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ABSTRACT

The growing popularity of mobile smart devices and advances in wireless tech-

nologies, coupled with state of the art machine learning techniques have created a

new era in context aware computing. Context and location aware systems provide

the opportunity of the collection of large amount of rich information about human

behavior and activities. Therefore, automatic activity recognition, whose goal is to

infer semantic patterns and routines from data gathered by such systems has become

a great interest among researchers in the field. This thesis applies machine learning

techniques to infer meaningful patterns about human activities and mobility from

sensory data. We present a sensor selection strategy for activity recognition on smart

mobile devices, which requires energy-efficient learning techniques due to the limited

computational and energy resources of such devices. We propose an online approach

that actively selects a smaller subset of sensors that are the most informative, yet

energy-effective, for each time frame. The empirical results confirm that the proposed

online method provides good power efficiency, while maintaining accuracy. Secondly,

we introduce a novel methodology for analyzing human location and mobility data.

Our approach aims to provide an understanding of human trajectories by modeling

Places of Interests for individuals, and constructing behavioral signatures for dif-

ferent groups of users based on their interests and specific mobility patterns. We

propose an unsupervised learning framework for clustering and labeling mobile data

trajectories based on Hierarchical Dirichlet Processes. This hierarchical clustering

model adapts the number of clusters identified in a dataset to the complexity of the
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data. We evaluate our method on three different real data sets including both fine-

grained indoor trajectories and coarse-grained outdoor mobility traces. The results

demonstrate that the proposed model is capable of learning the underlying struc-

ture of human mobility behavior, even in the presence of noisy and complex data.

Third, we present a device-free activity recognition system in the context of smart

spaces, consisting of three main building blocks: entrance detection, user identifi-

cation and localization. These recognition modules leverage a very recent sensing

technology based one wifi network coverage from off-the-shelf wireless devices, in

order to monitor the behavior and movements of users within an indoor space. The

experimental results of the proposed wifi-based system demonstrate that device-free

activity recognition is a promising line of research both for academia and industry.
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ABRÉGÉ

La popularit toujours croissante des appareils mobiles et les avancements des

technologies sans-fils combins aux nouveauts des techniques en apprentissage au-

tomatique ont cr une nouvelle re dans le domaine de linformatique sensible au con-

texte. Les systmes informatiques de type contextuel et de localisation accumulent

une grande quantit dinformation riche en contenu sur les comportements et activits

humaines. En consquence, la reconnaissance automatique des activits, qui a pour

but dinfrer les modles smantiques et routines partir des donnes accumules par de tels

systmes est devenu un sujet de grand intrt pour les chercheurs de ce domaine. Cette

thse dmontre des techniques dapprentissage automatique servant dduire des modles

significatifs sur les activits humaines et la mobilit partir de donnes de senseurs. Nous

prsentons une stratgie de slection de senseur pour fin de reconnaissance dactivits sur

des appareils mobiles qui requirent des techniques dapprentissage efficaces au niveau

de lnergie et de puissance de traitement pouvant oprer avec les ressources limites de

ces appareils. Nous avons propos une approche en ligne qui choisit de faon active un

petit sous-ensemble de senseurs qui sont les plus informatifs et efficaces en nergie pour

chaque plage de temps. Les rsultats empiriques confirment que la mthode propose

dmontre une bonne efficacit nergtique tout en maintenant la prcision recherche. Nous

avons introduit une nouvelle mthodologie qui offre un haut niveau de comprhension

des donnes de localisation et de mobilit humaine base sur la modlisation des lieux

d’intrt des individus et qui construit des signatures comportementales pour diffrents
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groupes dusagers en fonction de leurs intrts et leurs modles spcifiques de dplace-

ments. Nous proposons un cadre dapprentissage sans supervision pour regrouper

et tiqueter les trajectoires de donnes mobiles bas sur les processus hirarchiques de

Dirichlet. Ce modle de regroupement hirarchique adapte le nombre de regroupe-

ments identifis dans un ensemble de donnes la complexit des donns. Nous avons

valu notre mthode en utilisant trois diffrents ensembles de donnes qui comprennent

des trajectoires dtailles intrieures ainsi que des traces de mobilit extrieures moins

dfinies. Les rsultats soutiennent lide que le modle propos est capable dapprendre la

structure sous-jacente des comportements de mobilit humaine et ce mme en prsence

de donnes complexes et bruites. Nous avons prsent un systme de reconnaissance

dactivit sans appareil dans un contexte despaces restreints qui comprend trois com-

posantes principales : la dtection dentre, lidentification des usagers et la localisation.

Ces modules de reconnaissance sappuient sur une technologie de dtection trs rcente

base sur la couverture de rseaux WiFi gnre par des appareils sans-fils commerciaux

et qui permet de reconnaitre les comportements et mouvements dusagers dans des

espaces intrieurs. Les rsultats exprimentaux du systme bas WiFi dmontrent que la

solution de reconnaissance sans appareil est un sujet de recherche prometteur tant

pour le monde acadmique que pour une application en industrie.
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CHAPTER 1
Introduction

1.1 Motivation

Recent progress in wireless technologies and advanced electronics and sensors

has stoked a great interest, both in academic and commercial circles, in ubiquitous

information storage and analysis. The growing popularity of smart mobile and wire-

less devices enables the collection of large volumes of a wide variety of data about

human everyday activities, which creates important research opportunities in context

and location aware computing. These pervasive devices accurately and continuously

sense characteristics of the human environment, movements and behaviours in real-

time and have the capability of logging the information and transferring it to data

servers. The richness and extent of this information, coupled with state of the art

machine learning techniques, can be the basis for context aware activity recognition.

Human activity recognition is a complex and challenging problem, whose goal is to

discover meaningful patterns in human data. It has a broad variety of applications in

areas such as health and fitness monitoring, smart homes and assisted living, social

network analysis, surveillance and security, urban planning and mobile advertising.

For instance, patients with movement disabilities or elderly people often need to be

monitored at home and have a precise exercise routine as part of their daily life.

Automatic recognition of their daily physical activities can provide feedbacks on the
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routines and detect abnormal events [164, 148]. Or, environmental sensors embed-

ded in mobile phones have the potential to collect significant information that can

provide traffic suggestions, climate prediction or environmental monitoring.

Over the last decade there has been a significant amount of research attempting

to model user behaviour and predict their mobility patterns, often relying on heavy

deployment of complex sensing infrastructure (including cameras, accelerometer,

proximity sensors, GPS) to continuously collect sensor readings and utilize learning

algorithms to identify activities, movements or gestures. Most of the classical stud-

ies in activity recognition can be broadly divided into two categories based on their

sensing technologies. The first category is vision based systems (e.g. webcam-style

cameras, security cameras, depth sensing cameras, infrared cameras, tomographic-

based systems), which use computer vision algorithms to infer human activities from

recorded image sequences. An interesting example is Microsoft Kinect [22] that al-

lows the user to interact with console games by means of gestures. Although vision

based approaches have been suitable for some public place monitoring, surveillance

or gesture recognition applications, they raise serious privacy concerns when it comes

to constantly monitoring people’s personal and professional lives. In addition to be-

ing intrusive, video streams and images are very high dimensional signals and their

long-term processing and analysis techniques are relatively infeasible, complex and

computationally expensive. Another issue of camera based technologies is their sensi-

tivity to illumination variations, occlusion and background changes that make them

impractical in certain applications. The second category is sensor-based methods

that take advantage of compact sensors, which collect significant information about
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physical activities and movement patterns of the user [19, 90, 94]. Sensor-based

activity recognition itself can be generally classified into two categories in terms of

the type of sensor used for data gathering. The first is called as wearable sensor-

based computing, where information can either be collected by mobile smart phones

that come equipped with a wide range of embedded sensors (e.g. accelerometer,

gyroscope, GPS, wifi) or by using other smart wearable devices specifically designed

for the collection and storage of human activity monitoring. The global growth of

the wearable technology market (e.g. smart bracelets and smart watches) in recent

years, illustrates the significance of this trend and the user preference for these de-

vices due to their compact size, low cost, non-invasiveness and power efficiency. The

second category of sensor-based activity recognition relies on environmental variable

computing that unobtrusively infers human physical status from changes of environ-

mental variables (e.g. proximity, barometric pressure, temperature, humidity, RFID,

wifi signals) [99, 75, 28]. Ambient assisted living and remote care applications in

the context of smart home systems are remarkable examples of such intelligent tech-

nologies where normal and abnormal physical activities and environmental variables

are automatically obtained for evaluation of performance and safety [90, 148].

Despite advances in analyzing human behaviour from sensory data, there are

still technical challenges that motivate the development of new techniques to improve

performance in more realistic scenarios.

1.2 Contribution

The goal of this thesis is to propose and evaluate algorithms for learning human

behaviour patterns from data obtained from mobile and wireless sensory systems. In
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this spirit, different topics in human activity recognition are described and studied,

and new, practical machine learning solutions are proposed. In the following, we

highlight the novel contributions described in this thesis.

1.2.1 Sensor Selection for Efficient Activity Recognition

Activity recognition using real-time information obtained from embedded modal-

ities in smart devices is especially valuable, owing to the fact that these devices have

become ubiquitous, and they are capable of recording a large amount of data. Mobile

phone sensing and wearable devices are preferable in a wide range of applications

such as health-care, fitness and safety, due to their low cost, compact size, non in-

vasiveness and low power consumption. However, wearable devices impose some

restrictions in terms of computational and energy resources, which need to be taken

into account by a machine learning algorithm. As opposed to classical approaches

that include all available sensory information on the device to obtain high accuracy

in activity recognition, we propose to use a real-time learning method, which inter-

actively determines the most effective set of modalities (or sensors) given the task

at hand. The proposed approach actively selects a smaller subset of sensors that are

the most informative yet cost-effective for each time frame. We evaluated the per-

formance of algorithm on real data collected using the Intel Mobile Sensing Platform

(MSP) [42], which contains a number of sensor modalities and 6 different activities.

The empirical results show that the proposed online classification method provides

good power efficiency without significant loss in prediction accuracy.
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1.2.2 Location-based Activity Recognition

The growing popularity of location-sensing mobile devices and the recent progress

in wireless technologies and satellite-based navigation systems enables the collection

of a wide range of human trajectories and location data. These data have the po-

tential to reveal information about user context and mobility patterns, as well as to

provide insight into social behaviour. Different approaches have been put forward to

explore spatial characteristics of user behaviour [18], learn from individual location

history [76] and infer similarity or diversity among users [51, 53]. Application ar-

eas in which this type of information could be very useful, include advertising (e.g.

sending ads to a user that lingers in front of a particular store), surveillance and

security, health monitoring (e.g. recognizing if an elderly person living alone is hav-

ing abnormal mobility pattern and needs help), urban planning, and social network

analysis.

Most previous works on location-based activity analysis were focused on low-

level tasks (such as next location prediction, model-based trajectory analysis and

distance-based trajectory similarity detection) where the main goal is to define para-

metric spatio-temporal models that synthesize or summarize movement patterns.

However, these approaches are limited due to the geometrical complexity of human

mobility traces (which vary in shape and size) and due to stochasticity in movement

patterns. The problem becomes even more challenging when users go to new, unseen

places or when people with different mobility patterns share the same location infor-

mation. Therefore, the goal of this study is to introduce methodology that offers a
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higher-level understanding of human location data based on modeling “places of in-

terest” of individuals and constructing behavioural signatures for different groups of

users. We work under the assumption that the most frequently visited places by each

individual are indication of interests or intentions and that people can be grouped

based on these interests. More precisely, we develop a novel unsupervised learning

framework for clustering and labeling mobile data trajectories based on Hierarchical

Dirichlet Processes (HDP) [147]. HDPs are a powerful probabilistic, mixed-member

model for the analysis of grouped data, which adapt the number of clusters identified

in a dataset to the complexity of the data. The proposed framework was evaluated on

three real datasets from different application scenarios. The results support the idea

that the proposed model is capable of learning the underlying structure of human

mobility behaviour, even in the presence of noisy and complex human trajectories.

1.2.3 Wifi-based Activity Recognition

In recent years, a growing interest for activity identification through device-free

approaches has emerged since this does not require people to carry around the sensing

infrastructure. The alternative to using mobile sensor-based information for activity

recognition is to use radio frequency sensing interfaces, where the key idea is to moni-

tor the influence of human body movements and gestures on the strength and pattern

of wireless communications between a transmitter and receiver [153, 130, 105]. There

are various technologies for obtaining such data (including wifi, RFID, Zigbee, etc.)

with different characteristics and processing steps. For example, authors in [7, 5, 130]

have proposed monitoring the Doppler shifts and multipath distortions of wifi sig-

nals originated by human physical activities or capturing radio reflections bounced
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off human body in order to detect and classify different movements and gestures in

the environment. However, most of the existing approaches need specific custom

hardware, such as transmission radar in order to employ their solutions.

A very recent research area focuses on activity recognition by employing off-the-

shelf wifi devices, e.g., access points, laptops, smart TVs. This is mainly motivated

by wireless technology improvements and the fact that wifi signals are pervasive in

daily life at home, work and even public places. Studies suggest that information

gleaned from the physical layer in wireless infrastructures (e.g. wifi signals), such

as channel state information (CSI) and received signal strength indicator (RSSI)

values have the potential to characterize the environment they pass through, which

includes both ambient objects and human movements and gestures. However, the

current design and implementation of this novel technology exhibits some limitations

due to the complexity of the wireless signal propagation in indoor environments and

due to the challenging nature of human behaviour itself.

In this thesis we leverage this new technology to introduce a new activity recog-

nition systems within an intelligent indoor environment, created by wifi network cov-

erage of off-the-shelf wireless devices. In this study, several analytic and modeling

procedures are considered withing the concept of device-free smart homes, security

surveillance applications including localization, entrance detection and user identifi-

cation. The proposed design and implementation have been evaluated on real data

gathered from diverse living environments under multiple realistic scenarios.

1.3 Overview

The thesis is organized as follows:
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Chapter 2 provides a general overview of existing machine learning techniques

for the specific application of context aware activity recognition and human data

analysis. Also, we briefly introduce different types of human data and present existing

techniques for analyzing each data type.

Chapter 3 studies challenges and restrictions of wearable sensor-based activity

recognition and then presents a novel sensor selection strategy for efficient activity

recognition.

Chapter 4 contains the presentation of location-aware activity recognition prob-

lem. First, we provide an overview of existing location-aware approaches, and present

the necessary background material for our solution. Then, we describe our proposed

algorithm for high-level mobility data analysis.

Chapter 5 includes a review of radio-frequency based activity recognition and

describes our approach to creating an intelligent ambient that learns human activities

from wireless signal transmissions and distortions.

Chapter 6 summarizes the main findings and results, provides conclusions and

discusses some future suggestions for extensions of this work.
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CHAPTER 2
Background

Monitoring human daily activities and movements plays an important role in

context aware and ubiquitous computing in both academia and industry, where

it combines disciplines such as computer science, statistics, sociology and human-

computer interaction. The goal of activity recognition is to interpret activities and

gestures of users from data collected through a sensing infrastructure in order to

assist the users with their tasks. User activity recognition is a well studied and chal-

lenging research area because of the diversity and complexity of human behaviour

[29]. Researchers have investigated different data analysis approaches depending on

the underlying sensing technology that is employed for collecting the data and the

environment in which the activity is performed.

The first works on activity recognition took place within the computer vision

community and leveraged video cameras as sensing devices [35]. In fact, there have

been extensive studies of vision based activity recognition systems which exploit the

rich information contained in video. However, in some specific applications such as

surveillance and security vision based activity recognition suffers from privacy issues

and its computational cost can also be prohibitive.

Therefore, in this thesis we focus our attention on challenges and research prob-

lems related to sensor-based activity recognition systems. In this chapter, we discuss

related work and the necessary background on sensor-based activity recognition.
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Section 2.1 introduces the specific characteristics and challenges of human activity

recognition. Section 2.2 provides background on machine learning algorithms used

in this area. Section 2.3 presents related work on human activity learning systems.

Further background on specific methods is provided in each subsequent chapters as

needed.

2.1 Human Data Analysis

The early works on sensor-based activity recognition date back to the 1990s

[59, 135, 13] when small body-worn sensors were used for detection of basic phys-

ical activities and body postures under controlled conditions. Further advances in

miniaturization and computational power motivated steps towards more challeng-

ing problems and realistic application scenarios where the human data was collected

under naturalistic circumstances. Particularly, the automatic recognition of human

activities has become interesting and beneficial to several real-world domains such as

smart homes [144] and assisted living [158, 174], medical diagnosis, rehabilitation and

physical therapy [86, 32, 85], the entertainment and sport sectors [138, 17, 55] and

security [164]. In recent years, activity recognition has become a key component in

many human-centric industrial applications. For instance, most of the leading smart

phone manufacturing companies like c©Samsung and c©Apple release their devices

preloaded with integrated health platforms that collect and analyze sensory data to

help users track their own activities and hence fitness and wellness. Another example

is sport products such as the c©Nike+ running shoes and SportWatch, the c©Speedo

wristwatch, E-textile (garments made from smart textiles that monitor heart rate),

c©ImpactSport’s ePulse armband (heart rate monitor) or c©BodyMedia’s GoWear
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unit (equipped with accelerometer, heat flux, galvanic skin response and skin tem-

perature), which provide users with feedback on their performance using compact

integrated motion and body vital sensors.

Despite considerable advances in collection and analysis of human data, design-

ing and developing activity recognition systems for real life applications remains a

challenging task, due to some unique requirements such as data collection protocol,

sensor selection and placement strategies and ground truth annotation. We know

outline some of these issues.

2.1.1 Common Issues in Human Data Analysis

2.1.1.1 Data Collection Protocol

Any comprehensive human-centric study should contain a large number of par-

ticipants with diverse characteristics to ensure flexibility and robustness of the sys-

tem. However, in many behavioural and activity monitoring studies, the techniques

are evaluated on data collected in controlled experimental settings (e.g. laborato-

ries) where participants are asked to perform predefined and staged actions. This

setup usually allows dense sensor installation which provides useful data but can

not be replicated in real practical scenarios. As a result, the performance of the al-

gorithms significantly decrease when used under naturalistic circumstances, because

the controlled environment may artificially restrict, simplify or influence the learning

process [19]. A relatively small number of studies have collected data under longer

term and in real-life naturalistic (or semi-naturalistic) conditions where the partic-

ipants perform their normal everyday activities. These out-of-lab natural settings

usually result in lower recognition accuracy.
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Another aspect of human data collection is the extent to which the user is

actively engaged in the sensing process [94], which allows the development of two

different types of experimental design: participatory sensing or opportunistic sensing.

In the former, the users actively perform the activities and may also provide true

labels to facilitate the learning process. In the latter case, the participants are not

involved in the data collection activity, which is particularly useful for community

sensing where individual sensing could be hard and time-consuming.

2.1.1.2 Sensors Selection and Placement

One of the preliminary steps in activity recognition is to determine the most

informative and cost-effective set of sensors that allows optimum separation of activ-

ity patterns in the feature space. There are many factors that influence the sensor

selection process for activity recognition infrastructures such as price, size, energy

consumption, obtrusiveness, ease of installation and integration with existing plat-

forms and type of data it generates. In the context of wearable (on-body) sensors, the

challenge of sensor selection is coupled with the number and placements of sensors

(especially for accelerometers), since the accuracy of activity recognition is affected

by position setup depending on the application. For example, different studies sug-

gest that for body posture and activity analysis from accelerometer data, the best

position to attach the sensors are on thigh and hip to help distinguishing walking,

sitting, standing and cycling, and on chest and wrist to help distinguishing typing,

eating and lying [66, 19, 55]. On the other hand, there are scenarios and applica-

tions in which it is required, convenient or beneficial to carry-on activity recognition

from context environmental information such as proximity, pressure, and radio-based
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signals(e.g. wifi and RFID). Although these platforms are more comfortable and un-

obtrusive, there are many concerns and challenges that need to be considered while

dealing with non-wearable sensors. Depending on the application, a broad variety

of parameters influence the performance of sensing infrastructure such as ambient

noise, inference impact, energy efficiency and range, occlusion and orientation sensi-

tivity. For instance, authors in [28] have used RFID tags to explore the interaction

of users with everyday objects and they have performed a wide range of experiments

to discover the optimum setup of RFID tags (in terms of spatial density, orientation,

proximity to users, etc.) for activity monitoring in a realistic home environment.

2.1.1.3 Preprocessing

Human-related sensor modalities are acquired from multiple sources of sensing

infrastructures with different characteristics such as sampling rate, power consump-

tion and required operating system. For example, the sampling rate for accelerometer

depending on the application lies between 20Hz to 100Hz [95], where as GPS is typ-

ically sampled at a relatively slower rate about(5Hz) [29]. Moreover, raw sensor

data may be disturbed by artifacts due to sensor displacement or malfunction and

electronic noise. Thus, after collecting raw data from different sensors, the next step

is pre-processing that begins with synchronization and noise reduction. This stage

employs signal processing techniques such as filtering and smoothing to remove ar-

tifacts and transforms the nonsynchronous sequences of raw samples into a set of

synchronized time-series.

At the same time, human activities are often performed in time units of seconds

or minutes, which is much longer compared to the sensors’ sampling rates; thus,
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activity recognition needs to be carried out during a time window (rather than by

samples). Furthermore, humans perform their activities consecutively and even con-

currently,and the transitions between actions are smooth rather than being clearly

separated by pauses. The segmentation step identifies the boundaries of activities

and separates the segments of the data stream that contain information about activ-

ities. Segmentation techniques can be divided into two categories: overlapping and

non-overlapping approaches, where the size of the segments can be fixed or optimally

adapted to the application characteristics. In the literature, the most commonly used

methodology for stream segmentation is the time-based sliding window, where a win-

dow of fixed size moves over sensor events in order to take into account temporal

variations and time dependency for activity learning [19, 81, 90, 92]. Another group

of studies, have used contextual sources of information (e.g., additional sensors) to

identify segments of different activities from the recorded data. For example, mobile

phone usage context (such as text messages and call logs) or location information

obtained from GPS traces [14] may be used as an external source of information

about the start and duration of activities.

2.1.1.4 Feature Computation

The raw sensory data gathered from sensing devices are usually an ordered

sequence of observation values at consecutive time steps. After preprocessing, a

feature extraction module transforms the raw observation samples into features (or

attributes) that help discrimination between different category of activities. In ac-

tivity recognition, the feature selection criteria are usually problem-dependent. In
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general, two class of approaches have been proposed to extract features for activity

recognition:

• Statistical Features: The classical methods of feature extraction are signal-

based statistical analyses due to their simplicity and high performance across

different applications. In these approaches, a variety of quantitative character-

istics, including wavelet, time- and frequency-domain information, are gener-

ated from raw signals that best describe human activities.

• Knowledge-driven Features: These approaches intend to exploit semantic

relationships and prior knowledge in the domain of interest in order to capture

deeper interpretation of humans’ behaviour and activities in real life scenarios

and applications [39].

Table 2–1 represents the most commonly used features and examples of their appli-

cations.

The feature extraction step is often followed by a feature selection process or

a dimensionality reduction that prepares the data for the machine learning stage.

The goal of the feature selection or dimensionality reduction step is to increase accu-

racy and reduce computational cost. The more features are involved in the learning

process, the more computational effort, data and memory are required. Moreover,

not all of the extracted features are equally informative and discriminating between

activities. Therefore, a variety of feature ranking and feature selection approaches,

such as Independent Component Analysis(ICA), Local Discriminant Analysis (LDA)
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Table 2–1: Common feature extraction approaches and example applications in hu-
man activity recognition

Type Features/Examples References

Statistical Features

Time-domain (Mean,
standard deviation,
variance, entropy,

kurtosis)

[141, 19, 125]

Frequency-domain
(Fourier transform,

discrete Cosine transform)
[141, 19, 125, 89]

Time-Frequency domain
(Wavelet transforms)

[110, 118]

Others (Principal
Component Analysis,
Linear Discriminant

Analysis, HAAR filters)

[73, 11, 40]

Knowledge-driven Features

Event-based (neighboring
event, situation similarity,
activity duration, step

detection)

[112, 20, 21]

Body model(sensor
position, cross
acceleration)

[15, 21]

Environmental variables
(audio, light, location,

date)
[18, 60, 125]

and Principal Component Analysis (PCA), have been explored in the activity recog-

nition literature [16, 12]. For example, PCA is a well known and widely used sta-

tistical method that discovers the optimal linear combination of the features and

maps data points from a high dimensional space to a lower dimensional space while

keeping all the relevant linear structure intact [11, 163]. Some other studies consid-

ered using sequential forward/backward feature selection (SFFS/SBFS) algorithms
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that adds/removes extracted features one at a time such that the performance is

maximized [11, 129]. As an alternative, some machine learning techniques such as

Lasso or AdaBoost include built-in feature selection mechanisms that automatically

select a relevant subset of feature.

2.1.1.5 Ground Truth Annotation

Accurate annotation or labeling is an important step towards activity recogni-

tion, since it has a big impact on supervised learning models that are widely em-

ployed. Unfortunately, directly observing users can be expensive and inaccurate

and scales poorly for the monitoring of large populations. In many cases researches

use data annotated with subject self-report labels. In this method, the participants

are asked to manually note the activities that they perform, which can potentially

increase the amount of collected data and help to reduce the effects of individual

variation. However, the reliability of self-report annotation has been the subject of

considerable debate, due to its error-prone nature. A least interfering and erroneous

alternative would be using cameras or microphones while the activities are carried

out. The downside of this method is that it often requires human observers to review

the data in order to annotate it with corresponding activity labels. In recent years,

researchers have focused on investigation of learning techniques (i.e. unsupervised

and semi-supervised algorithms) that reduce the need for labeled data and at the

time, introduce methodologies that automatically detects the activity segments from

the raw data with minimum user involvement. For example, authors in [150] have

used speech recognition techniques to detect the start and end point of activities

from predefined set of commands.
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2.1.2 Sensing Technologies

Learning human behaviour and activities can take advantages of both low-level

sensor data and high-level context information. Advances in pervasive computing

along with machine learning algorithms engendered the paradigm of inexpensive and

unobtrusive smart environment for gathering functional status of users. Recently,

many projects have been developed that resulted in smart infrastructures for mon-

itoring and learning from human behaviour at both individual and organizational

scales. Mobile Sensing Platform (MSP) an embedded activity recognition system

[42], MavHome and CASAS smart home projects [45, 47] and PlaceLab a radio

beacon-based localization system [93] are examples of collaborative efforts between

academia and industry for real-life deployment of human activity recognition.

One important aspect of designing a sensing platform for activity recognition is

the level of user engagement in the process of human-related data collection, which

categorize the existing systems into two types: participatory sensing and opportunis-

tic sensing [94]. In the former, the participants are voluntary incorporated into the

sensing system and consciously interact with the sensing devices. In the latter case,

sensing system automatically collects data without the participants’ involvement or

intervention. Depending on the characteristics of the problem at hand (tolerance

of users to endure interruption, sensitivity of the information and other practical

consideration), a system decides to what extent participants should be involved in

the data collection stage.
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Researches in sensing technology has resulted in a wide range of prototypes

including, but not limited to: on-body sensing, environmental variables, location,

physiological data and Context sensing.

2.1.2.1 On-body Sensing

For many years, wearable sensors, small size mobile devices equipped with minia-

ture internal sensors, have been the most important and broadly used source of infor-

mation for body posture and human activity analysis. These internal sensors include

motion and orientation sensors (i.e., 3D accelerometer, gyroscope, compass and mag-

netometer), proximity sensors and Bluetooth, and have been widely used as sensing

technologies for activity recognition [42, 94, 29, 99, 90]. Classical studies in wearable

sensors-based activity recognition used to place a single type of sensor, typically ac-

celerometer, in multiple positions on body to infer the physical movement of users.

For example, several studies have reported high recognition accuracy rates (up to

%98 [87]) for ambulation activities (e.g., walking, lying, bicycling, climbing stairs,

shaking hands) only from acceleration data, under different application scenarios and

evaluation methodologies [59, 13, 19, 163, 15].

Over past decade, with advances in microelectronics several research groups

developed small wearable sensing platforms that packaged multimodal sensors into

a compact device, providing the capability to store raw sensor data, communicate

and even locally process the data. For instance, Xsens [134], MSP and SenseWear

[132] provide versatility by detecting different modalities for deployment of many

applications of monitoring human body movement and posture for home automation

or healthcare. Recently, we are on the new era of context-aware computing where
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smart mobile devices are a ubiquitous part of modern society, and they are capable

of recording a wide range of sensing modalities. These mobiles incorporate many

diverse and powerful sensors and due to their convenient size people carry them

close to their body (e.g. in their pockets or ) almost everywhere. Hence, there is an

increased interest in using off-the-shelf mobile phones for collecting human-related

data and studying human movement and behaviour from these realistic source of

information [92].

2.1.2.2 Environmental Variables

In many instances intelligent environment can assist monitoring the state of

users. A large group of studies have explored the influence of user activities on

ambient variables (such as barometric pressure, temperature, audio signals, speech,

humidity, ambient light), and then aimed to statistically verify the changes in these

measurements with respect to each activity [107, 42, 99, 125, 84]. Particularly, passive

environmental variables are proven to reflect the characteristics of user’s physical

motions (e.g., walking, running, resting) and their associated locations.

2.1.2.3 Location Data

Knowledge of user’s location and mobility pattern provide fundamental infor-

mation for estimating human activity. Even though human mobility and movement

models have a high degree of variation, they also exhibit structural patterns due

to some restrictions such as temporal, geographic and social constraints. Different

approaches have been put forward to derive user location [91, 6, 84, 31], explore spa-

tial characteristics of human behaviour [18, 75, 171], and learn from individual and
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social location histories [51, 53, 41, 14]. At the application level, location-based ac-

tivity recognition can potentially benefit many research areas, such as advertisement,

health monitoring, social, urban planning and transportation.

The framework of system locations can be briefly divided into tree classes: mo-

bile phone-based location systems (GSM), radio-based location systems (wifi bea-

cons, RADAR, Zigbee, RFID tags), satellite-based location systems (Global Posi-

tioning Service (GPS), GLONASS satellite navigation systems). Another aspect of

location sensing infrastructure, which plays an important role in the accuracy and

performance of a location-based activity recognition system, is the range of coverage

through different spaces. For example, GPS receivers are ineffective and unreliable

indoors, while infrared proximity badges perform poorly in the presence of direct

sunlight and cannot be used outdoors [31]. As an alternative, Intels Universal Loca-

tion Framework (ULF) [67] fuses readings from an outdoor GPS receiver with indoor

WiFi signal-strength triangulation when user moves between indoor and outdoor

environments.

2.1.2.4 Physiological Data

Physiological signals were expected to play a larger role in revealing information

about human behaviour. A few work considered combining vital signs data (such as

heart rate, electrocardiogram ECG, skin temperature, eye-blinking, respiration rate

and blood oxygen saturation) with other sensors for monitoring physical activities

of users [143, 125, 96, 30]. However, these signals often response to activity changes

with a delay which makes them more correlated with the intensity level of the activity

instead of the type or duration of the activity [125]. Moreover, biosignals are very
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sensitive to sensor placement, subject-dependent and noisy measurements, which

makes the data analysis more challenging. In spite of that, the physiological signals

are proven to accurately reflect the emotional and biological states of users and have

been vastly used in affective recognition and health monitoring studies.

2.1.2.5 Radio-based Sensing

There is a recent research interest towards device-free sensing technologies that

relax deployment requirement and active user involvement, and reduce the energy

consumption for data collection. These infrastructures (such as wifi, Zigbee badges,

RFID tags, FM broadcast signals, microwaves) consider the fact that any moving

object in a radio field attenuates the radio strength and influence the characteristics

of communication channel between transmitter and receiver [153]. Most of the related

works in activity recognition from radio-based sensing devices focus on body motion

and gesture detection in home automation and assisted living applications (e.g.,

[5, 105, 7, 130]), where the wireless communications coverage are expected to be

more stable and have higher quality.

2.1.2.6 Context sensing

Modern studies of activity recognition have adopted a new range of context

information to exploit human behaviour and actions. Depending on the application

scenario, researches have used various sources of information from phone context

(e.g., call, text, email, web surf, application usage, calendar entries) to social network

(e.g., c©Facebook and c©Twitter profiles) and social media communications (e.g.,

shares, likes, follows, messages) in order to facilitate understanding and monitoring

human behaviour [51, 83, 114, 52, 107]. This contextual information along with
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other sensory data lead to creating user-specified models that accurately discover

and identify structure in routine of user behaviours and learn about their interests,

attentions and actions.

2.2 Taxonomy of Machine Learning

Similar to any pattern recognition algorithm, a typical activity recognition

pipeline comprises a front-end, whereby relevant features are extracted from the

data stream, and a back-end, where the task of learning takes place. So far, we had

focused on th challenges and properties of the front-end. In this section we will shift

the focus more towards the learning mechanism. Machine learning is a large field in

artificial intelligent that aims to evolves knowledge and patterns in empirical data

to generalize from limited amount of instances. The general role of machine learning

in activity recognition is to build a comprehensive model that accurately outputs a

label of activity given a set of input observations. Machine learning and probabilistic

modeling techniques that have been used for activity recognition varies akin to the

variety of the sensing technology and activity itself. Based on the type of obtainable

information, learning techniques can be broadly divided into four main classes: su-

pervised, semi-supervised, unsupervised and reinforcement learning. The supervised

learning approaches learn from given instances, which means each point in training

data is associated with an output class label. Unsupervised learning approaches are

considered when labelled data is not available and we aim to discover structure or

similarities among observed instances. In the semi-supervised learning approaches

the assumption is that we have a small amount of labelled data and a large amount

of unlabelled data, where the goal is to improve accuracy of supervised learning tasks
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using the readily available unlabelled data. In reinforcement learning, the goal of

the learner is to learn which action to take based on a rewards/punishment system.

Unlike the previous types, reinforcement learning is not commonly used in activity

recognition literature.

Learning approaches can also be categorized based on the role of learner. Tradi-

tional learning techniques, which take a given batch of data and produce a hypothesis

or model are called passive learning algorithms. Alternatively, active learners are the

algorithms that have access to a small amount of labeled data, but can interactively

query the source of information to achieve optimal outputs. There are several strate-

gies for determining which data points are most informative and should be labeled,

including [137]:

• Uncertainty sampling, that selects the data points the model is least confi-

dent about.

• Query by committee, that involves a committee of models trained on the

current labelled data, and selects the data points which they disagree the most.

• Expected model change, that selects the data points which would convey

the greatest change to the current model.

• Expected error reduction, that selects the data point which would most

reduce the model’s generalization error.

Here, we provide an overview of existing learning approaches for treating human-

data in activity recognition context.
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2.2.1 Supervised Learning

As mention earlier, when we are fortunate enough to obtain observations with

activity labels (training set), we consider supervised learning algorithms to produce

a classifier that can assign label to unseen data (test set). The majority of classical

works in activity recognition have used supervised learning approaches, including

both discriminative and generative models. Discriminative models (such as Support

Vector Machine(SVM) and decision trees) simply provide explicit boundaries between

classes, whereas generative models (e.g. Naive Bayes, Hidden Markov Model(HMM))

learns the distribution of each individual class and how the data is actually generated.

Suppose we have a set of N training samples of the form {(x1, y1), · · · , (xN , yN)},

where each xi denotes the feature vector of the ith sample and yi denotes its asso-

ciated output value or label. There are tree type of activity recognition problems

that can be addressed using supervised learning framework depending on the type

of output domain:

• Classification: that is the general case in activity recognition where the train-

ing data is used to assign and predict an activity class label, Y , from a finite set

of nominal variables or categories. In this case, if there are only two choices of

activities(e.g. talking vs. not talking) [114], we have binary classification and

when there are more categories (e.g., walking, running, jogging), the problem

is multi-class classification [131, 92, 141, 171].

• Regression: the problem where the learning goal is to predict a real-valued

output, Y = R, such as heart rate and body fat percentage [97], instead of

class label.
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• Anomaly detection: where the goal is to identify an unusual event, such

as fall or intrusion detection [164, 71], given an imbalanced dataset including

many samples of normal events and a small minority of abnormal events.

More formally, given a training set D ⊆ X ×Y consists of N samples, a super-

vised learning algorithm seeks a function h : X → Y , usually called a hypothesis,

such that h(X) is a good estimation of Y values with small generalization error.

In supervised machine learning, the generalization error is a measure to evaluate

the accuracy of an algorithm in predicting labels for previously unseen data. The

hypothesis space H ⊆ Y X , is a subest of possible functions out of which the learner

selects its hypothesis depending on the properties of the feature space and prior

knowledge on the learning task. In order to choose the hypothesis that best fits the

training data, a loss function L(yi, ŷ) is needed to be defined to measure how much

the predicted estimations, ŷ, differ from the true y values. The risk of function h is

then defined as the expected loss of h, and can be estimated from the training data

as

R(h) =
1

N

∑

i

L(yi, h(xi)). (2.1)

In supervised learning framework, the goal is to choose the hypothesis that

minimize the risk function. There are two basic approaches to choosing h: empirical

risk minimization and structural risk minimization, while both approaches assume

that the training set are N drawn i.i.d. pairs according to the distribution D. In

empirical risk minimization, the learning algorithm aims to search for the h that

minimizes the R(h), so an optimization algorithm can be applied to find the h.
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In probabilistic models where h takes the form of a conditional probability model

h(x) = P (y|x), the loss function is the negative log-likelihood L(y, ŷ) = − logP (y|x),

and the empirical risk minimization is equivalent to maximum likelihood estimation.

When the training set does not include sufficient samples, empirical risk min-

imization may lead to high variance and poor generalization. Choosing a more

complex hypothesis may yield to finding a fit that perfectly predicts the training

samples, but it does not generalize well to new unseen data. Structural risk mini-

mization seeks to prevent the learner from memorizing the training samples without

generalization, i.e. overfitting, by incorporating penalty into the optimization. The

main idea is to change the error function that we intend to minimize into

J(h) = R(h) + λC(h) (2.2)

where λ is regularization coefficient and controls the bias-variance trade-off, and can

be chosen empirically via cross validation. C(h) is the regularization penalty that is

employed to penalize complexity of the hypothesis.

2.2.2 Unsupervised Learning

Unsupervised learning is considered where the training set contains only unla-

belled data points. Consider a dataset of N input samples of the form {x1, · · · , xN},

where each xi denotes the feature vector of the ith sample and X denotes the input

space. In this case, there is no corresponding desired output Y provided in the data,

and the goal of the machine is to develop a formal framework to estimate a model that

represents the probability distribution for new input given previous inputs. Indeed,

discovering structures and routines in human behaviour from completely unlabelled
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data is a complicated problem. Therefore, the goal of unsupervised algorithms is to

find underlying patterns or similarities in the data. Different approaches of unsuper-

vised learning based on their application include:

• Clustering: Cluster analysis is the general task of grouping a set of observa-

tions according to their similarity. Many activity recognition application have

used different clustering methodology for finding activities such as typical am-

bulatory activities and context identification from the unlabelled observations

[111, 89, 114].

• Dimensionality reduction: This is the process of replacing a high-dimensional

feature space by its projection onto a smaller space to avoid the effects of curse

of dimensionality and improve the performance of the learning model. This pro-

cess summarizes all data points in the same way regardless of their class. Many

activity recognition systems have used dimensionality reduction techniques as

a pre-processing step to the main classifiers [12, 11, 163].

• Quantization: This has often been used as a pre-process step for discretization

of continuous variable spaces.

2.2.3 Semi-supervised Learning

Semi-supervised learning consider the application scenarios where obtaining fully

labelled data is hard or expensive, and therefore, the goal is to learn from partially

labeled instances. In this case, the small amount of labelled instances are used to

train a classifier and create decision boundary between the classes, and later, the

decision boundaries are enhanced based on the distribution of the larger amount of

unlabelled instances. In fact, semi-supervised learning is halfway between supervised
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and unsupervised learning [37]. In many human-centric data analysis applications

learning with semi-supervised algorithms are preferable since they can take advan-

tages of large quantities of observations without considering the annotation costs.

For example, many recent activity recognition studies have benefited from different

strategies of semi-supervised learning in their works to avoid the complications of

getting fully labelled data [119, 139].

As in the supervised learning framework, we are given a set ofN training samples

with the form of {(x1, y1), · · · , (xM , yM)}, where each xi denotes the feature vector

of the ith sample and yi denotes its associated output value. Additionally, we are

given M samples {xN+1, · · · , xN+M} without corresponding labels or outputs Y ,

with typically N � M . Semi-supervised learning algorithm attempts to leverage

combined information to improve the performance of individual classification (on

only labelled part of the data) or clustering (on all of the data while discarding the

labels) models.

In general, most of the semi-supervised algorithms used in activity recognition

field can be organized into two classes:

• Generative models: These commonly used models usually assume some ad-

ditional information is available on the probability distribution of the observa-

tions and try to estimate the parameters of this probability density function.

These approaches seek to estimate p(x|y) the distribution of data points be-

longing to each class, and assume that the distribution takes a particular form

of p(x|y, θ) parameterized by the vector θ. The parameterized distribution can
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be written as p(x, y|θ) = p(y|θ)p(x|y, θ), and each parameter vector θ corre-

sponds to a predictor function fθ(x) = argmax
y

p(y|x, θ). To identify the fθ

that both fits the labelled data and unlabelled data, the log likelihood of θ is

maximized, with λ as a balancing weight,

argmax
Θ

(

log p({xi, yi}
l
i=1|θ) + λ log p({xi}

l+u
i=l+1|θ)

)

(2.3)

Examples of this models applied for activity recognition problem include Gaus-

sian mixture models for activity recognition in healthcare monitoring systems

[124] and Hidden Markov model for daily routine activity recognition [88, 150].

• Graph-Based models: In this class of algorithms the data is represented by

the nodes of a graph, where the edges are labelled with pairwise distance of the

incident nodes and then the distance of two points is computed by minimizing

the aggregate path distance over all connecting paths. The intuition is to

construct a graph using domain knowledge or similarity of instances. One

common method is to connect each data sample to its k nearest neighbors or to

samples within some distance ε, where the weight W ij of an edge between each

two samples xi and xj is set to e
−||xi−xj ||

2

ε . For instance, in [140] authors have

proposed and explored a graph-based semi-supervised technique for decreasing

the level of experience sampling interruptions in a scalable activity recognition

system.

2.3 Learning Human Activities

Human related data acquisition and inferring semantic activity (including ges-

ture, action, behaviour and routine) labels have created specific research challenges.
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In this section, we aim to briefly study the common issues and properties pertaining

to designing and developing an activity recognition system. The related works in

human activity recognition can be categorized from many point of view. Here we

describe the most important characteristics of design and implementation of activity

recognition systems.

• Goal of the system: Activity recognition systems can be categorized into

three types in terms of their intended tasks; predictive systems that learn from

the past events and need to predict the future events such as next location or

user action, decision making systems that learn from the current state and sit-

uation of the user and are required to derive a real-time decision, e.g., location-

based mobile advertising services, and analytic systems that usually learn from

a large-scale or long-time observations of user activities and infer higher-level

information about their behaviuoral routines and interactions.

• Response time: According to their response time activity recognition systems

can work offline or online. The former record the data from sensing devices

and afterwards, process the data and provide feedback. The latter systems

acquire data from sensing devices and process it in real time, and hence, can

provide immediate feedback on the performed activity.

• Subject-dependency: An activity recognition system can be personalized

for each individual or be a general flexible model that works for all individu-

als. User specific models imply that the system should be re-trained for each

new user and tailored to the user specific characteristics. Furthermore, some

systems take advantages of combining the personal and general models to form
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a hybrid model that maximize the benefit from labelled data. Moreover, the

activity recognition system can only be focused on individual activities and

actions or study the organizational behaviour of a group of users. The latter

case targets a group of human subjects and aim to learn patterns in their social

interactions, interests, habits and participations.

• System model: When there is enough labelled data available for studying

an application, in general a statistical machine learning approach is utilized to

train a model based on observations, called data-driven approach. In contrast,

knowledge-driven approaches (e.g., rule-based models) depend on rich domain

knowledge and heuristics to capture and encode the characteristics of the prob-

lem using a set of logical rules found by greedy searches. There are also hybrid

models which bridge the gap between theoretical domain knowledge and a set

of classified examples of a problem.

2.3.1 Activity Recognition Challenges

While activity recognition application faces the general research challenges of

all pattern recognition systems, they also need to cope with a number of specific

domain-specific issues.

Definition of activities. The first specific challenge of the activity recogni-

tion problem is the complexity and diversity of human activities that can be per-

formed in many different ways. Although state-of-the-art researchers have reported

good performances on many types of activities, providing a clear taxonomy of human

activities is still an on-going investigation. Therefore, the activity recognition field

is far from reaching a good understanding and definition even for simple activities.
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Table 2–2: Common types of activity classes used for human behaviour analysis.

Activity class Examples References

Ambulation

walking, running, sitting,
standing, cycling,

climbing stairs, driving a
car, lying, treadmill,
rowing, jumping, cross
trainer, riding elevator

[131, 92, 87, 143]

Everyday routines
eating, drinking, brushing

teeth, watching TV,
vacuuming, hygiene

[28, 90, 131]

Location-based

proximity, localization,
mobility tracking,
mobility pattern,

next-location prediction

[84, 31, 6, 67]

Healthcare

breathing, eye movement
analysis, body position,
abnormal events (falling,
high blood pressure)

[7, 30, 158, 71]

Human-computer
interaction (HCI)

typing keyboard, making
call, texting, moving a

computer mouse
[51, 53]

Table 2–2 briefly summarizes important examples of activity classes introduced in

the related works.

Complex and overlapping activities. Different kinds of activities have

their own specific characteristics that introduce completely different problems to the

field. The challenge explained in previous paragraph became even more complicated

when complex routines or behaviours are to be recognized. Complex activities are

composed of several consecutive simple sub-activities that might be performed with
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certain logical sequence, speed and duration. For example, preparing food is com-

posed of several instances of washing objects, chopping, shredding, cooking, among

others, that might be carried out in an interleaved manner.

Moreover, studies in the field generally assume that a user only perform one

activity at a time which can be true for some certain activities such as cycling and

sitting. However, in real-life scenarios boundaries between activities are fuzzy since

they can take place concurrently, alternating or overlapping. For example, an indi-

vidual can be watching TV while cooking or may fall when trying to sit. Therefore,

capturing activity boundaries and transition points brings additional uncertainty to

the problem.

The work in [80] is an interesting study, which first uses supervised learning to

assign low-level simple activity labels to the sensor data, and then employs an unsu-

pervised probabilistic modeling, i.e. Latent Dirichlet Allocation (LDA), to discover

structures in activity patterns. In this work, a fairly large set of high-level complex

events, such as discussing at whiteboard, picking up cafeteria food and preparing food

are discovered using data from wearable sensors. LDA is an example of a topic mod-

eling, which is a type of probabilistic modeling for discovering abstract topics that

occur in a collection of text data. This family of unsupervised learning are excel-

lently suited where the tasks is to discover and model structure of multiple events in

different levels. In Chapter 4 and 5 of this thesis, we have adopted this framework

to extract high-level structure in users activities from low-level data.
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Long-term monitoring. There are several real-life situations wherein human

activity recognition or monitoring needs to provide long term supervision or assis-

tance to the users. A few examples of such scenarios include assisted living and

medical applications for people with chronic problems, group behaviour and routine

analysis or sport application for recording daily performances. Long-term continu-

ous measurement of activities dramatically increase the cost and complexity of the

recognition system and impose additional constraints to confidentiality and intrusion

concerns. In recent years, many studies suggest utilizing inertial sensing infrastruc-

tures, where taking measurements do not interfere too much with user’s normal life,

and ultimately, shifting the research direction towards device-free solutions. For ex-

ample, the study in [7] suggests using a radio-based radar technique, called FMCW

(Frequency Modulated Carrier Waves), to separate the reflections arriving from hu-

man body to continuously, yet non-intrusively, monitor chest movements in order

to extract breathing pattern and heart rates. Another example, is the work in [65],

where acceleration data from a wristwatch is incorporated with prior knowledge re-

garding the duration of the activities, by coding them as constraints and sequence

patterns, in order to monitor daily routines (e.g. showering, dinning and brushing

teeth) of users.

Predictive learning. Another important aspect of human activity recogni-

tion is how well the system is capable of predicting user’s future move/activity/location.

Several statistical models (mostly based on Markov models, Bayesian networks and

Neural networks) have been proposed in the literature to learn the temporal/spatial

patterns in sequences of events and and try to predict the upcoming activities/locations
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based on the previous observations. For instance, the work in [127] investigates the

feasibility of indoor next location prediction using sequences of previously visited

locations and employing a recurrent neural network, i.e., Elman networks, in the

context of smart office building. This ability to predict one or few next activities

or locations could be extremely helpful in applications such as advertisement, trans-

portation and risk management. For example, a location-based recommendation

model is proposed based on collaborative filtering and genetic algorithms in [48],

which leverages user’s preferences and context information to predict the potential

items from available products or services.

Activity recognition datasets. If we intend to develop a comprehensive and

clear understanding of human activities and behaviour, a large amount of high quality

and diverse data should be available. In contrast with many application fields (such

as speech recognition and computer vision) in which various standard datasets are

available to evaluate the effectiveness and accuracy of proposed algorithms, there

are limited number of publicly available datasets that contains information about

people’s activities. Many research groups in this field try to design their customized

setting and collect their own problem-specific data under laboratory settings with

limitations such as few number of human subjects and staged activities. However, for

reproduction and quantitative comparison it is crucial to utilize standard datasets

as benchmarks to evaluate new approaches. Nevertheless, a few research institutions

and open data challenges have started joint efforts to prepare standard data and

invite other researchers to participate in the data analysis process, e.g,:
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• Nokia Mobile Data Challenge: MDC dataset is a large dataset generated

from embedded sensors in mobiles of nearly 200 participants and it was designed

to reveal information about behaviour of individuals and social networks [98].

• Reality Mining - MIT: Several mobile datasets colleted by MIT Human

Dynamics Lab which contain the dynamics of several communities in order to

contribute to human behaviour and interactions studies [3].

• Activity Recognition Challenge: Include a publicly available benchmark

database of daily activities recorded in a sensor rich environment [1].

• Data 4 Development (D4D) Challenge: An open Big Data challenge in-

cluding anonymous data extracted from the mobile networks of African coun-

tries (Senegal,2014 and Ivory Coast,2013) to gain new insights on social and

economic solutions for these underdeveloped regions [2, 25].

2.3.2 Machine Learning for Human Data Analysis

In general, there are several problem-dependent properties that should be taken

into consideration when determining the learning strategy including feature space di-

mension, computational budget, time constraints and number of classes. Researchers

in activity recognition field have assessed a wide range of machine learning techniques

to reveal the most efficient methods for inferring human actions, behaviours and

movements from sensory data. Table 2–3 exhibit several examples of different super-

vised and unsupervised methodologies used by state-of-the-art activity recognition

systems.
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Table 2–3: Examples of diversity of machine learning algorithms used by human
activity recognition systems.

Learning Method Algorithm Act. num & type Acc.%

Neural Networks
Multilayer

Perceptron [92]
6 ambulation 91

Artificial Neural
Networks [12, 87]

19 ambulation, 15
ambulation-static

96, 98

Temporal probabilistic HMM [44, 173]
6 daily

routine-ambulation,
12 ambulation

93, 90

Bayesian
Naive Bayes [46, 82]

11 daily routine-
ambulation,6
ambulation

92,80

Bayesian Networks
[122]

7 office daily routine 97

Support Vector Machine
non-linear SVM
[12, 79, 108]

19 ambulation, 16
daily routine-

ambulation-high
level(e.g., preparing
for work) , 6 fall

detection-
ambulation

98, 79, 96

Ensemble
Random forest

[33, 108]

5 ambulation, 6 fall
detection-
ambulation

94, 94

Adaboost [99]
8 ambulation-daily

routine
90

Instance Based
k-nearest

neighbor(kNN)
[12, 106]

19 ambulation, 7
daily routine-HCI

99, 98

Unsupervised
Latent Dirichlet
Allocation [80]

10 ambulation-daily
routine

72

However, the nature of human activities poses specific challenges and limitations

to the learning procedure. In particular, we describe the most common challenges of

machine learning with human activity data as follows.
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Activity detection. Many applications of activity recognition assume that

the stream data has been segmented ahead, at the start and end points of an activ-

ity, and the system only requires to predict the activity occurred in the segments.

Alternatively, in some scenarios the system is expected to automatically spot the

occurrence of an activity in the streaming data. In the latter case, a hierarchical

learning processes is usually employed, where an extra layer of activity detection is

embedded in the system. The activity detection layer highlights the segments where

the activity performance have happened and then at next layer the classification

unit build a model for activity prediction. The detected even can be either an ab-

normal situation like falling or a normal daily activity like walking. For example,

a wifi-based device-free fall detection system is recommended in [71], which moni-

tors wireless signals within a wifi-covered area to detected anomalous data points by

measuring a local outlier factor, the local density of a given data point with respect

to its k-nearest neighbours.

Time series modeling. Most of the human related data are naturally indexed

over time, implying that the input of activity recognition systems are consecutive

sequence of observations, i.e., time series. Time series data introduces new require-

ments to all of the processing steps including preprocessing, feature computation

and learning algorithm. The recognition system used for analyzing time-series data

should be able to capture temporal variations in measurements originated from hu-

man movement and behaviour, while being robust to external variations such as

sensor displacement. Additionally, trajectory data, which is the path of a moving

objects through space as function of time and can be captured as a time-stamped

40



series of location-points, has become an increasingly important research theme in hu-

man activity recognition. Therefore, various types of probabilistic models have been

proposed on spatio-temporal analysis of human data to capture underlying structure

of mobility behaviour of the users. For example, in [126] a hierarchical inference

model for location-based activity recognition and significant place discovery is pro-

posed that classifies GPS trajectories of users into a sequence of activities such as

walking, driving,sleeping, and then, identifies a user’s significant places (e.g., work,

home and bus stops) from the pattern of these sequences. In Chapter 4, we will

elaborate on different time series data analyses methodologies and related work on

trajectory-based activity recognition systems. Also, we introduce a new framework

for long-term analysis of trajectory data within a few different real-world application

scenarios.

Another considerable aspect of human data time series is the temporal pattern

of activity’s occurrence, which broadly creates three groups of activities; periodic,

static and sporadic activities [29]. Periodic activities, e.g. walking, cycling, swim-

ming, and rowing, contain regularly repeating sequences of actions. For recognition

of these activities usually time and frequency domain features are extracted and

sliding window segmentation is used for classification. The work in [63] introduces

geometric template matching, which is an efficient algorithm based on a combination

of feature extraction using time-delay embedding and supervised learning. The pro-

posed feature extraction techniques can model and reconstruct the essential states
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and dynamics of an underlying dynamical system from a short sequence of measure-

ments (evenly spaced in time) of the system, while different periodic activities such

as walking and running are performed.

Static activities, e.g. sitting and standing, are isolated simple actions that do

not exhibit periodicity or temporal pattern. This class of activities usually initiate

with an activity detection step and then the type of activity is learned. For instance,

in [155] off-the-shelf wifi devices are used as sensing infrastructure in a wifi-based

activity recognition system to capture wireless signals and identify 7 different static

in-place activities, such as washing dishes and sleeping, from the data. Sporadic

activities happen at irregular intervals in time and interspersed with other activities,

e.g. human gestures. Similar to anomaly detection, the recognition of this group

of activities includes an accurate segmentation step in order to isolate the intended

action, followed by a classification step to identify the activity.

Cost-sensitive learning. There are many applications in activity recognition

(e.g. healthcare and medical monitoring), where the system needs to be sensitive to-

ward misclassification of some specific activities. For example, for systems monitoring

elderly people at home, confusion between falling with sitting is not tolerable. These

learning models incur different penalties by incorporating a cost matrix Cij, where

the values in this matrix represent the cost of predicting activity i given the actual

activity j [54]. In this regard, the learning algorithm is manipulated to a learner that

outputs the activity class with minimum misclassification cost. For example, the ab-

normality detection system in [78] uses RFID-based sensor networks to observe daily
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activities of elderly people and employs a hybrid SVM/HMM approach to identify

abnormal events.

Unbalanced data problems. In human activity learning, like many other

learning applications, class imbalance is a frequently occurred and considerable prob-

lem. In activity recognition this is more challenging for long-term behavioural mon-

itoring where only a few number of abnormal events might happen compared with

usual activities and events. In general, class imbalance can be addressed by many

strategies such as oversampling the smaller class or undersampling the bigger class

to achieve equal class distributions in the training data, or alternatively, generating

synthetic data to expand the smaller classes.

Interclass variability and similarity. This challenge arise from the fact

that the same activity, such as walking, may be perform differently by different

individuals and it also may occur when the same individual perform the same task

differently [29]. Many environmental and generic factors can contribute to this effect

in the performance of activities and the learning system should be prepared to cope

with intraclass variability. To deal with this problem, one solution can be to used

larger amount of training data from and also include data from different users in

the training phase. Another alternative solution would be to include more specific

features (e.g., full-body models) that could potentially discriminate not only among

activities but also among users.

On the other hand, the inverse problem occurs when different activities with

very similar characteristics (e.g., climbing stairs vs. descending stairs) have to be

distinguished. This type of problem can usually be resolved by incorporating more
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sensing modalities (including modalities such as barometric pressure or gyroscope in

the stairs example).

2.3.3 Hierarchical Activity Recognition

The primary focus of many activity recognition systems have been on accurate

detection of simple, low-level and often predefined activities through low-level sensory

observations. However, in recent studies, the concept of human activity recognition

has evolved from a simple event or action modeling process to a higher level con-

ceptual understanding of human behaviour. For example a High-level activity may

refer to a complex activity (e.g. cleaning the house) that consist of several simple

activities (e.g. walking, vacuuming, standing) or to a long-term functional status

(e.g. daily routines, social habits) inferred from extended monitoring of short-term

events (e.g. eating, launch time, visited locations) of a user. Therefore, the hierar-

chical structure of activity learning algorithm allows layered inference of high-level

activities based on combination of low-level subcomponents by adding an additional

layer of semantic representations. A wide range of research topics can benefit from

the fusion of different levels of human activities. For instance, a notable number of

studies have focused on discovering high-level mobility patterns, through long-term

monitoring of the users’ daily location traces and behavioural routines [103, 161].

Related works in this area have proposed different learning approaches to infer

high-level and/or long-term activities of human daily life. One natural solution is

to use HMM-based models that have been successfully applied in sequential pattern

recognition problems, where the sequential pattern can be decomposed into piecewise

stationary segments and an underlying stochastic process (i.e., the sequence of states)
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is assumed that is not observable, but affects the observed sequence of events. In

many studies, layered HMM representations have been employed to efficiently model

different level of activities and at the same time take into account temporal depen-

dency of activities within events at different levels [122, 43, 100] However, the HMM

based models are particularly useful when certain (temporal) dependencies between

variables can be assumed, and moreover, the accuracy of these algorithms are seems

to be very sensitive to unobserved changes.

Alternative approaches including Dynamic Bayesian Networks (DBN) model,

Conditional Random Field (CRF) and Latent Dirichlet Allocation (LDA) model

(see Section 2.3.1, Complex and overlapping activities), have been investigated for

higher-level activity recognition, depending on specific characteristics of the input

features and ultimate intention of the study [122, 150, 80]. For example, DBN models

have been shown to offer a structural framework that combines prior knowledge and

observable data, provides efficient reasoning under uncertainty and allows handling

of incomplete data [122].

Nevertheless, there are several challenges that prevent many researchers to ex-

tend the study and analysis of human behaviour patterns beyond low-level, short-

term activity recognition. In addition to general difficulties of human activity recog-

nition (mentioned in Section 2.3.1), a realistic study on high-level semantic recogni-

tion includes a tedious and time-consuming data collection step. Moreover, analysis

of human behaviour in this scope significantly increase the amount of annotation

effort. Finally, making these recognition strategies scalable is a nontrivial task since
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many parameters, including individual and cultural variations, may extremely influ-

ence the semantic definitions and thus, the performance of the systems.

The lack of comprehensive study in high-level activity recognition and limita-

tions of existing techniques motivate us to consider the development of new realistic

and scalable solutions. In Chapter 4 of this thesis, we extend the study of high-level

human behaviour analysis in the context of location-aware computing and present a

novel practical step toward recognition of semantics in human mobility data. Also,

in Chapter 5, in addition to low-level detailed activity recognition using wifi signals,

a high-level analysis of these measurements in the context of smart environments is

presented.
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CHAPTER 3
Sensor Selection for Efficient Activity Recognition

Recognizing everyday activities is an active area of research in machine learning,

human-computer interaction and context-aware computing. Information obtained

from embedded modalities in smart wearable devices is especially valuable, due to

the fact that these devices have become ubiquitous and come equipped with many

modalities such as GPS, accelerometer, digital compass, gyroscope, barometer, WiFi

and infrared sensors, which can query the local environment and yield information

about the user’s context and activities. Furthermore, these devices are popular

for human data collection applications due to their compact size, low cost, non-

invasiveness and low power consumption. Therefore, human activity recognition

from data gathered by such devices has become a great interest among researchers in

the field. However, activity recognition using wearable devices impose restrictions in

terms of computational and energy resources, which need to be taken into account

by the learning strategy.

On the other hand, most of existing studies in user activity recognition tend

to include as many sensing modalities as possible in order to maximize the context

information provided to the learning module. Subsequently, the feature extraction

unit produces a large and complex feature vector including both low-level features

(e.g., time and frequency domain content) and higher-level measures (e.g., number
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of objects detected by the proximity sensor) [42, 19, 109]. At the end, a feature se-

lection phase is needed to determine which of these features are most useful, relevant

and informative for classification. However, in realistic scenarios where the activity

recognition application is expected to function along with many other applications

on a mobile device with limited power, it is crucial to avoid unnecessary or unpro-

ductive sensing effort. Therefore, the problem of efficiently selecting the sensing

modalities (or prioritizing information) is an essential issue for activity recognition

using wearable devices.

In this chapter, we propose an efficient design of sensor selection that takes the

variation of activities into consideration and maintains a desired level of performance

while avoiding excessive computation burden to the system. We propose a real-time

learning strategy, which interactively determines the most effective set of modalities

(or sensors) considering the activity in action. Inspired by the active learning frame-

work, the activity classification task starts with an initial, small subset of sensors.

Then, at each timestep, a probabilistic certainty measure (or confidence score) is

computed, which determines the certainty of the classifier on the predicted activity

label. If the classifier is not confident enough about the labeling decision, the system

queries the smart device to incorporate more sensors, until the most informative yet

cost-effective subset of sensors is involved. Our approach is computationally simple

and allows accurate classification of activities while minimizing energy consumption

for small portable devices.
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3.1 Background

In this section, we present the necessary background material for this chapter.

We begin with an brief overview of existing approaches for sensor selection, followed

by a review of the Random Forest algorithm that is used in our approach as the

classification technique.

3.1.1 Related work

There are many application fields, including sensor networks [168] and com-

puter vision [145], where senor selection is an important decision that must be made

based on information utility and cost. The techniques of sensor selection can be

broadly classified into two main categories [167]. First, there are greedy approaches

that consider sensor selection as a heuristic search problem and aim to find the best

solution among all possible combinations [69]. These class of approaches usually

begin with a heuristic initial combination of sensors and then iteratively improve the

solution, for example through random perturbations [8] or adaptive entropy-based

aggregation [56], until it converges. Second, there are decision-theoretic techniques,

which treat the sensor selection process as a decision making problem with multi-

ple solutions and limited resources. There are models such as partially observable

Markov decision processes (POMDPs), which can be solved using stochastic dynamic

programming [34].

However, both types of methods are computationally expensive due to combi-

natorial explosion, and are not practical in a real-time implementation except for

small problems. We are interested in the sensor selection problem in the context

of real-time activity recognition for smart portable devices, where beside the sensor
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selection unit, a lot of computing power is required by other different parts of the

activity detection application, including heavy-duty feature extraction/selection and

classification tools. Moreover, regardless of the sensor selection technique category,

most of the existing algorithms usually select a final optimum subset of sensors for the

classification of all classes. This often requires all the selected sensors to be engaged

all the time and ignores the fact that the impact of each sensor varies depending on

the class of activities.

3.1.2 Random Forest: A classifier with built-in certainty score

Our approach will leverage Random Forests [26], an effective ensemble learning

method that applies bootstrap aggregating, or bagging technique to decision tree

learners. The main idea of ensemble learning for classification is to merge a group

of regular learning models and combine their decisions in some manner in order to

efficiently improve performance of the learners. These ensemble methods are widely

employed in activity recognition applications due to their high overall accuracy and

their ability to handle diverse features and noise. Following provides examples of the

most popular fusion methods:

• Boosting, is a special case of model averaging method which first creates a

’weak’ classifier, and then iteratively rebuild a stronger model from a dataset,

in which misclassified points by the previous model are given more weight.

Finally, all of the successive models are combined by some weighted majority

voting schemes. Many algorithms, such as AdaBoost, fit into this framework

where a weak model (i.e., slightly better than random guessing) is repeatedly

forced to concentrate on the modified version of the data.
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• Bagging or bootstrap aggregation, is a another model averaging strategy

where multiple version of training set (produced by sampling with replace-

ment) are used to train a set of classifiers and the, the output of these models

are combined by voting to provide a single decision. As an example, Random

forests algorithm combines random decision trees with bagging to reduce vari-

ance and stability in the learning process and construct a significantly improved

estimates.

Random Forest classifiers are used in many applications because beside classi-

fication, they also provide information on attribute importance and confidence level

in the classification. Intuitively, a Random Forest builds many classification trees,

where each tree votes for the class label. The forest chooses the classification with

the most votes over all the trees. Let’s assume we have N instances in the training

set and there are M features for each instance. In order to grow each tree of the

forest, the algorithm proceeds as follows:

1. Sample N instances at random with replacement to create a subset of the

original data for training the tree.

2. At each node, a given number of m � M features are randomly chosen out of

M and the best split is determined only according to these m features. The

value of m is constant during the construction of the forest.

3. Each tree grows until all leaves are pure, i.e. no pruning is performed. In

practical implementations, usually the depth of the trees is a fixed number and

can be tuned using cross-validation.
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When the training set for each tree is drawn by sampling, normally about one-

third of the N instances are left out of the bootstrap (bag) to be used as a validation

set, in order to get a running estimate of the classification error as trees are added

to the forest. This out-of-bag (OOB) error is also used to get estimates of variable

importance by monitoring the number of correctly classified OOB samples, while the

m attributes are randomly shuffled for each single tree.

In practice Random Forests have been used extensively due to their ease of

training and very good generalization performance as well as due to the fact that

they provide insight into the importance of different features and in the uncertainty

of labels. In our application of Random Forest, in particular, we are also interested

in the confidence level of the classifier’s prediction for each instance, which can be

assessed by the proportion of the votes given by all trees for the correct class. We

will use this ratio as an estimate of the confidence level, in order to score the different

sensors under consideration in the sensor selection procedure.

3.2 Active Learning for Sensor Selection

In this section we propose a real-time activity recognition algorithm which ac-

tively selects a smaller subset of sensors that are the most informative, yet cost-

effective, for each time frame. First, we use a greedy process to discover sets of

sensor modalities that most influence each specific activity. These subsets of sensors

are then used to build different models for the activities. We use the baseline models

to develop an algorithm that decides on-line which model is suitable for recognizing

the activity in each given time frame. Our algorithm has the flavor of active learning

[137], but instead of asking for labels on new data points, we start the recognition
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task with a small set of sensors and then interactively send queries for more features,

as needed. In this way, we can afford to run the activity recognition engine on a

low-powered device without sacrificing the accuracy. We present empirical results on

real data, which illustrate the utility of this approach.

3.2.1 Dataset

The dataset used for activity recognition was collected by Dieter Fox [142], using

the Intel Mobile Sensing Platform (MSP) [42], which contains several sensors, includ-

ing 3-axis accelerometer, 3-axis gyroscope, visible light photo transistor, barometer,

and humidity and ambient light sensors. Six participants wore the MSP units on a

belt at the side of their hip and were asked to perform six different activities (walking,

lingering, running, climbing upstairs, walking downstairs and riding a vehicle) over

a period of three weeks. Annotation was acquired through observers who marked

the start and end points of the activities. Table 3–1 demonstrates the non-uniform

percent distribution of activity class labels. The working dataset is 50 hours of

labelled data (excluding the beginning of each recording which was labelled as unan-

notated) and also some long sequences (over 1 minute) labelled as unknown. There

were also some short unlabelled segments, which we smoothed out using a moving

average filter. We computed the magnitude of the acceleration
√

x2 + y2 + z2 based

on components sampled at 512Hz. We also used the gyroscope (sampled at 64Hz),

barometric pressure (sampled at 7.1Hz) and visible light (sampled at 3Hz). These

four measures were all up-sampled to 512Hz in order to obtain synchronized time

series with equal length. To prevent overfitting to characteristics of the locations,

we did not include the humidity and temperature sensors, as they could potentially
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Table 3–1: Activity class distribution.

Downstairs Drive Linger Running Upstairs Walking
1% 33% 42% 1% 1% 22%

mislead the classifier to report a false correlation between location and activities.

For example, if a lot of walking data were collected under hot sun in a warm day,

the classifier would see temperature as a relevant feature to the action of walking.

3.2.2 Baseline Classifiers

First, we wanted to investigate the effect of different subsets of sensors on the

accuracy of recognizing the six different activities. Through this experiment we seek

to answer the following questions:

• While all of the embedded sensors on a smart device are potentially interesting

and can provide some useful information about the user’s context, is there any

modality that does not significantly contribute information about a particular

activity (or a set of activities)?

• Can we decrease the power consumption by discovering a subset of sensors that

can adequately provide effective information about a particular activity (or a

set of activities)?

• In this case, how much the recognition of each particular activity is influenced

by the omission of each sensor?

We began by examining all possible combinations of sensors on the entire dataset.

We treated each time sample as an instance and used raw sensor data as features

for building baseline classifiers. Random Forest was employed as the classification

technique, due to the reasons stated in Section 3.1.2. We performed cross-validation
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Table 3–2: Accuracy of individual baseline classifiers. The highest accuracy in each
section is in bold.

No. Feature Set Accuracy

1 {Acc,Bar,Gyro, V isLight} 86.16

2 {Acc,Bar,Gyro} 75.16
3 {Acc,Bar, V isLight} 86.50
4 {Acc,Gyro, V isLight} 84.33
5 {Bar,Gyro, V isLight} 78.33

6 {Bar,Gyro} 54.00
7 {Acc,Gyro} 69.50
8 {Acc,Bar} 74.83
9 {Acc, V isLight} 77.66
10 {Bar, V isLight} 74.00
11 {Gyro, V isLight} 74.00

12 {Acc} 48.16

over users (leaving in turn each user’s dataset aside as the test set and combining

and randomizing all other datasets to use as training set). The accuracy of the clas-

sifiers for all 12 possible combination sets of four sensors 1 is given in Table 3–2.

From now on, instead of full sensor names, we use the abbreviations Acc, Bar, Gyro

and V isLight for accelerometer, barometric pressure, gyroscope and ambient visible

light, respectively.

Preliminary Evaluation. For classification, we have used the Random Forests

implementation by Leo Breiman and Adele Cutler in [27]. In both training and test-

ing we used 100 trees in the forest and the depth of the trees was set to 2. It is

recommended to prune (limit the depth of) the trees when dealing with noisy data.

1 Single features except the accelerometer are excluded from the results due to
poor performance.

55



The overall results are competitive with prior activity recognition results that used

complex feature sets, even though we used the raw sensory values [42, 19]. The

recognition accuracy is the number of correct predictions over total number of data

points, and is defined as
∑

i Aii∑
i

∑
j Aij

, where A is a contingency matrix whose element

Ai,j is the number of times that a data point from true label i was classified as label

j. The classification results are show in Figure 3–1. Each plot is for one specific

activity and shows the accuracy and standard error of all baseline classifiers. It is

clear that not all sensors are contributing equally to the performance. For example,

comparing results from classifiers No.1 and No.3 in Figure 3–1 shows that data from

the gyroscope did not provide useful information about this set of activities. More-

over, this sensor seems to lead to similar or, in some cases, even smaller improvement

in recognition accuracy compared to the barometer sensor. So we decided to prune

the gyroscope.

The contribution of each sensor varies among different activities. For example,

accelerometer data is key in discriminating physical activities such as running and

walking. However, the classifier using only accelerometer data (No.12) performs

poorly while recognizing some activities like riding a vehicle or while distinguishing

activities with similar dynamics (e.g. upstairs vs. downstairs). Nevertheless, this

classifier is the cheapest one (in terms of energy consumption) and it is reliable

enough to be used as a default classifier for our active learner.

Table 3–2 shows accuracy results for all the test sets, using subsets of sensors.

These results demonstrates that a smaller subset of sensors exist that can learn the

same set of activities reasonably well, with less information. Classifiers No.3 and
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No.9 achieved 86.5% and 77.66% accuracy rate, respectively, whereas classifier No.1

(using all sensors) only obtained 86.16%. Hence, using subsets of sensors is feasible

and desirable.

3.2.3 Smart Classifier Selection

In contrast to supervised learning, which requires a large number of labelled

samples to build an accurate classifier, active learning attempts to obtain better

performance with less labelled data, and only queries the source of information for

more labels upon request. There are many problems in which obtaining labelled in-

stances is difficult, time-consuming, or expensive. In such scenarios, active learning

starts with a small number of labelled instances, and then interactively queries for

more labelled data. These algorithms are highly motivated in many modern machine

learning problems, since the learner needs fewer examples to learn a concept, there-

fore minimizing the cost. We would like to adopt this idea in order to reduce the

overall power consumption of activity recognition for low-power devices. However,

instead of more labelled samples we want to query more sensory information under

uncertain situations.

Here, we introduce a real-time algorithm that optimally selects the best classifier

for each time frame, using as guidance the results that we presented in the previous

section. The main idea is to start the activity recognition task by acquiring data

just from the single most informative sensor and building a cheap classifier. The

certainty measure provided by this classifier is then used to identify points in time

when uncertainty is high, so using more sensors could be beneficial. Other classifiers

can then be invoked. Figure 3–2 presents an overview of the information flow.
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energy consumption, but also to ensure that the application is robust with respect

to sensor failure, or unusually noisy readings.

When the training phase is over, the algorithm will have to process new time se-

ries. It starts by sliding a fixed-width window (of length w = 200), with 10% overlap,

over the data, in order to obtain data intervals. We would like to keep the length of

these intervals as small as possible, in order to avoid mixtures of activities, but large

enough to capture the essence of the activity. Each interval is initially labelled by the

cheapest classifier. We compute the running average of the certainty measure over

each frame, to indicate if the classifier is confident enough about the labelling deci-

sion or not. If the measure drops below a given threshold, the algorithm will query

other sensors, and upgrade the classifier to a more complex one, which works with

the new information. The procedure continues until the most informative subset of

sensors is chosen and the best classifier provides the most accurate prediction.

The algorithm will switch back to a cheaper classifier as soon as its certainty

measure rises above the threshold. To do this, the algorithm simultaneously com-

putes and compares the confidence level of both classifiers at each time frame, and

switches back when the threshold is exceeded again. Ideally, we want the algorithm

to have smooth transitions between classifiers, so we also use a control parameter,

which allows the algorithm to switch from one model to another only after δ frames.

3.3 Evaluation

We evaluated the proposed algorithm on the dataset and selected subsets from

the experiment in Section 3.2.2. The number of classifiers used is N = 3, where the

classifiers are C1 = {Acc}, C2 = {Acc, V isLight} and C3 = {Acc,Bar, V isLight}.
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Hence, the algorithm will first use only the accelerometer data for classification, then

incorporate visible light, and in the worst case, barometric pressure as well. As we

explained in Section 3.1.2 the certainty measure is the ratio between the votes that

match the majority label and the overall number of the trees in the forest. In both

training and testing we used 10 trees in the forest and the depth of the trees was set

to 2.

There are two parameters that were chosen empirically, and which influence the

accuracy rate:

• θ, the threshold for the certainty measure, which may depend on the overall

accuracy rate

• δ, the number of frames before switching to another classifier is allowed. Tuning

the parameter δ is important for controlling the balance between the speed of

switching between the classifiers and the delay before choosing the efficient

classifier.

Figure 3–3 shows how θ and δ affect the overall accuracy of the system. One

can see that performance is stable for a fairly large range of these parameters. In

this experiment we set δ = 90 and θ = 8.2 to efficiently maintain the high accuracy.

In practice, we found that switching between two classifiers, instead of three,

yields better accuracy and smoother transitions. This happens because the algorithm

does not stay with C2 for long and tends to switch between C1 and C3. Figure 3–4

shows a run of the algorithm on a segment of data from one specific user, using

classifiers trained on the other users’ data, with δ = 90 and θ = 8.2. The delay

that happens in detection of the correct classifier is caused by the parameter δ that
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(a) (b)

Figure 3–3: Influence of (a) θ and (b) δ on the accuracy of the activity recognition
task.

Table 3–3: Comparison of recognition accuracy.

Algorithm Accuracy Proportion of time
Classifier C1 48.16 100%
Classifier C2 77.66 100%
Classifier C3 86.50 100%

Active alg.(C1, C2, C3) 71.78 9%,32%,59%
Active alg.(C1, C3) 80.14 35%,65%

forces stability to the system and does not allow quick switching between classifiers.

This delay can be critical in time-sensitive systems, such as medical monitoring

application, and is required to be measured and taken into consideration while tuning

the parameters. Our application is fairly flexible to such small delays, which are

approximately in the order of 2-10 milliseconds.

Table 3–3 shows the classification results of the proposed algorithm and the

baselines from the first experiment, as well as the proportion of the time the algorithm

used each classifier. The overall accuracy of the active algorithm (combination of 2

classifiers) is just 6% lower than the best baseline (C3). While this is a given dataset
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Figure 3–4: Algorithm performance on a segment of data. Top: Certainty measure
of the classifier in use. Middle: The corresponding true activity labels at each time
frame. Bottom: The algorithm’s decision of the classifier to engage

and we can not measure energy consumption directly, using the cheap classifiers 35%

of the time suggests that large energy savings may be possible.

3.4 Conclusion

We presented an approach that can be used to select among classifiers with

different features (and power consumption) in activity recognition tasks. The active-

learning-style idea is to use a certainty measure in the result of the classification to

decide if a more “expert” classifier should provide labels. However, no input from a
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user is required, as the algorithm is fully automatic. We evaluated the performance of

our algorithm on a large, noisy dataset including four different modalities, gathered

while subjects were performing different activities under naturalistic circumstances.

The empirical results show that our approach can successfully switch between com-

plex and simple classifiers, on-line and in real-time, yielding power savings without

significant loss in accuracy. In chapter 6 of this thesis, we will provide some directions

for future possibilities of this work.
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CHAPTER 4
Location-based Activity Recognition

The growing popularity of mobile computing devices with integrated location

sensing technologies has promoted a huge interest in analyzing data collected from

such devices. These modern intelligent devices have the ability to accurately track

moving objects, store mobility data and process or transfer this information. Besides,

many people voluntarily carry their location-aware smart devices (e.g., smartphones

and tablets) everywhere they go, which allows long-term analysis and discovery of

mobility patterns. We consider the problem of analyzing people’s mobility and move-

ment patterns from their location history gathered by portable mobile devices. Hu-

man mobility traces or trajectories can be extremely complex and unpredictable, by

nature, which makes it hard to construct accurate models of mobility behaviour. In

this chapter, we study location-based human activity recognition and present a novel

approach for user mobility analysis using an unsupervised learning framework. We

evaluate our algorithm on 3 different real-world datasets that have been collected

from people over the course of 1 to 9 months. This chapter is organized as follow.

First, in Section 4.1, we provide an overview of related work for location trajectory

analysis, and a brief introduction of non-parametric Bayesian models. Section 4.2

presents the proposed methodology, a hierarchical clustering approach based on hier-

archical Dirichlet processes (HDPs) for location data analysis. Sections 4.3, 4.4 and

4.5 introduce three different application scenarios, where the HDP-based approach
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is applied on real datasets and evaluated with different criteria. In each application,

a real-world dataset is presented, the specific problem is described, and then, the

empirical results are discussed. Finally, Section 4.6 concludes the evaluation and

results of the proposed approach, with a discussion on potential future directions of

this work as well.

4.1 Background

In this section we briefly introduce the problem of trajectory analysis in the

context of location-based human behaviour recognition. We review a number of

existing approaches for learning from trajectory data. This is followed by a brief

review of non-parametric Bayesian models, which form the basis of our proposed

approach for trajectory mining.

4.1.1 Location Data Mining

Recent advances in wireless technologies and satellite-based navigation systems

allows a large amount of geo-spatial trajectory data to be generated. Location his-

tory data enables discovering valuable knowledge about human preferences and be-

haviour, and consequently, applications that utilize such information can offer cus-

tomizable services according to the dynamics of their users’ surroundings. Mobile

advertisement, surveillance and security, health monitoring, urban planning and so-

cial network analysis are a few examples of application fields wherein location-aware

computing has significantly improved performance.

Given this massive volume of information, in academic communities, wide re-

search efforts have been put towards different directions in spatial data analysis.
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One interesting direction is localization (and positioning), which focuses on the prob-

lem of determining the location of a moving object using observable fine-grained or

coarse-grained data, such as GPS readings and wifi signals [6, 31]. Another direction

includes developing algorithms for analysis and mining moving object traces and

location trajectories [170, 18]. We are interested in the second category of studies,

where the goal is to infer semantic patterns in users’ long-term mobility traces.

Many existing studies in location trajectory analysis fall into distance/similarity-

based approaches, which aim to summarize the shape of the whole trajectory into a

representative and then, define a distance metric between such representatives and

actual data [151, 115]. Several distance functions have been proposed for different

applications including Dynamic Time Warping (DTW) [36], Edit Distance with Real

Penalty (ERP) [38] and Longest Common Sub-sequences (LCSS) [151]. For instance,

DTW was proposed to allow alignment between trajectories that are not of the same

length. In practice, however, there are complex and long trajectories that convey

important and interesting knowledge on their partial segments instead of the whole

route. Therefore, these solutions are difficult to use for the long-term analysis of

human location history, where one needs to use very long traces of data.

Another considerable amount of work has focused on defining a spatial-temporal

models that synthesize individual or group movement patterns into statistical repre-

sentations, which are also expected to predict future moves. These models are usually

used as a basis for creating a similarity measure between different moving objects

based on the sequence of visited locations. Since trajectories can be interpreted as

sequences of location points, these approaches leverage existing sequence inference
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models. For example, [127, 64, 126] have used Markov models, including Markov

chains and hidden Markov models (HMMs), to represent the mobility behaviour of

an individual and predict their next location based on the previously visited places

and the probability distribution of the transition between places. However, these

approaches are limited while facing geometrical complexity of long trajectories, such

as long-term human moving history, (which vary in shape and size) and stochasticity

in movement patterns.

The problem becomes even more challenging when moving subjects go to new,

previously unseen location points, or when trajectories belonging to different mobil-

ity patterns share a large set of common location points. To address this limitations,

an increasing number of studies began to consider employing semantic factors, such

as personal interests and preferences, for the analysis of long and complex human

trajectories. These approaches suggest a hierarchical representation of human mo-

bility behaviour where beside low-level detailed location data, high-level semantic

information is leveraged to discover meaningful properties about users. Some inter-

esting examples include the studies presented in [101, 162, 53, 169] where semantic

information such as user similarities, social ties and friendship networks have been

inferred from user location trajectories. This line of studies usually transforms the

trajectories into other data structures such as graphs, matrices and tensors, which

allow borrowing from a broader range of approaches, such as graph mining, matrix

factorization and collaborative filtering, for trajectory analysis [104, 170, 169]. While

these solutions are promising for some specific applications, many open challenges

remain unsolved in high-level human location analysis. For instance, there is a great

68



need for scalable approaches that minimize the amount of user involvement or an-

notation, or generalized systems that automatically distinguish the preferences and

interests of large group of users based on their interactions.

The focus of our work is to infer interpersonal interactions of a group of people

by analyzing their mobility traces and location histories. We seek to mine location

histories in order to discover and characterize the points of interest (POIs) frequently

visited by users, and then estimate a similarity measure between users based on the

proximity of their POIs. To this end, we use unsupervised learning methodology,

which applies hierarchical clustering for grouping people and their mobility behaviour

based on their coarse-grained location trajectories.

4.1.2 Non-Parametric Bayesian Modeling

In this section we briefly describe Hierarchical Dirichlet Processes (HDPs) [147]

which are the basis of our proposed approach. The HDP is a non-parametric Bayesian

(NPB) mixture model typically used for clustering large collections of grouped data,

e.g., topic modeling from text documents. The non-parametric term means that

the number of clusters is open-ended [123]. The NPB mixture model offers flexible

model selection, which adapts the number of clusters identified in a dataset to the

complexity of the data. The HDP is a model of this type, which also allows sharing

of components between clusters, as well as sharing of the clusters. The following

presentation is based on [58, 116, 147] and [61, Chapter 2], where these topics are

expounded in more detail.
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4.1.2.1 Dirichlet Distribution

Let p(y|θ) denote a probability model for a set of observed data y given the

model parameters θ. The Bayesian framework place a prior distribution on the

latent parameter θ, in order to predict the future observations based on the already

observed data. Given a set of N i.i.d. observations, the predictive likelihood of future

observations is:

p(y|y1, · · · ,yN , λ) =

∫

Θ

p(y|ν)p(ν|y1, · · · ,yN , λ)dν, (4.1)

where Θ is the space of parameters and λ is the parameter of the prior, called hyper-

parameter, and can simply be seen as tuning parameters. Given a set of observations

and the properly tuned hyper-parameters, the distribution over parameter θ or the

posterior density on θ is:

p(θ|y, λ) =
p(y|θ)p(θ|λ)

∫

Θ
p(y|ν)p(ν|λ)dν

. (4.2)

Consider a random variable y that can take non-negative elements from {1, · · · , K}.

In addition, suppose that π = (π1, · · · , πK) is an associated probability distribution

with πi representing the probability of observing the value i, and πi ≥ 0,
∑K

i=1 πi = 1.

According to the multinomial distribution the probability of a sequence of observa-

tions over N trials, y1, · · · , yN , is:

p(y1, · · · , yN |π) =
N !

∏

k Nk!

∏

k

πNk

k (4.3)

70



where Nk denotes the number of times k happens in the sequence. Intuitively,

the multinomial distribution models the distribution of the histogram vector over k

possible outcomes. The Binomial distribution is a special case when K = 2.

In Bayesian probability theory, when the posterior distribution remains in the

same family of distributions as the prior probability distribution for all possible ob-

servations and likelihoods, the prior is referred to as conjugate prior. Given this

definition, the Dirichlet distribution is a conjugate prior for the multinomial distri-

bution, where the samples from a Dirichlet distribution can be treated as parameters

for a multinomial distribution and the posterior remains a Dirichlet. This means that

if a data point has a multinomial distribution, and the prior distribution of the dis-

tribution’s parameter is distributed as a Dirichlet, then the posterior distribution of

the parameter is also a Dirichlet.

AK-dimensional Dirichlet distribution with parameter vector α = (α1, · · · , αk),

which we denote by Dir(α), has the form of:

p(π|α) =
Γ(
∑

k αk)
∏

k Γ(αk)

∏

k

παk−1
k , (4.4)

where αk > 0 and Γ(.) denotes the Gamma function. We have a symmetric Dirichlet

when the parameters α1, · · · , αk are all equal. The Beta distribution is the special

case of this distribution when K = 2, which we denote by Beta(α1, α2).

The conjugacy property of the Dirichlet distribution implies that, given N multi-

nomial distribution y1, · · · , yN , the posterior distribution of π is also Dirichlet:
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p(π|y1, · · · , yN ,α) ∝ p(π|α)p(y1, · · · , yN |π) (4.5)

∝

K
∏

k+1

παk+Nk−1
k ∝ Dir(α1 +N1, · · · , αK +NK). (4.6)

Therefore, the predictive likelihood can be derived as

p(y = k|y1, · · · , yN ,α) =
Nk + αk

N + α0

, α0 ,

K
∑

k=1

αk (4.7)

where Nk represents the actual number of times k occurs in the observations and

hyperparameters α can be considered as pseudocounts, i.e. representing the number

of counts added to the observations in each category that we have already seen.

4.1.2.2 Dirichlet Process

The Dirichlet process (DP ) [58] is a stochastic process whose domain is the

space of probability measures. Suppose we have a measurable space (Θ, β). A

DP is defined as a distribution of probability measures G over (Θ, β), with the

property that for any finite measurable partition (A1, · · · , AK) of Θ, the random

vector (G(A1, · · · , G(AK)) is a finite-dimensional Dirichlet distribution:

(G(A1, · · · , G(AK)) ∼ Dir(γH(A1), · · · , γH(AK)) (4.8)

where H is a base probability measure on Θ and γ ∈ R
+ is a concentration parameter.

We write G ∼ DP (γ,H) if G is a random probability measure drawn from a Dirichlet

process. Figure 4–1 shows the graphical representation of a Dirichlet process.
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Figure 4–1: Graphical model of a Dirichlet process mixture model (reproduced from
[147])

The Dirichlet process prior exhibits an important clustering property when used

in the mixture model setting. There are several representations of the Dirichlet

process that help understand its clustering property, such as Chinese Restaurant

process (CRP) [9], stick-breaking process [136] and Polya Urn [23]. Here, we briefly

review the stick-breaking process and the CRP.

The base distributions G ∼ DP (γ,H) can be written as:

G =
∞
∑

k=1

βkδφk
(4.9)

where φk
iid
∼ H and β = (βk)

∞

k=1 is a vector of weights obtained by a stick-breaking

process:

βk = υk

k−1
∏

l=1

(1− υl) (4.10)

where υl
iid
∼ Beta(1, γ).

The construction for βk can be seen as starting with a unit-length stick and

repeatedly breaking off a portion of the remaining stick according to υk. This con-

struction also gives insight into how the concentration parameter γ controls the

relative proportion of the weights βk. For small values of γ, we expect to see the
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majority of the mass in the first few weights βk, so we should observe the same values

frequently while drawing samples from G. For large values of γ, we would expect the

mass to be more evenly distributed among the weights βk.

Hence, DP mixture models can be viewed as having a countably infinite number

of mixing components, which potentially allows an infinite number of clusters. In

other words, consider each φk as the parameter of the kth mixture component, with

mixing proportion given by βk.

The DPs are used across a wide variety of applications of Bayesian analysis

including Bayesian model validation, density estimations and clustering via mixture

models and other hierarchical Bayesian models [147]. The most common application

of the DP is in clustering data using mixture models, where the non-parametric

nature of the Dirichlet process translates to mixture models with a countably infinite

number of components. For example, [113] used DP mixture models to cluster genes

with similar expression patterns in the analysis of DNA microarray data.

4.1.2.3 Hierarchical Dirichlet Process

In many clustering problems, it is useful to model groups of exchangeable data

points jointly, allowing them to share their generative clusters in order to remain

linked. An exchangeable sequence of random variables is a sequence of random

variables such that for any finite permutation of the indices, the joint probability

distribution of the permuted sequence is the same as the original sequence, meaning

that any order is equally likely. A inspiring example is the topic modeling problem

and bag-of-words assumption, where the order of words is ignored and the main goal

is to discover topics that are distributions over words, while documents are viewed as
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G0|γ,H ∼ DP (γ,H) (4.11)

Gj|α,G0 ∼ DP (α0, G0) (4.12)

Figure 4–2 depicts the graphical representation of the HDP model. According to the

stick-break construction, G0 can be expressed as weighted sum of point masses, which

reveals its discrete nature. Since all individual Gj are draws from base distribution

G0, the atoms of each Gj are samples from G0:

G0 =
∞
∑

k=1

βkδφk
(4.13)

Gj =
∞
∑

k=1

πjkδφk
(4.14)

where the posterior φk is the parameter of the kth mixture component and πj =

(πjk)
∞

k=1 is the mixing proportion. In next section we discuss how to obtain the

posterior πk.

4.1.2.4 Chinese Restaurant Process

In [147], a Chinese Restaurant Process (CRP) is used to develop inference al-

gorithms for the HDP mixture model based on Gibbs sampling. Intuitively, a CRP

is a discrete stochastic process corresponding to seating nj customers at tables in J

Chinese restaurant franchise with unbounded number of shared table/dishes where

first customer sits at the first table and the next customer chooses uniformly at

random to sit at an occupied table, with probability proportional to the number of

customers already there, or at the next unoccupied table. The probability distri-

bution of this random partition leads to a clustering of the values πk: the dishes
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Figure 4–3: Graphical representation of a Chinese restaurant process and Chinese
restaurant franchise as presented in [147], p.11. Each rectangle represents a restau-
rant.

are “common” to all restaurants but the customer seatings are restaurant specific.

In the Chinese restaurant franchise, the metaphor of the CRP is extended to allow

multiple restaurants which share a set of dishes.

More formally, a Chinese restaurant franchise is defined by the variables t = (tji)

(table taken by customer i in restaurant j), k = (kjt) (dish ordered by table t in

restaurant j) and φ = (φk) (dish k shared among franchise), given data x. Imagine

we have J restaurants, each with nj costumers who sit at tables t. Each table is

served a dish φk from a menu common to all restaurants. Figure 4–3 exhibits a

representation of the Chinese restaurant process and the clustering property of the

DP.

In restaurant level, customer i in restaurant j sat at table tji where njt is the

number of customers currently at table t. A subsequent customer sits at an occupied
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table with probability proportional to the number of customers already there, or at

the next unoccupied table with probability proportional to α0 (Gj ∼ DP (α0, G0)).

The conditional distributions are:

tji|tj1, · · · , tji−1, α0 ∼
∑

t

njt
∑

t′ njt′ + α0

δt +
α0

∑

t′ njt′ + α0

δtnew , (4.15)

Performing this process independently for each group (restaurant) j, integrates

out all the Gjs and provides explicit assignments of costumers to local table parti-

tioning at the restaurant. Each local partitioning contains a parameter copied from

some global partitioning, which is indicated by variable φk. Considering that all local

assignments are simply i.i.d. draws from G0, which is again distributed according to

DP (γ,H), now the same CRP partitioning process may be applied but in the global

level. Similarly, the conditional distributions are:

kjt|k11, · · · , k1n1
, k21, · · · , kjt−1, γ ∼

∑

k

mk
∑

k′ mk′ + γ
δk +

γ
∑

k′ mk′ + γ
δknew . (4.16)

4.1.2.5 Gibbs Sampling in Chinese Restaurant Processes

Here we describe the inference procedure for the HDP mixture model based

on Gibbs sampling t, k and φ given observation data x. Let f(.|φ) and h be the

density functions for F (φ) and H respectively, n−i
jt be the number of tji′ ’s equal to t

except tji, and m−jt
k be the number of kj′t′ ’s equal to k except kjt. The conditional

probability for tji given the other variables is proportional to the product of a prior

and likelihood term. The prior term is given by 4.15 and since this is an exchange

process, tji can be the last one assigned. The likelihood is given by f(xji|φkjt), where
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for t = tnew, kjtnew can be sampled using 4.16, and φknew
∼H . The distribution then

has the form of:

p(tji = t|t \ tji,k,φ,x) ∝















α0f(xji|φkjt) if t = tnew

n−i
jt f(xji|φkjt) if t currently used.

(4.17)

And similarly, the conditional distributions for kjt and φk are:

p(kjt = k|t,k \ kjt,φ,x) ∝















γ
∏

i:tji=t f(xji|φk) if k = knew

m−t
k

∏

i:tji=t f(xji|φk) if k currently used.

(4.18)

p(φk|t,k,φ \ φk,x) ∝ h(φk)
∏

ji:kjtji=k

f(xji|φk) (4.19)

where φknew ∼ H. While H is conjugate to F (.) we can integrate out φ. This

completes the generative process, where G0 and Gj’s are marginalized out.

The HDPs have been widely used in clustering applications, where the number of

latent variable in not known or unbounded. A classic example of the HDP application

is in topic modeling, where the goal is to project documents into a topic space that

facilitates effective document clustering [146]. HDPs have also found uses in the

applications beyond clustering. For example, in the problem of speaker diarization,

which involves segmenting an audio recording into time intervals associated with

individual speakers, the number of the number of true speakers is typically unknown,

and may grow as more data is observed. This application seems like a natural fit for

the HDP, where the goal is to infer the number of speakers as well as the transitions
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among speakers. In [62], a hybrid model of HDP-HMM is proposed for speaker

diarization, where the HDP is used as a prior distribution on transition matrices of

the hidden Markov models.

4.2 Clustering Location Traces with HDP

In this section, we explain how the HDP framework is employed for clustering

location history and mobile data. As briefly mentioned earlier, we are interested

in high-level analysis of human mobility behaviour. We aim to take advantage of

an unsupervised learning algorithm to automatically infer semantic social ties such

as similar interests and physical interactions, from their location histories. The

key strategy is to discover and characterize the places or points of interest (POIs)

frequently visited by each individual, and subsequently build a similarity measure

between individuals based on the physical proximity of their POIs. The working

hypothesis is that physical proximity has an essential effect on social ties; the prob-

ability of social interaction quickly rises with decreasing spatial distance between

people. We assume that different social groups will exhibit distinct profiles in terms

of the places where they hang out, so individual users can be clustered into be-

havioural profiles based on their distribution of POIs. In a realistic setup, there are

a number of practical challenges that motivate the usage of non-parametric Bayesian

clustering framework for clustering location history and mobile data. First, individ-

ual users belonging to different behavioural profiles may share a large set of common

location points, such as popular places in as city or dining area of a workplace. Sec-

ond, each individual user may not follow the same mobility pattern for a long-time,

and our model should be capable of capturing the diverse characteristics of human
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trajectories into a bag-of-word data structure where the topics are inferred from word

distribution across the document and word order does not play a significant role.

4.2.1 Inferring Places of Interest

Suppose we have J groups of location traces (or observation group), each consist-

ing of nj exchangeable location points, Lj = (lj1, lj2, · · · , ljnj
), from total N possible

locations. These J observation groups represent the mobility records of U individual

users during different events, where each user has Ju entries in the data, such that
∑U

u=1 Ju = J .

We propose to model the location points or POIs in each observation group with

a Dirichlet process mixture model. Hence, a given location trace can be related to

several clusters and is modeled as a sample from a mixture of corresponding clusters.

The actual mixing proportions are defined by location counts and the importance of

a POI is the total number of timestamps during which the user was at that place.

The HDP defines a conditional distribution over cluster assignments P (c|L)

where L = {L1, · · · , LJ} are the location traces and c = {c1, · · · , cr} are r assigned

clusters. Using Bayes rule,

P (c|L) =
P (L|c)P (c)

P (L)
(4.20)

where P (L) is computed from the location traces by counting the occurrences of

each location and P (c) from the clustering of the entire observation groups. The

distribution P (L|c) is estimated from the visited location frequencies of each trace,

as:
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P (Lj|c) =
N
∑

i=1

P (Lj, li|c) =
N
∑

i=1

P (Lj|li, c)P (li|c), (4.21)

where li is the ith POI location in Lj. In P (c|L), each particular cluster repre-

sents a mobility behaviour profile among user mobility patterns. The HDP assigns to

each mobility trace a distribution over locations, which emphasizes the popular loca-

tions for each behaviour profile, and intuitively reveals dominant behaviour profiles

for each individual.

4.2.2 Regularization

Due to the nonparametric nature of HDP models, the number of clusters is a

random variable whose mean grows at a logarithmic rate with respect to the number

of data points. This means at each step of cluster generation, a DP mixture model

can either assign a data point to a previously-generated cluster or can start a new

cluster. As an advantage of this property, the HDP allows a very fine level of discrim-

ination in mobility patterns, which may lead to the emergence of too many similar

clusters that represent the same or slightly different behavior profile. Moreover,

the resulting posterior probability distribution from the HDP will rarely provide an

explicit correspondence between clusters and location points.

We address these problems by introducing a regularization step on top of the

HDP, in order to a) measure the distance between derived DP mixture models,

in order to prune clusters generated by the HDP that may be too similar; and

b) compute the similarity between individual users by comparing their posterior

distribution of popular location points (POIs).
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Depending on the specific data type and the application scenario, many differ-

ent similarity/divergence measures have been proposed for estimating the statistical

distance between two probability distributions. In the following sections we will in-

troduce three different application scenarios, in which the HDP is used to generate

behaviour profiles from location history and mobile data. In each working example,

we investigate the effectiveness of different metrics for the proposed regularization

step, and in each case we choose the distance score that best reflects the correlation

between clusters and users. In practice, we discovered that distance scores com-

puted based on `2-norm and KL-Divergence are the most effective approaches for

the comparison of DP mixture models.

4.3 Task Inference from Location Data

In this study, we consider the problem of human trajectory analysis, where the

mobility traces were collected from employees at a Chicago-area IT facility for one

month. Participant employees with different job titles were given related tasks to

complete while wearing electronic sensing devices, and were asked to submit a report

when they completed their tasks. One important characteristic of this organization

is that the tasks are information-sensitive and thus required the employees to discuss

their problems with other employees in their group. Hence, fulfilling a task usually

requires employees to follow fairly long trajectories. In this naturalistic setting,

completing a task was not time-restricted so the length of a trajectory, corresponding

to one completed task, would vary from minutes to hours and even days. We aim

to perform task recognition based on the hierarchical clustering of these complex

location trajectories.
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Following the strategy described in previous section (see Section 4.2), first, we

need to re-form or segment the fine-coarse location trajectories into a sequence of

location points and their corresponding counts. Then, the transformed trajectories

will be modeled using the HDP mixture model, followed by a regularization step that

infers the “task” (e.g. topics) from trajectory clusters.

4.3.1 Reality Commons - Badge Dataset

This dataset was collected using Sociometric Badges (Zigbee) [121] recording

the behaviour and interactions of employees at Chicago-area server configuration

firm over one month [50]. It includes multiple real and synthetic measures that

reflect the performance and dynamics of the organization with different temporal

resolutions. The wearable computing platform produces several types of information

e.g., received signal strength indicator (RSSI), speech features and 3-axis accelerom-

eter data. In this work, we are mainly interested in time-stamped RSSI readings to

anchor nodes with fixed positions, which convey instantaneous locations of employees

in the workspace.

More precisely, the dataset documents the work of 23 participating employees

in an IT facility that were given computer system tasks on a first-come, first-serve

basis. Each employee was asked to take a client’s IT configuration requirements and

produce IT products according to these specifications, while wearing a badge. In

total, 1,900 hours of data were collected with a median of 80 hours per employee.

We utilized three main data types.

• The workspace layout is depicted in Figure 4–6. Participating employees with

different departmental roles are indicated at their booths with different colors.
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Figure 4–6: Different branches in the organization have their own specific space.
Each participating employee was assigned a unique ID and base stations with unique
IDs were placed at fixed locations for RRSI records [50].

The base stations (anchor node), on yellow squares, were placed at fixed po-

sitions in order to locate badges and timestamps in their area. The booths

indicated with letter “N” belong to employees who did not participate in the

study. This floormap and the role indications on it will later be used for the

verification of the clustering results.

• The behaviour data includes the locations of employees estimated from Zigbee

RSSI readings of the badges worn by each employee, representing the fixed

location (anchor node) to which they went. The synthetic coordinates for each

employee were extracted from raw RSSI readings under two constraints. First,
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each badge at coordinate (x, y) should see RSSI records from at least three base

stations for a particular instance in time. Second, the times of these readings

should be at most 1 second apart. In [50] the authors claim that solving the

optimization problem of finding the best station and corresponding distance

under these two constraints led to the coordinate estimation with standard

deviation on the order of the radius of one booth. The coordinate trajectories

that we used for our evaluation were computed per employee ID per minute.

• The performance data includes the assigning time, closing time, difficulty level

(basic, complex, or advanced), assigned-to, closed-by, number of follow-ups

and role of the employee (pricing or configuration) of each completed task.

In total there were 455 task reports in this dataset. We aim to cluster the

location trajectories based on the tasks at each specific time step. Therefore,

we focused on the following features: assigning and closing time, closed-by

employee ID and the role of employee. Also, for each observation we acquire the

corresponding coordinate trajectory from the Instantaneous locations dataset.

Figure 4–7 shows two typical examples of our observations. Although the em-

ployees from different jobs spend most of their time visiting their own group’s speci-

fied region, they regularly pass through other regions and common areas as well (see

Figure 4–6 for details of workplace layout). These shared areas make it hard to learn

the pattern of the “configuration” and “pricing” tasks. On the other hand, we need to

extract location-based features instead of temporal or shape-based features in order

to discover the correlation between tasks and visited places. Our framework aims
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Figure 4–7: Example of complex trajectories. The green and red trajectories are the
mobility traces of two different employees performing “configuration” and “pricing”
tasks, respectively.

to generate discriminative regional-based features and then carry out hierarchical

non-parametric Bayesian clustering to distinguish groups of trajectories.

4.3.2 Trajectory Segmentation

In order to generate segmented trajectories and transform the long, complex

traces into sequences of location points, we perform a spatial segmentation on the

original 2-dimensional space of the mobility trajectories, which partitions this space

into basic regions. We recursively split the original region into four identical regions

and obtain a grid structure. Then, each trajectory is quantized to a finite number of

subregions. For ease of computation, each rectangular small subregion is represented

by its centroid point. Ideally, we would want to have homogeneous subregions in

the sense that they would mostly contain trajectory parts from the same cluster

distribution. However, a good quantization should also concise, which means that

89





Figure 4–9: Average quantization errors for different number of subregions.

where T̂j represents all trajectory partitions enclosed in region r that are mapped

to the centroid of r ( Cr). The average QE of each iteration is then calculated as

follows,

QE(iter) =

∑S(iter)
r=1 QE(r)

S(iter)
. (4.23)

4.3.3 Evaluation

Figure 4–9 demonstrates the QE for six iterations of recursive quad splitting

of our working example workplace map. From this figure we can observe that the

average QE significantly drops after the 3rd iteration and stays unchanged from there

on. Based on this information, we split the workspace to 64 identical regions and

therefore, each trajectory is composed of 64 distinct location points (POIs) and the

corresponding number of times that trajectory passes from each POI. Note that in
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this framework, the temporal aspect of the trajectories is not a concern since we only

care about the most visited location points by each employee and not the sequence

of their motion.

4.3.4 Hierarchical Location Clustering

Prior to the clustering, we generated groups of data from raw data (mobility

traces of employees completing their tasks), i.e. each group is a mixture of com-

ponents (location point) with different mixing proportions (number of passes from

POIs) specific to the group. Although in our working example, the true labels of

each employee’s task and also the total number of task types are known in advance,

we want to solve the general in which these parameters are unknown. That is, our

goal is to be able to infer that the employees performed task only by observing their

mobility pattern. We only use the available annotations from performance data to

validate our clustering results.

The HDP assigns to each trajectory a distribution over locations which empha-

sizes the most popular POIs traversed by employees of each branch. As we mentioned

earlier, the HDP model does not provide a unique cluster for each mobility trajec-

tory; instead, it computes probability distributions across shared locations. In the

language of Bayesian modeling,

P (Task|Traj) =
P (Traj|Task)P (Task)

P (Traj)
, (4.24)

where P (Traj) is assumed to be a constant and
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P (Traj|Task) =
∑

POI

P (Traj, POI|Task) = (4.25)

∑

POI

P (Traj|POI, Task)P (POI|Task).

As expected from the HDP model, the number of clusters grows with the number

of mobility traces. Therefore, the popular POIs that appear more often in the data

tend to be represented by more clusters. This yields a better level of discrimination

in POI distributions. However, the drawback is that we would need a decision

boundary across POIs in order to assign a one-to-one correspondence between tasks

and trajectories. In practice, to overcome the this problem, a greedy pruning phase

is critical in order to achieve meaningful results.

Given the distribution P (POI|Task), the cluster probability given a particular

set of location points, we computed pairwise `2-norm distance to learn similarity and

correlation between clusters. The distance score between each pair of distributions

in P (POI|Task), is estimated as follows,

L2(i, j) =
M
∑

m=1

‖P (POIm|Taski)− P (POIm|Taskj)‖
2
2 (4.26)

where P (POI|Taski), P (POI|Taskj) ∈ P (POI|Task) and Pi = {p(i, 1), · · · , p(i,M)}

represents task i with corresponding probability distributions over M POIs. Ideally,

we would like to keep clusters with highest L2 distances to others, which reveal the

underlying structure of interesting location points for each branch. This will help

to keep the best clusters while pruning spurious ones. These clusters detected by
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Figure 4–10: Log-likelihood over training data, as the HDP algorithm processes.

the HDP are the task labels that we were interested to assign to each trajectory

observation.

4.3.5 Evaluation

The original raw trajectory were RSSI recordings mapped into a network of

502 grid points evenly distributed throughout the workspace using the algorithm

described in [50]. The trajectories were quantized to 64 subregions based on the

experimental results we achieved in Section 4.3.2 and these location points and their

corresponding counts were fed into HDP algorithm to produce task clusters. We ex-

pected the HDP models to learn the mobility patterns that are intuitively correlated

to the employees assignments and be able to predict correct labels based on spatial

characteristics.

For the experiments, we used the HDP implementation provided by [146]. The

HDP requires setting concentration parameters that govern the a priori number of
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Figure 4–11: Cluster visualization from different iterations of HDP algorithm. The
probability distribution over each subregion is represented by a filled circle on its
centroid, various colors denote different clusters and the size corresponds to the
probability.

clusters, namely, α0 and α, which we picked by initial exploratory experiments using

a small subset of the data. Figure 4–10 presents the average log-likelihood over the

training set for α0 = 0.2 and α = 0.2 (determined by a line search procedure), as a

function of the number of iterations of the HDP algorithm. The algorithm converges

quickly and successfully to a solution with good log-likelihood.

As discussed in Section 4.3.4, the HDP does not provide a one-to-one map be-

tween trajectories and clusters, hence we used L2 score to quantify the correlation
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between clusters and prune redundant ones. In our experiments, two main indepen-

dent clusters remain after the pruning step, which had the most distinct probability

distribution over the subregion space. Figure 4–11 presents a visualization of the task

clusters, which reveals a semantic division of trajectories (into “configuration” and

“pricing” branches) in comparison with the real layout of the organization. As ex-

pected, the HDP allowed sharing location points between clusters. This explains why

we have POIs that are assigned to multiple clusters, with different colors. Eventually,

we always can pick the dominant cluster (bigger probability) for each subregion.

In addition to visual verification, in order to assess the clustering performance,

we used the independent trajectory labels provided in the Performance data. Also,

we calculated the maximum likelihood of POI assignment by adding up the maximum

probability distributions of subregions P (Trajectory|POI) over the winning cluster.

The HDP obtained a 72% accuracy and the maximum log-likelihood of subregion

assignments was −0.15. The results show that the algorithm mostly fails when the

observation sample is extremely long. There were some tasks assignments where more

than one working day was needed to complete the task. In this case, the employee

would leave and then return to the workplace multiple times during a single task,

so many irrelevant places would be repeatedly recorded in the mobility path. The

results confirm that the non-parametric hierarchical framework has the ability of

offering a high-level viewpoint for learning underlying structure of events, even in

the presence of noisy and complex trajectories.
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4.4 Learning Social Interaction from Location Data

In the previous section we considered the application of regularized-HDP for

fine-grained indoor location trajectory analysis. In this section we use coarse-grained

outdoors mobility traces to develop and evaluate our proposed approach. This loca-

tion history data is borrowed from the MIT Reality Mining dataset [51].

4.4.1 Reality Commons - Reality Mining Dataset

The reality mining project was conducted over the course of nine months from

2004-2005 at the MIT Media Laboratory. This study followed 106 subjects, using

their mobile phones as wearable sensors, which continuously collected location infor-

mation (from cell tower IDs) and Bluetooth device discovery scans (in proximity of

approximately five meters). A wide range of other device activities, such as voice

calls, text messages, application usage and phone status was also logged by pre-

installed software on the phones. 75% of the participants were students and staff at

the MIT Media lab, working in the same building; the remaining 25% of the subjects

were at the university’s business school, adjacent to the Media Lab. The dataset

also provides self-reported relational data for individuals; in the survey, subjects

were asked about their physical interaction and closeness with others.

The mobility data did not contain the actual geographic coordinates (longitude

and latitude) of either the subjects’ locations or the cellular towers. Instead, a

coarse-grained estimate of the user’s location was provided, which was computed

from cell tower IDs present in the vicinity of their cell phones. Using a unique

tower ID assignment and respective transition timings (timestamps when the phone

transitions between cell towers), phone positions were localized to within 100-200
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Figure 4–12: Schematic view of spatial features extraction from mobility traces, with
every user represented by a different color.

meters. From now on, when we refer to a user’s location, we mean the corresponding

estimate of the actual location. For each individual, we transform the mobility traces

into a set of visited places and the corresponding number of visits (or stays) at these

places, over a particular time period (e.g., one day). Figure 4–12 represents the

transformation of trajectories into grouped location points or POIs. Similarly to the

previous study, we are not interested in the temporal sequence of locations, but in

identifying an individual’s places of interest and comparing these to those of others.

4.4.2 Dataset Challenges

One of the main challenges of this data is that all of the subjects spend a

significant amount of their daytime around a workplace where they share a broad

range of cell tower receptions. This could generate erroneous assumptions about

their POI similarity and thus, physical interaction level. For example, consider two

complete strangers who spend the majority of their time on different floors of a

building with similar tower reception distribution. Despite the similarity in their

observable locations (visited places), there will be no reported proximity or friendship
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associated with this pair of users. Therefore, in order to sensibly cluster users into

social groups based on their real ties and interests, we need to use a mixture model

framework that allows sharing visited places across the groups while concentrating

on mixing proportions of POIs specific to each group.

Another characteristic of the problem is that we intend to discover potential

social ties in the data, but there is no prior knowledge on the number of social

groups. In fact, we want to train a mixture model that allows the model size to grow

as new or unseen POIs appear in the mobility traces.

4.4.3 User-specific Modeling and Global Modeling

The procedure of computing the posterior probability distributions from tra-

jectories using the HDP model is similar to what we have presented in Equations

4.20 and 4.21. Following the notation from Section 4.2.1, let P (c|L) denotes the

conditional distribution over cluster assignments, where L are location traces and

c are r assigned clusters. Also, remember that each cluster in P (L|c) represents a

behaviour profile discovered by the HDP mixture model.

In this section, we consider two approaches to building the models. The first idea

is to build a global model, which requires that we have access to a global database

that contains the entire mobility traces from every user. Equation (4.21) shows

the computation of the global P (c|Lj) distribution built from all J mobility traces.

Afterwards, user-specific weights have to be computed to determine the contribution

of each behavior profile in clustering the users into social groups.

However, there are many applications in which the location of the user cannot

be shared in one common database, mostly due to privacy preferences. Therefore,
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in such a situation we would not have the mobility traces of all users and, hence, we

would not be able to learn global similarity functions. Rather, we would need to build

multiple user-specific models, only from the mobility traces of each individual, and

then dispatch the model for comparison with others. In this case, a separate HDP

model is computed for each individual, where clusters represent multiple patterns in

the individual’s behavior profile. The clusters are still shaped over all possible loca-

tions and the probability distribution of POIs highlights the importance of different

locations for that particular user. Similarly, the individual distribution P (Lu|cu) for

user u is estimated from mobility traces, Lu = {Lu1, · · · , LuJu}, as:

P (Luju |cu) =
N
∑

i=1

P (Luju |li, cu)P (li|cu). (4.27)

In this scenario, a distance measure is needed in order to be able to compare

the POI distributions between individual user models.

4.4.4 KL-Divergence based Regularization

So far, we have described how a Dirichlet mixture model can be used to model

the mobility traces of a network of users and explained two approaches for com-

puting the probability distribution of important places associated with individual

or group behavior. Now, we focus on deriving the proximity of users base on their

common location interests. In the application presented in the previous section, the

L2 regularization was introduced for pruning clusters that are too similar and also

for estimating a distance score between users base on the distribution of their POIs.

In this section, we use this distance measure as a regularizer which controls the

excessive growth of HDP clusters.
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Figure 4–13: Architecture of the proximity prediction algorithm. The left and right
side demonstrate user-specific modeling and global modeling, respectively

In the user-specific setting, as a side effect, this will also allows us to compute

pairwise distance scores between individual mixture models. In the global setting, we

can compute both pairwise distances between users, as well as pairwise distances be-

tween POI distributions within the global model, in order to prune excessive clusters.

An overview of the proposed system is given in Figure 4–13.

4.4.4.1 Kullback-Leibler Divergence

We will use the KL divergence, also known as the relative entropy, as a standard

measure for the difference between two probability distributions. The KL divergence

for two probability distributions P and Q is defined as:

D(P ||Q) =

∫

∞

−∞

P (x) log
P (x)

Q(x)
dx ≈

∑

i

Pi log
Pi

Qi

. (4.28)

The KL divergence between two mixture models is not analytically tractable and

Monte Carlo methods are needed to compute it approximately [74]. We recall the
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approximation presented in [74] for estimating the KL-divergence between two Gaus-

sian mixtures and consider a similar approximation method to compute the distance

between two Dirichlet mixtures derived from the HDP. Given n samples of the vari-

able of interest, the approximation to the KL divergence is given as follows. Let X

denote a random variable. We draw samples xi from the distribution P (X). Then,

the KL approximation is given by:

Dn(P,Q) =
1

n

∑

i

log(P (xi)/Q(xi)). (4.29)

Since, the KL divergence is not a symmetric measure, in order to use it as a

distance metric we compute the symmetrized version [128]:

SD(P,Q) =
1

2
(D(P ||Q) +D(Q||P )) . (4.30)

The idea of using KL divergence for regularization is that we would like to

eliminate from the HDP clusters that are too similar to each other. We note that

one could simply penalize the log-likelihood of the data by a function based on

the estimated KL divergence of the clusters (e.g., the minimum such value over

cluster pairs). However, we choose to simply discard clusters, because this keeps the

complexity of the HDP and associated inference process much smaller, which is an

important practical consideration.

4.4.4.2 Distance-based Proximity Scores

Our application involves computing pairwise distances between Dirichlet mix-

ture models, so we can use the same idea outlined above for this purpose.
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In the user-specific setting, given the U individual probability distribution Pu =

[P (l|c1), P (l|c2), · · · , P (l|cu)], where l denotes a possible location for user u, the

distance score between each pair of users is:

DUS(m,n) = SD(P (l|cn), P (l|cm)) (4.31)

where n,m ∈ [1, 2, · · · , u] and cu are clusters over possible locations. Since the clus-

ters in the user-specific setting reflect the behavior profile of individuals, DUS(m,n)

reveals the dis-similarity in mobility behavior between users m and n.

In the global setting, given the distribution P (l|c) with g clusters across the set

of all possible locations l, we compute the distance score between users m and n as:

DG(m,n) = SD(P (l|gn), P (l|gm)) (4.32)

where gu is a subset of global clusters with at least one non-zero probability distri-

bution over the locations visited by u.

A dissimilarity measure between two location distributions is computed as a

symmetrized KL:

D(i, j) =
N
∑

k=1

P (lk|gi) log
P (lk|gi)

P (lk|gj)
+

N
∑

k=1

P (lk|gj) log
P (lk|gj)

P (lk|gi)
(4.33)

where i, j ∈ [1, 2, · · · , g] and gi denote global clusters.

4.4.4.3 Illustration on Synthetic Data

In order to illustrate the effect of the KL regularization, we use first synthetic

data, for which experimental results are presented in Figure 4–14. We generated a

large synthetic dataset in the scenario of grouped data clustering, including 10,000
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in check. Without regularization, the number of clusters grows excessively. More-

over, the left graph in the Figure 4–14 illustrates that the log likelihood on text data

is improved with regularization, because this helps to avoid overfitting.

4.4.5 Evaluation

In this section, we evaluate the performance of the proposed approaches on the

Reality Mining dataset.

4.4.5.1 Reality Mining data

We used a subset of the data collected from 94 subjects that had completed

the survey about their physical interaction with others subjects. In total, we had

approximately 450,000 hours of information of mobility history, from which about

11,000 days of mobility traces were extracted over all the users. The user location at

each timestamp was mapped onto one of the 1028 unique cell tower IDs, based on

the signal reception of their mobile phone, and the transition times were provided.

This allows computing the amount of time spent, or “interest”, for each location

per day. The true labels for evaluating the unsupervised model come from a self-

reported survey which asked to estimate the physical interaction or proximity (within

3 meters) with other subjects of the study in that work place. The proximity level

was chosen from a range between 0-5 where 0 means no proximity, and 1-4 means

being close to someone at least 5 min, 10-30 min, 30 min-2 h, 2-4 h and 4 h per day,

respectively. In practice, we found that two individuals need to physically spend a

significant amount of time (at least 2 hours per day) together, to be able to detect

any correlation in their mobility behaviour and thus social interests. Therefore,

we transformed the proximity labels into a binary form, where more than 2 hours
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Figure 4–15: Average log-likelihood over training and test data as a function of the
number of HDP iterations, in a) the global model and b) the User-specific model.

of proximity per day is considered as 1, and no proximity or less than 2 hours is

considered as 0. This also removes some of the subjectivity inherent in the self-

reported data. The distribution of the two categories is highly imbalanced, since

only 15% of all possible pairwise combination of individuals ended up classified as

“close” according to this definition.

4.4.5.2 Proximity prediction from locations

In both the user-specific and the global model setting, we used the HDP imple-

mentation provided by [147] with a symmetric Dirichlet distribution with precision

parameter of 0.5 for the prior over POI distributions. The posteriors are integrated

out using Gibbs sampling for 1000 iterations. In the user-specific setting, one HDP

model was built for each individual from their daily traces, which varied from 8-277

days, the mean being 123 days. In this setting, the number of detected clusters for
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Figure 4–16: Visualization of the HDP clustering. Each horizontal line with different
color represents the probability distribution of user’s interest over the locations. The
radius of each bubble is proportional to the probability assigned to the particular
user for that location.

each individual varied from 3-17 clusters, with a mean of 6 clusters. In the global

setting, one HDP model was built from all 11,000 daily traces, and the model dis-

covered 182 clusters. 10-fold cross validation was used to validate the performance

of the HDP model. Figure 4–15 depicts the likelihood over HDP iterations.

Intuitively, clusters in each user-specific model demonstrate the particular be-

havior of that individual. Figure 4–16 shows an example of the HDP cluster assign-

ments for 5 different individuals. As one can see, the results are quite varied. Now,

in order to infer proximity between two individuals, we compared their mixture of

POI distributions using theDUS distance score described in Equation(4.31). We then
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Figure 4–17: Bottom: DUS over all possible pairwise user model comparisons. Top:
Positive proximity was decided based on setting a threshold on the DUS score. The
best true positive rate, about 78% is achieved when setting the threshold to 3.

applied a empirical threshold to make a binary decision on the distance between each

pair of users. Figure 4–17 gives the histogram of DUS distance scores, and shows

how the threshold was chosen. We picked a threshold of ε as this gave the best true

positive rate (TPR) values.

In the global setting, 182 clusters corresponding to general mobility behavior

profiles were discovered from all 94 users. A large number of clusters appears in

the posterior due to the larger number of data points, and thus, a higher number

of redundant clusters occurs in this model. Prior to finding correspondences among

individuals, we computed the pairwise KL distance between these clusters in order to
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Figure 4–18: The proposed global model with the automatically inferred number
of clusters vs. k-means with different numbers of clusters. Averaging the results
over 5 runs, k-means exhibits the best performance using 45 clusters. The proposed
approach constantly outperforms this baseline in terms of true positive rate.

prune excessive ones. Here, the threshold was heuristically set to merge the clusters

with distance < 2, which resulted in 125 clusters.

Afterwards, we computed DG using Equation (4.32). This score reflects the

level of proximity for each pair of users; by applying a threshold, a binary decision

of whether two users are “close” or not can be made. In this setting, the best true

positive rate of 89% was obtained at a threshold of 4 for DG.

4.4.5.3 Baseline models

A natural strategy for inferring behavioral profiles from mobility traces is to

look at the probability distribution of the most frequently visited places (or POIs).

Therefore, we considered extracting a feature set, referred to as most frequented
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place (MFP), by computing the probability distribution of visited locations (i.e.,

by averaging the amount of time spent at each place) from the traces. Despite its

simplicity, this is a very intuitive and strong baseline that has been widely used in

the literature to interpret semantic location information from trajectories [172, 41].

The first baseline (denoted USk-means), which is comparable to the user-specific

setting, KLD-HDPUS, extracts the MFP for each user and employs standard k-means

clustering to discover POIs for their traces. Then, the similarity between users

was established by counting the number of POIs in common. The second baseline

(Gk-means), which is comparable to the global setting KLD-HDPG, extracts the

MFP from each trace, then uses the D-score computed from equation (4.33), as a

distance function for k-means, in order to cluster the mobility traces into groups.

The proximity between two individuals is then decided based on the number of daily

traces assigned to clusters in common.

Our algorithm is adaptive, in the sense that the number of clusters is a variable

inferred from the mobility patterns of individuals, based on the desired similarity

threshold, while in k-means, like in many other clustering algorithms, the number

of clusters to be discovered is fixed in advance. We varied the number of clusters in

Gk-means from 2-100, while the HDP selected the model size automatically. Figure

4–18 compares the KLD-HDPG and Gk-means models in terms of correctly predicted

positive proximity, averaged over 5 runs.

Finally, in Table 4–1, the TPR, F -score (due to imbalance distribution of clus-

ters) and accuracy (ACC) for all proximity predictors are shown. In general, the
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Global models User-specific models

Gk-means KLD-HDPG USk-means KLD-HDPUS

TPR(%) 71 89 65 78

F-score(%) 77 90 74 83

ACC(%) 82 92 81 88

Table 4–1: Comparison of different strategies to infer proximity

difference between the true labels and the predicted ones might come from the differ-

ences in the concept of proximity among people. However, the proposed KLD-HDP

outperforms the baselines in both settings.

4.5 Mobile Communication Data Analysis

In this section, we present the last application example for the HDP-based ap-

proach to analyzing location data. This application scenario has a fairly different

anatomy compared with the other applications studied in this chapter, where out-

door and indoor location trajectories were used to analyze the mobility behaviour

of a group of users. In contrast, here we introduce a new application of HDP-based

clustering, in which mobile communication traffic collected from cell tower antennae

is the focus of the analysis. We will use the same approaches in the previous studies

for clustering communication traffic for a group of users. In this case, the clusters

are distributions of calls across cell tower antennae (“points of importance”), and we

aim to find interesting locations corresponding to each cluster.

4.5.1 D4D Challenge Dataset

The Data for Development (D4D) dataset [2, 25] was gathered by the Orange

Group (a large telecommunications operator) in 2011 to contribute to the socio-

economic development and well-being of the Ivory Coast population. This created
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2. Long term & low resolution: mobility trajectories were collected for five

months and locations were identified through 255 administrative regions

• Communication Sub-graphs: Communication graphs of 5,000 randomly

sampled customers, with first and second order neighborhood for period of

two weeks. The first order neighborhood includes all the people each user had

communication with, and the second oder neighborhood includes those people’s

first order neighborhood.

These data types are schematically depicted in Figure 4–19.

4.5.2 Mining Call Patterns

The focus of our work is on the first dataset, antenna to antenna records, where

the cell towers were uniquely identified by an antenna ID and their geographic coordi-

nates were provided by longitude and latitude. As described in the D4D data report

[25], for technical reasons, some antenna identifiers are not always available. The

corresponding communications, which were assigned to the code -1, were removed

from our computations due to their potentially misleading effects.

The preliminary observations show that almost every day the number of calls

decreases dramatically from midnight until 5:00 am, so from now on we call this

duration nighttime, and the rest of the day, i.e. from 6:00 to 23:00, daytime. Figure

4–20 depicts the distribution of calls during different hours of the day and different

days of the week.

The goal of our study is to discover correlations in the call traffic based on both

the geographic location of the cell towers and the time of the calls. We employed the

HDP model to compute the probability distribution of call traffic between towers,
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(a)

(b)

Figure 4–20: Hourly and daily distributions of call records

depending on the time, and to identify “important” locations using the entropy of

the distribution. Intuitively, the locations of interest should depend greatly on time

of day. For instance, users are more likely to be at home during nighttime and at
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work during daytime; therefore, the corresponding detected locations are probably

residential areas (suburbs) and workplaces, respectively.

Each observation in the data contains information about the originating and

terminating antenna ID, as well as the total number of calls between these towers.

We aim to compute the probability distribution of calls over each antenna to be able

to highlight important clusters or locations for each time step. However the number

of clusters are not known a priori and tends to grow as more data points are seen.

Further, each antenna is paired with various other antennae at each time step, which

means that the clusters we compute have to share components.

This problem formulation fits naturally with the HDP and topic modeling frame-

work. We consider each observation from a pair of antennae to correspond to a doc-

ument, and the words are the originating and terminating antennae IDs, while the

number of calls corresponds to the word counts.

The HDP assigns to each observation a distribution over antenna locations which

emphasizes the most popular locations of the call receivers. However, for each hour

of a day, the HDP computes clusters consisting of several call patterns spread over

locations. To address this problem, we empirically set a cut-off threshhold to truncate

very low probability occurrences for calls.

4.5.3 Evaluation

One of the challenging issues facing big data analysis is how to efficiently sub-

sample the existing data. Using the entire dataset yields significant computational

costs, and sub-sampling can lead to imperfect solutions, by ignoring some of the data.
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Therefore, we suggested two different strategies for sampling this dataset, which lead

to different effects on clustering results.

The entire dataset includes call traffic of 1196 cell towers that could vary within

a wide range, from 0 to 200 received calls per minute. In the first attempt, we

uniformly sampled observations at each time step, which resulted in a fair distribution

of observations with both high and low number of received calls. However, our goal

was to look for places of interest that essentially should be identified by observations

including high volume of communication traffic. Therefore, the uniform sampling

method would reduce the contrast between important places (cell towers) and the rest

of the location points. Thus, in the second experiment, we collected all the antennae

with high volume of calls (above a certain threshold proportional to the total number

of calls recorded in the data for each time step) and then drew uniformly at random

from the rest of the observations. This approach worked significantly better, so we

present results based on the latter experiment.

Figure 4–21 presents the average log-likelihood over the training set and over

an independent test set (from a different week), as a function of the number of

iterations of the algorithm. As seen, the algorithm converges quickly and successfully

to solutions which have good log-likelihood. We noted that the range of location

probabilities in all clusters falls into two categories. First the “important” clusters

with probabilities > 0.7, and second the “trivial” clusters with probabilities < 0.2.

Figures 4–22 to 4–25 present visualization of the “important” clusters obtained for

different hours of a day. In each figure, different colors of the bubbles indicate
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Figure 4–21: Log-likelihood over training and testing data, as the algorithm pro-
gresses. Learning is quick and converges to good solutions

different clusters appeared at that hour, and the radius of each bubble is proportional

to the probability assigned to the particular cluster for that location.

As expected, the call patterns and geographic distribution of important cell

towers dramatically vary during 24 hours. Daytimes show significantly more calls,

with more clusters and some very focused clusters. At night, there are significantly

fewer clusters, and they are more spread out. It is worth noting that some areas are

only visited at certain times during the daytime that can indicate the industrial areas.

Unfortunately, this dataset did not include any annotation about the users, the call

traffic or the location distributions, therefore, we were not able to take advantage of

ground truth labels to validate the inferred interpretations.

This experiment was conducted as a pilot study of the proposed clustering

method, during the limited time of D4D challenge, and the preliminary results have
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Figure 4–22: Visualization of antenna clusters (learned based on call numbers) for
nighttime, from 12am to 5am, respectively
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Figure 4–23: Visualization of antenna clusters (learned based on call numbers) for
daytime, from 6am to 11am, respectively
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Figure 4–24: Visualization of antenna clusters (learned based on call numbers) for
daytime, from 12pm to 5pm, respectively
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Figure 4–25: Visualization of antenna clusters (learned based on call numbers) for
daytime, from 6pm to 11pm, respectively
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the potential to be used by authorities to qualitatively study the mobility and move-

ment of people across the country during the day. For instance, this information

could be useful for planning new developments such as roads or neighborhoods. We

intended to improve the results by exploring ways of regularization beyond thresh-

olding, however, after the challenge period, the dataset was not available for further

analysis.

4.6 Conclusion

One essential role of unsupervised learning in activity recognition problems is

to discover routines and regularities in human daily behaviour with minimum re-

quirements of annotation and prior knowledge about the structure of data. In this

chapter, we proposed an HDP-based clustering method for analyzing location data

obtained from mobile devices over extended periods of time, in order to glean in-

formation about the long-term behaviour patterns of different groups of users in

multiple application scenarios.

The proposed method included two layers of learning steps; the hierarchical

clustering layer that models the mobility behaviours, and, the regularization step on

top of the HDP clustering, to keep the size of models in check. While a lot of the

work on HDPs assumes that the strength of the prior will be sufficient to control the

model size, our regularization approach provides a tighter control over this aspect.

One interesting future work direction would be providing a theoretical explanation

of the effect of the KL divergence used on the model from a Bayesian perspective.

We anticipate that the proposed methodology would have a positive impact on other
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cases in which the possible model complexity is in fact bounded, but we still want it

to grow as more data become available.
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CHAPTER 5
Wifi-based Activity Recognition

In an effort to extend our academic knowledge of activity recognition and human

data analysis beyond theory and in order to engage in solving real-world challenges,

we participated in collaboration with c©TandemLaunch inc. for a project on “Activ-

ity recognition using physical layer information of wireless communications” in the

context of home automation, in which we had to design and implement practical

solutions for different aspects of the project.

In this chapter, we introduce the relatively new problem of wifi-based signal anal-

ysis for device-free activity recognition, which proposes using wireless transceivers in

indoor environments as a sensing infrastructure to obtain information about users’

behaviour. As seen in previous chapters, classical activity recognition methods often

rely on wearable sensors, mobile devices or environmental sensors to infer human

activities or behavioural models. Although these approaches are widely accepted

and have been shown to be effective in traditional studies, they raise some practical

concerns such as deployment cost, privacy issues and energy consumption, when it

comes to long-term monitoring of real world conditions or public applications with

many users and over a long period of time.

Alternatively, there is a very recent research area that focuses on activity recog-

nition by employing off-the-shelf wifi-enabled devices, e.g., access points, laptops,

smart TVs. This is mainly motivated by wireless technology improvements and the
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fact that wifi signals are pervasive in daily life at home, work and even public places.

The key idea is to monitor the influence of human body movements and gestures

on the changes in the strength and pattern of wireless communications between the

transmitter and receiver [153]. Studies suggest that information gleaned from the

physical layer in wireless infrastructures (e.g. wifi signals), such as channel state

information (CSI) and received signal strength indicator (RSSI) values has the po-

tential to characterize the environment, which includes both ambient objects and

human movements and gestures.

The current design and implementation of this novel technology exhibits some

limitations due to the complexity of the wireless signal propagation in indoor envi-

ronments and due to the challenging nature of human behaviour itself. Therefore,

in this chapter, we present an extended study on human activity recognition, using

multiple supervised and unsupervised techniques, for the design and implementation

of an smart indoor space applications. The evaluation and experimental results are

all performed on real-data collected and processed at c©TandemLaunch.

First, in Section 5.1, a brief review of existing studies in radio-based activity

recognition is provided, and then necessary background material is presented. Then,

we describe different aspects of the subjective problem of designing and modeling

device-free smart indoor environments using wifi signals in Section 5.2. In Section

5.3 we evaluate our learning strategies and approaches on real data collected in several

application scenarios, and finally in Section 5.4, we conclude the experimental results

with a discussion on future directions for this work.
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5.1 Background

Although this research topic is still in its initial development stage, several

research groups have developed activity recognition frameworks based on the analysis

of different types of radio data. In this section we first introduce and review some

related work on radio data mining and technical and practical issues that arise when

working with wireless signals. This is followed by a review of wireless physical layer

infrastructures, namely Channel State Information (CSI), as the foundation of our

proposed recognition models in this chapter. Finally, we briefly review the Latent

Dirichlet Allocation algorithm that is used in our design for location identification.

5.1.1 Radio-frequency Data Mining

In recent years, an interest in evaluating technologies for activity identification

through device-free approaches has emerged, since they do not require people to

carry any devices, which is an attractive property for the industry. There are various

technologies and approaches for obtaining radio data (including Zigbee, wifi, RFID,

microwave, FM signals, etc.) with different characteristics and processing steps.

The common idea among all these techniques is that they try to use radio-frequency

sensing infrastructure to study the influence of different human activities on the

covered sensing environment.

One class of approaches focuses on monitoring the Doppler shifts and multi-path

distortions of wifi signals originated by human physical activities or capturing radio

reflections bounced off the human body, in order to detect and classify different

movements and gestures in the environment [5, 6, 7, 130]. For example, WiSee
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presented in [130] exploits the Doppler shift in narrow bands extracted from wide-

band OFDM (orthogonal frequency division modulation) transmissions to recognize

nine different human gestures. Also, technologies introduced in [6, 7] (WiTrack,

WiTrack2.0 ) measure the time it takes for a customized signal to travel from its

transmitter to the reflecting body, called Time of flight (TOF), using frequency-

modulated continuous wave transmission (FMCW) and then use this information to

track and recognize user movements. However, all these approaches need specific

hardware for the transmission radar.

Another class of approaches employ low-power, low-cost wireless network stan-

dards, such as Zigbee and RFID tags, to sense the user’s environment and observe the

effect of different human activities on the wireless communication patterns between

sensor nodes and the base station. For example, RF-IDraw [152] introduces a vir-

tual touch screen system that use multi-resolution positioning to trace the trajectory

shape of RFID tag placed on a user’s finger in order to let them input characters by

drawing in the air. These techniques can provide high recognition accuracy without

the burden of high system deployment costs. However, they are not considered a

device-free system, because some specific hardware is still needed.

In contrast, we are interested in a research area that solely utilizes off-the-shelf

wifi-enabled devices for sensing the environment. These approaches are mainly mo-

tivated by the wireless technology improvements introduced in the IEEE 802.11n

and IEEE 802.11ac standards, and also the market penetration expected for chipsets

in compliance with these standards, powered by the Internet-of-Things (IoT). Intu-

itively, these new techniques not only assume that there is no need for the user to
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carrying any devices, but also intend to perform sensing entirely by using off-the-

shelf devices. For instance, WiGest, a gesture detection technology introduced in

[4] performs in-air hand gesture recognition similar to WiSee, but captures the hand

movements using off-the-shelf wifi devices [4].

Another inspiring example is the technology used in E-eyes [155], which offers

an activity recognition system based on physical layer measurements of the commu-

nication links between transmitter-receiver, provided by IEEE 802.11n and 802.11ac

standards respectively. E-eyes collects fine-grained channel state information (CSI),

which allows location-oriented identification of in-place activities (such as watching

TV on a sofa, washing dishes, etc.) and tracking of walking activities by detecting

different paths and people passing through doorways. The results suggest that CSI,

which is the channel response at the receiver in the frequency domain, is sensitive to

environment influences, and there is a consistent relationship between CSI variations

and the movement of people. A detailed discussion of CSI is given in Section 5.1.2.

Many researchers have recently began to leverage this new technology in different

application areas, such as indoor localization [154, 160], motion recognition [166] and

crowd-counting [159]. However, all of the current studies on this novel technology

have been performed under controlled conditions and often exhibit some limitations,

due to the complexity of the wireless signal propagation in indoor environment and

their high sensitivity towards surrounding variations. We aim to follow this trend and

build an activity recognition system in the context of intelligent indoor environments,

and propose practical solutions to address these limitations.
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On the other hand, most of these radio-based activity recognition studies [130, 5,

6, 159, 4] leveraged a two-step heuristic approach to infer activities and gestures from

the data, where the raw data is simply segmented into smaller pieces and then these

segments are matched based on their similarities. The segmentation phase man-

ually or automatically determines the boundaries of performed activities and then

the identification or matching step maps the bounded segments to different activity

families. This naive approach seems to work well in practice under the assumption

that for all of the intended activities, explicit template models exist. However, in

real-world application scenarios the template matching solution becomes very chal-

lenging, because users are free to perform new, unknown activities or different users

may perform the same activity differently. In this case, more sophisticated tech-

niques, namely, machine learning algorithms, are needed to train a general model for

various activities.

Only a few previous works have been employed learning algorithms (supervised

or unsupervised) to train human activity models from Radio frequency data or wifi

signals. For example, authors in [157] have used sparse classification to build a device-

free location-oriented activity recognition system for four different activities from

CSI measures. In [156], 13 different activities are learned from CSI measurements

of wifi Multi-input Multi-output (MIMO) radio data using a Kernel SVM-based

classification algorithm. Finally, E-eye [155] applies a template matching algorithm

to build activity profiles for clustering 9 in-place activities and 8 walking activities.

They apply adaptive strategies to address the problem of unknown activities, in

which the user is only prompted to label an activity when significant differences are
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detected from the existing profiles. However, the wifi signals can be affected by signal

interference, other ambient movements and any changes in the environment, therefore

all of the existing designs and implementations need to be initially considered in very

naive experimental setups e.g., a single occupant in a one-bedroom apartment. We

believe that extensive research is still required to demonstrate the importance of

machine learning techniques for overcoming the limitations of activity recognition

from wireless measurements.

5.1.2 Channel State Information

In wireless communications, radio signals propagate between transmitter (Tx)

and receiver (Rx) through several transmission channels. The channel properties of

a communication link can be mathematically modeled based on the transmitted and

received signals, as well as the disturbance effect of every object in the environment,

such as reflections, fading, diffraction and scattering effects. In fact, the received sig-

nal is the result of the interference of several multi-path signals transmitted through

the surrounding objects and all other disturbances events. Therefore, the charac-

teristics of these communication channels are highly correlated to environmental

variations.

This motivates a quantitative study of signal propagation behavior within a

wifi-covered area to measure and evaluate different types of disturbances within the

environment. The major challenge here is to statistically formulate the correlation

between environmental events and communication channel properties. One impor-

tant example of the collected measurement regarding channel properties, which forms

the basis of our study, is the Channel State Information (CSI) values.
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Beside application areas such as indoor localization and motion detection (men-

tioned earlier in 5.1.1), CSI measurements have been used as the sensing technology

in many other human-centric systems for high-level and low-level activity recognition.

For example in [165] the authors have leveraged the CSI information to analyze shop-

per behaviour and browsing patterns. The study in [10] claims to perform keystroke

extraction on a keyboard from CSI measurements.

However, the raw CSI values are very noisy signals, since they can be drastically

affected by many parameters such as signal interference, user movements, ambient

movement and changing environments. Therefore, a system that aims to extract gen-

eral patterns from the CSI measures has to differentiate the desired activities and

movements from unwanted interferences in the measurements. Another challenge of

analyzing this type of data is that the CSI readings are dependent on the location

of the wifi devices, as well as the distance between the target user or object and the

directional antenna. This property can be considered as an advantage when it comes

to the localization problem and tracking the position of moving objects, or when dis-

tinguishing between stationary or in-place (e.g. washing dishes, cooking, brushing

teeth) activities and displacing movements (e.g. walking and running). However,

it creates an issue for the recognition of activities, for which the location of users

changes during the activity, such as walking and running. This means, for example,

the wifi devices capture different patterns when the same person walks for different

distances or to different locations with respect to the access points. Although these

challenges impose some restrictions and limitations on the user activity recognition
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from these type of data, we aim to propose practical solutions to address these prob-

lems. These solutions include noise filtering, multiple feature extraction techniques

including both location-dependent and independent features and machine learning

techniques for building a robust device-free system for smart indoor spaces.

5.1.3 Latent Dirichlet Allocation

In this section we briefly present latent Dirichlet allocation (LDA), [24], which

is an unsupervised learning approach for clustering large collections of grouped data

such as text documents. Similarly to the HDP (see section 4.1.2 for more details),

LDA was originally proposed for topic modeling in text corpora by discovering latent

variables or semantic topics in text documents. In fact, the HDP can be seen as a

non-parametric extension of LDA, where the number of mixture component or the

topics in document-modeling terms is unknown a priori.

Let’s assume we have a collection ofM documents denoted byD = {w1, · · · ,wM},

where each document is a sequence of N words denoted by w = {w1, · · · , wN}, with

wn being the nth word in the sequence. A word w is the basic unit of discrete data,

which is an item from a vocabulary indexed by 1, · · · , V , and a topic z ∈ {1, · · · , K}

is a probability distribution over the vocabulary of V words. If w takes on the ith

element in the vocabulary, then wi = 1 and wj = 0 for all i 6= j. The generative

process of topic modeling assumes that each word within a document is generated

by its own topic, and hence z = {z1, · · · , zN} denotes the sequence of topics across

all words in a document. The process for generating each document indexed by

m ∈ {1, · · · ,M} is as follows:

133



• Choose a K-dimensional topic weight vector θm from the Dirichlet distribution

for parameter α, p(θ|α) = Dir(α).

• For each word indexed by n ∈ {1, · · · , N} in the document:

– Choose a topic zn ∈ {1, · · · , K} from the multinomial distribution p(zn =

k|θm) = θkm.

– Choose a word wn from p(wn|zn, β), a multinomial probability conditioned

on the topic zn.

In this process, the dimensionality k of the Dirichlet distribution is assumed known

and fixed over all of the documents. The LDA model allows documents to contain

multiple topics with different proportions. The word probabilities are parametrized

by a k × V matrix β, where βij = p(wj = 1|zi = 1), which is also assumed to be

estimated from data and encodes each of the K topics as a distribution over V words.

A k-dimensional Dirichlet random variable θ can take values in the (k − 1)-

simplex (a k-vector θ lies in the (k − 1)-simplex if θ > 0,
∑k

i=1 θi = 1) and has the

probability density on this simplex as:

p(θ|α) =
Γ(
∑k

i=1 αi)
∏k

i=1 Γ(αi)
θα1−1
1 · · · θαk−1

k , (5.2)

where Γ(x) is the Gamma function and the parameter α is a k-vector with compo-

nents αi > 0.

The Dirichlet distribution has a number of nice properties that facilitate the

development of inference and parameter estimation algorithms for LDA [24, 77];

it is in the exponential family, has finite dimensional sufficient statistics, and is a

conjugate prior to the multinomial distribution.
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Given the parameters α and β, the generative process given above defines the

joint distribution of a topic mixture θ and a set of N words w as:

p(θ, z,w|α, β) = p(θ|α)
N
∏

n=1

p(zn|θ)p(wn|zn, β), (5.3)

where the term p(zn|θ) is simply p(θi) for the unique i such that zin = 1. The central

task for LDA is to determine the posterior distribution of the latent topic variables

conditioned on the words that we observe in each document. From Bayes rule we

have:

p(θ, z|w, α, β) =
p(θ, z,w|α, β)

p(w|α, β)
. (5.4)

Integrating over θ and summing over z, the marginal distribution, or likelihood,

of a document is given by:

p(w|α, β) =

∫

p(θ|α)(
N
∏

n=1

∑

zn

p(zn|θ)p(wn|zn, β))dθ. (5.5)

Taking the product of the marginal probabilities of single documents, we obtain the

probability of a corpus as:

p(D|α, β) =
M
∑

d=1

∫

p(θd|α)(

Nd
∏

n=1

∑

zdn

p(zdn|θd)p(wdn|zdn, β))dθd. (5.6)

Figure 5–2 shows the graphical model representation of LDA.

Although LDA was originally proposed for text processing [68], in recent years

the model has been extended to a wide range of applications in other domains such

as, video analysis [120] and object recognition [57]. Another example is the study in

[77], where LDA is employed to symbolic music files for automatic harmonic analysis.
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but not limited to: daily activity recognition, anomaly detection, behaviour mod-

eling, user identification, moving object tracking, presence detection and location

identification. There are various applications that can be considered in the process

of designing a smart space, including

• Security and surveillance [102], e.g. intruder alarms

• Real-time, long-term health monitoring [144], e.g. assisted living for elderly

people or patients with disabilities

• Control of building equipment [72], e.g lighting, energy management, heating

and ventilation

• Smart human-machine interaction systems [46], e.g. entertainment, smart

kitchen and smart TV room

We are particularly interested in creating task-specific learning approaches that

can be utilized by multiple problem domains in smart spaces or even other applica-

tions.

The major problems addressed in our work are as follows:

1. Entrance detection: Once a person walks into a sensing area, we are able to

observe an abrupt change in the CSI values. We desire to capture the moment

when and where (if more than one doorway exits) this entrance happens. For

this task, we need to know the number of existing doorways and also, some

training samples to learn characteristics of this event, since the dynamics of

entrance action can differ from place to place. Therefore, we propose to extract

a set of features that describe the action of entrance properly, and then employ
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a classifier to detect the event and distinguish between entering from multiple

doorways.

2. User identification: We assume that each individual walks in their own specific

manner, which yields identifiable changes in the CSI measures. We propose to

build a user identification classifier to discriminate between a fixed and known

group of users residing in a sensing area. For this purpose, we need to extract

specific features that capture the diversity of human walking precisely, before

applying the classifier.

3. Localization: We introduce an unsupervised localization technique that only

needs to know the number of distinct locations (e.g. rooms or distinguishable

positions) within an indoor space a priori. We map the CSI measurements

into a bag-of-words data structure and then employ a topic modeling approach

to discover clusters in the location of a moving user within the wifi-covered

sensing area.

After data analysis, the last step of the system is to incorporate the outputs of

the preceding processes into an intelligent decision making unit. This module might

take actions, or query the processing module for further information. Depending

on the user preferences and specific needs, these strategies can be selected from a

predetermined set of actions, automatically learned or heuristically adapted from

data. For example, if we are designing a smart space equipped with security and

surveillance systems, the decision making block could be as simple as an anomaly

detection process that flags suspicious events such as
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• entrance from unusual entry points other than the known doorways, such as

windows or emergency exits

• entrance of a person whose identity cannot be recognized by the user identifi-

cation process

• unusual fast movement among different rooms right after entrance

In this example, if the decision making module concludes normal state, a routine

activity recognition system may be activated, where depending on the position of

the subject in the area, the heating or cooling system can start functioning, or the

lighting can be automatically adjusted according to user preferences.

There are many other applications that could benefit from the combination of

these processing units, as well as many other intelligent strategies to make decision

for a smart space system, which we will discuss on in Chapter 6. In this chapter, we

will focus on the technical description of the contributions listed above.

5.2.1 Interpreting from CSI Readings

In this section we describe the common challenges and limitations of our wifi-

based smart space system. As briefly mentioned earlier, there are three major

challenges in data mining with CSI measurements; the noise from multiple sources

(e.g. signal interferences and power level adaptation in access points), the undesired

changes in the environment (e.g. movement of non-target person or object within

sensing area), and the location-dependency of activities and movements. Here, we

suggest a few assumptions and pre-processing steps that yield the removal of un-

wanted disturbances without compromising the resolution of the information and

computing relevant statistics that represent the desired variations.
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5.2.1.1 Assumptions and Limitations

One practical fact that we needed to consider is that most of the off-the-shelf

wifi access points have an internal power adaptation technology that automatically

recognizes and adjusts transmission power levels to minimize interference in zones

covered by multiple access points. In general, this provides an overall higher quality

wireless connection, but the CSI estimations of a transmitted packets may vary with

different power levels. This can cause a problem for our data modeling tasks, since

some unwanted variation might occurs in the data stream. Therefore, for our data

collection we used access points with modified firmware to obtain a fixed range of

power settings, to minimize this effect. Another solution would be to normalize

the magnitude of the CSI values of different subcarriers in each stream, such that

Cl−Norm = Cl−min(Cl)
max(Cl)−min(Cl)

, which reduces the effect of power variation. However, in

some tasks the actual magnitude range of the CSI values conveys information about

the events and using the normalized values is not as effective.

Due to the location-dependency property of the CSI measurements, the location

and distance between the transmitter and receiver affect the observed communica-

tion. However, since the locations of wifi endpoints do not often change once they

are placed, we train and test our models while the location of these endpoints are

fixed. If the location of these devices changes, the parameters of the models would

need to be retrained to preserve the accuracy.

Additionally, in this stage of the technology, our system is designed to track

variations of the CSI measurements from a single user at a time. To the best of

our knowledge, most of the studies working with the same type of data are in their
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Figure 5–4: An example segment of CSI magnitude of one subcarrier, before and
after applying the noise-removal filter. This segment is collected while one person is
walking in the sensing area.

preliminary stages of development and their techniques are implemented in a single-

user setting. We followed the same setting and assumed that at each time stamp

there is only one main target user, which we track.

5.2.1.2 Noise Removal

When a person walks into the sensing area, the variations of CSI data can be

used to infer information about the characteristics of this event. However, the raw

data contain noise introduced by surrounding and high-frequency movements. On

the other hand, the duration of typical human activities and gestures is greater

than hundreds of milliseconds and happens at low frequencies (no more than 2Hz)

[117]. Therefore, we apply a low-pass filter with cut-off frequency of 2Hz in order to

remove the high-frequency noise as well as the static component. From now on when
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we mention the CSI data, we mean the filtered data. Figure 5–4 exhibits an example

of the raw CSI magnitude of one specific subcarrier before and after applying the

low-pass filter.

5.2.1.3 Feature Generation

Several problem-dependent feature extraction techniques are proposed in the

literature for dealing with radio signals, including RSSI and CSI measurements, that

are in the form of trajectory data or time-series. The most commonly used tech-

niques include statistical features (such as mean, variance, min, max, entropy and

histogram), discrete wavelet transform (DWT) and fast Fourier transform (FFT)

[130, 6, 159, 4]. Mapping the raw data into a proper feature space reduces the com-

putational complexity of the system, improves the performance of the processing

units and helps overcome the location-dependency problem in detecting and recog-

nizing activities with displacement movements.

Let C(t) = {C1, · · · , Cl} denote the CSI samples of L streaming links, where

Cl(t) = {c1,l, · · · , cs,l} represent the magnitude of samples on subcarrier s ∈ {1, · · · , S}

in stream l ∈ {1, · · · , L} at time t. Human motions and environmental changes af-

fect the L stream independently, but they affect the S subcarriers of one stream in

a similar manner. Figure 5–5 illustrates an example of measured CSI magnitudes

from all subcarriers in all streams in the same area.

The feature generation step begins by sliding a moving window with length w

to create a frame of consecutive temporal samples,

W s,l(t) = {C(t − w + 1), · · · ,C(t − 1), C(t)} (5.7)
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Shannon entropy. Entropy of the magnitudes Hs,l(W ) = {h1,1, · · · , hs,l} is

a measure of unpredictability of information content, and is individually calculated

for subcarrier s, stream l during time frame W as

hs,l = −

w
∑

i=1

W s,l(i)log(W s,l(i)). (5.10)

Peak analysis. Another simple but informative type of feature that can be

extracted from CSI magnitudes relates to signal peaks and valleys including peak

positions, counts and heights. Peak information emphasizes the local minimum and

maximum of the signals and is correlated with frequency of changes in the environ-

ment. Therefore, peaks they can be used to identify the occurrence of different events

in the environment.

Histogram. The histogram of the CSI magnitudes within the time frame

W , represents the distribution of magnitudes over some pre-defined intervals (bins),

and reflects patterns and/or locations of the movements or events within captured

frame. Figure 5–6 shows example of histograms of CSI magnitudes for different

activities/location scenarios.

So far, we have found these features to be the best representations of the activ-

ities and events that we aim to learn. Figure 5–7 shows examples of the raw signal

and the extracted features while a user is performing two different activities in the

same sensing area. We observe that the features have different detection delays, i.e.

time that each feature takes to detect the start of new activities, when switching

between activities. To evaluate the impact of different features on detection delay,

one can measure the time or number of packets before a feature responds to changing
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Figure 5–6: Histogram of CSI magnitudes of particular subcarriers for two different
users performing standing and walking at the same locations.

activities. Table 5–1 depicts the detection delays of the features shown in the Figure

5–7. In the following sections, we will introduce other informative features that are

Detection delay Variance Entropy Peak counts
Standing-Walking 0.25± 0.1 1.24± 0.3 0.23± 0.1
Walking-Standing 1.04± 0.2 0.53± 0.15 0.87± 0.2

Table 5–1: Detection delays of different features, in seconds, when a users switch
between standing and walking (averaged over 10 rounds)

specifically suitable for each problem.
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Figure 5–8: An example of extracted features for a segment of data including the
state of empty spaces and an entrance event.

we need to learn the specific characteristics of the entrance action, which basically

is a sporadic activity that happens when a person walks from a position out of the

sensing area into the area through a doorway. An accurate temporal analysis of the

data stream is required in order to detect an isolated, short event of this type.

We begin by applying the moving window method, as explained in the previous

section, to create an overlapping sequence of data. We choose the following features

to characterize anomaly patterns: 1) maximum moving variance, 2) average of CSI
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magnitudes, 3) maximum signal entropy, 4) peak counts. Figure 5–8 shows an exam-

ple of extracted features from CSI magnitudes when a user enters an empty sensing

area. This example illustrates the performance of each extracted feature in detecting

the moment of entrance. Table 5–2 shows the detection delays of these features.

Detection delay Variance Entropy Peak counts Average
Empty-Enter 1.16± 0.15 0.63± 0.5 0.51± 0.1 1.75± 0.25

Table 5–2: Detection delays of different features, in seconds, when a users enters an
empty sensing area (averaged over 20 rounds)

After feature extraction, we applied k-nearest neighbor (k-NN) classification.

k-NN is an instance-based or lazy learning algorithm, which does not attempt to

construct a general model but simply stores instances of the training data. The clas-

sification output is computed from a simple majority vote of the k nearest neighbors

of a query point. In order to find the nearest point to a given point, we must define a

distance function. A common choice for similarity measure between two data points

x and y in N -dimensional space, is Euclidean distance:

√

√

√

√

N
∑

i=1

(xi − yi)2. (5.11)

An optimal choice of k is highly data-dependent and usually is made based on cross-

validation. In general, large values of k reduce the effect of noise on the classification

but increase the bias of the classification, by only allowing simpler decision bound-

aries between classes.

The accuracy of k-NN degrades if feature scales are not consistent with their

importance. Here, in our problem all feature contribute evenly to the classification
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performance and therefore, we need to normalize the values of the features to have

them in a similar range.

There are various anomaly detection strategies, which are suitable for discovering

sudden changes in the data. For instance, the moment of user entrance can be learned

by a one-class classification algorithm, such as one-class Support Vector Machine

(SVM). However, we considered the general case, where a sensing area can have

multiple doorways and the smart space needs to be prepared to discover entrance

from any doorway. Therefore, we have applied multi-class classification, which is

capable of distinguishing between an empty space and the events of entrance through

either of the possible doorways. In Section 5.3 we will describe the details of the

experimental setup for this problem.

5.2.3 User Identification

User identification can be considered a prerequisite for any smart space appli-

cation. Apart from the security aspect, if the smart home detects which member

has entered the space, it can activate user-specific customization such as recommen-

dations on TV programs and adjusting room temperature and lighting. Current

identity recognition systems mostly rely on biometric attributes such as fingerprint,

retina and face recognition or behavioural attributes such as voice and signature

[149]. These technologies are usually accurate and reliable, but most of them suffer

from practical issues such as privacy concerns, physical contact with sensors, high

implementation and maintenance cost, and cooperation from the subjects. There-

fore, a device-free method can be a great alternative for user identification, at least

in screening applications such as surveillance of smart spaces. We assume that a
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Figure 5–9: CSI magnitudes of walking on the same path performed by 3 different
users.

typical residential or small industrial indoor space such as home or office is usually

shared between some known number of residents. We also consider the fact that,

generally speaking, a person passes through a doorway by walking into the sensing

area. Therefore, the authorized users of an smart space can be recognized and distin-

guished by the specific way or pattern of their walk, also known as gait recognition.

The variation of CSI measurements reflect the person’s gait as well as unique body

part movements or postures. Quantifying the exact body characteristics such as

body mass, height and specific body part movements (e.g., legs, arms and hands)

from wifi signals is a difficult task, requires specific antenna assembly or software

radio, and is not feasible using current off-the-shelf wifi hardwares [5, 130].

We suggest to create a feature space that captures both walking patterns and

general body shape of different users. For data collection, we considered CSI samples

gathered during both walking and in-place activities such as sitting and standing.

Figure 5–9 presents an example of CSI magnitudes of all S = 30 subcarriers in

one particular stream (link) for walking activity performed by 3 different users. The
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feature set is calculated separately for each data stream by averaging over all samples

t ∈ W , which includes: 1) variance, 2) maximum, 3) minimum, 4) peak counts, 5)

skewness, and 6) kurtosis. In addition to these features for each stream, we aggregate

the CSI magnitudes of all subcarriers into one single value by getting the average of

5 successive subcarriers as suggested in [71]. These time-domain statistics capture

the shape of instantaneous distortion of channel frequency response (CFR) of all

subcarriers.

The other aspect of user identification is to choose a proper classification tech-

nique. We expect our system to recognize different users from a predefined set and

be able to classify any other person in a stranger class. We suggest to use Random

Forest classifier, which provides multi-class classification as well as a confidence level

of the classification. The idea is to use the confidence level to indicate the presence

of a stranger in the sensing area. When someone other than the predefined mem-

bers walks into the sensing area, the classifier would still try to find the closest user

profile match and assigns a class to them. However, since the walking pattern of

the stranger is completely different from the existing profiles we expect the classifier

to produce a very low confidence level. In this case, we classify the samples with

very low confidence level in the stranger class. Depending on the sensitivity of the

measurements and the experimental setup of the space, the threshold for indicating

the stranger class can be heuristically set to minimize the false alarm (false positive)

rate.
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Figure 5–10: CSI magnitudes of walking of a user on 2 different locations within the
same sensing area.

5.2.4 Localization in Smart Spaces

Indoor localization refers to the problem of positioning or determining the loca-

tion of a device or moving object within a space using radio waves, magnetic fields,

acoustic signals or other sensory information. We propose an unsupervised learning

approach for clustering CSI measurements in order to build fingerprints for locations

within a sensing area. We intend to design a smart space system that automatically

adapts to new places without great re-training and annotation effort. Tracking the

location of a user across the smart space can be useful in many application scenar-

ios, such as assisted living, security and human-machine interaction. For example,

the location of an elderly person who lives alone is a very important component of

assisted living application that helps offsite caregivers to observe daily routines in

order to detect hazardous events such as long stays in bed or in an unusual area

(e.g., shower or bathroom).
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In this work we aim to take advantages of the location-dependency behaviour of

CSI measurements and quantify the variations in these values that occur due to the

displacement of a moving user. Figure 5–10 depicts the CSI magnitudes of walking

on a straight path at two different locations of a sensing area. Although we are aware

of the fact that the CSI data, depends on the location of the disturbance, it is not

clear how these variations can result in location identification. To investigate this,

we suggest to observe the CSI readings of the sensing area while users perform an

specific activity, namely walking, across all locations within the place. At each time

stamp, the values of the CSI matrix elements reflects diversity of the disturbances

in frequency and space.

In order to discover the frequency-space correlation, we suggest to extract histogram-

based features from the frequency component of the CSI values. The distribution

of CSI values over the frequency domain is highly correlated with the location in-

formation of the disturbances. Inspired by topic modeling in text documents, we

aim to employ LDA to discover location clusters (i.e., topics) from the distribution

of CSI magnitudes. Before employing LDA clustering, we need to construct bag-

of-word data from raw CSI magnitudes, where each observation (i.e., document) is

a distribution over a fixed sequence of discrete units. We suggest to compute the

histogram of CSI magnitudes of all subcarriers during time frame W . In this way,

at each time frame we obtain the CSI distributions (i.e., word counts) over a fixed

set of consecutive, non-overlapping magnitude intervals (i.e., words). Figure 5–11

shows a representation of histogram-based features extracted from the same signals
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Figure 5–11: Histogram of CSI magnitudes of walking of a user on 2 different locations
within the same sensing area.

presented in Figure 5–10. We can observe that the distribution of magnitudes varies

from one location to another.

The size of the topic space or the number of location clusters is a fixed parameter

which given a priori. The more location clusters we define within a sensing area, the

higher localization resolution we obtain. From our experiments, we find that the

CSI values changes gradually when the source of disturbance changes its position;

hence, abrupt changes only happen when a significant displacement has occurred, for

example, when the user walks from one room into another. Therefore, the number of

topics that LDA can successfully discover from the CSI data is roughly the number

of separate rooms in the sensing area. The main reason behind choosing the LDA

155





EA6500 V2 802.11n wifi router with 3 omnidirectional antennae and the client is an

APU (access point unit) 2B4 wifi card with 2 external antennae, both operating at

2.4GHz band. The packet transmission rate was set to 40 packets per second, and

for each packet a CSI sample with CRF of 30 subcarriers were extracted. Therefore,

the CSI is collected in 30 subcarriers and 6 streams per packet, which reflects the

signal diversity in frequency and space. For temporal analysis of the signals, an

overlapping sliding window with a length of W = 20 packets for entrance detection

and user identification, and W = 100 for the localization experiment, were chosen.

The length of the moving window can affect the performance of each processing task.

Ideally, we would like to have a long enough window to capture the activities, but

short enough to preserve the resolution of temporal variations in the signals and

allow quick detection.

Since our primary focus is smart spaces such as homes and offices, we choose

multiple indoor areas for our data collection and evaluation. These locations include

a one-bedroom apartment and different sections of one big office, i.e., office 1, lab ,

TV room and conference rooms. The sensing area layouts and their corresponding

approximate sizes, as well as the setup of devices are depicted in Figure 5–12. A total

of 8 volunteers were selected to collect CSI data while they were asked to perform

some simple activities such as walking and standing in different locations depending

on the experiment scenarios.

The algorithms and techniques were implemented in c©MATLAB, and for clas-

sification we used the machine learning toolkit WEKA [70].
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Figure 5–13: Normalized confusion matrices of entrance detection at; Top left: office
1, Top right: conference room, bottom: TV room.

5.3.2 Entrance Detection Validation

We considered two typical scenarios for entrance detection; a space with only

one doorway and an area with two entry doorways. Therefore, the experiments for

entrance detection were conducted in 3 different locations; office 1 (one doorway),

right-side conference room (one doorway) and TV room (two doorways). For collect-

ing the training and test data, the entrance activity was repeated for 20, 20 and 40

rounds by 2 to 4 participants in office 1, conference room and TV room, respectively.

Each round of the experiments took 20-35 seconds to complete. Since the activity

of entrance typically consists of 3 consecutive states of lingering outside of, entering

into and walking inside the sensing area, the recognition tasks were performed on 3

classes (for one doorway) and 4 classes (for two doorways) to extract the entrance

moments. The normalized confusion matrices of the k-NN classifiers are depicted in
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Figure 5–14: Cross-validation over conference room data for choosing the best num-
ber of neighbors for k-NN.

the Figure 5–13, independently for each location, due to the specific device setup of

each place. We observe that entrance is often misclassified as lingering in the confer-

ence room location and office 1, whereas in the TV room it is more misclassified as

walking. This is expected since in the first two places the doorways are actual doors

that users have to open and then walk into the room, which creates a temporal delay

in detecting the entrance activity. From the experiments that we have conducted,

this detection delay is approximately about 20 packets or between 0.4-0.6 seconds.

In the TV room, we do not have actual doors and the doorways, indicated by ar-

rows in Figure 5–12 (d), are open gateways which users can walk through right after

lingering, and therefore the entrance activity can be confused with walking more

often.

In order to find the optimum number of neighbors, 10-fold cross-validation was

employed and for this dataset k = 1 was always the best number of neighbors.

Figure 5–14 illustrates how the accuracy changes with different values of k used for
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classification. Overall, the system was able to detect the correct activities with an

average accuracy of 90.51%± 1, 95.04%± 1 and 84.04%± 2 for office 1, conference

room and TV room, respectively. The results indicate that the entrance detection

system is robust in identifying the presence of a subject in the sensing area and has

the potential to provide an alternative to current device-oriented presence detection

systems.

5.3.3 Person Identification

For this experiment we considered different numbers of participants at the lab,

conference room and TV room. For gathering walking patterns, the participants

were asked to walk in the sensing area from 30 to 60 seconds (3 rounds each), on

the same path. Most of the research on gait recognition imposes restrictions on the

walking activity, e.g. that it should be performed on a straight line path, but we

aim to investigate a framework where the users can explore more naturalistic walking

paths. Therefore, in addition to walking on a straight line in the TV room, we also

conducted an experiment in the conference room where the participants were asked

to walk counter-clockwise around the table (see Figure 5–12 (e)). In the lab location,

the participants were asked to freely walk in the area and even explore small rooms

inside the lab, as long as they followed predefined paths consisting of straight lines,

turns and circular paths.

Beside walking, we also asked the participants to perform 2 in-place activities,

standing and sitting, to capture the characteristics of their body while no location

dependent displacement is occurring. At each location, we built 2 types of classifiers

using Random Forest, based on the type of training data; 1) only from walking data,
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and 2) from combination a of walking, sitting and standing. Although the pattern

of walking is a very strong discriminative feature, which can be used for identifying

different people, experimental results show that including in-place activities improves

the recognition results.

Note that in a realistic problem setup we need to take the temporal dependency

of the predicted labels into consideration. This means that the user identification

can not be performed independently on consecutive samples of the data stream.

Therefore, in order to have a consistent system, it is necessary to decide the user’s

identity within a time frame, instead of per instance. This time frame guarantees that

a user is detected within the sensing area only if the classifier has been predicting

the same label for a reasonable time frame. We empirically set this delay to 40

packets or 1 second, which is a reasonable duration considering the frequency of

human activities.

Another factor that affects the robustness of the system is the users group size.

This system is targeted towards smart homes or other small indoor spaces, where

the area is typically shared between 2-5 family members or 4-6 colleagues. Based on

this assumption, we assessed the performance of the user identification with group

sizes between 3 to 6 people. The recognition results are presented in Figure 5–15 for

different locations, classifier types and numbers of participants.

In order to detect a person outside the group, i.e. stranger, we used the confi-

dence level score provided by Random Forest to reveal any significant uncertainty in

the prediction models. For each location, a group of 3 strangers, whose data was not

included in the training process, were asked to perform similar activities. When we
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In general, the results of these experiments illustrate promising properties of

CSI data for person identification. We observe that the combined analysis of human

activities improves the accuracy over simply using walking analysis. This means

that the CSI data and especially the time-domain statistics that we extracted from

the data capture the shape of instantaneous distortions caused by not only walking,

but also the body shape and volume of the human subject. This device-free user

identification processing unit can be viewed as an added feature to any intelligent

system by promoting personalized services.

5.3.4 Localization Identification using LDA

In this part we evaluate the proposed localization technique, which clusters a

sensing area into a fixed number of regions based on the CSI data. This experiment

was conducted at two different locations, the apartment and the lab, by 2 to 4 par-

ticipants (10 rounds each). For each round, the participant was asked to walk inside

all the regions of each location (for 30 seconds), following a predefined path, while

we gathered CSI measurements. As explained earlier in Section 5.2.3, we mapped

the CSI data into a histogram-based feature space and then clustered these features

using the LDA algorithm. Both of these locations have 4 distinguishable rooms,

ideally the LDA should cluster the unlabelled data into the 4 correct categories.

For the feature extraction step, we computed the counts over histogram bins

for each stream, for the moving window W = 100. The reason for choosing a larger

window in this experiment is that we are interested in spatial displacements of the

events in the environment, and due to the low frequency of human mobility we

required to capture at least 1-2 steps cycles of their walk for accurate localization.
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Unsupervised Supervised
LDA-Hist k-means SVM Random Forest

apartment 83± 2 65± 3 86± 1 89± 2
lab 82± 2 67± 3 86± 1 83± 1

Table 5–3: Accuracy (%) of different learning techniques for location identification
from histogram-based features.

As baselines, we applied two supervised learning techniques, support vector ma-

chine (SVM) and Random Forest, and an unsupervised learning algorithm, k-means

clustering, to evaluate the performance of the proposed algorithm. The baseline

algorithms were applied on the CSI magnitudes of all subcarriers and all streams.

Table 5–3 summarizes the clustering and classification results for both loca-

tions. As we expected, the supervised learning techniques have better performance

in identifying the region of users’ movements. However, for localization it is often

time-consuming and infeasible to obtain labelled data with good resolution. Our

technique is outperforming the classic k-means and only reduces the accuracy of

identification by 4-6%, which is negligible for the types of tasks we have in mind.

One parameter that affects the performance of the system is the number of

histogram bins, where we mapped the CSI magnitudes of each stream into. In

fact, the number of these bins (per stream) gives the vocabulary size of the topic

modeling approach. Figure 5–16 shows the comparison of results for different number

of features. The best accuracy is achieved with vocabulary size of 150 words.

Misclassification mostly occurs because regions from different categories share a

lot of common characteristics. The LDA allows the embedded location information
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Figure 5–16: Clustering accuracy for different vocabulary size.

in the CSI data to be represented by mixtures of various location clusters. The eval-

uation results suggest that the proposed framework, including the histogram-based

features and LDA mixture modeling, is able to discover the location-dependency of

CSI variations.

5.4 Conclusion

This chapter describes a novel system for device-free smart environments that

incorporates off-the-shelf wifi devices as the sensing infrastructure and leverages the

wireless signals to learn about human activities and behaviour within an indoor area.

The central idea to use physical layer information from wireless devices to quantify

the disturbance and variations that occur in the signals due to environmental changes,

including human movements and activities. We presented practical solutions for

three important design challenges of smart space leveraging this technology: entrance

detection, user identification and localization. All of these methods work with the
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same stream of data, only differ in data mining strategies, and can be employed

individually or in parallel with the others. While existing methods addressing these

tasks need to be trained on a large set of data, we demonstrated that even with

the fairly small amount of data (about 5-10 minutes per activity class) our proposed

approach is able to accurately predict labels for user presence, identity and location.

The experimental results for the proposed wifi-based system show that device-free

activity recognition is a promising line of research both for academia and industry.

We focused on customized approaches for each individual location, because in

real-world scenarios some calibration and parameter tuning will be needed depending

on the conditions of the sensing area. CSI measurements are very sensitive to the

location of the transmitter and receiver devices, as well as ambient unwanted vari-

ations, which needs to be considered while training the models. Designing a more

general systems that could adaptively learn the difference between locations and tune

parameters automatically, is an interesting future direction for this application.
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CHAPTER 6
Conclusion

Smart mobile devices have become an essential part of our society and they are

capable of sensing a wealth of information about human behaviour and mobility.

User activity recognition is a well studied and challenging research area because of

the diversity and complexity of human behaviour. In this spirit, we proposed and

evaluated various machine learning techniques for learning human behaviour patterns

from mobility data obtained from multiple sensing technologies, on both individual

and group level. Motivated by technical challenges of inferring semantic information

from a large volume of human data, we studied three distinct research topics in the

field: energy efficiency in wearable computing, high-level mobility analysis and smart

indoor spaces. When considered together, these solutions can be at the foundation

of an intelligent system that discovers meaningful patterns and routines from human

daily life, indoors and outdoors. We conclude this thesis by summarizing the main

contributions presented in the preceding chapters and by providing directions for

future work.

6.1 Contributions

In Chapter 3 we presented a sensor selection strategy for mobile wearable sys-

tems to efficiently reduce the power consumption of the activity recognition appli-

cations on small portable devices, while maintaining accuracy. We proposed an ap-

proach that actively selects a smaller subset of sensors that are the most informative
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yet energy-effective for each time frame, and evaluated the performance of the algo-

rithm on real data contained a number of sensor modalities and multiple activities.

The empirical results confirm that the proposed online classifier selection method

provides good power efficiency without significant loss in prediction accuracy.

In Chapter 4, we applied a fully unsupervised method, to discover routines

and preferences in human daily movements and mobility behaviour, with minimum

requirements of annotation and prior knowledge about the structure of data. We

proposed to use an HDP(Hierarchical Dirichlet process)-based clustering method for

analyzing location data obtained from mobile devices over extended periods of time,

in order to glean high-level information about the long-term behaviour patterns of

different groups of users. In general, the proposed method included two layers of

learning steps: the hierarchical clustering layer that models the mobility behaviour,

and a regularization step on top of the HDP clustering to keep the size of models

in check. We evaluated our method on three different real data sets including both

fine-grained indoor trajectories and coarse-grained outdoor mobility traces. Our

results confirm that the regularized-HDP model is capable of interesting qualitative

modeling, which offers a high-level perspective for learning the underlying structure

of events, even in the presence of noisy and complex trajectories. While a lot of the

works on HDPs assume that the strength of the prior will be sufficient to control

the model size, our regularization approach provides tighter control over this aspect.

The proposed regularization is general and should be useful for other applications

of HDPs as well. The proposed approach is thoroughly conducted and evaluated

on wide range of real-world data types, including user mobility traces (indoor and
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outdoor scales), interpersonal interaction levels and cellular antenna tower statistics.

Therefor, the proposed methodology have the potential to be integrated with current

technologies to provide opportunities for better understanding of human mobility

behaviour on both individual and social levels.

In Chapter 5, we presented a device-free activity recognition system in the con-

text of smart spaces, consisting of three main tasks: entrance detection, user iden-

tification and localization. These recognition modules leveraged very recent sensing

technology created by the wifi network coverage of off-the-shelf wireless devices, in

order to monitor the behaviour and movements of users within an indoor space. In

particular, we were interested in analyzing the disturbance in the channel state infor-

mation (CSI) values, which occurs due to human movements and activities within a

sensing area. Each of the entrance detection and user identification blocks included a

feature generation step that extracts statistical characteristics of the wireless signals

and a classification step that distinguishes among different activity profiles and differ-

ent user profiles, respectively. For location identification, we proposed to transform

the CSI magnitudes into a histogram-based feature space to discover the frequency-

space correlation between the raw CSI measurements and different locations of the

area covered by the wifi. Then we applied Latent Dirichlet Allocation (LDA) to

cluster distinct locations within the area. The experimental results on the proposed

wifi-based system confirm that device-free activity recognition is a promising line of

research in the field of context-aware computing.
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6.2 Future Directions

In this section, we discuss interesting opportunities for future direction, sug-

gested by the research presented in this thesis.

6.2.1 Efficient Wearable Computing

Human activity recognition from wearable devices provides great potential for

context-aware computing for many applications. However, due to the computa-

tional and power capacity limitations on portable devices, the problem of efficiently

processing large amount of modality data is not yet fully addressed. One possible

improvement for the proposed framework in Chapter 3 is to take into account the

precise energy consumption of each sensor, and optimize the sensor selection process

based on the energy efficiency by introducing a cost factor, instead of making the

decisions only based on the overall accuracy rate. Reinforcement learning may prove

to be a useful methodology in this respect.

Another possible solution is to incorporate additional informative modalities

such as microphone or camera to investigate the user’s activities and environment

context. These modalities are capable of capturing the surrounding events with

high resolution. However, using visual and auditory information to improve the

performance of wearable technologies brings extra computation cost, and is only

applicable in specific domains, where privacy concerns are trivial or the users are

willing to voluntarily provide such information in order to enhance the quality of

their interaction with smart devices. Improving power consumption in the presence

of such devices would be very useful.
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6.2.2 Location-based Activity Recognition

In Chapter 4 we investigated some open questions in the field of modeling and

analyzing human mobility trajectories from mobile sensing technologies.

Two alternative directions include 1) extending the regularized clustering method-

ology by evaluating on more diverse data types, 2) generalizing the methodology by

providing a theoretical explanation of the effect of the regularization step used on

the model from a Bayesian perspective. At the application level, we anticipate that

the multi-layer clustering method would be helpful in discovering different semantic

layers in structured data with. On the theory side, we expect that generalizations

of the proposed regularization methodology would have a positive impact on other

non-parametric frameworks, where the possible model complexity is in fact bounded,

but we still want it to grow as more data become available.

6.2.3 Device-free Activity Recognition

As a new sensing strategy for activity recognition, there are many open research

questions in the field of device-free smart systems that need to be addressed. We

discuss a few existing limitations and issues of this technology and provide some

possible directions for future studies.

As shown in Chapter 5, most of the modules in the smart spaces from data

acquisition to decision making, contain several parameters that need to be tuned,

such as transmission power level, sliding window size, packet sampling rate, classifi-

cation parameters and thresholds. Each parameter may have a large impact on the

accuracy and robustness of the smart system, hence, automatic optimization of all

these parameters is an important research question. One possible solution is to use
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control theory, to analyze the behavior of dynamical system and offer hints of good

settings.

In order to improve the quality of the recognition tasks in smart environments,

a necessary step is to obtain feedback on the performance from the end-user of the

technology. Therefore, developing a user interface that incorporates user commands

and preferences in the loop of decision making would be an natural way to proceed.

For instance, the interactive interface can prompt the user on their smart phone

when the system is uncertain about the identity of the person who just walked into

the smart home.

Another way to improve recognition accuracy is to use information from other

layers of wireless connections, such as RSSI and MAC addresses. For example, as

soon as a user arrives at home or office their mobile smart devices connect to the

wifi network, and the MAC address of their device can be used to recognize the

identity of the person. Also, RSSI information is usually correlated with the location

of disturbances in the area and can be incorporated as an informative feature for the

localization unit.

The majority of wifi-based activity recognition studies work with the assumption

that only a single target user is moving within the sensing area at a time. One of

the reasons for this limitation is that some activities or locations are out of reach of

one pair of wifi devices. One possible solution is to combine multiple access point

readings in order to obtain higher resolution information and improve the recognition

results. Another way to increase the information gained from a sensing area is to

incorporate other types of radio-frequency sensing modules such as Zigbee or RFID

172



radio. However, the fusion of these different sources of data is still under exploration

and needs further research.

So far, there is no mathematical theory that models and analyzes the correla-

tion between human mobility and activities and corresponding wireless transmission

features. The majority of research in this field illustrates the effectiveness of radio

sensing through real world experiments. Therefore, one alternative direction would

be to use information theoretic analysis to achieve essential insights that improve

the design and performance of such systems.
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[128] David Pinto, José-Miguel Bened́ı, and Paolo Rosso. Clustering narrow-domain
short texts by using the kullback-leibler distance. In Computational Linguistics
and Intelligent Text Processing, pages 611–622. Springer, 2007.

[129] Susanna Pirttikangas, Kaori Fujinami, and Tatsuo Nakajima. Feature selec-
tion and activity recognition from wearable sensors. In Ubiquitous Computing
Systems, pages 516–527. Springer, 2006.

[130] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel. Whole-
home gesture recognition using wireless signals. In Proceedings of the 19th
annual international conference on Mobile computing & networking, pages 27–
38. ACM, 2013.

[131] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and Michael L Littman.
Activity recognition from accelerometer data. In AAAI, volume 5, pages 1541–
1546, 2005.

[132] Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani
Srivastava. Using mobile phones to determine transportation modes. ACM
Transactions on Sensor Networks (TOSN), 6(2):13, 2010.

[133] Kristin Rieping, Gwenn Englebienne, and Ben Kröse. Behavior analysis of
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