limiting measure r → ∞ in the d-infinite tree and `-isogeny

volcano

Paths in the `-isogeny volcano have unique lifts to paths in the d-infinite tree once you choose

a fixed lift of the starting point of the path. Hence we first consider the limiting measure of

the covering space. As before, we define our probability measure to be

P(v, r) = 1

dr
ν(m,r),

where v is an arbitary vertex of exact distance m from v0 our fixed vertex. We will analyse

what happens as r → ∞ in order to understand the weight that each vertex holds in the

graph in terms of how many times it is visited as the length of the path increases.

We turn to the standard approach in the theory of random walks and introduce the termi-

nology required to study the generating function of the random walk on the d-infinite tree.

Following the notation of [Woe], such a generating function, denoted G(x, y∣z) is a power

series in the variable z of the form

G(x, y∣z) =
∞
∑
n=0

p(n)(x, y)zn,

where p(n)(x, y) is the probability that the vertex x reaches the vertex y on the nth step of

the random walk. [Woe] gives the following lemma regarding the generating function of the
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simple random walk on the d-infinite tree:

Lemma 3. An explicit expression for G(x, y∣z) of a simple random walk on the d-infinite

tree is given by

G(x, y∣z) = 2(d − 1)
d − 2 +

√
d2 − 4(d − 1)z2

⋅
⎛
⎝
d −

√
d2 − 4(d − 1)z2

2(d − 1)z
⎞
⎠

m

,

where m is the exact distance between x and y.

In terms of our notation, we have a fixed vertex v0 and another vertex v of exact distance m

away from v0, so it turns out that p(n)(v0, v) = 1
dnν(m,n) = P(v, n) in our notation. Hence

are problem can be rephrased as isolating the p(n)(v0, v) and taking n to infinity.

One can take derivatives to help isolate the p(n)(v0, v). Note that

∂kG(x, y∣z)
∂zk

RRRRRRRRRRRRz=0
= k! ⋅ p(k)(x, y), ∀k ∈ N.

However, we are concerned with the limit of the p(k)(v0, v) as k →∞. Since G(v0, v∣z) con-

verges for ∣z∣ < 1
ρ = r, where ρ = 2

√
M−1
M , we have that for M > 2, r > 1. Hence G(v0, v∣1)

converges, and so the p(k)(v0, v) → 0 and k →∞. In fact, one can see that p(k)(v0, v) converges

to zero exponentially fast, because Mkp(k)(v0, v) → 0 as k →∞, and so p(k)(v0, v) = o(M−k).

Now we want to relate this back to our measure on the isogeny volcano. Using theorem 10,

we see that for fixed s, m1, m2, and r, µ(s,m1,m2, r) is simply a finite sum of values taken

on by ν. However, as r increases, the number of terms in the sum increases. Still, despite

the increase in the number of terms, each term still converges to zero as r →∞, hence overall

our limiting measure in this case is also zero.

4.5 Characterizing the random walk

We would like to further explore this random walk on our graph. In the case of the infinite

tree, we create plots to demonstrate the behaviour of the measure for varying r and fixed
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d. Here we denote P (m,r) = P (v, r) where v is a vertex of exact distance m from our fixed

vertex v0. We begin by plotting P (m,r) ⋅ d ⋅ (d − 1)m−1, notice that for d > 2 we have a

Gaussian-like distribution.

Figure 4: Above is the value of our probability measure P (m,r) ⋅ d ⋅ (d − 1)m−1 for different
fixed values of r in the d = 2 case. The distance of v from the fixed vertex v0 is given by m

on the x-axis.
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Figure 5: Above is the value of our probability measure P (m,r) ⋅ d ⋅ (d − 1)m−1 for different
fixed values of r in the d = 3 case. The distance of v from the fixed vertex v0 is given by m

on the x-axis.

Figure 6: Above is the value of our probability measure P (m,r) ⋅ d ⋅ (d − 1)m−1 for different
fixed values of r in the d = 4 case. The distance of v from the fixed vertex v0 is given by m
on the x-axis. Above d = 4, R cannot preform the calculation to generate further plots due

to magnitude of the numbers used in generating operations.
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Now examine the plot of P (m,r) in the case of the d-infinite tree for fixed d and varying r.

Be careful to note the y-axis limit in each graph as they are not the same.

Figure 7: Above is the value of our probability measure P (m,r) for different fixed values of
r in the d = 2 case. The distance of v from the fixed vertex v0 is given by m on the x-axis.
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Figure 8: Above is the value of our probability measure P (m,r) for different fixed values of
r in the d = 3 case. The distance of v from the fixed vertex v0 is given by m on the x-axis.

Figure 9: Above is the value of our probability measure P (m,r) for different fixed values of
r in the d = 4 case. The distance of v from the fixed vertex v0 is given by m on the x-axis.
Above d = 4, R cannot preform the calculation to generate further plots due to magnitude

of the numbers used in generating operations.
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We can also consider the following arrangement of the d-infinite tree along Z. Place the

root v0 at 0 on Z and allow an infinite path to line Z with subtrees growing from each point

arranged on Z. Then similar to our notions of m1 and m2 on the isogeny volcano, for a

vertex v on our tree let `1 be the value of Z representing the subtree v belongs to. Let `2

be the exact distance of the vertex v to the root of the subtree at `1. We define the height

of v, H(v), to be `1(v) + `2(v) ∈ Z. We see that for a random walk on our d-infinite tree,

w1w2 . . .wr from v0 to the vertex wr, H(w1)H(w2) . . .H(wr) is then a random walk on Z.

Figure 10: This figure depicts the arrangement of the 4-infinite tree along Z as described
above. For the blue vertex `1 = 2 and `2 = 2 and hence the height is 4

The central limit theorem in this case is clear. We can write

H(wr) =
r

∑
i=1
ζi, ζi ∈ {−1,1}, P(ζi = 1) = d − 1

d
,

and compute the expectation of ζi to be d−2
d . The variance is σ2 = 1 − (d−2

d
)2, and then by

the central limit theorem we have

1√
r
H(wr) −

√
r ⋅ d − 2

d
→ N(0, σ2).

Define X(wr) to be the distance of the vertex wr from the root v0 in the d-infinite tree. It
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is clear that while H(wr) = `1(wr) + `2(wr), X(wr) = ∣`1(wr)∣ + `2(wr) and hence X(wr) =
∣H(wr)− `2(wr)∣ + `1(wr). So we see that X(wr) is approximately normal with a shift in the

mean of the Gaussian.

To do a similar procedure for the isogeny volcano has proved challenging. Below are some

plots demonstrating the structure probability measure on the isogeny volcano; in each plot

we fixed n, r, m1, d and s, and varied m2. We had to use the log scale due to computational

difficulties, we plotted log(µ(s,m1,m2, r)) − log(dr).

Figure 11: Above are plots characterizing the measure on the isogeny volcano. We fix every
parameter as specified in the title of each plot and vary m2.

These plots were computationally the best one could do to mimick the earlier plots of the

d-infinite tree.
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5 Discussion

5.1 Constructing Hash Functions – An application of SSI graphs

Supersingular isogeny graphs give rise to Ramanujan graphs which have a variety of applica-

tions [Cost]. The original construction due to [Piz] is the level 1 case of the construction in

previous sections. They are optimal expanders, which gives them excellent mixing proper-

ties that are coveted in computer science. In particular, they are often used for applications

requiring pseudorandomness [Vad]. Pizer’s supersingular isogeny graphs were introduced

into cryptography by the authors of [Cha] at the NIST competition in 2005 [Lau]. The

construction of Ramanujan graphs from [Lub] was also proposed for cryptographic use, but

was defeated in 2008 by [Til] and [Pet]. The idea of [Cha] for a cryptographic primitive was

computing isogenies between supersingular elliptic curves, which is believed to be a hard

problem [Lau]. The best known algorithm solves this in O(√p log2 p) time [Cha]. This gives

us a technique to construct “good” hash functions. In order to explain what it is to be a

“good” hash function, we shall begin with some basic definitions [Hof]:

Definition 12. A hash function takes arbitarily long input D and outputs a short string

of bits that we denote H.

We would like the hash function to have the following properties:

1. The computation of the hash H is linear time.

2. Inversion of the hash function should be difficult, i.e. exponential time, i.e. given H

a hash, its difficult to find an input D such that its hash is H. This is called being

preimage resistant.

3. It is difficult to find two inputs D1 and D2 that have the same hash H. This is called

collision resistant.

In the construction of an appropriate supersingular isogeny graph from the earlier section,

we require the prime p to be of cryptographic size, i.e. p of at least 256 bits, and for ` to

be a small prime [Lau]. With this d-regular graph, one uses the input to the hash function

as directions to walk around the graph, the output is the vertex at the end of the walk (no
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backtracking) [Cha]. To execute said random walk, pick a starting vertex and convert the

input of the hash function into a base d − 1 number. This allows one to interpret which of

the d − 1 vertices to traverse next by establishing an ordering on the ` + 1 (d = ` + 1) torsion

subgroups at each node (see [Cha] for an exposition of how this is done in ` = 2 and ` ≠ 2

cases). [Cha] relate the collision and preimage resistance properties of this hash function to

the problem of finding isogenies between elliptic curves and argue why this problem is hard.

In our exploration of supersingular isogeny graph constructions, we focus on supersingular

isogeny graphs with full level N structure. The natural question is whether hash functions

created on these graphs would provided added security, particular in a post-quantum world.

Certainly as our graphs with full level N structure provide a cover for the level 1 construction

traditionally used for these hash functions, they provide at least as much security as the

original hash functions of [Cha]. Assuming one can break the level 1 case, one asks whether

the level N case is compromised or secure. We have already examined one of the properties of

these supersingular isogeny graphs with full level N structure, i.e. the number of connected

components. Now, we enter into further discussion of these graphs by making comparisons

with the construction of [Lub].

5.2 Extremal cases of the supersingular isogeny graphs with level

N structure

In this subsection, we will briefly describe the similarities between [Lub] Ramanujan graphs

and variants of our supersingular isogeny graphs with full level N structure in the extremal

case where the characteristic over which the elliptic curve is defined is 2.

In the [Lub] construction of Ramanujan graphs they work with Cayley graphs. For ( `
N
) = 1,

`,N ≡ 1 mod 4 distinct primes, they construct the Cayley graph of PGL2(Z/NZ) relative

to the ` + 1 elements derived from the set S, where

S = {(a0, a1, a2, a3) ∶ a0 > 0 odd, a1, a2, a3 even, a20 + a21 + a22 + a23 = `}.

The matrices constructed from S used to define the Cayley graph through action on PGL2(Z/NZ)
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are of the form
⎛
⎝
a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

⎞
⎠
,

where i2 ≡ −1 mod N . If ( `
N
) = −1, then we form the Cayley graph of PSL2(Z/NZ) relative

to S because the generators all lie in PSL2(Z/NZ). These graphs have well known bounds

on diameter and other properties. Now we investigate a similar, (though not exactly the

same) construction of supersingular isogeny graphs with full level N structure.

Let p = 2, we will consider the `-isogeny graphs (with ` ≡ 1 mod 4, prime) with level N

(N ≡ 1 mod 4, prime, distinct from `) structure in characteristic p. Recall that in our

construction of supersingular isogeny graphs with level N structure that gcd(p`,N) = 1.

Note that p /≡ 1 mod 12, and hence the automorphism group of the unique supersingular

elliptic curve defined over F̄p is not {±1}, in fact it has order 24. More specifically,

End(E) = Z [1, i, j, k, 1 + i + j + k
2

] .

Hence the automorphism group Aut(E) = End(E)× has 24 elements [Gor]. This is the first

difficulty in relating the [Lub] construction to the construction above.

Note that the level N structures on E in our construction correspond to GL2(Z/NZ), i.e.

pick some α ∶ Z/NZ→ E[N], any other such alpha is M ○α where M ∈ GL2(Z/NZ). These

comprise the vertices of the graph. Now we construct the edges (which creates a variant of

our original construction): consider the norm of the endomorphisms of E, Norm(a0 + a1i +
a2j + a3k) = a20 + a21 + a22 + a23, and the set

S = {(a0, a1, a2, a3) ∶ a0 > 0 odd, ai even, a20 + a21 + a22 + a23 = `},

which has ` + 1 elements. Note that composing any of these endomorphisms with any of

the 24 automorphisms perserves the kernel and degree of the map. Additionally, from [Gor]

example 4.2.5 we know that the automorphisms are solutions to

x2 + y2 + z2 +w2 = 4,
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and hence are given by all permutations of the vectors

{(±2,0,0,0), (±1,±1,±1,±1)}.

Further it is clear from direct calculation that composition with these automorphisms does

not take any element of S to any other element of S. Obviously any permutation of

(±2,0,0,0) makes every coefficient in the resulting element even, however a0 needs to be

odd. Additionally multiplication by any of the 16 elements that are the permutations of

(±1,±1,±1,±1) give rise to elements where the ai, i ≠ 1 are not even. Hence we view these

up to composition by automorphisms.

These endomorphisms of E must take a vertex (E,α) to some (E,α′). Since α ∶ (Z/NZ)2 →
E[N], to get α′, one must fix a basis for E[N], then for f ∈ T , f acts by sending

f = a0 + a1i + a2j + a3k ↦
⎛
⎝
a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

⎞
⎠
=Mf ,

and then α gets sent to f ○ α =Mf ○ α.

Fixing a starting α0, we see our graph amounts to a Cayley graph of GL2(Z/NZ) with

S as the set of generators. Now our issue in relating these graphs to the [Lub] construc-

tion is that we are dealing with the Cayley graph of GL2(Z/NZ) whereas [Lub] deals with

PGL2(Z/NZ). Now we explore a further variant of our construction in attempt to bringing

us closer to relating the two graphs.

For convenience we will switch from Z/NZ to FN since N is prime. Consider the short exact

sequence

F×N ⋅ SL2(FN) → GL2(FN) → F×N/F×,2N ,

where the second map is the determinant map. The quotient at the end contains two

elements. Further,

1→ F×N ⋅ SL2(FN)/F×N → GL2(FN)/F×N → F×N/F× 2
N → 1,
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is exact and hence so is,

1→ PSL2(FN) → PGL2(FN) ↠ F×N/F×,2N → 1.

Note that if t is not a square mod N , then
⎛
⎝
t 0

0 t

⎞
⎠

is in PGL2(FN), but not in PSL2(FN).

We arrive at the isomorphism

PGL2(FN)/PSL2(FN) ≅ F×N/F×,2N .

However, this quotient should really be viewed as

(GL2(FN)/F×N)/(F×N ⋅ SL2(FN)/F×N).

Let ( `
N
) = −1, with our fixed α0 and starting vertex (E,α0) we construct a variant of the

above graph where the other vertices are (E,M ○α0) with M ∈ GL2(FN) and det(M) ∈ F×,2N .

We denote the set of matrices in GL2(FN) such that det(M) ∈ F×,2N as GL2(FN)◻. Like

before, let

S = {f = a0 + a1i + a2j + a3k ∶ a0 > 0 odd, ai even i = 1,2,3, a20 + a21 + a22 + a23 = `2}.

Again, let these f act as matrices Mf defined by

⎛
⎝
a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

⎞
⎠
.

Note that since i2 ≡ −1 mod N , a20 + a21 + a22 + a23 = `2, and ( `
N
) = −1, the determinant of

these matrices is a square and hence Mf ∈ GL2(FN)◻. Now from our starting vertex (E,α0)
we consider the Cayley graph of GL2(FN)◻ being acted upon by S. Let us denote this as

Γ = Cayley(GL2(FN)◻, S).

Now we want to explore the connection between Γ and graph of the [Lub] construction. We

no longer examine the [Lub] Cayley graphs from PGL2(FN), but rather those of PSL2(FN)
when ( `

N
) = −1. One can view the set S inside PSL2(FN) which is equal to PGL2(FN)◻,
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and hence we can make a better comparison this way.

Now we concern ourselves with the projection of Γ onto Cayley(PGL2(FN)◻, S), the degree of

which is ∣F×N ∣ (one degree for each scalar multiple of any given matrix M). [Lub] gives us that

Cayley(PSL2(FN), S) is connected, but this graph is also equal to Cayley(PGL2(FN)◻, S).
We ask how many connected components the cover Γ has.

One can analysing the number of connected components of Γ. If M1,M2 are in the same

component of Γ, then for fi endomorphisms in S,

M1 = ft ○ ft−1 ○ ⋅ ⋅ ⋅ ○ f1 ○M2,

hence

det(M1) = det(M2) ⋅ `t.

Without loss of generality, we can replace M2 with another matrix in the same connected

component and get that

det(M1M
−1
2 ) = 1 mod N,

and hence

M1M
−1
2 ∈ SL2(FN).

Then we see that

M1M
−1
2 = ft ○ ft−1 ○ . . . f1 ⋅

⎛
⎝
a 0

0 a

⎞
⎠
,

for a ∈ F×N . Then M1 and M2 are connected in Γ if and only if any such
⎛
⎝
a 0

0 a

⎞
⎠

is a product

of elements of S.

Using a standard result about Cayley graphs (i.e. Lagrange’s theorem) even when S does

not generate the group, we know that the number of connected components to the size of

the group divided by the size of the set of generators. So long as S is the minimal generating
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set of this Cayley graph, this gives us that the number of connected components of Γ as

∣GL2(FN)◻∣/∣S∣.

Certainly one can go further along the lines of this investigation, however, a year is all that

is permitted for this thesis.

There are many other questions to be asked about the relations between these graphs. We

have seen that this variant of the supersingular isogeny graph with full level N structure

provides a cover of the [Lub] graph. What is its second largest eigenvalue? Does it satisfy

the Ramanujan bound? These questions require investigation, and this is only the extremal

case! Certainly there is more work to be done on the properties of supersingular isogeny

graphs with level N structure and the cryptographic security of their hash functions. Addi-

tionally, the characterization of the random walk of the `-isogeny volcano still requires work.

Hopefully the efforts in this thesis establish some useful results towards accomplishing these

goals.
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