
On Successor Representations for

Value Learning:
Efficient credit assignment through implicit models

Anthony G.X. Chen

Computer Science
McGill University, Montreal

December 14, 2021

A thesis submitted to McGill University in partial fulfilment of the requirements of

the degree of Master of Science. ©Anthony G.X. Chen; December 14, 2021.



i

Acknowledgements

I would like to thank my advisors, Joelle Pineau and Blake Richards. Joelle,

thank you for your wisdom, both in the technical subtleties of RL research, and

in the way you provide support and guidance. Blake, you are a masterful

example of how to bridge the fields of neuroscience and ML and I learn from

you daily. To both, I am grateful for the freedom I had to pursue ideas in this

amorphous intersection of neural-AI, as well as the always-insightful support I

am able to receive in both RL and neuroscience.

I am grateful to my colleagues at Mila. Thank you for making me feel

welcomed into a field that was new and intimidating, and for the always stim-

ulating discussions that span from fundamental issues in RL algorithms, to

interpreting experimental observations of specific brain regions. There were nu-

merous people who helped in various ways: Veronica Chelu, Emmanuel Bengio,

Nishanth Anand, Harsh Satija, Wesley Chung, Maxime Wabartha, Mandana

Samiei, Colleen Gillon, Samuel Laferriere, Arna Ghosh, Raymond Chua, Surya

Penmetsa, Chen Sun, Shahab Bakhtiari, Annik Carson, ... the list goes on.

Thank you also to Pierre-Luc Bacon whose vast knowledge of RL and optimal

control have both inspired and improved this thesis.

I am thankful for my friends. Your friendships have kept me sane throughout

the long and at times discouraging months of research, the uncertainty about

the future, and the isolation of the Covid pandemic that spanned the majority of

my master’s. To my family: Grace, Xenia, Kevin, Wendy, thank you for giving

me a home away from home. To my parents: thank you for always supporting

me, it means the world to me to know I can always turn to you in the moments

when I feel the most lost.



ii

Abstract

Reinforcement learning is a well-established framework for sequential de-

cision making. At its core is the value function—an estimate of total future

reward—a quantity to be maximized.1 A number of tools are utilized for value

learning. The lambda return is a way of efficiently combining full-trajectory in-

formation to construct learning targets. The successor representation is a way

of representing a decomposed value function in which dynamics are learned

separately from reward information, then combined to calculate value. Typi-

cally, the lambda-return has been used for efficient learning, while the successor

representation has been used for transferring to new tasks.

In this thesis, we revisit the above two core concepts. We explore the vari-

ous forms of the lambda return, showing ways of decomposing out the dynamics

information—in the form of successor representations / features—to be inde-

pendently learned. This gives rise to a novel class of reinforcement learning

algorithms which directly uses successor-like representation for efficient credit

assignment. We introduce and investigate this class of algorithms, provide the-

oretical justifications, and empirically demonstrate how this approach results

in efficient credit assignment. Finally we discuss recent neuroscience theories

on the connections between successor representation and the brain, and how

our new algorithm class extends theories and predictions for the neuroscience

of reinforcement learning.

1Specifically, the value function is particularly important for the approximate dynamic program-
ming formulation of reinforcement learning, such as temporal difference learning.
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Résumé

L’apprentissage par renforcement est un paradigme établi pour la prise de

décision séquentielle. À sa base se trouve la fonction de valeur—une estimation

de la récompense future totale—une quantité à maximiser. Un certain nombre

d’outils sont utilisés pour l’apprentissage de la valeur. Le lambda return (retour

lambda) est un moyen de combiner efficacement les informations d’une trajec-

toire pour construire des cibles d’apprentissage. La successor representation

(représentation de successeurs) est un moyen de représenter une fonction de

valeur factorisée dans laquelle les dynamiques de l’environnement sont apprises

séparément des informations de récompense, puis combinées pour calculer la

valeur. En règle générale, le retour lambda est utilisé pour un apprentissage

efficace, tandis que la représentation de successeurs est utilisée pour le transfert

vers de nouvelles tâches.

Dans cette thèse, nous revisitons ces deux concepts de base. Nous explorons

les différentes formes du retour lambda, montrant des manières de factoriser les

informations environnementales—sous la forme de successor representation—

afin de les apprendre de manière indépendante. Cela donne naissance à une

nouvelle classe d’algorithmes d’apprentissage par renforcement qui utilise di-

rectement une représentation de successeurs pour une attribution efficace des

crédits. Nous présentons et étudions cette classe d’algorithmes, fournissons des

justifications théoriques et démontrons empiriquement comment cette approche

permet une attribution de crédit efficace. Enfin, nous discutons des théories

neuroscientifiques récentes sur les liens entre la représentation de successeurs et

le cerveau, et de comment notre nouvelle classe d’algorithmes étend les théories

et les prédictions neuroscientifiques de l’apprentissage par renforcement.
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1
Introduction

It can be said that the goal of building artificial machines with human-like intelli-

gence is the fundamental challenge for both the field of artificial intelligence (AI) and

neuroscience.1 For AI, the ability to create intelligence machines lead to powerful

tools with an immense capacity to improve humanity. For neuroscience, the ability to

reproduce an intelligent mind in silico implies attaining the highest form of scientific

knowledge—in the words of the physicist Richard Feynman: “What I cannot create,

I do not understand”.

Since the advent of this endeavour (Turing 1950; McCarthy et al. 1955), the field

of AI and neuroscience have played a complementary role in each other’s mutual ad-

vancement. For example, the conception of the neuron as the basic structural and

computational unit of the brain—the neuron doctrine, championed by Santiago Ra-

mon y Cajal, Charles Sherrington and others around the turn of the 20th century

(Yuste 2015)—formed the conceptual basis for the invention of the artificial neural

network as early models of information processing in brain (Rosenblatt 1958; McClel-

land, Rumelhart, PDP Research Group, et al. 1986), which was subsequently devel-

oped into a powerful method for AI (for example, the impressive image classification

performance of Krizhevsky, Sutskever, and G. E. Hinton 2012), then re-applied back

to understand the function, dynamics and representation of neuron populations of the
1We use “neuroscience” to refer generally to any sciences concerned with the mind and brain:

neuroscience, cognitive science, psychology, and more. We view them as analogous as they share
similar goals, differing only in their approaches.

1



CHAPTER 1. INTRODUCTION 2

brain (Yamins et al. 2014; Richards et al. 2019). Similarly, the psychological observa-

tions of conditioning (Pavlov 1927) inspired the development of algorithms that per-

form reward-based learning (Rescorla and Wagner 1972; R. S. Sutton and Barto 1987;

R. S. Sutton 1988), which is then used to explain the neuronal responses of biological

system whose activities appeared to correspond to environmental rewards (Schultz,

Dayan, and Montague 1997; Dabney et al. 2020). This cycle continues today and is

ever fruitful: biological, cognitive and behavioural findings from the neural-sciences

constrain and bias the search for models of intelligence in AI, while the development

of new ideas and algorithms in AI help provide the theoretical framework to interpret

empirical findings in the brain.

This thesis follows in the above scientific tradition of developing neuroscience-

inspired model of artificial intelligence, with the long term goal of generating new

theories back in the neural-sciences. In general, we believe that a fruitful line of

research lies in designing models and algorithms that are both performant from an

AI perspective, and simultaneously useful in providing better understanding of the

brain.

1.1 A Reward Maximizing Framework

of Intelligence

We use reinforcement learning (RL, see R. S. Sutton and Barto 1998) as a framework

to understand intelligence. Under the RL framework, all learning and behaviour serve

the singular goal of the maximization of reward. While this axiomatic principle may

not be fully correct, we believe RL is sufficiently general to make important progress

toward human-like intelligence.2 Importantly, RL allows one to explicitly evaluate an

embodied algorithm’s ability to succeed in a given environment (through the total
2Although, for an argument in support of why reward maximization alone may indeed be suffi-

cient in understanding intelligence, see Silver et al. (2021).
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amount of reward it receives). We believe having a performance-driven objective is

one crucial ingredient in building models of the mind (e.g. the models of R. S. Sutton

and Barto 1987 and Yamins et al. 2014); after all, models that describe the mind

should support behaviour similar to the mind: acting intelligently amidst complexity.

Concretely, our modelling work is inspired by a particular observation in the brain:

neurons encoding for future predictive representations. Such neurons—place cells—

are thought to encode an animal’s current position and are located in a brain region

known as the hippocampus. Existing neuroscience theory have argued that hippocam-

pal place cells encode a particular mathematical object known as the “successor rep-

resentation (SR)” (Stachenfeld, M. M. Botvinick, and Gershman 2017). While some

physiological evidence support this observation, it is unclear from a performance-

driven perspective why the brain would encode this. Under the assumption that the

brain should only encode something if it helps in the maximization of reward, what

evidence do we have that SRs are helpful for RL performance?

We argue that traditionally, SRs have seen little use in the maximization of reward

outside of limited settings. For example, the most well-known use of the SR allows

an agent to re-learn good actions quickly following a change in the reward function,

albeit under the specific assumption of unchanging dynamics (Barreto, Dabney, et al.

2017). The main question we ask in this thesis is whether SRs can be useful more

broadly, for general-purpose computations that underlie all of RL.

We answer the above question in the affirmative, by developing two new ways in

which the SR can be used for more efficient learning of any value functions. The

value function is a fundamental object in RL, and our methods uses the standard

RL framework without making additional assumptions on reward, dynamics, or prior

knowledge. Moreover, this novel way of using the SR is a complement to, rather

than a replacement of previously suggested use of the SR (such as Barreto, Dabney,

et al. (2017) for transferring across multiple reward functions). All in all, we have

provided theoretical evidence in favour of the SR being a useful quantity for the brain
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to encode, and our specific learning algorithms also hint at new testable neuroscience

hypothesis for how a neural-representation may be used in brain computation.

1.2 Objectives and Outline

The main objective of this thesis is to develop mathematical and algorithmic tech-

niques of using the successor representation for efficient credit assignment in the

single-task, tabula rasa learning setting. This contrasts from previous work in both

reinforcement learning and neuroscience which mainly consider SRs as being useful

in the transfer or multitask settings.

The thesis is divided into the following chapters. Chapters 2 and 3 are background

chapters. Chapter 2 introduces the reinforcement learning framework in depth, along

with common algorithms employed under this framework. This gives us the language

to describe intelligent behaviour. The methods in this chapter are “tabular”, meaning

that we use only discrete features. In chapter 3 we extend the result of chapter 2 to

work with continuous features. This chapter also formally introduces the SR.

Chapters 4 and 5 are content chapters. Chapter 4 details our first method of using

the SR: the λ-SRE, for re-weighing the learning error signal from future states. So

far, this idea has only been developed for the tabular setting. Chapter 5 proposes

a spectrum of algorithms—the λ value function—that generalizes previous methods,

namely the “model free” and “successor features” parameterization of value functions.

This idea is readily applicable to the reinforcement learning setting with nonlinear

function approximation. Both chapters leverage the use of predictive representations

for non-local credit assignment, even if only local information from the environment

can be accessed.

Finally, chapter 6 is a concluding chapter that discusses the over-arching ideas of

this thesis.
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1.3 Summary of Contribution

The main contribution of the current work to machine learning and RL is of sample

efficiency: the proposed methods more effectively leverage the same amount of inter-

actions between the agent and the environment. That is, given the same amount of

(one-step) data, we show we can more effectively leverage information compared to

baseline methods. We also contribute to neuroscience through expanding the space of

theories and models. While we do not have new neuroscience experiments, we discuss

the neuroscientific implications of our methods given the current literature. We hope

this will inspire empirical experiments in the future to evaluate our predictions.

The main idea of chapter 4 was accepted for publication at the Biological and

Artificial Reinforcement Learning Workshop at NeurIPS 2020. The results in chapter

5 were accepted for publication at the Association for the Advancement of Artificial

Intelligence conference (AAAI 2022).

The current thesis were done under the co-supervision of Prof. Joelle Pineau and

Prof. Blake Richards. I received collaborative help from Veronica Chelu for chapters

4 and 5. I was the lead author and main contributor to idea generation, experiments,

theoretical derivation, writing and presentation.



2
Reinforcement Learning

The ability to learn in a trial-and-error manner from experience is a fundamental

cornerstone of intelligence. One may postulate on the precise objective this learning

should achieve, for example, a sensible objective for learning may be to develop be-

haviour which maximizes the amount of external reward an organism receives. This

is the fundamental objective that Reinforcement Learning (RL) tackles.

Broadly, consider the following setting: given an environment containing rewards,

and a set of allowable actions, how should an agent (e.g. an animal in the wild,

or an artificial agent in a simulated environment) behave in the environment so as

to maximize the amount of total reward it receives? While the objective is easily

described, achieving it is not so easy. Each action an agent takes can have an influence

on the final outcome, and each reward received can be attributed as a consequence of

any of the actions taken up to that point. Similarly, some actions can be informative

about new ways of achieving more rewards, while others can directly result in rewards.

From such complexities, figuring out the best sequence of actions to maximize total

reward can quickly become intractable. Therefore, an important focus of algorithms

that work under the RL framework is to solve this issue—sometimes referred to as

temporal credit assignment (Minsky 1961; R. S. Sutton 1984)—in an efficient manner.

This chapter will first focus on formalizing the problem setting of RL as a frame-

work in which intelligent behaviour can be modelled and studied. Then we will intro-

6
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duce a variety of common methods from the literature for efficiently solving problems

formulated under this framework.

2.1 Markov Decision Process

We begin by formalizing a general notion of “environment” and the rules within it,

using the Markov Decision Process (MDP, introduced as early as Bellman (1957)).

This is a common formalism for modelling decision-making with discrete time-steps

(i.e. we model time as discrete “chunks” of equal length).

We use “state” (s) to describe the agent within the environment at a particular

timestep t, with capitalized letter denoting random variables (St), and lowercase de-

noting a particular sample (st). Italicized S is used to denote the set of all states,

s ∈ S. Similarly, within each state, the agent will have access to a number of ac-

tions it can perform, denoted a ∈ A. Performing action At in state St will result in

the agent moving to a different state, St+1, with this transition being modelled via

a transition probability function. Finally, each transition also accompanies a reward

(Rt+1), depending on the actions taken in each state. To make a concrete example,

in a maze, the states describe the locations of the agent; the actions can describe

where to go next (e.g. up, down, left, or right), and the agent can receive a reward

for reaching the end of the maze (i.e. reward is some positive scalar at the state that

describes the end of the maze).

Importantly, the next state (St+1) and reward (Rt+1) the agent receives depends

only on the current state (St) and action (At). This is known as the Markov prop-

erty. Thus, the above framework for describing decision making processes is referred

to as a Markov Decision Process, which we formally define below.

Definition 2.1.1. A Markov Decision Process (MDP) (Puterman 1994) consists

of the tuple M = 〈S,A, r, P 〉. Where S is the set of states; A is the set of actions;
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r : S ×A → R is the reward function. P : S ×A → P(S) is the transition probability

function, where P(S) is the set of probability distributions on the state space S, and

P (·|s, a) describes the distribution over S given current state s ∈ S and action a ∈ A.

We now introduce the formalism describing how to act within an MDP environ-

ment. A policy, π, dictates how actions are selected at each timestep (“decision

epoch”).1 Formally, we consider a randomized policy, π : S → P(A), as mapping

from the space of states S to a set of probability distributions on the space of actions,

A. We write π(A|S) to denote the probability of sampling action A ∈ A while being

in state S ∈ S under policy π.2 We can likewise consider the class of deterministic

policies as deterministic functions mapping from π : S → A. Deterministic poli-

cies are a subset of randomized policies. Intuitively, given any state s ∈ S, a policy

A ∼ π(·|s) tells us how to act within that state.

Ultimately, we are interested in finding a policy to maximize reward. Yet, to do

so, we first need to tackle a sub-problem of the amount of reward some given policy

will receive in an MDP. In the following chapter (section 2.2), we consider this setting

where the policy is fixed; i.e. we do not change the policy and estimate certain

properties of a MDP given the policy. Fixing the policy within a MDP induces a

Markov Reward Process.

Definition 2.1.2. A Markov Reward Process (MRP) is defined by the tuple

Mπ = 〈S, rπ, Pπ〉. Similar to a MDP, A corresponds to the set of states. Given a
1More precisely, following the convention of Puterman (1994), a decision rule, dt, describes

how action is selected at decision epoch t. A policy is a set of decision rules for all time-steps,
π = (d1, d2, ...). However, within this thesis, we only consider the set of stationary policies: policies
that have the same decision rule for all decision epochs, π = (d, d, ...). Therefore, with a slight abuse
of terminologies we will use “policy” and “decision rule” interchangeably.

2This is technically the set of stationary, randomized (SR) policies, π ∈ ΠSR: stationary policies
that contain a single Markovian, randomized (MR) decision rule; π = (d, d, ...), d ∈ DMR. A
decision rule is Markovian if it only depends on the current state, and it is randomized because
it is a probabilistic mapping to the space of actions. This is the most widely used policy class in
contemporary RL. For a full treatment extending into non-stationary policies and non-Markovian
decision rules, see Puterman (1994), chapter 2.
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policy π and MDPM, we induce an MRP as follows:

rπ(S) =
∑
a∈A

r(S, π(a|S)) , Pπ(·|S) =
∑
a∈A

P (·|S, π(a|S)). (2.1)

Here we describe the policy-dependant reward function rπ : S → R, and transition

function Pπ : S → P(S).

In essence, we arrive at a MRP from a MDP by “absorbing” the policy information

into the reward and transition functions. MRP is a convenient formalism to describe

the dynamics of any given policy π within a MDP. Specifically, while we are ultimately

interested in finding the “best” policy, doing so often requires the ability to measure

the “goodness” of a given policy π in order to improve it. This process of measuring

a policy’s “goodness” is referred to as policy evaluation, which we will discuss in the

following chapter.

2.2 Policy Evaluation

So far, we have described the formalism to describe an “environment” (the MDP,M),

and how to act within the environment (the policy, π). We now tackle the question of

measuring how “good” an agent is acting within the environment. Since the ultimate

goal of RL is to maximize the total amount of reward received, we can measure how

much reward a given policy receives. We first introduce the concept of a discount

factor, γ. The discount factor is a scalar, 0 ≤ γ ≤ 1 applied to reward received

further into the future. The smaller the γ, the more “myopic” the agent becomes—

in favouring immediate rewards over longer-term rewards. We can now define the

return, which describes the amount of discounted reward received by an agent in a

particular trajectory of experience from time-point t.

Definition 2.2.1. A discounted return is the total reward received from the current
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time-point t:

Gt =̇
∞∑
k=0

γkRt+k+1, (2.2)

with future rewards being exponentially discounted by 0 ≤ γ ≤ 1.

In the above definition we have written the infinite horizon return which sum over

an infinitely-long future horizon. It should be noted that for many practical settings,

we will instead be interested in the episodic return, collected from episodes with

finite lengths T . In such settings we will simply sum the (discounted) reward until

the end of the episode instead, Gt = ∑T−t−1
k=0 γkRt+k+1.

The return is something that can be sampled empirically, such as by running the

agent in the environment, collecting all rewards, and computing the return using def-

inition 2.2.1. However, the return is a noisy estimate, subjected to the stochasticity

in the policy, transition and reward functions. In fact, what we really care about is

on average how much overall reward a policy can collect. We can define precisely a

criterion to describe this—the expected total discounted reward criterion (Puterman

(1994), chapter 5.3)—meaning we are interested in the total amount of reward re-

ceived, in expectation, with reward further into the future being less important (i.e.

γ-discounted). We formally define this below.

Definition 2.2.2. Given MRPMπ = 〈S, rπ, Pπ〉 and discount factor γ ∈ [0, 1], the

value function of state s ∈ S is the expected return when starting from s and

following the MRP dynamics induced by policy π:

vπ(s) = Eπ
[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
. (2.3)

We use the subscript Eπ[·] as shorthand denote expectation over the dynamics of the

MRP induced by fixing the policy π in MDPM.

The value function of equation 2.3 precisely describes the expected total discounted

reward criterion. Ultimately we will be interested in maximizing this criterion—

through changing the policy to induce an environmental dynamic that results in a
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higher total reward. However, for now we first deal with how to estimate the value as

described in equation 2.3. This is the problem of policy evaluation (prediction) and

we introduce various algorithms for solving this problem for the remainder of section

2.2.

2.2.1 Dynamic Programming

The most suitable way to do policy evaluation depends on the amount of information

available and any computational constraints. We begin in the most lenient setting and

consider a case where we have full access to the MRPMπ = 〈S, rπ, Pπ〉, with discrete

state spaces, bounded rewards, and stationary reward and transition probabilities (we

borrow these standard assumptions from Puterman (1994), chapter 6). To simplify

notation, we introduce the matrix notation value function here.

Definition 2.2.3. Matrix notation. We write MRP Mπ = 〈S, rπ, Pπ〉 in matrix

notation. Let Pπ ∈ R|S|×|S| be the transition matrix, (Pπ)ij = Pπ(S ′ = j|S = i).

rπ ∈ R|S| be the reward vector, (rπ)i = rπ(i). We can write the value function

v ∈ R|S| (definition 2.2.2) in matrix form as follows:

vπ =
∞∑
t=1

(γPπ)t−1 rπ ,

= rπ + γPπ

(
rπ + γPπrπ + γ2PπPπrπ + ...

)
,

= rπ + γPπvπ ; (2.4)

where (vπ)i = vπ(i) and γ ∈ [0, 1].

We observe from definition 2.2.3 that the matrix form value function can be solved

by the linear system of equations:

vπ = rπ + γPπvπ , (2.5)

⇒(I− γPπ)vπ = rπ . (2.6)
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Theorem 2.2.1. (Puterman (1994), theorem 6.1.1) Given 0 ≤ γ < 1, for any (sta-

tionary Markov randomized) policy π, vπ is the unique solution of

v = rπ + γPπv. (2.7)

Further, vπ may be written as

vπ = (I− γPπ)−1rπ. (2.8)

Proof. In brief we establish that the spectral radius of γPπ is less than 1, and the

inverse (I− γPπ)−1 exists. See Puterman (1994), theorem 6.1.1 for details.

We can therefore reassure ourselves that a solution exists for the system in equation

2.5. The value function can be solved here simply through matrix inversion.

Algorithm 1: Matrix inversion solution for policy evaluation
1 Input: MRP parameters Pπ, rπ, γ ;
2 vπ = (I− γPπ)−1rπ ;

Due to the computational complexity of matrix inversion, we are also interested in

an iterative solution. This lets us approximate with arbitrary precision the solution

without having to do matrix inversion. Let us consider the space of value functions,

v ∈ V. We introduce the policy evaluation operator,3 Ld : V → V. Application

of the operator to v ∈ V results in the linear transformation:

Ld v =̇ rπ + γPπv . (2.9)

It should be noted that by definition of vπ (equation 2.5), the fixed point to the

operator Ld is vπ: Ld vπ = rπ+γPπvπ = vπ. We next show that repeated application

of Ld will converge to the fixed point vπ.
3We use the subscript Ld to denote the operator’s dependence on the decision rule (d) evaluated.

This is sometimes also referred to as the Bellman operator ; not to be confused with the Bellman
optimality operator, whose fixed point is the optimal value function. We introduce this later in
section 2.3.1.
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Theorem 2.2.2. (Banach Fixed-Point Theorem, adopted from Puterman (1994))

Suppose V is a Banach space and T : V→ V is a contraction mapping.4 Then

1. there exists a unique v∗ ∈ V such that Tv∗ = v∗; and

2. for arbitrary initial point v0 ∈ V, the sequence {vn} defined by

vn+1 = Tvn = T n+1v0 (2.10)

converges to v∗.

Proof. In brief, via triangle inequality and property of contraction mappings. See

Banach (1922) and Puterman (1994) (theorem 6.2.3) for details.

Proposition 2.2.3. The policy evaluation operator, Ld : V→ V, is a γ-contraction

in the infinity norm, ||v||∞ = maxi|vi|.5 Given vectors u ∈ V, v ∈ V:

||Ld u− Ld v||∞ ≤ γ||u− v||∞. (2.11)

Proof. (Puterman 1994) We denote a vector of 1’s of dimension |S|, 1 = [1, 1, ...]>:

||Ld u− Ld v||∞ = ||(rπ + γPπu)− (rπ + γPπv)||∞ ,

= γ||Pπ(u− v)||∞ ,

≤ γ||Pπ · (1||u− v||∞)||∞ ,

= γ||Pπ · 1||∞ · ||u− v||∞ ,

= γ||u− v||∞ ; (2.12)

where ||Pπ · 1||∞ = 1 follows from Pπ being a stochastic transition matrix.
4A Banach space is a vector space with a defined norm || · ||. It is complete in that every Cauchy

sequence’s limit is contained within that space (see Puterman (1994), Appendix C for details). This
is a standard formalism to analyze fixed points and convergence of iterative algorithms. An operator
T is a contraction mapping if ||Tu− Tv|| ≤ ||u− v|| , ∀u,v ∈ V.

5An operator Ld is a γ-contraction if its application contracts space by at most γ ∈ [0, 1), this is
defined formally in equation 2.11.
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We observe that by proposition 2 we have proven Ld to be a contraction, and by

theorem 2.2.2 we know that iterative application of the operator Ld to an arbitrary

initial point v0 ∈ V will result in a sequence that converges to the unique fixed point,

vπ—the correct value function for the MRP. This gives us an iterative algorithm for

policy evaluation, which is sometimes referred to as the dynamic programming

(DP) solution for policy evaluation (algorithm 2).6

Algorithm 2: Iterative DP solution for policy evaluation (R. S. Sutton and
Barto 2018)
1 Input: MRP parameters Pπ, rπ, γ ;
2 Initialize v0 arbitrarily ;
3 for k=1,2,... until satisfied do
4 vk ← rπ + γPπvk−1

5 end

2.2.2 Monte-Carlo Simulation

So far, the solutions discussed in section 2.2.1 assumes full access to a perfect envi-

ronmental model, in the form of Pπ and rπ. For most cases we are interested in, we

will not have access to the full MDP / MRP. Instead, we will only be able to act

within the environment, and in doing so sample information about the environment.

Our objective is the same—to evaluate the value function for a given policy, vπ.

Despite the added limitation, the subsequent methods still derive largely from

the iterative DP solution (algorithm 2). Recall in the setting where we have access

to perfect transition and reward models of the MRPMπ = 〈S, rπ, Pπ〉 with discount

factor γ, we can solve for the value function vπ = rπ+γPπvπ (equation 2.5) iteratively

by applying the policy evaluation operator, Ld (equation 2.9). We can write the k-th
6More generally, this is an application of the method of successive approximation.
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iterative update in component form, denoting each state as vi = v(i),

v(k+1)(s) = (1− α) v(k)(s) + α
(
Ld v

(k)
)

(s), ∀s ∈ S,

= (1− α) v(k)(s) + α

(
rπ(s) + γ

∑
s′
Pπ(s′|s)v(k)(s′)

)
, ∀s ∈ S; (2.13)

where α ∈ (0, 1] is a step-size parameter. Intuitively, for each step we are updating

our current estimate, v(k)(s) toward the target (Ld v(k))(s). Note that α = 1 implicitly

in algorithm 2.

For the remainder of this chapter, we assume we cannot evaluate (Ld v(k))(s) ex-

actly, instead we only have access to a random variable, G = (Ld v(k))(s) + ω, where

ω is some random noise term. We can substitute G in lieu of (Ld v(k))(s) as a learning

target, resulting in the following update,

v(k+1)(s) = (1− α) v(k)(s) + α
(
(Ld v(k))(s) + ω

)
,

= v(k)(s) + α
(
G− v(k)(s)

)
. (2.14)

We refer to this class of methods as stochastic iterative algorithms, which solves

the systems in equation 2.5 in a stochastic, component-wise fashion. All subsequent

RL algorithms discussed will follow this formalism,7 with the only difference being

how we construct the random variable G, which will inform how we sample the envi-

ronment. Indeed, it is no coincidence that the letter G is used—this random variable

is precisely the return in RL (see definition 2.2.1). We will discuss various ways of

constructing a return and using it to estimate the value function for the remainder of

this chapter.

The simplest way of estimating the value function (definition 2.2.2) is to directly

construct the return with Monte-Carlo samples and use this as our estimator of value.

Specifically, assuming we are in some state s ∈ S and interested in estimating the
7Here we consider the class of algorithm with tabular features (i.e. per-state values are stored as

look-up tables). For the case where v(s) is a parameterized function, the update will need to include
the gradients of the difference with respect to each parameters. This will be discussed in greater
depth in chapter 3.
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value function of that state given the policy, vπ(s), we can simply act according to to

policy π to sample a trajectory (St, Rt+1, St+1, Rt+2, ...), and count the total amount

of rewards received.

Definition 2.2.4. A Monte-Carlo (MC) Return (R. S. Sutton and Barto 2018),

GMC
t , under the expected total discounted reward criterion, given a sampled trajectory

(Rt+1, Rt+2, ..., RT ) and discount factor γ, is defined as:

GMC
t =̇ Rt+1 + γRt2 + ...+ γT−t−1RT . (2.15)

Where T is the episode length.

We know that the MC return is an estimate of the value function, since E[GMC
t ] =

vπ(st). This yields our first stochastic approximation algorithm for policy evaluation,

Monte-Carlo Policy Evaluation (algorithm 3).8 Since the MC return requires

having a full trajectory, algorithm 3 is only applicable in an episodic setting, where

updates to the value estimate happens after each episode terminates.

Algorithm 3: Every visit Monte Carlo policy evaluation (Bertsekas and
Tsitsiklis 1995)
1 Input: MRPMπ, discount factor γ ∈ [0, 1], stepsize α ∈ (0, 1] ;
2 Initialize value estimate v(0)(·) arbitrarily ;
3 while not converged do
4 Sample episode trajectory fromMπ: (S0, R1, S1, R2, ..., ST−1, RT ) ;
5 for each state encountered, St do
6 Compute return: GMC

t = ∑T−t
k=1 γ

k−1Rt+k ;
7 Update: v(k+1)(St)← v(k)(St) + α

(
GMC
t − v(k)(St)

)
8 end
9 end

8More precisely, algorithm 3 is the every visit variant of Monte-Carlo policy evaluation, which
may be biased. For a detailed discussion on this and the alternative first visit variant, see Bertsekas
and Tsitsiklis (1995), chapter 5.2.
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2.2.3 Temporal Difference

While the Monte-Carlo return allows us to do policy evaluation while only being

able to take samples from the environment, we notice each MC return requires a full

trajectory to be collected before it can be constructed. We can do better by noticing

the recursive nature of a return:

Eπ[Gt] = Eπ
[
Rt + γRt+1 + γ2Rt+2 + ...+ γT−t−1RT

]
,

= Eπ[Rt] + γvπ(St+1) . (2.16)

We can use the current value estimate v(·) in lieu of the value function vπ(·). This

gives us the temporal difference return.

Definition 2.2.5. The one-step temporal difference (TD) return (R. S. Sutton

and Barto (2018), chapter 6.1), GTD
t , given a sampled one-step transition (St, Rt+1, St+1),

discount factor γ, and current value estimate v(·), is defined as:

GTD
t =̇ Rt+1 + γv(St+1), (2.17)

where v(St+1) is the value function estimate for state St+1.

Unlike the Monte-Carlo return which require the full trajectory, the one-step TD

return can be computed using just the one-step sampled transition (St, Rt+1, St+1).

This process of using one’s own value estimate in constructing the learning target is

known as bootstrapping in RL. Bootstrapping relates closely to the the dynamic

programming solution for policy evaluation, and the one-step TD return (definition

2.2.5) can be viewed as a single-component sample obtained from an application of the

policy evaluation operator (equation 2.9), Eπ[GTD
t |St = s] = Eπ[Rt+1 + γv(St+1)|St =

s] = (rπ + γPπv)(s).

We further define the TD error, commonly written as δt. It denotes the signed

error between the value estimate and the one-step TD return,

δt = Rt+1 + γv(St+1)− v(St). (2.18)



CHAPTER 2. REINFORCEMENT LEARNING 18

The TD return gives us the one-step TD algorithm (also known as TD(0)) for

policy evaluation (algorithm 4).

Algorithm 4: Online incremental TD(0) for policy evaluation (R. S. Sutton
and Barto 2018)
1 Input: MRPMπ, discount factor γ ∈ [0, 1], stepsize α ∈ (0, 1] ;
2 Initialize value estimate v(0)(·) arbitrarily ;
3 while not converged do
4 Sample environmentMπ, receive one-step experience tuple

(St, Rt+1, St+1) ;
5 Compute return: GTD

t = Rt+1 + γv(k)(St+1) ;
6 Update: v(k+1)(St)← v(k)(St) + α

(
GTD
t − v(k)(St)

)
7 end

2.2.4 Lambda Return

In the previous section we motivated the one-step TD return by replacing all future

sequence of rewards (after a single step) with a current estimate of value. Similarly,

we can perform the same substitution after waiting multiple steps rather than a single

step:

Eπ[Gt] = Eπ[Rt] + γvπ(St+1) ,

= Eπ[Rt + γRt+1] + γ2vπ(St+2) ,

= Eπ[Rt + γRt+1 + γ2Rt+2] + γ3vπ(St+3) , (2.19)

... .

Definition 2.2.6. The n-step return (R. S. Sutton and Barto 2018), G(n), given a

sampled n-step trajectory (St, Rt+1, St+1, Rt+2, ..., Rt+n, St+n), discount factor γ, and

current value estimate v(·), is defined as:

G
(n)
t =̇ Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnv(St+n) (2.20)

We note that the one-step TD return is a special case of the n-step return, when

n = 1, while the Monte-Carlo return corresponds to n approaching infinity (in the
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infinite horizon case) or when n = T − t (for the episodic case). In general, since the

sampled rewards Rt+k are random variables, a larger n (i.e. a long trajectory) corre-

sponds to a higher variance estimate. On the other hand, since we are bootstrapping

using an estimate of value at the end of the n-step trajectory, using small n’s results

in higher potential bias.

Finally, in the setting where we have access to a full trajectory, we can in fact com-

pute all possible n-step returns, and average over them for a potentially more accurate

estimate. The λ-return is one way to approach this, by proposing an exponential-

averaging scheme.

Definition 2.2.7. The λ-return (R. S. Sutton and Barto 2018), Gλ
t , given a sampled

full trajectory (St, Rt+1, St+1, Rt+2, ...), discount factor γ, and current value estimate

v(·), is defined as an λ-weighted exponential average over all n-step returns:

Gλ
t =̇ (1− λ)

∞∑
n=1

λn−1G
(n)
t , (2.21)

= (1− λ)
∞∑
n=1

λn−1
(

(
n∑
k=1

γk−1Rt+k) + γnv(St+n)
)

; (2.22)

where 0 ≤ λ ≤ 1 is a hyperparameter controlling the exponential average.

In a similar vein to the n-step return, when λ = 0, the λ-return reduces to the

one-step TD return, and when λ = 1 the λ-return becomes the Monte-Carlo return.

As one interpolates from 0 ≤ λ ≤ 1, a similar bias-variance trade-off is had. The

parameter λ can be thought of as controlling the “recency bias” of the return—a

smaller λ more highly weigh n-step returns in the immediate future, while a larger λ

give more importance to n-step returns further into the future.

As an aside, the λ-return can be equivalently written in a number of different

forms.

Remark 2.2.4. Given current value estimate v(·), the λ-return can be written equiv-
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alently in the following forms:

Gλ
t = (1− λ)

∞∑
n=1

λn−1
[
(
n∑
k=1

γk−1Rt+k) + γnv(St+n)
]

(2.23)

= Rt+1 + γ

( ∞∑
n=1

(λγ)n−1 [(1− λ)v(St+n) + λRt+n+1]
)

(2.24)

= v(St) +
∞∑
n=0

(λγ)nδt+n (2.25)

Proof. We start with expanding the λ-return as an exponential average over n-step

returns—noting we write the value estimate as Vk = v(Sk) for brevity:

Gλ
t = (1− λ)

∞∑
n=1

λn−1
[
(
n∑
k=1

γk−1Rt+k) + γnVt+n

]
,

= (1− λ)λ0[Rt+1 + γVt+1]

+ (1− λ)λ1[Rt+1 + γRt+2 + γ2Vt+2]

+ ... ;

We use the fact that the factors (1 − λ)∑∞k=0 λ
k = 1 to pull out the variables Rt+1,

Rt+2, ... from inside of the brackets,

Gλ
t = Rt+1 + (1− λ)λ0γVt+1

+ (1− λ)λ1γ[Rt+2 + γVt+2]

+ (1− λ)λ2γ[Rt+2 + γRt+3 + γ2Vt+3]

+ ... ,

= Rt+1 + γλ0(1− λ)Vt+1

+ γλRt+2 + γ2λ1(1− λ)Vt+2 (2.26)

+ ... .
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Re-arranging the above gives us equation 2.24:

Gλ
t = Rt+1 + (γλ0)[(1− λ)Vt+1 + λRt+2]

+ (γ2λ1)[(1− λ)Vt+2 + λRt+3]

+ ...

= Rt+1 + γ
∞∑
n=1

(γλ)n−1[(1− λ)Vt+n + λRt+n+1] .

Finally, we can add the terms (+Vt−Vt) to equation 2.26 without changing the result

to arrive at equation 2.25 (using the TD-error definition of equation 2.18):

Gλ
t = Vt − Vt +Rt+1 + γVt+1

− γλVt+1 + γλRt+2 + γ2λVt+2

− γ2λ2Vt+2 + ... ,

= Vt +
∞∑
n=0

(γλ)n[Rt+n+1 + γVt+n+1 − Vt+n] .

From the above, we see multiple interpretations of the λ-return. While they are

mathematically equivalent, different estimators are best suited to approximate the

different algebraic forms—indeed one main contribution of the current thesis is the

proposal of novel algorithms inspired by the different algebraic forms. Specifically,

equation 2.23 shows the λ-return as an exponential average over all future n-step

returns—this is the original motivation for the λ-return. Equation 2.24 shows the

λ-return can be separated into an immediate reward term and a discounted future

term that is a cumulative mixture of future rewards and value estimates. We will

use this identity extensively in chapter 5. Finally, equation 2.25 shows the λ-return

can be interpreted as the current value estimate plus a cumulative discounted sum

over all future TD-errors, akin to temporally regularizing the current value estimate

to minimize both current and future one-step TD errors. We will use this identity in

chapter 4.
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Like the Monte-Carlo return, the full λ-return is a quantity which requires the

full trajectory to be computed. However, in general, λ-return (with λ < 1) makes

better use of the full episode trajectory as compared to the Monte-Carlo return, as

well as the n-step return (see R. S. Sutton and Barto (2018), chapter 12.1). This way

of computing the per-state λ-return after collecting a full episodic trajectory gives us

the End-of-episode λ-return algorithm (algorithm 5).9

Algorithm 5: End-of-episode λ-return policy evaluation (R. S. Sutton and
Barto 2018)
1 Input: MRPMπ, discount factor γ ∈ [0, 1], stepsize α ∈ (0, 1], parameter

λ ∈ [0, 1];
2 Initialize value estimate v(0)(·) arbitrarily ;
3 while not converged do
4 Sample episode trajectory fromMπ: (S0, R1, S1, R2, ..., ST−1, RT ) ;
5 for each state encountered, St do
6 Compute return:

Gλ
t = (1− λ)∑T−t

n=1 λ
n−1((∑n

k=1 γ
k−1Rt+k) + γnv(St+n)) ;

7 Update: v(k+1)(St)← v(k)(St) + α
(
Gλ
t − v(k)(St)

)
8 end
9 end

Note that various convergence results are available for the stochastic iterative

algorithms introduced in this chapter. They are outside of the scope of this thesis,

though we refer the interested reader to Bertsekas and Tsitsiklis (1995), chapter 5.

2.3 Policy Improvement

Recall that the fundamental objective of RL is to produce reward-maximizing be-

haviour in a particular environment. We formalized environments using MDPs, and

behaviour in terms of policies. So far, we have introduced a variety of methods for

evaluating a given policy, π, which are all based on the application of the policy
9We use “end-of-episode” here for clarity about when the update occurs. This algorithm is

sometimes also referred to by the name forward view TD(λ), or the “off-line” λ-return algorithm
(R. S. Sutton and Barto 2018). We avoid the use of “off-line” as it has recently been used to refer
to RL algorithm that work on fixed-size datasets without collecting new data.
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evaluation operator, Ld—either in full matrix form when it is available, or via doing

component-wise stochastic approximation if one can only sample the environment.

We now turn our attention to the question of finding the best policy inside of an

MDP.

We will use the same formalism as the previous chapters. The environment is

modelled as a MDPM = 〈S,A, r, P 〉. We can condition the MDP on a given fixed

policy π to give rise to a MRP Mπ = 〈S, rπ, Pπ〉. The MRP transition matrix and

reward function in matrix form are Pπ ∈ R|S|×|S| and rπ ∈ R|S|, respectively. We use

π∗ to denote the optimal policy, which is the policy that results in the maximum

amount of discounted total reward (with discount factor γ ∈ [0, 1]). We are interested

in finding such a policy through the process of policy improvement.

2.3.1 Value Iteration

Similar to how the problem of policy evaluation can be solved as a system of (linear)

equations (equation 2.5) whose solution is the fixed point of the policy evaluation

operator (equation 2.9), we can similarly write down a system of optimality equa-

tions for finding the optimal value function (i.e. the value function corresponding to

the optimal policy π∗).10 This (nonlinear) system can be written as:11

v =̇ max
π∈Π
{rπ + γPπv} . (2.27)

We can similarly write down an operator whose fixed point is the above system.

Similar to the policy evaluation operator, it applies a transformation in the space of

value functions, v ∈ V.
10This is referred to in Puterman (1994) as the optimality equations or Bellman equation. We will

exclusively refer to this as the “(Bellman) optimality equations” to avoid confusion with the policy
evaluation equations, which is sometimes also referred to as the Bellman equations. As an aside,
Bellman’s historical contribution is more about the optimality equations.

11The maximum is typically defined over the set of Markov, deterministic decision rules, d ∈ DMD.
As we only work with stationary policies, here we define it over the set of stationary, deterministic
policies π ∈ ΠSD for notation brevity. Note that the solution for the class of stationary, deterministic
policies is the same as the solution for the class of stationary, randomized policies (see Puterman
(1994) proposition 6.2.1).
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Definition 2.3.1. The Bellman Optimality Operator, L : V → V, applies the

following transformation in the space of value functions:

Lv =̇ max
π∈Π
{rπ + γPπv} . (2.28)

It can be written in component forms (for each state s ∈ S) as

v(k+1)(s) = max
a∈A

r(s, a) + γ
∑
s′∈S

P (s′|s, a)v(k)(s′)

 . (2.29)

Theorem 2.3.1. For arbitrary initial point v0 ∈ V, the sequence {vn} resulting from

repeated application of the operator vn+1 = Lvn converges to a unique fixed point v∗

such that Lv∗ = v∗.

Proof. Follows directly from the Banach Fixed-Point Theorem (theorem 2.2.2) and

L being a contraction mapping for 0 ≤ γ < 1 (see proposition 6.2.4 of Puterman

(1994)).

The Bellman Optimality Operator directly gives rise to the value iteration algo-

rithm (algorithm 6), which can be used when we have full access to the MDP to give

us the optimal policy, π∗.

Algorithm 6: Value Iteration (Puterman 1994)
1 Input: MDPM = 〈S,A, r, P 〉, discount factor γ ∈ [0, 1] ;
2 Initialize value estimate v(0)(·) arbitrarily ;
3 while value not converged do
4 For each s ∈ S, compute

v(k+1)(s) = maxa∈A
{
r(s, a) + γ

∑
s′∈S P (s′|s, a)v(k)(s′)

}
;

5 end
6 Behave according to the last value function iterate:

π∗(s) = arg maxa∈A
{
r(s, a) + γ

∑
s′∈S P (s′|s, a)v(k+1)(s′)

}
;
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2.3.2 Q-Learning

We now introduce a stochastic approximation algorithm based on value iteration. Let

us first define the action-value function:

qπ(s, a) = Eπ[r(s, a) + γ
∑
s′∈S

P (s′|s, a)
∑
a′∈A

π(a′|s′)qπ(s′, a′)] , (2.30)

= Eπ[r(s, a) + γ
∑
s′∈S

P (s′|s, a)vπ(s)] . (2.31)

We can write the component form value-iteration update, at the k-th step, with

action-value functions and step-size parameter α ∈ (0, 1]. For each s ∈ S and a ∈ A:

q(k+1)(s, a) = (1− α)q(k)(s, a) + α

(
r(s, a) + γ

∑
s′
P (s′|s, a) max

a′∈A
q(k)(s′, a′)

)
. (2.32)

Imagine the setting without direct access to the MDP dynamics (i.e. P (·), r(·),

etc.), but we can only sample the experiences (St, At, Rt+1, St+1, ...). We write a

similar update with the sampled transition and rewards:

q(k+1)(St, At) = (1− α)q(k)(St, At) + α
(
Rt+1 + γmax

a′∈A
q(k)(St+1, a

′)
)
. (2.33)

The above update gives us the Q-Learning algorithm (Watkins (1989), Bertsekas

and Tsitsiklis (1995) section 5.6). It can be seen as the stochastic approximation

version of value iteration, using action-value functions q(·).12

Algorithm 7: Online Q-learning with one-step transitions (Bertsekas and
Tsitsiklis 1995)
1 Input: MDPM, discount factor γ ∈ [0, 1], stepsize α ∈ (0, 1] ;
2 Initialize action-value estimate q(0)(·) arbitrarily ;
3 while policy not converged do
4 Given current state St, sample action At ;
5 Take action At and observe Rt+1, St+1 ;
6 Update: q(k+1)(St, At)←

q(k)(St, At) + α
(
Rt+1 + γmaxa′∈A q(k)(St+1, a

′)− q(k)(St, At)
)
;

7 end

12Convergence proof for Q-learning are outside of the scope of this thesis; though we refer the
interested reader to Bertsekas and Tsitsiklis (1995), section 5.6.



3
Representation Learning

The difficulty of an information processing task depends on the way information is

presented. This is the problem of representation learning—learning to represent

information in a way that is more useful for downstream processing. This chapter

deals specifically with the representation of states in reinforcement learning.

First, state representation arises naturally when function approximation is used.

In this setting, the state space can be large (or infinite); we no longer have access to

an explicit “identifier” for individual states (this is referred to as the tabular setting),

but instead some feature vector describing each state. Sections 3.1 and 3.2 extend the

tabular methods for policy evaluation and improvement of chapter 2 to this setting.

For linear function approximation, the feature representations of each state are given,

and we approximate values on top of the given features. For deep / nonlinear function

approximation, we learn the features as well as the value approximation in an end-

to-end manner using deep neural networks.

Second, we leverage the structure of the RL problem to learn representations spe-

cific to the MDP setting. Representation in this form rely on learning predictive

knowledge about observations an agent will encounter in the future, in the form of

general value functions. One particular kind of general value function—the successor

representation—encodes the states that will likely be encountered in the future.1 Sec-
1This is not to be confused with the predictive state representation (PSR) of Littman, R. S.

Sutton, and Singh (2001). While they share the same high-level philosophy of having predictive

26
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tions 3.3 and 3.4 deal with the successor representation and how it can also be used

to estimate value. Notably, the two types of representations introduced above are

not contradictory, but complementary. Function approximation gives rise to features,

while general value functions are learned on top of features.

3.1 Policy Evaluation with Function

Approximation

In chapter 2, we introduced many methods for solving a value function vπ(s). Consider

again some MDP,M = 〈S,A, r, P 〉. So far, we have only considered value functions

that are tabular, meaning we have explicit access to each individual states in our MDP

and each state’s value can therefore be stored in a “look-up table”, v(s), s ∈ S, where

we are given the state index s at each timestep.

When states grow large, the tabular representation becomes a highly inefficient or

even intractable method of solving the reinforcement learning problem. For example,

a single state in the game of chess describes a unique board position, resulting in over

1045 states. Furthermore, if the observation is continuous rather than discrete (for

instance, the position and velocities of a self-driving car), it is also unclear how to

discretize a continuous space into a tabular one as the degree of precision is arbitrary.

Such settings are standard for most if not all non-trivial, real-world tasks, so apply-

ing RL to non-trivial settings necessitates working with non-tabular features. This

chapter introduce state features and approximate value functions. As usual, we first

start with the setting of policy evaluation, before moving into control.
representation, PSRs are motivated by the problem of generating sufficient statistics for partially
observable systems, through designing history dependent prediction objectives (“tests”). Later in
this chapter, we will discuss successor representations, which assume Markovian (i.e. non history-
dependent) observations, and learn about future state occupancy using this Markovian property.
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3.1.1 Feature Representation of States

Given an MDPM = 〈S,A, r, P 〉, we “describe” a given state s ∈ S using features.

Definition 3.1.1. A feature mapping, φ : S → Rd, is mapping from the set of states

to a d-dimensional set of features, Φ. For brevity (and with an abuse of notation),

we denote each feature vector equivalently as φ(st) = φt, where φt ∈ Φ ⊂ Rd.

A feature can be thought of as a d-dimensional vector description of the state it

represents. This has the additional benefits of allowing us to possibly describe sim-

ilar states in similar ways, allowing for a degree of generalization in learning. Take

the example of the self-driving car, where the feature may describe the car’s velocity

and position (say distance travelled on a linear track): [30km/h, 100m]. We under-

stand the states [29.9km/h, 99.9m] and [30.1km/h, 100.1m] to be similar, and should

most likely be assigned similar values—this arises naturally from using the above fea-

ture representation. On the other hand, if we discretize the states in tabular form,

the above becomes independent states whose value must be learned independently,

resulting in slower learning.

Usually, we assume the space of features to be much smaller than the space of

states, d << |S|. However, it should be noted that the tabular state representation

is a special case of the feature representation: if we construct features as “one-hot”

vectors of size |S| (where it is “1” at the state index and “0” everywhere else), we have

effectively recovered the tabular representation used in chapter 2. It follows that the

methods introduced in this section simply degenerate into the methods in chapter 2

when tabular (one-hot) state features are used.

Finally, there is the question of where features come from? We assume each state

in the environment s ∈ S give some state observation. There are two ways of getting

features. Firstly, we can simply use the state observation as the features, in which

case we assume the feature set Φ is given as part of the environment. This is the

linear value function approximation setting discussed in section 3.1.3. Alternatively,
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we can learn a feature mapping φ : S → Rd from the state observations to some

d-dimensional feature space. This is a more general setting which we refer to as

nonlinear value function approximation. Within this thesis we only consider the

setting of learning φ in an end-to-end manner using artificial neural networks as our

nonlinear function approximator (section 3.1.5). For a broader discussion on more

explicit ways of constructing features from state observations, we refer the interested

reader to R. S. Sutton and Barto (2018), chapter 9.5.

3.1.2 The Value Approximation Objective

We return to the predictive objective of estimating the value function of a given

MRPMπ = 〈S, rπ, Pπ〉 with discount factor γ ∈ [0, 1]. Recall from equation 2.3 the

value is defined as vπ(s) = Eπ[∑∞k=0 γ
kRt+k+1|St = s] ,∀s ∈ S. Let vθ(·) denote a

parameterized and differentiable value function (linear or nonlinear) with parameters

θ. We optimize θ under a least squares framework to minimize a mean squared loss

given some state s ∈ S and target U ,

L(θ) =̇ [U − vθ(s)]2 . (3.1)

Generally speaking, policy evaluation with function approximation is concerned

with minimizing the squared error of the value estimate, [vπ(s)− vθ(s)]2, weighted by

the on-policy state distribution.

Definition 3.1.2. The on-policy state distribution,2 µ(s), describes the proba-

bility of visiting any states s ∈ S in an MRPMπ,

µ(s) = Eπ[P (S = s)] ,
∑
s

µ(s) = 1. (3.2)

2We assume the Markov chain is ergodic: any state can reach any other states in a finite number
of steps. This implies the existence of the state distribution µ, which is sometimes also referred to
as the stationary distribution of the Markov chain.
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The squared error prediction objective weighted by µ is referred to as the Mean

Squared Value Error (R. S. Sutton and Barto (2018), chapter 9.2),

VE(θ) =̇
∑
s∈S

µ(s) [vπ(s)− vθ(s)]2 . (3.3)

This is a theoretical quantity since computing it requires access to vπ—the quantity we

wish to learn. Nonetheless, in diagnostic settings where we can analytically compute

the true value function it can be used as a evaluation metric to measure how good

some value learning method is.

In practice, we construct some target random variable in the form of a return,

U ≡ G, to approximate vπ. These returns are constructed in exactly the same way

as in chapter 2, namely the Monte-Carlo Return of definition 2.2.4, the (one-step)

TD return of definition 2.2.5, and the λ-return of definition 2.2.7. Since any of the

aforementioned ways of constructing returns are viable, we do not introduce return-

specific methods for the remainder of this section. Instead, we denote the return as

simply the random variable G (or Gt to indicate the return for a particular time-step).

From the above loss equations 3.1 and 3.3, we can interpret the original dynamic

programming RL problem (of chapter 2) as an equivalent loss minimization prob-

lem. Specifically, we can do stochastic gradient descent (SGD) to minimize the mean

squared loss between some return Gt and the current value estimate vθ(st), giving rise

to the general form parameter update with step-size α ∈ (0, 1],

θ ← θ + α [Gt − vθ(St)]∇θvθ(St) . (3.4)

This equation is general in the sense that one can choose any method to construct

the return Gt, any differentiable value function whose gradient is computable in the

form of ∇θvθ(·), and any sampling distribution for how states are sampled from the

environment.

Additionally, in treating RL as a loss minimization method, we can also leverage

the various gradient-based optimization framework which have been well-developed
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in deep supervised learning. In fact this is common practice in contemporary deep

reinforcement learning. However, it would be erroneous to interpret optimization for

RL as identical to optimization in supervised learning. For one, all returns that use

bootstrapping (i.e. all returns except the Monte-Carlo return) are “semi-gradient”

methods rather than gradient methods.3 Additionally, while supervised learning as-

sumes a fixed, pre-collected dataset, RL uses agent collected data whose distribution

depend on the behavioural policy. In the case of policy improvement, the changing

behavioural policy induces a non-stationary data distribution over which optimization

is done.4 While optimizers for deep supervised learning have seen success for deep

reinforcement learning, the analysis and design of optimization procedures specifically

suited to RL is currently still an open question (E. Bengio, Pineau, and Precup 2020;

Romoff et al. 2020; E. Bengio, Pineau, and Precup 2021).

For the remainder of this section, we consider more concretely the different compo-

nents of equation 3.4. Section 3.1.3 considers the setting where the function approxi-

mation vθ(·) is a linear function, section 3.1.4 considers linear function approximation

with the one-step TD return to theoretically analyze the fixed point of this algorithm,

and section 3.1.5 considers the more general case of nonlinear value functions.

3.1.3 Linear Value Function

We consider the simplest approximation setting where we are given the MRPMπ =

〈S, rπ, Pπ〉, discount factor γ ∈ [0, 1], and the state-observations are the features

such that we have the feature set Φ. Given some state st ∈ S, we represent the

(approximate) value estimate of each state as a linear function of the features,

vπ(st) ≈ vθ(st) =̇ φ>t θ =
d∑
i=1

φ(st)i θi. (3.5)

3We later discuss the concept of “semi-gradient” in greater details in section 3.1.3. Also see R. S.
Sutton and Barto (2018), chapter 9.3.

4We use behavioural policy to refer to the data-collection policy. In the on-policy case, the
behavioural policy is also the policy one wishes to learn about. In the off-policy case, the data
distribution can come from (possibly many) behavioural policies that differ from the policy one
wishes to learn about.
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The gradient of the linear value function (equation 3.5) for some st ∈ S is

∇θvθ(st) = φt. We can simply substitute this into the general update (equation

3.4) to minimize the loss between target return and current value estimate:

θ ← θ + α
(
Gt − φ>t θ

)
· φt . (3.6)

We note that in the case of tabular (“one-hot”) features, equation 3.6 reduces to

the chapter 2 stochastic iterative update (equation 2.14). Here we introduce a general

end-of-episode algorithm for policy evaluation with linear function approximation

(algorithm 8).

Algorithm 8: End-of-episode policy evaluation with linear function approx-
imation and stochastic gradients.
1 Input: MRPMπ, feature set Φ, discount factor γ ∈ [0, 1], stepsize α ∈ (0, 1] ;
2 Initialize value parameters θ(0) ∈ Rd ;
3 while not converged do
4 Sample episode trajectory fromMπ: (φ0, R1,φ1, R2, ...,φT−1, RT ) ;
5 for each state-feature encountered, φt do
6 Compute return Gt, possibly bootstrapping using value function

vθ(n)(·) ;
7 Update: θ(n+1) ← θ(n) + α

(
Gt − φ>t θ(n)

)
· φt

8 end
9 end

So far we have remained agnostic to how the return Gt is constructed. Algorithm

8 shares a very similar form to the end-of-episode algorithms of the previous chap-

ter (Monte-Carlo policy evaluation of algorithm 3, and λ-return policy evaluation of

algorithm 5), with the main difference being the updates are for the value function

parameters θ rather than a look-up table entry of a given state. One can easily turn

the algorithm into an online algorithm (i.e. the linear approximation version of the

one-step TD algorithm) using the one-step TD return (definition 2.2.5) which only

requires the one-step experience tuple (φt, Rt+1,φt+1).

While one can construct any target G used in chapter 2, the specific target used

does result in different solutions. If one uses the Monte-Carlo return (definition 2.2.4),
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the update of equation 3.6 corresponds to a gradient descent update and one can find a

locally optimal solution (R. S. Sutton and Barto (2018), chapter 9.3).5 Alternatively,

if the return uses bootstrapped targets (such as the one-step TD return, the n-step

return, and the λ-return with λ < 1), we only consider the gradient with respect to

the current parameters, and not the value function used to construct the target. This

is referred to as semi-gradient methods and are not equivalent to a true gradient

descent method (R. S. Sutton and Barto (2018), chapter 9.3). Intuitively, this is

because bootstrapping results in a “moving target” where the current target depends

in part on the current value estimate, while gradient descent method perform steepest

descent with respect to a static target.6

3.1.4 Fixed Point of Linear TD(0)

We can better understand the linear TD method for policy evaluation by analyzing

the dynamics of its parameters over repeated applications of the update step and in

the limit. Specifically, we write the linear update (equation 3.6) with the one-step TD

return GTD
t ≡ Rt+1 + γvθ(St+1). We abuse the notation slightly and assume that we

update online, thus the t-th iteration of the parameters θt is updated with the online

samples (φt, Rt+1,φt+1) in the form:

θt+1 =̇ θt + α
(
Rt+1 + γφ>t+1θt − φ>t θt

)
φt , (3.7)

= θt + α
(
Rt+1φt − φt(φt − γφt+1)>θt

)
. (3.8)

Notably, the terms Rt+1φt and φt(φt − γφt+1)> of equation 3.8 can be viewed as

Markov processes on their own. The analysis of the algorithm follows from analyzing

these processes in expectation. First, we define in matrix notation the terms we utilize

in the analysis.
5Under the usual stochastic approximation conditions of decreasing step-sizes.
6The interested reader may refer to (Barnard (1993), Appendix I) for a proof of how in the

general case with linear function approximation, there does not exist a loss function whose direction
of steepest descent correspond to the parameter update of one-step TD.
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Definition 3.1.3. Given MRP Mπ = 〈S, rπ, Pπ〉, discount factor γ ∈ [0, 1), and

feature set Φ, we define them in matrix notation (similar to definition 2.2.3). Let

Pπ ∈ R|S|×|S| be the transition matrix, (Pπ)ij = Pπ(S ′ = j|S = i); rπ ∈ R|S| be the

reward vector, (rπ)i = rπ(i); and Φ ∈ R|S|×d be the feature matrix, whose i-th row

denote the d-dimensional feature of the i-th state. Let D ∈ R|S|×|S| be a diagonal

matrix whose diagonal entries are the on-policy state distribution of the MRPMπ,7

Di,i = µ(i) , i ∈ S . (3.9)

We can write the parameter updates of equation 3.8 as follows, using Eµ[·] to

denote expectation under steady-state distribution,

Eµ[θt+1|θt] = θt + α (bθ −Aθθt) , (3.10)

where Aθ ∈ Rd×d and bθ ∈ Rd denote matrices describing the expected updates,

Aθ = Eµ[φt(φt − γφt+1)>] = Φ>D(I− γPπ)Φ , (3.11)

bθ = Eµ[Rt+1φt] = Φ>Drπ . (3.12)

Lemma 3.1.1. The iteration in equation 3.10 has a fixed point known as the TD

fixed point:

θTD = A−1
θ bθ = (Φ>D(I− γPπ)Φ)−1 ·Φ>Drπ . (3.13)

Proof. (Adopted from R. S. Sutton and Barto (2018), chapter 9.4) Equation 3.10 has

a fixed point when Eµ[θt+1|θt] = θt. This occurs when:

AθθTD − bθ = 0 ,

⇒θTD = (Aθ)−1bθ .

7This is the same distribution as the one used to define equation 3.3.
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We use similar methods in chapter 5 to analyze the fixed point of our newly

proposed algorithms. While this is outside of the scope of this thesis, one can also

show that the iteration described by equation 3.10 converges to the TD fixed point

under mild assumptions.8

Lastly, we briefly discuss the value error of the TD fixed point solution. Let

us first define a new weighted quadratic norm, ||·||D. This norm is weighted by the

visitation probability to each states of the MRP (i.e. the on-policy distribution, µ(·)).

Specifically for some v ∈ R|S|,

||v||D =̇ v>D v =
|S|∑
i=1

µ(i) v2
i . (3.14)

We can express the mean squared value error (equation 3.3) using this norm: given

some linear value function parameter θ ∈ Rd and its resulting value estimate v = Φθ,

the value error can be written as:

VE(θ) =̇ ||Φθ − vπ||D , (3.15)

where vπ is the true value function in matrix form (definition 2.2.3).

As we typically assume there are less parameters than there are states, and that

the feature matrix Φ ∈ R|S|×d has full rank, the space of representable linear value

functions, v = Φθ, lies in a d-dimensional subspace within R|S|, d << |S|. Therefore,

the true value function, vπ, may not be representable. Instead, we are interested in

finding the closest approximation to the function of interest in the d-dimensional sub-

space. We define a projection matrix, Π ∈ R|S|×|S|, that projects onto this subspace

for arbitrary vector v,

||Πv− v||D = min
θ
||Φθ − v||D , ∀v ∈ R|S| . (3.16)

8In brief, convergence is proven by showing matrix Aθ is positive definite, thus repeated multi-
plication of the matrix (I− αAθ) (this matrix can be derived algebraically by rearranging equation
3.10) with parameters θt converges with probability 1 under standard assumptions (of step-size de-
cay, ergodicity of the MRP and feature rank). The interested reader can refer to (R. S. Sutton and
Barto (2018), chapter 9.4) and (Bertsekas and Tsitsiklis (1995), chapter 6.3.3) for detailed proofs.
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In other words, Πv ∈ R|S| is a vector that lies in the space of representable value

functions which most closely approximates v, defined in terms of minimizing the

norm ||·||D. We are interested in finding the closest approximation to the true value

function, Πvπ. We provide an error bound for the TD fixed point solution to this

value function.

Proposition 3.1.2. The TD fixed point solution, θTD, corresponds to a value function

with the following bounded error,

||ΦθTD − vπ||D ≤
1

1− γ ||Πvπ − vπ||D . (3.17)

Proof. We briefly sketch out the proof. Let vTD = ΦθTD denote the TD fixed point

value estimate. The proof relies on the following inequality (derivable from Bertsekas

and Tsitsiklis (1995), lemma 6.9),

||vTD −Πvπ||D ≤ γ||vTD − vπ||D . (3.18)

We can then show,

||vTD − vπ||D ≤ ||vTD −Πvπ||D + ||Πvπ − vπ||D ,

≤ γ||vTD − vπ||D + ||Πvπ − vπ||D ,

and the result follows from rearrangement. For a detailed proof we refer the reader

to (Bertsekas and Tsitsiklis (1995), lemma 6.9 and proposition 6.5).

Intuitively, proposition 3.1.2 states that the TD fixed point θTD and its corre-

sponding linear value function vTD = ΦθTD has a mean squared value error that

is upper bounded by a multiplicative factor (1/1 − γ) of the lowest achievable value

error. Notably, this bound becomes very loose for higher values of γ (corresponding

to a longer horizon problem), indicating in such cases that the TD(0) solution is not

guaranteed to be good and may be quite biased. Nonetheless, TD(0) can still be



CHAPTER 3. REPRESENTATION LEARNING 37

a useful algorithm as it allows for online updates and faster convergence. In chap-

ter 5 we show that our new method has the same TD fixed point as TD(0), while

demonstrating even faster convergence speed empirically.

3.1.5 Nonlinear Value Function

We now consider the setting where we learn a transformation from the space of state-

observations to features. Again consider the MRP Mπ = 〈S, rπ, Pπ〉 and discount

factor γ ∈ [0, 1], we would like to learn a parameterized feature mapping, φξ : S → Rd

to generate our feature set Φ. This learnable mapping (sometimes referred to as a

feature encoder) has parameters ξ, and we use the subscript to denote the feature

mapping and feature set’s dependence on it. Given a feature mapping φξ(·), a value

function can be parameterized in the same manner as in section 3.1.3. Namely for all

s ∈ S,

vπ(s) ≈ vθ,ξ(s) =̇ φξ(s)>θ . (3.19)

We consider the setting where the feature map φξ is an artificial neural network

(ANN).9 Specifically, vθ,ξ(·) is a multi-layer ANN, where θ describes the parameters

of the final linear layer for value prediction, and ξ describes all the parameters up

to the final layer, which we consider to be the nonlinear “feature encoder”. This is

somewhat of an arbitrary distinction as we can easily pick another layer of the ANN

to be called the “feature layer”, though much of our later results rely on value being

linear with respect to the features, so we find this distinction to be both useful and

powerful as we do not limit the expressivity of the nonlinear feature encoder.10

In practice, the ANN describing vθ,ξ : S → R is trained in an end-to-end manner

to minimize the loss (equation 3.1). The update follows the same form as equation

3.4 for both parameters θ, ξ. Given some state observation s ∈ S, the value gradient
9The use of multi-layer ANNs for function approximation in reinforcement learning is referred

to as deep reinforcement learning (DRL), for an introduction see François-Lavet et al. (2018).
10While outside of the scope of this thesis, there are works on nonlinear (value) functions of

features, with theoretical guarantees, such as the two timescale analysis of Chung et al. (2018).
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(∇θvθ,ξ(s) = φξ(s)) and feature encoder gradient (∇ξvθ,ξ(s)) are both computable

using standard backpropagation (Rumelhart, G. E. Hinton, and Williams 1985). We

sketch out an algorithm for policy evaluation with ANN-based nonlinear function

approximation below.

Algorithm 9: End-of-episode policy evaluation with nonlinear function ap-
proximation and stochastic gradients.
1 Input: MRPMπ, discount factor γ ∈ [0, 1], stepsizes αξ ∈ (0, 1], αθ ∈ (0, 1] ;
2 Initialize encoder and value parameters ξ(0),θ(0) ;
3 while not converged do
4 Sample episode trajectory fromMπ: (S0, R1, S1, R2, ..., ST−1, RT ) ;
5 for each state-observation encountered, St do
6 Compute return Gt, possibly bootstrapping using current value

estimate vθ(n),ξ(n)(·) ;
7 Update value parameter:

θ(n+1) ← θ(n) + α
(
Gt − φξ(n)(St)>θ(n)

)
· φξ(n)(St) ;

8 Update feature encoder parameters:
ξ(n+1) ← ξ(n) + α

(
Gt − φξ(n)(St)>θ(n)

)
· ∇ξ(n)vθ(n),ξ(n) ;

9 end
10 end

Algorithm 9 is nearly identical to algorithm 8 with the exception of needing to

perform feature encoder parameter updates. It should be noted that algorithm 9 is

just a sketch for the idea of nonlinear policy evaluation with ANNs. In practice, policy

evaluation with a bootstrapped return and nonlinear architecture is not guaranteed to

converge (see Bertsekas and Tsitsiklis (1995), chapter 6.3.2 and example 6.6). Often,

additional “tricks” are required to stably train ANN-based value functions (we outline

some of the tricks for nonlinear ANN-based control in section 3.2.2).
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3.2 Policy Improvement with Function

Approximation

Having extended policy evaluation to the function approximation setting, we now do

the same for policy improvement.

3.2.1 Fitted Q Iteration

So far, we have introduced approximation algorithms using single examples in mini-

mizing a loss between some constructed target and the current value prediction. We

now consider the “batch-mode” setting in which we minimize this loss using batches

or mini-batches of examples. In essence, we consider Q-learning (section 2.3.2) and

train it by regressing using batches of data. This was proposed by Ernst, Geurts, and

Wehenkel (2005) who combined it with tree-based supervised regression models. We

illustrate a general form of their algorithm below.

Algorithm 10: Fitted Q Iteration Algorithm, adopted from Ernst, Geurts,
and Wehenkel (2005)
1 Input:
2 Discount factor γ ∈ [0, 1] ;
3 Batch of experience, {(S(i)

k , A
(i)
k , R

(i)
k+1, S

(i)
k+1), i = 1, ...,m};

4 Parameterized action-value prediction function qθ(·, ·) ;
5 Parameterized action-value target function qθ−(·, ·) ;
6 Regression loss function loss(·, ·) and Optimizer optim(·) ;
7 while stopping condition not reached do
8 Compute target for each example i = 1, ...,m,
9 U (i) = R

(i)
k+1 + γmaxa′ qθ−(S(i)

k+1, a
′) ;

10 Compute batch regression loss,
11 LQ = ∑m

i=1 loss( U (i), qθ(S(i)
k , A

(i)
k ) ) ;

12 Parameter update to minimize batch regression loss,
13 θ ← optim(LQ) ;
14 end
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3.2.2 Nonlinear Control with Deep Q Network

While Fitted Q Iteration (Ernst, Geurts, and Wehenkel 2005) is in theory compatible

with arbitrary function approximation architectures of qθ, and subsequent develop-

ment realized a combination of the Fitted Q Iteration algorithm with artificial neu-

ral networks (Riedmiller 2005), the above methods typically relied on training from

scratch their q functions at each iteration using the full set of experiences collected

up to the current point. While training is stable, such methods are inefficient and do

not scale to large models. In contrast, (Mnih et al. 2015) sought to develop a method

of stably training deep neural networks without weight reset.

Concretely, the challenge of training deep neural net (and more generally, nonlinear

function approximators for control) is that weight updates for a single state-action pair

can arbitrarily change the prediction of other state-action pairs, leading to instability

or divergence (Riedmiller 2005). When paired with bootstrapping, this further results

in a highly unstable target. (Mnih et al. 2015) sought to address such issues in two

ways. First, a replay buffer of previous experience is introduced, and sampling mini-

batches uniformly from the replay buffer reduces the correlation between individual

data. Second, a frozen target network is used, which removes the correlation between

the current q estimate and the bootstrap target, in addition to providing a more stable

optimization objective.

We illustrate the training procedure for the Deep Q network (Mnih et al. 2015)

above in algorithm 11, where the network qθ is a deep convolutional neural network to

process high-dimensional pixel input. At its core is the same fitted-Q iteration proce-

dure as algorithm 10, though we have added the additional “tricks” of target network

and uniform sampling from experience replay buffer to achieve stable training. This

algorithm achieved human-level performance in the 49-game Atari 2600 environment

(Bellemare et al. 2013).
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Algorithm 11: Deep Q Network Training, adopted from Mnih et al. (2015)
1 Input:
2 MDPM and discount factor γ ∈ [0, 1] ;
3 Initialize:
4 Policy network qθ and target network qθ- , θ- ← θ ;
5 Experience replay buffer B = {∅} ;
6 while policy not good enough do

. Take single environmental step
7 Act in the environment (e.g. ε-greedy based on qθ(St, ·)) to collect

experience (St, At, Rt+1, St+1) ;
8 Store experience to buffer, B = {B ∪ (St, At, Rt+1, St+1)} ;

. Sample mini-batch data
9 Sample uniformly from buffer {(S(i)

k , A
(i)
k , R

(i)
k+1, S

(i)
k+1), i = 1, ...,m} ∼ B ;

. Fitted Q Iteration
10 Run algorithm 10 for single iteration, given inputs:
11 Discount factor γ ;
12 Mini-batch {(S(i)

k , A
(i)
k , R

(i)
k+1, S

(i)
k+1), i = 1, ...,m} ;

13 Prediction function qθ and target function qθ− ;
14 Mean squared error loss with RMSProp optimizer (Tieleman and

G. Hinton 2012) ;
. Target network updates

15 For every pre-specified number of training steps, update target net
parameter θ− ← θ

16 end

3.3 Successor Representation of

States

Up to this point, feature representations are based on observation similarity of a single

time-step: we are either given a feature observation directly at each time-step, or, we

are given an observation and map it to a feature. We now develop representations that

encode information about the future, in the form of temporally-dependant, predictive

representations about states an agent will likely encounter in the future.

Specifically, we are interested in developing representations that are useful for value

learning. Let us first return to the simplest setting: policy evaluation with tabular
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states (introduced in section 2.2), given MRPMπ = 〈S, rπ, Pπ〉 and discount factor

γ ∈ [0, 1). We consider the form of the value function estimate, which is previously

stored simply as a |S|-dimensional vector, v ∈ R|S|, whose i-th entry refers to the

value estimate for the i-th state, si ∈ S (see section 2.2.1). The value estimate of

each state contains temporal information, as it estimates the total amount of reward

the agent expects to receive in the future when starting from that state. Through the

process of policy evaluation, the tabular value estimate converges to the true value

function, which can be written in the following matrix form (theorem 2.2.1):

vπ = (I− γPπ)−1rπ.

We see that the tabular value function is the product of two quantities: the in-

stantaneous reward vector rπ ∈ R|S|, and an |S| × |S| matrix:

Mπ =̇ (I− γPπ)−1 . (3.20)

We refer to Mπ as the successor representation matrix. Notably, all the tem-

poral information in the value function is contained within Mπ, as rπ is simply the

immediate reward. This is further demonstrated by interpreting the matrix via the

following identity.

Proposition 3.3.1. Given 0 ≤ γ < 1, the inverse of (I − γPπ) exists and can be

written as a Neumann series: 11

(I− γPπ)−1 = lim
n→∞

N∑
n=0

(γPπ)n. (3.21)

Proof. See (Puterman (1994), Theorem C.2).

Let Mπ(si, sj) denote the i-th row and j-th column of matrix Mπ. Following

proposition 3.3.1, we can interpret the entries of matrix as follows:

Mπ(si, sj) =
∞∑
n=0

γnPπ(Sn = sj|S0 = si), (3.22)

11A Neumann series is generalization of the geometric series using matrices.
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where Pπ(Sn = sj|S0 = si) is the probability of ending up in state sj when starting

from state si and taking n steps while following policy π. In other words, equation

3.22 represents the total discounted future occupancy between all pairs of states in S.

Dayan (1993) proposes using the i-th row of the matrix Mπ as the representation

for the i-th state. This method of state representation is referred to as the successor

representation (SR), Mπ(si, ·) ∈ R|S|. In this tabular setting, the SR represents

each state as a |S|-dimensional vector whose entries are the expected (discounted)

future occupancy of all states. We can compute the value of a given state si by:

vπ(si) = Mπ(si, ·) · rπ. (3.23)

Thus, if the SR is given for a MRP (or can be pre-computed), the value learning

problem turns into just supervised learning of rπ, which Dayan (1993) conjectures

is a lower-variance estimation problem, since learning rπ is not a temporal learning

problem.

3.3.1 Learning tabular SR

Generally, the SR is not available to an agent, although it can be learned in a similar

way as a value function (section 2.2). Consider the following identity which follows

from equation 3.20,

Mπ = (I− γPπ)−1 ⇒ (I− γPπ)Mπ = I , (3.24)

⇒ Mπ = I + γPπMπ . (3.25)

Similar to equation 2.9 in chapter 2, we can define the successor representation eval-

uation operator, LMπ : R|S|×|S| → R|S|×|S|,

LMπM = I + γPπM . (3.26)

We observe from equations 3.25 and 3.26 that Mπ is the fixed point of LMπ . Fur-

thermore, we can show that the operator is a contraction using a similar proof as
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proposition 2.2.3. It follows from the Banach Fixed-Point Theorem (theorem 2.2.2)

that repeated application of the operator LMπ to an arbitrarily initialized matrix M(0)

converges to the fixed point Mπ. This gives us an iterative dynamic-programming

(DP) algorithm to solve for the successor representation matrix (algorithm 12), similar

to the DP algorithm for value function.

Algorithm 12: Iterative DP solution for solving the tabular successor rep-
resentation matrix
1 Input: MRP parameters Pπ, γ ;
2 Initialize M(0) arbitrarily ;
3 for k=1,2,... until satisfied do
4 M(k) ← I + γPπM(k−1)

5 end

It follows that the stochastic approximation methods from section 2.2 can be also

applied here to solve Mπ. We outline one such method here which is analogous to

the one-step, TD(0) algorithm for value function learning (algorithm 4). Denoting

M(s, ·) ∈ R|S| as the successor representation vector for state s (i.e. a row vector in

M), 1s = [0, ..., 1, ..., 0]> ∈ R|S| as an indicator vector for s (1 for state index s and 0

everywhere else), α ∈ (0, 1] as the step-size, and Pπ as the MRP transition function.

We can write the iterative DP update (algorithm 12) for each of its row-vector in

small step-size form:

M(k+1)(s, ·) = (1− α) M(k)(s, ·) + α

[
1s + γ

∑
s′
Pπ(s′|s)M(k)(s′, ·)

]
. (3.27)

If we do not have access to the transition function Pπ, we can sample St+1 ∼

Pπ(·|St) to construct a random variable as the update target. In fact, we can write in

component form the update for any arbitrary state-pairs St, Sk ∈ S,

M(k+1)(St, Sk)←M(k)(St, Sk) + α
(
1St=Sk + γM(k)(St+1, Sk)−M(k)(St, Sk)

)
,

(3.28)

where 1St=Sk = 1 if and only if St = Sk and is otherwise 0.12

12The indicator vector 1St=Sk
is a random variable whose expectation is equal to the probability

of St = Sk.
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We provide a stochastic approximation algorithm for one-step SR learning below.

Algorithm 13: Online incremental TD(0) for tabular SR matrix learning
1 Input: MRPMπ, discount factor γ ∈ [0, 1], step-size α ∈ (0, 1] ;
2 Initialize SR matrix estimate M(0) arbitrarily ;
3 while not converged do
4 Sample environmentMπ, receive one-step experience tuple (St, St+1) ;
5 Compute update target ut = 1St + γM(k)(St+1, ·) ;
6 Update: M(k+1)(St, ·)←M(k)(St, ·) + α

(
ut −M(k)(St, ·)

)
;

7 end

The similarity between this algorithm and algorithm 4 for value learning is appar-

ent. Indeed, the SR shares a similar form as the value function, only that the SR for

state s is a vector of dimension |S|, while the value is a scalar. It should be noted

that estimating the value function through learning SR and reward separately is no

faster than directly learning the value using TD.

3.3.2 SR for Non-Tabular State Observations

What happens if we are given state observations rather than (tabular) state indices?

We see that learning the SR matrix Mπ becomes highly non-trivial in the case of

function approximation. Specifically, consider the TD update for SR learning (equa-

tion 3.28), which relies on the indicator function 1st=sk . The comparison {st = sk}

is trivial in the tabular case (it is simply a comparison of state identities). However,

in the high-dimensional setting, if the state observations are noisy, or continuous,

then one may never encounter exactly the same observation twice. Thus, 1st=sk is a

“pseudo-reward” for SR learning that is infinitely sparse for many non-trivial settings.

One solution for learning SRs in the high-dimensional setting is using successor

features (SFs, addressed later in section 3.4.2). In fact, SFs retain Dayan (1993)’s

original motivation of “summarizing” a state by its cumulative future discounted states

(or in this case, state features). However, unlike the successor representation matrix,

Mπ, SFs do not provide the ability to query future occupancy between arbitrary state-
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pairs. This is a desirable ability in various settings, such as for the methods in chapter

4.

As it stands, this thesis does not tackle the problem of learning the SR matrix

in continuous state spaces, and currently the results of chapter 4 are limited to the

tabular setting. However, exciting recent works have began to tackle the question of

continuous-state SRs. As continuous states cannot be represented in matrix form Mπ,

such works treat the problem as learning a density function over all pairs of states,

given state pairs s, s′ ∈ S and some normalizing scalar constant η,

m̂(s, s′) ≈ η
∞∑
n=0

γnPπ(Sn = s′|S0 = s). (3.29)

A number of approaches have been taken. For instance, Janner, Mordatch, and

Levine (2020) treats equation 3.29 as a distribution learning problem and leverage

recent tools from generative modelling. Blier, Tallec, and Ollivier (2021) bypasses the

infinitely-sparse pseudo-reward issue by deriving a non-sparse gradient for the same

update.

3.4 Successor Representation of

Features

We saw in section 3.3.1 that the temporal difference algorithms can be applied to

both value function learning and SR learning. The difference between the two is

minute: a state’s SR can be thought of as a “generalized” value function, if each

state’s “reward” is a |S|-dimensional indicator vector, 1s. We develop this idea of

general value function further in this section, where we can learn value functions

for arbitrary, multi-dimensional pseudo-rewards (section 3.4.1). We then show one

specific form of general value functions that uses the current state-features as the

pseudo-reward, the successor features (section 3.4.2).
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3.4.1 General Value Function

Generally, we can learn arbitrary “pseudo-value” functions for any arbitrarily defined

“pseudo-rewards”. For instance, if the “pseudo-reward” is the state index vector,

the “pseudo-value” function is the successor representation (section 3.3.1). Formally,

we refer to all such functions as general value functions (GVFs) (R. S. Sutton,

Modayil, et al. 2011), and the “pseudo-rewards” as cumulants to generalize it from

the actual reward given as a part of the MDP.

Akin to the actual reward, the cumulant at time t is a (possibly multi-dimensional)

random variable, Ct. We can define the GVF as follows,

v(s; π, γ) = Eπ
[ ∞∑
t=1

γt−1Ct
∣∣∣ S0 = s

]
. (3.30)

GVFs can be viewed as a form of predictive knowledge representation (R. S. Sutton,

Modayil, et al. 2011; Schlegel, Jacobsen, et al. 2021). For instance, a (standard) value

function is the answer to the question “how much total reward will I receive from this

point onward”. More generally, a GVF stores the answer to the question: “how much

of C will occur over the next T steps?”. To demonstrate this formally, we first show

the relationship between discount factor and termination probabilities.

Lemma 3.4.1. A discounted, infinite-horizon value function (equation 3.30) can be

equivalently written as a undiscounted, finite-horizon value function with random ter-

mination lengths,

v(s; π, T ) = Eπ
[
E
[
T∑
t=1

Ct
∣∣∣ S0 = s

]]
, (3.31)

where T ∼ Geom(1 − γ) is a random variable sampled from a geometric distribution

with success (i.e. termination) probability 1− γ and support over n ∈ {1, 2, 3, ...}.
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Proof. Adapted from Puterman (1994), Proposition 5.3.1,

Eπ
[
E
[
T∑
t=1

Ct

]]
= Eπ

[ ∞∑
n=1

γn−1(1− γ)
n∑
t=1

Ct

]
[Geometric p.m.f.]

= Eπ
[ ∞∑
t=1

∞∑
n=t

Ct(1− γ)γn
]

= Eπ
[ ∞∑
t=1

Ct(1− γ)γt−1
∞∑
n=1

γn−1
]

= Eπ
[ ∞∑
t=1

γt−1Ct

]
[via

∞∑
n=1

γn−1 = 1
1− γ ]

= v(s; π, γ).

Note all quantities above are conditioned on (S0 = s) which we omit for brevity.

The sequence length random variable T (equation 3.31) is geometrically distributed

with mean E[T ] = 1
1−γ . Take the example of the successor representation: the

cumulant is the state index vector 1s, and assume a discount factor of γ = 0.99,
1

1−0.99 = 100. The SR matrix entry, Mπ(si, sj), is therefore the answer to the ques-

tion: “starting from state si, how many times do I expect to see state sj over the next

100 steps?”.

3.4.2 Successor Features

We now introduce a specific type of GVFs which use the state-features as the cu-

mulant: the successor feature (SFs). SFs can be thought of as a feature-based

generalization of the SR; whereas SR requires explicit state index to work, the SF

is designed to work with arbitrary d-dimensional state feature vectors. This offers

a solution for extending SRs to continuous, high-dimensional settings. Concretely,

given an MRP with features φ ∈ Φ, we define the SF as follows,

ψπ(s) =̇ Eπ
[ ∞∑
n=0

γnφt+n
∣∣∣St = s

]
. (3.32)

We show how the SF can be used to approximate the value (equation 2.3). First we

define a linearly parameterized reward function, rw : Rd → R, with instantaneous



CHAPTER 3. REPRESENTATION LEARNING 49

reward parameters w,

Eπ[Rt+1|St = st] ≈ rw(st) = φ>t w . (3.33)

The reward function approximates the expected immediate reward. The following

result follows.

Remark 3.4.2. Given feature set Φ, the value function for all states s ∈ S can be

written as a linear combination of the successor feature ψπ(s) ∈ Rd and the instanta-

neous reward parameters w ∈ Rd:

vπ(s) ≈ ψπ(s)>w . (3.34)

Proof. By moving out the (cumulative) features from the reward parameter,

vπ(s) = Eπ[
∑∞

n=0 γ
nRt+n+1|St = s] ,

≈ Eπ[
∑∞

n=0 γ
nφ>t+nw|St = s] ,

= Eπ[
∑∞

n=0 γ
nφt+n|St = s]>w = ψπ(s)>w .

We refer to this linearly decomposed way of writing the value function (equation

3.34) as the SF value function, which also helps to distinguish it from the undecom-

posed “model-free” value function (equation 3.5). The fact that the value function

can be written in the above decomposed form is perhaps unsurprising as the successor

representation can reconstruct the value function in a similar way (vπ = Mπrπ). The

SFs can be thought of as a linear function approximation extension to the SR, much

like how the linear value function extends the tabular value function. Indeed, in the

case of tabular one-hot feature representations, SFs reduce to SRs exactly.

In general, learning a SF value function is no faster than learning a “model-free”

value function (i.e. parameterized according to equation 3.5), thus it is unclear
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Algorithm 14: Online one-step policy evaluation with SF value function.
1 Input: MRPMπ, feature set Φ, discount factor γ ∈ [0, 1], step-sizes

αΞ, αw ∈ (0, 1] ;
2 Initialize:
3 SF function ψΞ : Rd → Rd with parameters Ξ ;
4 Reward function rw : Rd → R with parameters w, rw(φt) = φ>t w ;
5 while not converged do
6 Sample environmentMπ, receive one-step experience tuple

(φt, Rt+1,φt+1) ;
. Update SF function parameters

7 Construct target: ut = φt + γψΞ(φt+1) ;
8 Update: Ξ← Ξ + αΞ (ut −ψΞ(φt))∇ΞψΞ(φt) ;

. Update reward function parameters
9 Update: w← w + αw

(
Rt+1 − φ>t w

)
φt ;

10 end
11 Compute value estimate as: vΞ,w(St) = ψΞ(φt)>w ;

whether naively learning a SF value function is at all useful within the single-task

setting. Alternatively, one area in which SFs have been extensively used is the multi-

task and transfer settings. For instance, Zhang et al. (2017) and Lehnert, Tellex, and

Littman (2017) leverage the decoupled transition and reward components of the SF

value function to transfer to similar dynamics and rewards by using the previously

learned SF as the initialization of the new SF. Alternatively, Barreto, Dabney, et al.

(2017) propose a more principled approach of Generalized Policy Improvement: a way

of exploiting the fast policy evaluation of the SF value function given arbitrary SF

and reward parameters to do policy improvement over sets of SFs, allowing for faster

transfer to new reward functions (Barreto, Borsa, et al. 2018; Hansen, Dabney, Bar-

reto, Warde-Farley, et al. 2019; Grimm et al. 2019). Adding to this, transfer can occur

via generalization in the parameters of the function approximator (i.e. by including a

task description as input to the function approximator), which is leveraged by works

such as Borsa et al. (2018). Additionally, a learned SF contains useful information

of the MRP, which have been used for option discovery (Machado, Bellemare, and

Bowling 2017; Machado, Rosenbaum, et al. 2018) and better exploration (Janz et al.
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2019; Machado, Bellemare, and Bowling 2020).

The current thesis takes a completely orthogonal, yet complementary approach to

all previously proposed uses of successor-like representations. We investigate the use

of SRs (chapter 4) and SFs (chapter 5) for single task value learning. Indeed, as we

will show, when used in an informed way SRs and SFs can be leveraged for efficient

credit assignment for value function learning.

3.5 SRs in the brain

There has been a recent surge in interest in the neuroscience community to interpret

neuroscientific findings from the perspective of the brain encoding successor repre-

sentations. This surge in interest was instigated by Stachenfeld, M. Botvinick, and

Gershman (2014) and Stachenfeld, M. M. Botvinick, and Gershman (2017), who pro-

pose a unifying explanation for the activity patterns of the cells in the hippocampus

region of the brain, based on previous experimental results in animals and humans.

Specifically, the authors propose that individual hippocampal “place cells” correspond

to specific (discrete) states in the environment: when an animal is in a state si, the

firing rate of a hippocampal place cell encodes the entry of the SR matrix Mπ(si, sj)

(where sj is the state encoded by that cell). Correspondingly, the population activity

of the hippocampus encodes the SR of the current state, Mπ(si, ·). Under this model,

the authors offer explanations for why the activity field of a place cell can become

distorted in space based on the transition probability between states (e.g. if an animal

is trained to run in a specific direction the activity field skews against the direction of

travel, and if there are barriers in the environment the activity field distorts around

the boundaries), and how such activity can also exist for non-spatial tasks. Such ob-

servations were not explainable by previous theories of place cells that claim a place

cell simply encode a specific spatial location. Further, the authors re-interpret the

firing activity of “grid cells” in the nearby entorhinal cortex region of the brain. These
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“grid cells” are hypothesized to be an eigendecomposition of the SRs, which give rise

to grid-like activity patterns in spatial tasks. In a similar vein, Russek et al. (2017)

compares simulated learning outcomes with the SR to previous experimental data in

neuroscience. It was suggested that having a SR value function, along with a learned

transition model for Dyna-like replay (R. S. Sutton 1990), provided the closest fit in

terms of the tasks solvable by animals.

Additionally, Momennejad, Russek, et al. (2017) empirically evaluated human’s

ability to transfer to small changes in the reward and/or transition structure of the

task. It was found that humans transfer well to tasks that only involve re-evaluating

the reward, and marginally worse to settings where the transition structure changes

(either as a result of the underlying MDP transition changing, or when the new

optimal policy results in a different transition structure). The authors compare this

finding to three hypothesis models: a “model-based learner” using value iteration

(algorithm 6), a “SR learner” which learns the Q value using information collected only

from the most recently experienced trial, and a “hybrid learner” that selects actions

based on a mixture of the Q values of the two previous (“model-based” and “SR”)

learners. The “hybrid learner” offered the closest fit to human performance, which the

authors claim supported SR as a computational substrate for human decision making.

Finally, the review papers Gershman (2018) and Momennejad (2020) cite the afore-

mentioned works as evidence for SR being learned in the brain. Overall, the primary

argument for the brain learning SR follows from the claim that doing RL with one-

step transition models (“model-based RL”) is computationally expensive as the policy

needs to be dynamically computed during behavioural time, while directly estimating

the action-value function (e.g. Q learning) is inflexible to changes in the environ-

ment. According to this argument, the SR is a potentially good “middle ground” for

biological organisms to balance between flexibility and efficiency. Overall, though,

little of the work in neuroscience has explored the possibility that SRs may also be

useful for value learning in-and-of-itself, as opposed to just re-evaluating after reward
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function changes. Thus, our results in this thesis also speak to additional potential

explanations for the apparent presence of SR-like functions in the mammalian brain.



4
Predictive Error Propagation

Value function learning for policy evaluation (section 2.2) involves constructing a re-

turn for each encountered state, which is used as a target. Many returns are available,

such as the one-step TD return (definition 2.2.5), and the λ-return (definition 2.2.7).

Typically, learning occurs by minimizing the error between the current return and the

current value estimate.

In this chapter, we show how errors from arbitrary states can also be used to

update the value estimate of the current state. This allows for a single error signal

to be “re-used” multiple times in a form of efficient, non-local credit assignment.

Specifically in an MRP, we show the contribution of the current state to errors in

other states is proportional to the visitation count to the other states, when starting

from the current state. This is analogous to the SR (section 3.3), which we leverage

to simultaneously estimate environmental transition structure and propagate errors.

We focus on better prediction (i.e. policy evaluation) only, and all of our results is in

the tabular feature representation setting where SRs can be tractably learned.

54
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4.1 The Lambda Return Error

Recall the lambda return (definition 2.2.7) which is a λ weighted exponential average

of all n-step returns, λ ∈ [0, 1],

Gλ
t = (1− λ)

∞∑
n=1

λn−1
[
(
n∑
k=1

γk−1Rt+k) + γnvθ(St+n)
]
.

The λ-return is motivated from the perspective of efficient credit assignment. That

is, it is able to provide a good bias variance trade off in the return—the target used to

update the value estimate. The value estimate is updated to minimize the MSE loss

L(θ) =
[
Gλ
t − vθ(St)

]2
(a special case of equation 3.1), with the SGD update taking

the form of (a special case of equation 3.4),

θ ← θ + α
[
Gλ
t − vθ(St)

]
∇θvθ(St) . (4.1)

In particular we are interested in the term Gλ
t − vθ(St), which we refer to as the

lambda return error. Notably, using the identity in equation 2.25, we can write

this term as follows,

Gλ
t − vθ(St) =

∞∑
n=0

(λγ)nδt+n , (4.2)

where δk = Rk+1 + γvθ(Sk+1)− vθ(Sk) is by definition the TD error (equation 2.18).

We see by equation 4.2 that the λ-return error being minimized at time-step t

is a (discounted) sum over all future one-step TD errors. In other words, we are

simultaneously moving the value function estimate toward the one-step TD return

target for all future states we will encounter in the trajectory, with states further into

the future being less emphasized due to the discount factors λ and γ. Further, we

can interpret equation 4.2 as a general value function (GVF, section 3.4.1), where the

“cumulant”, δ(S,θ), is the one-step TD error as a function of the current state and

value function parameters.
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4.1.1 Lambda Successor Return Error (λ-SRE)

The λ-return is a “theoretical” quantity: we do not have access to the full future

trajectory at time t, and we can only construct it in an episodic setting by saving the

entire trajectory to update end-of-episode. In this section, we introduce a decomposi-

tion trick to ameliorate the above weaknesses, through approximating in expectation

the lambda return error. Given MRPMπ = 〈S, rπ, Pπ〉 with a transition matrix Pπ,

we first define a λγ-discounted successor representation matrix (sometimes written as

“λ-SR” in brief),

mπ =̇ (I− λγPπ)−1 =
∞∑
n=0

(λγPπ)n . (4.3)

The above is nearly identical to the “vanilla” SR matrix definition in equation 3.20,

with the only difference being the discount factor is now λγ, as supposed to just γ.

Thus, it also follows the same interpretation given in equation 3.22, specifically

mπ(si, sj) =
∞∑
n=0

(λγ)nPπ(Sn = sj|S0 = si) . (4.4)

We return to the λ-return error of equation 4.2 and treat the TD error itself as

a random variable. Let δθ(s) = Eπ[δk|Sk = s] = Eπ[Rk+1 + γvθ(Sk+1) − vθ(Sk)|Sk =

s] denote the expectation of this random variable. We write the λ-return error in

expectation,

E[Gλ
t − vθ(s)|St = s] = E

[ ∞∑
k=0

(λγ)k δt+k
∣∣∣∣∣St = s

]
,

=
∞∑
k=0

∑
s′∈S

(λγ)kPπ(St+k = s′|St = s) δθ(s′) ,

=
∑
s′∈S

(
∞∑
k=0

(λγ)kPπ(St+k = s′|St = s)) δθ(s′) ,

=
∑
s′∈S

mπ(s, s′) δθ(s′) . (4.5)

We can write the above using some sampling distribution ρ(·) with full support over

the states, via ∑s′∈S mπ(s, s′) δθ(s′) = ∑
s′∈S

ρ(s′)
ρ(s′)mπ(s, s′) δθ(s′),

E[Gλ
t − vθ(s)|St = s] = Eρ

[mπ(S, S ′)
ρ(S ′) δθ(S ′)

∣∣∣S = s
]
. (4.6)
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With reference to equation 4.5, the expected λ-return error can be decomposed

into the λγ-discounted successor representation matrix, mπ, and the expected error

at each state of the MRP. We refer to equation 4.5 as the lambda successor return

error (λ-SRE). We emphasize it is a quantity independent of the value function

parameterization θ, much like the λ-return is. That is, equation 4.5 can be used as

the error for any kind of parameterization of the value function (linear, non-linear,

etc.).

It should be noted that the summation in equation 4.5 is over the entire state

space S and is typically intractable for large domains. However, equation 4.6 suggests

a family of algorithms, where one can define any kind of sampling distribution ρ that

allow for an unbiased estimate of the λ-SRE. For example, in the case of uniform

sampling of s′, the error at state s will be directly proportional to m(s, s′)δθ(s′).

4.1.2 The λ-SRE Fixed Point

We provide a brief analysis of the behaviour of iterative updates that minimize λ-

SR weighted TD errors. Given the matrix form MRP, with transition matrix Pπ ∈

R|S|×|S|, reward vector rπ ∈ R|S|, discount factor γ ∈ [0, 1), current value estimate

r ∈ R|S|, and some estimated λ-SR matrix m ∈ R|S|×|S|. We write the SRE policy

evaluation operator as follows,

LE v = v + m (rπ + γPπv− v) . (4.7)

Equation 4.7 updates the value estimates v to minimize the equation 4.5 error.

Proposition 4.1.1. Given any invertible matrix m ∈ R|S|×|S|, the SRE policy evalu-

ation operator has the true value function as its fixed point,

LE vE = vE = (I− γPπ)−1rπ = vπ . (4.8)
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Proof. For notation brevity, we borrow the SR notation from equation 3.20, Mπ =̇ (I−

γPπ)−1. We can write the SRE policy evaluation operator as

LE v = v + mrπ −m(I− γPπ)v ,

= mrπ + (I−mM−1
π )v .

At its fixed point, we have LE vE = mrπ + (I−mM−1
π )vE = vE. Re-arranging,

vE = (mM−1
π )−1mrπ

= (I− γPπ)−1rπ = vπ .

Proposition 4.1.2. Given invertible matrix m ∈ R|S|×|S|, and define 1 = [1, 1, ...]>.

We assume ||(I−mM−1
π ) · 1||∞ < 1. Then, SRE policy evaluation operator is a

contraction in the infinity norm ||·||∞.

Proof. Given arbitrary vectors in value function space, u,v ∈ V,

||LE u− LE v||∞ = ||(I−mM−1
π )(u− v)||∞ ,

≤ ||(I−mM−1
π ) (1||u− v||∞)||∞ ,

= ||(I−mM−1
π )1||∞ · ||u− v||∞ ,

< ||u− v||∞ .

The last step follows by the assumption ||(I−mM−1
π ) · 1||∞ < 1.

That is, as long as the proposition 4.1.2 assumption is met, applying the SRE

policy evaluation operator LE results in a sequence that converges to the true value

function vπ (by Banach Fixed-Point Theorem, theorem 2.2.2). We do not prove

all cases for which m satisfies this in our current work, but we refer the reader to

(Pitis 2018) which show similar convergence results and how a true SR matrix (i.e. if

m = mπ) satisfies a similar assumption.
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4.1.3 Tabular Algorithm

As a proof of concept and for a fair comparison with the offline λ-return algorithm,

we propose an offline algorithm using states sampled only from a single episode of

on-policy trajectory.

Algorithm 15: Offline λ-SRE algorithm using single episode samples for
policy evaluation, without correcting for sampling distribution
1 Input:
2 MRPMπ, discount factor γ ∈ [0, 1], step-sizes α ∈ (0, 1] ;
3 γλ-discounted SR function, mπ(·, ·)→ R, and a way to learn it;
4 Initialize: Value function vθ : S → R with parameters θ ;
5 while repeat episodes until satisfied do
6 Collect end-of-episode on-policy trajectory τ = (S0, R1, S1, ..., RT );

. Update SR estimate with given learning method
7 Update λ-SR function, mπ ;

. Update to minimize λ-SRE
8 for k = 0, ..., T − 1 do
9 δk = Rk+1 + γvθ(Sk+1)− vθ(Sk)

10 end
11 for t = 0, ..., T − 1 do
12 ∆θ =

[
1

T−t
∑T−1
k=t mπ(St, Sk)δk

]
∇θvθ(st) ;

13 θ ← θ + α ∆θ ;
14 end
15 end

We note that λ-SRE does not need to be an offline algorithm, but our main hy-

pothesis is that simply having the λ-SRE (regardless of its implementation detail)

is better than using λ-return, specifically by removing the trajectory dependence of

λ-return via decomposing out the entire time component into the λγ-discounted SR

(Dayan 1993), which we hypothesize reduces trajectory variance (at the possible cost

of increased bias in using a learned estimate of mπ). Specifically, we use the on-policy

distribution as the sampling distribution ρ to approximate equation 4.6, without cor-

recting for the frequency of states encountered. This is a naive approach: the lack

of state frequency correction means equation 4.6 not longer exactly equal the lambda

return error (equation 4.2), resulting in potential bias. Nonetheless, we find this works
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reasonable well in the restricted set of empirical studies performed. We leave the de-

velopment of more principled methods of correcting the return for future work. This

gives rise to our offline λ-SRE algorithm (algorithm 15).

Once again note algorithm 15 is independent of the value function parameteriza-

tion θ as long as we can compute the gradient ∇θvθ(st) (e.g. via backpropagation in

a neural network), and assuming that we can learn (or are given) a λγ-discounted SR

function mπ (in line 7 of algorithm 15).

4.1.4 Learning the λγ-discounted SR

We briefly examine the question of learning the γλ-discounted SR. Indeed, learning

this is identical to learning the “full” (γ-discounted) SR, with a similar Bellman form:

mπ(st, s′) = Pπ(S0 = s′|S0 = s) + (λγ)Eπ [mπ(st+1, s
′)] . (4.9)

Therefore, in theory we can leverage all methods from section 3.3 to learn this, sub-

stituting in the new discount factor λγ.

Algorithm 16: End-of-episode learning of tabular λγ-discounted SR
1 Initialize: Tabular λγ-discounted SR matrix, m ∈ R|S|×|S| ;
2 Given a on-policy trajectory of states from the latest episode:

τ = (S0, S1, ..., ST−1) ;
3 for St where t = 0, ..., T − 1 do
4 while time allows do
5 Sample Sk ∼ {S0, S1, ..., ST−1} from the trajectory, randomly with

replacement;
6 ∆m(St, Sk)← 1St=Sk + (γλ) m(St+1, Sk)−m(St, Sk) ;
7 m(St, Sk)←m(St, Sk) + α∆m(St, Sk) ;
8 end
9 end

However, learning mπ in the functional approximation (non-tabular) case is non-

trivial, as previously discussed in section 3.3.2. For now, we use a tabular algorithm

for learning mπ (line 7 of algorithm 15). In particular, how to best do SR learning is



CHAPTER 4. PREDICTIVE ERROR PROPAGATION 61

not the focus of this work, but instead we illustrate that learning the SR is beneficial

in the case of single-task value learning. Thus, we trivially adopt the tabular SR

algorithm from Machado, Bellemare, and Bowling (2020) and include it below for

completeness. To make it compatible with algorithm 15, we provide an end-of-episode

update algorithm for SR learning (algorithm 16).

4.2 Experiments

For our experiments, we focus on the tabular setting as a proof-of-concept for λ-SRE,

as it allows for tractable computation of mπ and for us to easily solve for the true

values of the MDP to compare against the agents’ estimates. All algorithms are

evaluated on the canonical 19 states random chain task (figure 4.1, also see R. S.

Sutton and Barto (2018), figure 12.3).

1 · · · 9 10 11 · · · 19
+0 +1

Figure 4.1: The 19-state random walk chain. Agent starts in the centre and transition
randomly to adjacent states until reaching the terminal states on either end. Reward
is 0 for all transitions, except for the right-side termination state, which yields a
reward of +1.

We always initialize the tabular value function v (for the offline λ-return and the

λ-SRE algorithms which contains an explicitly parameterized value function) to 0.5,

the averaged value of the random walk chain MDP. This follows from the method

used in Chapter 12 of R. S. Sutton and Barto (2018). For all experiments we run 50

seeds and average over them for the results shown. Error bars, when shown, denote

95% confidence interval (standard error).

Additionally, in the inner loop of algorithm 16, we sample only n ≈ (0.05 · T )

number of states, Sk (T is trajectory length). While larger samples can help with

faster learning, small samples worked well in our task, and had better computational

efficiency. Further, we note that in the tabular case, the successor representation is
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upper-bounded by mπ(s, s′) ≤ ∑∞
n=0(λγ)n = 1

1−γλ , for all s, s′ ∈ S. As a heuristic

we therefore initialize the successor matrix to minit(·, ·) = 0.5 · 1
1−min(γλ,0.95) . The 0.5

constant is akin to a prior saying any state has a 0.5 chance of reaching any other

states at any times, and the min is used to prevent the values from blowing up to

infinity. We emphasize this is a rough heuristic we used in our experiments and we did

not explore extensively the effect of initialization on learning the tabular SR matrix

as this is not the main focus of this work.

4.2.1 Policy Evaluation

We compare all algorithms in the offline, on-policy setting with access to the full

trajectory of the most recent episode. We compare three algorithms learning from

scratch: (i) offline lambda return (algorithm 5), (ii) our offline λ-SRE (algorithm 15),

and (iii) a SR algorithm with decoupled SR and reward representations (algorithm

16, with λ = 1). We give the SR algorithm the true reward function rπ, such that it

only needs to learn the SR matrix (as the value estimate can be recovered by the dot

product v = M · rπ).1 Despite this, the SR algorithm had a large (> 1) error. We

therefore excluded it from figure 4.2.

Again following the set-up in R. S. Sutton and Barto (2018), we use no discounting

(γ = 1) and evaluate the root mean squared error (RMSE) of each agent’s value

function after 10 episodes’ worth of experience. We also use the same step-size for all

learning procedures (e.g. for value learning and for SR learning in the λ-SRE agent).

We see that the λ-SRE agent performs similarly whether the true λ-SR matrix,

mπ, is given (figure 4.2, centre), or if it needs to be learned from scratch via algo-

rithm 16 (figure 4.2, right), albeit the concurrently learned λ-SRE agent shows more

instability across the learning rates. Both λ-SRE algorithms consistently out-perform
1The reward function can be estimated using supervised learning. However, in exploratory

experiments, the (SF and reward) learning rates need to be set differently. Specifically, the reward
learning prefers a very small learning rate, while the SR learning prefers larger ones. Using the same
step-sizes resulted in either a complete lack of learning or divergence. Thus, for simplicity, we opted
to just give the SR agent the true reward function and let it learn only the SR matrix.
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Figure 4.2: Policy evaluation in random walk chain. Vertical axis shows the
root mean squared error (RMSE) at the end of the 10-th episode, averaged over 50
seeds. (Left) offline λ-return. (Centre) offline λ-SRE given true mπ, (Right):
offline λ-SRE with concurrently learned mπ and value function.

the traditional λ-return algorithm (figure 4.2, left) while having access to the exactly

same information, across a wide range of learning rates.

(A) (B)

Figure 4.3: Policy evaluation in random walk chain. Root mean squared error
(RMSE) over the first 100 episodes of training. (A) RMSE of the λ-return, λ-SRE
and (vanilla) SR algorithms on log scale. (B) RMSE of just the SR algorithm on
linear scale to show it is learning, albeit very slowly. All settings use 50 independent
runs with error bars denoting 95% standard error.

Figure 4.3 further demonstrates the learning efficiency of the λ-SRE by plotting

the 100 episodes learning curves for the three algorithms with best parameter settings.

While both algorithms learn a SR, we observe that λ-SRE has lower value error as

compared to the (vanilla) SR at all points of value learning. The failure of SR to learn

might be due to multiple reasons. Initialization of the SR matrix plays a potential

role, though this is not a problem with the λ-SRE. The undiscounted case may also

be difficult to learn in as future occupancy have high value. Additionally, small errors

in the SR matrix may result in large errors in the value function (L. M. White 1996).
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4.2.2 Using Successor-like Representations

Having shown the benefit of using λ-SRE, we turn to the representation learned.

While both the λ-SRE and the (“vanilla”) SR algorithms learn a SR-like matrix, the

SR matrix is used very differently and result in different learning efficiencies (figure

4.3). Here, we will directly compare the effect of the SR matrix error on the λ-SRE

and the SR algorithms.

Specifically, we set λ = 1 for the λ-SRE agent such that both agents are learning

identical SR matrices. We use identical learning rates of α = 0.1 for all experiments

and run for 3000 episodes, with discounting γ = 0.8 (this was chosen to make the

learning process easier for the SR agent as high γ may result in more unstable learn-

ing). We emphasize we learn from scratch the SR matrix for both the λ-SRE and SR

algorithms here rather than using a pre-computed SR matrix.2

Figure 4.4: Comparison of policy evaluation in the random walk chain. Ver-
tical axis shows root mean square error (RMSE) of the value function and successor
matrix for the λ-SRE and SR algorithms. (Left) Value function error over training.
(Middle) Successor matrix error over training. (Right) Correlation of value func-
tion error with successor matrix error. All settings use 50 independent runs, error
bars denote 95% standard error.

We observe that the successor matrix error is identical for both algorithms through-

out training (figure 4.4, middle), which is unsurprising given we explicitly set it up

this way. Yet, the λ-SRE agent converges much more quickly than the SR agent (fig-

ure 4.4, left). We also see that the λ-SRE agent is robust to a much higher successor
2We still give the (vanilla) SR algorithm the ground truth reward function such that it only

needs to do SR learning.
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matrix error while the SR agent requires a highly accurate successor matrix for good

value prediction (figure 4.4, right).

4.3 Discussion on Machine Learning

4.3.1 Successor Errors

Consider the tabular successor representation matrix Mπ ∈ R|S|×|S|. Each row, Mi,,

is the SR for state i, representing the total future (discounted) visitations to all other

states (Dayan 1993). We can similarly view the SR as the degree of “contribution”

from state i to all other states. Consequently, the expected error received at state

i from other states is proportional to its successor representation. Likewise, we can

also view the matrix columns, M,j, as how error at state j should be distributed to

all other states—this is known as the ideal source trace and explored extensively in

Pitis (2018).

In λ-return, the λ term gives us additional flexibility to tune how much importance

we wish to assign to future errors, which is expressed via the λ-SR matrix, mπ. Similar

to how the value is the expected discounted sum of future (instantaneous) rewards,

the λ-return error is the discounted sum of future (one-step) errors (equation 4.2). It

is perhaps unsurprising that just as one can compute the value for a state in one step

using the SR and rewards, we can compute the expected λ-return error in one step

using the λ-SR and TD errors. We can interpret the λ-successor return similarly to

the λ-return. In the case of λ = 0, we have the lambda successor matrix mπ = I,

meaning we only care about the immediate TD errors and do TD(0). In the case of

λ = 1 we recover the successor representation (mπ = Mπ), weighing future errors

proportional to their actual (γ-discounted) occupancy.

We note that the γ term in SR is behaviourally relevant: different γ can result in

different levels of myopia. Unlike γ dependent processes like SR learning, the λ term
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is a purely learning parameter, and we are free to tune the discounting freely in λ-SRE

without changing the policy myopia. It is interesting to observe that lower λ tends

to perform better in the λ-SRE agent as compared to the λ-return agent (figure 4.2),

potentially pointing to lower λ resulting in a more stable learning problem.

4.3.2 Related Works

The closest work to ours is Source Traces (Pitis 2018), which can be viewed as a

“backward view” version of λ-SRE. While we update a current value function by a

future error, ∆v(st) ∝
∑
s′m(st, s′)δθ(s′), Pitis (2018) updates past value functions

using the present TD error: ∆v(s′) ∝ m(s′, st)δ(st) ∀s′. Both works require learning

the SR function mπ, which is a mutual weaknesses. However, even if mπ can be

learned, the backward view has two additional weaknesses for non-tabular cases: (i)

it assumes access to the entire state space for error propagation; and (ii) it is unclear

how to interpret the SR function as an eligibility trace, as mπ maps to a scalar, while

(non-tabular) eligibility traces require one to keep track of all model parameters. We

note this latter perspective is explored further in H. v. Hasselt, Madjiheurem, et

al. (2020), which can be viewed as “back-in-time” successor features for linear value

functions.

4.4 Discussion on Neuroscience

Our work opens up the interesting question of a possible relationship between hip-

pocampal representation (O’Keefe and Dostrovsky 1971; Stachenfeld, M. M. Botvinick,

and Gershman 2017; Mehta, Quirk, and Wilson 2000; Alvernhe, Save, and Poucet

2011; Hollup et al. 2001), and the hippocampus as a system for fast learning (through

replay (Gupta et al. 2010; Mattar and Daw 2018; Momennejad, Otto, et al. 2018),

complementary learning (McClelland, McNaughton, and O’Reilly 1995; Kumaran,

Hassabis, and McClelland 2016), and/or episodic control (Lengyel and Dayan 2008;
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Blundell et al. 2016; Gershman and Daw 2017)). Through the λ-successor represen-

tation, we demonstrate a representation to support fast learning (of a value function)

through better credit assignment. Notably, the physiological evidence supporting

place fields as successor representations equally support the λ-SR hypothesis (as SR

can be seen as a special case of λ-SR). We further speculate that learning the value

function through λ-SRE naturally fit with methods such as experience replay (or a

model), specifically through the need to sample the state space to estimate equa-

tion 4.6. It may be interesting to re-interpret hippocampal replay data in light of

λ-SRE.

We reiterate a small but important nuance between the traditional SR and λ-

SR: SR is a direct (decomposed) representation of the value function, while λ-SR

weighs the TD errors to update a (separate) value function. We demonstrate through

simulations that the latter can result in both faster learning and is more robust to

imperfections in the learning process—a potentially desirable biological property that

complements the strength of the traditional SR (e.g. for transfer). Subscribing to the

λ-SR as a model for place fields, we would expect place cells to be important during

learning, but not for value estimation after learning. Some works support this: the

dorsal hippocampus is transiently involved in action acquisition (Bradfield et al. 2020),

and dopamine release (a quantity typically associated with the one-step TD error

(Schultz 2016)) in the dorsal hippocampus promoting spatial learning (Kempadoo

et al. 2016). Future experiments can help delineate the interactions between reward

prediction error, place fields, and learning speed, through the lens of λ-SRE.

4.5 Future Works

We identify two main limitations to the current work: (i) proposing a sampling dis-

tribution, ρ, in equation 4.6; and (ii) having a principled method of learning the λ-SR

function, mπ in high dimensional feature spaces. Point (i) is well suited to be com-
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bined with an experience replay buffer, and/or a (generative) model of states and

state transitions. On the other hand, point (ii) is much more difficult. Some possible

direction include heuristic methods to estimate the proximity of features, or learning

the function mπ(·, ·) as a metric using the methods discussed in section 3.3.2. This is

a promising direction for future research, as the biological evidence also points to such

“successor-like” representations being present in the brain, which works exclusively in

high-dimensional settings.

All in all, we show an interesting connection between SR—a representation typi-

cally used for transfer, and the λ-return—a quantity for temporal credit assignment.

We show our method works in tabular settings and complements the current neuro-

science theories and observations, demonstrating its potential to be further investi-

gated for future research at the intersection of biological and artificial RL.



5
Lambda Value Function

In chapter 4, we developed a method for error propagation using the successor rep-

resentation matrix. This was motivated by decomposing the signed error between

the λ-return and the current value prediction in expectation. We motivate a sim-

ilar decomposition in this chapter, using the λ-return itself. Interestingly, the de-

composition results in a generalized form of value function parameterization—the

λ value function (λ-VF)—that generalizes traditionally parameterized “model-free”

and “successor-feature” value functions. This decomposition is also more amenable

to function approximation, being readily extendable to combine with deep neural

networks.

We develop the theory of λ-VF in section 5.1 and outline algorithms. The al-

gorithms are evaluated on illustrative and high-dimensional standard benchmarks in

section 5.2. Finally, we discuss the λ-VF in relation with both machine learning and

neuroscience.

5.1 Lambda Value Function (λ-VF)

In this section we motivate the core idea and derivation of the Lambda Value Function

(λ-VF). First, we review the two commonly used ways of estimating value, namely

the “model-free” and “successor features” value functions, in section 5.1.1. Then, we

69
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show how the λ-return, in expectation, can be decomposed into the λ-VF in section

5.1.2 as a generalization of the two previous value functions. We briefly analyze the

fixed-point of learning with λ-VF as a one-step target in section 5.1.3. Finally, we

discuss algorithms for learning the λ-VF for linear prediction and nonlinear control

in sections 5.1.4 and 5.1.5.

5.1.1 Linearly Predictive Rewards and Features

We focus on the policy evaluation setting and review the two previously presented

methods of estimating value. Given MRPMπ = 〈S, rπ, Pπ〉, discount factor γ ∈ [0, 1),

and feature set Φ. We write φ(st) = φt, φt ∈ Rd to denote the d-dimensional feature

for the state sampled at time t, st ∈ S. We are interested in approximating the true

value, vπ, as a linear function of the features.1

Model-Free (MF) Value Function The first method directly estimates value as

a function of the features. This corresponds to equation 3.5 in section 3.1.3, which

we refer to as the MF value estimate:

vπ(s) ≈ vMF(s) =̇ vθ(s) = φ(s)>θ , (5.1)

with θ ∈ Rd learnable parameters.

Methods for learning the MF value function are covered extensively in section 3.1,

thus we do not review them in detail here. Generally, learning involves constructing

a learning target Ut and updating vMF
t toward the target:

θ(new) = θ(old) + α(Ut − φ>t θ(old))φt+1 , (5.2)

with learning rate parameter α ∈ (0, 1]. Different targets can be constructed in the

form of different returns, G. Different returns are reviewed in section 2.2.
1This also extends naturally to nonlinear ANN settings by treating the last (linear) layer of the

ANN as the value function, and the layers up to the last layer as the feature encoder.
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Successor Features (SF) Value Function We can also decouple the value esti-

mate into reward and transition information, by decomposing into immediate rewards

and SFs, as was done in many previous works (Dayan 1993; Kulkarni et al. 2016;

Zhang et al. 2017; Barreto, Dabney, et al. 2017; Barreto, Borsa, et al. 2018). This

decomposition is introduced in section 3.4.2.

To review, the SFs ψπ ∈ Rd (equation 3.32), are the expected cumulative dis-

counted features under a policy π, ψπ(s) =̇ Eπ
[∑∞

n=0 γ
nφt+n | St = s

]
. We use the

SF function ψΞ : Rd → Rd to estimate to SF as a linear function the features:

ψπ(s) ≈ ψΞ(s) = Ξ>φ(s) , (5.3)

where Ξ ∈ Rd×d are learnable parameters.2 Using the Bellman form ψπ(s) =

φ(s) + γEπ [ψπ(St+1)|St = s], the SF and can be learned by any previously intro-

duced value learning algorithms. Furthermore, recall the instantaneous reward func-

tion rw(s) =̇ φ(s)>w ≈ Eπ[Rt+1|St = s]. We write the SF value estimate (equation

3.34) as:

vπ(s) ≈ vSF(s) =̇ vΞ,w(s) = ψΞ(s)>w . (5.4)

We see the MF value, vMF
t = φ>t θ, linearly combines local feature information φt

with temporally-extended reward prediction.3 On the other hand, the linear SF value,

vSF = φ>t Ξw, linearly combines temporally-extended feature prediction in φ>t Ξ = ψt,

with local reward information in w. We later see the λ-VF interpolates between the

extent of feature prediction versus reward prediction.
2Unless stated otherwise, we consider ψΞ : Rd → Rd to be a linear function of the features with

parameters Ξ. This linearity is not necessary—we can learn arbitrary functions for ψ. Nonetheless,
we stick to only linear functions, in part as it allows for simple comparisons with the linear MF value
function, where the two function produce identical estimates when Ξ ·w = θ. For learning SFs as
nonlinear functions of features, see (Zhang et al. 2017; Machado, Bellemare, and Bowling 2020).

3Here, temporally-extended refers to the parameter encoding future information: θ encodes
cumulative future rewards.
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5.1.2 The λ-VF Decomposition

We introduce a decomposition of the λ-return that generalizes the MF and SF value

functions. Recall the λ-return (chapter 2, definition 2.2.7) uses a λ geometrically

discounted average of all future n-step estimates of the value function. Specifically,

the λ-return can be written in the following way, using the identity introduced in

equation 2.24,

Gλ
t = Rt+1 + γ

( ∞∑
n=1

(λγ)n−1 [(1− λ)v(St+n) + λRt+n+1]
)
. (5.5)

Let us define a λγ-discounted successor feature,

ψλ
π(s) =̇ Eπ

[∑∞
n=0(λγ)nφt+n | St = s

]
≈ ψλΞ(s) , (5.6)

which we can separately estimate using ψλΞ(s) =̇ Ξ>φ(s), with Ξ ∈ Rd×d (learnable)

parameters. Then, given the linear MF value function vθ(s) = φ(s)>θ and linear

reward model rw(s) = φ(s)>w, we have the following results.

Remark 5.1.1. The expected λ-return can be written approximately as

Eπ[Gλ
t ] ≈ Eπ

[
Rt+1 + γψλ

π(St+1)[(1− λ)θ + λw]
]
. (5.7)

Proof. Follows from a similar decomposition as remark 3.4.2, which uses the linearity

of the value and reward estimates to decompose out the future expected features,

Eπ[Gλ
t ] = Eπ

[
Rt+1 + γ

(∑∞
n=1(λγ)n−1[(1− λ)vθ(St+n) + λRt+n+1]

)]
,

≈ Eπ
[
Rt+1 + γ

(∑∞
n=1(λγ)n−1[(1− λ)φ>t+nθ + λφ>t+nw]

)]
,

= Eπ
[
Rt+1 + γ

(∑∞
n=1(λγ)n−1φ>t+n

)
[(1− λ)θ + λw]

]
,

= Eπ
[
Rt+1 + γψλ

π(St+1)[(1− λ)θ + λw]
]
.
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Definition 5.1.1. We define the lambda value function (λ-VF), vλ : S → R, as

vλ(St+1; Ξ,θ,w) =̇ ψλ
Ξ(St+1)> ((1− λ)θ + λw) , (5.8)

which combines the λγ-discounted SF model ψλ
Ξ with parameters Ξ, and a mixture of

value θ and reward w parameters. We usually write vλ(·) = vλ(·; Ξ,θ,w) for brevity.

Corollary. The λ-VF can be used as a one-step value learning target—the one-step

λ-VF target:

Ut =̇ Rt+1 + γvλ(St+1) , (5.9)

and it follows from remark 5.1.1 that this target approximates the expected λ-return,

Eπ
[
Rt+1 + γvλ(St+1)

]
≈ Eπ[Gλ

t ] . (5.10)

Interpolating between “model-free” and “model-based” with λ Similar to

how λ-return interpolates between the TD and MC returns, the λ-VF is a general-

ization that interpolates between the “model-free” MF value and the more “model-

based” SF value—the latter can be interpreted as an implicit policy-dependant model

estimation of the value function.

Remark 5.1.2. When λ = 0, the λ-VF is the MF value function (equation 5.1),

vλ=0(st) = ψλ=0
π (st)> ((1− 0)θ + 0w) = φ>t θ = vMF(st) . (5.11)

It follows that bootstrapping with this target defaults to the one-step TD return

(definition 2.2.5).

Remark 5.1.3. When λ = 1, the λ-VF is the SF value function (equation 5.4),

equivalent to using an implicit infinite model,

vλ=1(st) = ψλ=1
π (st)> ((1− 1)θ + 1w) = ψ>π,tw = vSF(st) . (5.12)
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Consequently, the λ-VF is a generalization that spans the spectrum of value func-

tion parametrizations using λ ∈ [0, 1], with the traditional (MF, SF) value functions

as extremes.4

One-step approximate λ-return Consider a single-step transition tuple (St, At,

Rt+1, St+1). TD(0) propagates information locally from St+1 to St by constructing a

bootstrapped target. The MF TD target (definition 2.2.5) propagates only value infor-

mation, while the SF TD target propagates only feature information. We hypothesize

we can more effectively use the same one-step information by simultaneously predict-

ing both the value and the features. Specifically, we can update the λ-SF (equation

5.6) and instantaneous reward parameter w. We then construct the one-step λ-VF

target (equation 5.9) using the current SF Ξ, reward w and value θ parameters:

Ut ≡ Rt+1 + γvλ(St+1; Ξ,θ,w). This target is used for further value learning to

update parameter θ.

Despite not using a multi-step trajectory, the combination of the SF and value

parameters allow the model to implicitly “look ahead” to access value information in

the future, akin to a form of “implicit planning”.5 Therefore, we hypothesize that the

λ-VF with an intermediate lambda (0 < λ < 1), which combines both feature

and value predictions, uses information more effectively than both the MF

(vλ=0) and SF (vλ=1) value estimates, approximating the true value faster given

the same amount of data (see figure 5.2 for an intuitive demonstration of this).
4We have reused λ to show the analogy with the λ-return, but λ holds a different interpretation

of trading-off learning vs planning implicitly.
5This shares a similar intuition with the λ-return in that the λ-return can generate future value

estimates. However, the λ-return constructs future value estimates by sampling a multi-step tra-
jectory to access future features. Unlike the λ-return, the λ-VF constructs future value estimates
by combining the value parameters with the successor features (which estimates expected future
cumulative features), while being learned with only single-step experiences.
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5.1.3 Fixed Point of Linear λ-VF TD(0)

We provide a fixed point analysis for iterative value learning using the one-step λ-VF

target (equation 5.9). The analysis follows similarly from the analysis of the TD(0)

fixed point in section 3.1.3.

Consider the MRP Mπ = 〈S, rπ, Pπ〉 with discount factor γ ∈ [0, 1) and feature

set Φ. We use the same matrix notation as in definition 3.1.3, namely with transi-

tion matrix Pπ ∈ R|S|×|S|, reward vector rπ ∈ R|S|, feature matrix Φ ∈ R|S|×d with

linearly independent columns, and the diagonal on-policy state distribution matrix

D ∈ R|S|×|S|.

We analyze the on-policy, one-step learning setting, where all parameters at time t

are updated with the online, on-policy, one-step experience tuple (φt, Rt+1,φt+1). As

an overview for the remainder of this section, we separately analyze the fixed point of

one-step value learning for parameters θ, SF learning for Ξ, and instantaneous reward

learning for w, then analyze value learning using the one-step λ-VF target with the

SF and reward parameters at their respective fixed points.

Value fixed-point We re-iterate the results from section 3.1.4. One-step TD learn-

ing with linear function approximation solves for the following (Parr et al. 2008),

θ = (Φ>DΦ)−1Φ>D (R + γPπΦθ) . (5.13)

The solution is the TD fixed point (lemma 3.1.1),

θTD = (Φ>DΦ− γΦ>DPπΦ)−1Φ>DR . (5.14)

Note the fixed point implies the following,

(Φ>DΦ)−1Φ>D (R + γPπΦθTD) = θTD . (5.15)

We can write a similar system and fixed point with a λγ-discounted value function;
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this is a term that will appear in the λ-VF,

θλTD = (Φ>DΦ− λγΦ>DPπΦ)−1Φ>DR , (5.16)

(Φ>DΦ)−1Φ>D
(
R + λγPπΦθλTD

)
= θλTD . (5.17)

SF fixed-point Now consider one-step learning of the linear γ-discounted SF func-

tion ψΞ(s) =̇ Ξ>φ(s), with Ξ ∈ Rd×d. The update is:

Ξ>t+1 = Ξ>t + α
(
φt + γΞ>t φt+1 −Ξ>t φt

)
φ>t . (5.18)

Similar to value-learning with TD(0), SF learning with TD(0) corresponds to

solving the following,6

Ξ = (Φ>DΦ)−1Φ>D (Φ + γPπΦΞ) . (5.19)

The SF fixed-point is as follows,

ΞTD = (Φ>DΦ− γΦ>DPπΦ)−1Φ>DΦ . (5.20)

Similarly, we can write down the system and fixed point for a λγ-discounted SF

(i.e. equation 5.6), ψλ
π(s) = Eπ[∑∞n=0 (λγ)nφt+n | St = s] as follows,

Ξλ
TD = (Φ>DΦ− λγΦ>DPπΦ)−1Φ>DΦ , (5.21)

(Φ>DΦ)−1Φ>D
(
Φ + λγPπΦΞλ

TD

)
= Ξλ

TD . (5.22)

Reward regression solution We take the a similar approach to analyze supervised

regression of the instantaneous reward function rw(s) =̇ φ(s)>w ≈ Eπ[Rt+1|St = s]

with w ∈ Rd. It has the following supervised update,

wt+1 = wt + α
(
Rt+1 − φ>t wt

)
φt . (5.23)

The reward regression solution is,

ŵ = (Φ>DΦ)−1Φ>DR . (5.24)
6We can similarly analyze the expected update of one-step SF learning, Eµ[Ξ>

t+1|Ξ>
t ] = Ξ>

t +
α(bΞ − Ξ>

t AΞ), similar to the expected update of θ. The analysis is largely the same the one
described in section 3.1.4 and R. S. Sutton and Barto (2018), chapter 9.4, with similar convergence
results. We therefore exclude similar details for brevity.
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Lemma 5.1.4. Given the one-step SF fixed point ΞTD and the reward regression

solution ŵ, we recover the TD fixed-point,

ΞTDŵ = θTD . (5.25)

In other words, the SF value and MF value (learned with on-policy one-step TD) have

identical value estimates at their fixed points, ΦΞTDŵ = ΦθTD.

Proof. By algebra,

ΞTDŵ = (Φ>DΦ− γΦ>DPπΦ)−1(Φ>DΦ) (Φ>DΦ)−1Φ>DR ,

= (Φ>DΦ− γΦ>DPπΦ)−1Φ>DR = θTD .

Similarly, we have Ξλ
TDŵ = θλTD.

λ-VF Fixed Point We now consider doing value learning with the λ-VF. One-step

learning with the λ-VF target has the following update,

θt+1 = θt + α
(
Rt+1 + γ (ψλ

t+1)>[(1− λ)θt + λw]− φ>t θt
)
φt ,

= θt + α
(
Rt+1 + γ φ>t+1Ξ[(1− λ)θt + λw]− φ>t θt

)
φt .

Written in matrix form, the above iteration solves for the following,

θ = (Φ>DΦ)−1Φ>D (R + γPπΦ[(1− λ)Ξθ + λΞw]) . (5.26)

We will now show the above system has the TD fixed point, θTD as its fixed point as

well. We first note a small identity.

Lemma 5.1.5. Assuming the inverse of the SF parameters matrix Ξλ
TD exists,

(Ξλ
TD)−1 = (Φ>DΦ)−1(Φ>DΦ− λγΦ>DPπΦ), the following identity holds,

(Ξλ
TD)−1θTD = (1− λ)θTD + λ(Ξλ

TD)−1θλTD . (5.27)
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Proof. The above identity can be re-arranged to the following form,

λ(Ξλ
TD)−1θλTD = (Ξλ

TD)−1θTD − (1− λ)θTD .

We now show the left- and right-hand sides are equivalent. We first evaluate the right

hand side (r.h.s.), substituting in the fixed point equations,

(Ξλ
TD)−1 · θTD − (1− λ)θTD ,

=
(
(Φ>DΦ)−1(Φ>DΦ− λγΦ>DPπΦ)− I + λI

)
θTD ,

=λ (Φ>DΦ)−1(Φ>DΦ− γΦ>DPπΦ)θTD ,

=λ (Φ>DΦ)−1(Φ>DΦ− γΦ>DPπΦ) (Φ>DΦ− γΦ>DPπΦ)−1Φ>DR ,

=λ (Φ>DΦ)−1Φ>DR .

We now evaluate the left hand side (l.h.s.),

λ(Ξλ
TD)−1θλTD

=λ(Φ>DΦ)−1(Φ>DΦ− λγΦ>DPπΦ) (Φ>DΦ− λγΦ>DPπΦ)−1Φ>DR ,

=λ(Φ>DΦ)−1Φ>DR .

The l.h.s. and r.h.s. are the same. Note that all steps are invertible.

Proposition 5.1.6. Given the SF parameter is at its λγ-discounted fixed point, Ξλ
TD,

and the reward parameter is at its supervised regression solution, ŵ, on-policy one-step

learning with the λ-VF target has the TD fixed point as its fixed point,

θL,TD = (Φ>DΦ− γΦ>DPπΦ)−1Φ>DR = θTD . (5.28)

Proof. We first substitute the fixed points Ξλ
TD and ŵ into the system which λ-VF

solves (equation 5.26),

θt+1 = (Φ>DΦ)−1Φ>D
(
R + γPπΦ[(1− λ)Ξλ

TDθt + λΞλ
TDŵ]

)
,

= (Φ>DΦ)−1Φ>D
(
R + γPπΦ[(1− λ)Ξλ

TDθt + λθλTD]
)
.
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The last step uses lemma 5.1.4, where Ξλ
TDŵ = θλTD. We verify that θTD is the

fixed-point by considering the case where θt = θTD,

θt+1 = (Φ>DΦ)−1Φ>D
(
R + γPπΦ[(1− λ)Ξλ

TDθTD + λθλTD]
)
,

= (Φ>DΦ)−1Φ>D(R

+ γPπΦ Ξλ
TD [(1− λ)θTD + λ(Ξλ

TD)−1θλTD]) ,

= (Φ>DΦ)−1Φ>D(R + γPπΦ Ξλ
TD(Ξλ

TD)−1 θTD) , [By lemma 5.1.5]

= (Φ>DΦ)−1Φ>D(R + γPπΦθTD) ,

= θTD . [By equation 5.15]

We see θt = θt+1 = θTD, therefore θTD is the fixed point of the system.

This result is perhaps unsurprising, as the one-step TD return is a special case

of the one-step λ-VF target. For the case of SF learning, indeed it has also been

shown that on-policy planning with linear models converges to the same fixed point

as direct linear value estimation (Schoknecht 2002; Parr et al. 2008; R. Sutton et al.

2008). However, despite the fact that the final solution is subject to the same bias as

one-step TD methods (e.g. see proposition 3.1.2), our method may still benefit from

substantial learning efficiency while moving towards this solution. In fact, our finite

sample empirical evaluation shows exactly this.

Finally, while we leave the convergence to the above fixed-point for future work,

we note that we are leveraging multiple one-step learning processes that are known to

converge: SF learning, reward learning, and value learning. Empirically, we observe

learning with the one-step λ-VF target robustly reduces value error.

5.1.4 Linear Algorithm for Prediction

We can use any method for learning the λ-SF model ψλ
Ξ and the instantaneous reward

model rw. In this paper we make the choice of using TD(0) to learn the λ-SF model,

and supervised regression for the reward model, since one-step methods are ubiquitous
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in contemporary RL, and require the use of only single-step transitions (Mnih et al.

2015; H. v. Hasselt, Guez, and Silver 2015; Lillicrap et al. 2015; Z. Wang et al. 2016;

Schaul et al. 2015; Haarnoja et al. 2018). Likewise, we use the λ-VF as a one-step

bootstrap target (equation 5.9) for estimating of the value parameters θ (equation

5.2).

Algorithm 17: One-step λ-VF target for policy evaluation with linear func-
tion approximation.
Result: Value function vθ(s) = φ(s)>θ for behavioural policy π

1 Input: MRPMπ, feature set Φ, discount factor γ ∈ [0, 1), parameter
λ ∈ [0, 1], Stepsizes αθ, αw, αΞ ∈ (0, 1] ;

2 Initialize:
3 Value function vθ(s) = φ(s)>θ, with parameters θ ;
4 Reward function rw(s) = φ(s)>w, with parameters w ;
5 SF function ψλ

Ξ(s) = Ξ>φ(s), with parameters Ξ ;
6 while sample one-step experience tuple(St, At, Rt+1, St+1) under policy π do
7 Ξt+1 ← Ξt + αΞ,t

(
φ(St) + λγψλ

Ξt(St+1)−Ξ>φ(St)
)
φ(St)> ; . SF

learning update
8 wt+1 ← wt + αw,t

(
Rt+1 − φ(St)>wt

)
φ(s) ; . Reward learning update

9 vλt+1 = φ(St+1)>Ξt ((1− λ)θt + λwt) ; . λ-VF target estimate
10 θt+1 ← θt + αθ,t

(
Rt+1 + γvλt+1 − φ(St)>θt

)
φ(St) ; . Value learning

update
11 end

All components of the λ-VF are learnable with one-step transitions tuples of the

form (St, At, Rt+1, St+1), which make these methods amenable to both the online

setting and the i.i.d. setting. In the former, the algorithm is presented with an

infinite sequence of state, actions, rewards {S0, A0, R1, S1, A1, R2, . . . }, where At ∼

π(St), Rt+1 = r(St, At), St+1 ∼ P (St, At). In the i.i.d. setting the learner is presented

with a set of transition tuples {(St, At, Rt+1, St+1)}t≥0.

From an algorithmic perspective, algorithm 17 describes a computationally conge-

nial way for learning the value function online from a single stream of experience using

our method. As mentioned, in the online setting, the agent has access to experience in

the form of tuples (St, At, Rt+1, St+1) at each timestep t. The pseudo-code describes
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value estimation for the linear case, with given representations. Finally, although we

have chosen to focus here on one-step targets for their simplicity and ease of use, these

methods can be extended to multi-step targets with their multi-step counterparts.

5.1.5 Nonlinear Control Algorithm

We hypothesize that efficient value prediction of the λ-VF can help in value-based

control, and extend our proposed algorithm to the control setting with estimation of

the action-value function qθ. We build on top of the deep Q network (DQN) archi-

tecture (Mnih et al. (2015), detailed in section 3.2.2) and simply replace the boot-

strap target with a λ action-value function. Concretely, given a sampled transition

(St, At, Rt+1, St+1), DQN encodes features φ(St) = φt, then estimates the action-

values qθ(φt, At) ≈ q(St, At). We use to same feature encoding φ(·) to learn successor

features ψλ
Ξ(φt) ≈ ψλ

t and reward function rw(φt). This allows us to construct the

λ-VF target for the Q-learning update of parameters θ,

qλ(St+1, a
′; Ξ,θ,w) = (1− λ)qθ(ψΞ(St+1)λ, a′) + λrw(ψΞ(St+1)λ) , (5.29)

θ′ = θ + α(Rt+1 + γmax
a′

qλ(St+1, a
′; Ξ,θ,w)− qθ(φt, At))∇θqθ(φt, At)) , (5.30)

where qλ(·; Ξ,θ,w) is the λ-value function target. We simultaneously estimate the

representation and the action-values in an end-to-end fashion. The network architec-

ture is illustrated in figure 5.1. See algorithm 18 for a complete pseudo-code descrip-

tion.

5.2 Experiments

We start with two simple prediction examples to provide intuition about our approach,

after which, we verify that our method scales by extending it to a more complex non-

linear control setting.
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Figure 5.1: Architecture for the λ-VF augmented Deep Q Network. (A)
Base architecture, we augment a DQN-like architecture (Mnih et al. 2015) (en-
coder and action-value head) with two additional heads for SF prediction and in-
stantaneous reward prediction. (B) Training with λ-VF, given an experience tuple
(St, At, Rt+1, St+1), we use St+1 to generate the λ-VF target Qλ(St+1, ·), and St to gen-
erate the current predictions. Training is done by minimizing the (MSE) loss between
the prediction and targets.

5.2.1 Value Prediction in Deterministic Chain

Experiment setup Consider the 16-state deterministic Markov reward process

(MRP) with tabular features illustrated in figure 5.2-A. The agent starts in the left-

most state (s0), deterministically transitions right to the right-most absorbing state.

The reward is 0 everywhere except for the final transition into the absorbing state,

where it is +1. We apply algorithm 17 to estimate the value function in an online

incremental setting. As everything is deterministic, we set the learning rate α = 1.0

so new information can be learned right away. We use a discount factor of γ = 0.9999.
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Algorithm 18: Deep Lambda Q Iteration
Result: Deep Q function qθ(φt, a) with encoder φt ← φξ(st) for control.

1 Given functions:
2 Feature encoder φξ(st) = φt, where φt ∈ Rd, with nonlinear parameters

ξ ;
3 Action value layer qθ(φt, a) = φ>t θa, where qθ : Rd → R|A|, with linear

parameters θ ;
4 Reward layer rw(φt) = φ>t w, where rw : Rd → R, with linear parameters

w ;
5 SF layer ψλ

Ξ(φt) = Ξ>φt, where ψλ
Ξ : Rd → Rd, with linear parameters

Ξ;
6 Given hyperparameters: γ ∈ [0, 1), λ ∈ [0, 1]
7 for each environment step do

. Act in the environment
8 Sample experience (st, at, rt+1, st+1) from environment ;
9 Store to buffer B = {B ∪ (st, at, rt+1, st+1)} ;

. Fitted Q Iteration
10 Sample i.i.d. minibatch of size n from buffer

{(sk, ak, rk+1, sk+1)i=1,...,n} ∼ B
11 for each minibatch tuple (sk, ak, rk+1, sk+1)i do
12 Encode features: φk, φk+1 ← φξ(sk), φξ(sk+1) ;
13 Compute successor features: ψk+1 ← ψλ

Ξ(φk+1) ;

14 Copy feature with stop gradient (sg): φdek ← (φk).sg() ;
15 LS,i = 1/2

[
[φdek + λγψk+1].sg()−ψλ

Ξ(φdek )
]2

; . SF TD loss

16 LR,i = 1/2 [rk+1 − rw(φk)]
2 ; . Reward supervised loss

17 qλ(sk+1, a
′) = (1− λ)qθ(ψk+1, a

′) + λrw(ψk+1) ; . λ Value
Estimation

18 LQ,i = 1/2
[
[rk+1 + γmaxa′ qλ(sk+1, a

′)].sg()− qθ(sk, ak)
]2

; . Q
learning loss

19 end
20 Ltotal = 1

n

∑
i=1,...,n LS,i + LR,i + LQ,i ; . Overall minibatch loss

21 ξ,θ,w,Ξ ← Optimizer(Ltotal) ; . Backprop and update parameters
22 end

The main point here is to see the speed of best possible (one-step transition-based)

credit propagation.
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Figure 5.2: Online value prediction in a deterministic MRP for different
lambdas. (A) The agent starts in the left-most state (s0) and deterministically
transitions right until reaching the terminal state. All rewards are 0, except for the
terminal when it is +1. (B) Parameter dynamics: The table shows how vλ(S0)
is computed using ψλ(s0)>, θ and w over the course of training for different values
of λ = {0.0, 0.7, 1.0}. For λ = 0.7 (center) the λ-VF combines the parameters (θ)
of the value function and the SF (ψλ) predictions to more quickly propagate value
information than either extremes. (C) The estimated value function for all states
(columns) across learning episodes (rows). For λ = 0.7 information propagates value
faster than λ = 0 and 1. (D) Absolute value error: for different λ values over
episodes. For λ = 0.7 error reduction is faster.

Results Figure 5.2-B illustrates the result of combining the successor features model

ψΞ, with the value parameters θ, and reward parameters w into the value prediction

vλ(s0) for the starting state s0, for different values of λ. In the pure model-free (MF)

setting (λ = 0, identical to TD(0)), ψλ=0 = φ corresponds to an unchanging feature

representation, and value information (in θ) moves backward one state per episode.

For the full successor feature (SF) value function (λ = 1), the instantaneous reward

is learned immediately (parameter w) for the final state, while the successor feature
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(parameter ψ) learns about one additional future state per episode. For both cases,

we require ∼ 16 episodes for the information to propagate across the entire chain and

for the value estimate of s0 to improve (Figure 5.2-D). However, given an intermediate

value of 0 < λ < 1 (Figure 5.2-B, middle, λ = 0.7 here), we are able to both propagate

value information backward by bootstrapping on θ, as well as improve the predictive-

features (using ψλ) to predict farther in the forward direction. This results in an

improved value estimate much earlier, as we can observe in figure 5.2-B middle, C

middle, and D.

Interpretation In an online prediction setting, using the λ-VF (with an interme-

diate lambda 0 < λ < 1) in place of the standard TD(0) target effectively combines

both backward credit assignment by bootstrapping the value estimates, as well as

forward feature prediction, to more quickly estimate the correct values.

5.2.2 Prediction in Random Chain
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Figure 5.3: Policy evaluation in 19-state tabular random chain. (A) The agent
starts in the center and transitions left/right randomly until either end is reached.
Reward is 0 on all transitions, except the on the right-side termination, which yields
a reward of +1. (B) Parameter study for λ: The y-axis shows the root mean
squared error (RMSE) (minimized over learning rates for each λ) averaged over first
400 episodes. (C) Learning dynamics: The y-axis shows the RMSE for four illus-
trative λ values. (D) Parameter study for the learning rate The y-axis shows the
RMSE for four illustrative λ values, across different learning rates. Results averages
over first 400 episodes. Error bars and shaded areas denote 95 confidence intervals
(some too small to see), with 10 independent seeds.



CHAPTER 5. LAMBDA VALUE FUNCTION 86

Experiment setup We now switch to a more difficult stochastic 19-state chain

prediction task with tabular features (R. S. Sutton and Barto 2018, Example 6.2).

The agent starts in the centre (state 10) and randomly transitions left or right until

reaching the absorbing states at either end (figure 5.3-A). The reward is 0 everywhere

except upon transitioning into the right-most terminal state, when it is +1. We train

in the online incremental setting—the agent receives a stream of episodic experiences

(S1, R1, S2, R2, ...), and updates its parameter immediately upon receiving the most

recent one-step experience tuple (for example, (St−1, Rt, St) at timestep t). The hy-

perparameters sweep is done over the settings in table 5.1. Figure 5.3-B,D illustrate

value error averaged over the first 400 episodes.

Parameters Parameter values
Value parameters learning rate, αθ Sweep over {0.01, 0.1, 0.2, 0.3, 0.5}
Successor features learning rate, αΞ Always same as αθ
Reward learning rate, αw Always same as αθ
λ of λ-VF Sweep over {0.0, 0.3, 0.5, 0.7, 0.9, 0.99, 1.0}
Random seeds {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

Table 5.1: Experimental parameters of random walk chain.

Results In figure 5.3-B, we observe that mixing with λ ∈ [0, 1] results in a U-shape

error curve, illustrating that an intermediate value of λ is optimal. Note we plot

the optimal learning rate α for each value of λ. Figure 5.3-C further confirms our

hypothesis that an intermediate value (here for λ = 0.5 or 0.7) is most efficient. We

also observe that intermediate λ values show a degree of parameter robustness, having

low value error over a range of different learning rates (figure 5.3-D).

Interpretation TD(0) using the λ-VF one-step target is robust to environment

stochasticity and learns most efficiently for intermediate λ values.
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5.2.3 Nonlinear Control in Mini-Atari (MinAtar)

Experiment Set-up We test our algorithm in the Mini-Atari (MinAtar, Young

and Tian 2019, GNU General Public License v3.0) environment, which is a smaller

version of the Arcade Learning Environment (Bellemare et al. 2013) with 5 games

(asterix, breakout, freeway, seaquest, space invaders) which are solved in

the same way as their larger counterpart. We build our deep λ-VF agent on top of

the DQN provided by (Young and Tian 2019) in examples/dqn.py.7 We mimic the

same DQN architecture (figure 5.1) and replicate to the best of our abilities the same

hyperparameters as Young and Tian 2019, which was built to mimic the architecture

and training procedure of the original DQN of (Mnih et al. 2015), albeit miniaturized

for the smaller Atari environments. Unlike the original DQN, training is done every

frame, using the PyTorch (Paszke et al. 2019) implementation of the RMSprop op-

timizer (Tieleman and G. Hinton 2012). Unless otherwise stated, we make no other

changes (e.g. to policy, relay buffer, etc.), and use the same hyperparameters as the

DQN in (Young and Tian 2019). Detailed training hyperparameters can be found in

table 5.2.

Specifically, figure 5.4 follows exactly the hyperparameters reported in table 5.2,

along with evaluations for a number of λ’s for a parameter study.8 Each setting was

conducted for 10 independent runs.9 Figure 5.5 conducts a parameter study on the

learning rates of the individual components of the λ-VF: the value head and convo-

lutional torso (αθ, these two components make up exactly the “vanilla” DQN), the

successor feature head (αΞ), and the reward prediction head (αw). We investigated a

range of learning rates,10 and compare a λ-VF augmented Q network (with interme-

diate λ = 0.4) against a “vanilla” DQN network. Averaging is done during training by

averaging over the episodic return of 10 episodes. The steps are “binned” into incre-
7GitHub commit:

https://github.com/kenjyoung/MinAtar/tree/8fceb584a00d86a3294c2d6ffb6fb8d93496b6a5
8Using λ = {0.0, 0.4, 0.5, 0.7, 0.95, 1.0}.
9With seeds = {2, 5, 8, 11, 14, 17, 20, 23, 26, 29}.

10Learning rates = {0.00025, 0.0005, 0.001, 0.0025, 0.005}.

https://github.com/kenjyoung/MinAtar/tree/8fceb584a00d86a3294c2d6ffb6fb8d93496b6a5
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Hyperparameter Value
discount factor (γ) 0.99
replay buffer memory size 100000
replay sampling minibatch size 32
ε-greedy policy, initial ε 1.0
Initial random exploration 5000 env steps
ε-greedy policy, final ε 0.1
Initial to final ε anneal period 100000 env steps
Target update period (per n policy net updates) 1000
RMSprop momentum 0.0
RMSprop smoothing constant (alpha) 0.95
RMSprop eps (added to denominator for num stability) 0.01
RMSprop centered (normalized gradient) True
Learning rate (conv torso and value head, αθ) 0.00025
Learning rate (SF head, αΞ) 0.005
Learning rate (reward head, αw) 0.005

Table 5.2: Default hyperparameters for DQN and λ-VF Q Network.

ments of length 1e4 to account for the fact that different runs will generate episodic

returns at different environmental steps, making it difficult to compute confidence

interval in a “per-step” way. That is, the logged steps (x-axis of training plots) are

rounded to the nearest multiple of 1e4 for all runs.

Intermediate λ improves nonlinear control Figure 5.4-A illustrates a parameter

study on the mixing parameter λ after training for 5 million environmental steps. We

again observe the U-shaped performance curve as we interpolate across λ, confirming

the advantage of using an intermediate λ value. Figure 5.4-B shows the learning curves

of our proposed model that uses an intermediate value of λ in comparison to the two

baseline algorithms: the model free algorithm (λ = 0, equivalent to vanilla DQN

with a reward prediction auxiliary loss), and a value learning algorithm which uses

the full SF value as its bootstrap target (λ = 1). The full SF baseline is remarkably

unstable, while λ-VF with an intermediate λ = 0.5 outperforms both in 4/5 games and

is competitive with λ = 0 in freeway. It should be noted that the poor performance

for higher λ values in freeway is likely due to sparse reward, as the reward gradient
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Figure 5.4: Performance for value-based control in Mini-Atari. (A) Parameter
study for different values of λ. The y-axis shows the average performance over 10k
timesteps and 10 seeds using an ε-greedy policy with ε = 0.05, after stopping training
after 5e6 learning steps. (B) Learning curves for 3 illustrative λ values over the course
of training. The y-axis displays the average return over 10 independent seed. Shaded
area and error bars depicts 95 confidence interval.

used to shape the representation φ(·) is uninformative most of the time, leading to a

collapse in representation (this is explicitly measured in section 5.2.4). This highlights

a weakness of learning the feature encoding and successor features simultaneously,

where poor features result in poor SF, and thus poor value estimates. The use of

auxiliary losses can help ameliorate this issue (Machado, Bellemare, and Bowling

2020; Kumar et al. 2020), although it is not explored here as we found the issue to

only be significant for high values of λ.

Parameter study: robustness to SF and reward learning rates Figure 5.5

shows parameter studies for an intermediate λ that illustrate the sensitivity to the

learning rates of the successor features and reward heads used in learning the value

function. We vary the learning rates for these estimators while keeping the learning

rates of the representation torso and the value function head fixed (at the same values

used by (Young and Tian 2019) of αθ = 2.5e-4). We observe that performance is not

highly dependent on the SF and reward learning rates (figure 5.5, green), but a higher
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Figure 5.5: Parameter study on the learning rates of the SF and instan-
taneous reward model: The y-axis shows the average return over 10k evaluation
steps using an ε-greedy policy with ε = 0.05, after stopping training after 5e6 steps.
For our algorithm, shown here as the Deep λ-Q algorithm (green), we sweep over the
SF and reward learning rates while keeping the learning rates for the representation
torso and the value function head fixed at 0.00025. For the vanilla DQN (blue), we
vary the learning rates of the representation torso and the value function head. We
also show the cumulative sensitivity to the parameters as we vary all the learning
rates in our algorithm (yellow). Error bar denote 95 confidence intervals and each
setting is ran using 3 independent seeds.

learning rate for the SF than the one used by the representation torso facilitates track-

ing the changes in the feature representations (φ) by the SF. This choice is important

in freeway. For comparison, we also sweep over the value and encoder learning rates

of a vanilla DQN (figure 5.5, blue), and see that it is sensitive to the learning rate,

i.e. performance drops as learning rate settings deviate from the recommendation

of (Young and Tian 2019) (most prominently observed in asterix, seaquest and

space_invaders, and for high learning rates in breakout). For additional ablation,

we sweep over the learning rates of all parameters of the λ-Q function: either keeping

all learning rates the same (figure 5.5, brown) or setting the successor feature and

reward learning rates to be 10× the encoder learning rates (figure 5.5, pink). Overall,

we again observe that the agent is most sensitive to learning rates in the value head

and encoder torso: performance decreases in all games other than breakout.
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5.2.4 Feature Representation Collapse

For deep Q learning, we learn the feature representation φ(·) simultaneously to the

successor features, action-values, and rewards (which are based on the learned feature

layer). As our feature representation is shaped by back-propagated gradients from

the action-value and reward heads (see figure 5.1 and algorithm 18), we measure the

informativeness of the learned representation for different values of λ (of the λ-VF).

Concretely, we measure the effective rank (Yang et al. 2019; Kumar et al. 2020) of

the feature learned after 5e6 training environment steps, measured as srank(Φ) =

min
{
k :

∑k

i=1 σi(Φ)∑d

i=1 σi(Φ)
≥ 1− δ

}
, with σi(Φ) being the i-th singular value of matrix Φ, in

decreasing order. We set δ = 0.01 similar to (Kumar et al. 2020). Since we do not

have access to the full feature matrix for MinAtar, we approximate Φ by sampling

a large (n = 2048) minibatch of samples from the replay buffer and encoding them

using the convolutions torso for a matrix Φ̂ ∈ Rn×d, n = 2048, d = 128. We measure

the averaged srank for 8 sampled minibatches per run, though standard deviation is

low between the independently sampled minibatches.
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Figure 5.6: MinAtar evaluation performance and srank. (Top) Parameter
study for different values of λ. Identical to figure 5.4-A. (Bottom) SRank. The
y-axis displays the average srank over 10 independent seed. Shaded area and error
bars depicts 95 confidence interval.

Figure 5.6 (bottom) reports the srank for the same models as figure 5.4 (we du-
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plicate figure 5.4-A in the top row here). The maximum possible srank achievable is

128 (i.e. the feature dimension, d), with lower srank indicating the learned feature

representation is less informative. We observe that in general, srank is high (> 75)

and similar for λ’s up to λ = 0.7 (with the exception of freeway, to be discussed

later). However, for high λ’s (λ = {0.95, 1.0}), we observe a decrease in srank for

4/5 MinAtar games, with λ = 1.0 having srank’s that tend towards 0. In the case

of freeway, srank decreases monotically as we increase λ. We hypothesize this is

the result of sparse reward for freeway. Since the feature layer is shaped in part

by reward gradients, sparse reward may push the features to be less informative—an

issue that is worsened as we depend more on the feature prediction rather than value

prediction with higher λ’s.

Importantly, we observe the evaluation performance is related to the feature srank.

Specifically, in cases where feature srank is similar, an intermediate λ value out-

performs “extreme” values of λ (e.g. λ = 0). However, higher λ appear to suffer

from representation collapse which worsen performance, especially in sparse reward

settings. The issue of learning good representation for successor feature learning can

be addressed using auxiliary objectives (such as image reconstruction in (Kulkarni et

al. 2016) or next-state prediction in (Machado, Bellemare, and Bowling 2020)). We

leave the interplay between the λ-VF and additional feature-learning auxiliary tasks

for future investigation.

5.3 Discussion on Machine Learning

5.3.1 Related Works

Successor features11 (SF, equation 3.32) are an extension to the state-based suc-

cessor representation (Dayan 1993), allowing for feature-based value functions to be
11We include this paragraph for completeness, noting it partially overlaps with section 3.4.2.
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factored in a separately parameterized transition and reward model (Kulkarni et al.

2016; Lehnert and Littman 2020). A wide variety of uses have been proposed for the

SF: aiding in exploration (Janz et al. 2019; Machado, Bellemare, and Bowling 2020),

option discovery (Machado, Bellemare, and Bowling 2017; Machado, Rosenbaum, et

al. 2018), and transferring across multiple goals (Lehnert, Tellex, and Littman 2017;

Zhang et al. 2017; Ma et al. 2020; Brantley, Mehri, and Gordon 2021), in particu-

lar through the generalized policy improvement framework (Barreto, Dabney, et al.

2017; Barreto, Borsa, et al. 2018; Borsa et al. 2018; Hansen, Dabney, Barreto, Van

de Wiele, et al. 2019; Grimm et al. 2019). Our method adds to this repertoire by

using SF as models for implicit planning to achieve faster (single-task) value learning.

This addition is interesting on its own since learning a (full) SF is typically slower

than learning a value function directly (Lehnert, Tellex, and Littman 2017).

Forward model-based planning can facilitate efficient credit assignment. The

algorithms that address this topic are Dyna-style methods which use explicit models

to generate fictitious experience that they then leverage to improve the value function

(Schoknecht 2002; Parr et al. 2008; R. Sutton et al. 2008; Yao, R. S. Sutton, et

al. 2009). Closest to our method is the work by Yao, R. Sutton, et al. (2009) and

Yao, R. S. Sutton, et al. (2009) which learns an explicit λ-model and uses it to

generate fictitious experience for k-step updates to the value function. Our work

is different in that the model we use in an implicit model used just to generate

the value bootstrapping target. Furthermore, we extend our method to non-linear

learned feature representations and combine it with batch learning algorithms (DQN)

in MinAtar.

Building state representation is fundamental for deep RL. Our successor fea-

ture is a type of general value function (R. S. Sutton, Modayil, et al. 2011, section

3.4.1), which is hypothesized to be a core component in building internal representa-

tions of intelligent agents (R. S. Sutton, Modayil, et al. 2011; A. White 2015; Schlegel,

Patterson, et al. 2018). Our work relates to this if we interpret the partial λ-SF model
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as a new learned representation of the λ-VF.

5.3.2 Discussion and Future Directions

In this work we proposed an algorithm for implicit planning with a policy-dependent

expectation model represented by the (λγ-discounted) successor features. We used

this implicit model to build a new target for the TD(0) algorithm, which we call λ-

VF target. We showed that this method, while using the same amount of sampled

experience, is more effective, resulting in more efficient value function estimation. The

λ value function we proposed can easily be used in place of the standard bootstrap

target used in value-based algorithms, as we have illustrated in this work. A direct

extension of this left for future work is the convergence of policy evaluation using the λ-

VF target for linear function approximation, as well as its convergence rates, which can

help better inform hyperparameter selection (in particular which intermediate λ may

be best suited for a particular environment). Moreover, our method is complementary

to previously proposed approaches for value learning, such as multi-step returns or

eligibility traces.

Many potential broad directions of investigation have also been opened for fu-

ture work. (i) The λ-VF contains a successor feature estimate, which could also be

further leveraged for exploration and transfer to achieve efficient single-task learn-

ing and multi-task transfer. (ii) Chelu, Precup, and H. V. Hasselt 2020 investigates

the complementary properties of explicit forward and backward models and argues

for potential of optimally combining both “forward” and “backward” facing credit

assignment schemes. Further, H. v. Hasselt, Madjiheurem, et al. 2020 introduces ex-

pected eligibility traces as implicit backward models, generalizing predecessor features

(time-reversed successor features). Future work can explore the differences and com-

monalities between implicit models in the forward and backward direction using our

proposed λ-SF model and expected eligibility traces. The right balance between using
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backward credit assignment through the use of eligibility traces, and forward predic-

tion through predictive representations remains an open question with fundamental

implications for learning efficiency. (iii) How to best use predictive representations

to build an internal agent state is central to generalization and efficient credit as-

signment. Our work opens up many exciting new questions for investigation in this

direction.

5.4 Discussion on Neuroscience

We briefly theorize how the one-step λ-VF target (equation 5.9) relate to brain ob-

servations. Subscribing again to the proposal of (Stachenfeld, M. M. Botvinick, and

Gershman 2017) where the population activity of hippocampal place cells encode the

successor representation of state St, it is sensible to assume that place fields may play

the role of the SF in λ-VF. Similar to our prediction for the λ-SRE (chapter 4), we

would expect the place field is again most helpful for initial learning of a novel task,

and less so after the value function is well-learned. The transient involvement of the

dorsal hippocampus for action learning again hints at this (Bradfield et al. 2020).

Unlike the λ-SRE, the predictive representation (SF) in the λ-VF is combined

with value and reward information, as opposed to the TD error. Therefore, under the

λ-VF framework, we might expect to observe co-activation of hippocampal place cells

and neurons which represent value and reward information—possibly of the ventral

(limbic) striatum, the ortibofrontal cortex, and/or the amygdala (Maia 2009).12 The

co-activity is a correlate for the λ-VF target and may also be correlated with synaptic

plasticity in the above “value representation” areas as the target is constructed for

value learning.

12To expand, Maia 2009 argues for these three areas being candidates of “value presentation” as
they show neuronal activity when the animal expects to receive reward, and they project to and
from the dopaminergic system which is thought to represent the TD error.



6
Discussion

In this work, we have demonstrated how future predictive representations—in the

form of the successor representation and successor features—can be used for better

credit assignment and to more quickly estimate value functions.1

6.1 On Reinforcement Learning

The methods introduced in chapters 4 and 5 are both derived from the λ-return and

learn SRs as “implicit models” over which multi-step credit assignment can occur.

The SRs are factorized out of cumulative future quantities—general value functions

(GVFs, section 3.4.1). Both GVFs have λγ as the discount factor, with different

cumulants. For the λ-SRE (chapter 4), the cumulant is the one-step TD error given

the current value parameters; for the λ-VF (chapter 5), the cumulant is a linear

mixture of the current reward and value parameters. For both cases, the GVF plays

an explicit role in value learning: the λ-SRE is the error the value function tries to

minimize, while the λ-VF is part of the learning target.

Our method is orthogonal but complementary to the “usual” uses of the SRs,

such as for transfer where a new value can be quickly reevaluated by combining a

new reward function with a pre-learned SR (e.g. Barreto, Dabney, et al. (2017)).
1We will henceforth refer to both the successor representation and the successor features as “SR”

in this chapter for brevity, as both serve the same purpose in this discussion.
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This is useful in the multi-task settings if the SR have been pre-learned. In contrast,

we propose ways of using the SR in the single task setting without any prior learning.

Future work can explore how to best combine our single-task method with multi-task

uses of the SR.

Moreover, we suspect the credit assignment benefit from our approaches arises

precisely from the decomposition of the SR from the aforementioned GVFs: it allows

for separate learning of a “fixed” / “slow-moving” quantity in the form of the SR

(which summarize over the dynamics of the current policy), and “quickly-changing”

quantities that depend on the policy dynamics (i.e. the value parameters or TD errors,

which changes per value update), to be combined to recover the original GVF. We

suspect this may be a general principle: in the case where the non-SR quantity is

quickly-changing (and possibly non-stationary) but readily accessible, independently

learning the SR and the quickly-changing quantity allows for faster learning of the

overall GVF. Indeed, we observe the same process for policy evaluation in a multi-task

setting: the decomposition of a value function into SR and reward parameters means

policy evaluation can be quickly done for each task, despite the reward parameters

changing quickly between tasks. In contrast, this use of the SR for the single-task

setting is unhelpful: supervised learning of the reward parameters is stable and slower-

moving than the SR. As SRs are generally decomposable from GVFs, we believe future

work can further explore the construction of other kinds of GVFs for which the SR

decomposition will help in learning.

Finally, our method relates broadly to multi-step methods, such as the β-models of

R. S. Sutton (1995), λ-policy iteration of Bertsekas and Ioffe (1996), and ultimately,

Van Nunen (1976).2 One can also view this work, in particular chapter 4, through the

lens of matrix preconditioning (Bacon 2018). These connections were not explored in

depth within this thesis, but can be fruitful grounds for future work.
2See Bacon (2018), chapter 4.8, for a detailed discussion of the historical context of related

multi-step methods.
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6.2 On Neuroscience

Value representation in the brain

Value prediction is central to RL, but how is value encoded in the brain? There

is no definitive answer, although Maia (2009) proposes that the brain area encoding

value must show the following characteristics: (i) exhibit increased activity during the

expectation of reward, and (ii) project to and from the dopaminergic system, where

the TD error is thoughts to be encoded (since value representation and TD error is

closely related). Three brain areas satisfy the above conditions: the ventral striatum,

the orbitofrontal cortex, and the amygdala. Similarly, Takahashi, Schoenbaum, and

Niv (2008) maps the actor-critic architecture onto neuroanatomy, where the critic is

encoded by the activity of the ventral striatum.

If value is indeed encoded in the above areas, what is the computational interaction

between value and the hippocampal place cells (which Stachenfeld, M. M. Botvinick,

and Gershman (2017) theorizes encode SRs; it is also worth noting that anatomically,

the hippocampus project directly to all three aforementioned areas, for example see

Meer et al. (2014), Zhong, Yukie, and Rockland (2006), and Pitkänen et al. (2000))?

If we take the “classical” view that SRs directly parameterizes the value function

(through linearly combining with rewards, see Dayan (1993)), we expect place cell

activities to be multiplied with the reward estimates of each state and summed to

produce value. This is plausible, albeit difficult to justify from a performance-driven

perspective. In chapter 4 we observe small errors in the SR leads to large errors in

the value estimate, while in chapter 5 using the SR directly for value computation

results in a difficult feature learning problem.3 Traditionally, a normative argument

for having SRs exists only for the restricted setting of multi-task learning with similar
3It should be noted that feature learning may take place separate from value learning, which

makes this less of an issue, although with linear function approximation where feature do not have
to be learned, value estimation with “full” SR value is still the least sample efficient, see figure 5.3,
high λ’s.
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(environmental) dynamics.

Our current work proposes a entirely new set of hypothesis: that the SRs are not

useful in parameterizing the prediction or control function, but instead most helpful

for learning such functions.

Learning from SR-based information propagation

Our proposed methods leverage SRs to propagate information in a way that is com-

pliant to the environmental structure. The λ-SRE implies the following experimental

predictions: the hippocampal place fields will co-activated with the TD errors in order

to re-weigh and propagate them. There are two ways this can happen: the current

TD error can be propagated to the other states in the form of source traces (Pitis

2018), or, arbitrary states transitions can be sampled (e.g. via replaying trajectories

from memory) to compute TD errors.

On the other hand, the λ-VF predicts co-activation between hippocampal place

fields and value representations. Experimental evidence indeed supports the inter-

action between the hippocampus and value-encoding areas. For instance, F. Wang,

Schoenbaum, and Kahnt (2020) use functional magnetic resonance imaging (fMRI)

in human subjects to demonstrate correlated activity between the hippocampus and

orbitofrontal cortex is associated with using future state-prediction to estimate value.

Similarly, electrophysiological evidence from Lansink, Goltstein, Lankelma, Joosten,

et al. (2008) and Lansink, Goltstein, Lankelma, McNaughton, et al. (2009) show in

rats how the ventral striatal neural activity tends to be coupled with hippocampal

activity in sleep and relates to the ability to learn reward-based tasks.

More broadly speaking, there is a fundamental link between SR for credit assign-

ment and “model-based” inference: the SR is a model, more specifically a compressed,

policy-dependent expectation model storing future state information. The SR is also

readily computable if one has access to a one-step transition model (i.e. since it can
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be written as a summation, see proposition 3.3.1). In fact, using a one-step model

to dynamically construct an SR requires “rolling-out” the transition model, which

can correspond to the observation of “replay”. Similarly, neuroscience evidence has

implicated the hippocampus in both “model-based” inference and replay (McDannald

et al. 2011; Stoianov et al. 2018; Vikbladh et al. 2019). We hope to motivate a more

precise and nuanced discussion and future investigations on how a transition model

may be stored and used in the brain.4

Reward prediction in the brain

The highly influential paper of Schultz, Dayan, and Montague (1997) relates the

relationship of the temporal difference error (Samuel 1959; R. S. Sutton 1988) to

the activities of the dopamergic neurons in the ventral tegmental area (VTA) and

substantia nigra areas of the brain, thus proposing a link between neurobiological

response and a computational principle. This sub-field of science remains active today

(e.g. Dabney et al. (2020)).

While neuroscientists have some ideas for where value and TD error might be

encoded in the brain, it is interesting to note that no commonly accepted theory exists

for how value learning is implemented in neurobiology. Our proposed algorithm offers

one additional hypothesis.

A framework for understanding the mind

Finally, we take a step back and look at the broader quest to understand the mind. Ul-

timately, to try to understand the mind means tackling the complexity of the biological

brain. While the data collection and analysis methods of contemporary neuroscience

have grown increasingly sophisticated in recent years, it is arguable if increasingly

sophisticated methods and more massive datasets is sufficient for an understanding of
4In fact, recent RL results demonstrates that different ways of using the same transition model

lead to drastically different performances (Chelu, Precup, and H. V. Hasselt 2020).
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the brain. For example, Jonas and Kording (2017) shows contemporary neuroscience

methods, even without restriction to data, cannot provide a satisfactory understand-

ing of a computer microprocessor. Arguably, the greatest breakthroughs in brain

understanding have often came when new theories have given us the perspective, lan-

guage and conceptual framework to make sense of the data. The theory of dopamine

as reward prediction error (Schultz, Dayan, and Montague 1997) relied on the exis-

tence of the TD algorithm (R. S. Sutton 1988); the future-predictive theory of the

hippocampal place fields (Stachenfeld, M. M. Botvinick, and Gershman 2017) relied

on the derivation of the successor representation (Dayan 1993); and the engineer-

ing challenges of getting convolutional neural networks to work well had to be tackled

(Krizhevsky, Sutskever, and G. E. Hinton 2012) before one can make sense of the pop-

ulation representation in the primate visual cortex by comparing to ANNs (Yamins

et al. 2014).5 The problem, ultimately, is that the space of theoretical explanation

is large: there is a degenerate mapping from the space of theories to the space of

neural-observation, such that inferring brain computation from empirical observation

is an underdetermined problem.6

Thus, if we do not sufficiently explore the space of theories, the neural-data alone

may never give us the correct answer. Akin to a drunkard only searching for his

keys under a street lamp,7 the complexity of the brain means that we will only be

able to find what we actively look for and what makes sense to us, while the rest will
5More generally speaking there has been a general trend in recent years of comparing

performance-optimized neural net representation with brain recorded representations, all with
promising results. This framework is described in Richards et al. (2019).

6To make matters even more complicated, the same computational principle is similarly multiply-
realizable, such as the stomatogastric ganglion in crabs responsible for their chewing rhythm being
implementable through a wide range of possible three-cell network motifs (Prinz, Bucher, and Marder
2004).

7See Freedman, David H. “Why scientific studies are so often wrong: The streetlight effect”
Discover Magazine 26 (2010): 1-4. Although this analogy likely goes back much further. The joke
goes: Late at night, a police officer finds a drunk man crawling around on his hands and knees under
a streetlight. The drunk man tells the officer he is looking for his keys, and they both look under the
streetlight together. After a few minutes the policeman asks if he is sure he lost them here, and the
drunk replies, no, and that he lost them in the park. The befuddled officer asks why he is searching
here, and the drunk replies, ‘this is where the light is’.
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simply appear as noise. The role of theoretical development, therefore, is to render the

invisible visible (Gershman 2021). This thesis is an attempt to make a small stride

in this direction, in adding to the set of theoretical consideration for what future-

predictive representations may be used for in the brain. We hope we have increased

the cone onto which the street lamp shines, even if only by a little bit.
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