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Abstract

Polar codes have received a great deal of attention in the past few years to the extent that they are
selected to be included in the 5th Generation of Wireless Communications Standard (5G). Specifi-
cally, polar codes were selected as the coding scheme for the Enhanced Mobile Broadband (eMBB)
control channel which requires codes of short length. The main bottleneck in the deployment of
polar codes in 5G is the design of a decoder which can achieve good error-correction performance,
with low hardware implementation cost and high throughput. Successive-Cancellation (SC) de-
coding was the first algorithm under which polar codes could achieve capacity when the code
length is very high. However, for finite practical code lengths, SC decoding falls short in provi-
ding a reasonable error-correction performance because of its sub-optimality with respect to the
Maximum-Likelihood (ML) decoder. Sphere Decoding (SD) is an algorithm that can achieve the
performance of ML decoding with a very high complexity. In order to close the gap between SC
and ML decoding, Successive-Cancellation List (SCL) decoding keeps a list of candidates and
selects the one with the best Path Metric (PM). Although SCL provides a good error-correction
performance, it comes at the cost of higher complexity and lower throughput. In this thesis, we
first propose a low complexity SD algorithm which provides a good trade-off between the error-
correction performance and the complexity of the decoder for polar codes of short lengths. We
then propose algorithms to speed up the SCL decoders. We prove that while these algorithms have
much higher throughput than the conventional SCL decoder, they incur no error-correction perfor-
mance loss. We further propose several techniques to reduce the area occupation in the hardware
implementation of SC and SCL decoders by reducing their memory requirements. We solve the
flexibility issue of fast SC-based decoders and introduce a completely rate-flexible scheme. Har-
dware architectures for the proposed algorithms are presented and comparisons with state of the art
are made. Finally, we evaluate the performance of polar codes in 5G and we show that polar codes
can be used in practical applications by proposing a blind detection scheme with polar codes.
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Résumé

Les codes polaires occupent depuis quelques années l’attention de la communauté académique du
codage de canal. Cet intérêt s’est étendu à l’industrie puisque les codes polaires prennent part au
standard de communications mobiles de cinquième génération (5G). Plus précisément, ils sont sé-
lectionnés comme schéma de codage pour le canal de contrôle du service mobile à large bande amé-
lioré (Enhanced Mobile Broadband (eMBB)), requérant des codes de faible longueur. Le principal
obstacle dans le déploiement des codes polaires pour la 5G est la conception d’un décodeur ayant
un coût d’implantation matériel faible, tout en présentant à la fois de bonnes performances de cor-
rection d’erreurs et un débit élevé. Le décodage à annulation successive (Successive-Cancellation
(SC)) est l’algorithme de décodage originel des codes polaires. Il permet d’atteindre la limite de
capacité théorique, à condition que la taille du code polaire soit suffisamment grande. Cependant,
pour des tailles de trame finies, l’algorithme SC présente des performances de décodage médiocres,
provenant de sa sous-optimalité au regard du décodage à maximum de vraisemblance (Maximum-
Likelihood (ML)). Le décodage par sphère (Sphere Decoding (SD)) atteint les performances ML
au détriment d’une complexité calculatoire importante. Afin de réduire l’écart de performances en-
tre les décodages ML et SC, le décodage à annulation successive par liste (Successive-Cancellation
List (SCL)) a été proposé. Son principe réside dans le maintient d’une liste de mots candidats et de
la sélection à l’issue du décodage du mot ayant la meilleure métrique. Bien que l’algorithme SCL
présente de bonnes performances de décodage, sa complexité calculatoire est plus importante et
son débit est réduit par rapport à l’algorithme SC. Dans ces travaux de thèse, nous proposons tout
d’abord un algorithme SD à faible complexité calculatoire. Il permet d’obtenir un bon compromis
entre sa performance de correction d’erreurs et sa complexité calculatoire pour des codes polaires
de faibles tailles. Ensuite, nous proposons différents algorithmes accélérant les décodeurs SCL.
Ces algorithmes permettent d’atteindre un débit bien plus élevé que le décoder SCL convention-
nel, tout en assurant les mêmes performances de décodage. Ensuite, nous proposons différentes
techniques réduisant l’occupation surfacique d’implémentations matérielles de décodeurs SC et
SCL. Ces techniques sont basées sur la réduction des besoins mémoire de ces algorithmes. Nous
résolvons les problèmes de flexibilité des décodeurs basés sur l’algorithme rapide SC et présentons
une méthode compatible avec tout rendement de code. Des architectures matérielles adaptées aux
algorithmes proposés sont présentées et des comparaisons avec l’état de l’art sont établies. Fina-
lement, nous évaluons les performances des codes polaires du standard 5G et nous montrons que
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les codes polaires peuvent être utilisés dans des applications pratiques en proposant une méthode
de détection aveugle.
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Chapter 1

Introduction

A very fundamental part of a data transmission from one place to another is the communication
channel. This channel is basically the medium in which the data is being transferred, e.g. cables,
air, etc. Since the medium is not ideal for data transmission, it always contains noise. Therefore,
the data that is seen at the receiver may not be the same as the data that was sent by the transmitter
rendering the data transmission as unreliable. In order to increase the reliability of the data transfer,
error detection and error correction techniques have been employed. A basic representation of a
communication scenario is given in Figure 1.1.

Error detection is the process of determining if a received digital data is actually what was
sent by the transmitter. A very simple example of such coding scheme is the repetition code which
sends multiple copies of blocks of the data across the channel. For example, a block of 0111 can be
copied three times and sent as 011101110111. If the receiver receives the data as 010101110111,
it can tell that the data contains an error because the first block of data is not the same as the next
two. It can also recover the data by choosing the blocks that happened more frequently which in
this case is 0111. This operation is called error correction. However, this method of coding is very
inefficient. In order to be able to reliably reconstruct the transmitted data, Error-Correcting Codes
(ECC) are used.

ECC or Forward Error Correction (FEC) is a method in which redundant data (parity bits) is
added to the information (encoding) and the augmented data is sent through the channel. In the
receiver side, the receiver reconstructs data by using the parity bits (decoding). FEC has the ad-
vantage of not requiring a back-channel to communicate with the transmitter in case an error has
occurred. Therefore, it is simpler and can be used in a wide range of communication channels.
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Transmitter Channel Receiver

Figure 1.1: Basic communication scheme

However, the question is how many parity bits can be added to the information so that the commu-
nication is reliable. This question is answered by Shannon’s theorem [1] which states that there is
a maximum information rate at which a reliable communication can be established over a channel
with a known error probability or Signal-to-Noise Ratio (SNR). This maximum information rate is
called the channel capacity.

There has been a great deal of effort in order to reach the channel capacity for high-rate reliable
communication. Low-Density Parity-Check (LDPC) [2], [3] and Turbo codes [4] are the two
powerful coding techniques which can reach the channel capacity for some specific configurations.
Polar codes are the first family of ECC with provable capacity-achieving property and a low-
complexity encoding and decoding process [5]. They received an extensive amount of attention
in the past few years such that they are selected to be included as a coding scheme for the 5th
Generation of Wireless Communications Standard (5G) [6]. Currently, polar codes are selected
as the coding scheme for the control link in Enhanced Mobile Broadband (eMBB) channel which
requires codes of short lengths. Since their adoption in 5G, the design of fast and low complexity
decoders for polar codes which can achieve a good error-correction performance have been an
active topic of research in industry and academia.

Short polar codes have been decoded using Maximum-Likelihood (ML) techniques. In [7], the
Sphere Decoding (SD) algorithm was used to decode short polar codes and in [8] an optimal path
metric was developed for SD. It exploits the lower triangular structure of the polar code generator
matrix, leading to roughly O(N3) complexity for a polar code of length N. While it is able to
reach the ML bound, the cubic complexity limits the usage of SD to short codes. Moreover, SD
suffers from two main drawbacks. First of all, the time complexity of SD is highly dependent on
the channel conditions and therefore is variable. Thus, it is difficult to guarantee the decoder’s
error-correction performance and throughput. Secondly, SD relies on the selection of a sphere
radius, which also depends on the channel characteristics. Choosing a suboptimal radius can lead
to strong error-correction performance degradation.

The Successive-Cancellation (SC) decoding is an algorithm that can decode a polar code of
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length N with complexity O(N log N), under which polar codes can achieve the capacity of a me-
moryless channel. However, there are two main drawbacks associated with SC. Firstly, SC requires
the decoding process to advance bit by bit. This results in high latency and low throughput when
implemented in hardware [9]. Second, polar codes decoded with SC only achieve the channel ca-
pacity when the code length tends toward infinity. For practical polar codes of short to moderate
length, SC falls short in providing a reasonable error-correction performance.

The first issue is a result of the serial nature of SC. In order to address this issue, the recursive
structure of polar codes construction and the location of information and parity (frozen) bits were
utilized in [10], [11] to identify constituent polar codes and to develop Fast Simplified Successive-
Cancellation (Fast-SSC) decoding. In particular, Rate Zero (Rate-0) codes with all frozen bits,
Rate One (Rate-1) codes with all information bits, Repetition (Rep) codes, and Single Parity-Check
(SPC) codes were shown to be capable of being decoded in parallel with low-complexity decoding
algorithms. This in turn increased the throughput and reduced the latency significantly. Moreover,
the simplifications in [10], [11] did not introduce any error-correction performance degradation
with respect to conventional SC.

The second issue stems from the fact that SC is suboptimal with respect to ML decoding.
The decoding of each bit is only dependent on the bits already decoded. SC is unable to use the
information about the bits that are not decoded yet. In order to address this issue, Successive-
Cancellation List (SCL) decoding advances by estimating each bit as either 0 or 1. Therefore, the
number of candidate codewords doubles at each bit estimation step. In order to limit the exponen-
tial increase in the number of candidates, only L candidate codewords are allowed to survive by
employing a Path Metric (PM) [12]. The PMs were sorted and the L best candidates were kept
for further processing. SCL reduces the gap between SC and ML and it was shown that when
a Cyclic Redundancy Check (CRC) code is concatenated with polar codes, SCL can make polar
codes outperform the state-of-the-art codes [13].

The good error-correction performance of SCL comes at the cost of higher latency, lower
throughput, and higher area occupation than SC when implemented on hardware [14]. In order
to reduce the latency and increase the throughput associated with SCL, a group of M bits were
allowed to be decoded together in [15], [16]. [17] proposed a high throughput architecture based
on a tree-pruning scheme and further extended it to a multimode decoder in [18]. The throughput
increase in [17] is based on code-based parameters which could degrade the error-correction per-
formance significantly. Based on the idea in [11], a fast SCL decoder architecture for software
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implementation was proposed in [19] which was able to decode constituent codes in a polar code
in parallel. This resulted in fewer number of time-steps to finish the decoding process. However,
the SCL decoder in [19] is based on an empirical approach to decode Rate-1 and SPC nodes and
cannot guarantee the same error-correction performance as the conventional SCL decoder. Moreo-
ver, all the decoders in [17]–[19] require a large sorter to select the surviving candidate codewords.
Since the sorter in the hardware implementation of SCL decoders has a long and dominant critical
path which is dependent on the number of its inputs [20], increasing the number of PMs results
in a longer critical path and a lower operating frequency. Path pruning schemes were also pro-
posed in [21]–[23] to speed up the SCL decoding process. However, these schemes are based on
approximations that work for specific code parameters and channel conditions.

It was identified in [20] that using the Log-Likelihood Ratio (LLR) values results in a SCL de-
coder which is more area-efficient than the conventional SCL decoder with Log-Likelihood (LL)
values. The reduction of memory requirements of SCL decoders, that are higher than those of SC,
has been addressed in [18], [24], [25]. However, in [18], the design need to be re-evaluated when
the code changes. The solution presented in [24] is based on LL messages, which require more me-
mory than its LLR counterparts, and the SD-based technique in [25] suffers from error-correction
performance degradation as the code length increases. Effective memory-reduction techniques that
do not incur performance loss are needed, especially within the challenging 5G framework.

The construction of polar codes is based on the identification of reliable bit-channels through
which information bits are transmitted. The frozen bit-channels carry fix values and the location
of the frozen bits and of the information bits is known to the encoder and the decoder. In SC-based
decoders, the frozen and information bit sequence can be either stored in a memory, or computed
online given the bit-channel relative reliability vector and desired code rate, as proposed in [26].
In fact, the latter approach is significantly more efficient in case of multi-code decoders, and is
facilitated by nested reliability vectors as those selected for the 5G eMBB control channel [27].
Therefore, in 5G, the polar encoder and decoder are provided with a vector of bit indices in descen-
ding reliability order and an information length K, from which the encoder and the decoder should
extract the frozen/information bit sequence. It should be noted that the number of information bits
for polar codes in the 5G eMBB control channel can be any value no more than 1706 [28]. Thus,
the encoder and the decoder should be able to support a vast range of code rates.

Fast SC-based decoders [11] rely on the identification of the type and the length of constituent
codes in a polar code. While the calculation of the frozen/information bit sequence is straight-
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forward and can be performed by simply assigning information bits to the first K elements of the
reliability vector, the direct calculation of the list of operations for fast SC-based decoders requires
complicated controller logic [11]. Therefore, the identification of the type and the length of consti-
tuent codes is performed off-line and the decoding order is stored in a dedicated memory as a list of
operations [11]. The decoder fetches the list of operations from memory to decode the constituent
codes in order one by one. The main drawbacks of the aforementioned fast SC-based decoders are
twofold: first, the list of operations requires high memory usage when implemented on hardware.
Second, the list of operations is highly dependent on the rate of the polar code and as the rate chan-
ges, the list of operations changes too. Therefore, for 5G applications which require the support of
multiple rates, multiple lists of operations need to be stored in memory. This in turn increases the
hardware implementation overhead and renders fast SC-based decoders not rate-flexible.

Blind decoding, or blind detection, is foreseen by the 3GPP LTE/LTE-Advanced standards
to allow the User Equipment (UE) to gather control information related to the downlink shared
channel. The UE attempts the decoding of a set of candidates determined by combinations of
system parameters, to identify if one of the candidates holds its control information. The scheme
used in LTE relies on the concatenation of a CRC with a convolutional code. Blind detection will be
present also in 5G: ongoing discussions are considering a substantial reduction of the time frame
allocated to blind detection, from 16µs to 4µs. Blind detection must be performed frequently,
and given the high number of decoding attempts required in a limited time [29], it can lead to
large implementation costs. Since polar codes are selected in 5G eMBB control channel, the blind
detection scheme needs to be performed by polar codes.

In this thesis, we tackle the aforementioned issues associated with SC-based decoding algo-
rithms such as SC and SCL. It should be noted that the error-correction performance results in this
paper are all based on the Additive White Gaussian Noise (AWGN) channel model. However, 5G
requires the error-correction performance to be evaluated also for fading channels [30]. Neverthe-
less, the algorithms which are proposed in this thesis are mostly hardware-oriented and thus can
also be utilised in a fading channel scenario.

1.1 Summary of Contributions

In this thesis, we aim to tackle the issues associated with polar code decoding and their deploy-
ment in 5G. Throughout this thesis, the hardware synthesis results were obtained with the help of
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Dr. Carlo Condo. The contributions can be summarized as follows:

List Sphere Decoder

We develop a new algorithm to solve the issues regarding the SD algorithm. Similarly to SCL, after
each bit estimation, L candidates are allowed to survive: hence, we call the proposed algorithm List
Sphere Decoding (List-SD). The time complexity of List-SD is fixed and there is no need to choose
a sphere radius value, while the parameter L can be chosen to tune the trade-off between error-
correction performance (up to the ML bound) and hardware complexity. We further improve List-
SD by exploiting the structure of the generator matrix of polar codes. A novel matrix reordering
technique is presented: it changes the order in which bits are decoded in List-SD, and allows
significant reduction in complexity without affecting the error-correction performance.

Simplified Successive-Cancellation List Decoder

We propose a SCL speed-up technique that does not rely on any approximations and its error-
correction performance is guaranteed to be exactly the same as the conventional SCL decoder. The
idea is that Rate-0, Rate-1, and Rep nodes can be decoded more efficiently in SCL decoding. We
call the resulting algorithm Simplified Successive-Cancellation List (SSCL). We improve SSCL
by proposing a new decoder for SPC codes and call the resulting algorithm Simplified Successive-
Cancellation List with Single Parity-Check (SSCL-SPC). We show that the error-correction per-
formance of SSCL-SPC is identical to that of the conventional SCL decoder for list size L = 2, and
whose error-correction performance loss is negligible (< 0.05 dB) for all other list sizes.

Fast Simplified Successive-Cancellation List Decoder

We show that while SSCL and SSCL-SPC are algorithms that can work with any list size, they
fail to address the redundant bit-estimations associated with a specific list size. Therefore, we first
prove that there is a specific number of bit-estimations required for decoding the nodes in SSCL
and SSCL-SPC for every list size to guarantee the error-correction performance preservation. Any
bit-estimation after that number is redundant and any bit-estimation before that number cannot
provably preserve the error-correction performance. Since these decoders require fewer number
of time-steps than SSCL and SSCL-SPC, we name them Fast Simplified Successive-Cancellation
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List (Fast-SSCL) and Fast Simplified Successive-Cancellation List with Single Parity-Check (Fast-
SSCL-SPC), respectively. We further show that in practical polar codes, we can achieve similar
error-correction performance to SSCL and SSCL-SPC with even fewer number of bit-estimations.
Therefore, we can optimize Fast-SSCL and Fast-SSCL-SPC for speed. We propose hardware ar-
chitectures to implement both new algorithms: implementation results yield the highest throughput
in the state-of-the-art with comparable area occupation.

Memory-Efficient Polar Decoder

In order to address the high area occupation of SCL decoders, we propose a Partitioned Successive-
Cancellation List (PSCL) decoding algorithm that reduces the memory requirements associated
with SCL decoding. More specifically, PSCL decoding performs SCL decoding on partitions of
the decoder tree and only one path candidate is transferred from one partition to the next. As
a result, memory can be shared between the different partitions of the code, therefore, signifi-
cantly reducing the overall memory requirements. We further present a Generalized Partitioned
Successive-Cancellation List (GPSCL) algorithm that allows more than one candidate to be passed
between different partitions. Then, we observe that the SCL decoder has a tree structure in which a
specific number of candidate codewords are present at each level of the tree, and we propose a Lay-
ered Partitioned Successive-Cancellation List (LPSCL) algorithm that passes different numbers of
candidates for different levels. It should be noted that if we pass similar number of candidates at
each level of the tree, then LPSCL reduces to GPSCL. Therefore, LPSCL is the generalization of
GPSCL in which we are able to fully tune the trade-off between the error-correction performance
and the decoder complexity. We also propose two CRC selection schemes which improve the error-
correction performance of PSCL. In addition, we propose a set of memory reduction techniques
for SC-based decoders, that are orthogonal to the decoder architecture. In particular, aside from
partitioning, we present a memory sharing technique that does not introduce any approximation
and is independent of the decoder hardware structure, and a study on quantization that allows to
reduce the bits necessary to represent the channel LLR values.

Rate-Flexible Fast Polar Decoder

We propose completely rate-flexible fast SC-based decoders by introducing a method to infer the
list of operations directly in hardware without the need to store it in memory. We show that the
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type and the length of a constituent code in a polar code can be identified with low hardware
implementation complexity, by checking only a few bits of the constituent code. We further show
that the list of operations adapts with the rate of the code, allowing the resulting fast SC-based
decoder to be completely rate-flexible. We design and implement a hardware architecture for
the proposed decoder and show that the memory required to store the list of operations can be
completely removed, resulting in significantly lower decoder area occupation.

Performance of Polar Codes in 5G

5G is projected to have stringent requirements in terms of power efficiency, error-correction per-
formance, and throughput. We evaluate the performance of polar codes in the 5G framework by
studying polar codes of short lengths and different code rates. We show that for a fixed target
Frame Error Rate (FER), there is an optimal code rate with which SC and SCL decoders can
achieve it with maximum power efficiency. In addition, we study the effect of CRC on the error-
correction performance of SCL decoders and show that for a given set of CRC lengths and CRC
polynomials, there is an optimal CRC length with which the decoder achieves its best results. We
further analyze the speed of polar code decoding by considering state-of-the-art fast SCL decoders
available in literature, thus providing a survey of the decoder design space for eMBB, considering
error-correction performance, achievable throughput, flexibility and estimated complexity.

Blind Detection with Polar Codes

We propose a blind detection scheme based on polar codes. A first SC decoding stage helps
selecting a set of candidates, subsequently decoded with SCL. The scheme is evaluated in terms
of error-correction capability, missed detections and false alarms, showing its compliance with the
requirements of the standard. The detection speed is analyzed, identifying possible combinations
of system parameters to meet the standard current and future timing constraints.

1.2 Related Publications

This doctoral research has resulted in several publications, a list of which is provided here.
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Journal Papers

1. S. A. Hashemi, C. Condo, M. Mondelli, W. J. Gross, “Rate-Flexible Fast Polar Decoders”,
In: IEEE Transactions on Signal Processing, 2018 [31].

This paper resolves the rate-flexibility issue associated with fast SC-based decoders
for polar codes. My contributions to this paper were to develop the idea, implement
the idea in software and test it, produce the results, and write the manuscript. My
contributions to this paper are presented in Chapter 6.

2. C. Condo, S. A. Hashemi, A. Ardakani, F. Ercan, W. J. Gross, “Design and Implementation
of a Polar Codes Blind Detection Scheme”, In: IEEE Transactions on Circuits and Systems

II: Express Briefs, 2018 [32].

This paper presents the hardware implementation of the blind detection scheme that we
presented in [35]. My contributions to this paper was to help writing the manuscript.

3. S. A. Hashemi, M. Mondelli, S. H. Hassani, C. Condo, R. Urbanke, W. J. Gross, “Decoder
Partitioning: Towards Practical List Decoding of Polar Codes”, In: IEEE Transactions on

Communications, vol. 66, no. 9, pp. 3749-3759, September 2018 [33].

This paper presents a decoding scheme for polar codes with which the error-correction
performance and the implementation complexity trade-off can be fully tuned. My con-
tributions to this paper were to develop the idea, implement the idea in software and
test it, produce the results, and write the manuscript. My contributions to this paper are
presented in Chapter 5.

4. S. A. Hashemi, C. Condo, F. Ercan, W. J. Gross, “Memory-Efficient Polar Decoders”, In:
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 7, no. 4, pp.
604-615, December 2017 [34].

In this paper, we present several techniques to reduce the memory requirements of SC-
based decoders of polar codes. My contributions to this paper were to develop the idea,
implement the idea in software and test it, produce the results, and write the manuscript.
My contributions to this paper are presented in Chapter 5.
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5. C. Condo, S. A. Hashemi, W. J. Gross, “Blind Detection with Polar Codes”, In: IEEE

Communications Letters, vol. 21, no. 12, pp. 2550-2553, December 2017 [35].

This paper presents a blind detection scheme with polar codes which meets the requi-
rements of 5G. My contributions to this paper were to help in developing the idea,
implement the idea in software and test it, produce the results, and help in writing the
manuscript. My contributions to this paper are presented in Chapter 8.

6. S. A. Hashemi, C. Condo, W. J. Gross, “Fast and Flexible Successive-Cancellation List
Decoders for Polar Codes”, In: IEEE Transactions on Signal Processing, vol. 65, no. 21,
pp. 5756-5769, November 2017 [36].

This paper presents a fast decoding algorithm for polar codes which is guaranteed to
preserve the error-correction performance with respect to SCL decoding. My contri-
butions to this paper were to develop the idea, implement the idea in software and test
it, produce the results, and write the manuscript. My contributions to this paper are
presented in Chapter 4.

7. S. A. Hashemi, C. Condo, W. J. Gross, “A Fast Polar Code List Decoder Architecture Based
on Sphere Decoding”, In: IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 63, no. 12, pp. 2368 - 2380, December 2016 [37].

This paper presents a fast decoding algorithm for polar codes which is guaranteed to
preserve the error-correction performance with respect to SCL decoding. My contri-
butions to this paper were to develop the idea, implement the idea in software and test
it, produce the results, and write the manuscript. My contributions to this paper are
presented in Chapter 4.

Conference Papers

1. S. A. Hashemi, N. Doan, M. Mondelli, W. J. Gross, “Decoding Reed-Muller and Polar
Codes by Successive Factor Graph Permutations”, In: International Symposium on Turbo

Codes & Iterative Information Processing (ISTC), Hong Kong, to appear, 2018 [38].
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This paper presents a new low-complexity decoding algorithm for Reed-Muller (RM)
and polar codes which improves the error-correction performance of SC-based deco-
ders. My contributions to this paper were to develop the idea, implement the idea in
software and test it, produce the results, and write the manuscript.

2. N. Doan, S. A. Hashemi, M. Mondelli, W. J. Gross, “On the Decoding of Polar Codes on
Permuted Factor Graphs”, In: IEEE Global Communications Conference (GLOBECOM),
Abu Dhabi, UAE, to appear, 2018 [39].

This paper presents a method to improve the error-correction performance of decoding
polar codes by using several factor graph permutations. My contributions to this paper
were to help in developing the idea, and in writing the manuscript.

3. N. Doan, S. A. Hashemi, W. J. Gross, “Neural Successive Cancellation Decoding of Po-
lar Codes”, In: IEEE International Workshop on Signal Processing Advances in Wireless

Communications (SPAWC), Kalamata, Greece, pp. 1-5, June 2018 [40].

This paper presents an improved SC decoder for polar codes with the use of neural
networks. My contribution to this paper was to help in writing the manuscript.

4. F. Ercan, C. Condo, S. A. Hashemi, W. J. Gross, “Partitioned Successive-Cancellation Flip
Decoding of Polar Codes”, In: IEEE International Conference on Communications (ICC),
Kansas City, USA, pp. 1-6, May 2018 [41].

This paper presents an improved SC-Flip decoder for polar codes by using the parti-
tioning technique in [48]. My contributions to this paper was to help in writing the
manuscript.

5. S. A. Hashemi, M. Mondelli, S. H. Hassani, R. Urbanke, W. J. Gross, “Partitioned List
Decoding of Polar Codes: Analysis and Improvement of Finite Length Performance”, In:
IEEE Global Communications Conference (GLOBECOM), Singapore, pp. 1-7, December
2017 [42].

This paper proposes several techniques to improve the error-correction performance of
the PSCL decoding algorithm. My contributions to this paper were to develop the idea,
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implement the idea in software and test it, produce the results, and write the manuscript.
My contributions to this paper are presented in Chapter 5.

6. S. A. Hashemi, C. Condo, F. Ercan, W. J. Gross, “On the Performance of Polar Codes for
5G eMBB Control Channel”, In: Asilomar Conference on Signals, Systems and Computers

(ACSSC), Pacific Grove, USA, pp. 1764-1768, October 2017 [43].

This paper evaluates the performance of polar codes in 5G. My contributions to this
paper were to develop the idea, implement the idea in software and test it, produce
the results, and write the manuscript. My contributions to this paper are presented in
Chapter 7.

7. F. Ercan, C. Condo, S. A. Hashemi, W. J. Gross, “On Error-Correction Performance and
Implementation of Polar Code List Decoders for 5G”, In: Allerton Conference on Commu-

nication, Control, and Computing (Allerton), Monticello, USA, pp. 443-449, October 2017
[44].

This paper presents a study on the performance of SCL decoders for polar codes for
5G. My contribution to this paper was to help in writing the manuscript.

8. C. Condo, S. A. Hashemi, W. J. Gross, “Efficient Bit-Channel Reliability Computation for
Multi-Mode Polar Code Encoders and Decoders”, In: IEEE International Workshop on Sig-

nal Processing Systems (SiPS), Lorient, France, pp. 1-6, October 2017 [26].

This paper presents a method to efficiently construct polar codes. My contribution to
this paper was to help in writing the manuscript.

9. S. A. Hashemi, C. Condo, W. J. Gross, “Fast Simplified Successive-Cancellation List De-
coding of Polar Codes”, In: IEEE Wireless Communications and Networking Conference

Workshops (WCNCW), San Francisco, USA, pp: 1-6, March 2017 [45].

This paper presents a fast decoding algorithm for polar codes which is guaranteed to
preserve the error-correction performance with respect to SCL decoding. My contri-
butions to this paper were to develop the idea, implement the idea in software and test
it, produce the results, and write the manuscript. My contributions to this paper are
presented in Chapter 4.
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10. S. A. Hashemi, C. Condo, W. J. Gross, “Simplified Successive-Cancellation List Decoding
of Polar Codes”, In: IEEE International Symposium on Information Theory (ISIT), Barce-
lona, Spain, pp: 815-819, July 2016 [46].

This paper presents a fast decoding algorithm for polar codes which is guaranteed to
preserve the error-correction performance with respect to SCL decoding. My contri-
butions to this paper were to develop the idea, implement the idea in software and test
it, produce the results, and write the manuscript. My contributions to this paper are
presented in Chapter 4.

11. S. A. Hashemi, C. Condo, W. J. Gross, “Matrix Reordering for Efficient List Sphere Deco-
ding of Polar Codes”, In: IEEE International Symposium on Circuits and Systems (ISCAS),
Montréal, Canada, pp: 1730-1733, May 2016 [47].

This paper presents a technique to improve the error-correction performance of the
method presented in [25]. My contributions to this paper were to develop the idea,
implement the idea in software and hardware and test it, produce the results, and write
the manuscript. My contributions to this paper are presented in Chapter 3.

12. S. A. Hashemi, A. Balatsoukas-Stimming, P. Giard, C. Thibeault, W. J. Gross, “Partitio-
ned Successive-Cancellation List Decoding of Polar Codes”, In: IEEE International Confe-

rence on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, pp: 957-960,
March 2016 [48].

This paper presents the PSCL decoding algorithm for polar codes which significantly
reduces the memory requirements of SCL decoding. My contributions to this paper
were to develop the idea, implement the idea in software and test it, produce the results,
and write the manuscript. My contributions to this paper are presented in Chapter 5.

13. S. A. Hashemi, C. Condo, W. J. Gross, “List Sphere Decoding of Polar Codes”, In: Asilomar

Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, USA, pp: 1346-
1350, November 2015 [25].

This paper presents a low-complexity decoding algorithm for polar codes based on
sphere decoding. My contributions to this paper were to develop the idea, implement
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the idea in software and test it, produce the results, and write the manuscript. My
contributions to this paper are presented in Chapter 3.

1.3 Thesis Organization

This thesis is organized in nine chapters. Chapter 2 provides some preliminary material about polar
codes and their decoding algorithms. Chapter 3 introduces the List-SD algorithm which is mostly
suited for short polar codes. In Chapter 4, fast list decoders for polar codes are introduced and their
hardware implementation is presented. Chapter 5 proposes a number of techniques to reduce the
memory requirements of SC-based decoders and hardware implementation results are provided to
verify the applicability of the proposed techniques. Chapter 6 solves the rate-flexibility issue with
fast list decoders and proposes a hardware-friendly method to make fast list decoders completely
rate-flexible. The performance of polar codes in 5G is evaluated in Chapter 7. In Chapter 8, polar
codes were used in a blind detection scheme which is required by 5G and it is shown that blind
detection with polar codes can achieve the requirements of 5G. Finally, the main conclusions of
this thesis are presented and some research directions for future work are suggested in Chapter 9.
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Chapter 2

Background

2.1 Polar Codes

Polar codes are linear block codes of length N = 2n constructed by concatenating two polar
codes of length N

2 . Let us consider u = {u0, u1, . . . , uN−1} as the input vector of bits and x =

{x0, x1, . . . , xN−1} as the encoded vector of bits. A polar code P(N,K) with K information bits and
rate R = K

N is constructed by finding K most reliable bits in u and assigning the information bits
to them. The remaining N − K bits are fixed to a predetermined value and thus called frozen bits,
whose set is F . These bits can be regarded as the code parity-check bits that help the decoder find
the likeliest codeword. In addition, since their values are known a priori by the decoder, they do
not need to be decoded. Thus, the chance of decoding error for the least reliable bits is reduced as
well. This classification is fed into the decoder as a sequence of binary values s = {s0, s1, . . . , sN−1}

where

si =

0 if ui ∈ F ,

1 otherwise.
(2.1)

More formally, let W be a Binary Memoryless Symmetric (BMS) channel with input alphabet
X = {0, 1} and output alphabet Y, and let {W (y | x) : x ∈ X, y ∈ Y} be the transition probabilities.
In order to quantify the reliability of the channel W , we use the Bhattacharyya parameter Z(W ) ∈
[0, 1], that is defined as

Z(W ) =
∑
y∈Y

√
W (y | 0)W (y | 1). (2.2)
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Hence, the good bit-channels are the ones that have the lowest Bhattacharyya parameter.
For symmetric channels, the values of frozen bits do not affect the error-correction performance

of polar codes [5]. Therefore, they are usually set to 0. The reliabilities associated with the bit-
channels can be determined either by using the Bhattacharyya parameter [5], or the direct use of
probability function [49]. Polar encoding then is represented as a matrix multiplication as

x = uBNG⊗n, (2.3)

where BN is the bit-reversal permutation matrix and G⊗n is constructed by calculating the n-th
Kronecker product of the polarizing matrix G =

[ 1 0
1 1

]
. Since bit-reversed indexing only has data

access advantage in hardware implementation [9], it is used for the decoder architecture design
[11], [20] but we drop the permutation matrix BN and consider the input bits in natural index order
in order to simplify the algorithm notation [5]. Therefore, (2.3) can be rewritten as

x = uG⊗n. (2.4)

The encoding process in (2.4) is an n-level polarization scheme. Figure 2.1 shows a polar code
encoding example for P(8, 4) where t denotes the polarization level and the frozen bits set contains
{u0, u1, u2, u4}. The coded vector x is then modulated and sent through the channel. Throughout
this thesis, we consider Binary Phase-Shift Keying (BPSK) modulation, which maps the coded bits
x ∈ {0, 1}N to the values s ∈ {+1,−1}N , and AWGN channel.

The received vector y = {y0, y1, . . . , yN−1} can be represented as

y = s + ν, (2.5)

where ν = {ν0, ν1, . . . , νN−1} is the AWGN vector with mean 0 and variance σ 2. For AWGN
channel, the vector of LLR values α = {α0,α1, . . . ,αN−1} associated with the received vector can
be calculated as

α =
2

σ 2 y. (2.6)

Since the scaling factor in (2.6) does not have an impact on the decoding process, we drop it for
simplicity and consider α = y. The vector α is then fed to the decoder for decoding.
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Figure 2.1: Polar code encoding example for P(8, 4) and {u0, u1, u2, u4} ∈ F .

2.2 Successive-Cancellation Decoding

SC decoding can be represented on a binary tree. An example for P(8, 4) and the frozen bits set
{u0, u1, u2, u4} is shown in Figure 2.2. The vertex node at level t = n of the decoding tree is fed
with the LLR values received from the channel. Subsequently at each stage t of the decoding tree,
the soft LLR values α = {α0,α1, . . . ,α2t−1} are passed from a parent node to its child nodes and
the hard bit estimates β = {β0, β1, . . . , β2t−1} are passed from a child node to its parent node. The
elements of the child messages αl = {α l

0,α l
1, . . . ,α l

2t−1−1} and αr = {α r
0,α r

1, . . . ,α r
2t−1−1}, a vector

of 2t−1 values, are calculated as

α
l
i = ln

(
1 + eαi+αi+2t−1

eαi + eαi+2t−1

)
, (2.7)

α
r
i =αi+2t−1 + (1 − 2β

l
i )αi, (2.8)
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Figure 2.2: SC decoding example for P(8, 4) and {u0, u1, u2, u4} ∈ F .

while the elements of β, a vector of 2t bits, are computed using the child messages βl = {β l
0, β l

1, . . . , β l
2t−1−1}

and βr = {β r
0, β r

1, . . . , β r
2t−1−1} as

βi =

β l
i ⊕ β r

i , if i < 2t−1,

β r
i , otherwise,

(2.9)

where ⊕ denotes the bitwise XOR and the interval i < 2t−1 discriminates between bits considered
by the left and the right child. At a leaf node, the i-th bit ûi is estimated as

ûi =

0, if i ∈ F or α0
i ≥ 0,

1, otherwise,
(2.10)

where α t
i denotes the LLR value at stage t.

Due to the data dependencies, each node receives α first, then sends αl, receives βl, sends αr,
receives βr, and finally sends β, in this order. A hardware-friendly version of (2.7), proposed in
[9], can be written as

α
l
i = sgn(αi) sgn(αi+2t−1) min(|αi|, |αi+2t−1 |) (2.11)

where

sgn(αi) =

−1, if αi < 0,

1, otherwise.
(2.12)
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Figure 2.3: SC scheduling for P(8, 4).

In SC decoding, each bit estimation is dependent on the value of all the previous bits. Thus,
the conventional SC decoder can complete the decoding process in 2N − 2 time steps, with the
scheduling depicted in Figure 2.3. It can be seen that three sets of memory are required to decode
polar codes using SC: the channel LLR memory, the internal LLR memory, and the β memory.
Let us consider the channel LLR values are quantized with QαC bits and the internal LLR values
are quantized with QαI bits. Since the each β value is represented with one bit, the total memory
requirements for a SC decoder can be calculated as

MSC = NQαC + (N − 1) QαI + N − 1. (2.13)

2.3 Fast Simplified Successive-Cancellation Decoding

In SC decoding, the estimation of each bit requires the knowledge of previously estimated bits.
The serial nature of this bit by bit estimation process limits the speed of SC decoding algorithm.
In order to increase the speed of SC, [10] and [11] observed four different constituent codes: their
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decoding can be carried out in a more efficient way than fully exploring the decoding tree.

• Rate-0 Node: This node consists of only frozen bits, i.e., s = {0, 0, . . . , 0}.

• Rate-1 Node: This node consists of only information bits, i.e., s = {1, 1, . . . , 1}.

• Rep Node: This node consists of frozen bits except for the last bit which is an information
bit, i.e., s = {0, . . . , 0, 0, 1}.

• SPC Node: This node consists of information bits except for the first bit which is a frozen
bit, i.e., s = {0, 1, 1, . . . , 1}.

These codes are shown in Figure 2.2. White circles are Rate-0 nodes and black circles are Rate-1
nodes. All leaf nodes at t = 0 are either Rate-0 or Rate-1, being either single frozen bits or single
information bits. White triangles represent Rep nodes and black triangles represent SPC nodes.
Note that SPC and Rep nodes at t = 1 are equivalent.

Since Rate-0 nodes correspond to frozen bits, they can be estimated as

βi = 0. (2.14)

Rate-1 nodes correspond to all-information bit vectors. A direct hard estimate based on the LLR
values at a Rate-1 node can be carried out as

βi =
1
2

(
1 − sgn (αi)

)
. (2.15)

Rep nodes have one information bit at the leaf branches and the bit estimate of this information bit
is the bit estimate of all the bits in a Rep node. The LLR value of the information bit in a Rep node
can be calculated as

∑2t−1
i=0 αi. Therefore, the bit estimates at a Rep node can be found as

βi =
1
2

1 − sgn

2t−1∑
i=0

αi


 . (2.16)

SPC nodes have the even-parity constraint. In SC decoding, this constraint is imposed by checking
the hard estimate of the least reliable bit. If this bit does not satisfy the even-parity constraint, then
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it is flipped. The least reliable bit in an SPC node is found as

imin = arg min
0≤i<2t

(|αi|), (2.17)

and the parity of it is derived as

γ =

2t−1⊕
i=0

(
1
2

(
1 − sgn (αi)

))
. (2.18)

Finally, the bit estimate in an SPC node is calculated as

βi =


(

1
2

(
1 − sgn (αi)

))
⊕ γ , if i = imin,

1
2

(
1 − sgn (αi)

)
, otherwise.

(2.19)

The advantage of Fast-SSC is that the decoder is optimal, i.e. it performs exactly as the original
SC decoder. Since parts of the code can be decoded in parallel, Fast-SSC can decode a received
vector with a much higher speed than SC.

Recently, five new special nodes are observed in [50] and efficient decoders that can be used in
SC decoding were designed for them. These nodes are:

• Type-I Node: This node consists of frozen bits except for the last two bits which are infor-
mation bits, i.e., s = {0, . . . , 0, 1, 1}.

• Type-II Node: This node consists of frozen bits except for the last three bits which are infor-
mation bits, i.e., s = {0, . . . , 0, 1, 1, 1}.

• Type-III Node: This node consists of information bits except for the first two bits which are
frozen bits, i.e., s = {0, 0, 1, . . . , 1}.

• Type-IV Node: This node consists of information bits except for the first three bits which are
frozen bits, i.e., s = {0, 0, 0, 1, . . . , 1}.

• Type-V Node: This node consists of frozen bits except for the bits N − 5, N − 3, N − 2, and
N − 1 which are information bits, i.e., s = {0, . . . , 0, 1, 0, 1, 1, 1}.

The pruned decoding tree for the same example as in Figure 2.2 is shown in Figure 2.4. If the
new nodes are not taken into account, P(8, 4) can be decoded in four time steps by traversing the
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Table 2.1: Different operations that are supported in SC-based decoding algorithms.

Operation Description Decoder

Ft Calculate α` at level t. SC-based
Gt Calculate αr at level t. SC-based
Rate-0t Decode Rate-0 node of length 2t . Fast SC-based
Rate-1t Decode Rate-1 node of length 2t . Fast SC-based
Rept Decode Rep node of length 2t . Fast SC-based
SPCt Decode SPC node of length 2t . Fast SC-based
Type-It Decode Type-I node of length 2t . Fast SC-based
Type-IIt Decode Type-II node of length 2t . Fast SC-based
Type-IIIt Decode Type-III node of length 2t . Fast SC-based
Type-IVt Decode Type-IV node of length 2t . Fast SC-based
Type-Vt Decode Type-V node of length 2t . Fast SC-based

tree for one level and decode the resulting Rep and SPC nodes. The resulting list of operations for
the decoder would be {F2,Rep2,G2,SPC2}, where Rept and SPCt represent the decoding of Rep
and SPC nodes of length 2t , respectively. However, by considering the new nodes, the decoder
can immediately decode the received vector by decoding the Type-V node. The corresponding
list of operations would be {Type-V3}, where Type-Vt represents the decoding of Type-V nodes
of length 2t . The operations which are performed in fast SC-based decoders are summarized in
Table 2.1. Note that Ft and Gt operations are common between conventional SC-based and fast
SC-based decoding algorithms. In the hardware implementation of fast SC-based decoders, this
list of operations is stored in memory and is fed into the decoder to perform decoding [11], [36],
[37].

Let us consider the example in Figure 2.4. If the rate of the code changes from 1/2 to 5/8,
the list of operations also changes as shown in Figure 2.5. Without using the new nodes, the
list of operations becomes {F2,Rep2,G2,Rate-12}, and by considering the new nodes it becomes
{Type-IV3}. Therefore, as the rate changes, the list of operations changes. The resulting decoder
is therefore not rate-flexible. For applications that support codes with multiple rates, for each rate,
the list of operations has to be stored in memory to make the decoder flexible. However, this results
in high memory usage when implemented on hardware.
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t = 3

t = 2

Type-V

Rep SPC

α
β

Figure 2.4: Fast SC-based decoding on a binary tree for P(8, 4) and s = {0, 0, 0, 1, 0, 1, 1, 1}.

t = 3

t = 2

Type-IV

Rep Rate-1

α
β

Figure 2.5: Fast SC-based decoding on a binary tree for P(8, 5) and s = {0, 0, 0, 1, 1, 1, 1, 1}.

2.4 Successive-Cancellation List Decoding

To improve the error-correction performance of SC for codes with moderate lengths, the SCL de-
coding algorithm estimates a bit with both its possible values 0 and 1. In order to control the
exponential increase in the complexity of this algorithm, a set of L codeword candidates is memo-
rized at all times and every new bit estimate produces 2L new candidates, half of which must be
discarded. To this purpose, a PM is associated to each codeword candidate (path) and updated at
every new estimation: it can be considered a cost function, and the L paths with the lowest PMs
are allowed to survive. In the LLR-based formulation of SCL [20], the PM can be computed as

PMil =

i∑
j=0

ln
(
1 + e−(1−2û jl )α jl

)
, (2.20)

where l is the path index, α jl is the LLR value of u j at path l, and û jl is the estimate of bit j at path
l.

From (2.20), we can also see that PM for a polar code with N = 2t can be computed as the sum
of its two constituent codes with N = 2t−1. However, it must be noted that due to the sequential
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nature of SCL, to compute the PM at bit i, it is necessary to have traversed the whole decoding
tree at the left of leaf node i. A hardware-friendly version of (2.20), as proposed in [20], can be
expressed as

PM−1l = 0,

PMil =

PMi−1l +|αil |, if ûil ,
1
2

(
1 − sgn

(
αil

))
,

PMi−1l , otherwise.
(2.21)

which can be rewritten as

PMil =
1
2

i∑
j=0

sgn(α jl )α jl − (1 − 2û jl )α jl . (2.22)

SCL decoding process can be illustrated by an example as in Figure 2.6 for P(4, 3) and L = 2.
In this example, u0 is the least reliable bit and is frozen to 0, while information bits are carried
by the more reliable bits u1, u2 and u3. SCL starts by performing SC decoding until it reaches
bit û0. Since it is a frozen bit, it is estimated as 0. It then continues the SC decoding process
until it reaches bit û1. It estimates û1 as either 0 or 1 and calculates the corresponding PMs. It
continues by performing SC until it reaches bit û2. û2 is estimated as either 0 or 1 and based on
the resulting PMs, the two best candidates out of the resulting four are kept and the two worst are
discarded. Surviving candidates are shown as black squares, while solid gray squares are estimated
but then discarded. A same approach is carried out for û3 and the candidate with the minimum PM
is selected as û.

The error-correction performance of SCL decoding is bounded by the ML performance. It was
observed in [12] that although the correct estimate might not be the candidate with the best PM,
the correct candidate usually falls in the list of candidates which survive the decoding process. To
determine the correct candidate, a CRC was concatenated to the code to help SCL find the correct
candidate. The use of CRC improved the performance of SCL to the extent that the CRC-aided
SCL can outperform state of the art codes such as LDPC codes [12].

The memory requirements of SCL (CRC-aided SCL) decoding are higher than that of the SC
decoding since L paths of the candidate codewords need to be stored. In addition, the PM for each
path also needs to be stored. Let us consider QPM bits are used to store the PMs. The memory
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û0

û1

û2

û3

0

0 1

0 1 0 1

0 1 0 1 0 1 0 0

Figure 2.6: Binary tree representation of SCL on P(4, 3), with L = 2 and u0 ∈ F . Surviving
candidates are shown as black squares. Visited candidates are solid gray squares. White squares
are not visited.

requirement of a SCL decoder can be written as

MSCL = NQαC + L (N − 1) QαI + LQPM + L (2N − 1) . (2.23)

It should be noted that in SCL decoding, LN bits need to be stored for the final codeword candidates
as opposed to SC decoding.

2.5 Sphere Decoding

The SD algorithm tries to obtain the ML estimate of the transmitted signal by considering only the
candidates inside a N-dimensional sphere of radius r and center y. The ML estimate can be found
by solving the minimization problem in

û = arg min
s
‖y − s‖2 = arg min

u
‖y − (1 − 2uG⊗n)‖2, (2.24)

where 1 is the all-ones vector of length N.
SD exploits the the lower triangular structure of G⊗n to determine the order of bit estimation.

Thus, the algorithm starts with the estimation of uN−1, considering both 0 and 1 cases. Then, it
compares the Euclidean distance between yN−1 and sN−1 with the radius r for both cases. The
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root
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u1

u0
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0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 2.7: Binary tree representation of SD on P(4, 4). Surviving candidates are shown as black
circles. Visited candidates are solid gray circles. White circles are not visited.

paths of all the candidates that reside inside the sphere are allowed to survive and are used in the
estimation of next bit. Otherwise, paths are discarded and never revisited. Figure 2.7 shows how
SD works on a binary tree. The left branches are due to 0 bit estimations and the right branches to
1 bit estimations.

The sphere radius does not remain constant throughout the decoding process. The first candi-
date is found by considering the initial selection of r. After the first candidate is found, r is updated
to the euclidean distance of the first candidate from y. The second candidate is then found based
on the new r, and again updating its value. This process is repeated until the candidate with the
minimum euclidean distance is found. (2.25) expresses the PM used to select the candidates in
terms of euclidean distance, where gk j is the element in the k-th row and j-th column of G⊗n.

PMi =

N−1∑
j=i

|y j − s j|
2 =

N−1∑
j=i

|y j − (1 − 2
N−1∑
k= j

gk juk)|2. (2.25)

An optimum version of this PM is introduced in [8] by taking the probability of bit estimations
into account. However, it involves very complex calculations. A hardware friendly approximation
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of the optimum PM can be written as

PMi =

N−1∑
j=i

(y js j − |y j|) =

N−1∑
j=i

(y j(1 − 2
N−1∑
k= j

gk juk) − |y j|). (2.26)
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Chapter 3

List Sphere Decoding

SD is able to find the ML estimate of the transmitted data. However, it comes at the cost of variable
time complexity, and consequently unpredictable decoding latency (except for the upper bound of
visiting all the paths). Moreover, the performance of SD is highly dependent on the choice of the
radius r: with a large radius, many candidates survive and the decoding latency increases. On the
other hand, with a small r, SD may never be able to find the ML estimate. To overcome these
issues, List-SD is proposed, forfeiting the radius and fixing the algorithm time complexity.

3.1 List Sphere Decoding Algorithm

Let us consider the estimation of each coded bit x̂i based solely on the received vector as

x̂i =

0 if yi ≥ 0

1 if yi < 0
. (3.1)

Moreover, let us call u′i the information bit estimated during the decoding process, and x′i the
corresponding coded bit.

The lower triangular structure of G⊗n leads to the transmitted bit xN−1 being equal to uN−1.
Therefore, if x′N−1 and x̂N−1 do not match, the corresponding path is penalized. Once u′N−1 has been
estimated, the algorithm moves to u′N−2, calculates the corresponding coded bit x′N−2 and compares
it with x̂N−2, updating the PM accordingly. The process is repeated until u′0 has been reached. At
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root
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Figure 3.1: List-SD on a binary tree for P(4, 4) and with list size L = 2.

each step m and for each path l, the PM is updated in accordance with

PM0l = 0

PMml =

PMm−1l + |yN−m| if x′N−m , x̂N−m

PMm−1l if x′N−m = x̂N−m

. (3.2)

The proposed List-SD algorithm has a fixed time complexity. Every time a new bit is estimated,
the number of considered paths doubles. Their number is however maintained constant by keeping
only the L paths with the lower PMs, and discarding the remaining L. No radius is involved.
Figure 3.1 shows List-SD with list size L = 2. In the end, the path with the minimum PM is
chosen as the final candidate. It should be noted that the PM update must be performed on both
information and frozen bits, therefore, the List-SD algorithm takes N time steps to finish. The
List-SD algorithm is summarized in Algorithm 1.

List-SD has potentially lower memory requirements than SC and SCL. While SC-based deco-
ding algorithms need the whole received vector to start the decoding process, List-SD only needs
one LLR at a time. Thus, supposing to serially receive y from yN−1 to y0, there is no need to allocate
memory for channel LLR values. The surviving candidates and their associated PMs do need to be
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Input: y
Output: u′
Initialize PM0l = 0 for all 0 ≤ l < 2L
Initialize x̂i for all 0 ≤ i < N with (3.1)
for m← 1 to N do

for l ← 0 to L − 1 do
u′lN−m = 0
x′lN−m =

∑N−1
k=N−m gk(N−m)u′lk Modulo-2

if x′lN−m , x̂N−m then
PMml = PMm−1l + |yN−m|

else
if u′lN−m < F then

PMml+L = PMm−1l+L + |yN−m|

u′lN−m = 1
else

PMml+L = PMml

end
end

end
Sort(PMm0 ,. . .,PMm2L−1) and store L smallest in PMm0 ,. . .,PMmL−1 .

end
Result: u′N−1

0 with the smallest PM.
Algorithm 1: The List-SD algorithm

stored between decoding steps, resulting in the total memory requirements represented by

MList-SD = NL + LQPM. (3.3)

3.2 Matrix Reordering for List-SD

The error-correction performance and complexity of List-SD can be tweaked through its list size L.
Enhanced FER and Bit Error Rate (BER) require larger L values and thus more memory and logic,
while a small L leads to lower hardware complexity and worse error-correction performance. In
this section, we propose a method to improve this trade-off by reducing the complexity of List-SD
without degrading its performance.

Frozen bits in the PM calculation play an important role in the identification of the best paths
[20]. Their location is chosen according to the reliability of each bit-channel, and this is in turn
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SC

u0 u1 · · ·

List-SD

uN−2 uN−1

Figure 3.2: Decoding direction for SC and List-SD.
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u0
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0 0 0 0
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Figure 3.3: Binary tree representation of List-SD on P(4, 3), with L = 2 and frozen u1. Surviving
candidates are shown as black circles. Visited candidates are solid gray circles. White circles are
not visited.

dependent on the decoding algorithm. Polar codes are constructed targeting the SC algorithm. The
majority of frozen bits is in fact located in the leftmost part of the code, i.e. among the left columns
of the G⊗n matrix, that represent the first bits to be estimated. This is because bit i is dependent
on the correct estimation of bits 0 to i − 1. On the contrary, List-SD begins the decoding process
from the rightmost column of the code. Staring from bit N − 1, List-SD calculates the probability
of error bit by bit until it reaches bit 0, and each bit i is dependent on the correct estimate of bits
i + 1 to N − 1. Therefore, to be maximally useful, frozen bits should be located in the rightmost
part of the code starting from location N − 1. This is illustrated in Figure 3.2.

We thus propose a matrix reordering technique that allows to reach the left part of the code
faster, so that List-SD can exploit the beneficial positioning of frozen bits. When uN−1 is estimated,
bits uN−(2k+1), where 0 ≤ k < n, depend only on uN−1. We then choose the leftmost bit among
them, i.e. uN−(2n−1+1), to be estimated next. The next step will estimate the leftmost bit among those
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Figure 3.4: Binary tree representation of List-SD on a reordered matrix for P(4, 3), for L = 2 and
frozen bit u1.

depending only on those already estimated, i.e. uN−(2n−2+1). This process is repeated until all bits
have been decoded. This modified decoding order can be represented as a reordered matrix G⊗n

r .
For example, G⊗3 can be represented as

G⊗3 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1



. (3.4)

The bit decoding order according to the proposed technique would be {7, 3, 5, 1, 6, 2, 4, 0}, that can
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be translated as the matrix with reordered columns as

G⊗3
r =



1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1



. (3.5)

List-SD then estimates bits on the reordered matrix from the rightmost to the leftmost column.
Let us consider List-SD of P(4, 3) with u1 being the frozen bit. Figure 3.3 shows the binary tree
representation of List-SD while Figure 3.4 portrays the same example, but with a reordered matrix.
It can be noticed how the frozen bit u1 is decoded before u2.

It is worth mentioning that even though we do not discuss CRC-aided SCL decoding, the struc-
ture of both List-SD and its matrix reordered version are, just like SCL, suitable for the inclusion
of CRC to help the selection of the best path.

3.3 Simulation Results

In this section, the proposed List-SD algorithm is used to decode short polar codes. Figures 3.5-3.7
shows a comparison between the FER and BER performance of the proposed List-SD against SC
and SCL algorithms. In this figure, List-SD(L) and SCL(L) denote the List-SD and SCL algorithms
with list size L. Figure 3.5 plots the results for P(8, 5) code: it can be seen that List-SD(4) and
List-SD(8) respectively match and outperform both SC and SCL(2). Figure 3.6 depicts FER and
BER curves obtained with P(16, 12) code. While List-SD(8) is very close in performance with
both SC and SCL(2), List-SD(16) is required to match their error-correction performance. Finally,
the performance of P(64, 57) is illustrated in Figure 3.7, where both List-SD(16) and List-SD(32)
outperform as good as or better than SC and SCL(2).

The effect of the proposed matrix reordering technique on the error-correction performance of
List-SD is also evaluated in Figures 3.5-3.7. We can see both the improved error-correction perfor-
mance in case of equal complexity (same L) and the reduced L with which FER and BER can be
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Figure 3.5: FER and BER performance results for List-SD of P(8, 5).
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Figure 3.6: FER and BER performance results for List-SD of P(16, 12).

matched. In these figures, MR-List-SD(L) refers to the Matrix Reordered version. It can be seen
that for P(8, 5), MR-List-SD(2) improves the error-correction performance of List-SD(2) of ap-
proximately 0.75 dB on both FER and BER, while MR-List-SD(4) performs as well as List-SD(8).
For P(16, 12), the improvement of MR-List-SD(4) over its non-reordered version is approxima-
tely 0.4 dB, and MR-List-SD(8) is sufficient to match the performance of List-SD(16). Finally for
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Figure 3.7: FER and BER performance results for List-SD of P(64, 57).

Table 3.1: Memory requirements for P(8, 5)

Algorithm SC SCL(2) List-SD(2) List-SD(4) List-SD(8)

Memory Bits 97 178 32 64 128

P(64, 57), MR-List-SD(8) improves FER and BER performance of List-SD(8) of about 0.5 dB on
average, and MR-List-SD(16) performs slightly better than List-SD(32).

The memory requirements in accordance with (2.13), (2.23), and (3.3) for SC, SCL, and List-
SD under the same conditions as the curves in Figures 3.5-3.7 are summarized in Tables 3.1-3.3.
In all considered cases, QαC = QαI = 6 and QPM = 8. As with SCL, the choice of L in List-SD
imposes a trade-off between error-correction performance and memory usage. However, for short
polar codes, List-SD is able to match the FER and BER of SC and SCL(2) with a lower number
of memory bits. This is particularly evident in Table 3.1, where even with the largest considered
L, List-SD requires less memory bits than SCL(2), while the intermediate L value leads to less
memory bits than SC. In case of Table 3.2, List-SD(8) both outperforms and requires less memory
bits than SC, while the memory requirements for List-SD(16) are slightly higher than SCL(2).
With the largest considered code, and thus with List-SD requiring larger L values, the memory
requirements of the proposed algorithm are higher than SC and SCL(2), as shown in Table 3.3.
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Table 3.2: Memory requirements for P(16, 12)

Algorithm SC SCL(2) List-SD(4) List-SD(8) List-SD(16)

Memory Bits 201 354 96 192 384

Table 3.3: Memory requirements for P(64, 57)

Algorithm SC SCL(2) List-SD(8) List-SD(16) List-SD(32)

Memory Bits 825 1410 576 1152 2304

ui estimation

yi PM update

u update
Sorter

û

PM

u

Figure 3.8: Top-level architecture of List-SD

3.4 Implementation Results

A simple architecture implementing the reordered List-SD algorithm has been synthesized on a
Xilinx Virtex-7 XC7V2000T Field Programmable Gate Array (FPGA). Figure 3.8 shows the block
diagram of the architecture implementing List-SD. The u estimation block forks the current paths,
and the new PMs are generated following (3.2). These are joined to the L surviving paths from
the previous stage and sent to the sorter block, that implements a bitonic sorting algorithm. The
L surviving paths are fed back to the PM and u update block and stored in registers, ready for the
next stage.

Table 3.4 provides the Look-Up Table (LUT) and register synthesis results for four different
polar codes and for two list sizes that result in matching BER and FER. Since the matrix reordering
does not change the architecture, results are valid for both List-SD and MR-List-SD. For example,
while MR-List-SD(4) matches the error-correction performance of List-SD(8) for P(8, 5), it requi-
res only about 32% of the LUTs and 50% of the registers. For P(16, 12), MR-List-SD(8) requires
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Table 3.4: Synthesis results for List-SD on Xilinx Virtex-7 FPGA.

Polar Code List Size L LUTs Registers

2 405 32

P(8, 5)
4 1446 64
8 4462 128

4 1550 96

P(16, 12)
8 5387 192

16 19597 384

P(32, 26)
8 6949 320

16 22660 640

8 9506 576

P(64, 57)
16 31340 1152
32 91778 2304

27% of the LUTs and 50% of the registers needed by List-SD(16). For P(64, 57), MR-List-SD(16)
requires 34% of the LUTs and 50% of the registers of List-SD(32) with the same error-correction
performance.
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Chapter 4

Fast List Decoding

The SCL decoding algorithm for polar codes shows superior error-correction performance in com-
parison with SC decoding. However, this error-correction performance improvement comes at the
cost of higher decoding latency and lower throughput. A direct application of Fast-SSC decoding
algorithm on SCL decoding is not straightforward due to the fact that in SCL, there are multiple
SC decoders which are connected through a sorting network. The fast SCL decoders in state of the
art are either not an exact representation of SCL decoding or they require a large sorting network to
provide a high throughput. Therefore, they are either adding approximations which negatively im-
pact the error-correction performance of the decoder, or they add to the hardware implementation
complexity of the underlying decoder. In this chapter, we propose two methods which first identify
the redundant calculations in the SCL decoding and then remove these redundant calculations to
achieve a low latency and high throughput SCL decoder without incurring any error-correction per-
formance loss. We further propose a number of optimization techniques which allow for negligible
error-correction performance loss while providing a higher throughput and lower latency.

4.1 Simplified Successive-Cancellation List Decoding

The time complexity of SCL decoding algorithm can be represented by the number of time steps
required to decode a codeword [20]. Supposing that all the parallelizable instructions are perfor-
med in one clock cycle, the time required to decode a codeword can be calculated as

TSCL = 2N + K − 2. (4.1)
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Using (4.1), Rate-1 nodes can be decoded in 3N−2 time-steps, Rate-0 nodes can be decoded in
2N − 2 time-steps, Rep nodes can be decoded in 2N − 1 time-steps, and SPC nodes can be decoded
in 3N − 3 time-steps.

In order to reduce the time complexity of SCL decoding, [19] proposed optimal simplified
PM calculations for the hardware-friendly formulations of Rate-0 and Rep nodes. In this section,
we propose a SSCL decoding algorithm which uses the similarities between List-SD and SCL
decoding algorithms for Rate-1 nodes, also proposing optimal simplified PM calculations for them.
We also extend the optimal PM calculations for the exact formulations of Rate-0 and Rep nodes.
The simplified PMs rely on the LLR values at the top of the tree identified by their respective node:
thus, it is not necessary to traverse the tree to correctly compute them. For all three nodes, we prove
that the proposed calculations are exactly equivalent to those proposed in [20]. We further propose
a modified version of List-SD to design a low-complexity decoder for SPC nodes and we show
that the error-correction performance degradation due to using this decoder is negligible. We call
the decoder which has simplifications for SPC nodes as SSCL-SPC. For a more readable notation,
we drop the path index l and we introduce ηi = 1 − 2βi.

Rate-1 Nodes

The following theorems prove that List-SD is equivalent to SCL for a Rate-1 node, both for the
exact and the hardware-friendly formulations. Furthermore, for a Rate-1 node in List-SD, the bit
estimation can be performed directly at the top of the tree and when all the bits are estimated, the
surviving candidates at the top of the tree can be passed through a polar code encoder to get the
final candidates at the bottom of the tree. Since there is no constraint on the estimation of the
bits, at each time-step in the decoding of a Rate-1 node, one bit needs to selected for estimation.
Therefore, while SCL requires 3N − 2 time-steps to decode Rate-1 nodes, our simplified decoder
requires the following number of time-steps:

TRate-1 =

(
N
1

)
= N. (4.2)

Theorem 1. The PM for a Rate-1 node of length 2t can be calculated as:

PM2t−1 =

2t−1∑
i=0

ln
(
1 + e−ηiαi

)
, (4.3)



4.1 Simplified Successive-Cancellation List Decoding 41

where αi and ηi are relative to the top of the Rate-1 node tree.

Proof. We prove Theorem 1 by induction. We first show that for P(2, 2), i.e. a Rate-1 polar code
of length N = 2, the theorem is correct. For any polar code with N = 2 we have

α
l
0 = ln

(
1 + eα0+α1

eα0 + eα1

)
, (4.4)

α
r
0 =α1 + η

l
0α0. (4.5)

For a Rate-1 code with N = 2, from (2.9) we can see that:

η
l
0 = η0η1,

η
r
0 = η1,

where η l
0 and η r

0 are obtained traversing the whole decoding tree, that in our case consists of stages
t = 1 and t = 0. Therefore, (4.5) can be re-written as

α
r
0 = α1 + η0η1α0. (4.6)

Starting from (2.20) and then substituting (4.4) and (4.5), the PM associated with P(2, 2) is

PM1 = ln
(
1 + e−η l

0α l
0

)
+ ln

(
1 + e−η r

0α r
0

)
= ln

(
1 + e−η0η1 ln

(
1+eα0+α1
eα0 +eα1

))
+ ln

(
1 + e−η1(α1+η0η1α0)

)
= ln

(
1+

(
eα0 + eα1

1+eα0+α1

)η0η1
)
+ln

(
1 + e−η1α1−η0α0

)

=



ln (1 + e−α0) + ln (1 + e−α1) , when

η0 = 1

η1 = 1

ln (1 + e−α0) + ln (1 + eα1) , when

η0 = 1

η1 = −1

ln (1 + eα0) + ln (1 + e−α1) , when

η0 = −1

η1 = 1

ln (1 + eα0) + ln (1 + eα1) , when

η0 = −1

η1 = −1
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= ln
(
1 + e−η0α0

)
+ ln

(
1 + e−η1α1

)
, (4.7)

which is equal to (4.3), and thus proves the theorem for N = 2. Now suppose the theorem stands
for a Rate-1 polar code of length 2t−1. For P(2t , 2t) we can calculate α l

i and α r
i with (2.7) and (2.8)

respectively. Since α l
i and α r

i are associated with two Rate-1 polar codes of length 2t−1, for which
we have supposed Theorem 1 stands, their respective PMs can be calculated as

PMl
2t−1−1 =

2t−1−1∑
i=0

ln
(
1 + e−η l

i α
l
i

)
, (4.8)

PMr
2t−1−1 =

2t−1−1∑
i=0

ln
(
1 + e−η r

i α r
i

)
. (4.9)

Recall that the PM at a node is the summation of the PMs calculated at the child nodes: we can
consequently write

PM2t−1 = PMl
2t−1−1 + PMr

2t−1−1 . (4.10)

From Figure 4.1 we can see the recursive construction of polar codes. For example, u0 and u1 are
coded into a polar code with N = 2, consisting of β0 and β1. At the same time, β0 and β2 are coded
into another polar code with N = 2, consisting of x0 and x2. Thus, we are allowed to pair bit i and
bit i + 2t−1 at any node at stage t in the decoding tree, and consider them a polar code with N = 2.
In our case, we pair bit i of (4.8) and (4.9), and identify 2t−1 Rate-1 polar codes of length two.
Consequently, we can express (4.10) as the summation of 2t−1 instances of (4.7):

PM2t−1 =

2t−1−1∑
i=0

ln
(
1 + e−ηiαi

)
+ln

(
1 + e−ηi+2t−1 αi+2t−1

)
=

2t−1∑
i=0

ln
(
1 + e−ηiαi

)
,

which is equal to (4.3). This means that if Theorem 1 is valid for N = 2t−1, then it stands for N = 2t

as well. Since we have proven it for N = 2, Theorem 1 is valid for all N. �

Theorem 2. In the hardware-friendly formulation of SCL algorithm, the PM for a Rate-1 node of

length 2t can be calculated as:

PM2t−1 =
1
2

2t−1∑
i=0

sgn (αi) αi − ηiαi, (4.11)
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u0

u1
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u3

β0

β1

β2

β3

x0

x1

x2

x3

Figure 4.1: Polar encoding example.

where αi and ηi are relative to the top of the Rate-1 node tree.

Proof. (4.11) is equivalent to

PMi =

PMi−1 +|αi|, if ηi , sgn (αi) ,

PMi−1 , otherwise,

which is an expression similar to that of (2.21). As with Theorem 1, we prove Theorem 2 by
induction, starting from P(2, 2). According to (2.11) and (2.8), for every polar code with N = 2
we have

α
l
0 = sgn(α0) sgn(α1) min(|α0|, |α1|), (4.12)

α
r
0 =α1 + η

l
0α0. (4.13)

where α l
0 and α r

0 are obtained traversing the whole decoding tree, that in our case consists of stages
t = 1 and t = 0. For a Rate-1 node with N = 2:

sgn
(
α

l
0

)
= sgn (α0) sgn (α1) ,

sgn
(
α

r
0
)

= sgn (α1 + η0η1α0) =

sgn(α1), if |α0| ≤ |α1|,

η0η1 sgn(α0), otherwise.
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From (2.22), substituting (4.12) and (4.13), the PM associated with P(2, 2) would be computed as

PM1 =
1
2

(
sgn

(
α

l
0

)
α

l
0 − η

l
0α

l
0 + sgn

(
α

r
0
)

α
r
0 − η

r
0α

r
0

)
=

1
2

(sgn(α0) sgn(α1) sgn(α0) sgn(α1) min(|α0|, |α1|) − η0η1 sgn(α0) sgn(α1) min(|α0|, |α1|)

+ sgn(α1 + η0η1α0)(α1 + η0η1α0) − η1(α1 + η0η1α0)).

Now we break the problem into two cases:
When |α0| ≤ |α1|, recalling that |α | = sgn(α)α , we have

PM1 =
1
2

(|α0| − η0η1 sgn(α0) sgn(α1)|α0| + sgn(α1)(α1 + η0η1α0) − η1(α1 + η0η1α0))

=
1
2

(sgn(α0)α0 − η0α0 + sgn(α1)α1 − η1α1). (4.14)

When |α0| > |α1|:

PM1 =
1
2

(|α1| − η0η1 sgn(α0) sgn(α1)|α1| + η0η1 sgn(α0)(α1 + η0η1α0) − η1(α1 + η0η1α0))

=
1
2

(sgn(α0)α0 − η0α0 + sgn(α1)α1 − η1α1). (4.15)

(4.14) and (4.15) are identical, and they are equal to (4.11), but they have been derived from (2.22),
so the theorem is proven for N = 2. Now suppose the theorem stands for a Rate-1 polar code of
length N = 2t−1. For P(2t , 2t) we can calculate α l

i and α r
i with (2.11) and (2.8) respectively. Since

α l
i and α r

i are two Rate-1 polar codes of length 2t−1, the theorem stands for them and the PM can
be calculated as

PMl
2t−1−1 =

1
2

2t−1−1∑
i=0

sgn
(
α

l
i

)
α

l
i − η

l
i α

l
i , (4.16)

PMr
2t−1−1 =

1
2

2t−1−1∑
i=0

sgn
(
α

r
i
)

α
r
i − η

r
i α

r
i . (4.17)

As with Theorem 1, we exploit the recursive construction of polar codes, that allows us to identify
polar codes with N = 2 pairing bit i and bit i + 2t−1 in a node. Joining (4.10) and (4.15)-(4.17) we
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get

PM2t−1 =
1
2

2t−1∑
i=0

sgn (αi) αi − ηiαi. (4.18)

which is equal to (4.11). Theorem 2 is then valid for N = 2t if it stands for N = 2t−1: since we have
proven it for N = 2, it is valid for every N. �

Rate-0 Nodes

The simplified formulation for Rate-0 nodes proposed in this section can be completed in at most
log2 N time-steps, as opposed to the 2N − 2 required by SCL, since simplified Rate-0 nodes only
need to add at most N numbers together.

Theorem 3. The PM for a Rate-0 node of length 2t can be calculated as:

PM2t−1 =

2t−1∑
i=0

ln
(
1 + e−αi

)
, (4.19)

where αi is the LLR value at the top of the Rate-0 node tree.

Proof. Since βi is initialized as 0 for frozen bits, for P(2, 0) which is a Rate-0 code with N = 2 we
have:

η
l
0 = η

r
0 = 1.

Therefore, (4.5) can be re-written as
α

r
0 = α1 + α0. (4.20)

Starting from (2.20) and then substituting (4.4) and (4.20), the PM associated with P(2, 0) is

PM1 = ln
(
1 + e−η l

0α l
0

)
+ ln

(
1 + e−η r

0α r
0

)
= ln

(
1 + e− ln

(
1+eα0+α1
eα0 +eα1

))
+ ln

(
1 + e−(α1+α0)

)
= ln

(
1 + e−α0

)
+ ln

(
1 + e−α1

)
, (4.21)

which is equal to (4.19) and proves the theorem for N = 2. For P(2t , 0) we can calculate α l
i and

α r
i with (2.7) and (2.8) respectively. Supposing the theorem stands for a Rate-0 polar code with

N = 2t−1, the PMs of α l
i and α r

i which are two Rate-0 polar codes of length N = 2t−1 can be
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calculated as

PMl
2t−1−1 =

2t−1−1∑
i=0

ln
(
1 + e−α l

i

)
, (4.22)

PMr
2t−1−1 =

2t−1−1∑
i=0

ln
(
1 + e−α r

i

)
. (4.23)

Identifying P(2, 0) by pairing bits as in Theorem 1, and using (4.10) and (4.21)-(4.23), for a Rate-0
polar code of length N = 2t we get

PM2t−1 =

2t−1∑
i=0

ln
(
1 + e−αi

)
,

which proves Theorem 3 is valid for N = 2t supposing it stands for N = 2t−1. Having proven it for
N = 2, Theorem 3 is valid for all N. �

Theorem 4. In the hardware-friendly formulation of SCL algorithm, the PM for a Rate-0 node of

length 2t can be calculated as:

PM2t−1 =
1
2

2t−1∑
i=0

sgn (αi) αi − αi, (4.24)

where αi is the LLR value at the top of the Rate-0 node tree.

Proof. (4.24) has been proposed in [19]. The proof follows that of Theorem 3 and therefore it is
not reported in this chapter. �

Rep Nodes

The simplified Rep node decoding can be completed in at most 1 + log2 N time-steps instead of
2N − 1, since simplified Rep nodes only need to add at most N numbers together and choose the
best L out of the resulting 2L candidates.

Theorem 5. The PM for a Rep node of length 2t can be calculated as:

PM2t−1 =

2t−1∑
i=0

ln
(
1 + e−η2t−1αi

)
, (4.25)
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where αi is relative to the top of the Rep node tree and η2t−1 is relative to the information bit in the

Rep node tree.

Proof. For P(2, 1) which is a Rep code of length N = 2 we have:

η
l
0 = η0η1 = 1,

η
r
0 = η1 = η0.

Therefore, (4.5) can be re-written as
α

r
0 = α1 + α0. (4.26)

From (2.20) and by substituting (4.4) and (4.26), the PM associated with P(2, 1) is

PM1 = ln
(
1 + e−η l

0α l
0

)
+ ln

(
1 + e−η r

0α r
0

)
= ln

(
1 + e− ln

(
1+eα0+α1
eα0 +eα1

))
+ ln

(
1 + e−η1(α1+α0)

)
=

ln (1 + e−α0) + ln (1 + e−α1) , when η1 = 1

ln (1 + eα0) + ln (1 + eα1) , when η1 = −1

= ln
(
1 + e−η1α0

)
+ ln

(
1 + e−η1α1

)
, (4.27)

which is equivalent to (4.25) and proves the theorem for N = 2. For a Rep code of length 2t we
can calculate α l

i and α r
i with (2.7) and (2.8) respectively. Assuming the theorem stands for a Rep

polar code with N = 2t−1 and using Theorem 3, α l
i represents a Rate-0 node and α r

i represents a
Rep node of length N = 2t−1. Their PMs are computed as

PMl
2t−1−1 =

2t−1−1∑
i=0

ln
(
1 + e−α l

i

)
, (4.28)

PMr
2t−1−1 =

2t−1−1∑
i=0

ln
(
1 + e−η2t−1α r

i

)
. (4.29)

Again by pairing bits, we can identify P(2, 1). Joining (4.10) and (4.27)-(4.29), for a Rep node of
length N = 2t we obtain

PM2t−1 =

2t−1∑
i=0

ln
(
1 + e−η2t−1αi

)
,

which, as in the previous theorems, by induction proves Theorem 5 for all N. �
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Theorem 6. In the hardware-friendly formulation of SCL algorithm, the PM for a Rep node of

length 2t can be calculated as:

PM2t−1 =
1
2

2t−1∑
i=0

sgn (αi) αi − η2t−1αi, (4.30)

where αi is relative to the top of the Rep node tree and η2t−1 is relative to the information bit in the

Rep node tree.

Proof. (4.30) has been proposed in [19]. The proof follows that of Theorem 5 and therefore it is
not reported in this chapter. �

SPC Nodes

Since List-SD goes from right to left of the tree as opposed to SCL, the even-parity constraint
which is imposed at the leftmost bit is decoded last in List-SD and that introduces significant
error-correction performance loss. A lossless approach with List-SD would be to estimate the bits
at the top of the tree in groups of two, while considering the even-parity constraint satisfied by the
other bits. For example, if βiβ j = 00 satisfies the even-parity constraint of a code β of length N,
then neither βiβ j = 01 nor βiβ j = 10 will satisfy the constraint for the same code while βiβ j = 11
will satisfy the constraint. This approach will create 2L candidates from which L best need to be
selected. However, since at each time-step two bits have to be selected for estimation, the number
of time-steps required to decode SPC nodes with guarantee of no error-correction performance loss
will be

TSPC =

(
N
2

)
=

N(N − 1)
2

, (4.31)

which is quadratic with N and it is more complex than the time required by SCL which is linear
with N. With this approach for SPC nodes, List-SD only becomes less complex than SCL when
the following stands

N(N − 1)
2

< 3N − 3, (4.32)

which results in 1 < N < 6. Therefore, only SPC nodes of length 2 or 4 can be decoded with
List-SD with fewer time-steps than SCL without any error-correction performance degradation.

To alleviate this increase in time complexity, we propose a technique to decode the frozen bit
in the first stage of the decoding process. We also approximate the PM calculations in an SPC
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node in the hardware-friendly formulation by only finding the LLR value of the least reliable bit
and using the LLR values at the top of the polar code tree in the SCL decoding algorithm for the
rest of the bits. This will reduce the time requirements of decoding an SPC node from N(N−1)

2 to at
most N + log2 N − 1 which is also less than the time requirements of SCL which is 3N − 3.

To satisfy the even-parity constraint, we first find γ for each path based on (2.18) which can
take at most log2 N time-steps. We then initialize the PM with

PM0 =

PM−1 +|αimin |, if γ = 1,

PM−1 , otherwise,
(4.33)

where PM−1 is the PM carried over from the previous stage (if any). In this way, the least reliable
bit which corresponds to the even-parity constraint is decoded first. For bits other than the least
reliable bit, the PM is updated as

PMi =

PMi−1 +|αi| + (1 − 2γ)|αimin |, if ηi , sgn (αi) ,

PMi−1 , otherwise,
(4.34)

which takes N − 1 time-steps. Finally, when all the bits are estimated, the least reliable bit is set to
preserve the even-parity constraint as

βimin =

2t−1⊕
i=0

i,imin

βi. (4.35)

It should be noted that this approximation becomes exact for L = 2 and for L > 2 there is
almost no error-correction performance loss as will be discussed in Section 4.1.1.

4.1.1 Decoder Architecture

The architecture of the decoder is portrayed in Figure 4.2. We based our design on the CRC-aided
SCL decoder architecture presented in [20]: the SCL part of the architecture remains virtually
identical. Input channel LLRs are stored in a single memory, while each of the L decoders requires
a dedicated memory for its PMs, internal LLRs, current path estimation, and hard estimates β. A
set of Pe Processing Element (PE)s is allocated in each of the L SC decoders. A PE implements
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Table 4.1: Number of Special Nodes for Different Rates of a Polar Code of Length N = 1024 and
CRC of Length 16. The Code is Optimized for Eb/N0 = 2 dB.

Rate Node
Length

2 4 8 16 32 64 128 256 512

1
4

Rate-1 1 2 1 2 1 0 0 0 0
Rate-0 1 1 2 1 1 2 0 0 0

Rep 0 18 7 5 3 0 0 1 0
SPC 0 16 9 3 0 0 0 0 0

1
2

Rate-1 2 5 5 3 2 0 0 0 0
Rate-0 2 4 3 3 2 0 0 0 0

Rep 0 13 6 3 0 1 1 0 0
SPC 0 12 6 4 0 1 1 0 0

3
4

Rate-1 3 2 3 3 3 1 0 0 0
Rate-0 3 2 3 2 0 0 0 0 0

Rep 0 12 5 1 0 1 0 0 0
SPC 0 11 4 3 1 0 1 1 0

both (2.11) and (2.8), and its output is selected depending on the current decoding phase. PMs are
computed and sorted through a non-pruned radix-2L sorter [20].

The identification of special nodes is performed offline, by exploring the decoding tree in its
entirety. As an example, Table 4.1 shows the number of each special node for a polar code of
length N = 1024 and rates 1/4, 1/2 and 3/4. It is worth mentioning that as the rate increases, the
number of Rate-1 and SPC nodes of longer lengths increases and the number of Rate-0 and Rep
nodes of longer lengths decreases.

This information allows to know the type of each node, its size and its order within the decoding
schedule. It is then passed as an input to the decoder controller unit, and it is considered available
during the whole decoding process. Storage of the schedule is not considered in the proposed
architecture, as it is strongly dependent on the structure and number of the supported codes. Note,
however, that code rate and frozen bit positions do not impact on the decoder architecture and do
not need to be known at design time. This is because a maximum special node size is decided at
design time, usually equal to the number of PEs: all special nodes whose size is smaller or equal to
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Figure 4.2: SSCL (SSCL-SPC) decoder architecture.

that can be handled, while larger ones are divided into smaller nodes. For example, if the maximum
special node size is 128, a Rate-0 node of size 256 will be considered as two Rate-0 nodes of size
128. The proposed architecture allows to select, at run time, the number and position of frozen and
information bits, along with special nodes. These are handled by the special nodes unit.

The decoding process follows the standard SCL and the architecture described in [20] until the
schedule foresees a special node. At this point, the hardware implementing the SCL is bypassed
by the special node unit (Figure 4.2). This unit is composed of four sub-modules, each taking care
of the computations necessary for each special node. Moreover, this unit enforces bit estimation
and path duplication at special nodes: in the standard SCL scheduling, these operations would
normally be applied only when the currently scheduled node is a leaf node. Finally, it overrides
the control module address generator to accommodate the change of schedule.

Each CRC unit implements four parallel CRC calculations based on polynomials of different
lengths (4, 8, 16 and 32 bits). An input chooses the polynomial that should be used for the selection
of the best among the L surviving candidates.
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Rate-1 Node

Rate-1 nodes are constituted of NRate-1 information bits. The estimation of each of them is equiva-
lent to an SCL estimation step, in which paths are duplicated and split for NRate-1 times. This means
that no inherent degree of parallelism can be exploited, and that the speed-up comes only from the
fact that we do not need to traverse the whole polar code tree to do it. Thus, the Rate-1 node in
the special node unit enforces a series of pipelined bit estimations and path splitting operations,
preventing the tree from being traversed further. At every step, each PM calculation follows (4.11),
requiring a single LLR value αi and making the computation straightforward.

Rate-0 Node

All NRate-0 bits that constitute a Rate-0 node are frozen. Consequently, the Rate-0 module reliably
sets to 0 all the NRate-0 bits. At the same time, it updates each active path with the newly estimated
bits, without the need for any path duplication operation. This step can be completed in as little
as one clock cycle, depending on the structure of the memory where the paths are stored and how
many bits can be accessed concurrently. The PM in Rate-0 nodes is calculated as in (4.24). It
requires the summation of up to NRate-0 values: three different options are given at design time,
and they are shown in Figure 4.3. The first possible structure is a Low-Latency Structure (LLS)
with a fully parallel adder tree, as shown in Figure 4.3a: the PM calculation lasts a single clock
cycle. The same structure can be pipelined as well (Figure 4.3b) to have a High-Frequency Struc-
ture (HFS), thus requiring log2(NRate-0) clock cycles to be completed but potentially allowing for
higher frequencies. Finally, a Low-Complexity Structure (LCS) with a serial architecture is also
considered in Figure 4.3c, with a single adder and a latency of NRate-0 clock cycles.

Rep Node

Of the NRep bits of a Rep node, NRep−1 are frozen and one is an information bit. As with the Rate-0
node, all frozen bits are set to 0 by the dedicated special node module without path duplication.
However, the information bit must be estimated: consequently, the paths are duplicated a single
time. Like the Rate-0 node, depending on the number of bits that can be accessed at the same
time in the path memory, this operation can be completed in a single clock cycle. PM is computed
as described in (4.30) for Rep nodes. Up to NRep values need to be summed together: the same
possible architectural choices portrayed in Figure 4.3 for Rate-0 can be applied to Rep nodes and
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(b)

(a)

(c)

|αNRate−0−1| − αNRate−0−1

|αNRate−0−2| − αNRate−0−2

|αNRate−0−3| − αNRate−0−3

|αNRate−0−4| − αNRate−0−4

|αNRate−0−1| − αNRate−0−1

|αNRate−0−2| − αNRate−0−2

|αNRate−0−3| − αNRate−0−3

|αNRate−0−4| − αNRate−0−4

|α3| − α3

|α2| − α2

|α1| − α1

|α0| − α0

|α3| − α3

|α2| − α2

|α1| − α1

|α0| − α0

|αi−1| − αi−1

|αi| − αi

Figure 4.3: Design-time architectural choices for Rate-0 nodes.

are given at design time.
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SPC Node

Since the SPC node has NSPC − 1 information bits, the special node module splits the paths as
many times. PM calculation for SPC nodes follows (4.33)-(4.34). The path and PM updates
are performed concurrently, one bit at a time as the paths are duplicated, sorted and selected:
they cannot make use of any degree of parallelism. However, different node structures have been
considered for the calculation of γ and |αimin |. The lowest latency solution computes γ in one clock
cycle over NSPC bits cycle through an XOR tree, and concurrently finds |αimin | through a tree of
comparators. The second structure pipelines both XOR and comparator trees: log2(NSPC) clock
cycles are then needed, while with a single XOR and a single comparator NSPC − 1 cycles are
necessary.

Error-Correction Performance

As we have detailed in this section, the introduction of Rate-1, Rate-0 and Rep nodes has no
impact on the error-correction performance of SCL. However, the equations implemented by the
SPC node are approximated for L > 2, and might introduce degradation. Figure 4.4 plots the FER
and BER for a polar code with N = 2048 and R = 1

2 , decoded with SSCL and SSCL-SPC and a
32-bit CRC. In this figure, SSCL(L) (SSCL-SPC(L)) represents SSCL (SSCL-SPC) decoding with
list size L. Error-correction performance is shown for list sizes ranging between 2 and 32. As
expected from the theory, SSCL and SSCL-SPC curves are superimposed for L = 2: nevertheless,
the degradation brought by the approximated SPC is negligible in all cases (< 0.1 dB at FER of
10−5). Similar observations can be made in case of the smaller P(1024, 512) code, whose FER
and BER are shown in Figure 4.5 for 16-bit CRC. It can be seen that the SPC approximations have
more impact as the list size increases.

The impact of quantization of LLRs and PMs on the error-correction performance of both
SSCL and SSCL-SPC has been analyzed through extensive simulations. We have investigated the
trio of values Q(Qα ,QPM,Q f ), where Qα represents the number of LLR bits, QPM is the number of
bits of each PM and Q f is the number of fractional bits for Qα and QPM. For code P(1024, 512),
the best performing combination of quantization values is Q(6, 8, 2). Figure 4.6 plots FER and
BER curves with such quantization values for both SSCL and SSCL-SPC, along with SCL floating
point results. It can be seen that, with the careful choice of quantization values, the degradation
with respect to floating point is negligible for all list sizes.
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Figure 4.4: FER and BER performance comparison between CRC-aided SSCL and SSCL-SPC
decoding of P(2048, 1024). The code is optimized for Eb/N0 = 2 dB and the CRC length is 32.
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Figure 4.5: FER and BER performance comparison between CRC-aided SSCL and SSCL-SPC
decoding of P(1024, 512). The code is optimized for Eb/N0 = 2 dB and the CRC length is 16.
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Figure 4.6: Effect of quantization on the FER and BER of P(1024, 512) using CRC-aided SSCL
and SSCL-SPC decoding with CRC length of 16. The code is optimized for Eb/N0 = 2 dB.

4.2 Fast Simplified Successive-Cancellation List Decoding

In this section, we propose a fast decoding approach for Rate-1 nodes and use it to develop Fast-
SSCL. We further propose a fast decoding approach for SPC nodes in SSCL-SPC and use it to
develop Fast-SSCL-SPC. To this end, we provide the exact number of path forks in Rate-1 and SPC
nodes to guarantee error-correction performance preservation. Any path splitting after that number
is redundant and any path splitting less than that number cannot guarantee the error-correction
performance preservation. We further show that in practical applications, this number can be
reduced with almost no error-correction performance loss. We use this phenomenon to optimize
Fast-SSCL and Fast-SSCL-SPC for speed.

Guaranteed Error-Correction Performance Preservation

The fast Rate-1 and SPC decoders can be summarized by the following theorems.

Theorem 7. In SSCL decoding with list size L, the number of path splitting in a Rate-1 node of
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length 2t required to get the exact same results as the conventional SSCL decoder is

min
(
L − 1, 2t) . (4.36)

The proposed technique results in TFast-SSCLRate-1(2
t , 2t) = min (L − 1, 2t) which improves the

required number of time steps to decode Rate-1 nodes when L−1 < 2t . Every bit after the L−1-th
can be obtained through hard decision on the LLR as

βil =

0, if αil ≥ 0,

1, otherwise,
(4.37)

without the need for path splitting. On the other hand, in case min (L − 1, 2t) = 2t , all bits of the
node need to be estimated and the decoding automatically reverts to the process in SSCL decoding.
The proof of the theorem is nevertheless valid for both L − 1 < 2t and L − 1 ≥ 2t .

In order to prove Theorem 7, we first introduce the following lemma.

Lemma 1. For two positive real numbers a and b where a < b, the following holds:

ln
(
1 + e−a) + ln

(
1 + eb

)
> ln (1 + ea) + ln

(
1 + e−b

)
(4.38)

Proof. We prove

ln
(
1 + e−a) + ln

(
1 + eb

)
− ln (1 + ea) − ln

(
1 + e−b

)
> 0.

We can write

ln
(
1 + e−a) + ln

(
1 + eb

)
− ln (1 + ea) − ln

(
1 + e−b

)
= ln

(
1 + e−a

1 + ea

)
+ ln

(
1 + eb

1 + e−b

)
=

ln
(
e−a 1 + ea

1 + ea

)
+ ln

(
eb 1 + e−b

1 + e−b

)
= ln

(
e−a) + ln

(
eb

)
= b − a > 0, (4.39)

which proves the lemma. �

We now prove Theorem 7.

Proof. Let us consider the PMs associated with the L surviving paths at bit estimation step i as
PMi = {PMi0, . . . ,PMiL−1} and the LLR values associated with the Rate-1 node at path l as αl =
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{α0l ,α1l , . . . ,α2t−1l }. For the purpose of this proof, let us also consider the vectors PMi and αl

sorted as follows:

PMil ≤ PMil+1, 0 ≤ l < L − 1,

|αil | ≤ |αi+1l |, 0 ≤ i < 2t − 1.

At each estimation step i, the corresponding bit is estimated as either 0 or 1, and the PMs are
updated as

PMil =

i∑
j=0

ln
(
1 + e−η jl α jl

)
, (4.40)

which is a monotonic and non-decreasing function of i. At any given estimation step i within the
Rate-1 node, the least reliable LLR among those still to be estimated is αil .

We now prove the theorem by contradiction. Let us suppose that step L − 1 splits path l into
two surviving paths. The corresponding PMs will be

PML−1p =

L−2∑
j=0

ln
(
1 + e−η jl α jl

)
+ln

(
1 + e−|αL−1l |

)
, (4.41)

PML−1q =

L−2∑
j=0

ln
(
1 + e−η jl α jl

)
+ln

(
1 + e|αL−1l |

)
, (4.42)

where 0 ≤ p < q < L. We now show that there are at least L bit estimation sequences that result
in PMs which are less than PML−1q . To this end, we demonstrate that there are L paths originated
from path l with smaller PMs than PML−1q that are generated before estimating bit L − 1.

Let us consider the lowest possible value that PML−1q can assume:

PML−1q =

L−2∑
j=0

ln
(
1 + e−|α jl |

)
+ ln

(
1 + e|αL−1l |

)
, (4.43)

which represents the case where the bits estimated in steps 0 ≤ j ≤ L − 2 match the hard decision
of their corresponding LLR values, and the L − 1-th does not. Let us consider the bit sequences
differing from path q, with the bit not matching the LLR hard decision at step w, where 0 ≤ w ≤
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L − 2, while the L − 1-th matches. The corresponding PM would be

PML−1v =

L−2∑
j=0
j,w

ln
(
1 + e−|α jl |

)
+ ln

(
1 + e|αwl |

)
+ ln

(
1 + e−|αL−1l |

)
. (4.44)

Rewriting (4.43) as

PML−1q =

L−2∑
j=0
j,w

ln
(
1 + e−|α jl |

)
+ ln

(
1 + e−|αwl |

)
+ ln

(
1 + e|αL−1l |

)
, (4.45)

and using the fact that |αL−1l | > |αwl |, we can use the result in Lemma 1 to conclude

PML−1q > PML−1v , (4.46)

which in turn results in q > v. Since w can assume L − 1 values, and taking in account the
bit sequence represented by path p where all the bits agree with their corresponding LLR hard
decision, there are at least L bit sequences which result in a smaller PM than PML−1q . Therefore,
q ≥ L which contradicts the assumption that q < L and confirms that path q will be discarded. In
other words, this proves that paths that consider bits not matching the LLR hard decision after the
L− 1-th step will always be discarded: it is thus useless to split paths after the L− 1-th. Theorem 7
is consequently proven. �

The proposed theorem remains valid also for the hardware-friendly formulation that can be
written as

PMil =

PMi−1l +|αil |, if ηil , sgn
(
αil

)
,

PMi−1l , otherwise.
(4.47)

Proof. At each step i, depending on the value of |αil |, two cases arise.

A |αil | ≥ PMi−1L−1 −PMi−1l

From (4.47), we can see that the modulus of the least reliable bit |αil | is the minimum quantity
that can be added to the PM in case ηil , sgn

(
αil

)
. If this quantity is greater than the

difference between the currently considered path metric PMi−1l and the largest surviving path
metric PMi−1L−1 , every estimation that sees ηil , sgn

(
αil

)
will lead to PMi−1l +|αil | ≥ PMi−1L−1
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and thus to a discarded path. Consequently, for all the remaining estimations in the Rate-1
node, paths need not to be duplicated, and bits are estimated as ηil = sgn

(
αil

)
.

B |αil | < PMi−1L−1 −PMi−1l

Let us consider positions p and q in the ordering of PMs such that

PMip = PMi−1l ,

PMiq = PMi−1l +|αil |,

where l ≤ p < q < L. In this case, both bit estimates for the least reliable bit have to be
taken into account since their corresponding paths will be ordered among the first L. In turn,
the path in position L−1 at step i−1 is moved to position L at step i and thus discarded. The
following estimation step i + 1 must be evaluated independently, to see if it falls in case A or
B.

As soon as case A is encountered in path l, that path does not need to undergo any subsequent
splitting, and the remaining βil can be obtained through LLR hard decision of (4.37). While case
B requires continued path splitting, this can occur a limited amount of times before case A is
encountered. The maximum amount of consecutive case B occurrences can be identified by the
following worst case analysis.

1. Case B occurs at i = 0 and l = 0.

2. Considering that PM−10 is the PM at l = 0 before the first bit of the Rate-1 node is estimated,
if p = 0 and q = 1 then

PM00 = PM−10

PM01 = PM−10 +|α00 |

PM02 = PM−11

...

3. Case B occurs at i = 1 and l = 0.
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4. Since |α00 | ≤ |α10 |, q > 1. For p = 0 and q = 2,

PM10 = PM−10

PM11 = PM−10 +|α00 |

PM12 = PM−10 +|α10 |

...

5. Since at every step |αi−10 | ≤ |αi0 |, then q > i. If at every case B step p = 0 and q = i + 1, a
total of L − 1 consecutive case B are possible, after which q > L − 1, resulting in case A. At
i = L − 2, the L surviving PMs after L − 1 consecutive case B are the following:

PML−20 = PM−10

PML−21 = PM−10 +|α00 |

PML−22 = PM−10 +|α10 |

...

PML−2L−1 = PM−10 +|αL−20 |.

Much like the case considered in the proof for Theorem 7, the above analysis shows that at most
L − 1 bit estimations are required to guarantee the exact same results as the conventional SCL.
Thus, the theorem is valid also with (4.47). �

The result of Theorem 7 provides an exact number of path forks in Rate-1 nodes for each
list size in SCL decoding in order to guarantee error-correction performance preservation. The
Rate-1 node decoder of [19] empirically states that two path forks are required to preserve the
error-correction performance. The following remarks are the direct results of Theorem 7.

Remark 1. The Rate-1 node decoder of [19] for L = 2 is redundant.

Theorem 7 states that for a Rate-1 node of length 2t when L = 2, the number of path splitting
is min(L − 1, 2t) = 1. Therefore, there is no need to split the path after the least reliable bit is
estimated. [19] for L = 2 is thus redundant.

Remark 2. The Rate-1 node decoder of [19] falls short in preserving the error-correction perfor-

mance for higher rates and larger list sizes.
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Figure 4.7: FER and BER performance comparison of SSCL [46] and the empirical method of
[19] for P(1024, 860) when L = 128. The CRC length is 32.

For codes of higher rates, the number of Rate-1 nodes of larger length increases [37]. Therefore,
when the list size is also large, min(L − 1, 2t) � 2. The gap between the empirical method of [19]
and the result of Theorem 7 can introduce significant error-correction performance loss. Figure 4.7
provides the FER and BER of decoding a P(1024, 860) code with SSCL of [46] and the empirical
method of [19] when the list size is 128. It can be seen that the error-correction performance loss
reaches 0.25 dB at FER of 10−5. In the next section, we show that the number of path forks can be
tuned for each list size to find a good trade-off between the error-correction performance and the
speed of decoding.

Theorem 8. In SSCL-SPC decoding with list size L, the number of path forks in a SPC node of

length 2t required to get the exact same results as the conventional SSCL-SPC decoder is

min
(
L, 2t) . (4.48)

Following the time step calculation of SSCL-SPC, the proposed technique in Theorem 8 results
in TFast-SSCL-SPCSPC(2t , 2t − 1) = min (L, 2t) + 1 which improves the required number of time steps to
decode SPC nodes when L < 2t . Every bit after the L-th can be obtained through hard decision on
the LLR as in (4.37) without the need for path splitting. In case min (L, 2t) = 2t , the paths need to
be split for all bits of the node and the decoding automatically reverts to the process described in
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[37]. The proof of the theorem is nevertheless valid for both L < 2t and L ≥ 2t .

Proof. In order to prove Theorem 8, we note that the first step is to initialize the PMs based on
(4.33). Therefore, the least reliable bit needs to be estimated first. For the bits other than the least
reliable bit, the PMs are updated based on (4.34). However, the term (1 − 2γ)|αimin | is constant for
all the bit estimations in the same path. Therefore, we can define a new set of 2t − 1 LLR values as

αim = αi + sgn(αi)(1 − 2γ)|αimin |, (4.49)

for i , imin and 0 ≤ im < 2t − 1, which results in

|αim | = |αi| + (1 − 2γ)|αimin |. (4.50)

The problem is now reduced to a Rate-1 node of length 2t − 1 which, with the result of Theorem 7,
can be decoded by considering only min(L− 1, 2t − 1) path splitting. Adding the bit estimation for
imin, SPC nodes can be decoded by splitting paths min(L, 2t) times while guaranteeing the same
results as in SSCL-SPC. Theorem 8 is consequently proven. �

The effectiveness of hard decision decoding after the min(L − 1, 2t)-th bit in Rate-1 nodes and
the min(L, 2t)-th bit in SPC nodes is due to the fact that the bits with high absolute LLR values are
more reliable and less likely to incur path splitting. However, whether path splitting must occur
or not depends on the list size L. The proposed Rate-1 node decoder is used in Fast-SSCL and
Fast-SSCL-SPC algorithms and the proposed SPC node decoder is used in Fast-SSCL-SPC, while
the decoders for Rate-0 and Rep nodes remain similar to those used in SSCL [46] such that

TFast-SSCLRate-0(2
t , 0) = TFast-SSCL-SPCRate-0(2

t , 0) = 1, (4.51)

TFast-SSCLRep(2
t , 1) = TFast-SSCL-SPCRep(2

t , 1) = 2. (4.52)

It should be noted that the number of path forks is directly related to the number of time steps
required in the decoding process [20]. Therefore, when L < 2t , the time step requirement of SPC
nodes based on Theorem 8 is two time steps more than the time step requirement of Rate-1 nodes
as in Theorem 7. However, if SPC nodes are not taken into account as in Fast-SSCL decoding, the
polar code tree needs to be traversed to find Rep nodes and Rate-1 nodes as shown in Figure 4.8.
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Rep

Rep Rate-1

(a) SSCL (Fast-SSCL)

Rep SPC

(b) SSCL-SPC (Fast-SSCL-SPC)

Figure 4.8: (a) SSCL (Fast-SSCL), and (b) SSCL-SPC (Fast-SSCL-SPC) decoding tree forP(8, 4)
and {u0, u1, u2, u4} ∈ F .

Table 4.2: Time-Step Requirements of Decoding Different Nodes of Length 2t with List Size L.

Algorithm Rate-0 Rep Rate-1 SPC

SCL 2t+1 − 2 2t+1 − 1 3 × 2t − 2 3 × 2t − 3
SSCL 1 2 2t 2t + 2t − 2
SSCL-SPC 1 2 2t 2t + 1
Fast-SSCL 1 2 min(L − 1, 2t) 2t +

∑t−1
i=1 min(L − 1, 2t−i)

Fast-SSCL-SPC 1 2 min(L − 1, 2t) min(L, 2t) + 1

For a SPC node of length 2t , this will result in additional time step requirements as

TFast-SSCLSPC(2t , 2t − 1) = 2t − 2 + TFast-SSCLRep(2, 1) +

t−1∑
i=1

TFast-SSCLRate-1(2
i, 2i).

For example, for a SPC node of length 64, Fast-SSCL with L = 4 results in time-step requirement
of TFast-SSCLSPC(64, 63) = 26, while Fast-SSCL-SPC with L = 4 results in time-step requirement of
TFast-SSCL-SPCSPC(64, 63) = 5. Table 4.2 summarizes the number of time steps required to decode
each node with different decoding algorithms.

In practical polar codes, there are many instances where L− 1 < 2t for Rate-1 nodes and using
the Fast-SSCL algorithm can significantly reduce the number of required decoding time steps with
respect to SSCL. Similarly, there are many instances where L < 2t for SPC nodes and using the
Fast-SSCL-SPC algorithm can significantly reduce the number of required decoding time steps
with respect to SSCL-SPC. Figure 4.9 shows the savings in time step requirements of a polar code
with three different rates. It should be noted that as the rate increases, the number of Rate-1 and
SPC nodes increases. This consequently results in more savings by going from SSCL (SSCL-SPC)
to Fast-SSCL (Fast-SSCL-SPC).
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(b) P(1024, 512)
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(c) P(1024, 768)

Figure 4.9: Time-step requirements of SSCL, SSCL-SPC, Fast-SSCL, and Fast-SSCL-SPC deco-
ding of (a) P(1024, 256), (b) P(1024, 512), and (c) P(1024, 768).

Speed Optimization

The analysis in Section 4.2 provides exact reformulations of SSCL and SSCL-SPC decoders wit-
hout introducing any error-correction performance loss. However, in practical polar codes, there
are fewer required path forks for Fast-SSCL and Fast-SSCL-SPC in order to match the error-
correction performance of SSCL and SSCL-SPC, respectively.

Without loss of generality, let us consider L − 1 < 2t for Rate-1 nodes and L < 2t for SPC
nodes such that Fast-SSCL and Fast-SSCL-SPC result in higher decoding speeds than SSCL and
SSCL-SPC, respectively. Let us now consider SRate-1 be the number of path forks in a Rate-1 node
of length 2t , and SSPC be the number of path forks in a SPC node of length 2t where SRate-1 ≤ L − 1
and SSPC ≤ L. It should be noted that SRate-1 = L − 1 and SSPC = L result in optimal number of path
forks as presented in Theorem 7 and Theorem 8, respectively. The smaller the values of SRate-1 and
SSPC, the faster the decoders of Fast-SSCL and Fast-SSCL-SPC. Similar to (4.36) and (4.48), the
new number of required path forks for Rate-1 and SPC nodes can be stated as min(SRate-1, 2t) and
min(SSPC, 2t), respectively.

The definition of the parameters SRate-1 and SSPC provides a trade-off between error-correction
performance and speed of Fast-SSCL and Fast-SSCL-SPC. Let us consider CRC-aided Fast-SSCL
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Figure 4.10: FER and BER performance comparison of Fast-SSCL decoding of P(1024, 512) for
L = 2 and different values of SRate-1. The CRC length is 16.

decoding ofP(1024, 512) with CRC length 16. Figure 4.10 shows that for L = 2, choosing SRate-1 =

0 results in significant FER and BER error-correction performance degradation. Therefore, when
L = 2, the optimal value of SRate-1 = 1 is used for Fast-SSCL. The optimal value of SRate-1 for
L = 4 is 3. However, as shown in Figure 4.11, SRate-1 = 1 results in almost the same FER and
BER performance as the optimal value of SRate-1 = 3. For L = 8, the selection of SRate-1 = 1 results
in ∼0.1 dB of error-correction performance degradation at FER = 10−5 as shown in Figure 4.12.
However, selecting SRate-1 = 2 removes the error-correction performance gap to the optimal value
of SRate-1 = 7. In the case of CRC-aided Fast-SSCL-SPC decoding of P(1024, 512) with 16 bits
of CRC, selecting SRate-1 = 1 and SSPC = 3 for L = 4 results in almost the same FER and BER
performance as the optimal values of SRate-1 = 3 and SSPC = 4 as shown in Figure 4.13. As
illustrated in Figure 4.14 for L = 8, the selection of SRate-1 = 2 and SSPC = 4 provides similar FER
and BER performance as the optimal values of SRate-1 = 7 and SSPC = 8.

4.2.1 Decoder Architecture

To evaluate the impact of the proposed techniques on a practical case, a SCL-based polar code
decoder architecture implementing Fast-SSCL and Fast-SSCL-SPC has been designed. Its basic
structure is inspired to the decoders presented in [14], [37], and it is portrayed in Figure 4.15.
The decoding flow follows the one portrayed in Section 2.4 for a list size L. This means that
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Figure 4.11: FER and BER performance comparison of Fast-SSCL decoding of P(1024, 512) for
L = 4 and different values of SRate-1. The CRC length is 16.
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Figure 4.12: FER and BER performance comparison of Fast-SSCL decoding of P(1024, 512) for
L = 8 and different values of SRate-1. The CRC length is 16.

the majority of the datapath and of the memory are replicated L times, and work concurrently on
different candidate codewords and the associated LLR values.

Starting from the tree root, the tree is descended by recursively computing (2.11) and (2.8) on
left and right branches respectively at each tree stage t, with a left-first rule. The computations are
performed by L sets of Pe PEs, where each set can be considered a standalone SC decoder, and Pe
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Figure 4.13: FER and BER performance comparison of Fast-SSCL-SPC decoding ofP(1024, 512)
for L = 4 and different values of SRate-1 and SSPC. The CRC length is 16.
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Figure 4.14: FER and BER performance comparison of Fast-SSCL-SPC decoding ofP(1024, 512)
for L = 8 and different values of SRate-1 and SSPC. The CRC length is 16.

is a power of 2. In case 2t > 2P, (2.11) and (2.8) require 2t/(2P) time steps to be completed, while
otherwise needing a single time step. The updated LLR values are stored in dedicated memories.

The internal structure of PEs is shown in Figure 4.16. Each PE receives as input two LLR
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Figure 4.15: Fast-SSCL (Fast-SSCL-SPC) decoder architecture.

values, outputting one. The computations for both (2.11) and (2.8) are performed concurrently, and
the output is selected according to it , that represents the t-th bit of the index i, where 0 ≤ i < N.
The index i is represented with tmax = log2 N bits, and identifies the next leaf node to be estimated,
and can be composed by observing the path from the root node to the leaf node. From stage tmax

down to 0, for every left branch we set the corresponding bit of i to 0, and to 1 for every right
branch.

When a leaf node is reached, the controller checks Node Sequence, identifying the leaf node
as an information bit or a frozen bit. In case of a frozen bit, the paths are not split, and the bit is
estimated only as 0. All the L path memories are updated with the same bit value, as are the LLR
memories and the β memories. On the other hand, in case of an information bit, both 0 and 1 are
considered. The paths are duplicated and the PMs are calculated for the 2L candidates according to
(2.22). They are subsequently filtered through the sorter module, designed for minimum latency.
Every PM is compared to every other in parallel: dedicated control logic uses the resulting signals
to return the values of the PMs of the surviving paths and the newly estimated bits they are associa-
ted with. The latter are used to update the LLR memories, the β memories and the path memories,
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while also being sent to the CRC calculation module to update the remainder.
All memories in the decoder are implemented as registers: this allows the LLR and β values

to be read, updated by the PEs, and written back in a single clock cycle. At the same time, the
paths are either updated, or split and updated (depending on the constituent code), and the new
PMs computed. In the following clock cycle, in case the paths were split, the PMs are sorted, paths
are discarded and the CRC value updated. In case paths were not split, the PMs are not sorted, and
the CRC update occurs in parallel with the following operation.

Memory Structure

The decoding flow described above relies on a number of memories that are shown in Figure 4.17.
The channel memory stores the N LLR values received from the channel at the beginning of the
decoding process. Each LLR value is quantized with Qα bits, and represented with sign and
magnitude. The high and low stage memories store the intermediate α computed in (2.11) and
(2.8). The high stage memory is used to store LLR values related to stages with nodes of size
greater than Pe. The number of PEs determines the number of concurrent (2.11) or (2.8) that can be
performed: for a node in stage t, where 2t > 2P, a total of 2t/(2P) time steps are needed to descend
to the lower tree level. The depth of the high stage memory is thus

∑tmax−1
j=log2 P+1 2 j/P = N/P − 2,

while its width is Qα×P. On the other hand, the low stage memory stores the LLR values for stages
where 2t ≤ 2P: the width of this memory is Qα , while its depth is defined as

∑log2 P−1
j=0 P/2 j = 2P−2.

Both high and low stage memory words are reused by nodes belonging to the same stage t, since
once a subtree has been completely decoded, its LLR values are not needed anymore. While high
and low stage memories are different for each path, the channel LLR values are shared among the
L datapaths. Table 4.3 summarizes the memory read and write accesses for the aforementioned
LLR memories. When 2t = 2P, 2P LLR values are read from the high stage memory, and the Pe

resulting LLR values are written in the low stage memory. The channel memory is read at tmax

only.
Each of the L candidate codewords is stored in one of the N-bit path memories, updated after

every bit estimation. The β memories hold the β values for each stage from 0 to tmax−1, for a total
of N − 1 bits each. Each time a bit is estimated, all the β values it contributes to are concurrently
updated. When the decoding of the left half of the SC decoding tree has been completed, the β

memories are reused for the right half. Finally, the PM memories store the L PM values computed
in (2.22).
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Special Nodes

The decoding flow and memory structure described before implement the standard SCL decoding
algorithm. The SSCL, SSCL-SPC and the proposed Fast-SSCL and Fast-SSCL-SPC algorithms
demand modifications in the datapath to accommodate the simplified computations for Rate-0,
Rate-1, Rep and SPC nodes.

As with standard SCL, the pattern of frozen and information bits is known a priori given a
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Table 4.3: LLR Memory Access.

Stage READ WRITE

t = tmax Channel High Stage
log2 P + 1 < t < tmax High Stage High Stage

t = log2 P + 1 High Stage Low Stage
t < log2 P + 1 Low Stage Low Stage

polar code structure, the same can be said for special nodes. In the modified architecture, the
Node Sequence input in the controller (see Figure 4.15) is not limited to the frozen/information bit
pattern, but it includes the type of encountered nodes, their size and the tree stage in which they
are encountered. Table 4.4 summarizes the content of Node Sequence depending on the type of
node for SSCL and SSCL-SPC, while in case of Fast-SSCL and Fast-SSCL-SPC Node Sequence
is detailed in Table 4.5. The node stage allows the decoder to stop the tree exploration at the
right level, and the node type identifies the operations to be performed. Each of the four node
types is represented with one or more decoding phases, each of which involves a certain number
of codeword bits, identified by the node size parameter. Finally, the frozen bit parameter identifies
a bit or set of bits as frozen or not. To limit the decoder complexity, the maximum node stage
for special nodes is limited to t = log2 P, thus the maximum node size is Pe. If the code structure
identifies special nodes with node size larger than Pe, they are considered as composed by a set of
Pe-size special nodes.

• Rate-0 nodes are identified in the Node Sequence with a single decoding phase. No path
splitting occurs, and all the 2t node bits are set to 0. The PM update requires a single time
step, as discussed in [37].

• Rate-1 nodes are composed of a single phase in both SSCL and SSCL-SPC, in which paths
are split 2t times. In case of Fast-SSCL and Fast-SSCL-SPC, each Rate-1 is divided into two
phases. The first takes care of the min(SRate-1, 2t) path forks, requiring as many time steps,
while the second sets the remaining 2t −min(SRate-1, 2t) bits according to (4.37) and updates
the PM according to (4.47). This second phase takes a single time step.

• Rep nodes are identified by two phases in the Node Sequence, the first of which takes care
of the 2t − 1 frozen bits similarly as Rate-0 nodes do, and the second estimates the single
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Table 4.4: Node Sequence Input Information for SSCL and SSCL-SPC.

Node Type Node Stage Node Size Frozen

RATE0 t 2t 1
RATE1 t 2t 0
REP1 t 2t − 1 1
REP2 t 1 0
DESCEND Next Node Next Node Next Node
LEAF 0 1 0/1

SPC1 t 1 1
SPC2 t 2t − 1 0
SPC3 t 2t 0

Table 4.5: Node Sequence Input Information for Fast-SSCL and Fast-SSCL-SPC.

Node Type Node Stage Node Size Frozen

RATE0 t 2t 1
RATE1-1 t min(SRate-1, 2t) 0
RATE1-2 t 2t −min(SRate-1, 2t) 0
REP1 t 2t − 1 1
REP2 t 1 0
DESCEND Next Node Next Node Next Node
LEAF 0 1 0/1

SPC1 t 1 1
SPC2-1 t min(SSPC, 2t) 0
SPC2-2 t 2t −min(SSPC, 2t) − 1 0
SPC3 t 2t 0

information bit. Each of these two phases lasts a single time step.

• SPC nodes are split in three phases in the original SSCL-SPC formulation. The first phase
takes care of the frozen bit, and computes both (2.17) and (2.18), initializing the PM as
(4.33) in a time step. The extraction of the least reliable bit in (2.17) is performed through a
comparison tree that carries over both the index and the value of the LLR.
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The second phase estimates the 2t − 1 information bits, splitting the path as many times in
as many time steps. During this phase, each time a bit is estimated, it is XORed with the
previous β values: this operation is useful to compute (4.35). The update of βimin is finally
performed in the third phase, that takes a single time step. Moving to Fast-SSCL-SPC, the
second SPC phase is split in two, similarly to what happens to the Rate-1 node.

• Descend is a non-existing node type that is inserted for one clock cycle in Node Sequence for
control purposes after every special node. The node size and stage associated with this label
are those of the following node. The Descend node type is used by the controller module.

• Leaf nodes identify all nodes that can be found at t = 0, for which the standard SCL algo-
rithm applies.

The decoding of special nodes requires a few major changes in the decoder architecture.

• Path Memory: each path memory is an array of N registers, granting concurrent access
to all bits with a 1-bit granularity. In SCL, the path update is based on the combination
of a write enable signal, the codeword bit index i that acts as a memory address, and the
value of the estimated bit after the PMs have been sorted and the surviving paths identified.
Figure 4.18 shows the path memory access architecture for Fast-SSCL-SPC. Unlike SCL,
the path memory is not always updated with the estimated bit û. Thus, the SCL datapath
is bypassed according to the node type. When Node Sequence identifies RATE0, REP1
and SPC1 nodes that consider frozen bits, the path memory is updated with 0 values. The
estimated bit û is chosen as input for RATE1-1, REP2, SPC2-2 and LEAF nodes, where the
path is split. RATE1-2 and SPC2-2 nodes estimate the bits through hard decision on the LLR
values, while in the SPC3 case the update considers the result of (4.35). At the same time.
whenever the estimated bits are more than one, the corresponding bits in the path memory
must be concurrently updated. Thus, the address becomes a range of addresses for RATE0,
RATE1-2, REP1 and SPC2-2.

• β Memory: the update of this memory depends on the value of the estimated bit. In order to
limit the latency cost of these computations, concurrently to the estimation of û, the updated
values of all the bits of the β memory are computed assuming both û = 0 and û = 1. The
actual value of û is used as a selection signal to decide on the two alternatives. The β memory
in SCL, unlike the path memory, already foresees the concurrent update of multiple entries
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û
0
û
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Figure 4.18: Path memory access architecture for Fast-SSCL-SPC.

that are selected based on the bit index i. Given an estimated leaf node, the β values of all
the stages that it affects are updated: in fact, since as shown in (2.9) the update of β values
is at most a series of XORs, it is possible to distribute this operation in time. The same can
be said of multi-bit (2.9) updates. To implement Fast-SSCL-SPC, the β update selection
logic must be modified to foresee the special nodes, similar to that portrayed in Figure 4.18
for the path memory. For RATE0, REP1, and SPC1, the û = 0 update is always selected.
RATE1-1, REP2, SPC2-1 and LEAF nodes maintain the standard SCL selection based on
the actual value of û. The update for SPC3 case is based on βimin . For RATE1-2 and SPC1-2,
the selection is based on the XORed sign bits of the LLR values read from the memory.

• PM Calculation: this operation is performed, in the original SCL architecture and for leaf
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nodes in general according to (2.22). The paths and associated PMs are split and sorted every
time an information bit is estimated, while PMs are updated without sorting when frozen bits
are encountered. While the sorting architecture remains the same, the implementation of the
proposed algorithm requires a different PM update structure for each special node. Unlike
with leaf nodes, the LLR values needed for the PM update in special nodes are not the
output of PEs, and are read directly from the LLR memories. Additional bypass logic is
thus needed. For RATE0 and REP1, (4.24) and (4.30) require a summation over up to Pe

values, while SPC1 nodes need to perform the minimum α search (2.17): these operations
are tackled through adder and comparator trees. RATE1-1, REP2 and SPC2-1 PM updates
are handled similarly to the leaf node case, since a single bit at a time is being estimated.
RATE1-2, SPC2-2 and SPC3 do not require any PM to be updated.

• CRC Calculation: the standard SCL architecture foresees the estimation of a single bit at a
time. Thus, the CRC is computed sequentially. However, Rate-0 and Rep nodes in SSCL
and SSCL-SPC estimate up to Pe and Pe − 1 bits concurrently. Thus, for the CRC operation
not to become a latency bottleneck, the CRC calculation must be parallelized by updating
the remainder. Following the idea presented in [51], it is possible to allow for variable input
sizes with a high degree of resource sharing and limited overall complexity. The circuit is
further simplified by the fact that both Rate-0 and Rep nodes guarantee that the estimated bit
values are all 0. Figure 4.19 shows the modified CRC calculation module in case Pe = 64,
where NCRC represents the number of concurrently estimated bits: the estimated bit can be
different from 0 only in case of leaf nodes and t = 1 Rep nodes, for which a single bit is
estimated in any case.

The Fast-SSCL and Fast-SSCL-SPC architectures follow the same idea, but require addi-
tional logic. RATE1-2 and SPC2-2 nodes introduce new degrees of parallelism, as up to
Pe − SRate-1 and Pe − SSPC bits are updated at the same time. Moreover, it is not possible to
assume that these bits are 0 as with RATE0 and REP1. The value of the estimated bit must
be taken into account, leading to increased complexity.

• Controller: this module in the SCL architecture is tasked with the generation of memory
write enables, the update of the codeword bit index i and the stage tracker t, along with
the LLR memory selection signals according to Table 4.3 and path enable and duplication
signals. It implements a finite state machine that identifies the status of the decoding process.
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Figure 4.19: CRC architecture for SSCL and SSCL-SPC.

The introduction of special nodes demands that most of the control signal generation logic
is modified. Of particular importance is the fact that, in the SCL architecture, the update of i

is bound to having reached a leaf node, i.e. t = 0. In Fast-SSCL-SPC, it is instead linked to t

being equal to the special node stage. The index i is moreover incremented of the amount of
bits estimated in a single time step, depending on the type of node. Memory write enables
are also bound to having reached the special node stage, and not only to t = 0.
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Table 4.6: TSMC 65 nm Implementation Results for N = 1024, R = 1/2, L = 2, Pe = 64.

Implementation Rate-1 Rate-0 Rep SPC Area
[mm2]

f
[MHz]

T/p
[Mb/s]

LLS HFS LCS LLS HFS LCS LLS HFS LCS

SCL 7 7 7 7 0.599 1031 389

SSCL X

X X

7

0.643 1031 1108
X X 0.650 1031 1028

X X 0.636 1031 642

SSCL-SPC X

X X X 0.684 1031 1229
X X X 0.694 1031 1088

X X X 0.681 1031 737

Hardware Implementation

The decoder architecture described in this section has been coded in VHDL and synthesized in
TSMC 65 nm CMOS technology with Cadence RTL Compiler. Mentor Graphics ModelSim has
been used for verification. All reported area occupation values include both cell area and net area.

Table 4.6 details the design choices of the different architectures that have been synthesized.
The decoder labelled as SCL implements the LLR-based CRC-aided SCL decoding algorithm,
targeting a rate 1/2 code with N = 1024, L = 2 and making use of 64 PEs for each concurrent
path. The quantization Q(6, 8, 2) is used. All memories have been synthesized with flip-flops.

The second type of implementation, SSCL, uses the same choice of design parameters as SCL,
while also taking advantage of the SSCL nodes, i.e. Rate-1, Rate-0 and Rep nodes. Finally, the
SSCL-SPC implementations add the SPC node to the SSCL architecture.

The SCL architecture yields an area occupation of 0.599 mm2, reaching a maximum frequency
of 1031 MHz. The achievable coded throughput is of 389 Mb/s.

To limit the hardware overhead with a negligible sacrifice in the achieved speed-up, all SSCL
and SSCL-SPC implementations have a special node parallelism equal to the number of PEs, i.e.
64 in our case. This choice adds complexity to the control unit but simplifies the memory accesses.
As shown in Table 4.6, the SSCL architecture has been implemented with three different Rate-0
and Rep node structures, a LLS, a HFS, and a LCS. It is worth noting how none of the special
node structures impacts the achievable frequency. Consequently, the LLS allows for the highest
achievable throughput, and is superior to the HFS, having a lower area occupation as well. As
expected, the LCS yields the smallest area occupation, but the considerable throughput degradation
makes it not worthy of consideration. The increment in throughput brought by the implementation
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Table 4.7: TSMC 65 nm Implementation Results for P(1024, 512) and Pe = 64.

Implementation L SRate-1 SSPC
Area

[mm2]
Frequency

[MHz]
Throughput

[Mb/s]

SCL
2 7 7 0.599 1031 389
4 7 7 0.998 961 363
8 7 7 2.686 722 272

SSCL
2 7 7 0.643 1031 1108
4 7 7 1.192 961 1033
8 7 7 2.958 722 776

SSCL-SPC
2 7 7 0.684 1031 1229
4 7 7 1.223 961 1146
8 7 7 3.110 722 861

Fast-SSCL

2 1 7 0.871 885 1579
4 1 7 1.536 840 1499
4 3 7 1.511 840 1446
8 2 7 3.622 722 1053
8 7 7 3.588 722 827

Fast-SSCL-SPC

2 1 2 1.048 885 1861
4 1 3 1.822 840 1608
4 3 4 1.797 840 1338
8 2 4 3.975 722 1198
8 7 8 3.902 722 959

of SSCL ranges between 1.65× and 2.85×, with a cost in area occupation between 6.2% and 8.5%.
Similar results can be observed in case of SSCL-SPC. The different design choices within the

architecture of Rate-0, Rep, and SPC nodes lead the LLS choice to dominate the others in terms
of throughput. The highest achievable throughput is of 1229 Mb/s with an area occupation of
0.684 mm2. With respect to SCL, they correspond to a +14.2% increment in area occupation,
along with a 3.16× increment in throughput.

Implementation results for different decoders in this work are provided in Table 4.7 for the
design choice taken from Table 4.6. Each decoder has been synthesized with three list sizes
(L = 2, 4, 8), while the Fast-SSCL and Fast-SSCL-SPC architectures have been synthesized for
considering different combinations of SRate-1 and SSPC. Quantization values are the same used in
[37], i.e. 6 bits for LLR values and 8 bits for PMs, with two fractional bits each. All memory
elements have been implemented through registers and the area results include both net area and
cell area. The reported throughput is coded.

All Fast-SSCL and Fast-SSCL-SPC, regardless of the value of SRate-1 and SSPC, show a sub-
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stantial increase in area occupation with respect to SSCL and SSCL-SPC. The main contributing
factors to the additional area overhead are three:

• In SSCL and SSCL-SPC, the CRC computation needs to be parallelized, since in Rep and
Rate-0 nodes multiple bits are updated at the same time. However, the bit value is known at
design time, since they are frozen bits. This, along with the fact that 0 is neutral in the XOR
operations required by CRC calculation, limits the required additional area overhead. On
the contrary, in Fast-SSCL and Fast-SSCL-SPC, Rate-1 and SPC nodes update multiple bits
within the same time step (SPC2-2 and RATE1-2 stages). In these cases, however, they are
information bits, whose values cannot be known at design time: the resulting parallel CRC
tree is substantially wider and deeper than the ones for Rate-0 and Rep nodes. Moreover,
with increasing number of CRC trees, the selection logic becomes more cumbersome.

• A similar situation is encountered for the β memory update signal. As described in the
previous section, the β memory update values are computed assuming both estimated values,
and the actual value of û is used as a selection signal. In SSCL and SSCL-SPC the multiple-
bit update does not constitute a problem since all the estimated bits are 0 and the β memory
content does not need to be changed. On the contrary, in Fast-SSCL and Fast-SSCL-SPC, the
value of the estimated information bits might change the content of the β memory. Moreover,
since β is computed as (2.9), the update of β bits depends on previous bits as well as the
newly estimated ones. Thus, an XOR tree is necessary to compute the right selection signal
for every information bit estimated in SPC2-2 and RATE1-2 stages.

• The aforementioned modifications considerably lengthen the system critical path. In case of
large code length, small list size, or large Pe, the critical path starts in the controller module,
in particular in the high stage memory addressing logic, goes through the multiplexing struc-
ture that routes LLR values to the PEs, and ends after the PM update. In case of large list
sizes or short code length, the critical path passes through the PM sorting and path selection
logic, and through the parallel CRC computation. Thus, pipeline registers have been inserted
to lower the impact of critical path, at the cost of additional area occupation.

Fast-SSCL and Fast-SSCL-SPC implementations show consistent throughput improvements
with respect to previously proposed architectures. The gain is lower than what is shown to be
theoretically achievable in Figure 4.9. This is due to the aforementioned pipeline stages, that
increase the number of steps needed to complete the decoding of component codes.
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Table 4.8: Comparison with State-of-the-Art Decoders.

Fast-SSCL-SPC [15] [16]† [17]† [18]† SSCL-SPC

L 2 4 8 4 4 2 4 4 2 4 8
Pe 64 64 64 64 64 64 64 256 64 64 64

Area [mm2] 1.048 1.822 3.975 0.62 0.73 1.03 2.00 0.99 0.68 1.22 3.11
Frequency [MHz] 885 840 722 498 692 586 558 566 1031 961 722

Throughput [Mb/s] 1861 1608 1198 935 551 1844 1578 1515 1229 1146 861
Latency [µs] 0.55 0.64 0.85 1.10 1.86 0.57 0.66 0.69 0.83 0.89 1.19

Area Efficiency [Mb/s/mm2] 1776 883 301 1508 755 1790 789 1530 1807 939 277

†The results are originally based on TSMC 90 nm technology and are scaled to TSMC 65 nm technology.

Comparison with Previous Works

The Fast-SSCL-SPC hardware implementation of P(1024, 512) with Pe = 64, presented in this
work, is compared with the state-of-the-art architectures in [15]–[18] and the results are provided in
Table 4.8. The architectures presented in [16]–[18] were synthesized based on 90 nm technology:
for a fair comparison, their results have been converted to 65 nm technology using a factor of
90/65 for the frequency and a factor of

(
65/90

)2 for the area. The synthesis results in [15] were
carried out in 65 nm technology but reported in 90 nm technology. Therefore, a reverse conversion
was applied to convert the results back to 65 nm technology.

The architecture in this chapter shows 72% higher throughput and 42% lower latency with
respect to the multibit decision SCL decoder architecture of [15] for L = 4. However, the area
occupation of [15] is smaller, leading to a higher area efficiency than the design in this chapter.

The symbol-decision SCL decoder architecture of [16] shows lower area occupation than the
design in this chapter for L = 4 but it comes at the cost of lower throughput and higher latency.
Our decoder architecture achieves 192% higher throughput and 66% lower latency than [16] which
resulted in 17% higher area efficiency.

The high throughput SCL decoder architecture of [17] for L = 2 requires lower area occupation
than our design but it comes at the expense of lower throughput and higher latency. Moreover, the
design in [17] relies on parameters that need to be tuned for each code, and it is shown in [17] that
a change of code can result in more than 0.2 dB error-correction performance loss. For L = 4, our
decoder not only achieves higher throughput and lower latency than [17], but also it occupies a
smaller area. This in turn yields a 12% increase in the area efficiency in comparison with [17].

The multimode SCL decoder in [18] relies on a higher number of PEs than our design: nevert-



82 Fast List Decoding

10−0.3 10−0.25 10−0.2 10−0.15 10−0.1 10−0.05 100 100.05 100.1 100.15 100.2 100.25 100.3

10−0.2

100

100.2

100.4

100.6

Fast-SSCL-SPC

[17]

SSCL-SPC

Fast-SSCL-SPC

[15]
[16]

[17]

[18]

SSCL-SPC

Fast-SSCL-SPC

SSCL-SPC

Latency [µs]

A
re

a
[m

m
2 ]

L = 2
L = 4
L = 8

Figure 4.20: Comparison with state-of-the-art decoders.

heless, it yields lower throughput and higher latency than the architecture proposed in this chapter
for L = 4. It should be noted that [18] is based on the design presented in [17], whose code-specific
parameters may lead to substantial error-correction performance degradation. On the contrary, the
design in this chapter is targeted for speed and flexibility and can be used to decode any polar code
of any length.

Compared to SSCL-SPC, that has the same degree of flexibility of Fast-SSCL-SPC, this deco-
der achieves 51% higher throughput and 34% lower latency for L = 2, and 40% higher throughput
and 28% lower latency for L = 4. However, the higher area occupation of Fast-SSCL-SPC yields
lower area efficiencies than SSCL-SPC for L = {2, 4}. For L = 8, Fast-SSCL-SPC has 39% higher
throughput and 29% lower latency than SSCL-SPC, which results in 9% increase in area efficiency.
The reason is that for L = 8, the sorter is quite large and falls on the critical path. Consequently,
the maximum achievable frequency for Fast-SSCL-SPC is limited by the sorter and not by Rate-1
and SPC nodes as opposed to the L = {2, 4} case. This results in the same maximum achievable
frequency for both designs, hence, higher throughput and area efficiency.

Figure 4.20 plots the area occupation against the decoding latency for all the decoders consi-
dered in Table 4.8. For each value of L, Fast-SSCL-SPC has the shortest latency, shown by their
leftmost position on the graph.
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Chapter 5

Memory-Efficient List Decoding

Although SCL decoding significantly improves the error-correction performance of polar codes,
it comes at the cost of higher area occupation when implemented in hardware. In particular, it
was shown in [20] that the high area requirement of SCL decoding is mostly dominated by its
memory usage. In this chapter, a PSCL decoding algorithm is proposed in order to reduce the
memory requirements associated with SCL decoding. More specifically, PSCL decoding performs
SCL decoding on partitions of the decoder tree and only one path candidate is transferred from
one partition to the next. As a result, memory can be shared between the different partitions of
the code, therefore, significantly reducing the overall memory requirements. It is shown that the
memory requirement of the PSCL decoder can be significantly reduced as the number of partitions
increases. However, as the number of partitions increases, the error-correction performance of
PSCL decoding degrades in comparison with SCL decoding at the same list size. Therefore, in this
chapter, we present several improvements on the original PSCL scheme. These improvements are
practical, in the sense that they boost the error-correction performance of the code.

We propose a modified code construction which leads to a remarkable gain in the finite-length
performance. The idea is to design the polar code for a “better” channel, namely for a channel with
a larger SNR compared to the channel that is used for transmission. Furthermore, the performance
improvement comes at no additional cost in terms of memory, latency, or operational complexity,
since we are simply constructing a polar code for a better channel and do not alter any of the
encoding or decoding procedures.

In order to bridge the performance gap between SCL and PSCL, we first present a GPSCL
algorithm that allows more than one candidate to be passed between different partitions. Then, we
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observe that the SCL decoder has a tree structure in which a specific number of candidate code-
words are present at each level of the tree, and we propose aLPSCL algorithm that passes different
numbers of candidates for different levels. It should be noted that if we pass similar number of
candidates at each level of the tree, then LPSCL reduces to GPSCL. Therefore, LPSCL is the ge-
neralization of GPSCL in which we are able to fully tune the trade-off between the error-correction
performance and the decoder complexity. Furthermore, we implement the various decoders on har-
dware with TSMC 65 nm CMOS technology. We show that, by using the proposed algorithms, the
area occupation of the original SCL decoder can be significantly reduced, while keeping the same
error-correction performance.

We further propose a Successive CRC Assignment (SCA) strategy to select the number of
CRC bits. Our approach is based on the successive minimization of the error probability for each
partition. As such, this selection strategy is optimal in the sense that it minimizes the total error
probability of the PSCL decoding algorithm.

We finally present a lower bound on the size of the list that ensures optimal Maximum a Pos-
teriori (MAP) performance. The proof holds for the special case of the Binary Erasure Channel
(BEC), but numerical simulations suggest that the claim holds for the transmission over general
channels. The bound exploits the fact that the information bits tend to cluster at the end of the
successive decoding process.

5.1 Partitioned Successive-Cancellation List (PSCL) Decoding

PSCL decoding allows to significantly reduce the memory requirements associated with SCL de-
coders. The idea is to break the decoding tree into two parts, i.e. the top and the bottom of the tree:
the latter is composed of P sub-trees (partitions), and each partition is decoded with a CRC-aided
SCL decoder. Instead of using the CRC to find the correct codeword at the end of CRC-aided SCL
decoding process, PSCL uses the CRC to find a single correct codeword for each partition. It then
passes this candidate to the top of the tree, where standard SC decoding is performed, and until the
next partition is encountered. Therefore, it is not necessary to store L full trees as in SCL, but only
L copies of the part of the tree contained in the partitions. Moreover, memory can be shared among
the P partitions, which results in significant savings as P increases. Figures 5.1 and 5.2 show the
PSCL decoding tree when P = 2 and P = 4, respectively. As described in [5], a polar code of
length N can be seen as the concatenation of two polar codes of length N/2: thus, each partition is
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Figure 5.2: PSCL tree structure for P = 4.

a polar code of length N/P.
The memory requirement of PSCL is bound between those of SC (P = N) and SCL (P = 1)

decoders as

MPSCL = NQαC +

log2 P∑
k=1

N
2k + L

(N
P
− 1

) QαI + LQPM +

log2 P∑
k=1

N
2k + L

(
2N
P
− 1

)
, (5.1)

where 2 ≤ P < N. It is worth noting that as the number of partitions increases, the memory
usage decreases exponentially toward the SC bound as depicted in Figure 5.3 for a code of length
1024. However, in the conventional PSCL algorithm, this memory saving is obtained at the cost of
error-correction performance degradation as shown in Figure 5.4.

There are two main reasons associated with this performance degradation. First, PSCL uses
SC decoding at the top of the polar code tree which can cause error-correction performance de-



86 Memory-Efficient List Decoding

20 21 22 23 24 25 26 27 28 29 210

2

3

4
·104

Number of Partitions

M
em

or
y

B
its

PSCL(P,2)
PSCL(P,4)
SC Bound

SCL(2) Bound
SCL(4) Bound

Figure 5.3: PSCL memory requirements for a polar code of length 1024 when L = {2, 4}.
PSCL(L,P) represents PSCL decoding with list size L and with P partition, and SCL(L) represents
SCL decoding with list size L.

gradation with respect to SCL. Second, the uniform distribution of CRCs between partitions in
the conventional PSCL may result in significant deterioration in error-correction performance. We
will propose methods to tackle these issues in the following sections.

5.1.1 Modified Code Construction

In this section, we describe a modified code construction that allows to obtain a gain in the error-
correction performance at no additional complexity cost.

Denote by W = BAWGN(SNR∗) the Binary AWGN (BAWGN) channel with SNR equal to
SNR∗ and let Pκ(N,K) be the polar code of length N and rate K/N designed for the transmission
over Wκ = BAWGN(SNR∗/κ). In words, when κ = 1, Pκ(N,K) is the polar code designed for W

and, as κ goes from 1 to 0, Pκ(N,K) is a polar code designed for better and better channels.
Consider the transmission of the family of polar codes {Pκ(N,K) : κ ∈ [0, 1]} over the channel

W . Note that the transmission channel is fixed, while the codes of the family are designed for
different channels as κ varies. Empirically, one observes that the error probability under MAP
decoding decreases as κ goes from 1 to 0. However, the error probability under SC decoding in-
creases as κ goes from 1 to 0. The latter is due to the fact that the frozen positions of a polar code
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Figure 5.4: FER comparison between SC, SCL(8), and PSCL(P, 8) for P ∈ {2, 4, 8} when no CRC
is used. The polar code is P(1024, 512) and it is optimized for SNR = 2 dB.

are chosen in order to minimize its error probability under SC decoding. Starting from these two
observations, in [52] a trade-off between complexity and performance is developed by considering
low-complexity decoders (e.g., SCL). The trade-off comes from the fact that, as the decoder be-
comes more complex (e.g., the list size increases), the best performance are achieved for smaller
values of κ .

This principle can also be applied to PSCL decoding, as shown in the numerical simulations
of Figs. 5.5–5.7. In particular, different curves of Figure 5.5 refer to different codes (i.e., codes
designed for different SNRs). The x-axis corresponds to SNR of the transmission channel, and
y-axis labels the correspondent FER. Note that, at Eb/N0 = 3 dB, a polar code constructed for
SNR = 5 dB significantly outperforms the polar code optimized for SNR = 3 dB (which is the
SNR of the channel over which the transmission takes place).

Figure 5.6 plots the error-correction performance of the code as a function of the design SNR.
The transmission channel is fixed and it has Eb/N0 = 3 dB. Different curves correspond to diffe-
rent decoding algorithms. For SC decoding, the best error-correction performance is achieved for a
code constructed for SNR = 3 dB. Again, this is to be expected, since the polar code is constructed
in order to minimize the error probability under SC decoding. For SCL(8), the best error-correction
performance is achieved when the code is constructed for SNR = 5 dB. For PSCL(2,8), the optimal
design SNR is 4.5 dB, and for PSCL(4,8), it is 4 dB. Note that, as the number of partitions increa-
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Figure 5.5: FER for the transmission of P(1024, 512) under PSCL decoding with L = 8 and
P ∈ {2, 4}. Different curves correspond to different design SNR values and no CRC is used.

ses, the optimal design SNR for PSCL decoding moves from that for SCL decoding to that for SC
decoding. This is due to the fact that, as the number of partitions increases, the error-correction
performance of PSCL moves from that of SCL to that of SC (see also Figure 5.4).

Fig. 5.7 summarizes the gains in the FER performance guaranteed by the modified code con-
struction. It also compares the FER performance of polar codes with that of an LDPC code of
length 1152 and rate 1/2 which is used in the WiMAX standard. The dashed curves refer to polar
codes in which the design SNR is equal to the SNR of the transmission channel, i.e., polar codes
constructed in the standard way. The continuous curves refer to polar codes in which the design
SNR is chosen in order to minimize the FER. For example, for the PSCL(2,8) curve, when the
channel SNR is 2 dB the design SNR is 3.5 dB, and when the channel SNR is 3 dB the design
SNR is 4.5 dB. Both PSCL(2,8) and PSCL(4,8) exhibit gains of almost 0.5 dB at a target FER of
10−3. Note that these gains come “for free”, since changing the design SNR does not affect the
computational complexity, the latency or the memory requirement.
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Figure 5.6: FER for PSCL(2,8), PSCL(4,8), SCL(8), and SC decoding of P(1024, 512) as a
function of the design SNR. Different curves correspond to different decoding algorithms and no
CRC is used. Note that the transmission takes place over a BAWGN with SNR = 3 dB.

5.1.2 Bridging the Performance Gap between PSCL and SCL

Generalized Partitioned Successive-Cancellation List (GPSCL)

The fundamental performance gap between PSCL and SCL decoding is the result of passing a
single candidate codeword between partitions. To address this issue, we propose a GPSCL deco-
ding algorithm which can improve the error-correction performance of PSCL to the extent that it
is comparable with SCL, while requiring a lower decoder complexity. To this end, we allow for S

candidates to be passed between the partitions, where S ≥ 1. This is illustrated in Fig. 5.8 in which
P = 4 and two candidate codewords are allowed to pass between the four partitions (S = 2).

Let us denote by GPSCL(P,L,S) the GPSCL decoder with P partitions and list size L, where
S candidate codewords are allowed to pass between the partitions. It should be noted that GP-
SCL(P,L,1) is equivalent to PSCL(P,L), and GPSCL(P,L,L) is equivalent to SCL(L). Fig. 5.9
shows the effect of GPSCL decoding of P(1024, 512) with design SNR = 5 dB and L = 8. Clearly,
as the number of partitions increases, we need to pass more candidates between the partitions to
keep the FER performance of GPSCL close to that of SCL. Furthermore, in order to achieve the
performance of the SCL decoder, it suffices to have S = 2 when P ∈ {2, 4}, and S = 4 when P = 8.
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Figure 5.8: GPSCL tree structure for P = 4 and when two candidate codewords are allowed to
pass between the partitions (S = 2).

For S < L1, the memory requirement of the GPSCL decoder is less than that of the SCL
decoder. The number of memory bits for GPSCL decoding can be calculated as

MGPSCL = NQαC +

S log2 P∑
k=1

N
2k + L

(N
P
− 1

) QαI + L · QPM + S
log2 P∑
k=1

N
2k + L

(
2N
P
− 1

)
, (5.2)

1Recall that, when S = L, GPSCL reduces to SCL.
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where 2 ≤ P < N. It should be noted that S copies of the top log2 P levels of the tree have to be
stored, whereas for the bottom part, L copies are needed. The savings in memory bits guaranteed
by the GPSCL decoder are summarized in Fig. 5.10 for P(1024, 512) with L = 8, P ∈ {2, 4, 8},
Qα = 6 and QPM = 8. Note that the memory requirement of GPSCL(P,8,S) changes from that of
PSCL(P,8) to SCL(8) as S increases.

Layered Partitioned Successive-Cancellation List (LPSCL)

The error-correction performance of GPSCL(P,L,S) can be tuned by changing P and S. For GPSCL
decoding with P partitions, S candidates are passed to the top log2 P levels of the decoder tree,
while L candidates are passed to the remaining bottoms levels. Let us consider again the example
in Fig. 5.9. For P ∈ {2, 4}, it suffices to have S = 2 in order to match the performance of SCL(8),
while for P = 8, we need S = 4. This means that we need to pass two candidates for levels t = {1, 2}
and four candidates for t = 3. Motivated by this observation, we propose a LPSCL decoder that at
each level of the decoding tree passes a specific number of candidate codewords.

Denote by s = {sn−1, sn−2, . . . , sn−log2 P} the set of candidates present at each level of the tree,
where st is the number of candidates at level t.2 Let us also denote by LPSCL(P,L,s), the LP-
SCL decoder with list size L, P partitions, and set of candidates s. Fig. 5.11 shows the LPSCL
decoding tree when P = 4 and s = {2, 4}. It should be noted that LPSCL(P,L,{S, S, . . . , S})
is equivalent to GPSCL(P,L,S), LPSCL(P,L,{1, 1, . . . , 1}) is equivalent to PSCL(P,L), and LP-
SCL(P,L,{L,L, . . . ,L}) is equivalent to SCL(L).

Fig. 5.12 shows the FER performance of LPSCL decoding when the design SNR = 5 dB and
L = 8 (same conditions as in Fig. 5.9) for different values of s. Since different number of candidate
codewords are stored at each layer of the decoding tree, a trade-off can be achieved between the
memory requirements and the FER performance. Furthermore, it suffices to have s = {2, 2, 4}, in
order to achieve roughly the same FER performance as SCL(8).

The number of memory bits for LPSCL decoding can be calculated as

MLPSCL = NQαC +

log2 P∑
k=1

sn−k
N
2k + L

(N
P
− 1

) QαI + L · QPM +

log2 P∑
k=1

sn−k
N
2k + L

(
2N
P
− 1

)
, (5.3)

where 2 ≤ P < N.
2Clearly, only one copy of the channel LLR values needs to be stored for t = n.
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Figure 5.9: GPSCL decoding of P(1024, 512) with L = 8, P ∈ {2, 4, 8, 16}, and S ∈ {1, 2, 4, 8},
when design SNR = 5 dB. Note that as P increases, more candidates need to be passed between
the partitions to maintain the FER performance close to SCL(8).

5.1.3 CRC Selection Scheme

In this section, we discuss the use of CRC bits and we present a strategy to choose the length of
the CRC that minimizes the FER.
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Figure 5.11: LPSCL tree structure for P = 4 and s = {2, 4}.

The error-correction performance under SCL decoding is lower bounded by that under MAP
decoding. However, in scenarios of interest in practical applications, even the performance of
the MAP decoder is not satisfactory compared to state-of-the-art coding schemes, such as LDPC
codes. In order to address this issue, it was shown in [12] that, by adding a CRC, the error-
correction performance under SCL decoding significantly outperforms that under MAP decoding
with no CRC, and it is comparable to that of state-of-the-art LDPC codes.

Denote by C the length of the CRC. In order to send K bits of information for N channel
uses, we need to use a code of block length N and rate (K + C)/N. More specifically, let us
focus on the PSCL decoder with P partitions. Consider the vectors c = {c0, c1, . . . , cP−1} and
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Figure 5.12: LPSCL decoding of P(1024, 512) with L = 8 and P = 8, when design SNR = 5 dB.
Note that selecting s = {2, 2, 4} provides almost the same FER performance as SCL(8).

k = {k0, k1, . . . , kP−1}, where cp is the length of the CRC concatenated to the p-th partition and kp

represents the number of information bits associated to the p-th partition. Clearly,

P−1∑
p=0

cp = C,
P−1∑
p=0

kp = K. (5.4)

Then, in the p-th partition, we select the most reliable kp + cp bits and use the first kp to store the
information bits and the last cp to store the CRC bits.

On the one hand, if cp is too small, then some of the incorrect paths might pass the CRC and
one of these incorrect paths might be transmitted to the next partition, thus causing an error. On the
other hand, if cp is too large, then the positions chosen to store the CRC might not be sufficiently
reliable. Hence, there is a trade-off in the choice of the vector c.

We propose a SCA strategy that can be described as follows. For p ∈ {0, . . . ,P−1}, we evaluate
numerically the FER of the p-th partition as a function of cp, assuming that the previous partitions
were decoded correctly. Then, we choose the value of cp that minimizes the FER. In this way, the
FER of the PSCL algorithm is minimized.

Figure 5.13 considers the transmission of the polar code P(1024, 512) over a channel with
SNR = 2 dB and represent the error-correction performance of the P partitions of the PSCL
decoder as a function of the length of the CRC for P = 2 and P = 4. The design SNR of the
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Figure 5.13: Effect of the CRC length on the FER for PSCL(2,8) decoding (left) and PSCL(4,8)
decoding (right) of P(1024, 512). Different curves correspond to different partitions. The SNR of
the transmission channel and the design SNR of the code are equal to 2 dB.

code is equal to the SNR of the transmission channel. For PSCL(2,8), partition 0 and partition 1
achieve the best error-correction performance with a CRC of length 4 and 7 respectively. Therefore,
we conclude that PSCL(2,8) has optimal performance when a CRC of length 4 is concatenated to
the first partition and a CRC of length 7 is concatenated to the second. Similarly, for PSCL(4,8),
partitions 0, 1, 2, and 3 achieve the best error-correction performance with CRCs of length 2, 4, 7,
and 4, respectively. Therefore, PSCL(4,8) has optimal performance with c = {2, 4, 7, 4}.

Figure 5.14 summarizes the gains in the error-correction performance guaranteed by the SCA
strategy. In particular, we consider the SCL(8), PSCL(2,8), and PSCL(4,8) decoders and we com-
pare the SCA scheme with the CRC lengths chosen in [48]. All the algorithms exhibit gains of
about 1/4 dB at the target FER of 10−3.

Although effective, there are two main issues associated with the above SCA approach. The
first issue is that the identification of the optimal CRC length for each partition is performed by
finding the error-correction performance of each partition in a serial manner which requires the
knowledge of the correct codeword for previously decoded partitions. The second issue stems
from the fact that SCA finds the optimal CRC lengths of partitions without having any constraint
on them. This is in contrast with the conventional PSCL approach, in which in order to keep the
effective rate of polar codes constant, the sum of CRC lengths for partitions is kept at C.

In order to tackle the above issues, we use Gaussian Approximation (GA) to find the error-
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Figure 5.14: FER performance comparison for the transmission of P(1024, 512) between the
proposed SCA scheme (solid) and the CRC lengths chosen in [48] (dashed). Different curves
correspond to different decoding algorithms. In the SCA scheme, the lengths of the CRCs are
optimized separately for each value of the SNR of the transmission channel. Note that gains
of about 1/4 dB are obtained at a target FER of 10−3 for all the decoding algorithms. The FER
performance of the WiMAX LDPC code of length 1152 and rate 1/2 is also plotted for comparison.

correction performance of each partition in parallel, without any recourse to the information from
other partitions. After finding the error-correction performance of each partition for a given Eb/N0

and CRC length, we impose a constraint on the sum of CRC lengths of partitions to find the optimal
value of CRC length for each partition. We further show that this constraint can be modified to
only select the CRC lengths from a set of practical ones.

GA was first used to reduce the complexity of polar code construction for AWGN channel in
[53]. In this setting, the channel LLR values, αn

i , have a normal distribution N( 2
σ2 ,

4
σ2 ), where

σ represents the standard deviation of the AWGN channel, and the transmission of the all-zero
codeword is considered. The intermediate LLR values at stage t of the SC decoding tree can
be approximated as having a normal distribution N(µ t

i , 2µ t
i ). The value of µ t

i can be calculated
recursively as

µ
t
i = φ

−1
(
1 −

(
1 − φ

(
µ

t+1
i

))2
)

, (5.5)

µ
t
i+2t = 2µ

t+1
i+2t , (5.6)
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where

φ (µ) =


1 − 1√

4πµ

∫ ∞
−∞

tanh u
2e−

(u−µ)2
4µ du, µ > 0,

1, µ = 0.
(5.7)

It should be noted that in (5.5) and (5.6), µ t+1
i = µ t+1

i+2t . GA determines the channel seen by each
partition, provided that all the sub-channels are approximated as AWGN channels. We can the-
refore obtain the error-correction performance of each partition independently. GA approximates
the intermediate LLR values calculated by SC decoding by assuming that the previous bits are
decoded correctly. Therefore, the FER of polar codes under PSCL decoding can be calculated as
the sum of the FER performance of the partitions simulated with GA-obtained AWGN channels.

The GA-obtained channels allow to find the optimal CRC length for each partition. Let us
consider c = {c0, c1, . . . , cP−1}, representing the set of CRC lengths for the PSCL partitions. In the
conventional PSCL algorithm, the CRC length for partition p is selected as

cp =
C
P

bits. (5.8)

While simple, this method can introduce significant error-correction performance loss as the num-
ber of partitions increases [48]. Let us consider an AWGN channel with a certain Eb/N0. We can
calculate the standard deviation of this channel as

σ =

√
10−

Eb/N0
10

2R
. (5.9)

Therefore,
µ

n
i = 4R10

Eb/N0
10 . (5.10)

We can now use (5.5) and (5.6) to determine the channels that are seen by the two partitions in
stage n − 1. The Eb/N0 values of the channels seen by each partition can be calculated as

Eb/N00 = −10 log10

(
4R0

µn−1
i

)
, (5.11)

Eb/N01 = −10 log10

 4R1

µn−1
i+N/2

 , (5.12)
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Table 5.1: Rate of polar codes seen in PSCL decoding of P(1024, 512) for P = 2 and P = 4.

P Rate

1 512/1024

2 135/512 377/512

4 19/256 116/256 141/256 236/256

Table 5.2: Eb/N0 values of the channels seen in PSCL decoding of P(1024, 512) for P = 2 and
P = 4.

P Eb/N0 [dB]

1 3

2 3.3217 4.3293

4 5.2449 3.9805 4.1832 6.3636

where Eb/N0 p represents the Eb/N0 value of the channel seen by partition p, and Rp is the rate of
the polar code in partition p. A recursive application of (5.9)-(5.12) results in the channels seen by
partitions at a lower stage.

As an example, let us assume PSCL decoding of P(1024, 512) with an AWGN channel with
Eb/N0 = 3 dB, while the code is optimized for Eb/N0 = 2 dB. Table 5.1 shows the rate of the polar
codes in the various partitions, and Table 5.2 summarizes the Eb/N0 values of the channels seen by
the partitions.

It is now possible to find the FER of each partition based on the Eb/N0 values of Table 5.2
while considering different values of CRC length for each partition. Figure 5.15 shows the effect
of CRC length on the FER of partitions when the channel seen by P(1024, 512) has Eb/N0 = 3 dB
for P = 2 and P = 4. In this figure, SCL decoding with L = 2 was used to derive the FER of each
partition. Figure 5.16 is plotted similar to Figure 5.15, but it uses SCL with L = 4 instead. It can be
seen that there is a specific cp which leads to an optimal error-correction performance for partition
p for every L and when Eb/N0 = 3 dB. However, we have the constraint that

P−1∑
p=0

cp = C. (5.13)
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Figure 5.15: Effect of CRC length on the FER of each partition for P(1024, 512) when P = 2 (left)
and P = 4 (right) with L = 2. The FER of the two partitions were derived independently using GA
for Eb/N0 = 3 dB.

Input: L,P,C,Eb/N0

Output: c
Find Eb/N0 of the P partitions using (5.9)-(5.12)
for j ← 0 to P − 1 do

for c j ← 0 to C do
Find FER j(c j) for given L

end
end
Solve (5.14)
Result: c j for 0 ≤ j < P.

Algorithm 2: Determining CRC length for each partition.

Therefore, we have to solve the following optimization problem

arg min∑P−1
p=0 cp=C

P−1∑
p=0

FERp(cp), (5.14)

where FERp(cp) is the FER of partition p when the CRC length is cp. The process for selecting a
good CRC length for partitions is summarized in Algorithm 2.

Algorithm 2 causes the CRC lengths of each partition to be any value between 0 and C. In
practical applications, we are usually constrained to have a set of standard CRC lengths. Let us
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Figure 5.16: Effect of CRC length on the FER of each partition for P(1024, 512) when P = 2 (left)
and P = 4 (right) with L = 4. The FER of the two partitions were derived independently using GA
for Eb/N0 = 3 dB.

consider we are constrained to have CRC lengths which are multiples of four. Therefore, (5.14)
can be rewritten as

arg min∑P−1
p=0 cp=C

mod(cp,4)=0

P−1∑
p=0

FERp(cp), (5.15)

where mod is the modulus operation. In this chapter, we solve (5.14) and (5.15) with an exhaustive
search on the sum of FER values of partitions for different CRC lengths.

Figure 5.17 and Figure 5.18 show the FER and BER curves for CRC-aided SCL and PSCL
with L = 2, 4 and P = 2, 4. The CRC-aided SCL decoders are labelled as SCL(L)-CRC(C), which
represents CRC-aided SCL decoding with list size L and using a CRC of size C. The PSCL deco-
ders are labelled as PSCL(P,L)-CRC(c0,c1,. . .,cP−1), where cp is the length of the CRC assigned to
partition p. They compare the error-correction performance obtained with CRC lengths calculation
of Algorithm 2, the additional constraint of (5.15), and the conventional CRC lengths calculation
of (5.8). It should be noted that for L = 2, Algorithm 2 results in PSCL(2,2)-CRC(19,13) and
PSCL(4,2)-CRC(6,14,8,4), while adding the constraint in (5.15) results in PSCL(2,2)-CRC(16,16)
and PSCL(4,2)-CRC(4,12,12,4). For L = 4, Algorithm 2 results in PSCL(2,4)-CRC(20,12) and
PSCL(4,4)-CRC(7,12,10,3), while adding the constraint in (5.15) results in PSCL(2,4)-CRC(20,12)
and PSCL(4,4)-CRC(4,12,12,4). It is possible to see that the error-correction performance loss due
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Figure 5.17: FER and BER performance for PSCL decoding of P(1024, 512) when L = 2. The
code is optimized for Eb/N0 = 2 dB.

to (5.15) is negligible for both L = 2 and L = 4. While these curves consider a code constructed
for Eb/N0 = 2 dB, similar results have been observed for any Eb/N0 value.

5.2 LLR-β Memory Sharing

This section presents a memory reduction technique that can be applied to decoders implementing
an SC-based algorithm, like SC, Fast-SSC [11], and SCL (CRC-aided SCL). It does not imply any
particular decoder hardware structure, since its basic idea is derived from the order with which
calculations need to be performed according to SC. The SC decoding process follows a specific
operation schedule. This scheduling allows for substantial memory reduction for a SC decoder
if the memory is shared between the LLR memory and the β memory. Let us consider the ex-
ample in Figure 2.3. The vector of LLR values {α2

0 ,α2
1 ,α2

2 ,α2
3 } is used to calculate the vectors

{α1
0 ,α1

1 } and {α1
2 ,α1

3 }. The vector of β values {β 2
0 , β 2

1 , β 2
2 , β 2

3 } is only created after both vectors
{β 1

0 , β 1
1 } and {β 1

2 , β 1
3 } are created. Since the vector {β 2

0 , β 2
1 , β 2

2 , β 2
3 } is no longer needed, the vector

{β 2
0 , β 2

1 , β 2
2 , β 2

3 } can use the same memory allocated for {α2
0 ,α2

1 ,α2
2 ,α2

3 }. This will result in me-
mory sharing between LLR and β memories and subsequently results in memory saving. Since β
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Figure 5.18: FER and BER performance for PSCL decoding of P(1024, 512) when L = 4. The
code is optimized for Eb/N0 = 2 dB.

values are represented with one bit and LLR values with QαI bits, we can store the β values in the
sign bit of the LLR values. The resulting memory requirement for the Memory-Efficient (ME) SC
decoder is

MSCME = NQαC + (N − 1) QαI , (5.16)

which has N − 1 fewer memory bits than (2.13).
SCL decoders follow the same schedule as SC decoders and thus the LLR and β memory

sharing can be applied to them. Following the same reasoning for SC decoders, the memory
requirement of the ME SCL decoder can be calculated as

MSCLME = NQαC + L (N − 1) QαI + LQPM + LN. (5.17)

It can be seen that the LN memory bits required to store the final candidate codewords are present
in the ME SCL decoder and ME SCL requires (N − 1)L fewer memory bits than a conventional
SCL decoder.

The PSCL decoder uses the CRC-aided SCL decoder to decode the partitions and uses SC
decoding rules to pass the candidate codewords from one partition to another. Therefore, the LLR-
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Figure 5.19: Effect of QαC on FER and BER performance for CRC-aided SCL decoding of
P(1024, 512) when L = 2, QαI = 6, and QPM = 8. The code is optimized for Eb/N0 = 2 dB
and the CRC length is 32.

β memory sharing can be applied as well, to the CRC-aided SCL and the SC decoders both. The
resulting memory requirement for the ME PSCL decoder is

MPSCLME = NQαC +

log2 P∑
k=1

N
2k + L

(N
P
− 1

) QαI + LQPM + L
N
P

. (5.18)

The proposed technique can be applied to all SC-based decoding algorithms. No approximation
is used, and it incurs no error-correction performance degradation.

5.3 Quantization Reduction for Channel LLR Values

The channel LLR memory requires the storage of N LLR values received from the channel. It was
observed in [20] that quantizing channel LLR values with the same number of bits as the internal
LLR values would not introduce significant error-correction performance loss in comparison with
its floating point counterpart. For a code of length N = 1024, the channel LLR and the internal
LLR values were quantized with 6 bits. The PM requires more bits than both channel and internal
LLR values for minimal error-correction performance degradation due to quantization. Therefore,



104 Memory-Efficient List Decoding

1 1.5 2 2.5 3

10−4

10−3

10−2

10−1

100

Eb/N0 [dB]

FE
R

1 1.5 2 2.5 3

10−4

10−3

10−2

10−1

100

Eb/N0 [dB]

FE
R

1 1.5 2 2.5 3

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

B
E

R

1 1.5 2 2.5 3

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

B
E

R

Floating Point QαC = 6
QαC = 4 QαC = 3

Figure 5.20: Effect of QαC on FER and BER performance for CRC-aided SCL decoding of
P(1024, 512) when L = 4, QαI = 6, and QPM = 8. The code is optimized for Eb/N0 = 2 dB
and the CRC length is 32.

8 bits were assigned to PM values. The same quantization scheme was adopted in the LLR-based
SCL decoders of [37], [48]. In [17], [18], it was observed that the channel LLR values require
fewer number of quantization bits and for a polar code of length N = 1024, the channel LLR
values were quantized with 5 bits. As can be seen in Figure 5.19 and Figure 5.20, our simulations
for P(1024, 512) show that setting QαC = 4 is adequate to keep the error-correction performance
of CRC-aided SCL decoder close to the floating point version of channel LLR values for L = 2
and L = 4, for BER and FER values useful for wireless communications.

5.4 Hardware Implementation

CRC-aided SCL decoder

As a proof of concept, we considered as a starting point the CRC-aided SCL decoder architec-
ture described in [20], sized for a polar code with N = 1024, and able to decode any code rate.
We modified it to implement both the channel LLR quantization reduction and LLR-β memory
sharing.

Implementation of the LLR quantization reduction is straightforward. The channel LLR me-
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mory width is reduced to fit the new quantization: since LLR values are represented with sign and
magnitude, the magnitude of values read from memory is zero-padded to fit the internal quantiza-
tion QαI .

The LLR-β memory sharing requires a few modifications to the hardware architecture in [20]:
it does not change the scheduling of operations, that remain as shown in Figure 2.3. The decoder
relies on Pe processing elements that can perform (2.11) and (2.8) operations in parallel. Each
processing element receives as inputs two LLR and one β values. Thus, the β memory in standard
CRC-aided SCL requires to be read with a parallelism of Pe values, and the LLR memory with a
parallelism of 2Pe values. If the β memory is used to store LLR signs as well, then it must allow
for additional 2Pe values to be read concurrently: since the β memory in [20] is composed of
registers only, due to its irregular update pattern, this modification can be achieved with dedicated
multiplexers, as shown in Figure 5.21. The update structure of the β memory already allows for
multiple irregular updates: in the standard CRC-aided SCL decoder structure, whenever t = 0
and a bit is estimated, all the β values at all stages that are influenced by that bit are concurrently
updated. The Pe concurrent LLR signs can thus be easily stored in the β memory by modifying the
write enable generation logic and allowing for updates also when t , 0.

The additional memory addressing logic is instantiated in parallel to the standard one, and
does not lie on the system critical path. Thus, the implementation of this technique does not
decrease the achievable frequency, and since it does not add any step to the decoding process, the
decoder latency and throughput remain unchanged. Moreover, control signals are already present
in the standard SCL decoder architecture: thus, no additional logic is required to create them. The
schedule described in Section 5.2 assures that newly computed β values overwrite obsolete LLR
signs, and updated LLR signs overwrite β values that are no longer needed.

PSCL decoder

To implement PSCL, the CRC-aided SCL decoder described in the previous section have to un-
dergo some architectural modification. Both LLR and β memories have to be reduced to fit the
size of the partition on which CRC-aided SCL decoding is performed. A secondary partial memory
is instantiated to fit the part of the decoding tree that is handled by SC decoding, along with the
related addressing and enabling logic.

On top of the PSCL decoder, we also applied the architectural modifications necessary to im-
plement the LLR-β memory sharing and channel LLR quantization reduction. These modifications
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Figure 5.21: LLR-β memory sharing architecture.

are analogous to those for CRC-aided SCL. Applying the channel LLR quantization reduction re-
mains straightforward, and the LLR sign and β addressing logic is made simpler by the smaller
LLR and β memories.

GPSCL and LPSCL decoders

In order to design hardware architectures for the GPSCL and LPSCL decoders, the PSCL archi-
tecture that implements the original PSCL algorithm [48], has been taken as a starting point. This
architecture relies on a set of L processing elements, and on L dedicated memories for LLR values,
β values and estimated bits. For the GPSCL decoder, the parallelism of the partial LLR and β

memories that allowed the SC algorithm to be applied at the upper stages of the decoding tree has
been increased from 1 to S, along with the related addressing logic. The LPSCL decoder sees the
same concept applied not only to a single additional layer, but to log2 P. The number of instanti-
ated partial memories is equal to the number of different list sizes considered by the log2 P upper
stages.

We have added the two memory reduction techniques for SCL decoders along with PSCL: a
quantization reduction for channel LLR values, and a memory sharing method that allows the β va-
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Table 5.3: Synthesis area results with 65 nm TSMC CMOS technology for CRC-aided SCL and
PSCL decoding of P(1024, 512). The target frequency is 800 MHz and Pe = 64.

Algorithm No Memory Reduction LLR-β Sharing LLR-β Sharing + Channel LLR Quantization
Total [mm2] Memory [mm2] Total [mm2] Memory [mm2] Total [mm2] Memory [mm2]

SCL(2)-CRC(32) 0.5756 0.2774 0.4470 0.1934 0.4243 0.1868
SCL(4)-CRC(32) 0.9888 0.4749 0.9002 0.3400 0.8768 0.3040
PSCL(2,2)-CRC(16,16) 0.4736 0.2097 0.3942 0.1844 0.3670 0.1785
PSCL(4,2)-CRC(8,8,8,8) 0.4348 0.1843 0.3695 0.1792 0.3400 0.1669
PSCL(4,2)-CRC(4,12,12,4) 0.4531 0.1866 0.3662 0.1793 0.3318 0.1569
PSCL(2,4)-CRC(20,12) 0.7548 0.3578 0.7411 0.3094 0.7273 0.2839
PSCL(2,4)-CRC(16,16) 0.7551 0.3524 0.7370 0.2999 0.7298 0.2842
PSCL(4,4)-CRC(8,8,8,8) 0.6998 0.2948 0.6786 0.2756 0.6503 0.2565
PSCL(4,4)-CRC(4,12,12,4) 0.7000 0.2947 0.6829 0.2741 0.6565 0.2581

lues to be stored in the same locations as the LLR sign bit. These two techniques are implemented
in the SCL, GPSCL and LPSCL decoders as well.

5.4.1 Results

The CRC-aided SCL and PSCL architectures have been described in VHDL and synthesized in
65 nm TSMC CMOS technology. Table 5.3 reports the synthesis results for architectures sized
for P(1024, 512), targeting a frequency of 800 MHz, with all memory elements implemented with
registers and with Pe = 64. Two CRC-aided SCL architectures are considered, for L = 2 and L = 4,
both with a CRC of length 32 bits. PSCL architectures are considered for L = 2 and L = 4 as well,
taking in account different numbers of partitions P and different CRC lengths and distributions.
All presented CRC-aided SCL and PSCL decoders rely on the same decoding flow and have been
synthesized for the same target frequency of 800 MHz: they all yield a throughput of 301 Mb/s.

The first set of results (second and third column) details the total area occupation and the
memory area occupation for the standard architectures, where no additional memory reduction
technique is applied. Both channel and internal LLR values are quantized with 6 bits in all con-
sidered designs. We have designed and implemented our own decoders to be able to modify the
architectures, implementing the memory reduction techniques. This allows us to correctly evaluate
benefits and costs of the proposed methods. Nevertheless, the designed CRC-aided SCL decoders
yield an area occupation very similar to that of state-of-the-art decoders when scaled to the same
technology node. The work in [18] occupies 0.99 mm2 for L = 4, while the area occupation of
[17] is 1.03 mm2 and 2.00 mm2, respectively: our baseline CRC-aided SCL decoder has an area
of 0.58 mm2 for L = 2 and 0.99 mm2 for L = 4. The SCL decoder in [15] occupies an area of
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0.62 mm2 for L = 4, and the SCL decoder described in [16] has an area of 0.73 mm2 for L = 4.
Most decoders in literature are single-code decoders built for high-throughput: on the other hand,
our baseline CRC-aided SCL decoder is inspired to the high degree of flexibility of the decoder in
[20], that can decode any code rate. The PSCL decoder implementations are direct modifications
of the aforementioned CRC-aided SCL decoders. It is possible to see that PSCL decoders yield
substantially lower total and memory area occupation with respect to the CRC-aided SCL decoders
with the same list size L, with total area saving reaching 25% for L = 2 and 29% for L = 4. The
memory reduction is more substantial as P increases.

The effects on the area occupation brought by the LLR-β sharing memory reduction technique
detailed in Section 5.2 are reported in the fourth and fifth column of Table 5.3. Applied to the
CRC-aided SCL decoder, it allows for 22% total area reduction when L = 2, and 9% when L = 4.
The LLR-β memory sharing technique is able to reduce the PSCL decoder memory by 12% in
case of PSCL(2,2) and by 22% for PSCL(4,2), accounting for a combined total area saving of
32% and 36% reduction with respect to CRC-aided SCL. The LLR-β area saving contribution
for PSCL(2,4) and PSCL(4,4) accounts for around 3% of the total. Unlike PSCL, whose gain
with respect to CRC-aided SCL increases with higher values of L, the impact of LLR-β memory
sharing decreases as L increases. This is due to the total memory requirements of CRC-aided SCL
decoders, that rise proportionally to the list size L.

The sixth and seventh columns of Table 5.3 report the area occupation for the different de-
coders, after the conjunct application of LLR-β memory sharing and reduction of channel LLR
quantization. Their implementation results in 26% and 11% total area reduction for CRC-aided
SCL with L = 2 and L = 4 respectively. The area reduction brought by these two techni-
ques can reach 24% and 27% in case of PSCL(2,2) and PSCL(4,2), while it settles around 3%
and 7% for PSCL(2,4) and PSCL(4,4). The combined contribution of PSCL, LLR-β memory
sharing and channel LLR quantization reduction leads to 42% and 34% total area saving with re-
spect to SCL(2)-CRC(32) and SCL(4)-CRC(32), with memory area reduction peaking at 46% for
PSCL(4,4)-CRC(4,12,12,4).

The total area reduction brought by each of the proposed memory reduction techniques with
respect to the CRC-aided SCL benchmark decoders is summarized in Table 5.4, for different va-
lues of P and L. The results we provided target ASIC implementations, where memory plays a
major role not only in terms of area occupation, but also in power consumption and energy effi-
ciency. In case of FPGA implementation, the proposed memory reduction techniques will lead to
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Table 5.4: Total area reduction in comparison with CRC-aided SCL considering different memory
reduction techniques.

Memory Reduction Technique P L Total Area Reduction

PSCL

2 2 18%
2 4 24%
4 2 21%
4 4 29%

PSCL +

LLR-β Memory Sharing

2 2 32%
2 4 25%
4 2 36%
4 4 31%

PSCL +

LLR-β Memory Sharing +

Channel LLR Quantization

2 2 36%
2 4 26%
4 2 42%
4 4 34%

gains in resource utilization proportional to those shown in Table 5.4. However, both LUTs and
registers contribute relatively less to the system power consumption than in the ASIC case. Thus,
the proposed methods will lead to a lower energy efficiency improvement.

The SCL, GPSCL and LPSCL decoders have been described in VHDL and synthesized in
TSMC 65 nm CMOS technology. Table 5.5 reports the area occupation and memory cost results
for four configurations of the GPSCL decoder, two for the LPSCL decoder, and the baseline SCL
decoder, obtained with a target frequency of 700 MHz. The decoders employ the following quan-
tization scheme: 4 bits are assigned to channel LLR values, and 6 bits to the internal LLR values,
two of which are assigned to the fractional part. Path metrics are represented with 8 bits. All
memories in the decoder have been implemented with registers: thus, the reported number of me-
mory bits include pipeline stages and temporary values storage as well. The number of processing
elements is 64 for all the designs, and the code length is set to N = 1024. All the implemented
decoders employ L = 8.

The presented results show that both GPSCL and LPSCL decoders guarantee a substantial area
occupation reduction with respect to the standard SCL decoder. In particular, the area of GPSCL
decoders ranges from 57.2% to 65.5% of that of SCL(8). LPSCL decoders allow for additional
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Table 5.5: ASIC implementation results for TSMC 65 nm CMOS technology for a polar code of
length N = 1024 and with target frequency f = 700 MHz.

Decoder
Total Area Memory Area Saving Eb/N0 [dB]

[mm2] [bits] vs SCL(8) FER = 10−4

SCL(8) 2.728 70361 – 2.6803
GPSCL(2,8,2) 1.788 64090 34.5% 2.6920
GPSCL(4,8,2) 1.609 58394 41.1% 2.7108
GPSCL(4,8,4) 1.703 65050 37.6% 2.6818
GPSCL(8,8,4) 1.563 62458 42.8% 2.6908
LPSCL(8,8,{2, 2, 4}) 1.288 49755 52.8% 2.7141
LPSCL(8,8,{2, 4, 4}) 1.345 56792 50.7% 2.7003

complexity saving, with the area occupation being as low as 47.2% of the baseline decoder. It is
possible to see how the number of partitions has the biggest impact on the decoder area: GPSCL
decoders with a higher P can be implemented with a lower complexity, regardless of the value of S.
For LPSCL decoders, the majority of the complexity gain is brought by the value of sn−1: as shown
by the results relative to LPSCL(8,8,{2, 4, 4}), sn−1 = 2 accounts for 13.9% less area with respect
to GPSCL(8,8,4). Decreasing sn−2 to 2 as well guarantees an additional 3.7% area reduction (see
LPSCL(8,8,{2, 2, 4}) results).

The required Eb/N0 value to achieve FER = 10−4 is also presented in Table 5.5. It can be seen
how all the decoders require Eb/N0 values very close (< 0.04 dB) to that of SCL(8) to achieve
FER = 10−4. In a nutshell, we obtain almost the same FER performance as the original SCL
decoder with up to 52.8% area occupation reduction.

5.5 List Size Requirement for MAP Decoding

In this section, we present a simple upper bound on the list size of the SCL decoder that guarantees
the same error-correction performance as the MAP decoder.

Recall that MAP decoding of a code of length N with K information bits requires finding the
most reliable codeword out of the 2K possible codewords. Note also that SCL decoding with list
size 2K provides a list of 2K codewords from which the most reliable one is selected. Therefore,
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SCL(2K) is equivalent to MAP decoding. For polar codes, in order for SCL to be equivalent to
MAP, Theorem 9 asserts that the list size can be chosen to be much smaller than 2K . As we will
argue shortly, the result of Theorem 9 can be particularly useful when low-rate polar codes are
deployed.

Theorem 9. Consider the transmission of P(N,K) over a BEC and let E denote the number of

information bits located after the last frozen bit. Then, SCL decoding with L = 2K−E is equivalent

to MAP decoding.

Proof. Recall that for the case of the transmission over a BEC, the synthetic channels seen by the
input bits are also BECs. Hence, the SCL decoder doubles the number of paths every time that
one of the information bits cannot be decoded and all these paths are equally likely. Furthermore,
when the SCL decoder encounters a frozen position, it tries to decode such a position and, if this
is possible, it cancels all the paths that do not agree with the value of this position.

Run the SCL decoder until the last frozen bit. As there are at most K − E information bits
until this position, there are at most 2K−E equally likely paths. Therefore, the SCL decoder will not
exceed its list size. Assume now that the MAP decoder does not fail. This means that there is only
one remaining path at the end of the decoding process. Since there are no more frozen bits, no
more path cancellations can occur. Therefore, only one path must be available at this point and no
new paths will be created while decoding the last E positions. As a result, the SCL decoder also
succeeds. �

While we have proved Theorem 9 for the BEC, numerical experiments suggest that the result
holds for other important channels such as the BAWGN.

Let us illustrate the importance of this result through the analysis of a practical setting. Polar
codes have been selected for the transmission over the control channel in 5G. Such a task requires
codes of short lengths (≤ 1024) with rates as low as 1/12 [54]. Consider a polar code of length
128 and rate 1/12, which is optimized for SNR = 2 dB. This code has 10 information bits and 6
of them are located after the last frozen bit. Therefore, SCL(16) can provide the same result as the
MAP decoder. This is illustrated in Fig. 5.22 when the transmission takes place over the BAWGN
channel.

Recall that PSCL results in polar codes of length N/P that are decoded with SCL. Consider
the decoding of a polar code of length 1024 and rate 1/12 with PSCL with P = 2. The code
is constructed for SNR = 2 dB. The first partition contains 7 information bits and 3 of them are
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Figure 5.22: FER performance comparison between SCL(1024) and SCL(16) for the transmission
of P(128, 10) on a BAWGN channel. Note that, since there are 10 information bits in the code,
SCL(1024) is equivalent to MAP decoding. It can be seen that, since 6 of the information bits
are located after the last frozen bit, SCL(16) results in the same FER performance as the MAP
decoder.

located after the last frozen bit. Therefore, SCL(16) results in the same error performance as a MAP
decoder over that partition. Suppose now that we decode the same code with PSCL with P = 4.
Then, the first partition contains only frozen bits; the second partition contains 7 information bits
and 3 are located after the last frozen bit; and the third partition contains 9 information bits and 3 of
them are located after the last frozen bit. Therefore, for the second and the third partitions, SCL(16)
and SCL(64) are respectively equivalent to the MAP decoder. In conclusion, while running PSCL
decoding, it is possible to perform MAP decoding on some of the partitions with practical values
of the list size.
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Chapter 6

Rate-Flexible Fast Polar Decoding

Fast SC-based decoders rely on the identification of the type and the length of constituent codes in a
polar code. While the calculation of the frozen/information bit sequence is straightforward and can
be performed by simply assigning information bits to the first K elements of the reliability vector,
the direct calculation of the list of operations for fast SC-based decoders requires complicated
controller logic [11]. Therefore, the identification of the type and the length of constituent codes is
performed off-line and the decoding order is stored in a dedicated memory as a list of operations
[11], [36], [37]. The decoder fetches the list of operations from memory to decode the constituent
codes in order one by one. The main drawbacks of the aforementioned fast SC-based decoders are
twofold: first, the list of operations requires high memory usage when implemented on hardware.
Second, the list of operations is highly dependent on the rate of the polar code and as the rate
changes, the list of operations changes too. Therefore, for 5G applications which require the
support of multiple rates, multiple lists of operations need to be stored in memory. This in turn
increases the hardware implementation overhead and renders fast SC-based decoders not rate-
flexible.

In this chapter, we propose completely rate-flexible fast SC-based decoders by introducing a
method to infer the list of operations directly in hardware without the need to store it in memory.
We show that the type and the length of a constituent code in a polar code can be identified with
low hardware implementation complexity, by checking only a few bits of the constituent code. We
further show that the list of operations adapts with the rate of the code, allowing the resulting fast
SC-based decoder to be completely rate-flexible. We design and implement a hardware architecture
for the proposed decoder and show that the memory required to store the list of operations can be
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Figure 6.1: Determination of node types for fast SC-based decoding in a node of length 8. (a)
Rate-0 node, (b) Rate-1 node, (c) Rep node, (d) SPC node.

completely removed, resulting in significantly lower decoder area occupation.

6.1 Rate-Flexible Decoder

The high memory usage of storing the list of operations can be mitigated by generating the list of
operations on hardware as the decoding proceeds. A rudimentary approach would be to check the
pattern of information and frozen bits in s for every encountered node. This is shown in Figure 6.1
for determining Rate-0, Rate-1, Rep, and SPC nodes of length 8. The problem with this approach
is that for nodes of large length, there is a high hardware complexity overhead in determining
the node types. Moreover, the module that generates the list of operations should account for the
largest possible node which is the root node in the decoding tree with size N. This results in a large
critical path which limits the operating frequency.

In order to tackle the above issue, the idea is to exploit the inherent order in the Bhattacharyya
parameters of the bit-channels. Let Wi and Wj be the bit-channels corresponding to ui and u j, and
let bi and b j be the binary expansions of the integers i and j. In [55], [56] a partial order between
the polarized bit-channels was introduced. In particular, it was proven that Wi is stochastically
degraded with respect to Wj, i.e., Wi ≺Wj, when one of the following two properties hold:

• Addition Property: There exists k ∈ {0, 1, . . . , n − 1} such that
bi

m = b j
m, if m , k,

bi
k = 0,

b j
k = 1.

(6.1)
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• Left-Swap Property: There exist k, l ∈ {0, 1, . . . , n − 1} such that k < l and
bi

m = b j
m, if m , k, m , l,

bi
k = b j

l = 0,

bi
l = b j

k = 1.

(6.2)

Recall that, if Wi ≺ Wj, then all the reliability measures of Wi are worse than those of Wj, i.e.,
Wi has smaller mutual information, larger Bhattacharyya parameter, and larger error probability.
Consequently, if u j belongs to the frozen set, then also ui belongs to the frozen set. Furthermore,
if ui belongs to the information set, then also u j belongs to the information set. By using the
two properties above, it was shown in [57] that it suffices to compute the reliability of a sublinear
fraction of channels in order to identify the frozen and the information sets.

Another option to find an ordering between the Bhattacharyya parameters of the bit-channels
can be described as follows. Consider the transmission over a Binary Memoryless Symmetric
(BMS) channel W with Bhattacharyya parameter Z(W ) and define the synthetic channels W 0 and
W 1 as

W 0(y1, y2 | x1) =
∑

x2

1
2

W (y1 | x1 ⊕ x2)W (y2 | x2),

W 1(y1, y2, x1 | x2) =
1
2

W (y1 | x1 ⊕ x2)W (y2 | x2).

(6.3)

Then, the following inequalities between Z(W 0), Z(W 1) and Z(W ) hold

Z(W )
√

2 − Z(W )2 ≤ Z(W 0) ≤ 2Z(W ) − Z(W )2,

Z(W 1) = Z(W )2,
(6.4)

which follow from Proposition 5 of [5] and from Exercise 4.62 of [58]. Furthermore, the bit-
channel Wi corresponding to ui is given by the recursive formula below:

Wi = (((W bi
n−1)bi

n−2)...)bi
0. (6.5)

In what follows, we will denote by Zi be the Bhattacharyya parameter of Wi.
At this point, we are ready to state and prove the first result of this chapter, which concerns the
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identification of Rate-0, Rate-1, Rep, and SPC nodes.

Theorem 10. Consider a polar code of length N = 2n. Then, the following properties hold:

1. If sN−1 = 0, then the polar code represents a Rate-0 node.

2. If s0 = 1, then the polar code represents a Rate-1 node.

3. If sN−1 = 1 and sN−2 = 0, then the polar code represents a Rep node.

4. If s0 = 0 and s1 = 1, then the polar code represents an SPC node.

Proof. 1. Note that bN−1 = {1, . . . , 1}. By using the addition property (6.1), we obtain that
Wi ≺WN−1 for any i ∈ {0, 1, . . . ,N−2}. Hence, as sN−1 = 0, si = 0 for any i ∈ {0, 1, . . . ,N−2}.
This means that the polar code consists of only frozen bits, i.e., it is a Rate-0 node.

2. Note that b0 = {0, . . . , 0}. By using the addition property (6.1), we obtain that W0 ≺ Wi for
any i ∈ {1, 2, . . . ,N − 1}. Hence, as s0 = 1, si = 1 for any i ∈ {1, 2, . . . ,N − 1}. This means
that the polar code consists of only information bits, i.e., it is a Rate-1 node.

3. Note that bN−2 = {1, . . . , 1, 0}. By using the addition property (6.1) and the left-swap pro-
perty (6.2), we obtain that Wi ≺WN−2 for any i ∈ {0, 1, . . . ,N − 3}. Hence, as sN−2 = 0, si = 0
for any i ∈ {0, 1, . . . ,N − 3}. As sN−1 = 1, the polar code consists of frozen bits except for
the last bit which is an information bit, i.e., it is a Rep node.

4. Note that b1 = {0, . . . , 0, 1}. By using the addition property (6.1) and the left-swap property
(6.2), we obtain that W1 ≺ Wi for any i ∈ {2, 3, . . . ,N − 1}. Hence, as s1 = 1, si = 1 for any
i ∈ {2, 3, . . . ,N − 1}. As s0 = 0, the polar code consists of information bits except for the
first bit which is a frozen bit, i.e., it is an SPC node.

�

An immediate consequence of Theorem 10 is that, by checking only one bit, we can find out
if a constituent node is either a Rate-0 or a Rate-1 node. Furthermore, by checking only two bits,
we can find out if a constituent node is either a Rep or an SPC node. This observation significantly
reduces the hardware complexity associated with the on-line node identification. In addition, the
proposed approach is independent of the node length, making it suitable for codes of any length
and rate. Figure 6.2 shows the circuit required to generate the list of operations on-line for a polar
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Figure 6.2: Efficient generation of the list of operations on hardware.

code of length N. It can be seen that the circuit consists of only three NOT gates and two AND
gates.

Let us now state and prove the second result of this chapter, which concerns the identification
of Type-I, Type-II, Type-III, Type-IV, and Type-V nodes.

Theorem 11. Consider a polar code of length N = 2n. Then, the following properties hold:

1. If sN−1 = 1, sN−2 = 1, and sN−3 = 0, then the polar code represents a Type-I node.

2. If sN−1 = 1, sN−2 = 1, sN−3 = 1, and sN−5 = 0, then the polar code represents a Type-II node.

3. If s0 = 0, s1 = 0, and s2 = 1, then the polar code represents a Type-III node.

4. If s0 = 0, s1 = 0, s2 = 0, and s4 = 1, then the polar code represents a Type-IV node.

5. If sN−1 = 1, sN−2 = 1, sN−3 = 1, sN−4 = 0, sN−5 = 1, and sN−9 = 0, then the polar code

represents a Type-V node.

Proof. 1. Note that bN−3 = {1, . . . , 1, 0, 1}. By using the addition property (6.1) and the left-
swap property (6.2), we obtain that Wi ≺ WN−3 for any i ∈ {0, 1, . . . ,N − 4}. Hence, as
sN−3 = 0, si = 0 for any i ∈ {0, 1, . . . ,N − 4}. As sN−1 = 1 and sN−2 = 1, the polar code
consists of frozen bits except for the last two bits which are information bits, i.e., it is a
Type-I node.

2. Note that bN−5 = {1, . . . , 1, 0, 1, 1}. By using the addition property (6.1) and the left-swap
property (6.2), we obtain that Wi ≺ WN−5 for any i ∈ {0, 1, . . . ,N − 6}. Hence, as sN−5 = 0,
si = 0 for any i ∈ {0, 1, . . . ,N − 6}. Furthermore, note that bN−4 = {1, . . . , 1, 1, 0, 0}. Let W

be the transmission channel and let z be the Bhattacharyya parameter of the channel defined
as

(((W

n−3 times︷ ︸︸ ︷
1)1)...)1 .
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Then, by using (6.4), we have that

ZN−5 ≤ (2z − z2)4,

ZN−4 ≥ z2
√

2 − z4
√

2 − z4(2 − z4).

It is easy to check that, for any z ∈ [0, 1],

(2z − z2)4 ≤ z2
√

2 − z4
√

2 − z4(2 − z4), (6.6)

which implies that
ZN−5 ≤ ZN−4.

Consequently, as sN−5 = 0, sN−4 = 0. As a result, since sN−1 = 1, sN−2 = 1 and sN−3 = 1,
the polar code consists of frozen bits except for the last three bits which are information bits,
i.e., it is a Type-II node.

3. Note that b2 = {0, . . . , 0, 1, 0}. By using the addition property (6.1) and the left-swap pro-
perty (6.2), we obtain that W2 ≺Wi for any i ∈ {3, 4, . . . ,N − 1}. Hence, as s2 = 1, si = 1 for
any i ∈ {3, 4, . . . ,N − 1}. As s0 = 0 and s1 = 0, the polar code consists of information bits
except for the first two bits which are frozen bits, i.e., it is a Type-III node.

4. Note that b4 = {0, . . . , 0, 1, 0, 0}. By using the addition property (6.1) and the left-swap
property (6.2), we obtain that W4 ≺Wi for any i ∈ {5, 6, . . . ,N − 1}. Hence, as s4 = 1, si = 1
for any i ∈ {5, 6, . . . ,N − 1}. Furthermore, note that b3 = {0, . . . , 0, 0, 1, 1}. Let W be the
transmission channel and let z be the Bhattacharyya parameter of the channel defined as

(((W

n−3 times︷ ︸︸ ︷
0)0)...)0 .

Then, by using (6.4), we have that

Z3 ≤ (2z − z2)4,

Z4 ≥ z2
√

2 − z4
√

2 − z4(2 − z4).
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Since (6.6) holds for any z ∈ [0, 1], we obtain that

Z3 ≤ Z4.

Consequently, as s4 = 1, s3 = 1. As a result, since s0 = 0, s1 = 0 and s2 = 0, the polar code
consists of information bits except for the first three bits which are frozen bits, i.e., it is a
Type-IV node.

5. Note that bN−9 = {1, . . . , 1, 0, 1, 1}. By using the addition property (6.1) and the left-swap
property (6.2), we obtain that Wi ≺ WN−9 for any i ∈ {0, 1, . . . ,N − 10}. Hence, as sN−9 = 0,
si = 0 for any i ∈ {0, 1, . . . ,N − 10}. By using again the left-swap property (6.2), we obtain
that WN−6 ≺ WN−4 and WN−7 ≺ WN−4. By using again the addition property (6.1), we obtain
that WN−8 ≺ WN−4. Hence, as sN−4 = 0, si = 0 for any i ∈ {N − 6,N − 7,N − 8}. As a result,
since sN−1 = 1, sN−2 = 1, sN−3 = 1, and sN−5 = 1, the polar code is a Type-V node.

�

The proofs for the identification of Rate-0, Rep, SPC, Rate-1, Type-I, Type-III, and Type-
V nodes are based on stochastic degradation arguments. Consequently, these proofs are general
and do not depend on the fact that the frozen bits are determined according to the value of the
Bhattacharyya parameter.

On the contrary, the proofs for Type-II and Type-IV nodes use the inequalities (6.4) which are
valid for Bhattacharyya parameters. However, let us point out that the strategy of the proof (use
extremes of information combining bounds such as (6.4) in order to compare the reliability of spe-
cific channels) is general. In order to prove a similar statement for different reliability measures,
one would need to find bounds of the form (6.4) for the desired reliability measure (e.g., mutual
information, error probability). Let us further clarify that the proofs for Type-II and Type-IV no-
des provide an ordering between the Bhattacharyya parameter of bit-channels. As such, they do
not depend on the particular technique used to compute those Bhattacharyya parameters (Gaus-
sian approximation [53], beta-expansion [59], Monte Carlo simulation [5], etc.). Let us also note
that the Bhattacharyya parameter represents the typical performance metric employed for code
construction [49], [60], [61].

It is also worth mentioning that since every node in the SC-based decoding tree represents a
polar code constructed for a different channel [5], the results in this section are valid for all the
nodes in any polar code of any length.
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Figure 6.3: Efficient generation of the list of operations on hardware considering new nodes.

6.2 Decoder Architecture

As a proof of concept, a decoder architecture implementing the proposed technique has been de-
signed. It implements the LPSCL decoding and the Fast-SSCL-SPC algorithm, along with the
memory-reduction techniques proposed in Chapter 5. The LPSCL decoder decreases the memory
requirements of standard SCL decoding by dividing the SC tree in different partitions; the bottom
part of the SC tree belonging to each partition is decoded with SCL with a list size Lmax. When
information needs to be passed between partitions, i.e. at the top stages of the tree, only Lt < Lmax

candidate codewords are passed, with Lt decreasing progressively as the stage t increases. The
Fast-SSCL-SPC algorithm is applied to the lower stages of the tree, where Lmax candidates are
considered.

The proposed decoder is based on a semi-parallel SCL architecture, where Lmax sets of Pe

PEs are instantiated in parallel. Each set works on a different candidate codeword and relies on
a dedicated memory to store the internal LLR values relative to all stages of the SC decoding
tree. LLRs are quantized with QLLR bits, and represented with sign and magnitude. Each stage
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of the SC decoding tree requires the storage of 2t−1 LLRs: however, given the limited number of
PEs instantiated, the LLR memory is split in high stage and low stage memories. The high stage
memory stores LLRs of stages with nodes of size greater than Pe: at stage t, where 2t > 2Pe, a total
of 2t/(2Pe) time steps are needed to descend to the lower tree level. The depth of the high stage
memory is

∑tmax−1
j=log2 Pe+1 2 j/Pe = N/Pe − 2, while it is QLLR × Pe wide. The low stage memory stores

LLRs for stages where 2t ≤ 2Pe, and it is QLLR bits wide, while its depth is
∑log2 Pe−1

j=0 Pe/2 j = 2Pe−2.
High and low stage memory words are rewritten when a node belonging to the same stage t is
traversed. L different instantiations of both high and low stage memories are required. L separate
memories store the hard bit estimates for all the tree stages as well, updating them every time
that a bit is estimated. Path metrics, that identify the likelihood of a candidate codeword (or path)
to be correct, are incremented every time a bit is estimated differently from the sign of the LLR
associated to it. They are sorted before and after the estimation of an information bit, in order to
identify the Lmax surviving paths out of the 2Lmax created.

This baseline architecture has been modified to implement the LPSCL decoder. The bottom
stages of the SC decoding tree are left unchanged, and decoded with a list size Lmax. Given the
partitioning factor P, the top log2 P stages rely on a smaller list size Lt , with log2(N/P) < t ≤

log2 N, and Lt ≥ Lt+1. Consequently, only Lt LLR memories are instantiated in the upper stages,
reducing the LLR memory requirements for each upper stage of a factor Lmax−Lt

Lmax
. Depending on

the number of instantiated PEs and on the partitioning factor, the high and/or low stage memories
might need to be separated into different memory structures, each part belonging to a different layer
of LPSCL and thus instantiated a different number of times, depending on Lt . Since the number of
surviving paths is reduced from Lmax to Lt when ascending the tree above stage log2(N/P), the path
metrics need to be sorted not only before and after the estimation of an information bit, but also
when i mod (N/P) = 0, where i is the index of the codeword bit that needs to be estimated, and
mod represents the modulo operation. This allows the most reliable paths, their LLR values, and
their hard bit estimates to be transferred between partitions.

The implementation of the Fast-SSCL-SPC algorithm requires more substantial modifications.
As detailed in [36], the hard bit estimate memory and path memories are updated according to
different values depending on the node type, along with path metrics. This requires different pa-
rallel instantiations of the path metric computation logic, and more complex routing and selection
logic are necessary to update memories, since multiple concurrent values need to be updated and
propagated through the hard bit estimates memory structure. A sorter module for LLR values is
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needed in Rate-1 and SPC nodes, to identify the order with which bits are estimated: the disruption
of the sequential bit estimation order that SC is based on leads to additional complexity in memory
updates and control logic.

In [36], the proposed decoder architecture relied on an off-line compiler to obtain the sequence
of special nodes and their size. These informations differ for every code supported by the decoder,
and need to be stored in a memory. Note that the frozen and information bit sequence, treated as
an input, can be either stored in a memory, as supposed by most decoder architectures in literature,
or computed online given the bit-channel relative reliability vector and the desired code rate, as
proposed in [26]. This approach is significantly more efficient in case of multi-code decoders,
and is facilitated by nested reliability vectors as those selected for the 5G eMBB control channel
[27]. The control unit of the proposed architecture implements the proposed special node online
identification, based on the sequence of frozen and information bits. Figure 6.2 shows the simple
logic needed to identify the considered special nodes. Since the inputs si include a wide variety
of bits, and given the low complexity of the node identification circuit, the structure is instantiated
at every tree stage t, separately at every partition identified by LPSCL, to reduce the amount of
multiplexing needed at the inputs and the possible increase in the system critical path.

The logic pictured in Figure 6.2 is inserted within a Finite State Machine (FSM) in the decoder
control unit to identify the correct decoding phase, through two main control signals, NodeType
and NodeSize. A maximum NodeSize value for each NodeType is selected at design time, to
limit the additional complexity and critical path degradation.

• While the general node type can be identified easily through the proposed identification,
different decoding phases are foreseen within each special node. Thus, NodeType foresees
subtypes in the special node. While the Rate-0 node is a standalone node type, the Rate-1
node is divided into three subtypes: one phase is assigned to the fetching and sorting of the
LLR values, a second to the estimation of the bits associated to the least reliable LLR values,
and the third for the hard-decision on the remainder of the bits. The Rep node is divided in
two subtypes, one for the frozen bits and one for the information bit. Finally, SPC nodes
foresee four subtypes: one for the concurrent fetching and sorting of LLR values and frozen
bit selection, one for the bit estimations, one for the hard decision on the remaining bits, and
one for the parity correction. The NodeType signal is thus influenced not only by the result
of the logic in Figure 6.2, but also by the number of estimated bits within the special node,
the stage t, and the current NodeType subtype.
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• The control unit identifies the size of the special node NodeSize as 2t , given the current
SC decoding tree stage t. This information is used to update the index i of the codeword
bit to be estimated. The index i is usually updated once a leaf node has been reached and
the corresponding bit estimated, but during the decoding of special nodes, it is kept fixed
pointing at the first bit of the node. Once the decoding is terminated, the index is updated as
i + NodeSize.

6.3 Hardware Implementation Results

The proposed decoder architecture has been described in VHDL and synthesized in TSMC 65 nm
CMOS technology. Two versions of the decoder have been implemented: one considering the
proposed special node identification technique, and one based on the offline identification and
storage used in [36]. Both decoders target a code length N = 1024, rely on a partitioning factor
P = 4, and make use of 64 parallel PEs. The bottom part of the SC tree is decoded with a list size
Lmax = 4, while for the upper stages L10 = L9 = 2. Figure 6.4 shows the FER and BER performance
of the LPSCL decoder used in this chapter in comparison with SCL decoding with L = 4, when
the transmission takes place over AWGN channel. The curves in Figure 6.4 are provided for the
code rates of { 1

12 ,
1
6 ,

1
3 ,

1
2 ,

2
3 }, which are considered by the eMBB control channel in the 5G standard

[54]. It can be seen that LPSCL decoding incurs negligible FER and BER performance loss with
respect to SCL for all considered rates. It should be noted that the introduction of the proposed
technique to infer the list of operations on the fly do not change the FER or BER performance of
the decoder in comparison with the same memory-based decoder.

The channel LLR values are quantized with 4 bits and internal LLR values with 6 bits, with
2 bits assigned to the fractional part, while path metrics are quantized with 8 bits. The maximum
node size is set to 16 for Rate-0 and Rep nodes, and to 64 for Rate-1 and SPC nodes. Table 6.1
reports the area occupation and achievable frequency for the proposed decoder, and for the decoder
based on the offline identification technique, labelled as memory-based decoder. The two decoders
differ in their implementation of the Control Unit (CU): its area occupation ACU in the proposed
decoder is 24% less than that of the memory-based decoder. This is due to the fact that the infor-
mation computed offline in the memory-based case, i.e. the equivalent of the NodeType signal,
needs to be inserted in an FSM analogous to that used by the control unit of the proposed deco-
der. This FSM handles the node subtypes and the internal counters that determine when a special
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Figure 6.4: FER and BER performance comparison of decoding the 5G polar code of length
N = 1024 and R ∈ { 1

12 ,
1
6 ,

1
3 ,

1
2 ,

2
3 }, using LPSCL decoding with Lmax = 4 and L10 = L9 = 2, and

SCL decoding with L = 4.

node decoding is terminated. Moreover, the memory-based case needs an additional information,
NodeStage, to identify at which SC tree stage the special node is encountered: the NodeSize
information is derived from that. The NodeStage signal is inserted in its own FSM, that adds
substantial complexity to the control unit, resulting in a larger ACU. While the contribution of ACU

to the total decoder area occupation A is relatively small, with A = 1.410 mm2 and A = 1.454 mm2

for the proposed and the memory-based decoders respectively, the NodeStage FSM influences
signals in the NodeSize and NodeType FSM, lengthening the critical path. In particular, the state
of NodeStage is combined to the NodeType and NodeSize to determine the current and future
node subtypes. This leads to a lower achievable frequency f in the memory-based case. Table 6.1
reports the coded throughput T and area efficiency Aeff = T

A , for the code rates of { 1
12 ,

1
6 ,

1
3 ,

1
2 ,

2
3 }. It

can be seen that the higher frequency and smaller area occupation brought by the proposed node
identification method lead to higher T and substantially higher Aeff .

It is worth mentioning that the goal of this work is to propose a low-complexity approach to
generate the list of operations for fast SC-based decoders directly on hardware, therefore, allowing
for the implementation of a fast and rate-flexible SC-based decoder. Our implementation results
show that by using the proposed method, there is no area occupation overhead or throughput loss
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Table 6.1: TSMC CMOS 65 nm synthesis results, for N = 1024, P = 4, Lmax = 4, and L10 = L9 =

2.

Proposed Memory-based

ACU [µm2] 35881 47025
A [mm2] 1.410 1.454
f [MHz] 955 926

T [Mb/s]

R = 1/12 2885 2797
R = 1/6 2228 2160
R = 1/3 1389 1347
R = 1/2 1223 1186
R = 2/3 1052 1020

Aeff [Mb/s/mm2]

R = 1/12 2046 1924
R = 1/6 1580 1486
R = 1/3 985 926
R = 1/2 867 816
R = 2/3 746 702

Memext [bits]

R = 1/12 – 1072
R = 1/6 – 1432
R = 1/3 – 1496
R = 1/2 – 1520
R = 2/3 – 1304

in comparison with the memory-based decoders, while having a completely rate-flexible decoder.
The main advantage of the proposed approach is that given the design code length, any code

with the same N can be decoded using the Fast-SSCL-SPC algorithm without foreknowledge of the
information/frozen bit sequence, regardless of rate and target Eb/N0. On the contrary, the memory-
based decoder needs to store the NodeType and NodeStage information for each considered code
in an external memory of Memext bits. Considering N = 1024, the NodeType and NodeStage
signals require a 4-bit representation. The last rows of Table 6.1 report the external memory re-
quirements Memext for each considered code rate: while the proposed identification method does
not require any external memory, the memory-based decoder requires thousands of memory bits
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Table 6.2: Comparison with state-of-the-art decoders.

This
work

[36] [37] [15] [16]† [17]†

A [mm2] 1.410 1.797
(2.514)

1.22
(1.937)

0.62 0.73 2.00

f [MHz] 955 840 961 498 692 558
T [Mb/s] 1223 1338 1146 935 551 1578
Latency [µs] 0.84 0.77 0.89 1.10 1.86 0.66
Aeff [Mb/s/mm2] 867 744 (532) 939 (592) 1508 755 789

†The results are originally based on TSMC 90 nm technology and are scaled to TSMC 65 nm technology.

for each code rate, with a total of 6824 bits for the rates considered in 5G. Implemented in TSMC
65 nm CMOS technology with registers, the area occupation of such external memory would be
0.717 mm2.

Table 6.2 compares the proposed decoder to other architectures in the state of the art which
use 64 parallel PEs. Results are reported for P(1024, 512) and L = 4. The architectures presented
in [36] and [37] are based on the Fast-SSCL-SPC and SSCL-SPC algorithms, respectively: it is
possible to add the cost of the external memory directly to their area occupation, and evaluate its
impact on the area efficiency. These modified results are reported within parentheses. It can be
seen that the external memory increases A by 40% in [36] and by 59% in [37]: the proposed special
node identification technique is thus able to substantially limit the area occupation and increase the
area efficiency in both architectures. The architecture presented in this work has higher Aeff and
lower A than both [37] and [36]. Different design choices in terms of concurrent operations in the
special nodes lead to a slightly lower T than [36], together with a substantially lower A and higher
Aeff .

The architectures presented in [15]–[17] do not rely on a special-node-based decoding algo-
rithm: thus, the throughput benefits and complexity saving of the proposed node identification
technique cannot be directly evaluated. Moreover, the synthesis results of [15] were reported in
90 nm technology, but they were carried out in 65 nm technology. Therefore, a factor of 90/65 was
used to convert the frequency, and a factor of

(
65/90

)2 was used to convert the area of the decoder
from 90 nm to 65 nm technology in [15]. The same conversion factors were used to convert to
65 nm technology the synthesis results in [16], [17], which were synthesized with a 90 nm node.
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Our work shows 31% higher throughput and 31% lower latency with respect to the multibit
decision SCL decoder architecture of [15], while the smaller area occupation of [15] leads to a
higher Aeff . The decoder in [16] shows lower area occupation than our work. However, the archi-
tecture proposed in this work achieves 122% higher throughput and 55% lower latency, leading to
15% higher area efficiency. The high throughput SCL decoder architecture of [17] achieves higher
throughput and lower latency than this work, at the cost of 42% higher area occupation and 9%
lower Aeff. Moreover, [17] relies on tunable parameters that can lead to more than 0.2 dB error-
correction performance loss. These parameters also reduce the flexibility of the decoder, since for
each code rate, a different set of parameters need to be used. However, the decoder proposed in
this chapter is designed to guarantee rate-flexibility, making it suitable for 5G applications.
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Chapter 7

Performance of Polar Codes in 5G

In this chapter, we analyze the performance of polar codes in the 5G eMBB control channel fra-
mework. We first show that there is a specific rate at which polar codes can maximize the power
efficiency of a channel at a target FER. We then show the effect of CRC on the error-correction
performance of polar codes under SCL decoding for short codes. Finally, we show the effect of
CRC on the speed of decoding under SSCL and Fast-SSCL decoders which were introduced in
Chapter 4.

7.1 Power Efficiency

In the design of wireless communication systems, the transmitter power is limited. Therefore,
power-efficient transmission is required to be able to achieve the specific FER requirements. A
measure of power efficiency is the ratio of energy per information bit to the noise power per unit
bandwidth, Eb/N0 [62]. The relation between Eb/N0 and the SNR is expressed as

Eb/N0 = SNR−10 log10(2R). (7.1)

It can be seen that power efficiency is dependent on the rate of the code. Therefore, there is a
specific code rate with which maximum power efficiency is achieved.

To find such a code rate for polar codes under SC and SCL decoding schemes, we first fix
a target FER of 10−4 and design polar codes of lengths N ∈ {32, 64, 128, 256, 512} optimized
for SNR = 2 dB. We then find the Eb/N0 value which results in the target FER for the rates
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Figure 7.1: SNR and Eb/N0 requirements for different rates of SC decoding of polar codes at FER
= 10−4 when the code is optimized for SNR = 2 dB.

R ∈ { 1
12 ,

1
6 ,

1
3 ,

1
2 ,

2
3 }. Figure 7.1 shows the Eb/N0 requirements when polar codes are decoded with

SC decoding and Figure 7.2 shows the Eb/N0 requirements when polar codes are decoded with
SCL decoding of list size L = 8. It can be seen that while the SNR requirements decrease as the
code rate decreases, the Eb/N0 requirements do not follow the same behaviour. In fact, as the rate
decreases, the number of information bits per codeword decreases. If the rate is too low, it results
in lower power efficiency since the power allocated to the codeword is used to transmit fewer
information bits. Therefore, there is an optimal rate with which the power efficiency is maximized.
In SC decoding and for all the code lengths, R = 1

3 results in the best power efficiency. However,
for SCL(8) decoding, the best power efficiency is achieved at a lower rate of R = 1

6 for all code
lengths except N = 64. For N = 64, the best power efficiency is achieved at R = 1

2 . However, in
general we can conclude that as the list size increases1, the rate at which the power efficiency is
maximized decreases.

1SC can be considered as SCL with L = 1.
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Figure 7.2: SNR and Eb/N0 requirements for different rates of SCL(8) decoding of polar codes at
FER = 10−4 when the code is optimized for SNR = 2 dB.

7.2 Effect of CRC on Error-Correction Performance

CRC plays an important role in finding the correct candidate in SCL decoding of polar codes and
care needs to be taken to select a CRC length that results in the best error-correction performance.
A small CRC may result in incorrect paths to pass the CRC. A large CRC may result in the selection
of bit-channels that are not sufficiently reliable to carry CRC bits. To analyze the effect of CRC
on error-correction performance of polar codes under SCL decoding, we use list size L = 8 for the
SCL decoder and fix CRC polynomials to the ones in [63]. For each code length and code rate,
we use the Eb/N0 values obtained in Section 7.1 that result in FER = 10−4 when no CRC is used.
We then progressively increase the length of the CRC C from 0 (no CRC) to 32 and obtain the
resulting FER.

Figure 7.3 shows the effect of CRC length on the error-correction performance of polar codes
of length N = 512 and 32 for the rates R ∈ { 1

12 ,
1
6 ,

1
3 ,

1
2 ,

2
3 }. We can see that for each code rate, there

exists an optimal CRC length for which the FER is the lowest. For very low code rates, the optimal
CRC length is zero, but as the rate increases, so does the CRC length. For example, for N = 512
and R = 2

3 , a CRC of length C = 16 improves the FER to 5 × 10−8. When the code is very short,
the gain obtained by adding a CRC is smaller than longer codes. This is due to the fact that, adding
more CRC bits increases the effective rate more rapidly in short codeword lengths. For example,
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Figure 7.3: The effect of CRC length on the FER performance of polar codes of length 512 (left)
and 32 (right) with different rates when decoded with SCL(8). The FER target without using CRC
is 10−4 and the code is optimized for SNR = 2 dB.

for N = 32 and R = 2
3 , CRC of length C = 6 can only improve the FER to 1.7 × 10−5.

7.3 Effect of CRC on Decoding Speed

Adding a CRC of length C to a polar code of length N with K information bits changes the effective
rate of the code which is seen by the decoder to K+C

N . This in turn changes the pattern of frozen and
information bits. Therefore, the number and length of special nodes in the decoding tree of polar
codes changes.

We analyze the state-of-the-art flexible and high-speed SCL decoders of [37] and [36] and
show what the achievable latency is when short polar codes are used in the eMBB control channel.
We measure the latency by counting the number of time steps required to complete the decoding
process as discussed in [36], [37]. It should be noted that the throughput of SCL decoding is
inversely proportional to its latency so a smaller latency results in a higher throughput.

Figure 7.4 shows the effect of CRC length on the decoding speed of SSCL and Fast-SSCL
decoding for polar codes of length 512 and 32. It can be seen that Fast-SSCL provides significant
latency improvement with respect to SSCL for higher rates. This is expected since a polar code
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Figure 7.4: The effect of CRC length on the time step requirements of polar codes of length 512
(left) and 32 (right) with different rates when decoded with SSCL and Fast-SSCL with L = 8. The
code is optimized for SNR = 2 dB.

of high rate has more Rate-1 nodes that can be decoded faster with Fast-SSCL. This latency im-
provement is more significant when a longer CRC is used, since adding CRC bits increases the
effective rate of polar codes and consequently increases the number of Rate-1 nodes. The impro-
vement is more noticeable for a longer code of length 512. For the case of N = 32, the latency
improvement caused by employing Fast-SSCL decoding is only significant when the CRC length
is high. Therefore, for polar codes of low rate and short CRC length, SSCL can be used since
its latency is almost the same as that of Fast-SSCL but with a lower hardware implementation
complexity. For polar codes of high rate and long CRC length, Fast-SSCL provides a high-speed
alternative.
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Chapter 8

Blind Detection with Polar Codes

Blind detection requires the receiver of a set of bits to identify if said bits compose a codeword of a
particular channel code. In 3GPP LTE/LTE-Advanced standards blind detection is used by the UE
to receive control information related to the downlink shared channel. The UE attempts the deco-
ding of a set of candidates, to identify if one of the candidates holds its control information. Blind
detection is required in 5G as well: ongoing discussions are considering a substantial reduction of
the time frame allocated to blind detection, from 16µs to 4µs. Blind detection must be performed
frequently, and involves a high number of decoding attempts in a limited time; it can thus lead
to large implementation costs and high energy consumption. Blind detection solutions for codes
adopted in existing standards can be found in [64]–[66].

In this chapter, we propose a blind detection scheme with polar codes and show that the scheme
fits within 3GPP LTE-Advanced and 5G requirements. It is based on a two-step scheme: a first SC
decoding phase helps selecting a set of candidates, which are subsequently decoded with SCL.

8.1 Blind Detection

The Physical Downlink Control Channel (PDCCH) is used in 3GPP LTE/LTE-Advanced to trans-
mit the Downlink Control Information (DCI) related to the downlink shared channel. The DCI
carries information regarding the channel resource allocation, transport format and hybrid automa-
tic repeat request, and allows the UE to receive, demodulate and decode. A CRC is attached to the
DCI payload before transmission, and masked according to the Radio Network Temporary Identi-
fier (RNTI) of the UE to which the transmission is directed, or according to one of the system-wide
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RNTIs. Finally, the DCI is encoded with a convolutional code. The UE is not aware of the format
with which the DCI has been transmitted: it thus has to explore a combination of PDCCH loca-
tions, PDCCH formats, and DCI formats in two search spaces, and attempt decoding to identify
useful DCIs. This process is called blind decoding, or blind detection. Blind detection solutions
for widely adopted codes are present in literature [64], [65]. Blind detection will be present also
in the 5G: ongoing discussions are considering a substantial reduction of the time frame allocated
to blind detection, from 16µs to 4µs. Blind detection must be performed frequently, and given
the high number of decoding attempts required in a limited time [29], it can lead to large imple-
mentation costs and energy consumption. For each PDCCH candidate in the search space, the UE
performs channel decoding, and demasks the CRC with its UE RNTI. If no error is found in the
CRC, the DCI is considered as carrying the UE control information.

Blind detection is used by the UE in the PDCCH in the 3GPP LTE standard to scan a set
of candidate locations and decode them according to its RNTI, identifying if a transmission is
targeting it. Based on LTE standard R8 [29], the performance specifications for the blind detection
process are the following:

• The DCI of PDCCH is from 8 to 57 bits plus 16-bit CRC, masked by 16-bit RNTI.

• 44 candidate locations between two search spaces.

• Code length could be between 72 and 576 bits.

• Information length (including 16-bit CRC) could be between 24 and 73 bits.

• Target FER is 10−2.

• False-alarm scenarios: in Type-1 the UE RNTI is not transmitted but detected, in Type-2, the
UE RNTI is transmitted but another one is detected. The target False Alarm Rate (FAR) is
< 10−4.

• Missed detection occurs when UE RNTI is transmitted but not detected. The Missed De-
tection Rate (MDR) is close to FER curve.

• The available time frame for blind detection is 16µs.
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Figure 8.1: Blind detection with polar codes scheme.

8.2 Proposed Blind Detection Scheme

We propose the use of polar codes in a blind detection framework, and provide a novel two-phase
blind detection scheme, shown in Fig. 8.1, where some of the frozen bit positions are used to
transmit the RNTI. In the first phase, C1 candidates are received concurrently: in our case, C1 =

44. The C1 candidates are decoded with the simple SC algorithm. A metric is obtained for each
candidate, equivalent to the LLR of the last decoded bit: thanks to the serial nature of SC decoding,
the LLR of the last bit can be interpreted as a reliability measure on the decoding process. The
metrics are then sorted, to help the selection of the best candidates to forward to the second phase.
In the second phase, C2 candidates are selected to be decoded with the SCL decoding algorithm.
SCL has a better error-correction performance, but a higher implementation complexity than SC.
The C2 candidates are chosen as all S candidates whose RNTI, after the first phase, matches the
one assigned to the UE. If S > C2, the ones with the highest metrics are selected. If S < C2, the
C2 − S candidates with the smallest metrics are selected. The candidates with large metrics have
higher probability to be correctly decoded: if their RNTI does not match the one assigned to the
UE, it is probably a different one. On the other hand, candidates with small metrics have a higher
chance of being incorrectly decoded, and a transmission to the UE might be hiding among them.
After the second phase, if one of the C2 candidates matches the UE RNTI, it is selected, otherwise
no selection is attempted.

8.2.1 Simulation Results

Simulations were performed to evaluate the FER, MDR, and FAR of the proposed scheme under a
variety of parameters. For polar codes, block lengths N = {128, 256, 512} and information lengths
K = {8, 16, 32, 57} have been considered. The number of RNTI bits is set to 16 and the position of
the RNTI bits has been selected according to two operation modes. In RNTI Mode 1 (RM1), the
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Figure 8.2: FER curves after the first phase with SC decoding.

RNTI bits are the most reliable after the K information bits. In RNTI Mode 2 (RM2), the RNTI
bits are the most reliable, while the K information bits are the most reliable after the RNTI bits.
The number of candidates passed to the second phase has been selected as C2 = {4, 5, 6, 7}, and list
sizes for SCL decoding have been considered as L = {2, 4, 8}. Figure 8.2 depicts the FER of the
simulated codes after the first phase with SC decoding: the difference between RM1 and RM2 is
generally negligible.

Figure 8.3 depicts the MDR after the second phase, where MDR is defined as the number
of missed detections over the number of transmissions in which the UE RNTI was sent. MDR
simulations consider C1/2 candidates of length N1, and C1/2 candidates of length N2, with an
information length of K1 = K2 = K bits. The UE RNTI is randomly transmitted through one of
the C1 codes. The curves consider the extreme values of the C2 and L simulation space, i.e C2 = 4,
L = 2, and C2 = 7, L = 8. Performance of the intermediate values sits in between the portrayed
ones. Increasing C2 and L leads to better MDR, regardless of the code lengths and rates. More
specifically, increasing C2 rises the probability of having, among the C2 candidates in the second
phase, the one whose RNTI matches the UE RNTI, and a larger L improves the error-correction
performance of the SCL algorithm. RM2 has a substantial advantage over RM1 when MDR is
high, and grants slight improvements at lower MDR. In general, the MDR curve is shown to be
substantially lower than the FER curve of the least reliable of the two codes.

The false alarm curves shown in Figure 8.4 report the combination of Type-1 and Type-2 errors.
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Figure 8.3: MDR after the second phase, for transmissions including C1/2 cases of N1 = 128, and
C1/2 cases of N2 = 256.

The results have been obtained with the RNTIs of the C1 candidates assuming random values over
the full 16-bit dynamic. It can be seen that all curves yield FAR < 10−4.

It is possible to use SCL during the first phase of the proposed blind detection scheme, to
improve performance at the expense of implementation complexity. For example, for C2 = 4, we
used SCL with L = 2 in the first phase and SCL with L = 8 in the second and observed ≈ 0.8 dB
improvement in FER, while the MDR was halved and the FAR remained unaffected.

A fair comparison with the state of the art is not possible, since in [67], the only other work
addressing blind detection based on polar codes, no RNTI is considered, and MDR/FAR results are
given within a different scenario, i.e. on the ability to detect if a frame is encoded with a particular
polar code or not. Nevertheless, it is possible to observe how in [67] the FAR increases as the
MDR decreases: on the contrary, the proposed scheme allows to decrease both at the same time,
thus avoiding performance limitations that could make it unappealing for 5G standard applications.

8.2.2 Detection Speed

We analyze the duration of the blind detection process based on polar codes, according to the
system parameters. The number of time steps required to complete the different phases can be



140 Blind Detection with Polar Codes

−2 −1 0 1

10−6

10−5

10−4

SNR [dB]

FA
R

K = 8, C2 = 4, L = 2
K = 16, C2 = 4, L = 2
K = 32, C2 = 4, L = 2
K = 57, C2 = 4, L = 2
K = 8, C2 = 7, L = 8
K = 16, C2 = 7, L = 8
K = 32, C2 = 7, L = 8
K = 57, C2 = 7, L = 8

Figure 8.4: FAR after the second phase with RM1, for transmissions including C1/2 cases of
N1 = 128 and C1/2 cases of N2 = 256.

computed as:

Tbd =

⌈
C1

NSC

⌉ (
T 1

SC

2
+

T 2
SC

2

)
+ Tsort +

⌈
C2

NSCL

⌉
TSCL, (8.1)

where NSC and NSCL are the number of parallel SC and SCL decoders, and T 1
SC and T 2

SC are the
SC decoding latencies for codes of length N1 and N2, respectively. TSCL is the decoding latency of
an SCL decoder, while Tsort is the number of time steps required to obtain the C2 candidates out
of the C1 candidate locations through sorting. The worst case for TSC and TSCL occurs when the
standard SC and SCL algorithms are applied. In the SC case the decoding latency is expressed as
T i

SC = 2Ni − 2, and in the SCL case as:

TSCL = max(2N1 + K1, 2N2 + K2) + RNT Ib − 2,

where RNT Ib represents the number of bits assigned to the RNTI. In our case C1 = 44 and RNT Ib =

16, and we estimate Tsort = C2, whose contribution to the latency is minimal. The worst case sees
N1 = 512, N2 = 256, K1 = K2 = 57. The 4µs mark is achieved with f = 800 MHz, when NSC = 22
and NSCL = C2.

Considering the Fast-SSC, SSCL, and Fast-SSCL algorithms allows to exploit particular pat-
terns of frozen and information bits to reduce the decoding latency and thus the complexity nee-
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Table 8.1: Time Steps Requirements

Decoding Algorithm
SC Fast-SSC SCL SSCL Fast-SSCL L = 2

P(128, 32) 254 49 302 112 86
P(128, 57) 254 52 327 134 84
P(256, 32) 510 109 558 163 149
P(256, 57) 510 127 583 226 203
P(512, 32) 1022 85 1070 140 124
P(512, 57) 1022 91 1095 193 163

Table 8.2: Parameters needed to meet the 4µs target

Algorithm f [MHz] NSC NSCL Latency [µs]

SC + SCL 800 22 C2 3.9

Fast-SSC +
300 11 C2/2 3.8

SSCL
500 5 C2/2 3.5
700 3 C2/2 4.0

Fast-SSC +
300 11 C2/2 3.7

Fast-SSCL, L = 2
500 5 C2/2 3.4
700 3 C2/2 3.9

ded to reach the 4µs target. In our case, the number of decoding time steps for some exam-
ple codes with different decoding algorithms is detailed in Table 8.1. The worst case occurs for
N1 = N2 = 256, K1 = 57, K2 = 32. Results are valid for RM1, RM2, and RM3. Table 8.2 reports
combinations of parameters that satisfy the 4µs target. The faster decoding process of Fast-SSC,
SSCL, and Fast-SSCL allows to reduce the resources needed to meet the 4µs target with respect
to standard SC and SCL, at the cost of higher implementation complexity [45].
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Chapter 9

Conclusion

As a new coding scheme which made their way to the upcoming 5G, polar codes require efficient
decoding algorithms in order to be able to meet stringent 5G requirements. In this thesis, we
addressed the issues associated with polar code decoding algorithms. We first proposed a list
sphere decoding algorithm which is suitable for polar codes of short lengths. This is particularly
interesting because polar codes are selected for the control link of the eMBB channel of 5G which
requires codes of short lengths. We then addressed the fundamental issue with SCL decoders in
which the decoder proceeds bit by bit. We identified the redundant calculations in SCL decoding
algorithm and showed how to remove these redundant calculations in order to speed up the SCL
decoders without incurring any error-correction performance loss. In addition, we proposed several
optimization methods to increase the speed of SCL decoders even more by allowing negligible
error-correction performance degradation. We further addressed the high memory consumption of
SCL decoders by proposing a PSCL decoder. We showed that while the PSCL decoder can reduce
the memory requirements of SCL, it may incur error-correction performance loss. Therefore, we
proposed two new decoding algorithms, namely, GPSCL and LPSCL which bridged the error-
correction performance gap between PSCL and SCL. We provided a CRC selection scheme to
boost the error-correction performance of PSCL when it is aided by CRC. We introduced memory
reduction techniques which is orthogonal to the underlying decoder and do not incur any error-
correction performance loss. A rate-flexible fast polar decoder is proposed to solve the flexibility
issue associated with fast polar decoders. Moreover, the performance of polar codes was evaluated
in 5G framework. Finally, we demonstrated the application of polar codes in a blind detection
scheme and showed that 5G requirements can be met when polar codes are used in blind detection.
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9.1 Suggestions for Future Work

In this thesis, we presented several techniques to improve the throughput and reduce the area
occupation associated with polar code SCL decoders. This will allow SCL decoders to be deployed
in 5G applications which require high throughput, low latency, and small area occupation when
implemented on hardware. However, there are still some questions which are not fully addressed.
Here is a list of suggestions for future work.

9.1.1 Power and Energy Efficient Decoders

5G foresees applications which require low power consumption with high energy efficiency. This
is particularly useful in mobile devices to have long battery life while they are connected to the
network. In fact, error correcting codes are one of the power hungry modules in the baseband signal
processing unit that a mobile device has [68]. Therefore, it is crucial to design and implement
error-correcting codes which are power and energy efficient. In case of polar codes, most of the
attention was paid to increasing the speed of decoders. While there are a few works that discuss
power consumption of polar codes [44], research needs to be carried out to design polar code
decoders which are optimized for low power and energy consumption.

9.1.2 Investigating Other Decoding Algorithms

SC decoding was the first algorithm with which polar codes could achieve the capacity of a channel.
SCL showed superior error-correction performance than SC for codes of finite length. Although
we addressed the issues associated with SC-based decoders in this thesis, there are other decoding
algorithms which are used to decode polar codes and that have shown great potential for future
implementation. Belief Propagation (BP) decoding is a high-throughput decoding algorithm which
unlike SC-based decoding algorithms, decodes the bits in parallel. However, its error-correction
performance is far from satisfactory when applied to decode polar codes [69], [70]. Therefore,
research needs to be conducted to improve the error-correction performance of BP decoders so that
they can achieve that of SCL decoders. One method to improve the error-correction performance
of BP decoders is to use redundant representations of the polar code factor graph [71], [72] and
run BP decoding on several factor graphs when a CRC is used to help find the correct codeword
[39], [73], [74]. Although this idea is useful, it is still in its early stages and the error-correction
performance of it is away from that of SCL. A combination of BP and SC decoding was also
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proposed in [75] but its error-correction performance improvement comes at the cost of lower
throughput than SC. Thus it needs to be optimized for high throughput applications.

9.1.3 Reed-Muller (RM) Codes

RM codes [76], [77] are similar to polar codes in the sense that the generator matrices of both codes
are constructed by selecting rows from a Hadamard matrix. The row selection of polar codes mi-
nimizes the error probability under SC decoding, while the row selection of RM codes maximizes
the minimum distance. As a result, polar codes outperform RM codes under SC decoding and RM
codes outperform polar codes under MAP decoding. Recently, it was shown that RM codes achieve
the capacity of a BEC under MAP decoding [78]. Since MAP decoding is practically intractable,
sub-optimal decoding algorithms such as SC [79] and SCL [80] are used to decode RM codes. Ho-
wever, SC decoding provides a poor error-correction performance when used to decode RM codes
and SCL decoding requires a large list size to achieve a desirable error rate. The advantage of RM
codes over polar codes is that unlike polar codes, their construction is independent of the channel
on which the transmission takes place. Therefore, a low-complexity decoder which can provide an
error-correction performance close to the MAP decoder can be of great interest since it paves the
way for RM codes to replace polar codes. A first step towards this goal is presented in [38].
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