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Abstract

Background: Stroke is the fourth and fifth leading cause of death in Canada

and the United States. Survivors of stroke live with mild to severe life-long

impairments. Early rehabilitation can improve long-term outcomes of stroke

patients and improve their quality of life. Accurate prediction of post-stroke

cognitive impairments at an individual patient level may aid the development of

personalized treatments and intervention strategies.

Methods: We applied and benchmarked machine learning methods on a

relatively large stroke dataset (n=1401) to predict cognitive outcomes from lesion

topography. The dataset included MRIs (Structural axial T1, T2-weighted spin

echo, DWI and FLAIR sequence) of ischemic stroke patients carried out within

7 days from the onset of stroke and their neuropsychological assessments includ-

ing measures for global cognition, language, memory, visuospatial functioning,

information processing speed and executive functioning at 3 months. Three

approaches to analyzing brain-behavior relationships from a predictive analytics

standpoint were explored and compared in terms of out-of-sample prediction

performance of post-stroke cognitive functions based on 5-fold nested cross-

validation: 1) multi-outcome models vs single-outcome models; 2) non-linear

models vs linear models; and 3) data augmentation (Mixup).

Results: The out-of-sample coefficient of determination (r-square) values

in all approaches are generally low and inconsistent across cross-validation folds

indicating poor predictive performance. However, we see that: 1) joint modeling

of interrelated cognitive functions exhibits potential to perform more accurate

predictions in the domains of global cognition and language; 2) non-linear

models could potentially be exploited to improve individualized predictions in

the domains of language and memory; and 3) it is not easy to exploit artificial

samples generated by Mixup to improve the predictive performance of cognitive

functions post-stroke.
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Conclusion: Prediction of single patient outcomes from lesion topography

is a difficult task with the quality and quantity of neuroimaging data currently

available for stroke. This work highlights the challenges and provides useful

directions to future research in lesion-behavior mapping.
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Résumé

Contexte: L’AVC est la quatrième et la cinquième cause de décès en

importance au Canada et aux États-Unis. Les survivants d’un AVC vivent avec

des déficiences légères à sévères à vie. Une rééducation précoce peut améliorer

les résultats à long terme des patients victimes d’un AVC et améliorer leur

qualité de vie. Une prédiction précise des déficiences cognitives post-AVC au

niveau d’un patient individuel peut aider au développement de traitements et

de stratégies d’intervention personnalisés.

Méthodes: Nous avons appliqué et comparé des méthodes d’apprentissage

automatique sur un échantillon plutôt large de données d’AVC (n = 1401) pour

prédire les résultats cognitifs à partir de la topographie des lésions. La banque

de données comprenait des images IRM (structurelles axiales T1, spin écho

pondérées en T2, DWI et séquence FLAIR) de patients victimes d’un AVC

ischémique réalisées dans les 7 jours suivant le début de l’AVC et leurs évaluations

neuropsychologiques, y compris des mesures de la cognition globale, du langage,

de la mémoire, du fonctionnement visuospatial , dela vitesse de traitement de

l’information et de la fonction exécutive à 3 mois. Trois approches pour analyser

les relations cerveau-comportement du point de vue de l’analyse prédictive

ont été explorées et comparées en termes de performances de prédiction hors

échantillon des fonctions cognitives post-AVC, basées sur une validation croisée

imbriquée 5 fois: 1) modèles multi-variés vs modèles univariés; 2) modèles non

linéaires vs modèles linéaires 3) augmentation des données (Mixup).

Résultats: Les valeurs du coefficient de détermination hors échantillon (r-

carré) dans toutes les approches sont généralement faibles et incohérentes entre

les plis de validation croisée, ce qui indique une performance prédictive médiocre.

Cependant, nous voyons que: 1) la modélisation conjointe de fonctions cognitives

interdépendantes présente le potentiel d’effectuer des prédictions plus précises

dans les domaines de la cognition globale et du langage; 2) les modèles non
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linéaires pourraient potentiellement être exploités pour améliorer les prédictions

individualisées dans les domaines du langage et de la mémoire; et 3) il n’est pas

facile d’exploiter des échantillons artificiels générés par Mixup pour améliorer

les performances prédictives des fonctions cognitives après un AVC.

Conclusion: La prédiction des résultats d’un seul patient à partir de la

topographie des lésions est une tâche difficile compte tenu de la qualité et de la

quantité de données de neuroimagerie actuellement disponibles pour les AVC.

Ce travail met en évidence les défis et fournit des orientations utiles pour les

recherches futures sur la cartographie lésion-comportement.
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Introduction

Stroke is the fourth leading cause of death in Canada in 2019. In Canada, more than

50,000 people die of stroke every year [14]. Stroke is typically a result of chronic disease

of the arteries and their impairment leads to the destruction of brain tissue in an acute

disease episode. Blood vessels block causing ischemic injury to brain tissue, or rupture

(hemorrhagic stroke) resulting in bleeding in the brain. The effect of stroke can be seen

in motor function (e.g. paralysis) or in cognitive impairments (e.g. memory loss). The

magnitude of these impairments depends on several factors, including the topography

of ischemia and the amount of brain tissue affected. Stroke lesions do not only result

in motor impairments but also a range of cognitive impairments from mild to severely

disabling symptoms [34].

Stroke patients undergo diagnostic imaging such as Computed Tomography (CT)

scan or Magnetic Resonance Imaging (MRI) shortly after the episode of stroke allowing

the clinicians to examine the structural damage in the brain. The measurement of

clinical impairment is done through a physical examination for motor impairment and

neurophysiological assessment for cognitive functioning. Clinicians employ a suite of

standardized tests to measure patients’ global cognition, language performance, memory

function, visuospatial function, motor function, attention, information processing speed

and executive function. This battery of behavioral tests is conducted at various time

13
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points after stroke.

The impairments as a result of a stroke can persist and affect the quality of life [23].

Early rehabilitation can improve long term outcomes of physical and cognitive domains

[19], which underlines the potential of early prediction of individual-patient level

cognitive outcomes. Accurate prediction of cognitive impairments would enable the

development of personalized treatments and rehabilitation plans and provide valuable

insights to tailor intervention strategies. Identifying patients that may develop serious

cognitive impairments post-stroke and offer them appropriate and timely rehabilitation

is the goal of prediction based studies [33].

In this study, we aim to predict the cognitive outcomes of patients based on the

spatial topography of lesions. The cognitive outcomes include the patient’s global

cognition, language performance, memory function, visuospatial function, information

processing speed and executive function as measured by a battery of standard neu-

ropsychological tests (cf. Methods). We investigate various approaches to analyzing

brain-behavior relationships from a predictive analytics standpoint: multi-outcome

modeling, non-linear modeling and data augmentation via Mixup [65]. We introduce

these concepts below and shed light on the motivation behind these approaches.

1.1 Multi-Outcome Modeling

Stroke patients typically do not experience impairment in only one cognitive domain

(e.g. memory, language, information processing speed, etc.), but many at the same

time. Figure 1.1 shows that impairments in various cognitive functions co-occur in our

database of stroke patients.

We want to explicitly acknowledge the mutual relatedness of various cognitive

functions and model this general property of stroke in our modeling. To do so, we
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use multi-output (a.k.a. multi-task) learning models [15] [5] [13] to jointly predict

cognitive function scores from the lesion topography based on structural brain MRIs

and known brain atlases.

Multi-output learning models are those that simultaneously model (and predict)

multiple target variables. Unlike single-outcome models that associate a set of input

variables with one output variable, multi-outcome models associate a set of input

variables to a set of output variables.

With multi-output modeling, we aimed to analyze whether various cognitive deficits

share similar underlying disease processes and therefore exploit the existence of any

shared patterns across various clinical dimensions. In essence, we would like to

examine whether joint modeling of an array of cognitive functions improves predictive

performance [45].

1.2 Non-Linear Modeling

It is known that the human brain neural network is a highly non-linear and complex

system. Our aim is to try to capture (some part of) the non-linearity captured in brain

imaging measurements, if so, in our analysis to better explain cognitive functions.

We define linear models as those where observational data are modeled by a function

that is a linear combination of the input variables, for e.g. linear regression. In contrast,

models in which the observational data are not modeled by a linear combination of

the input variables are considered non-linear, for e.g. logistic regression.

With non-linear modeling, we want to explore the hypothesis that lesion volumes

in known brain regions interact non-linearly to explain cognitive scores. The motive

behind non-linear modeling is to seek quantitative evidence of how a more elaborate

interplay of spatially distributed parts of the brain impacts cognitive functioning. For
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Figure 1.1: Pearson’s correlation coefficient between the six cognitive assessment scores
of 1401 stroke patients. The values ranging from 0.30-0.72 indicate that the cognitive
deficits co-occur in multiple domains in patients suffering from a stroke. The highly
correlated scores hint at the presence of shared latent factor(s).

e.g., is there a non-linear interaction between the Broca’s region on the left and the

angular gyrus on the right that could be exploited by non-linear modeling to predict

language abilities?

Eventually, with more ambitious non-linear models, we seek more accurate predic-

tions on a single subject level. We would like to examine whether non-linear models

could predict behavior better on average compared to simple linear models, thereby

assisting with better diagnosis and treatments of stroke patients.
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1.3 Mixup (Data Augmentation)

Modern machine learning models show great promise in predictive capabilities but

often require a huge sample size for training. The neuroimaging and behavioral dataset

of stroke patients that one researcher has access to is often limited in sample size,

rarely reaching four digits. In theory, stroke data is abundant. In the US alone,

about 795,000 people experience a stroke every year [56]. However, challenges exist to

coordinate and share medical data between hospitals and between regions [3].

The small size of the dataset limit the ability of otherwise powerful machine learning

methods to discover quality brain-behavior patterns. In this study, we use Mixup,

a modern data augmentation approach to address the problem of scarcity of data.

We examine whether increasing the sample size by creating new observations that

are plausible variants of the original data could better explain and predict cognitive

functions from lesion topography. Artificially constructing useful samples that are

otherwise hard to obtain would be yet another utility to the stroke community.

Mixup creates additional samples of data by interpolating two true samples from

the original dataset taken at random. Let xi and xj be two input vectors and yi and

yj their corresponding output vectors in the dataset. Mixup generates virtual samples

(x̂, ŷ) as follows:

x̂ = λxi + (1 − λ)xj,

ŷ = λyi + (1 − λ)yj,

(1.1)

where (xi, yi) and (xj, yj) are two samples drawn at random from the training

data and λ ∈ [0, 1]. To illustrate this, let’s say two samples from the database are

used by Mixup to create a virtual sample: one where the patient has a stroke lesion in

region A and impaired language ability, and second where the patient has a stroke



CHAPTER 1. INTRODUCTION 18

lesion in region B and impaired memory performance. The artificial sample created

based on these given samples will be where a patient has lesions in both region A and

region B and impairments in both language and memory function, the extent of which

is determined by λ.

An important characteristic of Mixup is that, unlike many other data augmentation

approaches, Mixup generates new samples of not only the input variables but also

the output variables. Mixup extends the data by incorporating an inductive bias that

linear interpolations of input vectors lead to linear interpolations of associated output

variables. This could be useful in exploring the hypothesis that lesion volumes in

known brain regions are linearly associated with cognitive deficits.

In this study, we have stroke data from a broad population and multiple cohorts.

Therefore, with Mixup, we hope to generate additional samples that are close to the true

distribution of stroke patients. Eventually, with a larger dataset, we aim to potentially

exploit more ambitious and data-hungry models to better predict post-stroke cognitive

outcomes.



2
Literature Review

Cognitive neuroscience has progressed in the last century through the study of patients

with brain lesions, particularly stroke patients. What lesion studies of stroke patients

have brought to knowledge in neuroscience is debated among experts, with various

views being brought upon their value and their inherent challenges [3].

Lesion analysis is a classic approach to study brain structures and their functioning.

The type and extent of a stroke lesion and its evolution can give clinicians insights

about the impairments and their potential of resolution over time. Lesion-symptom

mapping (LSM) studies have been applied to various clinical conditions such as motor

function impairment [49], aphasia [66] [63] [29], spatial neglect [60] and other cognitive

impairments (memory, executive functioning, etc.) [21] [67]. Studies have made various

assumptions in lesion-symptom mapping (LSM): 1) a region of the brain and a specific

behavior are linked; 2) the link between a brain region and cognitive process exists for

all functional domains; 3) a specific voxel can be linked to a behavioral deficit through

statistical significant association. These assumptions are now being revisited [20]

Structural imaging-based lesion-symptom mapping (LSM) with MRI is a popular

approach used in studies looking at brain-behavior relationships. Other imaging

modalities like CT-Scan, Positron-Emission Tomography (PET) and now functional

MRI [45] can be complementary to structural MRIs [57] in LSM studies.

19
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Lesion symptom mapping is generally performed by providing a statistical model

brain imaging data as an input and a certain behavior score as an output. Studies

have evolved from using only lesion volume as an input feature, to integrating the

location of the lesion for modeling cognitive outcomes. The input variables are either

individual voxels of the brain image or some pre-processed form of them. Voxel-based

lesion-symptom mapping (VLSM) was the first evolution in traditional LSM, which

explored impact of one voxel at a time [7]. Assessing the brain functions on a voxel-

by-voxel basis allows identifying brain locations that are related to cognitive deficits.

The significance of the behavioral difference (continuous variable) is analyzed using

parametric and non-parametric methods.

This mass univariate approach, however, is less meaningful biologically as it does

not consider the interaction of neighboring or spatially distant regions of the brain.

Hence, studies started adapting ‘multivariate’ approaches where all brain regions

are provided concurrently as input to a single model. A structural MRI of 1 mm3

resolution contains approximately 2 million voxels making it impractical for most

multivariate models to directly use all brain regions in the raw voxel form at once

with a sample size of a mere few hundred typical in LSM studies. To overcome this

curse of dimensionality, two main methods (and variations of them) have generally

been used to reduce the number of input variables: aggregating voxels in regions of

interest (ROI) based on standard brain atlases [33] [25] [67] and Principal Component

Analysis (PCA) [29] [38] [54]. Multivariate models enable the detection of statistically

significant anatomical networks (topography) that contribute to a cognitive deficit.

These methods enable the search for shared patterns that are linked to a cognitive

domain [3]. There is a growing body of literature that uses such ‘inference-based’

methods [25] [46] [21] [54] [29].

Studies have highlighted the association of white matter regions with cognitive

outcomes. Corbetta et al. [21] used multivariate modeling to measure the proportion



CHAPTER 2. LITERATURE REVIEW 21

of behavioral variance that could be imputed to structural lesions. They observed

that impairment can be explained by some clusters of cognitive deficits underlying

multiple functions. The observed cluster was located in the subcortical as well as white

matter regions. They underscored the need for better models to associate cognitive

impairments with white matter damage. Ramsey et al., in a study [46], examined

patterns and variability of post-stroke recovery in multiple behavioral domains (44

neuropsychological tests) and showed that white matter damage impacts various

cognitive functions. They reinstated the importance of white matter lesions in brain-

behavior relationships, just like cortical lesions that have classically been studied.

Yourganov et al. in a predictive study [63] of types of aphasia, explored five atlases

and shows that the Support Vector Machine (SVM) performs the most accurate

classification when provided with the combination of gray and white matter atlases.

Multivariate LSM studies have explored the importance of the location of the

infarct along with its volume in association with behavioral deficits [18] [62] [39] [67].

Wu et al. [62] used stroke lesion topography to determine the significance of infarct

location on acute (early) ischemic stroke severity and long-term modified Rankin scale

score. Their work gave inferential insights on the relationship between brain regions

and functional outcomes. They concluded on the importance of including the location

of the stroke, as well as volume and some socio-demographic characteristics in future

predictive modeling studies. They also discussed that the Rankin score is too global

and specific cognitive outcomes should be used.

Zhao et al. in a study [67] showed that global cognition (including memory,

language, visuospatial and executive functions) and infarct location are linked. They

used multivariate analyses with regions of interest (ROI) using support vector regression

(SVR) to explore the brain-behavior relationship. They confirmed the importance of

various cortical and sub-cortical regions in relation to specific cognitive domains.
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Both studies [62] [67] suggested that future studies should test these models

on independent cohorts that are not used in the training of the model, stressing

the importance of developing the predictive studies regime. Predictive studies are

centered on clinical endpoint prediction from a precision medicine perspective, whereas

inference-based studies focus primarily on the mechanistic understanding of brain

regions that contribute to a disease [9]. The LSM methods are evolving to trying

to predict outcomes from early imaging of stroke patients to be able to potentially

provide clinicians with tools to adjust therapy for individual patients.

In the early studies of predictive modeling, Hope et al. proposed Gaussian Process

Regression (GPR), an algorithm integrating patient’s lesion and demographic infor-

mation, to predict the speech recovery at different time points post-stroke in a new

set of patients (out-of-sample testing) [33]. This early work based on 270 patients

demonstrated that lesion volume and location could help predict behavioral outcomes

over time, thereby opening pathways for prediction of prognoses of individual patients.

In another early prediction based study, Zhang et al. worked with aphasia patients

exploring a multivariate non-linear model (SVR-LSM) for lesion mapping capable of

integrating voxel connections. Their work highlighted important brain regions linked

to aphasia, but their predictive accuracy was low, showing the difficulty in language

function prediction. Their mean prediction performance (R2) was 0.10 for semantic

error (SE) and 0.11 for phonological error (PE) [66].

Rondina et al. did a predictive study [49] to identify patients that will have a

better recovery of motor impairment of the upper limb using as input T1-weighted

structural brain scans. They used support vector machine approach with voxel-wise

lesion likelihood values to show that they can classify patients with better recovery

of prognosis. This work showed the importance of various structures of the brain

associated with motor function of the upper limb and indicated that the prediction
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methodology could in the future be refined so to stratify patients for rehabilitation

trials.

Munsch et al. explored the importance of stroke location in a predictive objective

[39]. Authors used multivariate models to predict general functional outcome (Rankin

scale) as well as cognitive outcomes (MoCA). They first used VLSM to find eloquent

regions; then they developed two models: the first one using the classic inputs

(National Institutes of Health Stroke Scale (NIHSS) score, age and infarct volume,

and the second model added stroke location. They showed that including stroke

location significantly improves predictive results (area under the curve increased from

0.697–0.771; difference=0.073; 95% confidence interval, 0.008–0.155). Results were

replicated in out-of-sample data. Authors concluded that that stroke location is of

importance for the prediction of MoCA cognitive outcomes at three months.

Ramsey et al. also looked at the impact of lesion location on chronic impairments

using eleven principal components that explain 60% of the variance [46]. They also

examined the prediction of various chronic scores and found that some models are able

to significantly better explain language recovery (13% variance explained, P < 0.001),

motor (4% variance explained, P < 0.05) and attention scores (14% variance explained,

P < 0.05, but not memory function. They observed that the percentage of variance

explained across domains is small compared to the impact of acute impairment score

in predicting chronic outcomes.

Aben et al. [1] used diffusion tensor imaging-based measures of brain connectivity

to predict one-year cognitive recovery (also integrating other variables such as patient

characteristics and stroke severity). The PROCRAS (Prediction of Cognitive Recovery

After Stroke) study showed that strategic areas of the brain network in the white

matter, which they call “hubs”, can be identified: these hubs, when added to lesion

topography and size, can predict recovery in cognitive domains. They proposed a
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lesion impact score that would reflect damage to these network hubs. A lower lesion

impact score was an independent predictor of cognitive recovery 1 year after stroke

(odds ratio=0.434 [0.193–0.978]; P=0.044).

Moulton et al. [38] suggested that lesioned voxel could be characterized by continu-

ous variables that capture the severity of infarct (instead of usual binary segmentation).

For the task of prediction of long term cognitive outcomes (Rankin Score: good (mRS

≤ 2) and poor (mRS > 2)), SVM classifiers showed a median [IQR] accuracy of 82.8

[79.3–86.2]% with axial diffusivity maps compared to an accuracy of 76.7 [73.3–82.8]%

with lesion segmentations. Their work illustrate that raw continuous information

provided in MRIs could be beneficially exploited to predict post-stroke cognitive

outcomes.

Chauhan et al. [17] applied newer methods using convolutional neural networks

(CNNs) and compared results to PCA, Ridge and SVR to predict the severity of

language disorder in stroke patients from structural brain MRIs. A novel combination

of CNN and classical Ridge regression (hybrid method) showed the best predictive

performance in most cases. CNNs have the advantage of operating directly on raw

images. However, their utility is limited in the neuroimaging domain due to CNN’s

inherent translational invariance property (that does not take into account the specific

location in space of image features) as this property does not necessarily hold true in

the context of brain functioning.

In most predictive studies [54] [67] [29] [17] [60], out-of-sample validation has been

done, but the methods to do so are heterogeneous. Only two studies explicitly did a

nested cross-validation to calculate the out-of-sample prediction performance [63] [38].

Out-of-sample performance is crucial as it represents the applicability of a model to

new subjects that are not part of the data used in the fitting/training of the model.

In all these studies, the major bottleneck is limited patient data, both in terms of
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sample size and richness (such as variety of modalities and time points with behavioral

measurements available for each patient). Modern machine learning methods show

great promise in predictive capabilities but often require tens of thousands of samples

for training. Adolfs, in his discussion about the future of lesions studies [3] states that

for more accurate modeling and predictions, larger cohorts as well as more complex

multivariate modeling approaches (for e.g., considering white and grey matter distinctly)

are needed. In light of data scarcity, recent studies have made attempts to generate

synthetic data (data augmentation) in biomedical databases to improve diagnostic

performance [30] [50]. However, to the best of our knowledge, data augmentation

methods have not been applied in the context of stroke yet. In conclusion, the

development of modern methodologies (multivariate modeling, non-linear modeling,

neural networks and data augmentation) could potentially help overcome some of the

limitations of the early LSM studies and open pathways for innovation in precision

medicine tools.



3
Methodology

3.1 Participant Sample

1401 participants included in this study are patients diagnosed with acute ischemic

stroke in two South Korean hospitals, Hallym University Sacred Heart Hospital and

Seoul National University Bundang Hospital, between January 2007 and December

2018 [36]. The mean (± one standard deviation) age of the participant sample is

67.7 (± 11.6) and 58% of them are male. The infarction is observed on the diffusion-

weighted magnetic resonance imaging (DW-MRI) and fluid attenuated inversion

recovery (FLAIR) sequences of the admitted patients carried out within 7 days in

most cases of experiencing symptoms (The Bundang cohort scanned patients within

48 hours, while the Hallym cohort scanned around 7 days post-stroke). Patients

were chosen in this study based on the the following criteria: (1) existence of visible

acute infarct(s) on the diffusion-weighted imaging (DWI) or FLAIR, (2) unseen prior

cortical infarcts, subcortical infarct(s) larger than 15 mm or hemorrhages larger than

10 mm, (3) successful registration and segmentation of the infarct, and (4) availability

of the cognitive assessment scores (the 60-min Korean-Vascular Cognitive Impairment

Harmonization Standards-Neuropsychology Protocol, K-VCIHS-NP; [28] [64]) and

clinical data within a year of stroke onset. Patients who (1) had bilateral stroke,

(2) due to severe aphasia could not take the neuropsychological assessment, and (3)

26
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have inadequate MRIs (insufficient to obtain neuroimaging variables of interest) were

excluded from this study. Data was acquired prospectively following the approved

study protocols by the Institutional Review Boards of both hospitals.

3.2 Neuropsychological assessment

After 3 months of the onset of stroke, patients went through a series of behavioral

assessments: the K-VCIHS-NP (median time post-stroke: 98 days; [64]). Performance

in the following cognitive domains was used in this study:

1. Global cognition as measured by Korean version of the Mini-Mental State

Examination (MMSE) (Total score; [26]). MMSE captures general cognitive per-

formance by assessing a wide variety of domains such as registration, orientation

to time and place, attention, calculation and language.

2. Language performance as measured by Korean short version of the Boston

Naming Test (BN) (Total score; [35]). This is a standardized test to assess a

patient’s ability to name various objects.

3. Memory function as measured by the Seoul Verbal Learning Test (SVL), the

Korean equivalent to the Hopkins Verbal Learning Test (Immediate recall; [10]).

This test assesses especially the short term memory and learning ability of

patients.

4. Visuospatial Functioning as measured by the Rey–Osterrieth Complex Figure

Test (Copy; [47] [41]). This test assesses a patient’s ability to recognize and

reproduce a complicated line drawing.

5. Information Processing Speed as measured by the Korean Elderly version of the

Trail Making Test (Part A; [42]). This test assesses a patient’s visual search

speed by drawing lines to connect circles in a numerical sequence (1, 2, 3, ...).
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6. Executive Functioning as measured by the Korean Elderly version of the Trail

Making Test (TMT) (Part B; [42]). This test assesses a patient’s visual search

speed and mental flexibility by drawing lines to connect circles in a sequence

alternating between numbers and letters (1, A, 2, B, ...).

Table 3.1 describes the summary of the scores participants achieved in all the six

neuropsychological assessments. Table 3.2 shows the more in-depth variation of the

scores of all patients.

Table 3.1: Overview of the neuropsychological assessment scores. Summary statistics
includes the count, number of missing values, mean, median, standard deviation and
the range of the six cognitive assessments scores.

Korean
MMSE
(Total
score)

Korean El-
derly TMT
A

Korean El-
derly TMT
B

Korean
BN (Total
score)

Rey Com-
plex Fig-
ure Test
(Copy)

SVL (Im-
mediate
Recall)

N-valid 1397.00 1194.00 1076.00 1372.00 1289.00 1381.00
N-Missing 4.00 207.00 325.00 29.00 112.00 20.00
Mean 23.74 40.74 88.44 9.93 26.03 14.89
Median 26.00 30.00 56.50 10.00 29.00 15.00
Std. Dev 5.93 38.47 80.47 3.61 8.99 6.03
Range 30.00 294.00 289.00 15.00 36.00 36.00
Minimum 0.00 6.00 11.00 0.00 0.00 0.00
Maximum 30.00 300.00 300.00 15.00 36.00 36.00

Table 3.2: Distribution of the neuropsychological assessment scores. 5th, 10th, 25th,
50th, 75th, 90th and 95th percentiles of the six cognitive assessments scores.

Percentiles 5 10 25 50 75 90 95
Korean MMSE (Total score) 19.00 21.00 25.00 27.00 28.00 29.00 30.00
Korean TMT A 12.00 14.00 19.25 27.00 40.00 59.00 80.00
Korean TMT B 20.00 24.00 35.00 55.00 103.75 216.50 300.00
Korean BN (Total score) 6.00 7.00 9.00 12.00 13.00 14.00 15.00
Rey Complex Figure Test
(Copy)

13.83 19.00 26.00 31.00 33.00 35.00 35.00

SVL (Immediate Recall) 8.00 9.00 13.000 16.00 20.00 24.00 25.35
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3.3 Neuroimaging data

Structural axial T1, T2-weighted spin echo, DWI and FLAIR sequences (3.0T, Achieva

scanner, Philips Healthcare, Netherlands, image dimensions: 182x218x182; see Table

3.3 and Table 3.4 for details) were included in the brain scanning. In house software

based on MeVisLab (MeVis Medical Solutions AG, Bremen, Germany; [48]) were used

to manually segment lesions in DWI (or FLAIR sometimes) by trained professionals

(A.K.K., G.A.). Moreover, the segmentations were then examined and manually

adjusted, where necessary, by two experienced raters (N.A.W., J.M.B). Using the

RegLSM processing (public code: http://lsm.isi.uu.nl/; [58]), the segmented images

were normalized, linearly and non-linearly, to the Montreal Neurological Institute

(MNI-152) space. Following that, the registered lesion maps were examined for any

visual discrepancies from the original image and manually corrected accordingly. Figure

3.1 shows a few sample processed images used in this analysis where the lesionized

brain regions are highlighted.

3.4 Region of Interest based

regression analyses

Infarct volumes (absolute size in mm3) in a total of 193 brain regions were calculated

based on the parcellations provided by following four widely used atlases:

1. Harvard Oxford Cortical Atlas (Threshold 50, Resolution 1mm, 93 regions) [22],

2. Harvard Oxford Subcortical Atlas (Threshold 50, Resolution 1mm, 18 regions)

[22],

3. Cerebellum Atlas (34 regions) [24],
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Figure 3.1: Coronal, sagittal and axial slices of three random samples of lesion
segmented brain MRIs. The processed image data is binary where voxels with value=1
(colored black) indicate the presence of stroke lesion as identified by an expert.
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Table 3.3: Details of the imaging protocol used in Seoul National University Bundang
Hospital

FLAIR

• Repetition time: 11,000 ms;

• Echo time: 125 ms;

• Inversion time: 2,800 ms;

• Slice thickness 5 mm;

• Intersection gap: 1 mm;

• Matrix: 512 x 512;

• Flip angle 90 degree

DWI

• EPI-spin echo sequence;

• Repetition time: 5,000 ms;

• Echo time: 50 ms;

• Diffusion b-value: 1,000;

• Slice thickness: 5 mm;

• Intersection gap: 1 mm;

• Matrix: 256 x 256;

• Flip angle 90 degree

4. International Consortium of Brain Mapping (ICBM) White-matter tractography

atlas (48 regions) [37].

Figure 3.2 provides an overview of the prevalence of lesions in the dataset. We

performed log transformation (base 10) of infarct volumes in these pre-defined brain

regions in order to reduce the skewness in lesion volume distribution due to a larger

number of small lesions. The log transformed values, z-scored, provided 193 input

features to the regression based analyses. With this aggregation approach, the high

dimensional voxel-wise data consisting about 1.8 million features is brought down to
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Table 3.4: Details of the imaging protocol used in Hallym University Sacred Heart
Hospital

FLAIR

• Repetition time: 11,000 ms;

• Echo time: 125 ms;

• Inversion time: 2,800 ms;

• Slice thickness: 5 mm;

• Matrix: 512 x 512;

• Flip angle 90 degree

DWI

• Repetition time: 3,000 ms;

• Echo time: 56 ms;

• Diffusion b-value: 1,000;

• Slice thickness: 5 mm;

• Matrix: 256 x 256;

• Flip angle 90 degree

a more manageable feature space of 193 dimensions, thereby mitigating the curse of

dimensionality.

The output variables were the six different cognitive assessment scores, each z-

scored. The missing data was filled with the simple random imputation method where

each missing sample is replaced by randomly selecting one of the true (measured)

scores of the respective cognitive domain.

After data pre-processing, we explored various machine learning models and tech-

niques to predict cognitive scores from the lesion loads (lesion volumes in the aforemen-

tioned brain regions) systematically in three different dimensions. First, we compared

single versus multi-outcome models. Second, linear versus non-linear models. Lastly,

we apply the Mixup technique on the dataset. The analyses in this section were
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Figure 3.2: Lesion prevalence map. The color scale indicates the average lesion size
(absolute volume in mm3) in each brain region in 1401 patients in the dataset. All
the 193 atlas derived regions are colored in this figure, and in each of these regions,
at least one patient has a lesion. Brain images are projected on the 1 mm MNI-152
template (Z coordinates: -48, -17, -4, 21, 39, 52, 65). Lesion maps are displayed in the
neurological convention (left brain is on the left (L) and right brain is one the right
(R)).

performed in the Python 3.7 environment relying predominantly on the packages

Nilearn (version 0.5.2) [2] and Scikit-learn (version 0.22.1) [44]. The code is available

at https://github.com/hasnainmamdani/stroke-impairment-analysis.

3.4.1 Single vs Multi-Outcome modeling

The single-outcome models are those that model one cognitive outcome at a time.

Hence, six models are needed to predict six different cognitive functions. The models

used in this part of the regression analysis are Ridge (a particular type of Tikhonov

regularization where the regularization is given by the l2-norm) [32], Support Vector

Machines with Radial Basis Function kernel (SVR-RBF) [16], and Random Forest [11]

[27].

Multi-outcome models train on and predict all the six cognitive functions with

a single model. The multi-outcome models used here are Multitask Ridge, Partial

Least Squares (PLS) [59] [55], Canonical Correlation Analysis (CCA) [59] [55] and

(Multi-output) Random Forest [11] [27]. Note we used Random Forest for both single-

outcome and multi-outcome analyses as Random Forest natively supports modeling of

single as well as multiple outputs.

https://github.com/hasnainmamdani/stroke-impairment-analysis
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3.4.2 Linear vs Non-Linear modeling

The linear model used for comparison here is Ridge. In Ridge, the hyperparameter

tuned was the i) regularization strength. The non-linear models used in this analysis

are Support Vector Machines with Radial Basis Function kernel (SVR-RBF), and

Random Forest. These are widely used models and suitable for benchmarking predictive

performance [31].

3.4.3 Mixup

With mixup, we upsized the data to have a sample size of i) 5x and ii) 10x the original

dataset size. For instance if the size of training data is 100 samples, a multiplication

factor of 5x will generate 400 additional samples rendering a total sample size of

500. The interpolation parameter lambda used to construct additional samples was

sampled from a Beta distribution with shape parameters (alpha, alpha). Alpha controls

the interpolation strength between two randomly chosen samples to generate a new

sample. For each of these settings, we tried various values of alpha: 0.01, 0.1, 0.3 and

1.0. Data augmentation was performed on the lesion volumes in ROIs before taking

their logarithm. The models used with post Mixup data were Ridge and Random

Forest. Note, data augmentation was only applied on the training data and prediction

performance was measured on the unseen true samples.

In all the analyses, for each model type, nested cross validation scheme was utilized

to obtain training (in-sample) and testing (out-of-sample) results. 1401 samples were

divided into 5-folds. The outer loop was iterated 5 times, each time with a different

data fold as test data. Within each iteration of the outer loop, 5-fold inner cross

validation was further performed on the training data for hyperparameter tuning. The

in-sample and out-of-sample estimates of coefficient of determination (r-square) were

calculated and reported for each iteration of the outer loop.
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In Ridge, the hyperparameter tuned was the i) regularization strength. In SVR-

RBF, the hyperparameters tuned were the i) regularization strength and ii) epsilon,

the width of the allowable error where samples predicted within that error range

are not penalized during model training. In Random Forest, the hyperparameters

tuned were the i) number of trees in the forest, ii) maximum number of features

taken into account to determine the best split at a node, iii) maximum height of the

trees, iv) minimum number of samples needed to split a node, v) minimum number of

samples needed at the leaf node, and vi) maximum number of samples used to form

a tree with bootstrapping. In Multitask Ridge, the hyperparameter tuned was the

1) regularization strength. In PLS, the hyperparameter tuned is the 1) number of

components kept in the decomposition. In CCA, the hyperparameter tuned is the 1)

number of components kept in the decomposition.



4
Results

We used machine learning models to predict cognitive functions three months post-

stroke from the lesion topography. Here, we present results of the three dimensions of

this study: single-outcome vs multi-outcome modeling; linear vs. non-linear modeling;

and data augmentation using Mixup.

4.1 Single-Outcome vs. Multi-Outcome

modeling

First, we compared the performance of multi-outcome models with single-outcome

models. Figure 4.1 shows the out-of-sample coefficient of determination (r-square)

values of various single and multi-outcome models. In general, for both types of

modeling, we see the r-square scores are low indicating poor predictive performance

and the error bars, which represent the standard deviation of r-square values across

k-folds, are large showing lack of consistency in predictions. It is also noticeable

that information processing speed and executive functioning domains are hard to

predict from lesion topography. Having said that, at the sample size that we have

available, we see subtle indicators that multi-output models provide slightly better

mean predictive performance compared to single-output models, mostly in the domains

36
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Figure 4.1: Mean out-of-sample coefficient of determination (r-square) values of various
single and multi-output models. The error bars indicate the standard deviation of
the r-square values across 5 folds for each model and cognitive domain. A line at
R2 = 0.10 is drawn for the ease of visualization. The mean predictive accuracy of the
best performing multi-outcome model (Random Forest) is slightly better than that of
the best performing single-outcome model (Random Forest) in the domains of global
cognition and language.

of global cognition and language. The mean (± one standard deviation across cross-

validation folds) r-square of the best performing multi-outcome model, Random Forest,

in the domains of global cognition and language are 0.120 (± 0.101) and 0.047 (±

0.033) respectively. Whereas for the best performing single-outcome model, also

Random Forest, the mean (± one standard deviation across cross-validation folds)

r-square for global cognition and language domains are 0.094 (± 0.096) and 0.039 (±

0.033) respectively. This suggests that multi-output models may have capability to

beneficially capture shared patterns across various clinical dimensions in a predictively

useful fashion. Therefore, joint modeling of interrelated cognitive functions exhibit

potential to perform more accurate single subject predictions. In-sample coefficient

of determination (r-square) values of these single and multi-outcome models can be

found in Appendix A.1.
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4.2 Linear vs. Non-linear modeling

Secondly, we investigated whether non-linear models predict cognitive functions post

stroke better than linear models. Fig 4.2 compares the out-of-sample coefficient of

determination (r-square) values for various linear and non-linear models. It can be

seen that despite low and inconsistent predictions in general, the mean predictive

accuracy of the best performing non-linear model is slightly better compared to the

best performing linear model for the Language and Memory functions. The mean (±

one standard deviation across cross-validation folds) r-square of the best performing

non-linear model, Random Forest, in the domains of language and memory are 0.039

(± 0.033) and 0.074 (± 0.065) respectively. Whereas for the linear model Ridge, the

mean (± one standard deviation across cross-validation folds) r-square for language

and memory are 0.025 (± 0.024) and 0.052 (± 0.042) respectively. The results hint

that the performance of language and memory functions in stroke patients might be

modeled more appropriately by considering a non-linear interaction between spatially

distributed brain regions. Hence, there seems to be some evidence that non-linear

modeling leads to slightly better single subject predictions on average. In-sample

coefficient of determination (r-square) values of these linear and non-linear models can

be found in Appendix A.2.

4.3 Mixup

Next we applied Mixup (cf. Methods), a data augmentation technique, to examine

whether additional data generated by linear interpolation of true samples can help

improve predictive performance of various machine learning models. Fig 4.3 shows the

out-of-sample coefficient of determination (r-square) values for Ridge and Random

Forest regression with different configurations of data augmentation. Both models,

trained on post mixup augmented data, do not seem to perform better when tested
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Figure 4.2: Mean out-of-sample coefficient of determination (r-square) values of various
single-output linear and non-linear models. The error bars indicate the standard
deviation of the r-square values across 5 folds for each model and cognitive domain. A
line at R2 = 0.05 is drawn for the ease of visualization. The predictive accuracy of the
best performing non-linear model is slightly higher compared to the linear model in
the domains of language and memory.

on completely unseen data compared to when they were trained on original training

data only. For all the six domains, the mean r-square is lower when the models are

trained on augmented training data compared to when the models are trained on

original training data. Moreover, we notice a decline in predictive performance with

the increase of data multiplication factor. With increasing values of alpha (the newly

generated samples are more concentrated in the middle of the linear interpolation

line between the two source samples, i.e., further from any one of the true samples),

the predictive performance improves but it still is not close to the performance of

the model trained on original training data only. Higher values of multiplication

factor and alpha were also tried but the results were not very different than the ones

reported. From these results, we see that it is not easy to exploit artificial samples

generated by Mixup to improve predictive performance of cognitive functions post

stroke. Therefore, with this stroke dataset, we are yet to make beneficial use of the



CHAPTER 4. RESULTS 40

Figure 4.3: Mean out-of-sample coefficient of determination (r-square) values of the
Ridge and Random forest regression model. In each figure, the left panel shows results
without mixup i.e., no data augmentation, the middle panel shows results with mixup
with 5x data augmentation and the right panel shows results with mixup with 10x
data augmentation. The error bars indicate the standard deviation of the r-square
values across 5 folds for each model and cognitive domain.

power of data augmentation in a predictive modeling setting. In-sample coefficient of

determination (r-square) values of these models can be found in Appendix A.3.



5
Discussion and Future Work

We performed stroke outcome prediction analysis on a multisite database of 1401

stroke patients. A core strength of this study is the relatively large and diverse sample

size. Previous studies on stroke outcome prediction are limited to sample sizes of at

most a few hundred subjects [17] [38] [1] [67] [39] . Moreover, the neuropsychological

assessments cover a wide variety of cognitive domains including measures for global

cognition, language, memory, visuospatial functioning, information processing speed

and executive functioning. High coverage of neurological lesions including regions of

both gray and white matter and cognitive assessments allow us to, at the first place,

reliably employ multi-outcome modeling, non-linear modeling and data augmentation

in this study.

Firstly, we explored the utility of multi-outcome modeling in cognitive outcome

prediction. The results suggest tentative hints that multi-output models might be

able to better capture similar underlying disease processes of many clinical dimensions

typically observed in stroke patients from a predictive modelling perspective.

Secondly, we compared the results of non-linear models with linear models. Non-

linear models performed slightly better than the linear models in more than one

cognitive domain in the prediction regime as shown by the mean variance explained

(r-square) values. Hence, there seems some evidence that non-linear models are able

41
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to potentially exploit some part of non-linearity that is found in cognitive processes

leading to slightly better single subject predictions on average.

Thirdly, we analyzed whether augmenting data with the Mixup technique helps

with improving cognitive outcome prediction of unseen samples. Even though we had

a large and diverse bank of data to begin with, the predictive performance of various

models decline when trained on augmented data suggesting that the relationship

between lesion volumes and behavioral scores is not easily replicated by a simple linear

interpolation method that Mixup employs. To our knowledge, this is the first study

that explores the application of a modern data augmentation method in the context

of stroke.

Many studies on stroke lesion symptom mapping focus on inference, i.e., providing

mechanistic insights into brain regions that are associated with various cognitive

functions [18] [62] [25] [1]. Inference based studies are, however, not necessarily

centered on clinical endpoint prediction from a precision medicine perspective [43] [12].

In this study, we focused on predictions of cognitive outcomes post-stroke, which could

assist clinicians in devising an individualized treatment strategy for each new patient.

We measured the out-of-sample predictive performance of models by testing them

on previously unseen subjects. On that note, we noticed that the stroke literature

is inconsistent with the use of term prediction and suggest that ‘predictions’ should

involve evaluation of models on data that is previously not used for the training/fitting

or hyperparameter tuning of the model. Maintaining a focus on predictions allowed us

to examine a multitude of modeling options, which is not the case in inference based

studies where investigators are limited to employing models that have interpretable

parameters only. We thoroughly tried various models from simple linear to complex

non-linear and multi-output models to exploit the predictive information present

in brain images. Another aspect of this study is that the prediction of cognitive

outcomes post-stroke is based entirely on neuroimaging features and the influence of
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socio-demographic factors such as age, gender, education, etc. is not modeled. Note,

inspired from other related studies we tried using principal components as features [29]

[38] [54] instead of lesion volumes in brain regions as well as artificial neural network

models [17], but the results obtained were not much different than the ones reported.

The reason behind using atlas based features as inputs to the regression models is

that atlases are by design created based on the association of its ROIs with brain

functioning.

Overall, the results are suggestive of improvement. We see that cognitive outcome

prediction from lesion topography is a very challenging real-world problem from a

predictive modelling perspective. Throughout the study, we notice the prediction

accuracies as measured by coefficient of determination (r-square) are generally quite low

and inconsistent across cross validation folds as reflected by large standard deviation

of r-square values. This is in line with previous studies that suggest that the classic

lesion locations explain chronic behavioral outcomes but with little explained variance

[46]. There can be various explanations to that.

The notion of basing brain-behavior association on coarse spatially distributed

patterns of lesions, which is the fundamental assumption made in most MRI based

lesion symptom mapping studies, is arguable. Any spatial region in the brain may not

be necessarily associated with a particular task [6]. Neurons are a general purpose

computation unit and individuals may perform a certain cognitive function using

different topographical regions of the brain [8] [53]. Hence, by standardizing brain

region volumes to a common space, we might not be able to capture interindividual

variations.

Moreover, MRIs are not able to precisely capture the infarcted regions of the brain’s

nervous system [40]. With MRIs, our lowest unit of measurement is a 1 mm3 (1 mm x

1 mm x 1 mm) voxel. With this resolution, we can not peek into the infarction state
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of individual neurons and axons (with diameters in tens of micrometers) and study

their contribution to cognitive functioning. Hence, it is possible that the anatomical

details not captured by MRIs could be a key missing ingredient required to predict

cognitive impairments more accurately.

According to common criticism, MRIs in general contain limited information

that can be exploited for predicting disease phenotypes. Imperfect brain imaging

measurements need to be complemented by larger amounts of data to fully exploit the

predictively useful information in them [61] [52]. Therefore, with the current size of the

dataset, even the simple linear models may not have reached plateaus of performance.

This is in accordance with the view that limited sample size is the bottleneck in image

based predictions of neurological disorders [4].

Another reason for poor predictive performance could be that the cognitive out-

comes measured post-stroke provide little indication of a person’s cognitive abilities

prior to stroke. That is to say, we have an absolute measure of cognitive performance

post-stroke, but we do not have information about the decline in cognitive performance

due to stroke. Without this, the models are not able to distinguish at an individual

level the component of cognitive impairment caused by stroke and general cognitive

capacity. Moreover, our data repository consists of patients suffering from a stroke

only and as such there are no healthy controls. Lack of knowledge of how healthy

participants perform on cognitive assessments would limit and partly skew the distinc-

tive power of models. In other words, impairments can only be characterized so much

without the knowledge of a desirable (healthy) state.

With the current quality of brain imaging measurements (which warrants extensive

research in their progress), we see that a sample size of about fourteen hundred is

not large enough to exploit predictively useful information in them for usefulness in

a clinical setting. Given the severity and frequency of this neurological disorder, a
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global effort needs to be coordinated to accomplish a data size of tens of thousands of

stroke patients with consistent configurations of imaging protocols and measurements

of cognitive abilities. The challenge in this century lies not in the scarcity of potential

data but coordinating a consortium to collect and organize data from multitude of

sites [3].

Besides increase in sample size, another direction to improving predictive power of

models could be having more data per patient. One way to do so is by complementing

structural MRIs with other modalities such as functional MRIs and electroencephalo-

grams (EEG). Some studies have shown relevance of fMRIs to cognitive functions. For

instance, global cognition reflects a combination of various cognitive functions, which

depend on not only structural but also functional brain measurements [54]. Moreover,

task based fMRI is shown to be useful in the prediction of language outcomes [51].

Future studies can explore contributions of multiple modalities towards prediction of

cognitive outcomes.

Another way to increase single subject data is by collecting cognitive assessment

scores of stroke patients over a period of time. The longitudinal data could help model

and predict personalized trajectories of cognitive performance throughout the recovery

phase and subsequently aid in treatments [33]. Lastly, binary lesion segmentations

can be complemented with continuous imaging measurements that provide fine details

of the severity of infarct. Continuous diffusion tensor imaging (DTI) parameter maps

have been shown to more accurately predict long term cognitive outcome than binary

lesion segmentation maps [38] [49].



6
Conclusions

We translated and benchmarked state of the art machine learning methods on a

relatively large stroke dataset to predict cognitive outcomes from lesion topography.

We showed that 1) multi-outcome models could possibly be exploited to improve

predictions of global cognition and language outcomes; 2) non-linear models show

promise in capturing non-linear interactions between distinct regions of the brain to

predict language and memory functions more accurately; and 3) data augmentation

with Mixup does not necessarily create useful samples from a predictive modeling

viewpoint. In conclusion, we demonstrate that prediction of single patient outcomes

from lesion topography is a difficult task. This work highlights the challenges and

provides useful directions to future research in lesion-behavior mapping.
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A
In-Sample Results

Figure A.1: Mean in-sample coefficient of determination (r-square) values of various
single and multi-output models. The error bars indicate the standard deviation of
the r-square values across 5 folds for each model and cognitive domain. A line at
R2 = 0.20 is drawn for the ease of visualization.
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Figure A.2: Mean in-sample coefficient of determination (r-square) values of various
single-output linear type and non-linear models. The error bars indicate the standard
deviation of the r-square values across 5 folds for each model and cognitive domain. A
line at R2 = 0.20 is drawn for the ease of visualization.
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Figure A.3: Mean in-sample coefficient of determination (r-square) values of the Ridge
and Random forest regression model. In each figure, the left panel shows results
without mixup i.e., no data augmentation, the middle panel shows results with mixup
with 5x data augmentation and the right panel shows results with mixup with 10x
data augmentation. The error bars indicate the standard deviation of the r-square
values across 5 folds for each model and cognitive domain. A line at R2 = 0.20 is
drawn for the ease of visualization.
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