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Abstract

In this thesis, we establish tight bounds on the maximum size of maximum hidden
sets, minimum guard sets, and minimum partitions and covers of polygons, using
link-visibility. These results unify and generalize the guard set results of Chvatal and
O’Rourke. Our method also provides tight bounds on independent and dominating
sets in triangulation graphs, and almost-tight bounds on the size of hidden sets, guard
sets, covers, and partitions of polygon exteriors. In addition, we prove that, using
link-visibility, the optimization problems of finding maximum hidden sets, minimum
guard sets, or minimum covers are NP-hard.

Link-visibility is an extended notion of visibility arising from robotics and motion
planning problems. Hidden sets are sets of points in a polygon such that no two points
of the set are visible, and guard sets are sets such that each point of the polygon is
visible to some point in the guard set. Both maximum hidden set sizes and minimum

guard set sizes can be used as polygon shape complexity measures.
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Résumé

Grace a la vue-liée, nous bornons de maniére optimal la grandeur maximum des
ensembles cloisonés maximums, des ensembles-sentinelles minimums et celles de par-
titions et de couvertures minimums de polygones.

Ces résultats unifient et généralisent ceux de Chvatal et d’0O’Rourke sur les ensembles-
sentinelles.

En outre, des bornes optimums sur la grandeur d’ensembles indépendants et
dominants, et des bornes quasi-optimums sur la grandeur d’ensembles cloisonés,
d’ensembles-sentinelles, de couvertures et de partitions de la région externe d’un poly-
gone sont dérivés par le méme biais. De plus, nous démontrons a l'aide de la vue-liée
que les probléemes d’optimisation de la recherche d’ensembles cloisonés maximums,
d’ensembles sentinelles minimum et de couvertures minimums sont NP-durs.

La vue-liée est une généralisation de la notion de vue, provenant de la robotique
et de la planification de trajectoire.

N’importe quels deux points membres d'un ersemble cloisoné sont mutuellement
non-visibles, alors que n’importe quel point du polygone est vu par au moins un
point d’'un ensemble-sentinelle. Lcs concepts de grandeur maximum d’ensembles cloi-
sonés et de grandeur minimum d’ensembles-sentinelles peuvent servir de mesure de

la complexité de la forme d’un polygone.
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Originality

This entire thesis, with the exception of many definitions in the introduction, and the
entire review chapter, should be considered an original contribution to knowledge.
In the invention and preparation of this material, the assistance that I recieved

from others was limited to clarifying discussions, proofreading, and the translation of

the abstract.
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Chapter 1
Introduction

In this chapter we introduce the major ideas that this thesis is concerned with.

1.1 Notation and Terminology

We use the operator \ to denote the usual set-theoretic difference.

If the intersection of two sets has zero measure (no area), then we shall say that the
sets are nonoverlapping. Note that two sets may be intersecting but not overlapping.

We assume that the reader is familiar with elementary graph theory, and we use
the usual graph theory notatiow (see, e.g., [H69] or [BM76]). We let the class of
graphs include the null graph (the graph on zero vertices), and the class of trees
include the null tree.

The vertex set and diameter of a graph G are denoted by vert(G) and diam(G),
respectively. d(z,y) is the (graph-theoretic) distance between vertices z and y. By
the induced graph difference GO S, where S is a subgraph of G, we mean the subgraph
of G that is induced by vert(G) \ vert(S).

In a rooted tree R, depth(R) denotes the depth of R, and st(R,w) is the subtree
of R rooted at w. We define the remaining tree rt(R,U) to be R | st(R,u).

uelU
A contraction of two vertices v and w in a graph G replaces GG by a graph G* which
is G with v and w (and their edges) removed, and a new vertex v* added, which is

adjacent to all of the vertices that v and w were adjacent to. If H is some subgraph




CHAPTER 1. INTRODUCTION 2

G*..

h H*c G*
shown in dark

HcG
shown in dark

i

Figure 1.1: Contractions on graphs and subgraphs

of G, then H* is the subgraph of G* which results from contracting v and w (if they
both exist) in H (see figure 1.1). For brevity, we refer to (st(R,w)))* as st*(R,w),
and similarly define rt*(R, U).

We use the prefix Dy- to indicate that a graph-theoretic object has diameter at

most k. For instance, a Di-tree is a tree of diameter at most k.

1.2 Visibility

The major category that the work in this thesis falls under is called wvisibility; this is
a well-studied notion in mathematics and computer science. Given some set of points
R in E9, we say that two points z,y € R are visible if the closed line segment from =z
to y lies entirely in R (see figure 1.2). Visibility is therefore a symmetric and reflexive
relation on the points of R. Two points which are visible are said to see each other.
Given this definition of visibility, we can define two types of point sets (regions)
R: convez regions, for which Vz,y € R, = sees y, and star-shaped regions, for which
Jz € R Vy € R, z sees y. Examples of these types of regions are shown in figure 1.3.
We can extend the concept of visibility from points to regions: we say that a

region U C R is visible from a region T' C R if Vu € U,3t € T such that ¢ sees u. In
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x and y are visible
g x and z are not visible
*
X \/ &
Yy /

Figure 1.2: Illustrating visibility

(5%

Figure 1.3: Convex and star-shaped regions
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w and x are L4-visible
x and y are L4-visible
x and z are Ls-visible

Figure 1.4: L,-visible

such an instance we will also say that T sees U. This is the notion of weak visibility

introduced in [AT81b]. We note that (weak) visibility is not a symmetric relation.

1.3 Generalized Visibility

One of the major contributions of this thesis is extension of known results about
visibility to a more general visibility, which is called link-j-visibility. We will use the
notation L, as shorthand for “link-;”.

We say that two points z,y € R are L,-visible if there is some path P C R joining
r and y which consists of j or fewer straight line segments (“links”). Some examples
are shown in figure 1.4. The smallest ; such that =z and y are L,-visible is called
the link-distance between = and y [S86a). We note that the usual notion of visibility
introduced above is exactly L;-visibility.

We can define L,-convez and L,-star-shaped regions in a manner analogous to our
definitions of convex and star-shaped regions: L,-convex regions are those for which
Vz,y € R, z and y are L,-visible, and L,-star-shaped regions are those for which
Jdz € RVy € R, x and y are L,-visible. Examples of these types of regions are shown
in figure 1.5.
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\Y4

Figure 1.5: A Lz-convex region and a L,-star-shaped region

We define L,-visibility for regions in the same manner as we defined L;-visibility

for regions.

1.4 Polygon

The major type of regions that we will deal with in this thesis is simple, singly-
connected polygons. A polygon is a finite figure in the plane that is bounded by a finite
number of straight line segments. A singly-connected polygon is bounded by n points
V1, Vo, ...,V, (called vertices) and the n line segments [vy,v), [vz,vs],. .., [Vno1, val,
and [vn,v1] (called edges). Such a polygon is called simple if no point of the plane
belongs to more than two edges of the polygon and the only points which belong to
precisely two edges are the vertices.

A simple polygon divides the plane into a bounded region, called the interior, and
an unbounded region, called the exterior. We henceforth will use the term polygon
to refer to the boundary and interior of a simple, singly-connected polygon. Several
regions which we do not consider polygons are shown in figure 1.6.

A chord of a polygon is a line segment which is contained in the polygon, and has

both endpoints on the boundary of the polygon. A diagonal of a polygon is a chord
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JAVAN =

Figure 1.6: Regions which are not polygons

with both endpoints on vertices of the polygon. An ear of a polygon is a vertex whose
adjacent vertices can be connected by a diagonal.

A polygon @Q is called a subpolygon of a polygon P if every point of Q is also in
P.

1.5 Polygon Covering

The polygon covering problem is: given a polygon P and some property = which is
true of some polygons, find a minimum-cardinality set @ = {Q,} of subpolygons of P,
each with property n, such that their union is P (i. e., UQ, = P). Typical properties
that are used as 7 are star-shaped, monotone, or convex. The collection Q is called
a cover for P. A polygon with a cover by convex sets is illustrated in figure 1.7.

Given a specific property m, we call the polygon covering problem that uses prop-
erty m the m cover problem. For instance, the polygon cover problem with 7= being
“convex” is known as the conver cover problem.

A partition is a cover where no two of the covering objects overlap. A minimum
partition of a polygon will therefore always have the same number of or more pieces

than a cover of that polygon. However, we will show that over all polygons with n
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Pk

Figure 1.7: A polygon with a convex cover

vertices, the maximum size of a minimum =7 cover is the same as the maximum size
of a minimum 7 partition.

It is well known that the maximum size of a convex cover of a polygon is n — 2,
and the same bound holds for convex partition. For star-snaped cover and partition,
the bound is |n/3] [C75][F78]. The problem of computing the minimum convex cover
of an input polygon has recently been shown to be NP-hard [CR88] [S88b]. The same
is true of minimum star-shaped covers [LL86] [A84]. However, the minimum convex

partition problem can be solved in polynomial time [CD85).

1.6 The Art Gallery Problem

A polygon-guard class is a collection of regions in a polygon. A guard class C is a
function which for every polygon P maps to a polygon-guard class C(P). Typical
guard classes are the ones where C(P) consists of the vertices of P, the points of P,
all line segments in P, all diagonals of P, or all star-shaped regions in P.

A guard class C is said to contain another guard class D (written C 2 D or D C ()
if, for every polygon P, every member of D(P) is a subset of some member of C(P).

For example, if we let C(P) be all of the chords of P, P(P) be all of the points of P,
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and V(P) be all of the vertices of P, then V C P C (, as each vertex of a polygon is
a point of the polygon, and each point in the polygon is contained in some chord.
The art gallery problem (see [O87]) is: given a polygon P and a guard class C,
what is the minimum cardinality g of a subset G of C(P) such that every point in P is
in the visibility polygon of at least one element of G? For L;-visibility, this problem
has been shown to be NP-complete for vertex, point, and edge guards [LL86][A84].
However, exact bounds on g(n), the maximum size of g over all polygons of n
vertices, have been shown for vertex and point guards (g(n) = |n/3]) [C75] [F7§],
and diagonal, line segment, and convex guards (g(n) = |n/4]) [O83a]. For orthogonal
polygons, bounds for vertex and point guards (¢(n) = |n/4]) [KKK83], and line
segment and convex guards (g(n) = [(3n + 4)/16]) [A84] have also been shown.
Given a property 7, we let C"(P) be the collection of all subregions of P with
property 7. Then, the n cover problem can be viewed as the art gallery problem
using C™ and Lo-visibility. Also, we can view the art gallery problem as a special case
of the covering problem in that we are required to cover the polygon with visibility
polygons.
In this thesis, we will be dealing mostly with the following two guard classes:
Ly = CL"’C""””, and 7, = C", where 7 is the property of being the vertices of a

Dy-tree in some triangulation (of the polygon P).

1.7 Hidden Sets

A hidden set is a set of points in a polygon such that no two points in the set are
visible to each other [S87]. A hidden vertez set is a hidden set which contains only
vertices of the polygon. The maximum size of the hidden set (or hidden vertex set),
over all polygons with n vertices, using L,-visibility, is denoted h,(n). A (L,-visibility)
hidden set is shown in figure 1.8a.

Hidden sets are known in the mathematics literature as wisually independent sets
[KG70! [B76]. Another related concept from the math literature is that of k-convexity
(or property Pg). A region is said to be k-convex if it has no hidden sets of size k or

greater. Thus, convex sets are the same as 2-convex sets.
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Figure 1.8: Hidden set and hidden guard set

A hidden guard set is a hidden set which is also a guard set. A hidden guard set
is shown in figure 1.8b. Whereas every polygon admits a hidden guard set, we will
see that not every polygon admits a hidden vertezr guard set, which is a hidden vertex

set that is also a guard set.

1.8 Point Visibility Graphs

We now introduce a structure which lends insight into the relationship between the
guard set, hidden set, hidden guard set, and “link-distance” problems: the point
visibility graph of a polygon.

Given a polygon P, we define the point visibility graph of P, denoted PVG(P), as:

PVG(P) = (Vp,Ep), where
Ve = {plpe P}
Ep = {[p,q]|p,q € P and p sees g}
Note that this is an infinite graph, as the number of points in a polygon is infinite.

(This graph may also be called a continuous graph, in the sense defined in [N-W73]).

We hope that the reader will not mind the abuse of notation inherent in the above
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definition (we use p to refer to both a point in P and a vertex of PVG(P), and
similarly abuse [p, ¢]).

Without explicit reference to point visibility graphs, many of the properties of
these graphs have been studied [BB64] [LPS87] [S86a]. For example, the distance of
two vertices p and ¢ of PVG(P) is the link-distance of p and ¢ in P. This means
that any graph properties derived from distances have their link counterparts: the
diameter of PVG(P) is the link-diameter of P, the radius of PVG(P) is the link-
radius of P, the eccentricity of vertex p in PVG(P) is the link-eccentricity of p in P
(also known as the covering radius), and the center of PVG(P) is the link-center of P.
Also, a vertex-dominating set of PVG(P) is a point guard set of P, an independent
set of PVG(P) is a hidden set of P, an independent vertex-dominating set of PVG(P)
is a hidden guard set of P, and a maximal clique of PVG(P) is a maximai convex
subset of P.

Another structure of interest is the vertex visibility graph of P, denoted VVG(P),
also known simply as the visibility graph of P. This is the subgraph of PVG(P) which
is induced by the vertices of P. Several papers have appeared on characterizing,
recognizing, and computing visibility graphs [E85] [E89] [G86] [H87] [W85] [OW8S§]
[KM88], and on applications of these graphs [AE83] [SH79]. A similar structure is the
edge wisibility graph, which has a vertex for every edge of the polygon, and an edge
between two vertices if there are points on the corresponding edges which are visible.

A survey of the use of these different types of visibility graphs can be found in [T88].

1.9 Triangulation

One of the major tools that we will use in this thesis is polygon triangulation. A
polygon triangulation is a division of a polygon P into triangles such that there is
no vertex in any triangle that is not a vertex of P. The edges of the triangles thus
formed are either polygon edges or diagonals.

It is well known that every polygon can be triangulated (see, for instance [087]),
and some polygons may in fact have several triangulations. An example of a polygon

with a triangulation is shown in figure 1.9a.
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Figure 1.9: A triangulation and its dual tree

Given a polygon P with a triangulation, a triangulation graph is the plane graph
formed by letting the vertices of the graph be the vertices of the polygon, and connect-
ing two graph vertices if their corresponding polygon vertices share a triangulation
diagonal or a polygon edge. The triangulation graph is the graph whose drawing
results from drawing the polygon and the diagonals of a triangulation. For example,
the drawing of the triangulation in figure 1.9a is also a drawing of its triangulation
graph. The class of triangulation graphs is known to graph theorists as the class of
mazimal outerplane graphs.

Each triangulation graph has a unique Hamiltonian cycle, which corresponds to
the edges of the polygon. We use the term cycle edge to refer to an edge in this
hamiltonian cycle.

A triangulation graph is said to be dominated by a subset V' of its vertices if
every triangle of the graph has at least one of its vertices in V', We also say that
a triangulation graph G is dominated by a subgraph (or a collection of subgraphs)
of G if the vertices of the subgraph (or collection) dominates G. We will show that
dominating a triangulation graph of a polygon is closely related to L,-guarding that

polygon.
The dual tree of a triangulation T is the graph which has one vertex for each
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triangle in T, and has an edge between two vertices if the two corresponding triangles

share an edge. A sample dual tree is shown in figure 1.9b.

1.10 Organization of the Thesis

Throughout the text, we will use the variable j for the number of links in the visibility
that we are using, and the variable £ for the link-diameter of regions (gencrally
subpolygons) under consideration.

The remainder of the thesis is organized as follows:

The following chapter (the second) is a review of the relevant mathematics and
computer science literature.

The third chapter contains lower bounds on the maximum size of maximum hidden
sets, minimum guard sets, and minimum polygon covers. Bounds are given for both
polygon interiors and polygon exteriors.

The fourth chapter contains proofs of matching (for the interior) and almost-
matching (for the exterior) upper bounds for the lower bounds presented in the third
chapter.

In the fifth chapter, We show that most of the optimization problems associated
with polygon covers, guard sets, and hidden sets are NP-hard.

The sixth and final chapter is the conclusion.




Chapter 2
Review

This thesis has its root in, and was inspired by, recent work in art gallery theorems.
Art gallery theorems are so called because of the metaphor where one considers a
polygon the floor plan of an art gallery in which all of the walls (and floor!) are
covered with valuable artwork. One then asks the question: what is the fewest number
of guards necessary to place in the art gallery such that there is no piece of artwork
(point of the polygon) that is not seen by at least one guard?

This metaphor of polygon as room (or as art gallery) can be traced back at least

40 years. We find, for example, the following quote from [YB61]:

Imagine a painting gallery consisting of several rooms connected with
one another whose walls are completely hung with pictures. Krasnosel’skii’s
Theorem states that if for each three paintings of the gallery there is a
point from which all three can be seen, then there exists a point from

which all the paintings of the gallery can be seen.

Art gallery problems, and visibility in general, have been studied by both mathe-
maticians and computer scientists. Unless otherwise stated, the visibility used in the

results discussed in this chapter is L;-visibility.

13
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2.1 Math Visibility

The recent mathematical interest in visibility was started by Valentine in his 1953
paper “Minimal Sets of Visibility” [V53]. In this paper, he characterizes those sets
whose minimal connected guard sets are unique. In 1957, Valentine introduced a
new generalization of convexity which inspired many mathematicians to consider
visibility [V57]. Given our terminology, this generalization can be understood as
follows: convex sets have a hidden set of size at most one; Valentine considered (and
characterized) sets which have a hidden set of size at most two. These sets were
further studied by Juul [J77]). Later investigators examined sets with hidden set of
size at most m [KG70] [GK71] [B76] [BK76], and even further generalizations (which
we will not detail here) [B73].

Horn and Valentine started mathematicians working on L,-convex sets, in a pa-
per which characterized planar Lj-convex sets [HV49]. Later work includes a paper
by Breen about Lj-convex sets which are visible from a convex set [B77], a paper
by Bruckner and Bruckner on the L,-kernel (link center) of a set [BB64], a paper
by Valentine on reflex points and L,-convexity [V65b], and a paper by Sparks on
intersections of maximal L,-convex subsets of other sets [S70].

Covering has also been considered in the mathematics literature. There are many
papers on sets which can be covered by two ccnvex sets [SM63] [M66] [J77]. Also,
covering and partitioning has been studied for sets with a bounded maximum hidden
set size [B76] [BK76]. Other work has been done on covering with star-shaped sets
[HK68] [KM66.

2.2 Art Gallery Results

It was a mathematician, Victor Klee, who finally got a computer scientist/graph
theorist, Vasek Chvatal, interested in guarding problems. In 1973, Klee posed the art
gallery question to Chvatal, who solved the problem, finding tight bounds on g(n) for
point and vertex guards. As a large portion of this thesis is devoted to generalizing

this result, we review both the result and its proof.
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Figure 2.1: (Chvatal) Comb polygons

Theorem 2.1 (Chvatal 1975) For any integern > 3, |n/3| point or vertez guards

are sometimes necessary and always sufficient to guard a polygon with n vertices.

PROOF The “comb” polygons, as illustrated in figure 2.1, are polygons requiring
[n/3] such guards; each upward spike on the comb requires its own guard. One can
easily generalize the polygons shown to polygons of arbitrarily high n with |n/3]
spikes. Thus, [n/3] point or vertex guards are necessary for some polygons.

To prove that this many are sufficient, we assume that we are given a polygon P
with n vertices. First, triangulate P to get a triangulation graph 7". Next, dominate
T (by vertices) aund place guards at each vertex in the dominating set. As each point
of P is in some triangle of T, and each triangle has a vertex in the dominating set
(and, therefore, in the guard set), each point will be visible to some guard. We now
need only show that the triangulation graph T' can be dominated by |n/3] vertices.

The proof is by induction. The induction basis is n < 5; any triangulation graph
with 5 or fewer vertices (3 or fewer triangles) has one vertex which is incident on all
triangles. The induction hypothesis is that |n’/3] vertices suffice to dominate any
triangulation graph of n’ < n vertices. We wish to show that {n/3] suffices for n > 5.

First, find a diagonal D = [a, b] that cuts the triangulation graph into two pieces,

one of which has between 3 and 5 triangles, inclusive (such a diagonal always exists,
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(4

Figure 2.2: Cases in proof of Theorem 2.1

and we will prove a generalization of this statement later in the thesis). Let G be

the part of 3-5 triangles, and G, be the other part.

case 1: GG, has all triangles incident on some vertex v.

In this case, we dominate G, by induction (with at most |(n —3)/3] =
|n/3] — 1 vertices), and place v in the dominating set. This gives a total of

at most [n/3| vertices.

case 2: (G; has four triangles, as pictured in figure 2.2a.

Let U be the triangle of G; containing D, and ¢ be the vertex of U not on
D. Dominate G; + U with at most |[n/3| — 1 vertices by induction. Either
a, b, or ¢ must be in the dominating set of G5, else U is not dominated. 1f a
is in the dominating set, then place b in the set as well. Similarly, if b or ¢ is

in the set, place ¢ in the set. In either case we have added only one vertex

to the dominating set, and G, is dominated. Hence, we have dominated G

with at most |n/3] vertices.

case 3: G has five triangles, as pictured in figure 2.2b.
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Again, let U = Aabc be the triangle of Gy containing D, and dominate
G2+ U with at most [n/3] —1 vertices by induction. If a is in the dominating
set, place b in the set. If b1s in the dominating set, place ¢ in the set. If cis
in the dominating set, remove 1t and place @ and b1n the set. In any case, we
have added one vertex and dominated (G, Also, removing ¢ and replacing it
with a and b does not affect any of the tnangles in Gy. Therefore, we have

dominated G with at most |n/3] vertices.

case 4: G, has five tnangles, as pictured in figure 2.2¢c.

Let U = Aabc be the triangle of Gy contaming D, V = Abed be the
adjacent triangle as pictured, and dominate &', +U+V with at most [n /3] -1
vertices by induction. One of b, ¢, and d will be i the dominating set. If ¢
is in the dominating set, then place b in the set. If b or d is in the set, place
c in the set. In either case we have added only one vertex to the dominating
set, and G; is dominated; we have again dominated G with at most |[n/3]

vertices.

As the above are the only possible cases, we have shown that [n/3]| vertices
suffice to dominate a triangulation graph, and hence [n/3] vertices suflice to guard

a polygon. a

Fisk later found a more elegant proof of this theorem, by 3-coloring the trian-
gulation graph, and placing guards on vertices which were colored with the least
frequently used color [F78].

Later, Toussaint considered the problem of finding bounds on the number of guards
when the guards are allowed to patrol fixed line segments or edges, and showed that
[n/4] edge guards were sometimes necessary, and also conjectured the sufficiency of
this number. O’Rourke proved sufficiency for line segments [O83a); his proof is an

extension of the method of Chvatal.

Theorem 2.2 (O'Rourke 1983) For any integer n > 4, |n/4] vertez-parr, diago-
nai, or hine segment guards are somctimes necessary and always sufficient to guard a

polygon with n vertices.
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Figure 2.3: (Toussaint) Necessity for mobile guards

A vertez-pair guard is a pair of L,-visible vertices.

PROOF The polygon class illustrated in figure 2.3 are polygons requiring |n/4] such
guards; each arm on the polygon requires its own guard. One can easily generalize
the pictured polygons to polygons of arbitrarily high n with |n/4| arms. Thus, [n/4]
such guards are necessary for some polygons.

We only sketch the sufficiency proof. Assume that we are given a polygon P with
n vertices. First, triangulate P to get a triangulation graph 7. Next, dorninate T’
by edges (more precisely. by units of two vertices cennected by an edge), and place a
guard at the geometric location for each unit in the dominating set. As each point of
P is in seme triangle of 7', and each triangle has a vertex in 2 unit in the dominating
set. each point will be visible to some guard. We now need only prove that the
triangulation graph T can be dominated by |n/4] such units.

The proof is by induction. The induction basis is n < 7; any triangulation graph
with 7 or fewer vertices (5 or fewer ‘riangies) has one edge which is incident on all
triangles (O’Roucke proves this by a lengthy case analysis). The induction hypothesis
is that [n/3] vertices suffice to dominate any triangulation grapn of n’ < n vertices.

We wish to show that |r/3] suffices for n > 7.
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First, find a diagonal that cuts the triangulation graph into two pieces, one of
which (called G,) has between 4 and 7 triangles, inclusive; let G, be the other piece.
Such a diagonal always exists.

If G; has 4 or 5 triangles, then induction can be applied to both G, and Gg, to
get at most 1 + [(n —4)/4]| = [n/4] guards.

If G, has 6 or 7 triangles, then the result is proved by a long case analysis based

on the structure of G, similar to the analysis given in the proof of Theorem 2.1. O

2.3 Art Gallery Variants

Many variations on the art gallery problem have been investigated; O’Rourke has
written a book which covers most of them [O87]. The most notable variations are
those in which the class of regions investigated has been restricted, expanded, or
changed. Typical work concentrates on star-shaped polygons, monotone polygons,
spiral polygons, orthogonal polygons, polygons with holes, or polygon exteriors.

Star-shaped, monotone, and spiral polygons are restricted polygon classes which
often arise in practice, and consideration of these classes has led to some interesting
theorems (see [(087]). However, the study of visibility in these classes of polygons is
not in the scope of this thesis.

Orthogonal polygons also often arise in practice. An orthogonal polygon is a
polygon in which the edges alternate between horizontal and vertical. In [KKK83],
Kahn, Klawe, and Kleitman proved that |n/4] vertex or point guards are necessary
2ad sufficient for orthogonal polygons; in [A84], Aggarwal proved that {(3n + 4)/16]
line seginent guards are necessary and sufficient. In this thesis, we do not consider
orthogonal polygons, but we note that our method applies to orthogonal polygons
when the diameter of the guarding object is even (such as 0 in the vertex guard case),
but not when it is odd. Thus, we can generalize Kahn, Klawe, and Xleitman's result,
but not Aggarwal’s.

Another variant that has been considered are polygons with holes. [n this problem,

we attempt to guard regions which are polygons with subpolygons subtracted. We
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let A denote the number of holes, and consider point or vertex guards. Shermer has
shown that there are polygons requiring |(n + #)/3], and O'Rourke proved that no
polvgon could require more than |(n + 2h)/3]. For h = 1, it has been shown that
[(n + 1)/3] suffice [S84] [S85]. Aggarwal, O'Rourke, and Shermer have also done work
on orthogonal polygons with orthogonal holes; this and the other work on polygons
with holes is summarized in [O87].

Work has also been done on guarding polygon exteriors. Here, O’'Rourke and
Wood have shown that [n/2] vertex guards are necessary and sufficient. Also, Ag-
garwal and O’Rourke proved that [n/3] point guards are necessary and sufficient,
and Shermer has a simpler proof of this result showing that at most two of these
point guards need to be located at points which are not vertices of the polygon (see
[087]). In this thesis we will not generalize these results, but we will generalize
O’Rourke’s slightly weaker result that [(n + 1)/3] point guards are sufficient for a

polygon exterior.

2.4 Computational Complexity

Lee and Lin have shown that determining the minimum number of vertex (or edge)
guards necessary to guard a given simple polygon is NP-hard [LL86}; Aggarwal has
generalized this proof to point guards (or star-shaped cover) [A84]. Also, Culberson
and Reckhow have shown that determining the minimum number of convex subsets
necessary to cover a polygon is NP-hard [CR88] (see [S88b] for an independent proof
of this result). Previously, O’'Rourke and Supowit had shown that these problems are
NP-hard for polygons with holes [0S83].

In [S87], Shermer showed that many of the problems associated with hidden sets
in polygons are difficult: computing the size of the maximum hidden set or hidden
vertex set is NP-hard; computing the size of the minimum hidden guard set is NP-
hard; determining if a polygon has a hidden vertex guard set is NP-complete; and
computing the size of the minimum hidden vertex guard set is NP-hard, even if it is

known that the polygon has a hidden vertex guard set.
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2.5 Algorithms

A fair amount of work has been done on computing link-distance properties. Suri has
given an algorithm for computing the link-distance between two points in a polygon;
this algorithm runs in C(n) time, given a triangulation of the polygon [S86a). Suri has
also given an O(nlogn) algorithm for computing the link-diameter of a polygon (the
smallest ; such that the polygon 1s L,-convex) [S86b]. The problems of computing
the link-center and link-radius of a polygon were considered in [LPS87], where an
O(n?) algorithm is given for both problems. This time was improved to O(n logn)
(for both problems) while this thesis was in preparation [K89].

Although the minimum convex cover problem for a polygon is NP-hard, Chazelle
and Dobkin have shown that the minimum convex partition problem for a polygon can
be solved in O(n?®) [CD85]. Shermer gives O(n) algorithms for recognizing polygons
which can be covered by two convex polygons and polygons which have a maximum
hidden set of size two [S88c].

Several papers have appeared on the guard placement problem: find a set of guards,
with the number of guards not exceeding the worst-case bound, for a given polygon.
Avis and Toussaint first showed that the (point or) vertex guard placement problem
for simple polygons can be solved in O(n logn) time [AT81a]. This can now be done
in O(nloglogn) time using the trapezoidization/triangulation algorithm of Tarjan
and Van Wyk [TV88], and imitating the art gallery proof of Fisk. Two papers
exist which give O(nloglogn) algorithms for vertex guard placement in orthogonal
polygons [EOW84] (as modified in [O87]) {ST88]. The quadrilateralization algorithm
of Lubiw [L85] leads to an O(n logn) algorithm for this problem.



Chapter 3

Lower Bounds and Existence

3.1 Hidden Sets, Covering, and Guarding

We devote the first part of this section to the proof and corollaries of a lower-bound
theorem for hidden sets in polygons; these results will show the close relationship
between hiding, covering, and guardiug. The section ends with some special-case

bounds for L;-visibility.

Theorem 3.1 For any integers j > 0 and n > j + 1, there exist polygons with n

vertices that

(a) have a L,-hidden vertez set of size |n/(j +1)], and

(b) require at least [n/(j +1)| regions in any covering or partition by L,-convez

regions.

PROOF The polygon class illustrated in figure 3.1 consists of such polygons. Figure
3.1 shows representatives for each j, for j between 0 and 9, inclusive. The hidden
set for the j = 0 example is the entire vertex set, and for the rest of the polygons,
the hidden set is the set of vertices with acute angles at the end of the spiral “arms.”
Thus the hidden vertex set is of size [n/(j +1)].

To get representatives for higher j, simply increase the number of turns on the

spiral by an appropriate amount. To get representatives for other n, change the

22
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Figure 3.1: Dlustrating Theorem 3.1
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Figure 3.2: Increasing n

number of spirals on the polygon. For example, figure 3.2 shows representatives for
n = 15, 20, and 25, for ) = 4. Note than for values of n which are not multiples of
7 + 1, we can construct polygons by simply subdividing the appropriate number of
edges of the polygon for the greatest multiple of j + 1 less than n.

Let P be a polygon with a L,-hidden set of size |n/(j +1)]. If P were coverable
with fewer than |n/(y + 1)) L,-convex regions, then some region would contain two
members of the hidden set, implying that these two members were link distance
(at most) 7 apart. This means that these two members of the hidden set are L,-
visible, which is a contradiction. Therefore, P requires at least |n/(j + 1)] regions
in a covering by L,-convex regions. The bound holds for partitions as well, as every

partition is also a covering. m|

Corollary 3.1a For any integers j > 0, k20, andn 2 k+ 25 +1, and any guard
class C such that C C Li, using L,-visibility, there ezist polygons with n vertices
requiring |n/(k +2j +1)] guards.

PROOF We claim that VP,(R), where R € C(P), is Li4y,-convex. Take any two
points z and y in VP,(R). The point z is L,-visible to some point p in R, as it is in
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VP, (R). Simlarly, y is L,-visible to some point ¢ in R. Since R € C(P), and C C L.
the link distance between p and ¢ is at most k. Therefore. there is a path from r to p
to g to y that consists of at most j + £+ ) = 2) + k hinks Since r and y were chosen
arbitrarily in VP,(R), the claim follows. By the claim and Theorem 3.1(b). we have
that there exist polygons requiring |n/(k + 2y + 1) guards. for y >0and k>0 O

Corollary 3.1b For any integers j > 0 and n > j + 3, there exist polygon triangu-
lation graphs with n vertices having a distance-j independent set of size {n/(j +1)].

PROOF Theotem 3.1 states that some polygon P exists with a L,-hidden vertex
set H of size [n/(j+1)]. Let T be the triangulation graph of any triangulation of P.
We claim that H is a distance-) independent set in T. If this were not the case, then
there would exist some vertices hy and h; in H such that there 1s a D,-path from A,
to hy in T. As ihe geometric embeddings of each of the edges of a triangulation graph
of a polygon is contained in the polygon, the D,-path defines a link-; path from A,
to h, in P. This contradicts the definition of H, therefore the claim holds. a

Corollary 3.1c For any integers k > 0 and n > k + 3, there exist polygon trian-
gulation graphs unth n vertices that cannot be dominated by fewer than |n/(k + 3)]
Dy -subgraphs.

PROOF By Corollary 3.1b, there exists some triangulation graph T with a distance-
(k + 2) independent set H of size |[n/(k + 3)]. For each element h of H, we let S(h)
be some triangle of T containing h, and S = | JS(h). S therefore has |n/(k + 3)]

heH
members.

We claim that no Dg-subgraph of T can dominate more than one member of 5 If
this were not the case, then there would be twe members S(/h;) and S(k;) of S such
that there is a path of distance at most k between a vertex v; of S(h;) and a vertex
vy of S(h;). As the distance from any h to any vertex of S(h) is at most 1, there 1s
some path from h; to vy to vz to hy of at most 1 + k+ 1 =k + 2 edges Since this

contradicts the definition of H. the claim holds.
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Figure 3.3: Spiral polygons with 3 convex vertices

As there are |n/(k + 3)] members of S, and no two members can be dominated by

one Dy-subgraph, T cannot be dominated by fewer than |n/(k + 3)] such subgraphs.
a

The following two theorems are bounds for hidden sets using L,-visibility.

Theorem 3.2 For any integer n > 3, there exist polygons with n vertices having a
Ly-hidden set of size n — 2. Furthermore, there do not ezist polygons of n vertices

having a L,-hidden set of size greater than n — 2.

PROOF The spiral polygons with three convex vertices, as shown in figure 3.3, are
such polygons. The hidden set is the set of midpoints of the edges on the reflex chain.

No polygon could have a hidden set of size greater than n — 2, as every polygon
can be triangulated (divided into n — 2 triangles), and each triangle can only contain

one member of a hidden set. O

The previous theorem strengthens the result of Theorem 3.1 for Li-visibility.
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3.2 Hidden Guard Sets

We now consider hidden guard sets, where the guards may be on any point in the
polygen. In the next section we will see that the hidden vertex guard set problem is
much more complicated. Ve start by showing that every polygon has a hidden guard

set.

Theorem 3.3 For any integer ) > 0, polygon P, and L,-kidden set H < P, there is
a L,-hidden guard set S for P which contains H.

PROOF The following procedure gencrates such an S. First, let S = H. Repeatedly
add points to S: at each step, ada any point of P that is not seen {using L ,-visibility)
from some point of S. Continue this until there are no such points left (i.e.. S is
a guard set for P). At each step in the construction, S is also a hidden set. This
itnplies that S is finite, and thus the given procedure terminates. Therefore the final

S is a hidden guard set. 0

Theorem 3.4 For any integers 3 > 0 and n > 63, there ezist polygons with n vertices

with @ mimimum L,-hidden guard set of size |n/25] — 1.

PROOF  The L,-spur polygons (shown in figure 3.4 for y = 1,n = 8 and 12, and
J = 4,n = 24 and 40) are such poiygons. In each polygon, there are n/2;j spiral arms,
thus there are n/2j vertices at the ends of spiral arms. Only guards placed ir the
the central region can be L,-visible to more than one such end vertices. The spurs
are constructed so that at most one (hidden) guard can be in this central region, and
this guard will see at most two end vertices. Each other end vertex will require one

guard; therefore these polygons require n/2jy — 1 hidden guards. a

3.3 Hidden Vertex Guard Sets

In this section, we investigate and find bounds on hidden vertex guard sets in poly-

gons. The first question that must be addressed is whether or not a given polygon
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Figure 3.4: L,-Spur polygons
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N/ e

Figure 3.5: Polygons with no hidden vertex guard set

has a hidden vertex guard set. Surprisingly, there are polygons for which no hidden
vertex guard set exists.

For example, neither of the polygons in figure 3.5 has a hidden vertex guard
set. Consider figure 3.5a. Since guarding all of its extreme vertices does not cover
the entire region, one of the interior vertices must be guarded (if this polygon is to
admit a hidden vertex guard set). No more than one interior vertex can be guarded,
however, as all interior vertices see one another. Guarding any interior vertex will
leave two opposing triangles (and possibly some other region, whose guarding will not
affect these triangles) as shown in fi_ ire 3.6: Since guarding neither v, nor v, covers
both triangles, and v, and v, cannot both be guarded at the same time (they see one
another), the polygon in figure 3.5a does not admit a hidden vertex guard set.

A similar argument holds for the polygon in figure 3.5b: to see the center point,
one of the central four vertices must be guarded, but this leaves a triangle-pair as in
figure 3.6.

We note that figure 3.5a is both star-shaped and monotone, and that figure 3.5b is
orthogonal; therefore these classes of polygons (star-shaped, monotone, or orthogonal)
do not always admit hidden vertex guard sets.

Spiral polygons, however, always admit hidden vertex guard sets; every other
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v/ "

Figure 3.6: Opposing triangles

vertex of the reflex chain is such a set (see figure 3.7).

Since we know that some polygons do not admit a hidden vertex guard set, and
some do, it is natural to ask whether or not there exists a good algorithm to determine
whether a given polygon admits a hidden vertex guard set or not. This problem has
been shown NP-complete in [S87].

Note that Theorem 3.3 implies that any maximal L,-hidden set for P is also a L,-
guard set for P. We can also show the following interesting analog of this statement

for L,-hidden vertex sets:

Theorem 3.5 For any integer 3 > 0, and any polygon P, any mazimal L,-hidden
vertez set for P is also a L,;,-guard set for P.

PROOF Let H be a maximal L,-hidden vertex set for P, and p be a point in P.
Then, p is L;-visible to sorie vertex v of P, as it is contained in some triangle of some
triangulation of P. If v is in H, then p is L,-visible, hence L,,,-visible, te a member
of H. If v is not in H, then there must be some element w of H that is L,-visible
to v, else v could be added to H, implying that it is not a maximal L,-hidden vertex
set. The -link path from w to v followed by the segment from v to p is a 7 + 1-link

path from w to p. Thus, pis L,;;-visible to an element of H.
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Figure 3.7: A hidden vertex guard set in a spiral polygon

As p was chosen arbitrarily, any such H will be a L,;,-guard set for P. ]

3.4 Polygon Exteriors

In this section, we obtain lower bounds on the maximum size of hidden sets, guard
sets, and covers, for the exteriors of polygons.
We let £f denote the guard class defined by letting £{(P) be the collection of all

Li-convex sets in the exterior of P.

Theorem 3.8 For any integers 7 > 0 and n > j + 1, there ezist polygons with n

vertices having an exterior L,-hidden vertez set of size [n/(y +1)].

PROOF Convex polygons are such polygons; the hidden vertex set consists of every
(7 + 1)-th vertex. Q

Theorem 3.7 For any integer n > 3, there ezist polygons with n vertices that

(a) have an exterior L,-hidden set of size n, and



CHAPTER 3. LOWER BOUNDS AND EXISTENCE 32

(b) require at least n remons in any covering or partition of the ezterior by L,-

conver regions.

Furthermore, no polygons ezist with larger Ly-hidden sets or larger minimum covers

by Li-convez regions.

PROOF Convex polygons again provide the example; the hidden set consists of the
midpoints of the edges of the polygon. As no two edge midpoints can be in the same
L;-convex region, a partition or cover by such regions must have at least n regions.
Also, the exterior of any polygon can be partitioned into n convex regions, using
the naive partitioning algorithm of [C80]. This provides the matching upper bound
for partitions and covers. As no two members of any hidden set can be in the same

convex region, this provides the upper bound on hicden sets as well. 0

Part (b) of the above theorem is a well-known result (see, e.g. [087]).

Theorem 3.8 For any integers 3 > 2 and n > j, there ezist polygons with n vertices
that

(a) have an exterior L;-hidden set of size |(n+1)/(j +1)], and

(b) require at least |(n + 1}/(j + 1)] regions in any covering or partition of the

ezterior by L,-convez regions.

PROOF The polygon class shown in figure 3.8 consists of such polygons. These
polygons are derived by taking the polygons of Theorem 3.1 and turning them “inside-
out.” (This technique is due to O'Rourke and Aggarwal.)

The hidden sets are shown in the figure, and the covering result is proved in the

same manner as the covering result of Theorem 3.1 was proved. m

Corollary 3.8a For any integers ) >0, k > 0, and n > k + 25 > 2, and any guard
class C such that C C L%, using L,-visibility, there exist polygons with n vertices

requiring |(n +1)/(k +2j + 1)} exteror guards.
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Figure 3.8: Illustrating Theorem 3.8
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PROOF This is proved from Theorem 3.8 in the same manner as Corollary 3.1a was
proved from Theorem 3.1. =)

We note that this bound does not match the tight bound of [(n + 2)/(k + 25 + 1)]
= |(n +2)/3] for the j = 1,k = 0 case. However, we feel that j = 1,k = 0 is a
special case in that it is the only case for which the exterior of a convex polygon (or
the exterior of the hull of a non-convex polygon) requires two guards. We expect that

the bound of Corollary 3.8a will be tight in all other cases.




Chapter 4
Upper Bounds

In this chapter we obtain upper bounds on hidden set, guard set, and polygon cover
sizes, in polygon interiors, that are the same as the lower bounds presented in the
previous chapter. In particular, we will prove the following general covering/guarding

theorem:

Theorem 4.1 For any guard class C such that T, CC C Lk, with k > 0 and ) > 0,
|n/(k+2j +1)| guards of C are necessary (for some polygon) and sufficient (for all
polygons) to guard polygons with n vertices, using L,-visibility.

This theorem unifies and generalizes the known guarding results. We also use it
to obtain similar almost-tight bounds for polygon exteriors. We prove our theorem
by generalizing the known art gallery proofs for simple polygons; these proofs were
reviewed in chapter 2. Our generalization is not completely straightforward as there
are several complexities introduced by the generalized dominating objects ( D-trees)

that we use.
These complexities necessitate twe major differences between the known proofs

and our proof. The first of these is that the induction strategy is altered. Previously,

the proofs proceded in the following manner:

(1) Find a cutting diagonal D, dividing the triangulation graph G into a main

piece GG, and a small piece G,

35
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(2) Based on the number of triangles in G5, either:

(2a) Simply combine inductive dominating sets for G and G to get a dom-

inating set for G, or

(2b) (2bl) Add some of the triangles in G, to G to get G,'.
(2b2) Inductively generate a dominating tree set for G,’.

(2b3) Based on the inductive dominating tree set of Gy’, find a domi-
nating set for G2 (and G).

In our proof, we change step (2b1) above to:
Perform an edge-contraction of D in G, to get G,'.

This modification is not trivial, as the new induction does not always use sub-
graphs of cur original graph, hence the inductive dominating tree sets may not be tree
sets in our original graph. However, the changed induction simplifies the subsequent
analysis; the original style of induction does not lead to a clean proof of our theorem.

The second major change is required because of the difference in the complexity
of general trees as opposed to vertices or edges. At a critical point in the proof, it is
desirable to have zero or one (rather than many) trees incident on any vertex. For
k = 0 and k£ = 1, this is a triviality to enforce: for k = 0, we may throw away any
duplicate trees (vertices); for £ = 1, we may shorten one of any pair of intersecting
trees (edges) to a vertex. For & > 1, however, no such simple strategy exists, and we
are instead forced to complicate our proof uy establishing and using a theorem about
finding nonintersecting tree sets which cover the same vertices as a given intersecting
tree set (Theorem 4.6).

We open the chapter with a section containing a simple proof of a tight upper
bound on hidden vertex sets. Following that, we present the generalization of the
proofs of Chvatal and O'Rourke. This comes in four sections: the first contains a
general polygon cutting theorem, the second contains the theorem on finding non-
intersecting tree sets in a graph, the third establishes the main theorem (an upper
bound on the size of dominating tree sets), and the fourth contains important corol-

laries of the main theorem. We close the chapter with a section of results for polygon
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exteriors which parallel the corollaries of our main theorem.

4.1 Hidden Vertex Sets

Theorem 4.2 For any integer j > 0, there are no polygons with a L,-hidden vertez
set of size larger than |n/(7 +1)].

PROOF Suppose there was a polygon with a hidden vertex set H = {wy,...,ws},
where h is larger than |n/(; +1)] (this implies n < h(y + 1)). Furthermore, we
assume that the w,’s appear in counterclockwise order around the polygou, and we
use the convention that w41 = w,.

We label each edge with an integer, between 1 and A, such that an edge has label
[ if w; is the first member of H clockwise around the polygon from the middle of the
edge. By the pigeonhole principle, we see that there is some label | such that at most
|n/h] edges have label I. This means that between w; and w4, there are at :nost
In/h| edges.

Therefore, the link distance between these two members of H is at most |n/h].
However, |[n/h| < [(h(j +1))/h] = j + 1, hence |n/h| is at most ;. This means
that the two elements w; and w4 of the hidden set are visible (link-j), which is a

contradiction. Therefore, there is no such polygon, and the theorem is proved. o

This theorem, combined with Theorem 3.1, establishes a tight bound of n/(7 + 1))
on the maximum size of a L,-hidden vertex set inside (or outside) a simple polygon.
As the same argument applies to polygon exteriors, we have the following Corol-

lary:

Corollary 4.2a For any integer j > 0, there are no polygons with an ezxterior L,-
hidden vertez set of size larger than |n/(j +1)].
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4.2 Cutting Diagonals in Polygons

In this section we present a result which we call the Cutting Diagonal Theorem.
Given some ¢, this theorem guarantees the existance, in any triangulation graph of
sufficient size, of at least one diagonal which cuts off between ¢ and 2¢—1 triangles. The
theorem is a generalization of lemmas due to Chvatal [C75] and O'Rourke [083a)], and
our proof mimics their proofs. This theorem finds many uses in recursive algorithms
and inductive proofs which deal with triangulations.

After our proof, we present several corollaries, many of which are known results.

Theoiem 4.3 (The Cutting Diagonal Theorem) Given a polygon triangulation
graph G of n vertices, a cycle edge e of the graph and some positive integert < n—2,
there ezists an edge D of G which separates G into two pieces Gy and G, (with D in
both pieces) such that:

(a) Gy has between t and 2t — 1 triengles, inclusive, and

(b) G2 contains e.

The degenerate case G, = e is allowed.

PROOF  An edge E divides a triangulation graph G into two pieces G;(F) and
G3(E), both containing the edge. We use the phrase “piece cut off by edge E” to
indicate whichever piece (G1(E) or G3(E)) does not contain e.

Let t’ be the minimum number, greater thaa or equal to ¢, of triangles in any
piece cut off by an edge, and let D be an edge which cuts off a piece with #' triangles.
Such a D exists, as any cycle edge cuts off n — 2 triangles, and t < n — 2. Of the #/
triangles cut off, let U be the one containing D (see figure 4.1). We note that ¢’ is
the sum of the triangles cut off by the other edges of U, plus one (for U). Each of
the other edges of U must cut off less than or equal to ¢ — 1 triangles (else ¢t is not

minimum). Therefore, ' <2(2 —1)+1,0r ¢’ <2t -1. a

We will use the notation CD(G, e, t) to denote the diagonal D guaranteed by this
theorem, using G, e, and ¢ as the graph, cycle edge, and integer in the hypothesis.
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triangles triangles
Figure 4.1: Illustrating Theorem 4.3
We are now ready to state some interesting corollaries of the Cutting Diagonal
Theorem.
Corollary 4.3a Given a polygon triangulation graph G of n vertices, and some pos-
itive integer t < n — 2, there ezists an edge D of &G which separates G into two preces
Gy and Gy (with D in both pieces) such that Gy has between t and 2t — 1 trangles,
inclusive. The degenerate case Gy = G is allowed.
PROOF Follows from Theorem 4.3, by choesing any cycle edge edge as e. !
Corollary 4.3b Given a polygon triangulation graph G of n vertices, and some pos-
itive integer t < |(n —1)/3], there exists edges Dy and D; of G which separate G
into three pieces Gy, G, and G3 such that:
(a) Gy and G3 both have between t and 2t — 1 triangles, inclusive, and
(b) G, contains both Dy and D,.
The degenerate case Go = Dy = Dy is allowed.
e

<
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Figure 4.2: Illustrating Corollary 4.3b

PROOF Let e be any cycle edge of &, and find £ = CD(G, ¢, |[(n—-1)/3]). E
divides G into two parts, Ay and H,. Note that E is a cycle edge of both H, and H,.

We now consider two cases:

case 1: There are at least t triangles in each of H; and H,.
This implies that H; and H; have at least ¢ + 2 vertices. Thus, we may
apply Theorem 4.3 to find Dy = CD(H;, £,t) and D, = CD(H,, E,t). D,
divides H, into parts Hy, and Hj,, with Hj, containiag ¢ to 2¢ - 1 triangles,
and H,2 containing E. Similary, D, divides f; inio parts Kz aad Hy.
Finally, we let Gy = Hyy, G2 = Hyp U Hy, and G3 = Hy;. We note that
G, is a single connected piece, as both #; and H,; contain E. Therefore,
we have Dy, D,, Gy, G, and (33 satisfying the theorem. The situation is

illustrated in figure 4.2.

case 2: Either H, or H, has less than ¢ triangles (without loss of generality, assume
H, has less than ¢ triangles).

By our choice of E as CD(G,e, [(n — 1)/3]), the number of triangjes in
H; must be < 2{(n ~ 1)/3]-1. The total number of triangles is therefore less
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than t+2|(n - 1)/3] -1 < 3|(n - 1)/3]-1. However, 3{(n — 1)/3] < n-1,
so the total number of triangles is (strictly) less than (n — 1) =1 =n -2,
This is a contradiction, as the number of triangles must be exactly n -- 2.

Therefore this case cannot happen.

To state our next corollary, we must first generalize the notion of an ear of a
polygon to that of a k-ear. Recall that an ear of a polygon is a vertex v, such that
the diagonal [v,.;,v,41] intersects the polygon boundary only at its endpoints. A
k-ear is a collection of k to 2k — 1 consecutive vertices v,...v, such that the diagonal
[,-1,v,41] Intersects the polygon boundary only at its endpoints. An ear is then

simply a 1-ear.

Corollary 4.3¢ (The Two i-Ears Theorem) Fvery polygon has at least two
nonoverlapping k-ears, for any positive integer k < |(n - 1)/3].

PROOF This follows directly from the geometric interpretation of Corollary 4.3b

and the definition of a k ear. )

The utility of the Cutting Diagonal Theorem and the aforementioned corollaries
is illustrated by the many places in the literature in which we can find special cases
and weaker versions of it. The following five corollaries are all lemnias and theorems

froin published papers.

Corollary 4.3d (Meisters’ Two Ear Theorem [MT75]} Every polygon that 1s not

a triangle has at least two noncverlapping cars.
This is simply the special case of Corollary 4.3c when k = 1.

Corollary 4.3e (Chvatal [C75]) Every polygon triangulation graph of at least 6

vertices has a diageonal which cuts off a piece with 3-5 triangles.

This is the special case of Corollary 4.3a when ¢ = 3.
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Corollary 4.3f (O’Rourke [O83a]) Every polygon triangulation graph of at least

10 vertices has a diagonal which cuts off a prece with {-7 triangles.
This is the speical case of Corollary 4.3a when ¢ = 4.

Corollary 4.3g (Avis-Toussaint [AT81a]) Every polygon trangulation graph has
a diagonal which cuts off a piece of between |n/4| and |3n/4| vertices.

This is implied by Corollary 4.3a when [n/3] >t > |n/4].

Coroilary 4.3h (Chazelle[C82]) FEvery polygon trangulation graph has a diagonal
which cuts off a piece of between |(n —2)/3] and 2|(n — 2)/3] triangles, inclusive.

This corollary is actuclly only a special case of Chazelle’s theorem; his theorem allows
weights of 0 or 1 on each triangle, and finds a diagonal which makes the weight on
each side between 1/3 and 2/3 of the total. Theorem 4.3 can be generalized in this
manner, making an even more general cutting theorem. However, this generalization

is beyond the purpose and scope of this thesis.

4.3 Nonintersecting Tree Sets

In this section we present a theorem on finding certain sets of nonintersecting subtrees

in graphs. We first give two lemmas needed in the proof of this theorem.

Lemma 4.4 Given a tree T which is a subgraph of a giaph G, perform any finite
series of contraciions on G and T to give G* and T respectively. Then, there 1s a
tree S in G* suck that vert(S) = vert(T*) and diam(S) < diam(T).

PROOF It suffices to prove that the lemma holds for a single contraction, rather
than a finite series of them. Repeated application of this proof then yields the lemma

as stated.
If the two vertices being contracted are not both in T, or if they are adjacent in

T, then S = T* satisfies the lemma.
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Figure 4.3: Mlustrating Lemma 4.4

Otherwise, let v and w be the two vertices being contracted, and let v* be the
new vertex. Also, let 7 be some vertex on the path from v to w in T, and henceforth
consider T' and T* to be rooted at . Without loss of generality, assume that the
depth of the subtree of T starting at w is not less than the depth of the subtree
starting at v: depth(st(T,w)) > depth(st(T,v)). Let q be the first vertex (perhaps r)
on the path from v to r in T (see figure 4.3).

Then, let S be T* with the edge [v*, ] removed. Note that S is a tree, as the only
cycle of T* is formed by the contraction of the two ends of the path from v to w, and
the removal of [v", q] breaks this cycle. Note also that this definition of S implies that
vert(S) = vert(T).

We now check that diam(S) < diam(T). Let z and y be any two vertices in S.
Note that vert(S) = vert(st"(T,v) U st™(T,w) U rt*(T, [v, w])), therefore z and y must
each be in one of these three components. We consider all cases. If z and y are both
in st*(T,v), or both in st*(T, w), or both in rt*(7T,{v,w}), then their distance in T
and in T*are the same, and thus d(z,y) < diam(T). This 1s also the case when one of
them is in st*(T,w) and the other is in rt*(T, [v, w]). If one is in st*(T,w) and one is
in st*(T,v), then their distance has decreased (by the distance from v to w). Finally

if one of them (without loss of generality assume that it is r) is n rt*(T,[v,w]),
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and the other (y) is in st*(T,v), then (in tree S), d(z,y) = d(z,v*) + d(v*,y) <
d(z,v") + depth(st(T,v)) < d(z,w)+ depth(st(T,w)) < diam(T'). Therefore, in every
case, d(z.y) < diam(T), so diam(S) < diam(T). Thus S is a tree satisfying the

lemma, and the lemma is proved. o

Lemma 4.5 Given a set of m nonintersecting trees T = {T,} in a graph G, perform
any finite series of contractions on G and T to gwe G* and T* = {T'}, respectwely.

Then, there is a set of m nonintersecting trees S = {S,} in G* such that vert(| JS.) =

vert(|JT?), and diam(S,) < diam(T,) for1 <z <m.

PROOF Once again we need only consider the single-contraction case. Let v and
w be the two vertices being contracted, and v* be the new vertex. If v and w are not
both in trees in T, then S, = T,* satisfies the lemma. If v and w are on the same tree
(wlog, assume they are both on T)), then let S, =T for all 1 < 2 < m, and let S; be
the tree S guaranteed by Lemma 4.4 (where the T of Lemma 4.4 is T} here). This
choice of S, clearly satisfies the lemma.

Otherwise, v and w are (wlog) on two trees T} and T respectively, and we will let
S, =T} for all 2 <1 <m. Assume T} and T; are rooted at v and w.

Let p1,ps, ... ,pp be the vertices of Ty adjacent to v in T}, and qq,92,... ,qq
be the vertices of T, adjacent to w in 1. Furthermore, choose pp such that
depth(st(Ty,pp)) < depth(st(T1,p,)) for all 1 <1 < P, and similarly choose ¢g. Let
bt1 be st(Ty, pp) and It be | J(st(Ty,p,) U [v,p,])). Similarly define b, and It;. Note

that depth(it;) < diam(Tl)/‘Efand depth(lt;) < diam(T?)/2. Without loss of general-
ity assume depth(lt) > depth(lt;). Then, let Sy = bt;, and Sy = btU[v", qoJUltiUlit].
Figure 4.4 illustrates these definitions.

We claim that the S,, as defined, have diameter less than the corresponding T;.
Certainly S, and S, for 2 < ¢ < m, do. The only possible problem is with S,.
Arbitrarily choose two vertices z and y of S;. Since vert(S;) = vert(bt, U It} U lt3),
each of ¢ and y must be in one of those three components. We consider all cases.

If z and y are both in bt, U lt3, then d(z,y) is the same in T and in S, hence
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Figure 4.4: Illustrating Lemma 4.5

d(z,y) < diam(T;). If z and y are both in {t], then d(z,y) < 2 = depth(it,)
2 = depth(it;) < diam(T,). If one is in /t] and the other in bt, U it5, then d(z,y)
depth(lt,) + depth(bt,) + 1 < depth(lt;) + depth(bt;) + 1 < diam(T). Therefore, in
all cases, d(z,y) < diam(T3), so diam(S2) < diam(T,).

Note also that there is no intersections among the trees S,, as the only intersecting

<
<

T.’s were T, and T, and S, and S; do not intersect, and contain no vertices other
than those in T} and T (hence could not possibly intersect another S,). Therefore,
the S,, as defined, satisfy the lemma, and so the single-contraction version of the

lemma holds. Hence, the lemma as stated holds. 0O

Theorem 4.8 Gwen a set of m possibly intersecting trees T = {T,} n a graph G,
there 1s a set S = {S,} of nomintersecting trees in G such that vert( JS,) = vert((JT.),

and (for 1 <i < m), diam(S,) < diam(T,).

PROOF We construct a graph G* as the union of m copies G,,G3,...,Gm of G,
and a set of trees T* = {T."} where T is the tree T, as a subgraph of the graph G,.

We then perform, for each vertex v in G, a series of contractions in G* that bring
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all m of the copies of v together into one vertex. Lemma 4.5 then gives the desired

result. m]

4.4 Dominating Tree Sets

In this section we will prove the major result of this chapter, concerning the number
of Dg-trees sufficient to dominate a triangulation graph. We first present a lemma

which establishes the induction basis for the proof.

Lemma 4.7 One Dg-tree 1s sufficient to dominate any triangulation graph of up to
2k + 5 vertices (2k + 3 trangles).

PROOF By induction on k.

The induction basis, k¥ = 0, is easily shown: any triangulation graph of 3, 4,
or 5 vertices has a vertex which all triangles are incident on, and therefore can be
dominated by one vertex (a vertex is a Dy-tree).

The induction hypothesis is that the lemma is true for all &' < k. We wish to
show that the lemma is then true for k.

Let m be the number of vertices in the triangulation graph G under consideration.

Then, m < 2k + 5. We consider 2 cases:

case I: m <2k +3.

In this case, the induction hypothesis states that G can be dominated

by a Dy_;-tree. Since any Dj_,-tree is also a Dj-tree, the lemma holds.

case 2: m = 2k + 4 or 2k + 5.
By Corollary 4.3a (with k = 2), there is a diagonal D of G which cuts
off 2 or 3 triangles. Use one that cuts off 2 if such a diagonal exists. Let G,
and G, be the pieces, as in the corollary. Note that G, is a triangulation

graph of 2k + 1 to 2k 4+ 3 vertices.
By the induction hypothesis, G, can be dominated by a Dj_;-tree. Let

T be such a tree.
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Figure 4.5: Illustrating Lemma 4.7

We now consider 2 subcases, depending on how many triangles are in

G12

case 2a:

case 2b:

G, contains 2 triangles (figure 4.5a).

These 2 triangles share some vertex v with D. Let U be the triangle
of G; which has D as an edge. At least one of the vertices of U is
a vertex of T. If v is such a vertex, then T is a tree (of diameter
at most k — 1) satisfying the lemma. Otherwise, let r be such a
vertex, and join the edge [z,v] to T, giving a tree of diameter at
most (k — 1) + 1 = k dominating G, and therefore satisfying the

lemma.

G, contains 3 triangles (figure 4.5b).
Note that figure 4.5b is the only possible configuration of 3 triangles

which does not admit a diagonal which cuts off 2 triangles. These 3
triangles are dominated by the endpoints v and w of D, as shown.
If both v and w are vertices of T, then T satisfies the lemma. If
only one of v and w is 1n T, then add the diagonal D to T, giving

a tree of diameter at most (k — 1) + 1 = k satisfying the lemma.
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Otherwise, we examine two cases. First, if & = 1, then G, is a
single triangle (as we would otherwise have cut off two triangles).
Therefore D is a dominating Dy-tree. Next, if & > 1, then we let
be the third vertex of U, and add the diagonals [z,v] and [z,w] to

T. again yielding a Dy-tree satisiying the lemma.

Thus, in all cases, we have exhibited that the lemma holds for k; by induction it
therefore holds for all finite k. a

Theorem 4.8 For all k > 0, |n/(k+ 3)] nonintersecting Di-trees are sufficient to

dominate any triangulation graph of n > k + 3 vertices.

PROOF Lemma 4.7 does the induction on k to provide us with the basis for the in-
duction ou n: one (obviously nonintersecting) Dy-tree suffices for k +3 < n < 2k + 5.
Therefore, for some fixed k, we assume that |n'/(k + 3)] Dj-trees suffice for all trian-
gulation graphs of n’ < n vertices, where n > 2k + 5. We will show that [n/(k + 3)]
Dj-trees suffice for any triangulation graph of n vertices.

Let G be an arbitrary triangulation graph of n vertices. By Corollary 4.3a, we
can find a diagonal D in G that cuts off a piece G; with between k + 2 and 2k + 3
triangles, inclusive. We consider the case where D cuts off k + 3 to 2k + 3 and the
case where D cuts off & + 2 separately.

If G, has between k + 3 and 2k + 3 triangles, then G, (the remaining piece) has
between n —k — 5 and n — 2k — 5 triangles. We dominate on each piece by induction.
G, has between #+5 and 2k+5 vertices, which, by induction (or Lemma 4.7), requires
1 Di-tree. G, has between n — k —3 and n — 2k — 3 vertices, which by induction
requires at most |(n — (k +3))/(k +3)] = |n/(k + 3)] —1 Dj-trees. Combining these
dominating Dj-tree sets for Gy and G, gives a total of at most [n/(k + 3)] Dj-trees.
However, since G; and (G, share the diagonal D, these trees may intersect. If this is
the case, then Theorem 4.6 may then be applied to give a nonintersecting tree set.

We now consider the case where G; has k + 2 triangles. This means that G,

contains k + 3 cycle edges of G. Consider the triangle U = (v,w, z) of G, that has
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Figure 4.6: Dllustrating Theorem 4.8

D = [v,w] as an edge. U divides G, into two parts P and Q. We will perform
induction of the graph G}, which is obtained from G, by contracting v and w (see
figure 4.6). G3 has n — (k + 3) vertices, hence by induction can be dominated by
l(n—(k+3)/(k+3)] =|n/(k+3)] -1 Di-trees. We now consider two cases based

on the inductive dominating D-tree set I' of Gj.

case 1: v* has no tree incident on it.

Then, T is also a dominating Dj-tree set for G, — D (G, with edge D
removed). We inductively dominate the k + 5 triangle graph G, + U with
! Di-tree, and note that the triangles of the pieces G, — D and G, + U
are exactly the triangles of . Therefore, we can combine the dominating
D-tree sets for these two pieces to get a dominating Dj-tree set for G using
at most [n/(k+3)] -1+ 1= [n/(k+3)] (possibly intersecting) D,-trees.

By Theorem 4.6 we can make these nonintersecting trees.

case 2: v* has a Di-tree T € T incident on it.

Let T be rooted at v®, and let V, be the vertices of T'N P that are

adjacent (in T) to v*, and define V; similarly (let  be in P and not in
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Figure 4.7: Case 2 in Theorem 4.8

Q for these definitions). Then, let T, be |J(st(T,p) U [v,p]) and T, be

U (St(T’ q) U [v’ ‘ID

€Vy

We note that depth(T,) + depth(T,) < k, else T has diameter greater
than k. We let C,, be a chain of (k — depth(T})) cycle edges of G starting at
v and proceeding into G, and C, be a chain of (k — depth(T,)) cycle edges
of G starting at w and proceeding into G;. Let S, be C, U T,, and 5, be
Cy UT, (See figure 4.7).

We claim that ' ~ T + S, + S, is a dominating Dj-tree set for G. We
note that this tree set certainly contains all of the vertices that the elements
of I did, hence G; — U is dominated. Also, both S, and S, dominate U,
therefore all of G, is dominated. If S, and S, cover all of the vertices of
G, then G, is dominated; else S, and S, have no common vertices. In that
case, S, covers k — depth(T,) + 1 vertices and S, covers k — depth(T,) + 1
vertices of G;. Thus a total of 2k + 2 — (depth(T,) + depth(T;)) vertices
of G, are covered. Since depth(T,) + depth(T,) < k, the total number of
covered vertices of GG is at least k + 2. Since G, has k + 2 triangles, it
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has k + 4 vertices, hence at most 2 vertices not covered by S, and S,. This
means that each triangle must have at least one covered vertex, hence G is

dominated. Therefore G is dominated.

Note that the number of trees in this dominating tree set is |n/(k + 3)],
and that S, and S, are of diameter at most k. If any of the trees of this
dominating set intersect, we may apply Theorem 4.6 to make them nonin-

tersecting.

In both cases we have exhibited a dominating Dj-tree set satisfying the theorem
for n. Also, we need only consider these two cases (as the trees are or can be made
nonintersecting, by Theorem 4.6). Hence, the theorem is proved for all finite k£ and
n. a

4.5 Corollaries

Corollary 4.8a For any guard class C such that T, CC, k > 0, |n/(k + 3)| guards
of C are suffictent to guard (using L,-wisibtlity) any polygon P of n vertices.

PROOF Theorem 4.8 states that there is a set of [n/(k + 3)] dominating Dj-trees
in any triangulation graph of P; the embeddings of these guards (each of which is a
T,-guard) will see the entire polygon, because each point of the polygon is in some
triangle, and each triangle has a guard on some vertex, and all points in each triangle
see one another. Since every Tj-guard is contaned in a member of C, [n/(k + 3)]

guards of C suffice. O

Corollary 4.8b For any guard class C such that T, C C, with k > 0 and 3 > 0,
[n/(k+ 25+ 1)] guards of C are sufficient to guard (using L,-nisibility) any polygon

P of n vertices.

PROOF Welet k' = k+2(7 —1), and apply Corollary 4.8a (with the k of Corollary
4.8a equal to k') to show that some set [ of |n/(k'+3)] = {n/(k+2;+1)] Tew-
guards are sufficient to guard P, using L,-visibility.
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We claim that VP(T), where T is any Tjr-guard, is contained in some VP,(S),
where S is a Tk _3(;-1)-guard (i.e., a Tx-guard). We prove the claim by induction on
7, with ¥’ fixed. If j = 1, then &' = &, and the claim is obvious. Therefore we assume
that the claim holds for all ' < j, and show that it holds for 7 (i.e., that there is an
S such that VP(T) € VP,(S) ). By the induction hypothesis, there is some 5’ which
is a Tw_z;-2)-guard (1.e., a Tryo-guard) such that VP,(T) C VP,_,(S’), hence the
desired result follows if we show that there is some S such that VP,_1(5") C VP,{S),
for any T},.-guard 5°.

Let D(5') be a Diyo-tree in a triangulation graph of P such that the embedding
of the vertices of D(S’) is §’. Then, let D' = (D{S’) with all of its leaves removed);
D' has diameter at most k, hence is a Dy-tree. If we lel S be the embedding of
the vertices of D', then § is a Ty-guard. Because k£ > 0, the vertices adjacent to
leaves in D(S’) are in D', implying that S” € VPy(S). This in turn implies that
VP,_1(S") € VP;(5), proving the claim.

The claim implies that for every T € I', we can find some & which is a T}-
guard which sees everything that T sees. Hence, [n/(% + 27 + 1)| T\-guards, using
L,-visibility, suffice. Thus |n/(% + 27 + 1)| guards of C suffice. o

Corollary 4.8c For any integer & > 1, |n/(k + 1)] guards of Ly are sufficient o

partition any polygon P of n vertices.

Before giving the proof of this coroliary, we remark on two methods of proof
which do not yield satisfactory results. The first, most cbvious, inethod would be to
triangulate, dominate the triangulation, and assign each triangle to any one of the
trees which it is incident on. This method is incorrect, as the region assigned to a
tree may not be conrected. The second unsatisfactory method is a modification of
tne first; we assign triangles as before, but we also assign each edge of each tree to
that tree’s region. This method does yield connected regions, but the regions will be
groups of triangles connected by line segments. We therefore also reject this method,
as we can show that it is possible to find a collection of polygons that partition the

given polygon.
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PROOF First, let T be any triangulation of P. Next, let &' = & —~ 2, and apply
Theorem 4.8 (with the k of Theorem 4.8 equal to &) to show that some set T =
{I,Io,...., L} of v=|n/(k' + 3)] = [n/(k +1}] Ty-gurrds are sufficient to dominate
T.

We will construct a region Ry for each / € T'. Initially, let each Ity be empty. For
each triangle in T, we do the following:

Assurmne that the triangie has vertices g, b, and ¢. We let mg,, m,,., and my, be the
midpoints of edges ab, @F, and be, respectively. Also, lot 4. be the center of gravity
of Mgy, m,,, and my,.. We use the notation 7'(v) to indicate which tree {element of T')
is incident on vertex v, and H; ¥ () to indicate that the current A, is to be replaced
by R;UQ.

We examine three cases, based on the number of tress incident on the trian-

gle.

case 1: There is one tree incident on Aabe. Without loss of generality, assume it is

mcident on vertex a, and let Ry, W Habe.
case 2: There are two trees incident on Aabe. We divide into two subcases:

case 2a: Both incident trees contain ouly oae vertex of Aabc: without loss of
generality let these vertices be a and b. Then, let Ry & Aamgse,
and Rpp W Dbmyc (see figure 4.8a).

case 2b: One tree contains two vertices of Aabe; without loss of generality let
these be a and b. Then, let Ry, w0abmym,,, and Rypydermy, my,

{see figure 4.8h).

case 3: There are three trees incident on AQake. In this case, we let
Ry W Oampmayina., Firp) ¥ Dbmy mapmap, and Fr( ¥ Qomymypcny,

(see figure 4.8¢).

The R/’s now partition P, as each part of each triangle has beea placed in an Rj.
An example of this is shown in figure 4.9.
Note that for any Ty-guard I in T, if two vertices a. b are adjacent in [, then

the segment ab is in R;. Thus, between any two vertices u and v of 7, there is a






CHAPTER 4. UPPER BOUNDS 55

link-k' path in Ry (just follow the edges of the Dy,-tree underlying I). Also, every
point z € Ry is L,-visible to a vertex v(z) of I, as z is in some triangle U of the
triangulation, and R;yN U is convex and includes a vertex of I.

This means that between any two points z,y € Ry, there is a link-k (recall that
k = k' + 2) path in R; (namely, the one from z to v(z) to v(y) to y), hence R; is
Li-convex. Thus, the R;’s, which are a set of [n/(k+1)| regions that partition P,

are in guard class Li. a

Corollary 4.8d For any guard class C such that £, C C, with k > 1, [n/(k+1)]

guards of C are sufficient to cover any polygon P of n vertices.

PROOF By Corollary 4.8c, there is a set of |[n/(k + 1)| guards of £; which partition
P. As each guard in class Ly is contained in a guard of class C, there must be a set
of |[n/(k +1)] guards in C which cover P as desired. a

Note that Theorem 3.1 and Corollary 4.8c together imply that [n/(k + 1)| Li-
convex regions are sometimes necessary and always sufficient to partition or cover a

polygon of n vertices, for & > 1.

Corollary 4.8e There are no polygons of n vertices with a L,-hidden set of size
larger than |n/(j +1)], forallj > 1 andn 2> j+ 1.

PROOF By Corollary 4.8c, any such polygon has a cover by L,-convex regions of
size [n/(j +1)]. Since no two elements of a L,-hidden set can lie in a single L,-convex

region, the maximum hidden set is of size at most |n/(j + 1)]. m]

Note that Theorem 3.1 and Corollary 4.8e show that, for points, h,(n) =
In/(7 + 1)1, for j > 1.

We have also now proved Theorem 4.1; it is a direct combination of Corollaries
3.1a and 4.8b. The following is a table of some of the consequences of this theorem
for the art gallery problem. Note that the results for yj = 1 and £k = 0 and 1 are the
known art gallery results for simple polygons [C75] [F78] [083a] [O87].
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7 other interesting classes of
k | (L,-visibility) g(n) T:(P) Ce(P) guards between 7, and (;
0 1 {n/3] vertices points
1 1 [n/4] vertex pair convex diagonals, line segments
2 1 |n/5) graph star vertices | L-convex | graph star, fan, star-shaped
k 1 [n/(k+3)) L;-convex
0 J [n/(2) + 1)) | vertices points
1 J [n/(2j + 2)] | vertex pair convex diagonals, line segments

A vertex pair guard is a pair of vertices which are connected by a diagonal. A graph
star vertez guard is the vertex set cof a graph-theoretic star (tree with one non-leaf

node). A fanis a star-shaped region with a vertex in the kernel.

4.6 Properties of Polygon Exteriors

We can use results of the previous two sections to get almost-tight bounds on visibility
propert.es of polygon exteriors.

Given a polygon P, we can rotate P so that there is one uniquely highest vertex a.
We can then place two points { and r to the left and right of P, below P’< lowest vertex,
and distant enough from P so that they both are L;-visible to v. Lev P* denote the
set PUIUr, and CH(P*) denote its convex hull We define an ezterior trangulation
of P as a triangulation of the region interior to CH(P?*) but exterior to P, for any
such placement of / and r (see figure 4.10).Note that an exterior triangulation graph
is not a triangulation graph.

Exterior Ti-guards are then defined as the geometric embedding of the vertices of

some Dj-subtree in an exterior triangulation. We let 7,f represent the guard class of

exterior Ti-guards.

Theorem 4.9 For any guard class C such that T C C. k > 0, [(n +3)/(k + 3)]
guards of C are sufficient to guard (using L,-visibility) the eztertor of any polygon P

of n vertices.

PROOF  The following proof is a modification of the (special case k = 0) proof
presented by Aggarwal and O’Rourke [087].
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Figure 4.10: Exterior triangulation

Let T be an exterior triangulation of P as defined above and split the vertex a
into two vertices a and a’ so that the resulting graph 7" is a (interior) triangulation
graph (as shown in figure 4.11).

Let E,, E;, and E; be the edges of CH(P*). Each E, is contained in some
triangle U,sof T'. Let rq4, 7, and r, be the rays that bisect the exterior angles of
CH(#*)\| ] interior(U,) at a. {, and r. These rays divide the exterior of ZH(P*) into
three regi(;;ls S1, S;, and 83, such that for any 2, S, U U, is convex. This construction
is illustrated in figure 4.12.

We now dominate T, which has n + 3 vertices, with a set I'' of |(n + 3)/(k + 3)]
D.-trees, by Theorem 4.8. We claim that the entire exterior of P is seen by the set T’
of the exterior Ty-guards which are the embeddings of the elements of I'’. We examine
an arbitrary exterior point p:

If p € CH(P?), then it is in some triangle of T". Since each such triangle has an
element of ' on at least one vertex, p is seen by some guard.

If p ¢ CH(P?), then it lies in some region S,. U, U S, is not only convex but also
empty, as £ is not a polygon edge. Therefore, p is seen by some element of T, as U,
has such an element incident on at least one vertex.

Therefore, ', a set of [(n + 3)/(k + 3)| guards in class T, sees the entire exterior.
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Figure 4.11: Splitting a vertex

S3

Figure 4.12: Regions exterior to the hull
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As each guard of class 77 is contained in some guard of class C, there is a set of
[(n+3)/(k+ 3)] guards of class C which sees the entire exterior. a

Corollary 4.9a For any guard class C such that T C C, with k > 0 and 7 > 0,
(n+3)/(k+2)+1)] guards of C are sufficient to guard (using L,-visibility) the

exterior of any polygon P of n vertices.

PROOF'  The argumeut is identical to that of Corollary 4.8b, except that we start
with Theorem 4.9 rather than Corollary 4.8a. 0

Corollary 4.9b For any integer k > 1, | (n + 3)/(k +1)] guards of L are sufficient

to partition the ezterior of any polygon P of n vertices.

PROOF The proof is essentially the same as that of Corollary 4.8¢c, except that we
must place the points of the regions S;, S3, and S in the E;'s. First, we divide the
region inside CH(P*)\ P as in Corollary 4.8c.

Next, for each S,, let U, be Aabc, with a and b the vertices of E,. If the entire edge
ab1s contained in some Ry, then let Ry & S,. Otherwise, the edge ab is split between

two regrons Ry and Rw, with a in Ry and bin Ry . By the construction, Ry NU, and

Rw N U, will share some edge F' (either Tig,, Mg Mas, MpeTiap, OT Miapeiitgs). Let 7g
be a ray with vertex mg, which in colinear with F' and extends into S, (see figure 4.13
for an example). r,, divides S, into two pieces S, and S;, witha € S, and b € S;. At
least one, and possibly both, of S, and S are unbounded. Let Ry W S,, and Ry ¥ S,.

Application of this procedure to each S, yields a set of R;’s which partition the

entire exterior of P, and are in class L. ]

Corollary 4.9c There are no polygons with an ezterior L,-hidden set of size larger
than [(n+3)/(j +1)], forallj > 1.

PROOF The argument is identical to that of Corollary 4.8e, except that we start
with Corollary 4.9b rather than Corollary 4.8c. m]
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Figure 4.13: Partioning S;

The above theorem and its corollaries are almost-tight: the lower bounds presented
in the previous chapter are the same except that the numerator of the fraction in the
floor is n + 1 rather than n + 3; this causes the resulting integers to differ by at most
1. Although the £ = 0,7 = 1 bound has an n + 2 numerator, we do not expect this
to generalize to larger k or 7, as for £ > 0 or j > | only one guard is needed to guard
the exterior of a convex polygon (as compared to two for k = 0, = 1). We therefore

conjecture the following:

Conjecture 4.10 For any guard class C such that T, €C, k >0, [(n + 1)/(k +3)]
guards of C are sufficient to guard (using L,-visibility) the exterior of any polygon P

of n vertices.

Conjecture 4.11 For any guard class C such that T C C, with k > 0 and ) > 0,
[(n+1)/(k+2j+1)] guards of C are sufficient to guard (using L,-visibility) the

exterior of any polygon P of n vertices.

Conjecture 4.12 For any integer k > 1, {(n+1)/(k +1)]| guards of L} are suffi-

cient to partition the ezterior of any polygon P of n vertices.

Conjecture 4.13 There are no polygons with an ezterior L,-hidden set of size larger
than {(n+ 1)/(j + 1)], for all j > 1.
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The simple proof of Aggarwal, O’'Rourke, and Shermer {087] for the k =0 tight
bound does not easily generalize to arbitrary &, for two reasons: First, their proof uses
three-coloring in a manner similar to Fisk's proof of the original art gallery theorem.
Second, their proof uses a restructuring of an exterior triangulation, by “flipping a
diagonal” in a convex quadrilateral; this restructuring would need to be much more
complex for higher k. However, a generaiization of Fisk’s proof (and of 3-coloring)

has been found for L,-visibility; so some hope of generalizing the'r proof remains.
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Chapter 5
Computational Complexity

In this chapter, we will show that the optimization and decision problems for covers,
guardings, and hidden sets are NP-hard. We present two fundamentally different con-
structions to obtain these results; one is a tranformation from Boolean 3-Satisfiability,
and the other is a transformation from Exact Cover by 3-Sets.

We begin this chapter with a section on the formal definitions of the problems that
we consider, and a section of remarks applying to all proofs. The sections following

that are the constructions and proofs for our problems.

5.1 Problem Definitions

The first problem that we will be dealing with is the problem of determining if a

polygon admits an L,-convex cover of a given size. This is called the L,-Convex-

Cover problem:

L,-CONVEX COVER (L;CC)

INSTANCE: A polygon P, and an integer m.
QUESTION: Can P be covered by m or fewer L,-convex sets?

We may also ask the minimization problem:

62
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MINIMUM L,-CONVEX COVER (ML;CC)

INSTANCE: A polygon P.
QUESTION: What is the smallest m such that P can be covered by m L,-convex

sets?

If a polynomial algorithm existed to solve LjCC, we could solve ML;CC in
polynomial time as well: we would simply solve L;CC for vaiues of m from 1 to
[n/(m +1)] (or to n — 2 for m = 1). The lowest value of m for which the L;CC
problem has a yes answer would be the answer to the ML;CC instance (by Corollary
4.8¢c). Also, a polynomial algorithm for ML;CC would trivially provide a polynomial
algorithm for L;CC. We therefore restrict our attention to the decision problem.

The situation for the other problems that we consider in this chapter 1s similar:
there are equally powerful decision and optimization versions of the problem. In all
instances we will consider only the decision problem.

It is often the case that even and odd link-diameters must be handled by separate
cases. Our proof for LjCC is no exception; we must jiove our result in two parts:
one for the odd 7’s, and one for the even j’s. For each of these two cases, we present
a base case (j = 1 or y = 2), and a modification to the base case for larger ;.

After our proof for L;CC, we consider covering polygons with L,-star-shaped

polygons, giving rise to the following problem:

L,-STAR COVER (L;SC)

INSTANCE: A polygon P, and an integer m.
QUESTION: Can P be covered by m or fewer L,-star-shaped sets?

L;SC is also known as Star Cover (or Point Guard), which was proved NP-hard
by Lee, Lin, and Aggarwal ((LL86] [A84]) We will prove that L;SC is NP-hard by a
modification of our proof of LyCC for even ;.

Note that L;CC and L;SC are the two extremes of the general link-gnarding

problem:
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LINK, ,-GUARDING (L;;G)

INSTANCE: A polygon P, and an integer m.
QUESTION: Is there a collection C of m or fewer Li-convex subpolygons of P such
that P is covered by the link-) visibility polygons of the elements of

C?

L;CC is the same as Lo jG, and LjSC is the same as LjgG. We show that a
modification of our proof for LyCC will prove that L; G is NP-hard (although it will
not be necessary to modify our construction).

We will prove our NP-hardness results by transformation from two well-known NP-
complete problems, Exact Cover by 3-Sets, and Boolean 3-Satisfiability (see [K72] or
[(GJ79)).

EXACT COVER BY 3-SETS (X3C)

INSTANCE: A finite set X = {X;,X,,...,X3}, and a collection C =
{C1,C3,...,Cn} of 3-element subsets of X.
QUESTION: Does C contain an ezact cover for X: A subcollection C’ C C such

that every X, appears in exactly one member of C'?

BOOLEAN 3-SATISFYABILITY (3SAT)

INSTANCE: A finiteset U = {Uy,U;,...,U,} of boolean variables and a collection
C ={C,,Cy,...,Cy} of 3-literal clauses on U.

QUESTION: Is there a truth assignment for U that satisfies all of the clauses in
C?

Following our covering and guarding proofs, we note that our methods can be
applied to the existing proofs for the NP-hardness of several problems relating to
hidden sets, establishing these problems, using L,-visibility, as NP-hard for odd j.
The definitions of the hidden set problems considered are given in that section.

We end the chapter with a discussion of the comparative complexity of graph-

theoretic problems and polygon visibility problems.
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5.2 General Remarks

In this section, we give some general discussion on the complexity of the problems
and transformations that we consider.

We will prove our NP-hardness results by using component-design transformations
from X3C and 3SAT. This means that we will construct geometric components (por-
tions of polygons) which correspond to the elements of the X3C or 3SAT problem.

The first matter which we wish to address is whether or not our problem transfor-
mations can be accomplished in polynomial time (polynomial in the size of the input
X3C or 3SAT instance). Our constructions all use a central rectangle, with many
vertices located at integer coordinates on this rectangle. Each of these coordinates
will take at most O(logn) bits to store. The remaining vertices of the transformation
image polygon will be computable with a constant number of the following opera-

tions:
(1) Calculate the line between two points.
(2) Calculate the intersection of two lines.
(3) Find the midpoint of the line segment between two points.

Using rational computations, an* one of these operations will result in a point location
or a line equation which requires storage of at most two more than twice the number
of bits of the input points or lines. Therefore, if the maximum height of a tree of
these operations required to compute any vertex is ¢, and the points on the rectangle
are expressible with b bits, then the resultant number of bits required to store any

vertex will be f(c), where

f(0) = b, and
flz) = 2« f(z—-1)+2

The solution of this recurrence is:

flz) = (b+2)2° -2
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Thus, as c is constant, and b is O(log n), 2°is a constant, and f(c) is O(logn). There-
fore, the number of bits required to store any vertex will be O(logn). Furthermore,
each of the above operations can be accomplished in polynomial time in the number
of input bits. Therefore each vertex, and the entire image polygon, can be computed
in polynomial time. Thus, our problem transformations will take polynomial time.
The other concern that we want to address 1s the upper bound on the complexity
of the problems we consider. These problems are all decidable; O’Rourke has shown
this for the Ly CC problem [O82c], and methods similar to his can be used on any
of our problems. It is difficult to determine whether or not our problems are in
NP; it is suspected that there are polygon classes such that the height of a tree of
line intersection/line determination calculations necessary to compute a vertex of the
minimum cover increases with the size of the polygon [O82a] [O82b]. The recurrence
discussed above, if the upper bound on storage that it represents 1s tight, indicates
that a linear increase in the height of a tree of such calculaticns required to find a
vertex of the minimum cover would reflect itsell exponentially in the storage and time
required to compute the cover. Thus, the existence of a polygon class exhibiting linear
increase in the calculation tree height would suggest that the cuver problem is not in
NP. For a discussion of this and other related questions regarding the complexity of

covering problems, the reader is referred to [082a].

5.3 L;CC: Odd j

We start our NP-hardness proofs with a proof that L; CC (also known simply as
Convex Cover) is NP-hard.

5.3.1 Problem Transformation

We will prove this result by transformation from X3C. Given an instance I = (X, C)
of X3C, we construct an mstance (/) = (P,m) of L1 CC as follows:
First, we let m = 2g+n + 1 (¢ and n are from the definition of X3C).

We construct P as follows: we start with a rectangle (called the central rectangle),
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C-units
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Figure 5.1: Ly CC Construction overview

to which we will connect structures corresponding to the X,'s (which we call X-unats)
along the bottom edge, and structures corresponding to the C,’s (which we call C-
units) along the top edge (see figure 5.1). XU, denotes the X-unit corresponding to
X., and CU, denotes the C-unit corresponding to C,. Both X-units and C-units will
be convex sets, and P will be the union of the X-units, C-units, and central rectangle.

Let 7y, T, Tur, and 7, be the upper-left, lower-left, uppei-right, and lower-right
vertices of the central rectangle. Also place a vertex w somewhere {anywhere) on the
rectangle between r,; and the leftmost C-unit.

Each X-unit is a 2-edge triangular notch, with its left edge colinear with w and
right edge colinear with r,,. (see figure 5.2). The X-units are evenly placed along
the bottom of the central rectangle in ~rder of increasing index. The three vertices
of XU, are called (fror left to right) [, m,, and r,.

Let C, = {X4,XB,Xc} with A < B < C. The C-units for the C,’s are evenly
placed on the top edge of the central rectangle in order of increasing index. A C-
unit has seven vertices (py,pa,...,p7), attaching to the central rectangle at p; and
p7. pa is placed at the intersections of the lines Igp: and 7GP7, and ps is placed at
the intersections of 7gp7 and I4p;. p, and pg are placed colinear with Icp; and 7477,

respectively. p,, ps, and pg are all placed so that (p;,p2,...,p7) is convex, and such
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Figure 5.2: X-unit construction

that ps is not visible to m4 or me. This construction is illustrated in figure 5.3.

Given this basic structure, we now need to ensure that the segments where the
X-units and C-units attach are small enough that we do not encounter either of the
following two problems: (1) two C-units overlap, or (2) some convex set covering an
m,, can cover significantly more of some C-unit if it includes only m, rather than [,
my, and 1y,

The first problem is handled by making the “gap distance” (distance between
p1 and p7) for each C-unit very small, which will make the C-units themselves
smaller. By considering the worst case that could happen (C, = {X1, X:. X} or
Cy, = {Xu Xag-1,X3,}), and computing a gap distance small enough to keep the X-
units from overlapping in these instances, we can guarantee tha. none of the X-units
will overlap.

The second problem is handled by making the gap distance for the X-units (dis-
tance from l, to r,) smaller. We can do this by examining each C-unit in turn, and
insuring that the gap distances for the concerned X-units are small enough that the

following properties are satisfied:

1. Let ¢, be the intersection of #gp; and p;p3. Then g1 must not be seen by m¢,,

if it exists.
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Figure 5.3: C-unit construction I

2. Let g, be the intersection of m¢pr and p3ps. Then ¢; must not be seen by mpg_;.

3. Let ¢3 be the intersection of 7i4p; and 73ps. Then g3 must not be seen by m g, ;.

4. Let q4 be the intersection of 7gp7 and Fspg. Then ¢4 must not be seen by m 4_;,

if it exists.

It is clear that, as the gap distances for XU,, XUp, and XU decrease, the
points ¢;, g2, g3, and q4 draw closer to ps, ps, ps, and ps, respectively, and hence will
be nonvisible as required.

We let ¢q; be a point counterclockwise of and in the neighborhood of ¢, that
cannot be seen by mgy;. Such a point will exist, as mc,, does not see ¢, and
visibility polygons are closed regions. Similarly, let ¢; be a point clockwise of and
in the neighborhood of ¢, that cannot be seen by mp_;. Let ¢5 and ¢} be defined
symmetrically to ¢, and ¢}. Figure 5.4 illustrates this construction.

Figure 5.5 shows the full construction of P for the instance of X3C with C =
{{X1, X2, X3}, { X4, X5, X7}, { X3, Xay Xo}, { X2, X5, Xs}, { X1y X6y X75, { X2, X6, X},
{Xs, Xe, Xo}}.




b
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XUy, XU, XUz, XUz XUg,, XUc XU, ,

Figure 5.4: C-unit construction II

5.3.2 Properties of the Construction

Given a convex cover of P, we let S, be a convex set of the cover which covers the

vertex m,. Such S,’s are called S-sets.

Our construction has the following important properties:
P1 The central rectangle can be covered by one convex set.
P2 Each X-unit XU, can be covered by one convex set.
P3 The set of all m,’s plus r, form a hidden set.

P4 No convex set can help cover two C-units.
P5 No convex set containing r, can help cover any C-unit.

P6 Each C-unit CU, will be coverable in three ways: either (a) by one convex set,
(b) by four or more S-sets, or (c) by three S-sets, when the three S-sets are Sy,
Sg, and S¢ (Cy = {X4, Xp, Xc}). Each of these S-sets are capable of covering
the whole X-unit to which it corresponds in addition to the portion of CU, which

it covers.
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cv, ¢, cu, CU, cU, CU, CU,
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Figure 5.5: A Sample Construction for L;CC
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Property P1 will be satisfied, as we have cut no pieces off of our central rectangle.

As every triangle is convex, property P2 is satisfied. Also, the set consisting of
all m,’'s along ry is a hidden set (property P3 is satisfied).

As each C-unit is a convex set attached to the top of the central rectangle, no
one convex subset of P can contain points from two C-umts. Thus, property P4 is
satisfied.

Because r,; lies along the upper edge of the rectangle, no convex set can contain
both r, and any point of any CU, (property P5 is satisfied).

The following two lemmas help us establish property P6.

Lemma 5.1 No C-unit can be covered by any two or fewer S-sets.

PROOF  Assume the contrary: some CU, is covered by two S-sets, S, and Si.
Without loss of generality, assume that S, covers vertex pe of the C-unit. Then, by
construction, ¢ < A; this means that S, can cover neither vertex p4 nor vertex ps. So
Sp must cover py; then A > C, and S; cannot cover py. Therefore, p4 is not covered,

which is a contradiction. Thus, the lemma holds. 0

Lemma 5.2 A C-unit CU, can be covered by three S-sets iff the S-sets are Sy, Spg,
and Sc.

PROOF Assume that we have three S-sets S,, Sy, and S, covering CU,. By the
argument given in the proof of Lemma 5 1 we must have a < Aand ¢ > C.

Assume that we have ¢ > C. Then, q; is not covered by S.. To cover q;, we must
have b > B. But then S, would not cover ¢j; furthermore this point is not covered
by S,. We are thus not covering the C-umt. Therefore we must have ¢ = C, and,
symmetrically, a = A.

Furthermore, if b # B, then eithe. ¢, or ¢j is not covered. Therefore, b = B, so

that the only three S-sets which can cover the C-unit are S4, Sp, and Sc. a

Lemmas 5.1 and 5.2 together with the convexity of the C-units imply that the

construction has property P8.
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Thus, the construction has all of the given properties, and we now procede with

the proof of our theorem.

5.3.3 L;CC

Theorem 5.3 L1CC s NP-hard.

PROOF We show that the instance I of X3C will have a yes answer iff the instance
w1(I) of L1CC has a yes answer (ie., P can be covered by m = 2¢ +n + 1 (L;-)
convex sets).

If the instance [ of X3C has a yes answer, then we use the following cover for P:
Let R cover the central rectangle. We choose S, (1 < u < 3¢q) corresponding to the
exact cover (via property P8c); each S, covers XU, and part of a C-unit, and g of
the C-units are thus covered We have so far used only 3¢ 4+ 1 convex sets. For each
of the remaining n — ¢ C-units, we cover each with its own convex set (by property
P6a). Thus, we have a covering with 3¢+ 1+ (n — q) = 2¢ + n + | convex sets.

We now assume that the instance of I.; CC has a yes answer (we have covered P
with 2¢ + r. + 1 convex sets).

Each m, (1 € u £ 3q), and the vertex r,;, must be covered by at least one convex
set. Let S, be any of the sets covering m,, and R be a set covering ;. By property
P3, these sets must be distinct. Thus, 1n our covering, we have R, the S,’s aud only
n — q other sets. Therefore, by properties P6, P4, and PS5, at least ¢ of the C-units
were covered by the S-sets. Since no C-unit is coverable by 2 or fewer such sets, the
only way we can cover this many C-units with S-sets is to have exactly ¢ C-units
covered with exactly 3 S-sets each.

However, the only covering for a C-unit by exactly 3 convex sets is by the convex
sets contributed by the X-umts corresponding to that C-units’ members (property
P6c). As no X-unit can contribute its set to more than one C-unit (property P4),
the ¢ covered C-units correspond to an exact cover for X. Therefore, the X3C

instance has a yes answer. a
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Figure 5.6: Central unit for j =7

5.3.4 Extension te Higher Odd j

Theorem 5.4 For any odd integer j > 1, L;CC 1s NP-hard.

PROOF The proof is similar to that of Theorem 5.3, with the units and the central
rectangle slightly modified.

The necessary modifications to the units are as follows:

The central rectangle 1. changed to a “central unit,” which is a rectangle with a
spiral of j — 1 arms added at r,;. We let s be the vertex at the end of the spiral,
and the spiral arm connects to the rectangle so that VP,_;(s) intersects the rectangle
only at r,y. Figure 5.6 illustrates these definitions for ) = 7.

We change each X-unit by adding a spiral of (j — 1)/2 arms at m,,. We let the
m;, be the vertex at the end of the spiral. This 1s 1llustrated in figure 5.7 for j = 7.

We change each C-unit by adding several spirals of ( — 1)/2 arms: one each at
P2, P4 Pe» 91y 92, 95, and q4; the vertices at the ends of these spiral arms are p3, pj,
Pe» 93, 43> 45, and qj, respectively. We let V" be the set of these vertices at the end
of the spirals on CU,. This is illustrated in figure 5.8 for j = 7.

The spirals are shown schematically in figure 5.8. The actual geometry of these

schematic representations are shown in figure 5.9 for the spirals on vertices (e.g., p2),
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Figure 5.7: X-unit for j =7

Figure 5.8. C-unit for j =7
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Figure 5.9: A spiral on a vertex

and in figure 5.10 for the spirals on intersection points (e.g., ¢3).

The attachment of a spiral to a C-unit is made so that the link-({(j — 3)/2) visi-
bility polygon of the vertex at the end of the spiral is a small region containing the
attachment point.

Given a L,-convex cover of P, we let S, be a L,-convex set of the cover which
covers the vertex m}, and call such S,’s S-sets. We can then show the following

properties:

P1’ The central unit can be covered by one L,-convex set

P2' Each X-unit XU, can be covered by one L,-convex set.

P3’ The set of all m}’s plus s form a hidden set.

P4’ No L,-convex set can cover elements of both V* and V; for g # A.
P5' No L,-convex set containing s can cover any element of Vy' for any A.

P6' Each C-unit CU, will be coverable in three ways: either (a) by one L,-convex
7

set, (b) by four or more S-sets, or (c) by three S-sets, when the three S-sets

are Sy, Sp, and Sc¢ (Cy = {X4,XB,Xc}). Each of these S-sets are capable of
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Figure 5.10: A spiral on an edge

covering the whole X-unit to which it corresponds in addition to the portion of
CU, which it covers.

These properties can be proved in a manner similar to that given in section 5.3.2,
and then the theorem (NP-hardness) follows from the same proof as given for Theorem
3.3. )

5.4 L;CC: Even j

In this section we prove that LjCC is hard for even j. We begin with the proof for
L,CC, which will then be generalized to the desired result.

5.4.1 Problem Transformation

We will prove that Lo CC is NP-hard by transformation from 3SAT. Given an
instance I = (U, C) of 3SAT, we construct an instance ¥3(I) = (P,m) of L2CC as

follows:



P
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Figure 5.11: L2CC Construction overview

First, we let m = 2¢ + 2n + 1 (¢ and n are from the definition of 3SAT). We
assume that the literals in each clause appear in order of increasing index.

We construct P as follows: we start with a rectangle with an arm on the upper
left corner, as in figure 5.11; we call this (rectangle and arm) the central unit. We let
Tuly Tlly Tur, and 7y be the upper-left, lower-left, upper-right, and lower-right vertices
of the rectangle, and r be the vertex at the end of the arm.

We will connect structures corresponding to the U,’s (called U-unats) to the bot-
tom of the central unit, and structures corresponding to the C,'s (called C-unaits) to
the top of the central unit (see figure 5.11). Furthermore, all C-units are to the right
of all U-units. We let UU,, denote the U-unit corresponding to U,, and CU, denote
the C-unit corresponding to C,. P will be the union of the U-units, C-units, and
central unit.

Each C-unit 1s the union of four rectangles, as shown in figure 5.12 for CU,. The
vertices po and p; will be on the upper edge of the central unit’s rectangle; b, ; is the
point pg, and b, ; and b, 3 are points one-third and two-thirds of the way from p, to py,
respectively. We define CL, as the union of the two rectangles shewn shaded in figure
5.12, and the vertices w,; and w, ; as shown The C-units are placed evenly along

the right half of the upper edge of the central unit’s rectangle in order of increasing
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L,

Figure 5.12: L2CC C-unit construction

index.

The U-units are a more complex structure which are placed evenly along the left
half of the lower edge of the central unit's rectangle, also in order of increasing index.
In the U-unit construction, we will be using spikes: these are very thin triangular
notches, which we approximate by line segments sticking out from our polygon (as
wa. done for the spiral arms in the C-unit construction for the proof of Theorem 5.4).
We will show only the spikes in our description of the construction; keep in mind
that these spikes will actually be replaced by thin triangles. The correct thinness
for the spikes can easily be computed in polynomial time: for each spike, we find the
radially closest (in both the clockwise and counterclockwise directions) sets that must
be avoided by the spikes, and choose bounding edges for the triangles which replace
the spikes so that these sets are not seen from the vertex at the end of the spike. This
is a standard method (see [LL86] and [A84] for similar arguments).

The first stage of the U-unit construction for UlJ,, is illustrated in figure 5.13.

The vertices pg and p7 will be on the lower edge of the central unit’s rectangle. The

lines Pop1, P2P3, Pabs, and DepPr are each colinear with ry. The lines p3ps, p1pz, and
DsPs are horizontal, with p3p4 high enough that p4 can see ry,, and 51p; and Pspe low

enough that neither p; not ps can see any vertex of any C-unit.
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Figure 5.13: L CC U-unit construction I

For each clause C, that U, appears in, we will create a spike with vertex t,,. If
U, is the a*? literal of C,, then we create the spike in edge Bop7 colinear with p3b, ..
Similarly, for each clause C, that U, appears in, we will create a spike with vertex
fuv. This spike is in edge paps, colinear with prb, ., where U, is the ath literal of
C,. This part of the unit is similar to the construction for a variable pattern given in
[LL86].

The second stage of construction for UU,, is illustrated in figure 5.14. Here we
have added four spikes, and a small indentation on the edge p3p;. First, a horizontal
spike with vertex z, is added in edge Pop1, one-third of the vertical distance from p3p;
to Popr above Papy. Next, we let ¢ and ¢4 be the points one-third and two-thirds
of the way from p; to p4, respectively. We create two new spikes, with vertices f,
and ¢t,,, which intersect Bop; and Dgpr (respectively) two-thirds of the vertical distance
from Paps to Pop7. The spike with vertex f, is made colinear with ¢, and the spike
with vertex ¢, is made colinear with q4. Next, we place ¢, and g3 such that §7g; and
T34 are colinear with ry;, and §;¢; is high enough that VP(f,) and VP,(t,) do not
intersect above ¢zq3. Finally, we place a horizontal spike with vertex z, at the vertex

3.
To describe the final construction step, and in the subsequent proof, the following
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Figure 5.14: LoCC U-unit construction 1I

alternative notation for the spikes t,, and f,, in clause unit CU, will be useful: for

every v and a = 1, 2, or 3, let

. if the a*h literal of C, is U,
"* 7| fuo if the ath literal of C, is T,

As a final step we must flatten out the C-units so that any two vertices of the
form I, 5 and I, 4 are not Lq-visible. This is done by computing the intersections of
the three lines of the form I, b, , for each v. These intersections will all be above the
top of the central unit’s rectangle, as the Lterals of a clause appear in sorted order,
as do the U-units. We then place the horizontal edges of CU, low encugh that all
of these line intersections are above the top edge and none of the lines intersect any
other edge of the C-unit. We then have the situation illustrated in figure 5.15. This

completes the construction.

5.4.2 Properties of the Construction

P1 VPy(r)is Lo-convex and covers all of P except the C-units and the spikes on the

U-units.

P2 For all u, both VPy(z,)U VPy(t,) and VP,(z,) U VPy(f.) are Ljy-convex.
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Figure 5.15: Flattening CU,

P3 Forallv,a=1,2,3,and b=1 or 2, VP (w,,) U VPy(l,4) U CL, is Lo-convex.

P4 For all u, both VPi(z,) U VPy(t,) U | JVPi(fur) and VPi(2,) U VPi(f,) U

UVPl(tu,u) are L,-convex.
P5 H= {r} U {tu fu} U U{ws,1, wy2} is a link-2 hidden set.

P6 For all u, (H U {zu,zu}) \ {tu, fu} is a link-2 hidden set.

P7 For all uand v, (HU {Zy,tus}) \ {fu, Wy, Wy2} is a link-2 hidden set.
For all u and v, (H U {2y, fus}) \ {tu, wy,1,w,2} is a link-2 hidden set.

P8 For all v, {ly,1,1v,2,lv3} is a link-2 hidden set.

These properties are all easily verified from the construction.

5.4.3 L,CC
Theorem 5.5 L,CC is NP-hard.
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Figure 5.16: XS, and XT, when ¢(U,) = true

PROOF We show that the instance I of 3SAT will have a yes answer iff the instance
¥2(I) of LaCC has a yes answer (i.e., P can be covered by m = 2¢+2n+1 Lj-convex
sets).

If the instance I of 3SAT has a yes answer, then there is some satisfying truth
assignment ¢ : C — {true, false} for C. We will use the following cover for P.

First, we let XQ = VP,(r) be in the cover. XQ is L,-convex, by property P1 Also
by property P1, we now need only cover the C-units and the spikes on the U-units.
Then, for each U-unit UU,, we let XS, and XT, be defined as follows:

XS VPy(z4) U VPyi(t,) if $(U,) = true
* VPy(z4) U VPi(f.) if $(U,) = false
VPi(24) U VPi(fu) UUUVPi(tuy) if $(U.) = true
XT, =

VPi(z.) U VPy(ty) U OVPI( fuw) if $(Uy) = false

These definitions are illustrated in figures 5.16 and 5.17 for ¢(U,) = true and ¢(U,) =
false. The XS,’s and XT,’s are L,-convex, by properties P2 and P4. We place all
XS,’s and XT,’s is the cover. We have thus used 2¢q + 1 sets, and have yet to cover
only the C-units, and one set of spikes for each U-unit (either the spikes with vertices

of the form t, ., or those with vertices of the form f,.).
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Figure 5.17: XS, and XT, when ¢(U,) = false

Next, for each C-unit CU,, we let a = 1, 2, or 3 such that the ath literal of C, is
true. We define XR,; and XR,, so that they will cover all of CU, and two of the
three spikes containing the vertices [, 4; the uncovered spike will correspond to the

a'? literal, which is known to be true:

VPI(I,,'Q) ifa=1
XRu'l = CLU U VPl(wu‘l) U VPI(IV.I) fa=2
VPy(l,1) ifa=3

VP(l,3) ifa=1
XRy2 = CL,U VP (wy,1) U VPy(l,3) ifa=2
VPi(l,2) ifa=3
The XR'’s are Lj-convex, by property P3. We place the XR’s in the cover; we now
have 2¢ +2n + 1(= m) sets.
We claim that the C-units and X-unit spikes are now covered. The XR's certainly
cover the C-units, by the invariant part of their definitions.
Suppose there were some spike of some U-unit which were not covered. Assume
that this spike contains t,, (the case where the spike contains f,, is similar). Since

tuv is not covered, it is in particular not covered by XT,, implying that ¢(U,) = false.
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The existance of ¢, implies that t,, = I, , for a = 1, 2, or 3. Since neither XR,
nor XR, ; covers t,,, we must have that the a'b literal of C,, satisfies C,. However,
this at! literal must be UL, by the definition of [, 4; this implies that ¢(U,) = true.
This is a contradiction.

Therefore the 2¢ + 2n + 1 L,-convex sets cover all of the spikes, and in fact cover
the entire polygon. Hence the instance ¢,(]) of L2CC has a yes answer.

If the instance of LsCC has a yes answer, then there is a collection S of 2¢ +
2n + 1 L,-convex sets which cover P. Since, by property P5, H = {r} U | J{t., f.} U

U{wu'l, Wy 2} is a link-2 hidden set (with size 2¢+2n + 1), each member of S contains

e”xactly one member of H. If h € H, we let S be the member of S containing h.

We will use the following truth assignment ¢ foi our instance I of 3SAT:

true if S,, contains z,

AU = { false if Sy, contains z,

Note that property P8 implies that z,, and z, cannot be in Sy for any A € H\{t,, fu}.
This means that z, and z, must lie in S;, U Sy,. As property P8 also implies that
z, and z, cannot be in the same S}, exactly one of S;, and Sy, contains z, (and the
other contains z,).

We clanii that ¢ is a satisfying truth assignment. We examine an arbitrary clause
Cy: Su,, and Sy, , can each cover at most one of [, 1, ly3, and l, 3, by property P8.
Let a be such that I, , is not covered by S,,, and S, ,. We examine two cases, based
on whether l,, = ¢, or {,, = f.,, for some u.

In the first case (I, = ty, for some u), I, , must be covered by Sy,, Su,,, OF Su, ;s
by property P7. But by definition I, , is not covered by S,,, or Sy, ,. Thereforel,,
must be covered by S;,. Property P7 then also implies that Sy, can not contain z,.
Therefore, S;, must contain z., implying that ¢(U,) = true, by our definition of ¢.
Since U, is the at® literal of C,, this means that C, is satisfied.

If l,s = fuy, then a similar analysis holds: l,, must be covered by S,,, which
does not contain z,. Therefore, S, contains z,, implying #(U,) = false. As the ath
literal of C, is Uy, C, is satisfied.

Since in both cases C, is satisfied, and C, was chosen arbitrarily, all clauses are
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satisfiled. Therefore ¢ is a satisfying truth assignment, and instance I of 3SAT has a

yes answer. 0

We note that in this proof we have been using multiply-connected polygons as part
of our cover (the XT,’s). However, changing the question of L;CC from “can P be
covered by m or fewer L,-convex sets” to “can P be covered by m or fewer L,-convex
polygons” does not change our approach; for every set that we have placed in our cover
that is not singly connected, we simply instead place the smallest simply-connected
superset of that set in our cover. The following result (a corollary of [S70], theorem

4.5) shows that this will not affect our proof:

Theorem 5.8 Let A be a compact L,-convez subset of P. Then the smallest compact,

simply-connected set in P containing A is also L,-convez.

5.4.4 Extension to Higher Even j

Theorem 5.7 For any even integer j > 2, L;CC is NP-hard.

PROOF We modify the units and properties of the Ly CC construction.

The modifications to the units are as follows: the arm on the central unit is
replaced by a spiral arm of j — 1 arms, a spiral of (j —2)/2 arms is added at each w,,
and w, 4, and a spiral of () — 2)/2 arms is added to the vertex of each spike on each
U-unit. Sample modified units, for 7 = 8, are shown in figures 5.18, 5.19, and 5.20.

The properties of this construction are the same as the properties of the L,CC
construction, with “Lj-convex” replaced by “L,-convex” “VPi(z)” replaced by
“VP,j2(z),” “VPy(r)" replaced by “VP,(r),” and “link-2 hidden set” replaced by
“link-7 hidden set.”

The proof of this theorem is then identical to that of Theorem 5.5. D
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Figure 5.18: Central unit for j =8
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Figure 5.19: C-unit for j = 8
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Figure 5.20: U-unit for j = 8

5.5 L;SC and LG

In this section we show that L;SC and LjxG are NP-hard. We prove this for L;SC
by modification of our construction and proof for even-y L;CC. The result for Lj xG

is a combination and modification of the results for L;CC and L;SC.
Theorem 5.8 For any integer 3 > 1, LjSC 15 NP-hard.

PROOF We modify the U-units of the construction of Theorem 5.7. First, we let
=, be a point in the intersection of VPy(z,) and VPy(t,), and z;, be a point in the
intersection of VP(z,) and VP,(f,). We change the orientation and location of the

spikes with vertices z,, f,, and t, so that z;, and z;, both see r,,. We must also

change the height of the edges 71pz, 73pa, and Dspe, so that the lines p1z7, and P52,
intersect the top edge of the central unit to the left of all of the C-units.

We also change the spikes with vertices t,, and f,,. We construct them colinear

with 27 40,4 and z;,b, ., respectively (rather than colinear with psb, , and P12fubua).
A sample U-unit for ) = 1 is shown in figure 5.21.

The interesting properties of this construction are the same as the properties of
the construction for Theorem 5.7, except that we replace “L,-convex” with “star-

shaped.” The changes to the U-unit were to make the sets considered in property P4
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Figure 5.21: L;SC: U-urit

star-shaped; the other sets (properties P1 - P3) were already star-shaped.
This theorem then is obtained by following the proof of Theorem 5.7, with “L,-

convex” replaced by “star-shaped.” a

Theorem 5.9 For any nonnegative integers j and k, at least one of which s positive,
L;xG is NP-hard.

PROOF Ifk =0, then the problem is the L;SC problem. If j = 0, then the problem
is the Ly CC problem.

Otherwise, we use the construction for Ly,2;CC.

If kK +2) is odd, then k is odd. We note that the covers given in the proof of
Theorem 5.4 consist entirely of subsets of sets of the form VP(x_1)/24,(S5), where S is
L,-convex. Thus those sets are also of the form VP,(S’), where S’ is Li-convex; we
let §'= VP(_1y;2(S).

Similarly, if £ + 2; is even, k is even. The covers given in the proof of Theorem
5.7 consist entirely of subset of sets of the form VP(x_2)/24,(5), where S is L-convex.
Thus those sets are also of the form VP,(S’), where S’ is Li-convex; we let §' =
VP(-2)12(5).
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Thus, in all cases, we can show that the polygons from the L;CC constructions
can be covered by the appropriate number of VP,(S5)'s when the instance I of X3C
or 3SAT has a ves answer.

The proof of the other implication (that the instance of L;CC has a yes answer
implies that the original problem instance has a yes answer) is unmodified from the
L;CC proofs. This 1s due to the observation that if the instance of LjxG has a yes
answer, then the instance of Lx,2;CC must have a yes answer (which by the previous

proofs give the desired 1esult). )

5.6 Hidden Set Results

We can also use the methods of this chapter to show that the following problems,
which were proved NP-hard for j = 1 in [S87], are NP-hard for any odd ;.
L,-HIDDEN SET (L;HS)

INSTANCE: A polygon P, and an integer m.
QUESTION: Does P have a link-) hidden set with m or more members?

L,-HIDDEN VERTEX SET (L;HVS)

INSTANCE: A polygon P, and an integer m.

QUESTION: Does P have a link-) hidden vertex set with m or more members?

L,-HIDDEN GUARD SET (L;HGS)

INSTANCE: A polygon P, and an integer m.
QUESTION: Does P have a link-j hidden guard set with m or fewer members?
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L,-HIDDEN VERTEX GUARD ADMISSABILIY (L;HVGA)

INSTANCE: A polygon P.
QUESTION: Does P admit a link-j hidden vertex guard set?

L,-HIDDEN VERTEX GUARD SET (L;HVGS)

INSTANCE: A polygon P, and an integer m.
QUESTION: Does P have a link-7 hidden vertex guard set with m or fewer mem-

bers?

We prove that these problems are NP-hard by a “link-j modification” of the j = 1
proofs. This modification is similar to the ones presented in this chapter for even and
odd y L;CC. We omit the technical details.

Theorem 5.10 For any odd wnteger j > 1, LiHS 13 NP-hard.
Theorem 5.11 For any odd integer 3 > 1, L;HVS is NP-complete.
Theorem 5.12 For any odd integer ;3 > 1, L;HGS s NP-hard.
Theorem 5.13 For any odd integer j > 1, LHVGA 15 NP-complete.
Theorem 5.14 For any odd integer j > 1, LLHVGS 1s NP-complete.

These NP-hardness proofs all use similar constructions, so it is probably the case
that one could prove the even-j variants with only one more construction We are

thus led to conjecture:

Conjecture 5.15 For all integers j > 1, the problems L;HS, L;HGS, L;HVS,
LiHVGA, and LyHVGS are NP-hard.

5.7 Graph and Polygon Complexity

It is one of the major contentions of this thesis that geometric visibility problems

in polygons can be viewed as graph-theoretic problems on either the vertex-visibility
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graph or point-visibility graph of the polygon. In connection with this, it is interesting
to point out the parallels in known visibility and known graph-theory complexity
results: In every known instance, the complexity (either polynomial computability
or NP-hardness) of the pure graph theoretic problem is the same as the associated
polygon visibility problem.

For example, the independent set problem in a graph is NP-hard [K72], as is
the hidden vertex set problem (independent set in VVG(P)), as is the hidden set
problem (indpendent set in PVG(P)). A similar statement can be made about inde-
pendent dominating sets (hidden vertex guard sets, hidden guard sets), and dominat-
ing sets (vertex guard sets, guard sets). Also, the k-colorability (chromatic number)
problem for a graph is NP-hard [K72], as is the convex cover problem for polygons
(k-colorability of the complement of PVG(P)).

Examples of polynomially-computable properties include the distance between
two vertices (link-distance between two points), the center of a graph (link-center of
a polygon), and the diameter and radius of a graph (link-diameter and link-radius of
a polygon).

One must be careful with this relationship, though. For instance, a mazimal clique
in PVG(P) corresponds to a mazimal convex set in P, but a clique m PVG(P) does
not necessarily correspond to a convex set in P. Without this distinction one may
become perplexed that there is a polynomial algorithm to find a minimum convex par-
tition of a polygon, whereas it is NP-hard to find a minimum partition of a graph into
cliques [K72]. Also, there are many NP-hard or NP-complete graph-theory problems
that have no meaningful PVG counterpart; examples of these problems are finding a
Hamiltonian circuit, finding a minimum maximal matching, and partitioning a graph
into forests. These problems lose their substance on the infinite-vertex, infinite-degree
graphs that we consider.

We have shown here many results using link-j visibility. This corresponds to
solving problems in the jth power of a graph (see [H69] for definitions of powers of
graphs). For example, solving a visiblity problem using L,-visibility corresponds to
solving a graph theoretic problem on the square of a PVG. This leads us to conjecture

that the problems that we have proved NP-hard for polygons are also NP-hard on
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graphs, where we restrict our attention to graphs which are the jth power of some
graph. The only result of this type of which I am aware is that finding a Hamiltonian
circuit in the square of a graph is NP-complete [C76]; unfortunately, Hamiltonian

circuit is a problemn which is meaningless on PVGs.



Chapter 6

Conclusion

6.1 Method and Results

This thesis presents an extension and modification of the combinatorial method of
Chvatal and O’Rourke, used for finding bounds on the value of many visibility prop-
erties of polygons. The bounds that we have obtained, which generalize and unify
the previously-known bounds, are shown in figure 6.1.

The method presented can be used to obtain bounds for restricted polygon classes
or other guard classes as well; it has been applied with success to the problems of
finding bounds in orthogonal polygons (for even link-diameter covering/guarding) and
finding bounds on the number of edge guards required for simple polygons.

This thesis also introduces the notion that visibility problems should be viewed
as graph-theory problems on point-visibility graphs, and begins exploration of the
comparative problem complexity of ordinary graphs and point-visibility graphs. We
showed that the LINK, ,~-GUARDING problem, and all of its subproblems (in-
cluding L,-CONVEX COVER and L,-STAR COVER) are NP-hard, using two
constructions, and a method of extending the constructions to higher link-visibility or
link-diameter. This extension method can be applied to NP-hardness proofs for any
visibility property, and this was done for the hidden set problems proved NP-hard in
[S87].

94
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Bounds Theorems,
Object Problem j k Lower | Upper | Corollaries
Polygon Hidden Vertex Set - -5 3.1,4.2
Hidden Set 1 - n-—2 3.2
>1| - -5 3.1,4.8¢
L;-Convex Cover -1 >1 Frsd 3.1,4.8d
L-Convex Partition - | >1 |~ ] 3.1, 4.8¢c
Guarding 7, € C C Li l-k+2 - ) 3.1a, 4.8b
Hidden Guard Set 1 ~ 2] — n—-2 |3.4,3.2
>1] - (3] - I-ﬁT_J_E 3.4, 4.8¢
Triangulation | Independent Set - l_,:l 3.1b, 4.8e
Graph Dominating Set - _ 2] 3.1c, 4.8
Polygon Hidden Vertex Set - | % 3.6,42a
Exterior Hidden Set 1 - n 3.7
ST - | =] | [=5] |38 49¢
Li-Convex Cover - 1 n 3.7
-1 >1 2] | (2] |3.8,4.9b
Li-Convex Partition - 1 n 3.7
- | >1 2 22 ] 3.8,4.9b
Guarding Tr CC C Ly | k427> 1 | | 22s] | le2n) | 3-8a, 4.9a

Figure 6.1: Table of results
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6.2 Open Problems

We have raised three major questions in the thesis to which we do not yet have

answers:

o What is the exact tight bound for exterior visibility properties of polygons? The
current bounds are almost-tight, but it is unsatisfying to not have exact bounds.
Two methods have been used to get tight exterior bounds for point guarding
(namely, that of Aggarwal and O’Rourke, and that of Aggarwal, O’Rourke, and

Shermer [O87]), but neither of these methods seems easy to generalize.

e Are the visibility-property decision problems examined in the text in NP? This
seems a hard question to answer, even for the simplest problem, Convex Cover

[082a).

e Can a construction be found for even j for the hidden set decision problems?

This seems to be the easiest of these three questions.

There are also inany questions which we did not explicitly raise, but which are

nevertheless relevant. A sampling of these are:

e Linear algorithms exist to determine if a polygon has a hidden set of size two,
and to determine if a polygon is the union of two convex sets [S88c]. Does there
exist a good algorithm to determine if a polygon is the union of two star-shaped

sets?

o The combinatorial method of this thesis can be applied to orthogonal polygons,
when covering with sets of even link-diameter. What bounds can be found for

covering orthogonal polygons with sets of odd link-diameter?

o Our combinatorial method is a generalization of Chvaétal’s art gallery proof. Pre-
liminary research indicates that Fisk’s proof can also be generalized; in particular,
we can find a k-thicket in any triangulation graph. A k-thicket is a set of n unique

Dy-trees such that:

(1) Each tree is colored one of k + 3 colors.
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Figure 6.2: A forbidden induced subgraph

(2) Each triangle in the triangulation graph has at least one tree of each color

incident on it.

A O-thicket is exactly a 3-coloring, and k-thickets provide us with high link-
diameter /link-visibility guard sets in the same manner that 3-coloring does for
point or vertex guard sets. Can k-thickets be used to get tight exterior bounds?

Are there any applications of k-thickets in graph theory?

e Can PVGs be characterized? Some progress has been made in this direction; there
are examples of graphs which cannot be induced graphs of any PVG (see figure
6.2 for an example). Can all such forbidden induced subgraphs be characterized?
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o Considering PVGs as graphs raises many questions. For example, when are two
polygons 1somorphic with respect to visibility? Is this problem decidable? It
is known that all convex polygons are isomorphic, as are all polygons with one
reflex vertex. Polygons with two reflex vertices are not all isomorphic; but nothing
further is known. An interesting question is: how many different nonisomorphic
polygons are there with two reflex vertices? It is suspected that there are infinitely

many.

¢ Consider guarding and covering polygons with holes using the guard classes
and visibility discussed here. For point guards, the leading conjecture is that
[(n + k)/(k + 3)| guards are necessary and sufficient. However, no examples
have been found for higher £ which require more than |{n/(k + 3)| guards. Is this
the tight bound? This problem is very closely related to the exterior guarding
problem (a polygon exterior can be treated as a hole without a polygon around
it), and the remarks about the difference between £ = 0 and k& > 1 for that
problem apply here as well.

e Are there any good approximation algorithms for the problems that we have
shown to be NP-hard?

o Naive implementation of the constructive proof for link-guards yields an O(n?)

algorithm for guard placement. Can this time be improved?

6.3 Conclusion

Visibility problems are central to several applied subfields of computer science, in-
cluding computer graphics, pattern recognition, robotics, computer-aided design,
computer-aided architecture, and VLSI. The generalization of visibility that we have
studied finds application mostly in robotics, but the generalized guard classes and
covering objects are likely to be useful in many fields.

We have given tight combinatorial bounds on the size of hidden sets, guard sets,
and covering sets, and have shown the close relationship between these properties.

Although these bounds are more interesting to the geometer or graph theorist than
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the computer scientist, the proof method can be mimicked to get an O(n?) algorithm
for guard placement (for any of the guard classes we use and any link-visibility). We
have also shown that the optimization and decision problems relating to computing

these properties are NP-hard.




Bibliography

[A84]

[AES3]

[AT81a]

[AT81b]

[BM76]

(B73]

[B76)

(B77]

[BK76)

A. Aggarwal, The Art Gallery Theorem: its Variations, Applications,
and Algorithmic Aspects, PhD Thesis, The Johns Hopkins University,
Baltimore, 1984.

D. Avis and H. ElGindy, “A Combinatorial Approach to Polygon Simi-
larity,” IEEE Transactions on Information Theory, 1983, 148-150.

D. Avis and G. Toussaint, “An Efficient Algorithm for Decomposing a
Polygon into Star-Shaped Pieces,” Pattern Recognition 13, 1981, 295-298.

D. Avis and G. Toussaint, “An Optimal Algorithm for Determining the
Vigibility of a Polygon from an Edge,” IEEE Trans. Computing C-30,
1981, 910-914.

J. Bondy and U. Murty, Graph Theory with Applications, North-Holland,
New York, 1976.

M. Breen, “The Combinatorial Structure of (m,n)-Convex Sets,” Israel
J. of Mathematics 15, 1973, 367-374.

M. Breen, “A Decomposition Theorem for m-Convex Sets,” Israel J. of
Mathematics 24, 1976, 211-216.

M. Breen, “L, Sets Which are Almost Starshaped,” Geometriae Dedicata
6, 1977, 485-494.

M. Breen and D. Kay, “General Decomposition Theorems for m-Convex
Sets in the Plane,” Israel J. of Mathematics 24, 1976, 217-233.

100




BIBLIOGRAPHY 101

(BB64]

[C80]

[C82]

[CD85]

(CT75)

[C76]

[CRsS]

[EOW84]

[ES5]

[E89)]

[F78]

A. Bruckner and J. Bruckner, “Generalized Convex Kernels,” Israel J. of
Mathematics 2, 1964, 27-32.

B. Chazelle, Computational Geometry and Convezity, PhD Thesis, Yale
University, New Haven, 1980.

B. Chazelle, “A Theorem on Polygon Cutting with Applications,” Pro-
ceedings of the 23th Annual ACM Conference on the Foundations of Com-
puter Science, Chicago, 1982, 339-349.

B. Chazelle and D. Dobkin, “Optimal Convex Decompositions,” in Com-
putational Geometry, G. Toussaint, ed., North-Holland, 1985.

V. Chvatal, “A Combinatorial Theorem in Plane Geometry,” J. Combi-
natorial Theory Seres B 18. 1975, 39-41.

V. Chvatal, “Finding a Hamiltonian Circuit in the Square of a Graph is
NP-complete,” manuscript, 1976.

J. Culberson and R. Reckhow, “Covering Polygons is NP-Hard,” Proceed-
ings of the 29th Annual ACM Conference on the Foundations of Com-
puter Science, White Plains, 1988, 601-611.

H. Edelsbrunner, J. O’Rourke, and E. Welzl, “Stationing Guards in Recti-
linear Art Galleries,” Computer Vision, Graphics, and Image Processing
27, 1984, 167-176.

H. ElGindy, Hierarchical Decomposition of Polygons with Applications,
PhD Thesis, McGill University, Montréal, 1984.

H. Everett, “Visibility Graphs of Spiral Polygons,” presented at the First

Canadian Conference on Computational Geometry, Montréal, 1989.

S. Fisk, “A Short Proof of Chvatal’s Watchman Theorem,” J. Combina-
torial Theory Series B 24, 1978, 374.




BIBLIOGRAPHY 102

[FK84]

(GJ79]

[G86]

[GKT1]

[GHLS6]

[H69)

[HK68]

[H87]

[HV49]

[377)

[KKKB83]

D. Franzblau and D. Kleitman, “An Algorithm for Covering Polygons
with Rectangles,” Information and Control 63, 1984, 164-189.

R. Garey, and D. Johnson, Computers and Intractability, W. H. Freeman
and Company, New York, 1979.

S. Ghosh, “On Recognizing and Characterizing Visibility Graphs of Sim-
ple Polygons,” Johns Hopkins University Department of Computer Sci-
ence, Report JHU/EECS-86/14, 1986.

M. Guay and D. Kay, “On Sets Having Finitely Many Points of Local
Nonconvexity and Property P,.,” Israel J. of Mathematics 10, 1971, 196-
209.

L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan, “Linear
Time Algorithms for Visibility and Shortest Path Problems Inside Simple
Polygons,” Proceedings of the 2nd ACM Symposium on Computational
Geometry, Yorktown Heights, 1986, 1-13.

F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.

W. Hare, Jr., and J. Kenelly, “Intersection of Maximal Starshaped Sets,”
Proceedings of the American Mathematical Society 19, 1968, 1299-1302.

J. Hershberger, “Finding the Visibility Graph of a Simple Polygon in
Time Proportional to its Size,” Proceedings of the 3rd ACM Symposium
on Computational Geometry, Waterloo, 1987, 11-20.

A. Horn and F. Valentine, “Some Properties of L-Sets in the Plane,”
Duke Mathematics J. 16, 1949, 131-140.

K. Juul, “A Three-Point Convexity Property and the Union of Two Con-
vex Sets,” Geometriae Dedicata 6, 1977, 181-192.

J. Kahn, M. Klawe, and D. Kleitman, “Traditional Galleries Require
Fewer Watchmen,” SIAM J. Algebraic and Discrete Methods 4, 1983,
194-206.




BIBLIOGRAPHY 103

[KM88]

[K72]

[KG70]

[K89)

[KM66]

[LL86]

[LPS87]

[L85]

[MW84]

S. Kapoor and S. Maheshwari, “Efficient Algorithms for Euclidean Short-
est Path and Visibility Problems with Polygonal Obstacles,” Proceed-
ings of the fth ACM Symposium on Computational Geometry, Urbana-
Champaign, 1988, 164-171.

R. Karp, “Reducibihity Among Combinatorial Problems,” in Complezity
of Computer Computations, R. Miller and J. Thatcher, eds., Plenum
Press, New York, 1972, 85-103.

D. Kay and M. Guay, “Convexity and a Certain Property P,,"” Israel
Journal of Mathematics 8, 1970, 39-52.

Y. Ke, “An Efficient Algorithm for Link Distance Problems,” Proceedings
of the 5th ACM Symposium on Computational Geometry, Saarbriicken,
1989, 69-78.

C. Koch and J. Marr, “A Characterization of Unions of Two Star-Shaped
Sets,” Proceedings of the American Mathematical Society 17, 1966, 1341-
1343.

D. Lee and A. Lin, “Computational Complexity of Art Gallery Prob-
lems,” IEEE Trans. Information Theory IT-32, 1986, 276-282.

W. Lenhardt, R. Pollack, J.-R. Sack, R. Seidel, M. Sharir, S. Suri, G.
Toussaint, S. Whitesides, and C. Yap, “Computing the Link Center of a
Simple Polygon,” Proceedings of the 3rd ACM Symposium on Computa-
tional Geometry, Waterloo, 1987, 1-10.

A. Lubiw, “Decomposing Polygonal Regions into Convex Quadrilater-
als,” Proceedings of the ACM Symposiumn on Computational Geomeltry,
Baltimore, 1985, 97-106.

H. Mannila and D. Wood, “A Simple Proof of the Rectilinear Art Gallery
Theorem,” University of Helsinki Computer Science Technical Report C-
1984-16, 1984.




BIBLIOGRAPHY

[M66]

[M75]

[M87)

[N-W73]

[N86]

[082a]

[082b]

[082¢]

[083a)

[083b]

(087)

R. McKinney, “On Unions of Two Convex Sets,” Canadian Journal of
Mathematics 18, 1966, 883-886.

G. Meisters, “Polygons Have Ears,” American Mathematics Monthly 82,
1975, 648-651.

D. Mount, personal communication, 1987.

C. Nash-Williams, “Unexplored and Semi-Explored Territories in Graph
Theory,” in New Directions in Graph Theory, F. Harary, Ed., Academic
Press, New York, 1973.

S. Ntafos, “On Gallery Watchmen in Grids,” Information Processing Let-
ters, 23, 99-102.

J. O’Rourke, “Minimum Convex Covers for Polygons: Some Counterex-
amples,” Johns Hopkins University Department of Computer Science,
Report JHU/EECS-82/1, 1982.

J. O'Rourke, “The Complexity of Computing Minimum Convex Covers
for Polygons,” Proceedings of the 20th Allerton Conference, Monticello,
1982, 75-84.

J. O’Rourke, “The Decidability of Covering by Convex Polygons,”
Johns Hopkins University Departrnent of Computer Science, Report
JHU/EECS-82/4, 1982.

J. O’Rourke, “Galleries Need Fewer Mobile Guards: A Variation on
Chvatal’s theorem,” Geometrae Dedicata 14, 1983, 273-283.

J. O'Rourke, “An Alternate Proof of the Rectilinear Art Gallery Theo-
rem,” J. of Geometry, 21, 1983, 118-130.

J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University
Press, Oxford, 1987.




BIBLIOGRAPHY 105

[0S83]

[OWSS]

[ST82]

[ST88]

[SH79)

[S84]

[585]

[587)

[S88a]

[S88b]

J. O’'Rourke and K. Supowit, “Some NP-hard Decomposition Problems,”
IEEE Transactions on Information Theory IT-29, 1983, 181-190.

M. Overmars and E. Welzl, “New Methods for Computing Visibility
Graphs,” Proceedings of the {th ACM Symposium on Computational Ge-
ometry, Urbana-Champaign, 1988, 164-171.

J.-R. Sack and G. Toussaint, “A Linear-Time Algorithm for Decomposing
Rectilinear Star-Shaped Polygons into Convex Quadrilaterals,” Proceed-
ings of the 20th Annual Conference on Communication, Control, and

Computing, 1982, 64-74.

J.-R. Sack and G. Toussaint, “Guard Placement in Rectilinear Polygons,”

in Computational Morphology, G. Toussaint, ed., North-Holland, 1988,
153-175.

L. Shapiro and R. Haralick, “Decomposition of Two-dimensional Shapes
by Graph-theoretic Clustering,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1979, 10-20.

T. Shermer, “Triangulation Graphs that Require Extra Guards,” New
York Institute of Technology Computer Graphics Laboratory TR 3D-13,
1984.

T. Shermer, “Polygon Guarding II: Efficient Reduction of Triangulation
Fragments,” New York Institute of Technology Computer Graphics Lab-
oratory TR 3D-16, 1985.

T. Shermer, “Hiding People in Polygons,” McGill University School of
Computer Science TR SOCS.87-18, 1987 (to appear in Computing).

T. Shermer, “Link Guarding Simple Polygons,” McGill University School
of Computer Science TR SOCS.88-12, 1988.

T. Shermer, “Convex Cover is NP-hard,” Manuscript, McGill University,

1988.



BIBLIOGRAPHY

[S88c]

[$70]

[SM63]

[S86a)

(S86b]

[TV88]

[T86]

(T87]

(T88)

[V53]

[V57]

(V64)

T. Shermer, “On Recognizing Unions of Two Convex Sets,” Manuscript,
McGill University, 1988.

A. Sparks, “Intersections of Maximal L,, Sets,” Proceedings of the Amer-
ican Mathematical Society 24, 1970, 245-250.

W. Stamey and J. Marr, “Unions of Two Convex Sets,” Canadian Journal
of Mathematics 15, 1963, 152-156.

S. Suri, “A Linear Time Algorithm for Minimum Link Paths Inside a
Simple Polygon,” Computer Graphics, Vision, and Image Processing 35,
1986, 99-110.

S. Suri, “Computing all Geodesic Furthest Neighbors of a Simple Poly-
gon,” Manuscript, The Johns Hopkins University, 1986.

R. Tarjan and C. Van Wyk, “An O(nloglogn) Algorithm for Triangulat-
ing Simple Polygons,” SIAM Journal on Computing, 17, 1988, 143-178.

G. Toussaint, “Shortest Path Solves Edge-to-edge Visiblity in a Polygon,”
Pattern Recognition Letters 4, 1986, 165-170.

G. Toussaint, “A Linear-time Algorithm for Solving the Strong Hidden-
line Problem in a Simple Polygon,” Pattern Recognition Letters 5, 1987.

G. Toussaint, “Computing Visibility Properties of Polygons,” in Pattern
Recognition and Artificial Intelligence, E. Gelsema and L. Kanal, Eds.,
North-Holland, 1988, 130-122.

F. Valentine, “Minimal Sets of Visibility,” Proceedings of the American
Mathematical Society 4, 1953, 917-921.

F. Valentine, “A Three Point Convexity Property,” Pacific Journal of
Mathematics 7, 1957, 1227-1235.

F. Valentine, Convez Sets, McGraw-Hill, New York, 1964.




BIBLIOGRAPHY 107

[V65a]

[V65b)

[W85)

[YB61]

F. Valentine, “Local Convexity and Starshaped Sets,” Israel Journal of
Mathematics 3, 1965, 39-42.

F. Valentine, “Local Convexity and L, Sets,” Proceedings of the American
Mathematical Society 16, 1965, 1305-1310.

E. Welzl, “Constructing the Visibility Graph for n Line Segments in
O(n?) Time,” Information Processing Letters 20, 1985, 167-171.

1. Yaglom and V. Boltyanskii, Conver Figures (English translation by
P. Kelly and L. Walton), Holt, Rinehart, and Winston, New York, 1961
(Original Russian published in 1951).




Index
Notation art gallery, 8, 13, 19, 35, 55, 61,
\, 1 96
6,1 Avis, D., 21, 42
¥1(1), 66 B Boolean 3-Satisfiability, 62
¥aI), 77 boundary, 5
#(U), 83 Breen, M., 14
CD(G,e,1), 38 Bruckner, A., 14
CL., 78 Bruckner, J., 14
Dy, 2
h,(n), 8 C C-unit, 67, 70, 72-79, 81-84, 88
7,12 center, 10
k, 12 central unit, 74, 78, 186
L, 4 Chazelle, B., 21, 42
Ly, 8 chord, 5, 7, 8
e 31 chromatic number, 92
lyay 81 Chvatal, V., 14, 15, 17, 36, 3§,
PVG(P), 9 41, 94, 96, 101, 104
T, 8 comb polygon, 15, 22-24
Te, 56 connected, 14
VVG(P), 10 continuous graph, 9
contraction, 1, 36, 42-44
3 3SAT, 64, 65, 77, 78, 83, 85, 86, convex cover, 21, 70, 92
90 convex guards, 8
convex polygon, 31, 32, 34
A Aggarwal, A., 19, 20, 32, 56, 61, convex, 2-4, 6, 7, 14, 32, 89
63, 96 covering radius, 10

108




cover, 6-8, 14, 22, 31, 32, 35, 55,
62, 70, 72, 94, 98

Julberson, J., 20

Cutting Diagenal Theorem, 38,
39, 40, 41, 42, 46, 48

cycle edge, 11, 38, 40, 48

Dy-path, 25

Dy-subgraph, 25, 26

Dy-tree, 46

Dy-tree, 2, 8, 35, 46-52, 55-56,
96

depth, 1, 43, 44, 45, 50

diagonal guards, 8

diagonal, 5, 7, 10, 15, 41, 42, 48,
61

diameter, 1, 10, 42-45, 47, 50, 92

distance, 1, 10, 43-45

Dobkin, D., 21

dominate, 11, 15-18, 26, 46-48,
50-53

dominating set, 15, 16, 36, 92

dual tree, 11

ear, 6, 41

eccentricity, 10

edge guards, 8, 94

Exact Cover by 3-Sets, 62
exterior triangulation, 56, 57

exterior, 5, 32

Fisk, S., 17, 21, 61, 96
forests, 92

G gap distance, 68, 69

graph-theory, 94

guard class, 24, 32, 35, 51, 97,
59, 98

guard placement, 21, 99

guard set, 9, 31, 35, 98

guard, 11, 13, 17, 21, 22, 25, 29,
32, 51, 52, 55, 57, 59, 60, 62,
94, 98

H Hamiltonian circuit, 11, 92, 93

hidden guard set, 9, 20, 27, 90,
92

hidden set, 8, 14, 20, 22, 24-27,
31, 32, 35, 55, 59, 60, 62, 64,
82, 86, 90, 92, 96, 98

hidden vertex guard set, 9, 20,
27, 29,91, 92

hidden vertex set, 20, 36, 37, 90,
92

Horn, A., 14

I independent dominating sets, 92
independent set, 25, 92
induced graph difference, 1
infinite graph, 9

interior, 5
J Juul, K., 1}

K k-colorability, 92
k-convexity, 8
k-ear, 41




A

Kahn, J., 19
Klawe, M. , 19
Kleitman, D., 19
Klee, V., 14

Lee, D., 20, 63

line segment guards, 8, 19, 56

line segments, 4, 5, 7, 17

link-j path, 25, 55

link-)-visibility, 4, 24, 32, 35, 51,
59, 97

link-center, 10, 14, 21, 92

link-diameter, 10, 21, 63, 92, 94,
96-97

link-distance, 4, 9, 10, 21, 92

link-eccentricity, 10

link-radius, 10, 21, 92

Lin, A., 20, 63

L1 CC, 66, 67, 71, 73

1,;SC, 63

LoCC, 77-86

L;xG, 64, 88-90, 94

L;CC, 62-66, 74, 77, 86, 88-91,
94

L;HGS, 90, 91

L;HS, 90, 91

L;HVGA, 9

L;HVGS, 91

L;HVS, 90, 91

L;SC, 63, 64, 88, 89, 94

L,-convex, 14, 56, 81-86, 88, 89

Li-convex, 4, 8, 14, 21, 22, 24,

110

31, 32, 55, 56, 62, 63, 76, 86,
89
L,-hidden set, 24
L,-spur polygon, 27, 28
L,-star-shaped, 4, 63
Lubiw, A., 21

maximal clique, 10, 92

maximal convex set, 10, 92
maximal outerplane graphs, 11
Meisters, G., 41

minimum maximal matching, 92
ML;CC, 63

monotone, 6, 19, 29

multiply-connected, 86

NP-complete, 8, 20, 30, 64, 91-
94

NP-hard, 7, 20-21, 62-66, 73, 74,
71, 82, 86, 88-94, 98, 99

NP, 96

null graph, 1

null tree, 1

O’Rourke, J., 17-20, 32, 36, 42,
56, 61, 66, 94, 96

orthogonal polygon, 8§, 19, 21,
29, 96

overlap, 1, 6, 41

partition, 6, 7, 14, 24, 32, 52, 53,
55, 60
pigeonhole principle, 37




o

point guard, 8, 14, 19-21, 56, 97

point-visibility graphs, 9, 10, 92-
94, 97-98

points, 7

polygon cutting, 36, 38

polygon exteriors, 19, 20, 31, 56

polygon with holes, 19, 20, 98

polygon, 5, 13, 52

power of a graph, 92

property Py, 8

quadrilateralization, 21

radius, 10, 92
Reckhow, R.., 20
region visibility, 2
remaining tree, 1

rooted tree, 1

S-sets, 70, 72, 73, 76

Shermer, T., 20, 21, 61, 96

simple, 5

singly-connected, 5

Sparks, A., 14

spike, 79, 86

spiral polygon, 19, 29

star-shaped polygon, 2, 6, 7, 14,
19, 20, 29, 56, 89, 96

star, 3, 4

subgraph, 1, 36, 45

subpolygon, 6

subtree, 1

Supowit, K., 20

T

U

A%

W

X

111

Suri, §., 21

T-guard, 51-53, 56, 57

Tarjan, R., 21

thicket, 96

Toussaint, G., 17,18, 21, 42

trapezoidization, 21

triangulation graph, 10, 11, 15,
17, 18, 25, 35, 38, 39, 41, 42,
46, 48, 96

triangulation, 8, 10, 15, 18, 21,
25, 26, 30, 38, 52, 53

U-unit, 78-81, 83, 86, 88

Valentine, F., 14

Van Wyk, C., 21

vertex guards, 8, 14, 19, 20, 21,
56, 92, 97

vertex set, 1, 42-45

vertex-pair guard, 18

vertex-visibility graph, 10, 92

visibility graph, 10

visibility polygon, 8, 24, 25, 52,
74, 80-90

visually independent sets, 8

weak visibility, 4
Wood, D., 20

X3C, 64-66, 69, 73, 90
X-unit, 67, 69, 70, 73, 74, 76



