
i 
 
 

 

 

 

Computational Agent-Based Modeling of  

Surgical Vocal Fold Injury and Repair 

 

 

Aman Garg, B.Eng. 

Department of Biomedical Engineering  

McGill University, Montréal 

 

 

August 2018 

A thesis submitted to McGill University in partial fulfilment of the requirements  

of the degree of Master of Engineering 

 

 

© Aman Garg, 2018 

  



ii 
 
 

 

 ACKNOWLEDGEMENTS  

I would like to graciously thank my co-authors Jeannie A. C. Karwowski, Michael Powell and 

Prof. Jon T. Sakata for their continuous assistance and support in conducting this research work. I 

would like to acknowledge my laboratory colleagues Patrick Coburn, Grace Yu and Caroline 

Shung for their intermittent assistance and contributions.  

I would like to recognize the advice and help provided by my supervisors Dr. Nicole Li-

Jessen and Prof. Luc Mongeau throughout the duration of my Master's study. Their patience, 

unwavering support and expert guidance were of immense value and comfort without which this 

work would undoubtedly not have been possible. I would also like to acknowledge the research 

operating grant from the National Institute of Deafness and other Communication Disorder of the 

National Institutes of Health under award number R03DC012112 (PI: Li-Jessen) and 

R01DC005788 (PI: Mongeau) for conducting the work presented in this thesis.  

 I would like to thank Dr. Joseph Jaja and Nuttiiya Seekhao for their collaboration in the 

adaptation of the vocal fold agent-based model to rodent specification. Special thanks to our lab’s 

Research Assistant, Samson Yuen for helping at various stages during my thesis by solving issues 

during model calibration. Finally, I would like to thank my family for their unconditional support, 

guidance and tolerance. 

  



iii 
 
 

 

PREFACE 

In accordance with the thesis preparation and submission guidelines, this thesis has been written 

in the form of a compilation of two original research articles, presented in Chapters 2 and 3. Each 

research article consists of sections as per the journal guidelines. I am the first author of both 

articles. In the capacity of a master’s student, my contributions towards these manuscripts included 

literature review, experiment design, data analysis and interpretation and manuscript preparation. 

The contributions of co-authors are included in each manuscript. 

  



iv 
 
 

 

ABSTRACT 

Voice disorders affect about one in ten adults at some point in their lifetime. Vocal fold scarring 

can result from surgical excision of benign and malignant vocal fold lesions. The elicited 

inflammation and healing response is complex and dynamic. It involves immune and repair cells 

(e.g., neutrophils, macrophages, fibroblasts) and molecules (e.g., inflammatory cytokines, 

damage-associated molecular pattern molecules) to locate damaged tissue, eliminate the necrotic 

cells and debris, and produce extracellular matrix substances for eventual tissue repair. A 

mechanistic understanding of the vocal fold injury and repair process will help in identifying the 

effective treatments for iatrogenic vocal fold scarring from surgery. 

The overall goal of this thesis was to develop computational agent-based models (ABM) 

that could numerically simulate the dynamics of major cellular and molecular components 

involved in surgical vocal fold injury and repair. The first research goal was to phenotype and 

enumerate immune and repair cells in surgically injured rat vocal folds up to 4 weeks after surgical 

injury. Viable cells were isolated from harvested vocal folds and were stained for cell surface 

markers specific to neutrophils, macrophages, endothelial cells and fibroblasts. Multi-parametric 

flow cytometry was then conducted to count the number of cells for each cell population in the 

vocal fold samples.  

The second research goal was to calibrate and validate existing agent-based models of 

vocal fold injury and repair (VF-ABM) with the flow cytometry data. Global sensitive analysis 

using Random Forests were first employed to identify the most influential model parameters on 

the outputs of cell numbers. The Robust Parameter Estimation (ROPE) algorithm from the package 
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of Statistical Parameter Optimization Tool for Python (SPOTPY) was then used to calibrate VF-

ABM for early time points from Day 1 to Day 5 of the flow cytometry data. Subsequently, VF-

ABM were run 100 times to generate 95% confidence intervals for model evaluation. VF-ABM 

predicted outputs were considered accurate if the empirical data points were within the 95% 

confidence intervals of simulated outputs. Cell population quantities were calculated for Day 7, 

Week 2 and Week 4 respectively against the empirical flow cytometry data. Predicted cell 

populations reached 100% accuracy for Day 7. Although VF-ABM generated qualitative trends of 

cell population comparable to those of Weeks 2 and 4, the corresponding empirical data values 

fell outside of the 95% confidence intervals.  

Results from the flow cytometry study provided quantitative and time-dependent data on 

major cell populations involved in surgical vocal fold injury. Results from the model verification 

informed the area of improvements for the next generation of VF-ABM. This thesis contributes to 

the development of a computational tool that would better inform clinicians in prescribing 

treatments for patients with voice disorders. 

 

 

  



vi 
 
 

 

ABRÉGÉ 

Les problèmes de la voix affectent environ un adulte sur dix à un moment ou à un autre de leur 

vie. La cicatrisation des replis vocaux peut résulter de l'excision chirurgicale des lésions d bénignes 

et malignes. Des cellules (neutrophiles, macrophages, fibroblastes) et molécules (cytokines 

inflammatoires, molécules associées aux dégâts) immunitaires et réparatrices participent à la 

réponse inflammatoire et cicatrisante. Ce processus implique la localisation du tissu endommagé, 

l’élimination de cellules nécrotiques et de débris, et la production de substances de la matrice 

extracellulaire pour la réparation éventuelle du tissu. Une meilleure compréhension du processus 

de réparation et de blessure des cordes vocales aidera à identifier les traitements efficaces pour la 

cicatrisation des plis vocaux iatrogènes suite aux complications chirurgicales. 

L'objectif principal de cette thèse était de développer des modèles numériques multi-agents 

(SMA) pour des simulations dynamiques du rôle des principaux composants cellulaires et 

moléculaires impliqués dans la blessure et la réparation des replis vocaux. Le premier objectif de 

lu présente était de déterminer les phénotypes des cellules immunitaires en utilisant la cytométrie 

en flux dans la réparation des cordes vocales de rat. Des cellules vivantes ont été récoltées de 

cordes vocales et ont été colorées avec des marqueurs de surface cellulaire spécifiques aux 

neutrophiles, macrophages, cellules endothéliales, et fibroblastes. La cytométrie de flux multi-

paramétrique a ensuite été utilisée pour compter le nombre de chaque population de cellule. 

Le deuxième objectif était de calibrer et valider un modèle informatique basé sur un SMA 

de la blessure aux replis vocaux et leur réparation utilisant les données de lu cytométrie de flux. 

Une analyse de sensibilité globale busée sur les méthode « Random Forests » a été utilisé pour 
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identifier les paramètres du modèle les plus influents sur les populations cellulaires. L'algorithme 

ROPE (Robust Parameter Estimation) de l'outil d'optimisation statistique des paramètres pour 

Python (SPOTPY) a ensuite été utilisé pour calibrer le VF-ABM pour la période initiale allant du 

Jour 1 au Jour 5 des données de cytométrie de flux. Par la suite, VF-ABM ont été exécutés 100 

fois pour générer des intervalles de confiance à 95% pour l'évaluation du modèle. Les permis ont 

été évaluées avec des prédiction intervalles de confiance de 95% par comparaisons avec les 

donnesse expérimentales de prédictions a été évaluée pour les semaines 1, 2, et 4 respectivement 

par rapport aux données empiriques de cytométrie de flux. Bien que les tendances qualitatives de 

la population cellulaire prédites sout comparables à celles des données empiriques pour les 

semaines 2 et 4, les valeurs des données empiriques déposent les intervalles de confiance. 

Les résultats de l'étude de cytométrie de flux ont fourni des données quantitatives et 

dépendantes du temps sur les principales populations de cellules impliquées dans la lésion du re 

pli vocal chirurgical. Les résultats de la vérification du modèle suggèrent des améliorations 

possibles pour la prochaine génération de VF-ABM. Cette thèse constitue une étape essentielles 

dans le développement d'un outil de calcul qui permettrait de mieux informer les cliniciens dans 

la prescription de traitements individualises pour les patients atteints de troubles de la voix. 
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CHAPTER 1: INTRODUCTION 

1.1 Clinical Motivation 

Approximately 17.9 million adults (7.6%) in the United States experience voice disorders at some 

points in their lifetime [1-3]. Voice disorders involve impairments with varying pitch, quality and 

loudness in daily conversation as well as occupational voice use such as in voice performance and 

teaching. Among all voice disorders, vocal fold scarring is considered as the most perplexing 

clinical problem because current treatment options to fully repair the fibrotic tissue are limited [4-

6]. Vocal fold scars can be developed within the lamina propria after surgical removal of benign 

or malignant vocal fold lesions. The scarred tissue alters the microarchitecture and vibratory 

functions of the vocal folds and results in a debilitating condition of the human voice, i.e., 

dysphonia [4-10]. Iatrogenic vocal fold scarring triggers a cascade of cellular and molecular events 

associated with inflammation and wound repair, whereas the degree of response varies across 

patients depending on a myriad of personal and lifestyle factors. Computer simulation has become 

an appealing approach to help integrate and analyze massive patient data for personalized medical 

treatments. The overall goal of this thesis was to improve the accuracy of existing vocal fold agent-

based models (VF-ABM) in simulating cellular and molecular activities associated with surgical 

vocal fold injury and repair. Two experimental studies were conducted. For the first study, the 

research goal was to identify and phenotype immune and repair cells in surgically injured rat vocal 

folds up to 4 weeks after surgical injury. In the second study, the biological representation of VF-

ABM was optimized through sensitivity analysis, model calibration and verification using flow 

cytometry data from the first study. The ultimate goal is to further develop ABM into a computer 
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software that could pre-operatively inform clinicians about an individual’s risk of iatrogenic 

scarring from surgery.  

1.2 Vocal Folds 

The vocal folds are located within the larynx. Human vocal folds are comprised of three major 

layers namely the epithelium, the lamina propria (LP), and the vocalis muscle [11, 12]. The lamina 

propria of vocal folds can be further anatomically categorized into three layers from superficial to 

deep based on their histological compositions. These three layers are the superficial lamina propria 

(SLP), the intermediate lamina propria (ILP), and the deep lamina propria (DLP). The superficial 

layer (SLP) is characterized by loose tissue with a small amount of collagen or elastin fibers, while 

the intermediate layer (ILP) and the deep layer (DLP) have a high concentration of elastin fiber 

and collagen fibers, respectively [12, 13]. This unique layered microstructure allows human vocal 

folds to withstand high-frequency mechanical deformations during human phonation [14]. 

Distinctive cell populations have been identified across the three layers of LP. Most of the 

vocal fold cellularity data have been acquired using rodent models because of the common tri-

layered structure of LP between rodents and human [15-26]. The major vocal fold cell populations 

include fibroblasts, myofibroblasts, neutrophils and macrophages. Fibroblasts are reported to be 

the most abundant cell type in uninjured and injured rat vocal folds. In uninjured vocal folds, the 

DLP contains the highest concentration of fibroblasts [27, 28]. Fibroblasts were found to be 

distributed uniformly throughout the LP after injury [27, 28]. Macrophages and myofibroblasts 

were found to be predominantly localized in the SLP of injured and uninjured vocal folds [27-30]. 

Compared to other cells, blood-circulatory neutrophils were found in low concentration in 
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uninjured LP, but were evidently recruited after surgical vocal fold injury in rats [31]. Time-

varying, quantitative data of these cell populations related to vocal fold scarring, however, do not 

exist in literature and thus research on this topic would be timely and warranted. 

1.3 Need for Computational Biology  

Complex and dynamic interactions between cells, signaling molecules and extracellular matrix are 

triggered by surgery. The resulting outcomes of tissue repair are often unpredictable and largely 

depend on many health factors such as lesion type, severity and patients’ health status [4, 6, 10]. 

At present, prophylactic or adjunctive therapeutics are available for the treatment of iatrogenic 

vocal fold scarring but their treatment effects are notably patient-dependent [32-37]. Some 

examples of such treatments include behavioral voice therapies, growth factor therapies, cell 

therapies and use of injectable augmentation substances [38-40]. As such, a comprehensive 

understanding of the time-varying inflammation and healing mechanism associated with surgical 

vocal fold injury and scarring is necessary to optimize the preventive and therapeutic care of vocal 

fold injuries. 

 Systems biology approaches have been applied to help understand disease complexity such 

as traumatic brain injury, sepsis, diabetes and acute liver failure [41-47]. Owing to a large number 

of interacting components in biological systems, the conventional experimental approach of 

studying one isolated cell or molecule is not sufficient to understand the complexity of biological 

systems. Conventional experimental approaches have generated much useful knowledge and 

information about individual components and functions of biological systems [48, 49]. The 

challenge is to connect these datasets in comprehending the complex dynamics of these systems 
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[49]. The study of isolated subsystems following a reductionist approach tends to obscure 

mechanisms of interaction between different components and the associated biological complexity 

[48]. For example, enzymes in a specific molecular pathway are often analyzed in isolation. 

Catalytic reactivity for these biological catalysts (enzymes) is however emerging from complex 

and dynamic interactions among various components (e.g., reactants, substrates, products etc.) of 

the targeted pathway [50]. The aggregated dynamics of these interactions are not intuitive and 

cannot be conceptualized by investigating each enzyme individually [50]. 

Systems biology provides an alternative method of investigating the aggregated activity of 

individual biological components at a systems level. In other words, systems biology focuses on 

the comprehension of how a process, a cell, a group of cells, or an organism act as a whole [51]. 

The main tool in systems biology is computational modeling and simulation. For instance, systems 

biology has been used for creating simulations of signalling pathways, transcription networks, 

physiological processes, biochemical mechanisms and metabolic processes [49]. Systems biology 

can be used to quantify the interrelationships (structure or organization) and interaction (behavior 

or dynamics) between biological components and provide insights into developing a mechanistic 

understanding of complex biological processes [52]. Systems biology does not only quantify 

interactions between components, but also potentially reproduces the emergent properties of the 

system. For example, agent based models (ABM) allow numerical simulations of the behavior of 

individual components (agents) and their interactions that in turn generate an emergent behavior 

based on the aggregated behaviors of individual agents [53].  

Computational models have been shown to improve our understanding of molecular, 

cellular, tissue and population behavior in health and diseases [52, 54]. For instance, numerical 
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simulations have been used to investigate the response of an entire human immune system to 

various diseases at scales ranging from individual antigens to systematic behavior [55]. 

Computational models can also be used to test various hypotheses (i.e., in silico experiments) that 

may be challenging to perform empirically in human patients [52, 54]. In the era of personalized/ 

precision medicine, computational models have become an indispensable tool to integrate different 

forms of patient data (e.g., demographics, clinical, lifestyle etc.) and generate specific disease 

phenotypes or cohorts for in silico clinical trials [56, 57].  

The Canadian Institutes of Health Research (CIHR) and the National Institutes of Health 

(NIH) in the United States have emphasized the use of computational models to understand 

complex diseases in conjunction with conventional experimental approaches [58]. Patient-specific 

computational models have already been developed for numerous inflammatory diseases, such as 

traumatic brain injury, sepsis and acute liver failure [41-45]. However, no such models have been 

developed for characterizing the inflammatory and healing process of the vocal folds. Our research 

group has been working on the development of computational ABM to numerically simulate the 

dynamics of major cellular and molecular components involved in surgical vocal fold injury and 

repair [59-66]. The ultimate goal was to further transform ABM into computer software that can 

guide surgeons in the best methods to repair voices that have been lost by predicting individual 

patients’ response to vocal fold surgery. 

1.4 Agent Based Models in Vocal Fold Biology 

Agent-based models (ABM) is a bottom-up simulation approach [67]. ABM emphasizes the 

employment and interaction of self-directed decision-making entities called agents [67].  The main 
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components of ABM include agents, rules for governing the actions and decisions of these agents 

and virtual environment where these agents interact with. The framework of ABM is flexible for 

incorporating both spatial domain and stochasticity [67]. The emergent phenomena in ABM 

resulting from interactions of agents make it advantageous for modeling biological systems [67]. 

Such emergent phenomena can be found in traffic flow, stock market, disasters and corporate 

organizations [53]. For example, disaster situations such as fire in crowded places result in panic 

among people. This collective panic behavior is an emergent phenomenon that originates from 

complex individual-level behavior and interactions between individuals [53]. Based on the 

simulation results, practical ways can be suggested to optimize the escape strategy for tackling 

such disaster situations [68]. In biology, the organization of a cell, tissue or an organ system can 

also be considered as an example of the emergent phenomenon [49]. For instance, biological 

macromolecules self-organize to yield complex functional structures such as organelles, protein 

complexes, tissues and whole cells [49]. 

 Our research group has developed a series of ABM to numerically simulate acute vocal 

fold inflammation, including phonotrauma and surgical vocal fold trauma [59-63, 69]. The models 

were partially calibrated and verified with animal and human vocal fold data [18-20, 70, 71]. The 

ABM represented a three-dimensional (3D) vocal fold LP that is populated by cells [platelets, 

macrophages, neutrophils, fibroblasts], extracellular matrix (ECM) substances [collagen type I, 

elastin and Hyaluronic acid (HA)] and chemical mediators [tumor necrosis factor-α (TNF-α), 

interleukin-1β (IL-1β), interleukin-10 (IL-10), interleukin-6 (IL-6) interleukin-8 (IL-8), basic 

fibroblast growth factor (bFGF), and transforming growth factor (TGF-β1)]. However, as 

quantitative data on vocal fold cellularity were limited, the cellular data have not been fully 
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characterized in the model. Specifically, model parameters related to immune and repair cells have 

not been calibrated and validated with empirical experiments. Both empirical and computational 

experiments are thus needed to improve the numerical simulation of cellular outputs of the vocal 

fold ABM. 

1.5 Thesis Research Objectives 

The overall goal of this study was to develop computational agent-based models (ABM) that could 

numerically simulate the dynamics of major cellular and molecular components involved in 

surgical vocal fold injury and repair. This research contributes to the development of a 

computational tool that would better inform clinicians about an individual’s risk of iatrogenic 

scarring from surgery and help them in prescribing treatments for patients with voice disorders. 

The specific aims of this project were: 

1. To phenotype and enumerate immune and repair cells including neutrophils, macrophages, 

endothelial cells and fibroblasts in surgically injured rat vocal folds using multiparametric flow 

cytometry, up to 4 weeks post-injury. 

2. To calibrate and validate the existing ABM of surgical vocal fold injury and repair with 

the empirical flow cytometry data. 

1.6 Original Contributions 

To achieve research objectives outlined above, several original contributions were made: 

development of theoretical concepts, design of experiment, design and implementation of bivariate 

gating strategy, identification of cellular types and subtypes, interpretation of trends of cell 

populations, implementation of correlation analyses and mixed effect models for statistical 
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analysis of flow cytometry results, development of algorithms for sensitivity analysis, 

implementing Random Forests, data curation, developing three strategies for model calibration 

and validation, agent based model calibration using SPOTPY, statistical evaluation of model, and 

writing of manuscripts.  

1.7 Thesis Outline 

Chapter 1 introduces the clinical motivation, background and research objectives of this thesis. 

Chapters 2 and 3 are the two original papers (Garg Aman, Karwowski Jeannie A. C., Powell 

Michael, Sakata Jon T., Li-Jessen Nicole Y. K., Multi-parametric flow cytometry for cell 

phenotyping in surgical vocal fold injuries. Laryngoscope, 2018 and Garg Aman, Yuen Samson, 

Seekhao Nuttiiya, Yu Grace, Jaja Joseph, Mongeau Luc, Li-Jessen Nicole Y. K., Towards a 

physiological scale of vocal fold agent-based biological models: sensitivity analysis, calibration 

and validation. IEEE Transactions on Computational Biology and Bioinformatics, 2018) of this 

thesis research to be submitted to peer-reviewed journals. Chapter 4 summarizes the conclusions 

of this thesis and discusses the future directions of this research.  
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CHAPTER 2: CELL PHENOTYPING IN VOCAL FOLDS 

 

 

 

2.1 PREFACE 

Quantitative data on the temporal dynamics of cell population involved in vocal fold surgical 

injury are limited in the literature. One objective of the present study was to identify and enumerate 

major cell populations, including neutrophils, macrophages, endothelial cells and fibroblasts in 

injured rat vocal folds up to four weeks post-surgery. The extended follow-up time-point research 

design with the technology of multi-parametric flow cytometry would advance current 

understanding of major cell populations associated with vocal fold injury and repair. Two 

independent flow cytometry panels (Panel A including 11 parameters and Panel B including eight 

parameters) were used for cell identification. Bivariate gating analysis was used to identify 

individual cell populations. The time-varying dynamics of individual cell populations were 

observed following surgical vocal fold injury. The experimental part of this manuscript was 

conducted at University of Maryland by Jeannie A. C. Karwowski (JACK) and Michael Powell 

(MP) under the supervision of Dr. Nicole Y. K. Li-Jessen (NLJ). My contributions towards this 

manuscript include development of theoretical concepts, literature review, design and 

implementation of bivariate gating strategy, identification of cellular types and subtypes, 

interpretation of trends of cell populations, implementation of correlation analyses and mixed 

effect models for statistical analysis of flow cytometry results, data analysis and interpretation, and 

manuscript preparation. 
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2.2 ABSTRACT 

Background: A comprehensive profile of cellularity following vocal fold surgery is integral to 

the understanding of iatrogenic scarring. The goal of this study was to identify and phenotype 

neutrophils, macrophages, endothelial cells and fibroblasts in injured rat vocal folds up to four 

weeks after surgery. 

Methods: Vocal folds were scarred bilaterally in 140 rats and 20 rats were used as uninjured 

controls. Cells were isolated from harvested vocal fold mucosae and subjected to an 11-parameter 

flow cytometry analysis.  

Results: Populations of neutrophils (CD45+His48+), macrophages (CD106-CD44H+/ His48-

CD68+) and endothelial cells (CD29+CD44H+CD106+) were identified in surgically injured 

vocal folds. Fibroblasts (CD29+CD105+CD106-) were identified in both injured and uninjured 

vocal folds. Subtypes of macrophages and fibroblasts, putatively corresponding to classically and 

alternatively activated macrophages and to typical fibroblasts and myofibroblasts, were also 

identified. 

2.3 INTRODUCTION 

Voice disorders are the most common communication disorder across the lifespan, afflicting 

almost one-third of the general population in North America at any point in their life [72-75]. 

Phonosurgery is required to remove vocal fold lesions in patients if they are not motivated to engage 

in conservative voice therapy [76, 77]. Unfortunately, persistent dysphonia associated with 

iatrogenic scarring of vocal folds can occur in patients after the operation [4-10]. Surgical injury 

induces a highly complex acute inflammation and healing response that can lead to stiff, fibrotic 
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vocal folds. Immune cells (neutrophils and macrophages), repair cells (fibroblasts and endothelial 

cells) and signaling molecules (e.g., cytokines, growth factors, damage-associated molecular 

pattern molecules [DAMPs] etc.) are involved to locate damaged tissue, eliminate the necrotic 

cells and debris, and produce extracellular matrix (ECM) substances for eventual tissue repair [78-

83]. Temporal dynamics of cytokines, DAMP and ECM have been widely studied in vocal fold 

scarring after surgery using animal models [29, 30, 84-106]. In contrast, information on vocal fold 

cellularity is relatively limited to reports from a few healthy human studies [27, 28, 107] and a 

handful of animal studies [18, 30, 87, 108-111] (Table 2.1).  

In young and adult healthy human vocal folds, fibroblasts, macrophages and 

myofibroblasts were reported as major cell populations in the lamina propria [27, 28, 107]. 

Fibroblasts were abundant in all layers of lamina propria with the highest number in the deep 

lamina propria [28]. Macrophages and myofibroblasts were predominantly found in the superficial 

lamina propria of healthy vocal folds [27, 28]. Little is known about how these cell populations 

change following vocal fold injury in humans. Animal studies provided relatively qualitative 

information about cellularity changes following surgical damage to vocal folds in rats [18, 108, 

109], rabbits [111] and pigs [30, 87] (Table 2.1). In general, neutrophil-like cells were reported to 

peak within one day in surgically injured vocal folds. These cells then dramatically decreased three 

days after injury, suggesting a phase transition from inflammation to wound repair at that time 

[108]. Macrophages were also reported in injured porcine vocal folds [30]. Several macrophage 

phenotypes including SLA-DR+, CD16+/SLA+, CD80/86+/SLA-DR+ and CD163+/SLA-DR+ 

were reported following surgical vocal fold injury [30]. Lastly, fibroblasts were found to be the 
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most dominant cell population in injured rat vocal folds [18]. Fibroblasts were notably present 

from Day 1 to Day 7 with maximum density at Day 3 following surgery [18, 109, 111]. 

In most of the aforesaid reports, conventional histological and immunostaining techniques 

were used for cell identification in vocal folds [18, 27, 28, 108, 111]. Histological staining is semi-

quantitative in nature with a low sensitivity [112]. Flow cytometry offers a quantitative and 

sensitive method to characterize the identity and behaviour of cell populations [113, 114]. Flow 

cytometry discriminates cell types based on their size and granularity due to the light scattering 

property of cells [115, 116]. Flow cytometry also allows for the identification of multiple and 

specific cell populations using fluorescence labels targeting antigenic cell-surface or intracellular 

proteins [117]. For instance, flow cytometry has been widely applied to understand lymphocyte 

and macrophage subpopulations [118], leukocyte differentiation pathways [119] and intracellular 

cytokine expression [120-123]. 

Surgical trauma is a well-cited cause of vocal fold scarring and the secondary dysphonia 

presents one of the most challenging and functionally debilitating conditions affecting the human 

voice [4-6, 10, 15, 124-127]. A comprehensive understanding of the inflammation and healing 

mechanisms underlying vocal fold scarring is to design effective preventive and therapeutic 

intervention for this recalcitrant vocal condition. In the current study, a maximum 11-parameter 

flow cytometry panel was employed to identify and enumerate neutrophils, macrophages, 

fibroblasts and endothelial cells in rat vocal folds up to 4 weeks following surgery. The goal was 

to improve our understanding of major cell populations associated with vocal fold injury and 

repair. 
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2.4 MATERIALS AND METHODS 

2.4.1 Experimental Design and Hypothesis 

The current study was a one-way between-subjects design with time [0 (uninjured control), 1, 2, 

3, or 5 days, and 1, 2, or 4 weeks post-surgery] as the independent variable. These time points 

represent the typical progression from acute inflammation to late tissue remodeling [15, 18, 20, 

21, 91, 110, 128]. Dependent variables were percentages of neutrophils, macrophages, fibroblasts, 

and endothelial cells in the overall cell population. These cells represent fundamental immune and 

repair cell types involved in inflammation and healing [78, 80-82, 129]. Based on skin and vocal 

fold literature [18, 82], we hypothesized that immune cells in vocal folds (neutrophils and 

macrophages) would permeate the wound site within one day after surgery, while repair cells 

(fibroblasts and endothelial cells) would start to accumulate around three days after surgery.  

2.4.2 Vocal Fold Surgical Model   

The animal study was approved by the Institutional Animal Care and Use Committee of the 

University of Maryland-College Park (protocol number: R-12-85). A total of 160 male Sprague-

Dawley rats (four to six months old, 450-500 g) were used in the study. Rats were selected because 

they share important structural similarities with human vocal folds [15, 16, 86]. Also, most 

biological data pertinent to vocal fold scarring and its treatments have been previously reported 

for rat models [16-18, 20-23, 108-110]. 

Vocal fold injuries were performed in 140 rats using an established protocol. Twenty rats 

were used as uninjured controls [15]. Regarding the surgical protocol, animals were anesthetized, 

and their vocal folds were bilaterally injured using a 25-gauge needle to strip the vocal fold mucosa 
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until the thyroarytenoid muscle was exposed [15]. At each end-point of the study, animals were 

euthanized via CO2 asphyxiation, and larynges were removed immediately following euthanasia 

[15]. For anesthesia induction, the rats were injected with isoflurane (2% to 3% delivered at 0.8 to 

1.5 L/min) followed by maintenance with an intraperitoneal injection of ketamine hydrochloride 

(90 mg/ kg) and xylazine hydrochloride (9 mg/kg). Rats with injured vocal folds were euthanized 

at each of seven post-surgery time points: Days 1, 2, 3, 5 and Weeks 1, 2, 4. Due to the unexpected 

death of the animals, between 16 to 19 animals survived at each assigned time point for laryngeal 

harvest and the subsequent flow cytometry analysis (Table 2.2).  

2.4.3 Vocal Fold Cell Isolation 

The mucosae of both sides of vocal folds were dissected and separated from the underlying 

thyroarytenoid muscles under a stereoscope. Vocal fold mucosal samples were pooled and 

subjected to single cell isolation. The strategy of sample pooling has been used for rat vocal fold 

cell and protein analysis considering the small size of rat vocal folds [84, 109]. Samples were 

dispersed into single cell suspensions using digestion, centrifugation and filtration steps [109]. 

First, dissected mucosa were placed in conical panels covered in aluminum foil and then incubated 

in Ca/Mg free DPBS solution (Mediatech, Cat#: 21-031-CV) with 0.05% collagenase (Gibco, 

Cat#: 17018-029) /0.001% DNAse I (Sigma Aldrich, Cat#: D4513) for 20 minutes at 37oC to 

dissolve the extracellular matrix for cell release. The samples were thoroughly mixed and 

incubated again in 37oC water bath. Once samples were visually confirmed to contain no large 

chunks of tissue, the solution was filtered with 40 nm cell strainers. Filtered samples were 

centrifuged at 290g for five minutes at 4oC. After aspirating the supernatant, remaining cells were 
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suspended in HBSS (Corning, Cat#: 21-022-CV) from 1M HEPES solution with 2% fetal calf 

serum (HyClone, Cat#: SH30071.03) and 10nM HEPES (diluted from 1M HEPES solution, 

Corning, Cat#: 25-060-CI). Resulted single cell suspension samples were transferred to flow 

cytometry polystyrene tubes and centrifuged at 201g for 10 minutes at 4oC. After aspiration and 

suspension, the total cell number was determined with trypan blue staining and a hemacytometer. 

The number of isolated vocal fold cells ranged between 2.15 x 105 cells and 2.02 x 106 cells across 

time points (Table 2.2). 

2.4.4 Sample Preparation for Flow Cytometry   

Experimental Samples. Two independent flow cytometry panels (Panels A and B) were designed 

to cross-validate the results for cell identification and to evaluate if a more parsimonious flow 

panel would be sufficient to characterize cell populations. Panel A (Table 2.3) consisted of 11 

parameters including FSC (cell size), SSC (cell granularity), one cell viability marker (AmCyan) 

and eight fluorescent cell surface markers (CD11b/c, CD29, CD44H, CD45, CD68, CD105, 

CD106 and His48). Panel B (Table 2.4) was composed of eight parameters including FSC, SSC, 

one cell viability marker (AmCyan) and five fluorescent cell surface markers (CD31, CD45, 

CD90, CD163 and His48). These specific cell surface markers were selected according to the 

literature of rat immunology (Table 2.5 and Table 2.6). Pre-conjugated primary antibodies were 

used to facilitate specific affinity to surface antigens (see S2.1 and S2.2 Table for catalogue number 

and the fluorescence conjugate information). Isolated cells were first incubated in 1:100 diluted 

purified mouse anti-rat CD32 - FcγII blocker (Monoclonal D34-485, 0.5 mg/ml, BD) in staining 

buffer for 20 minutes at 4oC. This blocking step was required to prevent non-specific antibody 
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reagents to the Fc-receptor on cells such as monocytes and macrophages. Samples were then 

stained in 1:100 dilution of either eight (Panel A) or five (Panel B) preconjugated antibodies 

(Table 2.5 and Table 2.6) with staining buffer for 30 minutes at 4oC in a dark room. At the end, 

we collected cell type information across a total of 16 datasets (8 time points × 2 flow panels). 

Control Samples. Unstained samples were used as negative controls that contained 5% FBS and 

DPBS without Ca/Mg ions. Samples were washed with DPBS without Ca/Mg ions twice and then 

stained with 1:1000 diluted fixable viability dye in DPBS without Ca/Mg ions for 30 minutes at 

4oC in a dark room. A fixable viability dye was used to exclude dead cells from the analysable 

population. UltraComp eBeads, which are beads conjugated with individual fluorochromes, were 

used as single-color controls for compensation setup to correct the spectral overlap. For the fixable 

viability dye and UltraComp beads, procedures were performed according to manufacturers. 

Samples were washed with staining buffer twice and then transferred to clear polystyrene flow 

cytometry tubes until analysis. Samples were read using BD FACSAria II (BD Bio sciences, 

California, USA) in the Maryland Pathogen Research Institute. Compensation steps were 

performed to correct spectral overlap before every run of the flow analysis [130, 131]. 

2.5 DATA PROCESSING AND ANALYSIS 

2.5.1 Cell Population Analysis 

Multiple markers were used for cell identification since no single surface marker is specific to the 

cells of interest. Two separate flow panels consisting of eight or five cell surface markers (CD 

markers) plus FSC, SSC and one cell viability marker were used to phenotype vocal fold cells as 

shown in Table 2.5 and Table 2.6, respectively. The categorization of cells as neutrophils, 
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macrophages, endothelial cells and fibroblasts depending on marker expression was based on 

published literature [132-142]. Bivariate gating, an approach commonly used in flow cytometric 

analyses, was used primarily to analyse the multi-dimensional flow cytometry data [113, 119, 143-

147].  

2.5.2 Bivariate Gating Strategy 

Live cells were categorized into different cell types and subtypes using a bivariate gating strategy 

(FlowJo software 10.0.7; LLC, Oregon, USA). Cell viability and compensation were applied 

during the setup of the experiment. For all datasets, gating analysis was performed by one 

individual (AG) who was blind to experimental conditions. Separate gating algorithms were 

developed for Panels A (Figure 2.1, Table 2.5) and B (Figure 2.2, Table 2.6) [132-142]. Figure 

2.3 shows the application of the gating strategy for Panel A from Day 2 data sample to further 

illustrate the concept. 

The flowchart of gating strategy for Panel A (Figure 2.1) first used FSC-A vs SSC-A to 

represent the distribution of cells based on size, granularity and intracellular composition. These 

two scattering parameters led to the exclusion of debris, other non-cellular particles and 

lymphocytes [148, 149]. To exclude doublets that were considered as single cells, three tests were 

implemented in the following order: (1) FSC-W vs FSC-H (W=width; H=height) to select low 

FSC-W cells, (2) FSC-W histogram to check the threshold and (3) FSC-H vs FSC-A (A=area) to 

select cells that were clustered diagonally [150, 151]. A positive gating approach was used in 

which, instead of excluding negative cells (showing negative expression of a marker), priority was 

given to cells showing positive expression of a marker. The CD29 vs CD45 plot was used to 
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distinguish CD29+CD45+ hematopoietic cells (neutrophils and macrophages) from CD29+CD45- 

non-hematopoietic cells (endothelial cells and fibroblasts) [132, 133, 136-139]. Here CD29 not 

only separated hematopoietic cells from non-hematopoietic cells, but it was also used as a 

conventional marker to gate out erythrocytes. For the gating of hematopoietic cells, CD45+His48+ 

cells were selected as neutrophils and were further verified using a His48+CD11b/c+ gate (Figure 

2.1) [141, 142]. From the same gate of hematopoietic cells, macrophages were identified by using 

CD106-CD44H+ and His48-CD68+ gates [132, 133, 138, 140]. In the case of non-hematopoietic 

cells (CD29+CD45-), CD106 was used to distinguish CD29+CD106+ endothelial cells from 

CD29+CD106- fibroblasts [132, 137]. Endothelial cells and fibroblasts were then confirmed by 

using CD44H+CD106+ and CD29+CD105+ gates, respectively [132, 133, 137, 139]. 

Regarding Panel B (Figure 2.2), FSC-A vs SSC-A and doublet exclusion tests were used 

in a similar way as for Panel A. CD90 was used with FSC-A to separate CD90-FSC-A+ 

hematopoietic cells from CD90+FSC-A+ non-hematopoietic populations [132, 133, 137, 139]. 

CD31 was used to confirm the population of hematopoietic cells and to separate non-hematopoietic 

cells into endothelial cells and fibroblasts [132, 133, 137]. His48 was used to separate 

His48+CD31+ neutrophils from His48-CD31+ macrophages by using a His48 vs CD31 gate [141, 

142]. CD45 and CD163 were used to confirm populations of neutrophils and macrophages, 

respectively [132, 133, 136-139].  

2.5.2.1 Cell Subtype Analysis 

Macrophages and fibroblasts were further separated into distinct subtypes as indicated by 

distinctive expression patterns of proposed flow markers. In Panel A (Figure 2.1), CD68 and 
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CD11 were used together to distinguish between two subtypes of macrophages, namely pro-

inflammatory macrophage M1 (CD11b/c++CD68++) and anti-inflammatory macrophage M2 

(CD11b/c+CD68+) [152-154]. In addition, FSC-A was used to discriminate fibroblast subtypes 

based on the cell size: CD105+FSC-A+ as fibroblast Type I and CD105+FSC-A++ as fibroblast 

Type II [155]. In the case of Panel B (Figure 2.2), CD163+ and CD163++ were used to 

discriminate between macrophages M1 and M2, respectively [156], whereas CD90 was used along 

with FSC-A to distinguish fibroblast subtypes.  

2.5.2.3 Thresholding and Backgating 

Multiple plots and parameters were used to decide the threshold limit in the generation of gates 

and to verify gate positions (Figure 2.4A). Contour and density plots (Figure 2.4A (iii) and (iv)), 

which show expression levels and relative density of data, are commonly used in placing the gates 

[145, 157]. Backgating was used to verify the gate positions (Figure 2.4B). Backgating not only 

helped to analyse cells identified in a gate on dot plots with different parameters but also showed 

the final gated population within the population of its ancestors. The same gating strategy was 

applied across all eight time points within the same panel to compute the percentage of each cell 

type in the total cell population. 

2.5.3 Statistical Analyses 

Mixed effects models and correlation analyses were used to evaluate the degree of similarity in 

results from Panels A and B. Distinct mixed effects models were used to assess variation between 

panels for cell types (neutrophils, macrophages, endothelial cells and fibroblasts) and for subtypes 

(M1 and M2 macrophages, and Type I and II fibroblasts). Density data for a particular cell type or 
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subtype (i.e., % of cells in total cell population) at each time point was obtained from one flow 

cytometry run. To analyse the effect of flow panel on estimates of cell density, we used the data 

for each of the eight time points as independent data points (i.e., time not included in the model; 

n=8 for each panel). We ran a full-factorial model with flow panel (A vs. B) and cell type (or 

subtype) as the independent variables, which allowed us to analyse the effect of panel 

simultaneously across cell types (or subtypes). Because each flow cytometry run generated data 

for each cell type (or subtype), the identity of each flow cytometry run was included as a random 

variable for the mixed effects model. Pearson’s correlations were used further to analyse the 

relationship between the results from Panel A and B, and to complement the results from mixed 

effects models.  

2.6 RESULTS  

Across both panels, flow cytometric analyses revealed variations in vocal fold cellular composition 

following injury (Figure 2.5A and B; Table 2.7 and S2.3 Table). Across all cell types, data from 

Panels A and B (i.e., two types of analyses) were not significantly different from each other (mixed 

effects model: F1,14=0.4, p=0.5630) and significantly positively correlated with each other 

(Pearson’s correlation: p<0.01 for all pairwise correlations). Therefore, for the final examination 

of changes to cell types across time, we averaged the results from the two panels (Figure 2.5C). 

In uninjured controls, neutrophils, macrophages, endothelial cells and fibroblasts, 

respectively, represented 7.70%, 4.70%, 9.54% and 53.49% of the total cell population. In 

surgically injured vocal folds, fibroblasts also appeared as the prevalent cell type (>50%) among 

the four cell types at all time-points except Day 2 and Day 3. This result is consistent with results 
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from the mixed effects model, wherein the effect of cell type was significant (F3,42=59.3, p<0.0001) 

and was driven by the fact that fibroblasts were more abundant than any other cell type analysed 

(Tukey’s HSD, p<0.05). No significant differences were found in cell density among the remaining 

cell types. Neutrophils were ranged from 2.31% to 14.37% on average throughout the examined 

time course. Macrophages appeared as the most dominant cell type (~33%) on Day 2. Shortly after, 

both neutrophils and macrophages were found in less than 5% of the total cell populations. The 

population of endothelial cells was below 5% in injured vocal folds on average except a relatively 

sharp increase during Week 2 (14.10%). 

Across fibroblast types I and II cells as well as M1 and M2 cells, results from the gating 

analyses for Panels A and B were not significantly different (p>0.8 each for both fibroblast and 

macrophage subtypes) and significantly correlated with each other (Pearson’s correlation: p<0.05 

for each subtype). From the mixed effects model analyses, we also observed that M1 cells were, 

overall, more abundant than M2 cells (F1,14=6.1, p=0.0275) but that type I and II fibroblasts were 

not different in abundance. As such, data from Panels A and B were, again, averaged in the analysis 

of temporal dynamics of subtypes (Figure 2.6). Whereas the density of M2 macrophages showed 

minimal changes following vocal fold injury (ranged from 0.90% to 2.97% across time points), 

the density of M1 macrophages dramatically changed following injury. In particular, M1 density 

peaked two days after injury (29.91%) and returned to baseline level within five days post-injury.  

In contrast, both fibroblast subtypes showed dynamic changes over the time course of the study 

(ranging from 3.54% to 42.18%), albeit with slightly different profiles. 
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2.7 DISCUSSION 

2.7.1 Neutrophils and Macrophages 

In this study, multi-parametric flow cytometry was used to analyse dynamic changes to cell 

composition of vocal folds up to four weeks following injury. Our results (Figure 2.5C) are 

generally consistent with the temporal dynamics of immune cells (neutrophils and macrophages) 

known in general wound healing literature. In dermal wound healing, neutrophils arrive at the 

wound site in the first few hours, peak in abundance one day after the injury, and reduce rapidly 

by the third day after injury [78, 82, 83, 158-161]. Macrophages peak slightly later, by the second 

day after the injury, but also demonstrate rapid decreases on the third day after surgery [78, 83, 

158, 159]. Given the similarities in the temporal dynamics of neutrophil and macrophage changes 

following injury in vocal folds and other types of tissue, comparable cellular functions of immune 

cells underlying the inflammation and repair processes are speculated. 

For instance, our results showed that neutrophils and macrophages arrived at the wound 

site within the first three days after injury (Figure 2.5C) [78, 82, 83, 158-161], representing the 

phase of acute inflammation [162, 163]. Activated neutrophils and macrophages carry out anti-

bacterial functions and phagocytose bacteria and cell debris, and use free oxygen radicals to absorb 

the waste. A rapid increase in neutrophils was found on Day 1 (Figure 2.5C) followed by a sharp 

decline on Day 3 (Figure 2.5C). The decline might be due to their apoptosis and phagocytosis by 

macrophages and other immune cells in the wound [78, 164]. The depletion of neutrophils is also 

necessary to help the transition from acute inflammation to the sub-acute and repair phases after 

injury [165]. Further, our results showed that the percentage of macrophages increased from 
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12.81% to 32.88% between Day 1 and Day 2. When monocytes arrive at the wound area, cells 

differentiate into tissue macrophages that take over the phagocytosis. As proposed for other tissues, 

autocrine signaling contributes to the dominant presence of macrophages during the early stage of 

wound healing [82, 160, 164]. Macrophages secrete reactive oxygen species [166] as well as 

various chemokines such as platelet-derived growth factor, tumor necrosis factor alpha, interleukin 

6, granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor 

that attract additional macrophages from the neighborhood to the wound area [82, 160, 164]. 

2.7.2 Endothelial Cells 

In addition to immune cells, the temporal pattern of endothelial cells (Figure 2.5C) following 

vocal fold damage also resembles the general wound healing literature [82, 160]. In our study, 

endothelial cells contributed about 9% of the total cell population in uninjured controls that were 

likely originated from the endothelium layer of undisturbed blood capillaries in native vocal fold 

mucosae. A rise in the endothelial cells population was observed in Week 2 after surgery (Figure 

2.5C), representing about 14% of total cell populations. Our results suggested an active 

angiogenesis might have started between Week 1 and Week 2 post surgery. To our best knowledge, 

this study is the first to evaluate the population of endothelial cells in vocal fold injury and healing. 

Further investigation on the precise role of endothelial cells, their interaction with other cell types 

as well as their implications in vocal fold scarring is warranted. 

2.7.3 Fibroblasts 

As reported in the wound healing literature, fibroblasts normally arrive at the wound site around 

Day 3 and start the proliferative phase [78, 82, 110, 160]. These cells usually reach their maximum 
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concentrations between Day 5 and Day 7, and start to decrease gradually by the end of Week 1 

[78, 83, 158, 159]. Interestingly, our data (Figure 2.5C) showed that fibroblasts were 

predominantly present in injured vocal folds spanning from the early acute inflammatory to later 

remodeling phases of wound healing. Previous studies reported the abundant presence of 

fibroblasts up to one week after surgical vocal fold injury [18, 109, 111]. Our data suggests an 

abundance of fibroblasts in the wound site up to four weeks after surgery, which confirms the 

important role of fibroblast in the wound remodeling of vocal folds. Fibroblasts persisted as the 

dominant cell type in acute injured vocal folds (Day 1: 53.81%; Day 2: 29.37%) despite the 

infiltration of neutrophils and macrophages during that time window. Our previous work showed 

that both macrophages and fibroblasts were the major cell source of DAMP, high mobility group 

box-1, in modulating the inflammatory cytokine production in acute vocal fold injury [29, 84]. Our 

data and others collectively suggest immunological and repair functions of fibroblasts that are 

unique in vocal folds [167, 168]. 

2.7.4 Putative Macrophage and Fibroblast Subtypes 

Our gating analyses suggested the presence of putative macrophage and fibroblast subpopulations 

in native and injured vocal folds. In uninjured vocal folds (Day 0), macrophages M1 and M2 

represented about 2-3% of the total cell population. After the injury, the population of M1 peaked 

at Day 2 (~30%) and M2 stayed relatively stable (1-2%) throughout the examined time course 

(Figure 2.6A). We speculate that M1 were classically activated macrophages involved in 

phagocytic activities and inflammation at the acute phase (i.e., Day 2) whereas M2 were 

alternatively activated macrophages involved in cell proliferation and repair activities [30, 152, 

169]. Although M2 appeared as a minor population in vocal folds, their presence in native vocal 
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folds might suggest ongoing repair activities to maintain vocal fold hemostasis for daily 

mechanical and chemical challenges. Two fibroblast-like populations, CD105+FSC-A+ 

(fibroblast type I) and CD105+FSC-A++ (fibroblast type II), were identified in our flow data 

(Figure 2.6B). The population of CD105/FSC-A++ would likely be myofibroblasts known in the 

wound healing literature [82, 155, 170-173]. Myofibroblasts are commonly found during the tissue 

remodeling phase to contract the wound and synthesize extracellular matrix given their contractile 

and secretory properties [174]. In uninjured vocal folds, fibroblast Type I were found to be higher 

in population as compared to Type II (Figure 2.6B). Following injury, these two populations 

showed an oscillatory function in terms of their population (Figure 2.6B). One possible 

explanation of this oscillation is due to the transdifferentiation of fibroblasts and myofibroblasts 

in response to dynamical changes in surrounding cytokine stimulants and the extracellular matrix 

environment [29, 84, 170, 171, 175-177]. The oscillatory result suggested that vocal fold 

fibroblasts could be highly sensitive to chemical and mechanical stimuli in switching their 

phenotypes to myofibroblasts; and vice versa. Further, in our previous study [29], myofibroblasts 

were barely detected in injured vocal fold lamina propria using immunohistochemistry (IHC). One 

possible reason was that alpha smooth muscle actin (α‐SMA) was used as the IHC marker for 

myofibroblasts previously. α-SMA, however, would need to be fully incorporated into actin stress 

fibers intracellularly to be visibly observed. Our results suggest that flow cytometry might be more 

sensitive to detect the presence of vocal fold myofibroblasts using CD105+FSC-A++ as a marker 

compared to the IHC approach. Further functional studies are necessary to confirm if 

CD105+FSC-A++ cells behave as typical myofibroblasts known in the literature. In addition, 

further investigation related to the oscillating dynamics of fibroblast-myofibroblast 
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transdifferentiation may reveal unknown signaling pathways and cell-ECM interactions that are 

specific to the vocal folds microenvironment. Such information will provide insights that may help 

develop effective treatment strategies to control the fibrotic activity in vocal fold injuries.   

2.7.5 Study Limitations and Conclusion 

In this study, vocal fold samples were pooled from multiple animals to ensure a sufficient cell 

number to detect any small percentages of cell subpopulation. This biological sample pooling 

however resulted in a reduction of the sample size for each time point, limited the information on 

individual variation and decreased statistical power. As a result, this sample pooling limited the 

possibility of statistical evaluation of time effects. Nevertheless, efforts were made to verify the 

speculated time-varying dynamics of the cell population. First, cross-platform verification and 

analysis were performed with the application of two independent flow panels. Robust patterns of 

cell dynamics across time were observed in both Panel A and Panel B (Figure 5) and no statistical 

differences were noted in cell density between the two panels for all time points. Second, additional 

cell samples were obtained from two independent animal pools at Day 2 following surgery. By 

applying the same gating strategy of Panel A, the two sample pools showed comparable 

percentages of cell populations (Table S2.4). Plausible confounding factors, such as sample 

variability (animal heterogeneity) and technical variability (surgical procedures and sample 

preparation), were thus considered to be reasonably controlled in this study. In other words, 

variations across time points observed in the datasets could be likely explained by the effect of 

time. Larger animals such as pigs can be considered for future studies to minimize the need of 

sample pooling for vocal fold cell phenotyping work. In addition, computational models have been 

recommended to reduce the reliance on animal and human data to complement empirical 
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investigation [178, 179]. Results from this study will be subjected to our ongoing work in the 

development of computational models that numerically simulate the cellular and molecular 

response to vocal fold surgical injuries [46, 66, 180-183].  

Recent studies have shown the important role of epithelial cells in vocal fold wound healing 

[184-188]. Given the small size of rat vocal folds, it was impossible to precisely dissect the 

epithelial layer out from the lamina propria for this flow cytometry analysis. Antibodies used in 

the current flow panels were thus carefully selected to ensure no immunoreaction with epithelial 

cells [133]. In future work, additional fluorescent cell surface markers will be required to identify 

epithelial cells because the parameters of SSC and FSC are not accurate enough to separate 

epithelial cells from others. Based on our results, Panel A (11 parameters) and Panel B (8 

parameters) showed similar cell populations and their density. If the source of tissue is a limiting 

factor in future studies, the more parsimonious flow panel with eight parameters would be 

recommended for expansion to discriminate epithelial cells and others in vocal folds.  

 A multi-parametric flow cytometry study was used to phenotype cell populations in rat 

vocal folds following surgical injury. Precise identification of cell phenotypes involved in vocal 

fold injury is fundamental in understanding the pathogenesis of vocal fold scarring.  These findings 

will also assist in designing more precise treatment strategies to target specific cell populations 

and timing of application in minimizing iatrogenic scarring following vocal fold surgery.  
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2.9 TABLES 

Table 2.1: Summary of Vocal Fold Cellularity in Literature.  

Study  Human/ 

Animals 

Methods to 

Cell 

Detection 

Summary 

Boseley et 

al., 2006 [27] 

Humans 

(ages 11-

73 years) 

H&E • Location of vocal fold included SLP, ILP and 

DLP. 

• Macrophages and myofibroblasts were found 

predominantly in the SLP. 

Branski et 

al., 2005 

[111] 

Female 

white 

rabbits 

MTS • Study time-points included 12 hours and 1, 3, 

5, 7, 10, 14 and 21 days post-injury. 

• Location of vocal fold included EPI, SLP, 

ILP, DLP and TA. 

• Fibroblasts were found maximum at Day 3 

post-injury. 

Catten et al., 

1998 [28] 

Humans 

(ages 2 

days - 14 

years) 

ICC • Location of vocal fold included SLP, ILP and 

DLP. 

• Macrophages and myofibroblasts were found 

predominantly in the SLP. 

• Fibroblasts were found predominantly in the 

DLP. 

King et al., 

2015 [30] 

Female 

Landrace 

pigs 

FC, H&E and 

IHC 
• Study time-points included 1, 3, 5, 7 and 23 

days post-injury. 

• Location of vocal fold included SLP. 

• Macrophages were found maximum at Day 5 

and Day 23 in vocal fold post LPS and 

surgical injury, respectively. 

• Neutrophil-like cells were found maximum 

at Day 1 and Day 3 in vocal fold post LPS 

and surgical injury, respectively. 

Ling et al., 

2009 [108] 

Male 

Sprague–

Dawley 

rats 

H&E • Study time-points included 1, 3, 5 and 7 days 

post-injury. 

• Location of vocal fold included EPI, SLP, 

ILP, DLP and TA. 

• Neutrophil-like cells were found maximum 

at Day 1. 

• Neutrophil-like cells, epithelial cells and 

fibroblast-like cells were recruited 

sequentially at the wound site. 

Ling et al., 

2010 [109] 

Male 

Sprague–

FC, ICC and 

IHC 
• Study time-points included 1, 3, 5, and 7 

days post-injury. 
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Dawley 

rats 
• Location of vocal fold included EPI, SLP, 

ILP, DLP and TA. 

• Fibroblasts were found uniformly distributed 

in the lamina propria. 

Muñoz-Pinto 

et al., 2009 

[107] 

Humans 

(ages 2-94 

years) 

PDA • Location of vocal fold included EPI, SLP, 

ILP and DLP. 

• The mean cell density of EPI and LP was 

0.57 million cells per milligram of tissue 

total protein. 

Tateya et al., 

2006 [18] 

Male 

Sprague-

Dawley 

rats  

 

IHC • Study time-points included 1, 3, 7 and 14 

days post-injury. 

• Location of vocal fold included ILP. 

• Fibroblasts were found maximum at Day 3. 

Methods to Cell Detection: ICC: Immunocytochemistry, IHC: Immunohistochemistry, FC: Flow 

Cytometry, H&E: Hematoxylin and Eosin Stain, MTS: Masson's Trichrome Staining, PDA: 

PicoGreen DNA Assay. Location of vocal fold – EPI: Epithelium, SLP: Superficial Lamina 

Propria, ILP: Intermediate Lamina Propria, DLP: Deep Lamina Propria, TA: Thyroarytenoid 

Muscle. 
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Table 2.2. Number of Rats Sacrificed and Cells Obtained from Vocal Folds at Each Study 

Time Point.  

Time-point Number of Rats Sacrificed Total Number of Cells Isolated 

Day 0 (Uninjured controls) 20 2.15 × 105 

Day 1 17 4.16 × 105 

Day 2 16 2.02 × 106 

Day 3 18 4.16 × 105 

Day 5 17 3.88 × 105 

Day 7 18 2.97 × 105 

Week 2 17 2.24 × 105 

Week 4 19 2.22 × 105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 
 

 

Table 2.3. List of Markers and Parameters in Panel A and Their Corresponding Biological 

Functions. 

 Parameters Significance References 

1 CD11b/c CD11b/c is involved in adhesion activities of leukocytes 

including granulocytes, monocytes and macrophages. CD11b/c 

plays an important role in chemotaxis and apoptosis. CD11b/c 

can also be used as a marker to discriminate macrophage 

subtypes in the study of functional heterogeneity of 

macrophages. 

[133, 134, 

189] 

2 CD29 CD29 is a member of the integrin family that plays an 

important role in cell-cell or cell-matrix interaction. CD29 

binds to extracellular matrix proteins including collagen, 

laminin, fibronectin and vitronectin. During inflammation, 

CD29 helps neutrophils migrate to the wound site. Other 

functions of CD29 include cell adhesion, signal transduction 

and cell differentiation.  

[133, 190, 

191] 

3 CD44H CD44H acts as cell adhesion receptors. Hyaluronate has the 

ligand of CD44H. CD44H also acts as regulators of cell 

migration, cell-to-cell and cell-to-substrate interactions. 

[192, 193] 

4 CD45 CD45 is the primary surface marker to distinguish between 

hematopoietic and non-hematopoietic cells. CD45 helps in 

controlling the signals originating from cytokine and integrin 

receptors. CD45 also plays an important role to regulate B-cell 

and T-cell antigen receptor signaling, cell growth and cell 

differentiation. 

[133, 194] 

5 CD68 CD68 mediates the process of phagocytosis for macrophages. 

CD68 helps in both intracellular and extracellular activities like 

lysosomal metabolism, cell-to-cell and cell-to-pathogen 

interactions. The expression of CD68 on macrophages and 

monocytes is mostly cytoplasmic. 

[140, 195] 

6 CD105 CD105 acts as a regulator of angiogenesis and 

neovascularization, and facilitates the binding of endothelial 

cells to integrins. The expression of CD105 results in the 

cytoskeletal reorganization that affects cell morphology and 

migration. During the process of inflammation and healing, the 

expression of CD105 is enhanced on activated endothelium in 

tissues that undergo angiogenesis.  

[196, 197] 

7 CD106 CD106 mediates cell adhesion of leukocytes such as 

lymphocytes and monocytes to activated endothelium and 

functions in leukocyte-endothelial cell signal transduction. The 

expression of CD106 is enhanced in endothelial cells under the 

stimulation of inflammatory cytokines.  

[198-200] 

https://en.wikipedia.org/wiki/Signal_transduction
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8 His48 His48 has been shown to react with monocytes and 

granulocytes via an antigen molecule which is expressed on 

their surface. His48 is mainly expressed by neutrophils and 

used as a marker to distinguish neutrophils from other cell 

populations. His48 is also commonly used in combination with 

other surface markers (such as CD11, CD45, CD68 etc.) to 

identify granulocytes. 

[141, 142] 

9 Cell 

Viability 

To distinguish between live and dead cells. [201] 

10 FSC Forward-scattered light (FSC) reflects the cell-surface area or 

size. 

[149] 

11 SSC Side-scattered light (SSC) reflects the cell granularity or 

intracellular complexity. 

[149] 
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Table 2.4. List of Markers and Parameters in Panel B and Their Corresponding Biological 

Functions. 

 Parameters Significance References 

1 CD31 CD31 is also known as platelet-endothelial cell adhesion 

molecule-1 (PECAM-1). CD31 plays a major role in cell-cell 

and cell-matrix interactions and signal transduction. CD31 

mediates in both homotypic and heterotypic cell adhesion by 

binding to either itself or the leukocyte integrin αvβ3. CD31 

also plays a role in neutrophils recruitment, transendothelial 

migration of leukocytes, vasculogenesis, angiogenesis, 

integrin activation as well as in cardiovascular development. 

[202-204] 

2 CD45 CD45 is the primary surface marker to distinguish between 

hematopoietic and non-hematopoietic cells. CD45 helps in 

controlling the signals originating from cytokine and integrin 

receptors. CD45 also plays an important role to regulate B-cell 

and T-cell antigen receptor signaling, cell growth and cell 

differentiation. 

[133, 194] 

3 CD90 CD90 interacts with CD45 and regulates the vascular 

permeability during the process of inflammation. Most 

peripheral T cells, fibroblasts, thymocytes and endothelial 

cells express CD90 on their cell surface. Other functions 

include differentiation of hematopoietic stem cells, 

proliferation and activation of lymphocytes, and adhesion of 

thymocytes. 

[205, 206] 

4 CD163 CD163 acts as a scavenger receptor for both hemoglobin 

and hemoglobin-haptoglobin complex. CD163 is exclusively 

expressed by most of the subtypes of macrophages and 

mediates the activation of macrophages during inflammation. 

[207-209] 

5 His48 His48 has been shown to react with monocytes and 

granulocytes via an antigen molecule which is expressed on 

their surface. His48 is mainly expressed by neutrophils and 

used as a marker to distinguish neutrophils from other cell 

populations. His48 is also commonly used in combination 

with other surface markers (such as CD11, CD45, CD68 etc.) 

to identify granulocytes. 

[141, 142] 

6 Cell 

Viability 

To distinguish between live and dead cells. [201] 

7 FSC Forward-scattered light (FSC) reflects the cell-surface area or 

size. 

[149] 

8 SSC Side-scattered light (SSC) reflects the cell granularity or 

internal complexity. 

[149] 

 

https://en.wikipedia.org/wiki/Scavenger_receptor_(immunology)
https://en.wikipedia.org/wiki/Hemoglobin
https://en.wikipedia.org/wiki/Haptoglobin
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Table 2.5. Rat Cell Surface Marker Profile for Flow Cytometry in Panel A. 

“+” shows positive expression and “-” shows negative expression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Marker Fluorochrome Neutrophil Macrophage Endothelial 

Cell 

Fibroblast References 

CD11b/c FITC + + - - [132-135] 

CD29 PE-Cy7 + + + + [132, 133, 

136, 137] 

CD44H APC-Cy7 - + + + [132, 133, 

137] 

CD45 PerCP-Cy5.5 + + - - [132, 133, 

136-139] 

CD68 PE-Texas Red + + - + [132, 133, 

138, 140] 

CD105 PE - + + + [132, 133, 

137, 139] 

CD106 Brilliant Violet 

421 

- - + - [132, 137] 

His48 APC + - - - [141, 142] 

Cell 

Viability 

Dye 

AmCyan + + + + [201] 
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Table 2.6. Rat Cell Surface Marker Profile for Flow Cytometry in Panel B. 

 “+” shows positive expression and “-” shows negative expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Marker Fluorochrome Neutrophil Macrophage Endothelial 

Cell 

Fibroblast References 

CD31 APC + + + - [132, 133, 

137] 

CD45

  

PerCP-Cy5.5 + + - - [132, 133, 

136-139] 

CD90 FITC - - + + [132, 133, 

137, 139] 

CD163 PE-Cy7 - + - - [132, 133, 

139] 

His48 PE + - - - [141, 142] 

Cell 

Viability 

Dye 

AmCyan + + + + [201] 
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Table 2.7. Gating Results.  

The number represents the percentage of the cell population. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Panel Time Neutrophil Macrophage Endothelial Cell Fibroblast Fibroblast I Fibroblast II  M1 Macrophage M2 Macrophage 

A Day0 7.14 4.57 9.18 51.32 37.83 13.49 2.09 2.44 

A Day1 13.53 11.22 3.19 56.23 30.99 25.24 8.87 2.35 

A Day2 11.29 31.68 1.93 31.13 3.24 27.89 29.23 2.45 

A Day3 7.68 9.41 2.18 20.03 9.11 10.92 7.8 1.61 

A Day5 2.31 4.18 3.3 55.12 34.93 20.19 3.25 0.94 

A Day7 2.16 3.62 3.13 62.55 20.96 41.58 2.03 1.58 

A Week2 2.53 2.92 13.46 44.27 27.45 16.82 1.59 1.33 

A Week4 2.89 3.35 4.87 63.79 29.07 34.72 1.25 2.11 

B Day0 8.25 4.84 9.91 55.65 39.24 16.41 3.17 1.67 

B Day1 15.21 14.4 6.44 51.4 24.32 27.08 11.67 2.73 

B Day2 14.04 34.07 1.61 27.6 3.84 23.76 30.59 3.48 

B Day3 8.55 10.7 2.32 20.78 10.12 10.66 8.04 2.66 

B Day5 2.84 4.92 2.6 50.83 30.88 19.95 4.06 0.86 

B Day7 2.46 4.11 4.5 61.37 18.6 42.77 2.66 1.45 

B Week2 2.62 2.4 14.75 65.84 41.46 24.38 1.81 0.59 

B Week4 3.29 3.9 5.7 61.51 25.44 36.07 1.8 2.1 
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2.10 FIGURES 

Figure 2.1. Flowchart of Gating Strategy for Panel A 
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Figure 2.2. Flowchart of Gating Strategy for Panel B. 
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Figure 2.3. Example of Gating Strategy for Panel A from Day 2 Sample. First FSC-A vs SSC-

A were used for the exclusion of debris, other non-cellular particles and lymphocytes. Three tests 

(FSC-W vs FSC-H to select low FSC-W cells, FSC-W histogram to check the threshold and FSC-

H vs FSC-A to select cells that were clustered diagonally) were implemented to exclude doublets 

that were considered as single cells. The CD29 vs CD45 plot was used to separate CD29+CD45+ 

hematopoietic cells from CD29+CD45- non-hematopoietic cells. For the hematopoietic cells, 

CD45+His48+ cells were selected as neutrophils and were further verified using a 

His48+CD11b/c+ gate, and macrophages were identified by using CD106-CD44H+ and His48-

CD68+ gates. In the case of non-hematopoietic cells, CD106 was used to distinguish 

CD29+CD106+ endothelial cells from CD29+CD106- fibroblasts. Endothelial cells and 

fibroblasts were then confirmed by using CD44H+CD106+ and CD29+CD105+ gates, 

respectively. CD68 and CD11 were used together to distinguish between two subtypes of 

macrophages, namely M1 (CD11b/c++CD68++) and M2 (CD11b/c+CD68+). In addition, FSC-A 

was used to separate fibroblast subtypes based on the cell size: CD105+FSC-A+ as fibroblast Type 

I and CD105+FSC-A++ as fibroblast Type II. 
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Figure 2.4. Verification of Gating Strategy. (A) Various plots were used for verification: (i) 

Original plot, (ii) Smoothing curve, (iii) Contour plot, (iv) Density plot, (v) Zebra Plot and (vi) 

Histogram. (B) Backgating for neutrophils. This dataset is the same as that shown in Figure 2.3. 

Here, the final gated population is overlayed on each gating step as red dots on the dot plot. 
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Figure 2.5. Percentage of each cell type over time in Panel A and B with gating method. 

Behaviour of four cell types in two different panels: (A) Panel A and (B) Panel B. (C) 

Combination of two panels listed above in one curve.   
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Figure 2.6. Cell Subtypes Analysis. (A) Macrophages Subtypes M1 and M2. (B) Fibroblast 

Subtypes Type I and Type II. 

 

  



46 
 
 

 

2.11 SUPPORTING INFORMATION 

S2.1 Table: Laser configuration of FACSAria II and Preconjugated primary antibody-

fluorochrome list for Panel A. 

Marker Fluoroc

hrome 

Bandpass 

Filter 

(nm/nm) 

Excitation 

(nm) 

Fluorescence 

Emission 

Color 

Description Company / 

Catalog 

Number 

CD11b/

c 

FITC 530/30 488 Green Mouse Anti-

CD11b/c equivalent 

antibody [MRC 

OX-42]  

Abcam/ 

ab112170 

CD29 PE-Cy7 780/60 488 Infrared Anti-mouse/Rat 

CD29 (Integrin beta 

1) 

eBiociences/ 

25-0291 

CD44H APC-

Cy7 

780/60 633 Infrared Anti-Rat CD44H 

APC-eFluor 780 

[OX49] 

eBiosciences

/ Custom 

order 

CD45 PerCP-

Cy5.5 

695/40 488 Far Red Mouse Anti-rat 

CD45 Antibody 

[OX-1] 

Biolegend/ 

202220 

CD68 PE-

Texas 

Red 

610/20 488 Orange Mouse Anti Rat 

CD68 RPE-Texas 

Red [ED1] 

AbD 

Serotec/ 

Custom 

order 

CD105 PE 575/26 488 Yellow Rabbit Anti-

CD105/Endoglin 

polyclonal antibody 

BIOSS/ bs-

4609R-PE 

CD106 Brilliant 

Violet 

421 

450/50 405 Blue Mouse Anti-rat 

CD106 [MR106] 

BD/ Custom 

order 

His48 APC 660/20 633 Red Anti-Rat 

Granulocyte 

Marker [HIS48] 

eBiosciences

/ Custom 

Order 

Cell 

Viabilit

y Dye 

AmCya

n 

525/20 405 Green Fixable Viability 

Dye eFluor® 506 

eBiosciences

/ 65-0866-14 
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S2.2 Table: Laser configuration of FACSAria II and Preconjugated primary antibody-

fluorochrome list for Panel B. 

Marker Fluoroc

hrome 

Bandpass 

Filter 

(nm/nm) 

Excitation 

(nm) 

Fluorescence 

Emission 

Color 

Description Company / 

Catalog 

Number 

CD31 APC 660/20 633 Red Anti-Rat CD31 

(PECAM-1)  

[TLD-3A12] 

eFluor 660 / APC 

eBiosciences/ 

50-0310 

CD45 PerCP-

Cy5.5 

695/40 488 Far Red Mouse Anti-rat 

CD45 Antibody 

[OX-1] 

Biolegend/ 

202220 

CD90 FITC 530/30 488 Green Mouse Anti- Rat 

THY1 / CD90 

[HIS51] 

LSBio/ LS-

C105942 

CD163 PE-Cy7 780/60 488 Infrared Mouse Anti Rat 

CD163 [ED2] 

AbD Serotec/ 

Custom order 

His48 PE 575/26 488 Yellow Anti-Granulocytes 

antibody [HIS48] 

eBioscience/ 

12-0570 

Cell 

Viabilit

y Dye 

AmCya

n 

525/20 405 Green Fixable Viability 

Dye eFluor® 506 

eBiosciences/ 

65-0866-14 
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S2.3 Table. Flow Cytometry Results. The numbers were calculated by gating analysis. 

Cell Panel Day 0 Day1 Day2 Day3 Day5 Day7 Week2 Week4 

Neutrophil A 1387 2063 1440 1478 465 326 435 471 

  B 1578 2314 1797 1574 560 374 451 541 

Macrophage A 887 1711 4042 1812 840 545 502 546 

  B 926 2190 4361 1969 970 626 413 642 

Endothelial Cell A 1783 487 246 420 662 471 2317 794 

  B 1896 980 206 427 513 686 2542 938 

Fibroblast A 9966 8575 3971 3856 11074 9422 7622 10403 

  B 10649 7819 3532 3824 10014 9347 11347 10129 

Fibroblast I A 7347 4726 413 1754 7018 3158 4726 4741 

  B 7509 3699 491 1862 6083 2833 7145 4190 

Fibroblast II A 2619 3849 3558 2102 4056 6264 2896 5662 

  B 3140 4120 3041 1962 3931 6514 4202 5939 

Macrophage M1 A 406 1352 3729 1502 652 306 274 204 

  B 607 1775 3915 1480 800 405 312 296 

Macrophage M2 A 473 359 313 310 188 238 229 344 

  B 319 415 446 489 170 221 101 346 

Total A 19420 15250 12757 19254 20089 15064 17216 16307 

  B 19136 15212 12799 18404 19700 15230 17235 16467 
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S2.4 Table: Percentages of the cell population of two independent animal pools on Day 2 

following vocal fold surgery. 

Cell Type Pool 1 Pool 2 

Neutrophil 11.29 11.84 

Macrophage 31.68 32.82 

Endothelial Cell 1.93 2.01 

Fibroblast 31.13 32 

Fibroblast I 3.24 3.07 

Fibroblast II 27.89 28.93 

M1 Macrophage 29.23 30.4 

M2 Macrophage  2.45 2.42 
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CHAPTER 3: SENSITIVITY ANALYSIS, CALIBRATION AND 

VALIDATION OF VOCAL FOLD AGENT-BASED MODELS 

 

 

 
 

3.1 PREFACE 

In Chapter 2, a multi-parametric flow cytometry study was conducted to identify and enumerate 

four cell populations, namely neutrophils, macrophages, fibroblasts and endothelial cells in rat 

vocal folds following surgical injury. In this study, results from Chapter 2 were used to expand 

existing agent based models of vocal fold injury and repair (VF-ABM).  The cellular outputs of 

VF-ABM were calibrated using empirical flow data from Day 1, Day 2, Day 3 and Day 5, and 

validated using time-points of Day 7, Week 2 and Week 4. The model sensitivity analysis and 

calibration were implemented using Random Forests and SPOTPY (Statistical Parameter 

Optimization Tool for Python), respectively. VF-ABM were validated using 95% confidence 

intervals to estimate corresponding accuracies in predicting each cell population. My contributions 

towards this manuscript include development of theoretical concepts, design of experiment, 

literature review, development of algorithms for sensitivity analysis, implementing Random 

Forests, data curation, developing three strategies for model calibration and validation, agent based 

model calibration using SPOTPY, statistical evaluation of model, and writing of manuscript. 
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3.2 ABSTRACT 

Agent based models of vocal fold injury and repair  (VF-ABM) were developed to numerically 

simulate the cellular and molecular dynamics involved in surgical vocal fold injury and scarring. 

The aim of this study was to improve the biological representation of VF-ABM through sensitivity 

analysis, model calibration and verification. Empirical data of vocal fold cell populations were 

obtained using flow cytometry up to four weeks following surgical injury. Random Forests were 

used as a sensitivity analysis method to identify parameters that were most influential to ABM 

outputs. Statistical Parameter Optimization Tool for Python (SPOTPY) was used to calibrate those 

parameter values to match the simulation data with the corresponding empirical flow cytometry 

data. Three variations of calibration strategies were used and prediction accuracies of cellular 

outputs were obtained. The ABM predicted outputs were considered accurate if the empirical data 

points fell within the 95% confidence intervals of simulated outputs. Cell population quantities 

were calculated for Day 7, Week 2 and Week 4 respectively. Predicted cell populations were 100% 

accurate for Day 7. Although the trends of simulated cell populations were qualitatively 

comparable to those of the empirical data for Weeks 2 and 4, the empirical data values fell outside 

of the 95% statistical confidence intervals. 

3.3 INTRODUCTION 

Agent based computational models (ABM) have been used to simulate complex system dynamics. 

The basic framework of ABM consists of agents and agent-rules. Agents are decision-making units 

that interact with other agents and the environment. Agent-rules are formulated to control the 

action and decision of agents in the virtual world [67]. ABM have been widely applied to ecology, 
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economics, geography, business, political sciences and social sciences [210, 211]. Apart from those 

applications, ABM were also developed to understand complex acute and chronic diseases such as 

diabetes, traumatic brain injury, spinal cord injuries, acute liver failure and sepsis [41-45]. Owing 

to a large number of interacting components in biological systems, the conventional experimental 

approach of studying one isolated cell or molecule is not sufficient to understand the complexity 

of biological systems. Conventional experimental approaches have generated much useful 

knowledge and information about individual components of biological systems [48, 49]. The 

challenge is to connect these datasets in comprehending the complex dynamics of these systems 

[49]. In particular, the reductionist approach is limited to illuminate the mechanisms of interaction 

between individual components in deciphering the biological complexity [48]. For example, 

enzymes in a specific molecular pathway are often analyzed in isolation. Catalytic reactivity for 

these biological catalysts (enzymes) is however emerged from complex and dynamic interactions 

among various components (e.g., reactants, substrates, products etc.) of the targeted pathway [50]. 

Thus, the aggregated dynamics of these interactions are not intuitive and cannot be conceptualized 

by investigating each enzyme individually [50]. 

Systems biology provides an alternative method of investigation of investigating the 

aggregated activity of individual biological components at a systems level. In other words, systems 

biology focuses on the comprehension of how a process, a cell, a group of cells, or an organism 

act as a whole [51]. The main tool in systems biology is computational modeling and simulation. 

For example, system biology has been utilized for creating simulations of signalling pathways, 

transcription networks, metabolic processes and physiological processes, biochemical 

mechanisms [49]. Systems biology can be used to quantify the interrelationships (structure or 
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organization) and interaction (behavior or dynamics) between biological components and provide 

insights into developing a deeper mechanistic understanding of complex biological processes [52]. 

Systems biology does not only emphasize on the quantification of interactions between 

components, but also has potentials for reproducing emergent properties of a system. ABM, for 

instance, have been used widely as a tool of systems biology to simulate emergent behavior that 

may not be possible through other simulation approaches. In ABM, the emergent behavior is 

resulted from the interactions between individual components (agents) that is not programmed by 

users [53].  

In addition, experimental/ research hypotheses can be tested using computational models, 

i.e., running silico experiments. The simulation results can then be validated by in vivo or in vitro 

empirical experiments [52, 54]. In the application of biomedical science, computer models can be 

used to numerically simulate individual treatment response of a disease as a function of patient 

profile [55]. In the era of personalized/ precision medicine, computational models have become an 

indispensable tool to integrate different forms of patient data (e.g., demographics, clinical, lifestyle 

etc.) and generate specific disease phenotypes or cohorts for in silico clinical trials [56, 57].  

Model calibration is an important step to ensure a sufficient authenticity of model 

representation to the real world. Model calibration involves systematic alterations of the values of 

parameters in the model iteratively until the simulated outputs and the observable behavior of the 

system are as close as possible. Some common parameter estimation methods for ABM calibration 

have been reported to reduce the uncertainty of the model (Table 3.1). The pattern-oriented 

approach is used to estimate parameters by comparing observed trends and patterns in the model 

with empirical data [212-214]. For complex models having a large number of parameters, this 
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approach has been limited to the identification of relevant patterns for identifying hidden 

information [214]. The particle optimization (PSO) algorithm is a heuristic optimization method 

that is more suitable for computational models with a large number of parameters [215, 216]. The 

PSO investigates the mutual collaboration between particles for sharing the internal information 

and reduce parameter space by discarding implausible inputs [215, 216]. Since PSO has a low 

convergence rate in the iterative process, it is not ideal for ABM which require over thousands of 

iterations for each simulation [216]. Genetic algorithms (GA) are another heuristic optimization 

method that use a natural selection process to estimate as many as possible solutions 

simultaneously [217, 218]. In GA, the model parameter values are progressively modified using 

genetic operators namely mutation and crossover, to optimize the model’s fitness in predicting the 

empirical data [217, 218]. One limitation of GA is parameter overfitting and variation in the results 

for each run [218]. Other existing tools for parameter estimation in ABM include parameter 

sweeping, Bayesian approaches, greedy algorithms and regressions, hybrid approaches and 

nonlinear multi-grid/finite difference methods. These methods are often notably expensive in terms 

of computing resources and are not ideal for biological models at large scales [219-223]. 

 When the model has a large number of parameters with unknown values, model calibration 

can also be computationally expensive. The parameter search space scales up with the number of 

parameters in the model [224, 225]. Lengthy simulation times, ambiguities in model design and a 

large number of unknown parameters can also limit the efficiency of model calibration [226]. 

Sensitivity analysis is thus required to reduce the number of parameters before model calibration. 

Sensitivity analysis is a statistical technique to explore the variability of model outputs by 

systematically varying the input parameters. Multiple sensitive analysis methods have been 
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reported for ABM [227, 228]. The most common techniques are One Parameter At a Time (OPAT), 

Fourier Amplitude Sensitivity Test (FAST) regression-based methods and variance-based methods 

[227, 229, 230]. These methods, however, are often computationally expensive or unreliable for a 

large number of agents or they require excessive numerical simulation times [227, 229-232]. One 

alternative option for sensitivity analysis is therefore needed for running large-scale ABM with 

long-time scale simulations. 

3.4 VF-ABM Development and Implementation 

Vocal fold agent-based models (VF-ABM) were developed to numerically simulate the 

inflammatory and healing process following a surgical injury at a physiological scale [59-66]. VF-

ABM were evolved on a computer node with two NVIDIA Tesla P100 12 GB Graphics Processing 

Units (GPUs) and two Intel E5-2683 v4 computer processing units (CPUs). GPUs were mainly 

used for running the chemical diffusion component of the model and implementing the 

visualizations of the simulations Open Graphics Library (OpenGL). The model was implemented 

in the object-oriented programming language C++ and Open Multi-Processing (OpenMP) for 

parallel computing [64-66].  

The dimensions of the VF-ABM correspond to the physiological size of rat vocal folds, 

since most of the empirical data were available for this animal model [16, 20, 21, 31, 99, 110, 

233-238]. The model size and configuration details are summarized in Table 3.2. Agent-rules of 

VF-ABM were formulated based on reported mechanisms in the vocal fold wound healing 

literature [18-20, 70, 71] (Table 3.3). Each time-step (or tick) corresponds to approximately 30 

minutes of “real time” (Algorithm 1). A detailed description of VF-ABM can be found in [64]. In 
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brief, VF-ABM were composed of: (1) cells (platelets, macrophages, neutrophils and fibroblasts), 

(2) extracellular matrix (ECM) substances (collagen type I, elastin and hyaluronic acid (HA)) and 

(3) chemical mediators (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-10 

(IL-10), interleukin-6 (IL-6) interleukin-8 (IL-8), basic fibroblast growth factor (bFGF), and 

transforming growth factor (TGF-β1)). Based on initial inputs of initial wound size, the model was 

used to predict the post-injury trajectories of inflammatory cytokines and ECM markers in surgical 

vocal fold injury [63]. Partial calibration and validation were performed with vocal fold biological 

data [18-20, 70, 71]. However as quantitative data on vocal fold cellularity were limited, the 

cellular data have not been fully calibrated and validated in current VF-ABM. 

3.5 STUDY OBJECTIVES 

The objectives of this study were 1) to implement sensitivity analysis of VF-ABM and identify 

key influential parameters in the model, and 2) to calibrate and verify the cell number outputs of 

VF-ABM with empirical vocal fold cell population data from flow cytometry. 

3.5.1 Vocal Fold Cell Population Data 

Multi-parametric flow cytometry using up to 11 parameters were used to identify and enumerate 

neutrophils, macrophages, endothelial cells and fibroblasts in surgically injured rat vocal folds up 

to 4 weeks post-injury. Distinctive cell populations were identified using bivariate gating. The 

percentage of specific cell populations from the total population were calculated [237]. Based on 

the empirical data, an influx of neutrophils, macrophages, endothelial cells and fibroblasts was 

observed one day, two days, two weeks and one week post-surgery, respectively. Fibroblasts were 

the dominant cell type in both injured and uninjured rat vocal folds. In addition, subtypes of 
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macrophages and fibroblasts, putatively corresponding to classically and alternatively activated 

macrophages and to typical fibroblasts and myofibroblasts, appeared to show distinct patterns of 

temporal changes in surgical vocal fold repair [29, 30, 84, 152, 169-171, 175-177]. 

3.6 SENSITIVITY ANALYSIS, MODEL CALIBRATION AND VALIDATION 

In this study, Random Forests and Robust Parameter Estimation (ROPE) were used for sensitivity 

analysis and model calibration respectively. The goal of sensitivity analysis was to determine the 

influence of model parameters on the ABM outputs in order to select the most important 

parameters and reduce the number of parameters for calibration. Random Forests were chosen as 

sensitivity analysis method because it does not require many samples for the implementation and 

thus makes the computational cost feasible for the notable scale of VF-ABM. ROPE was selected 

for VF-ABM calibration because it accelerates the calibration process by iteratively using 

information from previous simulations to estimate the outputs of subsequent ones [239, 240]. 

3.6.1 SENSITIVITY ANALYSIS  

The Random Forests algorithm was used to perform the sensitivity analysis in this study (Figure 

3.1). Random Forests are a machine learning procedure that has been employed for the 

quantification of parameter importance and parameter selection [241-243]. This method has been 

used for ecological, biological and disease models [244-249]. It can handle high dimensional data, 

thousands of input variables, complex parameter interaction, and missing data [250].  

Random Forests use an ensemble method with decision trees that are constructed using 

bootstrapping [251]. To split the node on any variable (or parameter) within a tree, the GINI 
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impurity criterion (GINI Index) is used [252, 253]. The GINI Index for two descendent nodes 

should be less than that of the parent node. A node is split if the change in GINI Index is significant 

[226] 

∆𝒊(𝒕) = 𝒊(𝒕) −  
𝑵𝑳

𝑵
𝒊(𝒕𝑳) −  

𝑵𝑹

𝑵
𝒊(𝒕𝑹).          Equation 3.1 

where, tL is the node on the left, and tR the node on the right, NL is the number of samples on left 

node and NR is the number of samples on right node. The importance of any variable (or parameter) 

is determined by Mean decrease GINI, given by [226] 

𝑰(𝑷) =  ∑ ∑ ∆𝒊𝑷 (𝑵, 𝑻)𝑵  𝑻 .              Equation 3.2 

The mean decrease GINI (I) for a parameter (P) is evaluated by adding up the weighted GINI 

indices (i) for all nodes (N) where parameter P is used (averaged over all trees T in the forest) 

[252]. This quantity indicates how often a parameter P was selected for a split and provides a 

relative ranking of the parameters. 

To find the suitable number of iterations, n for our sensitivity analysis, pilot tests were 

implemented with n = 3000, 4000, 4500, 5000, and 5500. It was observed that after 4500, the top 

three parameters for each cell type and time-point were identical and thus n=5000 was chosen for 

this study. Global sensitivity analysis was then implemented independently for the first four time-

points (Day 1, Day 2, Day 3 and Day 5) as these time points would be used for the subsequent 

calibration.  

The R package RandomForest was implemented in our computations (Algorithm 2) [254]. 

The user setting was set as (1) Number of Input parameters = 213, (2) Number of Output 
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Parameters = Neutrophils, Macrophages, or Fibroblasts and (3) Number of Samples/ Number of 

Iterations of Model = 5000. The ranking of parameter importance was then obtained by sorting the 

parameters according to their Mean Decrease GINI (Figure 3.2, S3.1, S3.2 and S3.3).  

3.6.2 MODEL CALIBRATION  

The Statistical Parameter Optimization Tool for Python (SPOTPY) package was used for 

parameter calibration [239]. The SPOTPY package has a library of algorithms and objective 

functions for model calibration and validation. The overview of SPOTPY calibration is shown in 

Algorithm 3. The algorithm has five major steps: (1) Sampling, (2) Simulation, (3) Evaluation, (4) 

Objective Function and (5) Parameter Estimation. Sampling was implemented for the most 

important parameters based on the sensitivity analysis using a uniform distribution and a 

predefined range. After sampling was done, the simulation was evolved with the generated 

parameter set using the sampling function and the output was stored as simulated data. The 

empirical flow cytometry data was then added as evaluation data. An objective function was then 

used to estimate the performance of the model for that given parameter set. The root mean square 

error (RMSE) was then used as the objective function, which determines the fitness of simulated 

data to evaluated data. RMSE is given by 

𝑹𝑴𝑺𝑬 = √𝟏/𝒎 ∑ (𝒆(𝒊) − 𝒔(𝒊))𝟐 𝒎
𝒊                                                            Equation 3.3 

Here, e(i) is evaluated data, s(i) is simulated data and m is the total number of parameters. 

Lastly, the Robust Parameter Estimation (ROPE) algorithm was used for parameter 

optimization based on the concept of data depth [239]. The principle of ROPE is to identify a set 
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of parameter vectors with the high model performance and subsequently generate a set of 

parameter vectors with high data depth with respect to the first set [239, 240]. Instead of requiring 

thousands of random parameter sets, ROPE uses the results from the previous simulation as 

knowledge to define the parameter sets for the subsequent simulations. ROPE is recommended 

when the model requires parallel computing and the simulations are expensive, as the case of VF-

ABM herein [239, 240]. The top 10% results are used to generate the next parameter sets. After 

estimating the best set of parameters, the algorithm repeats the sampling again. This time, the 

algorithm uses parameter sets learnt from previous runs to determine the parameter set for next 

run. The procedure repeats either until the defined number of iterations is reached or the RMSE 

reaches zero. 

In the present study, three variations of model calibration were evaluated (Figure 3.3 and 

Figure 3.4). In all cases, flow cytometry data from the first four time-points (Day 1, Day 2, Day 3 

and Day 5) was used and the VF-ABM was run 800 times iteratively for each calibration step. The 

number of important parameters determined by Random Forests were varied in these three 

strategies. For Strategy 1, the top three parameters for each cell type for each time point were used 

to proceed for calibration (Table 3.4). Hence, a total of 36 top parameters were ranked for each 

cell type at each time point (3 parameters x 3 cell types x 4 time points). Since same parameters 

were passed to each of these 12 categories (3 cell types x 4 time points) for sensitivity analysis, 12 

of 36 parameters were overlapped across conditions. As a result, a set of 24 unique parameters was 

calibrated iteratively with all other parameters being fixed as constants until the model eventually 

yielded a satisfactory match between simulation data and empirical data. All four time points (Day 

1, Day 2, Day 3 and Day 5) were first calibrated for each cell type individually and calibrated 
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values of parameter sets for each cell type were determined. Subsequently, a new parameter range 

was reduced to 10% of its original range close to the calibrated value and was then re-entered 

manually in SPOTPY. The modified range for a particular parameter was estimated using 

𝑴𝒊′ = {
𝑪 −  𝟎. 𝟏 × (𝑴𝒂 − 𝑴𝒊), 𝒊𝒇 [𝑪 −   𝟎. 𝟏 × (𝑴𝒂 − 𝑴𝒊)]  >  𝑴𝒊

𝑴𝒊, 𝒊𝒇 [𝑪 −   𝟎. 𝟏 × (𝑴𝒂 − 𝑴𝒊)]  <  𝑴𝒊
    Equation 3.4 

𝑴𝒂′ = {
𝑪 +  𝟎. 𝟏 × (𝑴𝒂 − 𝑴𝒊), 𝒊𝒇 [𝑪 +  𝟎. 𝟏 × (𝑴𝒂 − 𝑴𝒊)] <  𝑴𝒂

𝑴𝒂, 𝒊𝒇 [𝑪 +  𝟎. 𝟏 × (𝑴𝒂 − 𝑴𝒊)] >  𝑴𝒂
                    Equation 3.5 

where, Mi’ and Ma’ are new minima and maxima, Mi and Ma are old minima and maxima and C 

is the calibrated value of the parameter. The parameters were then recalibrated again using the 

modified range with ROPE. 

For Strategy 2, the workflow was similar to that of Strategy 1 but with no manually 

modified parameter ranges and recalibration (Figure 3.3 and Figure 3.4, Table 3.5). Strategy 2 

was chosen for evaluation because this approach is commonly reported in the literature [219-223]. 

For Strategy 2a, the same set of 24 parameters was used as those of Strategy 1, representing the 

top three parameters for each cell type at each time point from the sensitivity analysis. For Strategy 

2b, the top 5 parameters for each cell type across all time points were subjected to calibration.  

3.6.3 MODEL VALIDATION 

For model validation, the calibrated model was evaluated statistically for its accuracy in predicting 

cell counts at the Day 7, Week 2 and Week 4. Given ABM’s stochastic properties, the model was 

run 100 times up to Day 28 to generate a representative data set for statistical evaluation. The 

means and standard deviations of model outputs for each cell type were computed at each time-
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point. A 95% confidence interval was computed for each cell type from the simulations using [62, 

63, 255] 

𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 𝑰𝒏𝒕𝒆𝒓𝒗𝒂𝒍 =  µ ±  𝒛 × (𝝈/√𝒏)                                      Equation 3.6 

Here, µ is the mean value of a predicted cell type, z is value on the standard normal curve with 

area (1-α) between –z and z, σ is the standard deviation of a predicted cell type and n is the number 

of simulations. The VF-ABM-predicted outputs would be considered accurate if the empirical 

results for a given cell type fall within the 95% confidence interval (α = 5% = 0.05; z = 1.96) of 

the simulation outputs. 

3.7 RESULTS 

Random Forests were used to quantify the variance contribution of influential parameters to model 

outputs. Mean decrease GINI was used to rank the parameters from most influential to least 

influential. Figure 3.2 shows the 25 most influential parameters for each cell type at Day 1, with 

information on the associated biological functions. Rankings of all other model parameters across 

days are available in the Supplementary Information (S3.1, S3.2, S3.3, S3.4, S3.5, S3.6 and S3.7). 

Parameters related to cytokine synthesis, cell activation, ECM synthesis and cell recruitment 

(sprouting amount) were found in most of the top 25 parameters across all cell types and time-

points. For Strategies 1 and 2a, 45.83% of parameters used (11/24) were related to sprouting 

amount and sprouting frequency. For Strategy 2b, 66.7% of parameters (10/15) were related to 

sprouting amount and sprouting frequency.  

The simulated trajectories of cell populations were different depending on the calibration 
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method. The VF-ABM has reproduced the most approximated dynamics of all cell populations 

from the empirical data between Day 1 to Week 4 (Figure 3.5 and Figure 3.6) with Strategy 1. For 

neutrophils, the peak was delayed by one day. Macrophage predictions reached a maximum 

concentration on Day 2, in contrast to Day 1 in the data. For fibroblasts, the model predicted the 

peak at the correct time point on Day 2 but did not resemble the oscillation pattern as observed in 

the empirical data. Although Strategy 2a best predicted the neutrophils peak, Strategy accurately 

predicted peaks for other cell types. On the other hand, Strategy 2b worked well for macrophages 

only.  

In addition to the overall patterns, statistical tests of 95% confidence intervals were used to 

quantitatively evaluate the prediction accuracy of model outputs. Prediction accuracy was 

calculated for each time point (i.e., Day 7, Week 2 and Week 4) based on how many empirical data 

points (i.e., counts of neutrophils, macrophages and fibroblasts) fell within the 95% confidence 

interval (α = 5% = 0.05; z = 1.96) of simulated outputs (Table 3.6). For Day 7, all empirical data 

were within the 95% confidence intervals and thus a 100% prediction accuracy (3/3) was reached 

with Strategy 1. Prediction accuracy was zero for both Strategies 2a and 2b. For Week 2 and Week 

4, all empirical data points fell outside the 95% intervals. However, when examining the data 

closely, Strategy 1 showed the closest predicted ranges to the empirical data. For example, the 

empirical cell counts for neutrophils were 180 and 214 at Week 2 and Week 4 respectively; whereas 

the VF-ABM predicted ranges were from 203.13 to 206.61 and from 208.48 to 211.84 respectively. 
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3.8 DISCUSSIONS 

In this study, VF-ABM were calibrated for Day 1, Day 2, Day 3 and Day 5 and validated for Day 

7, Week 2 and Week 4. Random Forests were implemented as a sensitivity analysis method to 

identify the most influential parameters to ABM outputs for cell populations. Sensitivity analysis 

results indicated a high influence of sprouting-related parameters on the model. In the current 

ABM, there were 20 parameters related to sprouting amount and sprouting frequency. Among 

them, 11 parameters were identified as most influential to the model output based on sensitivity 

analysis. Sprouting frequency corresponds to the rate of the cell infiltration whereas sprouting 

amount corresponds to the number of cells to proliferate within the tissue. 

In current VF-ABM, many biological activities of neutrophils, macrophages and 

fibroblasts are controlled by parameters of sprouting frequency and amount. Tissue repair process 

starts with the migration of cells into the wound area [78, 164]. Upon tissue injury, neutrophils 

transmigrate through blood capillaries to the damage site [82, 160, 164]. Neutrophils are 

responsible to clean up damaged cell and tissue debris [78, 164]. Macrophages infiltrate into the 

wound right after neutrophils. Macrophages play a key role in the transition between the 

inflammatory and proliferative phases through the release of growth factors and cytokines that 

mediate ECM synthesis of fibroblasts [82, 160, 164]. Growth factors and cytokines also stimulate 

the migration and proliferation of fibroblasts [78, 82, 110, 160]. Fibroblasts proliferate and 

synthesize ECM components for repairing the connective tissue of the wound [78, 82, 110, 160]. 

Two sprouting-related parameters, namely parameter 155 (WhSproutAmount4) and parameters 

156 (WhSproutAmount5) were used to control the amount of neutrophils. Three sprouting-related 

parameters [parameter 159 (WhSproutAmount8), 160 (WhSproutAmount9) and parameters 161 
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(WhSproutAmount10)] were used to control the amount of macrophages. Four sporuting-related 

parameters [parameter 150 (WhSproutFreq5), 162 (WhSproutAmount11), 163 

(WhSproutAmount12) and parameters 164 (WhSproutAmount13)] were used to control the 

amount of fibroblasts.  

Parameters of sprouting frequency and amount were basically used to abstract the 

transmigration of neutrophils and macrophages from capillary to mucosal tissue as well as the 

recruitment and proliferation of fibroblasts in VF-ABM. Further, the sprouting-related parameters 

for fibroblasts were also linked to cytokines, growth factors and ECM contents in VF-ABM.  

Sprouting-related parameters are thus critical to initiate and sustain cell activities of neutrophils, 

macrophages and fibroblasts during tissue repair. The ABM outputs of cell numbers are mostly 

determined by the sprouting amount and sprouting frequency of these three cell types. As cell 

numbers were used as inputs for calibration, it is reasonable that the parameters of sprouting 

amount and frequency have the strongest influence on outputs of cell numbers in VF-ABM. 

The execution of Random Forests does not require a large number of samples for running 

sensitivity analysis. This feature makes Random Forests less computationally expensive and more 

reliable for simulating long time scale models as compared to other sensitivity analysis methods 

[241-243, 250]. For example, the estimated number of samples required for Fourier Amplitude 

Sensitivity Test (FAST) is 128 × parameter number ^ 2. That is, a total of 5,766,549 samples for 

the case of VF-ABM. An estimated time of running FAST is seven years with the computer node 

of two NVIDIA Tesla P100 12 GB GPUs and two Intel E5-2683 v4 CPUs [231, 232]. FAST is 

thus not a practical option for the sensitivity analysis of VF-ABM. On the other hand, Random 

Forests required only 5000 samples for the same model. The Random Forests method requires 
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fewer samples because it uses a bootstrapping method for sampling [241-243, 256]. The 

bootstrapping method uses samples as a population and takes random samples with replacement 

from this population to build other samples [256]. Hence, Random Forests aggregate several 

possible forests built from sub-samples of original data. One limitation of Random Forests is to 

set a prior assumption of the number of trees. There is no unique way to estimate the optimal 

number of trees [257]. In this study, the number of trees was estimated by implementing Random 

Forests iteratively as a function of tree number until the sensitivity analysis results converged.  

ROPE calibration protocol was used for VF-ABM calibration and three calibration 

strategies were evaluated. These three calibration strategies were incorporated with different sets 

of parameters to determine the effect of parameter variation on calibration procedures and model 

prediction accuracy. Overall, Strategy 1 generated better resemblance and prediction accuracies 

than those from the other two strategies (Figure 3.5 and Table 3.6). Strategy 1 involved an 

additional step of parameter range modification and model recalibration. The second calibration 

was performed on a narrower and more specific parameter range. In other words, Strategy 1 

optimized the parameter value twice as compared to once in Strategies 2a and 2b. The inclusion 

of recalibration with modified narrow range and repeated calibration for a parameter notably 

increased the accuracy of model calibration. At the same time, Strategy 2 is four times less 

computationally expensive than Strategy 1. For running the calibration algorithm itself, Strategy 

1 and Strategy 2 took eight and two days respectively for VF-ABM using existing computing 

resources (i.e., two NVIDIA Tesla P100 12 GB GPUs and two Intel E5-2683 v4 CPUs). The choice 

of calibration strategies depends on the purpose of the models. Strategy 1 would be useful if the 

statistical accuracy is particularly important to the application of the models. For example, 
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identifying the type of tumor (adenocarcinoma or neuroendocrine) and its subtypes is paramount 

to prescribe the correct cancer treatment for a patient [258, 259]. Although the pathology may look 

alike, the treatments for these two conditions are completely different [258]. Subtypes of 

adenocarcinoma that are associated with mucinous cystic neoplasms would need a less aggressive 

course of treatment compared to treatments for other conditions [258, 259]. Hence, accuracy in 

differentiating subtypes of tumors is essential to determine the most effective treatment. On the 

other hand, if the purpose of the model is to match the overall dynamics of empirical data with 

simulation data and achieving statistical accuracy is not the main concern, such as bird flocking 

and consumer purchase patterns, Strategy 2 can be a viable option given its lower cost [260]. 

The overall temporal trajectories of neutrophils, macrophages and fibroblasts were found 

to be in reasonable agreement between empirical and simulated data (Figure 3.5). Despite the 

stochasticity property of ABM, the dynamic of randomness (as reflected on the error bars) was not 

notable from the simulation data (Figure 3.5, Figure 3.6 and Table 3.6). As such, current ABM 

may be limited to represent the population variations as seen in the observable data. Statistically, 

VF-ABM was accurate in predicting the empirical data for Day 7 with 100% accuracy for all cell 

counts, but not for longer time points (Week 2 and Week 4). One plausible reason could be the lack 

of empirical data for time points between Day 7 and Week 2 to train the model during calibration. 

Thus, empirical data from extra time points between Day 7 and Week 2 may be required for the 

ABM calibration. In addition, more number of parameters may need to be calibrated for better 

model performance. There was no significant difference in mean decrease GINI score of top 25 

parameters for each cell type at each time point and thus only three parameters were considered 

for calibration as first pass herein. As such, including the remaining 22 parameters in the 
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calibration might further improve the accuracy of model prediction. Current VF-ABM, however, 

were not able to reach the magnitude of neutrophils and macrophages peaks as seen in the 

empirical data. For neutrophils and macrophages, the estimation of initial parameter range for their 

sprouting frequencies (i.e., the rate of the cell infiltration when there is tissue damage) was difficult 

to define for calibration. The infiltration rates of neutrophils and macrophages were reported as a 

function of blood flow in the human circulatory system [261]. However, specific information on 

rates of blood flow and injury-induced vasodilation within the vocal fold lamina propria are not 

available to date. Such data are necessary to better simulate the transmigration of neutrophils and 

macrophages from capillary to mucosal tissue in VF-ABM. 

In addition, the VF-ABM stimulated data showed a notable discrepancy of fibroblast counts 

from the empirical trend at Week 2 and Week 4. The simulated fibroblast counts were lower than 

those of empirically observed by 1.8 and 14 folds for Week 2 and Week 4, respectively. 

Specifically, between Day 2 and Day 5, the ABM-simulated fibroblast curve was critically damped 

while the empirical curve was underdamped. Further, the ABM was not able to produce similar 

final value (Week 4) as compared to the empirical data.  Based on literature, proliferation rates of 

fibroblasts are 15.4 ± 1.1% after 4 days, 4.1 ± 0.6% after 1 week, and less than 0.5% after 2 weeks 

from rodent cardiac literature [262]. Since the proliferation rate of fibroblasts greatly depends on 

the microenvironment such as cytokine levels and ECM contents, the exact rate for vocal fold 

fibroblasts was not fully accurate given the cardiac tissue data. Additional empirical data are thus 

needed to better estimate the proliferation rates of vocal fold fibroblasts in both homeostatic and 

injurious conditions. Once the data become available, parameters related to the sprouting amount 

and sprouting frequency of fibroblasts can be revised to improve the long-term prediction of VF-
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ABM.    

In summary, future work includes extending the existing model, and further refining the 

rules and parameters that might have a significant effect on the accuracy of the model and 

strengthens the applicability of the model to the real clinical scenario. Such a system will 

substantially contribute to the advancement of vocal fold research leading to explain the 

mechanisms underlying inflammation and wound healing. Results from this study suggested the 

areas of improvements for the next generation of VF-ABM. When successfully validated, the 

model may provide insights in designing more precise treatment strategies to target specific cell 

populations and timing of application in optimizing wound healing outcomes following vocal fold 

surgery. Ultimately, the VF-ABM will contribute to the advancement of computational medicine 

in voice disorders. 
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3.10 ALGORITHMS 

 

Algorithm 1: Overview of 3D Rat VF ABM 

Procedure VFABM 

Initialization of patches 

Initialization of chemicals 

Initialization of cells 

Initialization of ECM 

Initialization of damage 

 

For each tick 

    /* Model Computation */ 

    For each Patch 

         Seed Cell Function 

         ECM Function  

         ECM Fragmentation 

    For each Cell 

         Cell Function  

    For each Chemical Type 

         Diffuse Chemical 

 

    /* Model Update */ 

    For each Patch 

         Update ECM  

         Update Patch 

         Update Chemicals 

    For each Cell 

         Update Cell 
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Algorithm 2: Random Forests in R 

Library - clusterGeneration 

Library - mnormt 

Require - randomForest 

Library - caret 

 

Number of Trees = 600 

 

X=Samples 

Y=Model Output for a time point T and cell type C 

 

Df = data.frame (Y,X) 

allX = paste ("X", 1:ncol(X),sep="") 

names(df) = c("Y", allX) 

fit= randomForest(factor(Y)~., data=df) 

VI_F = importance(fit) 

varImp(fit) 

    varImpPlot(fit, type=2) 
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Algorithm 3: SPOTPY Calibration 

Do 

{ 

     Sampling using ROPE: Generate Parameter Sets  

     Simulation: Run Model using Input Parameters 

     Evaluation: Comparing simulated results with experimental values 

     Objective Function: Determine Root Mean Squared Error (RMSE) between the 

simulations and experimental values. 

     Parameter Estimation: Return best parameter set with help of top 10% results (Using 

ROPE and RMSE) 

 

} While (Iteration < 1000 && RMSE != 0) 

 

Return best parameter set (having minimum RMSE) 

 

End 
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3.11 TABLES 

Table 3.1. Summary of Literature Showing Different Parameter Estimation Methods 

Used in Different ABM. 

Study 
Calibration 

Method 

No of 

unknown 

parameters 

Agent Based 

Model 
Summary 

Folcik et 

al., 2007 

[220] 

Parameter 

Sweeping 
87 

Basic Immune 

Simulator 

Basic Immune Simulator (BIS) was 

developed to scrutinize the 

interactions among the cells of the 

innate and adaptive immune 

systems. For calibration, parameter 

sweeping of the initial agent 

population size was implemented, 

and simulation patterns were 

compared to those stated in the 

literature. 

Grimm et 

al., 2005 

[212] 

Pattern-Oriented 

Approach 
unreported Ecology 

A pattern-oriented modeling 

approach was used for decoding the 

internal organization of complicated 

agent-based systems. 

Gallaher 

et al., 2017 

[219]  

Hybrid Approach 16 
Glioblastoma 

multiforme model 

A hybrid approach was used to 

converge on a set of parameters that 

fit bulk data and individual data. It 

also determined important 

parameters for the model and also 

those parameters which had little 

influence on the measured output. 

Hussain et 

al., 2015 

[223] 

Bayesian 

Approach 
24 

Dynamics of acute 

inflammation 

Bayesian statistical model checking, 

sequential hypothesis testing, and 

stochastic optimization were used 

for the automatic parameter 

estimation of complex stochastic 

models. 

Li et al., 

2017 [215]  

Particle swarm 

optimization 

(PSO) 

50 Immune System   

The input space of parameters was 

condensed by discarding the 

implausible input values and 

particle swarm optimization 

algorithm (PSO) was used to 

calibrate the model parameters by 

fitting the empirical data among the 

non-implausible input values.   

Moedomo 

et al., 2010 

[217] 

Genetic Algorithm  6 

Avian Influenza 

(H5N1) viruses 

mutation 

It involved the modeling of virus 

mutation which is responsible for 

Influenza Pandemic phenomena. 

Using the Genetic Algorithm, the 

chromosome solution and fitness 

values of Influenza Pandemic stages 

were specified and the maximum 

fitness values were obtained. 
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Tong et al., 

2015 [221] 

Greedy algorithm 

and Regression 
4 Immune System 

An integrated ABM regression 

model (IABMR) was developed 

having advantages of both ABM 

and differential equations (DE) 

which is capable to simulate the 

immune system at various scales, 

phenotypes and cell types. Greedy 

algorithm and Loess regression 

were employed estimating the key 

parameters of the ABM by fitting 

the experimental data set. 

Wise et al., 

2008 [222] 

Nonlinear 

multigrid/finite 

difference method 

20 

Three-dimensional 

multispecies 

nonlinear tumor 

growth  

A diffuse interface continuum 

model of multispecies tumor growth 

and tumor-induced angiogenesis 

was developed in both two and 

three dimensions. A nonlinear 

multigrid finite difference method 

with nearly optimal complexity was 

used as algorithm for the 

calibration.  
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Table 3.2. Summary of Initial Configurations of VF-ABM. 

Item Unit Size Reference 

Vocal Fold Width 
  mm 1 [233]  

patches 142  

Vocal Fold Height 
mm 1 [233]  

patches 142  

Vocal Fold Thickness 
mm 0.2 [233]  

patches 28  

Vocal Fold Epithelium Thickness 
mm 0.01 [31] 

patches 1  

Capillary Diameter 
µm 7 [234] 

patches 1  

Capillary Gap 
µm 12.89 [234] 

patches 1  

Total number of patches patches 564,592 - 

Total number of non-epi patches patches 544,428 - 

Total number of capillary patches patches 138,450 - 

Total number of tissue patches patches 405,978 - 

Simulated time-step Minutes 30 - 

Neutrophils 
µm 7 [235] 

Cells 517 [237] 

Macrophages 
µm 6 [236] 

Cells 316 [237] 

Fibroblasts 
µm 6 [235] 

Cells 3594 [237] 
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Table 3.3. Summary of Agent Rules in VF-ABM. 

Agent    Rules 

Platelets    Secrete TGF-β1, MMP8 and IL-1β to attract other cells. 

Neutrophils 

Arrive at wound site within first three days after injury. Carry out anti-bacterial 

functions and secrete TNF-α and MMP8 to attract other Neutrophils and 

Macrophages. The decline on Day 3 shows the transition from acute inflammation to 

the sub-acute and repair phases after injury. 

Macrophages 

Represent phase of acute inflammation by arriving at wound site within first three 

days with a peak on Day 2. Responsible for phagocytosis of bacteria and cell debris 

and secrete reactive oxygen species, TNF-α, TGF-β1, FGF, IL-1β, IL-6, IL-8 and IL-

10 which attract additional macrophages to wound area. 

Fibroblasts 

Dominant cell type in vocal folds. Start proliferation phase and show maximum 

concentration between Day 5 and Day 7. Play important role in wound remodeling 

and secrete TNF-α, TGF-β1, FGF, IL-6 and IL-8 to attract other cells. Deposit ECM 

proteins to repair tissue damage. 
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Table 3.4. Top Parameters Estimated by Random Forests Sensitivity Analysis.  

Time 

Point 
Cell Parameter Biological Significance 

Day 1 

Neutrophils 

156-WhSproutAmount5 
Determine the amount of neutrophil to sprout when 

damage is present 

164--WhSproutAmount13 
Determine the amount of fibroblast to sprout when 

damage is present 

39--MacCytSynth14 Cytokine Synthesis 

Macrophages 

148--WhSproutFreq3 
Frequency to sprout blood macrophage when damage 

is present 

117--FibCytSynth10 Cytokine Synthesis 

133--FibCytSynth26 Cytokine Synthesis 

Fibroblasts 

200--FibProlif0 Fibroblast Proliferation 

150--WhSproutFreq5 
Frequency to sprout fibroblast when damage is 

present 

166--FibActivat1 Fibroblast Activation 

Day 2 

Neutrophils 

156--WhSproutAmount5 
Determine the amount of neutrophil to sprout when 

damage is present 

181--FibECMsynth0 Fibroblast ECM Synthesis 

103--MacCytSynth78 Cytokine Synthesis 

Macrophages 

159--WhSproutAmount8 
Determine the amount of tissue macrophage to sprout 

when damage is present 

158--WhSproutAmount7 
Determine the amount of blood macrophage to sprout 

when damage is present 

177--NeuActivat2 Factor in Neutrophil activation 

Fibroblasts 

14--NeuCytSynth10 Cytokine Synthesis 

72--MacCytSynth47 Cytokine Synthesis 

11--NeuCytSynth7 Cytokine Synthesis 

Day 3 

Neutrophils 

156--WhSproutAmount5 
Determine the amount of neutrophil to sprout when 

damage is present 

200--FibProlif0 Fibroblast Proliferation 

148--WhSproutFreq3 
Frequency to sprout blood macrophage when damage 

is present 

Macrophages 

149--WhSproutFreq4 
Frequency to sprout tissue macrophage when damage 

is present 

160--WhSproutAmount9    
Determine the amount of tissue macrophage to sprout 

when damage is present 

103--MacCytSynth78 Cytokine Synthesis 



79 
 
 

 

Fibroblasts 

110--FibCytSynth3 Cytokine Synthesis 

51--MacCytSynth26 Cytokine Synthesis 

117--FibCytSynth10 Cytokine Synthesis 

Day 5 

Neutrophils 

156-WhSproutAmount5 
Determine the amount of neutrophil to sprout when 

damage is present 

155-WhSproutAmount4 
Determine the amount of neutrophil to sprout when 

damage is present 

153-WhSproutAmount2 
Determine the amount of neutrophil to sprout when 

damage is 0 

Macrophages 

154-WhSproutAmount3 
Determine the amount of macrophage to sprout when 

damage is 0 

159--WhSproutAmount8 
Determine the amount of tissue macrophage to sprout 

when damage is present 

149--WhSproutFreq4 
Frequency to sprout tissue macrophage when damage 

is present 

Fibroblasts 

200--FibProlif0 Fibroblast Proliferation 

51--MacCytSynth26 Cytokine Synthesis 

110--FibCytSynth3 Cytokine Synthesis 
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Table 3.5. Comparison of Parameters Used for Strategy 1 and Strategy 2.  

Cell Parameters Strategy 1/2a Strategy 2b 

Neutrophils 

156-WhSproutAmount5 ● ● 

164--WhSproutAmount13 ● ● 

39--MacCytSynth14 ●   

181--FibECMsynth0 ●   

103--MacCytSynth78 ● ● 

155-WhSproutAmount4 ● ● 

153-WhSproutAmount2 ● ● 

Macrophages 

148--WhSproutFreq3 ● ● 

133--FibCytSynth26 ●   

159--WhSproutAmount8 ● ● 

158--WhSproutAmount7 ● ● 

177--NeuActivat2 ●   

149--WhSproutFreq4 ● ● 

160--WhSproutAmount9 ●   

154-WhSproutAmount3 ● ● 

Fibroblasts 

200--FibProlif0 ● ● 

150--WhSproutFreq5 ● ● 

166--FibActivat1 ●   

14--NeuCytSynth10 ●   

72--MacCytSynth47 ●   

11--NeuCytSynth7 ●   

110--FibCytSynth3 ● ● 

51--MacCytSynth26 ● ● 

117--FibCytSynth10 ● ● 
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Table 3.6. VF-ABM Prediction Accuracies for Strategy 1 and Strategy 2. * within the 95% 

Confidence Interval. 

Cell 
Time-

point 

Empirical 

data 

95% Confidence Interval of ABM Outputs 

Strategy 1 Strategy 2a Strategy 2b 

Neutrophils Day 7 214 210.55 - 214.03* 201.25 - 204.39 583.11 - 588.69 

Macrophages Day 7 359 354.1 - 364.2* 89.38 - 92.22 152.24 - 167.62 

Fibroblasts Day 7 5751 5714.92 - 6411.98* 5288.46 - 5588.82 5046 - 5550.92 

Prediction accuracy  100% 0% 0% 

Neutrophils Week 2 180 203.13 - 206.61 203.67 - 206.45 586.11 - 591.49 

Macrophages Week 2 186 124.14 - 129.46 65.07 - 67.27 38.91 - 41.17 

Fibroblasts Week 2 3854 2097.43 - 2186.57 1871.13 - 1975.09 1746.27 - 1912.37 

Prediction accuracy 0% 0% 0% 

Neutrophils Week 4 214 208.48 - 211.84 208.09 - 211.97 600.75 - 605.69 

Macrophages Week 4 252 16.19 - 17.95 54.65 - 56.43 24.76 - 26.1 

Fibroblasts Week 4 4347 298.03 - 310.87 266.5 - 282.06 246.85 - 271.11 

Prediction accuracy 0% 0% 0% 
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3.12 FIGURES 

Figure 3.1. Flowchart of Random Forests for sensitivity analysis. Three factors were taken into 

account for sensitivity analysis namely, T trees, P input parameters and one output parameter. The 

algorithm produced categorical classes of output. It produced T trees by repeating the following 

procedure T times. It took p number of random parameters and then created and optimized a tree. 

GINI Index of all p parameters was computed for all the nodes in this tree. It was used to decide 

the further splitting of the node. After creating all T trees, mean decrease GINI was estimated for 

each parameter by aggregating the weighted GINI Index for all nodes in those trees where that 

parameter was used.  
  

Total # of Trees: T 
Total Input Parameters: P 

Output : 1 

Create Categorical Classes of Output 

Take p ⸦ P and create a tree 

Compute GINI Index of all parameters for all nodes of that tree 

Compute Mean Decrease GINI (Variable Importance Score) 
for each parameter, averaged over all trees 

Repeat T times 
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Figure 3.2. Top 25 parameters obtained by sensitivity analysis for Day 1. (A) Neutrophils. 

(B) Macrophages. (C) Fibroblasts. The biological function of each parameter is coded by the 

shade of the bar. 
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Figure 3.3. Flowchart for Calibration Strategy 1. * A total of 36 top parameters were ranked 

for each cell type at each time point (3 parameters x 3 cell types x 4 time points). However, 

twelve of them were overlapped across conditions. As a result, a total of 24 unique parameters 

were used for calibration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Agent Based Model         

(213 Parameters) 

Top 3 parameters for 

Neutrophils from each 

timepoint (Day 1, 2, 3 & 5) 

Calibrate Neutrophils 

Top 3 parameters for 

Macrophages from each 

timepoint (Day 1, 2, 3 & 5) 

Top 3 parameters for 

Fibroblasts from each 

timepoint (Day 1, 2, 3 & 5) 

Calibrate Macrophages 

Sensitivity Analysis 

(Random Forests) 

Calibrate Fibroblasts 

Recalibrate all cells and 

parameters altogether 

Modify ranges of all 24* 

parameters 
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Figure 3.4. Flowchart for comparing two versions of Calibration Strategy 2. (A) Strategy 

2a. (B) Strategy 2b. * A total of 36 top parameters were ranked for each cell type at each time 

point (3 parameters x 3 cell types x 4 time points). However, twelve of them were overlapped 

across conditions. As a result, a total of 24 unique parameters were used for calibration. 
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Figure 3.5. Comparison of cell dynamics between empirical and simulation data using (A-

C) Strategy 1, (D-F) Strategy 2a and (G-I) Strategy 2b. 
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Figure 3.6. Empirical and model-predicted trajectories of cell types using Strategy 1 
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3.13 SUPPORTING INFORMATION 

S3.1 Figure. Top 25 parameters obtained by sensitivity analysis for Day 2. (A) Neutrophils. 

(B) Macrophages. (C) Fibroblasts. The biological function of each parameter is coded by the 

shade of the bar. 
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S3.2 Figure. Top 25 parameters obtained by sensitivity analysis for Day 3. (A) Neutrophils. 

(B) Macrophages. (C) Fibroblasts. The biological function of each parameter is coded by the 

shade of the bar. 
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S3.3 Figure. Top 25 parameters obtained by sensitivity analysis for Day 5. (A) Neutrophils. 

(B) Macrophages. (C) Fibroblasts. The biological function of each parameter is coded by the 

shade of the bar. 
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S3.4 Table. Functional Classification of Parameters Ranked by Sensitivity Analysis for 

Day 1. The number represents the number of parameters for specific function based on their 

ranking. 

Cell Type Biological Function 
Parameters 

1-50 

Parameters 

51-100 

Parameters 

101-150 

Parameters 

151-213 

Neutrophils 

Cytokine Synthesis 30 34 41 33 

ECM Synthesis 6 4 2 7 

Cell Activation 6 1 1 6 

Sprouting Amount 4 3 2 5 

Sprouting Frequency 0 0 0 6 

Cell Proliferation 1 2 1 2 

Chemical Half-life 2 2 2 2 

Chemical Threshold 0 1 0 1 

Stress 1 2 1 0 

Cell Death 0 1 0 1 

Macrophages 

Cytokine Synthesis 26 33 35 44 

ECM Synthesis 9 2 3 5 

Cell Activation 5 5 2 2 

Sprouting Amount 5 3 6 0 

Sprouting Frequency 1 0 0 5 

Cell Proliferation 2 0 0 4 

Chemical Half-life 0 4 3 1 

Chemical Threshold 1 0 0 1 

Stress 0 2 1 1 

Cell Death 1 1 0 0 

Fibroblasts 

Cytokine Synthesis 36 29 36 37 

ECM Synthesis 4 3 4 8 

Cell Activation 3 4 4 3 

Sprouting Amount 1 7 3 3 

Sprouting Frequency 1 0 0 5 

Cell Proliferation 2 2 1 1 

Chemical Half-life 1 3 2 2 

Chemical Threshold 0 0 0 2 

Stress 1 1 0 2 

Cell Death 1 1 0 0 
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S3.5 Table. Functional Classification of Parameters Ranked by Sensitivity Analysis for 

Day 2. The number represents the number of parameters for specific function based on their 

ranking. 

Cell Type Biological Function 
Parameters 

1-50 

Parameters 

51-100 

Parameters 

101-150 

Parameters 

151-213 

Neutrophils 

Cytokine Synthesis 28 40 30 40 

ECM Synthesis 8 1 4 6 

Cell Activation 5 3 5 1 

Sprouting Amount 4 2 5 3 

Sprouting Frequency 0 0 0 6 

Cell Proliferation 1 2 1 2 

Chemical Half-life 2 0 4 2 

Chemical Threshold 1 0 0 1 

Stress 1 1 1 1 

Cell Death 0 1 0 1 

Macrophages 

Cytokine Synthesis 28 37 37 36 

ECM Synthesis 4 2 6 7 

Cell Activation 6 4 1 3 

Sprouting Amount 6 4 1 3 

Sprouting Frequency 0 0 0 6 

Cell Proliferation 3 0 1 2 

Chemical Half-life 1 2 3 2 

Chemical Threshold 0 1 0 1 

Stress 1 0 1 2 

Cell Death 1 0 0 1 

Fibroblasts 

Cytokine Synthesis 34 37 29 38 

ECM Synthesis 3 2 5 9 

Cell Activation 5 2 4 3 

Sprouting Amount 2 3 4 5 

Sprouting Frequency 1 0 0 5 

Cell Proliferation 3 2 1 0 

Chemical Half-life 1 0 5 2 

Chemical Threshold 1 0 1 0 

Stress 0 3 1 0 

Cell Death 0 1 0 1 
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S3.6 Table. Functional Classification of Parameters Ranked by Sensitivity Analysis for 

Day 3. The number represents the number of parameters for specific function based on their 

ranking. 

Cell Type Biological Function 
Parameters 

1-50 

Parameters 

51-100 

Parameters 

101-150 

Parameters 

151-213 

Neutrophils 

Cytokine Synthesis 32 35 30 41 

ECM Synthesis 3 1 7 8 

Cell Activation 4 7 2 1 

Sprouting Amount 3 5 3 3 

Sprouting Frequency 1 0 0 5 

Cell Proliferation 2 1 2 1 

Chemical Half-life 2 0 4 2 

Chemical Threshold 1 1 0 0 

Stress 2 0 0 2 

Cell Death 0 0 2 0 

Macrophages 

Cytokine Synthesis 35 37 32 34 

ECM Synthesis 5 5 3 6 

Cell Activation 4 1 5 4 

Sprouting Amount 4 3 3 4 

Sprouting Frequency 1 0 0 5 

Cell Proliferation 0 1 1 4 

Chemical Half-life 0 1 4 3 

Chemical Threshold 0 1 0 1 

Stress 1 1 0 2 

Cell Death 0 0 2 0 

Fibroblasts 

Cytokine Synthesis 31 36 38 33 

ECM Synthesis 7 3 1 8 

Cell Activation 2 5 1 6 

Sprouting Amount 5 2 2 5 

Sprouting Frequency 1 0 0 5 

Cell Proliferation 1 1 3 1 

Chemical Half-life 1 3 2 2 

Chemical Threshold 1 0 1 0 

Stress 1 0 2 1 

Cell Death 0 0 0 2 
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S3.7 Table. Functional Classification of Parameters Ranked by Sensitivity Analysis for 

Day 5. The number represents the number of parameters for specific function based on their 

ranking. 

Cell Type Biological Function 
Parameters 

1-50 

Parameters 

51-100 

Parameters 

101-150 

Parameters 

151-213 

Neutrophils 

Cytokine Synthesis 34 36 31 37 

ECM Synthesis 5 3 5 6 

Cell Activation 3 3 4 4 

Sprouting Amount 5 5 0 4 

Sprouting Frequency 0 0 0 6 

Cell Proliferation 1 1 2 2 

Chemical Half-life 2 1 3 2 

Chemical Threshold 0 1 1 0 

Stress 0 0 3 1 

Cell Death 0 0 1 1 

Macrophages 

Cytokine Synthesis 31 30 37 40 

ECM Synthesis 6 4 4 5 

Cell Activation 2 4 3 5 

Sprouting Amount 5 3 3 3 

Sprouting Frequency 1 0 0 5 

Cell Proliferation 1 2 1 2 

Chemical Half-life 2 4 2 0 

Chemical Threshold 1 0 0 1 

Stress 1 1 0 2 

Cell Death 0 2 0 0 

Fibroblasts 

Cytokine Synthesis 37 32 30 39 

ECM Synthesis 4 5 5 5 

Cell Activation 3 4 4 3 

Sprouting Amount 2 4 5 3 

Sprouting Frequency 0 0 0 6 

Cell Proliferation 2 2 1 1 

Chemical Half-life 1 1 4 2 

Chemical Threshold 0 1 0 1 

Stress 1 0 0 3 

Cell Death 0 1 1 0 
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CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 

Iatrogenic vocal fold scarring is one of the most perplexing complications in phonosurgery. 

Surgical injury triggers a cascade of cellular and molecular events in inflammation and healing. 

Due to the individual-specific response to injury, a computational tool could be useful to aid 

clinicians in tailoring the vocal treatment. Our research group has developed vocal fold agent-

based models (VF-ABM) to numerically simulate the inflammation and repair response to surgical 

injury [59-63, 69]. Additional empirical data, however, are needed for model calibration and 

validation to make this tool useful for clinical application.  

In particular, empirical data on the temporal dynamics of the vocal fold cell population 

were limited for the purpose of model development. In this thesis, rodent models were used to 

provide quantitative data of major cell populations after surgical vocal fold injury and repair. The 

data were then used to calibrate and validate our VF-ABM. Existing sensitivity analysis methods 

[e.g., One Parameter At a Time (OPAT), Fourier Amplitude Sensitivity Test (FAST) etc.] and 

calibration algorithms [e.g., Genetic Algorithm (GA), Particle Swamp Optimization (PSO), 

Bayesian approach etc.] are not optimal for large scale ABM as in our case herein. We thus 

proposed a new approach utilizing Random Forests and ROPE for sensitivity analysis and model 

calibration respectively. Random Forests were used as the sensitivity analysis method to identify 

most influential parameters to ABM outputs for cell populations. ROPE calibration using SPOTPY 

package was used to calibrate those parameter values to match the simulation data with the 

corresponding empirical flow cytometry data. Model calibration was implemented such that the 
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model’s simulated trajectories of cells matched observed trajectories collected from flow 

cytometry experiments on cell phenotyping in injured rat vocal folds. 

General agreement was observed when comparing the dynamics of empirical and simulated 

results qualitatively. Statistically, VF-ABM was accurate in predicting the empirical data for Day 

7 with 100% accuracy for all cell counts, but not for longer time points. Additional empirical data 

are needed to better estimate the vocal fold fibroblast proliferation at both homeostatic and 

injurious conditions in order to improve the long-term prediction of fibroblasts in VF-ABM. In 

particular, rules related to sprouting amount and sprouting frequency of cells need to be refined to 

optimize model outputs of cell dynamics at homeostatic status.  

Calibration strategy can be further optimized by using a hybrid approach. One plausible 

idea is to implement GA and ROPE simultaneously for each run, such that modified calibration 

algorithm will include both the features of genetic operators from GA and data depth from ROPE. 

As GA uses the natural selection process for estimating many possible solutions simultaneously, 

the model parameter values are progressively modified using genetic operators to optimize the 

model’s fitness in predicting the empirical data [217, 218].  The concern of GA in parameter 

overfitting and result variations might be alleviated if a combined approach with ROPE and 

Random Forests is implemented.  

In addition, ongoing research efforts continuously improve the biological representation of 

VF-ABM including fibroblast proliferation, fibroblast-to-myofibroblast transdifferentiation and 

spatial alignment of ECM fibers. Empirical research has been conducted in parallel to determine 

the effect of growth factors and mechanical stimulation on vocal fold fibroblast behavior and ECM 

organization. Results will help better estimate the production and remodeling of ECM proteins by 
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activated fibroblasts in the vocal folds. Further, comprehensive investigation related to the 

oscillating dynamics of fibroblast-myofibroblast transdifferentiation may reveal unknown 

signaling pathways and cell-ECM interactions that are specific to the microenvironment of vocal 

folds. In addition, functional studies are warranted to confirm if CD105+FSC-A++ cells behave 

as typical myofibroblasts known in the literature as indicated from our flow cytometry studies. All 

aforesaid experiments will contribute to the development of preventive and treatment strategies 

for iatrogenic vocal fold scarring, ultimately contributing to the advancement of computational 

medicine in voice disorders.   
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