
 
 

 

Climate Change and 
Dengue: 

Analysis of historical health and 
environment data for Peru 

 
 
 
 
 
 
 

Charlotte Picard 

Faculty of Medicine, Department of Epidemiology, Biostatistics and Occupational Health 

McGill University, Montreal 

August 2011 
 

 

 

 

 

A thesis submitted to McGill University in partial fulfillment of the requirements of the 

degree of Master of Science of Epidemiology 

© Charlotte Picard 2011 



 
 

 



i 
 

Acknowledgements 
 

I would like to thank the many people who helped me to complete my thesis. 

Marina Guertin was instrumental in helping to collect and enter the data used in 

the analyses in this thesis. Jaclyn Paterson also dedicated many hours to 

organizing and making sense of the data. 

The completion of this thesis would have been impossible without the support of 

Charles Williamson, Luke Mondor and Aidan Findlater, all of whom provided 

editorial feedback, advice and support. 

My supervisory committee of, Dr. Timothy Brewer, Dr. Lea Berrang Ford, and 

Dr. Antonio Ciampi all provided instruction, guidance and editorial help during 

this long process and this work would not have been possible without them. Drs. 

Brewer and Berrang Ford deserve special mention for introducing me to this 

project and allowing me to be a part of it before I even began my graduate studies. 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

Table of Contents 

Acknowledgements .................................................................................................. i 

List of Figures ........................................................................................................ iv 

List of Tables ...........................................................................................................v 

Abstract .................................................................................................................. vi 

Résumé .................................................................................................................. vii 

Chapter 1: Introduction ............................................................................................1 

1.1 Background ...............................................................................................1 

1.1.1 What is Dengue? ......................................................................................1 

1.1.2 Dengue in Peru ........................................................................................4 

1.1.3 The role of climate ...................................................................................6 

1.2 Research Objectives ..................................................................................9 

1.3 Thesis outline ..........................................................................................10 

Chapter 2: Systematic Review ...............................................................................11 

2.1 Introduction and Research Question .......................................................11 

2.1.1 Methods .................................................................................................11 

2.2 Results .....................................................................................................13 

2.2.1 Statistical methods .................................................................................13 

2.2.2 Temperature ...........................................................................................15 

2.2.3 ENSO .....................................................................................................21 

2.2.4 Other relationships .................................................................................23 

2.3 Discussion ...............................................................................................27 

2.3.1 Temporal Scale Issues ...........................................................................27 

2.3.2 Spatial scale issues.................................................................................28 

2.3.3 Measuring independent variables ..........................................................30 

2.3.4 Conclusions ...........................................................................................30 

Chapter 3: Modeling the effects of sea surface temperature on Dengue in Peru ...32 

3.1 Research objectives ......................................................................................32 

3.2 Methods ........................................................................................................32 

3.2.1 Data collection and sources ...................................................................32 

3.2.2 Preparing the data ..................................................................................34 

3.2.3 Descriptive statistics ..............................................................................35 

3.2.4 Building the models ...............................................................................36 

Chapter 4: Results ..................................................................................................39 



iii 
 

4.1 Descriptive statistics .....................................................................................39 

4.1.1 SST ........................................................................................................39 

4.1.2 Dengue ...................................................................................................40 

4.2 Models ..........................................................................................................49 

4.3 Residual analysis ..........................................................................................54 

Chapter 5: Discussion ............................................................................................57 

5.1 What do these findings mean? .....................................................................57 

5.2 Limitations ...................................................................................................59 

Data .................................................................................................................59 

Methods ..........................................................................................................60 

5.3 Future Research ............................................................................................61 

References ..............................................................................................................64 

Appendix 1 .............................................................................................................70 

Appendix 2 .............................................................................................................73 

Appendix 3 .............................................................................................................74 

Appendix 4 .............................................................................................................76 

Appendix 5 .............................................................................................................77 

 

  



iv 
 

List of Figures 
Figure 1: The human-mosquito dengue transmission cycle, the length of each 

stage is marked in days. .......................................................................................... 2 

Figure 2. Time series of sea surface temperature in El Nino regions 1 and 2 for 

2002-2010. ............................................................................................................ 39 

Figure 3. Histogram of sea surface temperature in El Nino Region 1 and 2 for 

2002-2010. ............................................................................................................ 40 

Figure 4: Incidence of dengue in Amazonas, Peru, 2002-2010 a) Monthly incident 

cases. b) Box plots of cases by month of year. ..................................................... 41 

Figure 5: Incidence of dengue in Ancash, Peru, 2002-2010 a) Monthly incident 

cases. b) Box plots of cases by month of year. ..................................................... 41 

Figure 6: Incidence of dengue in Cajamarca, Peru, 2002-2010. a) Monthly 

incident cases. b) Box plot of cases by month of year. ......................................... 42 

Figure 7: Incidence of dengue in Huanuco, Peru, 2002-2010. a) Monthly incident 

cases. b) Box plots of cases by month of year. ..................................................... 42 

Figure 8: Incidence of dengue in Junin, Peru, 2002-2010. a) Monthly incident 

cases. b) Box plots of cases by month of year. ..................................................... 43 

Figure 9: Incidence of dengue in La Libertad, Peru, 2002-2010. a) Monthly 

incident cases. b) Box plots of cases by month of year. ....................................... 43 

Figure 10: Incidence of dengue in Lambayeque, Peru, 2002-2010. a) Monthly 

incident cases. b) Box plots of cases by month of year. ....................................... 44 

Figure 11: Incidence of dengue in Lima, Peru, 2002-2010. a) Monthly incident 

cases. b) Box plots of cases by month of year. ..................................................... 44 

Figure 12: Incidence of dengue in Loreto, Peru, 2002-2010. a) Monthly incident 

cases. b) Box plots of cases by month of year. ..................................................... 45 

Figure 13: Incidence of dengue in Madre de Dios, Peru, 2002-2010. a) Monthly 

incident cases. b) Box plots of cases by month of year. ....................................... 45 

Figure 14: Incidence of dengue in Pasco, Peru, 2002-2010. a) Monthly incident 

cases. b) Box plots of cases by month of year. ..................................................... 46 

Figure 15: Incidence of dengue in Piura, Peru, 2002-2010. a) Monthly incident 

cases. b) Box plots of cases by month of year. ..................................................... 46 

Figure 16: Incidence of dengue in San Martin, Peru, 2002-2010. a) Monthly 

incident cases. b) Box plots of cases by month of year. ....................................... 47 

Figure 17: Incidence of dengue in Tumbes, Peru, 2002-2010. a) Monthly incident 

cases. b) Box plots of cases by month of year. ..................................................... 47 

Figure 18: Incidence of dengue in Ucayali, Peru, 2002-2010. a) Monthly 

incidence cases.  b) Box plots of cases by month of year. .................................... 48 

Figure 19: Map of correlation coefficients and optimum lag between cases and sea 

surface temperature for each region of Peru. ........................................................ 51 

 

  

file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033277
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033277
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033278
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033278
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033279
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033279
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033280
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033280
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033281
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033281
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033282
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033282
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033283
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033283
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033284
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033284
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033285
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033285
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033286
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033286
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033287
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033287
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033288
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033288
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033289
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033289
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033290
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033290
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033291
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033291
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033292
file:///C:/Users/Charlotte/Desktop/thesis%206.12.11/thesis%20write%20up/write%20up%20no%20EDT%208.13.docx%23_Toc301033292


v 
 

List of Tables 
Table 1. The inclusion and exclusion criteria used to select papers for the 

systematic review. ................................................................................................. 12 

Table 2.  A description of the studies that were included in the systematic review.

............................................................................................................................... 15 

Table 3: The associations between temperature and dengue in each study site, as 

determined by correlation testing and regression. ................................................ 19 

Table 4: The relationship between various ENSO measures and dengue incidence 

in each study site. .................................................................................................. 25 

Table 5. Lags in months at which the autocorrelation of dengue cases was 

significantly different from zero. .......................................................................... 50 

Table 6. The results of the negative binomial model and the generalized 

estimating equation for sea surface temperature, controlling for inter-annual 

variation in dengue incidence by including an indicator term for year. ............... 52 

Table 7. The AIC/BIC for each negative binomial model. The lowest scores 

indicate the best fitting model.* ............................................................................ 55 

Table 8. The results from the multivariate negative binomial regression of seas 

sea surface temperature on the incidence of dengue by region of Peru, controlling 

for inter-year variability from 2002-2010. ............................................................ 56 

Table 9. Lags in months at which the autocorrelation of the residuals from the 

negative binomial model were significantly different from zero. ......................... 56 

 

 

 

 

 

 

 

 

 

  



vi 
 

Abstract 
Dengue, a mosquito-borne virual infection that is the most common cause of 

hemorrhagic fever globally, is rapidly spreading worldwide.  An estimated 40% 

of the world’s population is at risk for this disease that is transmitted by Aedes sp. 

mosquitos. The Aedes mosquito-dengue virus lifecycle varies with temperature, 

and climate change may increase the risk of dengue epidemics in the future.  We 

examined whether changes in sea surface temperature (SST) along the Peruvian 

coast were associated with dengue incidence from 2002-2010.  In Peru the effects 

of the El Niño cycle on weather conditions are pronounced, providing an ideal 

place to study fluctuations in climate and dengue incidence.   

Negative binomial models were used to examine the relationship between dengue 

cases and changes in SST across regions of Peru. Spearman’s rank test was used 

to determine the lagged SST term that was most correlated with dengue incidence 

in each region.  The negative binomial models included terms for the optimum 

lagged SST and a term for the trend of increasing dengue incidence over the study 

period. 

The magnitude and sign of the correlation coefficient of dengue and SST varied 

between the 15 regions of Peru with dengue cases.  9 provinces had positive 

correlations between the two while 6 had negative correlations.  The optimum lag 

ranged from 0 months to 6 months. In all of the regions lagged SST was a 

significant predictor of dengue cases in the negative binomial model. 

The relationship between dengue and sea surface temperature in Peru appears to 

be significant across the country. Given the varied nature of the relationship 

between regions it is not possible to make accurate generalisations about this 

relationship in Peru. Accounting for additional climatic variables such as 

precipitation may help in improving the predictive model. 
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Résumé 
La dengue, une infection virale transmise par les moustiques étant la cause la plus 

fréquente de fièvre hémorragique au niveau mondial, se propage rapidement dans 

le monde entier. On estime que 40% de la population mondiale est à risque pour 

cette maladie qui est transmise par les moustiques Aedes sp. Le cycle de vie du 

virus dengue des moustiques Aedes varie avec la température, et le changement 

climatique peut accroître le risque d'épidémies de dengue dans le futur. Nous 

avons examiné si les changements de température de surface de la mer (SST) sur 

le long de la côte péruvienne ont été associés à l’incidence de dengue de 2002 à 

2010. Au Pérou les effets du cycle El Niño sur les conditions météorologiques 

sont prononcés, offrant un endroit idéal pour étudier les fluctuations du climat et 

de l'incidence de la dengue. 

Des modèles binomiaux négatifs ont été utilisés pour examiner la relation entre 

les cas de dengue et des changements de SST dans toutes les régions du Pérou. Le 

test de Spearman a été utilisé pour déterminer le terme retardé de SST qui était la 

plus corrélée avec l'incidence de dengue dans chaque région. Les modèles 

binomiaux négatifs comprenaient des termes pour optimiser la SST et un terme à 

la tendance de l'incidence de la dengue augmente au cours de la période d'étude. 

L'amplitude et le signe du coefficient de corrélation de la dengue et le SST varient 

entre les 15 régions du Pérou. Neuf provinces avaient des corrélations positives 

entre les deux, tandis que six avaient des corrélations négatives. Le décalage 

optimal varie de 0 à 6 mois. Dans toutes les régions retardées, le SST était un 

prédicateur important de cas de dengue dans le modèle binomial négatif. 

La relation entre la dengue et la température de surface de la mer au Pérou semble 

être significatif à travers le pays. Étant donné la nature variée de la relation entre 

les régions, il n'est pas possible de faire des généralisations exactes à propos de 

cette relation au Pérou. Tenant compte des autres variables climatiques comme la 

précipitation pourrait aider à améliorer le modèle prédictif. 
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Chapter 1: Introduction 

1.1 Background 
Vector borne diseases such as malaria and yellow fever have been the 

focus of many prevention efforts and studies; however, other pervasive diseases, 

such as dengue, remain neglected
1
.  The incidence of dengue, a virus transmitted 

through the bite of an infected Aedes species mosquito, has been increasing 

throughout the world during the last few decades, and is now thirty times higher 

than it was just fifty years ago
2
.  The relationship between human vector borne 

disease and its determinants is complex, but it has become clear that climate is an 

important determinant for many of these diseases. Changing temperatures may 

allow for the spread of disease into previously unaffected areas by making 

environmental conditions more favourable for the propagation of disease-carrying 

vectors including Aedes species mosquitoes 
3-5

. 

1.1.1 What is Dengue? 

Dengue is an acute febrile illness caused by a virus transmitted through the 

bite of an infected Aedes species mosquito, mainly Aedes aegypti
2
.  The dengue 

virus was first isolated in the 1940s and was classified as a member of the genus 

Flavivirus, family Flaviviridae
6
.  By 1956, four different serotypes had been 

identified. Since then thousands of dengue viruses have been isolated and all fit 

into one of the four serotypes (dengue types 1-4) 
6-7

.  The main vector of dengue, 

the Aedes aegypti mosquito, is highly domesticated and lives mainly in urban 

areas.  These mosquitoes lay their eggs in standing water, usually in an artificial 

container such as cisterns, flower pots and even old tires and trash
7
.  The larvae 
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then mature in the water until adulthood, and it is believed that as adults, females 

remain in close proximity to where they grew as larvae
2
. Humans become 

infected with the dengue virus when they are bitten by an infected adult female 

mosquito.
2
  After the virus’ intrinsic incubation period (IIP) of anywhere from 

three to fourteen days (typically four to ten)
2 

the symptons of dengue become 

noticeable.  Once a person is symptomatic they can infect any mosquito that bites 

them while the virus is circulating in the bloodstream (usually a period of two to 

ten days)
2
.  After the mosquito acquires the disease the virus replicates during the 

extrinsic incubation period (EIP) of eight to twelve days, after which the mosquito 

can infect any human it subsequently bites
8
 . Overall, the time from when a 

mosquito first acquires dengue to the time a human it bites can transmit dengue to 

another mosquito is between two weeks and slightly over a month.  Since female 

mosquitoes remain in the same area for their entire lives, dengue moves by 

traveling from place to place in the blood of infected humans
2
.  The general time 

line of the human-mosquito transmission process is pictured in Figure 1. 

 

Figure 1: The human-mosquito dengue transmission cycle, the length of each 

stage is marked in days. 
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Currently, dengue causes more illness and death than any other arthropod-

borne disease in the world, and the number of cases reported to the World Health 

Organization (WHO) has been steadily increasing over the last twenty years.  

Their records indicate that dengue is now the most rapidly spreading mosquito-

transmitted disease in the world with between 400,000 and 1.3 million cases 

reported each year between 1994 and 2005. The organization believes 

underreporting to be significant, with an estimated 50 million dengue cases 

actually occurring globally each year
2
. In 2010, dengue was endemic to every 

continent except Europe, putting the 2.5 billion people residing in the globe’s 

‘dengue belt’, between the latitudes of 35
o
 North and 35

o
 South, at risk for dengue 

infection
9,10

.  Dengue cases place a high economic burden on the patient, family 

and community in general wherever they occur; a study completed in Central 

America and Asia showed that a each person sick with dengue costs a household 

an average of 14.8 to 18.9 days of productivity, or US$514 to US$149 
2
. 

Widespread dengue epidemics can cause economic hardship beyond the 

household level, placing a burden on the health sector and economy of a country
2
.  

According to the WHO, a typical dengue case begins with the sudden 

onset of a fever that can last from two to seven days
2
.  The fever is accompanied 

by flu-like symptoms including body aches, headache, flushing, and sore throat.  

Other common symptoms include bone and joint pain, rash and pain behind the 

eyes.  In some cases more severe complications arise, leading to dengue 

hemorrhagic fever (DHF).  These complications include bleeding of the nose, 

gums and gastrointestinal tract and severe vaginal bleeding, respiratory distress 
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and organ impairment that may lead to death. DHF is also characterized by fever, 

hemorrhagic episodes, thrombocytopenia, and plasma loss.  Plasma loss occurs 

once the patient’s initial fever drops and remains below 38
o
C and blood 

capillaries become permeable. Mortality from dengue fever is low, but if the 

disease progresses to DHF, mortality increases.  If a large amount of plasma is 

lost during the 7-10 day duration of DHF, shock can occur.  Dengue shock 

syndrome is the most serious form of dengue and can result in circulatory failure 

and death
2
.  There is currently no treatment to eliminate the virus from an infected 

person. The symptoms are managed by treating the patient’s pain and intravenous 

fluid replacement
11

. 

Since there is currently no cure or preventative vaccine for dengue, all 

control efforts are aimed at reducing the population of the mosquito vector, or at 

limiting human-mosquito exposure and mosquito biting rates
7
.  Spraying inside 

homes where mosquitoes typically rest and treating larval habitats such as water 

containers are two of the most effective measures that are currently available to 

control the spread of the vector and disease
12-14

.  Longer term solutions suggested 

by the WHO include environmental management programs to reduce suitable 

habitats for mosquito larva, such as the modification of water supply systems, 

waste removal programs and changing building structures.  Efforts to reduce 

contact between humans and mosquitoes can also be effective, including adding 

screens to all windows and doors and the use of mosquito nets.
8
  

1.1.2 Dengue in Peru 

In recent years the epidemiology of dengue has changed dramatically. In 

the 1950s dengue was present in Peru
15

, but during the next two decades dengue 
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transmission was effectively stopped due to the Aedes aegypti mosquito 

eradication program implemented in the WHO region of the Americas
8,12,16

.  After 

the eradication program was discontinued in the 1970s mosquitoes reinvaded the 

area via surrounding countries where there were no successful eradication 

programs in place, including the United States, Cuba, Venezuela and some 

Caribbean islands
7,15

.  Dengue returned along with the mosquitoes, and by 1990 

Peru had been affected by a major epidemic of dengue serotype 1
15

 that infected 

25% of the 300,000 residents of the city of Iquitos
17

.  Dengue 1 caused additional 

outbreaks in Peru throughout the 1990s; dengue 2 infections followed soon after 

and were the cause of a major outbreak in 1995-1996. During the next Peruvian 

outbreak in 2000-2001, all four dengue serotypes were circulating in the 

population
18

.   

The speed at which dengue re-emerged in the Americas may be due in part 

to the rapid population growth in this area, as well as the increase in urbanization 

that resulted in increased population density and more suitable habitats for Aedes 

aegypti and travel that  increased the movement of infected people and 

mosquitoes from place to place
15

.  By 2000-2007 the Andean region, which 

includes Peru, was home to 19% of the dengue cases in all of the Americas and 

had the highest number of DHF cases of any country in the region
8
.  In a study 

completed during those same years, serology showed that 26% of patients 

reporting with febrile illness at clinics in Peru, Bolivia, Ecuador and Paraguay had 

dengue
19

.  The circulation of all four dengue serotypes in the population puts 

Peruvians at greater risk of developing dengue hemorrhagic fever since re-
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infection with a different serotype increases the risk of this complication
17

.  

Clearly dengue is a pressing health issue in this region.  

1.1.3 The role of climate 

Arthropods such as mosquitoes are extremely sensitive to climate.  Aedes 

mosquitoes can survive over a large geographic range but temperature is a key 

factor in their development
20

. Public health researchers now accept that climate is 

an important determinant of the distribution of mosquito-borne diseases and that 

weather can impact not only the timing but the intensity of outbreaks
21

.  This 

principle has been observed in laboratory and population level epidemiologic 

studies.  The first laboratory study that showed that there was a relationship 

between the behaviour of the mosquito and temperature was completed in 1970 

by Yasuno and Pant, who demonstrated that when the mosquito habitat is warmer 

the female Aedes mosquito feeds more often
22

.  At the other extreme, at 

temperatures cooler than 17 degrees Celsius mosquitoes cease feeding, lowering 

the chances of contact with a human and eventually lowering the rate of dengue 

transmission
23

.  Even if mosquitoes were to survive and feed, the virus itself stops 

replicating in the vector at temperatures below 11.0
o
C

24
. 

Higher temperatures also affect the spread of disease by decreasing the 

extrinsic incubation period (EIP) needed for the dengue virus to replicate within 

the mosquito, influencing the survival and reproduction rates of mosquitoes 

themselves and increasing their biting rates
24-26

. A two to five degree Celsius 

increase in ambient temperature from 30 degrees Celsius to 32 to 35 degrees 

Celsius, for example, decreases the EIP from 12 to 7 days, so a mosquito can 

transmit the disease for a greater proportion of their lifetime
24

.  This five day 
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decrease in the extrinsic incubation period of the dengue virus has been equated 

with a 300% increase in dengue transmission in Mexico
26

.  Not only are the 

mosquitoes infective for a greater amount of time but they also bite humans more 

frequently when temperatures rise. Warmer temperatures are associated with 

smaller mature mosquito populations that must feed more frequently in order to 

reproduce. These adult mosquitoes also digest blood meals more quickly in 

warmer temperatures, again leading to more frequent feeding
27

. Together the 

increased feeding rates and decreased EIP result in higher probabilities of dengue 

infection in human populations.   

There is an apparent association between temperature and the behaviour 

and biology of dengue’s mosquito vector.  Preliminary studies have also indicated 

that there may be a relationship between climate and disease incidence
28-32

. It is 

believed that, in recent years, anthropogenic increases in global temperature and 

overall climate change have increased the severity and incidence of weather 

events including, but not limited to, El Niño Southern Oscillation (ENSO) cycles 

33-34
.  It is predicted that, over the next ninety years, temperatures will increase by 

1.4 to 5.8
o
C on average around the globe, making the expected rate of warming 

more than ten times what it has been in recent years
35

. Models have been 

developed that include ‘temperature dependent insect reproductive and biting 

rates’ consistently show that there is potential for a spread in geographical areas 

that can sustain vector-borne disease transmission. The same researchers that 

developed these models believe that warming may also result in longer seasons of 

transmission, when conditions are suitable for the spread of disease by insects.   
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In the short term, climate cycles like the El Niño-Southern Oscillation 

phenomenon may be useful in providing clues as to how future climate change 

might affect vector-borne disease incidence
21

.  During an El Niño-Southern 

Oscillation event, global mean temperatures fluctuate due to large exchanges of 

heat between the ocean and atmosphere, making ENSO a driving force behind 

short term climate variability
34, 36-37

. These effects can be observed even far from 

the Pacific region where ENSO indices are measured
37

. Warmer sea surface 

temperatures (an indicator of the ENSO cycle) are related to increased air 

temperature in the tropics, as well as the upward shift in elevations which reach 

freezing temperatures that has occurred over the last forty years
38-39

.  During the 

warm part of the ENSO cycle (the El Niño phase) temperatures around the globe 

increase, sometimes by as much as 0.5°C 
37

. For example, one of the most 

dramatic ENSO events in recent history increased the annual global mean 

temperatures by an estimated 0.17
o
 Celsius

40
. These fluctuations already affect the 

distribution of disease vectors like Aedes aegypti
21

. Continued warming could 

allow mosquitoes to survive year-round in new areas, making these places 

vulnerable to dengue transmission. The climate of Peru is especially influenced by 

the El Niño-Southern Oscillation cycle 
41

. Since global cycles like ENSO have a 

large effect on local weather patterns they may be useful, along with local 

topography and environmental conditions, in predicting what conditions might be 

conducive to epidemics or outbreaks and other ‘biological surprises’
21,31

.  

In the context of these changes, it is important to understand the 

relationship between climate and infectious disease.  The WHO already 
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recommends that dengue prevention and response programs include early warning 

systems and environmental surveillance
2
. As more is understood about the 

relationship between climate and disease, warning systems including monitoring 

of climatic conditions that are favourable for outbreaks may become feasible, 

allowing early preventative action to protect populations against disease
21

.   

1.2 Research Objectives 
The aim of this research project is to analyze the relationship between sea 

surface temperature (SST) and the incidence of dengue fever in Peru in two steps. 

1. Describe the general relationship between temperature and 

dengue throughout the world.  The first objective will be 

achieved by completing a systematic review of the existing peer-

reviewed literature on the relationship between temperature and 

dengue.  Examining studies that have been completed around the 

globe will facilitate the evaluation and general understanding of 

the dynamics of the dengue transmission cycle and factors that 

might influence it.  This knowledge will help to guide this 

research project with regard to appropriate methodology for 

studying the relationship between SST and dengue as well as 

understand what potentially important covariates might need to 

be examined. 

2. Characterize the relationship between sea surface 

temperature and dengue in Peru from 2002-2010.  The 

regression models will help to elucidate the relationship, if any, 
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between SST and dengue in Peru.  The relationship found 

through these analyses can then be compared to results of 

similar studies included in the systematic review. 

1.3 Thesis outline 
This thesis consists of four chapters.  This chapter focuses on the background 

and context for the research.  Chapter two is a systematic review of the 

relationship between temperature and dengue incidence around the world. The 

results of this review are used to develop a summary of the relationship around 

the world and clarify if there are patterns and commonalities across regions, as 

well as to give an overview of the statistical methods that are being used to 

explore these relationships. Chapter three presents the data and the statistical 

analysis methods used in this study. The methods used to clean the data are 

presented first, and then the descriptive statistics used to examine the data for 

patterns are presented. In chapter four, models are constructed for each region of 

Peru that reported dengue cases during the study period and then they are 

compared and summarized.  Chapter five includes the discussion of the results, 

limitations of the project and recommendations for future research. 
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Chapter 2: Systematic Review 

2.1 Introduction and Research Question 
A systematic review of the literature was conducted in order to 

characterize the relationship between temperature and dengue around the world. 

The main goal of this review was to determine the impacts of the variability of 

climate on dengue incidence around the world, and to compile the methods that 

were used to evaluate the relationships between climate and dengue. The variables 

representing climate variability in the review were ENSO indices and temperature 

measures. These two types of measures are closely related since ENSO has a large 

impact on local-scale weather conditions such as temperature
37,40

. Additionally, 

the studies are presented according to geographic regions as defined by the 

WHO
42

, in order to clarify any trends or potential relationships within the same 

areas of the globe.  

A similar review on climate change and vector-borne diseases was 

completed by Zhang et al. and published in 2008, but this review only included 

studies published prior to 2007 while focusing on various vector-borne diseases
35

. 

This review therefore adds to the scientific literature by including more databases 

in the literature search, reviewing additional studies published between 2007 and 

2010, while focusing specifically on the relationship between dengue and 

temperature.  

2.1.1 Methods 

A keyword search was performed in the eight databases shown in 

Appendix 1 using the listed search terms related to temperature and dengue.  
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Articles not written in English or Spanish were excluded.  The search of the 

databases yielded 5,032 results which were reviewed by title and abstract and 

screened based on the inclusion and exclusion criteria listed in Table 1. Only 

studies of five years and over were included to ensure that the studies could detect 

long term patterns and changes in dengue incidence, possibly associated with El 

Niño, a cycle that typically has a duration of two to seven years
41

.  The focus of 

this study was whether or not there was a population level association between 

dengue infection incidence in humans and temperature measures, so laboratory 

based studies were excluded since most of these studies focused on the dengue 

virus alone or its proliferation in mosquitoes. When it was not clear whether an 

article should be included from the title and abstract alone, the full text was 

reviewed. The results of the overall search process are outlined in Appendix 2.   

Table 1. The inclusion and exclusion criteria used to select papers for the 

systematic review. 

Include Exclude 

 Dengue occurrence is a 

measured outcome  

 Temperature is a determinant or 

ENSO is a determinant 

 Peer reviewed article 

 Longitudinal study 5 years or 

greater in length 

 Published in English or Spanish 

 Analysis examines the 

relationship between dengue and 

temperature or dengue and 

ENSO via regression, correlation 

or wavelet analysis 

 Lab based study, vaccine focused 

study, diagnostic study 

 No statistics included that directly 

compare temperature and dengue 

occurrence  

 Conference proceedings, meeting 

abstracts, editorials, reviews, 

commentaries, books 

 Non-peer reviewed documents 

 Resolution of data is coarser than 

monthly (i.e. annual data) 

 

The data extraction form that was developed included sections for the data 

and results from the articles, the methodologies used by the authors, and the 
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variations between the studies (shown in Appendix 3). The completed forms were 

then examined and compared. 

2.2 Results 
There were sixteen studies that met the eligibility criteria for the 

systematic review (summarized in Table 2). Twelve of the sixteen studies used 

monthly dengue and climate data
25,29,32,43-52

, while only four
53-56

 used weekly data 

in their final analyses. All of the papers examined some measure of temperature in 

the study areas.  Many also included some measure of El Niño, in the form of sea 

surface temperature or an El Niño index from the National Oceanic and 

Atmospheric Administration (NOAA) or other national office
25,29,43,47,49,53-55,57

.  

 The results are presented according to geographic area to see if there are 

trends within regions of the world. Nine of the included studies took place in the 

Americas; five studies took place in South-East Asia or the Western Pacific, one 

study included sites in both regions. No studies meeting the inclusion criteria 

were found in any of Europe, the Eastern Mediterranean, or Africa. 

2.2.1 Statistical methods 

The authors of the studies included in this review employed a wide variety 

of statistical methods to evaluate the relationship between climate measures and 

dengue.  Some investigators used a log transformation of dengue incidence to 

approximate a normal distribution
25,53-54,56

, while others used the raw case 

counts
31,43,45-47,50,55

, or incidence
29,44,48-49,51

.  

Due to the complex nature of the relationship between climate and dengue, 

a change in climate may result in a change in dengue only after a period of time 
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has passed. In order to determine how long this lag time was, most of the authors 

first performed some test of correlation between climate and dengue at various 

lags. The lag at which the correlation was the greatest was chosen as the optimum 

lag and was then used in the regression. Most authors used the cross correlation 

function
47,51,53-54,56

 or Pearson product-moment correlation
31,49

; others used the 

Spearman’s rank correlation
50

 since as a non-parametric test it is less affected by 

non-normal distributions
58

. 

After determining if the variables were related via correlation, the lagged 

climate variable was typically used in a regression model appropriate to the 

distribution. For transformed dengue incidence (dengue cases standardized by 

population) with a normal distribution, multiple regression
44,47-49,54,56

 or 

autoregressive integrated moving average (ARIMA) models were used
51,53

. For 

case count data, Poisson and negative binomial models were used
43,46,55

. 

Generalized estimating equations (GEE) were used in one instance
50

. Both 

ARIMA models and GEE methods can incorporate autocorrelation 
59-60

. 

Autocorrelation is an intrinsic property of most infectious disease time series, 

since the current disease incidence is related to previous disease incidence. Two 

studies used wavelet analysis to determine if the patterns of climate and dengue 

incidence were similar
25,29

. Wavelet analysis involves breaking down variables 

into two separate oscillating functions of time. The two wavelets are then 

examined for commonalities in phase, also known as coherence
61

. 
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Table 2.  A description of the studies that were included in the systematic review. 

Study 

number 

Study reference Study 

Period 

Time 

resolution 
Correlation 

method 

Regression 

method 

Other 

methods 

1 
Nakhapakorn and 

Tripathi, 200545 

1997-

2001 
Monthly None 

Multiple linear 
regression 

None 

2 
Tipayamongkholgul et 

al., 200943 

1996-

2004 
Monthly None 

Multiple negative 

binomial regression 
None 

3 
Thammapalo et al., 

200544 

1978-

1997 
Monthly None 

Multiple linear 

regression 
None 

4 Cazelles et al. 200529 
1983-

1997 
Monthly None None 

Wavelet 
Analysis 

5 
Johansson et al., 

2009a25 

1983-

2006 
Monthly None None 

Wavelet 

Analysis 

6 Brunkard et al., 200853 
1995-

2005 
Weekly cross correlation ARMAX None 

7 
Hurtado-Diaz et al., 

200754 

1995-

2002 
Weekly cross correlation 

Multiple regression 

with polynomial 
terms 

None 

8 
Johansson et al., 

2009b46 

1986-

2006 
Monthly None Poisson regression None 

9 Rifakis et al., 200547 
1998-

2004 
Monthly cross correlation 

Multiple linear 

regression 
None 

10 
Depradine and Lovell, 

200456 

1995-

2000 
Weekly cross correlation 

Multiple regression 

with polynomial 

terms 

None 

11 Hales et al., 199932 
1973-

1994 
Monthly 

Pearson 

correlation 
None None 

12 Sia Su, 200848 
1996-

2005 
Monthly None 

Multiple linear 
regression 

None 

13 Hii et al., 200955 
2000-

2007 
Weekly None Poisson regression None 

14 Arcari et al., 200749 
1992-

2001 
Monthly 

Pearson 

correlation 

Multiple linear 

regression 
None 

15 Lu et al., 200950 
2001-

2006 
Monthly Spearman’s rank 

Generalized 
estimating equation 

None 

16 Wu et al., 200751 
1988-

2003 
Monthly cross correlation ARIMA None 

2.2.2 Temperature 

 There was a positive association between dengue and temperature 

measures in all of the studies, with the strongest correlations between rising 

temperature and increased dengue at a lag of zero and four months
25,29,32,43-56

.  

None of the studies found an inverse association between temperature and dengue 

according to the correlation coefficients. When the investigators created 

regression models and controlled for other variables, the coefficients for 

temperature were negative in some instances
44-45,49,51

. However, the majority of 
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the results suggest that there is a positive relationship between dengue incidence 

and temperature
43,46-47,50,53-56

. 

The Americas 

The was no lag between temperature and changes in dengue in San 

Andres, Mexico, Veracruz, Mexico, Puerto Rico, and Caracas, Venezuela; all of 

which showed a significant association between temperature and dengue.  

However, most of the studies examining the same geographical areas did not use 

the same statistical techniques and controlled for different covariates, making it 

difficult to compare relationships across studies. For example, in Mexico 

increased temperature was a significant predictor of dengue at lags of 0-1 week at 

three study sites
53-54

 when regression was used in the analysis, but in the study by 

Johansson et al.
25

, wavelet analysis showed that it was not a significant predictor 

of dengue. 

In the other study sites in the western hemisphere (Puerto Rico, Venezuela 

and Barbados), the results were varied.  In Puerto Rico, Johansson et al. found 

that temperature was a significant predictor of dengue incidence using Poisson 

regression
46

, but not when using wavelet analysis
25

. In Venezuela and Barbados, 

temperature was positively associated with dengue incidence at lags of zero 

months and twelve weeks respectively
47,56

.  

South-East Asia and the Western Pacific 

The longest optimum lag times of three to four months were all found in 

studies in Asia, including studies in Thailand, Taiwan, Indonesia, Singapore and 

China. In Singapore, the relationship between temperature and dengue was 
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positive at lags up to four months
55

. In China and Taiwan, the relationship was 

also positive at short lags as shown by correlation analysis
50-51

. However, when 

adjusted for relative humidity, the beta coefficient was negative in Taiwan at a lag 

of two months
51

. There was an inverse relationship in other areas as well, for 

example, in the study by Naphapakorn and Tripathi in Sukhothai, Thailand, 

increased maximum temperature was associated with decreased dengue incidence 

at a lag of one month
45

.  In the various studies that used data from Thailand the 

relationship between temperature and dengue was mostly positive using 

regression
29,43-44

, except in Sukothai and Phetchabum, where it was negative
44-45

. 

In the study by Tipayamongkholgul et al. the authors chose to look at provinces in 

two different geographical regions, some facing the Gulf of Thailand and some in 

the northern mountainous regions of the country
43

. Thammapalo et al. examined 

all 73 Thai provinces
44

. Across the different geographical areas in Thailand that 

were examined, the relationship between temperature and dengue was usually 

positive. However, in other areas the relationship is quite different even within 

one country.   

In Indonesia, Arcari et al. found that temperature was also associated with 

increased and decreased dengue incidence across different provinces according to 

regression analysis
49

. The varied nature of the relationships in Indonesia might be 

due to the fact that Arcari et al. chose to examine provinces that represented 

different geographical and climatic types within the country, as did 

Tipayamongkholgul et al. although with less varied results.  Overall, the 

relationship between dengue and temperature was usually significant and positive, 
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with short lags from zero to four months. The few inverse relationships may be 

statistical artifacts in the data and not reflect the actual relationships. 
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Table 3: The associations between temperature and dengue in each study site, as determined by correlation testing and 

regression. 

Study Location 

Dengue 

measure 

Temperature 

Measure 

Correlation 

coefficient or 

wavelet 

relationship† 

Optimum 

lag 

according 

to 

correlation 

Regression 

Coefficient/other 

relationship 

Optimum 

lag 

according to 

regression* 

1 Sukothai, Thailand Incidence 
Maximum 

temperature 
NA NA - 1 

2 

Petchaburi, Thailand 

   

  + 1 

Prachuap Khirikhan, Thailand 
    

NS NS 
Chumpon, Thailand 

    
NS NS 

Surat Thani, Thailand 
    

NS NS 
Nakhon Sithammarat, Thailand 

    
NS NS 

Chaingmai, Thailand Incidence Mean temperature NA NA + 2 

Lamphun, Thailand 
    

+, + 1, 3 

Lamphang, Thailand 
    

+ 2 

Phrae, Thailand 
    

NS NS 

Nan, Thailand 
    

+ 1 

Phayao, Thailand 
    

NS NS 

Chaingrai, Thailand 
    

+, + 1, 2 

Maehongson, Thailand         + 1 

3 

Nakhon Nayok, Thailand         +   

Chanthaburi, Thailand 
    

+   

Mukdahan, Thailand 
    

+   

Sukothai, Thailand 
    

+   

Krabi, Thailand Incidence 
Maximum 

temperature 
NA NA +   

Yala, Thailand 
    

+   

Narathiwat, Thailand 
    

+   

Prachuap Khiri Khan, Thailand 
    

+   

64 other provinces, Thailand         NS   
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Study Location 

Dengue 

measure 

Temperature 

Measure 

Correlation 

coefficient or 

wavelet 

relationship† 

Optimum 

lag 

according 

to 

correlation 

Regression 

Coefficient/ other 

relationship 

Optimum lag 

according to 

regression* 

4 

Bangkok, Thailand 
 Incidence 

  

Temperature  + NA NA  NA 

other areas of Thailand 

 

  
  

 

  

5 

Thailand     NS NS 
 

NA 

  

 Puerto Rico 
Cases 

  

Temperature NS NS 
 

NA 

  
Mexico 

  NS NS 

6 Matamoros, Mexico Incidence 
Maximum 

temperature 
NA NA + 1 

7 
San Andres, Mexico 

log(cases+1) 
Minimum 

temperature 

+ 0 + 0 

Veracruz, Mexico + 0 + 0 

8 Puerto Rico Cases Mean temperature NA NA +, +, + 0, 1, 2 

9 
Caracas, Venezuela Cases 

Maximum 

temperature 
NA NA + 0 

10 

Barbados Incidence 

Maximum, average, 

minimum 
temperature 

+, +, + 16, 15, 12 + 12 

12 Manila, Philippines Incidence Mean temperature NA NA NS NS 

13 Singapore Cases Mean temperature NA  NA +, +, + 5-8, 9-12, 13-16 

14 

(All in Indonesia) Jakarta 
  

+ 1 + 1 

Aceh 
  

+ 1 - 0 

NTB 
  

NS NS - 0 

East Kalimantan 
  

+ 1 + 0 

Central Sulawesi  Incidence Temperature + 3 - 3 

West Kalimantan, 
  

+ 0 - 0 

Central Java 
  

+ 0 NS NS 

Maluku      NS NS - 0 

15 Guangzhou, China Cases 
Minimum 

temperature +, +, +, + 0, 1, 2, 3 + 1 

16 Kaohsiung, Taiwan Incidence 
Temperature 

deviation 
NA NA - 2 

† + indicates a coefficient greater than 0, - indicates a coefficient less than 0. *Lags are in the same time scale as temperature and dengue cases **NS= not 

significant 
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2.2.3 ENSO 

ENSO is a global process that has local and regional effects on short term 

weather
33

. ENSO activity can be measured by many different indices, each being a 

unique combination of various indicators such as barometric pressure, temperature 

and precipitation.  The seven measures used in the studies reviewed here include 

sea level pressure (SLP), sea surface temperature (SST), the Oceanic Niño Index 

(ONI) the Southern Oscillation Index (SOI), the North Atlantic Oscillation (NAO), 

and the Multivariate ENSO Index (MEI). The SLP and SST are composite 

measures of the barometric pressure above or the temperature at certain ocean 

sites. The ONI is a measurement of three month averages of SST departures from 

the average SST in the Niño 3.4 region
62

. The SOI is made up of the difference in 

mean monthly sea level pressure at two sites
62

. The NAO is based on air pressure 

differences at various sites in the Atlantic Ocean. MEI is an index made up of six 

variables measured over the Pacific Ocean including sea level pressure, air 

temperature, sea surface temperature, cloudiness fraction of the sky and two wind 

components
62

.  Since these indices all measure different aspects of the ENSO 

process, relationships between all of the indices and dengue will not be the same. 

Therefore, the direction of relationship (positive or negative correlation) will not 

always be the same from study to study even if the actual relationship is similar. 

There was not a consistent relationship between the presence or magnitude of El 

Niño and dengue incidence across the studies that examined it
25,29,32,43,47,49,53-54

. 

The lag times for the correlation between El Niño and dengue ranged from zero to 

six months. This range was greater than that of lags between temperature and 

dengue.  
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The Americas 

In Mexico, the optimum lag times for ENSO at the three study sites where 

the relationship was significant were similar, ranging from sixteen to twenty 

weeks
53-54

. At all three study sites, the correlation between SST and dengue 

incidence was positive. Interestingly, the coastal sites of Matamoros and Veracruz 

had longer optimal lag times than the site inland at San Andres. One might expect 

that being closer to the ocean would result in shorter lag times. The only study that 

did not find that ENSO was related to dengue incidence was the study by 

Johansson et al.
25

 It should also be noted that this was the only study that used 

wavelet analysis. In Puerto Rico, there was also a significant relationship between 

ENSO and dengue, but at a longer lag of 6 months
25

.  In Venezuela, the 

relationship was not significant
47

, and the second study in Puerto Rico
46

 and the 

study in Barbados
56

 did not examine this relationship. 

South-East Asia and the Western Pacific 

 In the Pacific Community, the same measure of El Niño was used across 

the study sites and the island nations studied were all in close proximity
32

.  Even 

though one might expect the close proximity to result in similar relationships 

between SOI and dengue the relationship differed between them.  Five of the 

islands had a positive association between dengue and SOI, while two had a 

negative one and results from the other study sites were not significant. This study 

did not account for a lag, assuming there was a lag of zero. Within Indonesia, there 

was similar variation between the 8 provinces that were studied
49

.  Three of the 

provinces had a positive association with SOI, with lags ranging from 0-5 months, 

while 2 provinces had a negative association at a lag of 1 month. In Jakarta, even 
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though there was no significant correlation between SOI and dengue incidence, 

SOI was a significant predictor in the final model selected to describe the 

relationship between climate and dengue.  Five of the eight Indonesian provinces 

that were studied had SOI as a significant predictor of dengue with negative 

coefficients in their final models after adjusting for temperature, rainfall and 

humidity. Both of these study sites are south of the equator. 

The study in Thailand by Tipayamongkholgul et al. studied the correlations 

of both MEI and SLP with dengue
43

. There were negative correlations between 

SLP and positive correlations between MEI and dengue in all of the provinces. The 

difference in the directions of the relationships was probably due to the use of the 

two different ENSO indices. After adjusting for seasonality, mean temperature and 

relative humidity, the sign of the regression coefficient for MEI became non-

significant and even negative in some areas. In the regression models at shorter 

lags of 1 and 2 months and in one province at six months, the regression 

coefficients for MEI were positive in ten provinces and non-significant in three. At 

longer lags of 3 to 5 months the coefficient was negative. This reiterates the 

importance of taking into account the ENSO index used when considering results. 

The relationship can be positive or negative in the same study, depending on the 

measure used.  

2.2.4 Other relationships 

 Some studies looked for a correlation between the ENSO cycle and local 

climate conditions, such as temperature and rainfall
25,32,43

. Tipayamongkholgul 

examined the relationship between MEI as an ENSO indicator and local climate 
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parameters in two groups of provinces in Thailand.  They found that MEI was 

positively associated with temperature but negatively associated with relative 

humidity in tropical coastal areas, and positively associated with temperature in 

mountainous areas but not significantly associated with relative humidity in 

mountainous areas. Johansson et al. 
25

 found that ENSO was associated with local 

temperature and rainfall in Puerto Rico and Thailand.  In both areas, the 

association with temperature was positive, with a lag of five months in Puerto Rico 

and three months in Thailand. Hales et al. found significant positive correlations 

between SOI and local temperature in Fiji, New Caledonia, French Polynesia, 

Tonga and Vanuatu
32

. In the other countries examined in that study, the association 

was weak or negative.
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Table 4: The relationship between various ENSO measures and dengue incidence in each study site. 

Study Location 

ENSO 

measure 

Correlation 

coefficient or wavelet 

relationship  Optimum lag 

Regression 

Coefficient Optimum lag 

2 

Petchaburi, Thailand 

MEI, SLP + (MEI) - (SLP) 1-11 

+, - (MEI) 2, 5 
Prachuap, Thailand +, - (MEI) 2, 3 
Chumpon, Thailand + (MEI) 6 
Surat Thani, Thailand NS NS 
Nakhon Sithammarat, Thailand NS NS 
Chaingmai, Thailand + (MEI) 1 
Lamphun, Thailand + (MEI) 1 
Lamphang, Thailand + (MEI) 1 
Phrae, Thailand +, - (MEI) 2, 3 
Nan, Thailand + (MEI) 1 
Phayao, Thailand + (MEI) 2 
Chaingrai, Thailand + (MEI) 1 
Maehongson, Thailand NS   

4 
Bangkok, Thailand SOI       NA NA 

other areas of Thailand SOI 
 

 + 0 

5 

Thailand 

SST 

NA  

  

NA 

  

NS NS 

Puerto Rico NA NA + 6 

Mexico 
NA NA NS NS 

6 Matamoros, Mexico SST + 18 + 18 

7 
San Andres, Mexico SST 

SST 

+  16 + 16  

Veracruz, Mexico + 20 + 20 

9 Caracas, Venezuela 

NAO, SOI, 

ONI NA NA NS NS 
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Study Location 

ENSO 

measure 

Correlation 

coefficient or wavelet 

relationship  Optimum lag 

Regression 

Coefficient 

Optimum lag 

according to 

regression  

11 

Tokelau 

SOI 

+ 0 

NA NA 

Western Samoa + 0 
Fiji + 0 
American Samoa + 0 
Tonga + 0 
Nauru NS 0 
Vanuatu NS 0 
Wallis NS 0 
French Polynesia NS 0 
New Caledonia NS 0 
Kiribati NS 0 
Niue NS 0 
Tuvalu - 0 
Cook Islands - 0 

14 

Jakarta, Indonesia 

SOI 

NS NS - 0 
Aceh, Indonesia - 1 - 1 
NTB, Indonesia + 5 - 1 
East Kalimantan, Indonesia NS NS NS NS 
Central Sulawesi, Indonesia + 0 - 5 
West Kalimantan, Indonesia NS NS NS NS 
Central Java, Indonesia NS NS NS NS 
Maluku, Indonesia + 1 - 1 

† + indicates a coefficient greater than 0, - indicates a coefficient less than 0. *Lags are in the same time scale as temperature and dengue cases **NS= 

not significant. NA = the authors did not examine this relationship 
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2.3 Discussion 
Sixteen studies met the inclusion criteria for this systematic review. A 

wide variety of methodologies was used by each author and each study examined 

different combinations of covariates. Even though the studies were quite different 

one can try to look for insights into the relationship between temperature changes 

and dengue cases by examining the results as a whole. 

2.3.1 Temporal Scale Issues 

 The majority of the studies focused on intra-annual variations in climate 

and dengue despite the five year plus time scale.  Within years, there were 

typically obvious differences in temperature and dengue incidence coinciding 

with the various seasons throughout the year.  Usually, when temperatures 

increased, the occurrence of dengue in the area increased as well following a short 

lag.   

In order to better understand the effect of the El Niño/La Niña cycle, one 

would have to examine the inter-annual trends as well as trends within years, 

since this cycle usually occurs over two to five years
41

.  El Niño itself influences 

local temperatures so one would expect that where there is a significant 

relationship between temperature and dengue there would also be a relationship 

between El Niño and dengue.  However, El Niño does not only affect 

temperature, it also influences other weather conditions such as precipitation that 

may act along with temperature to influence the behavior and biology of 

mosquitoes as well as dengue patterns and transmission. 



28 
 

2.3.2 Spatial scale issues 

The results of this review showed great variation in the relationship of 

climate and dengue, even across nearby regions, demonstrating that different 

regions will not have the same relationship with changing temperature and El 

Niño conditions. The majority of the studies used weather and dengue 

measurements that had been aggregated over space.  Either multiple temperature 

measurements from different weather stations were averaged together to obtain 

one measurement used for one area, or the data from a single weather station was 

used for a larger area.  The areas were defined according to political boundaries 

and, in the case of nationwide studies, were quite large.  It is reasonable to assume 

that in many cases the geography and weather conditions vary across a country 

and perhaps the aggregated weather data was not an accurate reflection of the 

conditions in all areas. Since the effect of ENSO on climate differs across areas, 

confounding could result when examining the area as a whole, if for example, 

temperatures increased in one location within the country but decreased in 

another.  

In addition, the strength and effects of the relationship between El Nino 

and weather varies across different regions of the world. This might explain the 

nature of the differing associations between El Niño and dengue in the studies.  El 

Niño does not create the same weather conditions from place to place, so while an 

El Niño year may make the environment more favorable for dengue transmission 

in one area, another area might become unable to support mosquitoes or disease 

transmission.  



29 
 

Measurement of ENSO is also done at much larger scales than measuring 

local temperature. Most of the indices are aggregated from conditions across large 

areas of the ocean so they might not be as straight forward to study as 

temperature. The longer lag times for the effect of ENSO might also be due to the 

fact that ENSO influences weather, which then influences dengue, and it takes 

longer for the effects to trickle down. There also must be sufficient population to 

sustain transmission, since mosquitoes pick up the virus from biting humans.  

Given that the typical Aedes mosquito only lives for a short time it seems 

surprising that climate was related to dengue at lags of one month or more. 

However, the studies that used weekly data, which would have been able to detect 

optimal lag times closer to the lifespan of a mosquito, found similar lags to those 

that used monthly data.  It is possible that increased temperature at one time could 

increase dengue transmission by decreasing the incubation time of the virus and 

increasing mosquito biting rates, infecting more people with the virus and later 

infecting more mosquitoes.  If the temperature were to decrease, the next 

generation of mosquitoes would bite less frequently and so transmission would 

decrease again.  Prolonged periods of unusually high temperatures might be 

related to increased rates of dengue infection but it seems unlikely that brief 

periods of high temperatures would result in large, lasting dengue outbreaks.  

However, these long lags are due to the delay between all stages of disease, 

including notification. Even if the duration of the mosquito/dengue cycle is less 

than a month, some time still passes prior to the patient visiting a doctor and being 

diagnosed and reported to the proper authorities. 



30 
 

2.3.3 Measuring independent variables 

 There were multiple ways in which temperature and the El Nino cycle 

were measured in the studies presented here. After examining all of these studies 

in detail there seem to be merits and deficiencies to each measurement. There is 

no definitively best way to measure these determinants. Maximum temperature 

measurements might best reflect the limiting effect of high temperature on the 

behavior of both the dengue virus and mosquitoes, but low temperatures, perhaps 

better reflected by minimum temperature measures, are equally influential 
20, 23-24

.  

The different ways in which ENSO can be measured also reflect the variety of 

climatic conditions associated with the process (beyond temperature alone), and 

in this review, one measurement does not seem to reflect a stronger relationship 

with dengue incidence than the others. 

2.3.4 Conclusions 

It is clear that in most areas there is some statistically significant 

relationship between climate and dengue around the world. This review, however, 

makes it apparent that studying the relationship between climate and dengue at a 

local scale (finer than national) can be beneficial to properly understanding how 

the incidence of this disease might change in the future. The significant results 

across studies show that dengue is highly climate-sensitive across the globe. 

However, the extent of this relationship and any geographical trends had not yet 

been described before this review. The continuing need for small-scale studies is 

due to the inconsistent results across studies. These inconsistencies make it 

difficult to make predictions about the relationships in other areas such as Peru. If 
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predictions about how climate change will affect dengue incidence in an affected 

area are to be made it is still necessary to complete a study specific to that site.  
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Chapter 3: Modeling the effects of sea surface temperature on 

Dengue in Peru 

3.1 Research objectives 
 In order to determine if there was a relationship between dengue and SST 

in Peru for the years 2002-2010, regression models were created for each region 

of the country that reported dengue cases. 

3.2 Methods 

3.2.1 Data collection and sources 

Dengue 

 The case counts used in these analyses were extracted from weekly 

epidemiological bulletins (Boletines Epidemiológicos) that are published by the 

Department of Epidemiology of the Peruvian Ministry of Health in Lima, Peru
63

. 

The Department of Epidemiology runs the epidemiological surveillance program 

for the country via a network of 6,000 notifying units
64

. A notifying unit is 

required to report any suspected dengue case to the intermediate level reporting 

center, it is then reported to the regional Epidemiology Office, who then reports it 

to the Ministry of Health Department of Epidemiology. Cases reported to the 

Ministry of Health by the following Tuesday at two o’clock are then recorded and 

reported in the weekly Epidemiologic Bulletin
65

. Dengue cases are reported as 

confirmed and probable dengue and dengue hemorrhagic fever cases in each 

region of the country according to the World Health Organization Guidelines.
 
 

Probable dengue cases are cases with a history of fever lasting between two and 

seven days and having two of more of the following symptoms: rash, signs of 

haemorrhage, headache, retro-orbital pain, muscle or joint pain.  Confirmed 
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dengue cases are any probable cases that have been confirmed via serology or that 

come from a region where the vector is present and there has been transmission of 

dengue confirmed by a laboratory during the previous fifteen days
66-67

. A third 

type of cases, discounted, is also reported; this is the number of cases that were 

originally diagnosed as dengue but then were identified as some other disease.  

Only dengue cases that were reported to the Ministry of Health were examined in 

this study. Only data from fifteen of twenty five regions was analyzed as the other 

regions did not report any dengue cases during the study period. 

Sea surface temperature (SST) 

Sea surface temperature was chosen to represent the climatic determinants 

of dengue incidence in this study. Sea surface temperature is a measure of the 

ENSO process. This process has a large influence on local climate, not just in 

temperature but also in other climatic factors related to mosquito biology, such as 

precipitation
34, 36-37

. Therefore, SST was chosen to be used since it is one simple, 

easy to measure, determinant that reflects a variety of complex climatic conditions 

related to dengue incidence in Peru.  Monthly sea surface temperature records for 

El Niño Region 1.2 were obtained from the National Oceanic and Atmospheric 

Administration of the United States
68

.  The El Niño 1.2 region lies directly along 

the coast of Peru. The SST records for this region come from satellite and in situ 

data (from ships and buoys) recorded for each 1
o
 latitude and longitude square 

across the El Niño region.  The satellite data and in situ data are combined using 

an algorithm to correct for cloud cover and reflection of sunlight during the day 

that may create bias in the satellite data.  The records across the Niño region 1.2 
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grid are area-averaged over time and space to give one average SST record for the 

month
69

.  

3.2.2 Preparing the data 

Dengue 

Throughout the study period weekly cases were reported according to 

geographical area.  The regions that were reported changed over time, with some 

regions being subdivided and reported separately.  Total dengue case counts for 

the twenty five greater regions of Peru as currently defined by the Peruvian 

government were calculated from the counts from sub-regions reported in the 

bulletins.  For this analysis, only dengue (not DHF) cases were considered and the 

probable and confirmed accumulated cases were combined into one total weekly 

count.  DHF cases were rare and the vast majority of the weeks had zero cases so 

they were not included in the analysis.   

In order to find the incident cases each week the previous week’s 

accumulated cases were subtracted from the current week’s accumulated cases.  

In some cases this created negative incident cases.  The negative cases were due 

to the fact that in the records it was possible for the accumulated cases to decrease 

over time.  This is because of the presence of discounted cases, cases that might 

have originally been recorded as probable but upon receiving the serology results 

were determined not to be actual dengue cases.  Since the bulletins did not denote 

which cases from which weeks were discounted, the total of the appropriate week 

could not simply be corrected.  Instead, when negative case counts arose the 

negative number was added to the previous week’s incident case counts and 

changed the negative week’s count to zero.  If the previous week’s case count was 
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then negative, it was changed to zero and the negative cases were moved to the 

week before that. This process was repeated until the negative count became 

positive.  Linear interpolation was used to fill in the missing weeks, except for the 

first thirteen weeks of the study period, which were left as missing.  

In the systematic review in chapter 2, using monthly instead of weekly 

data did not seem to result in different lag times or results. In order to cut down on 

the noise in this dataset, the weekly counts were aggregated to monthly counts. 

After the negative cases and missing weeks were removed from the series the data 

was combined into four week totals starting with weeks 4-8 of 2002, resulting in 

13 epidemiological months per year. If any weeks in the epidemiological month 

were missing the month was considered a missing data point. 

SST 

The sea surface temperature data were complete and had already been 

cleaned at the source. There were no missing data. 

3.2.3 Descriptive statistics 

Dengue 

Each region was examined over the study period.  First, histograms of the 

case counts were created in order to visualize the distribution of the data. Then 

time series graphs of the case counts were created to see if there were any obvious 

patterns or trends.  In order to clarify the seasonality of annual dengue incidence, 

box plots were created of the monthly cases over all the years.  The 

autocorrelation of the cases in each region, at lags up to 13 months (1 year), was 

also examined to see if autocorrelation was an issue in this data set.  The 
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Portmanteau Q statistic was used to determine if the autocorrelation in each 

region was significant and if so, at what lags
60

.  

SST 

Histograms of SST over the study period were used to visualize the 

distribution of the data.  A time series plot was also created to see how SST varied 

over the study period.  

3.2.4 Building the models 

Finding the optimum lag time 

SST along the Peruvian coast affects the local weather throughout the 

country; in turn those weather conditions affect the life-cycle and behaviour of the 

mosquito and therefore the rate at which it transmits dengue.  Once a person is 

infected the intrinsic incubation period must pass before they develop symptoms 

and seek medical attention.  Although dengue is a reportable disease, it is unlikely 

that incident cases are reported to the Ministry of Health in Lima immediately. 

Some time may pass before the news of new cases reaches the capital and they are 

recorded.  Therefore, it is reasonable to assume that a change in SST might not be 

associated with a simultaneous change in dengue cases but that the shift in cases 

might occur after a lag time.  In order to determine at what lag time SST was most 

correlated with dengue cases, Spearman’s rank test was used to find the 

correlation coefficient and its significance level in each region at each lag from 

zero to six months. From the systematic review in chapter 2, it is apparent that it 

is customary to examine lags in that range.  The optimum lag time was the lag at 

which the correlation coefficient was significant and if more than one lag was 

significant the highest correlation coefficient was chosen. 
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Regression 

After finding the optimum lag time for each region, various regression 

models were created and compared to determine which was the most appropriate 

for the data. First the incidence data were log transformed in order to approximate 

a normal distribution. Then an ARIMA (AutoRegressive Integrated Moving 

Average) model was fit to the data with lagged SST and year as predictor. This 

model was extended to a seasonal ARIMA model in order to account for the 

seasonality of the data. This method accounts for the correlation of the incidence 

in the current month with the incidence in previous months (autocorrelation). As 

an alternative, Poisson regression was performed for each region. Including a 

term to account for seasonality was also considered, both as monthly indicator 

variables and as a sine and cosine function.  A year term was also included in the 

model in order to account for the long term trends in dengue cases.  The outcome 

of the Poisson regression was examined to determine if some other method might 

be appropriate.  One alternative regression method was a negative binomial model 

to account for over-dispersion in the data. The best regression method and 

combination of covariates was chosen by examining Akaike information criterion 

(AIC) and the Bayesian information criterion (BIC) for each model; the lowest 

scores indicated the best fitting model. Using a generalized estimating equation, 

or GEE, is the easiest way to account for autocorrelation in count data, as it 

allows using both a negative binomial distribution and autocorrelation residuals. 

This method is usually used for clustered data or repeated measures over time like 

the data in this study, but a GEE is used typically used to examine the average of 

multiple regions at once.
59

 A GEE for a negative binomial distribution and 
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autocorrelated errors was then employed to see if accounting for the 

autocorrelation of the errors would change the results.   
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Chapter 4: Results 

4.1 Descriptive statistics 

4.1.1 SST 

 In Figure 2 there is a clear annual cycle of SST. It is high at the beginning 

of the year, decreases in the middle of the year and then increases again. There 

was an exceptionally warm annual minimum in 2006 and an exceptionally cold 

minimum the following year and again in 2010. The highest annual maximums 

occurred in 2002, 2006 and 2008 while the lowest maximums occurred in 2004 

and 2005. 

 

Figure 2. Time series of sea surface temperature in El Nino regions 1 and 2 for 

2002-2010. 

 In Figure 3 the distribution of SST during 2002-2010 appears 

approximately normal. 
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Figure 3. Histogram of sea surface temperature in El Nino Region 1 and 2 for 2002-

2010. 

4.1.2 Dengue 

Examination of the yearly plots of monthly dengue cases and the box plots 

of cases by month (Figure 4 - Figure 18) shows that there is a seasonal pattern of 

dengue incidence.  The majority of cases occur in the first six months of the year, 

then there are fewer cases during the middle of the year and in some regions cases 

begin to rise again in month thirteen. The peak dengue months seem to occur later 

in the year in Cajamarca, Pasco and Piura and earliest (sometimes starting to 

increase in month 13 of the previous year) in Amazonas, Junin, Loreto and San 

Martin. The largest numbers of cases occur in the regions of Loreto, Lambayeque, 

and Piura.
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a)  b) 

Figure 4: Incidence of dengue in Amazonas, Peru, 2002-2010 a) Monthly incident cases. b) Box plots of cases by month of year. 

 Figure 5: Incidence of dengue in Ancash, Peru, 2002-2010 a) Monthly incident cases. b) Box plots of cases by month of year. 

a)        b) 
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Figure 6: Incidence of dengue in Cajamarca, Peru, 2002-2010. a) Monthly incident cases. b) Box plot of cases by month of year. 

 Figure 7: Incidence of dengue in Huanuco, Peru, 2002-2010. a) Monthly incident cases. b) Box plots of cases by month of year. 
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Figure 8: Incidence of dengue in Junin, Peru, 2002-2010. a) Monthly incident cases. b) Box plots of cases by month of year. 

 

Figure 9: Incidence of dengue in La Libertad, Peru, 2002-2010. a) Monthly incident cases. b) Box plots of cases by month of year. 
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 Figure 10: Incidence of dengue in Lambayeque, Peru, 2002-2010. a) Monthly incident cases. b) Box plots of cases by month of year. 

 

Figure 11: Incidence of dengue in Lima, Peru, 2002-2010. a) Monthly incident cases. b) Box plots of cases by month of year. 
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Figure 12: Incidence of dengue in Loreto, Peru, 2002-2010. a) Monthly incident cases. b) Box plots of cases by month of year. 

 

Figure 13: Incidence of dengue in Madre de Dios, Peru, 2002-2010. a) Monthly incident cases. b) Box plots of cases by month of year. 
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Figure 14: Incidence of dengue in Pasco, Peru, 2002-2010. a) Monthly incident cases. b) Box plots of cases by month of year. 

Figure 15: Incidence of dengue in Piura, Peru, 2002-2010. a) Monthly incident cases. b) Box plots of cases by month of year. 
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Figure 16: Incidence of dengue in San Martin, Peru, 2002-2010. a) Monthly incident cases. b) Box plots of cases by month of year. 

 

Figure 17: Incidence of dengue in Tumbes, Peru, 2002-2010. a) Monthly incident cases. b) Box plots of cases by month of year. 
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Figure 18: Incidence of dengue in Ucayali, Peru, 2002-2010. a) Monthly incidence cases.  b) Box plots of cases by month of year. 

Month of year 

a)                                                                                                              b) 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

Loreto, Tumbes, Ucayali and Madre de Dios had the greatest incidence of 

dengue per 1000 people. These regions lie along Peru’s eastern border in the 

jungle region (Loreto, Ucayali, and Madre de Dios) and along the northern coastal 

region (Tumbes), as pictured in Appendix 4. The incidence of dengue seems to be 

increasing over time in Madre de Dios and Piura and to a lesser extent in Loreto, 

but seems to be steadier in Ucayali and Tumbes. Among the regions with dengue, 

the incidence is lowest in Ancash, Huanuco, Pasco and Junin. These regions also 

lie near each other in the southwest region of Peru, mostly in the mountains, except 

Ancash, which lies on the coast. Many of the regions saw a noticeable spike in 

cases at the end of 2005 and at the beginning of 2004 and 2009. 

According to the Portmanteau Q statistic there was significant 

autocorrelation at a lag of one month in every region but Cajamarca (Table 5).  In 

some regions, there was significant autocorrelation at longer lags, suggesting that 

longer seasonal or yearly cycles exist.  For example, there was significant 

autocorrelation at 7 and 8 month lags in Ancash and 13 and 14 month lags in 

Madre de Dios, Piura, San Martin and Ucayali.  It is obvious from the time series 

graphs in Figure 4 - Figure 18 that there is a disease cycle that is about one year, or 

13 months in this data set. 

4.2 Models 

The optimal lag times and the corresponding correlation coefficients for 

each region are pictured below (Figure 19). There seems to be a pattern in the 

optimum lag times across the country. The regions along the coast of Peru have 

shorter lag times of zero or one month and the regions farther inland have longer 
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lag times. All of the negative correlations are also at longer lag times and do not 

occur in the regions on the coast, except for Lima. Strangely, Madre de Dios is 

surrounded by regions that have a negative correlation coefficient, and while its 

optimum lag time is five months just like its neighbours, its correlation coefficient 

is positive. 

Table 5. Lags in months at which the autocorrelation of dengue cases was 

significantly different from zero. 

 

The descriptive statistics show that there is a large amount of variation in 

dengue incidence from year to year; therefore, an indicator variable for year was 

included in the model with the reference category being 2002, the first year of the 

study. This is similar to a trend term, but it does not assume that the increase or 

decrease in dengue over the study period is linear. There was also obvious 

seasonality in both the dependent variable and SST, so tests were performed to 

determine if controlling for seasonality improved the model. Seasonality was 

modelled in two ways: by including an indicator variable for season or by 

including sine and cosine terms.  Using an indicator variable for season assigns 

Region Lags at which there was significant autocorrelation 
Amazonas 1 

Ancash 1, 7, 8 
Cajamarca None 
Huanuco 1, 16 
Junin 1, 2 
La Libertad 1 
Lambayeque 1, 24 
Loreto 1, 2 
Madre de Dios 1, 13, 14 
Pasco 1 
Piura 1, 4, 14 
San Martin 1, 14 
Tumbes 1, 2 
Ucayali 1, 13 
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one category as the reference category (in this case month 1 of the year) and the 

coefficients for the other categories can be transformed into risk ratios relative to 

that indicator. In this study the years were made up of thirteen epidemiological 

months, so adding a monthly indicator added 13 terms to the model. Including sine 

and cosine terms added only two terms, resulting in a more parsimonious model. 

 

 

In order to model dengue incidence as influence by SST the disease data 

was first log transformed and an ARIMA model was applied. Unfortunately 

Figure 19: Map of correlation coefficients and optimum lag between 

cases and sea surface temperature for each region of Peru. 
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ARIMA models (and variations of it, including SARIMA) are most appropriate for 

normal data. When an ARIMA model was fitted to the log transformed incidence 

data the residuals were not normally distributed, so the models were considered 

inappropriate for this dataset. Then, Poisson models were fit to the data as they are 

more appropriate for count data, but it was evident that the data was over-

dispersed, so negative binomial models were considered more appropriate. A  GEE 

model was then compared to the negative binomial model in order to examine the 

effect of accounting for the autocorrelation of dengue on the estimated coefficients 

and the results were nearly identical to those obtained using the negative binomial 

model and were still significant (Table 6). Since there was no difference between 

the results of the negative binomial model and the GEE the negative binomial 

model is presented here since it is the simpler of the two because it does not 

account for the correlation structure. 

Table 6. The results of the negative binomial model and the generalized 

estimating equation for sea surface temperature, controlling for inter-annual 

variation in dengue incidence by including an indicator term for year. 

 

Negative  binomial model 

with i.year and lagged SST 

GEE with negative binomial distribution, 

i.year, lagged SST and AR(1) correlation 

structure 

Region IRRSST (95% CI) IRRSST (95% CI) 

Amazonas 0.841 (0.748,0 .945) 0.842 (0.769, 0.922) 
Ancash 1.434 (1.177, 1.747) 1.443 (1.278, 1.630) 

Cajamarca 1.195 (1.032, 1.385) 1.198 (1.086, 1.321) 

Huanuco 1.590 (1.333, 1.896) 1.517 (1.344, 1.712) 

Junin 0.639 (0.547, 0.746) 0.662 (0.582, 0.754) 

La Libertad 2.198 (1.639, 2.946) 2.068 (1.859, 2.301) 

Lambayeque 1.609 (1.325, 1.954) 1.603 (1.459, 1.760) 

Lima did not converge did not converge 

Loreto 0.733 (0.648, 0.828) 0.745 (0.673, 0.826) 

Madre de Dios 1.297 (1.04, 1.618) 1.248 (1.115, 1.396) 

Pasco 1.338 (1.151, 1.555) 1.363 (1.156, 1.606) 

Piura 1.490 (1.297, 1.712) 1.489 (1.349, 1.643) 

San Martin 1.373 (1.222, 1.543) 1.372 (1.254, 1.503) 

Tumbes 1.226 (1.087, 1.382) 1.285 (1.148, 1.439) 

Ucayali 0.689 (0.601, 0.790) 0.702 (0.636, 0.775) 
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When the negative binomial models were examined, the AIC did not differ 

between the models that accounted for seasonality as monthly indicator terms and 

those that accounted for it by using sine and cosine terms, but the BIC was lower 

when sine and cosine were used. The AIC and BIC were lowest (indicating the 

best fitting model) for the negative binomial model for each region that did not 

account for seasonality, as seen in  Table 7. The best model for each region 

included SST at the optimum lag and an indicator term for year as follows: 

                                 

                                               

    

      

      

The coefficients for SST from each region’s best model are shown in Table 8. The 

accompanying incidence rate ratios (IRRs) show the estimated rate ratios, or 

expected percentage change in dengue, for an increase of 1
o
C in SST at the 

optimum lag. The magnitude of the expected change varies between regions. 

In Junin the incidence rate of dengue would be expected to decrease by a 

factor of .64 if SST increased by 1
o
C.  On the other extreme, the incidence rate of 

dengue in La Libertad would be expected to be 2.2 times greater after a 1
o
C 

increase in SST. In regions where incidence was expected to decrease, the 

percentage decreases were between 37 and 15%. The range of factors of expected 

increases was much wider, between 19.5% and about 120%. The model for Lima 

did not converge; this might be due to the large amount of variation in the data – 
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there were many weeks when zero cases were reported and a small number of 

weeks with a high number of cases.  

 The coefficients for the year indicators relative to 2002 are graphed by 

region in Appendix 5. After adjusting for sea surface temperature, dengue 

incidence decreased in 2003 relative to 2002 in the majority of provinces, but 

increased in La Libertad, Lambayeque, San Martin, Tumbes, Madre de Dios and 

Junin. In 2004 dengue incidence increased from 2003 in all of the regions. For the 

most part there were increases again in 2005 and then the incidence decreased in 

2006. Dengue incidence increased again in 2007 before falling in 2008 and rising 

again after. All of the regions follow a similar general pattern with regards to their 

coefficients for year. 

4.3 Residual analysis 
If the models are well fitted to the data there should not be patterns or 

remaining autocorrelation in the residuals. In order to evaluate the autocorrelation, 

the residuals were graphed against time, the covariates in the model, and the 

outcome and the Q statistics of the residual series were examined. It appeared that 

there were patterns present in the residuals. Residuals around the same times 

appeared clustered when they should have been random. There was also significant 

autocorrelation in the residuals in some regions, (Table 9), meaning that the 

assumption that the observations are independent over the study period does not 

hold in all of the regions. The long lag time at which there is significant 

autocorrelation suggests that there might be multiyear cycles involved in dengue 

incidence that have not been accounted for in this analysis. 
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 Table 7. The AIC/BIC for each negative binomial model. The lowest scores indicate the best fitting model.*

 

Region 

Optimum 

lag time 

NB model with 

i.year, sine, cos, 

with SST 

NB model with  

i.year, sin, cos, 

without SST 

NB model with 

i.month, i.year, 

with SST 

NB model 

without 

seasonality, 

with i.year, 

with SST 

NB model with 

i.month, with 

i.year, without 

SST 

Amazonas 6 7.88/-344.19 7.87/-348.91 7.94/-296.56 7.87/-353.77 7.94/-301.23 

Ancash 1 3.08/-396.52 3.14/-402.33 3.0/-358.9 3.09/-406.13 3.08/-361.09 

Cajamarca 1 8.37/-344.76 8.37/-349.37 8.35/-298.28 8.42/-353.48 8.33/-302.95 

Huanuco 0 6.85/-356.62 6.86/-361.67 6.97/-308.64 6.99/-364.75 6.99/-313.58 

Junin 4 6.47/-352.44 6.46/-357.66 6.50/-306.84 6.63/-363.08 6.52/-312.01 

La Libertad 1 4.75/-390.08 4.74/-394.55 did not converge 4.72/-399.93 4.73/-350.38 

Lambayeque 0 7.6/-354.69 7.58/-359.36 7.61/-308.29 7.62/-363.78 7.59/-313.03 

Lima 5 did not converge 3.53/-371.94 

Loreto 5 12.03/-339.7 12.01/-344.43 12.12/-292.61 12.03/-349.14 12.11/-297.33 

Madre de Dios 0 5.44/-376.38 5.43/-381.32 5.47/-329.58 5.49/-386.85 5.45/-334.34 

Pasco 2 2.1/-404.63 2.09/-411.55 2.16/-349.92 2.07/-415.04 2.14/-355.33 

Piura 1 9.81/-345.14 9.17/-349.85 9.21/-299.78 9.23/-354.59 9.2/-304.34 

San Martin 0 7.62/-346.41 7.60/-351.11 7.70/-299.81 7.66/-356.2 7.68/-304.47 

Tumbes 1 7.91/-347.38 7.92/-352.01 7.93/-301.99 7.88/-356.62 7.91/-306.73 

Ucayali 5 7.94/-349.63 7.92/-354.38 7.93/-302.80 7.98/-359.06 7.93/-307.15 

*i.year and i.month refer to the indicator variables representing each month and year respectively. Sine and cos refer to 

the sine and cosine terms representing seasonality. 
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Table 8. The results from the multivariate negative binomial regression of 

seas sea surface temperature on the incidence of dengue by region of Peru, 

controlling for inter-year variability from 2002-2010. 

Region βSST S.E. (βSST) 95% CI (βSST) IRR(SST) 

Amazonas -0.174 0.060 -0.291, -0.056 0.841 

Ancash 0.360 0.101 .163, .558 1.434 

Cajamarca 0.178 0.075 .0311,.326 1.195 

Huanuco 0.464 0.090 .288, .640 1.590 

Junin -0.448 0.079 -0.603, -0.293 0.639 

La Libertad 0.787 0.150 .494, 1.081 2.198 

Lambayeque 0.476 0.099 .281, .670 1.609 

Lima did not converge 

Loreto -0.311 0.063 -0.434, -0.189 0.733 

Madre de Dios 0.260 0.113 .039, .481 1.297 

Pasco 0.291 0.077 .141, .441 1.338 

Piura 0.399 0.071 .26, .538 1.49 

San Martin 0.317 0.059 .200, .433 1.373 

Tumbes 0.176 0.064 .050, .301 1.226 

Ucayali -0.372 0.070 -0.509, -0.236 0.689 

 

Table 9. Lags in months at which the autocorrelation of the residuals from 

the negative binomial model were significantly different from zero. 

Region 

Lags at which there was significant 

autocorrelation 

Amazonas None 

Ancash 36 

Cajamarca None 

Huanuco 1 

Junin 1 

La Libertad 28 

Lambayeque None 

Lima NA 

Loreto 28 

Madre de Dios None 

Pasco 10, 12 

Piura None 

San Martin 3, 5 

Tumbes 26 

Ucayali 3 
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Chapter 5: Discussion 

5.1 What do these findings mean? 
 This study appears to be the first to address the relationship between 

climate and dengue in Peru through regression. The results of this study indicate 

that there is a significant relationship between lagged SST and dengue across 

Peru. These findings agree with the findings of other, similar studies completed 

around the world in that the relationship is not consistently positive or negative 

even within countries. The scale of this study is similar to that of the studies 

completed in Indonesia
49

 and Thailand
43-44

 in that it examined the relationship 

between ENSO and dengue in smaller regions across a country. In these other 

studies, it was evident that the optimum lag time for both temperature and ENSO 

varied on a smaller scale within Thailand and Indonesia
43-44,49

. This relationship 

also varies between regions with regard to the direction of the relationship. The 

results in both studies are similar, with the optimum lag time for the relationship 

between ENSO (as measured by SST) and dengue cases varying between 0 and 6 

months and the correlation being positive in some areas and negative in others. 

The variation in the relationship between climate and dengue within Peru, 

as well as Indonesia and Thailand, may be related to the differing environments 

across geographic regions within the country. The effects of temperature and 

ENSO cycles may interact with the ecological characteristics of an area on a 

surprisingly small scale. This is probably related to the interaction of climatic 

fluctuations with the existing environmental conditions across regions. For 

example, if there is an increase in standing water that can serve as a habitat for 
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mosquito larva, decreased precipitation levels due to ENSO can dry up the water 

and make the habitat unsuitable. If there is flowing water present lower 

precipitation levels might dry up the source enough to create standing water, 

creating more places for mosquitoes to breed. The complex relationship of 

multiple climate factors that are related to ENSO, (including, precipitation and 

temperature) might explain the great variation in results.  

Understanding the correlation between this disease and variables like SST 

may help in predicting how dengue incidence might change with fluctuating 

climate in the future
35

. Regions with endemic dengue, like, Peru will be 

especially susceptible to future shifts in climate, as it and other countries at 

temperate latitudes are predicted to bear the brunt of the effects of global 

warming
70

. In the future, if global warming continues as anticipated, the results 

of this analysis suggest that dengue will be impacted in Peru; in most areas, the 

incidence will increase, but in some areas will decrease. If climate change 

continues, dengue may spread to the southern regions of Peru as new geographic 

areas become suitable for transmission. Overall, public health programs will 

have to adjust to changing patterns in this potentially fatal disease. The 95% 

confidence intervals for the incidence rate ratios for SST in each province cover 

a range of changes in dengue incidence that are of interest to public health 

officials. The intervals include an increase of only a few percentage points in 

Cajamarca and Madre de Dios, but the upper limits include an increase in risk of 

over a third. In areas where health resources are scarce, an increase in dengue 

cases of even a small percentage may have a large impact on health services. 
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Models that can incorporate climate variables like SST may be used to predict 

outbreaks and allow local governments to prepare vector control measures or to 

fortify public health centers that may have an influx of dengue patients. 

 Although the direction of the relationship and the lag time between SST 

and dengue varies across Peru, the relationship was significant in every region 

except Lima, where the regression model did not converge. The correlation 

coefficient was generally highest in the northern regions and lower in the more 

southern areas of Peru. The lag times were also shorter on the coast and longer 

inland. Considering that Peru is home to a variety of ecosystems, it is surprising 

that the results are so consistently significant across all of them. There are some 

trends across Peru that may help to guide further research about how and why this 

relationship varies.  

5.2 Limitations 

Data 

Using an administrative data set poses many challenges for analysis. The 

quality of dengue surveillance data may vary across Peru and it is difficult to 

judge the completeness of this type of dataset. However, the risk of this issue 

producing bias towards significance in the results is low since it is unlikely that 

accuracy of reporting is related to SST
31

. Also, the reporting of dengue incidence 

might not be timely, and there is also no way of knowing when the cases that 

were reported actually occurred. If a case is reported after the deadline for that 

week’s epidemiological bulletin it will not be reported until the next week. There 

is also the possibility that the clinics that diagnose the patients do not report each 
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individual case to the Ministry of Health immediately. A lag was incorporated 

into the analysis to help account the time lapse between onset of a dengue case 

and reporting, but this lapse is not necessarily constant over time even within the 

same region. Using the date of dengue onset rather than the date of reporting 

might improve the results of this analysis by indicating a more exact lag time, but 

surveillance data does not usually include this information and determining the 

date of onset for each reported case would be resource intensive and difficult. 

Dengue is typically an underreported disease
2
. This might be due to the 

fact that people who are infected with dengue may not even visit a doctor since 

symptoms can be mild and flu-like. However, it is unlikely that rates of 

underreporting are related to climate or time, therefore the risk of bias is minimal. 

In any case, if a patient presents at a hospital or clinic there is no guarantee that 

the case will be accurately diagnosed since serological testing for dengue is not 

the norm in many places in Peru. So some patients may be misdiagnosed, but 

there are also many people who never see a doctor at all when they are infected 

with dengue, so cases that are incorrectly identified probably do not significantly 

affect the results. It was not possible to determine if the cases reported by each 

region originated in that region, but, it is unlikely that the number of imported 

cases was so large that it would have a dramatic impact on the results of the 

regression.  

Methods 

Various regression methods were used to model the data.  The nature of 

the data made finding an appropriate model difficult.  There are many different 
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methods that are used for analyzing time series data. The major issue in this 

analysis was that the dengue dataset contained a large number of zeros. First 

adding .001 to the incidence each week and taking the natural log of the incidence 

was attempted in order to obtain a normal distribution.  Because of the large 

number of weeks with zero cases the histogram of the data was still not normal 

even after this transformation. For this same reason the mean number of monthly 

cases was quite low and the count data could not be approximated by a normal 

distribution.   

The incidence of an infectious disease during one period is highly related 

to the incidence in previous time periods, resulting in autocorrelation that needs to 

be accounted for in the analysis. Not accounting for this issue should not affect 

the magnitude of the estimated regression coefficients, but the estimated standard 

errors will be biased, leading to incorrect conclusions that SST is a significant 

predictor of dengue cases
31,71

. In this preliminary analysis the final negative 

binomial model that was reported did not account for the autocorrelation of the 

disease series. In this case, the results were the same in the GEE and the simpler 

negative binomial model, suggesting that autocorrelation does not meaningfully 

affect estimates of the relationship between SST and dengue or their significance. 

5.3 Future Research 
 The models used in this study can be improved upon in various ways. 

Most studies that examine the relationship between ENSO as measured by SST or 

other indices also included local scale weather variables such as temperature, 

precipitation, relative humidity and vapor pressure. Additional weather variables 
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were not included in the models here because local weather is highly correlated 

with SST and therefore adding these variables might result in collinearity. 

However, investigating local temperatures and precipitation could lead to better 

predictive models and more information about the climatological processes that 

affect mosquitoes and dengue. It might also be useful to examine interactions 

between local conditions, both climatic and environmental, with SST. For 

example, local land use and land cover might be one of the factors that account 

for the differences that were seen between regions. Obtaining detailed land cover 

data such as annual measures might be useful over a longer study period (since 

land cover data is unlikely to change drastically from year to year).  

 In coming years, it is unlikely that the climatic conditions are the only 

thing that will change in Peru and other places affected by dengue. Dengue 

outbreaks are not caused by climate alone. There must be infected humans present 

in order to infect new mosquitoes, the environment must remain appropriate for 

the virus itself to survive and replicate, and susceptible people must be exposed to 

mosquitoes.
72

 In addition, mosquito control programs have eradicated dengue in 

the past and it is likely that new programs could affect the number of mosquitoes 

present in Peru as well as people’s exposure to them. There is a myriad of other 

factors that will determine dengue incidence in Peru including not just 

environmental factors but demographics as well
73

. Population growth could result 

in higher population density throughout Peru, making it easier for dengue 

transmission to be maintained. An influx of people to cities will not only increase 

population density but may result in new breeding grounds for mosquitoes, 
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especially Aedes aegypti, which prefer urban areas
73

. Other researchers have also 

theorized that the multi-annual cycle that dengue incidence seems to follow might 

also be due to factors such as the temporary immunity to one strain of dengue 

induced by infection by another
74

. It will be important to consider incorporating 

these and other covariates into the analysis of SST and dengue as it may help to 

improve the ability of models to predict dengue outbreaks and focus control 

efforts at vulnerable areas and populations.  

 It is clear from the literature review and this analysis that the relationship 

between climate and dengue is best described on a less- than- global scale since 

the effects of ENSO and climate change vary greatly between regions. 

Understanding the relationships between ENSO, climate and dengue on a small 

scale, within countries if possible, might be a valuable part of dengue prevention 

programs in the future. The models presented here could be developed into 

predictive models that could provide insight to the future of dengue under various 

climate change scenarios as well as being useful as early warning systems for 

public health officials. Considering the significant relationships that appear to 

exist in other regions, similar models might be effective around the globe, which 

could prove useful as an increasing proportion of the global population will be at 

risk of dengue infection as climate changes in the future. 
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Appendix 1 
Keywords and subject headings for searched databases. 

Searches were based on the Boolean function: [‘exposure1’ OR’ exposure2’ OR 

‘exposure3’…] AND [‘outcome1’ OR ‘outcome2’ OR ‘outcome3’…] 

Database Exposure Outcome 
Keywords for Medline, Global 
Health, EMBASE, Web of Science 
and BIOSIS 

Air temperature Bouquet fever 

Atmosphere Break-bone fever 

Climate Break bone fever 

Climate change Dandy fever 

El Niño Date fever  

El Niño-Southern 
Oscillation 

Dengue 

ENSO Dengue Fieber  

Environmental 
temperature 

Dengue hemorrhagic fever 

Global Climate Dengue shock syndrome 

Global warming Dengue virus 

Greenhouse DHF 

Greenhouse effect Duengero 

Heat* Flaviviridae 

Sea surface temperature Flavivirus 

SOI Giraffe fever 

Soil temperature Petechial fever 

Southern Oscillation Polka fever 

Southern Oscillation Index   

Temperature   

warm*   

Water temperature   

Weather   

Weather patterns   

Medline (via Ovid) MeSH terms: MeSH terms: 

Atmosphere Dengue 

Climate Dengue Hemorrhagic Fever 

Climate change Dengue Virus 

Global Warming Flavivirus 

Greenhouse effect   

Heating   

Hot temperature   

Temperature   

Weather   
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Global Health (via Ovid) 1910-May 
2010 

Subject headings: Subject headings: 

Air temperature Dengue 

Atmosphere Dengue 1 virus 

Climate Dengue 2 virus 

Climatic change Dengue 3 virus 

Climatic factors Dengue 4 virus 

El Niño-Southern 
Oscillation Dengue hemorrhagic fever 

Environmental 
temperature Dengue shock syndrome 

Global warming Flavivirus 

Greenhouse effect   

Heat   

Heating    

Soil temperature   

Temperature   

Water temperature   

Weather   

Weather patterns   
EMBASE Classic+EMBASE (via Ovid) 
1947-2010 Week 26 

Subject headings: Subject headings: 

Air temperature Dengue 

Atmosphere Dengue virus 

Climate Flavivirus 

Climate change   

El Niño   
Environmental 
temperature   

Global Climate   

Greenhouse effect   

Heat   

Heating   

Sea surface temperature   

Soil temperature   

Temperature   

Warming    

Water temperature   

Weather   

Web of Science with Conference 
Proceedings 

  

Keywords only Keywords only 
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BIOSIS Previews (via Ovid) 1969 to 
2010 Week 30 Subject headings: 

 
Subject headings: 

Temperature – General 
measurements and 
methods Flaviviridae 

External effects: 
temperature as a primary 
variable   

Environmental sciences   

Ecology: environmental 
biology-bioclimatology   

Climatology   

PAHO   Dengue 

LILACS 

Weather 

Dengue 

Temperature 

El Niño 

  

Climate change and 
synonyms, and specific 
relevant climatic processes Dengue and synonyms 
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Appendix 2 

 

 

 

 

 

Potentially relevant studies 

identified and screened for 

retrieval (n=5032) 

Potentially appropriate studies to 

be included in the final analysis 

(n=66) 

Studies included in final 

review (n=17) 

Studies excluded after reading 

title and abstract (n=4184+782) 

Studies excluded after full text 

review (n=49) 
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 Appendix 3 
Questionnaire used for data extraction from the articles included in the systematic 

review. 

Study reference   

Population   

Time period   

Source of dengue data   

Source of weather data   

Time resolution of data 

(monthly, weekly etc.)   

Spatial resolution of data 

(by city, province, region)   

Exposure measure 

(temperature)   

Outcome measure 

(disease)   

Type of correlation analysis   

Was there significant 

correlation? 

What lags did the authors 

consider? 

 Type of regression 

performed   

Is there a statistically 

significant association 

between temperature and 

dengue according to 

regression? 

 

What is the lag time? 
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Is there a statistically 

significant association 

between ENSO and dengue 

according to correlation? 

What lags did the authors 

consider? 

 What is the lag? 

 Is there a significant 

association between ENSO 

and dengue according to 

regression? 

 What is the lag? 

 Were other covariates 

considered? What are 

they? Are there significant 

relationships between the 

covariates and dengue? 

 Was seasonality controlled 

for? How? 

 

 Was autocorrelation 

controlled for? How? 
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Appendix 4 
Labeled regions of Peru according to administrative boundaries 
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Appendix 5 
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