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Abstract

This thesis explores various methods for the autonomous estimation of the relative position
and attitude between robots, using onboard sensors. This functionality is a core low-level
prerequisite for a variety of multi-robot tasks that require collaboration, such as a team jointly
lifting an object, exploring a space, or maintaining a formation. In particular, this thesis puts
emphasis on a particular technology called Ultra-wideband radio (UWB), which is capable
of generating distance measurements between a pair of transceivers with approximately
10cm of standard deviation. UWB is cheap, lightweight, and can be simultaneously used
as a data transfer medium, thus making it particularly attractive for small, mobile robots.
Furthermore, Lie group theory is frequently used to represent the state due to its superior
ability to represent the distribution of robot poses. Centralized and decentralized algorithms
are presented, each evaluated in both simulation and experiment.
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Résumé

Cette thèse explore plusieurs méthodes pour l’estimation autonome de la position et de
l’orientation relatives entre robots, en utilisant des capteurs embarqués. Cette fonctionnalité
est un prérequis fondamental pour une variété de tâches multi-robots qui nécessitent de la
collaboration, telles qu’une équipe qui soulève ensemble un objet, qui explore un espace,
ou qui maintient une formation. En particulier, cette thèse se concentre sur une technique
particulière appelée la radio à bande ultra-large (UWB), qui est capable de générer des
mesures de distance entre une paire d’émetteurs-récepteurs avec un écart type d’environ 10
cm. L’UWB n’est pas chère, elle est légère et peut être aussi utilisée comme moyen de transfert
de données entre robots, ce qui la rend particulièrement intéressante pour des petits robots
mobiles. De plus, la théorie des groupes de Lie est fréquemment utilisée pour représenter
l’état des robots en raison de sa capacité supérieure à représenter la distribution des poses
du robot. Des algorithmes centralisés et décentralisés sont présentés, chacun étant évalué à la
fois par simulation et par expérimentation.
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Statement of Contributions

The following is a list of original contributions presented in this thesis.
• Chapter 3 [1]

– A keypoint-based sliding-window filter for estimation of relative positions from
single-range measurements.

– A greedy keypoint selection strategy that is a quickly computable heuristic for an
information-maximizing sliding-window filter.

• Chapter 4 [2]
– A novel coordinate system appropriate for localization based on range, azimuth,

elevation measurements.
– An investigation into the coordinate system’s consistency properties and divergence

from the true distribution of positions, including a comparison to traditional
Cartesian coordinates.

• Chapter 5 [3]
– A cost function that effectively captures the estimation variance’s dependence on

the formation geometry of a group of robots.
– A method for computing optimal formations based on the above cost function,

and using on-manifold gradient descent.
• Chapter 6 [4]

– A framework for decentralized multi-robot estimation based on pseudomeasurements.
– A method for modelling common variables between robots’ state definitions, and

more generally, arbitrary nonlinear relationships between robot states.
– An observability test for decentralized estimators that simultaneously accounts for

local measurements and the communication topology within the team.
– A method for sharing odometry information in a very communication-efficient way,

using preintegration.
– An autoencoder architecture that further compresses covariance information

associated with preintegration.
• Appendix A [5]

– A numerical differentiation method appropriate for functions of matrix Lie group
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elements, that obtains machine-precision.
– An open-source Python software that provides general-purpose implementations

of common on-manifold estimation algorithms.
Credit is given to Mohammed A. Shalaby for assistance in the experimental work present

in this thesis, and for general help in idea generation that led to many of the presented
contributions. However, all previously listed contributions were independently developed by
the author of this thesis.
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Chapter 1

Introduction

The overarching goal of this thesis is to create a team of autonomous robots that can each
localize their fellow team members, by means of on-board sensors. This functionality, which
ultimately produces numerical estimates of the relative position or pose between robots, is a
core low-level prerequisite for a large class of multi-robot tasks. If a robotic team desires to
lift an object together, explore a space together, or simply maintain a fixed formation, an
accurate estimate of their relative positions will be needed.

More specifically, the goal is to achieve relative positioning in the most lightweight way
possible, regarding computational and sensor requirements. Hence, there is emphasis on a
specific technology called ultra-wideband radio (UWB). Using UWB in robotics consists of
installing one or more very small UWB transceivers on each robot, and possibly more in the
surrounding environment. These transceivers, often called tags, provide high-frequency range
measurements between any pair of them, with roughly 10 cm of standard deviation. UWB
transceivers are cheap, lightweight, require extremely low power, and double as a means to
wirelessly transfer data between robots. It is therefore an ideal technology for small robots
with limited computational resources, such as micro air vehicles. Moreover, when combined
with other sensors, it is theoretically possible to even further improve positioning accuracy,
thus enabling high-precision applications such as collaborative manipulation. Only recently
have UWB-enabled robotic teams emerged in academic work [6–10], and the state-of-the-art
still has far to go to become accurate, fast, and robust.

This thesis also aims to minimize dependence on external infrastructure, such GPS or
UWB transceivers installed at known, fixed locations. Achieving this would result in a team
of robots with a fully self-contained localization system that is not confined to a particular
environment with such infrastructure. This, however, complicates the estimation task as
there is no information from an absolute positioning systems, and sometimes not even a
common reference frame between robots.
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Substantial effort has been put into developing custom UWB modules for the experimental
work of this thesis, which internally use a commercial chip for UWB transmission. These
compact modules are seen in Figure 1.1, along with a picture of the quadcopter platform used
in the later half of this work that possesses one of these modules. These custom modules have
allowed for precise control over the ranging protocol, calibration procedure, and scheduling —
all in the interest of maximizing the estimation accuracy. Developing custom modules has led
to a unique experimental setup, where multiple robots exist in space, each possessing multiple
UWB transceivers. The module firmware has been designed to not only schedule transmission
times in a decentralized way, such that interference from colliding transmissions are avoided,
but also to allow any one robot to “eavesdrop” on the range measurement occurring between
any other two, thus itself gaining access to that range information.

Figure 1.1: Left: Custom UWB module built around the DW1000 UWB transceiver. Right: A customized
Uvify IFO-S quadcopter, outfitted with a UWB transceiver on one of its legs.

Another distinctive feature of this thesis will be the heavy use of Lie groups to represent
robot states, thus making many methods in this thesis “on-manifold” estimation algorithms.
As shown in [11, 12], Lie groups provide a superior ability to model the distribution of three-
dimensional robot poses under significant uncertainty, and lead to more robust estimators
when the estimation error is large [13, 14]. Amongst other benefits, they provide a compact,
elegant mathematical treatment of many robotic state estimation problems. Lie group theory
will be briefly introduced in Chapter 2 of this thesis.

1.1 Background and Related Work

While UWB radios can often be thought of as simple “distance sensors,” their actual core
capability is the precise, sub-nanosecond-level timestamping of transmission or reception of
radio waves [15]. This is largely achieved by sending very “sharp” impulse-like radio waves,
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which correspond to a wide bandwidth in the frequency domain, thus warranting the name
“ultra-wideband”. The range between two transceivers is hence determined by measuring the
time-of-flight (TOF) of a radio wave that originates from one transceiver and is received by
another. The main complexity is that the clocks on each transceiver are not synchronized,
and in the simplest case, their values at any point in universal time differ by a fixed offset.
The two-way-ranging (TWR) protocol, shown in Figure 1.2, solves this problem by sending
two signals, back and forth.

Clock a Clock b

~t
t
a

~t
r
a

τb

Figure 1.2: The two-way-ranging protocol: the most basic method to determine distance using UWB radio.

Assuming that the clock offset between the transceivers is constant, the range can be estimated
from the total round-trip duration, cancelling out the clock offset. However, as discussed
in [16], this constant offset is not always a good assumption, and it is preferred to use a
first-order model featuring an offset changing at a constant rate, called the clock skew. An
improved ranging protocol is proposed in [16] to account for this clock skew. Furthermore,
[17] discusses how the intervals in the ranging protocol, such as τb, affect the range estimate
variance, and can therefore be optimized to provide the range measurements with the lowest
variance. In [18], tag clock offsets are simultaneously, dynamically estimated with the robot’s
pose, which can provide improved positioning accuracy. It is also possible to determine the
angle of arrival of a UWB radio wave by having receivers with multiple antennas, as shown
in [19, 20]. However, this multi-antenna hardware is not yet commercially available. In [21],
the angle of arrival is directly estimated from a single antenna by examining the time-domain
profile of the received signal, and mapping this to an angle using a deep neural network.
However, this has poor accuracy and likely requires a hardware-specific training process.

The traditional use of UWB radio for positioning involves installing tags at fixed, known
positions called anchors, illustrated on the left of Figure 1.3. Determining the position of the
mobile tag from range measurements to these known landmarks can be done by trilateration,
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Figure 1.3: Left: Concept diagram of traditional UWB positioning systems. Right: Concept diagram of a
self-localizing robotic team, capable of estimating relative positions or poses from only on-board sensors.

which involves a least-squares problem [22]. This kind of approach has been successfully
used many times in robotics to provide autonomous positioning capability [23]. For example,
UWB is used to localize an unmanned blimp in [24], and quadcopters in [25–27]. However,
the problem of interest in this thesis is better represented by the right of Figure 1.3. In this
situation, robots would only use on-board sensors for relative localization. Infrastructure
independence makes the problem substantially more difficult, as it typically results in the
lack of any global or absolute reference.

If the robots each possess only a single range-measuring transceiver, then at any one
instant it is impossible to determine relative positions from those range measurements. The
solution is ambiguous as the entire team can rotate, translate, flip and each robot can
freely rotate without changing the range measurements [28]. However, if the robots are
moving sufficiently, and the history of measurements is taken into account, then the relative
trajectories satisfying all the measurements can be unique [29, 30]. This is simulated in [31],
where velocity measurements are assumed to be available, and experimented in [6], however
GPS is used to provide displacement information for the agents. In [8] a two-dimensional
solution is proposed, with robots collecting velocity measurements from optical flow sensors,
and sharing this data between them. Controllers are proposed in [32, 33] that ensure the
motion is persistently exciting, as required. More recently, [9] proposes a convex optimization
approach to the relative localization problem for two robots with single-range measurements
between them.

Another approach that theoretically eliminates the persistent motion requirement is to
install more than one tag on each robot. The uniqueness and observability of such a solution
is presented in [28], where quadcopters possess a mixture of either one or two tags. Similarly,
a large ground robot possessing four tags is shown in [34], and allows a single-tag quadcopter
to localize itself relative to this ground robot. A similar setup is seen in [35].
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1.2 Outline

This thesis represents the development journey toward the overarching goal of relative
positioning capability, starting with a chapter dedicated to covering mathematical preliminaries,
Chapter 2.

Chapter 3 describes a first approach to solving the relative positioning problem, which is
to outfit each robot with a single UWB transceiver, and to exploit the robots’ motion history
to determine a relative position estimate. At any single instant, the single range measurement
between robots is insufficient information to calculate a relative position. However, as will be
shown in Chapter 3, if an inertial measurement unit (IMU) is available that provides motion
information, it is possible to estimate the relative position. The main contribution of this
chapter is to propose a method for selecting specific measurements in the state history that
are most informative, which in turn improves accuracy over traditional approaches.

Chapter 4 builds on the single-transceiver approach by instead considering an alternate
coordinate system to represent the relative positions. The main realization from previous work
was that the distribution of position estimates, given range measurements, were spherically-
shaped. Gaussian estimators operating in the usual Cartesian coordinates would therefore
always fail to represent such a distribution, and this issue led to the solution proposed in this
chapter.

Chapter 5 now switches to multiple-transceiver-per-robot approaches. While single-
transceiver approaches had the benefits of compactness and keeping hardware to an absolute
minimum, they have the impractical requirement of persistently exciting motion in all axes.
As shown in this chapter, multi-transceiver robots can determine relative positions from range
measurements alone. This chapter further studies how the actual formation geometry of a
group of robots effects the estimation accuracy. This effect is modelled, quantified, and then
optimized to produce formations that are optimal in terms of estimation variance.

Chapter 6 finally describes a concrete decentralized state estimator that is appropriate
for relative pose estimation with inter-robot range measurements. The treatment in this
chapter is general to a large variety of decentralized state estimation problems, and is not
limited to range measurements. This chapter will address the fusion of arbitrary state
definitions, investigate the observability of decentralized estimators, and propose methods
that substantially reduce the communication cost associated with decentralized estimators.

It is also worth mentioning that many methods proposed in this thesis are not actually
specific to robotics, but rather applicable to any device that contains the appropriate sensors.
Examples include smartphones, smartwatches, or more custom-built electronic devices.
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Chapter 2

Preliminaries

This chapter presents mathematical preliminaries necessary for the explanation, derivation,
and proof of the majority of contributions presented in this thesis. More specific mathematical
preliminaries relevant to individual chapters will be described therein. As such, the expert
reader who is already familiar with probability, estimation, and Lie groups can move ahead
to following chapters.

2.1 Notation

In this thesis, column vectors are written in lower-case bold x ∈ Rn, whereas matrices are
in capital bold X ∈ Rm×n. The special matrices 1 and 0 are appropriately-sized identity and
zero matrices, respectively.

An arbitrary reference frame ‘a’ is denoted Fa. Vectors resolved in Fa are denoted with a
subscript, for example va. The same physical vector resolved in a different frame Fb can be
related by a direction cosine matrix (DCM), denoted Cab ∈ SO(3), such that va = Cabvb [22].
A direction cosine matrix Cab can be parameterized using a rotation vector, denoted ϕ ∈ R3,
using Cab = exp (ϕ×), where (·)× denotes the skew-symmetric cross-product matrix operator

ϕ× =

 ϕ1

ϕ2

ϕ3


×

=

 0 −ϕ3 ϕ2

ϕ3 0 −ϕ1

−ϕ2 ϕ1 0

 .
2.2 Probability Density Functions

A continuous random variable x ∈ Rn has a probability density function (PDF) denoted
p(x) [36]. A joint PDF can always be factored as

p(x, y) = p(x|y)p(y) = p(y|x)p(x), (2.1)
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with the last two terms rewritable to produce Bayes’ rule

p(x|y) = p(y|x)p(x)
p(y)

. (2.2)

2.2.1 Gaussian Distributions

The Gaussian distribution is a special PDF with mathematical properties that allow
for very computationally-efficient estimation algorithms. In covariance form, the Gaussian
distribution is parameterized by a mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n

p(x) = N (µ,Σ) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2.3)

Another convenient equivalent form of the Gaussian distribution is the information form. To
derive the information form, the inside of the exponential in (2.3) can be manipulated to give

p(x) =
1√

(2π)n detΣ
exp

(
−1

2
(xTΣ−1x− 2µTΣ−1x + µTΣ−1µ)

)
(2.4)

=
exp(−1

2
(ηTΛ−1η))√

(2π)n detΛ−1
exp

(
−1

2
xTΛx + ηTx

)
(2.5)

= β exp

(
−1

2
xTΛx + ηTx

)
(2.6)

≜ N−1(η,Λ), (2.7)

where Λ = Σ−1 is defined as the information matrix and η = Λµ as the information vector.

2.2.1.1 Marginalization and Conditioning

Marginalization and conditioning are fundamental operations occurring in estimation
and Bayesian inference. For the Gaussian distribution, these two operations have simple
closed-form expressions [37]. That is, given the joint Gaussian probability density function

p(x, y) = N
([

µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])
= N−1

([
ηx

ηy

]
,

[
Λxx Λxy

Λyx Λyy

])
,

the marginal pdf p(x) =
∫∞
−∞ p(x, y)dy is given in covariance form as

p(x) = N (µx,Σxx), (2.8)
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or in information form as

p(x) = N−1(η̄, Λ̄), (2.9)

η̄ = ηx −ΛxyΛ
−1
yy ηy, (2.10)

Λ̄ = Λxx −ΛxyΛ
−1
yyΛyx. (2.11)

Similarly, the conditional PDF p(x|y) can be written in covariance form as

p(x|y) = N (µx|y,Σx|y), (2.12)

µx|y = µx +ΣxyΣ
−1
yy (y− µy), (2.13)

Σx|y = Σxx −ΣxyΣ
−1
yyΣyx, (2.14)

or in information form as

p(x|y) = N−1(ηx|y,Λx|y), (2.15)

ηx|y = ηx −Λxyy, (2.16)

Λx|y = Λxx. (2.17)

2.3 Lie Groups

Traditional estimation theory operates on a conventional state-space model of a robot’s
dynamics and sensor measurements. A robot’s state, usually denoted x ∈ Rn, will be a
conventional vector of numbers that parameterize the state of interest in some way, such as
position and attitude via Euler angles. Since x belongs to a vector space, it can be added or
scaled, and the result will still be meaningful.

However, the kinematic singularities and ambiguities associated with angle parameterizations
of attitude make the DCM C ∈ SO(n) a far more natural representation of attitude, where

SO(n) ∈ {C ∈ Rn×n | CTC = 1, det(C) = 1}. (2.18)

Since the special orthogonal group SO(n) is not a vector space, its elements cannot be added
nor scaled with the result still belonging to SO(n). In traditional estimation theory, the state
belongs to a vector space, and hence addition and scaling are meaningful operations that
can be applied to it. This is not the case in the majority of robotic systems, including those
considered in this thesis.

To further motivate the use of Lie groups, consider a situation where a ground robot
moves in a 2D plane, as shown in Figure 2.1. This robot travels forward with a fixed average
velocity, and simultaneously rotates with a fixed average angular velocity, but both these
velocities vary slightly about their mean in a random way. The pose of the robot after any
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]

θ

Figure 2.1: Birds-eye view of a simple ground robot moving in a 2D world.

given duration is not deterministic, but is instead random according to some distribution.
It turns out that this distribution is truly “banana-shaped”, as shown by the point cloud
in Figure 2.2. Traditional estimation theory that assumes a Gaussian distribution would
attempt to represent this “banana” with some ellipsoid, shown on the right of Figure 2.2,
which can be a poor representation. On the other hand, if Lie group tools are used, it is
possible to represent this distribution more accurately, as shown on the left of Figure 2.2.
This behaviour, along with other mathematical reasons, leads to more robust and accurate
state estimators. The next section will discuss the relevant mathematics of Lie group theory.
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Figure 2.2: Distribution of robot poses, along with modelled representations using both exponential coordinates
from Lie group theory, as well as traditional Cartesian coordinates.

9



2.3.1 Basic Definitions

Lie group theory is the mathematical formalism that can be used to generalize a robot’s
state definition into a more abstract object than a simple vector. A group (G, ◦) is a set G,
along with a group operation ◦ : G × G → G, that for arbitrary X ,Y ,Z ∈ G, satisfy the
following axioms [38]:

• closure under ◦, meaning X ◦ X ∈ G;
• there exists an identity element I, defined such that I ◦ X = X ◦ I = X ;
• there exists an inverse operation X−1 ◦ X = X ◦ X−1 = I;
• the group operation is associative, (X ◦ Y) ◦ Z = X ◦ (Y ◦ Z).

A Lie group is a smooth manifold whose elements simultaneously satisfy the above group
axioms. The formal definition of a smooth manifold is beyond the scope of this thesis, where
it suffices to think of them as abstract (hyper)-surfaces living in some higher dimensional
space. For example, C ∈ SO(3) is a 3× 3 matrix, hence represented by 9 numbers, but with
6 independent constraints (imposed by the fact that CTC = 1) that leave only 3 degrees of
freedom. As a manifold, elements of SO(3) can be thought of as belonging to a 3-dimensional
surface living in 9-dimensional space. The key required property is the smoothness of the
manifold, visualized by a lack of spikes or edges on this abstract surface, which allows for the
definition of smooth functions X (t) with codomain entirely within the Lie group.

More concretely, this thesis will often deal with matrix Lie groups, which have elements as
square, invertible matrices, and the group operation is regular matrix multiplication. Apart
from SO(n), the most common example is the special Euclidean group

SE(n) =

{
T =

[
C r
0 1

]
∈ R(n+1)×(n+1)

∣∣∣∣ C ∈ SO(n) , r ∈ Rn

}
.

It is easy to verify that both SO(n) and SE(n) satisfy the group axioms under matrix
multiplication, with the identity element simply being the identity matrix 1, and the inverse
operation is the matrix inverse. For X(t) ∈ G belonging to matrix Lie group G, the relation
X−1(t)X(t) = 1 can be differentiated to give

dX−1

dt
X + X−1Ẋ = 0, (2.19)

−dX−1

dt
X = X−1Ẋ ≜ Ξ, (2.20)

with the argument of time omitted. The matrix Ξ ∈ g is said to belong to the matrix Lie
algebra g, and has a form given by X−1Ẋ for all matrix Lie groups. The Lie algebra g forms
a vector space and can be written as Ξ = ξ∧ where ξ ∈ Rm and (·)∧ : Rm → g is linear. The
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inverse of (·)∧ is denoted (·)∨ : g→ Rm. Return now to (2.20) and rearrange slightly,

Ẋ(t) = X(t)ξ∧, (2.21)

where ξ∧ = Ξ ∈ g. If ξ is assumed to be constant, (2.21) is a matrix-valued linear ordinary
differential equation with analytical solution given by

X(t) = X(0) exp(tξ∧), (2.22)

where exp(·) denotes the matrix exponential. Considering the case where X(0) = 1 and
arbitrarily fixing t = 1, (2.22) will give

X = exp(ξ∧)

meaning that the matrix exponential produces a group element given any element of its
corresponding Lie algebra. Likewise, the matrix logarithm produces elements of the matrix
Lie algebra given a group element

ξ∧ = log(X).

There are two more important definitions that primarily appear in the derivations of Jacobians
of function involving matrix Lie group elements. The first is the adjoint operator AdX : g→ g,
defined as

AdX(ξ
∧) = Xξ∧X−1. (2.23)

Since the adjoint is linear, there exists a corresponding matrix representation Ad : G→ Rm×m

defined such that

Ad(X)ξ = (Xξ∧X−1)∨.

The second definition is the simple operator (·)⊙ : Rn → Rn×m defined such that

a∧b = b⊙a.

For more abstract Lie groups, the Lie algebra is related to the group through the exponential
and logarithmic maps exp : g → G, log : G → g. These coincide with matrix exponential
and logarithm for matrix Lie groups, but have a more general definition which is beyond
the scope of this thesis. Nevertheless, it is now possible to associate a group element with a
vector ξ ∈ Rm directly with

X = exp(ξ∧) ≜ Exp(ξ), ξ = log(X )∨ ≜ Log(X ),

where the shorthand notation Exp : Rm → G and Log : G→ Rm has been defined. Concrete
expressions for the above operations for the groups SO(3), SE(3), and SE2(3) can be
found in [39, Ch. 2.2-2.4]. The software implementation used in this thesis can be found in
Appendix B.
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2.3.2 ⊕ and ⊖ operators

Estimation theory for vector-space states and Lie groups can be elegantly aggregated
into a single mathematical treatment by defining generalized “addition” ⊕ : G × Rm → G

and “subtraction” ⊖ : G×G→ Rm operators, whose precise definitions will depend on the
problem at hand. For example, possible implementations include

X ⊕ δx = X ◦ Exp(δx) (Lie group right),
X ⊕ δx = Exp(δx) ◦ X (Lie group left),
x⊕ δx = x + δx (vector space),

for addition and, correspondingly,

X ⊖ Y = Log(Y−1 ◦ X ) (Lie group right),
X ⊖ Y = Log(X ◦ Y−1) (Lie group left),
x⊖ y = x− y (vector space),

for subtraction. This abstraction is natural since a vector space technically qualifies as a Lie
group with regular addition + as the group operation.

2.3.3 Gaussian distributions on Lie groups

As an example use of this abstraction, consider defining a normally-distributed Lie group
element with mean X̄ and covariance Σ, as done in [12], with

X = X̄ ◦ Exp(δx), δx ∼ N (0,Σ),

when using a right parameterization, or a similar definition for left parameterizations. This
can alternatively be written in an abstract way, applicable to any group or vector space, with

X = X̄ ⊕ δx, δx ∼ N (0,Σ). (2.24)

Moreover, given that δx = X ⊖ X̄ , it follows from (2.24) that

p(X ) = η exp

(
−1

2
(X ⊖ X̄ )TΣ−1(X ⊖ X̄ )

)
≜ NL(X̄ ,Σ),

where η is a normalization constant that ensures p(X ) integrates to one over its domain,
thus making it a valid probability density function. The definition of NL(X̄ ,Σ) provides a
generalized “Gaussian” distribution compatible with Lie group elements, and is useful for
estimation problems.
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2.3.4 Derivatives on Lie groups

Again following [40], the Jacobian of a function f : G→ G, taken with respect to X can
be defined as

Df(X )
DX

∣∣∣∣
X̄
≜
∂f(X̄ ⊕ δx)⊖ f(X̄ )

∂δx

∣∣∣∣
δx=0

,

where it should be noted that the function f(X̄ ⊕ δx)⊖f(X̄ ) of δx has Rm as both its domain
and codomain, and can thus be differentiated using any standard technique. In Appendix
A, this is exploited to propose a Lie-group-compatible numerical differentiation technique
that uses the complex step. This method is capable of calculating derivatives with arbitrary
precision, thus being practically indiscernible from an analytical computation, except for the
computation time.

With the above general definition of a derivative, it is easy to define the so-called Jacobian
of G as J = DExp(x)/Dx, where left/right group Jacobians are obtained with left/right
definitions of ⊕ and ⊖.

2.3.5 Composite groups

A composite group is simply the concatenation of N other Lie groups G1, . . . , GN [40],
with elements of the form

X = (X1, . . .XN) ∈ G1 × . . .×GN ,

where × denotes the direct product of two groups. These elements form a new Lie group with
group operation, inverse, identity, exponential map, and logarithmic map defined elementwise.
For example,

X ◦Y = (X1 ◦ Y1, . . . ,XN ◦ YN). (2.25)

Furthermore, defining δx = [δxT
1 . . . δxT

N ]
T the ⊕, operator is given by

X ⊕ δx = (X1 ⊕ δx1, . . . ,XN ⊕ δxN) (2.26)

and a similar definition applies to ⊖. Composite groups are a very practical construction, as
they allow to easily make new groups out of known ones, and to possibly make composite
groups of composite groups. As an example, let the state of the robot be both its pose
T ∈ SE(3) and a sensor bias b ∈ Rm. The state can be represented with the composite
element x = (T,b), which has a straightforward elementwise definition of the various group
and ⊕,⊖ operations as per this section.
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2.4 Maximum A Posteriori

Maximum a posteriori (MAP) is the standard approach taken in the robotics literature.
Popular algorithms such as the extended Kalman filter (EKF), iterated EKF, sliding-window
filter, and batch estimator can all be derived from a MAP approach, thus unifying them
under a common theory. The traditional problem setup is to describe the robot’s process
model and measurement model in the standard form of

Xk = f(Xk−1,uk−1)⊕ wk−1,

yk = g(Xk) + vk,

wk−1 ∼ N (0,Qk−1),

vk ∼ N (0,Rk),
(2.27)

respectively. Here, uk−1 represents an arbitrary process model input, yk represents the
measurements, and both models are corrupted with “additive” Gaussian noise. As a notational
convenience, let the shorthand Xi:j = (Xi . . . Xj) refer to a collection of arbitrary objects
with indices in the range [i, j], which may also form a composite group as per Section 2.3.5.

Given a history of measurements y0:K with model as in (2.27), as well as a prior distribution
p(X0) = NL(X̌0, P̌0), the estimate of the state history X = X0:K produced by the MAP
approach is

X̂ = argmax
X

p(X |y0:K). (2.28)

Repeatedly applying Bayes’ rule gives

X̂ = argmax
X

ηp(X0)
K∏
k=0

p(yk|Xk)
K∏
k=1

p(Xk|Xk−1) (2.29)

where η is a normalization constant. Based on the additive noise assumption in (2.27), it is
justified to say that

p(Xk|Xk−1) = NL(f(Xk−1,uk−1),Qk−1), (2.30)

p(yk|Xk) = N (g(Xk),Rk). (2.31)

Equivalently, minimizing the negative logarithm of (2.29) yields a nonlinear least-squares
problem of the form

X̂ = argmax
X

1

2
e(X )TWe(X ) (2.32)
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where

e(X ) =



e0(X )

eu,1(X )
...

eu,K(X )

ey,0(X )
...

ey,K(X )


,

e0(X ) = X0 ⊖ X̌0,

eu,k(X ) = Xk ⊖ f(Xk−1,uk−1),

ey,k(X ) = yk − g(Xk),

W = diag(P̌−1
0 ,Q−1

0 , . . . ,Q−1
K−1,R

−1
0 , . . . ,R−1

K ).

(2.33)

Using an on-manifold optimization approach, (2.32) can be solved by first parameterizing
the state with X = X̂ ⊕ δx and solving the problem

δx̂ = argmax
δx

e(X̂ ⊕ δx)TWe(X̂ ⊕ δx). (2.34)

Defining the Jacobian of the error vector as

H ≜
De(X )

DX

∣∣∣∣
X̄
=
∂e(X̂ ⊕ δx)

∂δx

∣∣∣∣∣
δx=0

, (2.35)

an approximate solution to (2.34) can be obtained by solving the Gauss-Newton system

(HTWH)δx̂ = HTWe(X̂ ). (2.36)

The above is iterated with X̂ ← X̂ ⊕ δx̂ and typically initialized by propagating the prior
mean X̌0 through the process model to compute the prior mean at each time step. A
common approximation for the posterior covariance P̂ where p(X|y) ≈ NL(X̂ , P̂) is given by
P̂ = (HTWH)−1. The MAP estimation method is often referred to as the batch estimator
when there are states at multiple time steps being estimated simultaneously.

2.4.1 Observability

Informally, a state-space system of the form (2.27) is said to be observable if, given
a collection of inputs u0:K and measurements y0:K , there exists a unique trajectory X k

corresponding to those measurements. The notion of observability corresponds to the
uniqueness of the solution X̂ from (2.28), given a set of measurements and no prior knowledge
[41]. In the nonlinear case, determining uniqueness is difficult in general [42], but it is still
possible to make a statement of local uniqueness by requiring that the solution δx̂ to the
linearized batch problem be unique. Following [43, Ch. 3.1], this should also be done with the
prior term p(X0) in (2.29) ignored. The uniqueness of δx̂ is guaranteed if the matrix HTWH
is full rank. Since W is always symmetric positive definite,

rank(HTWH) = rank(HTH) = rank(H). (2.37)
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For the system given by (2.29), but with the prior term omitted, the Jacobian of the error is

H =



−F0 1
. . . . . .

−FK−1 1
−G0

−G1

. . .

−GK


, (2.38)

Fk =
Df(Xk,uk)
DXk

, (2.39)

Gk =
Dg(Xk)
DXk

. (2.40)

Performing a variety of elementary column operations on (2.38), it can be shown that the
rank of H in (2.38) is equivalent to the rank of

O =


G0

G1F0
...

GKFK−1 . . .F0

 , (2.41)

and hence local uniqueness requires that rank(O) = m where m is the degrees of freedom
associated with a state Xk.

2.5 Consistency of Bayesian Estimators

Many estimators assume that the state distribution is Gaussian and, accordingly, report
both an estimated mean x̂ and covariance P̂ such that x ∼ N (x̂, P̂). Given samples of the
true state x, it is frequently of interest to determine whether an estimator is statistically
consistent. That is, whether the statistics reported by the estimator match the true statistics
of the state. If xk ∈ Rn is Gaussian-distributed, then the following scalar random variable

ϵk = (xk − x̂k)
TP̂−1

k (xk − x̂k) (2.42)

has a chi-square distribution with n degrees of freedom χ2
n(ϵ) and is called the normalized

estimation error squared (NEES) [44]. A consistency test is formed by requiring that

P (ϵk ∈ [r1, r2]) = α
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where P (·) denotes the probability and r1, r2 are the bounds of the α ∈ [0, 1] probability
concentration region for χ2

n. In practice, this is checked by first evaluating the estimation
error and computing NEES samples ϵk. Then, for a chosen α, the bounds r1, r2 can be
computed through third-party software, and the portion of NEES samples that lie within
[r1 , r2] is then verified to be close to α. If multiple estimation trials are conducted, typically
as a Monte Carlo simulation, the N -run average NEES can be defined as

ϵ̄k =
N∑
k=1

1

N
ϵk.

If the estimator is consistent, Nϵ̄k will be chi-squared distributed with Nn degrees of freedom,
and an alternative consistency test can be constructed as

P (ϵ̄k ∈ [r1, r2]) = α

where r1, r2 now correspond to the α probability region of χ2
Nn/N .
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Chapter 3

Relative Position Estimation Between
Two UWB Devices with IMUs

3.1 Summary

This chapter presents an algorithm for determining the three-dimensional relative position
between two mobile robots, each using nothing more than a single ultra-wideband transceiver,
an accelerometer, a rate gyro, and a magnetometer. A sliding window filter estimates
the relative position at selected keypoints by combining the distance measurements with
acceleration estimates, which each agent computes using an on-board attitude estimator. A
key novelty is the keypoint selection strategy, which results in a positioning accuracy of less
than 1 m in experiments, with the algorithm outperforming standard estimators.

3.2 Introduction

Determining a full three-dimensional relative position estimate from a single range
measurement is impossible. There is an infinite set of relative positions that will produce the
same range measurement. Hence, to realize an observable relative positioning solution, more
information is required.

Range-based positioning is very commonly achieved by measuring distances to several
landmarks with known positions, referred to as anchors when using UWB [18, 26]. However,
the problem of estimating the relative position between moving robots, without any external
reference, is much more difficult. Nevertheless, there are several papers that achieve relative
positioning from range measurements, and do so by using additional sensors. For example,
cameras are often used in addition to UWB [10], but vision requires substantial computational
capabilities, which imposes a lower bound on the size of the agent. In [28], the presence of
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Keypoints

Intermediate

measurements

Old trajectory

Distance measurements

Figure 3.1: An example scenario where two quadrotors possess UWB modules, providing range measurements
between them. Under sufficient motion, it is possible to determine the relative position between them in a
common reference frame.

some agents with two UWB tags makes the relative positions observable. The observability
analysis provided by [29] concludes that when velocity information is available in addition to
single-range measurements, the relative position is observable provided that a persistency
of excitation condition is satisfied, meaning that the agents must be in continuous relative
motion. This is simulated in [31], where velocity measurements are assumed to be available,
and experimented in [6], however GPS is used to provide displacement information for the
agents. Cameras with optical flow are used to measure agent motion in [32, 33, 45], and
[46] proposes a particle filter to estimate the relative positions of a group of mobile UWB
devices, which also have IMUs. However, their solution requires a central server to perform
the estimation task. The literature lacks three-dimensional solutions that use only UWB and
IMU measurements.

The main contribution of this chapter is a three-dimensional relative position estimation
algorithm for two mobile agents, each using nothing more than a single sensor measuring
the range between them, and a 9-DOF IMU. No fixed infrastructure, GPS, cameras, or
heavy computing is required, and the position is resolved in a known local frame, such as an
East-North-Up reference frame. The proposed solution is easily decentralizable, and achieves
sub-meter level accuracy in experiment. The algorithm requires persistency of excitation,
meaning that the agents must be moving in a non-planar trajectory.

In the context of this chapter, Fb is associated with an agent’s body frame, and Fa refers
to some local common frame, such as an East-North-Up frame.
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3.3 Sliding Window Filtering

This chapter will make use of the sliding window filter as a core component. The sliding
window filter is a batch estimation framework with constant time and memory requirements,
achieving so by marginalizing out older states [47, 48]. Consider a scenario where a robot
travels until time step k1, at which point it performs a full batch estimate of its state history,
represented here as vector-space elements, to produce x̂0:k1

. It then continues to travel until
time step k2, adding the new states xk1+1:k2

to its state history. The m oldest states x0:m−1

are then marginalized out, thus removing them from the optimization problem being solved
at step k2. The remaining states from the previous window’s estimate are xm:k1

.

new window of length K=k2−m+1︷ ︸︸ ︷
x0 x1 . . . xm−1 xm . . . xk1︸ ︷︷ ︸

old window of length K=k1+1

xk1+1 . . . xk2

The joint PDF of the new window, given the entire history of measurements until tk2 , can be
written as

p(xm:k2
|x̌0,u0:k2−1, y0:k2

) = ηp(xm+1:k2
|um:k2−1, ym:k2

, xm)p(xm|x̌0,u0:m−1, y0:m−1). (3.1)

The crux of the marginalization process is to determine an expression for p(xm|x̌0,u0:m−1, y0:m−1),
which takes the role of the new “prior” distribution of the new window. Performing
marginalization properly, as opposed to naively removing the oldest states from the current
estimation problem, is critical to maintaining an accurate, consistent estimator. To do this,
consider instead the following PDF, for which an analytical expression is available,

p(x0:m|x̌0,u0:m−1, y0:m−1) = β exp(−1

2
em(x0:m)

TWmem(x0:m)), (3.2)

where

em(x0:m) =
[

eT0 eTu,1 . . . eTu,m eTy,0 . . . eTy,m−1

]T
,

Wm = diag(P̌−1
0 ,Q−1

0 , . . . ,Q−1
m−1,R

−1
0 , . . . ,R−1

m−1),

β is a normalization constant, and the e0, eu,i, ey,i terms are defined in (2.33), but written
without arguments. This is, in general, not a Gaussian distribution due to the nonlinear
nature of em(·), but it can be approximated as one by linearizing em(·) about a subset of the
state estimates obtained from the previous window, being x̂0:m. Substituting a first-order
approximation of em(·) into (3.2), and after some manipulation, the mean and covariance of
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a Gaussian approximation to p(x0:m|x̌0,u0:m−1, y0:m−1) ≈ N (µ0:m,Σ0:m) can be shown to be

µ0:m =

[
µ0:m−1

µm

]
= x̂0:m − (HT

mWmHm)
−1HT

mWmem(x̂0:m), (3.3)

Σ0:m =

[
Σ0:m−1 Σ0:m−1,m

Σm,0:m−1 Σm

]
= (HT

mWmHm)
−1, (3.4)

respectively, where

Hm =
∂em(x)
∂x

∣∣∣∣
x̂0:m

. (3.5)

It finally follows that

p(xm|x̌0,u0:m−1, y0:m−1) ≈ N (µm,Σm).

The specific step in which the marginalization occurred is when µm and Σm are extracted
from (3.3) and (3.4), respectively. With an expression for the new prior now identified,
one may return to (3.1) to construct a nonlinear least-squares problem in the exact same
manner as the full batch problem, and solve it with the Gauss-Newton or Levenberg-Marquart
algorithm.

Mag.

Gyro.

Accel.

AHRS

Distance

Rel. Position
Estimator
(SWF)

~uacc;1
ak

; ~Qacc;1
k Agent 2

Agent 1

~uacc;2
ak

; ~Qacc;2
k

(EKF)

y
dist
k

y
mag
bk

u
gyro
bk

uacc
bk

Figure 3.2: High-level diagram of the architecture of the proposed algorithm. Each agent contains an AHRS
that uses on-board accelerometer, rate gyro, and magnetometer measurements.

3.4 Proposed Algorithm

3.4.1 High-level architecture

The proposed algorithm consists of two main components, with the architecture displayed
graphically in Figure 3.2. Although each agent can execute the following algorithm, it will be
explained from the perspective of Agent 1.
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1. Attitude & Heading Reference System (AHRS)
At each IMU measurement, the agents calculate their own attitudes relative to a
common local frame, such as an East-North-Up reference frame, denoted Fa. Using the
attitude estimate, Agent 2 communicates an estimate of their translational acceleration,
resolved in Fa, along with a corresponding covariance.

2. Relative Position Estimator (RPE)
Using the translational acceleration information of Agent 2 communicated to Agent
1, as well as a set of previous range measurements, a sliding window filter determines
the position and velocity of Agent 1 relative to Agent 2 in Fa. The high-frequency
acceleration information of both agents is integrated between a set of optimized keypoints,
which will be explained in Section 3.4.3.

The primary contribution of this chapter is the development and testing of the RPE. The
choice of using a sliding window filter instead of a one-step-ahead filter, such as an extended
Kalman filter (EKF), stems from the fact that position and velocity states are instantaneously
unobservable given one range measurement. However, as will be shown in Section 3.4.4, the
system is observable when multiple range measurements are used for state estimation, which
is what the sliding window filter does.

The cascaded architecture involving the AHRS and the RPE is loosely-coupled due to
the separation of attitude and translational state estimators. This choice comes with several
advantages and disadvantages, when compared to a tightly-coupled framework that would
estimate the attitude and translational states in one estimator. The main disadvantage is that
any coupling information between the AHRS and RPE states is lost. This point represents
the largest possible source of inaccuracy, as it results in the RPE performance being highly
dependent on the accuracy of the attitude estimates. However, this cost is justified by the
following advantages.

• The corrective step of the AHRS can be executed at an arbitrarily high frequency, thus
enabling the incorporation of all possible magnetometer and accelerometer measurements
for attitude correction.

• The processing can easily be distributed among the two agents, and communication
requirements are heavily reduced as gyroscope and magnetometer measurements do
not need to be shared.

• The relative position dynamics reduce to a linear model, which is convenient from both
mathematical and computational points of view.

3.4.2 Attitude & Heading Reference System

The AHRS used in the presented simulations and experiments is an extended Kalman
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filter (EKF) very similar to [22, Ch. 10], but with some modifications based on [14]. The
AHRS estimates the agent attitude at time step k, denoted as Ĉabk

. The estimate also
has a corresponding covariance Pahrs

k , defined such that Cabk
= Ĉabk

exp(δϕ×), where δϕ ∼
N (0,Pahrs

k ) and Cabk
is the true agent attitude. The translational acceleration vector ũacc

ak
,

resolved in Fa, can be calculated using the vehicle attitude and the raw accelerometer
measurements uacc

bk
using

ũacc
ak

= Cabk
uacc
bk

+ ga, (3.6)

where ga is the gravity vector resolved in Fa. However, a covariance associated with ũacc
ak

is also required. Equation (3.6) is a nonlinear function of two random variables, Cabk

and uacc
bk

, and as such the translational acceleration distribution can be approximated as
ũacc
ak
∼ N (Ĉabk

uacc
bk

+ ga, Q̃acc
k ) where

Q̃acc
k = MQacc

k MT + GPahrs
k GT,

and Qacc
k is the covariance associated with the raw accelerometer measurements. The

matrices M = Ĉabk
and G = −Ĉabk

uacc×

bk
are the Jacobians of (3.6) with respect to uacc

bk
and

δϕ, respectively. Although not specified in the notation used in this section, each of the
two agents computes their own, independent estimates of ũacc

ak
and Q̃acc

k . They are both
communicated to the relative position estimator, consisting of 3 numbers for the ũacc

ak
and 6

numbers for the symmetric covariance matrix Q̃acc
k .

3.4.3 Relative Position Estimator

Let r12ak be the position of Agent 1, relative to Agent 2, resolved in Fa. Let v12
ak

be the
velocity of Agent 1, relative to Agent 2, with respect to Fa. The relative position estimator,
which will be on-board Agent 1, estimates the state xk = [r12Tak

v12T

ak
]T. The translational

acceleration and corresponding covariances of Agents 1 and 2, being (ũacc,1
ak

, Q̃acc,1
k ) and

(ũacc,2
ak

, Q̃acc,2
k ), are combined to produce a relative acceleration estimate, uk ≜ ũacc,1

ak
− ũacc,2

ak
,

with covariance Q̃k = Q̃acc,1
k + Q̃acc,2

k . This allows the relative position and velocity process
model to be written as

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1, (3.7)

where ∆tk = tk − tk−1, wk−1 ∼ N (0,Qk−1),

Ak−1 =

[
1 ∆tk1
0 1

]
, Bk−1 =

[
(∆t2k/2)1
∆tk1

]
,

Qk−1 =

[
1
3
∆t3kQ̃k−1

1
2
∆t2kQ̃k−1

1
2
∆t2kQ̃k−1 ∆tkQ̃k−1

]
.
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Furthermore, the RPE uses range measurements, which have a measurement model of the
form

ydistk =
∥∥r12ak

∥∥+ vk, (3.8)

where vk ∼ N (0, Rk). The Jacobian of (3.8) with respect to xk is given by Ck =
[
ρT
k 0

]
,

where ρk = r12ak/
∥∥r12ak

∥∥.
A naive implementation of the sliding window filter would result in including a state at

every single measurement. With modern IMUs, this typically occurs at a frequency of 100 Hz
- 1000 Hz, which can result in an enormous amount of states in the window if it were to span
only a few seconds. The number of states in the window can be reduced by omitting all
except a select few called keypoints [49]. The keypoints are identified as a set of K distinct
time indices K = {p0, p1, . . . , pK−1} such that the states xp0 , xp1 , . . . , xpK−1

are the only states
estimated inside the window. To do this, a process model of some sort is required that relates
successive keypoint states.

A technique called pre-integration expresses the process model between two non-adjacent
states xi and xj by a single relation. The use of the linear model in (3.7) makes pre-integration
trivial, as direct iteration of (3.7) leads to

xj =

(
j−1∏
k=i

Ak

)
xi +

j−1∑
k=i

(
j−1∏
ℓ=k+1

Aℓ

)
Bkuk, (3.9)

≜ Ajixi + bji. (3.10)

Importantly, the terms Aji and bji do not need to be recomputed at each Gauss-Newton
iteration of the sliding window filter, since they are independent of the state estimate. This
yields substantial computational savings compared to a case where the process model is too
complicated to easily pre-integrate. With this pre-integration ability, states in the sliding
window filter can be placed arbitrarily far apart in time with a very minor increase in
computation time.

As such, this chapter constructs a sliding window filter where each state is a keypoint,
successive keypoint states are related by the pre-integrated process model (3.10), and the
measurement model at each keypoint is given by (3.8). The ability to place keypoints at
arbitrary locations in an agent’s state history now gives rise to an entire design problem,
which is to design an appropriate keypoint selection strategy. This chapter will propose one
of many possible strategies.
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3.4.4 Observability Analysis

Evaluated at arbitrary keypoints, the observability rank condition given in (2.41) requires
that

rank(O) = 6, (3.11)

where,

O =

[
ρp0 ρp1 ρp2 · · · ρpK−1

0 ∆tp1p0ρp1 ∆tp2p0ρp2 · · · ∆tpK−1p0
ρpK−1

]
,

ρk = r12ak/
∥∥r12ak

∥∥, and ∆tji = tj − ti. To ensure observability, the keypoints must be chosen to
satisfy (3.11).
Theorem 3.4.1. Sufficient conditions to satisfy (3.11) are

1. K ≥ 6,
2. ∆tp1p0 ̸= ∆tp2p0 ̸= . . .∆tpKp0 ̸= 0,
3. and that there exists two non-intersecting subsets of {ρp0 , ρp1 , . . . , ρpK−1

}, each
composed of 3 linearly independent elements.

Proof. Satisfying the rank condition in (3.11) amounts to showing that there are 6 linearly
independent columns in the matrix O. Since there are K columns in O, K ≥ 6, which is
Condition 1, is immediately required so that there are at least 6 columns. If the theorem is
proven for K = 6, then it also holds for K > 6, as the addition of columns will not affect the
linear independence of the first six. As such, using a change in notation for brevity, the rank
condition in (3.11) requires that

O =

[
ρ0 ρ1 ρ2 ρ3 ρ4 ρ5

0 ∆t1ρ1 ∆t2ρ2 ∆t3ρ3 ∆t4ρ4 ∆t5ρ5

]
have rank 6. Without loss of generality, assume {ρ0,ρ1,ρ2} are linearly independent. It
immediately follows that the first three columns of O are linearly independent. Consider
now ρ3, again without loss of generality. Since ρ0,ρ1,ρ2 ∈ R3, ρ3 is linearly dependent on
ρ0,ρ1,ρ2 and can be written as

ρ3 = α0ρ0 + α1ρ1 + α2ρ2. (3.12)

If the fourth column of O were linearly dependent on the first three, then there would exist
β0, β1, β2 such that[

ρ3

∆t3ρ3

]
= β0

[
ρ0

0

]
+ β1

[
ρ1

∆t1ρ1

]
+ β2

[
ρ2

∆t2ρ2

]
. (3.13)
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Substituting (3.12) into (3.13) yields[
α0ρ0 + α1ρ1 + α2ρ2

∆t3(α0ρ0 + α1ρ1 + α2ρ2)

]
= β0

[
ρ0

0

]
+ β1

[
ρ1

∆t1ρ1

]
+ β2

[
ρ2

∆t2ρ2

]
. (3.14)

The first three lines of (3.14) immediately require that α0 = β0, α1 = β1, α2 = β2, which
reduces the last three lines of (3.14) to

∆t3α0ρ0 +∆t3α1ρ1 +∆t3α2ρ2 = α1∆t1ρ1 + α2∆t2ρ2. (3.15)

Hence, the fourth column of O is linearly dependent on the first three if and only if α0 = 0,

∆t3 = ∆t2, ∆t3 = ∆t1. Condition 2 in Theorem 3.4.1 means ∆t3 ̸= ∆t2 ̸= ∆t1, hence
proving the linear independence of the fourth column of O from the first three. Identical
proofs show that the fifth and sixth columns of O are also linearly independent from the first
three. If additionally {ρ3,ρ4,ρ5} are linearly independent, then the fourth, fifth, and sixth
columns of O will be linearly independent from each other, in addition to each being linearly
independent from the first three. Hence, all 6 columns of O will be linearly independent,
giving it a rank of 6. Since this proof was done for a completely arbitrary choice of linearly
independent sets {ρ0,ρ1,ρ2} and {ρ3,ρ4,ρ5}, it is only required that there exists two distinct
non-intersecting subsets of {ρ0,ρ1, . . . ,ρK}, each containing 3 linearly independent elements,
which is Condition 3.

The conditions of Theorem 3.4.1 result in the requirement that the agents’ relative motion
be non-planar, and that keypoints are at distinct times.

3.4.5 Keypoint Selection Strategy

The keypoint selection strategy aims to find a suitable keypoint index set K. The proposed
strategy is a greedy algorithm, which places keypoints one-by-one, searching linearly through
all possible candidate keypoint locations, and selecting the location with the lowest cost. The
chosen cost function is based on the geometric dilution of precision (GDOP) [22, Ch. 8.5],
and is given by

J(K) = tr
(
(D(K)TD(K))−1

)
+ γ

|K|∑
i=1

∆tpipi−1
, (3.16)

where D(K) =
[
ρp0 ρp1 ρp2 · · · ρp|K|

]T
, |K| denotes the number of elements in K, and

γ is a tuning parameter. The first term in (3.16) is the square of the GDOP, also noting that
the form of the D(K) matrix shows a natural similarity to the observability matrix shown in
(3.11). Minimizing this first term avoids a keypoint selection that will make the observability
matrix close to rank deficient. The second term in (3.16) penalizes the keypoints for being
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Algorithm 1 Greedy Keypoint Selection. Given the current time step k, the total number
of keypoints K, and the keypoint index set of the previous window Kold, calculate the new
keypoint index set K. A set of candidate indices C is maintained.
1: function GetKeypoints(k,K,Kold)
2: K ← {k − 3, k − 2, k − 1, k}
3: C ← Kold ∪ {max(Kold) + 1, . . . , k − 4}
4: for i = 1, . . . , K − 4 do
5: Jbest ←∞
6: for all p ∈ C do
7: Ktemp ← K ∪ {p}
8: if J(Ktemp) ≤ Jbest then
9: Jbest ← J(Ktemp)

10: pbest ← p
11: end if
12: end for
13: K ← K ∪ {pbest}
14: C ← C \ {pbest}
15: end for
16: return K
17: end function

placed too far apart in time. Excessively old keypoints will require long pre-integration
between their adjacent states, which increases the covariance of the estimate. The tuning
parameter γ is used to balance the two terms, and its effect is illustrated in Figure 3.3.

Finally, it is also possible to recursively compute the matrix Λ = (D(K)TD(K))−1, which
avoids recomputing the inverse when a new keypoint is added to K. Defining K̃ = K ∪ {p},
it can be shown that (

D(K̃)TD(K̃)
)−1

=
(

D(K)TD(K) + ρpρT
p

)−1

(3.17)

= Λ− Λρpρ
T
pΛ

1 + ρT
pΛρp

, (3.18)

where, in (3.18), the Woodbury matrix identity is used. Equation (3.18) is particularly useful
when evaluating the if statement in line 8 of Algorithm 1, which shows the details of the
proposed keypoint placement strategy. The algorithm initializes K with the 4 most recent
indices in order to produce an invertible (D(K)TD(K))−1 matrix, after which the cost function
naturally leads to a selection of older keypoints.
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Figure 3.3: Effect of the parameter γ on the keypoint selection with K = 12, and the old trajectory shown
as the black line. Left: With γ = 0, the algorithm greedily minimizes the GDOP, and results in keypoints
placed far apart in time. Middle: With a moderate value for γ, the algorithm obtains a balance between
pure GDOP minimization, and making all the keypoints as close as possible. Right: With a large value for
γ, the minimal cost is the solution with the keypoints as close as possible, and the “plain vanilla” sliding
window filter is recovered.
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Figure 3.4: Results of 200 Monte Carlo trials. The proposed method offers an enhancement over the “plain
vanilla” implementation of the sliding window filter (SWF), which simply places the keypoints at the most
recent range measurements, as well as a standard extended Kalman filter (EKF), and an Iterated EKF
(IEKF).

3.4.6 Multi-robot Scenario

Although this chapter focuses on a scenario with two agents, one way to extend the
proposed algorithm to multiple agents is to naively copy the estimator for each pair of agents.
In any case, it is possible to leverage the proposed framework to drastically simplify the
inter-agent communication. By recalling that uk = ũacc,1

ak
− ũacc,2

ak
, it is straightforward to

show that bji in (3.10) can be written as

bji = bacc,1
ji − bacc,2

ji ,

where bacc,1
ji and bacc,2

ji only depend on measurements from Agents 1 and 2, respectively. This
has a significant implication: the agents do not need to communicate their acceleration
measurements at high frequency, but can instead preintegrate them in advance to produce
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Figure 3.5: Histogram of the computation time of the different algorithms, when simulated on a laptop with
an Intel Core i7-9750H CPU.

bacc,1
ji and bacc,2

ji , then communicate these quantities at an arbitrarily lower frequency. This is
of substantial practical interest, as communicating all high-frequency IMU measurements
could quickly exceed the inter-agent communication capacity, especially for multi-robot
scenarios.

3.5 Simulation Results

The proposed algorithm is tested in simulation, and compared against a “plain vanilla”
sliding window filter (Vanilla SWF or SWF in the figures), which simply uses the K most
recent range measurements as the keypoint times, as shown on the right of Figure 3.3. A
comparison is also made to using a standard EKF as the relative position estimator. The
simulation is repeated for 200 Monte Carlo trials, where each trial uses a different, randomized
trajectory. Table 3.1 shows the values used when generating zero-mean Gaussian noise on
each sensor.

Figure 3.4 shows a box plot of the position root-mean-squared error (RMSE) for the 200

Monte Carlo trials, where the RMSE =
√
(1/N)

∑N
k=1 eTrkerk , erk = r̂12ak − r12ak .

Using the greedy keypoint placement scheme shows a 9% reduction in average position
RMSE when compared to the Vanilla SWF, 7% compared to the EKF, and 32% compared to
the iterated EKF [43, Ch. 4.2.5]. An interesting observation is that EKF can perform as well,
if not better than the SWF and the iterated EKF (IEKF). The SWF and IEKF both both
iterate the state estimate until a locally minimal least-squares cost is found, while the EKF
does not. This implies that there exists a state with lower overall process and measurement
error, yet higher true estimation error. Many instances have been observed where the least-
squares cost decreases while true estimation error increases, a possible consequence of the
non-unique or unobservable nature of this problem. The authors therefore suspect that the
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Figure 3.6: Simulation of the proposed estimation algorithm. The ground truth trajectory is shown in black,
and the estimated trajectory in blue.

iterative algorithms can occaisionally iterate towards incorrect local minimums, thus iterating
away from the true state. The proposed algorithm seems to be less prone to this issue.

The proposed algorithm takes an average of 0.035 s per estimate computation, whereas
the Vanilla SWF takes 0.027 s, the IEKF takes 0.005 s, and the EKF takes 0.0006 s. A
histogram of the computation time is shown in Figure 3.5. It is worth mentioning that the
computation times were evaluated in Matlab, and the implementations were not optimized
for performance. Large speed improvements could be obtained by using a compiled language.

3.6 Experimental Results

The proposed algorithm is also tested in a real experiment, with two different hardware
setups, both shown in Figure 3.7. The first consists of a Raspberry Pi 4B, with an LSM9DS1
9-DOF IMU and a Pozyx UWB Developer Tag, providing range measurements to an identical
device. Although the cost of the actual sensors embedded in one of these prototypes is $15
USD, each cost a total of approximately $270 USD. However, this is mainly due to the cost
of the Raspberry Pi 4B, the battery pack, and the Pozyx Developer Tag. The second setup
consists of a Pozyx Developer tag mounted to quadrotors possessing a Pixhawk 4, which
provides IMU and magnetometer data. In both setups, two identical devices are randomly
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Table 3.1: Noise properties for single-range and IMU simulation

Specification Value Units
Magnetometer std. dev. 1 µF

Gyroscope std. dev. 0.001 rad/s

Accelerometer std. dev. 0.01 m/s2

Distance std. dev 0.1 m
Initial position std. dev. 0.8 m
Initial velocity std. dev. 0.1 m/s
Initial attitude std. dev. 0.001 red

Accel/Gyro/Mag frequency 100 Hz
Distance frequency 10 Hz
RPE window size K 20 -

RPE keypoint selection parameter γ 100 -
RPE frequency 10 Hz

moved around a room by hand, in an overall volume of roughly 5 m × 4 m × 2 m. When
using the quadrotors, the motors are spinning without propellors to examine the effect of
vibrations and magnetic interference. Ground truth position and attitude measurements are
collected using an OptiTrack optical motion capture system.

Figure 3.7: Left: Pozyx UWB Developer Tag mounted to a Raspberry Pi 4B, in a case. Right: Pozyx UWB
Developer Tag mounted to a quadrotor with a Pixhawk 4.

Table 3.2 shows the position RMSE of the different algorithms, for each trial. The
proposed method outperforms “plain vanilla” implementations of the SWF and the EKF by a
large margin, in all of the trials, showing the value of the greedy keypoint selection strategy.
Figure 3.8 shows the position estimation error of the proposed method, and that the estimate
stays within the ±3σ confidence bounds, except for two very brief moments. Finally, Figure
3.9 shows the norm of the position estimation error in one of the trials. During the periods
of large error, between 20 and 40 seconds in Figure 3.9, the least squares cost for all three
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algorithms did not dramatically increase relative to other periods. This implies that the EKF
and the Vanilla SWF have converged to ambiguous states which also have low process and
measurement error, again a possible consequence of unobservability.

Table 3.2: Position RMSE of Experimental Trials
Proposed Vanilla SWF EKF

Trial 1 (one static agent) 0.68 m 1.41 m 2.11 m
Trial 2 (both moving) 0.55 m 1.22 m 1.71 m
Trial 3 (both moving) 0.86 m 1.56 m 2.69 m
Trial 4 (spinning motors) 0.87 m 1.34 m 1.12 m

Figure 3.8: Components of the position estimation error during an experimental trial, using the greedy
keypoint placement method. The error compared to ground truth is shown as the blue line, with the shaded
area representing the ±3σ confidence bounds.
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Figure 3.9: Comparison of the norm of the position estimation error er, during an experimental trial.

3.7 Conclusion and Future Work

This chapter shows that it is possible to estimate the relative position of one UWB-
equipped agent relative to another, provided each agent is endowed with a 9-DOF IMU and
there is sufficient motion between the agents. The proposed algorithm shows improvement
over standard estimators in both simulation and experiment, where there is 2- to 3-fold
reduction in positioning error. This gain is largely achieved due to the ability of choosing
specific “keypoints” in the previous state history, which is enabled by preintegration, and
is an idea inspired by the SLAM literature [49, 50]. The keypoint selection strategy is a
subproblem within this estimation task, and the proposed solution uses a greedy algorithm
that attempts to minimize the geometric dilution of precision, as well as the preintegration
duration.

While this algorithm is promising, there are a number of important ways in which it could
be improved.

• Eliminating the magnetometer.
The experiments from this chapter made it clear that the magnetometer is an extremely
problematic sensor to use indoors, due to magnetic perturbations. This work, unfortunately,
relies on a magnetometer so that each robot may estimate their attitude relative to a
common world reference frame, such as an East-North-Up reference frame. This sensor
could be eliminated by using the robots’s body frames themselves as the reference
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frames, eliminating the need for a common world reference frame entirely.
• Using a tightly-coupled formulation.

In this chapter, a seperate AHRS was used for due to the convenience associated
with the modularity, and so that magnetometer measurements could be fused into
the attitude estimate at high frequency. However, this loosely-coupled formulation
theoretically induces a performance loss as cross-correlations between attitude and
translational states are completely neglected. In a new version of this algorithm, a
suggested alternative is to use relative extended poses to represent the state, which
would have the form

T12 =

 C12 v21
1 r211

0 1 0

0 0 1

 ∈ SE2(3), (3.19)

where SE2(3) is referred to as the group of “extended” poses [51]. Using this formulation
would also address the above point on eliminating the magnetometer, since any reference
to a world frame is now completely eliminated. Furthermore, tightly-coupled IMU
preintegration is a solved problem, and therefore it would still be possible to use the
proposed keypoint selection with this new state defintion.

• Using an improved cost function for keypoint selection.
The cost function in (3.16) is heuristically designed in an attempt to reduce the
estimation error variance. However, a cost function that more directly reflects the
estimation variance would be

J(x) = − log det(H(x)TWH(x)). (3.20)

It turns out that H(x)TWH(x), when evaluated at the true state, is equivalent to the
Fisher information matrix, and its inverse represents a lower bound on the estimation
variance known as the Cramer-Rao bound. Hence, maximizing the Fisher information
could lead to lower-variance estimates, and to an entire class of general estimators called
Fisher-information-maximizing sliding window filters. The main suspected difficulty
with this approach, however, is that this new cost would be slower to compute than
(3.16), and hence either a clever computation technique or other heuristic must be
employed.

• Incorporating zero-velocity updates.
Any improvement to the motion prediction based on IMU measurements is expected
to significantly improve the final estimation accuracy. As such, especially for ground
robots or hand-held devices, the IMU prediction could be improved by detecting
moments of near-zero velocity [52–54]. These moments could then be incorporated as
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pseudomeasurements in the sliding-window filter.
However, even if all these improvements were implemented, there would still be the requirement
of persistent non-planar relative motion between the agents. This is impractical, since if there
are long static or planar moments, the estimator could diverge. This is due to the fact that
such a situation causes the state to become unobservable, thus leading to high estimation
error variance, and hence eventually to catastrophically high linearization errors. The next
chapter will attempt to deal with these situations of very high uncertainty.

35



Chapter 4

Localization with Directional Coordinates

4.1 Summary

A coordinate system is proposed that replaces the usual three-dimensional Cartesian
x, y, z position coordinates, for use in robotic localization applications. The coordinate system
consists of a range and direction represented by an element of SO(3). Range, azimuth, and
elevation measurement models become greatly simplified, and, unlike spherical coordinates,
the proposed coordinates do not suffer from the same kinematic singularities and angle
wrap-around. When compared to Cartesian coordinates, the proposed coordinate system
results in a significantly enhanced ability to represent the true distribution of robot positions,
ultimately leading to large improvements in state estimation consistency.

4.2 Introduction

As highlighted in Chapter 3, performing relative position estimation from single-range
measurements requires persistent, non-planar relative motion between the two robots. If
this condition is not met, the problem becomes unobservable, and the estimator is prone to
divergence.

The original line of thinking when pursuing the idea in this chapter was to design an
estimator that could maintain “consistency despite unobservability,” and thus hopefully not
diverge during static moments. Ideally, the reported variance of this estimator would simply
increase in a statistically-consistent way during static moments, and decrease when there is
motion. The goal was to design an estimator that can simply report that such an unobservable
situation is occurring and continue operating, as opposed to breaking down entirely. In this
regard, the goal was not met, but the idea has shown to be useful for a slightly different
problem: when directional information is available in addition to the range.

Specifically, this chapter considers the problem of estimating the position of a robot,
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Figure 4.1: Distribution of positions of a robot given a single distance measurement (red line) to a landmark
(green pyramid) and a Gaussian prior distribution. The point cloud represents the “true” distribution, as
determined by a particle filter, while the red and blue volumes are 3σ equal probability contours in Cartesian
and directional coordinates, respectively.

relative to some landmark or reference point, using range, azimuth, and elevation (RAE)
measurements. RAE measurements can be generated from a variety of sensors, such as
radar used to track aircraft and spacecraft, or point cloud measurements obtained from
LIDAR [43, Ch. 6.4.3]. Recently, ultra-wideband (UWB) radio has also been used to provide
angle of arrival measurements [19], which is essentially an azimuth measurement, in addition
to the usual distance measurements obtained between two UWB transceivers. However,
single-antenna UWB angle of arrival measurements can have high variance [21].

A typical probabilistic estimation algorithm will use the familiar Cartesian x, y, z coordinates,
with Gaussian estimators reporting the mean and covariance of the estimated distribution.
However, as will be shown in this chapter, Cartesian coordinates are generally a poor way of
parameterizing the position of a robot when relying heavily on RAE measurements, especially
when these measurements are very noisy, or if the robot position is highly uncertain. For
example, the distribution of positions given a range measurement generally appears spherical,
as shown in Figure 4.1, which greatly differs from a standard Gaussian ellipsoid. For this
reason, this chapter proposes an alternate coordinate system, referred to herein as directional
coordinates. These coordinates are shown to provide a much more accurate representation of
the position distribution, ultimately leading to improved state estimate consistency.

The idea of changing the coordinate system to better represent a distribution is not new.
The “banana distribution” associated with robot position uncertainty, primarily resulting from
attitude uncertainty and sensor noise, has motivated the use of exponential coordinates [11]. A
Gaussian distribution in exponential coordinates transforms to a “banana” distribution when
mapped back to Cartesian coordinates. These exponential coordinates are naturally exploited
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when using matrix Lie groups in robotic estimation problems [13, 43]. Spherical coordinates
use range, azimuth, and elevation as the coordinates themselves, and have been used in state
estimation [55, 56]. Spherical coordinates are often modified to avoid singularities when
the range is zero, such as using the logarithm of the range in [56], or its reciprocal [55].
However, spherical coordinates possess an additional kinematic singularity at an elevation of
ε = ±π/2 rad, and also suffer from angle wrap-around, which must be overcome with explicit
checks in the estimator implementation. Another strategy specific to RAE measurements is
simply to directly convert them to a position measurement [57, 58], thus creating a linear
measurement model. However, this requires careful conversion of the original noise statistics
to equivalent noise statistics on the new measurement, which can introduce inaccuracies.

The new directional coordinate system proposed in this chapter uses a range and direction
cosine matrix (DCM) to parameterize position. The result is a smooth parameterization with
1) no angle wrap-around issues, 2) no kinematic singularities associated with the elevation,
3) RAE measurement models that are linear, or have constant, state-estimate-independent
Jacobians, and 4) a filter that is significantly more consistent than a standard Cartesian
coordinate filter, when noise levels are high.

One drawback of the proposed use of directional coordinates is that a previously linear
process model in Cartesian coordinates becomes nonlinear, an example being a simple “velocity
input” process model. However, in applications with measurements arriving at a regular
frequency, this added complexity is justified by the simplified measurement models, and
enhanced ability to capture the true distributions. The proposed directional coordinates are
evaluated in an extended Kalman filter (EKF) framework, and compared to an EKF that
uses the usual Cartesian coordinates.

4.3 Directional Coordinates

In this chapter, directional coordinates are defined as the pair (ρ,C), where ρ ∈ R≥0 and
C ∈ SO(3) is a direction cosine matrix (rotation matrix). The idea is to use these coordinates
as an alternate representation of the components of a Cartesian position vector, denoted
r ∈ R3. This is done with the defining relation

r = ρCe1, (4.1)

where e1 = [1 0 0]T. The range ρ = ∥r∥ is the length of the position vector, whereas C can
be interpreted as a direction cosine matrix (DCM) that “rotates” the vector e1 to produce a
unit direction vector ϱ = Ce1 = r/ ∥r∥ collinear to r.

Directional coordinates are similar to spherical coordinates, but the azimuth and elevation
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angles are instead represented with a DCM C, but with one of its three degrees of freedom
fixed to zero to avoid an over-parameterization. This avoids the kinematic singularities
associated with spherical coordinates, as well as any angle wrap-around issues.

4.3.1 Cartesian to Directional Coordinates

Given a position vector r = [rx ry rz]
T expressed in Cartesian coordinates, equivalent

directional coordinates (ρ,C) satisfying (4.1) can be obtained from the well-known axis-angle
parameterization of a DCM. The range is straightforwardly obtained with ρ = ∥r∥2, while
the direction cosine matrix C can be obtained by first defining a and ψ as

a =
ρe×1 r∥∥ρe×1 r

∥∥ =

 0

−rz
ry

/
∥∥∥∥∥∥∥
 0

−rz
ry


∥∥∥∥∥∥∥ ,

ψ = arccos
ρeT1 r

∥ρe1∥ ∥r∥
= arccos

ρeT1 r
ρ2

= arccos
rx
ρ
,

from which C is then given by C = exp(ψa×), which is well defined except when rz = ry = 0.
In this case, setting ρ = ∥r∥ and C = 1 will satisfy the definition given by (4.1). As such, a
continuous function h : R3 → R× SO(3) is defined that performs the above operations to go
from r to (ρ,C). That is,

(ρ,C) = h(r). (4.2)

4.3.2 Local Parameterization

Estimation tools that operate on SO(3) directly are very well established [11, 13, 43],
most of which require the use of a local parameterization of SO(3). In this chapter, this is
given by ϕ = [ϕ1 ϕ2]

T ∈ R2, defined such that

C = exp(ϕ∧),

where the wedge operator (·)∧ : R2 → so(3) is given by[
ϕ1

ϕ2

]∧
=

 0 −ϕ2 ϕ1

ϕ2 0 0

−ϕ1 0 0

 ,
and otherwise expressed as ϕ∧ = ([0 ϕT]T)×. An inverse mapping, named the vee operator,
(·)∨ : so(3)→ R2 can be defined such that ((ϕ)∧)∨ = ϕ. It is also useful to define an operator
(·)⊙ : R3 → R3×2 such that the identity ϕ∧a = a⊙ϕ holds. With the above definition of the
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wedge operator, it can be shown that the (·)⊙ operator must be

a⊙ =

 a1

a2

a3


⊙

=

 a3 −a2
0 a1

−a1 0

 . (4.3)

A few useful identities can be derived, for b, c ∈ R2, by simple expansion into components,

b∧T

= −b∧, (b + c)∧ = b∧ + c∧, (b∧c∧)∨ = 0. (4.4)

4.4 Distributions in Directional Coordinates

Consider the “mean" or “nominal" directional coordinates (ρ̌, Č) and the perturbations δρ
and δϕ such that

ρ = ρ̌+ δρ, (4.5)

C = Č exp(δϕ∧). (4.6)

Define

δx =

[
δρ

δϕ

]
∈ R3. (4.7)

If δx is a random variable drawn from δx ∼ N (0, P̌), this will induce a distribution over the
values of (ρ,C).

Figure 4.2: Samples from a Cartesian Gaussian distribution, shown as the point cloud. The bean-shaped
volume shows a 3 standard deviation equal probability contour of a Gaussian distribution in directional
coordinates, but mapped back to Cartesian coordinates for visualization.
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4.4.1 Converting a Cartesian Gaussian Distribution to Directional Coordinates

A common requirement will be to convert a Gaussian distribution over Cartesian coordinates
r ∼ N (ř, P̌r), into an equivalent, or approximate, distribution in directional coordinates,
represented with nominal point (ρ̌, Č) and corresponding distribution δx ∼ N (0, P̌). Fortunately,
a mapping h(·) has been identified in Section 4.3.1, which allows for many well-known methods
of passing a Gaussian through a nonlinearity [43, Ch. 2.2.8]. This chapter uses sigma points
for this step exclusively.

A variety of sigma point methods, such as the unscented transform, spherical cubature,
or Gauss-Hermite cubature [37, Ch. 6], can be used to generate a set of sigma points and
corresponding weights (si, wi), i = 1, . . . , N drawn from the prior distribution N (ř, P̌r). The
Cartesian sigma points are transformed to directional coordinates through h(·),

(ρi,Ci) = h(si), i = 1, . . . , N.

The covariance associated with the directional coordinates can then be approximated as

P̌ ≈
N∑
i=1

wiδξiδξ
T
i , δξi =

[
ρi − ρ̌

ln(ČTCi)
∨

]
.

In standard sigma point methods, (ρ̌, Č) would be obtained from the weighted mean of the
transformed sigma point values (ρi,Ci) [37, Ch. 6], which would require an optimization
procedure to find the mean Č on SO(3) [59]. However, as suggested by [60], and verified
extensively through simulation in this chapter, it is sufficient to simply obtain the nominal
points (ρ̌, Č) by passing ř through the nonlinear model (4.2), (ρ̌, Č) = h(ř), without an
apparent loss in accuracy. An example of the results of this sigma point procedure can be
visualized in Figure 4.2.

4.4.2 Posterior Distribution given a Range Measurement

Consider now the task of estimating the distribution of (ρ,C) given a prior distribution
and a single range measurement y from the origin. The prior distribution’s mean is denoted
(ρ̌, Č), and is distributed as per (4.5)-(4.6) with δx ∼ N (0, P̌). In directional coordinates, the
range measurement model is linear,

y = ρ+ ν, ν ∼ N (0, R).

This leads to a trivial linearization procedure, where small changes in δy are related to small
δx through δy = Hδx + Mν, with H = [1 0 0] and M = 1. This provides a setup to use
a multiplicative extended Kalman filter [43] correction step to estimate the posterior mean
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Figure 4.3: 1000 Monte Carlo trials of a single Kalman correction given a distance measurement. Although
the estimation accuracy using directional coordinates is not necessarily improved, directional coordinates
offer a more consistent filter, as well as one that better resembles the particle filter.

(ρ̂, Ĉ) and covariance P̂ with

K = P̌HT(HP̌HT + MRMT)−1, (4.8)

δx̌ =

[
δρ̌,

δϕ̌

]
= Kz, z = y − ρ̌, (4.9)

ρ̂ = ρ̌+ δρ̌, (4.10)

Ĉ = Č exp(δϕ̌∧), (4.11)

P̂ = (1−KH)P̌(1−KH)T + KMRMTKT. (4.12)

Figure 4.1 visualizes the results of this single EKF correction step when it is performed in
Cartesian coordinates and directional coordinates, for the same Cartesian Gaussian prior.
The point cloud is the distribution determined by a standard bootstrap particle filter [37,
Ch. 7], and is considered the closest approximation to the true distribution. In Cartesian
coordinates, the measurement model is given by y = ∥r∥2+ν, which is nonlinear, and requires
linearization to produce a state-dependent measurement Jacobian. Linearization errors aside,
Figure 4.1 clearly shows the degree to which the distribution is non-Gaussian, when expressed
in Cartesian coordinates. As such, under high uncertainty, there is no Cartesian Gaussian
estimator that could ever accurately represent this distribution.

This simple single-step correction experiment is repeated for 1000 Monte Carlo trials,
where the prior mean ř and covariance P̌r are randomized, and the true position rtrue

is randomly sampled from this prior distribution. The prior distribution is converted to
directional coordinates using Section 4.4.1, and the posterior is calculated using Section 4.4.2.
Figure 4.3 displays various metrics of the 1000 Monte Carlo trials. The “dissimilarity”, or
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divergence, from the particle filter is calculated using the method in [61], which calculates an
approximate Kullback-Leibler (KL) divergence between two point clouds, created by sampling
their respective distributions. The Mahalanobis distance for the directional coordinates is
calculated with

D =

√
δξTP̂−1δξ, δξ =

[
ρtrue − ρ̂

ln(ĈTCtrue)∨

]
.

Although, on a single step, there is no accuracy improvement when using directional
coordinates, there are substantially enhanced consistency properties, as reflected by the
significantly lower Mahalanobis distances and divergence from the particle filter.

4.4.3 Posterior Distribution given Azimuth and Elevation Measurements

Another set of measurements that are naturally well-suited to directional coordinates
are azimuth and elevation (AE) measurements, denoted α and ε respectively. Azimuth and
elevation measurements are defined to produce a direction vector ϱ where

ϱ = Cz(α)
TCy(−ε)Te1, (4.13)

and Cz(·), Cy(·) are principle rotation DCMs about the z and y axes, respectively. Hence,
if the direction vector resulting from (4.13) is considered to be the measurement itself, the
measurement model

y = Ce1 + ν, ν ∼ N (0,R).

is obtained. The covariance R can be obtained from covariances associated with α and ε

using a standard linearization procedure [43, Ch. 2.2.8]. Next, a measurement innovation z is
defined following inspiration from the invariant extended Kalman filter (IEKF) literature [13].
Moreover, only two components of z are used to avoid creating a fictitious third measurement,
when only two are actually measured, that being α and ε. This is done through use of the
projection matrix E in (4.14), where the innovation is defined as

z ≜

[
0 1 0

0 0 1

]
︸ ︷︷ ︸

E

ČT(y− y̌) (4.14)

= EČTCe1 + EČTν − EČTČe1
≈ E(1 + δϕ∧)e1 + EČTν − Ee1
= Ee⊙1 δϕ+ EČTν ≜ Hϕδϕ+ Mν, (4.15)

where C = Č exp(δϕ∧), and the first-order approximation exp(δϕ∧) ≈ (1 + δϕ∧) has been
made. As with the range measurements, the measurement Jacobian H = [0 Hϕ] is constant
and state-estimate independent, and would otherwise be highly nonlinear in Cartesian
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Figure 4.4: Simulation results from a single trial. Black lines represent the ±3σ confidence bounds. The total
estimation error on the bottom figure is calculated for both filters with e = [rtrue

T

vtrue
T

]T − [r̂T v̂T]T.

coordinates. One may return to (4.8)-(4.12) to compute a Kalman filter correction step, with
new definitions for y, z, H, M, and R.

4.5 Directional Coordinate Kinematics

To execute dynamic filtering tasks, a process model is required, and it will usually be
necessary to relate the rate of change of the directional coordinates (ρ̇, Ċ) to a Cartesian
velocity input v = ṙ. Differentiating (4.1) with respect to time,

ṙ = ρ̇Ce1 + ρĊe1. (4.16)
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The time rate of change of C is Ċ = Cω∧, where ω ∈ R2. Substituting Ċ = Cω∧ into (4.16),
and using the (·)⊙ operator defined in Section 4.3.2 results in

ṙ = ρ̇Ce1 + ρCω∧e1
= ρ̇Ce1 + ρCe⊙1 ω

=
[

Ce1 ρCe⊙1
] [ ρ̇

ω

]

= C
[

e1 e⊙1
] [ 1 0

0 ρ1

]
︸ ︷︷ ︸

S(ρ,C)

[
ρ̇

ω

]
. (4.17)

To obtain the time rate of change of the directional coordinates, S must be invertible.
Fortunately, assuming ρ > 0, S has an analytical inverse given by

S(ρ,C)−1 =

[
1 0

0 (1/ρ)1

][
eT1
e⊙T

1

]
CT.

It follows that [
ρ̇

ω

]
= S(ρ,C)−1v, (4.18)

which is well defined provided ρ > 0. Equation (4.18) can be easily split into its two
constituent equations, leading to the time rate of change of the directional coordinates, that
being

ρ̇ = eT1 CTv, Ċ =
1

ρ
C(e⊙

T

1 CTv)∧. (4.19)

The only kinematic singularity is located at ρ = 0, as opposed to spherical coordinates, which
have an additional singularity at an elevation of ε = ±π/2 rad. This singularity is not of
concern provided the robot device does not move near the origin. This is often the case in
practice, as if another robot or measurement device is located at the origin, the hardware
itself forces a minimum separating distance.

4.5.1 Linearization

It is necessary to linearize the directional coordinate kinematics in order to execute an
EKF prediction step. This is done by applying small perturbations to ρ,C, v with ρ = ρ̂+ δρ,
C ≈ Ĉ(1 + δϕ∧), and v = v̂ + δv. Equation (4.19) becomes

˙̂ρ+ δρ̇ ≈ eT1
(

Ĉ(1 + δϕ∧)
)T

(v̂ + δv). (4.20)
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Figure 4.5: Average estimation error and NEES, throughout time, for 100 Monte Carlo trials. The dashed
line represents the one-sided 99.7% probability boundary.

Expanding (4.20), neglecting higher-order terms, and applying identities (4.4), eventually
gives

δρ̇ ≈ −eT1 (Ĉ
Tv̂)⊙δϕ+ eT1 ĈTδv.

Linearizing the DCM kinematics gives

d(1 + δϕ∧)

dt
≈ d(ĈTC)

dt
=

˙̂CTC + ĈTĊ, (4.21)

δϕ̇∧ ≈ −1
ρ̂
(e⊙

T

1 ĈTv̂)∧ĈTĈ(1 + δϕ∧) +
1

ρ
ĈTC(e⊙

T

1 CTv)∧. (4.22)

Again, after expansion, neglecting higher-order terms, applying identities (4.4), and application
of the (·)∨ to both sides results in

δϕ̇ ≈ 1

ρ̂
e⊙

T

1 ĈTδv− 1

ρ̂
e⊙

T

1 (ĈTv̂)⊙δϕ− 1

ρ̂2
e⊙

T

1 ĈTv̂δρ. (4.23)

4.6 Simulation Results

Two different EKFs are tested in simulation. The only difference between the two
EKFs is the coordinate system used for the position parameterization. The standard EKF
uses Cartesian coordinates, whereas the directional coordinate Kalman filter (DCKF) uses
directional coordinates. In these simulations, it is assumed that the acceleration a = v̇ = r̈ of
some point is measured with noise, along with noisy RAE measurements. The EKF state
consists of [rT vT]T, while the DCKF state is (ρ,C, v), where v ∈ R3 is a Cartesian velocity.

For the DCKF, the continuous-time linearized process model can be written as δẋ =
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Table 4.1: Simulation Noise Properties

Specification Value Units
Range std. dev. 0.1 m
AE std. dev. 0.8 rad

Accel. std. dev 0.1 m/s2

Init. pos. std. dev. 5 m
Init. vel. std. dev. 3 m/s
Meas. frequency 10 Hz

Aδx + Lδa where δx = [δρ δϕT δvT]T,

A =

 0 −eT1 (ĈTv̂)⊙ eT1 ĈT

− 1
ρ̄2

e⊙T

1 ĈTv̂ −1
ρ̄
e⊙T

1 (ĈTv̂)⊙ 1
ρ̄
e⊙T

1 ĈT

0 0 0

 , (4.24)

and L = [0 0 1]T. The prediction step of the DCKF integrates (4.19) and v̇ = a forward in
time with simple Euler integration, but any method can be used. An equivalent discrete-time
linearized model δxk = Ak−1δxk−1 + wk−1, wk−1 ∼ N (0,Qk−1) can be obtained for the
DCKF using a standard discretization technique such as a zero-order-hold. The matrices
Ak−1 and Qk−1 are used to propagate the filter covariance forwards with the standard
expression, P̌k = Ak−1P̂k−1AT

k−1 + Qk−1. The correction step for the DCKF is performed
using equations (4.8)-(4.12), with y, z, H, M, and R matrices defined in Sections 4.4.2 for
a range measurement, or 4.4.3 for azimuth-elevation measurements. The H matrices are
augmented with zeros due to the additional state v.

Figure 4.4 shows an example run with no covariance tuning, displaying the error behavior
and consistency of the proposed DCKF. Figure 4.5 contains results for 100 Monte Carlo trials
with mild covariance tuning. The normalized estimation error squared (NEES) [44, Ch. 5.4]
ηik is a consistency metric, calculated for the directional coordinates at time step k, on trial i,
with

ηik = δξTk P̂−1
k δξk, δξk =

 ρtruek − ρ̂k
ln(ĈT

kCtrue
k )∨

vtrue
k − v̂k

 . (4.25)

Under large noise and initial uncertainty, the DCKF boasts an average 44% reduction in
estimation error compared to the EKF and remains consistent, whereas the EKF is completely
inconsistent, even with dedicated covariance tuning.

47



Figure 4.6: Pozyx UWB Developer Tag mounted to a Raspberry Pi 4B.

Figure 4.7: Experimental results from a single trial, with the dashed line representing the one-sided 99.7%
probability boundary.

4.7 Experimental Results

The EKF and DCKF are also compared in a real experiment. Figure 4.6 shows the
Raspberry Pi 4B that was used with an LSM9DS1 IMU, providing accelerometer and gyroscope
measurements, and a Pozyx UWB Developer Tag, providing distance measurements to a
Pozyx UWB Creator Anchor on the floor. Because the particular UWB modules used do
not provide azimuth and elevation measurements, azimuth and elevation measurements were
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simulated using ground-truth data, with artificially added zero-mean Gaussian noise with a
standard deviation of 0.8 rad. This noise level is intentionally high, to induce a performance
difference between the DCKF and EKF, and highlight the DCKF’s improvement under large
noise. The device moved in an overall volume of roughly 5 m× 4 m× 2 m. Ground truth
position and attitude measurements are collected using an OptiTrack optical motion capture
system.

Figure 4.7 shows various performance and consistency metrics associated with the
experimental trial. The position and velocity root-mean-squared error (RMSE) was 0.55 m,
0.87 m/s for the DCKF, and 0.97 m, 1.56 m/s for the EKF, respectively. This corresponds
to a 43% reduction in position RMSE, and a 44% reduction in velocity RMSE. Once again,
the DCKF is both more accurate and more consistent, when compared to the EKF.

4.8 Conclusion and Future Work

This chapter introduces a new coordinate system for parameterizing positions, which
consists of using a range ρ and a direction, represented by a direction cosine matrix C ∈ SO(3).
This chapter shows how this is particularly well-suited for RAE measurements, as the
directional coordinate system captures the posterior distribution much more effectively than
Cartesian coordinates, which culminates in a more accurate and significantly more consistent
estimator.

One of the main limitations of this idea is that it is quite specific to the described class of
measurements. For example, if the ranging device is not collocated with the IMU, and there
is a significant moment arm, then the measurement is no longer linear and this important
desired property may be lost. There are, however, interesting future directions that have
emerged as a result of this investigation.

• Representing the range coordinate as an element of the multiplicative group.
In this chapter, the range coordinate has been treated as a simple element of R>0, but
it is never explicitly enforced that the number be strictly positive. Since range errors
are computed by simple subtraction, and the Kalman correction is additive, the range
could theoretically become negative. However, if the range is declared to be an element
of the multiplicative group (R,×) where × is regular scalar multiplication, then the
range will naturally be strictly positive. The exponential map for this group is simply
the regular exponential function

ρ = exp(ξ)

with the logarithmic map as the natural logarithm. The time rate of change is simply
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of the form

ρ̇ = ρξ

where ξ ∈ R. Under assumption of constant ξ, this can be discretized exactly with
ρk = ρk−1 exp(∆tξk−1). The ranging model remains y = ρ + v, but the linearization
would be done differently, in a multiplicative way

ȳ + δy = ρ̄ exp(δξ) + v (4.26)

≈ ρ̄(1 + δξ) + v, (4.27)

δy ≈ ρ̄δξ, (4.28)

implying that the Jacobian of the ranging model is now given by ρ̄, which has undesired
dependence on the state. However, if a invariant innovation z = ρ̄−1(y − ρ̄) is used, the
Jacobian of the innovation would simply be 1, and state-independence is recovered.

• Generalizing coordinate definition for representation of arbitrary distributions.
This chapter is yet another demonstration that simply changing the coordinate system
in which a Gaussian distribution is defined, but leaving the estimator unchanged, can
give significantly different estimation results [11, 12]. Hence, perhaps, an optimal
coordinate system could be found for an arbitrary problem, which yields the best results
estimation results according to a designed metric. Concretely, suppose there exists
a familiar coordinate system x, such as Cartesian coordinates, with a process and
measurement model given by the standard form

xk = f(xk−1,uk−1,wk−1) (4.29)

yk = g(xk, vk) (4.30)

with wk, vk being Gaussian noise terms. The task would be to find a smooth, bijective
mapping φ(·) relating the states to a new coordinate system

ξ = φ(x), (4.31)

x = φ−1(ξ). (4.32)

It is straightforward to rewrite the process and measurement model as a function of
the new coordinates ξ with

ξk = φ(f(φ
−1(ξk−1),uk−1,wk−1)), (4.33)

yk = g(φ−1(ξk), vk), (4.34)

which can then be employed in a variety of standard Bayesian estimators. The mapping
φ(·) could be a parametric model, such as a neural network, that is optimized/trained
using ground truth state data to minimize the mean squared estimation error. This
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potential method would be appropriate for systems where f(·) and g(·) are fundamentally
good models, but the coordinate system is not amenable to representing the true
posterior distribution with a Gaussian distribution.

As previously stated, calculating the azimuth or elevation from ultra-wideband radio is
an emergent technology that is rare to find in a commercial UWB product, and was not
available for the experiments in this thesis. These directional measurements, even if they
had very high variance, were found to be critical for the DCKF estimator to be statistically
consistent. Recall that the original reason directional coordinates were considered was to
achieve “consistency despite unobservability” when given only single-range measurements. The
range measurement model becomes linear with this new coordinate system, and independent
of the unobservable directions, which are the directional degrees of freedom associated with
C. However, when there is non-negligible process noise, the covariance associated with the
directional states has been observed to incorrectly decrease when the true state remains static.
This eventually leads to filter inconsistency, unless azimuth-elevation measurements are also
present.

In light of the results of the previous two chapters, which strongly suggest that robots
will need to have persistent relative motion when single-range measurements are used, the
next two chapters will feature more sensors. In particular, more ultra-wideband tags will be
added to each robot.
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Chapter 5

Optimal Multi-Robot Formations for
Relative Pose Estimation using Range

Measurements

5.1 Summary

In this chapter, the problem of estimating relative poses from a set of inter-robot range
measurements is investigated. Specifically, it is shown that the estimation accuracy is highly
dependent on the true relative poses themselves, which prompts the desire to find multi-robot
formations that provide the best estimation performance. By direct maximization of Fisher
information, it is shown in simulation and experiment that improvements in estimation
accuracy can be obtained by optimizing the formation geometry of a team of robots. The
approach parameterizes the problem using body-frame-resolved relative poses, and uses
on-manifold gradient descent to optimize the formation geometry.

5.2 Introduction

To obtain statically-observable relative position or pose estimates between robots, more
relative measurements are required than just a single range measurement. For example,
cameras can be used with object detection [62], or possibly infrared emitters/receivers [63].
In [64], mobile ground robots equipped with LIDAR serve as mobile anchors for quadcopters
equipped with UWB. However, vision-based systems are prone to poor visual conditions,
and require substantial computational resources, while LIDAR is typically expensive, bulky,
and power-hungry. Furthermore, vision-based systems require robots to remain within each
other’s field of view, whereas UWB is omnidirectional.
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An alternative is to place more tags on each robotic agent [65–67], which can create
statically-observable relative poses as shown by [28]. When combined with an inertial
measurement unit (IMU) and a magnetometer, the agents’ individual attitudes can be
estimated relative to a world frame, allowing relative positions to be resolved in the world
frame. However, magnetometer sensor measurements are substantially disturbed in the
presence of metallic structures indoors [68, 69], which degrades estimation accuracy. Another
challenge is that there are certain formation geometries that cause the relative positions to
be unobservable, such as when all the UWB tags lie on the same line [28]. This is closely
tied to the well-known general dependence of positioning accuracy on the geometry of the
tags, and arises even with the presence of anchors [70].

To avoid divergence of the state estimator, multi-robot missions relying on inter-robot range
measurements for relative position estimation must avoid these aforementioned unobservable
formation geometries. This imposes a constraint on planning algorithms. A planning solution
to avoid unobservable positions is proposed in [71], where a cost function based on the
Cramér-Rao bound quantifies the estimation accuracy as a function of robot positions. A
similar approach is presented in [72] for multi-tag robots. Limitations of these approaches
include the requirement of the presence of anchors, as well as the lack of explicit consideration
of agent attitudes.

This contribution of the chapter is a method for computing locally optimal formations
for relative pose estimation, especially in the absence of anchors. Furthermore, it is shown
that with two-tag agents, both the relative position and relative heading of the agents
are locally observable from range measurements alone. The problem setup is deliberately
formulated in the agents’ body frames, thus being completely invariant to any arbitrary
world frame, eliminating the need for a magnetometer. This chapter further differs from [72]
by using SE(n) pose transformation matrices to represent the relative poses, avoiding the
complications associated with angle parameterizations of attitude. This leads to the use of
an on-manifold gradient descent procedure to determine optimal formations. Simulations and
experiments show that the variance of estimation error does indeed decrease as the agents
approach their optimal formations.

The proposed cost function is general to 2D or 3D translations, arbitrary measurement
graphs, and any number of arbitrarily-located tags. Moreover, the proposed cost function
goes to infinity when the agents approach unobservable configurations, meaning that its use
naturally avoids such unobservable formation geometries. For these reasons, the cost function
is amenable to a variety of future planning applications, such as to impose an inequality
constraint on an indoor exploration planning problem.

The chapter is outlined as follows. The problem setup, notation, and other preliminaries
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are described in Section 5.3. The optimization setup and results are described in Section 5.4.
The optimal formations are evaluated experimentally in Section 5.5.

5.3 Problem Setup, Notation, and Preliminaries

Consider N agents along with M ranging tags distributed amongst them. Let τ1, τ2, . . . , τM
consist of unique physical points collocated with the ranging tags. Let a1, . . . , aN represent
reference points on the agents themselves. The inter-tag range measurements are represented
by a measurement graph G = (V , E) where V = {1, . . . ,M} is the set of nodes, which
is equivalent to the set of tag IDs, and E is the set of edges corresponding to the range
measurements. Defining the set of agent IDs as A = {1, . . . , N}, it is convenient to define a
simple “lookup function” ℓ : V → A that returns the agent ID on which any particular tag is
located. For example, if τi is physically on agent α, then ℓ(i) = α. An example scenario with
three agents using this notation is shown in Figure 5.1.

5.3.1 State Definition and Range Measurement Model

Since the agents are rigid bodies, an orthonormal reference frame attached to their bodies
can be defined. A position vector representing the position of point z, relative to point w,

1y

a2

a3

a1

τ2

τ1

τ6

τ3

τ4

Figure 5.1: Problem setup and notation used. Each agent possesses a reference point aα where α is the agent
ID, as well as two tags τi, τj , where i, j are the tag IDs. 1x and 1y are vectors which represent the x and y
axis of Agent 1’s body frame. Throughout this chapter, the red agent is the arbitrary reference agent, and it
will always be Agent 1 without loss of generality.
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resolved in the body frame of agent α is denoted rzwα ∈ Rn. The attitude of the body frame
on agent α relative to the body frame on agent β is represented with a rotation matrix
Cαβ ∈ SO(n) such that rzwα = Cαβrzwβ . The relative position and attitude between agents α
and β, (raβaαα ,Cαβ) define the relative pose between them, and can be packaged together in a
pose transformation matrix

Tαβ =

[
Cαβ raβaαα

0 1

]
∈ SE(n). (5.1)

Throughout this chapter, Agent 1 will be the arbitrary reference agent, such that the
poses of all the other agents are expressed relative to Agent 1

x = (T12, . . . ,T1N). (5.2)

A generic range measurement between tag i and tag j is modelled as a function of the state
x = (T12, . . . ,T1N) with

yij(x) = ||C1αrτiaαα + raαa11 − (C1βrτjaββ + raβa11 )||+ vij, (5.3)

where α = ℓ(i), β = ℓ(j), and vij ∼ N (0, σ2
ij). This can be written compactly with the pose

transformation matrices,

yij(x) =

∥∥∥∥∥DT1α

[
rτiaαα

1

]
− DT1β

[
rτjaββ

1

]∥∥∥∥∥+ vij

≜
∥∥DT1αpi − DT1βpj

∥∥+ vij, (5.4)

where D = [1 0]. The state x = (T12, . . . ,T1N ), written here as a tuple of poses, is an element
of a composite Lie group of its own,

x ∈ SE(n)× . . .× SE(n) ≜ SE(n)N−1.

The group operation for SE(n)N−1 is the elementwise matrix multiplication of the pose
matrices in two arbitrary tuples, and the group inverse is the elementwise matrix inversion of
the elements of the tuple x. The ⊕ operator is defined here as

x⊕ δx = (T12 exp(δξ
∧
2 ), . . . ,T1N exp(δξ∧N)) , (5.5)

where δξi ∈ Rm, δx = [δξT2 . . . δξTN ]
T ∈ Rm(N−1), and will be used throughout the chapter.

5.4 Optimization

The goal is to find the relative agent poses that, with respect to some metric, provide the
best relative pose estimation results if the estimation were to be done exclusively using the
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range measurements. The metric chosen in this chapter is based on Fisher information and
the Cramér-Rao bound, which will be recalled here.
Definition 5.4.1 (Fisher information matrix [44]). Let y ∈ Rq be a continuous random
variable that is conditioned on a nonrandom variable x ∈ Rn. The Fisher information matrix
(FIM) is defined as

I(x) = E

[(
∂ log p(y|x)

∂x

)T(
∂ log p(y|x)

∂x

)]
∈ Rn×n, (5.6)

where E[·] is the expectation operator and p(·) denotes a probability density function.
Theorem 5.4.1 (Cramér-Rao Bound [44]). Let y ∈ Rq be a continuous random variable that
is conditioned on x ∈ Rn. Let x̂(y) be an unbiased estimator of x, i.e., E[e(x)] = E[x̂(y)−x] = 0.
The Cramér-Rao lower bound states that

E
[
e(x)e(x)T

]
≥ I−1(x). (5.7)

Theorem 5.4.2 (FIM for a Gaussian PDF). Consider the nonlinear measurement model
with additive Gaussian noise,

y = g(x) + v, v ∼ N (0,R). (5.8)

The Fisher information matrix is given by

I(x) = H(x)TR−1H(x), (5.9)

where H(x) = ∂g(x)/∂x.
The Cramér-Rao bound represents the minimum variance achievable by any unbiased

estimator. Hence, motivated by Theorem 5.4.1, an estimation cost function Jest is defined

Jest(x) = − log det I(x), (5.10)

which will be minimized with the agent relative poses x as the optimization variables. The
logarithm of the determinant of I(x) is one option amongst many choices of matrix norms,
such as the trace or Frobenius norm. We have found the chosen cost function to behave
well in terms of numerical optimization and, most importantly, goes to infinity when the
FIM becomes non-invertible. The state x is locally observable from measurements y if the
measurement Jacobian H(x) is full column rank, which also makes the FIM full rank. As
will be seen in Section 5.4.2, non-invertibility of the FIM also corresponds to formations that
result in unobservable relative poses, which should be avoided.

To create a measurement model in the form of (5.8), the range measurements are all

56



concatenated into a single vector

y(x) = [. . . yij(x) . . .]
T︸ ︷︷ ︸

≜g(x)

+v, ∀(i, j) ∈ E , v ∼ N (0,R),

where R = diag(. . . , σ2
ij, . . .). It would be possible to directly descend the cost in (5.10) with

an optimization algorithm such as gradient descent, if not for the fact that the state x does
not belong to Euclidean space Rn but rather SE(n)N−1. As such, the expression ∂g(x)/∂x is
meaningless unless properly defined.

5.4.1 On-manifold Cost and Gradient Descent

The modification employed in this chapter is to reparameterize the measurement model
by defining x = x̄⊕ δx, leading to

y = g(x̄⊕ δx) + v ≜ ḡ(δx). (5.11)

The state x̄ will represent the current optimization iterate, which will be updated using δx.
Since the argument of the new measurement model ḡ(δx) now belongs to Euclidean space

Rm(N−1), it is possible to compute the “local” approximation to the FIM [73] at x = x̄ with
I(x̄) = H(x̄)TR−1H(x̄) where

H(x̄) =
∂g(x̄⊕ δx)

∂δx

∣∣∣∣
δx=0

,

and evaluate the cost function Jest(x̄) = − log det I(x̄). Finally, an on-manifold gradient
descent step with step size γ can be taken with

x̄← x̄⊕
(
−γ ∂Jest(x̄⊕ δx)

∂δx

∣∣∣∣
δx=0

)T

. (5.12)

The proposed gradient descent procedure is a standard approach to optimization on
matrix manifolds [74]. From a differential-geometric point of view, an approximation to the
FIM is computed in the tangent space of the current optimization iterate x̄, which is a familiar
Euclidean vector space. A gradient descent step is computed in the tangent space, and the
result is retracted back to the manifold SE(n)N−1 using the retraction Rx̄(δx) = x̄⊕ δx.

5.4.2 Cost Function Implementation

Creating an implementable expression for the cost function Jest(x̄) = − log det
(
H(x̄)TR−1H(x̄)

)
eventually amounts to computing the Jacobian of the range measurement model (5.4) with
respect to δξα and δξβ. To see this,
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H(x̄) =


...

Hij(x̄)
...

 ,
Hij(x̄) = [0 . . .Hij

α (x̄) . . .H
ij
β (x̄) . . . 0],

where

Hij
α (x̄) ≜

∂yij(x̄⊕ δx)
∂δξα

∣∣∣∣
δx=0

,

Hij
β (x̄) ≜

∂yij(x̄⊕ δx)
∂δξβ

∣∣∣∣
δx=0

.

The row matrix Hij(x̄) ∈ R1×m(N−1) represents the Jacobian of a single range measurement yij
with respect to the full state perturbation δx. This resulting matrix will be zero everywhere
except for two blocks Hij

α (x̄) ∈ R1×m and Hij
β (x̄) ∈ R1×m, respectively located at the αth

and βth block columns, and have closed-form expressions derived as follows. Let yij(x) =
yij(x̄) + δyij ≜ ȳij + δyij, T1α = T̄1α exp(δξ

∧
α), T1β = T̄1β exp(δξ

∧
β ), and vij = 0. The

terms δyij, δξα, δξβ are assumed to be small quantities, which motivates, for example, the
approximation exp(δξ∧α) ≈ 1 + δξ∧α . Equation (5.4) becomes

(ȳij + δyij)
2 =

(
DT̄1α(1 + δξ∧α)pi − DT̄1β(1 + δξ∧β )pj

)T(
DT̄1α(1 + δξ∧α)pi − DT̄1β(1 + δξ∧β )pj

)
,

which, after expanding and neglecting higher-order terms, leads to

2ȳijδyij = 2(pT
i T̄T

1αDT − pT
j T̄T

1βDT)DT̄1αδξ
∧
αpi + 2(pT

j T̄T
1βDT − pT

i T̄T
1αDT)DT̄1βδξ

∧
βpi. (5.13)

Next, it is straightforward to define a simple operator (·)⊙, as per [43], such that ξ∧p = p⊙ξ.
Rearranging (5.13) yields

δyij =
(pT

i T̄T
1αDT − pT

j T̄T
1βDT)

ȳij
DT̄1αp⊙

i δξα −
(pT

i T̄T
1αDT − pT

j T̄T
1βDT)

ȳij︸ ︷︷ ︸
≜ρT

ij

DT̄1βp⊙
j δξβ. (5.14)

The term ρij is the physical unit direction vector between tags i and j, resolved in Agent 1’s
body frame. From (5.14) it then follows that

∂yij
∂δξα

= ρT
ijDT̄1αp⊙

i ,
∂yij
∂δξβ

= −ρT
ijDT̄1βp⊙

j .

The cost function Jest is visualized for varying agent position in the top row of Figure 5.2,
where the red dot shows the minimum found within that view. Looking at the top-left plot
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Figure 5.2: All four plots show the value of the cost with varying agent position (right agent for two-agent
scenario, top agent for three-agent scenario), while maintaining fixed heading. The top row shows only the
estimation cost Jest, while the bottom row shows the total cost J including the collision avoidance term.

of Figure 5.2, there is a vertical line of high cost near the agent on the left, corresponding
exactly to when all four tags line up, leading to an unobservable formation. Similarly, the
three-agent scenario in the top-right plot of Figure 5.2 shows a high cost when the agents are
nearly all on the same line, which is a situation of near-unobservability. However, as can be
seen in the top-left plot, the minimum is unacceptably close to the left agent, which would
cause them to collide. Indeed, we have observed that naively descending the cost Jest alone
leads to all the agents collapsing into each other. An explanation for this behavior is that
when agents are closer together, changes in attitude result in larger changes in the range
measurements, which increases Fisher information. Nevertheless, in practice, collisions must
be avoided, and this is done by augmenting the cost with an additional collision avoidance
term Jcol(x), such that the total cost J(x) is

J(x) = Jest(x) + Jcol(x), Jcol(x) =
∑
α,β∈A
α ̸=β

Jαβcol (x), (5.15)
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where a collision avoidance cost from [75] is used,

Jαβcol (x) =

(
min

{
0,

∥∥raαaβ1

∥∥2 −R2∥∥raαaβ1

∥∥2 − d2
})2

. (5.16)

The term R represents an “activation radius” and d is the safety collision avoidance radius.
In this chapter, the agent relative position is expressed as a function of pose matrices with

raαaβ1 = DT1αb− DT1βb,

where D = [1 0], b = [0 1]T. The new cost function J is plotted on the bottom row of Figure
5.2, showing the effect of the collision avoidance term. Finally, one is now ready to descend
the cost directly with

x̄← x̄⊕
(
−γ ∂J(x̄⊕ δx)

∂δx

∣∣∣∣
δx=0

)T

. (5.17)

In this work, the Jacobian of Jest is computed numerically with finite difference [5], and the
optimization is only done offline for the following reasons. The solution to the optimization
problem is only a function of some physical properties, the measurement graph G, and the
number of robots N . For any experiments that use the same hardware, the physical properties
such as the safety radius, tag locations, and measurement covariances, all remain constant.
The measurement graph G can often also be assumed to be constant and fully connected.
Even though full-connectedness is not required in the proposed approach, technologies such
as UWB often have a ranging limit that is well beyond the true ranges between all robots in
the experiment. Hence, it is straightforward to precompute optimal formations for varying
robot numbers N with fully-connected measurement graphs, and to store the solutions in
memory onboard each robot. The computation time for this method, for 10 agents or less, is
on the order of a few minutes.

Nevertheless, a distributed, real-time implementation is required for varying measurement
graphs, which is likely to arise in the presence of obstacles that block line-of-sight. Such a
scenario requires simultaneously satisfying obstacle avoidance constraints and perhaps other
planning objectives, which is beyond the scope of this chapter.

5.4.3 Optimization Results

The gradient descent in (5.17) is performed with a step size of γ = 0.1, an activation
radius of R = 2 m, and a safety radius of d = 1 m. Each agent has two tags located at

rτiaαα = [0.2 0.2]T, and rτjaαα = [0.2 − 0.2]T,

where α = ℓ(i) = ℓ(j) and the units are in meters. Figure 5.3 shows quadcopter formations
at convergence for 3, 4, 5, and 10 agents, each with a fully-connected measurement graph G,
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except for edges corresponding to two tags on the same agent. The results shown here are
intuitive, with the three- and four-agent scenarios corresponding to an equilateral triangle and
square, respectively. However, with increasing agent numbers, regular polygon formations
are no longer optimal, as can be seen in the five- and ten-agent scenarios.

Since the treatment in this chapter is general to an arbitary measurement graph G,
provided the FIM remains maximum rank, optimization is also performed for a non-fully-
connected measurement graph. The results for this along with a 3D scenario are shown in
Figure 5.4. In 3D, the robot relative poses are represented with elements of SE(3), but with
four degrees of freedom corresponding to the three translational components and heading.
This is because two-tag robots are used in these simulations, making relative roll and pitch
between robots unobservable without more sensors. Hence, roll and pitch are excluded from
the optimization and their values are fixed to zero. Moreover, from an application standpoint,
both ground vehicles and quadcopter-type aerial vehicles only have heading as a rotational
degree of freedom available for planning.

The cost function J has many local minima associated with the various geometric
symmetries contained in the problem. That is, for two-tag agents, a “flip” of 180 degrees
in heading for each agent leads to a local minimum, as do symmetries in the formation
positions. The solutions presented are the result of a trial-and-error process with hand-picked
initial guesses, where all local minimums encountered in this process provided sufficiently low
covariance. Therefore, it can be argued that finding the global minimum is not necessary,
especially if only avoiding the unobservable formations of high cost is required.

5.4.4 Validation on a Least-Squares Estimator

To validate the claim that descending the cost improves the estimation performance, a
non-linear least-squares estimator is used. At regular iterates x̄ of the optimization trajectory,
a small 2000-trial Monte Carlo experiment is performed, where in each trial a set of range
measurements are generated with y = g(x̄) + v, v = N (0,R). Then, an on-manifold Gauss-
Newton procedure [43] is used to solve

x̂ = argmin
x

1

2

N∑
α=2

∥∥log(CT
1αČ1α)

∨∥∥2
P̌α

+
1

2
∥y− g(x)∥2R , (5.18)

where ∥e∥2M = eTM−1e denotes a squared Mahalanobis distance, and an attitude prior with
“mean” Č1α and covariance P̌α is also included for each agent. It turns out that minimization
of only the second term in (5.18) yields unacceptably poor estimation performance, as the
solution often converges to local minimums depending on the initial guess. The inclusion of
a low-covariance attitude prior, which is practically obtained by dead-reckoning on-board
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Figure 5.3: Final locally optimal formations for 3, 4, 5, and 10 agents, with the optimization paths shown in
blue.

gyroscope measurements, is critical for obtaining low estimation error.
Figure 5.6 shows the value of the cost throughout the optimization trajectory, as well as

the mean squared estimation error over the K = 2000 Monte Carlo trials per optimization
step. The true agent poses are initialized in a near-straight line, as shown in Figure 5.5, and
the covariances used are R = 0.121 m2, P̌α = 0.082 rad2. The mean squared estimation error
(MSE) is calculated with

MSE =
1

K

K∑
k=1

δξTδξ, δξ =


log(T̄−1

12 T̂12)
∨

...
log(T̄−1

1N T̂1N)
∨

 , (5.19)

and shows a clear correlation with the cost function. This provides evidence for the fact that
descending the proposed cost function also reduces the estimation error.
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Figure 5.4: Left: Optimal formation with sparse measurement graph. Right: Optimal formation with 3D
position and heading as design variables.

Figure 5.5: Trajectory taken during optimization with superimposed 1σ equal-probability contours
corresponding to the Cramér-Rao bound. The ellipsoids for the starting positions are too large to fit
in the figure.

5.5 Experimental Evaluation

An estimator is also run with three PX4-based Uvify IFO-S quadcopters in order to
experimentally validate the claim that descending the proposed cost function results in
improved estimation performance. The quadcopters start by flying in a line formation and,
after 30 seconds, proceed to a triangle formation computed using the proposed framework for
another 30 seconds, as shown in Figure 5.8. Figure 5.7 shows the position estimation error
using the least-squares estimator presented in Section 5.4.4. Real gyroscope measurements
are used to obtain an attitude prior at all times. Range measurements are synthesized with a
standard deviation of 10 cm using ground truth vehicle poses obtained from a motion capture
system. The UWB tags are simulated to be 17 cm apart, corresponding to extremities of the
propeller arms. As can be seen in Figure 5.7, moving to the optimal triangle formation, from
one of the worst starting formations results in a 68% reduction in estimation variance.
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Figure 5.6: Cost function, along with various metrics of a least-squares estimator, obtained from 2000
Monte-Carlo trials at various points during the optimization. In the bottom two plots, the red squares denote
the average norm of the respective estimation errors.

Figure 5.7: Experimental results using a least squares estimator. From 0 s to 30 s, the quadcopters are in
a line formation and the average positioning error is 0.77 m. From 30 s to 60 s, the quadcopters are in an
optimal formation and the average positioning error is 0.22 m, a 68% reduction.
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Figure 5.8: Top: Three quadcopters in an initial straight line formation. Bottom: Quadcopters in an
optimal triangle formation.

5.6 Conclusion and Future Work

This chapter proposes a method for computing optimal formations that minimize relative
pose estimation variance. This is done by introducing a cost function that maximizes Fisher
information and also penalizes cases where robots are too close to each other, in order to avoid
collisions. On-manifold gradient descent is used to descend the cost, and both simulation
and experiment show that large improvements in estimation various can be seen when robots
move away from singular formations to their optimal formations. A key feature of the
proposed cost function is that it goes to infinity when formations are singular/unobservable
formations. Moreover, the results show that the largest reductions in estimation variance occur
immediately when moving away from singular formations, and that there are diminishing
returns when approaching the optimal formations.

Motivated by the results of this chapter, the following ideas could lead to interesting,
practical uses.

• Using the cost function as an inequality constraint.
This point is especially motivated by the observation that the largest accuracy gains
are obtained when moving away from unobservable formations, and that estimation
variance is approximately the same in a reasonably large region around the optimal
formations. Hence, a natural use case for the proposed cost function in (5.15) is to
use it as an inequality constraint on some other application-oriented planning problem
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described by cost P (x). That is,

x∗ =argmin
x

P (x) (5.20)

such that J(x) < ϵ (5.21)

where ϵ is some arbitrary threshold. An example is to design trajectories that move
a group of agents through hallways and around obstacles, while maintaining the cost
below this threshold.

• Decentralized computation of the cost.
This chapter assumes that all robot poses are available for computation of the cost
function J(x). However, in cases where some robots only have access to a subset of x, a
decentralized computation would be needed. This could be performed in a way similar
to [71].

Implicitly from the fact that the Fisher information matrix is in general not singular,
this chapter shows that the relative position and heading is statically observable from range
measurements alone, provided that robots have two UWB tags on them. The next chapter
will exploit this to finally design a concrete, decentralized estimator that can fuse range
measurements with other lightweight, cheap sensors on-board each robot. Furthermore, the
treatment will be mathematically general to any process and measurement model, therefore
applicable to a large variety of robotics problems.
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Chapter 6

On-manifold Decentralized State
Estimation using Pseudomeasurements

and Preintegration

Figure 6.1: Three examples of decentralized estimation problems within the scope of this chapter. Left: A
toy problem with 1D robots, each estimating both of their positions. Middle: A problem with an incomplete
communication graph. Robots observe landmarks, have range measurements to each other, and estimate their
own and neighbor absolute poses. Right: A more complicated experimentally-tested problem, where robots
equipped with ultra-wideband radios estimate both their own absolute pose and relative poses of neighbors,
in addition to IMU biases.

6.1 Summary

This chapter addresses the problem of decentralized, collaborative state estimation in
robotic teams. In particular, this chapter considers problems where individual robots estimate
similar physical quantities, such as each other’s position relative to themselves. The use of
pseudomeasurements is introduced as a means of modelling such relationships between robots’
state estimates, and is shown to be a tractable way to approach the decentralized state
estimation problem. Moreover, this formulation easily leads to a general-purpose observability
test that simultaneously accounts for measurements that robots collect from their own sensors,
as well as the communication structure within the team. Finally, input preintegration is
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proposed as a communication-efficient way of sharing odometry information between robots,
and the entire theory is appropriate for both vector-space and Lie-group state definitions. The
proposed framework is evaluated on three different simulated problems, and one experiment
involving three quadcopters.

6.2 Introduction

The previous chapter established that having robots outfitted with UWB tags led to
observable relative poses, and the effect of the relative poses themselves on the estimation
accuracy was studied. However, this was all performed in a centralized way, where all
measurements were assumed to be available to a central computer. To run an algorithm on each
robot’s processor, the estimator needs to be fundamentally decentralized. Decentralized state
estimation is a fundamental requirement for real-world multi-robot deployments. Whether the
task is collaborative mapping, relative localization, or collaborative dead-reckoning, the multi-
robot estimation problem seeks to estimate the state of each robot given the measurements
obtained locally by sensors on each robot in the team. This problem is made difficult
by the fact that not all robots can communicate with each other and, furthermore, that
high-frequency sensor measurements would require substantial communication bandwidth
to simply share across the team. The centralized estimator is a computing unit that can
somehow collect all the sensor measurements on each robot, and then fuse them all to jointly
estimate the states of every robot in one large system. Theoretically, the centralized estimator
has the lowest possible estimation error variance, and all decentralized implementations
attempt to match its performance.

A common approach is for robots to share their current state and associated covariance
rather than of a history of measurement values [76–78]. This approach has the benefit of low
communication cost and fixed message size, but suffers from a well-known issue of not being
able to compute cross-correlations between the robots’ state estimates [79]. Furthermore, in
certain problems, robots may be estimating the same physical quantities. As an example,
consider two robots estimating each other’s position, in addition to their own positions, as
shown in Figure 6.1 (left). Their state vectors are both robots’ position, and therefore both
seek to estimate the same physical quantities, a situation referred to here as full state overlap.
When robot states have similar, if not identical state definitions, it is straightforward to
compute the error between their state estimates using simple subtraction. However, for
more complicated problems, especially those with state definitions belonging to arbitrary
Lie groups, a generalized measure of error between different robots’ state estimates must be
introduced.
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This chapter introduces a new framework for formulating decentralized multi-robot
estimation problems. The proposal is to use pseudomeasurements as a tractable and effective
way to model any generic nonlinear relationship between robot state definitions, including full
or partial state overlap as special cases. A pseudomeasurement is introduced for each edge in
the communication graph, and the framework also naturally leads to a novel observability
test that takes into account both the local measurements obtained by each robot in addition
to the communication structure between them.

Secondly, the use of preintegration is proposed as a means of sharing odometry information
over an arbitrary duration of time, in a lossless matter. The naive solution is for robots to
share a history of odometry measurements since the last time they communicated, which
has processing, memory, and communication requirements that grow linearly with the time
interval between communications. Preintegration provides a constant-time, constant-memory,
and constant-communication alternative that is algebraically identical to simply sharing the
input measurements themselves. This makes preintegration a natural choice for multi-robot
estimation problems. Moreover, preintegration preserves statistical independence assumptions
that typical Kalman filtering prediction steps rely on. Preintegration is best known from
the visual-inertial odometry literature [50, 80], where the same concept, adapted for relative
pose estimation is introduced in [81]. This chapter generalizes the concept to other common
process models in robotics, presents a solution for simultaneous input bias estimation, and
also further proposes a deep autoencoder to compress the associated covariance information.

Finally, the theory here is developed for general on-manifold state definitions, including
familiar linear vector spaces. The proposed solution is general to any state definition,
process model, and measurement model subject to typical Gaussian noise assumptions.
This chapter does not focus on the treatment of cross-correlations, and hence employs the
simple, well-known covariance intersection (CI) [76, 77] method. This allows for an arbitrary
communication graph within the robot team, while remaining lightweight and avoiding
cumbersome bookkeeping. The main drawback is that CI is proven to yield sub-optimal
estimation. However, in practice, the performance can remain adequate, and sometimes very
comparable to centralized estimation, as shown here from simulated and experimental results.

The remainder of this chapter is as follows. In Section 6.3, related work is discussed.
Mathematical preliminaries and notation are shown in Section 6.4. The chapter then starts
with a simplified “toy” problem showcasing the proposed method in Section 6.5, and the theory
is generalized in Section 6.8. Finally, Section 6.8 contains an application to a ground robot
simulation, Section 6.9 applies the method to a more complicated experimental quadcopter
problem.

69



6.3 Related Work

There are many sub-problems associated with the overall decentralized state estimation
problem. Even if communication links between robots are assumed to be lossless and have
infinite bandwidth, there is still the issue of propagating information over general, incomplete
communication graphs. For two robots, it is straightforward to compute centralized-equivalent
estimators on each robot as done in [82], which use information filters to accumulate the
information from a series of measurements, and then communicate this quantity. In [82],
centralized-equivalent solutions are also derived for fully connected graphs, as well as tree-
shaped graphs. However, they show that for generic graphs, it is impossible to obtain a
centralized-equivalent estimate with only neighboring knowledge, and that more knowledge
of the graph topology is required.

In [83], a general centralized-equivalent algorithm is presented for arbitrary time-varying
graphs, and is formulated over distributions directly, hence allowing inference using any
algorithm such as an extended or sigma-point Kalman filter. Robots must still share raw
measurements with each other, therefore requiring substantial bookkeeping. The approach is
extended to the SLAM problem in [84]. In [85], the centralized Kalman filter equations are
decomposed using a singular value decomposition to generate independent equations that
each robot can compute. Provided that robots have broadcasting ability, and obtain direct
pose measurements of their neighbors, a centralized-equivalent solution can be obtained.
The consensus Kalman filter developed in [86, 87] aims to asymptotically send the state
of n arbitrary nodes to a common value, which is effectively a problem with full state
overlap. Alternate consensus approaches such as “consensus on information” or “consensus
on measurements” are shown in [88]. Moreover, the problem does not consider the fact that
robots collect their own, seperate odometry measurements.

As previously mentioned, one of the simplest solutions to the decentralized estimation
problem is to use covariance intersection, presented in [76, 77]. CI conservatively assumes
maximum correlation between robot estimates. Although the performance is theoretically
suboptimal, the implementation is extremely simple, and imposes no constraints whatsoever
on the communication frequency or graph topology. In [78], covariance intersection is applied
to a collaborative localization problem, where each robot estimates their own absolute state
given direct relative pose measurements to other robots. Covariance intersection has recently
been exploited for the fusion of poses on Lie groups in [89]. In [90], an EKF-like filter is
used for decentralized estimation where cross-correlations are also explicitly tracked for both
the prediction step and the fusion of local measurements. When relative measurements are
encountered, an improved approximation to the joint covariance matrix is developed, which
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outperforms CI. The approach in [90] assumes that process model inputs between robots are
uncorrelated, which is not applicable in some of the problems in this chapter. The work in
[91] builds off of [90] to solve a full 3D relative pose estimation problem where each robot has
a camera and an IMU.

Another approach using scattering theory has recently been presented for two robots in [92,
93], with the objective of reducing the communication cost associated with the communication
of high-rate sensor measurements. Also making reference to the IMU preintegration technique
in [50, 80], covariance pre-computations are derived in [92] and extended to also include
the mean in [93]. It is shown that by sharing pre-computed matrices with the same size
as the state vector, a centralized-equivalent state estimate can be directly obtained with
no measurement reprocessing. However, the generalization to more robots does not seem
straightforward.

6.4 Preliminaries

This chapter will address problems where an individual robot’s motion and measurements
are modelled in the standard form of

Xik = f(Xik−1
,uik−1

,wik−1
),

yik = g(Xik) + vik ,

wik−1
∼ N (0,Qik−1

),

vik ∼ N (0,Rik
),

(6.1)

for Robot i, where uik ∈ Rnu is the process input at time step k, yik ∈ Rny are the
measurements, and Xik ∈ G denotes the robot state belonging to any Lie group G. As a
notational convenience, the shorthand Xi:j = {Xi . . . Xj} will refer to a collection of arbitrary
objects with indices in the range [i, j].

6.4.1 Covariance Intersection

Covariance intersection (CI) is a tool introduced by [76] for the purposes of decentralized
data fusion under unknown cross-correlations, and can be summarized with the following
theorem.
Theorem 6.4.1 (Consistency of Covariance Intersection). The inequality[

1
w
Σxx 0
0 1

1−wΣyy

]
≥
[
Σxx Σxy

ΣT
xy Σyy

]
, (6.2)

which applies in the positive definite sense, holds for all w ∈ (0, 1), where Σxx,Σyy, and the
right-hand-side of (6.2) are positive definite.
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6.5 A Toy Problem

Consider first one of the simplest multi-robot estimation problems, shown on the left
of Figure 6.1. Two robots are located at positions r1 and r2, respectively, and both robots
seek to estimate both robots’ positions. By design, each robot carries distinct, conceptually
independent estimates, even though their states represent the same true physical variables.
This mimics exactly what will occur in implementation, as each robot’s processor will have a
live estimate of both robots’ positions. Their state vectors can therefore be defined as

x1 =
[
r
[1]
1 r

[1]
2

]T
, x2 =

[
r
[2]
1 r

[2]
2

]T
, (6.3)

where the square bracket superscript (·)[i] is used when necessary to denote Robot i’s estimate
or “instance” of a common physical variable. Each robot also collects local measurements
from its sensors. Robot 1 is capable of measuring its own position,

y1 = G1x1 + v1, v1 ∼ N (0, R1), G1 =
[
1 0

]
, (6.4)

while Robot 2 is only capable of measuring its position relative to Robot 1,

y2 = G2x2 + v2, v2 ∼ N (0, R2), G2 =
[
−1 1

]
. (6.5)

To keep things simple for this demonstrative problem, robots are assumed to have access to
each other’s input measurements, such as wheel odometry. This allows them to predict their
state forward in time using a conventional Kalman filter. However, a more communication-
efficient solution will be proposed in Section 6.7. Neither robot is capable of estimating their
full state vector from local measurements only, meaning that some form of communication
will be required.

To reflect the knowledge that the two robots’ state vectors are physically the same, a key
design choice of this chapter is to incorporate a pseudomeasurement of the form

y12 = x1 − x2 + v12, v12 ∼ N (0,Ψ), (6.6)

whose “measured” value is always exactly zero. This pseudomeasurement can be viewed as a
soft constraint on the problem, inversely weighted by the user-chosen pseudomeasurement
covariance Ψ. The estimation problem is now to compute, as accurately as possible, the
posterior distribution

p(x1, x2|y1, y2, y12). (6.7)

72



6.5.1 Solution via MAP

Applying MAP to this simplified problem is to say that

x̂1, x̂2 = argmax
x1,x2

p(x1, x2|y1, y2, y12). (6.8)

Assuming that v1, v2, v12 are all independent random variables allows the use of Bayes’ rule
to write

p(x1, x2|y1, y2, y12) = ηp(y1|x1)p(y2|x2)p(y12|x1, x2)p(x1, x2). (6.9)

Next, assume that the prior distributions of the robots are independent and Gaussian, possibly
as a result of using CI,

p(x1, x2) = p(x1)p(x2) = N (x̌1, P̌1)N (x̌2, P̌2). (6.10)

Substituting (6.10) into (6.9) and grouping terms into those available to each robot yields

p(x1, x2|y1, y2, y12) = ηp(y12|x1, x2)
(
p(y1|x1)p(x1)

)(
p(y2|x2)p(x2)

)
. (6.11)

Since the local measurement models are linear, it is straightforward to exactly compute the
terms

p(yi|xi)p(xi) = ηip(xi|yi) = ηiN (x̃i, P̃i), i = 1, 2, (6.12)

using the regular Kalman filter equations. The means and covariances x̃i, P̃i (with tildes)
represent the distribution of each robot’s state conditioned on only local measurements,
without the information that the robots’ states are physically the same. Substituting (6.12)
into (6.11) yields a simplified expression for the posterior, and the optimization problem (6.8)
now leads to the least-squares problem

x̂1, x̂2 = argmin
x1,x2

1

2
e(x1, x2)

TWe(x1, x2), (6.13)

where

e(x1, x2) =

 1 0
0 1
1 −1

[ x1

x2

]
−

 x̃1

x̃2

0

 ≜ Hx− z,

W = diag(P̃−1
1 , P̃−1

2 ,Ψ−1).

In this linear case the unique solution x̂ is given by

x̂ = (HTWH)−1HTWz, (6.14)

73



where

HTWH =

[
P̃−1
1 +Ψ−1 −Ψ−1

−Ψ−1 P̃−1
2 +Ψ−1

]
, (6.15)

HTWz =

[
P̃−1
1 x̃1

P̃−1
2 x̃2

]
. (6.16)

Various applications of the Sherman-Morrison-Woodbury (SMW) identities [43] can be used
to analytically invert the information matrix HTWH, as well as solve for the mean x̂ in (6.14).
After some manipulation, the result is

x̂ ≜

[
x̂1

x̂2

]
=

[
x̃1 + K1(x̃2 − x̃1)

x̃2 + K2(x̃1 − x̃2)

]
,

P̂ ≜ (HTWH)−1

=

[
(1−K1)P̃1 −K1P̃2

−K2P̃1 (1−K2)P̃2

]
, (6.17)

K1 ≜ P̃1(Ψ+ P̃2 + P̃1)
−1,

K2 ≜ P̃2(Ψ+ P̃2 + P̃1)
−1,

and hence that p(x1, x2|y1, y2, y12) = N (x̂, P̂). The final individual estimates are obtained by
marginalizing out the other robots’ states, which is trivial to do in covariance form by simply
extracting the corresponding blocks from x̂, P̂, yielding

p(x1|y1, y2, y12) = N (x̂1, (1−K1)P̃1), (6.18)

p(x2|y1, y2, y12) = N (x̂2, (1−K2)P̃2). (6.19)

Conditioning on the pseudomeasurement y12 has introduced cross-correlation terms in (6.17),
which are feasible to keep track of for this two-robot scenario, but introduce substantial
complexity for an arbitrary multi-robot scenario. Therefore, this chapter simply employs the
CI approximation as required. Figure 6.2 shows the estimation error of each robot as multiple
pseudomeasurements are fused in succession. The two robots’ estimates not only converge to
zero error, but also to a common value, which is the main effect of the pseudomeasurent. In
Figure 6.3, 100 Monte-Carlo trials are performed on a simulation of this toy problem, but
extended to four robots. The root-mean-squared error (RMSE) and normalized estimation
error squared (NEES), calculated as per [44, Ch. 5.4], are plotted through time. The lines
marked “Proposed” fuse pseudomeasurements as described, and use CI before each state
fusion. The naive solution is identical, but does not utilize covariance intersection before state
fusion, thus completely neglects cross-correlations. Although the use of CI does introduce
error compared to the centralized solution, it is still vastly better than the naive approach.
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Figure 6.2: Estimation convergence for a single trial of the two-robot toy problem with Ψ = 10 · 1. Due to
pseudomeasurements, the robot states successfully converge to a common value.

6.6 General Problem

Consider nowN robots, which communicate in correspondance with an arbitrary undirected
graph G = (V , E) where V = {1, . . . , N} is the set of nodes or robot IDs, and E is the set
of edges. The robots have states Xi ∈ Gi, i ∈ V belonging to possibly different groups.
Pseudomeasurement models cij : Gi ×Gj → Rc are now defined in a generic way

yijk = cij(Xik ,Xjk) + vijk , vijk ∼ N (0,Ψ), (6.20)

for each pair (i, j) ∈ E . Using MAP, the general state fusion problem is now

X̂1:N = argmax
X1:N

p(X1:N |yij), for all (i, j) ∈ E . (6.21)

It is easier to instead consider a single pseudomeasurement at a time, such as, without loss of
generality, y12. The posterior distribution given only y12 is

p(X1:N |y12) = ηp(y12|X1,X2)p(X1:N) (6.22)

= η N (c12(X1,X2),Ψ)
N∏
i=1

NL(X̃i, P̃i) (6.23)

where robot state priors have again been assumed to be independent, as a result of using
covariance intersection. Due to this independence, the variables X3:N can be removed from
the optimization problem since their optimal values are simply X̂3:N = X̃3:N and have no
effect on X1,X2. Minimizing the negative logarithm of (6.23), omitting terms involving X3:N ,
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Figure 6.3: Results of 100 Monte Carlo trials for a four-robot version of the toy problem. The top two plots
consist of a NEES plot, which is a measure of consistency. The bottom plot is the RMSE of the state. The
proposed solution, which performs CI, remains statistically consistent and has reasonbly low error in many
cases.

leads to a least-squares problem with error vector given by

e(X1,X2) =

 X1 ⊖ X̃1

X2 ⊖ X̃2

−c12(X1,X2)

 , (6.24)

and weight W = diag(P̃−1
1 , P̃−1

2 ,Ψ−1). Defining Ji as the group Jacobian associated with Gi,
as well as Si,Sj being the jacobians of cij with respect to Xi,Xj , respectively, the Jacobian of
the error vector is

H =

 J−1
1 0
0 J−1

2

−S1 −S2

 , (6.25)

which is written without arguments (X1,X2) for brevity. The relevant terms of the Gauss-
Newton system are

HTWH =

[
J−T
1 P−1

1 J−1
1 + ST

1Ψ
−1S1 ST

1Ψ
−1S2

ST
2Ψ

−1S1 J−T
2 P−1

2 J−1
2 + ST

2Ψ
−1S2

]
,

HTWe(X1,X2) =

[
J−T
1 P−1

1 (X1 ⊖ X̃∞)− ST
1Ψ

−1c12(X1,X2)

J−T
2 P−1

2 (X2 ⊖ X̃∈)− ST
2Ψ

−1c12(X1,X2)

]
,
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which, by substantial manipulation with the SMW identities, can be used to analytically
compute δx̂ = (HTWH)−1HTWe(X̂1, X̂2), producing on-manifold iterated-EKF-like expressions.
The result is

δx̂1 = −J1(X̂1 ⊖ X̃1) + K1z,

δx̂2 = −J2(X̂2 ⊖ X̃2) + K2z,

K1 = J1P̃1J
T
1 ST

1 V−1,

K2 = J2P̃2J
T
2 ST

2 V−1,

z = −c12(X̂1, X̂2) + S1J1(X̂1 ⊖ X̃1)

+ S2J2(X̂2 ⊖ X̃2),

V = Ψ+ S1J1P̃1J
T
1 ST

1 + S2J2P̃2J
T
2 ST

2 ,

(6.26)

where iteration is done with X̂i ← X̂i ⊕ δx̂i after initialization with X̂i ← X̃i. The marginal
posterior covariances of Robots 1 and 2 are obtained from the corresponding diagonal blocks
of (HTWH)−1, and can be shown to be

P̂1 = (1−K1S1)J1P̃1JT
1 ,

P̂2 = (1−K2S2)J2P̃2JT
2 .

(6.27)

The above fusion step introduces cross-correlations between the state estimates of X1 and X2,
and hence require a covariance intersection step

P̂1 ←
1

w
P̂1, P̂2 ←

1

1− w P̂2, w ∈ (0, 1). (6.28)

The next step is to make the approximation that p(X1:N |y12) ≈
∏N

i=1NL(X̂i, P̂i), and proceed
with the fusion of a second pseudomeasurement, using p(X1:N |y12, y13) = ηp(y13|X1,X3)p(X1:N |y12).
This new posterior can again be approximated as Gaussian using the expressions in (6.26) and
(6.27), and the process is repeated until all pseudomeasurements are incorporated. Algorithm 2
summarizes the general-purpose decentralized estimation algorithm from the point of view of
an arbitrary robot. The algorithm is presented in a callback format, describing how the current
state estimate is updated when various events occur. In practice the pseudomeasurement
covariance Ψ can be made very small, such as Ψ = 10−6 ·1, to enforce instantaneous matching
of state estimates.
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Algorithm 2 Decentralized estimation with no input sharing.
For Robot i with process and measurement models given by (6.1), the following points
break down how to compute the estimate when various events occur. Robot i’s estimate is
initialized with X̌i0 , P̌i0 . The matrices Fik ,Lik

are the Jacobians of f with respect to Xik and
wik

, respectively. The matrix Gik
is the Jacobian of g, and Sik ,Sjk are the Jacobians of cij

with respect to Xik ,Xjk , respectively.
• On the reception of an input measurement uik−1

:

X̌ik = f(X̂ik−1
,uik−1

, 0), (6.29)

P̌ik = Fik−1
P̂ik−1

FT
ik−1

+ Lik−1
Qk−1LT

ik−1
. (6.30)

• On the reception of a local measurement yik :

K = P̂ikGT
ik
(Gik

P̂ikGT
ik
+ Rik

)−1,

δx̃ = K(yik − g(X̌ik)),
X̃ik = X̌ik ⊕ δx̃,
P̃ik = (1−KGik

)P̌ik .

• On the reception of a neighbors’ state estimate X̃jk , P̃jk :

P̃i ←
1

w
P̃i, P̃j ←

1

1− w P̃j,

K = P̃ikST
ik
(Ψ+ Sik P̃T

ik
ST
ik
+ Sjk P̃T

jk
ST
jk
)−1,

δx̂ = −K(cij(X̃ik , X̃jk)),
X̂ik = X̃ik ⊕ δx̂,
P̂ik = (1−KGik

)P̃ik ,

and optionally further iterate both robot estimates with (6.26), (6.27).
• At any time, send the current state estimate X̃jk , P̃jk to neighbors.

6.6.1 An Observability Test

In a decentralized state estimation context, the full system state is the concatenation of all
the robots’ states. Hence, observability of this system refers to the ability to recover the state
trajectory of each robot given the inputs and measurements of all robots. An observability
test for decentralized estimators should therefore take into account all the local measurements
collected by each robot and what information is communicated between them. Consider
again the simple toy problem described in Section 6.5, but with neither robot collecting
absolute position measurements, thus making both robot’s states unobservable. Performing a
standard observability test for an individual robot, treating the other robot’s estimate as a
“measurement”, will falsely conclude that the system is observable. On the other hand, the
upcoming observability test will correctly indicate that there is an unobservable degree of
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freedom in the joint system state, through rank deficiency of an observability matrix.
The pseudomeasurements encode the communication structure between the robots. An

advantage of this proposed approach is that it allows the straightforward application of
common observability tests to the entire team of robots, viewed as a single system. A local
observability test can be formed by considering the MAP problem on an entire trajectory
simultaneously, but without prior information on the initial state ([41]). Let the bolded
X k = (X1k

, . . . ,XNk
) denote the state of all robots at time step k, yk = [yT

1k
. . . yT

Nk
]T

denote a stacked vector containing all the robots’ local measurements at time step k. Let
ψk = [ . . . yT

ij . . . ]
T, (i, j) ∈ E denote the stacked pseudomeasurements between all robots

at time step k. The MAP problem is

X̂ 0:K = argmax
X 0:K

p(X 0:K |y0:K ,ψ0:K) (6.31)

with

p(X 0:K |y0:K ,ψ0:K) = η
K∏
k=0

p(y0|X 0)p(ψ0|X 0)
K∏
k=1

p(X k|X k−1),

leading to a nonlinear least squares problem with weight W and error vector

e(X 0:K) = [ . . . eu,k . . . ey,k . . . eψ,k . . .]
T,

eu,k = [. . . (Xik ⊖ f(Xik−1
,uik−1

))T . . .],

ey,k = [ . . . (yik − g(Xik))
T . . . ], i = 1, . . . , N,

eψ,k = [ . . . − cij(Xik ,Xjk)
T . . . ], (i, j) ∈ E .

The error Jacobian is

H =



−F0 1
. . . . . .

−FK−1 1
−G0

−G1

. . .

−GK

−Φ0

−Φ1

. . .

−ΦK



, (6.32)
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Fk = diag

(
. . . ,

Df(Xik ,uik)
DXik

, . . .

)
, (6.33)

Gk = diag

(
. . . ,

Dg(Xik)
DXik

, . . .

)
, i = 1, . . . , N, (6.34)

Φk = −
Deψ,k(X k)

DX k

, (6.35)

with all undisplayed entries in H equal to zero. For the solution to the MAP problem to be
unique, then to first order, (HTWH) must be invertible, and thus full rank. Fortunately, W
is always positive definite regardless of any cross-correlations that would add off-diagonal
entries. Hence, rank(HTWH) = rank(H), and it is thus required that H be full column rank.
This implies that the proposed observability test is unaffected by the approximation induced
by CI, or any cross-correlation terms that may or may not be successfully tracked. In a
similar way to [36, Ch 3.1.4], it can be shown that by performing a variety of elementary
row/column operations, the rank of H is equivalent to the rank of

O =


M0

M1F0
...

MKFK−1 . . .F0

 , Mk =

[
Gk

Φk

]
. (6.36)

Hence, if O has maximum rank, the solution to the MAP problem is locally unique, and the
system is said to be observable. Note that this test easily allows for time-varying graphs,
which would yield a different Φk for each time step k.

6.7 Efficient Odometry Sharing using Preintegration

Many problems, especially those where robots estimate their neighbors’ positions, will
require robots to have access to their neighbors’ process-model input values u. Until now, it
has been assumed that all robots have unrestricted access to each other’s inputs. In robot
state estimation applications, the input is often the odometry measurements, such as wheel
encoder or IMU measurements. These can occur at frequencies of 100 - 1000 Hz, and can
therefore be infeasible to share in real time, especially if multiple robots are to simultaneously
share measurements at high frequency. This could quickly reach a bandwidth limit on the
common communication channel, such as ultra-wideband radio.

The proposed solution to this problem is to use preintegration. That is, robots will
instead share preintegrated input measurements over an arbitrary duration of time instead of
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individual input measurements. Specifically, consider the following generic process model

Xk = f(Xk−1,uk−1,wk−1). (6.37)

The action of preintegration is to directly iterate this process model by repeated compositions
in order to, after algebraic manipulation, generate a new preintegrated process model fpq that
relates two states at arbitrary time steps k = p and k = q. That is,

Xp+1 = f(Xp,up,wp), (6.38)

Xp+2 = f(f(Xp,up,wp),up+1,wp+1), (6.39)
... (6.40)

Xq = f(f( . . . f(Xp,up,wp) . . . ),uq−1,wq−1) (6.41)

≜ fpq(Xi,∆Xpq)⊕ wpq, (6.42)

where ∆Xpq is the relative motion increment (RMI), which in general may also belong to a
Lie group, and wpq ∼ N (0,Qpq) is the preintegrated noise. The advantages of preintegration
will stem from the careful choice of RMI definition, which is ideally done such that the RMI
has the following properties.

1. The RMI is determined from the input measurements exclusively, and is independent
of the state estimate:

∆Xpq = ∆Xpq(up:q−1). (6.43)

2. Far fewer numbers are required to represent the RMI than the (q−p) raw measurements
that occurred during the preintegration interval:

dim(∆Xpq) << (q − p) dim(uk). (6.44)

If the above points are true, communicating ∆Xpq,Qpq instead of up:q−1 will not only reduce
the communication cost, but will also result in a fixed message size and ability to directly
predict the state forward over a long duration of time, instead of sequentially processing the
measurements. It turns out that many common process models in robotics are amenable to
preintegration, and furthermore are typically extremely fast to preintegrate incrementally as
input measurements are obtained. That is, there exists a function Increment(·) such that

∆Xpq,Qpq = Increment(∆Xp:q−1,Qp:q−1,uq−1).

A few examples now follow, which describe concrete implementations of ∆Xpq, fpq(·), and
Increment(·).
Example 6.7.1 (Linear preintegration). The linear process model

xk = Fk−1xk−1 + Lk−1uk−1 (6.45)
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can be directly iterated to yield

xq =

(
q−1∏
k=p

Fk

)
xp +

q−1∑
k=p

(
q−1∏
ℓ=k+1

Fℓ

)
Lkuk (6.46)

≜ Fpqxp +∆xpq, (6.47)

where (6.47) defined f(·). Assuming that noise enters the model additively through the input
uk = ūk + wk, where wk ∼ N (0,Qk), (6.47) becomes xj = Fpqxi +∆x̄pq + wpq where

wpq ≜
q−1∑
k=p

(
q−1∏
ℓ=k+1

Fℓ

)
Lkwk, (6.48)

= Fq−1wpq−1 + Lq−1wq−1. (6.49)

The RMI ∆xpq and corresponding covariance are therefore built incrementally with

∆xpq = Fq−1∆xpq−1 + Lq−1uq−1, (6.50)

Qpq = Fq−1Qpq−1F
T
q−1 + Lq−1Qq−1L

T
q−1, (6.51)

which together define the Increment(·) function.
Example 6.7.2 (Wheel odometry preintegration on SE(2)). Given a robot pose T ∈ SE(2),
the wheel odometry process model is given by

Tk = Tk−1Exp(∆tuk−1), (6.52)

where u = [ω v 0]T, ω is the robot’s heading rate-of-change, and v is its forward velocity in
its own body frame. Direct iteration yields the preintegrated process model fpq(·) given by

Tq = Tp

q−1∏
k=p

Exp(∆tuk)︸ ︷︷ ︸
≜∆Tpq

. (6.53)

Noise wk ∼ N (0,Qk) is again assummed to enter additively through the input, and a series
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of first-order approximations lead to

∆Tpq =

q−1∏
k=p

Exp(∆t(ūk + wk))

≈
q−1∏
k=p

Exp(∆tūk)Exp(∆tJkwk)

≈ ∆T̄pq

q−1∏
k=p

Exp(∆tAd(∆T−1
k+1j)Jkwk)︸ ︷︷ ︸

Exp(wpq)

,

where Jk ≜ J(∆tūk) is the right Jacobian of SE(2). Having identified an expression for
Exp(wpq), under the assumption that wpq is small,

wpq ≈
q−1∑
k=p

∆tAd(∆T−1
k+1q)Jkwk

=

q−2∑
k=p

∆tAd(∆T−1
k+1q)Jkwk

+∆tAd(∆T−1
qq )︸ ︷︷ ︸

1

Jq−1wq−1

= Ad(∆T−1
q−1q)︸ ︷︷ ︸

≜Fq−1

wpq−1 +∆tJq−1︸ ︷︷ ︸
≜Lq−1

wq−1,

and the defining operations of the Increment(·) function follow,

∆Tpq = ∆Tpq−1Exp(∆tuk), (6.54)

Qpq = Fq−1Qpq−1F
T
q−1 + Lq−1Qq−1LT

q−1. (6.55)

Example 6.7.3 (IMU preintegration). Being the most well-known usage of preintegration, a
complete reference for IMU preintegration on the SO(3)×R3 ×R3 manifold can be obtained
from [50], and alternatively for the SE2(3) group from [36, 51]. Either approach can be used
with the framework in this chapter. However in Section 6.9 of this chapter, Twi ∈ SE2(3)

matrices are used to represent the extended pose of Robot i relative to an inertial world
frame w. Following [81] and [51], it can be shown that the discrete-time IMU kinematic
equations can be written in the form

Twik
= Gk−1Twik−1

Uk−1, (6.56)
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where

Twik
=

 C v r
0 1 0

0 0 1



Gk−1 =

 1 ∆tg −∆t2

2
g

0 1 −∆t
0 0 1



Uk−1 =

 exp(∆tω∧) ∆tJ(∆tω)a ∆t2

2
N(∆tω)a

0 1 ∆t

0 0 1


N(ϕ) = zzT + 2

(
1

ϕ
− sinϕ

ϕ2

)
z∧ + 2

cosϕ− 1

ϕ2
z∧z∧

ϕ = ∥ϕ∥ , z = ϕ/ϕ,

and C ∈ SO(3), v, r respectively represent attitude, velocity, position relative to frame
w, ω is the IMU’s unbiased gyro measurement, a is the IMU’s unbiased accelerometer
measurement, g is the gravity vector resolved in frame w, and J(ϕ) is the left Jacobian of
SO(3). Preintegration of these kinematics is easily achieved by direct iteration with

Twiq =

(
q−1∏
k=p

Gk−1

)
Twip

(
q−1∏
k=p

Uk−1

)
(6.57)

≜ ∆GpqTwip∆Upq, (6.58)

where ∆Upq is the RMI, and the noise statistics can be propagated through this preintegration
process by a standard linearization procedure. [81] present the details of the noise propagation,
as well as how to adapt this formulation for relative poses.

6.7.1 Multi-robot preintegration

In the context of multi-robot estimation problems, an individual robot’s process model
may involve the input values of many neighboring robots. To reflect this, rewrite the process
model for Robot i as

Xik = f(Xik−1
,uik−1

,ujk−1
), j ∈ Ni, (6.59)

where uik denotes an input measured by Robot i and Ni denotes the set of neighbor IDs of
Robot i. The preintegrated process model would now be written as

Xiq = fpq(Xip ,∆Xipq ,∆Xjpq), j ∈ Ni, (6.60)
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where ∆Xipq denotes an RMI calculated from the input measurements of Robot i.
A complication is that the RMIs from neighboring Robots ∆Xjpq are only available

asynchronously, meaning it is not always possible to evaluate (6.60) directly. To deal with
this, assume that the preintegrated process model fpq is compatible with

Xik−1
= f(Xik−2

,uik−2
, 0), (6.61)

Xik
= f(Xik−1

,uik−1
, 0), (6.62)

Xik = fpq(Xik
, I,∆Xjpq), (6.63)

where I is the identity element. The variable Xik
represents an intermediate, non-physical

state that is continuously propagated using the process model without input information
from neighboring robots. Sometime later, at arbitrary time step k = q, the RMI from a
neighboring robot ∆Xjpq is received and this intermediate state Xiq is propagated back into a
physically meaningful quantity Xiq . A concrete example of this asynchronous intermediate
state updating is shown in Section 6.8, and a summary is shown in Algorithm 3.

Algorithm 3 Decentralized estimation with preintegration.
The setup is identical to Algorithm 2, except that the process model requires input information
from neighboring robots as in (6.59), (6.60).

• On the reception of a local input measurement uik−1
:

Xik
= f(X̂ik−1

,uik−1
, 0)

Pik
= Fik−1

P̂ik−1
FT
ik−1

+ Lik−1
Qk−1LT

ik−1
.,

and increment Robot i’s own RMI,

∆Xipk ,Qipk
= Increment(∆Xipk−1

,Qipk−1
,uik−1

).

• Whenever required, send ∆Xipq ,Qipq to neighbors.
• On the reception of a neighboring robot’s RMI and covariance ∆Xjpq ,Qjpq ,

Xiq = fpq(Xiq , I,∆Xjpq),

Fpq =
Dfpq(X, I,∆Xjpq)

DX

∣∣∣∣
Xiq

,

P̌iq = FpqPik−1
FT
pq + Qjpq .

• On the reception of a local measurement yik , proceed as per Algorithm 2.
• On the reception of a neighbors’ state estimate X̃j, P̃j, proceed as per Algorithm 2.
• At any time, send the current state estimate X̃jk , P̃jk to neighbors.
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6.7.2 Estimating Input Biases

For some problems, it may be desired to estimate an input bias b as part of the overall
state X , a setup commonly occuring in inertial navigation where accelerometer and rate
gyro biases are estimated. The difficulty lies in the frequent inability to express RMIs
independently of the bias values, thus leaving RMIs in the form of

∆Xpq(up:q−1,bp:q−1). (6.64)

In the context of the multi-robot estimation scheme shown in Algorithm 3, computing RMIs
this way causes inconsistency in the filter, since the RMIs are now correlated with the robot
states. Accounting for this would require maintaining the cross-correlation between a robot’s
state and their neighbors’ biases.

A simpler alternate solution is to have robots estimate their neighbors’ input biases in
addition to their own. This requires to exploit the fact that biases are usually modelled to
follow a random walk, and therefore have a constant mean in the absence of any correcting
information. This motivates the approximation bp ≈ bp+1 ≈ . . . ≈ bq and hence

∆Xpq(up:q−1,bp:q−1) ≈ ∆Xpq(up:q−1,bq). (6.65)

When robots receive input measurements, they increment their RMIs with raw (biased) inputs
to produce ∆Xpq(up:q−1, 0). At an appropriate time, they share their current biased RMIs,
which is corrected for bias by the receiving robot using the first-order approximation

∆Xpq(up:q−1,bq) ≈ ∆Xpq(up:q−1, 0)⊕ Bpqbq, (6.66)

Bpq ≜
D

Dbq

(
∆Xpq(up:q−1,bq)

)
, (6.67)

where Bpq is defined as the bias jacobian. Equation (6.66) is an approximation that contributes
unmodelled errors to the estimation problem, relying on an assumption that bq is small. This
can be enabled by a proper offline calibration procedure that removes any large bias, and only
small deviations from this are estimated online. Such a procedure is used for the quadcopter
problem in Section 6.9, where good, consistent estimation results are still obtained despite
the approximation in (6.66).

6.7.3 Autoencoding Covariance Matrices

As shown in Algorithm 3, predicting state estimates that are a function of neighbor inputs
requires the RMI ∆Xpq along with a corresponding covariance Qpq. As is, these two quantities
must be shared between robots. This section proposes an optional method that further
reduces communication costs by eliminating the requirement to share the preintegrated

86



covariance Qpq. This method is applicable to any preintegrated process model, although it
was only employed for IMU preintegration in this work.

The key insight is that ∆Xpq(up:q−1) and Qpq(up:q−1) are both calculated from the same
input values up:q−1. Hence, if an alternate mapping Qpq = h(∆Xpq) existed, then it would be
sufficient to share ∆Xpq only, and the receiving robot could infer Qpq directly from the RMI.
In the absence of analytic expressions for h(·), this chapter approximates the function with a
neural network, trained on purely synthetic RMI-covariance pairs. An additional complication
is that such a function h(·) may not always exist since an RMI can correspond to many
possible covariances depending on the input values. In this case h(·) is not a true function
since it is one-to-many, and its definition is modified to also accept a low-dimensional encoding
e(Qpq), leading to Qpq = h(∆Xpq, e(Qpq)). This leads to an architecture here referred to as
mean-assisted autoencoding, depicted in Figure 6.4. The flattened lower-triangular half of
Qpq is given to a simple fully-connected encoder network with GELU activation functions
and a single hidden layer. The output of this network is the encoding, which can be as small
as one or two numbers. This encoding is then concatenated with a parameterization of the
RMI ∆Xpq and fed to a similar decoder network. The decoder network outputs the flattened
lower-triangular half of a reconstructed covariance matrix denoted Q̂pq. For training, the loss
function simply uses the Frobenius norm,

L(Qpq, Q̂pq) = ||Qpq − Q̂pq||F. (6.68)

Figure 6.5 shows the training convergence history for various encoding sizes, applied to IMU
preintegration. The Adam optimizer is chosen with an initial learning rate of 10−3 that is
scheduled to decrease once the loss plateaus. The encoder/decoder networks have hidden
layers with 256 neurons, and the training process takes just a few minutes on a laptop CPU to
achieve less than 1% average reconstruction error on a validation dataset from experimental
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Encoder
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Concatenate 

encoding with RMI

Figure 6.4: Concept diagram of mean-assisted autoencoder.
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data. The training data is purely synthetic, where RMIs are constructed from a random
amount of random IMU measurements, with values covering the realistic range of real IMU
measurements. Since the length of the dataset is infinite, the risk of overfitting is completely
eliminated, and the autoencoder can immediately generalize to different real physical IMUs.
A visualization of the reconstructed covariance matrices can be seen in Figure 6.5, using
an encoding size of only 1 number. Section 6.9 will employ this method “in the loop” for a
real quadcopter problem. It will be shown that the reconstruction error is so small that the
impact on the estimation results are negligible.

Concretely, using IMU preintegration as an example, the RMI itself must be communicated,
which requires 10 floating-point numbers. However, the covariance matrix is 15× 15, which
would require communication of an additional 120 floating-point numbers to represent one of
its triangular halves. With the proposed autoencoder, these 120 numbers are replaced with
an encoding consisting of one number, thus dramatically reducing the communication cost.

6.8 Simulation with Ground Robots

The proposed algorithm is tested in a simulation with ground robots, shown in the center
of Figure 6.1. Each robot estimates their own pose and their neighbors’ poses relative to a
world frame. Denoting the pose of Robot i relative to the world frame w as Twi ∈ SE(2),
the state of an arbitrary robot is given by

Xik =
(

T[i]
wik
,T[i]

wjk
, . . .

)
, j ∈ Ni, (6.69)

where, again, the (·)[i] superscript indicates Robot i’s estimate or “instance” of that physical
quantity. Each robot collects wheel odometry at 100 Hz, providing uik = [ωik vik 0]T as input
measurements, where ωik is Robot i’s angular velocity and vik is its forward velocity in its
own body frame. The pose kinematics for any single robot along with its preintegration are
shown in Example 6.7.2. When Robot i receives an input measurement, it updates the part
of its state corresponding to its own pose to create

Xik
=
(

T[i]
iwk−1

Exp(∆tuik−1
),T[i]

wjk−1
, . . .

)
. (6.70)

The neighbor poses Twjk−1
are now out of date, as neighboring odometry information is not

yet accessible to Robot i, and this partially out-of-date state is non-physical and given the
symbol Xik

. When a neighbor’s RMI ∆Tjpq is received at some later time step k = q, the
state is updated with

Xiq =
(

T[i]
iwq
,T[i]

wjp
∆Tjpq , . . .

)
(6.71)

where p represents the time step index of the last time a neighbor RMI was received.
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Figure 6.7: RMSE for the ground robot simulation. There are four blue lines for the four robots running the
proposed algorithm, and four visibly coincident red lines for the naive algorithm. Top: State fusion occuring
at 10 Hz. Bottom: State fusion occuring at 1Hz.

Each robot also collects range measurements to its neighbors at 10 Hz, and only two
robots collect relative position measurements to known landmarks at 10 Hz. At an arbitrary
separate frequency, each robot sends its current state and covariance to its neighbors, allowing
the neighbors to compute pseudomeasurements of the form

cij(Xi,Xj) =


Log

(
T[i]−1

wi T[j]
wi

)
Log

(
T[i]−1

wj T[j]
wj

)
Log

(
T[i]−1

wℓ T[j]
wℓ

)
...

 , ℓ ∈ Ni ∩Nj. (6.72)

A simulation is performed with 4 robots each executing Algorithm 3, with root-mean-
squared error (RMSE) and normalized estimation error squared (NEES) plots shown in
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Figure 6.8: NEES plots for the ground robot simulation with 95% confidence bounds for the proposed vs.
centralized solution. The naive solution without CI is far outside the plot.

Figure 6.7 and 6.8, respectively. The results show that all four robots’ estimation errors
successfully stabilize and remain low, despite only two robots having sufficient sensors to
make their states observable. Due to covariance intersection, the decentralized solution is
slightly underconfident, but this is preferred compared to overconfidence. If state fusion
is done at a sufficiently high frequency, performance is even comparable to the centralized
estimator.

6.9 Simulation and Experiments with Quadcopters

To demonstrate the flexibility of the proposed framework, consider a new problem
involving quadcopters. The kinematic state of each quadcopter is modelled using extended
pose matrices T ∈ SE2(3) ([51]). Each robot estimates both their absolute pose relative to
the world frame Twi ∈ SE2(3), their own IMU bias bi, as well as the relative poses of their
neighbors Tij ∈ SE2(3) and their IMU bias bj. The full state of Robot i is then given by

Xi = (Twi,b
[i]
i ,Tij,b

[i]
j , . . .), j ∈ Ni. (6.73)

The pose of Robot j relative to Robot i Tij has kinematics involving the IMU measurements
of both robots, and are given in discrete time by

Tijk
= U−1

ik−1
Tijk−1

Ujk−1
, (6.74)

where Ujk−1
has an identical definition as in (6.56), but computed from Robot j’s IMU

measurements. When Robot i receives input measurements from its own IMU uk, it predicts
the part of its own state corresponding to its own pose, and additionally performs a partial
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Figure 6.9: Simulation estimation error of Robot 3’s estimate of its own kinematic state and IMU biases.
The estimate and corresponding bounds with the proposed algorithm is shown in blue, with the centralized
estimate overlayed in dark grey. For attitude, the x − y − z components represent roll-pitch-yaw errors
respectively. Note that Robot 3 does not have GPS measurements, and therefore cannot observe the states
shown in this plot without information sharing. The naive solution has rapidly diverging error and is not
plotted.

prediction on the relative poses with

Xik
= (Gk−1Twik−1

Uik−1
,b[i]

ik−1
,U−1

ik−1
Tijk−1

,b[i]
jk−1

, . . .). (6.75)

The terms Tijk−1
≜ U−1

ik−1
Tijk−1

, which are the partially-predicted neighbor poses, are a
strange, non-physical intermediate state. Only when the neighbor’s RMI ∆Ujpq is received
do the neighbor poses regain meaning with Tijq = Tijp∆Ujpq . However, since biases are
also being estimated in this problem, Robot i must first correct the neighbor’s raw RMIs
∆Ujpq(ujp:q−1

, 0) using its estimate of the neighbor’s IMU bias, as described in Section 6.7.2.
That is,

∆Ujpq ≈ ∆Ujpq(ujp:q−1
, 0)⊕ Bjpqb[i]

jq
, (6.76)
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Figure 6.10: Top: Three quadcopters in flight under a motion capture system. Bottom left: our custom
UWB module. Bottom right: a close up of the Uvify IFO-S quadcopter, fitted with a UWB module seen
on the left leg, as well as on the opposite leg.

leading to the full state update given by

Xiq = (Twiq ,b
[i]
q ,Tijp∆Ujpq ,b

[i]
jq
. . .). (6.77)

Finally, the pseudomeasurements chosen for this problem are

cij(Xi,Xj) =



Log
(
TwiTijT

−1
wj

)
Log

(
TijTji

)
b[i]
i − b[j]

i

b[i]
j − b[j]

j

Log
(
TijTjℓT

−1
iℓ

)
...


, ℓ ∈ Ni ∩Nj. (6.78)
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Figure 6.11: Examples of the various trajectories flown in the experimental trials, where each color represents
a different quadcopter.

Table 6.1: Self- Positioning RMSE (m) from experimental trials.

Trial # Centralized Proposed Error Reduction

Robot 1 Robot 2 Robot 3 Robot 1 Robot 2 Robot 3 Robot 1 Robot 2 Robot 3

1 0.43 0.49 0.55 0.22 0.22 0.61 -48% -54% 10%
2 0.18 0.26 0.34 0.16 0.18 0.40 -13% -28% 16%
3 0.17 0.24 0.68 0.16 0.17 0.45 -10% -28% -33%
4 0.20 0.25 0.31 0.26 0.28 0.48 32% -13% 55%

6.9.1 Simulation Results

The algorithm is first tested with simulated versions of the described quadcopters, and the
estimation results for Robot 3’s absolute pose and bias are shown in Figure 6.9. Although there
are many other states associated with the simulation, these states are the most interesting as
they are the ones that are unobservable without incorporation of the pseudomeasurements.
Figure 6.9 shows that Robot 3 is capable of estimating its own absolute pose and bias, using
information from sensors located on Robots 1 and 2. Furthermore, the errors remain within
the 3-sigma confidence bounds, even with the first-order RMI bias correction, indicating
statistical consistency.

6.9.2 Hardware Setup

The hardware setup in these experiments can be seen in Figure 6.10. Three Uvify IFO-S
quadcopters are used that each possess an IMU at 200Hz, a 1D LIDAR height sensor at
30Hz, and magnetometers at 30Hz. Additionally, two ultra-wideband (UWB) transceivers are
installed on the quadcopter legs, producing inter-robot distance measurements at 90Hz for
each robot. The UWB transceivers are custom-printed modules that use the DW1000 UWB
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Figure 6.12: Position, velocity, and yaw RMSE for Robot 3 from one of the experimental trials. Since Robot
3 has no GPS, these quantities are unobservable without the fusion of pseudomeasurements.

transceiver. The firmware for these modules has been written in C, implementing a double-
sided two-way-ranging protocol with details described by [16]. [16] also describe the power-
based bias calibration and noise characterization procedure used in these experiments. Since
all transceivers operate on the same frequency in these experiments, only one can transmit
at a time to avoid interference. A decentralized scheduler is therefore implemented that
continuously cycles through all transceiver pairs one at a time, obtaining range measurements
and potentially transmitting other useful data.

A Vicon motion capture system is used to collect ground truth, from which synthesized
GPS measurements with a standard deviation of 0.3 m are generated for Robots 1 and 2 only.
Robot 3 does not possess GPS measurements, nor any magnetometer measurements, and
therefore has no absolute pose information available without communication with the other
two robots. Example trajectories for some of the experimental trials are shown in Figure
6.11.

6.9.3 Experimental Results

Multiple experimental runs are performed on different days, with the absolute positioning
results for each robot viewable in Table 6.1. In some cases, the proposed algorithm even
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Figure 6.13: The effect of preintegrated covariance autoencoding, as described in Section 6.7.3, on the position
estimate of Robot 1. The two lines are almost identical, showing that the proposed autoencoder induces
minimal error on the estimate. All other states have similar plots.

outperforms the centralized solution, which is theoretically optimal. However, the real world
contains many unmodelled sources of error, such as frame misalignments, timestamping errors,
vibrations, and UWB ranging outliers. Even after substantially increasing the datasheet-
provided covariances associated with the IMU measurements, it appears that the results benefit
from the covariance inflation resulting from CI. For both estimators, the IMU is calibrated
to compensate for large biases and scaling factors. The normalized-innovation-squared test
([44]) is also used to reject UWB outliers in both estimators,

A plot of RMSE versus time for Robot 3’s absolute states can be seen in Figure 6.12,
which are states that are unobservable from Robot 3’s own measurements. Again, Figure 6.12
shows that error magnitudes lie in similar ranges for both the centralized and decentralized
estimators. Figure 6.13 compares two decentralized estimator runs, with one using the
mean-assisted autoencoder from Section 6.7.3. As desired, the lines are identical, and the plot
shows that the estimate is unaffected by the autoencoding. This means that the autoencoder
is highly effective at compressing the covariance matrix with minimal reconstruction error.

6.10 Conclusion and Future Work

This chapter presents a general-purpose algorithm for decentralized state estimation
in robotics. The algorithm is the result of a new way to formulate the decentralized
state estimation problem, specifically with the assistance of pseudomeasurements that
allow the definition of arbitrary nonlinear relationships between robot states. Another
core contribution is the use of preintegration when robots require access to each other’s
process model input information. Using the proposed preintegration, along with a proposed
covariance autoencoding method, communication requirements between robots are reduced
substantially. The algorithm is tested on three different problems, each involving a variety of
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state definitions, process models, and measurements. Thanks to covariance intersection, the
algorithm is appropriate for arbitrary, potentially time-varying graphs, and does not require
any bookkeeping, growing memory, buffering of measurements, or reprocessing of data. At the
same time, the approximation made by covariance intersection makes the proposed method
suboptimal in terms of estimation variance, as it is well-known to be overly-conservative.
Nevertheless, in the specific problems shown in this chapter, the results using CI have been
satisfactory provided that the fusion frequency is high enough.

Future improvements to the framework proposed in this chapter include the following.
• Improving the approximation made by covariance intersection.

While covariance intersection can sometimes be effective, and is arguably the simplest
non-diverging solution, it can lead to poor performance for some problems. A first
improvement could be to use split covariance intersection (SCI) as shown in [77], or a
more recent approach presented in [90] that more directly tracks cross-correlations, but
still only approximately.

• Decentralized batch and sliding-window estimators.
It should be possible to also derive decentralized full-batch and sliding-window estimators,
often termed smoothers, given that these both originate from the MAP approach, which
is also what is done in this chapter. Sliding-window filters and incremental batch
approaches have become popular in the SLAM and visual-inertial odometry (VIO)
literature [50, 94, 95]. Developing decentralized smoothers could allow for tight-coupling
of relative states within a robot’s VIO algorithm.
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Chapter 7

Concluding Remarks

This thesis presents various algorithms for relative position or pose estimation between
robots. The algorithms are analyzed and evaluated in simulation and experimental data, and
an effort has been made to limit the sensor choice to small, cheap, easy-to-process sensors.
For this reason, the use of cameras and LIDAR are notable omissions from the sensor choices
in this thesis.

A summary of contributions can be found in the front matter to this thesis. The final
section of each chapter expands more on the contributions made in that chapter, provides
a comprehensive discussion on the limitations of the corresponding algorithm, and finally
suggests many future research directions that could address these limitations.

The most accurate real relative positioning estimates obtained in this thesis were in the
range of 0.19 m - 0.26 m, obtained in Chapter 6, with multiple UWB tags per quadcopter,
as well as height, IMU, and GPS measurements for 2 out of 3 robots. This accuracy may
be impressive given the limited sensors used, but is still significantly more error than the
results reported in [10], for example, which reports an error of 0.05 m with the assistance of
stereo cameras with direct visual detection of neighboring robots. The easiest way to improve
the accuracy of the relative position estimates would be to add more sensors to each robot.
Chapter 6 is fortunately general to arbitrary measurement models, and hence the proposed
method is still applicable even when more sensors are added. Nevertheless, even with the
existing sensor set used in this thesis, there were still many practical issues that degraded
accuracy. This will be discussed in the next section.

7.1 Future Work

While UWB has many attractive features, it remains a challenging sensor to work with.
Apart from the fact that a single distance measurement is not a lot of information, UWB is
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prone to ranging error as a result of unmodelled antenna delays, variable antenna radiation
patterns, non-line-of-sight conditions, and multipath propagation. An attempt at calibrating-
out these effects has been documented in recent work [16], but it could be possible to further
improve this calibration procedure so that the range measurements themselves become more
accurate.

Most results in this thesis rely on inertial measurement units (IMU) as a source of
odometry. IMUs are extremely cheap and lightweight, but require a double integration
procedure to produce position priors, and may have biases that must be estimated online.
Furthermore, as seen in flying experiments, vibrations heavily degrade the dead-reckoned
estimate obtained from the IMU. It was necessary to dramatically increase the associated
covariances, compared to the IMU’s datasheet, in order to obtain consistent estimates. If
the odometry can be improved in any way, it will likely result in significantly more accurate
estimates.

• Relative-pose-dependent UWB bias correction.
Recent co-authored work in [16] fits a simple polynomial model that maps received signal
power to a ranging bias. This method is effective and simple to use, since it does not
require any robot state information. However, inspired by [96], further improvements
could be obtained by learning a relationship between the relative poses between the
tags and the bias. One downside of this approach, is that the bias calibration would
become a function of the state, and must therefore be directly in the loop with the
estimator. This could yield less predictable, more complex behavior.

• Improved inertial dead-reckoning for quadcopters.
Inertial dead-reckoning on quadcopters is heavily degraded by the presence of vibrations,
and the solution drifts to hundreds of meters of error in a matter of seconds. Apart
from rigorous IMU calibration, one way to improve the dead-reckoning would be to
identify moments of near-zero velocity [53], which can then lead to the creation of
zero-velocity pseudomeasurements, that can be incorporated into any of the filters
described in this thesis. Another approach could be to learn displacements or velocity
from IMU measurements directly using a data-driven model, as done in [97].

• Gaussian sum filtering for range-based relative pose estimation.
This idea is particularly applicable to a setup similar to that described in Chapter 5.
That is, relative pose estimation where each robot possesses two UWB tags. In this
case, while the relative poses are locally unique given the range measurements, there
are still many other discrete formations that produce the same measurements. This, in
turn, gives rise to a multimodal distribution as the posterior distribution of relative
poses. As such, this problem is a natural use-case for the Gaussian sum filter [98]. A
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Gaussian sum filter could be initialized with an estimate at each mode, which would
then collapse to a single-mode distribution once the the robots move sufficiently.
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Appendix 1

The Complex-Step Derivative
Approximation on Matrix Lie Groups

A.1 Introduction

Path planning, state estimation, and control algorithms often require Jacobian computations
with respect to attitude and pose. Often these Jacobians are computed analytically, by hand
while adhering to the matrix Lie group structure of the problem [43]. However, in some cases
analytical computation of Jacobians may be impractical, necessitating a numerical procedure.
Numerical computation of Jacobians is also useful for quickly comparing algorithms that
require Jacobians, before investing effort into one specific algorithm and the associated
analytically derived Jacobians. Numerical Jacobians can also be used to verify Jacobians
that are derived by hand.

A variety of numerical differentiation techniques appropriate for matrix Lie groups can be
found in the literature. In [74] a forward-difference method is described for general matrix
manifolds, a method that is used in the open-source software MANOPT [99]. A central-
difference method is employed in the open-source software GTSAM [100], and automatic
differentiation methods are presented in [101, 102]. The Python-based software PYMANOPT
[103] is an open-source optimization toolbox for matrix manifolds that employs automatic
differentiation. SOPHUS [104] is another open-source C++ package that exploits the
automatic differentiation functionality available in CERES [105], a nonlinear least-squares
library developed by Google. However, automatic differentiation can be time consuming to
implement and finite-differencing is prone to subtractive cancellation errors, thus limiting
precision [106]. The complex-step derivative approximation is a numerical method for
computing first derivatives that does not suffer from subtractive cancellation errors [106].
One of the earlier appearances of the complex-step derivative can be found in [107], where
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the derivatives of scalar functions of real variables are evaluated. In [106], the complex-step
derivative is investigated further, along with its use in Fortran, C/C++, and other languages.
An application to a multidisciplinary design optimization problem is also shown. This method
has gained popularity due to its ability to realize machine-precision accuracy of derivative
computations, and doing so without tuning the step size, since it can be reduced to an
arbitrarily small value. The complex-step derivative also requires only one complex function
evaluation.

This appendix considers the formulation and application of the complex-step derivative
approximation to functions of matrix Lie group elements. The aforementioned advantages
of the standard complex-step derivative remain present, while the proposed method can be
used to compute both left and right Jacobians.

A.2 Review

Consider the complex-differentiable function f : C→ C perturbed about the nominal
point x̄ by jh where x̄, h ∈ R and j =

√
−1. A Taylor series expansion yields

f(x̄+ jh) = f(x̄) +
∂f(z)

∂z

∣∣∣∣
z=x̄

jh− 1

2

∂2f(z)

∂z2

∣∣∣∣
z=x̄

h2 − 1

3!

∂3f(z)

∂z3

∣∣∣∣
z=x̄

jh3 . . . (A.1)

If f(x̄) is assumed to be real for all real x̄, then, to first order, taking the imaginary portion
of (A.1) yields [107]

∂f(z)

∂z

∣∣∣∣
z=x̄

=
Im{f(x̄+ jh)}

h
+O(h2).

This is valid as long as f(x̄) ∈ R for all x̄ ∈ R, and that derivatives are evaluated at
strictly real nominal points. From a practical standpoint, a user is often attempting to find
derivatives of f : R→ R. Providing that this can be extended to f : C→ C such that f is
complex-differentiable, then with a minor abuse of notation, this can construct a derivative
approximation for f(x) as written in [106, 107],

df(x)

dx
≈ Im{f(x+ jh)}

h
.

Since there are no subtractive cancellation errors, the complex-step derivative approximation
can produce machine-precision approximations by reducing h to an arbitrarily small step size.

A.3 The Complex-Step Derivative on Matrix Lie Groups

Consider a complex-differentiable function f : G→ C, X(ϵR) = X̄ exp(ϵR
∧
) is parametrizable

by a perturbation ϵR = [ϵR1 ϵ
R
2 . . . ϵ

R
n ]

T ∈ Cn on the right, and X̄ ∈ Rm×m is some nominal
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value of X. Consider perturbing f(X(ϵR)) by ϵR = 0 + jh1i, where 1i is the ith column of
the appropriately-dimensioned identity matrix 1. The composition f(X(ϵR)) has essentially
recast f as f : Cn → C, from which a Taylor series expansion yields [108, Ch. 11.3]

f
(
X̄ exp((jh1i)

∧)
)
= f(X̄) +

∂f(X(ϵR))

∂ϵRi

∣∣∣∣
ϵR=0

jh− 1

2

∂2f(X(ϵR))

∂ϵR
2

i

∣∣∣∣
ϵR=0

h2 +O(h3). (A.2)

Since it is assumed that f(X̄) ∈ R, taking the imaginary component of (A.2) yields an
approximation for the derivative

∂f(X(ϵR))

∂ϵRi
≈ Im{f

(
X̄ exp((jh1i)∧)

)
}

h
. (A.3)

The right Jacobian ∂f(X(ϵR))/∂ϵR can be obtained by individually computing the derivatives
using (A.3) with i = 1, 2, . . . , n. The left Jacobian can identically be obtained by instead
parametrizing X with X(ϵL) = exp(ϵL

∧
)X̄. This leads to

∂f(X(ϵL))

∂ϵLi
≈ Im{f

(
exp((jh1i)∧)X̄

)
}

h
. (A.4)

Note that the superscripts on ϵR and ϵL are simply labels that correspond to right and left
perturbations, respectively, as opposed to exponents.

Example: Consider the function

f(T) = vTTy,

where T ∈ SE(3) and v, y ∈ R4. The left Jacobian can be determined analytically using the
first-order approximation T = exp(ϵL

∧
)T̄ ≈ (1 + ϵL

∧
)T̄ and a Taylor series expansion. To

this end,

f(exp(ϵL
∧
)T̄) = vT exp(ϵL

∧
)T̄y

≈ vT(1 + ϵL
∧
)T̄y

= vTT̄y + vT(T̄y)⊙︸ ︷︷ ︸
∂f(T(ϵL))

∂ϵL

∣∣∣
ϵL=0

ϵL. (A.5)

The elements of ∂f(T(ϵL))/∂ϵL are computed using (A.4) with varying step sizes h, and the
results are compared with a central-difference scheme in Fig. A.1. The error is computed by
taking the relative 2-norm of the difference between the analytical and numerical solutions.
Like the standard complex-step derivative, the complex-step derivative tailored to the matrix
Lie group SE(3) is able to achieve analytic accuracy, up to machine precision, for small
enough h, while the central-difference derivative is not.
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Figure A.1: Variation of relative error in gradient of f : SE(3)→ R with step size, for both complex-step
and central-difference methods. Machine precision is achievable with a sufficient reduction in step size.
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Appendix 2

Contributed open-source software

This thesis has also led to the development of two open-source Python packages that can
be used for general state estimation purposes:

• pylie - Lie groups operations in Numpy, Jax, and C++.
https://github.com/decargroup/pylie

Pylie is an instantiation-free Python package for common matrix Lie group operations
implemented as pure static classes. Using pure static classes keeps the usage extremely
simple while still allowing for abstraction and inheritance. The package does not
introduce new objects, with everything operating directly on Numpy or Jax arrays.
This allows users to implement their own more sophisticated objects using these classes
as back-end mathematical implementations.

• pynav - An on-manifold state estimation library.
https://github.com/decargroup/pynav

The core idea behind this project is to use abstraction and polymorphism such that a
single estimator implementation can operate on a variety of state manifolds, such as the
usual vector space, and any Lie group. This is done by defining a set of abstract classes
that the user must implement, corresponding to a state definition, process model, and
measurement model. A number of common general-purpose estimation algorithms are
available, such as the EKF, Iterated EKF, and sigma-point filters, in addition to a
variety of common process and measurement models.
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