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Abstract 

In this thesis, we establish tight bounds on the maximum size of maximum hidden 

sets, minimum guard sets, and minimum partitions and covers of polygons, using 

link-visiLility. These results unify anQ generalize the guard set results of Chvatal and 

o 'Rourke. Our method aiso provides tight bounds on independent and dominating 

sets in triangulation graphs, and almost-tight bounds on the size of hidden sets, guard 

sets, covers, and partitions of polygon exteriors. In addition, we praye that, Ilsing 

link-visibility, the optimization problems of finding maximum hidden sets, minimum 

guard sets, or minimum covers are NP-hard. 

Link-visibility is an extended notion of visibility arising from robotics and motion 

planning problems. Hidden sets are sets of points in a polygon such that no two points 

of the set are visible, and guard sets a~e sets such that each point of the polygon is 

visible to sorne point in the guard set. Both maximum hidden set sizes and minimum 

guard set sizes can be used as polygon shape complexity measures. 
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Résumé 

Grâce à la vue-liée, nous bornons de manière optimal la grandeur maXImum des 

ensembles cloisonés maximums, des ensembles-sentinelles minimums et celles de par

titions et de couvertures minimums de polygones. 

Ces résultats unifient et généralisent ceux de Chvàtal et d'Q'Rourke sur les ensembles

sentinelles. 

En outre, des bornes optimums sur la grandeur d'ensembles indépendants et 

dominants, et des bornes quasi-optimums sur la grandeur d'ensembles cloisonés. 

d'ensembles-sentinelles, de couvertures et de partitions de la région externe d'un poly

gone sont dérivés par le même biais. De plus, nous démontrons à l'aide de la vue-liée 

que les problèmes d'optimisation de la recherche d'ensembles cloisonés maximums, 

d'ensembles sentinelles minimum et de couvertures minimums sont NP-durs. 

La vue-liée est une généralisation de la notion de vue, provenant de la robotique 

et de la planification de trajectoire. 

N'importe quels deux points membres d'un ep'5emble cloisoné sont mutuellement 

non-visibles, alors que n'importe quel point du polygone est vu par au moins un 

point d'un ensemble-sentinelle. LéS concepts de grandeur maximum d'ensembles cloi

sonés et de grandeur minimum d'em,errlbles-sentinelles peuvent servir de mesure de 

la complexité de la forme d'un polygone. 
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Chapter 1 

Introduction 

In this chapter we introduce the major ideas that this thesis is concerned with. 

1.1 Notation and Terminology 

We use the operator \ to denote the usual set-theoretic difference. 

If the intersection of two sets has zero measure (no area) , then we shan say that the 

sets are nonoverlapping. Note that two sets rnay be intersecting but not overlapping. 

We assume that the reader is familiar with elementary graph theory, and we use 

the usual graph theory notatiotl (see, e. g., [H69] or [BM76]). \Ve let the class of 

graphs include the nul/ graph (the graph on zero vertices), and the class of trees 

include the null tree. 

The vertex set and diameter of a graph Gare denoted by vert ( G) and diam( G), 

respectively. d(x,y) is the (graph-theoretic) distance between vertices x and y. By 

the induced graph difJerence GeS, where S is a subgraph of G, we rnean the subgraph 

of G that is induced by vert ( G) \ vert ( S). 

In a rooted tree R, depth(R) denotes the depth of R, and st(R, w) is the subtree 

of R rooted at w. We define the remaining tree rt(R, U) to be Re U st(R, u). 
uEU 

A contraction of two vertices v and w in a graph G replaces G by a graph G* which 

is G with v and w (and their edges) removed, and a new vertex v· added, which is 

adjacent to aU of the vertices that v and w were adjacent to. If H is sorne subgraph 

1 
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G: 
b 

v 

HeG 
shown in dark 

e 

G*: 
b 

H*cG* 
shawn in dark 

Figure 1.1: Contractions on graphs and subgraphs 
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of G, then H* is the subgraph of G* which results from contracting v and w (if they 

both exist) in H (see figure 1.1). For brevity, we refer to (st(R,w)))* as st*(R,w), 

and similarly define rt*(R, U). 

We use the prefix D k - to ind~cate that a graph-theoretic object has diameter at 

most k. For instance, a Dk-tree is a tree of diameter at most k. 

1.2 Visibility 

The major category that the work in this thesis falls under is caUed visibility; this is 

a weU-studied notion in mathematics and computer science. Given sorne set of points 

R in E d , we say thlit two points x, y E R are visible if the closed line segment from x 

to y lies entirely in R (see figure 1.2). Visibility is tberefore a symmetric and reflexive 

relation on the points of R. Two points which are visible are said to see each other. 

Given this definition of visibility, we can define two tJPes of point sets (regions) 

R: con vex regions, for w hi ch Vx, y E R, x sees y, and star-shaped regions, for which 

3x ERVy E R, x sees y. Examples of these types of regions are shown in figure 1.3. 

We can extend the concept of visibility from points to regions: we say that a 

region UeR is visible from a region TeR if Vu E V,3t E T such that t sees u. In 
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x and y are visible 

x and z are not visible 

Figure 1.2: Illustra.ting visibility 

Figure 1.3: Convex and star-sha.ped regions 
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Figure 1.4: LJ-visible 

w and x are L4-visible 

x and y are L3-visible 

x and z are LS-visible 

4 

such an instance we will also say that T sees U. This is the notion of weak visibility 

introduced in [AT81b]. We note that (weak) visibility is not a symmetric relation. 

1.3 Generalized Visibility 

One of the major contributions of this thesis is extension of known results about 

visibility to a more general visibility, which is called link-j -visibility. We will use the 

notation L.7 as shorthand for "link-j"'. 

We say that two points x, y E Rare L}-visible if there is sorne path P ç R joining 

x and y which consists of J or fewer straight line segments ("links"). Sorne examples 

are shown in figure 1.4. The smallest J such that x and y are L}-visible is called 

the link-dlstance between x and y [S86a). We note that the usual notion of visibility 

introduced above is exactly Ll-visibility. 

We can define L}-convex and L}-star-shaped regions in a manner analogous to our 

definitions of convex and star-shaped regions: LJ-convex regions are those for which 

'r/x, y E R, x and y are LJ-visible, and L}-star-shaped regions are those for which 

3x E R 'r/y E R, x and y are LJ-visible. Examples of these types of regions are shown 

in figure 1.5. 

& 
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Figure 1.5: A L3-convex iegion and a Lrstar-shaped region 

We define L)-visibility for regions in the same manner as we defined L1-visibility 

for regions. 

1.4 Polygon 

The major type of regions that we will deal with in this thesis is szmple, singly

connected polygons. A polygon is a finite figure in the plane that is bounded by a finite 

number of straight line segments. A singly-connected polygon is bounded by n points 

VI,V2"",Vn (called verlices) and the n line segments [Vl,V2],[V2,V3], ... ,[Vn_l,Vn], 

and [Vn,Vl] (called edges). Such a {Jolygon is called szmple if no point of the plane 

belongs to more than two edges of the polygon and the only points which belong to 

precisely two edges are the vertices. 

A simple polygon divides the plane into a bounded region, called the mterzor, and 

an unbounded region, called the exterior. We henceforth will use the term polygon 

to refer to the boundary and interior of a simple, singly-connected polygon. Several 

regions which we do not consider polygons are shown in figure 1.6. 

A chord of a polygon is a line segment which is contained in the polygon, and has 

both endpoints on the boundary of the polygon. A diagonal of a polygon is a chord 
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Figure 1.6: Regions which are not polygons 

with both endpoints on vertices of the polygon. An ear of a polygon is a vertex whose 

adjacent vertices can be connected by a diagonal. 

A polygon Q is called a subpolygon of a polygon P if every point of Q is aiso in 

P. 

1.5 Polygon Covering 

The polygon covering problem is: given a polygon P and sorne property 'Ir which is 

true of sorne polygons, find a minimum-cardinality set Q = {QI} of subpolygons of P, 

each with property 11", such that their union is P (i. e., UQ, = P). Typical properties 
, 

that are used as 11" are star-shaped, monotone, or convex. The collection Q is ca lIed 

a cover for P. A polygon with a coyer by convex sets is illustrated in figure 1.7. 

Given a specifie property 11", we calI the polygon covering problem that uses prop

erty 'Ir the 11" cover prohlem. For instance, the polygon coyer problem with 11" being 

"convex" is known as the convex cover problem. 

A partition is a coyer where no two of the covering objects overlap. A minimum 

partition of a polygon will therefore always have the same number of or more pieces 

than a coyer of that polygon. However, we will show that over aIl polygons with n 
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Figure 1.7: A polygon with a convex royer 

vertices, the maximum size of a minimum 1f' cover is the same as the maximum size 

of a minimum 1f' partition. 

It is weIl known that the maximum size of a convex coyer of a polygon is n - 2, 

and the same bound holds for convex partition. For star-snaped cover and partition, 

the bound is ln/3J [C75][F78J. The problem of computing the minimum convex coyer 

of an input polygon has recently heen shown to be NP-hard [CR88] [888b]. The same 

is true of minimum star-shaped covers [LL86J [A84]. However, the minimum convex 

partitwn problem can be solved in polynomial time [CD85]. 

1.6 The Art Gallery Problem 

A polygon-guard class is a collection of regions in a polygon. A guard class C is a 

function which for every polygon P maps ta a polygon-guard class C(P). Typical 

guard classes are the ones where C(P) consists of the vertices of P, the points of P, 

aH line segments in P, aU diagonals of P, or aU star-shaped regions in P. 

A guard class C is said ta contain another guard class V (written C 2 V or V ç C) 

if, for every polygon P, every member of V(P) is a suhset of sorne member of C(P). 

For example, if we let C(P) be aU of the chords of P, P(P) he aH of the points of P, 
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and V(P) be aU of the vertices of P, then V ç P ç C, as each vertex of a polygon is 

a point of the polygon, and each point in the polygon is contained in sorne chord. 

The art gallery problem (see [087]) is: given a polygon P and a guard class C, 

what is the minimum cardinality 9 of a subset G of C(P) such that every point in P is 

in the visibility polygon of at least one element of G? For Lrvisibility, this problem 

has been shown to be NP-complete for vertex, point, and edge guards [LL86][A84J. 

However, exact bounds on g(n), the maximum size of 9 over aIl polygons of n 

vertices, have been shown for vertex and point guards (g(n) = Ln/3J) [C75] [F78], 

and diagonal, line segment, and convex guards (g(n) = ln/4J) [083a). For orthogonal 

polygons, bounds for vertex and point guards (g(n) = ln/4J) [KKK83], and line 

segment and convex guards (g(n) = L(3n + 4)/16J) [A84] have also been shown. 

Given a property 7r, we let C1f"(P) be the collection of all subregions of P with 

property 7r. Then, the 7r coyer problem can be viewed as the art gallery problem 

using C1f" and Lo-visibility. AIso, we can view the art gallery problem as a special case 

of the covering problem in that we are required to coyer the polygon with visibility 

polygons. 

In this thesis, we will be dealing mostly with the following two guard classes: 

Ck = cLk-convex, and Tk = C\ where 7r is the property of being the vertices of a 

Dk-tree in sorne triangulation (of the polygon P). 

1.7 Hidden Sets 

A hidden set is a set of points in a polygon such that no two points in the set are 

visible to each other [887]. A hidden vertex set is a hidden set which contains only 

vertices of the polygon. The maximum size of the hidden set (or hidden vertex set), 

over aIl polygons with n vertices, using LJ-visibility, is denoted h;(n). A (L1-visibility) 

hidden set is shown in figure 1.8a. 

Hidden sets are known in the mathematics literature as vlsually mdependent sets 

[KG701 [B76). Another related concept from the math literature is that of k-convexity 

(or property Pk)' A region is said to be k-convex if it has no hidden sets of size k or 

greater. Thus, convex sets are the same as 2-convex sets. 



-

CHAPTER 1. INTRODUCTION 9 

Figure 1.8: Hidden set and hidden guard set 

A hidden guard set is a hidden set which is also a guard set. A hidden guard set 

is shown in figure 1.8b. Whereas every polygon adrnits a hidden guard set, we will 

see that not every polygon admits a hidden vertex guard set, which is a hidden vertex 

set that is also a guard set. 

1.8 Point Visibility Graphs 

We now introduce a structure which lends insight into the relationship between the 

guard set, hidden set, hidden guard set, and "link-distance" problems: the point 

visibility graph of a polygon. 

Given a polygon P, we define the pomt Vislbllity graph of P, denoted PVG( P), as: 

PVG(P) = (Vp, Ep), where 

Vp - {p 1 pEP} 

Ep = {[P,qll p,q EPand p sees q} 

Note that this is an infinite graph, as the number of points in a polygon is infinite. 

(This graph may also be called a continuous graph, in the sense defined in [N-W73]). 

We hope that the reader will not mind the abuse of notation inherent in the ab ove 
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definition (we use p to refer to both a point in P and a vertex of PVG(P), and 

similarly abuse [p, q]). 

Without explicit reference to point visibility graphs, many of the properties of 

these graphs have been studied [BB64] [LPS87} [S86a]. For example, the distance of 

two vertices p and q of PVG(P) is the link-distance of p and q in P. This means 

that any graph properties derived from (Iistances have their link counterparts: the 

diameter of PVG(P) is the link-diameter of P, the radius of PVG(P) is the link

radius of P, the eccentricity of vertex p in PVG(P) is the link-eccentricity of pin P 

(also known as the covering radius), and the center of PVG(P) is the link-center of P. 

Also, a vertex-dominating set of PVG(P) is a point guard set of P, an independent 

set of PVG( P) is a hidden set of P, an independent vertex-dominating set of PVG( P) 

is a hidden guard set of P, and a maximal clique of PVG( P) is a maxima~ convex 

subset of P. 

Another structure of interest is the vertex visibility graph of P, denoted VVG( P), 

also known simply as the viszbility graph of P. This is the subgraph of PVG(P) which 

is induced by the vertices of P. Several papers have appeared on characterizing, 

recognizing, and computing visibility graphs [E85] [E89] [G86] [H87] [W85] [0\V88] 

[KM88], and on applications of these graphs [AE83] [SH79]. A similar structure is the 

edge vzsibility graph, which has a vertex for every edge of the polygon, and an edge 

between two vertices if there are points on the corresponding edges which are visible. 

A survey of the use of these different types of visibility graphs can be found in [T88J. 

1.9 Triangulation 

One of the major ta ols that we will use in this thesis is polygon triangulation. A 

polygon triangulation is a division of a polygon Pinto triangles such that there is 

no vertex in any triangle that is not a vertex of P. The edges of the triangles thus 

formed are either polygon edges or diagonals. 

It is weIl known that every polygon can be triangulated (see, for instance [087]), 

and sorne polygons may in fact have sever al triangulations. An ex ample of a polygon 

with a triangulation is shown in figure 1.9a. 
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j 

Figure 1.9: A triangulation and its dual tree 

Given a polygon P with a triangulation, a triangulation graph is the plane graph 

formed by letting the vertices of the graph be the vertices of the polygon J and connect

ing two graph vertices if their corresponding polygon vertices share a triangulation 

diagonal or a polygon edge. The triangulation graph is the graph whose drawing 

results from drawing the polygon and the diagonals of a triangulation. For example, 

the drawing of the triangulation in figure 1.9a is also a drawing of its triangulation 

graph. The cIass of triangulation graphs is known to graph theorists as the class of 

maxzmal outerp/ane graphs. 

Each triangulation graph has a unique Hamiltonian cycle, which corresponds to 

the edges of the polygon. We use the term cycle edge to rder to an edge in this 

hamiltonian cycle. 

A triangulation graph lS said to be dominated by a subset V' of its vertices if 

every triangle of the graph has at least one of its vertices in V'. \Ve also say that 

a triangulation graph G is dominated by a subgraph (or a collection of subgraphs) 

of G if the vertices of the subgraph (or collection) dominates G. We will show that 

dominating a triangulation graph of a polygon is c10sely related to Ll-guarding that 

polygon. 

The dual tree of a triangulation T is the graph which has one vertex for each 
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triangle in T, and has an edge between two vertices if the two corresponding triangles 

share an edge. A sample dual tree is shown in figure 1.9b. 

1.10 Organization of the Thesis 

Throughout the text, we will use the variable j for the number of links in the visibility 

that we are using, and the variable k for the link-diameter of regions (gen~rally 

subpolygons) under consideration. 

The remainder of the thesis is organized as follows: 

The following chapter (the second) is a review of the relevant mathematics and 

computer science literature. 

The third chapter contains lower bounds on the maximum size of maximum hidden 

sets, minimum guard sets, and minimum polygon covers. Bounds are given for both 

polygon interiors and polygon exteriors. 

The fourth ché\.pter contains proofs of matching (for the interior) and almost

matching (for the exterior) upper bounds for the lower bounds presented in the third 

chapter. 

In the fifth chapter, We show that most of the optimization problems associated 

with polygon covers, guard sets, and hidden sets are NP-hard. 

The sixth and final chapter is the conclusion . 
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Chapter 2 

Review 

This thesis has its root in, and was inspired by, recent work in art gallery theorems. 

Art gallery theorems are so called because of the metaphor where one considers a 

polygon the floor plan of an art gallery in which all of the walls (and floor!) are 

covered with valuable artwork. One then asks the question: what is the fewest number 

of guards necessary to place in the art gallery such that there is no piece of artwork 

(point of the polygon) that is not seen by at least one guard? 

This metaphor of polygon as room (or as art gallery) can be traced back at least 

40 years. We find, for example, the following quote from [YB61]: 

Imagine a painting gallery consisting of several rooms connected with 

one another whose walls are completely hung with pictures. Krasnosel'skii's 

Theorem states that if for each three paintings of the gallery there is a 

point from which aIl three can be seen, then there exists a point from 

which ail the paintings of the gallery can be seen. 

Art gallery problems, and visibility in general, have been studied by both mathe

maticians and computer scientists. Unless otherwise stated, the visibility used in the 

results discussed in this chapter is L1-visibility. 

13 



( 

CHAPTER 2. REVIEW 14 

2.1 Math Visibility 

The recent mathematical interest in vlsibllity was started by Valentine in his 1953 

paper "Minimal Sets of Visibility" [V53]. In this paper, he characterizes those sets 

who se minimal connected guard sets are unique. In 1957, Valentine introduced a 

new generalization of convexity which inspired many mathematicians ta consider 

visibility [V57]. Given our terminology, this generalization can be understood as 

follows: convex sets have a hidden set of size at most one; Valentine considered (and 

characterized) sets which have a hidden set of size at most two. These sets were 

further studied by Juul [J77]. Later invest;gators exarnined sets with hidden set of 

size at most m [KG70] [GK71] [B76] [BK76], and even further generalizations (which 

we will not detail here) [B73]. 

Horn and Valentine started mathematicians working on LJ-convex sets, in a pa

per which characterized planar L2-convex sets [HV49]. Later work includes a paper 

by Breen about L2-convex sets which are visible from a convex set [B77], a paper 

by Bruckner and Bruckner on the LJ-kernel (link center) of a set [BB64], a paper 

by Valentine on reflex points and LJ-convexity [V65b] , and a paper by Sparks on 

intersections of maximal LJ-convex subsets of other sets [S70]. 

Covering has also been considered in the mathematics literature. There are many 

papers on sets which can be covered by two convex sets [SM63] [M66] [J77]. AIso, 

covering and partitioning has been studied for sets with a bounded maximum hidden 

set size [B76] (BK76]. Other work has been done on covering with star-shaped sets 

[HK68] [KM66]. 

2.2 Art Gallery Results 

It was a mat hemat ici an , Victor Klee, who finally got a computer scientistjgraph 

theorist, Vasek Chvâtal, interested in guarding problems. In 1973, Klee posed the art 

gallery question ta Chvâtal, who solved the problem, finding tight bounds on g(n) for 

point and vertex guards. As a large portion of this thesis is devoted to generalizing 

this result, we review bath the result and its pro of. 
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Figure 2.1: (Chvatal) Comb polygons 

Theorem 2.1 (Chvatal 1975) For any mteger n ~ 3, Ln/3J pomt or vertex guards 

are sometimes necessary and always sufficient to guard a polygon with n vertices. 

PROOF The "comb" polygons, as illustrated in figure 2.1, are polygons requiring 

Ln/3J such guards; each upward spike on the comb requires its own guard. One can 

easily generalize the polygons shown to polygons of arbitrarily high n with L n/3 J 
spikes. Thus, Ln/3J point or vertex guards are necessary for sOlTle polygons. 

To prove that this rnany are sufficient, we assume that we are given a polygon P 

with n vertices. First, triangulate P to get a triangulation graph T. Next, dominate 

T (by vertices) and place guards at each vertex in the dominating set. As each point 

of P is in sorne triangle of T, and each triangle has a vertex in the dominating set 

(and, therefore, in the guard set), each point will be visible to sorne guard. We now 

need only show that the triangulation graph T can be dominated by L n/3 J vertices. 

The proof is by induction. The induction basis is n :::; .5; any triangulation graph 

with 5 or fewer vertices (3 or fewer tnangles) has one vertex which is Incident on aIl 

triangles. The induction hypothesis is that l n' /3 J vertlces suffice to domillate any 

triangulation graph of n' < n vertices. We wish to show that l n/3 J suffices for n > 5. 

First, find a diagonal D = [a, bJ that cuts the tnangulatIOn graph into two pleces, 

one of which has between 3 and 5 triangles, inclusive (such a diagonal always exists, 
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c 

Figure 2.2: Cases in proof of Theorem 2.1 

and we will prove a generalization of this statement later in the thesis). Let Cl be 

the part of 3-5 triangles, and G2 be the other part. 

case 1: G 1 has ail triangles incident on sorne vertex v. 

In this case, we dominate G2 by induction (with at most L(n - 3)/3J = 
ln/3J - 1 vertices), and place v in the dominating set. This gives a total of 

at rnost L nl3 J vertices. 

case 2: G I has four triangles, as pictured in figure 2.2a. 

Let U be the triangle of Cl containing D, and c be the vertex of U not on 

D. Dominate G2 + U with at most L nl3 J - 1 vertices hy induction. Either 

a, b, or c must he in the dominating set of G 2 , eise U is not dorninated. If a 

is in the dorninating set, then place b in the set as weIl. Similarly, if b or c is 

in the set, place a in the set. In either case we have added only one vertex 

to the doIT1Ïnating set, aud G 1 is dorrJnated. Hence, we have dowjnated G 

with at most Ln/3 J vertices. 

case 3: Cl has five triangles, as pictured in figure 2.2h. 
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Again, let U = 6.abc be the triangle of al containing D, and dominatc 

G2+U with at most ln/3J -1 vertices by induction. If a is in the dominating 

set, place b in the set. If b l~ in the domlllatll1g set, place a ill the !-let. lf c is 

in the domindtmg set, remove It and place a and b III the !let. III any case, W(> 

have added one vertex and dommated al- A150, rcmoving (' and rq)lacing it 

with a and b does not affect any of the tnangles in G2 . Thcrefort', w<, have 

dominated G wlth at most ln /3 J \crtices. 

case 4: G I has fi"e trIangles, as picturcd in figure 2.~c. 

Let U = 6abc be the t.riangle of G\ (olltallling D, V = 6.bcd he the 

adjacent triangle as plctured, and dominatc G'l+U+V with al most lll/:JJ-1 
vertices by induction. One of b, c, and d will be III the dommatmg set. If c 

is in the dominating set, then place b in the set. 1f b or d is in the set, place 

c in the set. In either case we have added only one vertex tü the dominating 

set, and al is dominated; we have again dorninated a with at most ln/3J 
vertices. 

As the above are the only possible cases, wc have shown that l n/3 J vertices 

suffice to dominate a triangulation graph, and hence l n/3 J verticcs sufIice tü guard 

a polygon. 0 

Fisk later found a more elegant proof of this theoiem, by 3-colormg the trian

gulation graph, and placing guards on verticCl> which were colored wlth the least 

frequently used color [F78J. 

Later, Toussaint considered the problem of finding bounds on the number of guards 

when the guards are allowed to patrol fixed line segments or edges, a.nd showed that 

ln/4J edge guards were sometimes necessary, and also conJecturcd the ~llfIicicncy of 

this number. O'Rourke proved slâficiency for linc segments [OS:1aJ; his ploof is an 

e»tenslOn of the methor.l of Chvata 1. 

Theorem 2.2 (O'Rourke 1983) For any mtcger n 2: 4, ln/4J vertcx-pazr, dzago

nai, or [me segment guards are somctmtc!.t neccssanj and a/ways s!tfJiczcnt Iv guara a 

polygon wzlh n verlzccs. 
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Figure 2.3: (Toussaint) Necessity for mobile guards 

A vertex-palr guard is a pair of LI-visible vertices. 

PROOF The polygon class illustrated in figure 2.3 are polygons requiring l n/4 J such 

guards; each arm on the polygan requires its own guard. One can easily generalize 

the pictured polygons ta polygons of arbitrarily high n with ln/4J arms. Thus, ln/4J 
such guards are necessary for sorne polygons. 

We only sketch the sufficiency proof. Assume that we are given a polygan P ",Vith 

n vertlces. First, triangulate P to get a trianguIrtt.ian graph '1'. Next, dominate T 

by edges (more precisely. by units of two vertices connected br an edge), and place a 

guard at the geometric location for each unit in the dominatipg set. As each point of 

P is in sorne triangle of T, and each triangle has a vertex in a unit in the dominating 

set. each point will be vIsible ta SOffi(: guard. Vve now need anly prave that thE' 

triangulation graph T can be dominated by ln/4J sUl:h units. 

The proof is by induction. The induction basis is 11. ~ 7; any triangulation graph 

with 7 or fewer vertices (5 or fewer :riaIlgles) has one edge which is incident Oll a.11 

triangles (D'Rourke proves this by a lengthy case analysis). The inductIOn hypothesis 

is that l n' /3 J vertices suffire to dominate any tri::tngulation grapn of n' < n vertices. 

We wish to show that ln /3 J suffices for n > 7 . 
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First, find a diagonal that cuts the triangulation graph into two pieces, one of 

which (called Cd has between 4 and 7 triangles, inclusive; let C2 be the other piece. 

Such a diagonal always exists. 

If Cl has 4 or 5 trIangles, then induction can be appiJed to bot.h G I and G2, to 

get at most 1 + l(n - 4)/-iJ = ln/4J guards. 

If G l has 6 or 7 triangles, then the result is proved by a long case analysis based 

on the structure of GI , sirnilar to the analysis given III the proof of Theorem 2.1. 0 

2.3 Art Gallery Variants 

Many variations on the art gallery problem have been investigated; O'Rourke has 

written a book which covers most of them [087]. The most notable variations are 

those in which the class of regions investigated has been restricted, expanded, or 

changed. Typical work concentrates on star-shaped polygons, monotone polygons, 

spiral polygons, orthogonal polygùns, polygons with holes, or polygon exteriors. 

Star-shaped, monotone, and spiral polygons are restricted polygon classes which 

often arise in practice; and consideration of these cla,sses has led to sorne interesting 

theorems (see [087]). However, the study of visibility in these classes of polygons is 

not in the scope of this thesis. 

Orthogonal polygons also often arise in practice. An orthogonal polygon is a 

polygon in which the edges alternate between hOrIzontal and vertical. In [KKK83], 

Kahn, Klawe, and Kleitman proved that ln /4 J vertex or point guards are necessary 

and sufficient for orthogonal polygons; in [A84], Aggarwal proved that l (3n + 4) /16 J 
li!1e segment guards are necessary and sufficient. In thls thesis, we do not consider 

orthogonal polygons, but we note that our method applies to orthogonal polygons 

when the diameter of the guard;ng object is even (such as 0 in the vertex guard case), 

but IlOt when it is odd. Thus, we can generalize Kahn, Klawe, and Kleitrnan 's result, 

but not Aggarwal's. 

Another variant that has been consldeled are polygons wIth holes. In this problem, 

we attempt tca guard regions which are polygons with subpolygons subtracted. We 
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let h denote the number of hales, and consider point or vertex guards. Shermer has 

shawn that there are polygons requiring L (n + h) /3 J, and O'Rourke proved that no 

polygon could require more than l( n + 2h) /3 J. For h = l, it has been shown that 

l(n + 1)/3J suffice [S84] [S85]. Aggarwal, O'Rourke, and Shermer have also done work 

on orthogonal polygons with orthogonal holes; this and the other work on polygons 

with holes is summarized in [087J. 

\Vork has also been done on guaràing polygon exteriors. Here, O'Rourke and 

Wood have shown that r n/21 vertex guards are necessary and sufficient. Also, Ag

garwal and O'Rourke proved that r n/31 point guards are necessary and sufficient, 

and Shermer has a simpler proof of this result showing that at most two of these 

point guards need to be located at points which are not vertices of the polygon (see 

[087]). In this thesis we will not generalize these results, but we will generalize 

O'Rourke's slight.ly weaker result that r(n + 1)/31 point guards are sufficient for a 

polygon exterior. 

2.4 Computational Complexity 

Lee and Lin have shown that determining the minimum number of vertex (or edge) 

guards necessary to guard a given simple polygon is NP-hard [LL86]; Aggarwal has 

generalized this proof to point guards (or star-shaped caver) [A84]. AIso, Culberson 

and Reckhow have shawn that determining the minimum number of convex subsets 

neœssary to cover a polygon is NP-hard [CR88] (see [S88b] for an independent proof 

of this result). Previously, O'Rourke and Supowit had shown that these problems are 

NP-hard for polygons with hales [OS83]. 

In [S87], Shermer showed that many of the problems associated with hidden sets 

in polygons are difficult: computing the size of the maximum hidden set or hidden 

vertex set is NP-hard; cornputing the size of tbe minimum hidden guard set is NP

hard; determining if a polygon has a hidden vertex guard set is NP-complete; and 

computing the size of the minimum hidden vertex guard set is NP-hard, even if it is 

known that the polygon has a hidden vertex guard set. 
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2.5 Algorithms 

A fair amount of work has been done on computing link-distance properties. Suri has 

given an algonthm for computing the link-distance between two points in a polygon; 

this algorithm runs in O( n) time, given a triangulation of the polygon [S86aj. Suri has 

also given an O( n log n) algorithm for computing the link-diameter of a pOlygOll (the 

smallest ) such that the polygon 18 L}-convex) [S86bl. The problems of computing 

the link-center and link-radius of a polygon we!'e considered in [LPS87], where an 

O(n 2) algorithm is given for both problems. This time was improved to O(n logn) 

(for both problems) whiie thl8 thesis was in preparation [K89j. 

Although the minimum convex cover problem for a polygon is NP-hard, Chazelle 

and Dobkin have shown that the minimum convex partltzon problem for a polygon can 

be solved in O(n 3 ) [CD85]. Shermer gives O(n) algorithms for recognizing polygons 

which can be covered by two convex polygons and polygon8 which have a maximum 

hidden set of size two [S88cl. 

Several papers have appeared on the guard placement problem: find a set of guards, 

with the number of guards not exceeding the worst-case bound. for a given polygon. 

A vis and Toussamt first showed that the (point or) vertex guard placement problem 

for simple polygons can be solved in O(n log n) time [AT81aj. This can now be do ne 

in O( n log log n) time using the trapezoidizationj tnangulatlOn algorithm of Tarjan 

and Van Wyk [TV88], and imitating the art gallery proof of Fisk. Two papers 

exist which give O( n log log n) algorithms for vertex guard placement in orthogonal 

polygons [EOW84] (as modified in [087]) [ST881. The quadrilateralization algorithm 

of Lubiw [L85] leads to a.n O( n log n) algorithm for this problem. 
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Lower Bounds and Existence 

3.1 Hidden Sets, Covering, and Guarding 

We devote the first part of this section to the proof and corollaries of a lower-bound 

theorem for hidden sets in polygons; these results will show the close relationship 

between hiding, covering, and guardillg. The section ends with sorne special-case 

bounds for L}-visibility. 

Theorem 3.1 For any integers j ;:::: 0 and n ;:::: j + 1, there exist polygons with n 

vertices that 

(a) have a L1-hidden vertex set of size ln/{j + l)j, and 

(b) require at least ln/U + 1)j regions in any covering or partition by L1-convex 

regwns. 

PROOF The polygon class illustrated in figure 3.1 consists of such polygons. Figure 

3.1 shows representatives for each j, for j between 0 and 9, inclusive. The hidden 

set for the j = 0 example is the entire vertex set, and for the rest of the polygons, 

the hiddeu set is the set of vertices with acute angles at the end of the spiral "arms." 

Thus the hidden vertex set is of size ln / (j + 1) j . 
To get representatives for higher j, simply increase the nurnber of turns on the 

spiral by an appropriate arnount. To get representatives for other n, change the 

22 
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j=O j = 1 

j=2 j = 3 

j=4 - - - - j=S 

r r r r j = 7 

j=8 

Figure 3.1: lllustrating Theorem 3.1 

J 
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Figure 3.2: lncreasing n 

number of spirals on the polygon. For example, figure 3.2 shows representatives for 

n = 15, 20, and 25, for J = 4. Note than for values of n which are not multiples of 

j + 1, we can construct polygons by simply subdividing the appropriate number of 

edges of the polygon for the greatest multiple of j + 1 less than n. 

Let P be a polygon with a L)-hidden set of size Ln/(j + l)J. If P were coverable 

with fewer than ln/{J + l)J LJ-convex regions, then sorne region would contain two 

members of the hidden set, implying that these two members were link distance 

(at most) ) apart. This means that these two members of the hidden set are L)

visible, which is a contradiction. Therefore, P requires at least l ni (j + l)j regions 

in a covering by LJ-convex regions. The bound holds for partitions as weIl, as every 

partition is also a covering. 0 

Corollary 3.la For any integers j ~ D, k ~ 0, and n ~ k + 2j + l, and any guard 

class C such that C ç Cie, using LJ-visibility, there exist polygolls with n verlices 

requiring l n/ (k + 2j + l)J guards. 

PROOF We daim that VPAR), where R E C(P), is LIe+2J-convex. Take any two 

points x and y in VPJ(R). The point x is LJ-\;sible to sorne point p in R, as it is in 
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'VP) (R). SiJTIJlarly, y is L)-vislble to some point q in R. SInce R E C(P), and C ç Lie, 

the link distance between p and q is at most k. Thcrefore. there is a path from :r to p 

to q to y that consists of at most ) + k +) = 2) + k lInks Sinee.r and y were ehosen 

arbitrarily in VP)(R), the daim follows. By the clalm and Theorem 3.1(b), Wf' have 

that there exist polygons reqUiring Ln/(k + 2) + I)J guards, for) 20 and k 2 0 0 

Corollary 3.1 b For any zntegers) 2:: 0 and n 2: ) + 3, there eXlst polygon tnangu

latlOn graphs wzth n ver/tees havmg a d,stanee-) mdependent set of Slze ln/{) + l)J. 

PROOF Theolem 3.1 states that some polygon P exists with a L)-hidden vertex 

set H of size Ln/() + I)J. Let T he the triangulation graph of any triangulation of P. 

We daim that H is a distance-J independent set in T. If this were not the case, then 

there would exist some vertices hl and h2 in H such that there IS il D)-path from hl 

to h2 in T. As LUt: geometric emheddings of each of the edges of a triangulation graph 

of a polygon is contained in the polygon, the D)-path defines a link-) path from hl 

to h2 in P. This contradicts the definition of H, therefore the daim holds. 0 

Corollary 3.1e F(jr any integers k 2:: 0 and n 2:: k + 3. there eXtst polygon tnan

gulatlOn graphs wlth n vertlces that cannot be dommated by fewe1' than ln/{k + 3)J 

D k -subgraph.<'. 

PROOF By Corollary 3.lh, there exists sorne triangulation graph T with a distance

(k + 2) independent set H of size ln/(k + 3)J. For each element h of H, we let S(h) 

he sorne triangle of T containing h, and 5 = U S(h). S therefore has ln/(k + 3)J 
heH 

members. 

We clalm that no Dk-subgraph of T can dominate more than one member of 5' If 

this were flot the case, then there would be two members S{ hd and S( hl) of S su<..h 

that tbere is a patb of distance at most k between a venex VI of S( h d and a vertex 

V2 of S{h 2 ). As the distance from any h to any vertex of S(h) tS at most 1. therp 15 

sorne path from hl to VI to L'2 to h2 of a.t most 1 + k + 1 = k + 2 edges Sillet' thls 

contradÏ<'ts the defillltlOil of H. the daim holds. 
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Figure 3.3: Spiral polygons with 3 convex vertices 

As there are ln/{k + 3)J members of S, and no two members can be dominated by 

one Dk-subgraph, T cannot be dominated by fewer than Lnj(k + 3)J such subgraphs. 

o 

The following two theorems are bounds for hidden sets using L1-visibility. 

Theorem 3.2 For any mteger n > 3, there exist polygons with n vertices having a 

L1-hzdden set of size n - 2. Furthermore, there do not exist polygons of n vertices 

having a Ll-hidden set of size greater than n - 2. 

PROOF The spiral polygons with three convex vertices, as shown in figure 3.3, are 

such polygons. The hidden set is the set of midpoints of the edges on the reflex chain. 

No polygon could have a hidden set of size greater than n - 2, as every polygon 

can be triangulated (divided into n - 2 triangles), and each triangle can only contain 

one member of a hidden set. 0 

The previous theorem strengthens the result of Theorem 3.1 for L1-visibility. 
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3.2 Hidden Guard Sets 

We now conslder hidàen gllard sets, where the guards may be on any point in the 

polygon. In the next section we will see that the hidden vertex g11ard set problt>rn is 

much more complica.t,~d. We start by showing that evl:.fy polygon ha:; é.\ hidden gurt.rd 

set. 

Theorem 3.3 For any mteger J > 0, polygon P, and L1 -hldden 5e1 Ii CP, there iS 

a LJ-hzdden guard set S for P whzch contazns H. 

PROOF The following procedure generates such an S. First, let S = Il. Reped.tedly 

add points to S: a.t each step, adct any point of P that is not seen (llsing L)-visibility) 

from sorne point of S. Continue this l111tij there are no such points left (i.e ... S is 

a guard set for P). At each step in the construction, S is a.iso a hldden set. This 

implies that S is finite, and thus the given procedure terminate3. Therefore the final 

S is a hidden guarà set. 0 

Theorem 3.4 For any mtegers} > 0 and n ;:: 6) 1 there eXlst polygons wtth n vertices 

wzth a mmzmum LJ-hidden guard set of Slze l n/2j J - 1. 

PROOF The LJ-spur polygons (shown in figure 3.4 for J = 1, n = 8 and 12, and 

j = 4, n = 24 and 40) are such polygons. In each polygon, there are n/2j spiral arms, 

thus there are n/2j vertices at the ends of spiral arms. Only guards placed in the 

the central region can be L)-visible to more than one such end vertices. The spurs 

are constructed 50 that at most one (hidden) g1..tard tan be in this central region, and 

this guard will see at m05t. two end vertices. Each other end vertex will require one 

guard; therefore these polygons require n/2} - 1 hidden guards. 0 

3.3 Hidden Vertex Guard Sets 

In this section, we investigate and find bounds on hidden vertex guard seLs in poiy

gons. The first question that must be addressed is whether or not a given polygon 
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Figure 3.4: L1-Spur polygons 
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Figure 3.5: Polygons with no hidden vertex guard set 

has a hidden vertex guard set. Surprisingly, there are polygons for which no hidden 

vertex guard set exists. 

For example, neither of the polygons in figure 3.5 has a hidden vertex guard 

set. Consider figure 3.5a. Since guarding all of its extreme vertices does not cover 

the entire region, one of the interior vertices must be guarded (if this polygon is to 

admit a hidden vertex guard set). No more than one interior vertex can be guarded, 

however, as aU interior vertices see one another. Guarding any interior vertex will 

leave two opposing triangles (and possibly sorne other region, whose guarding will not 

affect these triangles) as shown in fi .... lfe 3.6: Since guarding neither Va nor Vb covers 

both triangles, and Va and Vb cannot both be guarded at the sëme time (they see one 

another), the polygon in figure 3.5a does not admit a hidden vertex guard set. 

A similar argument holds for the polygon in figure 3.5b: to see the center point, 

one of the central four vertices must be guarded, but this leaves a triangle-pair as in 

figure 3.6. 

We note that figure 3.5a is both star-shaped and monotone, and that figure 3.5b is 

orthogonal; therefore these classes of polygons (star-shaped, monotone, or orthogonal) 

do not always admit hidden vertex guard sets. 

Spiral polygons, however, always admit hidden vertex guard sets; every other 
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Figure 3.6: Opposing triangles 

vertex of the reflex chain is such a set (see figure 3.7). 

Since we know that sorne polygons do not admit a hidden vertex guard set, and 

sorne do, it is natural to ask whether or not there exists a good algorithm to determine 

whether a given polygon admits a hidden vertex guard set or not. This problem has 

been shown NP-complete in [S87]. 

Note that Theorem 3.3 implies that any maximal LJ-hidden set for P is also a LJ

guard set for P. We can aIso show the following interesting analog of this statement 

for L)-hidden vertex sets: 

Theorem 3.5 For any mteger j ;?: 0, and any polygon P, any maximal LJ-hidden 

vertex set for P is also a L)+l-guard set for P. 

PROOF Let H be a maximal L)-hidden vertex set for P, and p be a point in P. 

Then, p is LI-visible to some vertex v of P, as it is contained in sorne triangle of sorne 

triangulation of P. If v is in H, then pis Lrvisible, hence L;+l-visible, to a member 

of H. If v is not in H, then there must be som~ element tIJ of H that is L)-visible 

to v, else v could be added to H, implying that it is not a maximal LJ-hidden vertex 

set. The )-link path from w to v followed by the segment from v to p is a J + l-link 

path from w to p. Thus, p is LJ+I-visible to an element of H. 
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Figure 3.7: A hidden vertex guard set in a spiral polygon 

As p was chosen arbitrarily, any such H will be a LJ+l-guard set for P. 0 

3.4 Polygon Exteriors 

In this section, we obtain lower bounds on the maximum size of hidden sets, guard 

sets, and covers, for the exteriors of polygons. 

We let C% denote the guard class defined by letting Ct( P) be the collection of all 

Lk-convex sets in the exterior of P. 

Theorem 3.6 For any integers j ~ 0 and n ~ j + l, there exist polygons wlth n 

vertices having an exterior LJ-hldden vertex set of Slze ln/() + l)J. 

PROOF Convex polygons are such polygons; the hidden vertex set consists of every 

(j + 1)-th vertex. 0 

Theorem 3.7 For any integer n ~ 3, there exist polygons with n vertices that 

(a) have an exterior Ll-hidden set of Slze n, and 
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(b) requlre at least n reg10ns zn any covermg or partition oJ the exterior by L1-

convex regzons. 

Furtherrnore, no polygons exist with larger Ll-hidden sets or larger mzmmum covers 

by L1-convex regions. 

PROOF Convex polygons again proviJe the examplej the hidden set consists of the 

midpoints of the edges of the polygon. As no two edge midpoints can be in the same 

Lrconvex region, a partition or coyer by such regions must have at least n regions. 

Also, the exterior of any polygon can be partitioned into n convex regions, using 

the naïve partitioning algorithm of [C80]. This provides the matching upper bound 

for partitions and covers. As no two members of any hidden set can be in the same 

convex region, this provides the upper bound on hidden sets as well. 0 

Part (b) of the above theorem is a well-known result (see, e.g. [087]). 

Theorem 3.8 For any mtegers j > 2 and n ~ j, there exist polygons with n vertices 

that 

(a) have an exterior Lj-hadden set oJ size l(n + l)jU + I)J, and 

(b) require at least l(n + l)jU + I)J regions zn any covermg or partition of the 

exterior by LJ-convex regions. 

PROOF The polygon class shown in figure 3.8 consists of such polygons. These 

polygons are derived by taking the polygons of Theorem 3.1 and turning them "inside

out." (This technique is due to O'Rourke and Aggarwal.) 

The hidden sets are shown in the figure, and the covering result is proved in the 

same manner as the covering result of Theorem 3.1 was proved. 0 

Corollary 3.8a For any integers ) ~ 0, k > 0, and n ~ k + 2j ~ 2, and any guard 

class C such that C ç .ct, usmg L}-visibility, there exist polygons with n vertices 

requiring l(n + l)j(k + 2j + 1)J extenor guards. 

$ & 
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Figure 3.8: Illustra.ting Theorem 3.8 
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PROOF This is proved from Theorem 3.8 in the same manner as Corollary 3.la was 

proved from Theorem 3.1. 0 

We note that this bound does not match the tight bound of l(n + 2)j(k + 2j + 1)J 

= l(n + 2)j3J for the j == 1, k == 0 case. However, 'Ne feel that j = 1, k = 0 is a 

special case in that it is the only case for which the exterior of a convex polygon (or 

the exterior of the hull of a non-convex polygon) requires two guards. We expect that 

the bound of Corollary 3.8a will be tight in all other cases. 
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Chapter 4 

Upper Bounds 

In this chapter we obtain upper bounds on hidden set, guard set, and polygon coyer 

sizes, in polygon interiors, that are the same as the lower bounds presented in the 

previous chapter. In particular, we will prove the following general covering/guarding 

theorem: 

Theorem 4.1 For any guard class C such that 1ic ç c ç .ck , wzth k ~ 0 and) > d, 

l ni (k + 2j + l)J guards of C are necessa7'Y (for sorne polygon) and sufficient (for all 

polygons) to guard polygons with n vertices, usmg L}-vzszbility. 

This theorem unifies and generalizes the known guarding results. We aiso use it 

to obtain similar alrnost-light bounds for polygon exteriors. We prove our theorem 

by generalizing the known art gallery proofs for simple polygons; these proofs were 

reviewed in chapter 2. Our generalization is not compietely straightforward as there 

are several complexities introduced by the generalized dominating objects (Dk-trees) 

that we use. 

These complexities necessitate two major differences between the known proofs 

and our proof. The first of these is that the induction strategy is altered. Previously, 

the proofs proceded in the following manner: 

(1) Find a cutting diagonal D, dividing the triangulation graph G into a main 

piece Gland a smaU piece G 2. 

35 
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(2) Based on the number of triangles in G2, either: 

(2a) Simply combine inductive dominating sets for GI and G2 to get a dom

inating set for G, or 

(2b) (2bl) Add sorne of the triangles in G2 to G 1 to get G I '. 

(2b2) Inductively generate a dominating tree set for Cl" 

(2b3) Based on the inductive dominating tree set of GI ' , find a domi

nating set for G 2 (and G). 

In our proof, we change step (2bl) above to: 

Perforrn an edge-contraction of D in Cl to get G I '. 

This modification is not trivial, as the new induction does not always use sub

graphs of our original graph, hence the inductive dominating tree sets may not be tree 

sets in our original graph. However, the changed induction simplifies the subsequent 

analysis; the original style of induction does not lead to a clean proof of our theorem. 

The second major change is required because of the difference in the complexity 

of general trees as opposed to vertices or edges, At a critical point in the proof, it is 

desirable to have zero or one (rather than many) trees Incident on any vertex. For 

k = 0 and k = 1, this is a triviality to enforce: for k = 0, we may throw away any 

duplicate trees (vertices); for k = 1, we may shorten one of any pair of intersecting 

trees (edges) to a vertex. For k> 1, however, no such simple strategy exists, and we 

are instead forced to complicate our proof uy establishing and using a theorem about 

finding nonintersecting tree sets which cover the same vertices as a given intersecting 

tree set (Theorem 4.6). 

We open the chapter with a section containing a simple proof of a tight upper 

bound on hidden vertex sets. Following that, we present the generalization of the 

proofs of Chvatal and O'Rourke. This cornes in four sections: the first contains a 

general polygon cutting theorem, the second contains the theorem on finding non

intersecting tree sets in a graph, the third establishes the maiù theorern (an upper 

bound on the size of dominating tree sets), and the fourth contains important corol

laries of the main theorem. vVe close the chapter with a section of results for polygon 
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exteriors whieh parallel the eorollaries of our main theorem. 

4.1 Hidden Vertex Sets 

Theorem 4.2 For any mteger j > D, there are no polygons w.th a L}-hidden vertex 

set of size larger than ln 1 (J + 1) J . 

PROOF Suppose there wa.~ a polygon with a hidden vertex set H = {Wl" •. , wd, 
where h is larger than lnl{J + l)J (t~lis implies n < h(; + 1)). Furthermore, we 

assume that the w,'s appear in eountcrclockwise order around the polygollj and we 

use the convention that Wh+l = Wl. 

We label eaeh edge with an integer, between 1 and h, sueh that an edge has label 

1 if W/ is the first member of H clockwise around the polygon from the middle of the 

edge. By the pigeonhole principle, we see that there is sorne label 1 sueh that at rnost 

l ni h J edges have label l. This means that between w/ and W/+l there are at ~nost 

l n/ hJ edges. 

Therefore, the link distance between these two members of H is at most ln 1 h J . 
However, ln/hJ < l(h(j + l))/hJ = j + 1, henee ln/hJ is at most J. This means 

that the two elements W/ and W/+l of the hidden set are visible (link-j), which is a 

contradiction. Therefore, there is no sueh polygon, and the theorc,n is proved. 0 

This theorem, combined with Theorem 3.1, establishes a tight bound of ln 1 (} + 1) J 
on the maximum size of a L}-hidden vert.ex set inside (or outside) a simple polygon. 

As the same argument applies to polygon exteriors, we have the following Corol

lary: 

Corollary 4.2a For any mteger j > 0, there arc no polygons with an exterior L}

hldden vertex set of size larger than l n/(j + l)J . 
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4.2 Cutting Diagonals in Polygons 

In this section we present a result which we caU the Cutting Diagonal Theorem. 

Given sorne t, this theorem guarantees the existance, in any triangulation graph of 

sufficient size, of at least one diagonal which cuts off between t and 2t- J triangles. The 

theorem is a generalization of lemmas due to Chvatal [C75] and O'Rourke [083a), and 

our proof mimics their proofs. This theorem finds many uses in recursive algorithms 

and inductive proofs which deal with triangulations. 

After our pro of, we present several coroIlaries, many of wh.ich are known results. 

TheOl~m 4.3 (The Cutting Diagonal Theorem) Given a polygon triangulation 

graph G of n vertices, a cycle edge e of the graph and sorne posztive integer t :5 n - 2, 

there exzsts an edge D of G which separates G inlo two pieces G 1 and o.). (with D in 

both pieces) such that: 

(a) G 1 has between t and 2t - 1 triangles, inclusive, and 

(b) G2 contains e. 

The degenerate case G2 = e is allowed. 

PROOF An edge E divides a triangulation graph G into two pieces G}(E) and 

G2(E), both containing the edge. We use the phrase "piece eut off by edge E" to 

indicate whichever piece (G1(E) or G2(E)) does not contain e. 

Let t' be the minimum number, greater thaa or equal to t, of triangles in any 

pie ce eut off by an edge, and let D be an edge which cuts off a pieœ with t ' triangles. 

Such a D exists, as any cycle edge cuts off n - 2 triangles, and t :5 n - 2. Of the t ' 
triangles eut off, let U be the one containing D (see figure 4.1). We note that t' is 

the sum of the triangles eut off by the other edges of U, plus one (for U). Eaeh of 

the other edges of U must eut off !~ss than or equal to t - 1 triangles (else t ' is not 

minimum). Therefore, t ' ~ 2(t - 1) + 1, \J!' t ' < 2t - 1. 0 

We will use the notation CD(G, e, t) to denotl'> the diagonal D guaranteed by this 

theorem, using G, e, and t as the graph, cycle edgt.·, and integer in the hypothesis. 
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Figure 4.1: lllustrating Theorem 4.3 

We are DOW ready to state sorne interesting corol!aries of the Cutting Diagonal 

Theorem. 

Corollary 4.3a Given a polygon triangulatIOn graph G of n verttces, and sorne pos

~tive integer t ~ n - 2, there exists an edge D of G whtch separates G mto two puces 

GI and G2 (wlth D zn both pzeces) such that GI has between t and 2t - 1 tnangles, 

mclusive. The degenerate case Gt = G is a/lowed. 

PROOF Follows from Theorem 4.3, by choosing any cycle edge edge as e. 0 

Corollary 4.3b Given a polygon tnangulatlon graph G of n vertlces, and sorne pos

itive integer t ~ l(n -1)/3J, there eXlsts edges Dt and D2 of G tllhlCh separate G 

mto three pieces G t , G2, and G3 such that: 

(a) Cl and G3 both have between t and 2t - 1 tnangles, mclusIVe, and 

(b) C2 contains both Dt and Dl' 

The degenerate case C 2 = Dt = D2 is aIlowcd. 
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G2 shawn 

shaded 

Figure 4.2: Illustrating Corollary 4..3b 
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PROOF Let e be any cycle edge of G, and nnd E = CD(G, e, l(n - 1)/3J). E 

divides G into two parts, Hl anrl1l2 • Note that E is a cycle edge of both Hl and H 2 • 

We now consider two cases: 

case 1: There are at least t triangles in each of 111 and H 2• 

This implies that Hl and H 2 have at least t + 2 vertices. Thus, W€ may 

apply Theorem 4.3 to find Dl = CD(Hl! E, t) es.nd D2 = CD(H2 ) E, l). Dl 

divides Hl Into parts Hu and H l2 • with Hil containiug t to 2t - 1 triangles, 

and R l2 containing E. Sim]ary, D2 divides H2 inio parts H21 and H22 • 

Finally, we let G} = Hu, G2 = H12 U H22' and G3 = H 21 • \Ve note tha,t 

C2 is a. single connected piece, as both Hu and H22 contain E. Therefore, 

we have Dl! D2' Cl! G2, and 0 3 satisfying the theorem. The situation ls 

illustrated in figure 4.2. 

case 2: Either Hl or H~ has less than t triangles (without lofois of generality, assume 

H2 has le~5 than t trianglesj. 

By our choice of E as CD(G, e, l(n - 1}/3J), the number of triangles in 

Hl must be 5 2 L( n - 1)/3 J -1. The total number oftriangles is therefore less 
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than t+2L(n -1)f3J-l ~ 3L(n -1}f3J-l. However, 3l(n -1}/3J $ n-l, 

so the total number of triangles is (strictly) less than (n - 1) - 1 = n - 2. 

This is a contradiction, as the number of triangles must be exactly n -- 2. 

Therefore this case cannot happen. 

o 

To state our next corol1ary, we must first generalize the notion of an ear of a 

polygon to that of a k-ear. Recal1 that an ear of a polygon is a vert.ex VI &u(~h thél.t 

the diagonal [Vt-b vl+d intersects the polygon boundary only at its endpoints. A 

k-ear is a colJection of k to 2k - 1 consecutive vertices VI' •• lJ) such that the diagonal 

[VI-l, V1+l] intersects the polygon boundary only at its endpomts. An ear is th,en 

simplya l-ear. 

Corollary 4.3c (The 'Two J..-Ears Theorem) Ev(.ry polygon haB at least two 

nono1ierlapping k-ears, for any posihve mteger k ~ L(n -1}/3J. 

PROOF This follows directly from the geometric interpretation of Corollary 4.3b 

and the definition of a. k ear. o 

The utility of ~he Cutting Diagonal Theorem and the aforementioned corollaries 

is illustrated by the ITlé\ny places in the literature in which we can find special cases 

and weaker versiOllR of lt. The following five corollaries are aH lemmas and theorems 

from published papenJ. 

Corollary 4.3d (!\1eistel's' 1"wo Ear Theorem lM75]) .Every polygon that Z8 not 

a t'riangle has at least two n01101Jcr;apping It;ars. 

This is simply t.he special case of Corol1ary 4.3c: when k ::: 1. 

Corollary 4.3e (Chvatèil [C7S]) Every polygon trzangulatlon graph of at least 6 

vertices has a diagonal which cuts off a piece with 3-5 triangles. 

ThIS is the special case of Corollary 4.3a when t = 3. 
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Corollary 4.3f (O'Rourke [083a]) Every polygon triangulation graph of at least 

10 vertices has a dzagonal which cuts off a pzece with 4-7 triangles. 

This is the speical case of Corollary 4.3a when t = 4. 

CQrollary 4.3g (Avis-Toussaint [AT81a]) Every polygon tnangulation graph has 

a diagonal which cuts off a piece of between ln/4J and l3n/4J vertices. 

This is implied by Corollary 4.3a when ln/3J ~ t ~ ln/4J. 

CoroHary 4.3h (Chazelle[C82]) Every polygon tnangulation graph has a diagonal 

which cuts off a pzece of between l(n - 2)/3J and 2L(n - 2)/3J triangles, incluszve. 

This corollary is actu,)lly only a special case of Chazelle's theorem; his theorem allows 

weights of 0 or 1 on each triangle, and finds a diagonal which makes the weight on 

each side between 1/3 and 2/3 of the total. Theorem 4.3 can be generalized in this 

manner, making an even more general cutting theorem. However, this generalization 

is beyond the purpose and scope of this thesis. 

4.3 N onintersecting Tree Sets 

In this section we present a theorem on finding certain sets of nonintersecting subtrees 

in graphs. Vie first give two lemmas needed in the proof of this theorem. 

Lemma 4.4 Give", a tree T which is a subgraph of a gmph G, perfoTm any fimte 

series of contract7.ons on Gand T to give C* and T* respectively. Then, there zs a 

tree S in G* such that vert(S) = vert(T*) and diam(S) ~ diam(T). 

PROO}' It suffices to prove that the lemma holds for a single contraction, rather 

than a fioite series of them. Repeated application of this proof then yields the lemma 

as stated. 

If the two vertices being contracted are not both in T, or if they are adjacent in 

T, theo S = T* satisfies the lemma. 



1 

1 

CHAPTER 4. UPPER BOUNDS 43 

Figure 4.3: lllustrating Lemma 4.4 

Otherwise, let v and w be the two vertices being contracted, and let v* be the 

new vertex. Also, let r be sorne vertex on the path from v to w in T, and henceforth 

consider T and T* to be rooted at r. Without loss of generality, assume that the 

depth of the subtree of T starting at w is not less than the depth of the subtree 

starting at v: deptb(st(T, w)) > deptb(st(T, v)). Let q be the first vertex (perhaps r) 

on the path from v to r in T (see figure 4.3). 

Then, let S be T* with the edgt> [v* , q] removed. Note that S is a tree, as the only 

cycle of T* is formed by the contraction of the two ends of the path from v to w, and 

the removal of [v", q] breaks this cycle. Note also that this definition of S implies that 

verteS) = vert(T). 

We now check that diam(S) $ diam(T). Let x and y be any two vertices in S. 

Note that verteS) = vert(st*(T, v) U st*(T, w) U rt"(T, [v, w])), therefore x and y must 

each be in one of these three components. We consider all cases. If x and y are both 

in st*(T,v), or both in st"(T,w), or both in rt"(T,{v,w}), then their distance in T 

and in T"are the same, and thus d(x, y) $ diam(T). This IS also the case when one of 

them id in st*(T, w) and the other is in rt"(T, [v, w]). If one is in st-CT, w) and one is 

in st*( T, v), then their distance has decreased (by the distance from v 1.0 w). Finally 

if one of them (without loss of generality assume that it is .r) is III rt-(T, [v, w]), 
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and the other (y) is in 1it*(T,v), then (in tree S), d(x,y) = d(x,v*) + d(v",y) ~ 

d(x, v'") + depth(st(T, v)) ~ d(x, tc) + deptb(st(T, w)) ~ diam(T). Therefore, in every 

case, d(x.y) ~ diam(T) , so diam(S) ~ diam(T). Thus S is a tree satisfying the 

lemma, and the lemma is proved. 0 

Lemma 4.5 Given a set of m nonin.tersectzng trees T = {T,} zn a graph G, perform 

any finzte senes of contractions on Gand T to gzve G* and T* = {Tn 1 respectzvely. 

Then, there is a .;et of m nonzntersectmg trees S = {S,} in G* such that vert(US,) = 

PROOF Once again we need only con si der the single-contraction case. Let v and 

w be the two vertices being contracted, and v· be the new vertex. If v and w are not 

both in trees in T, then S, = T,* satisfies the lemma. If v and w are on the same tree 

(wlog, assume they are both on Td, then let S, ::: T,* for aill < i ~ m, and let SI be 

the tree S guaranteed by Lerruna 4.4 (where the T of Lemma 4.4 is Tl here). This 

choice of S, clearly satisfies the lemma. 

Otherwise, v and w are (wlog) on two trees Tl and T2 respectively, and we will let 

S, = TI'" for ail 2 < i ~ m. Assume Tl and T2 are rooted at v and w. 

Let PI,P2,'" ,pp be the vertices of Tl adjacent to v in Tb and q},q2,'" ,qQ 

be the vertices of T2 adjacent to w in T2• Furthermore, choose pp such that 

depth(st(T1,pp)) ~ deptb(st(TlIPI)) for aUl ~ t < P, and similarly choose qQ. Let 

bt l be st(Tl , pp) and /t l be U(st(TI,p,) U [v,p,])). Similarly define bt2 and lt 2• Note 
,<p 

that depth(ltt} ~ diam(Td/2, and depth(lt2) < diam(T2 }/2. Without loss of general-

ity assume deptb(lt2) ~ depth(/t 1). Then, let SI = bt}, and S2 = bt2U[v*,QQJUltiult;. 

Figure 4.4 illustrates these definitions. 

We daim that the Sil as defined, have diameter less than the corresponding T,. 

Certainly SI, and S, for 2 < t ~ m, do. The only possible problem is with S2. 

Arbitrarily choose two vertices x and y of S2. Since vert(S2) = vert(bt2 U lti U ft;), 

each of x and y must be in one of those three components. We consider aU cases. 

If x and y are both in bt2 U lt;, then d( x, y) is the same in T2 and in S2' hence 
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Figure 4.4: lllustrating Lemma 4.5 
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d(x,y) < diam(T2). If x and y are both in Iti, then d(x,y) ~ 2 ,.. deptb(ltd < 
2 * depth(lt 2) < diam(T2). If one is in lt~ and the other in bt 2 U lti, then d(x, y) < 
deptb(ltd + depth(bt 2 ) + 1 ~ depth(lt 2) + depth(bt 2 ) + 1 ~ diam(T2 ). Therefore, in 

aIl cases, d(x, y) ~ diam(T2), 50 diam(S2) ~ diam(T2). 

Note al 50 that there is no intersectIOns among the trees SIl as the only mtersecting 

1~ 's were Tl and T2, and 51 and 52 do not intersect, and contain no vertices other 

than those in Tl and T2 (hence could not possibly mtersect another SI)' Therefore, 

the 5" as defined, satisfy the lemma, and 50 the single-contraction version of the 

lemma holds. Hence, the lemma as stated holds. 0 

Theorem 4.6 Gwen a set of m posslbly mtersecting trees T = {TI} an a graph a, 
there 18 a set S = {SI} ofnonmtersectmg trees m C such that vert(USI) = vert(UTI), 

and (for 1 ~ i ::; m), diam(SI) ~ diam(TI ). 

PROOF We construct a graph C- as the union of m copIes Gl! C 2 , • •• ,Gm of a, 
and a set of trees T" = {Tle} where TI- is the tree TI as a subgraph of the graph CI' 

We then perform, for each vertex v in G, a senes of contractions in C- that bring 
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aIl m of the copies of v together into one vertex. Lemma 4.5 then gives the desired 

result. 0 

4.4 Dominating Tree Sets 

In this section we will prove the major result of this chapter, concerning the number 

of Dk-trees sufficient to dominate a triangulation graph. We first present a lemma 

which establishes the induction basis for the proof. 

Lemma 4.7 One Dk-tree lS sufficzent to dominate any triangulation graph of up to 

2k + 5 vertices (2k + 3 tnangles). 

PROOF By induction on k. 

The induction basis, k = 0, is easily shown: any triangulation graph of 3, 4, 

or 5 vertices has a vertex which all triangles are incident on, and therefore can be 

dominated by one vertex (a vertex is a Do-tree). 

The induction hypothesis is that the lemma is true for aU k' < k. We wish to 

show that the lemma is then true for k. 

Let m be the number of vertices in the triangulation graph Gunder consideration. 

Then, m :5 2k + 5. We consider 2 cases: 

case 1: m ~ 2k + 3. 

In this case, the induction hypothesis states that G can be dominated 

by a Dk_1-tree. Since any Dk_1-tree is also a Dk-tree, the lemma holds. 

case 2: m = 2k + 4 or 2k + 5. 

By Corollary 4.3a (with k = 2), there is a diagonal D of G which cuts 

off 2 or 3 triangles. Use one thê.t cuts off 2 if such a diagonal exists. Let G1 

and G2 be the pieces, as in the corollary. Note that G2 is a triangulation 

graph of 2k + 1 to 2k + 3 vertices. 

By the induction hypothesis, G2 can be dominated by a Dk_l-tree. Let 

T be such a tree. 
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a b 

Figure 4.5: lllustrating Lemma 4.7 

We now consider 2 subcases, depending on how rnany triangles are in 

GI : 

case 2a: G I contains 2 triangles (figure 4.5a). 

These 2 triangles share sorne vertex v with D. Let U be the triangle 

of G2 which has D as an edge. At least one of the vertlces of U is 

a vertex of T. If v is s uch a vertex, then T is a t ree (of diarneter 

at rnost k - 1) satisfying the lemma. Otherwise, let x be such a 

vertex, and join the edge [x, vIto T, glving a tree of diarneter at 

most (k - 1) + 1 = k dorninatmg G, and therefore satisfymg the 

lemma.. 

case 2b: G I contains 3 triangles (figure 4.5b). 

Note that figure 4.5b is the only possible configuration of 3 triangles 

which does not admit a diagonal which cuts off 2 trIangles. These 3 

triangles are dominated by the endpolOts v and tJJ of D, as shown. 

If bath v and w are vertices of T, then T satisfies the lemrna. If 

only one of v and w is 10 T, then add the diagonal D to T, giving 

a tree of diameter at rnost (k - 1) + 1 = k satisfying the lenuna. 



f 

CHAPTER 4. UPPER BOUNDS 48 

Otherwise, we examine two cases. First, if k = 1, then G2 is a 

single triangle (as we would otherwise have cut off two triangles). 

Therefore D is a dorninating Dk-tree. Next, if k > 1, then we let x 

be the third vertex of U, and add the diagonals [x, v] and [x, w] to 

T. again yielding a Dk-tree satisîying the lemma. 

Thus, in aU cases, we have exhibited that the lemrna holds for k; by induction it 

therefore holds for aIl fini te k. 0 

Theorem 4.8 For ail k 2:: 0, L n/(k + 3)J nonintersecting Dk-trees are sufficient to 

dommate any trzangulatzon graph of n > k + 3 vertlces. 

PROOF Lernma 4.7 does the induction on k to provide us with the basis for the in

duction 011 n: one (obviously nonintersecting) D k-tree suffices for k + 3 ~ n ~ 2k + 5. 

Therefore, for sorne fixed k, we assume that l ni 1 (k + 3)J Dk-trees suffice for aIl trian

gulation graphs of n' < n vertices, where n > 2k + 5. We will show that Ln/(k + 3)J 

Dk-trees suffice for any triangulation graph of n vertices. 

Let C be an arbitrary triangulation graph of n vertices. By Corollary 4.3a, we 

can find a diagonal D in G that cuts off a piece G I with between k + 2 and 2k + 3 

triangles, inclusive. We consider the case where D cuts off k + 3 to 2k + 3 and the 

case where D cuts off k + 2 separately. 

If G I has between k + 3 and 2k + 3 triangles, then G 2 (the rernaining piece) has 

between n - k - 5 and n - 2k - 5 triangles. We dominate on each piece by induction. 

G I has between k+5 and 2k+5 vertices, which, by induction (or Lemma4.7), requires 

1 Dk-tree. G2 has between n - k - 3 and n - 2k - 3 vertices, which by induction 

requires at most l( n - (k + 3)) / (k + 3)J = l ni (k + 3)J -1 Dk-trees. Combining these 

dominating Dk-tree sets for GI and G2 gives a total of at most l n/(k + 3)J Dk-trees. 

However, sinee Cl and G2 share the diagonal D, these trees may intersect. If this is 

the case, then Theorern 4.6 may then be applied to give a nonintersecting tree set. 

We now consider the case where G I has k + 2 triangles. This means that G I 

contains k + 3 cycle edges of G. Consider the triangle U = (v, w, x) of G2 that has 
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Figure 4.6: lllustrating Theorem 4.8 

a* 2 

v* 
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D = [v, w] as an edge. U divides Gl into two parts P and Q. We will perform 

induction of the graph Gi, which is obtained from G2 by contracting v and w (see 

figure 4.6). Gi has n - (k + 3) vertices, hence by induction can be dominated by 

l(n - (k + 3))/(k + 3)J = ln/(k + 3)J -1 Dk-trees. We now consider two cases based 

on the inductive dominating D/ç-tree set r of Gi. 

case 1: v· has no tree incident on it. 

Then, r is aIso a dominating Dk-tree set for Gl - D (Cl with edge D 

removed). We inductively dominate the k + 5 triangle graph G I + U with 

l Dk-tree, and note that the triangles of the pieces C 2 - D and Cl + U 

are exactly the triangles of G. Therefore, we can combine the dominating 

Dk-tree sets for these two pieces to get a dominating Dk-tree set for C using 

at most ln/(k + 3)J - 1 + 1 = ln/{k + 3)J (possib!y mtersecting) Dk-trees. 

By Theorem 4.6 we can make these nonmtersecting trees. 

case 2: v· has a DIc-tree TEr incident on il. 

Let T be rooted at v·, and let Vp be the vertices of Tnp that are 

adjacent (in T) to v·, and define Vq similarly (let x be in P and not in 



1 

CHAPTER 4. UPPER BOUNDS 50 

Figure 4.7: Case 2 in Theorem 4.8 

Q for these definitions). Then, let Tp be U (st(T, p) U [v, pD and Tq be 

U (st(T, q) U [v, q]). 

We note that depth(Tp ) + deptb(Tq ) ~ k, else T has diameter greater 

than k. 'Ne let Cp be a chain of (k - deptb(Tp)) cycle edges of G starting at 

v and proC'.eeding into Cl, and Cq be a chain of (k - deptb(Tq )) cycle edges 

of C starting ai w and proceeding into G I . Let Sp be Cp U Tp, and Sq be 

Cq U Tq (See figure 4.'1). 

We claim tha.t r - T + Sp + Sq is a dominating Dk-tree set for C. We 

note that this tree set certainly contains all of the vertices that the elements 

of r did, hence Cl - U is dominated. AIso, both Sp and Sq dominate U, 

therefore all of G l is dominated. If Sp and Sq coyer aIl of the vertices of 

Gl! then G I is dominated; else 5p and 5q have no common vertices. In that 

case, Sp covers k - depth(Tp) + 1 vertices and Sq covers k - deptb(Tq) + 1 

vertices of G I . Thus a total of 2k + 2 - (deptb(Tp ) + deptb(Tq )) vertices 

of Cl are covered. Since deptb(Tp ) + deptb(Tq) ~ k, the total nu:nber of 

covered vertices of G I is at least k + 2. Since G I has k + 2 triangles, it 
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has k + 4 vertices, hence at most 2 vertices not covered by Sp and Sq. This 

means that each triangle must have at least one covered vertex, hence Cl is 

dominated. Therefore G is dominated. 

Note that the number of trees in this dominating tree set is ln/(k + 3)J, 

and that Sp and Sq are of diameter at most k. If any of the trees of this 

dominating set intersect, we may apply Theorem 4.6 ta make them nonin

tersecting. 

In both cases we have exhibited a dominating Dk-tree set satisfying the theorem 

for n. Also, we need only consider these two cases (as the trees are or can be made 

nonintersecting, by Theorem 4.6). Renee, the theorem is proved for aU finite k and 

n. 0 

4.5 Corollaries 

Corollary 4.8a For any guard class C such that 1k ç C, k ;::: 0, ln/{k + 3)J guards 

of C are sufficzent to guard (usmg L1-mstbtlzty) any polygon P of n vertzces. 

PROOF Theorem 4.8 states that there is a set of ln/{k + 3)J dominating Dk-trees 

in any triangulation graph of P; the embeddmgs of these guards (each of which is a 

Tk-guard) will see the entire polygon, because each point of the polygon is in sorne 

triangle, and each triangle has a guard on sorne vertex, and aIl points in each triangle 

see one another. Since every Tk-guard is contamed in a member of C, ln/(k + 3)J 

guards of C suffice. 0 

Corollary 4.8b For any guard class C such that Tk ç C, with k ;::: ° and) > 0, 

ln/(k + 2) + I)J guards ofe are sufficlent to guard (using L1 'V1Stblilty) any polygon 

P of n vertzces. 

PROOF We let k' = k + 2() -1), and apply Corollary 4.8a (with the k of Corollary 

4.8a equal to k') to show that sorne set r of L nj( k' + 3)J = l nj( k + 2) + I)J T Ic,

guards are sufficlent to guard P, using L1-visibility. 
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We daim that VP1(T), where T is any Tk,-guard, is contained in some VPJ(S), 

where S is a Tk' -2(J-l)-guard (i.e., a Tk-guard). We prove the daim by induction on 

j, with k' fixed. If j = 1, then k' = k, and the daim is obvioüs. Therefore we assume 

that the daim holds for all j' < J, and show that it holds for J (i.e., that there is an 

S such that VPl(T) ç VP,(S) ). By the induction hypothesis, there is sorne S' which 

is a Tk'-2(J-2)-guard (l.e., a Tk+2-guard) such that VP1(T) ç VP,_l(S'), hence the 

desired result follo\\'s if we show that there is sorne 8 such thil.t VP,-l(S') ç VPAS): 

for any Tk+2-guard 8f
• 

Let D(S') be a Dk+2-tree in a triangulation graph of P 5uch that t.he embedding 

of the vertices of D(S') is S'. Then, let D' = (D(S') with aH of its leaves removed); 

D' has diameter at rnost k, hence is a Dk-tœe. If we let S be the ernbeddlOg of 

the vertices of D', then S Îs a Tk-guard. Because k '> 0, the \'ertices adjacent tCl 

leave..s i~ D(S') are in D', implying that S' c VP1(S). This in tutn implies that 

VP,-l(S') ç VPj(S), proving the daim. 

The daim irnplies that for every TEr, we can find sorne S whiel! is a 7,,

guard which sees everything that T ~ees. Hence, Ln/(I.~ + 2J + I)J T:.-guards, uRing 

L)-visibility, suffice. Thus ln/(k + 2j + l)J guards of C s uffi ce. 0 

Corollary 4.8c For any integer k > l, ln/(k + l)J gu.ar-ds of 'ck are s1J.fficierd to 

partition any polY90n P of n verticp.s. 

Before giving the proof of this corollary, we remark on two rnethods of proof 

which do Dot yield sat.isfadory results. The first, most obvious, method would be to 

triangulate, dorninate the triangulation, and assign edch triangle to any one of the 

trees which it is incident on. This rnethod is rncorrect, as the region assigned to a 

tree may not be conr.ected. The second unsatisfa.ctory rnethod is a modificatIOn of 

the first; we assign triangles as before, but we also assign each edge of each tree to 

that tree's region. This method àoes yield connected regions, but the regions will be 

groups of triangles connected by line segments. \Ve therefore éI.!50 reject this method, 

as we can show that it is possible to find a collection of po/ygons that partition the 

given polygon. 
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PROOF First, let T he any triangulation of P. Next, lf>t k' :: le .- 2, and apply 

Theorem 4.8 (with the k of Theorem 4.8 equal to k") to show that sorne set, r = 
{Il, 12,. ,. Ill} of l :: Ln/(k' t 3)J = lnf(k + l)J n·,·gè.l;,rds a.re sufficient to dominate 

T. 

vVe will constrllct a region RI for each fEr. InitiallYl [ft each R, he ernpty. For 

each triangle in T, we do the following: 

Assume that the triangie nas vertices a, b, and c. We let m tlt., m" .. , a.nd m~c he the 

midpoints oî edges ab, M, â.nà k, respectiv~Jy. Also, let mabc be the center of gravit y 

of mab, m'lC! a.nd 1nbc' 'l'If' use the notation T'Cvi ta indicate which tree (elément of 1") 

is incident on vertex: v, and RI!:.':! q to indica.j,~ that the rurrent RI is to be replaced 

by [{,[ U Q. 
WC examine three ('ases, based on the number of trees incident on the trîan-

gle. 

case 1: There is one tree incident on l:::l.abc. \Vithuut 1098 of ,g,ellera.1ity, assume it is 

mcident on vertex a, and let RT(u.) ltl 6.abc. 

case 2: There are t'NO t.r~€s incident on 6. abc.. V"€ div ide into two subcases: 

ca.se 20.: Both incident tret~s con~ajn ouly one v{'rtex of 6abc: withQllt 108s of 

genf'ra.lity let these vertices be a and b. Then, let R1'(a) ~ .6amabc, 

and R'r(b) W .6.bm'lbc (see figure 4.8a.}. 

case 2b: One trec contains two vertices or l:.abcj without 1088 of generallty Jet 

these be a and b. Theo, If't RT(f!)~Oabm~cmQC'l and R1'(b)\:IjÔ,cm.b,.m aô. 

(see figure 4.8b). 

case 3: There are three trees incident 011. Ôobc. In this ca:;~, we let 

RT(G} lt.I Oamllb7nabc7rlC\o Rnb) lti Olrm/,<.mabcmab! and RT(c) Itl O~n"cmQbcmbc 

(see figure 4.8c). 

The R!'s now partition P, as ea.ch part of t~ach triangle has beea placed in an RI' 

An example of this is shown in figure 4.9. 

Note that for any l~-gua.rd 1 in r, if t.wo vertices a. b are adjacent in /, then 

the segment ab is in RI. Thu'l, between any t,wo vert:c.es 'IJ and v of J, there is a 
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b c 

b 

c c c 

Figure 4.8: Partitioning D.abc 

Figure 4.9: A sample partiton 



1 

1 

CHAPTER 4. UPPER BOUNDS 55 

link-k' path in RI (just follow the edges of the DIe,-tree underlying I). AIso, every 

point x E RI is LI-visible to a vertex v( x) of [, as x is in sorne triangle U of the 

triangulation, and RI nUis convex and includes a vertex of [. 

This means that between any two points x, y E RI, there is a link-k (recall that 

k = k' + 2) path in RI (narnely, the one from x to v(x) to v(y) to y), hence RI is 

Lle-convex. Thus, the RI'S, which are a set of ln/(k + l)j regions that partition P, 

are in guard class Cie. o 

Corollary 4.8d For any guard class C such that Cie ç C, with k > 1, ln/(k + l)J 

guards of C are sufficzent to cover any polygon P of n vertzces. 

PROOF By Corollary 4.8c, there is a set of ln/(k + l)J guards of Cie which partition 

P. As each guard in class Cie is contained in a guard of class C, there must be a set 

of ln/(k + l)J guards in C which coyer P as desired. 0 

Note that Theorern 3.1 and Corollary 4.8c together imply that ln/(k + 1)j L/c

convex regions are sometimes necessary and always sufficient to partition or cover a 

polygon of n vertices, for k > 1. 

Corollary 4.8e There are no polygons of n vertices wzth a LJ-hidden set of Slze 

larger than ln/U + 1}j, for aU j > 1 and n 2: j + 1. 

PROOF By Corollary 4.8c, any such polygon has a cover by LJ-convex regions of 

size l n/(j + 1)j. Since no two elements of a LJ-hidden set can lie in a single L)-convex 

region, t he maximum hidden set is of size at most Ln / (j + 1) j . 0 

Note that Theorem 3.1 and Corollary 4.8e show that, for points, hAn) = 
Ln / (j + l) l , for j > 1. 

We hû::e also now proved Theorem 4.1; it is a direct combinat ion of Corollariet; 

3.la and 4.8b. The following is a table of sorne of the consequences of this theorem 

for the art gallery problem. Note that the results for J = 1 and k = 0 and 1 are the 

known art gallery results for simple polygons [C75] [F78] [083a] [087]. 
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1 
other mteresting classes of J f 

k (LJ-VlSlbiIity) g(n) TI:(P) CI:(P) guards between TI: and CI: 

0 1 ln/3J vertices pomts 

1 1 ln/4J vertex paU' convex dlagonals, tine segments 

2 1 ln/5J graph star vertices L-convex graph star, fan, star-shaped 

k 1 Ln/(k + 3)J LI:-convex 

0 j Ln/(2) + l)J vertlces pomts 

1 J Ln/(2j + 2)J vertex pair convex dlagona.ls, Ime segments 

A vertex pair guard is a pair of vertices which are connected by a diagonal. A graph 

star vertex guard is the vertex set of a graph-theoretic star (tree with one non-Ieaf 

node). A fan is a star-shaped region with a vertex in the kernel. 

4.6 Properties of Polygon Exteriors 

We can use results of the previous two sections ta get almost-tight bounds on visibility 

propert:es of polygon exteriors. 

Given a polygon P, we can rotate P so that there is one ur.iquely highest vertex a. 

We can then place two points land r ta the left and right of P, below p'"" lowest vertex, 

and distant enough from P sa that they both are LI-visible to v. Let P+ denote the 

set PU 1 Ur, and CH( p+) denote its convex hull We define an exterior tnangulatwn 

of P as a triangulation of the region interior to CH(P+) but exterior to P, for any 

such placement of 1 and r (see figure 4.1O).Note that an exterior triangulation graph 

is not a triangulation graph. 

Exterior T.~-guards are then defined as the geometric embedding of the vertlces of 

sorne Dk-subtree in an exterior triangulation. We let T{ represent the guard class of 

exterior T.\;-guards. 

Theorem 4.9 For any guard class C such that T.\;e ç C. k > 0, l(n + 3)j(k + 3)J 

guards of C are sufficlent to guard (usmg Ll-visibility) the extenor of any polygon P 

of n vertices. 

PROOF The following proof is a modification of the (special case k = 0) proof 

presented by Aggarwal and O'Rourke [087]. 
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/ r 

Figure 4.10: Exterior triangulation 

Let T be a.n exterior triangulation of P as defined above and split the vertex a 

into two vertices a and a' so that the resulting graph T' is a (intenor) triangulation 

graph (as shown in figure 4.11). 

Let El, E 2 \ and E3 be the edges of CH(P+). Each E, is contained in sorne 

triangle U, of T'. Let ra, ri, and rr be the rays that bisect the exterior angles of 
3 

CH(P+) \ LJ interior(U,) at a. 1, and r. These rays divide the exterior of S'H(P+) into 
... 1 

three regions 51, S'}" and S3' such that for any t, S, U V, is convex. This (onstruction 

is illustrated in figure 4.12. 

\Ve now dorninate T', which has n + 3 vertices, with a set r' of l(;'l + 3)j(k + 3)J 

D):-trees, by Tneorern 4.8. We daim that the entire exterior of P is seeTl by the set r 
of the exterior Tk-guards which are the embeddings of the elements of ['. We examine 

an arbitrary exterior point p: 

If p E CH(P+), then it is in sorne triangle of T'. Since each such tria'lgle has an 

element of r on at least one vertex, p is seen by sorne guard. 

If p ~ CH(P+), then it lies in sorne reg:on Si' U, US, is not only convex but also 

empty, as E is not a polygon edgc. Therefore, p is seen by sorne element of r, as U, 

has su(~h an element incident on at least one vertex. 

Tuerefore, r, a set of l(n + 3)j(k + 3)J guards in class T{, sees the entire exterior. 
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1 r 

Figure 4.11: Splitting a vertex 

r 

Figure 4.12: Regions exterior to the hull 
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As each guard of class T"e is contained in sorne guard of class C, there is a set of 

L (n + 3) j (k + 3) J guards of cIass C w hich sees the entire exterior. 0 

Corollary 4.9a For any guard class C such that T{ ç C, wzth k ~ 0 and J > 0, 

L(n + 3)j(k + 2) + l)j guards of C are suJjiczent to guard (usmg L)-viszbility) the 

extenor of any polygon P of n vertices. 

PROOF The argurnellt is identical to that of Corollary 4.8b, except that we start 

with Theorern 4.9 rather than Corollary 4.8a. 0 

Corollary 4.9b For any mteger k > 1, L(n + 3)j(k + l)j guards of.ck are sufficient 

to partztzon the exterzor of any polygon P of n vertices. 

PROOF The proof is essentially the same as that of Corollary 4.8c, except that we 

must place the points of the regions Sb S2, and S3 in the RI's. ~irst, we divide the 

reglOn inside CH(P+) \ P as in Corollfl.ry 4.8c. 

Next, for each Sil let U, be 6.abc, with a and b the vertices of E,. If the entire edge 

ab lS contained in sorne Rv, then let Rv ttJ S,. Otherwise, the edge ab is split between 

two reglOns Rv and Rw, with a in Rv and b in Rw. By the construction, Rv n U, and 

Rw n U, will share sorne edge F (either cmab, macmab, mbcmab! or mabcmab)' Let rab 

be a ray with vertex mab which in (olinear with F and extends into S, (see figure 4.13 

for an example). rab diVldea S, into two pieces Sa and Sb, with a E Sa and b E Sb. At 

least one, and possibly both, of Sa and Sb are unbounded. Let Rv ttJ Sa, and Rw l:tJ Sb. 

Application of this procedure to each S, yields a set of RI's which partition the 

entire exterior of P, and are in class Ck. o 

Corollary 4.9c There are no polygons wzth an exterior L]-hzdden set of slze larger 

than L(n + 3)j(j + l)j, for ail j > 1. 

PROOF The argument is identical to that of Corollary 4.8e, except that we start 

with Corollary 4.9b rather than Corollary 4.8c. 0 
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Figure 4.13: Partioning Si 

The above theorern and its corollaries are almost-tight: the lower bounds presented 

in the previous chapter are the same except that the nurnerator of the fraction in the 

Hoor is n + 1 rather than n + 3; this causes the resulting integers ta differ by at most 

1. Although the k = 0, } = 1 bound has an n + 2 numerator, we do not expect this 

to generalize to larger k or J, as for k > 0 or j > 1 only one guard is needed to guard 

the exterior of a convex polygon (as compared to two for k = O,j = 1). We therefore 

conjecture the following: 

Conjecture 4.10 For any guard class C such that Tke ç C, k > 0, l(n + l)j(k + 3)J 

guards of C are suffictent to guard (using L1-visibJ/ity) the exterior of any po/ygon P 

of n vertices. 

Conjecture 4.11 For any guard class C such that 7ke ç C, w~th k > 0 and) > 0, 

l(n + l)j(k + 2j + l)J guards of C are suffiClent to guard (using LJ-visibility) the 

exte110r of any polygon P of n verhces. 

Conjecture 4.12 For any integer k > l, L(n + l)j(k + l)J guards of .ct are suffi

cient to panttwn the exte110r of any polygon P of n vertices. 

Conjecture 4.13 There are no polygons with an extenor LJ-hidden set of size /arger 

than l(n + l)j(j + l)J, for ail j > 1. 
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The simple proof of Aggarwal, 0 'Rourke, and Shermer [087J for the k = 0 tight 

bound does not easily generalize to arbitrary k, for two reasons: First, their proof uses 

three-coloring in a manner sirnilar to Fisk's proof of the original art gallery theorem. 

Second, their proof uses a restructuring of an exterior triangulation, by "flipping a 

diagonal" in a convex quadrilateral; this restructuring would need to be mu ch more 

complex for higber k. However, a gener .... J.ization of Fisk's proof (and of 3-coloring) 

has been found for L)-visibilitYi so sorne hope of generalizing the;r proof remains. 



· l 

et P ; L Id 

Chapter 5 

Computational Complexity 

In this chapter, we will show that the optirnization and decision problems for covers, 

guardings, and hidden sets are NP-hard. We present two fundamentally different con

structions to obtain these results; one is a tranformation from Boolean 3-Satisfiability, 

and the other is a transformation from Exact Cover by 3-Sets. 

We begin this chapter with a section on the formal definitions of the problems that 

we consider, and a section of remarks applying to aU proofs. The sections following 

that are the constructions and proofs for our problems. 

5.1 Problem Definitions 

The first problem that we will be dealing with is the problem of determining if a 

polygon admits an LJ-convex cover of a given size. This is called the LJ-Convex

Cover problem: 

L)-CONVEX COVER (LjCC) 

INSTANCE: A polygon P, and an integer m. 

QUESTION: Can P be covered by m or fewer LJ-convex sets? 

We may also ask the rrunirnization problem: 

62 

il d _ 
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MINIMUM LJ-CONVEX COVER (MLjCC) 

INSTANCE: A polygon P. 

63 

QUESTION: What is the smallest m such that P can be covered by m LJ-convex 

sets? 

If a polynomial algorithm existed to solve LjCC, we could solve MLjCC in 

polynomial time as weIl: we would simply solve LjCC for vaiues of m from 1 to 

ln/(m + l)J (or to n - 2 for m = 1). The lowest value of m for which the LjCC 

problem has a yes answer would be the answer to the MLjCC instance (by Corollary 

4.8c). Also, a polynomial algonthm for MLjCC would trivially provide a polynomial 

algorithm for LjCC. We therefore restrict our attention to the decision problem. 

The situation for the other problems that we conslder in this chapter IS similar: 

there are equally powerful declsion and optimization versions of the problcm. In aH 

instances we will consider only the dccision problem. 

It is often the case that even and odd link-diametcrc; must be handled by separate 

cases. Our proof for Lj CC is no exceptIOn; we must l'I vve our result in two parts: 

one for the odd J 's, and one for the even J 's. For each of these two cases, we present 

a base case (J = 1 or J = 2), and a modification to the base case for larger J. 

After our proof for LjCC, we conslder covering polygons with LJ-star-shaped 

polygons, giving flse to the following problem: 

INSTANCE: A polygon P, and an integer m. 

QUESTION: Can P be covered by m or fewer LJ-star-shaped sets? 

LISC is also known as Star Coyer (or Point Guard), which was proved NP-hard 

by Lee, Lin, and Aggarwal ([LL86] [AS4]) \Ve will prove that LjSC is NP-hard by a 

modification of our proof of LjCC for even J. 

Kote thetl LjCC and LjSC are the two cxtrCll1es of tll(' W'll('!,l! ]ink-gllé.'lrding 

Pluulern: 
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I~STANCE: A polygon P, and an integer m. 

QUESTION: 15 there a collection C of m or fewer Lk-convex subpolygons of P such 

that P is covered by the link-J visibility polygons of the elements of 

C? 

LjCC is the same as LOjG, and LjSC is the same as Lj,oG. We show that a 

modification of our proof for LjCC WIll prove that Lj,kG is NP-hard (although it will 

not be necessary to modify our constructzon). 

We will prove our NP-hardness results by transformation from two well-known NP

complete problems, Exact Cover by 3-Sets, and Boolean 3-Sa.tisfiability (see [K72] or 

[GJ79]). 

EXACT COVER BY 3-SETS (X3C) 

INSTANCE: A finite set X = {Xl' X 2 , ••• ,X3q }, and a collection C -

{Cll C2 , ... ,Cn } of3-element subsets of X. 

QUESTION: Does C contain an exact cover for X: A subcollection C' ç C such 

that every XI appears in exactly one member of C'? 

BOOLEAN 3-SATISFYABILITY (3SAT) 

INSTANCE: A finite set U = {U}, U2, ••• , Uq } ofboolean variables and a collection 

C = {CI, C2 , •• • , Cn } of 3-literal clauses on U. 

QUESTION: Ts there a truth assignment for U that satisfies ail of the clauses in 

c? 
Following our covering and guarding proofs, we note that our methods can be 

applied to the existing proofs for the NP-hardness of severa! problems relating to 

hidden sets, establishing these problems, using L)-visibility, as NP-hard for odd j. 

The defimtions of the hidden set problems considered are given in that section. 

We end the chapter with a discussion of the comparative complexity of graph

theoretic problems and polygon visibility problems. 
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5.2 General Remarks 

In this section, we give sorne general discussion on the complexity of the problems 

and transformations that we consider. 

We will prove our NP-hardness results by using component-design transformations 

from X3C and 3SAT. This means that we will construct geometric components (por

tions of polygons) WhlCh correspond to the elements of the X3C or 3SAT problem. 

The first matter which we wish to address is whether or not our problem transfor

mations can be accomplished in polynomial time (polynomial in the size of the input 

X3C or 3SAT instance). Our constructions aU use a central rectangle, with many 

vertices located at integer coordinates on this rectangle. Each of these coordinates 

will take at most O(log n) bits to store. The remaining vertices of the transformation 

image polygon will be computable with a constant number of the following opera

tions: 

(1) Calculate the line between two points. 

(2) Calculate the intersection of two Hnes. 

(3) Find the midpoint of the line segment between two points. 

U sing rational computations, an n one of these operations will result in a point location 

or a line equation which requires storage of at most two more than twice the number 

of bits of the input points or 1ine~. Therefore, if the maximum height of a tree of 

these operations required to compute any vertex is c, and the points on the rectangle 

are expressible with b bits, then the resultant number of bits required to store any 

vertex will be f(c), where 

f(O) - b, and 

J(x) - 2*f(x-l)+2. 

The solution of this recurrence is: 



1 
CHAPTER 5. COMPUTATIONAL COMPLEXITY 66 

Thus, as c is constant, and bis O(bg n), 2c i8 a constant, and f( c) i8 O(log n). There

fore, the numher of bits required to store any vertex will be 0 (log n). Furthermore, 

each of the ab ove operations can be a(,complished in polynomial time in the number 

of input bits. ThereÏore each vertex, and the entire image polygon, can be computed 

in polynomial time. Thus, our problem transformations will take polynomial time. 

The other con cern that we want to address lS the upper bound on the complexity 

of the problems we consider. Thesé problems are aIl decidable; O'Rourke has shown 

this for the LI CC problem [082c], and methods similar t,o his can be used on any 

of our problems. It is difficult to determine whether or not our problems are in 

NP; :t is suspected that there are polygon classes such that the height of a tree of 

li ne intersection/line determination calculations necessary to compute a vertex of the 

minimum cover increases with the size of the polygon [082a] [082b]. The recurrence 

discussed abové, if the upper bound on storage that it repre~ents lS tight, indicates 

that a linear increase in the height of a tree of such calculations required to find a 

vertex of the minimum caver would reflect itself exponentially in the storage and time 

required to compute the caver. Thus, t~e existence of a polygon class exhibiting linear 

increase in the calculation tree height would suggest that the cClver problem is not in 

NP. For a discussion of this and other related questio::ls regalding the complexity of 

covering problems, the reader is referred to [082a]. 

5.3 LjCC: Odd j 

Wc start our NP-hardness proofs with a proof that LI CC (also known simply as 

Convex Coyer) is NP-hard. 

5.3.1 Problem Transformation 

We will prove this result by transformation from X3C. Given an instance l = (X, C) 

of X3C, we construct an mstance 'l/Jl(I) = (P, m) of LI CC as follows: 

First, we let m = 2q + n + 1 (q and n are from the definition of X3C). 

We construct Pas follows: we start with a rectangle (called the central rectangle), 
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Figure 5.1: Ll CC Constrüction overview 
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to which we will connect structures corresponàing to the Xu's (which we call X-unzts) 

along the hot tom edge, and structures corresponding to the Cv's (which we caU C

units) along the top edge (see figure 5.1). XUu denot.:!S the X-unit corresponding to 

Xu , and CU u denotes the C-unit corresponding to Cv' Both X-units and C-units will 

he convex sets, and P will he the l!nion of the X-units, C-units, and central rectangle. 

Let rul, ru, rUT' and riT he the upper-Ieft, lower-Ieft, upper-right, and lower-right 

vertices of the central rectangle. Aiso place a vertex w somewhere (anywhere) on the 

rectangle between rul and the leftmost C-unit. 

Each X. unit is a 2-edge triangular notch, with its left edge colinear with w and 

right edge colinear with rUT' (see figure 5.2). The X-units are evenly placed along 

the hottom of the central rectangle in f\rder of increasing index. The three vertices 

of XU u are called (froGl left to right) lu, mu, and ru. 

Let Cv = {XA ,X8 ,XC } with A < B < C. The C-units for the Cv's are evenly 

placed on the top edge of the central rectangle in order of increasing \ndex. A C

unit has seven vertices (PI,P2"" ,P7), attaching to the central rectangle at Pl and 

P7. P3 is placed at the intersections of the lines lB Pi and rCP7, and Ps is placed at 

the intersections of r8P7 and [API' P2 and P6 are placed colinear with lep; and l'APi, 

respectively. P2, P4, and P6 are aH placed so that (PllP2"" ,P7) is convex, and such 
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Figure 5.2: X-unit construction 

that P4 is not vIsible to mA or me. This construction is illustrated in figure 5.3. 

Given this basic structure, we now need to ensure that the segments where the 

X-Ulllts and C-units attach are srnall enough that we do not encounter either of the 

following two problems: (1) two C-units overlap, or (2) sorne convex set covering an 

mu can cover slgOlfica:ltly more of sorne C-unit if it includes only mu rather than lu, 

mu, and ru. 

The first problern is handled by making the "gap distance" (distance between 

Pl and P7) for each C-unit very small, which will make the C-units themselves 

smaller. By considering the worst case that could happen (Cu = {.>r l , Xz. Xu} or 

Cv = {Xu , X3q - l , X3q }), and computing a gap distance small enough to keep the X

units from overlapping in these instances, we can guarantee thaL none of the X-units 

will overlap. 

The second problem 15 handled by making the gap distance for the X-units (dis

tance from lu to ru) smaller. We can do this by examining each C-unit in turn, and 

insuring that the gap distances for the concerned X-units are srnall eoough that the 

following properties are satIsfied: 

1. Let ql be the intersection of TnBPl and P2P3. Theo ql must not be seen by mCH, 

if it exists. 
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2. Let q2 be the intersection of mcpr and P3P4' Then q2 must not he seen by mB-I' 

3. Let q3 be the intersection of mAPI and P4PS. Then q3 must not he seen by mB+I' 

4. Let. q4 be the intersection of mBPr and Pspe. Then q4 must not he seen by mA-l, 

if it exists. 

It is dear that, as the gap distances for XV A, XV B, and XU c decrease, the 

points ql, q2, q3, and q4 draw doser to P3, P3, Ps, and Ps, respectively, and hence will 

he nonvisible as required. 

We let q~ be a point counterclockwise of and in the neighborhood of ql that 

cannot be seen by me+!. Such a point will exist, a.'5 mC+I does not see ql, and 

visibility polygons are closed regions. Similarly, let q~ he a p0int c10ckwise of and 

in the neighborhood of q2 that cannot be seen by mB-I' Let q~ and q~ be defined 

symmetrically to q~ and q~. Figure 5.4 illustrates this construction. 

Figure .5.5 shows the full construction of P for the instance of X3C with C = 
{{Xl, X 2, X3 }, {X4, Xs, X 7 }, {X3 , X 4, X g }, {X2, Xs ! Xs}, {Xl, X6 , X 7 J, {X2 , Xe, Xs}, 

{Xs! Xe! Xg }}. 
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Figure 5.4: C-unit construction II 

5.3.2 Properties of the Construction 

Given a convex coyer of P, we let Su be a convex set of the cover which covers the 

vertex mu. Such Su 's are called S-sets. 

Our construction ha.') the following Important properties: 

Pl The central rectangle can be covered by one convex set. 

P2 Each X-unit XV u can be covered by one convex set. 

P 3 The set of aU mu 's plus r ul forrn a hidden set. 

P4 No convex set can help cover two C-units. 

P 5 No convex set containing rul can help coyer any C-unit. 

P6 Each C-unit CU v will be coverable in three ways: either (a) by one convex set, 

(b) by four or more S-sets, or (c) by three S-sets, when the three S-sets are SA, 

SB, and Sc (Cv = {XA , XB, Xc}). Each of these S-sets are capable of covering 

the whole X-unit to which it corresponds in addition ta the portion of CU \1 which 

it covers. 

-
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Figure 5.5: A Sarnple Construction for Ll CC 
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Property Pl will be satisfied, as we have eut no pieces off of our ceTltral rectangle. 

As every triangle is convex, property P2 is satisfied. Also, the set consisting of 

all mu's along fui is a hidden set (property P3 is satisfied). 

As each C-unit is a convex set attached to the top of the central rectangle, no 

one convex subset of P can contain points from two C-umts. Thus, property P4 is 

satisfied. 

Because rul lies along the upper edge of the rectangle. no convex set can contain 

bath fui and any pomt of any CU\! (property P5 is satlsfied). 

The followmg two lerrunas help us establish property P6. 

Lemma 5.1 No C-umt can be covered by any two or fewer S-sets. 

PROOF Assume the contrary: sorne CU v is covered by two S-sets, Sg and Sh. 

Without loss of generality, assume that 5g covers vertex P6 of the C-unit. Then, by 

construction. g ~ A; this means that Sg can cover neither vertex P4 nor vertex P2' 50 

Sh must cover P2; then h ?: C. and Sh cannot caver P4' Therefore, P4 is not covered, 

whieh is a contradiction. Thus, the lemma holds. o 

Lemma 5.2 A C-umt CUv can be covered by three S-sets iff the S-sets are SAI SBI 

and Sc. 

PROOF Assume that we have three S-sets Sa, Sb, and Sc covering CUv. By the 

argument given in the proof of Lemma 5 1 we must have a $ A and c ?: C. 

Assume that we have c > C. Then, q~ is not covered by Sc' To cover q~, we must 

have b > B. But then Sb would not cover q~; furthermore this point is not covered 

by Sa. We are thus not covermg the C-umt. Therefore we must have c = C, and, 

symmetrically, a = A. 

Furthermore, lf b :f. B, then eithf. q; or q; is not covered. Therefore, b = B, 50 

that the only three S-sets v:hich can cover the C-unit are SAI SB, and Sc. 0 

Lemmas 5.1 and 5.2 together with the convexity of the C-units imply that the 

construction has property P6. 
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Thus, the construction has aH of the given properties, and we now procede with 

the proof of our theorem. 

5.3.3 LI CC 

Theorem 5.3 LI CC lS NP-hard. 

PROOF We show that the instance 1 of X3C will have a yes answer iff the instance 

!/Jl(l) of LI CC has a yes answer (i e., P can be covered by m = 2q + n + 1 (L l -) 

con vex sets). 

If the Instance lof X3C has a yes answer, then we use the following cover for P: 

Let R cover the central rectangle. We choose Su (1 :$ u :S 3q) corresponding to the 

exact cover (via property P6r); each Su covers XU u and part of a C-umt, and q of 

the C-umts are thus \Overed We have so far used only 3q + 1 convex sets. For each 

of the remainmg n - q C-units, we coyer each with its own convex set (by property 

P6a). Thus, we have a covermg with 3q -+ 1 + (n - q) = 2q + n + 1 convex sets. 

We now assume that the instance of LI CC has a yes answer (we have covered P 

with 2q + r. + 1 convex sets). 

Each mu (1 :S u :$ 3q), and the vertex ru/, must be covered by at least one convex 

set. Let Su be any of the sets covenng mu, and R be a set covering ru/' By property 

P3, these sets must be distmct. Thus, III our covering, '.Ile have R, the Su 's and only 

n - q other sets. Therefore, by properties P6, P4, and PS, at least. q of the C-umts 

were covered by the S-sets. Since no C-umt is coverable by 2 or fewer sueh sets, the 

only way we can coyer this many C-units wlth S-sets is to have exactly q C-units 

covered with exactly 3 S· sets each. 

However, the only covering for aC-unit by exactly 3 convex sets is by the convex 

sets contributed by the X-umts corresponding to that C-units' œembers (property 

P6e). As no X-unit can contnbute Its set to more than one C-unit (property P4), 

the q covered C-unit.3 correspond to an exact cover for X. Therefore, the X3C 

instance has a yes answer. o 
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'11 .... ----------------41 'Ir 

Figure 5.6: Central unit for j = 7 

5.3.4 Extension to Higher Odd j 

Theorem 5.4 For any odd mteger J ~ l, LjCC lS NP-ha rd. 

PROOF The proof is simil.:I.f to that o{ Theorem 5.3, with the units and the central 

rectangle slightly modified. 

The necessary modifications to the units are as follows: 

The central rectangle lu shangeà to a "central unit," which is a rectangle with a 

spiral of J - 1 arrns added at r ul. We let s he t.he vertex at the end of the spiral, 

and the spIral arm connects to the rectangle so that VP,-I (s) intersects the rectangle 

only at rul' Figure 5.6 illustrc:l.tes these definitions for) = 7. 

vVe chtlilge each X-unit by ad ding a spiral of (J - 1)/2 anns at mu' We let the 

m: he the v~rtex at the end of the spiral. This 18 lllustrated in figure .5.7 for J = 7. 

We change each C-unit by adding several spirals of (J - 1)/2 arms: one each at 

P2, P4, P6, q~, q~, q~, and q~; the vertlces aL the ends of these splfal arms are pi, P:, 

p~, qi, q;, q;, and q;, respectively. Wc let Vu- he the set of these vertices at the end 

of the spirais on CU v • This is illustrated in figure 5.8 for J = ï. 
The spifals are shown schematlcally in figure 5.8. The actual geometry of these 

schematic representations are shown in figure 5.9 for the spira.ls on vertices (e.g., P2), 
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Figure 5.9: A spiral on a vertex 

and in figure 5.10 for the spirals on intersection points (e.g., Q3). 

The attachrnent of a spiral to aC-unit is made sa that the link-((j - 3)/2) visi

bility polygon of the vertex at the end of the spiral is a small region containing the 

attachrnent point. 

Given a L)-convex cover of P, we let Su be a L)-convex set of the cover which 

covers the vertex m:, and cail such Su's S-sets. We can then show the fol1owing 

properties: 

Pl' The central unit can be covered by one LJ-convex set 

P2' Each X-unit XU u can be covered by one L]-convex set. 

P3' The set of aU m:'s plus 8 form a hidden set. 

P4' No L1-convex set can cover elements of both ,,~- and V'; for 9 i:- h. 

P5' No L)-convex set containing 8 can cover any element of Vh- for any h. 

P6' Each C-unit CU v will be coverable in three ways: either (a) by one LJ-convex 

set, (b) by four or more S-sets, or (c) by three S-sets, when the three S-sets 

are SA, SB, and Sc (Cv = {XA,XB,XC}). Each of these S-sets are capable of 
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Figure 5.10: A spiral on an edge 

covering the whole X-unit to which it corresponds in addition to the portion of 

CU v which it covers. 

These properties can be proved in a manner similar to that given in section 5.3.2, 

and then the theorem (NP-hardness) follows from the same proof as gnren for Theorem 

5.3. [J 

5.4 LjCC: Even j 

In this section we prove that LjCC is hard for even J. We begin with the proof for 

L2CC, which will then be generalized to the desired result. 

5.4.1 Problem Transformation 

We will prove that L2CC is NP-hard by transformation from 3SAT. Given an 

instance 1 = (U, C) of 3SAT, we construct an instance tP2(l) = (P, m) of L2CC as 

follows: 



CHAPTER 5. COMPUTATIONAL COMPLEXITY 78 
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Figure 5.11: L2CC Construction overview 

First, we let m = 2q + 2n + 1 (q and n are from the definition of 3SAT). We 

assume that the literals In each clause appear in or der of increasing index. 

We construct P as follows: we start with a rectangle with an arm on the upper 

left corner, as in figure 5.11; we caH this (rectangle and arm) the central umt. We let 

ru/, ru, rur , and rlr be the upper-left, lower-left, upper-right, and lower-right vertices 

of the rectangle, and r be the vertex at the end of the arm. 

We will connect structures corresponding to the Uu's (called U-unzts) to the bot

tom of the central unit, and structures corresponding to the Cu's (called C-umts) to 

the top of the central unit (see figure 5.11). Furtherrnore, aH C-units are to the right 

of aIl U-units. We let UU Il denote the U-unit corresponding to Uu , and CU v denote 

the C-unit corresponding to Cv. P will be the union of the U-units, C-units, and 

central unit. 

Each C-unit lS the Ulllon of four rectangles, as shown in figure 5.12 for CU v' The 

vertices Po and Pl will be on the upper edge of the central unit 's rectangle; bv,l is the 

point Po, and bv ,2 and bu ,3 are points one-third and two-thirds of the way from Po to Pt, 

respectively. We define CLv as the union of the two rectangles shl..;wn shaded in figure 

5.12, and the vertices Wu,! and W v .2 as shown The C-units are placed evenly along 

the right half of the upper edge of the central unit 'g rectangle in order of increasing 
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The U-units are a more complex structure which are placed evenly along the left 

half of the lower edge of the central unit's rectangle, also in order of increasing index. 

In the U-unit construction, we will be using spzkes: these are very thin triangular 

notches, which we approximate by line segments sticking out from our polygon (as 

waJ done for the spiral arms in the C-unit construction for the proof of Theorem 5.4). 

We will show only the spikes in our description of the construction; keep in mind 

that these spikes will dctually be replaced by thin triangles. The correct thinness 

for the splkes can easily be computed in polynomial time: for (,:lch splke, we find the 

radially closest (in both the clockwise and counterclockwise directions) sets that must 

be avolded by the spikes, and choose bounding edges for the triangles which replace 

the spikes so that these sets are not seen from the vertex at the end of the spike. This 

is a standard method (see [LL86] and [A84] for similar arguments). 

The first stage of the U-unit construction for UU u is illustrated in figure 5.13. 

The vértices Po and P7 will be on the lower edge of the central unit's rectangle. The 

lines POPI, P2P3, P4PS, and P6P7 are each colinear with fui' The lines P3P4, PIP2, and 

PSP6 are horizontal, with P3P4 high enough that P4 can see rur, and PIP2 and PSP6 low 

enough that neither Pl nOI Ps can see any vertex of any C-unit. 
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Figure 5.13: L2 CC V-unit construction 1 

For each clause Cv that Uu appears in, we will create a spike with vertex tu,v' If 

Uu is the ath literaI of Cv, then we create the spike in edge POPI colinear with P3bv,a' 

Sirnilarly, for each clause Cv that Uu appears in, we will create a spike with vertex 

fu,v' This spike is in edge P4PS, colinear with P7bv,a, where Uu is the a th literaI of 

Cv. This part of the unit is similar to the construction for a variable pattern given in 

[LLS6J. 
The second stage of construction for UU u is illustrated in figure 5.14. Here we 

have added four spikes, and a small indentation on the edge P3P4. First, a horizontal 

spike with vertex Zu is added in edge POPI! one-third of the vertical distance from P3P4 

to POP7 above P3P4' Next, we let ql and q4 be the points one-third and two-thirds 

of the way from P3 to P4, respectively. We create two new spikes, with vertices fu 
and tu, which intersect POPI and P6P7 (respectlVely) two-thirds of the vertical distance 

from P3P4 to POP7. The spike with vertex fu is made colinear with qI! and the spike 

with vertex tu is made colinear with Q4' Next, we place q2 and q3 such that qIq2 and 

q3q4 are colmear with ru/, and q2qi is high enough t,hat VP1(fu) and \ rPl(t U ) do not 

intersect above Q2q3. Finally, we place a horiznntal spike with vertex Xu at the vertex 

To describe the final construction step, and in the subsequent proof, the following 
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alternative notation for the spikes tu,v and fu,v in clause unit CU v will be useful: for 

every v and a = l, 2, or 3, let 

1 _ {tu,v if the a th literaI of Cv is Uu 

v,a - fu,v if the ath literaI of Cv is Uu 

As a final step we must flatten out the C-units so that any two vertices of the 

form lv,a and Iv,a l are Ilot L2-visible. This is èone by computing the intersections of 

the three lines of the form lv.abv.a for each v. These intersections will all be above the 

top of the central unit 's rectangle, as the literaIs of a clause appear in sorted order, 

as do the U-units. We then place the horizontal edges of CUII low enough th",t d.U 

of these !ine intersections are above the top edge and none of t,h~ lines ;ntersect any 

oth~r edge of the C-unit. We then have the situation illustcated in figure .S.lu. This 

completes the construction. 

5.4.2 Properties of the Construction 

Pl VP2(r) is L2-con'lex and co vers ail of P except the C-units and the spikes on the 

U-units. 
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Figure 5.15: Flattening GUu 

P3 For ail v, a = 1, 2, 3, and b = 1 or 2, VP1(Wu,b} U VP1(lv,a) U GLv is Lrconvex. 

Il 

P 5 H = {r} U U{ t", lu} U U{ Wv,b W u,2} is a link-2 hidden set. 
U Il 

P6 For aU u, (H U {xu,z,,}} \ {tu,!,,} is a link-2 hidden set. 

P7 For ail u and v, (HU {x",tu,v}} \ {!u,WV ,l!W",2} is a link-2 hidden set. 

For aH u and v, (HU {xu,!",u}) \ {tu,wu,l,Wv,2} is a link-2 hidden set. 

P8 For ail v, {l",}, [v,2, 1",3} is a link-2 hidden set. 

These properties are aIl easily verified from the construction. 
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Figure 5.16: XSu and XT u when 4>( Vu) = true 

PROOF We show that the instance lof 3SAT will have a yes answer iff the instance 

tP2(I) of L2CC has a yes answer (i.e., P can be covered by m = 2q +2n + 1 LTconvex 

sets ). 

If the instance 1 of 3SAT has a yes answer, then there is sorne satisfying truth 

assignment 4> : C f-+ {true, faIse} for C. We will use the following cover for P. 

First, we let XQ = VP2(r) be in the cover. XQ is L2·convex, by property Pl Aiso 

by property Pl, we now need only cover the C-units and the spikes on the U-units. 

Then, for each U-unit UU u, we let XSu and XT u be defined as follows: 

XSu = { 

XTu - { 

VP1(Xu) U VP1(tu) if 4>(Uu) = true 

VP1(xu) U VP1(fu) if 4>(Uu) = false 

VPl(ZU) U VP1(fu) u UVPl(tU,I1) if 4>(Uu) = true 
v 

• 

These definitions are illustrated in figures 5.16 and 5.17 for t/J(Uu ) = true and t/J(Uu ) = 
false. The XSu's and XTu's are L2-convex, by properties P2 and P4. We place ail 

XSu's and XT u's is the cover. We have thus used 2q + 1 sets, and have yet to cover 

only the C-units, and one set of spikes for each U-unit (either the spikes with vertices 

of the form tU,I1' or those with vertices of the form fu,I1)' 
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Figure 5.17: XSu and XTu when 4>(Uu ) = false 

Next, for each C-unit CU tJl we let a = l, 2, or 3 such that the ath literaI of Cv is 

true. We define XRu,l and XRu,2 so that they will coyer aU of CU u and two of the 

three spikes containing the vertices lu,a; the uncovered spike will correspond to the 

ath literaI, which is known to be true: 

{ 

VPl(lu,2) if a = 1 

XRv,l = GLu U VP1(Wu,l) U VP1(lu,tl if a = 2 

VP1 (lu,d if a = 3 

{ 

VPl(lv,3) if a = 1 

XRv,~ = GLu U VP1(Wv,1) U VP1(lu,3) if a = 2 

VP1(lu,2) if a = 3 

The XR's are L2-convex, by property P3. We place the XR's in the cover; we now 

have 2q +2n + 1(= m) sets. 

We daim that the C-units and X-unit spikes are now covered. The XR's certainly 

coyer the C-units, by the invariant part of their definitions. 

Suppose there were sorne spike of sorne V-unit which were not covered. Assume 

that this spike contains tu,u (the case where the spike contains fu,u is similar). Since 

tu,u is not covered, it is in particular not covered by XT u, irnplying that 4>( Uu ) = false. 
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The existance of tu,v implies that tu.v = Iv,a for a = 1, 2, or 3. Since neither XRv,l 

nor XRv,2 covers tu,v, we must have that the ath literaI of Cu satisfies Cu. Rowever, 

this a th literaI must be Uu , by the definition of Iv,a; this implies that riJ( Uu ) = true. 

This is a contradiction. 

Therefore the 2q + 2n + 1 L2-convex sets cover aB of the spikes, and in fact cover 

the entire polygon. Renee the instance tP2(I) of L2CC has a yes answer. 

If the instance of L2CC has a yes answer, then there is a collection S of 2q + 
2n + 1 Lrconvex sets which cover P. Since, by property PS, H = {r} U U{tu,fu} U .. 
U{ Wv,l, W v ,2} is a link-2 hidden set (with size 2q + 2n + 1), each member of S contains 
Il 

exactly one member of H. If h E H, we let Sh be the member of S containing h. 

We will use the following truth assignment <J> fOi our instance 1 of 3SAT: 

</J(U
u

) = {true if St .. contains Xu 

false if SI .. contains Xu 

Note that property P6 implies that Xu and Zu cannot he in ShI for any h' E H\ {tu, fu}' 

This means that x u and Zu must lie in Stu U SI... As property P6 also implies that 

Xu and Zu cannot he in the same Sh, exactIy one of Stu and Slu contains Xu (and the 

other contains zu). 

We clalln that </J is a satisfying truth assignment. We examine an arbitrary clause 

Cv: SWII.l and Swv.'J can each cover at most one of Iv,l' Iv,2' and Iv,3' by pro pert y P8. 

Let a be such that lv,a is not covered by SWV.l and Swv.'l' We examine two cases, based 

on whether Iv,a = tu,v or Iv ,a = fu,v for sorne u. 

In the first case (lv,a = tu.v for sorne u), lv,a must he covered by S lu' SWV .l' or SWv.l' 

by property P7. But by definition Iv,a is not covered hy SWV.l or SW".'J' Therefore Iv,a 

must be covered by SI,., Property P7 then aiso implies that SI,. can not contain Xu' 

Therefore, St .. must contain Xu, implying that riJ(Uu) = true, by our definition of <J>. 

Since Uu is the ath literai of Cv, this means that Cv is satisfied. 

If Iv.a = fu,v, then a similar analysis holds: Iv,a must be covered by Stu' which 

does not contain Xu' Therefore, Slu contains xu, implying riJ(Uu) = faIse. As the ath 

literaI of Cv is Uu , Cv is sJ.tisfied. 

Since in both cases Cv is satisfied, and Cv was chosen arbitrarily, ail clauses are 
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satisfied. Therefore 4J is a satisfying truth assignment, and instance 1 of 3SAT has a 

yes answer. 0 

We note that in this proof we have been using multiply-connecled polygons as part 

of our cover (the XTu's). However, changing the question of LjCC from "can P be 

covered by m or fewer LJ-convex sets'" to "can P be covered by m or fewer LJ-convex 

po/ygons" does not change our approach; for every set that we have placed ID our cover 

that is not singly connected, we simply instead place the smallest simply-connected 

superset of that set in our cover. The following result (a corollary of [570], theorem 

4.5) shows that this will not affect our proof: 

Theorem 5.6 Let A be a compact LJ-convex subset of P. Then the smallest compact, 

szmply-connecled set zn P containing A is a/so LJ-convex. 

5.4.4 Extension to Higher Even j 

Theorem 5.7 For any even znteger j ~ 2, LjCC is NP-hard. 

PROOF We modify the units and properties of the L2CC construction. 

The modifications to the units are as follows: the arm on the central unit IS 

replaced by a spiral arm of j -1 arms, a spiral of (j - 2)/2 arms is added at each Wv.l 

and W v.2' and a spiral of () - 2)/2 arms is added to the vertex of each spike on each 

U-unit. 5ample modified units, for J = 8, are shown in figures 5.18,5.19, and 5.20. 

The properties of this construction are the same as the properties of the L2CC 

construction, with "L2-convex'" replaced by "LJ-convex" "VP1(x)" replaced by 

"VPJ/2(x)," "VP2(r)" replaced by "VPJ(r)," and "link-2 hidden set" replaced by 

"link-J hidden set." 

The proof of this theorem is then identical to that of Theorem 5.5. o 
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Figure 5.18: Central unit for j = 8 

,...------n 

Po 

Figure 5.19: C-unit for j = 8 
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Figure 5.20: U-unit for j = 8 

In this section we show that LjSC and Lj,lcG are NP-hard. We prove this for LjSC 

by modification of our construction and proof for even-J LjCC. The result for Lj,kG 

is a combination and modification of the results for LjCC and LjSC. 

Theorem 5.8 For any mteger J ~ l, LjSC &8 NP-hard. 

PROOF We modify the U-units of the construction of Theorem 5.7. First, we let 

::t.u be a point in the intersection of VPt(zu) and VPt(tu), and zf.u be a point in the 

intersection of VP1 (zu) and VP1 (fu). We change the orientation and location of the 

spikes with vertices Zu, fu, and tu so that Zt.u and Z f,u both see r ur . We must aiso 

change the height of the edges PIP2, P3P4, and PsPa, so that the lines PIZ f.u and PSZt.u 

intersect the top edge of the central unit to the left of aU of the C-units. 

We aIso change the spikes with vertices tu.v and fu,v' We construct them colinear 

with zJ,ubv.a and Zt.ubv.a, respectively (rather than colinear with P3bv.a and p1z!,ubv.a). 

A sample U-unit for J = 1 is shown in figure 5.21. 

The interesting properties of this construction are the same as the properties of 

the construction for Theorem 5.7, except that we replace" L2-convex" with "star

shaped." The changes to the U-unit were to make the sets considered in property P4 
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Figure 5.21: LjSC: U-uT'it 

star-shaped; the otber sets (properties Pl - P3) were already star-shaped. 

This theorem then is obtained by following the proof of Theorem 5.7, with "L'r 

convex" replaced by "st.ar-shaped." 0 

Theorem 5.9 For any nonnegative mtegers j and k, at least one of which IS positive, 

Lj,kG is J\'P-hard. 

PROOF If k = 0, then the problem is the LjSC problem. If j = 0, then the problem 

is the LkCC problem. 

Otherwise, we use the construction for Lk+2jCC. 

If k + 2) is odd, then k is odd. We note that the covers given in the proof of 

Theorem 5.4 consist entirely of subsets of sets of the form VP(k-l)/2+J(S), where S is 

L1-convex. Thus those sets are also of the form VP1(S'), where S' is Lk-convex; we 

let S' = VP{k-l)/2(S). 

SimiJarly, if k + 2j is even, k is even. The covers given in the proof of Theorern 

5.7 consist entirely of subset of sets of the form VP(k-2)/2+AS), where S is L2-convex. 

Thus thosf' sets are also of the forrn VPJ(S'), where S' is Lk-convexj we let S' = 

VP(k-2)/2(S), 
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Thus, in aIl cases, we can show ~hat the polygons from the LjCC constructions 

can be covered by the appropriate number of VP]( S)'s when the instance 1 of X3C 

or 3SAT has a yes answer. 

The proof of the other implication (that the instance of LjCC has a yes answer 

implies that the ongmal problem instance has a yes answer) is unmodified from the 

LjCC proofs. ThIS IS due to the observation that if the instance of Lj,kG has a yes 

answer. then the mstance of Lk+2jCC must have a yes answer (which by the previous 

proofs give the desired tesult). 0 

5.6 Hidden Set Results 

vVe can also use the methods of this chapter to show that the following problems, 

which were proved NP·bard for) = 1 in [S87], are NP·hard for any odd j. 

INSTANCE: A polygon P, and an integer m. 

QUESTION: Ooes P have a link-) hidden set with m or more members? 

LJ-HIDDEN VERTEX SET (LjHVS) 

I~STANCE: A polygon P, and an integer m. 

QUESTION: Does P have a link-) hidden vertex set with m or more members? 

LJ-HIDDEN GUARD SET (LjHGS) 

INSTANCE: A polygon P, and an integer m. 

QUESTION: Ooes P have a link- j hidden guard set with m or fewer members? 
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L}-HIDDEN VERTEX GUARD ADMISSABILIY (LjHVGA) 

INSTANCE: A polygon P. 

QUESTION: Does P admit a link-j hidden vertex guard set? 

L}-HIDDEN VERTEX GUARD SET (LjHVGS) 

INSTANCE: A polygon P, and an integer m. 

91 

QUESTION: Does P have a link-j hidden vertex guard set with m or fewer mem

bers? 

We prove that these problems are NP-hard by a "link-j modification" of the j = 1 

proofs. This modification is similar to the ones presented in this chapter for even and 

odd J LjCC. We orrut the technical details. 

Theorem 5.10 For any odd mteger j ~ 1, LjHS 1S NP-hart!. 

Theorem 5.11 For any odd 1nteger ) ~ 1, LjHVS is NP-complete. 

Theorem 5.12 For any odd integer ) ~ l, LjHGS 18 NP-hard. 

Theorem 5.13 For any odd 1nteger j ~ l, LjHVGA 18 NP-complete. 

Theorem 5.14 For any odd mteger j ~ l, LjHVGS 15 NP-complete. 

These NP-hardness proofs aU use similar constructions, so it is probably the case 

that one could prove the even-j variants with only one more construction We are 

thus led to conjecture: 

Conjecture 5.15 For ail integers j > 1, the prob/ems LjHS, LjHGS, LjHVS, 

LjHVGA, and LjHVGS are NP-hard. 

5.7 Graph and Polygon Complexity 

It is one of the major contentions of this thesis that geometric visibility problems 

in polygons can be viewed as graph-theoretic problems on either the vertex-visibility 
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graph or point-visibility graph of the polygon. In connection with this, it is interesting 

to point out the parallels in known visibility and known graph-tneory complexity 

results: In eVEN) known instance, the complexity (either polynomial computability 

or ~P-hardness) of the pure graph theoretic problem is the same as the associated 

polygon visibdity problem. 

For example, the mdependent set problem i:l a graph is NP-hard [K72], as is 

the hidden vertex set problem (independent set in VVG( P)), as is the hidden set 

problem (indpendent set in PVG(P)). A slmilar statement can be made about inde

pendent dominatmg sets (hldden vertex guard sets, hidden guard sets), and dominat

ing sets (vertex guard sets, guard sets). Also, the k-colorability (chromatic number) 

problem for a graph is NP-hard [Kï2], as is the convex coyer problem for polygons 

(k-colorability of the complement of PVG(P)). 

Examples of polynomially-computable properties include the distance between 

two vertices (link-distance between two points), the center of a graph (link-center of 

a polygon), and the diameter and radius of a graph (link-diameter and link-radius of 

a polygon). 

One must be careful with this relationship, though. For instance, a maXImal clique 

in PVG(P) corresponds to a maXImal convex set in P, but a clique ID PVG(P) does 

not nece~sarily correspond to a convex set in P. Without this distinction one may 

become perplexed that there is a polynomial algorithm to filld a minimum convex par

tition of a polygon, whereas it is NP-hard to find a minimum partition of a graph into 

cliques [K72]. AIso, there are many NP-hard or NP-complete graph-theory problems 

that have no meaningful PVG counterpart; examples of these problems are finding a 

Hamiltonian circuit, finding a minimum maximal matching, and partitioning a graph 

into forests. These problems lose their substance on the infinite-vertex, infinite-degree 

graphs that we consider. 

We have shown here many results using link-j visibility. This corresponds to 

solving problems in the Jth power of a graph (see [H69] for definitions of powers of 

graphs). For example, solving a visiblity problem using L2-visibility corresponds to 

solving a graph theoretic problem on the square of a PVG. This leads us to conjecture 

that the problems that we have proved NP-hard for polygons are also NP-hard on 
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graphs, where we restrict our attention to graphs which are the jth power of sorne 

graph. The only result of this type of which 1 am aware is that finding a Hamiltonian 

circuit in the square of a graph is NP-complete [C76l; unfortunately, Hamiltonian 

circuit is a problem which is meaningless on PVGs. 
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Chapter 6 

Conclusion 

6.1 Met.hod and Results 

This thesis presents an extension and modification of the combinatorial method of 

Chvatal and Q'Rourke, used for finding bounds on the value of many visibility prop

erties of polygons. The bounds that we have obtained, which generalize and unify 

the previously-known bounds, are shown in figure 6.1. 

The method presented can be used to obtain bounds for restricted polygon classes 

or other guard classes as weIl; it has been applied with success to the problems of 

finding bounds in orthogonal polygons (for even link-diameter coveringj guarding) and 

fin ding bounds on the number of edge guards required for simple polygons. 

This thesis also introduces the notion that visibiIity problems should be viewed 

as graph-theory problems on point-visibility graphs, and begins exploration of the 

comparative problem complexity of ordinary graphs and point-visibility graphs. We 

showed that the LINK),k-GUARDING problem, and al! of its subproblems (in

cluding L,-CONVEX COVER and L,-STAR CaVER) are NP-hard, using two 

constructions, and a method of extending the constructions to higher link-visibility or 

link-diameter. This extension method can be applied to NP-hardness proofs for any 

visibility property, and this was done for the hidden set problems proved NP-hard in 

[587]. 

94 
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Bounds Theorerns, 
Object Problem J k Lower Upper Corollaries 
Polygon Hidden Vertex Set - l,~d 3.1,4.2 

Hidden Set 1 - n-2 3.2 
> 1 - l~lJ 3.1,4.8e 

Lk-Convex Coyer - > 1 lrl:iJ 3.1,4.8d 
Lk,Convex Partition - > 1 lrlïJ 3.1,4.8c 

, 
Guarding Tk ç C ç Ck lk+;,+lJ 3.la,4.8b 
Hidden Guard Set 1 - l~J - 1 n-2 3.4,3.2 

> 1 - L;,J - 1 L~lJ 3.4,4.8e 

Triangulation Independent Set - l ,~lJ 3.1b,4.8e 
Graph Dominating Set - l*3J 3.1e, 4.8 

Polygon Hidden Vertex Set - l,~lJ 3.6,4.2a 
Exterior Hidden Set 1 - n 3.7 

> 1 - L~J L~J 3.8,4.9c 
L,,-Convex Coyer - 1 n 3.7 

- > 1 LmJ Llffi 3.8,4.9b 
L,,-Convex Partition - 1 n 3.7 

- >1 llliJ L~J 3.8,4.9b 
Guarding Tke ç C ç Ck k + 2j > 1 lk:~+lJ l,,:i:~lJ 3.Sa,4.9a 

Figure 6.1: Table of results 
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6.2 Open Problems 

We have raised three major questions in the thesis to which we do not yet have 

answers: 

• What is t.he exaet tight bound for exterior visibility properties of polygons? The 

eurrent bounds are almost-tight, but it is unsatisfying to not have exact bounds. 

Two methods have been used to get tight exterior bounds for point guarding 

(namely, that of Aggarwal and O'Rourke, and that of Aggarwal, o 'Rourke, and 

Shermer [087]), but neither of these methods seems easy to generalize. 

• Are the visibility-property decision problems examined in the text in NP? This 

seems a hard question to answer, even for the simplest problem, Convex Coyer 

[082a]. 

• Can a construction be found for even j for the hidden set decision problems? 

This seems to be the easiest of these three questions. 

There are also many questions which we did not explicitly raise, but which are 

nevertheless relevant. A sampling of these are: 

• Linear algorithms exist to determine if a polygon has a hidden set of size two, 

and to determine if a polygon is the union of two convex sets [S88c]. Does there 

exist a good algorithm to determine if a polygon is the union of two star-shaped 

sets? 

• The combinatorial method of this thesis can be applied to orthogonal polygons, 

when covering with sets of even link-diameter. What bounds can be found for 

covering orthogonal polygons with sets of odd link-diameter? 

• Our combinatorial method is a generalization of Chvatal 's art gallery proof. Pre

liminary research indicates that Fisk's proof can also be generalizedj in particular, 
1 

we can find a k-thicket in any triangulation graph. A k-thicket is a set of n unique 

Dk-trees such that: 

(1) Each tree is colored one of k + 3 colors. 



t 
CHAPTER 6. CONCLUSION 97 

Figure 6.2: A forbidden induced subgraph 

(2) Each triangle in the triangulation graph has at least one tree of each color 

incident on it. 

A O-thicket is exactly a 3-coloring, and k-thickets provide us with high link

diameterjlink-visibility guard sets in the same manner that 3-coloring does for 

point or vertex guard sets. Can k-thickets be used to get tight exterior hounds? 

Are there any applications of k-thickets in graph theory? 

• Can PVGs he characterized? Sorne progress has been made in this direction; there 

are ex amples of graphs which cannot he induced graphs of any PVG (see figure 

6.2 for an example). Can aIl such forhidden induced suhgraphs be characterized? 
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• Considering PVGs as graphs raises man y questions. For example, wh en are two 

polygons zsomorphic with respect to visibility? ls this problem deeidable? It 

is known that aH eonvex polygons are isomorphic, as are aIl polygons with one 

reflex vertex. Polygons with two reflex vertices are not aU isomorphicj but nothing 

further is known. An interesting question is: how many different nonisomorphic 

polygons are there with two reflex vertices? It is suspeeted that there are infinitely 

many. 

• Consider guarding and covering polygons with holes using the guard classes 

and visibility diseussed here. For point guards, the leading conjecture is that 

l(n + h)j(k + 3)J guards are neeessary and sufficient. However, no examples 

have been found for higher k which require more than ln/(k + 3)J guards. ls this 

the tight bound? This problem is very closely related to the exterior guarding 

problem (a polygon exterior ean be treated as a hole without a polygon around 

it), and the remarks about the difference between k = 0 and k > 1 for that 

problem apply here as well. 

• Are there any good approximation algorithms for the problems that we have 

shown to be NP-hard? 

• Naïve implementation of the constructive proof for link-guards yields an O(n2
) 

algorithm for guard placement. Can this time be improved? 

6.3 Conclusion 

Visibility problems are central to several applied subfields of computer science, in

cluding computer graphies, pattern recognition, robotics, eomputer-aided design, 

computer-aided architecture, and VLSI. The generalization of visibility that we have 

studied finds applicatioD mostly in roboties, but the generalized guard classes and 

covering objects are likely to be useful in many fields. 

We have given tight combinatorial bounds on the size of hidden sets, guard sets, 

and covering sets, and have shown the close relationship between these properties. 

Although these bounds are more interesting to the geometer or graph theorist than 
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the computer scientist, the pro of rnethod can he mimicked to get an O( n2 ) algorithm 

for guard placement (for any of the guard classes we use and any link-visihility). We 

have also shown that the optimization and decision prohlems relating to computing 

these properties are NP-hard. 
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