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ABSTRACT

Experimental and numerical investigations of turbulent spatially-
periodic fully developed flows in straight ducts of rectangular cross
section, with interrupted-plate inserts, are presented in this thesis.

A computer code, based on a finite volume method and incorporating a
low-Reynolds-number k-e¢ turbulence model, for the simulation of two-
dimensional, steady, spatially-periodic fully developed flows in inter-
rupted-plate channels was developed, tested, and used in the numerical
investigation. The experimental work was complementary to the numerical
work. It was aimed at obtaining accurate and complete data that would
allow fair evaluation of the numerical model and lead to an enhanced

understanding of spatially-periodic fully developed turbulent flows.

Turbulent spatially-periodic fully developed flows in three differ-
ent interrupted-plate ducts, each having different plate thicknesses,
were investigated, with module Reynolds numbers in the range
5x10° < Re, < 33.5x10%. The results presented include (i) module
friction factor versus Reynolds number plots; (ii) plots of intramodular
time-mean wall static pressure distributions; (iii) plate surface
streamline photographs; and (iv) a variety of numerical results, includ-
ing plots of streamlines, and distributions of plate shear stress, wall
shear stress, axial momentum flux, axial velocities, mean turbulence
kinetic energy and turbulence Reynolds numbers. The details and impli-

cations of these results are discussed in this thesis.
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SBOMMAIRE

Cette thése présente les résultats de recherches expérimentales et
numériques sur des écoulements pleinement développées et spatiallement
périodiques dans des conduites rectilignes de section rectangulaire, dans
lesquel les sont insérées des plaques interruptrices. Un programme infor-
matique, basé sur une méthode de volume délimité et incorporant un
modéle de turbulence du type "k-¢* pour faible nombre de Reynolds , a
été développé pour la simulation des écoulemerits bidimensionnels, perma-
nents, pleinement développées et spatiallement périodiques dans des con-
duites rectilignes contenant des plaques interruptrices. La recherche
expérimentale a eu pour but d'obtenir des résultats précis permettant
une évaluation juste du modéle numérique et menant a une meilleure
compréhension des écoulements turbulents pleinement développées et spa-

tiallement périodiques.

Les écoulements turbulents pleinement développées et spatiallement
périodiques ont été étudiés dans trois conduites rectilignes contenant
des plaques interruptrices d’épaisseur différentes pour des valeurs du
nombre de Reynolds comprises entre 5x10° et 33.5x10%. Les résultats
qui sont présentés incluent: (i) des graphiques du facteur de friction
modulaire en fonction du nombre de Reynolds; (ii) des graphiques de la
distribution intramodulaire de la moyenne temporelle de la pression sta-
tique murale; (iii) des photos montrant la trajectoire de I 'écoulement a
la surface des plaques; et (iv) une série de graphiques tirés des
résul tats numériques qui monirent: les lignes de courant, les distribu-
tions des contraintes de cisaillement sur la paroi des plaques ainsi que

sur la paroi des conduites, le flux de quantité de mouvement axial, les




vitesses axiales, |’'énergie cinétique turbulente moyenne et les nombres
de Reynolds turbulents. Les détails et les implications de ces résultats

sont élaborés dans cette thése.
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NOMENCLATURE

DESCRIPTION

total flow area [= 2Hb]
minimum fiow area of a module [= (b(H - t)]
area of the flow metering cross section

total wall area of a module
[= (2L + s)b + 2(L + s)(H - t) + 2ts]

width of a rectangular flow passage

empirical constant appearing in the logarithmic velocity
profile equation (Eq. 3-29) {= 9.0 for smooth walls]

empirical constants in the k-¢ turbulence models

nominal hydraulic diameter of a module [= (4Hb/(2H + 2b)]
hydraulic diameter of a rectangular duct [= 4A/P ]
hydraulic diameter of a module {= 4(A./A,)(L+s)]

rate of dissipation of k and ¢, respectively

empirical correction terms appearing in the low-Reynolds-
number versions of the k-e¢ turbulence models

empirical functions of turbulence Reynolds numbers
in the k-¢ turbuience models

Darcy friction factor [= (-8P/dx) Dng / (%‘P GQZ)]
module friction factor based on U} and Dp

module friction factor based on Up and Dy
half-height of rectangular duct

mean kinetic energy of the turbulence velocity
fluctuations

a length scale characteristic of the large-scale
turbulent motion
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DESCRIPTION

length of ptate in interrupted-plate ducts
nondimensional value of L [= L/H]

total number of x-direction grid points
total mass flow rate in the duct
nondimensional axial momentum flux {Eq. (9-4)}
total number of y-direction grid points
fluctuating part of 5

instantaneous pressure [= P + p]

time-mean value of S

time-mean dynamic pressure

initial value of P in a module

model led forms of the rate of production of k and ¢,
respectively

contributions to P, due to shear strains and normal
strains, respectively

reference value of P
time-mean stagnation pressure

time-mean averaged value of the wall static pressure
measurements in the flow metering cross section

rate of production of k

wetted perimeter of a rectangular duct [= 4H + 2b]
nondimensional value of P {=P /(}p Uz)}
periodical ly varying part of P

Reynolds number for a rectangular duct [= p Uy Dpq ! »)
friction-velocity Reynolds number based on U, and D, 4

module Reynolds number based on Ux and D




o

s ity

8YMBOL

Rem
Rep
Re,

Rey

Spooled

sv,sv ,sk g¢

Su,Sv,8k 8¢

St

XV
DESCRIPTION

nominal module Reynolds number based on G; and Dy
plate Reynolds number based on U} and t
turbuience Reynolds number based on k and e

turbulence Reynolds number based on k and the
perpendicular distance from the wall (y)

laminar equivalent Reynolds number of Jones [54]
plate spacing

the strain rate of the fluctuating turbulence
velocities

nondimensional value of s [=s/H]
standard deviation of a sample set, i {(Eq. 6-5)}

pooled standard deviation calculated from values of §;
{Eq. 6-6)}

volumetric source terms in the U, V, k and ¢ equations,
respectively

discretized forms of Su, Sv, Sk, and S¢
Strouhal number [= 2tw/Uﬁ]
half-thickness of plate

nondimensional value of t [=t/H]
fluctuating part of u;

a velocity scale characteristic of the large-scale
turbulent motion

module friction velocity [= (8 H / p)/2]

instantaneous velocity component in the X;
(i=1, 2, or 3) direction [= U + u;]

[= U]
time-mean value of Gj

cross-sectional average value of U based on A,

resul tant velocity parallel to a wall
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DESCRIPTION

friction velocity [= {(-8P/dx H)/p}'/2]
cross-sectional average value of U based on m and A

module cross-sectional average value of U based on m and

Ac

nominal module cross-sectional average value of U based
on m/2, b and H

[= up]
{= Uz]

voltage output signal from the Barocel pressure
transducer for a measured air-tlow pressure differential

voltage output signal for a zeroed pressure reading from
the Barocel pressure transducer

[= u3]

[= Us]

[= x4}

initial value of x in a module

Cartesian coordinate directions, j= 1 to 3 (Fig. 1)
reference value of x

streamwise length of a recirculation zone

total length of a calculation domain in the x dimension
[= x;]

dimensionless normal distance from a wall [=p U, y / u]
total length of a calculation domain in the y dimension
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DESCRIPTION

modular pressure drop [per unit length]

diffusion coefficients in the momentum, k, and ¢
equations, respectively

Kronecker delta [= 0 iIf i = j; = 1 otherwise]

fixed uncertainty in voltage output signal of the Barocel
pressure transducer

random uncertainty in voltage output signal of the
Barocel pressure transducer for measurements of air-flow
pressure differentials and zeroed pressure readings,
respectively

local dimensions in the grid (Figs. 7 and 10)

local dimensions in the grid (Figs. 7 and 10)

the rate of viscous dissipation of k

von Karman constant [= 0.41]

aspect ratio of a module in the periodic fully developed
flow regime [= b/H]

dynamic viscosity of the fluid

dynamic turbulent eddy viscosity

aspect ratio of a rectangular duct [= b/(2H)]
mass density of the fluid

shear stress at the wall surface

nondimensional shear stress st the plate surface
{Eq. (9-6)}

nondimensional shear stress at the wall surface
{Eq. (9-7)}

time

frequency of vortex shedding
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SUBSCRIPTS DESCRIPTION

pertains to ducts or channels without interrupted-plate
inserts

pertains to a module in the periodic fully developed flow

regime of a duct or channel with interrupted-plate
inserts




CHAPTER I

INTRODUCTION

1.1 AIMS OF THE THESIS

The research undertaken in this thesis involves numerical and exper-
imental investigations of turbulent fluid flow in rectangular
interrupted-plate ducts, such as that shown in Fig. 1. The ducts of
interest are characterized by geometrically identical modules, as
illustrated in the cross-sectional view given in Fig. 2. At a distance
greater than about ten geometric modules downstream from the inlet
plane, the turbulent fluid flows in such ducts start to repeat identi-
cally from one periodic module to another. Attention in this thesis is
focused on such spatially-periodic fully developed flows. The geometric
paiameters and Reynolds numbers investigated in this research are simi-

lar to those found in compact heat exchangers [1-4].

The principal aims in the numerical investigation are the following:
(1) implement and test a finite volume method (FVM) applicable to
steady, two-dimensional, spatially fully developed flows in rectangular
interrupted-surface geometries; (2) study available turbulence models,
select one suitable for engineering predictions of turbulent flows in
spatially-periodic interrupted geometries, and incorporate it into the
aforementioned FVM; and (3) use the proposed FVM and turbulence model to
study the flows of interest. The experimental work is complementary to
the numerical work. It is aimed at obtaining accurate and complete data
that would enhance current understanding of spatially-periodic fully

developed turbulent flows and allow fair evaluations of the numerical

T T R



predictions. Specifically, the experiments are designed to obtain
overall friction factor versus Reynolds number results, intramodular
wall static pressure distributions, and plate surface streamline fiow

visualizations.

Rectangular flow passages with interrupted-surface configurations
are often encountered in heat transfer equipment [1-10]. One example of
such equipment is compact heat exchanger cores. These have a high ratio
of heat transfer surface area to core volume, usually in excess of
700 m?2/m3, and are characterized by high heat transfer performance,
small size, and light weight [1-3]. They are widely used in automo-
biles, aircrafts, spacecrafts, and a multitude of applications in the
power and process industries [1-3]. The high surface to volume ratios
of these heat exchangers is commonly achieved by inserting fins between
the plates in their cores. This practice often creates plate-fin flow
passages of rectangular cross section, as shown in Fig. 3. Interrupted-
surface configurations, such as the rectangular offset-fin geometry
illustrated in Fig. 4a, are among the most popular plate-fin core
designs used in compact heat exchangers. Another example of interrup-
ted-surface flow passages in heat transfer equipment is forced convec-
tion cocling of electronic equipment such as modern digital computers
and switching units used in telecommunications [5-9]. Advances in the
field of electronic component technology, coupled with the ever present
desire to enhance machine performance, has led to smalier and more pow-
erful electronic devices, or modules, being depioyed in greater densi-
ties onto circuit boards that are often closely stacked in paralitel
[6-8], as illustrated in Fig. 4b. Forced convection cooling by air or

other suitable gases, is a common means of removing the dissipated heat
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from these devices so as to ensure that critical temperature levels, for

component reliability, will not be exceeded [6-8,10].

The interruptions in the flow passages of the type of equipment
illustrated in Fig. 4 cause a continual restarting of the thermal bound-
ary layers on the heat transfer surfaces, and this leads to high heat
transfer coefficients. This enhanced heat transfer performance is, how-
ever, accompanied by pressure drops that are higher than those encoun-
tered in uninterrupted-surface configurations, due to the restartings of
the velocity boundary layers. It is necessary, therefore, to achieve
optimal designs of the interrupted-surface flow passages encountered in
such equipment. To do this, in the context of the usual multitude of
design criteria, it is imperative to develop numerical methods, and the
corresponding turbulence models and computer codes, capable of predict-
ing turbulent flow and heat transfer in such flow passages. It is also
necessary to test these numerical models and establish their capabili-
ties and limitations by conducting thorough checks of their predictions

against the resuits of well-planned and carefully executed experiments.

A longitudinal cross section of an interrupted-plate rectangular
duct is shown in Fig. 2. As was stated earlier, turbulent flows in
ducts of this kind attain a spatially-periodic behaviour after a rela-
tively short entrance region, which may extend at the most to eight
ranks of plates [11,12]. In this spatially-periodic fully developed
regime, the flow repeats itself identically in successive geometrical
modules, such as ABCDE in Fig. 2. It is possible to numerically predict
the flow in such a module directly without doing any entrance region

calculations [13,14]. Indeed, for the design of heat transfer equipment



consisting of a large number of modules, it is sufficient to know the
flow and heat trarsfer characteristics for a typical module in the peri-
odic fully developed regime. The developing flow behaviour that occurs
in the first few modules of the entrance region is relatively unimpor-
tant. It is for this reason that attention in this thesis is concen-

trated on the periodic fully developed regime.

The results of several numerical studies concerned with the predic-
tion of flow and heat transfer phenomena in periodically interrupted
geometries are available in the literature [12-23]. With the exception
of [23], all these numerical investigations are limited to laminar
flows. At the time that the research for this thesis was being com-
pleted, Ref. [23] appeared in the literature. The numerical model in
[23] was developed for the study of flows in rectangular ducts with
walls having rectangular grooves that are periodically spaced with
respect to the main flow direction. The particular form of the turbu-
lence model used in [23] had already been considered and judged not to
be the most appropriate model for the type of geometries investigated in
this research. The emphasis in this research is on studying the various
turbulence models avaiiable in the literature, incorporating one suit-
able for cost-effective engineering predictions of spatially-periodic

flows, and using it to investigate the flows of interest.

Experimental data on overall heat transfer and pressure drops in
fuil-scale heat exchanger models that incorporate interrupted-surface
geometries have been reported in the literature {1,4,24]. These data
are of direct utility in the design of specific heat exchange devices,

but they cannot be used as critical tests of numerical predictions




because they lack the necessary accuracy and local details. The results
of several laboratory investigations of fluid flow and heat transfer in
rectangular interrupted-surface flow passages are also available in the
literature [8,9,11,25-31], but there is still a severe shortage of
detailed and accurate data on local heat transfer and pressure drops in
such geometries. The experimental work presented in this thesis is an
effort to fulfill a part of this need. Attention is |imited to the
measurement of wall static pressure distributions and surface streamline
flow visualization in ducts similar to those shown in Fig. 1. Details
of the velocity and temperature fields are not within the scope of this
thesis, rather they are suggested as extensions of this work and

expected to be the subjects of future investigations.

The interrupted-surface passages that are employed in practical heat
transfer equipment can be quite complex geometrically, as shown in Fig.
4. It is very difficult to obtain accurate pressure drop and flow visu-
alization data in such passages. To obtain data suitable for enhancing
the understanding of such flows and for evaluating the capabilities of
numerical methods, however, it is not necessary to experiment with full-
scale heat exchanger cores. |t is sufficient to conduct experiments
with ducts that 2re relatively less difficu:t to construct and instru-
ment for detailed pressure measurements and flow visualization data, but
generate similar complexities in the flow as those generated by inter-
rupted-surface passages in heat transfer equipment. An example of such
an experimentally convenient flow passage is the straight rectangular
duct with an interrupted-plate insert illustrated in Fig. 1. Attention
in this thesis is focussed primarily on such ducts. They generate flow

complexities that are similar to those that would be generated in the



cores of compact heat exchangers, such as the one illustrated in

Fig. 4a.

1.2 SYNOPSIS OF RELATED INVESTIGATIONS

Numerous investigations of fluid flow and heat transfer in ducts
have been reported in the published literature. A comprehensive survey
of all these investigations is not the purpose of this section. Detailed
reviews and discussions of many of these investigations are already
available in reference handbooks and archiva!l journais. A thorough sur-
vey of studies pertaining to laminar flow and heat transfer in ducts has
been published by Shah and London [32]. Kays and Perkins [33] have pre-
sented a comprehensive survey of laminar and turbulent forced convection
in ducts. Extensive data and numerous empirical correiations for turbu-
lent flow and heat transfer in ducts have been reported by Kays and
London [1]. In-depth discussions of duct flow and heat transfer phe-
nomena can be found in textbooks by Schlichting [34], Kays and Crawforc
[35], and White [36]. The physics of turbulent flow and mathematical
models of turbulence are discussed at length in books by Hinze [37],
Tennekes and Lumiey [38], Launder and Spalding {39], and Bradshaw et al.
[40]). Details about the derivation and implementation of numerical meth-
ods that are used for prediction of fluid flow and heat transfer can be
found in publications by Patankar [41], Raithby and Schneider [42], and

Anderson et al. [43].

The application of the physical laws of fluid mechanics {o measure-
ment techniques, differential pressure measurements, and volume flow

measurements have been discussed in articles by Eckert, Blake, and
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Mattingly, respectively, in a book edited by Goldstein [44]. Pitot and
static tube techniques for measuring the flow of air in pipes of circu-
lar cross section have been described and critically reviewed by
Winternitz and Fischl [45] and Ower and Pankhurst [46]. Detailed
descriptions of some well established and commonly used methods of flow
visualization for air flows are presented in an article by Maltby and
Keating [47]. Discussions describing the importance and the methodology
of uncertainty analysis, for use in the initial planning and tinal data
presentation of engineering experiments, can be found in articles by
Kiine and McClintock [48], Moffat [49,50], Kline [51], and Abernethy et

al. [52].

The literature review in this section is limited to those investiga-
tions that were directly used in (1) the planning and definition of the
scope of this thesis, (2) the theoretical and practical considerations
used in the initial evaluation of both the numerical models and exper-
imental facility used in this work, and (3) the interpretation and dis-
cussion of results presented in this thesis. The discussion is divided
into the following subsections: fully developed turbulent flow in
straight rectangular ducts; modeiling and simulation of turbulent flows;
experimental investigations of fluid flow in interrupted-plate passages;

and numerical investigations of fluid flow in interrupted-plate passages.

1.2.1 Fully Developed Turbulent Flow in Straight

Rectangular Ducts

There have been numerous experimental studies of turbulent fully

developed flow in straight ducts of rectangular cross section. Hartnett
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et al. [53] and Jones [54] have critically reviewed many of the inves-
tigations dealing with the measurement of friction factors, including
the pioneering works of Stanton and Pannel! [55], Davies and White [56],
Cornish [57], Nikuradse [58], and Colebrook [59]. Using ducts of aspect
ratios 1, 5, and 10, Hartnett et al. [53] also conducted their own fric-
tion factor measurements for turbulent flows. |(n addition, they used
the semi-analytical method of Deisslier and Taylor [60] to calculate the
friction factor. The calculated and measured results were in agreement
for ducts having large aspect ratios. At aspect ratios ltess than 5, the
predicted values of friction factors were lower than the experimental
data, with a maximum difference of 12 percent evident for the square
duct. They also concluded that the circular tube correlations accurately
predict the friction factors for flow through rectangular ducts of any
aspect ratio at Reynolds numbers, based on average flow velocity and the

duct hydraulic diameter, between 6x103 and 5x10°.

Jones [54] has done a detailed examination of published friction
factor data for turbulent flow in rectangular ducts. Data for smooth
rectangular ducts having aspect ratios between 1 and 39 were obtained in
the literature and examined, in conjunction with his own experimental
data. He determined that at constant Reynolds number, based on duct
hydraul ic diameter, the friction factor increases monotonically with
increasing aspect ratioc. In addition, Jones concluded that the hydrau-
lic diameter is not the proper length dimension to use in the Reynolds
number to ensure s.milarity between the results for circular and rectan-
gular ducts. Instead, he proposed a modified Reynolds number, Re",
that ensured the laminar flow results for rectangular ducts of any

aspect raiio could be predicted by using the well-known result for the
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circular tube, f = 64/Re*. Jones then showed that this "laminar equiva-
lent Reynolds number”, Re", also provided good agreement between rectan-

gular and circular duct results in fully developed turbulent flow.

One of the first comprehensive investigations and discussions of
two-dimensional turbulent channel flow was done by Laufer [61]. He took
detailed hot-wire measurements of the fields of time-mean and fiuctuat-
ing quantities for turbulent flow in a straight rectangular duct,

0.127 m wide with an aspect ratio (height to width) of 12, and length to
hal f-width ratio of 86. The flow was considered to be two dimensional
and measurements were taken at three Reynolds numbers, 12300, 30800, and
61600, based on the duct half-width and the maximum mean velocity. Time-
mean velocity and axial-fluctuation measurements were made in the fully
turbulent regions and well into the viscous sublayer. Using his exper-
imental data, Laufer established the validity of his semi-analytical

predictions concerning the extent of the viscous sublayer.

It is to be noted that in this thesis, unless otherwise stated, the
use of the adjectives "mean" and "time-mean" will be used interchange-
ably to infer the temporal average of a quantity. The spatial average

of a quantity will be indicated by the use of the adjective "average".

The work of Laufer [61] was extended by Comte-Bel lot [62], who con-
ducted a detailed experimental investigation of turbulent flow in a
channel. She used hot-wire anemometry to study turbulent flow in a
straight rectangular duct of width 0.18 m, with aspect ratio of 13.3 and
a length to half-width ratio of 122. Flows at Reynolds numbers of

57000, 120000, and 230000, based on the duct half-width and average flow
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velocity, were examined. In particular, she studied the structure of
the large eddies, the probability distribution of the velocity fluctua-
tions. the local isotropy of the small eddies, the structure of the vis-

cous sublayer, and the establishment of fully developed duct flow.

The works of Laufer [61] and Comte-Bellot [62] were further ex tended
by Clark [63] who studied fully developed incompressible turbulent flow
in a 0.127 m wide channel with aspect ratio of 12 and a length to halt-
width ratio of 120. Reynolds numbers examined ranged from 15000 to
45600, based on duct half-width and maximum mean velocity. Clark used
constant-temperature hot-wire anemometry, with particular attention to
measurements well into the viscous sublayer. He used the measured mean
velocity distribution in the sublayer to estimate the skin friction

coefficient.

Hussain and Reynolds [64] also used constant-temperature hot-wire
anemometry to study fully developed turbulent channel flow in a straight
rectangular duct, 0.0635 m wide with aspect ratio of 18 and a length to
half-width ratio of 450. They obtained distributions of mean and
streamwise turbulence velocities, well into the viscous sublayer, as
well as frequency spectra and calculated eddy viscosity distributions.
In doing a detailed comparison of their results to those of Laufer [61],
Comte-Bellot [62], and Clark [63], they found some differences in near-
wall turbulence intensity distributions. Hussain and Reynolds attrib-
uted this to the fact that the increased aspect ratio and length-to-
half-width dimensions of their duct, ensured full development of the
turbulence structure: The flow was thus cioser to a true two-

dimensional fully developed turbuient channel flow than that in the
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previously mentioned investigations.

More recent detailed experimental investigations of turbulent fully
developed flow in rectangular ducts have concentrated on turbulence-
induced secondary flows in the duct cross sections. Prandt! [65] gave
some explanation of the origins of these secondary motions, but it was
not until the work of Brundrett and Baines [66] that a fairly complete
description of such flows was provided. They showed that gradients in
Reynolds stresses in the plane of the cross section were responsible for
generating streamwise vorticity. Their work included hot-wire measure-
ments of all six independent components of the Reynolds stress tensor.
From these data, they deduced that in rectangular ducts with axes chosen
parallel to the sides, it was predominantly the normal-stress gradients
that generated the secondary flows in the plane of the cross section.

In a complementary experimental work, Gessner and Jones [67] examined
several aspects of turbulent fully developed flow in a 0.203 m square
duct, with Reynolds numbers in the range 75000 to 300000, and in a
0.203 m x 0.102 m rectangular duct, with Reynolds numbers in the range
50000 to 300000. They concliuded that within the Reynolds number range
of their investigations, the secondary-fiow velocities, when nondimen-
sionaiized by either the bulk velocity or the axial mean velocity at the
duct centerline, decrease with an increase in Reynolds number. The
greatest skewness of local wall shear stress vectors was shown to occur
in the vicinity of corners where secondary flow was maximum. Finally,
through an experimental evaluation of terms in a momentum balance along
a typical secondary-flow streamline, they showed that the secondary flow
is the result of small differences in the magni tudes of opposing forces

exerted by the Reynolds stresses and static pressure gradients in planes




normal to the axial flow direction.

The studies of Brundrett and Baines [66] and Gessner and Jones [67)
were extended by Launder and Ying [68), who studied turbulence-induced
secondary flows in a straight square duct with equally roughened sides.
They showed that the secondary flow in a duct with rough sides is a sub-
stantially larger proportion of the axial flow than that in smooth-
walled ducts. With secondary velocities normalized by the friction
velocity, however, the resultant profiles for smooth-walled and rough-
walled ducts were shown to be the same, within the precision of the

measurements.

Early investigations, such as those by Laufer {61], Comte-Beliot
[62], and Clark [63], were concerned with fully developed symmetric tur-
bulent channel flow. One of the first detailed experimental! examina-
tions of asymmetric fully developed turbuleht channel! flow was done by
Hanjalic and Launder [69]. The asymmetry in the ftlow was introduced by
roughening one plate and leaving the other smooth. The rough plate to
smooth plate shear stress ratio was about 4:1. Flows at Reynolds num-
bers, based on duct halif-width and maximum mean velocity, ranging from
18470 to 76690 were investigated for channel aspect ratios of 6 and 12.
The main emphasis of the work was on establishing the turbulence struc-
ture of the flow, particuiarly in the central region where the two dis-
similar wall boundary layers interacted. In this central region, it was
found that the boundary layer interactions are characterized by strong
diffusional transport of turbulent shear stress and kinetic energy from
the rough wall region towards the smooth wall region. This can give

rise to an appreciable separation between the planes of zero shear
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stress and maximum mean velocity in the flow. They found that in
regions close to either wall, the velocity profiles became universal
when nondimensicnalized with length and velocity scales appropriate for

the particular wall region.

The work of Hanjalic and Launder [69] was extended by that of
Telbany and Reynolds [70,71]. They examined plane channel flows where
one wall of the channel could move relative to the other. This allowed
the overall stress gradient, the difference of the two wall shear
stresses divided by the distance between the walls, to be easily varied,
and its effect on the flow structure could be studied. They studied
twenty-six different fully developed flows, of both Couette and
Poiseuille type, at Reynolds numbers ranging from 10* to 10°, based on
the average flow velocity and half the distance between the two channel
walls. Measurements were taken of time-mean velocities [70], the three
components of velocity fluctuation intensities, and shear stresses [71].
From these data, they were able to develop empirical correlations to
describe the wall and core regions of such flows. !t was noted that the
turbulence structure responded to an increased stress gradient sooner
than the mean velocity distribution, and the pattern of turbulence pro-
duction changed before the intensities did. This leads to a core region
behaviour for Poiseuille type flows similar to that observed by Launder
and Hanjalic [69]: As the stress gradient increases, the locations of
the maximum mean velocity and zero shear stress shift towards the lower-
stress wall, with the shift in the location of zero shear stress being

more rapid than that of the maximum mean velocity.

In addition to the aforementioned experimental investigations, there




have been numerous semi-analytical and numerical studies of turbulent
fully developed flow in straight ducts of rectangular cross section. The
semi-analytical studies have been primarily concerned with fully devel-
oped turbulent flows in two-dimensional channels, and are based on the
so-called three-layer concept: (1) an inner, or wall, layer, where vis-
cous shear stress is dominant; (2) an outer layer, where turbulent
shear stress is dominant; and (3) an overlap, or buffer, layer, where
both are significant. Detailed discussions of such semi-analytical
studies, including the pioneering works of Prandtl, von Karman,
Millikan, Rotta, Reichardt, Deissler, Clauser, van Driest, and Spalding,
are avaifable in books by Schlichting [34] and White [36], so they will
not be repeated here. White [36] has demonstrated that friction factor
predictions based un an inner law proposed by Spaiding are in excellent
agreement with experimental data for turbulent fully developed flow in
channels, and similar predictions based on the work of Prandt! are also
qui te accurate, except at Reynolds numbers near transition. As already
mentioned, Hartnett et al. [53] have proposed a semi-empirical correla-
tion that gives the friction factor as a function of Reynolds number for
fully developed turbulent flow in square-sectioned and rectangular-

sectioned ducts. 1
Numerical studies of turbulent fully developed filow in straight
ducts of rectanguiar cross section involve the use of turvulence models

which are reviewed in the next section.

1.2.2 Modelling and Simulation of Turbulent Flows

Turbulence mode!s can be classified in several ways. Using the
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classification system adopted for the 1980-81 Stanford Conference on
Complex Turbulent Flows [72], most turbuience models can be considered
as belonging to one of six classes: (1) correlations; (2) integral

methods; (3) one-point closures; (4) two-point closures; (5) large

eddy simulations; or (6) full simulations.

Empirical correlations, such as friction factor correlations for :
duct flows can be obtained from experimental data. These can be very
accurate, but usually only for a narrow range of flow and geometrical
parameters. In addition, they are generally limited to simple cases i
involving only a few parameters. Prior to the mid 1960's, most i

"advanced" turbulence modelling of boundary layer type flows was done

using integral methods [73]. These involve the use of empirical profile
equations that allow the governing partial differential equations to be
approximately integrated in the cross-flow direction, and reduced to
ordinary differential equations in the streamwise direction. During the
last twenty-five years, however, emphasis has been on the development of
turbulence models based on the governing partial differential equations
for the turbulent flow field [73]. This approach has led to the evolu-
tion of more complex and supposedly more general approaches to turbu-
lence modelling, ranging from one-point closures to full simulation of

the governing Navier-Stokes equations.

One-point closures deal with single-point statistics of the turbu-
lent flow, such as Reynolds stresses or turbulent kinetic energy [74],
and are concerned with the solution of the time-averaged Navier-Stokes
equations. The turbuient Reynolds stresses that appear in these equations

are approximated using either algebraic models or various turbulence




transport equations. The number of differential equations solved, in

addition to the time-averaged momentum and continuity equations, is com-

monly used to categorize the various one-point closure models as being:
(1) zero-equation models; (2) one-equation models; (3) two-equation mod-

els; or (4) stress transport models [40,72,73,75,76].

Two-point closure methods involve the solution of the Navier-Stokes
equations in the spectral domain [74,77]. Direct information about tur-
bulent fength scales and knowledge of how eddies of different sizes
affect the turbulent motion can only be obtainead from multi-point
statistics. To keep the complexity of the turbulence model from becom-
ing overwhelming, it is assumed that two-point statistics will give suf-
ficient information [74]. A common practice with this type of model is
to Fourier transform the Navier-Stokes equations, and use these trans-
formations to derive the governing equations of two-point statistics in
Fourier space [74]. While this may allow more accurate and general mod-
elling of some complex turbulent flows, the resulting model is also more
complex with an increased number of unknowns compared to one-point clo-
sures [75]. A general outline of two-point closures, and their use in
the evaluation of one-point closures, can be found in an article by

Aupoix [74].

Large eddy simulation involves direct computation of the large-scale
turbulence structure, and calculation of the small-scale structure using
relatively simple models [77,78]. The rationale for this is that the
characteristics of large eddies in turbulent flow tend to vary signifi-
cantly from flow to flow, while the small eddies are more universal in

nature and therefore easier to model [77,78]. These types of simulations



17

can provide important detailed information about turbulent flows, and
this can be used to evaluate and enhance less sophisticated turbulence
models [78]. At present, however, they are still computationally very
expensive and therefore impractical for general engineering applica-
tions. Laurence [77] gives an overview of some common one-point clo-
sures and describes how the results of large eddy simulations can be

used to enhance the one-point closure models.

Direct or full simulation of the entire turbulent flow f.eld has
recently become possible using modern supercomputers. These types of
simulations are providing an important new means for studying turbu-
lence. However, because the energy at large scales and dissipation at
small scales must be resolved, very fine grids are required, and the
applications are presently limited to relatively low-Reynolds-number
flows in simple geometries such as straight rectangular ducts and chan-

nels [78].

At the present time, the one-point closure methods provide a degree
of accuracy that is acceptable for many engineering applications, with a
computational efficiency that far exceeds the more advanced turbulence
modelling methods [77]. For this reason, one-point closures are cur-
rently the most widely used class of turbulence models for engineering
predictions. Therefore, further discussion of the turbulence models
available in the published literature will be limited to the models of
this class, with particular emphasis on the most popular category, the

so-called two-equation k-¢ models [76,77].

Numerous reviews that describe and discuss the per formance of
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various one-point closure models have been published in recent years.
These include works by Launder and Spalding [39], Reynolds [73), Rodi
[75]. Bradshaw et al. [40], and Nallasamy [76]. Each pubiication criti-
cally reviews zero equation, one equation, two equation, and Reynolds
stress models, describing details and discussing advantages and disad-
vantages of the various models. |In particular, the works by Bradshaw et
al. [40], Rodi [75], and Nallasamy [76] give several axamples in order
to evaluate the predictive capability of the different models. Rodi
[(75] emphasizes applications to hydraulic flow problems, while Bradshaw
et al. [40] concentrate on external flows over wings and airfoils, and
Nallasamy [76] looks at several plane and axisymmetric two- and three-
dimensional internal fiows. In addition to these publications, at the
1980-81 Stanford conference on complex turbulent flows [79], computa-
tions were compared with carefully compiled experimental data for sev-
eral fiows of engineering interest: The majority of these computations
were based on one-point closure models, and many internal flows that

were classified as being either attached or separated were considered.

Most zero-equation, one-equation and two-equation turbulence models
are based on Boussinesq's eddy viscosity concept: Turbulent stresses
are made proportional to the mean velocity gradients. Furthermore, the
Kolmogorov relation is ussd, in which the eddy viscosity is assumed pro-
portional to turbulent velocity and length scales {40,75]. Of these
models, the zero equation models are the simplest, using an empirically
determined turbulent length scale, |,, and mean velocity gradients to
calculate the eddy viscosities [40,73,75,76]. The bigges! probiem that
arises in the use of these models is the determination of an accurate

length scale expression, for other than the simplest shear fiows. A
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transport equation for the turbulence kinetic energy, k, is solved in
one equation models, and k'/2 is assumed proportional to the turbulent
velocity scales [40,73,75,76]. The problem of calculating the turbulent
length scale, I,, still remains, however. In addition to a transport
equation for k, two equation models employ a transport equation for |,
or a variable that is a function of both k and I,. The most commonly
used equation is that for the turbulence energy dissipation rate, ¢ =
k3/2/1,, suggested by Jones and Launder [80]. Transport equations for
other combinations of k and |, have been used, but the ¢ equation has
become the most popular of these equations, because in near-wall regions
it performs better than other equations and it is also less complicated

than the other equations [75,81].

It is now well known that numerical methods based on the turbulent
eddy viscosity concept and the mixing length, one-equation, or two-
equation models of turbulence fail to predict the turbulence-induced
secondary flow in the developing or fully developed regions of straight
rectangular ducts [40,75,76]. The main reason for this is the assump-
tion of an isotropic eddy viscosity [40,75,76]. Reynolds stress modeis
have been developed in an effort to overcome this problem. In these
models, the Reynolds stresses that appear in the time-averaged momentum
equations are calculated from appropriate stress transport equations. A
brief overview of numerical methods and turbulence models that are capa-
ble of predicting turbulence-induced secondary flows in ducts of rectan-
gular cross section is available in a paper by Gosman and Rapley [82].
Reynolds stress models could require the simul taneous solution of up to
eleven coupled nonlinear partial differential equations [83]: Axial

momentum, cross-plane momentum and continuity equations account for four
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of these partial differential equations, and the other seven, which
include an equation for ¢, are required for the calculation of the
Reynolds stresses that appear in the momentum equations. In addition,
empirical inputs are still needed to invoke closure for tripie-
correlations that appear in the Reynolds stress equations. The number
of partial differential equations can be reduced by emplioying the alge-
braic stress transport mode! (ASTM), in which simplitied algebraic
approximations to the Reynolds stress transport equations are employed.
The ASTM was first derived by Launder and Ying [84] for the calculation
of fully developed flows in square ducts, and was then further developed
and analyzed by Gessner and Emery [85]: It is based on a set of approx-
imate algebraic equations that enable the calculation of the entire
Reynolds stress tensor in terms of axial velocity gradients, the turbu-
fence kinetic energy, k, and its dissipation rate, ¢. Examples of the
application of such methods to the prediction of turbulent fiow in ducts
of rectangular cross section include the works of Launder and Ying (84],
Gessner and Emery [85], Gosman and Rapley [82], Rapley [86], and

Nakayama et al. [87].

The majority of 2-D turbulent flow calculations appearing in the
literature have been done using the two-equation k-¢ model of turbulence
[76]. While this model has several |imitations, the most restrictive
being the assumption of isotropic eddy viscosity and some ad hoc assump-
tions in the derivation of the ¢ equation, it has been used extensively
in engineering calculations [75,76]. The computational cost of the k-¢
model is relatively low when compared to the more elaborate higher order
models and, in practice, it seems to give quite satisfactory results for

many present-day complex industrial applications [77]. For these
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reasons, it was decided in this work to investigate the ability of the
k-¢ model to predict periodic fully developed turbuient flow phenomena
in interrupted-surface geometries. The remainder of this discussion of
turbulence models will therefore focus on the various forms of the k-e¢

model of turbulence.

Jones and Launder [80] presented a turbulence model based on approx-
imate forms of the k and ¢ equations that Hanjalic [88] had found pro-
mising for the prediction of high-Reynolds-number fiows near to and
remote from walls. The standard, or high-Reynolds-number, torm of the
k-¢ model that is commonly used today is also based on these equations.
The phrase "high-Reynolds-number flows" refers to flows in which the
direct effect of molecular viscosity is negligible, implying that the
local turbulence Reynolds number is high. In the high-Reynolds-number
k-¢ model, there appear five constants, two diffusion constants that
relate the eddy viscosity to the turbulent diffusion coefficient for the
k and ¢ equations, a proportionality constant which appears in the
Prandt| -Kolmogorov retation for eddy viscosity, and two proportionality
constants in the ¢ equation, C,, and C, ., that appear in terms for the
production and the dissipation of ¢, respectively. The values of these
constants are determined using measurements in grid-generated turbulence
and thin equilibrium shear layers, in conjunction with computer optimi-
zations [75]. Various values of C,, and C,_ are used by different
modelers, which may be justified based on their particular form of k-e
model, but Hanjalic [81] points out that values for C,, shouid be deter-
mined only from the experimental data on the law of the decay of grid
turbulence. At walls, boundary conditions for the governing equations

are obtained in the near-wali region of the flow by using "universal*
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wall functions [75]. These wall functions relate surface boundary condi-
tions to points in the fluid outside the region next to the wall where
molecular viscosity has a direct infiuence. This removes the need to
integrate the model equations through the viscous sublayer region where,
because of the very steep velocity gradients, very fine computational
grids would be required, and result in increased computational costs

[75].

For many complex engineering flows, which include recirculating
regions, sudden changes in boundary conditions, and low Reynolds num-
bers, the wall function approach to boundary condition specitication is
not adequate. Jones and Launder [80)] extended the high-Reynolds-number
form of the k-¢ model to make provision for modelling of fiow regions
where the turbulence Reynolds number is low, such as the viscous sub-
layer region near a wall boundary. They achieved this by 1) including
the viscous diffusion of k and ¢; 2) making the eddy viscosity con-
stant, C”, and the C,, constant of the ¢ equation dependent on the local
turbulence Reynolds number; and 3) adding additional source terms, one
each to the k and ¢ equations, to allow ¢ to be set to zero at solid
boundaries for computational convenience. They applied this model to
the prediction of wall boundary-layer flows that were subjected to
strong streamwise acceleraiions so as to cause partial relaminarization
of the turbulent boundary fayer. They reported close agreement of the

predicted boundary layer development with measured behaviour.

Jones and Launder [89] also applied their k-¢ model of turbulence to
low-Reynolds-number pipe and channel flows, and wall boundary layers

with favourable streamwise pressure gradient and wall injection.
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Friction factor data and streamwise mean velocity profiles for the pipe
and channel flow showed good agreement with measured vatues in the fully
turbutent region, although transition from laminar to turbulent flow was
predicted at lower Reynolds numbers than measured values. Flows with
acceleration and blowing showed greater differences between predictions

and measurements.

Since the publication of the low-Reynolds-number k-¢ model of Jones
and Launder [80,89], several other low-Reynolds-number two-equation mod-
els of turbulence have appeared in the literature. The performance of
eight of these models has been examined by Patel et al. [90]. Their
review of each model includes a statement of the model assumptions and
an evaluation of the damping functions that were employed to account for
low-Reynolds-number and wall proximity effects. Two-dimensional incom-
pressible fluid flow calculations were performed for a flat-plate bound-
ary layer, an equilibrium adverse pressure gradient boundary layer, a
strong favourable pressure gradient boundary layer, and sink-flow bound-
ary layers. Using these results, each mode! was evaluated based on its
ability to (i) reproduce results of its parent high-Reynolds-number
model for the flows not dominated by low turbulence Reynolds numbers,
and (ii) give predictions that showed acceptable agreement with exper-
imental data for wall regions and flows where low turbulence Reynolds
numbers dominate. Based on these evaluations, Patel et al. [90] con-
cluded that the k-¢ models of Launder and Sharma [91], Chien [92], and
Lam and Bremhorst [93], and a k-w (w refers to a turbulence pseudovor-
ticity) model by Wilcox and Rubesin [94], gave acceptable performance.
Even for these four models, however, it was concluded that there is

still a need for improving the damping functions for turbulent viscosity
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and the source terms in the ¢ equation in order to obtain better agree-
ment with the experimental data in near-wall regions. In addition, it
was suggested that modificaticns to the original high-Reynolds-number

form of the models be made so as to improve their p:ediction capabili-

ties in adverse pressure gradient flows.

Launder and Sharma [91] used the low-Reynolds-number mode! of Jones
and Launder [80,89] for the prediction of swirling flows generated by a
rotating disc in a quiescent environment. The governing equations were
derived for a two-dimensional coordinate system, in the radial and nor-
mal directions. As a result of reoptimizations, minor changes were made
to the values of model constants and the form of the viscosity damping
function used by Jones and Launder [80,89]. However, it was reported
that these changes made no noticeable difference when the revised model
was used to redo some of the predictions presented in [80,89]. Launder
and Sharma [91] concluded that the basic form of the low-Reynolds-number
k-¢ model developed by Launder and Jones [80,89]) could accurately pre-

dict flow, heat, and mass transfer in the vicinity of a rotating disc.

The low-Reynolds-number k-¢ model of Chien [92] follows the same
general approach as the Jones and Launder [80,89]) model. However, the
forms of the damping functions and the additional source terms required
in the k and ¢ equations, as a result of setting ¢ to zero at solid
boundaries, are quite different. Chien used the Taylor series expansion
technique to study the behaviour of turbulent shear stress and turbu-
lence kinetic energy and its rate of dissipation near a wall. The damp-
ing function he arrived at for the turbulent viscosity is dependent on

the normal distance from the wall boundary and the focal shear stress at
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that same wall. The additional k and ¢ equation source terms that
appear in this form of the low-Reynolds-number model are also dependent
on the normal distance from the nearest wall. Chien applied his mode! to
fully developed turbulent channel flow and to flat plate boundary
layers. He reported gonu agreement with experimental measurements and
with the results of the Jones and Launder model [80,89]. However, the
calculated peak turbulence kinetic energy is closer to actual measured

values than that predicted with the Jones and Launder model.

Unlike the low-Reynolds-number k-¢ models of Jones and Launder
[80,89], Launder and Sharma [91], and Chien [92], the k-¢ model of Lam
and Bremhorst [93] sets ¢ to a calculated value at a solid boundary,
rather than setting it to zero for computational! convenience. Thus
there is no need for adding additional source terms to the k and ¢ equa-
tions. In the near-wall region, Lam and Bremhorst expressed the varia-
tion ot k and ¢ by expansion in a Taylor series. Using such an expres-
sion for ¢ and the resulting form of the k equation at a walil boundary,
they obtain a boundary value expression for e. Lam and Bremhorst aiso
postulated that the turbulent viscosiiy damping function <should be
dependent not only on the local turbulence Reynolds number but also on
the normal distance from the wall. |In addition, they assumed that the
coefficient appearing in the generation term of the ¢ equation shouid be
greater than unity near a wall, unlike the models presented in
[80,89,91,92]. This causes an increase in predicted dissipation rates
and hence reduces predicted near-wali turbulence levels, and gives bet-
ter agreemenrt with experimental data. The coefficients in the ¢ equa-
tion generation term was made a function of the viscosity damping func-

tion, and is therefore dependent on the normal distance from the wall
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boundary. Lam and Bremhorst tested their model by doing predictions of
fully turbulent, semi-laminar, and laminar regions of fully developed
pipe flow. They reported predictions that are in good agreement with
experimental data. This model also allowed the comparison of predicted
and measured ¢ values in the near-wall region. Measured near-wall ¢
values given in [37] showed as much as 45 percent disagreement with com-
puted values in [93). However, Lam and Bremhorst [95] claim that the
experimental values from [37] are approximately 1.9 times too high. They
conclude in [93] that more accurate experimental information on near-
wall ¢ profiles is needed to allow a more thorough evaluation of their

numerical results.

Patel et al. [90) used a variation of the Lam and Bremhorst model
(93] in which the gradient of ¢ is set to zero at a wall boundary. This
boundary condition is easie. to apply than that used by Lam and
Bremhorst. They reported {90] that resuits were still in good agreement

with experimental results.

Hanjalic and Launder [96] suggested a modification for the standard
high-Reynolds-number k-¢ model so that it would give more accurate pre-
dictions in both adverse pressure gradient flows and flows that exper-
ienced strong disturbances. From their initial investigations and pre-
vious studies, they concluded that the ¢ equation was the main cause of
errors in predictions of these types of flows. Hanjalic and Launder
pointed out that irrotational straining plays an important role in the
spectral transport from the 'arge energy containing eddies to the small
energy dissipating eddies. In its general form, the generation term

appearing in the ¢ equation involves both rotational and irrotational
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strain rates. To bring the irrotational strain rate term into promi-
nence, Hanjalic and Launder multiplied it by a larger empirical coeffi-
cient than the rotational term. For a plane jet, round jet, and adverse
pressure gradient boundary layers, they reported improved agreement of
calculated results, obtained using this simple modification of the ¢

equation, with experimental data.

Rodi and Scheuerer [97] examined the performance of the Lam and
Bremhorst low-Reynoids-number k-¢ modei [93] for adverse pressure gra-
dient boundary layers. They also reported unsatisfactory results for
this model in this type of flow. An analytical analysis of the log-law
region was done to show that the generation term in the ¢ equation
should be increased to give better agreement with experiments for
adverse pressure gradient conditions. Rodi and Sheuerer [97], in turn,
employed the modification of Hanjalic and Launder [96] and reported
improved predictions for both moderately and strongly decelerated bound-

ary layer flows.

When detailed calculation of the near-wall flow region is necessary,
an alternative to low-Reynolds-number k-¢ models are multi-layer near-
wall models that can be used with the standard k-¢ model of turbulence.
Examples of such models are those of Chieng and Launder [98], Amano
[99]), and Patel and Chen [100]. The basic idea behind this type of mod-
elling is that rather than model the governing transport equations
through the near-wali region, which requires a large number of grid
points, this region 1s subdivided into two or three layers, and semi-
empirical and empirical profile distributions are used to calculate flow

variables in these layers. This allows for more detailed and accurate
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near-wall modelling than the standard wall-function approach commonly
used with the high-Reynolds-number k-¢ model, especially in complex

flows.

Chieng and Launder [98] modelled the near-wall region as two layers,
a viscous sublayer and a logarithmic, or fully turbulent, layer. A par-
abolic profile distribution of k was assumed over the viscous sublayer
and a linear distribution was assumed over the logarithmic layer, where
a logarithmic profile was assumed for the velocity parallel to the wall.
The two-layer and three-layer near-wali: models of Amano [99] follow the
same approach as the Chieng and Launder model [98], except that each
term in the ¢ equation for the near-wall region was evaluated in accor-
dance with the k equation rather than approximated under local equili-
brium conditions. In Amano’'s three-layer modei, an attempt is made to
approximate experimental velocity profiles more accurately by modelling
the near-wall region as three layers: a viscous sublayer, a buffer
layer, and a logarithmic layer. Amano repcrts better results with the
three-layer model. Nallasamy [76] states that while the near-wall mod-
els in [98,100] have allowed some significant improvements in prediction
of wall heat transfer rates, the flow field predictions are not notice-

ably different from those of the standard k-¢ model.

Patel and Chen [100] and Chen and Patel [101] have developed near-
wall models that are simpler and more efficient, in some flows, than the
low-Reynolds-number k-¢ modelling approach. The computational domain is
divided into two regions, an outer region where the standard k-¢ model
is used and an inner, or wall, region comprised of the viscous sublayer,

the buffer layer, and part of the logarithmic layer. In both the earlier
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[100] and later [101] versions of the model, momentum transport equa-
tions are solved through the inner layer to the wall, and the inner-
layer eddy viscosity is determined by using a mixing length formula. In
[100], inner-layer values of k and ¢ were calculated from empirical
expressions obtained from curve fits of the data summarized in [90],
however, the transport equation for k was retained and ¢ was calculated
from a length-scale formulation for the inner layer of [101]. In [100],
Patel and Chen performed calculations of turbulent flow over the trail-
ing end and in the wake of a flat plate. They reported satisfactory
agreement with experimental data and with solutions obtained previously
using boundary layer equations, except in the far-wake region where the
rate of decay of turbulence was underpredicted. 1In [101], Chen and
Patel examined the performance of the Lam and Bremhorst low-Reynolds-
number k-e¢ model [93], their two-layer k-¢ mode! [101], and the standard
k-¢ mode! using a two-point wall function approach [100]. They carried
out calculations for test cases that included strong pressure gradients,
surface curvatures, boundary layers and wakes, viscous-inviscid interac-
tion, and separation. The two-layer modelling approach of [101], was
reported to be quite successful in resoiving the most important features
of these complex fiows and computationally less expensive and easier to
implement than the low-Reynolds-number k-¢ mocdel of Lam and Bremhorst
{93]. It was also concluded that the standard wall-function approach is
not suitable for separated flows, and its extension to three-dimensional
and unsteady flows requires additional assumptions that appear to have

no sound physical basis.

In order to further evaluate the performance of the standard k-e

model and the two-layer Chen and Patel [101] k-¢ models, Pate! and
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Richmond [102] performed a detailed numerical! investigation of the
effects of pressure gradients and surface curvatures in two-dimensional
flows. Within the extremes of laminarization and separation caused by
favourable and adverse pressure gradient flows on flat surfaces, respec-
tively, they found the performance of the two-layer mode! quite satis-
factory and superior to that of the standard k-¢ model. For flows over
curved surfaces, their results were not so conclusive: The main features
of these flows were reproduced, but the turbulent shear stress was

ei ther over or under predicted for convex or concave walls, respec-

tively.

lacovides and Launder [103] have used a “"Parabolic Sublayer" (PSL)
scheme in an attempt to simplify the modelling of the near wall region
in an elliptic turbulent flow. Next to the wall, they assume a thin
parabolic sublayer where the static pressure variation is assumed to be
negligible, or calculated from equitlibrium conditions for a curved wall.
Velocities normal to the wall are calculated using continuity require-
ments over computational control volumes rather than by solving the
respective momentum equation. Computations are reduced from that of a
low-Reynolds-number model, but a fine computational grid is still
needed. Etiminating the use of wall functions makes this approach par-
ticularly attractive for three-dimensional fiows, although its computa-
tional benefits are much reduced for compliex flows with recirculation

and separation [103].
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1.2.3 Experimental Investigations of Fluid Flow in

Interrupted-Plate Passages

The enhancement of heat transfer with fluid flow along a succession
of discrete plate segments compared to that for flow along a continuous
wall was first demonstrated by the pioneering experiments of Norris and
Spofford [104]. They dealt with air flows through actual or model heat
exchangers consisting of an array of discrete plates aligned parallel to
the flow. The discrete plates, which were fins that bridged between the
walls of the heat exchanger passages, were arranged in parallel columns,
with streamwise gaps between the plates in each column. Condensing
steam served as the hot fluid in most of these experiments. Similar
experiments with model or actual heat exchanger cores involving inter-
rupted-plate passages have also been carried out by Manson [105], Kays
and London [1], London and Shah [24], Wieting [4], and Mochizuki and
Yoshinao [106]}. The emphasis in these experiments was on overall
results. Measurements typically included air temperatures and pressures
at the inlet and exit ports of the core, the air flow rate, the steam
temperature and pressure, and the steam condensation rate. The overall
results obtained proved very useful in the design of specific heat
exchange devices [1], but they do not provide insights into the details
of the compiex flow phenomena that occur inside interrupted-plate pas-

sages.

More detailed measurements than those reported in [1,4,24,104-106]
have been conducted by Adarkar and Kays [107], Roadman and Loehrke [27],
Zelenka and Loehrke [28], Cur and Sparrow [11,25], Sparrow and Hajiloo

[26], Loehrke and Lane [29], Mullisen and Loehrke [30]), and Joshi and
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Webb [31] for flow and heat transfer in simple interrupted-plate pas-
sages, with configurations ranging from two colinear plates to a multi-

column array of plates.

The initial experiments of Cur and Sparrow [25] were performed to
determine pressure drop and heat transfer characteristics for each plate
of a two-plate colinear array aligned parallel to the air flow direction
in a flat rectangular duct having a cross-sectional aspect ratio of 5.
The plate length was kept fixed while the plate thickness and interplate
spacing were parametrically varied, and the Reynolds number was varied
in the range 1000 to 14000. The results showed that the pressure drop
increase caused by increasing plate thickness was greater than the larg-
est thickness-related increase in the Nusselt number. Cur and Sparrow
[25] also observed that the interplate gap affects the Nusselt number
for both plates, but it atfects the second plate to a greater extent

than it does the first plate.

Cur and Sparrow [11] studied heat transfer and pressure drop charac-
teristics of an array of eight colinear plates, equally spaced and
aligned parallel to the air flow in a flat rectanguiar duct with a
cross-sectional aspect ratio of 6. The thickness of the plates in the
array was varied parametrically, and the Reynolds number was also varied
in the range 1000 to 14000. It was found that the Nusselt number
increases with plate thickness: Up to 65 percent increases were
recorded in the periodic fully developed regime, which was typically
achieved before the last geometrically similar module. The presence of
the interruption was also found to augment heat transfer: In the fully

turbulent regime of Reynolds numbers, the heat transfer coefficients
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were about twice those for a conventional duct. Modular pressure drops
were also recorded., and it was determined that they increase with
increasing plate thickness. Pressure distributions were not obtained for

regions within geometrically similar modules.

Sparrow and Hajiloo [26] studied heat transfer and pressure drop
characteristics of a multicolumn array of staggered plates aligned par-
allel to the direction of a forced convection air flow. Plate thick-
nesses equal to 4, 8, and 12 percent of the plate length were used, and
the Reynolds number, based on the Kays and London definition [1], was
varied in the range 1000 to 9000. Periodic fully developed conditions
for heat transfer were achieved within a streamwise length of two
geometrically similar modules from the inlet plane. It was found that
the thicker plates gave rise to higher pressure drops and higher heat
transfer coefficients. The pressure measurements were conducted along
the length of the discrete plate array and also in the upstream and
downstream duct work. Those measurements enabled the determination of a
net per-row pressure loss coefficient and an apparent friction factor
for the array. No pressure distributions were obtained for regions
within geometrically similar modules. For the thickest plates, the
apparent friction factor was found to be essentially independent of the

Reynolds number.

Roadman and Loehrke [27] investigated the flow between a pair of
flat colinear plates at low Reynolds numbers in both water and air
flows. Their main objective was to establish the conditions for transi-
tion from steady to unsteady laminar fiow between the plates. In a

7.6 cm square cross-section water channel, hydrogen bubble and dye




-~

34

injection flow visualization experiments were performed, and measure-
ments of wake oscillation frequency and amplitude were made using a
cylindrical hot-film probe positioned near the leading edge of the sec-
ond plate. In order to extend the range of parametric variation, runs
were also conducted in a 33 cm diameter low speed wind tunnel in which
the mean velocity was uniform over the central 90 percent of the tunnel.
Hot-wire measurements, comparable to the hot-film measurements, were
made in air. Plates with streamwise length to thickness ratios ranging
from 4 to 159 were used. From their experiments, Roadman and Loehrke
[27] determined that there was a critical velocity at which periodic
oscillations in the flow between plates was first observed. This criti-
cal velocity depended strongly on platz spacing, plate length, and plate
thickness, but only weakly on the free-stream turbulence level. The
downstream plate was observed to have a noticeable influence on this

critical velocity value.

In [28], Zelenka and Loehrke obsetrved the effects of leading-edge
bluntness, plate spacing, and Reynolds number on the average heat trans-
fer from each plate of a two-plate colinear array aligned paralle! to an
air flow. Steady laminar and transitional flow regimes were investi-
gated. Each plate was heated by means of an interna! resistance heating
strip, and average plate heat transfer coefficients were calculated
using the total power dissipated, total plate surface area, and the dif-
ference between temperatures of upstream air and the plate cunter.
Zelenka and Loehrke found that the leading-edge shape of the first plate
had an effect on heat transfer from the second plate if the interplate
spacing was sma!! enough and the wake of the first plate did not become

unsteady. An unsteady wake aiiows increased mixing of the flow in the
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interplate gap before it hits the second plate, thereby diminishing
the effects of a leading-edge separation on the first plate. The heat
transfer from the second plate was often found to be greater than that

of the tirst plate.

Loehrke and Line [29] extended the work done in [27] to the investi-
gation of flow through a two-dimensional array of parallel plates
aligned with the flow direction. Flow visualization experiments were
done in water flows for both staggered and in-line arrangements of plate
arrays with streamwise plate spacing equal to streamwise plate length,
and plate spacing in the direction perpendicular to the main flow direc-
tion equal to one half the streamwise plate length. 1t was observed
that the wake behind each plate in each array became unsteady at a
Reynolds number, based on plate thickness and average open channel velo-
city, that was comparable to that which causes the onset of unsteady
fiow between an array of only two colinear plates [27]. Measurements of
total core pressure drops for the various arrays tested suggested that
the onset of this periodic unsteady flow between plates leads to fric-
tion factor distributions similar to those in steady fully turbulent
flows: The slope of the overall friction factor versus Reynolds number
curve changed abruptly as it does for a parallie! plate channel when the
flow undergoes a laminar-to-turbulent transition. This behaviour was
also evident from measurements of the spectra of the flow noise emitted
from a closely packed array that was tested in air. Loehrke and Lane
[29] observed tnat the critical Reynolds number for transition from this
laminar to turbulent behaviour in a parallel-plate array can be signifi-

cantly increased if the streamwise gaps between plates are made suffi-

ciently small.
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More recently, Mullisen and Loehrke [30] have performed an exper-
imental study of flow and heat transfer in in-line and staggered paral-
lel plate arrays, and in perpendicular plate arrays. Air flow Reynolds
numbers, based on a form of the Kays and London definition [1], ranged
from 100 to 10000. Various values of plate length, streamwise plate
spacing, and plate thickness were examined for piate arrays having three
to six streamwise columns for in-line configurations, and six or twelve
streamwise columns for staggered configurations. Overall friction ftac-
tors were obtained from measurements of the total pressure drop across a
core. Plates were heated using a resistance heater logcated within the
plates, and a transient heating technique was used to determine overall
heat transfer rates. Fluid flow phenomena were identified using the
Schlieren visualization technique. Steady, general unsteady, and peri-
odic unsteady flow regimes were observed in the cores of in-line and
staggered parallel plates. The periodic unsteady regime was character-
ized by periodic, synchronized, vortex shedding from the trailing edges
of upstream plates, and it was accompanied by an audible tone. No peri-
odic regime was detected for arrays with plates perpendicular to the
main flow direction. Mullisen and Loehrke [30] found that the transi-
tion from steady to unsteady flow is best correlated by a Reynolds num-
ber based on plate-wake width rather than by a Reynoids number based on
passage hydraulic diameter. They also reported that enhancements of
over 100 percent in the average heat transfer coefficient for some

parallel-plate cores may be obtained by interrupting the plate surfaces.

Joshi and Webb [31] carried out an experimental investigation of
periodic fully developed flows through offset strip-fin heat exchanger

geometries. They studied water flows through test cores having five
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rows of fifteen colinear fins aligned in the flow direction. Various
values of plate thickness, plate length (equal to streamwise plate
spacing), and perpendicular separation distance between parallel plates
were used in eight different scaled-up geometries. Reynolds numbers,
based on minimum flow area average velocity and hydraul ic diameter for
the strip-fin channel, ranged from 200 to 4000. Dye injection flow visu-
alization experiments showed that transition from laminar to turbulent
flow coincided with the onset of oscillating velocities in the wake,
although it was reported that the plate boundary layers remained lami-
nar. Based on previous friction factor and heat transfer coefficient
data in the literature for offset fin geometries, Joshi and Webb corre-
lated the value of the wake-width Reynolds numbers with nondimensional
plate thickness and spacing ratios, and obtained an equation to predict
the transition from laminar to turbulent flow. They also developed ana-
lytical models to predict the heat transfer coefficients and friction
factors in offset strip-fin geometries. Curve fits to the numerical
data of Sparrow and Liu [15], with corrections incorporated to account
for fin thickness and three-dimensional aspect ratios, were obtained for
laminar flows. A semi-empirical method was used for turbulent flows.
Using these analytical models, Joshi and Webb reported that predictions
for Nusselt number and friction factor were within +20 percent when com-
pared to their experimental data and the available data on actual heat

exchangers.

Flow visualization has also been used by Mochizuki and Yagi [108] to
study the vortex shedding characteristics of staggered-plate arrays.
They used a combined dye injection and hydrogen bubble technique to

visualize the fluid flow through scaled-up modeis of heat exchanger
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cores. Thirteen scaled-up models, from single plate to eighteen-stage
cascade plates in staggered arrangement, were systematically tested for
a wide range of Reynolds number. The flow patterns were recorded by
both still and video cameras, and a hot-wire technique was used to mea-
sure the frequency of vortex shedding. The data werms used by the
authors as the basis of a qualitative discussion of the vortex shedding
characteristics as a function of fin arrangement and the Reynolds num-

ber.

The experimental work in this thesis dealt with detailed and accu-
rate local and overall pressure drop measurements and plate surface
streamline flow visualization in the periodic fully developed region of
turbulent flows in interrupted-piate rectangular ducts, similar to that
shown in Fig. 1. These measurements were done using a specially
designed experimental facility [109]. The ability of this facility to
generate periodic fully developed turbulent fliows has been demonstrated
from the results of overall and intramoduiar pressure measurements taken
in the early stages of this research and discussed in [110]. The exper-
imental research presented in this thesis is concerned with the effect
of plate thickness and flow rate on the overall and local flow field.
The test section consisted of a minimum of 23 geometrically similar
modules, for all cases considered, so as to ensure the attainment of the
periodic fully developed flow regime. Reynoids numbers ranged from
5x10° to 30x103. This experimental work therefore complements and

extends the investigations reported in [11,25-31].
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1.2.4 Numerical Investigations of Fluid Flow in

Interrupted-Plate Passages

Since the early 1970's, the widespread availability of high-speed
digital computers, the development of powerful numerical methods for the
prediction of fluid flow and heat transfer, and the advent of micropro-
cessor-based automatic data acquisition and processing systems have
enabled several detailed numerical and experimental investigations of
the flow and heat transfer phenomena inside interrupted-plate passages.
The numerical studies include works of Sparrow et al. [12], Sparrow and
Liu {15]), Patankar et al. [13], Patankir and Prakash [14], and Choudhury
[16]. All these numerical investigations were limited to laminar fiows,
and invoked various other assumptions to simplify the flow and heat
transfer problems. Despite these limitations, however, these numerical
studies have provided a considerable amount of insight and useful mathe-
matical models of the complex fiuid flow and heat transfer phenomena

encountered in interrupted-plate passages.

The numerical study of Sparrow et al. [12] involved oftset-fin sur-
faces similar to that snown in Fig. 4a. They assumed two-dimensional
laminar behaviour of the fiow, and restricted their analysis to geomet-
ries with negligible plate thickness. When the plate thickness is
neglected, the impingement region on the leading edge of the plate and
the recirculation region behind its trailing edge are absent. There-
fore, the analysis in [12] could be done using a parabolic, or boundary
layer type, numerical procedure, in which the solution could be obtained
by marching step-by-step from the inlet plane to successive downstream

locations. Detailed velocity and temperature distributions, heat
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transfer coetficients, and pressure drop data were obtained for a range
of Reynolds numbers and for several values of a dimensionless geometr i
cal parameter that characterized the streamwise length of the inter-
rupted plates. The Prandtl number was fixed at 0.7 for all computa-
tions. These results were used to investigate whether an interrupted-
plate channel experienced an augmented heat transfer rate compared with
that for a parallel-plate channel. For conditions of equal heat trans-
fer surface area and equa! pumping power, it was found that appreciably
higher heat transfer rates prevailed in the interrupted-wall channel for
a wide range of operating conditions. The results in [12] also demon-
strated that at sufficiently large distances downstream from the inlet
plane, typically beyond the first 5 to 10 geometrically similar modules
of the interrupted-plate array, the velocity and suitably nondimension-
alized temperature profiles repeated their values in successive modules,
and the modular pressure drop and an average modular heat transfer coef-
ficient took on constant values. The term periodic fully developed
regime was used to characterize such regions. The analysis and results
of Sparrow et al. [12] were later extended by Sparrow and Liu [15], who
obtained heat transfer, pressure drop, and performance relations for
two-dimensional laminar flow in in-line, staggered, and continuous-plate

heat exchangers.

Patankar and Prakash [14] alsc conducted a numerical investigation
of two-dimensional laminar flow in offset-fin passages, but they focused
attention on the effect of plate thickness. This was done because, in
practice, a certain minimum thickness of the plates is required for
structural integrity: This thickness could significantly influence the

fluid flow and heat transfer if the spacing between plates in a column




41

is made small in order to achieve compact heat exchanger cores. The
thick plate analysis requires the solution of an elliptic problem: In
other words, downstream events can have a noticeable influence on
upstream flow phenomena and vice versa. Patankar and Prakash [14]
solved this eltiptic problem in the periodic fully developed regions of
several offset-plate arrays, using the methodology proposed by Patankar
et al. [13]. The results in [14] show that the finite-thickness plates
give rise to complex fiow patterns involving impingement and recircula-
tion zones and flow deflections. Furthermore, they show that compared
to the results for passages with plates of negligible thickness, the
thick-plate passages lead to significantly larger pressure drops, but
the heat transfer does not improve proportionally despite increased

average velocities and greater surface areas.

Choudhury [16] has developed a computational scheme for predicting
three-dimensional laminar flow and temperature fields in cases where two
of the dimensions of the flow domain, in the x and y coordinate direc-
tions for example, are relatively large compared to the third dimension,
in the z coordinate direction. He points out that this type of flow
passage is particularly characteristic of many heat exchanger configura-
tions where the flow tends to be dominated by two-dimensional effects
although the "weak" flow field in the third dimension still may have a
noticeable influence on the averali flow field. In his scheme,
Choudhury uses a quasi-three-dimensional “"gap-integral” form of the gov-
erning equations. The three-dimensional form of the continuity and the
momentum equations are integrat.s ~rer the gap in the shorter z dimen-
sion. Across this gap, it is assumed that .“e velocity profile takes on

the parabolic form of a fully developed laminar fl.- between paraliel
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plates. The result is a quasi-three-dimensional mathematical model for
fluid flow that is expressed in terms of the continuity equation and the
x and y momentum equations containing "gap-integrated’' variables of the
u and v velocities, pressure, and "gap-integrated" constants. Using the
same line of reasoning, a “gap-integrated" energy equation was also
derived. One of the test cases Choudhury applied his model to was that
of periodic fully developed flow and heat transfer in an interrupted-
plate passage. Calculations for zero and two other plate thickness val-
ues were done for Reynoids numbers, based on average flow velocity and
two-dimensional hydraulic diameter, ranging from 200 to 2000. Aspect
ratios (defined here as the y-direction distance between the continuous
plates divided by the z-direction gap width) of 2,5,15 and 20 were used.
Generally, good agreement was reported between results from this model
and those obtained using a full field model, with agreement between the
two models improving as the aspect ratio increased. 1t was alsn shown
that two-dimensional model velocity calculations were in greater error
when compared with the full three-dimensional model ca'culations than
were calculations done with this quasi-three-dimensional model .
Choudhury concluded that for flows where three-dimensional effects are
relatively weak, his model gives improved results over two-dimensional
models and reasonably good agreement with full three-dimensional models,
while providing a considerable saving in computational cost over the

later.

In recent years, several other numerical investigations have been
done for flows through periodically varying geometries other than inter-
rupted-plate configurations. Sparrow and Prata [17] and Prata and

Sparrow [18] examined laminar flow and heat transfer in periodically
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converging and diverging pipes and annuli, respectively. Ghaddar et al.
[19,20] used spectral element methods to study laminar flow in a two-
dimensional channel with periodically spaced rectangular grooves along
one wall. Kelkar and Patankar [21] simulated laminar flow and heat
transfer in two-dimensional finned passages, where the flat fin surface
was perpendicular rather than paraliel to the main flow direction.
Choudhury and Karki [22] have analyzed two-dimensional periodic fully
developed laminar fluid flow and heat transfer in a paraliel plate chan-
nel with periodically spaced dimples, using generalized curvilinear
coordinates. Near the time that the research for this thesis was being
completed, a study by Knight and Crawford [23] that included a numerical
analysis of turbulent periodic fully developed tlow was published.
Except for this publication, to the best of this author’'s knowledge, no
other works dealing vith this type of turbulent flow have appeared in

the literature.

Knight and Crawford [23] performed a numerical analysis of two-
dimensional periodic fully developed flows in parallel plate ducts hav-
ing periodical ly spaced rectangular grooves along one wall. Reynolds
numbers, based on average flow velocity and hydraulic diameter for the
minimum duct flow area, ranged from 250 to 1500 for !aminar flows and
from 2000 to 5000 for turbulent flows. The two momentum equations gov-
erning the flow field were reformulated in a stream function-vorticity
form. The effect of turbulence was accounted for by using the Chien
[92] low-Reynolds-number k-¢ modei cf turbulence. in this model, the
viscous damning function for eddy viscosity depends on both the normail
distance to the boundary wall and the value of the corresponding local

wall shear stress. In or near regions of recirculation, such as would be
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expected in the periodic grooves, it was necessary to redefine this wall
shear stress as the maximum shear stress occurring at that particular
streamwise location. Using this adjustment, Knight and Crawford {[23]
reported good agreement with experimental data for flows involving heat
transfer in recirculating flows. With other modifications of the model
for convergence monitoring, they reported that periodic fully developed
turbulent flow and heat transfer calculations for these grooved channels

could be done on mid-sized computers in several hours of computer time.

The numerical investigation undertaken in this thesis involved the
development of a computer code that implements a low-Reynolds number k-e
turbulence model to predict periodic fully developed turbulent fluid
flow in interrupted-plate geometries. Numerical predictions were done
for the configurations examined experimentally in this work in order to
(1) evaluate the performance of the numerical model used, and (2) gain
further insight into the complex tluid flow phenomena occurring in inter-
rupted-plate geometries. This numerical work complements and extends

the works in [12-16] for flows in interrupted-plate geometries.

1.3 S8URVEY OF THE THESIS

The aims of the thesis and a synopsis of published investigations
relevant to this work have already been presented in the earlier sec-
tions of this chapter. There are a total of ten chapters in this the-
sis. The contents of the remaining nine chapters are summarized in the

next paragraph.

In Chapter Il, the theoretical considerations which are employed in




e

P

45

the mathematical description of turbulent air flows of interest in this
thesis, in the recording and processing of the experimental data, and in
the interpretation of both numerical and experimental results, are pre-
sented concisely. In Chapter 111, modelied forms of the turbulent flow
governing equations, described in Chapter I, are presented and dis-
cussed. The numerical method used to solve the model!led flow equations
is concisely described in Chapter IV. The final choice and implementa-
tion of a turbulence model, suitable for the flows of interest in this
thesis, are discussed in Chapter V. 1In Chapter Vi, descriptions of the
exper imental apparatus, instrumentation, and procedures are given. The
results of initial experimental and nunerical investigations are pre-
sented and discussed in Chapter VII. Presentation of the experimental
results for the interrupted-plated duct fiows investigated in this the-
sis is done in Chapter Vilt. The resuits of the corresponding numerical
investigation, in the context of the experimental results given in
Chapter VI11, are presented and discussed in Chapter IX. In the con-
cluding chapter, Chapter X, the contributions of this work are summa-

rized, and suggestions for improvements and extensions are presented.
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CHAPTER II

- THEORETICAL CONSIDERATIONS

2.1 PROBLEM STATEMENT AND ASSUMPTIONS

The mathematical description of three-dimensional turbulent flows is
. the subject matter of this chapter. Attention is limited to the type of
flows investigated in this work, namely, turbulent air flows through
ducts of rectangular cross section with and without an array of colinear
interrupted-plates, as shown in Figs. 1 and 5, respectively. The mathe-
matical models used for computations of one-dimensional turbulent fully
deve loped channel flow and two-dimensional turbulent periodic fully
developed interrupted-plate channel flow are obtained from the three-
dimensional governing equations presented in this chapter. These mathe-

matical models are discussed in Chapters 1il and V.

All the turbulent flow experiments performed in this research were
done under essentially isothermal conditions, and the Mach number was
always less than 0.1. For the theoretical considerations presented in

this chapter, therefore, the fluid is assumed to be incompressible and

to have constant thermophysical properties. Since the exper iments were

conducted with air at pressures close to atmospheric and temperatures

between 16 °C and 28 °C, the fluid is also assumed to be Newtonian.

The equations that govern unsteady three-dimensional turbulent flows
are presented first in this chapter. Following that, the time-averaged
- forms of these equations and relevant nondimensional parameters are pre-

sented and discussed. In this thesis, a low-Reynolds-number k-e¢ mode |
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of turbulence is used to invoke closure of the time-averaged fiow equa-
tions. Details of this model, including governing equations for the
mean turbulence kinetic energy, k, and its rate of dissipation, ¢, are,

presented and discussed in Chapter Ii1.

2.2 THREE-DIMENSIONAL TURBULENT FLOW:

FULL FORMS OF THE GOVERNING EQUATIONS

In the context of the assumptions mentioned in Section 2.1, three-
dimensional elliptic turbulent flow of air can be described mathemati-
cally by the following forms of the Navier-Stokes and continuity equa-

tions [37-40]}:

momentum

/ (%%’- . ng%ﬁ-> B, G %—) (2-1)
continuity

%:4 0 (2-2)

Here, the indices i and j can take the values 1, 2, and 3, and repeated
indices in any term indicate a summation over all three values of the

index. It should be noted that these governing equations are written

with respect to the Cartesian coordinate system shown in Figs. 1 and 5,
where x, y, ard z, are equivalent to x,, x,, and x3, respectively, and
similarly u, v, and w velocities are equivalent to u,, u,, and uy

velocities,

respectively. These notations will be used interchangeably

throughout this thesis. In Egs. (2-1) and (2-2), Gi denotes the

instantaneous velocity component in the i direction, p is the mass
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density of the fluid, p is the dynamic viscosity, S is the instan'aneous

pressure, and ¢ denotes time.

In addition to Eqs. (2-1) and (2-2), boundary conditions and initial
conditions for the dependent variables, Gi and S. specific t. the prob-
lems of interest, are needed to complete the mathematical model. Bound-
ary conditions for fully developed turbulent fiow and periodic fully
developed turbulent flow in rectanguiar ducts without and with inter-

rupted plates, respectively, are discussed in later sections of this

chapter.

2.3 THREE-DIMENSIONAL ELLIPTIC TURBULENT FLOW:

TIME-AVERAGED FORMS OF THE GOVERNING EQUATIONS

In principle, the solutions of Eqs. (2-1) and (2-2), subject to
appropriate initial and boundary conditions, would provide a complete
description of the turbulent flow problems of interest in this thesis.
Such solutions are, however, impractical at present. The reason for
this is that such direct simulations of turbulent flows, accurate for
all temporal and spatial scales of motion, require proper resolution of
the large- and small-scale turbulent motion. The small-scale mrtion is
typically of the order of 10° times smaller than the extent of the flow
domain [75]. The numerical solution of Eqs. (2-1) and (2-2) would thus
require the calculation of the dependent variables at 10% grid points or
more. This would stretch the storage capacity of even the most modern
supercomputers, and the excessive computing times required would make

such computations prohibitively expensive.




49

Fortunately, only the time-averaged effects of the turbulent flcw
are important for most engineering problems. Compared to the instanta-
neous small-scale structure of turbulent flows, the time-averaged prop-
erties vary relatively gradually in space, allowing the number cf calcu-

lation points to he reduced substantially from those required if all the

details of the turbulence were needed. In this section, the time-
averaged forms of Egqs. (2-1) and (2-2) are presented. |t shouid be
noted that in interrupted-plate geometries, similar to that illustrated

in Fig. 1, certain combinations of Reynolds number und plate thickness
can give rise to vortex shedding [27,29-31,108]. |In this section, how-
ever, this vortex shedding phenomena is not considered, and it is
assumed that the turbulent flows of interest are in a statistically

steady state [37,38].

in turbulent flows, following the procedure of Reynolds, the
instantaneous velocities and pressure which appear in Eqs. (2-1) and
(2-2) can be decomposed into time-mean and fluctuating components

[34,36-40,75]:

ui = Ui + uj (2-3)

p=P+p (2-4)

where the lower-case bold type denotes the fluctuating components. The

time-mean values of the fluctuating components are zero, by definition,

but the time-averaged values of the products of correlated fiuctuating compo-

nents are not zero [38]. For example:

G;GJ = U]UJ + Uin (2'5)
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Using Egs. (2-3) to (2-5), the time averaged forms of Eqs. (2-1) and

(2-2) can be writlien as follows [34,36-40,75):

momentum

Ui o 3 j —
i N = e m—— - "_1_ - S0k -
P(UJ an ) - aXi+ an ( an Puluj ) (2 6)

continuity

U
pdha W -
= O (2-7)

The pa?ag'term in Eq. (2-6) can be thought of as the contribution of
the turbulent motion to the mean stress tensor [38], and its components
are referred to as Reynolds stresses. The Reynolds stress tensor is
comprised of nine components, of which only six are independent, as the
tensor is symmetric [34,37,38]. In many flows, the terms representing
the turbulent normal stresses, -p;:. -p;;l and -p;;l contribute little
to the transport of the mean momentum [38]. The terms -pEV. -p;;, and

-pvw represent turbulent shear stresses, and they play a dominant role

in the transport of mean momentum by turbulent motion [38].

Equations (2-6) and (2-7) represent a system of four coupled govern-
ing equations that contains ten unknowns: U, V, W, P, and the six inde-
pendent comporents of the Reynolds stress tensor. There is no direct
way of calculating the Reynolds stresses. 1If additional equations for
the Reynolds stresses are obtained, by appropriate manipulations and
averaging of the original Navier-Stokes equations, more unknowns such as
pujuju; are generated by the nonlinear inertia terms [38]. This

iltustrates the so-called "closure problem" that is characteristic of
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all nonlinear stochastic systems. To overcome the closure probiem of
turbulence, the Reynolds stresses are approximated or "modelled" in
terms of quantities that can be directly determined. Details of how
closure was achieved for the numerical models used in this thesis are
given in Chapter Il1. Before this is done, particular forms of Egs.
(2-6) and (2-7), relevant to the types of flows studied in this thesis,

will be presented and discussed in this chapter.

2.4 TURBULENT FULLY DEVELOPED FLOW IN RECTANGULAR DUCTS:

TIME-AVERAGED GOVERNING EQUATIONS

In straight ducts of uniform cross section, fully developed flows
are characterized by a velocity field that is invariant in the main flow
direction, shown as the x direction in Fig. 5. |If no cross-stream velo-
cities exist, and the pressure is constant over a cross section and
varies linearly with x, the flow is classified as being simple fully
developed [32,33]: U = U(y,z), V =W = 0, and dP/dx = constant. Laminar
fully developed flow, with no body forces, in a straight duct of uniform
cross section is one example of simple fully developed flow. In a com-
plex fully developed flow, the fiow field is also invariant with x and
the pressure varies linearly with x, but the pressure varies over a
cross section and cross stream velocities (secondary flows) are present
[66-68]): thus U = U(y,z), V = V(y,z), W = W(y,z), and 8P/dx = constant.
Turbulent fully developed fiow, with no body forces, in a straight rec-
tangular duct is an example of complex fully developed flow. In such
flows, the Reynolds stresses play an important role in the physical
mechanisms that extract the energy from the main fiow and provide it to

the secondary flow, thereby sustaining the secondary fiow in the fully




developed regions [66-68].

In the Cartesian coordinate system of Fig. 5, turbulent fully
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developed flow in straight rectangular ducts is governed by the follow-

ing forms of the time-averaged Navier-Stokes and continuity equations:

x momentum

P(VEy * Wag) = - S0+ Sotmdy - ) + S (W3l - pw) (2-8)
y momentum
ptVer v o = - e UL oy + S - o (2-9)
z momentum
pvee e Wy = - S S0t S8 - (2-10)
continuity
%\;7 + g% =0 (2-11)

The impermeability and no-siip boundary conditions apply at the

walls of the ducts for the cases considered in this thesis. With refer-

ence to Fig. 5, therefore, at the walls of the rectangular ducts:

U=V=W=0 (2-12)

UU =V = ww = uv = uw = vw = 0 (2-13)

A complete mathematical model of the futly developed duct tlows con-

sidered in this thesis is obtained when an appropriate turbulence model

is used in conjunction with Eqs. (2-8) tc (2-13). This is done in

Chapter 111.
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2.5 TURBULENT PERIODIC FULLY DEVELOPED FLOW IN INTERRUPTED-
PLATE RECTANGULAR DUCT8: TIME-AVERAGED GOVERNING

EQUATIONS

A fully developed turbulent flow regime, in which the fiow field is
invariant in the main flow, or x, direction, does not occur in interrup-
ted-plate rectangular ducts, similar to that in shown in Fig. 1. In
such ducts, the flow continually changes in the x direction, but attains
a periodic fully developed behaviour after 5 to 10 ranks of plates down-
stream of the iniet section [11,12,14,26]). The interrupted-plate duct
illustrated in Fig. 1 can be subdivided into geometrically similar
modules: The cross section of one such module, ABCDE, is shown by the
dashed lines in Fig. 2. In the periodic fully developed fiow regime,
the time-mean velocity field repeats itself identically in each of the

geometrically simitar modules: with reference to Figs. 1 and 2,

U(x,y,z) = U(x+L+s,y,z) = U(x+2L+2s,y,z) = (2-14)
V(x,y,z) = V(xtL+s,y,z) = V(x+2L+2s,y,z) = (2-15)
N(x,y,z) = W(xtL+s,y,z) = W(x+2L+2s,y,z) = (2-16)

Thus in the periodic fully developed regime, the variation of U, V,
and W, in a module of periodic length (L+s), can be studied indepen-
dently, without reference to the flow field in the entrance region or in

adjacent modules [13,14].

An analysis of the flow field in the periodic fully developed regime

53 wingy

also requires an understanding of the pressure field. In order to have
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a net mass flow in the positive x direction, the pressure must decrease
as x increases. Thus the time-mean pressure cannot have the same type

of periodicity as expressed by Eqs. (2-14) to (2-16) for the velocities,
but it exhibits another type of periodicity in the periodic fully devel-

oped region.

To understand the behaviour of the time-mean pressure in the peri-
odic fully developed region, its distribution over two cross sactions in
this region will be considered, one located at x and one at (x+L+s).
While the shape of the time-mean pressure distribution at both cross
sections will be identical, the pressure distribution at (x+L+s) will be
lower than that at x by a uniform amount over the whole cross section.
Similarly, the shape of the pressure distribution at (x+2L+2s) will be
the same as that at (x+L+s), but it will be lower than the distribution
at (x+L+s) by the same uniform amount over the whole cross section as
the distribution at (x+L+s) was from that at x. This behaviour of the
time-mean pressure field in the periodic fully developed flow regime can

be expressed as follows:

{ P(x,y,z) - P(xtL+s,y,z) } = { P(x+L+s,y,z) - P(x+2L+2s,y,2) }

= {P(x+2L+2s,y,z) - P(x+3L+3s,y,z)} = ... (2-17)

A time-mean pressure gradient, responsible for the overall mass flow
rate in the positive x-direction, can be defined from the time-mean pres-

sure drops expressed in Eq. (2-17):

- ( P(x,y.z) - P(X+L+S'Y!ZlA)_
B = (L + s) (2-18)

B is a constant in the periodic fully developed regior, and the
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P

time-mean pressure field can be expressed as:

P(x,y,z) = -fx + s(x,y.z) (2-19)

~

where -fx is related to the overal! mass flow rate and P(x,y.z) is

related to the details of the local flow field in each geometrically

similar module located in the periodic fully deveioped region. It is

evident from Eqs. (2-17) and (2-19) that ;(x,y,z) is periodic and its i

behaviour can be expressed in a similar fashion as the velocity field:

P(x,y,z) = P(xtL+s,y,z) = P(x+2L+2s,y,2) = ... (2-20)

This description of the time-mean pressure field in the periodic
fully developed flow region of interrupted-plate rectangular ducts is
taken from the works of Patankar et al. [13,14]. Experimentally, the
value of § for a particular turbulent periodic fully developed flow in
such ducts can be determined from measurements of the time-mean static
pressure values at several axial locations, with successive locations
separated by a periodic distance of (L+s) in the x direction and located
at a fixed (y,z) location on the duct wall. The slope of a straight
line fitted through these (x,P) points gives a value of A accurate to

within the limits of experimental uncertainty.

Using Eqs. (2-6), (2-7), and (2-19), the time averaged forms of lhe
Navier-Stokes and continuity equations that govern periodic fully
developed turbulent flow in interrupted-plate ducts, similar to those

illustrated in Figs. 1 and 2, can be cast in the following forms:




x momentum

+ 3 - pim) (2-21)
y momentum
p(U%¥ + Vg¥-+ W%%- = - g§-+ %;(u%% - puv) + g;iu%¥ - pwv)

+ g;1”g¥-- ) (2-22)

z momentum

M, M, oW 9P 3 M D M —
”‘Uax * Vay ¥ "az =8z’ 6x(”ax puw) + ay("ay V)
a_, N oy
+ S7lugg - pw) (2-23)

continui ty

au . av aw _

ax Tay Tz -0 (2-24)
On the solid surface boundaries:

U=V =¥W=20 (2-25)

and on the symmetry surface, shown as DC along the y = 0 tine in Fig. 2,
MM _,. -
3y - By 0; v=0 (2-26)

At the upstream and downstream planes of the module, located at x; and
(xj+L+s), respectively, and denoted by AE and BC in Fig. 2, the

periodicity conditions for U, V, W, and P apply:
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¢(xi,y,z) = ¢(xi+L+s,y,2) ; ¢ =U, V, N, P (2-27)

The boundary conditions, given by Eqs. (2-25) to (2-27), along with

the governing equations, Eqs. (2-21) to (2-24), and an appropriate model
for the Reynolds stresses appearing in these equations, constitute a
complete mathematical model for the type of interrupted-plate duct flows
investigated in this thesis. The term 8 in Eq. (2-21) can be assigned a
value that will generate a corresponding mass flow rate, or alterna-
tively, the value of f can be adjusted iteratively to obtain a desired

mass flow rate.

2.6 NONDIMENSIONAL PARAMETERS

2.6.1 Turbulent Fully Developed Flow in Rectangular Ducts

The independent dimensionless parameters that characterize turbulent
fully developed flow in rectangular ducts, similar to the one illus-
trated in Fig. 5, can be obtained by a formal nondimensionalization of
the governing equations, Eqs. (2-8) to (2-11), and the associated bound-
ary conditions. Such a nondimensionalization yielded two independent

dimensionless parameters:

b

(i) Aspect ratio, € = 3 (2-28)
and
(ii) Reynolds number, Req = E—Q%JlUL (2-29)

where b is the width of the rectangular duct and H is its half-height,

as shown in Fig. 5. Ug is the cross-sectional average value of the



time-mean axial velocity, U :

Ug = vy (2-30)

with m being the total mass flow rate in the rectangular duct, and A

being the total cross-sectional flow area:

A = 2Hb (2-31)
The term D4 in Eq.(2-29) is the duct hydraulic diameter, defined as:

Dha = 5o (2-32)
where P, is the wetted perimeter for the rectangular duct:

Pu = 4H + 2b (2-33)

In this thesis, pressure drop results for turbulent fully developed

duct flow are presented in terms of the Darcy friction factor (32]:

aP
. (- ax) Dhd

— 2
1 Ug

iy (2-34)

2.6.2. Turbulent Periodic Fully Developed Flow

in Interrupted-Plate Rectangular Ducts

Nondimensionalization of Egs. (2-21) to (2-27) that govern turbulent
periodic fully developed flow in interrupted-plate ducts, similar to
those illustrated in Figs. 1 and 2, yielded five independent dimension-

less parameters:
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(i) aspect ratio of a periodic module, ABCDE in Fig. 2,

x=2 (2-35)
(ii) plate thickness parameter, t* = %- (2-36)
(iii) plate length parameter, L* = h- (2-37)
(iv) plate spacing parameter, s* = E— (2-38)

and

(v) Reynolds number.

Pressure drop results for turbulent periodic fuliy developed flows
in interrupted-plate geometries are generally presented in the form of
module friction factor versus Reynoids number graphs [1,11,14,26,31].
There are two sets of friction factor and Reynolds number definitions
that are commonly used in the published literature on periodic fully
developed flows [1,14]. |In this thesis, results corresponding to both
these sets of definitions are presented. One set of definitions is that

used by Kays and London [1]:

Rey = LU:‘_DML (2-39)
and
B Dhk
%‘P Uk

In these equations, Uy is the cross-sectional average value of the time-

mean axial velocity component, U, based on the minimum flow area in a
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periodic module and D, is a module hydraulic diameter. With reference

to Figs. 1 and 2, these terms are defined as follows:

- m
U = 507 (2-41)
and
4A. (L +
Dhk = —-Q{—u———sl (2-42)

The minimum flow area, A., and the total wall area, A,, of the periodic

module are given by:

Ac = b(H - t) (2-43)
and
Ay = (2L + s)b + 2(L + s)(H - t) + 2ts (2-44)

The other set of Reynolds number and module friction factor defini-

tions is similar to that used by Patankar and Prakash [14]:

Req = P——U—"';—D-“- (2-45)
and
B Dy (
fn = ——% 2-46)
'}a_' p Un

In Eqs. (2-45) and (2-46), Un is based on the nominal cross-
sectional flow area of a periodic module and D, is a nominal hydraulic

diameter:
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- R
Un = 5550 (2-47)
and
= —4bH .
Dh= 27+ 2b (2-48)

The time-averaged forms of the governing equations for turbulent
periodic fully developed flow, Egqs. (2-21) to (2-24), have been pre-
sented in the context of statistically steady turbulent flows. Investi-
gations concerned mainly with the laminar and transitional flow regimes
have shown, however, that vortex shedding may occur for certain combina-
tions of Reynolds number and plate-thickness parameter [27,29-31,108].
If this vortex shedding phenomena is considered, a nondimensional analy-
sis of turbulent flow in interrupted-plate rectangular ducts would yield
an additional dimensionliess parameter. This parameter, the Strouhal

number, could be defined as [108]:

St = (2-49)

wvhere w is the frequency of vortex shedding.

2.7 CLOSING REMARKS

In this chapter, the governing equations, the appropriate boundary
conditions, and the independent dimensionless parameters that character-
ize the flows investigated in this thesis have been presented. Atten-
tion has been focussed on the three-dimensional mathematical description

of these flows. To model the Reynolds stresses, thereby achieving
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closure of the time-averaged governing equations, a suitable version of

Al

the k-¢ model of turbulence is used. Details of the various k-¢ models

are discussed in Chapter 111,
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CHAPTER III

TWO-EQUATION (k-¢) MODELS8 OF TURBULENCE

Turbulent flows of the types investigated in this thesis can be
mocel led mathematically using the time-averaged form of the Navier-
Stokes and continuity equations, given by Eas. (2-6) and (2-7). To

achieve closure of this set of equations, the Reynolds stress teims,

-pu,uj appearing in the momentum equations, Eq. (2-6), need to be
approximated or modelled. |in this research, an eddy-viscosity based
two-equation k-¢ mode! of turbulence has been used to mode! Reynolds
stresses. The reasons for the selection of this particular form of tur-
bulence model and a discussion of cther turbulence models were presented

in the literature survey of Section 1.2.2.

The purpose of this chapter is to present and discuss the modelled
torms of the flow governing equations presented in Chapter |1, and to
then present these modelled equations in the context of the flows con-

sidered in the numerical investigation of this thesis.

3.1 MODELLED FORMS OF THE FLOW EQUATIONS

The Reynolds stresses in Eq. (2-6) are modeiied using the Boussinesq
eddy-viscosity concept in which it is assumed, in analogy to the rela-
tiens for viscous stresses in laminar flow, that the Reynolds stress
tensor 1s proportional to the mean-flow rate of strain tensor. The

expression used to model the Reynolds stresses is given as [75]:

g ou 2
oy = e (gt ) - gk (3-1)

P



where ur is a turbulent, or eddy, viscosity and 6;; is the Kronecker

delta which has a value of one whan i = | and a value of zero other-
wise. k, the time-mean kinetic energy of the turbulence velocity fluc-

tuations, is defined as [37-40,/5]:

k= 1 uiu (3-2)

The eddy viscosity, p,, is not a fluid property, unlike the molecular
viscosity, u, rather it depends on the state of the turbulence and may
vary significantly throughout the flow field. For this reason, a turbu-
lence mode! is required to calculate the turbuleni viscosity field. In
this research, a low-Reynolds-number version of the k-¢ model of turbu-
lence was used, and it is discussed in Section 3.4. The last term in
Eq. (3-1) is included to ensure that the sum of the normal Reynolds
stresses will be equal to twice the turbulence kinetic energy. Without
this term, the sum of the normal stresses, calculated from Eq. (3-1),

would be zero, taking into account the mean-flow continuity equation.

Using Eq. (3-1) and the continuity equation, Eq. (2-7), the general
form of the time-mean governing momentum equations, Eq. (2-6), can be

written as:

ov;, _ @oP 2] ou; . aU;
4 (Ujay}—) = - 5x—i'* ﬁﬁru (3}—}-*‘ 3;—:_—)} (3-3)

where the diffusion coetficient, T,, is given as:

Ty = p + pe (3-4)

The last term of Eq. (3-1) has been absorbed in the pressure gradient
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term of Eq. (3-3). Like pressure, the (2/3 k) term in Eq. (3-1) is

a scalar quantity and can be thought of as being a pressure component.
It is common practice, therefore, to model this term in combination with
the static pressure term, P, appearing in Eq. (2-6). Thus, the pressure
term in Eq. (2-3) actually represents the term (P + 2/3 k) [75]. To
achieve closure of Eq. (3-3), the distribution of the isotropic eddy-

viscosity field needs only to be determined.

Based on dimensional considerations, it is postulated that p, is
proportional to a velocity scale, u,, and a length scale, |,, both of
which are characteristic of the large-scale turbulent motion [75].

Thus:
B a putlt (3’5)

The relationship in Eq. (3-5) is obtained by assuming an analogy with
the molecular motion which leads to a2 dynamic viscosity proportional to
an average velocity and the mean free path of the fluid molecules [75].
The eddy viscosity should depend on the local state of the turburence
and the mean fiow [75,111]. However, the relationship given in Eq.
(3-5) assumes that u, is a scalar quantity related to the local flow in
general terms through velocity and length scales that are characteristic
of the large-scale turbulence. This assumption of isotropy has been
pointed nut as one of the deficiencies of the eddy-viscosity concept as
put forth in Eq. (3-5). A more detailed discussion of these ideas is
presented in [75,111]. The success of using the relationship given in
Eq. (3-5) depends critically on the accuracy of approximations for u,

and ':-
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Using a two-equation k-¢ model of turbulence, the distributions ot
both u, and |,, and their relationship to u,, can be approximated well
enough to give acceptable results for many types of one- and two-
dimensional turbulent flow calculations [75,77]. |In this mode!, the
square root of the mean turbulence kinetic energy is assumed to be rep-
resentative of the characteristic turbulence velocity scale, u,, and the
length scale is represented indirectly by the turbulence energy dissipa-

tion rate, ¢ [75]. These relationships can be expressed as:

uy o k172 (3-6)

k3/2

€ a T:- (3-7)

Dissipation affects the length scale indirectly by destroying the
small-scale turbulence eddies thus effectively increasing the overat'l
eddy size [75]. While dissipation is a viscous process that occur+ at
the smallest scales of turbulence, the rate of dissipation, ¢, is also
determined by the large-scale motion, as it is this motion that deter-
mines the rate at which energy from the mean flow is fed into the turbu-
lent motion. It is from this energy only that the final small-scale
motion can receive the energy that it dissipates [75]. When Eqs. (3-6)
and (3-7) are used in Eq. (3-5), the following expression for the eddy

viscosity is obtained:

2

k
pe = fep Cp e (3-8)

The value of the proportionality constant, C is given in Table 1, and

,"
fc“ can be called a viscous damping function which, for purposes of the

discussion in the following section, takes on a value of unity. More
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will be said about these quantities in following sections where the mod-

elled form of the k and ¢ equations are discussed.

3.2 DIFFERENTIAL TRANSPORT EQUATIONS FOR Kk AND ¢

In this section, the differential transport equations for k and ¢
are presented and discussed. Appropriate modelled forms of these squa-

tions are discussed in Section 3.3.

The governing differential equation for k can be obtained by:
(i) multiplying Eq. (2-6) by U, to obtain the equation for the kinetic
energy of the mean flow; (ii) multiplying the Navier-Stokes equations,
Eq. (2-1), by G; and time averaging all terms; and (iii) subtracting
the resulting equation in (i) from the equation obtained in (ii). Sub-
stituting Eq. (3-2) into the resulting equation of (iii) yields, for a

statistically steady flow, [37,38]:

ak - . d . 1 el BU] au,
iger = = ax; (Ui(P + puiui)) + "37; (W 3% * )
(1) (1l (Ill)
— 3U; au du; , duj
puru g - a(gh s El (3-9)

(1v) (V)

In Eq. (3-9), (1) represents the change in the mean kinetic energy
of turbulence, per unit of volume and of time, due to the convective
transport by the mean motion. This is equal to: (I1) the work done by
the total pressure of the turbulence per unit volume and time, plus
(111) the work done by the viscous shear stresses of the turbulent

motion per unit volume and time, plus the deformation-work terms, (V)
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and (V), which are also per unit volume and time. Term (IV) represents
the work of deformation of the mean motion by the turbulence stresses.
This term also appears, with the opposite sign, in the equation for the
kinetic energy of the mean motion. In Eq. (3-9), when i # j, term (IV)
is often positive indicating that the work of deformation of the mean
motion by the turbulence shear stresses usually serves to increase the
mean turbulence energy at the expense of the mean flow energy. This

term is, therefore, commonly referred to as the turbulence production

term, P, [37,38]:

aU.
Py = -pu,Ujg;-j- (3-10)

Term (V) in Eq. (3-9) represents the work of deformation on the tur-
bulent strain rate performed by the viscous stresses of the turbulent
motion and is always negative, thus indicating a loss of mean turbulent
kinetic energy. This term represents the viscous dissipation by the

turbuient motion, €, which is defined as [37,38]:

- B Ou du;  du, )

€ p (g;‘—"‘g;'i")g;]‘ (3-11)
The transport equation for ¢ can also be obtained through appropri-

ate manipulations of the Navier-Stokes equations. By subtracting Eq.

(2-6) from Eq. (2-1), then differentiating the result with respect to

Xq multiplying by 8u,/axq, and time averaging this resulting equation,

the folloving equation can be obtained:
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U {0 } = du; 3%p 6u, du;j du; (N
Pigx, | Hane ) " Bxq TxqO% | POxq Ixq 0% Pla— r
(n (11 (rrn) (1v)

6u| au,) }

6U¥ du; du; 8UJ du; duj du; 8 8u;)
T Pax; Txq Oxq  POxq Bxq Ix; “m 3x% Bxq

(v) (V1) (vlil)
) paZU, _du; (3-12)
3XQ3X1 3
(villn)

If it is assumed that local isotropy prevails, then Eq. (3-11)

reduces to:
- B (Ou 2 .
€ P ‘ax,) (3-13)

It can be seen that if Eq. (3-13) were substituted into Eg. (3-12) then
e would be the dependent variable of (3-12). Other than the convection
term (1) and the dissipation term (VIi), the exact meanings of the terms
in Eq. (3-12) are unclear and many complex correlations appear for which
fairly arbitrary mode! assumptions must be made to make the equation

tractable.

It should be noted here that an assumption of local isotropy is
necessary in order to obtain a transport equation for ¢ from Eq. (3-12),
and any future reference to ¢ in this thesis will imply the form defined
by Eq. (3-13) unless otherwise stated. Details of the mode!lied forms of

the Eqs. (3-9) and (3-12) are given in the next section.
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3.3 MODELLED FORMS8 OF THE k AND ¢ EQUATIONS

As discussed in Section 3.2, differential transport equations for k
and ¢, Eqs. (3-9) and (3-12), can be derived from the Navier-Stokes
equations. Several unknown correlations appear in both these equations,
so model assumptions must be introduced in order to obtain a closed set
of equations. From the discussion in Chapter |, it is evident that
there are many versions of the k-¢ turbulence model that can be used in
the numerical calculation of wall bounded shear flows. All these ver-
sions are variations of a standard k-¢ model [40,76,90]. In this sec-
tion, the modelled forms of the standard k and ¢ equations will be pre-
sented in general forms that can be easily specialized to the forms

appropriate for the various k-¢ models.

The turbulence kinetic energy equation, Eq. (3-9), can be model led

as [40]:
ok _9_ gk - Dy - .
iz = ax, Tkax;) + Pk - Dx Ex (3-14)
where
Ty = p+ g:_ (3-15)
_ aU‘ an aU] -
P t gt axi)axj (3-16)
and
Dk = p ¢ (3-17)

The accompanying model led form of the ¢ equation, obtained from
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Eq. (3-12), can be given as [40]:
d . 8 (p 2 . ]

PUjaxj = axj(r‘ax,) + Pe De + E¢ (3-18)
where

Te = p + £L (3-19)

O¢

Pe = fc1e Cre o Px (3-20)

and
€l
De = p fc2e Cae k (3-21)

It is the f and E terms in Eqs. (3-14) to (3-21) that can be changed to
produce different versions of the k-e¢ model. These terms take on the

following values in the standard form of the k-¢ model [80,89,90}:

fcu = focre = fecae = 1.0 (3-22)
Ex =E¢ =0 (3-23)
The discussion in the remainder of this section will focus on the

description of the standard form of the k and ¢ model equations. Fur-
ther discussion concerning the E and f terms in Eqs. (3-14) to (3-21)

will be presented in the next section.

The I', P, and D, terms in Eqs. (3-14) to (3-21) represent the
diffusion coefficient, the production term, and the rate of dissipation
term, respectively, of either k or ¢ as denoted by their subscript. In

Eqs. (3-15) and (3-19), the o term is an empirical turbulent Prandt! or |
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Schmidt number that relates the eddy viscosity, u,, to the respective k
and ¢ equation diffusion coefficients, I'' and I',. The constant C and ¢
terms will be discussed in greater detail after a brief exp'anation of

how the standard form of the model equations were obtaired from Egs.

(3-9) and (3 12).

The standard modeifed forms of the k and ¢ equations have been
derived for high-Reynolds-number flows [39,40,75,76,90]. {n such flows,
the local Reynolds number of turbulence, Re,, is generally high through-
out most of the flow field. A high value of Re, indicates that, com-
pared to the Reynolds stresses and the effects of the turbulence motion
on the structure of the mean flow, the viscous stresses and the direct
viscous effects on the overall flow structure are negligible [111]. The

turbulence Reynolds number, Re,., is defined as (80,89,90]:

Re, = 2K° (3-24)

Because of the aforementioned characteristics of high-Reynolds-num-
ber flows, the work done by the viscous shear stresses of the turbulent
motion, term (lil) in Eq. (3-9) for k, is negligible and is therefore
not modelled in Eq. (3-14). The major assumption used to obtain Eq.
(3-14) is that the diftusion flux of k, or the work done by the total
dynamic pressure of the turbulence, term (11) in Eq. (3-9), can be

assumed proportional to the gradient of k such that:

ok
uj(p + %'901Ui) = Fkg;;‘ (3-25)

Bradshaw [40] points out that since the ujp term cannot be measured



directly, the relationship expressed in Eq. (3-25) cannot be tested
independently and may be questionable. Despite this, the relationship
expressed in Eq. (3-25) performs adequately, as witnessed by the rela-
tive success of the k-¢ model in providing acceptable predictions for

many types of fiows [75-77].

The production term P, , En. (3-16), is the modelied form of P, , Eq.
(3-10), obtained by using Eq. (3-1). The dissipation term D, , Eq.
(3-17), is simply (pe) in which, for modelling purposes, ¢ is defined by

Eq. (3-13).

To make the equation for the rate of dissipation of the mean turbu-
lence energy, ¢, tractable, many "drastic" model assumptions need to be
employed [75]. The differential conservation equation given by Eq.
(3-12) can be regarded as an equation for ¢ if local isotropy prevails,
as it generally does for high-Reynolds-number fiows [38,111]. The reason

for this is explained in the following paragraphs.

It can be shown, by dimensional and order of magnitude consider-
ations, that as a turbulence Reynolds number, Re, for example, increases
so does the difference between the small-scale and large-scale turbulent
motion in terms of characteristic time, velocity, and length scales
{38). The strain rate of the mean flow tends to cause the turbulent
motion to be oriented in the same direction as the mean flow. This is
particularly true in the case of the large-scale turbulient eddies which
have time, velocity, and length scales similar to those of the mean

flow: The large-scale turbulent eddies exhibit a steady anisotropy

{38]. MWhen the local turbulence Reynolds number of the flow is large,
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the small-scale eddies are characterized by small time scales and large
fluctuating, or turbulent, strain rates compared to the motion of the
large-scale turbulence and the mean flow. Because of these relatively
short time scales and the random fluctuating nature of this small-scale
turbulence motion, the time that small-scale turbulent eddies remain
aligned with the strain rate imposed by the larger-scale motion is rela-
tively short: The small-scale motion tends to quickly return to an iso-
tropic state. With respect to the rest of the fiow, the small-scale
turbulent motion is in a statistically isotropic state commonly referred
to as local isotropy [38,111]. The point where the motion can start to
be considered as "small scale" and in a state of local isotropy depends
on the fiow field itself, however, it does include the smallest turbu-
lent scales where most of the dissipation of the mean turbulence kinetic

energy occurs, the so-called Kolmogorov microscales [38].

The assumption of local isotropy of the small-scale turbulence
motion is only valid if the local value of Re, 1s large enough such that
there exists a noticeable difference in the time, length, and velocity
scales of the large- and small-scale turbulence motion. Tennekes and
Lumiey [38] have estimated that an Re, in the order of at least 100 is
required. Local isotropy can be assumed to prevail for high-Reynolds-
number flows, since Re, in such flows is generally large throughout most

of the flow field.

The expression for ¢ given by Eq. (3-11) can be recast in the fol-

lowing form:

€ = % 2S|jslj (3-26)
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where 8;; is the strain rate of the fluctuating turbulence velocities
and is given as:
. 1 ,8u; du;j .
8ij = 5‘(;;; + 3;7) (3-27)
In regions of a ftlow where local isotropy prevails, it can be shown
that the mean of the square of the fluctuating strain rate can be

approximated by the mean of the square of the vorticity fluctuations

[38] such that:

e du, du
we o (SHML Yy -
28,;8ij = (axj axj) (3-28)

Substitution of Eq. (3-28) into (3-26) yields the expression given by
Eq. (3-13) for ¢ that can be used when the assumption of local isotropy

of the turbulence motion is valid.

Since the amount of dissipation that occurs at larger scales, where
statistical isotropy does not prevail, is insignificant compared to that
occurring at the smaller scales where the turbulence is statistically
isotropic, it is valid to assume that ¢ can be represented by Eq.

(3-13), when deriving the model form of the ¢ equation for the case of
high-Reynolds-number flows. To obtain Eo. (3-18) from Eq. (3-12), the
recommendations given by Bradshaw [40] are used: terms II, 111, and IV n
Eq. (3-12) have been comb'ned and modelted as a gradient diffusion term,
appearing on the immediate left of the equal sign in Eq. (3-18); terms V

and VI have been combined to represent production of ¢, P,;

¢s term VIill

has been neglected; and the convection and dissipation terms are
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obtained from terms | and VII respectively, of Eq. (3-12).

The k and ¢ equations, Eqs. (3-14) and (3-18), and the expressions
for the terms appearing in these two equations, Egs. (3-15) to (3-17)
and (3-i9) to (3-21), ailong with the modelled forms of the momentum,
continuity, and eddy viscosity equations given by Eqs. (3-3), (2-7), and
(3-8), respectively, form a set of equations that can be solved numer-
ically when the values of the constant terms are specified and the

appropriate boundary conditions for U,, k, and ¢ are given.

In the expressions given by Eqs. (3-8), (3-15), (3-19) to (3-21),
the following empirical consiants appear: Cp in Eq. (3-8); o, and o, in
Eqs. (3-15) and (3-19); and C; . and C,, in Eqs. (3-20) and (3-21),
respectively. Values of these constants have been determined for the
standard form of the k-¢ model (75,89,80,112]. The values of o, and o,
are assumed to be close to one and final values have been obtained by
computer optimization [75,89,90,112). Using Eqs. (3-14}) and (3-18), the
value of Cy is determined from measurements of puv and k in equilibrium

shear layers, and the value of, C,. is obtained trom the measured rate

c

of decay ot k behind a grid [75,89]. With the values of C,., o, B

and the resulting form of Eq. (3-18) for the near-wall flow region where
local equilibrium exists, an expression for the value of C;_  is
obtainea. It should be noted that rate of change of ¢ is particularly
sensitive to the ditference in the values of C,, and C,, 81]. Due to
slightly different approaches by different modelers, there are often
slightly different values of these constants used, although, as pointed
out by Hanjalic [B1] , the experimental evidence indicates that C,,

should always have a value less than 2 and equal to or greater than 1.8,
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In this thesis, the particular values used for these constants, for all

versions of the k-¢ mode!, are” those recommended by Launder and Spalding

[112] and are given in Table 1.

In the case of wall bounded shear flows, at the solid wa!! boundary
the no-slip condition prevails, implying that all mean and fluctuating
velocities, hence k, have values of zero. However, ¢ has a finite value
that requires calculation. Nevertheless, if possible, It is desirable
to avoid use of the standard k-e¢ model in this near-wall region. In
high-Reynolds-number flows, the effect of dynamic viscosity on the
flow field is negligible except in a small region of the flow adjacent
to wall boundaries: the viscous sublayer and so-called buffer layer. In
this region, the direct effects of viscosity become progressively
larger, compared to the turbulence, as the wall is approached. In the
viscous sublayer, the viscous effects are so dominant that the turbu-
lence is unable to sustain itself [38]. The assumption of high turbu-
lence Reynolds number and the corresponding local isotropy used in the
derivation of the k and ¢ model equations is not valid in this region,
thus making the standard form of the model equations inappropriate here.
In addition, if the equations are solved all the way to the wall, the
very steep gradients of turbulence properties that prevail in the vis-
cous sublayer, in a direction norma! to the wall boundary, require that
a large number of grid points be placed in this region, which in turn
increase computational costs. For many high-Reynolds-number wall bounded
shear flows, integration of the mode! equations through the viscous sub-
layer and the buffer layer can be avoided by using existing empirical
correlations, often referred to as universal wall functions [90], that

relate surface boundary conditions to points in the fiuid outside the
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viscous sublayer and the buffer layer.

The near-wall region of wall bounded turbulent shear flows consists
of a viscous sublayer where the effects of viscous stresses dominate; a
buffer layer where both the viscous and turbulent stresses are impor-
tant; and an inertial sublayer where the effects of viscosity can be
neglected and the mean flow velocity follows a logarithmic profile. The
velocity in this so-called logarithmic region of wall bounded shear

fiows can be expressed as [75]:

s

b REN

In(y* B) (3-29)

where U, is the resultant velocity parallel to the wall. The von
Karman constant, =, and the roughness parameter, B, are empirically
determined constants. Their values and resul tant friction velocity, U,

and the dimensionless normal distance from the wall, y*, are given as

[75]:

1/2

Ur = (2 (3-30)

P

y= £Ury (3-31)
N

x = 0.41 (3-32)

B=98.0 (for smooth walls) (3-33)

Equation (3-29) is derived for the y* region where the large-scale
turbulence motion is proportional to the normal distance, y, from
the wall, the mean-flow velocity component normal to the wall is consid-

ered to be negligible compared to that parallel to it, and the effective



shear stress is essentially constant and equa! to the wall shear stress,
r,. Therefore, to be sufficiently accurate, the equation shouid be used
at locations where 30¢y*<100 {75]. In this region, the U, velocity
profile is given by Eq. (3-29) for flows with a strongly adverse pres-
sure gradient to flows involving a strongly favourable pressure gra-
dient, but it is not applicable to separated flows [36]. For the afore-
mentioned y* range, the flow can also be considered to be in local
equilibrium, in that the net convective and diffusive transport of tur-
bulence quantities, such as k, are negligible. This implies from Eq.

(3-14) and (3-17) that:
Py =p ¢ (3-34)

These assumptions, along with Eqs. (3-29) and (3-8), lead to the fol-

lowing expressions for k and ¢ at points located in the above-mentioned

+

y" region [75]:

5.2
.
K= (3-35)
Cu
3
¢ =Y (3-36)
Ky

The y* range for which these boundary equations are applicable cor-
responds to a turbulence Reynolds number range of 145¢Re, <455. The nor-
mal distance, y, from a wall to the corresponding boundary grid point
where Eqs. (3-29), (3-35), and (3-36) are app!ied, should be a small
fraction of the total extent of the flow domain in the y-coordinate

direction.




3.4 LOW~-REYNOLDS-NUMBER VERSIONS OF THE k~¢ MODEL

In the high-Reynolds-number, or standard, k-¢ model, universal wall
functions are used to relate wall surface boundary conditions to grid
points located in the 30 < y*< 100 region of the flow, thus removing
the need to solve the modelled equations through the viscous sublayer
and the buffer layer, located adjacent to a wall surface. This practice
is acceptable if the Reynolds number of the flow is sufficiently high so
as to make the viscous effects on the overall flow field unimportant,
and if, of course, it has been established that the universal wall func-
tions provide an adequate means of linking conditions at grid points
outside the viscous flow region to conditions at the wal! surface. The
near-wall velocity profiles of unsteady or separated turbulent flows are
poorly predicted by Eq. (3-29) [36], and thus the use of universal wall
functions is inappropriate for such flows. In high-Reynolds-number
flows, the flow region y* < 30 typically occupies 2 percent [36] or
less of the flow field. In low-Reynolds-number flows, however, this
same y* region may occupy as much as 30 to 40 percent, or even more,
of the flow field, and thus neglecting its effect, hence the effect of
viscosity, on overall flow field calculations may iead to significant

errors in the final flow solution.

As discussed in Section 1.2.2, many of the alternate versions of the

k-¢ turbulence models attempt to deal with the above-mentioned problems
by propusing and solving appropriate model equations through the J

buffer layer and the viscous sublayer regions of wall bounded shear

- de

flows, thereby removing the need for using wall functions. This

requires some extensions of the standard k-¢ model equations. In the

I S A
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more advanced forms of the k-¢ model, these extensions incorporate
either a wall damping effect or the direct effect of dynamic viscosity,

or both, on the empirical constants and on certain functions in the tur-

bulence model equations [90].

The direct effect of dynamic viscosity has already been incorporated
into the diffusion coefficients, I''s, appearing in Egs. (3-3), (3-14),
and (3-18) and defined by Eqs. (3-4), (3-15), and (3-19). It shou!d be
noted that the effect of dynamic viscosity, p, is often not included in
the T terms of the high-Reynolds-number mode! equations as it is negli-
gible compared to u, . Because it is negiigible for high Reyno!ds num-
bers, however, the inclusion of u in the T terms does not effectively
change the performance of the model equations . Therefore, in this the-
sis, p is kept in the I''s of the standard form of the k-¢ mode!l equa-
tions so as to keep them as general as possible. In the immediate
vicinity of a wall, the direct viscous effects begin to dominate over
the turbulent stresses, hence the effect of the eddy viscosity in this
region becomes insignificant, compared to those of the viscous stresses,
as the wal! is approached. In addition, certain terms in the k and ¢
equations must also be made sensitive to the effects ot dynamic visco-
sity in such viscous dominated flow regions. It is the differences in
the modelling of u,, and the k and e equations, in these regions that
give rise to the many versions of the so-called low-Reynolds-number or

near-wall k-¢ model discussed in Chapter I.

In low-Reynolds-number k-¢ models, the so-called wall damping effect
imposed on the turbulence in the viscous dominated flow regions is

accounted for by the f and E terms appearing in Egs. (3-8) and (3-14) to
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(3-21). The expressions for these terms vary from model! to model, and
most of them have been based largely on numerical experiments and com-
perisons between calculated and experimental global parameters: There is
still a lack of reliable turbulence data for flow at low turbulence
Reynolds numbers such as those found in the immediate vicinity of a wall

[90].

As discussed in Chapter |, Patel et al. [90] did a systematic evalu-
ation of eight low-Reynolds-number two-equation turbulence models and
found that k-¢ model versions prorosed by Launder and Sharma [91], Chien
[92}, and Lam and Bremhorst [93], gave acceptable performances. These
three models and the original form of the low-Reynolds-number k-¢ model

presented by Jones and Launder [80,83] are examined here.

The Launder and Sharma [91] model is a revised version of the origi-
nal Jones and Launder [80,89] model. A reoptimization of model coeffi-
cients was done in [91] which ied to the coefficient values given in
Table 1. These differ slightiy from those used in the original model
version of Jones and Launder {80,89]. The values in Table 1 are
widely used, and these are the values used in the Jones and Launder k-e
model [B80,89] used in this thesis. The only difference, then, in the
Jones and Launder [80,89] and the Launder and Sharma [91] k-¢ models
used here is the form of the viscous damping function pr- The perfor-

ance of both these models, in the context of fully developed and spa-

trally fully developed turbulent flows, is examined in this thesis.

In the remainder of this section, the four low-Reynolds-number k-e¢

models, mentioned above, are presented so as to set the basis for the
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discussion in the following chapters. A more detailed discussion of
these models, as they relate té the specific numerical investigation

under taken in this work, is presented in Chapter V.

The functional forms of the terms pr' ferer fec2er Exov and E_,
appearing in Egs. (3-8) and (3-14) to (3-21), for the various low-
Reynolds-number k-¢ models considared are given in Table 2. Since the
expression used for E, depends on the wall boundary condition specified
for ¢, this ¢ boundary conditicn is also given in the table. As indi-
cated in Table 2, the Jones and Launder; Launder and Sharma; Chien; and

Lam and Bremhorst k-¢ model versions will be denoted as JL, LS, CH, and

LB, respectively.

The purpose of the fc“ function in the eddy-viscosity relation, Eq.
{(3-8), is to model the direct effect of the dynamic viscosity on the
turbulent stresses. 1t is thus correlated as a function of a turbulence
Reynoids number, Re, , Rey, or the nondimensional wal! distance y*. The
terms Re, and y* are defined by Eqgs. (3-24) and (3-31), respectively.

The expression for Rey is given as [90]:

172
Rey = LE#—Y- (3-37)

From Table 2, it is seen that 'cu is correlated as an exponential
function of Re, for the JL and LS models: y* for the CH mode!; and Re,
for the LB mode!. Launder points out that the near-wall turbulent shear
stress is also reduced by the fluctuating pressure tield [112], however,
this process is to a first approximation independent of dynamic visco-

sity and cannot be correlated in the same fashion as the viscous
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effects. Nevertheless, the ny function is used to approximate the com-
bined effects of cvnamic viscosity and the pressure fluctuations [90].
The behaviour of this function shouid be such that in regions where the
effect of dynamic viscosity is noticeable, the value of fc“ becomes
smaller, tending to zero as a wall boundary is reached. On the other
hand, in the fully turbulent flow region, where dynamic viscosity can

be neglected, f should become unity. Patel et al. [90] indicate that,

cu

based on experimental data, f can be expected to increase in an almost

cp
linear fashion, from close to zero at a wall to about 0.8 at y*=~50,
after which it is expected to asymptote to a maximum value near unity in
the fully turbuient region. As it turns out, none of the models com-

pletely simulates this "experimental" f. behaviour: The JL and LS mod-

Cu
els give pr values that rise too rapidly in the viscous region,

al though they predict the fully turbulent behaviour adequately, and the
CH and LB model fcp‘s rise too slowly outside the viscous region thus

underpredicting the values for f in the fully turbulent region. The

Cu
CH modei also underpredicts pr in the viscous region but the LB model
approximates the expected pr behaviour well in this region where

y'< 40 [90].

Low-Reynolds-number efiects are incorporated into the rate of dissi-
pation term in the ¢ equation, D,, by means of the f.,,  term. This term
is chosen so that the resulting calculated model values will agree with
experimental measutements for the case of the decay of grid turbulence
in high-Reynolds-number and fow-Heynolds-number flows [80,89,92]. All
the formulas for t., , presented in Table 2, reach their asymptotic val-

ues of unity at Re, values less than 15, indicating that the effect of

this function can be considered as being limited to the viscous sublayer
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region [90]). In all the low-Reynolds-number models considered here,
fcae S mode!led as an exponential function, asymptoting to one as Re,

becomes large.

In the LB k-¢ model, the f.,, term appearing in the ¢ equation pro-
duction term, P_, takes on a functional form that depends on the value

of f in the manner expressed in Table 2. This is done in order to

Cu
increase the predicted dissipation rate in the near-wall region, thus
causing the predicted turbulence level to be reduced in this region.

The result should be a predicted k distribution in the near-wall region
that gives better agreement with experiment. In the JL, LS, and CH k-¢
models, f.,. is left as unity but additional terms are added to the k
and ¢ equations to give the proper distribution of k ciose to a wall.
The LB version of the k-¢ model sets the boundary value of ¢ to the
value that is obtained when Eq. (3-14), for k, is applied at the wall.

In this case, the second derivative of k with respect tc the normal dis-
tance y at the wall is calculated by performing a Taylor series expan-
sicnh of k near the wali [53). By using this treatment for specifying
at the wall boundary, and by incorporating a functional form for f,.,
that serves to correct the near-wall k distribution, no additional terms

are required in the LB model equations, and thus the values of E, and E_

are zero.

in the case of the JL, LS, and CH k-¢ models, the value of ¢ at the
wall boundary is set to zero [89,91,92). This practice is computation-
ally more convenient than calculating the wall boundary value of ¢, as
is done in the LB model. |In setting ¢ at the wall to zero, however, it

is necessary to add an additional term to the k equation. This term
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represents the actual finite value of ¢ at the wall and it is needed to
balance the molecular diffusidn term in Eq. (3-14), which is not zero at
the wall [80,89,92). The E, term, appearing in the k equation of the
JL, LS, and CH k-¢ models, serves this purpose. The values of E, should
take on signiticant values near the wall and become negligible, compared

to D, (= pe) values, in the fully turbulent or logarithmic regions [90].

The E, term used in the CH k-¢ model is introduced in order to yield
a quadratic growth of ¢ with distance from the wail, in the near-wall
region. Chien has presented :irguments based on Taylor series expansion
of the ¢ equation near the wall and length scale assumptions that indi-
cate that the ¢ should vary as y? close to the wall [92]. The E, term
in the JL and LS k-¢ models is added so that the distribution of k in
the regions near a wall wouid be in reasonable accord with experimental
measurements [80,89]. This term becomes negligible in the viscous sub-
layer and decreases as y* in the logarithmic region, with the maximum
value occurring in the buffer layer [90]. The result is an increase in
the dissipation rate of the turbulence energy in this region, thereby
reducing the peak values of k and giving better agreement with exper-

iment .

Different approaches by modelers have led to dififerent expressions
for the f and E terms in Eqs. (3-8) and (3-14) to (3-21). In the case
of the CH k-¢ model, two of the model constants are also different from
those that are generally used and presented in Table 1: C;, and C,,

are given values of 1.35 and 1.0, respectively, by Chien [92].
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3.5 OTHER NEAR-WALL VERSIONS OF THE k-« MODEL

An alternative to the low-Reynolds-number k-¢ models discussed in
the preceding section is near-wall models that can be used with the
standard k-¢ model of turbulence toc allow calculation of the near-wall
flow region. Rather than model the governing equations through this
region, which requires many grid points to ensure proper resolution of
the flow field, semi-empirical and empirical profile distributions are
use to calcuiate the flow field close to the wall. For complex flows,
thic may allow more detarled and accurate modelling than can be achievad
by using the standard wall function approach of the high-Reynolds-number
k-¢ model. There are, however, obvious limitations that may arise in
tlows for which correlations are not well established, such as unsteady

or separated flows.

Such modeis were discussed briefly in Chapter !. The models by
Chieng and Launder [98] and Amano [99] attempt to model the near-wall
shear stress, velocity, k, and ¢ profiles accurately by considering sep-
arate near-wall regions: a viscous sublayer, a logarithmic layer, and in
the case of Amano's three layer model, a buffer layer as well. While
profile assumptions are used in the viscous sublayer and bufifer regions,
universal wall functions are still used to model the logarithmic region.
One of the advantages of the low-Reynolds-number k-¢ mode! equations,
namely the ability to use the equations in fiows where wall functions
are not wel! established, is not present with these particular models
[98,99]. Nallasamy [76] has pointed out that the fiow predictions
obtained using these near-watl models are not noticeably different form

those of the standard k-¢ mode!. For these reasons, the aforementioned
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near -wall models were not given further consideration for use in the

numerical investigation performed in this research.

Chen and Patel [101] have developed a more detailed form of near-
wall turbulence model based on the high-Reynoids-number k-¢ model!. In
their “two-tayer" model, only ihe momentum and k equations are solved
all the way to the wall, as they are in low-Reynolds-number models. How-
ever, in the viscous subiayer, the buifer iayer and part of the
logarithmic layer, values of u, and ¢ are determined using length-scale
relations. In the remaining region of the flow, the standard k-¢ model
equations are solved. The relations for u, and ¢ in the near-wall

region are given as [101]:

k3/2

¢ = (3-38)

le

pe = p Cu k2, (3-39)

The viscous damping effects that are experienced in the near-wall region
are provided by the dependence of the length scales, |,  and I“. on the

turbulence Reynolds number Rey, defined by Eq. (3-37). These length

scales are given as [101]:

le = CLy {1 - exp{- 32 ) (3-40)
Re
1y = Cy 1 - exp(- — 3-41
M y { p( AL )} ( )
wvhere
CL =« Cp'3’“ (3-42)
Ac = 2 G (3-43)

M L L
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Ap =70 (3-44)

The basis for the choice of these various parameters is discussed in

[101] and will not be repeated here.

Patel anc Richmond [102] found the performance ot the two-layer
model, just described, to be satisfactory within the extremes of lami-
narization and separation caused by favourable and adverse pressure
gradients on flat surfaces. The results for flows over curved surfaces
were not as good, with turbulent shear stress being over or under pre-
dicted for convex or concave surfaces, respectively [102]. Based on
these results, the two-layer near-wall k-¢ mode! of Chen and Pate! [101]
was, along with the previously discussed low Reynolds number k-e¢ models,
considered for possibie use in this research. Further attention to this

matter will be given in Chapgter V.
3.6 k-c MODEL FOR ADVERSE PRESSURE GRADIENT FLOWS

From their investigation in [80], Patel et al. concluded that modi-
fications would be required to improve the prediction capabilities of the
standard k-¢ turbulence mode!, or any of its extensions, in adverse

pressure gradient flows. Hanjalic and Launder [96] have proposed such a

modification.

From initial investigations and previous studies, it was concluded
by Hanjalic and Launder [96] and Rodi and Scheuerer [97], that the ¢
equation was the main cause of errors in the predictions of flows that

experience strong disturbances or adverse pressure gradients. Hanjalic
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and Launder [96] suggested that irrotational straining plays an impor-
tant role in the spectral transport from the large energy-containing
eddies to the small energy-dissipating eddies of the turbulent flow.
Since the energy that is transferred from the large-scale to the small-
scale turbulent motion ends up as dissipated energy, they concluded that
in the ¢ equation, there should be a term that favours higher rates of
dissipation for irrotational strains compared to that for rotational
strains. This is accomplished by breakirg the production term P., in
Eqs. (3-18) and (3-20), into two parts: The first part contains contri-
butions to P, due to shear strains, and the second part contains contri-
butions due to normal strains. Prominence is given to the normal strain
component by multiplying it by a larger empirical coefficient than the
C,. value, vhich now multiplies only the shear strain term but pre-
viously multiplied the entire P, term of Eq. (3-20). With this modifica-

tion, Eq. (3-20) for P, know takes on the form:

Pe =i b { fore Cre (Gt + HEE (14655)

ou; au; , dU;
— + ) 6}

*+ Cse (BXj oXi

(3-45)

where all terms, except C;,, have been previously defined in this chap-
tar. The é;; is the Kronecker delta, and the value for C;, is given as

[96]:
Cic = 4.44 (3-46)

Rodi and Scheuerer [97] performed an analysis of the logarithmic
region of such flows and came to the same conclusion as Hanjalic and

Launder [96] concerning the need to increase the generation term, P, in
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Eq. (3-18). Rodi and Scheuerer [97] in turn used the modification put
forth in [96]. After this modification was made, in the investigations
of [96] and [97], improved predictions were reported for both moder-

ately and strongly decelerated boundary layer flows.

in view of the results of these two investigations, it would appear
useful to include the modification in [96] to any form of k-e¢ mode! in
flow where adverse pressure gradients or strong disturbances might
occur. It should be noted that in cases where there is relatively
little or no change of the flow in the mean flow direction, such as in
fully developed duct flows, Eq. (3-45) will become equivalent to Eq.

(3-20), as the normal strain terms will be small or nonexistent.

3.7 CLOSING REMARKS

In this chapter, the equations for a k-¢ model of turbulence have
been presented in a general three-dimensional form. These equations are
reduced to the particular forms suitable for the simulation of fully
developed and periodic fully developed turbulent flow in rectangular

ducts without and with interrupted-plate ducts, respectively, in

Chapter V.
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CHAPTER IV

FORMULATION OF THE NUMERICAL METHOD

Mathematica! models of the turbulent flows of interest in this the-
sis were presented in Chapters Il and Il1l. The formulation of a con-
trol-volume-based finite difference method that was used to solve the
governing equations of these models is presented in this chapter. This
numerical method and related ideas are borrowed from the works of
Patankar et al. [13,41], Van Doormaal and Raithby [113], and Settari and
Aziz [114). Therefore, the emphasis in this chapter will be on a con-

cise presentation of this method, rather than on detailed discussions of

its key ideas.

4.1 SOLUTION METHOD FOR CONVECTION-DIFFUSION PROBLEMS

In convection-diffusion problems, the task is to solve for the dis-
tribution of scalar quantities as they are transported by convection ana
diffusion in the presence of a known velocity field [41]. It is to be
noted that the transport of momentum is strongly dependent on convection
and diffusion processes. Therefore, a solution method for convection-
diffusion problems is a prerequisite for the formulation of a solution

method for fluid flow [41].
4.1.1 Governing Equations
in the Cartesian coordinate system, the equations which govern

steady convection and diffusion of a scalar quantity, ¢, in the presence

of steady turbulent fluid flow, can be cast in the following form:
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i - g . (4-1)

where J; is given by:
d
Ji = pui¢ - I‘gfi— (4-2)

In Egs. (4-1) and (4-2), ¢ is a general scalar dependent variable, T
is the corresponding generalized diffusion coefficient, S is a volumet-
ric source term of ¢, and u; represents the component of the velocity in
the i direction. The purpose of the source term is to represent the
actual production or dissipation of ¢, however, to ensure the generality
of Eq. (4-1), all terms that do not take the form of the convection or

diffusion term in Eq. (4-2) can also be included in S [41].

The mass density and velocity field in Eq. (4-2) must also satisfy

the continuity equation:

g;r(pu|) =0 (4-3)

4.1.2 Domain Discretization

in the numerical method used, the values of the dependent variables
are calculated at a finite number of points in the calculation domain.
These points are called grid points. The grid-point values of the
dependent variables are obtained by solving sets of algebraic equations
called discretization equations. The discretization equations are

N obtained by first integrating the governing differential equations over
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a subdomain, or control volume, surrounding each grid point, and then
deriving algebraic approximations to the resulting integral conservation

equations.

Grid points and their associated control volumes can be defined in
several ways, as discussed by Patankar [41]. The practice adopted here
is depicted in Fig. 6. The calculation domain is first divided into
control volumes: The dashed |lines denote the control-volume boundaries.
Then, grid points are placed at the geometric centers of the control
volumes: The dots in Fig. 6 denote grid points. For the two-
dimensional situation illustrated, a given grid point is connected to a
maximum of four neighbouring grid points by grid tines, shown as the
solid lines, passing through the four faces of the associated control

volume.

An example of a grid point and its associated control volume is
shown by point P and the shaded area in Fig. 6. It can be seen that
point P communicates with its four neighbour grid points, E, W, N, and
S across its four control volume faces, e, w, n, and s, respectively.
The E, W, N, and S notations denote east, west, north, and south grid-
point neighbours, respectively, and the corresponding control-volume
faces are designated as e, w, n, and s. The boundary points, shown as
hollow dots, are located at the center of the control-volume face of the
near -boundary control volume, illustrated by the shaded area around the
grid point B in Fig. 6. With respect to the nomenclature presented in
Fig. 7, if P were located on a vertical boundary then &X, = 0, and if P

were located on a horizontal boundary then AY, = 0.
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4.1.3 conservation Equation for the Control Volume

The discretization equation is an algebraic equation that relates ¢
at a particular grid point P to the ¢'s at the four neighbouring grid
points, E, W, N, and S, shown in Fig. 6. This algebraic equation is
obtained by integrating Eq. (4-1) over a control volume and approximat-
ing (algebraically) the various terms in the integral! conservation equa-

tion. The resulting equation is [41]:
JeAe - JuAuw + JnAn - JsAg = SAV (4-4)

where AV is the volume of the control volume, A's and J's represent
areas and total convection-diffusion fluxes, respectively, and the sub-
scripts e, w, n, and s denote locations at these particular control-vol-
ume faces, as shown in Fig. 6. The term S is a volumetric average

source term for the control volume.
4.1.4 Discretization of the Total Flux

Patankar [41] has shown that the fluxes in Eq. (4-4) may be
expressed in terms of the dependent variable ¢ at the grid points P, E,
W, N, and S, using solutions to iocally one-dimensional convection-
diftusion problems along appropriate grid lines. Thus the flux J, may
be expressed as follows [41]:

- ¢

- ¢
Jehe = Fe(dp +—gotfes®) (4-5)

where Pe, is a dimensionless grid Peclet number defined as:
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Pee = -E‘- (4-6)
e

Here, F, is the flow rate (pu),A,, and D, is the diffusion conductance.
The diffusion coefficient I' is regarded as uniform over each control
volume, and fullowing the rationale in [41], the appropriate expression

for D, is given by:

De = Ac { {fXlecy (Bx)ee 7] (4-7)

where (6x),. and (éx),, are the distances shown in the contro! volume

depicted in Fig. 7.

Exponential functions are computationally time-consuming, so many
approximations, or simplifications, have been proposed for the flux
relation in Eq. (4-5). A general representation of these schemes can be

arrived at by rewriting Eq. (4-5) as follows [41]:
JeAe = Fedp + { DeA([Pec|) + [-Fe.0] Y(dp -¢¢) (4-8)

where |la,b]| is used to denote the greater of a and b. Appropriate forms
of A(|Pe|) for several different approximations are given in [41]. Of
these, the so-called power-law scheme gives the best approximation to
the actual exponential function in Eq. (4-5) [41]. The power-law scheme

was therefore used in this thesis. |t can be obtained by using [41]:
AClPe ]) = flo,(1-0.1|Pe )5 | (4-9)

It should be noted that flow-oriented di fference schemes, such as
the SUD scheme of Raithby [115] and the QUICK scheme of Leonard [116],

are available in the literature. These schemes are more accurate than

——
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the power-law-difference scheme (PLDS), because they incur less false
diffusion than PLDS [117]. However, the SUD and QUICK schemes are less
robust than the PLDS, in terms of their ability to yield converged solu-
tions with the iterative solution methods used in this thesis. There-
fore, PLDS was used in this work. Representative grid-independence
checks were undertaken, in conjunction with the extrapolation procedure
presented by de Vahl Davis [118], to obtain estimates of the accuracy of

the numerical results. These results will be discussed in detai! in

later chapters.
4.1.5 Source Term Linearization

If the source term S in Eq. (4-4) depends nonlinearly on the vari-
able ¢, it is desirable to make this dependence linear, at least nomi-
nally, so that the discretization equation remains linear: |terative

updating is then used to solve the nonlinear problem. In general, there-

fore, S is formulated as [41]:

S =S¢ + Spép (4-10)

where §} is the coefficient of ¢p, and §E is the part ot S that does not
explicitly depend on ¢p, When S is linearized in this manner, the §;
term must always be less than zero in order to ensure that instabilities

and physically unrealistic solutions do not occur [41].

The best formulation for S¢ and Sp depends on the particular expres-
sion for S and the particular type of problem being dealt with. This is

also true for the source terms in the turbulence model equations, and
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details of the various treatments used in this research will be given in

Chapter V.

4.1.6 Final Discretization Equation

Using expressions analogous to "hose given by Eqs. (4-8) and (4-10),
Eq. (4-4) can be cast in the following discretized form:

apdp = agde + awdy * andn + as¢s + b (4-11)

Equation (4-11) can be rewritten more compactly as:

apgp = Lanbdnb *+ b (4-11a)
Eq. (4-11):
ag = DeA(|Pee|) + ||-Fe.O] (4-12)
ay = DyA(|Pey|) + |IFu.0] (4-13)
ay = DpA(|Pen|) + ||-Fn.0] (4-14)
as = DeA(|Pes|) + |Fs,0f (4-15)
b = Scav (4-16)
ap = ag + ay + ay + as - SpAV (4-17)

The terms ag, a,, a,, and ag are the coefficients of the E, W, N,

and S neighbour grid points, respectively, and the remaining terms are
defined analogously to those in Eqs. (4-6), (4-7), and (4-9). In Eq.
(4-11a), the subscript nb denotes a neighbour grid point of P, and the

summation is to be taken over all neighbours.



99

4.1.7 8olution of the Discretization Equations

Collectively, the discretization equations comprise a set of simul-
taneous algebraic equations for the dependent variables, ¢, at the
internal grid points. These equations are in general nonlinear and
coupled. The solution of these equations was achieved by using an iter-
ative method. In this method, the equations are first decoupled and
linearized using available values of ¢, either from a guessed field or
from the solution generated during a previous iteration. The resulting
set of nominally linear and decoupled equations are diagonally dominant,
thereby satisfying the Scarborough criterion for the convergence of suc-
cessive over-relaxation iterative solution methods [41]. Line-by-line
tri-diagonal-matrix algorithms (TDMA) and cyclic tri-diagonal-matrix
algorithms (CTDMA) were used to solve the nominally linear and decoupled

sets of discretization equations.

The line-by-line TDMA solution technique is described in detail by
Patankar [41]. The line-by-line CTDMA solution technique is required in
cases where periodicity boundary conditions are encountered. Such con-
ditions are characteristic of spatially-periodic fully developed flows.
For example, the velocity components and the periodic part of the pres-
sure field, ;(x,y), are identical at the inlet and outliet boundaries,
sliown by the lines AE and BC in Fig. 2, of the calculation module in the
periodic fully developed region of the turbulent interrupted-plate duct
flows investigated in this thesis. A detailed discussion of the line-

by-line CTDMA technique is available in Patankar et al. [13].

To ensure convergence of the overall iterative scheme,
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underrelaxation is usually necessary. On the other hand, the rate of
convergence of the line-by-1ine TDMA and CTDMA techniques for the solu-
tion of the nominally linear and decoupled sets of discretization equa-

tions may be enhanced by using a block correction procedure.

Underrelaxation

In this research, the implicit underrelaxation procedure of Patankar
[41) was used. In this procedure, the change in ¢ from iteration to
iteration can be reduced by introducing an underreiaxation factor, a

(0 << 1), into Eq. (4-11a). This equation can then be recast in the

form:
*
(% )¢p = Sanpdnp + b + (1 - a)223E (4-18)
*
where ¢p denotes the value of ¢p from the previous iteration. It

*
should be noted that when convergence is achieved, ¢p = ¢p, and

Eq. (4-18) becomes equivalent to Eq. (4-11a).

Block Correction Procedure

To enhance the rate of convergence of the |ine-by-iine TDMA and
CTDMA procedures, an additive correction method, described by Settari
and Aziz [114] and known as the block correction method, was used. This
method will be briefly outlined with reference to Fig. 8, where | and J
denote grid-point locations in the x and y directions, respectively.
The main idea of this procedure is to correct the unconverged ¢:J
field, during the line-by-iine iterative solution of the nominally lin-
ear discretization equations, by adding uniform corrections $T>to all

*
grid-point values of #;, along the corresponding Ith grid line (or
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adding uniform corrections ;:-to all grid-point values of ¢:J along the

corresponding JtM grid line). Thus:

* —
14 = d10 + &1 (4-19)
In Eq. (4-19), the corrections é1 are chosen to ensure integral conser-
vation over blocks around lines of constant |, as shown in Tig. 8.
First, Eq. (4-11) is recast in the general form:

aryé1s = brydr+r, s + Crudr-1,u

+ diydr, s1 t epudr,u-1 t+ 1y (4-20)

Then Eq. (4-19) is used to express the ¢ values in this equation in
* —
terms of ¢ and ¢ values. The resulting equation is then summed over

al!l J values, except for known boundary values, and an equation for ¢;

is obtained:
A1$1 = Bigrer + Cigr-1 + D (4-21)
where
A = X(ajy - diy - ery) (4-22)
By =L by (4-23)
Ci =L c1y (4-24)

* *
D = Z(bjydi+1,s *+ Crudr-1,y

* * *®
+ digdr, e+t * ergér, -1 + f1y - arudiy) (4-25)

The set of equations for $1 is solved by the TDMA or the CTDMA, as is
appropriate for the problem of interest. Equation (4-19) is then used

*
to correct the ¢;, values, before the application of line-by-line TDMA
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and CTDMA procedures to obtain an updated ¢,, field. Block corrections

along grid lines of constant J are done analogously.

4.2 SOLUTION OF THE FLUID FLOW EQUATIONS

The time-averaged equations which govern the steady, two-
dimensional, turbulent flows of interest in this thesis can be cast in

the following forms:

x momentum

L) + So(oW) = - SE e S (Tw 5D ¢ 5o (T ) + s (4-26)
y momentum
S + o) = - o S S0 ¢ S 5 v sy (4-27)
cont inuity
N, (4-28)

I f the pressure field, P, is known, then it is evident that equa-
tions {4-26) and (4-27) are particular cases of the general convection-
diftusion equation, Eq. (4-1), with ' = T, (T, is given by Eq. (3-4)),
and ¢ and S set to U and (SY- AP/dx) or V and (S, - 8P/3y), respec-
tively. In such a case, the solution of these equations can be achieved
by means of the procedure outlined in the preceding sections of this

chapter.

The pressure field, however, is not known a priori. |t is specified
indirectly by the governing continuity equation in conjunction with the

momentum equations. When solving the momentum equations, the correct
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pressure field is required in order that the resulting velocity field
will satisfy the continuity equation. For computational purposes, it is
desirable to have a direct method for determining the pressure. Thus
additional considerations and techniques are required for calculating
the flow field [41]. In this thesis, the Semi-Implicit-Method-for-
Pressure-Linked-Equations-Consistent (SIMPLEC) proposed by Van Doormaal
and Raithby [113], was used to solve the discretized momentum and conti-
nuity equations. A concise description of the procedure used to solve

the fluid flow equations is presented in this section.

4.2.1 staggered Grid

If the velocity components and pressure are calculated at the same
grid-point locations, physically unrealistic oscillatory solutions may
result [41]. These difficulties are avoided by using the staggered-grid
method [41], in which the pressures and all other variables, except the
velocity components, are calculated at main-grid locations. The velocity
components are calculated at staggered locations, as shown in Fig. 9:
The short arrows in x and y directions represent the U and V velocity
components, respectively, the dashed lines are main-grid control-volume
faces, and the dots are the main-grid points . The velocities are
located on the main-grid control-volume faces that are perpendicular tn
their direction. With respect to the main grid, the grid for U is dis-
placed in the x direction and the grid for V is displaced in the y
direction [41]. The resulting staggered momentum control volumes are

illustrated in Fig. 10.
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4.2.2 Discretized Momentum Equations

Using the same approach that was used to obtain Eq. (4-11) from Eq.
(4-1), the discretized form of the x-momentum equation, with respect to

the U control volume shown in Fig. 10(c), can be written as [41]:
8eUe = ZanpUnb + b + Ae(Pp - Pg) (4-29)

where b includes all source terms other than the pressure gradient

term. A, is the area over which the pressure force in the x direction
acts: It is equal to the area of the main-grid control-volume face at e.
The expressions for a,,, a,, and b are calculated in a manner similar to
that used to obtain corresponding terms in Eq. (4-11a): The only dif-
terence is that the staggered-grid geometry musi be taken into account
when calculating the D and F terms. The discretization equation for the

V velocities is obtained in a similar manner. Details of these expres-

sions can be found in the book by Patankar [41].

4.2.3 Pressure Correction Equation

Using an estimated pressure field, denoted by P*, the set of equa-
tions represented by Eq. (4-29) can be used to calculate a corresponding

velocity field, U*, that satisfies the equation:
geUe = TanpUnb + b + Ac(Pp - PE) (4-30)

Similarly, the corresponding V' field can be obtained.

Unless the estimated P* values happen to be the correct P values

needed in the discretized momentum equation, the U* and V* velocities

Bt L b et i o o
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will not satisfy the continuity equation . The estimated pressure field
must, therefore, be corrected by an amount P/ that will result in
corresponding corrections in the velocities, U/ and ¥/, so that they

will satisfy the continuity equation. This implies that:

Us=u+V (4-31)

v=vsv (4-32)
and

P=p+ P (4-33)

By subtracting Eq. (4-30) from Eq. (4-29) and substituting Eqs.

(4-31) and (4-33) into the result, an equation for Ué is obtained [41]:

acUL = TanpUlp + Ae (Ph - PE) (4-34)

In this equation, it can be assumed that the UL velocity corrections

are of the same order of magnitude as the UL, corrections [113]. In the
SIMPLEC procedure, the term (EanbUé) is subtracted from each side of Eq.
(4-34), and it is assumed that the net magnitude of the summation terms
on the right hand side of the resulting equation is negligible. The
result is a simplified equation that expresses UL in terms of only the

P/corrections. This can be expressed as follows [113]:

Ue = U; + de(Pé . Pé) (4-35)
where
A
- e .
de (3. - Tarp) (4-36)
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Correction equations for the V velocity components can be obtained sim-

ilarly.

With respect to the main-grid control volume surrounding a particu-
lar node, P, in the interior of the calculation domain, the discretized

form of the continuity equation is the following [41]:

Fe - FH + Fn = Fs = 0 (4.37)

The velocity correction equations, such as Eq. (4-35), are substituted
into the discretized continuity equations, such as Eq. (4-37), to

obtain the pressure correction equations [41,113]:

apPp = agPf + ayP{ + ayP{ + asP{ + b/ (4-38)
where
8g = pAede (4-39)
ay = pAudy (4-40)
an = pAndn (4-41)
as = pAsds (4-42)
ap = ag + ay + ay + as (4'43)
b/= pUkAu - pUcAe + pUsAs - pUnAn (4-44)

The term b/ represents an apparent mass source, caused by the U" and V"
fields when they do not satisfy continuity requirements. The pressure
correction, P/, is used to correct the U" and V* fields, via equations
such as Eq. (4-35), in order to remove this apparent mass source term.

The pressure field is updated using Eq. (4-33).
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4.2.4 8ynopsis of the SIMPLEC Procedure

When using the SIMPLEC procedure, it is necessary to use implicit
underrelaxation in the discretized momentum equations, otherwise, if the
§;'source term is zero, the denominator in Eq. (4-36) will become zero.
On the other hand, the pressure correction equation should not be under-
relaxed [113], otherwise the corrected velocity fields will not neces-

sarily satisfy the continuity equation during the iterations.

The various steps in the SIMPLEC procedure are summarized below
[113]:

1. Guess the pressure and velocity fields, P, U, and V".

2. Evaluate the coefficients in the discretized momentum
equations, and solve them to obtain new U"and V'values.

3. Calculate the coefficients in Eq. (4-38), and soive for the
P/ field.

4. Correct the velocity field using the velocity correction equa-
tions, and update the pressure field using Eq. (4-33).

5. Solve the discretization equations for other ¢'s, if necessary.

6. Use the P obtained in step 4 as the new P*, return to step 2, and

repeat this procedure until convergence is achieved.
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CHAPTER V
IMPLEMENTATION OF SUITABLE k~¢ MODELS

FOR THE FLOWS INVESTIGATED

5.1 CHOICE OF A k-¢ MODEL

The numerical investigation undertaken in this research is concerned
primarily with steady, spatially-periodic, two-dimensional turbulent
flows through interrupted-plate rectangular ducts. The flows of interest
are governed by geometric parameters, such as aspect ratio, nondimen-
sional plate spacing and plate thickness parameters, and the module
Reynolds number. in this work, these parameters are assigned values
similar to those that might be found in actual heat exchange equipment.
Therefore, turbulent flows with relatively low Reynolds numbers were
considered in this study: Nominal values for module Reynolds numbers

ranged from 5x10° to 30x103.

As explained in Chapter 11, for periodic fully developed flow in an
interrupted-plate rectangular duct, only the flow through one of the
geometrically similar modules, such as ABCDE in Fig. 2, need be consid-
ered. As the flow enters module ABCDE, at the line AE, it will undergo
an acceleration due to the presence of the plate. For purposes of numer-
ical modelling, this flow between the plate and the wall could be
treated as a developing turbulent duct flow and mode! led using the stan-
dard k-¢ model of turbulence [75]. In flow regions near the duct wall
and the surface of the plate, the viscous effects cannot be neglected.

In the standard k-¢ model, the solution of the governing differential
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equations in the near-wall regions is avoided by the use ot "universal

wall functions", as discussed in Chapter |11,

For the use of wall functions to be appropriate, it is necessary
that there is no, or only a very small, leading-edge separation zonse
over the plate. This is not the case when the plate thickness parameter
is large. 1In addition, since the turbulent flows investigated here have
relatively low Reynolds numbers, it is expected that the local turbu-
lence Reynolds number, Re,, will be low throughout much of the flow
region. As discussed in Chapter 111, in such circumstances, it is also
desirable to avoid the use of wall functions and solve model differen-
tial equations that are appropriate all the way to the wall. Thus the
standard k-¢ mode! used in conjunction with wall functions to handle
near-wall regions is inappropriate for this numerical investigation.
Alternative approaches tor the numerical simulation of the flows of
interest include one of the four low-Reynoids-number k-¢ models
[89,91,92,93] , or the two-layer k-¢ model of Chen and Patel [101], pre-

sented in Chapter Ii1.

The task is now to determine which of these five extensions of the
standard k-e¢ mode! is most appropriate for the numerical investigation
undertaken in this thesis. To facilitate the following discussion, the
geometric flow module, ABCDE in Fig. 2, has been redrawn so that certain
positions and distances within the module are clearly indicated: This
has been done in Fig. 11, where short dashed lines indicate spatial
locations in the fluid region and solid lines with arrows indicate dis-
tances. The dashed |line ab represents a location in the flow just above

the plate surface. The distance ae represents the normal distance from
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line ab to the plate surface. The line bc/ is a continuation of line ab
into the flow region downstream of the plate trailing edge. Bc/ is the

normal distance from the surface of the upper duct wall to the line bc’/ .
The lines db/ and dc are extensions of the vertical and horizontal plate

surface lines, respectively.

For the five k-¢ models being considered [89,91,92,93,101], atten-
tion will first be focussed on the ability of each to properly simulate
the turbulent eddy viscosity in the near-wall regions and in the
vicinity of the trailing ~dge of the plate. Each model incorporates a
viscosity damping function that serves to appropriately decrease or damp
out the eddy viscosity, u,, in regions where viscous effects become dom-
inant, such as in the vicinity of a wall. 1In the flow region close to
the plate surface, represented by abde in Fig. 11, the values of Rey are
expected to be small and, because the distance ae is also small, the
values of Re, and y* are expected to be small. As seen in Table 2 and
from Eqs. (3-8), (3-39) and (3-41), this will result in small values of
p, for all the models, as would be expected in this near-wall region.
it should be emphasized here that, in the expressions for y*, Rey, and
I“, given by Eqs. (3-31), (3-37), and (3-41), respectively, the y vari-
able is the shortest distance normal to a solid surface. As the fluid
just upstream of bd, in Fig. 11, flows past the trailing edge of the
ptate, the shortest distance normal to a wall changes from ae to Bc/,
the distance to the upper duct walli at AB. The difference between ae
and Bc/ is large, so there will be large changes in the values of y*,
and Rey. Correspondingly, the values of u , calculated in the Chien
[92], Lam and Bremhorst [93], and Chen and Patel [101] k-¢ models, will

also change suddenly from a very low value, just upstream of bd, to a
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relatively large value immediately downstream of bd. Furthermore, in

the case of the Chien model [92], pr is dependent on y*, and hence on

both y and the local wall shear stress, r,. Just downstream of bd, T,
will also change suddenly from the value at the plate surface to the
value at the upper duct wall. In the actual tlow, because of convection

and diffusion processes, sudden transitions in the value of u, would not
occur immediately downstream of bd. A gradual and continuous transition
process would be expected, with the flow alnng bc/ becoming more like
the core region of a fully turbulent duct flow as the downstream dis-
tance from bd becomes greater. In the Jones and Launder [89] and the
Launder and Sharma [91] k-¢ models, calculation of ny depends on Re,
which is, in turn, dependent only on the local values of k and ¢ in the
flow, and not the normal distance to the nearest wall. Therefore, the
sudden changes in u.  that occur in the other models [92,93,101] in the
vicinity of the plate trailing edge, do not occur with these two r«wodels

[89,91].

Difficulties similar to those encountered in the calculation of g,
are expected to arise i1n the caiculation of E, and E, in the Chien model
[92], in the calculation of f.,, in the Lam and Bremhorst model {93],
and in the calculation of |, in the Chen and Patel model [101]. If the
region in which u, is comparable to or smaller than u is very small, the
error in the overall flow calculations caused by assuming an abrupt
transition to fully turbulent flow, in the region immediately downstream
of bd, may be small or negligible. However, since the flows investi-
gated in this work are low-Reynolds-number turbulent flows, the viscous

affected flow region is expected to be large retative to the rest of the

flow field. In such a case, significant errors can occur if sudden
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changes in u, are allowed to occur in the vicinity of bd.

For the reasons just discussed, only the Jones and Launder [89] and
the Launder and Sharma [91] low-Reynolds-number k:c turbulence models
were given further consideration for use in this numerical study. It
will be noticed in Table 2 that the only difference between these two
models is in the form of the viscous damping function, ny- The perfor-
mance of each of these models was evaluated by doing some initial numer-
ical calculations of two-dimensional simple fully developed turbulent
flows in straight channels. The corresponding numerical formulation is

discussed in the Section 5.3.

From the results of initial experimental investigations carried out
in this work [110], i1t was evident that some regions of the flow through
a periodic module experience locally adverse pressure gradients. With
this in mind, it was decided that once a choice was made between the
Jones and Launder [89] and the Launder and Sharma [91] k-¢ models, the
effect of using the modification suggested by Hanjalic and Launder [96]
would be examined. 1In the investigations reported in Refs. [96,97], use
of k-¢ models incorporating this moditfication led to improved predic-
tions for flows subjected to adverse pressure gradients. The details
have been discussed in Chapter 11, and the modification is given by

Eqs. (3-45) and (3-46).

5.2 NUMERICAL TREATMENT OF THE MODEL EQUATIONS FOR

TWO~-DIMENSIONAL PERIODIC FULLY DEVELOPED FLOWS

This section of Chapter V deals with the numerical solution of the
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k-¢ turbulence model equations for two-dimensional periodic fully devel-
oped flows, in the context of -the numerical formulation presented in
Chapter IV. Domain discretization, presentation of mode! equations, the
iterative solution procedure used, treatment of boundary surfaces and
plate regions, handling of source terms, and the overall convergence

criteria are discussed here.

5.2.1 Domain Discretization

As described in Section 4.1.2, the geometric module, ABCDE, in Figs.
2 and 11 is discretized by subdividing the calculation domain into rec-
tangular control volumes, and grid points are then located at the
geometric centers of the control volumes. All dependent variables,
except velocities, are stored at the main-grid points, shown in Fig. 6.
The U and V velocities are stored at the appropriate staggered-grid

points, as shown in Fig. 8.

When discretizing a calcuiation domain, it is convenient to place
main-grid control-volume faces at locations where discontinuities in the
flow field or boundary conditions occur. Therefore, in discretizing the
geometric moduie shown in Fig. 11, control-volume faces have been posi-
tioned not only along the boundaries designated by AB, BC, CE, and EA,
but also along the plate surfaces, shown by the lines ed and dD, located
vithin the boundaries of the domain. The control volumes of the main-
grid points, located inside the plate region, will thus lie entirely

within this region's boundaries, edDE in Fig. 11.

Staggered-grid points for the U and V velocities are located along
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the vertical and horizontal plate surfaces, respectively. The velocity
components that are located on' a surface are perpendicular to that sur-
face, as seen in Fig. 12. In this figure, the corner of a plate sur-
face corresponds to the corner of a main-grid control volume. There are
no main-grid or staggered-grid points located at such a location. This
is another desirable feature of the present domain discretization.

Since no grid points are located at the plate corners, no dependent vari-

able values need to be specified or calculated at these locations.

Figures 6 to 10, and 12, have been drawn for uniform grids. How-
ever, in the present numerical investigation, the final flow calcula-
tions were done with nonuniform grid spacing. This enabled efficient
use of grid points, by allowing a greater number of grid points to be
deployed in regions where the variation of the dependent variablec was
greatest. Thus improved accuracy could be obtained with fewer total grid
points, compared to calculations done with uniform grid spacing, thereby
allowing substantial savings in computing costs. As a result, a greater
number of geometric parameter values and fiow rates could be investi-
gated numerically with the financial resources available for this

research. The nonuniform grid spacing used will be discussed next.

At the solid surfaces, AB and ed in Fig. 11, the no-slip boundary
condition prevails and the flow is brought to rest. Along the line edc
and EDC there is a discontinuous change from a no-slip to a free-flow
boundary condition when the end of the plate is reached at dD. At the
inlet and exit of module ABCDE, and at the center of the module, along
Db/, the cross-sectional flow area suddenly changes due to the presence

of the interrupted-plate and causes substantial changes and steep




gradients in the flow field. Thus, grid points have to be more densely
packed in these regions of the calculation domain, compared to the rest
of the calculation domain. In the proposed discretization scheme, the
geometric module shown in Fig. 11 is divided into four zones: two zones
in the y coordinate direction, a lower and an upper zone; and two zones
in the x coordinate direction, an upstream and a downstream zone. With
reierence to Fig. 11, the upper y zone is bounded by AB at its top
boundary and by ec at its lower limit, and the lower zone is bounded by
ec and EC. The upstream x zone is bounded by AE on the left and Db/ on
the right, and the downstream region is bounded by Db/ and BC. Within
the y-grid zones, the distribution of grid points in the y-coordinate
direction is most dense near the zone boundaries and becomes coarser
towards the center of the zone. The upper half of a y zone is the mir-
ror image of the lower half of that same zone, in terms of grid-point
distribution density. |In the x-coordinate direction of the x zones, the
distribution of grid points is done in the same manner as for the y-di-
rectional distribution in the y zones. Further details of this discreti-
zation scheme are given in Appendix 1. The nonuniform grids used with
the three different interrupted-plate duct geometries of this research

are shown in Figs. 13, 14, and 15.

The procedures for dealing with the discretization equations at
grid points located within the plate region of the caiculation domain

are discussed in Section 5.2.4,
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dimensional form of the equations governing turbulent periodic fully

developed flow in interrupted-plate ducts, Eqs. (2-21) to (2-24), can be

(5-1)

(5-2)

(5-3)

(5-4)

In Eqs. (5-1) and (5-2), the diffusion coefficient, I,, is given by

Eq. (3-4).

Equations (5-1) and (5-2) are in the same general form as Eqgs.

(4-26) and (4-27).

L

They can thus be easily incorporated into the numer-

ical formulation used for the solution of the fiow equations, as
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presented in Chapter IV. It shouid also be noted that the pressure gra-
dient term of the x momentum equation consists of two parts, the gra-
dient of the unknown periodic component of time-mean pressure, ;,
defined by Eq. (2-20), and the constant pressure gradient term, 8, def-
ined by Eq. (2-18). Since 8 is a constant value, which is specified at

the start of each computer simulation, it can be included in the SY term

of Eq. (5-1).

In the context of the Jones and Launder {89], and Launder and Sharma
[91], k-¢ models that incorporate the Hanjalic and Launder [96] modifi-
cation for adverse pressure gradient flows, the two-dimensional forms of
the k and ¢ equations can be written in the form of the general convec-

tion-diffusion equation, Eq. (4-1).

The two-dimensional form of the k equation, Eq. (3-14), is:

Z{(pUK) + %"’Vk) =2n 55 » -g—y-(rk %) + 8K (5-5)
wvhere
Sk = Py + P2 - D¢ - E (5-6)
and
Pv = m (Y ) (5-7)
dy ax
Pz = 2w (@) + @h7) (5-8)

2 2
B= 20 ({507 1+ (G2 ) ] (5-9)
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The expressions for I'y and Dy have already been given in Eqs. (3-15)
and (3-17), respectively. The turbulence production term, P, in Eq.
(3-14), is modelled as the sum of two terms in Eq. (5-6). These terms,
Pyy and P.,, represent the contributions to Py due to shear strains and
normal strains, respectively. The reason for modelling P, in this man-
ner is to facilitate the introduction of the Hanjalic and Launder [96]
modification of the ¢ equation production term, P., for adverse pressure
gradient flows. Equation (5-9) for E, , is taken from Table 2 for

the JL [89]) and LS [91] low-Reynolds-number k-¢ models.

The two-dimensional form of the ¢ equation, Eq. (3-18), is given as:

a_ a_ _ 9 p 9¢ .8 o B

ax(PUE) + ay(pve) = ax(rf ax) + ay(rf ay) + §¢ (5'10)
where

S¢ = P, - D¢ + E¢ (5-11)
and

Pe = & ( Cic Px1 + Cse Paz ) (5-12)

S 2up o3 M2 a_, v, 2
Be = SEE LG5 + {550}

2
ERE 8 SRR RS 8 DN E (5-13)
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The T, and D, terms in the above equations are given by Eqs. (3-19)
and (3-21), respectively, with the f.,  function in Eq. (3-21) taking
the form appropriate for either the JL [89] or LS [91] k-¢ models, as
shown in Table 2. The production term, P,, given by Eq. (5-12), has
been obtained by substitution of Eqs. (5-7) and (5-8) into Eq. (3-45).
The foy, function, in Eq. (3-45), has been omitted as it has a value of
one for the k-¢ models being considered for use in this research
[89,81]. The values of C,, and C;, are given in Table 1 and by Eq.
(3-46), respectively. The expression for E_ is also taken from Table 2

for the JL [89] and LS [91] models.

5.2.3 Boundary Condition Bpecification

Boundary conditions for the flow and turbulence equations must be
specified at grid points located along the geometric module boundaries
AB and CDE, shown in Figs. 2 and 11. At the duct wall boundary, AB,
values of U, V, and k are zero due to the no-slip and impermeability
condi tions which prevail at solid surfaces. At such surfaces, in the
low-Reynolds-number k-¢ models [89,91] used here, the value of ¢ is also
set to zerc. As seen in Fig. 2, the module boundary at line CDE is a
geometrical symmetry [ine for the interrupted-plate duct. For the peri-
odic fully developed flows investigated numerically in this thesis, this
line is also a flow symmetry line. The part of this boundary shown by
line DE passes through the center of the plate, and all flow and turbu-
lence variables along this boundary line can thus be set to zero. Along

the line CD, symmetry boundary conditions are specified for U, V, k, and

€.
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For periodic fully developed flows, the values of U, V, k, and ¢, at
similar vertical locations on the AE and BC boundary lines, in Figs. 2
and 11, are identical. Thus the cyclic tri-diagonal-matrix algorithm
(CTDMA), discussed in Chapter 1V, can be employed to solve the discre-
tization equations along the x-coordinate direction. This removes the

need to specify boundary values aiong AE and BC.

As was discussed in Chapter IV, the absolute level of the pressure
(and pressure correction) is not important in the calculation of incom-
pressible flows, because it is the pressure gradient that drives the
velocity field. In this work, however, to avoid computational difficul-
ties that could arise if the absolute level of the P field is allowed to
float, and possibly achieve very large values, the values of P and P/ at

a specified node within the flow field were fixed at zero.

The treatment of the flow and turbulence equations at grid points
inside the solid plate region of the module, will be discussed in the

next section.

5.2.4 Treatment of the Plate Region

The values of dependent variables, such as U, V, k, and ¢, at grid
points located on, or inside, the solid plate region of the geometric
module, shown as edDE in Fig. 11, are set to zero by overwriting the
coefficients in the appropriate discretization equations. At main grid
points, the a,, coefficients and the b term in Eq. (4-11a) are overwrit-

ten to zero while a, is set to unity. Similarly, at staggered-velocity
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locations, the a,, coefficients and the {b+A_(P,-P¢)} term are set to
zero and a, is set to one, in €q. (4-29), and d, in Eq. (4-35) is set

to zero.

The solid plate region can be thought of as a part of the flow

domain having essentially infinite viscosity [41]. This can be model led
in Eqs. (5-1), (5-2), (5-5) and (5-10), by setting all diffusion coeffi-

cients to large values (I'~103%) at grid points inside the plate region.

In this connection, it shouid be noted that the harmonic mean interpola-

tion scheme, given by Eq. (4-7), ensures that the large change that

occurs in I''s at the plate-fluid interface is properly handled [41].

By following the procedures just mentioned, no further adaptations

and specializations are necessary when using the line-by-line CTDMA and

TDMA solvers. General versions of these solvers can be used to solve

discretization equations at all grid points, regardless of whether they

lie in the solid plate region or in the fluid region.

5.2.5 Iterative 8olution Procedure

Using Eqs. (5-1) and (5-2) and following the numerical formulation
in Chapter IV, algebraic discretization equations are obtained for the U
and V velocity fields. Similarly, using Eqs. (5-5) and (5-10), two sets
of discretization equations are also obtained for k and ¢. Finally, the
discretized momentum and continuity equations are used to obtain a set
of algebraic equations for the pressure correction field, as discussed
in Chapter IV. An iterative procedure used for the solution of these

five sets of coupled discretization equations will be outiined next. An
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understanding of this procedure will facilitate the discussions pre-

sented in following sections. -

1. To start the calculation process, values of the relaxation parame-
ters, a in Eq. (4-18), and suitable convergence criteria are speci-
fied, and guess values of U, V, P, k, and ¢ are supplied.

2. Calculate values of u. using available values of k and ¢.

3. Using the available values of u,, U, V, and P, calculate the coef-
ficients and source terms in the discretized U momentum equations, relax
them (a,= 0.9), and then solve to obtain the U* field.

4. Using the available values of u, , U, V, and P, calculate the
coefficients and source terms in the discretized V momentum equa-
tions, relax them (a,= 0.9), and then solve to obtain the V' field.

5. Set the initial guess values of P/ to zero.

6. Use the U" and V" values from Steps 3 and 4 to calculate the mass
source term, b/, in Eq. (4-38), and solve for the P/ field.

7. Correct the velocity field using the velocity correction equa-
tions, Eq. (4-35), and correct the pressure field using Eq. (4-33).

8. Repeat Steps 3 to 7, which will be referred to as a velocity-
field iteration, a specified number of times to ensure that the
velocity field reaches an acceptable level of convergence before
proceeding to solve the k and ¢ equations.

9. Calculate the coefficients and source terms in the k equation,
using the values of U and V from Step 8, and the same values of k
and ¢ as those used in Step 2, and then solve for an updated k field.

10. Calculate the coefficients and source terms in the ¢ equation,
using values of U and V from Step B, and the same k and ¢ values

as used in Step 2 (do not use the k values from Step 9), and solve




for an updated ¢ fieild.

11. Steps 2 to 10 constitute ome iteration of the overall solution proce-

dure. Return to step 2 and repeat the procedure, until convergence

is achieved.

In Steps 3, 4, 6, 9, and 10, the nominally linear discretization
equations are solved using the iterative TDMA/CTDMA procedure with block
correction, as described in Section 4.1.7. During each of these steps,
the line-by-1ine TDMA /CTOMA sweeps of the calculation domain are done a
specified number of times, updating the dependent variable field each
time, thus obtaining a partially converged field for the dependent vari-
able with a given set of coefficient values. |t 1s not necessary to
obtain complete convergence of the nominaily linear and decoupled sets
of discretization equations in each of the above-mentioned steps during
the overall iterative procedure as it does not enhance the overall rate

of convergence significantly [41].

5.2.6 Treatment of Source Terms

As was mentioned in Section 4.1.5, the volume-averaged forms of the
source terms in Eq. (5-1), (5-2), (5-5), and (5-10), are linearized as
done in Eq. (4-10). In such a linearization, the Sp term must always
be less than or equal to zero to ensure that the a, coefficient, in Eq.
(4-11), and the a, coefficient, in Eq. (4-29), do not become negative.
If these coefficients were to become negative, instabilities and physi-

cally unrealistic solutions could occur (41].
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Momentum equations

The SY source term, Eq. (5-3), is only dependent on the U velocity
distribution through gradients of U. This dependence on U cannot be
easily expressed in a linear form, similar to that of the (§;$p) term in
Eq. (4-10). In addition, even if such a linearization were possible,
it is not certain that the corresponding §;; term would always remain
less than or equal to zero. The same may be said of the SY source term.
Therefore, with respect to the staggered-grid control volumes for the U,
and V, velocities, shown in Figs. 10(a) and (b), volume-averaged values

of SY and SV, are formulated as given in the following equations.

(§U)e is written as:

(S4)e = (Scu)e + (SpU)e Ue (5-14)
wvhere

(Bcv)e = (B + J M gl;—tg%)e (5-15)

(Spt)e = 0 (5-16)

(§7)n is expressed as:

(8)n = (5c¢¥)n + (5pV)n Vn (5-17)
wvhere

e v - aﬂt a 8;4: av

(Sc¥)n = (5;—37* gy—av)n (5-18)

(Sp¥)n =0 (5-19)

With reference to Figs. 10(a) and (b), the e and n subscripts appearing
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in the above equations indicate the e or n velocity grid-point loca-
tions. The B term is a constant, and its value is specified for the
particular problem of interest. However, the gradients of velocity com-
ponents and u, need to be calculated, and the methods used to do this

will now be described.

It values of a variable are required at a grid-point location other
than the one where they are normally calculated and stored, they are
calculated as a volume-weighted average of the values at neighbouring
grid points, where the variable is stored. For examplie, if the vari-
able, ¢, is stored at main-grid-point locations its value at a stagger-
ed-grid point location, say e in Figs. 7 and 10{(c), is obtained from the

following relation:

(g)e = 182 % (x)e: + ¢ * (5x)es})

(5x)e (5-20)

where the lengths (6x) (6x).,, and (6x),, are as shown in Fig. 7.

e-'
The length AY, is also used in the volume-averaging calculation,
but it appears in both the numerator and denominator of Eq. {5-20) and

is, therefore, not shown as it has no effect on the final form of the

expression.

The x-direction gradient of ¢ at the staggered-grid locations, such

as e in Figs. 7 and 10(c), is given as:

9¢, _ _¢5 - ¢p .
(ax)e‘ (5%)e (5-21)

The x-direction gradient of ¢ at main-grid nodes is calculated as

the volume-weighted average of the gradients of ¢ at a controi-volume
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face, in the fashion analogous to the calculation of (¢), in Eq. (5-20).

Thus at the node P in Figs. 7 ‘and 10(c):

&) = (). B+ G By 1

{(%‘f)e —i) } 12 (5-22)

Using the same methodology as that empioyed to obtain Eqs. (5-20) to
(5-22), the gradient terms in (Sc¥)e, Eq. (5-15), were calculated. With
reference to the terminology presented in Figs. 7 and 10(c), at a stag-

gered-grid-point location, such as e, these terms were expressed as:

' ( e = 1—‘(-§;)—e—“- /2 (5-23)
&Yy, = (t¥oxtVae) L 2 V) (5x), (5-24)

( Je = {(pede - (pe)p}

(6x)e (5-25)
and

r‘»’

Opg, - (BB dpr.

(3y)e = {570 cxre- + (5N (6x)ee} /1 (6x)e (5-26)
. where

= {pedn - (pe)st
(52), & (5-27)

and (dp, /dy); was calculated in a similar fashion. Since u4, is a diffu-
sion coefficient, values of u, at staggered-grid point locations were
calculated as the harmonic mean, Eq. (4-7), of the u, values stored at
adjacent main-grid nodes: For example, (g, ), in Eg. (5-27) was calcu-

lated as the harmonic mean of the u, values stored at the P and N nodes
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in Fig. 10(c).

Using procedures analogous to those just described for determining
the gradient terms in Scu, the gradient terms in Scv, Eq. (5-17),
were calculated for the V velocity staggered grid, depicted in Fig.

10(b) .

k and ¢ equations

Careful consideration must be given to the linearization of the k
and ¢ equation source terms, S¥ and ¢, of Egs. (5-6) and (5-11). Physi -
cally, k and ¢ are scalar quantities that can only have positive or zero
values. To ensure this during the computations, any terms that could
cause the volume-averaged vailues of Sk or S¢ to become negative are
modi fied and included in the respective (Sp¥ k) or (Sp€ ¢) terms of Sk
and S¢. This is done following procedures similar to those suggested by
Raithby and Schneider [42]. Numerica! studies by Raithby have indicated
that these procedures ensure and promote the rate of convergence of the
solution procedure for the complete set of discretization equations, as

outlined in Section 5.2.5.

The source term S is given by Eq. (5-6). With respect to the main-
grid control volume shown in Fig. 6, the volume-averaged form of sk at

the node P, is expressed as follows:

(SK)p = (Sck)p + (Sek)p kp (5-28)
where
(Sck)p = (Pk1 + Pe2)p (5-29)




(S_PE-)P - . {Ox + Exlp R (5-30)

kp

The expressions for P ,, P,,, E,, and D, are given by Egs. (5-7),
(5-8), (5-9), and (3-17), respectively. Since the D, and E, terms in
Eq. (5-6) always make a negative contribution to the value of sk, an
artificial linear dependence on k is created by multiplying them both
by (kp/ke)., and they are put in the {(Spk) k}p part of (SK)p. The
resulting form of the (5;?)p term is then given by Eq. (5-30). The
value of k, in Eq. (5-30) is taken as the value from the previous iter-
ation, and is not changed till the beginning of the next iteration, as

stated in Section 5.2.5.

As seen from Egs. (5-7) to (5-9) and (3-17), values of u, p, p, ¢,
and the x and y gradients of U, V, and k /2 are required at main-grid
points in the calcuiation of Spk. The values used for 4, Bt, p, and e
are those atready stored at P. The gradients of variables, at main-grid
points, are calculated following analogous procedures to the those
described earlier for the caiculation of gradients at staggered-grid
points. The k'/2 values are obtained from the k va'ues stored at main-
grid points, and these square root values are used for calculation of
the x and y gradient terms of k1/2. When caiculating (§F)p. all gra-

dients at P are first calculated and then squared, if required.

For the main-grid point P, in Fig. 6, (S€)p is written as:

(S€)p = (Sc€)p + (Sp€)p ¢p (5-31)

where
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(Sc€)p = (Pe + E¢)p : (5-32)
oP e -
(SPe)p = - U’——m——“——“‘—'kp C2¢ ¢ (5-33)

The expressions for P, and E, are given by Egs. (5-12) and (5-13).
The JL and LS mode! forms of fc2¢, as given in Table 2, are used, and
the value of C2¢ is that given in Table 1. As for Sk, all k and
values appearing in Sce and Sp€ are set to the values from the previous

iteration, as mentioned in Section 5.2.5.

Px1 and Py2, in Eq. (5-12) for P¢, are the same as those calculated
for §ET_ Procedures analogous to those already described for the calcu-
lation of gradient terms in Su are used to calculate the second deriva-
tive velocity terms appearing in E., Eq. (5-13). To do this, the first
derivative terms, enclosed by the inner brackets, are calculated, and
then the gradients of these terms are found to obtain the second deriva-

tives at node P. These are then squared as indicated in Eq. (5-13).

The procedures described in this section for the calculation of gra-
dient terms must be modified slightiy when used to obtain gradients
at a staggered-grid point that is located on a plate surface. For
example, normally, the distance between the two main-grid locations is
used in the denominator of Eq. (5-21). However, when point e lies at
the interface between the plate and the flow region, the distance
between the main-grid point, located in the flow, and the staggered-grid

point, located on the plate surface, is used to calculate the gradient.
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5.2.7 Final Convergence Criteria

The iterative solution procedure described in Section 5.2.5, is
repeated until a specified convergence tolerance is achieved. To deter-
mine when this occurs, the relative change in U, V, k, and ¢ values is
monitored. The absolute value of the change in the magnitude of each of
these variables, from the preceding iteration to the current iteration,
relative to the current iteration value, is calculated at each grid
point along a designated vertical grid line in the calculation domain:
The relative changes in the U and V velocities are calculated at the
corresponding staggered-grid point locations. The maximum relative
change, in each of the variables monitored, is then determined for each
iteration. When the sum of the maximum relative changes from the two
most recent iterations, for each variable monitored, is less than a spe-
cified tolerance, convergence of the flow and turbulence equations is
considered to have been achieved. Unless otherwise stated, in this
work, the convergence criterta used was that, for each dependent vari-
able monitored , the sum of maximum relative changes over two successive

iterations had to be less than 1076,

Initial monitoring of other quantities, such as the relative change
in calculated mass flux, the average of absoiute residual vaiues, the
"mass source" term in the P/ equation, and of the absolute relative
changes in variables at atl grid points, indicated that the above-

mentioned convergence criterion was satisfactcry.
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5.3 NUMERICAL TREATMENT OF THE MODEL EQUATIONS FOR

A4

TWO-DIMENSIONAL SIMPLE FULLY DEVELOPED FLOWS

For reasons discussed in Section 5.1, the low-Reynolds-number k-¢
turbulence models of Jones and Launder [89], and Launder and Sharma [91)
were selected for use in the numerical investigation of this thesis. The
only difference in the forms of these two models is in the expression

for the viscous damping function, f as shown in Table 2. To gain

Cu’
insight as toc which model would be most appropriate for the type of
flows being studied in this work, both were used to simulate turbulent
two-dimensional simple fully developed flows in straight channels. Such
flows can be simulated using one-dimensional forms of the k-e¢ turbulence
model equations, and allow an economical performance evaluation of the
two low-Reynolds-number k-¢ turbulence models under consideration. This
is due to the reduced computational effort required to solve a one-

dimensional flow problem, compared to that needed to solve the two-

dimensional mode! equations for interrupted-plate duct flows.

The Reynolds number, Re,, values for the fullv developed duct flows
studied covered the same range as the nominal flow Reynolds number, Re,,
of the two-dimensional periodic fully developed duct flows of interest
here. In addition, ftlows having higher Reynolds numbers were simulated
to determine at what point the low-Reynolds-number k-¢ models would
become equivaient to the standard, or high-Reynolds-number, version of
the k-¢ model. To do this, flow results were also obtained using the

standard k-¢ turbulence model.
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5.3.1 Model Equations

In turbulent two-dimensional simple fully developed duct flows, the
time-mean velocity field is invariant in the flow direction and has no
cross-stream component. The gradient of the time-mean pressure is con-
stant in the flow direction and zero in the cross-stream direction. Such
a flow can be modc'led using the following one-dimensional forms of the

low-Reynolds-number k-¢ model equations, presented in Chapter |i1:

x momentum equation

_a au -
0 = Eg(ru 5;) + Su (5-34)
k equation
2 ak
- Z_ poduX Kk -
0 ay(rk ay) + 8 (5-35)

¢ equation
_ 9 p 9c
0= ay(F‘ ay) + 8¢ (5-36)

The expressions for I',, T, , and ', are given by Eqs. (3-4), (3-15), and

(3-19), respectively.

In the x-momentum equation, the pressure gradient term , which is
constant and is specified as a problem parameter, is placed in §¥ so

that:

se = - (55 (5-37)




e

The corresponding forms of Scu and Spu in Su are:

— 3P
Scv = - (3})

The form of Sk, in Eq. (5-35), is:
8k = Pyid - Dk - Exid
where D, is given by Eq. (3-17), and:

8u 2
Pkid = mt ( 3y )

2
Extg = 2 4 [{%;(k”z)} ]

In Eq. (5-36), S€ is:

S¢ = Pe1d - D¢ + Eerd

with D, given by Eq. (3-21), and:

Petd =  ( Cie Pid )
2

S 2w 8 N
Ee1d o 1370 5y )}
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(5-38)

(5-39)

(5-40)

(5-41)

(5-42)

(5-43)

(5-44)

(5-45)

The treatment of the SX and S¢ terms requires some special consider-

ation, as mentioned in Section 5.2.6, and will be discussed shortly.

Since there are no unknown pressure terms in £q. (5-34), all three mode |

equations, (5-34) to (5-36), can be treated as convection-diffusion type
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equations, with convection terms set to zero, and solved using proce-
dures akin to those described for Eq. (4-1). This means that all vari-
ables, including U velocities, are stored at main-grid points. Gra-
dients of variables, appearing in the source terms of the model equa-
tions, are calculated using procedures analogous to those used for

determining similar gradients in Section 5.2.6.

5.3.2 Domain Discretization

From the discussion in Chapter IIl, it will be recalled that the
principle difference between the low-Reynolds-number and standard k-¢
turbutence models is in the handling of the near-wall regions. In the
standard k-¢ mode!, boundary conditions are not specified at wall sur-
faces but rather at grid points that are located in the fluid at a non-
dimensional perpendicular distance from the wall of 30 < y*< 100
[75]: In this investigation a value of y* = 30 is used. When using
low-Reynolds-number turbulence models, the U, k, and ¢ equations are
solved all the way to the wall boundary points. This requires that a
large number of grid points be placed in the y* < 30 region, in order to
ensure adequate resolution of the steep gradients of the turbulence
properties that occur there, particularly through the viscous sublayer.
The one-dimensional grids for fully developed duct flows were generated
such that a designated number of grid points were always located in the
near-wall regions where y* < 30, regardless of the value of U,, which,

for the same duct dimensions, increases with increasing fiow rate. From

Eq. (3-31), it can be seen that as U, increases, the aforementioned
near-wall regions will occupy less of the total calculation domain, and
the core-flow region located between these near-wall regions will be
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correspondingly larger. In such a case, more grid points were placed
within the central core region, resulting in a greater total number of
grid points, although the number of grid-points within the near-watl
regions (y* < 30) was not changed. On average, for the entire range of
flow rates investigated, approximately 40 to 50 percent of all the grid
points were located in such near-wall regions. A more detailed descrip-

tion of the grid-generation procedure is given in Appendix 1.

5.3.3 Formulation of the k and ¢ S8ource Terms

The manner in which a source term is linearized can have a signifi-
cant effect on the rate of convergence of the iterative solution of the
discretization equations [41]. There are many ways that the expression
for Sk can be split into §;F and (§;?.k). The same may also be said of
the expression for S¢. During preliminary testing, using the one-
dimensional k-¢ mode!l equations, the source term formulation suggested
in Ref. [42]) was compared to several other formulations that had been
used by the present author and found to work well for one-dimensional
fiow calculations. In particular, two different formulations for Sk and
S¢ were used, and the effect that these had on the overall rate of con-
vergence of the solution to the coupled sets of U, k, and ¢ discretiza-

tion equations was evaluated.

Sk Treatment (1): Sk,
This formulation is the one suggested in [42] and used for the two-
dimensional form of Sk, in Section 5.2.6. At a grid point P, (SK)p

is given by Eq. (5-28). For turbulent simple fully developed duct flow:
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(Sck)p = (Pxid)p (5-46)
S K)p = - (Dg ;PEk1d)P (5-47)

P14+ Dy, and E,,4 are as defined in Section 5.3.1.

Sk Treatmant (2): §?}
In Treatment (1) for Sk, the negative terms in (§F)p are multiplied
by (kp/kp) to make them linearly dependent on kp, in an artificial

manner. The resulting form of (Spk)p is shown in Eq. (5-47). By doing

this, (Sck)p and (§;F)p will always be positive and negative,
respectively, thus ensuring that k, is always positive [41]. If, during
the iterative solution procedure, kp becomes very small, the artificial

(Spk)p term, given by Eq. (5-47), can become large, compared to the
other terms in the discretization equation for kp. (Spk)p would then
make a,, in Eq. (4-11), correspondingly large and result in an even

lower value of k,. Such an event can occur during the early stagus of

the iterative solution process when, due to a poor initial guess for the

values of the dependent variables, it could take several iterations
before the distribution of U, k, and ¢ assume forms similar to those of
r the converged solution profiles. A small value of kp, caused by an
artificially large (§;T3p. could substantially increase the number of
iterations needed before proper profile trends for k are obtained. For
this reason, it was decided to try the foliowing alternative procedure

for calculating k source terms and solving the k equations.

Step 1:

Formulate (§Er)p and (Spk)p as:

L
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(Sck)p = (Pk1g - Dk - Ex1d)e (5-48)
(Spk)p = 0 (5-49)
Step 2:

Store the k field values from the previous iteration. Then solve
the k equations using these previous iteration values for the initial k

field distribution.

Step 3:

If a value of the newly calculated k field from Step 2, say kp, is
less than zero, reformulate (§€f)p and (§;r)p in the same manner as that
in Treatment (1) for sk , using Eqs. (5-46) and (5-47), at that particu-
lar P location only. |In Eq. (5-47), the previous iteration value of k;

is to be used, not the negative value just calculated.

Step 4:
Repeat Steps 2 and 3 untit all k values calculated in Step 2
are positive. When this occurs, use these values as the current iter-

ation values of k and proceed to solve for e.

When a value, kp, calculated in Step 2, is less than zero, it means
that (§E?3p was negative and large enough in magnitude to cause the
value of k, to tecome negative. Usually, this i1terative process,
between Steps 2 and 3, is only required in the initial few iter-
ations of the solution procedure. Once the calculated k field begins to
take the shape of the converged solution, the source term treatment of

Eq. (5-48) does not result in negative values of kp.




S¢ Treatment (1): 841

As with Treatment (1) for Sk, this formulation of S€ is based on the
one suggested in [42] and used in Section §.2.6. At a grid point P,
the source term expression (§?)p is given by Eq. (5-31), and for the

one-dimensional form of the ¢ equation, (Sc€)p and (Sp€)p are:

(Sc€)p = (Pe1d + Ec1d)p (5-50)
(§P_£-)P - . .(.Lfﬁ.ﬁ_:_cz_;‘).ﬂ. (5_51)

Pe1g @and E. 4 are as defined in Section 5.3.1, and C,, and f.,, are

given in Tables 1 and 2, respectively.

S€ Treatment {2): S,
In Eq. (5-43), since D, contains an €2 term, S¢ is a nonlinear
function of ¢. Following the recommendation of Patankar [41], at a grid

point P, S€ is linearized as:

— Se © -
5 = (B9 (¢ - €0)p + (8°)p
= (De® + Eera)p + (Ae - BeO)p ep (5-52)
where
pro 2
(Aede = { C1e ll 5;') }e (5-53)
(Beo)p = { 2 p feze Coc 1= b (5-54)
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The superscript © appearing on ¢ or terms containing ¢, indicates
that the value of ¢ from the previous iteration is to be used. The
other terms appearing in these equations are as defined previously in
this chapter. In order to ensure that the §€? and §;? terms are
always positive and negative, respectively, they are calculated, follow-

ing the recommendation in [41], as:

If (Ae < Beo)p then

(Sc€)p = (De® + Eerd)p (5-55)

(Sp€)p = (Ae - Beo)p (5-56)
otherwise

(Sc€)p = (De® + Eerd)p + (Ae €°)p (5-57)

(Sp€)p = - (Beo)p (5-58)

Calculation of §E-and §;: Procedure A

In the formulation given by Treatment (1) for both the k and ¢ source
terms, Raithby and Schneider [42] state that convergence is accelerated
if the previous iteration values of kp and ep are used wherever they
appear in (§;)p and (§;)p terms. This practice is denoted as

Procedure A.

Calculation of §E.and §;} Procedure B

The other procedure that can be employed when calculating k and e
source terms at a grid point, P, is to use the most recent values of kp
and ep. Therefore, the previous iteration values of kp and e¢p are used
to calculate (ScK)p and (Spk)p. For the analogous terms in S¢, the
newly calculated values of k, in the current iteration are used along

with the previous iteration values of ¢,.
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The effect of using both drocedures. A and B, for specifying k, and
¢, were also evaluated for the different source term formulations pre-
sented in this section. Particular source term combinations will be
designated according to the treatment and procedure used in the formula-
tion: For example, a source term combination consisting of the
Treatment (1) formulations for both Sk and §?'using Procedure A will be
designated as Sk1-851-A. Tests were under taken to determine which
formutations yield the best rate of convergence. The results of these

tests will be discussed in Chapter Vil.

5.3.4 Use of the Standard k-¢ Nodel

Results were also obtained using the standard k-e¢ turbulence model.
These were then compared to the fow-Reynolds-number model results. The
model equations and source term formulations are the same as those pre-
sented in Section 5.3.1, except that E,,4 and E.q4 in Egs. (5-40) and
(5-43), respectively, are set to zero, and f.,, in Eq. (3-21) for D,

becomes one.

The grids used are the same as those used for corresponding low-
Reynoids-number calculations, except, of course, they exclude all grid
points in the near-wall regions where y* < 30. Details of grid gener-
ation are given in Appendix 1. The specification of near-wall boundary

conditions for the standard k-¢ model are explained in Section 3.3.
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CHAPTER VI

EXPERIMENTAL APPARATUS AND PROCEDURES

An experimental facility was specially designed and constructed in
an initial phase of this research effort [109]. A schematic representa-
tion of this facility is shown in Fig. 16. Most of the flow circuit can
be seen in Fig. 17: The air flow direction is from right to left in the
photograph. The flow facility consists of the following key elements:
(i) a test section; (ii) a fiow transition section; (iii) a flow meter-
ing section; (iv) a flow control, generation, and exhaust section; and
(v) a data acquisition and processing system. Brief descriptions of
these key elements and the experimental procedures used are given in the
following sections of this chapter: Detailed descriptions of all sec-
tions and the procedures used in the initial testing and calibration of
the expsrimental facilily are availabie in [109]. Some modifications

have been made to improve the facility described in [109], and these are

noted and described in this chapter.

6.1 TEST SECTION

The experimental facility was designed so that the test section
could easily be detached, disassembled, reconfigured, and reattached to
the rest of the flow circuit. This allowed three difierent interrupted-
plate rectangular duct configurations to be investigated. The final
configurations of the test sections were arrived at by using represent-
ative compact heat exchanger dimensions and overall pressure drop data
available in [1-5,11,24-26,53,54], in the context of the capabilities of

the rest of the flow circuit. As was mentioned in Chapter |, one of the
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objectives of this work is to investigate the effect on the fiow of the
thickness of the piates in an finterrupted-plate duct. Each of the three
interrupted-plate duct test sections used, which will be referred to as
Ducts 1 to 3 in the remainder of this thesis, was obtained by using the
same overall rectangular-duct section and inserting plates of a desired
thickness along its centerline. The actual dimensions measured from the
final, assembled, test sections are presented in Table 3. With reference
to the nomenclature given in Fig. 2, the nomingl dimensions for Ducts 1

to 3 are given below.

All of Ducts 1 to 3:

Overall length, ¢ = 2133.6 mm
Width, b = 152.4 mm
Half Height, H = 12.7 mm
Plate Length, L = 25.4 mm
Interplate spacing, s = 25.4 mm
Moduile Aspect Ratio, A = b/H = 12.0
Ful | -Duct Aspect Ratio, ¢ = b/(2H) = 6.00
Plate Length Ratio, L" = L/H =2
Plate Spacing Ratio, s = s/H =2
Duct 1:
Half-thickness of plate, t = 0.400 mm
Plate thickness ratio, t* = t/H = 0.0315
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Duct 2:
Hal f-thickness of plate, t = 0.800 mm
Plate thickness ratio, t* = t/H = 0.0630
Duct 3:
Hal f-thickness of plate, t = 1.60 mm
Plate thickness ratio, t* = t/H = 0.126

The test sections used in this study were comprised of two rectangu-
lar interrupted-plate duct sections connected in series: (1) a leading
section, 1524.0 mm long, made of aluminum, and instrumented for wall
static pressure measurements; and (2) a flow visualization section,

609.6 mm long, and made of clear acrylic. The interrupted-plate duct

test-section geometry was continuous from the first plate of the aluminum

duct through to the last plate in the acrylic duct. With the above-
mentioned length, a minimum of 23 geometrically simiiar modules, such as
ABCDE in Fig. 2, could be configured in the leading aluminum duct. Thus
periodic fully developed flow could be considered to prevail over at
least the last 13 modules of the aluminum duct and all the modules of

the acrylic duct, for each test section.

6.1.1 Aluminum buct Details

An exploded view of the aluminum section of Duct 3 is shown in Fig.
18. The top and bottom walis, (:) and (:) , are machined from
1524.0 mm long, 12.7 mm thick, and 203.2 mm wide aluminum plates. Two
sets of adjacent shoulders, (:) and (:) , are milled along the edges of

these plates, to a depth of 6.8 mn over their entire length. These
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shoulders are used for proper location and alignment of three sets of
side walls, (:) , C) , and C) , which are machined from flat aluminum
bars. The outer set of side walls, (:) , are each 12.7 mm thick,

38.1 mm high, and 1524.0 mm long. Both sets of inner side walls, (:) and
(®) ., are 12.7 mm thick, 19.05 mm high, and 1524.0 mm long. The bottom
set of these walls, C) , have a total of 239 holes, 3.2 nm in diameter
and 6.4 mm deep, drilled along their centerline, with a uniform spacing
of 6.35 mm between the centers of adjacent holes. To obtain a desired
plate spacing, steel dowel pins, , 3.2 mm in diameter and 12.7 mm
long, are ftitted into the appropriate holes in the bottom inner side
walls. Suitable positioning holes are drilled 5.0 mm in from the end of
each plate, () , of the colinear array. This ensures acc'irate posi-
tioning of the plates, which are made of precision ground steel cut to a
cross-flow width of 175.0 mm and guaranteed by the manufacturer to have
the following dimensions and tolerances: with reference to the notations
in Fig. 2, L = 25.40 £ 0.025 mm and, for Duct 3, 2t = 3.175 * 0.025 mm.
To allow the upper set of inner side walls, (:) , to sit on top of the
dowel pins protruding through the array of colinear interrupted plates,
a groove, 4 mm wide and 6.4 mm deep, has been milled along the center-
line over the whole length of these walls, on the side facing the dowel
pins. Interplate spacers, not shown in Fig. 18, are placed on the top
surface of the inner side walls, filling in the gaps between the trail-
ing and leading edges of two successive plates. These 25 mm long spac-
ers are 12.7 mm wide, with the same thickness as the plates, and they
are accurately positioned in the same manner as the plates: A position-
ing hole, through which a steel dowel pin can be passed, is drilled

through the center of each spacer.
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Screws are used to fasten the inner side walls, () and () , to the
respective upper and lower plates, (:) and (2). The entire duct is
assembled and held together using machine screws and nuts that pass
through holes drilled through the outer side walls, along their center-
line, and corresponding holes drilled along the centerlines of the outer
shoulders, () , of the top and bottom plates, (1) and (@). Aluminum
angles, @:) , are attached to each end of the duct section and, with
the use of bolts and nuts, they are used to connect the sluminum duct to
the downstream acrylic duct section. When completely assembled and con-
nected to the flow facility, the edges of all joints where two or more
parts of the duct mated were sealed with two layers of ducting tape.

This ensured airtight joints along the entire test section.

Axial pressure distributions were measured with the aid of 221 taps,
C) , each with a hole diameter of 0.5 mm, deployed along the centerline
of the bottom plate of the aluminum duct section. The first and last of
these pressure taps were drilled 63.5 mm from each end of the bottom
plate and the other holes were drilled at regular intervals, with a dis-
tance of 6.35 mm between the centers of adjacent holes. The measured
locations of these holes with respect to the downstream end of the alu-
minum duct section, are given in Table 4. With the L and s dimensior:
given in Section 6.1, the spacing of the pressure taps ensures that 8
uniformly spaced wall static pressure measurements are obtained along
the length of a geometric module, at the locations shown and labelled in
Fig. 19: LE is located over the leading edgz of the plate; LC is
located over the ptate, midway between its leading edge and center; CP
is located over the center of the plate; CT is located over the plate,

midway between its center and trailing edge; TE is located over the
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trailing edge of the plate; G1 is the first point downstream of TE, mid-
way between TE and the center of the interplate gap; G2 is located over
the center of the interplate gap; and G3 is located midway between the
G2 and the leading edge of the first plate in the next downstream
module. It should be noted here that the bottom wall in Fig. 18, with
pressury taps located along its centerline, corresponds to the top duct

wall shown in Figs. 17 and 19.

The construction details of Ducts 1 and 2 differ from those of Duct
3, just presented, only in that the plate thickness is decreased: halved
from Duct 3 to 2, and halved again from Duct 2 to 1. To maintain the
same value of module aspect ratio , A\, aluminum shims of the appropriate
thickness, 0.80 mm for Duct 2 and 1.19 mm for Duct 1, were placed along
the length of the Duct side walls, () and C) , on the horizontal sur-
faces that mated with the top and bottom aluminum plates. This ensured
that the height of the duct, 2H, remained the same for Ducts 1, 2, and
3. In this connection, the thickness of the interplate spacers was also

changed as the plate thickness changed.

A photograph of an assembled interrupted-plate rectangular duct test
section, appropriately mounted and fitted to the rest of the fiow cir-
cuit, is shown in Fig. 20. The inlet, or upstream end, of the aluminum
duct is seen at the lower-right edge of the picture. The static pres-
sure taps, the machine screws that hold the duct together, and the con-
nection to the downstream acrylic duct are all c'early seen. A photo-
graph of the top and bottom plates of the aluminum duct, shoving the
inner and outer side walls and the array of colinear interrupted plates,

is given in Fig. 21.
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Fur ther details on the des}gn of the interrupted-plate aluminum
duct, including the construction of the pressure taps, are available in

[109].

6.1.2 Acrylic Duct Details

The interrupted-plate acrylic duct section is a continuation of the
interrupted-plate configuration in the aluminum duct sect on. It allows
plate-surface flow visualization studies to be performed. The dimen-
sions and construction details of this duct are similar to those pre-
sented for the aiuminum duct in Section 6.1.1, with the following excep-
tions: (i) all the walls of this section are made from clear acrylic,
except for the lower inner side walls which are made of aluminum; (ii)
the length ot the duct is 609.6 mm instead of 1524.0 mm; (iii) there are
no static pressure taps along the length of the duct; (iv) the colinear
array of plates are painted with a thin layer of flat-black paint to
allow good contrast with surface flow visualization paint patterns; and
(v) a section of the top plate can be removed atter the entire duct has

been assembled and connected to the flow circuit.

The top acrylic plate of the acrylic duct consists of three parts:
two 114.3 mm long sections at the upstream and downstream ends of the
duct, and a 381.0 mm long central section. The upper inner side walls
are also sectioned so that tne appropriate lengths are fastened to each
upper plate section. The two end sections of the upper plate and the
rest of the acrylic duct, except for the central upper plate section,

are assembled and held together using machine screws and nuts. The
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machine screws pass through holes in the outer side walls and the outer
shoulders of the top end plates and the bottom plate. When the duct is
assembled, the two end sections of the top plate provide a sliding fit
for the central section of this plate. During an experimental run, the
joints between the central section of the upper plate and the rest of
the duct are sealed with two layers of ducting tape to ensure an air-
tight seal, as with all other locations where two surfaces mate. The
removable central portion of the upper plate allows ready access to the
array of interrupted-plates while the rest of the acrylic duct section
is still fastened to the flow circurt. This facilitates the removal of

the plates when they need to be prepared for flow visualization studies.

in Figs. 17, 20, and 22, the acrylic, or flow visualization, portion
of the interrupted-plate rectangular duct test section is seen connected
to the dovwnstream end of the aluminum duct section. A close-up view of
this acrylic section, given in Fig. 22, clearly shows the colinear array
of plates along its length, the connection to the upstream aluminum sec-
tion on the right, and the connection to the downstream flow transition
section. The access to the array of plates that 1s allowed by the
removal of the central top-plate section of the duct is demonstrated in
Figs. 23 to 25. in these figures, the surfaces of the fourth, fifth,
and sixth plates downstream from the inlet of the acrylic duct section
have been painted for the flow visualization study. Figure 25, in which
the fifth plate has been removed, shows details of the inner side walls,
the plates and dowel pins used to construct the colinear interrupted-
plate array, and the interplate spacers used to fill the gaps between
plates along the inner side walls. These details have been described in

Secticn 6.1.1, and they are common to both the aluminum and the acrylic
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sections of the interrupted-plate duct test section.

6.2 FLOW METERING SECTION

The main flow passage in the flow metering section is a 88.9 mm |.D.
and 1244.6 mm long tube made of clear acrylic. This section can be seen
at the far-left side of Fig. 17. The flow rates are obtained using
stagnation pressure measurements from a traversing pitot tube and static
pressure measurements from two taps in the flow tube wall. The pitot
tube can be positioned to an accuracy of * 0.02 mm. Volumetric flow
rates are determined by employing the ten-point log-linear method of
Winternitz and Fischl [45]. In the design, construction, and assembly
of the flow metering section, the recommendations of Ower and Pankhurst
[46] and Shaw [119] were followed as closely as possibie, in order to

minimize the errors in the stagnation and static pressure measurements.

Further details are given in [109]}.

6.3 FLOW TRANSITION SECTION

The flow transition section can be seen in Fig. 17, attached to the
downstream end of the interrupted-plate rectangular duct test section on
one side and to the upstream end of the flow metering tube on the oppo-
site side. This section consists of two main parts: a flow redevelop-
ment duct of rectangular cross section and a flow adjustment box. The
rectangular flow redevelopment duct attaches to the downstream end of
the interrupted-plate rectangular duct test section on one end and to
the flow adjustment box on the other end. It is used to ensure that the

flow in the test section is, as much as possible, free of the effects
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caused by the transition from a duct of rectangular cross section to the
circular cross section tube of the flow metering section. The flow
adjustment box allows the air leaving the rectangular redevelopment duct
to redistribute itself and enter the circular cross section flow meter-
ing tube axisymmetrically. Design and construction details are given in

[109] .

6.4 FLOW CONTROL, GENERATION, AND EXHAUST S8ECTION

Some black colored rubber and plastic ducts, and two flow control
valves, which constitute a part of this section can be seen in the upper
left corner of Fig. 17. A centrifugal-type, constant-speed, biower
(Regenair R7100a), driven by a 10 HP AC motor with a rotor speed of
3450 rpm, was used in the suction mode to generate the air flow. The
blower was mounted in a room adjacent to the Heat Transfer Laboratory,
on the opposite side of the wall shown in Fig. 17. Additional details
and operational characteristics of the blower are given in Appendix 2.
The exhaust air coming oul of the blower was passed to the outdoor envi-
ronment to ensure that it did not disturb the air entering the test sec-
tion. The use of two flow control valves, as shown in Figs. 16 and 17,
made it possible to supply the blower with an adequate supply of air
over the whole range of test-section flow rates considered in this the-

sis.

6.5 BUPPORTING EQUIPMENT, INSTRUNENTATION, AND MATERIALS

Brief descriptions of the key components of the equipment and

instrumentation used to measure, record, and process the experimental
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data, and materials used in the flow visualization studies, are given in

this section.

6.5.1 Pressure Measurement Instrumentation

Measurements of atmospheric, static, and dynamic pressures were

required in the investigation.

The atmospheric pressure was measured using a Fortin-type mercury-

in-glass barometer that was accurate to = 0.2 mm of mercury.

Static gauge pressures in the flow metering section and all other
differential pressures greater than 1 kPa were measured using an inclin-
able reservoir-type manometer (Type 5 Airflow Manometer, Airflow
Developments, Canada, Ltd.). The manufacturer’s specifications state
that the manometer fluid, a dyed biend of Paratfin, has a specific gra-
vity of 0.784 at 20°C and that the manometer is accurate to * 1% of the
reading or * 0.13 mm vertical height, whichever is larger. A calibra-
tion of the manometer, performed in the Heat Transter Laboratory, con-

firmed these specifications.

Al) differential static pressures of less than 1 kPa were measured
using an integral Barocel pressure transducer (Datametrics, Model
590-D-1kPa-208-Vi1X-4D). |Its output is a 0 to 10 volts DC signal that is
linearly proportional to positive differential pressures applied across
its diaphragm over a full scale range of 0 to 1 kPa. It was determined
that the unit is accurate to within * 0.05 Pa, which is accounted for by

assuming an uncertainty in the output signal of éV_, = % 500 sV, when
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measuring positive pressure differentials ranging from 0.2 Pa to 1 kPa.
Details of this calibration procedure are given in Appendix 3. More
detailed descriptions of the transducer and its incorporation into the

overall experimental flow facility are available in [109].

Differential pressure measurements from the numerous static pressure
taps of the test section were done using an Scanivalve mechanical multi-
plexor (Scanivalve Corp., Model 48D89-1/2) driven by a solenoid drive
(Scanivalve Corp., Model DS4-48) that was controited by a Scanivalve
controller unit (Scanivalve Corp., Model CTLR10P/S2-56) This Scanivalve
mechanical! multiplexor has a 48-port detachabie pneumatic connector
which allows as many as 48 pressure lines, made of 1.6 mm vinyl tubing
(Scanivalve Corp., VINL-063 vinyl tubing), to be connected to the
Scanivalve. This enabled a sequential connection of 48 pressure ports,
one at a time, to the Barocel pressure transducer: The use of two such
connectors allowed a total of 96 pressure lines to be handled by one
Scanivalve unit and one Barocel transducer. The reader is referred to

(109} if more detailed information is required.

6.5.2 Temperature Measurements

The air temperature in the fiow metering cross section was measured
using a chromel-constantan thermocouple, made of 30-gauge chromel and
constantan wires insulated with teflon (Omega TT-E-30). Thermocouple
attachments were done using a two-part epoxy adhesive (Omegabond 101).
This thermocouple was mounted on a traversing thermocouple probe and
connected to an electronic digital thermometer (Omega, Model 410A) with

an internal reference junction and a temperature resolution of 0.1 °C.




Measurements of the ambient air temperature were done using an alco-

hol-in-glass thermometer having a temperature resolution of 0.2 °C.

§.5.3 Dimension Measurements

The cross-sectional dimensions of the assembled test sections and
the interplate spacings of the colinear plate arrays were measured using

a vernier caliper having a resolution of 0.02 mm.

6.5.4 Data Acquisition and Processing System

Most of the pressurs measurements made in this work were recorded
and processed using a microprocessor-based data acquisition unit
(Hewlett-Packard Mode! 3497A). This unit was used to receive, display,
store, and transfer to the main controller unit the 0 to 10 V DC output
signal from the Barocel pressure transducer. The digital voltmeter of
this unit has an accuracy of * 1 uv DC. The controlier unit of the
Scanivalve vas also controllied by the data acquisition unit, via com-

mands sent from the main controller unit.

The main controiler unit was a desk-top scientific microcomputer
(Hewlett-Packard Model 86B) which interfaced to the aforementioned data
acquisition unit. Software to operate this data acquisition and control
system was written in the BASIC computer language. This software
allowed all the experimental data to be processed and stored for future

retrieval, anaiysis, and hardcopy output.
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Additional details concerning the data acquisition unit, the main
controller unit, and the computer software written for the main control-

ler unit, are available in [109].

6.5.5 Materials Used for surface Flow Visualization

In this work, after some initial testing of various surface flow
visualization techniques presented in [47,120], it was decided that
plate-surface streamiine patterns could be best obtained using a surface
oil-flow technique. This technique involves coating the surface of a
plate with a paint made of a powdered pigment mixed with a suitable oil.
When put in an air flow, details of the flow in the immediate vicinity
of the plate are shown by the surface streamline patterns formed. The
reader is referred to [47] for a description of the physics of this pro-

cess.

Two types of kerosene based paints were used in this work: Titanium
Dioxide (TiO,), an opaque fine white powder, was used as the pigment in
one paint; and a fluorescent orange pigment (Day-glo Color Corp., A-15-N
Blaze Orange) was used in the other paint. In addition, when required,
Oleic acid (CygH;,0,) was used as an additive to control the extent of
flocculation by pigment particles in the kerosene: This allowed well
defined streaks to be produced. The properties of these substances are
listed in Apnendix 4. The amounts of different materials required
to create a suitable paint varied, depending on the flow rate, and will

be discussed in Section 6.6.4.

A paint brush with a flat one-inch wide sable-hair tip was used in
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the application of the flow visualization paint to the surface of the

plate.

As was mentioned in Section 6.1, each plate in the colinear array of
plates in the flow visualization duct section was spray painted with a
thin layer of flat-black paint. This served to provide high contrast
between the plate surface and the paint pigment, particularly in the
case of the white TiO, pigment, and thereby facilitated photography of

the resulting streak patterns.

Two 250 W tungsten lamps were used to illuminate the streaks formed
by the TiO, pigment. Photegraphs of dried TiO, streamline patterns were
taken using high contrast Kodak Ektagraphic HC slide film (ASA 8). Some
photogragrhs of wet streaml ine patterns were taken while the plates were
still in the fiow, and before the Ti0O, flow visualization paint had

dried, using tungsten balanced Kodak Ektachrome slide film (ASA 160).

The streaks formed by the fluorescent Day-glo pigment wete illumi-
nated in a dark enclosure using a long-wave black light (Panosonic
Blacklight Blue - F15 T8/BL-B), and they were photographed using Kodak

Ektachrome Daylight slide film (ASA 100).

6.6 EXPERIMENTAL PROCEDURES

In this section, brief descriptions are given of the procedures used
to obtain differential static pressure measurements, the air flow rate
in the tlow metering section, plate-surface streamline patterns, and

reported experimental uncertainties. Following that, a step-by-step




R ]

156

description of the overall procedure used to run this experiment is pre-

sented.

6.6.1 Differential S8tatic Pressure Measurements

Wall ctatic pressure measurements in the aluminum duct portion of the
test section were made in the differential mode, with reference to the
static pressure at a suitable initial reference port. The gauge static
pressure at this reference port, and the gauge static pressures in the
flow metering section were measured using the inclinable manometer men-

tioned eariier in Section 6.5.1.

Difterential static pressures of less than 1 kPa, were measured
using the integral! Barocel pressure transducer described in
Section 6.5 1. In order to minimize output signal fluctuations caused
by electrical noise, a very stable DC power supply to the Baroce! trans-
ducer was used, and all signal cables were shielded by several wraps of
aluminum foil. Cyclical fluctuations in the output signal of the
Barocel, caused by the inherent static pressure fluctuations 1n turbu-
lent flows and flows generated by centrifugal blowers, and by low-level
60 Hz AC noise, were filtered out by using the following time-averaging
procedure. For each measurement, the data acquisition system was pro-
grammed to take 60 discrete readings of the Baroce! output over a period
of 13 seconds, compute the artthmetic mean of these readings, and record
this value. 1In test runs, it was established that this procedure pro-
vided a good degree of repeatabiiity [109]. A quantitative estimate of
this repeatability, using the procedure described later in

Section 6.6.3, was made for each flow rate and duct combination studied,
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and included in the calculation of the uncertainty in the tinal results.

Over a period of 24 hours, the zero-drift in the Barocel output sig-
nal was found to be as much as + 0.003 V. However, the time required to
complete one data run was between one and two hours, and the problem of
zero-drift could be overcome by using the following procedure. For each
run, five zero readings were taken before the start of the run and five
zern readings were taken at the end of the run. The average of the ten
zero readings was then subtracted from all other differential pressure
readings taken during the run to obtain their correct values. |t was
found that this procedure reduced the zero-dritt to acceptable ievels
[109]. A quantitative measure of the zero-drift was caiculated for each
set of pressure measurements, using the method outlined later in
Section 6.6.3, and this value was accounted for in the calculation of

overal! experimental uncertainties.

6.6.2 Air Flow Rate Measurements

In the flow metering cross section, measurements of time-mean stag-

nation pressures at designated measuring points and measurements of
time-mean wall static pressure were used to calculate local values of

t ime-mean dynamic pressure, den:
Pdyn = Pstag - Pstatic (6-1)

where P ..., is the time-mean average value of the wall static pres-
sure measurements and Pstag is the time-mec1 stagnation pressure measured

at the point of interest. The location of the PStag measuring points

was determined by using the ten-point log-linear rule of Winternitz and
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Fischl [45]. The measured values of air temperature and time-mean
average wall static pressure in the flow metering cross section were
used with standard air tabies [121] to obtain the corresponding time-

mean density of the air. The tocal values of U at the stagnation-

pressure locations were calculated from:

v = (BEany!? (6-2)

Using the method of Winternitz and Fischl [45], the loca! values of
U were integrated over the flow tube cross section to obtain an average
velocity through the flow tube, Usy. The values of Usy and p were used
to calculate the corresponding mass flow rate, m, which is also the mass
flow rate through the entire length of the flow circuit upstream of the

flow metering cross section:

m = p Uge Age 16-3)
where A,, is the area of the flow metering cross section.

The value of the dynamic viscosity, u, used in the calculation of
Reynolds numbers was obtained from standard air tables [121] as a func-
tion of the air temperature measured in the flow metering cross section.

A sample calculation of flow rate is presented in Appendix 5.

6.6.3 Calculation of Experimental Uncertainty

In this thesis, uncertainties in the values of individual measure-

ments were combined appropriately to obtain the overall uncertainty of
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final results calculated from these measurements: The method of Constant
Odds Combination [49] first présented by Kline and McClintock [48] was
employed. Using this method, if a final result, ¥, is expressed as a
function of N number of random variables or measurements, n;, where

i = 1 to N, having associated uncertainties of £ én;, for the same odds,
the uncertainty in ¥, * §¥, can be calculated for the same odds from the

relation [48,49]:

sw={ o)’ « GLon)’ ¢ . By (6-4)

It was assumed that each n, is independent and normally distributed,
and the odds for each én, are the same (20 to 1). It has been shown in
[48] that when these three assumptions are valid, the overall uncer-
tainty in a result can be given with good accuracy by Eq. (6-4).
ldeally, an experimental run should be repeated several times to obtain
enough samples of a given quantity, n;, so that the true standard devia-
tion, o;, of the population can be estimated [48-51]. For 20 to 1 odds,
én; is given by 20; [49,52], and for a normal distribution, o; can be
estimated from the standaid deviation of the sample set, §;, given

by [122]:

s; = | 12 (6-5)

M represents the number of sample readings of q°j that are taken to

calculate the average of these sample values, n,

However, as in many engineering experiments [48], because of time
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and money constraints, the final experimental runs in this investigation
were single-sample [48] in nature: Not enough repeated measurements
could be done to allow a proper statistical analysis of the data. In
such exper iments, the uncertainty in the measured values must be esti-
mated before the final measurements are taken [48,49]. This estimation
of uncertainties was based on (i) the theory ot the operation of the
equipment in the conditions of this work; and (ii) the sensitivity and
fluctuations in instrument readings as specified by the manufacturers
and confirmed in preliminary experimental runs: These include results
obtained from instrument calibrations and the initial flow facility

tests that were performed both for this work and in [109].

The differential pressure measurements taken with the Barocel pres-
sure transducer were used in deriving the final experimental fiow and
pressure distributions presented in ihis thesis. The random uncertainty
in such measurements was estimated from a statistical analysis of sample
readings taken before each experimental run. These measurements were
taken after the desired flow rate had been setup in the test section and
just before the final data taking proce.s was initiated. This particu-
lar method for estimating uncertainties was part of the experimental
procedure for each run, and it is outlined briefly in the following
paragraph. Particuiar details concerning the complete calculation
procedure used to derive the overall uncertainty in a final resuit are

given in the example of Appendix 5.

In the flow metering section, the measured value of den is expected
to be largest at the center of the flow metering cross section and,

consequently, the magnitude of the random uncertainty 1n this measured
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value is expected to be correspondingly la-,s relative to the values
measured at other locations. In the interrupted-plate duct test sec-
tion, if there i« unsteadiness in tne periodic fully developed flow
field it is expected to be greatest in the region immediateliy downstream
of the trailing edge of a plate: The uncertainty in the measurec pres-
sure difference between any two successive wall pressure-tap locations
is, therefore, expected to be greatest between the TE and G1 locations
shown in Fig. 19. For the aforementioned reasons, the uncertainty in
the measured pressure differences pertaining to these two “"worst-case"
locations, one in the flow metering section and one in the test section,
were used as a conservative estimate of the uncertainty for all differ-
ential pressure measurements. The procedure used tc caiculate these
uncertainties was as follows: (i) the Barocel pressure transducer was
connected so as to measure the pressure difference at the appropriate
flow metering or test section location; {(1i) over a period of 10 to 11
minutes, using the time-averaging procedure described in Section 6.6.1,
30 successive time-averaged measurements of the differential pressure
were taken (the corresponding voltage output signal, V,,, from the Baro-
cel was recorded using the instrumentation and software of the data
acquisition system); (ii1) the sample standard deviation ot the 30
measurements taken in (ii) was then calcufated; (iv) the value calcu-
lated in (iii) was doubled and used as the uncertainty, * éV,,, in the

Barocel output signal for all values of differential pressures measured.

As described in Section 6.6.1, the zero-drift in the output signal
of the Barocel pressure transducer was corrected by calculating the
average output signal for a zero pressure differential and subtracting

this value, V, .., from the value measured for a pressure ditfference,
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Vg4p- Ten individual zero output readings were recorded and used to cal-

culate V Using the time:averaging procedure described in

zero’
Section 6.6.1, each individua! reading was the average of 60 readings
taken over a period of 13 seconds. |t was assumed that over such a
short time period, the average zero output signal of the Barocel couid
be assumed static, and twice the standard devistion of these 60 sample
readings was assumed to be a good estimate of the uncertainty in that
value. The uncertainty in each of the ten zeroed-values was then com-
bined, as in Eq. (6-4), to obtain the overall uncertainty in V, ...,

6V, ero- In other words, 8V was twice the pooled standard deviation,

zero

Spooled, of the ten zeroed values, expressed as [122]:

Spooled =| =t (6-6)

The values of 6V

cal: discussed in Section 6.5.1, éV,,, and &V

zero
were ,sed in the calculation of the overall uncertainty of the measured

pressure ditferences. An example calculation is given in Appendix 5.

6.6.4 Flow Visualization Technique

As stated in Section 6.5.5, two kerosene based flow visualization
paints were used: Titanium dioxide, Ti0,, was used as the pigment in
one and a fluorescent "Biaze Orange" Day-glo pigment was used in the
other. In order to obtain consistently good streak patterns with
increasing flow rates, the concentration of Day-gio pigment, relative

to the kerosene, had to be increased to make a stiffer paint. Over the
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range of flow rates investigated, three Day-glo paints, referred to as
DG1, DG2, and DG3, were used, with the paint stiffness increasing from
DG1 to DG3. Only one Ti0, paint was used, and it will simply be

referred to as the TiO, paint. The detaiied recipes for these paints
are given in Appendix 4. The methods used to apply these paints to a

plate surface are discussed next.

The flow visualization paints were applied to the top surface of
three plates in the clear acrylic flow visualization section, usually
the fourth, fifth, and sixth plates downstream from the iniet of this
section. To ensure that the surfaces of the plates were clean, they
were wiped with a soft cloth dampened with kerosene. For flows in which
the nominal vaiue of the module Reynolds number, Re,, was less than
25x103, the paint brush described in Section 6.5.5 was wetted with kero-
sene and brushed across the plate surface. This left a thin visible
layer of kerosene that thoroughiy wetted the surface. The range of flow
rates over which a given paint would give acceptable streamline pat-
terns, could be extended by varying the thickness of this initial kero-
sene coating. The kerosene would mix with the flow visualization paint
that was applied and act to reduce the stiffness of the paint (the ease
with which the paint flowed): The degree of this reduction in stiffness
would vary depending on the amount of kerosene and paint applied to the
surface. At higher flow rates, when this thin "pre-coating” of kerosene
mixed with the flow visualization paint, the paint would flow too
readily: When placed in the air stream it would flow completely to the
trailing edge of the plate, leaving no streaks. For high flow
rates, therefore, the paint was applied directly to the plate surface,

without pre-coating it with kerosene.
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In the case where the plate surface was pre-coated with kerosene,
the paint was applied in the following manner: (i) the paint brush was
wetted with the flow visualization paint; (ii) the flat surface of the
wetted paint brush was then pushed against the surface of the plate at
one end, near the dowel-pin positioning hole, so as to squeeze the paint
out of the brush onto the plate; (iii) by holding the plate at each end,
and tilting it from side-to-side and forward-and-backward several times,
the paint deposited in (ii) could be made to flow, and form a uniform
layer, over the whole upper surface of the plate. The plate was then

ready to be placed into the flow visualization section.

At the higher flow rates, Re, > 25x10%, the paint brush was wetted
with flow visualization paint and lightly brushed, once or twice, across
the plate, traversing it in a cross-flow direction from one end to the
other, with the one-inch wide tip of the brush extending over the length
of the plate, L. This thin, aimost transparent, layer of paint yielded

very fine streak patterns when the plate was placed in (he air flow.

While the TiO, paint was used over the whole range of flow rates
investigated, the DG1 paint was used only for Re, < 25x103. For

Re, =~ 25x103 and ~ 30x10%, the DG2 and DG3 paints were used, respec-

tiveiy.

This process of applying the flow visualization paints depended on
the author's ability to visually estimate when the correct amount of
paint and kerosene had been applied to the surface of a plate for a

given flow rate. Several attempts were often required before the proper
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combinations were found, but the ability to obtain these successful com-

binations improved as experience was gained.

The procedure to prepare a plate for flow visualization experiments
can be summarized as follows: (i) when the desired flow rate through the
interrupted-plate duct test section is established, remove the central
poriion of the top plate in the acrylic flow visualization duct;

(ii) remove the plates of the interrupted-colinear array that are to be
painted with the flow visualization paint; (iii) paint the plates as
described in the preceding paragraphs of this subsection; (iv) carefully
put the plates back into their proper locations in the colinear array;
(v) fit the removable top section of the acrylic duct back into its
appropriate location; and (vi) seal the joints at locations where this
section mates with the rest of the duct. There is a short time delay
from when the top section of flow visualization duct is replaced to when
periodic fully developed flow conditions occur. From observations of
the variations in the time-mean wall static pressure measurements and
the behaviour in the flow of paint on the plates, this short delay was
estimated to be less than three seconds, and it does not noticeably
affect the final patterns of the dried streaks: The time required

for the paint to flow from the leading-edge region to the trailing-edge
region of a plate is of the order of ‘ifteen to thirty seconds for the
higher flow rates, and as long as two or three minutes for the lower
flow rates. The time for the paint to dry is of the order of one to two

hours, again depending on the overall flow rate.
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6.6.5 B8ynopsis of the Overall Experimental Procedure

After the assembly of the test section with the desired plates,

measurement of its dimensions, and its attachment to the rest of the
flow circuit, the following step-by-step procedure was used to obtain
the desired flow rates, the corresponding pressure drop data, and the

plate-surface flow visualization results.

Power-up all electrical systems, except the air blower, and allow a
two-hour warm-up period.

Set the flow control by-pass valve to its full-open position, turn
on the bilower, and allow a one-hour warm-up period.

Position the pitot-stagnation tube at the center of the flow
metering cross section, and locate the traversing thermocouple probe
immediately beneath it.

After the stipulated warm-up periods in Steps 1 and 2, set the flow
control valves to obtain the maximum flow rate: Open the main flow
valve compietely and close the by-pass valve. Allow five to ten
minutes to achieve a stable flow rate.

Making sure that one of the two flow control valves is always fully
open, adjust the air flow rate through the test section to obtain
the desired maximum Reynolds number value in the test section. To
do this, it is necessary to measure the test section Reynolds number
tor the maximum air flow rate in Step 4 along with the corresponding
value of den at the center of the flow metering cross section. By
connecting the Py, .. and P ..., pressure lines to the Barocel pres-
sure transducer, the data acquisition system can be used to monitor

the change in this Pyyn 8s the flow rate is changed. The following
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equation can be used as a rough guide to determine what value of

den corresponds to the desired flow rate:

R : 2
(Pdyn)desired = (Pdyn)otd ( ﬁ%ﬁfﬁll&dq (6-7)

Allow five to ten minutes for the new flow rate to stabilize.
Foilowing the procedures described in Section 6.6.4, open the flow
visualization section, remove and paint the desired plates, replace
them, and close and seal the flow visuvalization section.

Following tie procedures described in Section 6.6.3, determine the
value of the random uncertainty to be specified for the differential
pressure measurements taken in the flow metering section.

Following the procedures described in Section 6.6.3, determine the
value of the random uncertainty to be specified for the differential
pressure measurements taken in the interrupted-plate duct test
section.

Initialize the data-taking procedure for the flow measurements by
running the appropriate computer software gevcicoped for this task.
Take measurements of (i) barometric pressure (mm Hg); (ii) ambient
air temperature (°C); (iii) air temperature in the fiow metering
cross section (°C); and (iv) gauge time-mean static pressure in the
flow metering cross section (mm manometer fluid).

Input (i) the dimensions of the test section, 2H, b, L, s, and t in
meters; (ii) the measurements taken in Step 11; and (i1ii) the
estimated random uncertainty in the dynamic pressure measurements,
from Step 8, as prompted for by the computer software developed to

manage the flow-measurement task.
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When prompted by the computer, open both ports of the Barocel to
atnosphere and then signal the program to continue and take five
zero readings.

Connect the P, . and P ...,  pressure lines of the fiow metering
section to the respective high-pressure and low-pressure ports of
the Barocel pressure transducer, snd conduct a ten-point log-1inear
traverse of the flow metering cross section, in accordance with the
instructions produced by the computer software written for this
task.

Upon the completion of Step 14, repeat Step 13.

Using the computer software developed for the f{low-measurement

task, process, print, and store the air flow rate data.

Initialize the computer software developed to manage the task of
recording and processing the time-mean wall static pressure
measurements along the aluminum duct portion of the test section.
When prompted by the computer software, input (i) the name of data
sets containing the flow metering data, (ii) the identification
numbers of the static pressure taps to be monitored; (iii) the
identification number of the pressure tap chosen to be the reference
port; (iv) the gauge value of the time-mean static pressure in the
reference port chosen in (iii); and (v) the estimated random
uncertainty, from Step 9, in the measurements of the differential
time-mean wall static pressures.

Repeat Step 13.

Connect the pressure line from the dummy transducer of the
Scanivalve mechanical multiplexor to the low-pressure port of the
Barocel pressure transducer; connect the pressure line from the

reference pressure port chosen in Step 17 to the high pressure port




20.

21.

22,

23.

169

of the Barocel pressure transducer; and then in response to the
prompts produced by the computer software, initiate the automatic
scanning and recording of differential pressure values for each of
the chosen pressure ports downstream of the reference port chosen in
Step 17.

Upon completion of Step 19, repeat step 13.

Using the computer software developed for this task, process, print
and store the time-mean static pressure data. An inspection of this
data should be done at this time to verify that no unexpected
fluctuations have occurred during the run. f such anomalies have
occurred, try to identity the problem, solve it, and repeat

Steps 7 to 21.

Check to see that the streamiine patterns formed from the paint
applied in Step 7 have dried. When the paint has dried, remove the
painted plates, photograph the dried streamline patterns, clean the
dried paint off the plates with a kerosene dampened cloth, and put
the plates back into the acrylic flow visualization duct.

Repeat Steps 5 to 22, until all the desired Reynolds numbers have
been investigated. In Step 5, the Reynolds number value for the

experimental run just completed is used as the value of Re, 4.
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CHAPTER VII

RESULTS OF INITIAL INVESTIGATIONS

In this chapter, the results of initial experimental and numerical

investigations undertaken as a part of this research are presented.

7.1 INITIAL EXPERIMENTAL RESULTS8: FULLY DEVELOPED TURBULENT

FLOW

This section presents the results of a preliminary experimental
investigation undertaken to establish that the exper imental facility and
procedures used in this work are capable of providing repeatable and
accurate differential time-mean wall static pressure measurements. This
study was done for fully developed turbulent flows in a straight rectan-
gular duct, without interrupted-plate inserts. The same rectangular
duct test section, with interrupted-plate inserts, and the same range of
flow rates were later used for the periodic fully developed flow inves-
tigation. The reason for performing these initial studies for fully
developed rectangular duct flow is that friction factor - Reynolds num-
ber results can be obtained and compared with corresponding data that is
available in the published literature [54]. As a result, the suitabil-
ity of the basic test section and the capabilities of the pressure and
flow measurement procedures can be verified before proceeding to study

the more complex problem of periodic fully developed duct flows.

Measurements were taken for seven different flows rates, over a nom-

inal Reynolds number range of 10x10° < Rey < 60x10°. It has already
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been determined from the calibration checks presented in [109] that the
flow facility used for this work is capable of generating steady,
repeatable, and symmetric flows in the flow metering section, over the
range of Reynolds numbers investigated. The test section used for this
work is not the same as that used in [109], hence, calibration tests
were performed for this section. Construction details of the test sec-
tion have been described in Chapter Vi. The locations of the static
pressure taps and the measured duct dimensions are given in Tabies 4 and

5, respectively. The duct has an aspect ratio of 5.309 * 0.010.

Checks to determine the repeatability of time-mean static
pressure measurements were carried out at the maximum and minimum flow
rates used in this work. The results of these checks are presented in

Figs. 26(a) and (b) in terms of (P*_-P"), versus (x"-x"_ )4 plots where:

(Po - P)

(P - P')g = ——% (7-1)
%‘P Ug

and

(x* - x*o)a = == (7-2)

Ud and Dng are defined by Eqs. (2-30) and (2-32), respectively, P,

is the time-mean static pressure at a suitably chosen reference pressure
tap, and x, is the axial distance of the reference pressure tap from the
inlet plane of the duct. The reference pressure tap, or port, was cho-
sen sufficiently downstream from the inlet plane of the duct so that
1ully developed flow conditions could be assumed to prevail from the

reference port to the outlet of the rectangular duct test section. In
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all of the seven flows rates considered for this initial study, port
number 97 was chosen as the reference port. From the data reported in
Tables 4 and 5, it is seen that this reference port is located 17.50

hydraulic diameters, D, 's, downstream of the duct inlet.

In Figs. 26(a) and (b), resuits of the primary and repeatability
runs are denoted by the symbols O and [J , respectively. Each run
required 90 minuies to 120 minutes to complete, and 10 minutes to 15
minui:s after a primary run, the corresponding repeatability run was
performed. The maximum uncertainty in the (P*_-P"), values is * 0.012
in Fig. 26(a), and * 0.024 in Fig. 26(h), and the uncertainties in the
(x'-x"o)d values are all less than = 0.019 in both figures. The results
from the primary and repeated runs for the maximum flow rate, shown in
Fig. 26(a), are very close. The results for the minimum flow rate, pre-
sented in Fig. 26(b), also show good agreement, although not as good as
those in Fig. 26{a). This is because the nondimensional data plotted in
Fig. 26(b) are calculated from lower flow rates and smaller pressure
differentials than those used for the results in Fig. 26(a). Any
measurement errors in these dimensional quantities will lead to propor-

*

tionally gteater errors i1n the (P - P')d values of Fig. 26(b) than for
the higher flow rate values shown in Fig. 26(a). However, both sets of
data in Fig. 26(b) do agree within the limits nf the experimental uncer-

tainty of the measurements.

A more quantitative indication of the repeatability of the data pre-
sented in Figs. 26(a) and (b) can be obtained by comparing friction fac-
tor - Reynoids number values. The method of least squares was used to

fit straight lines to the data of Figs. 26(a) and (b): The slopes of
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these lines are the values of the Darcy friction factor, f,, defined in

Eq. (2-34). Correlation coefficients [123] were also calculated for use
as a measure of the linearity of these lines: a8 perfectly linear varia-

tion of (P",-P*), with (x"-x" ), being indicated by a correlation

coeftficient of one.

The correlation coefficients for the least-squares straight lines
fitted to the data in Figs. 26(a) and (b) are all better than 0.9978, as
seen in Table 6. A visual appreciation of the linearity indicated by
this value can be obtained by examination of Fig. 27, where the data
from the initial run presented in Fig. 26(a) is shown with a plot of the
corresponding least-squares straight tine. The linear behaviour of the
data indicates that fully developed turbulent flows are established over
the portion of the rectangular duct test section located downstream of
the reference pressure tap located at port 97: This section nf the duct
is the one of interest for this work. In Table 6, the deviation of f,
values for the second run from those of the first run are shown to be
less than * 2.4 percent, ano the deviation in the corresponding
Reynolds numbers is less than * 0.8 percent. The uncertaintly in the
friction factors is less than * 5.0 percent ot the f, values reported in
Table 6, and the uncertainty in the Rey values is !ess than * 2.4 per-
cent. Based on these results, ‘t was concluded that the experimental
facility and procedures used are capable of providing repeatable time-

mean wall static pressure measurements.
To establish the accuracy ot the time-mean wall static pressure

data, the friction factor - Reynolds number results for all seven flow

rates were compared with corresponding results in the published
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literature. As discussed in Chapter |, Jones [54] has done an in-depth
study of published friction factor data for fully developed turbulent
flows in straight rectangular ducts. Using this data, in conjunction
with his own experimental data, Jones proposed a modified form of
"Prandt!'s formula" [36] for wall friction in turbulent pipe flow, which
expresses friction factor as a function of Reynolds number. This corre-
lation, hereafter referred to as the PJ (Prandtl-Jones) correlation, is

applicable to turbulent flow in straight rectangular ducts and is writ-

ten as:

1
T~ 2:0 logio (Re’ ifg ) - 0.8 (7-3)

where Re* is a "laminar equivalent Reynolds number" [54], and is

given by the following expressions:

Re* = ¢* Reg (7-4)
P2, 1 2H L 2H .

The deviation of the friction factors predicted by the PJ correlation
from the corresponding values obtained from the best of the published

experimental data is about * 5 percent [54].

The friction factor - Reynolds number data obtained from the
measurements made in this work are compared, in Fig. 28 and Table 7,
with the corresponding results obtained from Eq. (7-3). InFig. 28, the
PJ correlation results are plotted as the solid curve and the £ 5 per-
cent error band of these results is shown by the dashed curve. It is

seen that all the experimental results from this work fall in between
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these dashed lines, indicating good agreement with the PJ values.
Table 7 shows that the experimental value of f, deviates from the corre-

sponding PJ correlation value by less than * 2.7 percent in all cases.

On the basis of the results presented in this section, it was con-
cluded that the experimental facility and procedures used in this work,
are capable of producing accurate results. Quantitatively, it may be
stated that the friction factor results of this investigation have an

uncertainty of less than + 5 percent.

7.2 INITIAL NUMERICAL INVESTIGATION: FULLY DEVELOPED

TURBULENT FLOW

Initial evaluations of the numerical predictions based on the Jones
and Launder [89] and the Launder and Sharma [91] low-Reynolds-number k-¢
turbulence models are presented in this section. In addition, the dif-
ferent formulations for incorporating Sk and S€ in the discretization
equations, as put forth in Section 5.3.3, are evaluated in terms of
their effect on the rate of convergence of the overall solution proce-
dure for U, k, and ¢. For the reasons discussed in Section 5.3, these
initial studies were done for the case of fully developed, turbulent,
two-dimensional flow in a channel. To facilitate the presentation of
the remaining text in this thesis, the Jones and Launder version [89],
the Launder and Sharma version [91], and the standard version [75] of
the k-¢ model will often be referred to as the JL, LS, and ST models,
respectively. Details of the corresponding numerical method were given
in Chapter 1IV. The results presented in Sections 7.2.1 and 7.2.2 were

obtained by using an IBM 3090 computer, operated by the




176

McGiil University Computing Centre.

7.2.1 Preliminary Performance Evaluation of the k-¢

Turbulence Models

Background

The performance of the JL [89] and the LS [91] low-Reynolds-number
k-¢ turbulence models was evaluated for eight cases of turbulent fully
developed fiow in a two-dimensional duct, or channel. For such a duct,
the width, b in Fig. 5 , is infinite, and the mass flow rate, m, is spe-
cified in terms of the mass flow rate per unit width of the duct.
Accordingly, the appropriate forms of UQ and Dnhgq used in the calcu-
lation of the nondimensional paremciz-= ¢~r turbulent duct flows, as

presented in f-..zion 2.6.1, are:

- M )
Ya = 2 (@) (7-8)
and

Dhd = 4H (7-7)

The eight nominal, or desired, values of flow Reynolds number, Rey,
for the turbulent one-dimensional fully developed channel flow studied
were 5.00x10%, 10.0x10%, 15.0x10%, 25.0x10%, 56.2x10%, 92.8x103,
129x10°, and 228x103. The lower end of this range,

5.00x 103 < (Rey) < 25.0x103, covers the same range as the modular

nom
Reynolids number values, Re,, for the two-dimensional periodic fully
developed duct flows that are discussed later in this thesis. There-

fore, the performance of both turbulence models in this Reynolds number
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range is of particular interest. The upper end of the range,

56.2x10% < (Rey) < 228x10%, was investigated to determine at what

nom
point the low-Reynolds-number turbulence models give results similar to
those of the standard, or high-Reynolds-number, version of the k-¢ tur-

bulence model. In this connection, calculations for the eight flow

rates were also performed using the ST k-¢ turbulence model.

In this investigation, the (-9P/3x) values specified for each
desired, or nominal, value of Reynolds number, (Rey), .., were calculated

in the following manner: (i) the value of (Rey) was used in the PJ

nom
correlation, Eq. (7-3), to calculate (fy),, for a two-dimensional duct,
£ =»; (ii) Eqs. (2-34), (2-29), and (7-7) were then used to obtain the
corresponding value of (-dP/dx). This value generally yielded a numeri -
cally calculated value of Rey that was slightly different from the nomi -
nal or desired value of Rey. An iterative procedure could have been
used to modify the specified value of (-dP/8x) until the calculated Rey

was equal to (Rey) For the purposes of this investigation, however,

nom "’
it was not important to have a calculated value of Rey that was exactly

the same as the corresponding nominal value.

For fully developed turbulent flow in a ‘wo-dimensional channel of
height 2H, the wall shear stress, r,s can be obtained by integrating Eq.

(5-34) fromy =0 toy = H:

v = (- 3= H) (7-8)

Substitution of this equation into Eq. (3-30) gives the expression for

the friction velocity, U,, as a function of (-9P/dx):

e ant s abmen Bt -
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Ur = {(- o) 1 p 312 (7-9)

The value of U, is nseded to specify boundary conditions for U, k,
and ¢ in the ST k-¢ model, via the “universal® wall functions approach
[75], and it is also used in the nondimensionalization of U, k, ¢, and
other variables. The specified values of (-8P/dx) used in this work are
presented in terms of U, through the use of a friction-velocity Reynolds
number, Re;.;., defined as:

U, D
Refric = £ Vr “Yhd

p (7-10)

where, for a channel, D,  takes on the form given in Eq. (7-7). The
values of Res.;. used in this investigation are given in column 2 of
Table 8 and are used in the following discussion to identify each of the
eight channel flows studied. From the table it is seen that the fric-
tion-velocity Reynolds number range of 3.72x10% < Res,.,. < 10.5x10%
corresponds to the nominal, or desired, duct Reynolds number range of

5.00x10% < (Rey)nom < 228x10%.

Following the procedure described in Section 5.2.7, the relative
change in each of the giid-point values of U, k, and ¢ was monitored
over the two most recent iterations of the overall solution procedure.
When this change was less than 108 for all variables, at all interior
nodes, the sclution of the discretization equations for U, k, and ¢ was

considered to have converged.

Using the k and ¢ source term treatment designations presented in

Section 5.3.3, the S¥,-S¢,-A source term treatment was used to obtain

a5
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all performance evaluation data presented in this section. More will
be said about the other possible source term treatments in

Section 7.2.2.

The value of the underrelaxation parameter, a, appearing in the gen-
eral discretization equation, Eq. (4-18), was set to 1.0 for the U dis-
cretization equations and to 0.9 for the k and ¢ discretization equa-
tions when either of the two low-Reynolds-number turbulence modeis was
employed. Underrelaxation of the k and ¢ equations was required in
order to achieve a stable, converged, solution, and the above-mentioned
values of o gave the most rapid convergence. No underrelaxation was
required, all a's = 1.0, when calculations where done using the ST k-¢

model equations.

Grid Checks

To determine the accuracy of the numerical solutions obtained using
the various turbulence models employed in this work, grid-independent
solutions were obtained and compared to experimental data and estab-
lished semi-analytical correlations whenever possible. The numerical solu-
tion is said to be grid independent when it no longer changes as finer
and finer grids are used. |In theory, the exact grid-independent solu-
tion requires a computational grid for which the grid-point spacing
approaches zero. Fortunately, the grid-independent solution can often
be well approximated from solutions obtained with finite grid spacing by
using suitable extrapolation procedures. De Vahl Davis [118] has pre-
sented an extrapolation procedure that can be used to approximate grid-
independent solutions. This technique involves obtaining solutions from

at least three different grid distributions for which the grid points
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are uniformly spaced and separated by distances which are small enough
to ensure that the grid-independent solution is more closely approached
with each successively finer grid. Such uniform-grid solutions for the
fully developed turbulent duct flows examined in this investigation,
using the JL [B9] and LS [91] low-Reynolds-number turbulence models,
were found to be impractical because of the large number of grid points
and computational effort required. On the other hand, the use of nonuni-
form grids allows more efficient distiribution of grid points, and a
grid-independent solution can be approached with the use of considerably
fewer grid points and for greatly reduced computational effort and
expense. A qualitative estimate of when a grid-independent sclution has
been reached can be obtained by plotting the profiles of variables that
have been calculated using different grids. When such profile plots of a
variable show little or no change from one grid to a finer grid, it is
assumed that grid independence has been reached. This method was used
to determine the final grid distributions that were employed for the

one-dimensional turbulent flow calculations in this thesis.

It has been this author's experience that in order to obtain a
stable and converged solution when using low-Reynolds-number k-e¢ turbu-
lence models, it is necessary to use a sufficient number of grid points
in the near-wall region, y* < 30, to ensure adequate resolution of the
steep gradients of turbulence properties in this region. For a given
duct, the physical y dimension of this near-wall region decreases as
Re¢.;. increases, the corresponding gradients of the turbulence proper -
ties become even greater, and it is expected that the number of grid
points required in the near-wall region will increase. Therefore, it is

assumed that a grid distribution that is fine enough to give a
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grid-independent solution for a large value of Reynolds number will also
give a grid-independent solution for smalier values of Reynolds number.
For this rseason, the same fype of qrid that gave a grid-independent
solution for the maximum Reynolds number examined, Re; ;. = 10.5x103
which corresponds to (Rey),om = 228x10%, was also used for ail other

flows.

The results of the grid-independence checks done using the JL [89]
mode!| are presented in Figs. 29(a), (b), (c) and (d). !n these tigures,
plots of nondimensional values of U, k, and e¢ versus nondimensional y
distance from the wall, 0 ¢ y ¢ H, are shown. Results obtained from
four different nonuniform grids, generated using the procedure described
in Appendix 1 and having a total number of grid points, M1, of 93, 133,
153, and 193, are presented. The clowe agreement between the various
profiles for common variables indicates that it can be conservatively
assumed that grid-independent results have been achieved with a grid of

M1 = 193.

This same type of grid distribution was used for all the one-
dimensional turbulent flow calculations. |t shoulid be noted, however,
that with the grid generating procedure described in Section 5.3.2 and
Appendix 1, the total number of grid points located in the near-wall
regions, y* < 30, will remain constant, but the physical dimension of
the core-flow region located between the wall regions decreases as
Re;.,. decreases and, hence, the total number of grid points also
decreases. The corresponding number of grid points used for each value
ot Res,.,. are shown in column three of Table 8. The number of grid

points located in each near wall region, y* < 30, is 41 for a total of
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Resric = 3.72x10%, the minimum value used, are shown in Figs. 30({a),
(b), and (c¢). Again, the close agreement between the U, k, and ¢ pro-
files for the various grids verify that grid-independent results have
been achieved by using the same type of grid as that used for the maxi-

mum Reynolds number, Re, .. = 10.5x10%.

To enable a one-to-one comparison of the prediction capabilities of
the JL [89], LS [91], and the ST [75] k-¢ turbulence models, the same
grids were used with all models. The standard k-¢ model solves the dis-
cretization equations at grid points outside the near-wall regions: So
with this model, all grid points located in the wall regions, y* < 30,
were excluded from the calcuiations. This is the reason for the lower

number of grid points shown for this model in column 4 of Table 8.

Resul ts

The numerical! results for turbulent fully developed two-dimensional
channel flows using the JL [89], LS [91], and ST [75] k-¢ model of tur-
bulence were compared to each other and, when possible, to experimental
data and established correlations available in the literature. The
results and conclusions of this study are pres=nted in this subsection.
It is to be remembered that to calculate a value of Rey using the JL,
LS, and ST models, the same value of Re, ,. is specified tor all three
models. For this reason, different Reynoids number runs will be identi-
fied by the particutar value of Rey., . specified. As Re; . increases,
the value of Rey also increases, so that reference to high Re, ,  values

also implies that the corresponding value of Rey is high, as shown in
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Table 8.

As mentioned in Chapter 111, it is the functional forms of the terms
pr- fcr1er fc2es Ex» and E., appearing in Eqs. (3-8), and (3-14) to
(3-21), that determine the differences between the various lcw-Reynolds-
number k-¢ models and the standard k-¢ model. In regions of the flow
where the turbulence Reynolds number, Re,, is large (Re, > 445), the
low-Reynolds-number k-¢ models are expected to take on the form of the
standard k-¢ model, and hence sll f's should asymptote to 1, and the
effects of E, and E, should become negligible. In order to evaluate the
pertormance of the JL and |.S models, relative to each other, the behav-
iour ot these E and f terms, as well as local and overall calculated
flow data, are examined over the whole range of Reynolds numbers inves-

tigated.

Behaviour of E, and E,

Although ¢ has a finite value greater than zero at a wall boundary,
¢ has been set to zero at such boundaries for computational convenience
in both the JL and LS models, as discussed in Chapter lil. This results
in the D, term, Eq. {3-17), in the k equation, Eq. (3-14), going arti-
ficially to zero as a wall boundary is approached. To compensate for
this, an additional term, E,, was added to Eq. (5-6), tc ensure that Sk
behaves in the proper fashion near the wall. in Figs. 31(a) and (b),
the ratio of E, /D, for the JL and LS models is plotted against the non-
dimensional wall distance, y*, for the maximum and minimum extremes of
the Reynolds number range investigated. |In Fig. 31(a), where
Re¢.,. = 10.5x10°, and in Fig. 31(b), where Re;,,. = 3.72x10%, E, /D,

behaves in the same manner for both the JL and LS models and, as
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expected, the ratio is significant only very close to the wall, y* < 10,

well into the viscous dominated near-wail flow region.

The inclusion of E_ in the ¢ equation, Eq. (3-18), of the JL and LS
models is necessary to ensure that the calculated k distribution peaks
in the near-wall region, y* ~ 20, thus giving better accord with exper-
imental observations for wall bounded shear flows [80,89] . The effect
of E, on the performance the JL and LS models is, therefore, best evalu-
ated by examining the k profiles calculated using these models. This

will be done later on in this section.

Behaviour of f.,, and f.,,

The f.,, term does not affect the relative performance of the JL,

LS, and ST models, as it has a constant value of one.

The fc,, term is formulated in the same manner for both the JL and
LS models, as shown in Table 2. The behavior of this function as a
function of Re,, the turbulence Reynoids number, is shown in Fig. 32.
From this figure, it is seen that f.,, asymptotes to its ST model value
of one for Re, > 3. For the fully developed channel flows considered in
this work, this implies that f., ., has a damping eifect only within the

viscous sublayer region, y* < 5.

Behaviour of f

The damping effect imposed on the Reynolds stresses in the viscous

dominated flow regions is modelled using the { term in the expression

Cu

for u,, Eq. (3-8). As seen in Table 2, this function is dependent on

Re,, the turbulence Reynolds number, and is formulated ditferently for
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the JL and LS models. These two formulations are illustrated in Figs.
33(a) and (b). Figure 33(a) shows the behaviour of pr at !ow values of
Re, (< 50), as would be expected to occur very close to a channel wall.

In this figure, it is seen that the LS model f formutation initially

Cu
gives a lower value than the JL formulation, but for Re, > 18, f., of
the LS mode!l increases at a greater rate and becomes larger in magnitude
than that of the JL mcdel. It is observed in Fig. 33(b) that, as Re,
increases to fully turbulent values, the fc“ in the LS formulation
approaches the value of one (the ST model value) noticeably faster than
that in the Jl formulation. For Re, values of 145, 445, 610, and 850,
fcﬂ has corresponding values of 0.80, 0.97, 0.98, and 0.99 for the LS
formulation, and respective values of 0.53, 0.78, 0.83, and 0.87 for the
JL formulation. Even at Re, = 3000, close to the upper limit of Re, for

the fully developed channel flows studied in this investigation, the JL

model value of pr only reaches 0.96.

Plots of Re, versus y/H, and y*, are shown in Figs. 34(a) and (b)
for the maximum and minimum values of Re, ;. used in this investigation.
Values obtained using the JL, LS, and ST models are presented. From
these two figures, as expected, it is seen that for the larger Re¢ ics
y* is larger at the same y/H distance from the wall: For examgple, y'
values of 2.62x10° and 93.0 occur at y/H = 1.0 for Re; ;. values of
10.5x10° and 3.72x10?, respectively. For fully developed channel flows
having a large Re; ;., the rapid increase in values of Re, compared to
y/H verifies that the flow can be considered fully turbulent over most
of the flow domain. In Fig. 34(a), the region y* < 30 occupies less

than 1.2 percent of the flow domain, and for y/H = 0.1, Re, +s large

enough so that pr of the LS model reaches 99 percent of the ST model

PR
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value of one , as can be seen by viewing the plots in Fig. 35(a). it is
seen in Fig. 35(a) that fc” cf the JL model only reaches a value of 0.90
and 0.96 at y/H locations of 0.1 and 1.0, resf tively. For the low-
Reynglds-number fully developed turbulent channe! flow with

Re¢ric = 3.72x10%, there is a noticeable difference in the values of Re,
from mode!l to wmodel, as observed in Fig. 34(b). Despite this differ-
ence, relative to the Re, values occurring in high-Reynolds-number turbu-
lent flows, illustrated by Fig. 34(a), the values of Re, remain low
throughout the calculation domain: Values of Re, are less than 120 for
the JL mode! and less than 90 for the LS model. Even for the ST model,
the Re, values are all lower than 142, and they are even less than the
boundary-point value of 136, located at v* = 30.6, in over 75 percent of
the calculation domain. The pr profiles calculated using the JL and LS
models for Re; ;. = 3.72x10%, shown in Fig. 35(b), also reflect the fact
that neither mode! indicates the presence of a fully turbulent flow
region, whcre u can be neglected relative to u,. |In addition, the near-
wall region where the fc; term of the JL model is greater is just over

10 percent of the total calculation domain.

Figure 35(b} also shows that by locating the caliculation domain
boundary points at y* ~ 30 in the ST modal, over 30 percent of the flow
domain is handlied by the use of wall functions. It is expected that use
of the wall functions over such a large physical region of the flow
domain could lead to a significant decrease in the accuracy of the

overall flow and turbulence calcutlations.

Model Predictions

Plots of nondimensional velocity, U/U,., versus nondimensional
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distance from the channel wall, y* and y/H, are presented in Fig. 36 and
Figs. 37(a) to (f). In the viscous sublayer region of wall bounded
shear flows, 0 < y*< 5, the mean velocity can be expressed using the

so-called "law of the wall" [63]:

TR A (7-11)

The mean velocity in the logarithmic region of these flows,

30 < y*< 100, is given by Eq. (3-28). In Fig. 36 and all of Figs. 37,
Eq. (7-11) is plotted as the solid curved line from 0 < y* < 11.5 and
Eq. (3-29) is plotted as the solid straight line for y* > 11.5. Turbu-
lent velocity profiles are not expected to fall along either of these
curves through the buffer region, 5 < y* < 30. The logarithmic profile
of Eq. (3-29) is, however, often characteristic of the velocity pro-
files exhibited up to y* values in the range of 500 to 1000. These
semi-analytical correlations are used to give an indication of the

accuracy of the numerical data shown in Figs. 37(a) to (f).

In Fig. 36, fully developed velocity profiles from three different
experimental investigations of turbulent duct flows are presented and
compared to Eqs. (7-11) and (3-29). The experimental data of
Comte-Bellot [62], Clark [63], and Hussain and Reynolds [64], were
taken in ducts with aspeci ratios of 13.3, 12, and 18, respectively.
The corresponding flow Reynolds numbers were Re, = 57.0x10° [62],

Repax = 15.2x10% [63], and Re,,, = 13.8x10% [64]. The purpose of
presenting the data in Fig. 36 was to (1) illustrate that the nondimen-
sionalized mean velocity profile does exhibit a Reynolds number depen-

dence, and (2) show that there is no one set of data or correlation that




188

can be used as a definitive means of determining the quantitative accu-
racy of the numerical results to be presented for the fully developed
channe! flows investigated. In the literature, no local experimental
data of flow and turbulence properties was found for comparison with the
numerical data in the range 3.72x102 < Re;.;. < 1.48x10%. For this
low-Reynolds-number range, comparison with the velocity profiles given
by the semi-analytical expressions of Egs. (7-11) and (3-29) was the
only means of obtaining a measure of the accuracy of the local numerical

data.

Values of U/U,, versus y* and y/H, obtained using the JL, LS, and ST
models are plotted for Re;,;. values of 3.72x10%, 6.69x10%, 9.48x10%,
1.48x103, 3.00x10%, and 10.5x10% in Figs. 37(a) to (f), respectively.
Equations (7-11) and (3-29) are also plotted in all these figures. The
exper imental data of Clark [63] and Hussain and Reynolds [64] correspond
to Reynolds number values that are approximately the same as those cal-
culated numerically for Re, ;. = 3.00x10% and are therefore plotted in
Fig. 37(e) as well. For similar reasons, the experimental data of
Comte-Bellot [62] is plotted in Fig. 37(f). In all these figures, the
actua! grid-point values of the numerical data are shown, rather than a
best-fit curve, in order to avoid confusion with the curves plotted for

the semi-analytical and experimental profiles.

In all cases, except for the minimum Re; ., . value of 3.72x10% shown
in Fig. 37(a), the ST modei velocities follow the logarithmic profile,
Eq. (3-29), from 30 < y* < 100. For y* > 100, the U/U, generally

increases slightly above the logarithmic profile.
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In the viscous sublayer region, both the JL and LS models show
agreement with the velocity profile given by Eq. (7-11) over the full
range of Rey ..  investigated in this thesis, as seen in all of Figs. 37.
Outside the viscous sublayer region, the LS model predicts higher values
of U/U, than the JL model in all cases plotted. For the low-Reynolds-
number flows shown in Figs. 37(a! to (d), 3.72x10% < Res e < 1.48x103,
the JL model gives better agreement overall with the ST model results
and the logarithmic profile. However, for the higher-Reynolds-number
flow shown in Fig. 37(e), Reg.;. = 3.0x103, the y* > 30 values of u/u,
calculated using the LS model are close to those of the ST model, and
they follow the experimental data of Clark [63] right through the buffer
zone, 5 < y* < 30. The JL mode! on the other hand, gives a U/U. profile
that is lower in magnitude than the corresponding LS, ST, and logarith-
mic profiles for 10 < y* < 200. For y* > 100, the JL data agrees with
the experimental U/U, values of Hussain and Reynolds [64], but underpre-
dicts this data for 10 < y* < 100, whereas the values of the LS mode!
follow the experimental data from y* < 30. At even higher Reynolds num-
bers, as shown for Re;.,. = 10.5x10% in Fig. 37(f), the agreement
between the LS and ST models for y* > 30 is good, although it underpre-
dicts the experimenta! data of Comte-Beliot [62] in this region. The JL
model is seen to give velocity values that are again somewhat lower that

those of the other two models.

In Figs. 35(a) and (b), it was shown that values of fc” for the LS
model are larger than those of the JL model over approximately 99 per-
cent and 90 percent of the calculation domain with Re, ;. = 10.5x10%,
and 3.72x10?, respectively. From Eq. (3-8) for the turbulent viscosity,

it appears that the same type of relationship would also exist between
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corresponding p, values of both models, resulting in the LS mode! having
larger values of u, over most of the flow domain, compared to the JL
model. At tirst thought, it might be expected that the larger u, values
of the LS model would lead to smaller values of U/U_ compared to the JL
model . However, exactly the opposite trend is observed in Fig. 37(a) to
(f). Because of the strong coupling between the governing U, k, and ¢
equations, and the dependence of both fc“ and p, on k and e values, it
is difficult to predict the behaviour of u, simply by considering the
behaviour of fc“ for each model. Plots of the u,/u profiles for the JL
and LS models are shown in Figs. 38(a) and (b) for the respective
extremes of Res ., . = 10.5x10% and 3.72x10°. In these figures, the same
trends are observed as for the pr function: The JL model values of pu,
are larger than the corresponding LS values in the near-wall region
where y* < 24 and 29, for the respective maximum and minimum Re;, . .
values, and smaller outside this region . The difference between the pu,
values of each model is, however, relatively small compared tc that of
the corresponding pr values, particularly for Re; ;. = 10.5x10%, in
Fig. 38(a), where both models give values of u, very close to each other
when y* > 30. It is thus concluded that, even fcr the high Reynolds
number case, with Re; ;. = 10.5x10%, where the region corresponding to
y* < 30 makes up less than one percent of the total flow domain, the
modelling of the flow in the near-wall region can have a noticeable
effect on the magnitude of the velocity profiles outside the region.
This can be explained by examining the expression for dU/8y that is
obtained by substitution of Egqs. (5-37) and (3-4) into Eq. (5-34), inte-
grating the expression over the duct half-height, H, and rearranging the

result to give:
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U _ 9P, (H-y) (7-12)

From Eq. (7-12), it can be shown that in the near-wall viscous
region, where u, values are smallest, the largest velocity gradients of
the flow will occur, as verified by experimental observations. In the
near-wall region of y* < 24, u, of the LS model is smaller than that of
the JL model for all flows investigated in this work. This means that
the U velocity profile calculated using the LS model will increase, from
its wall value of zero, at a greater rate than that of the JL model. At
the cross-over point where p, of the LS model becomes larger than that
of the JL model, the rate of increase of the LS velocity profile will
become less than that of the JL protile, but the level of the LS model U
profile is higher than that of the JL model. There is enough of a dif-
ference in these two levels that the LS model velocities remain greater
than those of the JL model throughout the fully turbuient flow region.
The near-wall velocity gradients are so large that at y* = 30, for both
JL and LS models, U/U, react.s just over 50 percent of its maximum value
for Res,,. = 10.5x10°, at a physical distance from the wall that is only
one percent of the total flow domain. Therefore, even for high-
Reynolds-number flows, the performance of the turbulence model in the
near-wall region, y* < 30, has a significant influence on the overall
flow calculations. As Reg.;. is decreased, the effect of this region is
even more important, as witnessed by the 2ven larger differences in the

U/U, protiles shown in Fig. 37(a).

From the preceding discussion, it can be concluded that an important
factor in determining the accuracy of a low-Reynolds-number turbulence

model is its ability to properly simulate the flow and turbulence in the
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near-wall viscous region, y* < 30. From the comparisons with the semi-
analytical expressions, Eqs. (7-11) and (3-29), and local experimental
data for U/U_, presented in Figs. 37(e) and (f}, it appears that the LS
model has better prediction capabilities for high-Reynolds-number flows,
Re¢ric 2 3.00x103. However, a similar comparison of the nondimensional
turbulent kinetic energy profiles, presented in Figs. 39 and 40 for the
corresponding Re, .. values of 3.00x10° and 10.5x10%, shows that in the
near-wall region, the JL model gives marginally better agreement with
the experimental results [62-64] compared to the LS model. Further from
the walls there is littie difference between the two profiles and the ST
model profile. It will also be noticed from these two plots that k
peaks at y* ~ 20, indicating that the E, term is having the cesired
influence on the k profiles. The plot of nondimensional kinetic energy
for Re,.;. = 3.72x10%, shown in Fig. 41, illustrates again that, as

Res ;. becomes smaller, the differences increase between values of com-
mon variables calculated using the JL, LS, and ST models. At iow
Reynolds numbers, 3.72x10° < Refric < 1.48x203, one may conclude, based
on qualitative agreement with Eq. (3-29), that the JL modei is better
than the LS mode!. However, at small values of Re(., . where the yt < 30
region occupies a significant portion of tne flow, as much as 30 percent
at Res ;. = 3.72x10°, the overall accuracy of a given model depends to a
large extent on its ability to accurately simulate the flow in the buf-
ter region, 5 < y* < 30. A proper performance evaluation of the JL and
LS models tor the low-Reynolds-number flows of this thesis reguires com-
parison with experimental data in the near-wali viscous flow region. To
this author's knowledge, this type of local data is not presently

available in the literature.




v
L.

193

ST Model: Near-Wall Mass-Flow Cailculation

Using the ST model, the boundary value of U is specified at y* ~ 30.
The common practice in the calculation of the mass flow rate is to
assume that this boundary value, determined by Eq. (3-29), prevails over
the near-wall boundary control volume which extends all the way to the

wall. This will be referred to as the prevailing assumption practice.

One of the advantages in using the low-Reynolds-number models is that
velocity is calculated all the way to the wall and should therefore
resuit in more accurate calculation of the near-wall portion of the
total mass flow rate than if the prevailing assumption practice were
used. The overall flow rates were used to calculate Reynolds number,

Rey, values and the corresponding friction factor, f,, values.

An indication of the overall accuracy of the flow rates calculated
using the JL, LS, and ST models was obtained by comparison of fj values
with those calculated by using the corresponding values of Fey in the PJ
correlation for a duct with § = «. The results are presented in Table 9,
and plotted in Fig. 42 where the PJ correlation, Eq. (7-3), is shown by

the solid curve, and the two dashed |lines represent the correlation's

1 5 percent uncertainty band [54]. It is seen that the f, values of the
Jl model fall inside the + 5 percent uncertainty band, all being within
+ 2 percent of the corresponding PJ values. The f, values of both the

LS and ST models show poorer agreement, underpredicting the PJ correla-
tion f, values by B8.59 and 6.75 percent, respectively, at the highest
Reynolds numbers and by as much as 14.2 and 10.5 percent, respectively,
at the lower Reynolds numbers. It is perhaps surprising that the LS
model| data shows poorer agreement with the PJ curve than the ST model,

particularly in the low-Reynolds-number range of
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5.00x10% < Rey < 30.0x10%. From Figs. 37(a) to (d), it is seen that the
LS mode!l overpredicts the flow in all regions of the flow domain com-
pared to the ST and JL models. Without accurate experimental data for
such low-Reynolds-number flows, it cannot be determined if flow in all
regions is being overpredicted, or just that of one region, say the

y* < 30 region. It is also possible that the JL mode! shows close
agreement with the PJ correlation because it underpredicts U values in
one region of the flow and overpredicts them in the other region of the
flow. Reliable and accurate experimental flow and turbulence data for
low-Reynolds-number flows is required to verify which model can best
predict the local flow characteristics. Based on the friction factor -
Reynolds number data available in the literature, it appears that the JL
model is better suited than the LS modei for the range of Reynolds num-

bers investigated in this thesis.

The difference between the f, values of the ST mode! and those of
the PJ correlation become greater as the Reynolds number decreases, with
the ST mode! values always being lower. It has already been shown that
even for the upper range of Reynolds numbers used in this investigation,
the value of U at the y* = 30 boundary-point location of the ST model
will be at least 50 percent of the calculated maximum U velocity in the
channe!. At high Reynolds numbers, the y* < 30 region comprises onity a
small fraction of the flow domain, and hence, compared to the total mass
flow rate, the mass flow rate calculated in the near-wall region using
the prevailing assumption practice is relatively small. For example, at
Re¢r,c = 10.5x103, the near-wall region comprises about one percent of
the flow domain and the mass flow rate in this region, calculated using

the prevailing assumption practice, is less than 0.75 percent of the
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total! mass flow rate. An error in the calculated near-wall mass flow
rate will cause an error of less than 0.75 percent in the total mass
flow rate calculation. At this Reynolds number, the LS and ST models

show close agreement in f, and Rey values, as seen in Fig. 42,

In the lower-Reyno!ds-number range, 5.00x10° < Rey =< 30.0x103
corresponding to 3.72x102 < Re¢rjc < 1.48x103, the relative error
caused by using the prevailing assumption practice in the calculation of
the mass flow rate is greater than at higher Reynolds numbers. This is
observed from the results of the ST model compared to those of the JL
model and the PJ correlation, as shown in Fig. 42. For instance, at
Res.;. = 3.72x102, Rey =~ 5x10%, 31 percent of the total mass flow rate
occurs within the y* < 30 region, which occupies just over 30 percent of
the flow domain. This is an overprediction of the near-wall flow rate
and it significantly affects the overall channel mass flow rate calcuia-
tion. For y* > 30, the JL model predicts higher U velocities than the
ST mode!, as seen in Fig. 37(a), yet as shown by the lower values of f;
in Fig. 42, the ST model overpredicts the channel mass flow rate due to

the error caused by using the prevailing assumption practice.

in order to improve the near-wall mass flow rate calculation of the
ST model, particularly for low-Reynolds-number flows, it was assumed
that the velocity distribution over the y* < 30 region is given by Eq.
(3-29) for 11.5 < y* < 30 and by Eq. (7-11) for 0 < y* < 11.5, As seen
by comparison with the experimental data in Fig. 36, while such a pro-
file approximation overestimates the flow in the buffer tegion, it is
nevertheless better than the prevailing assumption practice. By

integrating the two-piece velocity profile over the appropriate limits,




the calculated mass flow rate for a given Re; ;. is reduced, and this
results in better agreement of the ST model friction factor - Reynolds
number data with the PJ correlation values, most noticeably for low
Reynolds numbers, as shown in Table 10 and Fig. 43: For Rey < 25x10%,
the ST model friction factors agree with the PJ correlation to within
its * 5 percent uncertainty band. It is also evident from this figure
that there is little difference between the mass flow rate values calcu-
lated with the prevailing-assumption and the two-piece velocity profile

integration over the near-wall region for 50x103 < Rey < 240x10% .

7.2.2 Evaluation of S8ource Term Formulations

In this section, the different formulations proposed for incorporat-
ing Sk and S€¢ into the discretization equations, as presented in
Section 5.3.3, are evaluated in terms of their effect on the rate of
convergence of the overall solution procedure. It is to be noted again
at this stage that the only difference in the JL and LS models is the
expression used to calculate pr: Since the other features of these two
models are similar, the effect of one source term treatment relative to
the others is expected to be the same when using either model. There-
fore, the source term evaluations were done using only the JL k-¢ turbu-

lence model.

First, the evaluation of the different combinations of source terms,

Skq, Sky, S¢y, and S¢;, was done using Procedure A, described in
Section 5.3.3, in which all §E-and §;'terms are calculated using the
previous iteration values of k and ¢ rather than the most recent values,

as done when Procedure B is implemented. Following these tests, the
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combination of Sk and S¢ chosen as the most appropriate was used with
each of Procedures A and B to determine the effects of these proucedures

on the rate of convergence of the overall solution procedure.

Based on tne method of classification prasented in Section 5.3.3,
four combinations of two possible Sk and S¢ formulations were tested:
Sk1-S‘1-A, S%,-8¢,-A, Sk,-8¢,-A, 8K,-S¢,-A. These different source term
treatments were evaluated in terms of the number of machine execute
units required to achieve the convergence criteria described in
Section 7.2.1. Table 11 shows the results for four different Re; ;.
values: For each Reg., . value the results are normalized with respect
to the number of execute units required to obtain a converged solution
when using the S%,-S€,-A formulation. The four values of Re, ;. are
representative of the Reynolds number range investigated in the perfor-
mance evaluation presented in Section 7.2.1. For Re;.;. = 10.5x10%, the
results shew that with the Sk1-S‘1-A formulation a converged solution

was reached i1n 40 percent, or less, of the total time required when

using any one of the other three formulations. For the intermediate

Re¢.;. values in Table 11, it is evident that there is at least a margi-
nal advantage to be gained by using the Sk1-S‘1-A formutation instead of 1
either the S%,-S€,-A or S%,-S¢,-A formulations. However, the Sk,-S¢,-A
formulation gives equivalent or, 1n some cases, even better rates of }
convergence, as shown by the results for Re; . = 3.00x10% where conver-
gence is achieved in 84 percent of the time required when using the i
§k,-S€,-A formulation. At the lowest end of the Re,.,. range, |

Res ;. = 3.72x102, it appears that no significant savings in computa-

tion time can be gained by using any one particular formulation. This
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is true if the underrelaxation coefficients in the U, k, and ¢ discreti-
zation equations are kept at the values of 1.0, 0.9, and 0.9, respec-
tively. These values are required in order to achieve stable converged
solutions using any of the four source term formulations, over the
entire range of Re;.,.  being investigated. Only with the Sk,-S€, -A
formulation, for Re, ;. = 3.72x102, was it possible to attain a con-
verged solution without using underrelaxation (i.e. all a's = 1.0): The
computing time required in this case was one sixth of that needed when
the k and ¢ underrelaxation values of a = 0.9 were used. This low-
Reynolds-number behaviour indicates that the Sk1—3‘1-A formulation leads
to greater stability of the iterative solution procedure than the other

three formulations.

This desirable behaviour of the Sk1-S‘1-A formulation is also
demonstrated with the ST model for the case of no underrelaxation, as
shown by the rzsults in Table 12: When using the Sk1-S‘1-A formulation,

a converged solution is obtained for both the minimum and maximum

Res ;.3 when using any of the other three formulations, a converged solu-
tion is not obtained for the maximum Re;_ ,.:; and at the lowest Re, ;..

the Sk,—S‘Z—A and SkZ-sz-A formulations give converged solutions, but
they need more than 175 percent of the time required when using the

Sk1-S‘1-A formulation.

Based on the foregoing discussion, it can be concluded that the
Sk1-S‘,-A source term formulation should be used to ensure that a
converged solution is achieved efficiently for the entire range of
Reynolds numbers used in this investigation. It can also be argued that

the Sk1-S‘1-A formulation will be more efficient than the other
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formulations, even for the more complex case of two-dimensional periodic
fully developed duct flows investigated in this thesis. Solution of such
elliptic flows requires the use of two-dimensional grids, which contain
a considerahly larger number of grid points than the one-dimensional
grids used in this initial evaluation, and line-by-1line TDMA/CTDMA iter-
ative procedures for solving the linearized and decoupled sets of dis-
cretization equations within one iteration of the overall solution pro-
cess. In this context, the additional iterative procedures that are
required in the implementation of the S"2 treatment for the k equation
could greatly decrease the computational efficiency of the Skz-S‘1-A
formutation. In addition, for the complex interrupted-plate duct flows,
it is desirable to use a source term formulation that enhances the sta-
bility of the overall iterative process. This characteristic is clearly
demonstrated by the S, -S¢,-A formuiation when compared to the Sk,-S¢,-A

formulation.

The evaluation of the effects of using Procedures A and B for calcu-
lating the Sc and Sp terms of the k and equations was done with
the sk, -S¢, formulation, for the minimum and maximum Re, .. values of
3.72x10%2 and 10.5x103 , respectively. When underrelaxation coefficients
of a = 0.9 were used in the k and ¢ discretization equations, the
results of the two procedures showed litt.e difference. Converged solu-
tions using Procedure B required only one percent and three percent more
time than with Procedure A for the respective minimum and maximum Re¢ i
values. When no underrelaxation was used for Re,, ;. = 3.72x10%, a con-
verged solution using Procedure B required 222 percent more time than
when using Procedure A. Thus Procedure A can be considered more

efficient than Procedure B.
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From the evaluations of the k and ¢ equation source term formula-
tions presented in this section, it was concluded that the Sk, -S¢ -A
formulation is the most stable and efficient of the four formulations

considered.

7.3 INITIAL NUMERICAL INVESTIGATION: PERIODIC FULLY

DEVELOPED LAMINAR FLOW

As was stated in Chapter |, a computer code incorporating the numer-
ical formulation described in Chapter |V was developed during the course
of this research. In this section, an evaluation of the code's capabil-
ity to predict two-dimensional periodic fully developed flows is made:
Results for laminar flows are presented and compared to results obtained
by Patankar and Prakash [14] for similar flows. This was done to ver-
ify that the proposed numerical method was correctly implemented in the
computer code. Similar checks of the results for turbulent periodic
fully developed flows were not possible at the time of this evaluation
since no suitable comparison data were available in the published liter-

ature.

The results presented in this section were obtained by performing
the numerical computations on the CRAY X-MP/22 supercomputer operated
by the Centre for Large Scale Computation (CLSC) at the University of
Toronto. The FORTRAN source code was compiled using the Cray FORTRAN
Compiler (CFT) and all real numbers and variables were specified as real
(R), or single precision, type values which aliows real numbers in the

range 1072460 < R < 102485 to be approximated to 14 decimal digits of




precision [124].

7.3.1 Mathematical Model

Patankar and Prakash [14] performed a numerical analysis of periodic
fully developed laminar flow in an interrupted-plate passage similar to
the one depicted in Fig. 44. As discussed in Chapter Il, for periodic
fully developed flow, it is sufficient to solve for the flow field in
only one geometrically similar module: One such module is shown by the
shaded area ABCDEF in Fig. 44. The x and y momentum equations governing
this type of flow are given by Eqs. (5-1) and (5-2) when b, is set equal
to zero. The k and ¢ equations are, of course, not required for laminar

flow calculations.

With reference to the nomenclature shown in Fig. 44, a nominal

flow Reynoids number, Re., and module friction factor, fo, for the
module ABCDEF have been defined in [14] as:
Res = Lllu_“_ﬂﬂl (7-13)
B (4H)
fs = —_— (7-14)
(2 p Uav)
The average velocity, U,, is:
Upy = —TM_ 7-

where my is the mass flow rate through the module ABCDEF.
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The mass flow rate through a module is determined by the value spe-
cified for the modular pressure gradient, g, in Eq. (5-3). The only
quantitative measure of f presented in [14] is in the form of friction
factor - Reynolds number, f_ versus Re,, plots. Fer L/H = 1.0,

t/H = 0.3, and Re; values of 100, 200, 500, 1000, and 2000, correspond-
ing values of f were read from the appropriate figures given in [14].
These values are representative of the ful! range of Reynolds numbers
and the largest plate thickness parameter studied by Patankar and Pra-
kash [14]. From this set of f, versus Re;, data, the input values of §
were determined for the geometric module parameters already given. The
values of f. read from the graphical data in [14] are presented in

Table 13.

7.3.2 Numerical Formulation

The periodic fully developed laminar flow in this problem is gov-
erned by the continuity equation, Eq. (2-7), and the x and y momentum
equations given by Egs. (5-1) and (5-2), respectively, when all u, terms
are set to zero. Excluding any steps that involve u., k and ¢, the same
iterative solution procedure summarized in Section 5.2.5 was used to
solve the laminar flow equations: Only Steps 1, 3 to 8, and 11 were
performed. In Step 1, the relaxation parameters, a's, are se. to 0.9
for the U and V momentum discretization equations, and the convergence
tolerance was set to 1078, Convergence is considered to be achieved
when the mass source term, b/, in the pressure correction equation, Eq.
(4-38), was less than the convergence tolerance. The modular pressure
gradient term was determined from the data of Table 13. It was found

from preliminary tests that some repetitions of the internal
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line-by-line TDMA/CTDMA iterations, five times for the U and V momentum
discretization equations in Steps 4 and 5, respectively, and fifteen
times for the p/ discretization equation in Step (6), provided the best

overall rate of convergence.

The calculation domain was discretized in the same manner as that
described in Section 5.2.1, except that an additional y zone was added
at the top of the domain to account for the plate in this region. This
ensured that y-direction grid spacing was finer pear piate surfaces and
the x-direction grid spacing was finer near the leading and trailing
edges of a plate. After performing calculations with a number of dif-
ferent grid distributions, generated as described in Appendix 1, it was
determined that an x-y grid distribution of 88x73 nodes gives grid-
independent results for the range of Reynolds numbers investigated.

This grid is shown in Fig. 45, and it was used for all laminar flow com-

putations. The results of these tests are presented in the next section.

The flow field in the module ABCDEF, shown in Fig. 44, repeats
itself at the periodic boundaries, AF and CD. A flow symmetry line is
assumed at the boundaries along BC and EF. These boundaries and the
solid plate regions are treated in the same manner as that described in
Sections 5.2.3 and 5.2.4 for similar boundaries and regions in turbulent

interrupted-plate duct flow.

7.3.3 Results

Grid Checks

Because of the complex elliptic nature of the laminar periodic fully
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developed flows investigated, densely packed uniform grids are required
to obtain solutions that can be extrapolated to approximate true grid-
independent solutions. As was the case for the turbulent flow studies
of Section 7.2, the use of such grids was impractical because of the
large computational expense that would be involved. Instead, nonuniform
grids of 56x11 to 112x105 were generated using the procedure described
in Appendix 1. Computations using grids of 56x11, 88x73, and

112x105, yielded the U velocity profiles at the inlet of the module
ABCDEF that are shown in Fig. 46. Little change is observed between

the profiles of the two densest grids indicating that for the purposes
of this study: The 88x73 grid was to give grid-independent solutions.
In order of increasing grid density, the CPU time required to obtain a
converged solution ranged from just less then 4 minutes for the coarsest
grid to over 60 minutes for the finest grid with the intermediate grid
requiring some 30 minutes. This illustrates the importance in determin-
ing an optimum grid, for which essentially grid-independent solutions
are achieved at reasonable costs: The B8x73 grid can be used at halt the
cost of the 112x105 grid to give results that are within less than 0.5

percent of each other.

The grid checks presented here were done for the ma<imum Reynolds
number flow. At this Reynolds number the flow is assumed to be of a
more complex nature, with greater velocity gradients occurring near
plate surfaces and more extensive recirculation zones existing betwsen
the trailing and leading edges of plates, compared to the lower-
Reynolds-number flows. For this reason, it is valid to assume that the
88x73 grid calculations will give grid-independent results over the

whole Reynolds number range considered here.
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Friction Factor - Reynolds Number Plots

The friction factor - Reynolds number results of the computations
are plotted in Fig. 47 along with the corresponding data of Patankar and
Prakash [14]. The curve obtained from the computations done in this
work is shifted slightly above that drawn from the data in [14],
al though both curves show the same trends. 1t is difficult to explain
why this difference exists without having more detailed information than
what is given in [14]} about the grids employed and the methods used to
determine the numerical accuracy of the solutions. A thorough review of
the source code used for this work did not reveal any errors, thereby
providing confidence in the numerical correctness cof the computations.
Care was taken to minimize any error that may have occurred in reading
the f, values from the plots in [14]. There is, however, a degree of
uncertainty that is inherent in these values due to the fact that they
were read from logarithmic plots reduced to allow inclusion in the text
of a journal publication. Another plausible explanation is that the
mass flow rates calculated using the 88x73 grid of this work are more
accurate than the 60x30 grid solutions reported in [14]. This cannot be
verified without quantitative information on how the grid in [14] was
distributed across the calculation domain. It was found that a 56x11
grid used in the grid checks of this study resulted in a computed R
value of 2001, compared to the value of 2000 in [14], but with the finer

88x73 grid the computed R, value increased to a value of 2075.

Streamline Plots

The discussion in the preceding paragraph is somewhat speculative.

However, if it is assumed that both the computations of this work and

:id
wgraag,
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those in [14] are numerically correct, for the particular grid distribu-
tions used, then the results of both sets of computations should exhibit
at least qualitative agreement. Such agreement between the calculated
flow fields of this investigation and those in [14] is demonstrated by
the streamline plots shown in Fig. 48 for the maximum and minimum val-

ues of Res.

Conclusion

From the results presented for the iaminar flow investigation, it
was concluded that the numerical method presented in Chapter IV has been
properly implemented in the numerical code. This alliowed applications
of the code to periodic fully developed turbulent flows to be undertaken

with confidence.




CHAPTER VIII

RESULTS OF THE EXPERIMENTAL INVESTIGATION

The results of the experimental investigation of turbulent periodic
fully developed flow in interrupted-plate rectangular ducts are presented
in this chapter. Initial tests were first run to determine that statis-
tically steady periodic fully developed flows are established. The
results of these tests are presented and discussed first. Then the
results of time-mean wal! static pressure measurements and flow visual-
ization studies are presented. !n this chapter, the emphasis is on the
presentation of the experimental results. A detailed discussion of these
results is left for the next chapter, in which the corresponding numeri-

cal data are also presented and compared to the experimental data.

8.1 S8PECIFICATIONS OF INTERRUPTED-PLATE DUCT TEST SECTIONS

Three interrupted-plate rectangular duct test sections, denoted as
Duct 1, Duct 2, and Duct 3, where used in this research. Each test sec-
tion could be constructed by suitably adapting a common rectangular duct
test section, as described in Chapter VI. The nominal values of the
dimensions and the geometric parameters of the three interrupted-plate
ducts were also given in Chapter VI. The actual measured values of
these quantities are presented in Table 3. The wall static pressure
taps are located along the centerline of the bottom aluminum plate of
each test section. The same aluminum plate is used in all three ducts,
and the locations of the centers of the pressure tap holes are given in

Tabie 4.
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8.2 CHECKS8 TO DETERMINE THE ESTABLISHMENT OF TURBULENT

PERIODIC FULLY DEVELOPED FLOW

First, checks to determine the repeatability of the time-mean static
pressure measurements were done at the maximum and minimum flow rates
used in this investigation, for each of Ducts 1 to 3. The results of
these checks are shown in Figs. 49(a) and (b) in terms of (P* -P")
versus (x'-x'o)m plots for the respective maximum and minimum flow rates

of Duct 1. The corresponding resuits for Duct 2 and Duct 3 are shown in

Figs. 50(a) and (b}, and Figs. 51(a) and (b), respectively. In these

figures:
(P*o - P*)n = u (8-1)
Ly G
and
(x* « xto)p = LxpXel (8-2)

P*° and x"o denote nondimensional values of the time-mean wall static
pressure and axial coordinate, respectively, at a suitably chosen refer-
ence pressure port, or tap. With reference to Figs. 1 and 2, and to the
data in Tables 3 and 4, the reference pressure tap for Ducts 1 to 3 was
located at port 91, ensuring that there were at least 11 geometrically
similar modules upstream. Thus in each duct, periodic fully developed
flow conditions were expected to prevail over the geometrically similar
modules located downstream of this reference pressure port. Time-mean

wall static pressure measurements were taken over the first 11 modules
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located downstream of port 91,

The numerical simulations in this thesis are done for two-
dimensional fiow geometries. In Eq. (8-2), to be consistent with the
nondimensional numerical data presented, the two dimensional form of D,
is used tor both the numerical and the complementary experimental

results. This two-dimensional form of D, is:
Dp = 2H (8-3)
in Eq. (8-1), Uy is defined by Eq. (2-47):

Un = 2—'::-5,; (2-47)
The overall mass flow rate, m, in the interrupted-plate duct test
section is the same mass flow rate that is calculated from the measure-
ments in the flow metering section. Since the air flows investigated
are essentially isothermal and incompressible, the density, p, was based
on the air temperature and the time-mean wall static pressure measured
in the flow metering section. For all test runs, the .otal pressure
drop across the section of duct in which pressure measurements were
taken, was less than 460 Pa. The difference in the arithmetic mean of
the time-mean wall static pressures at the reference port and the last
port in the aluminum duct test section, and the time-mean static pres-
sure of the flow metering section, was one percent or less of the former
quantity. In addition, for the maximum flow rate, the Mach number based
on the average velocity, GL, at the minimum flow area in the duct was
less than 0.06. These results indicate that the assumption of incom-

pressible, constant property, fluid fiow is valid throughout the length

[y
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of the flow facility over which pressure measurements were taken.

In each of the Figs. 49(a) to 51(b), the resuits of the initial
and the repeatability test runs are denoted by the symbols O and J ,
respectively. Three types of vertical lines are also shown in each of

these figures. They denote the locations of the leading edge

( ), the center (————— — - ), and the trailing edge

(_..._._..

) of each of the plates in the colinear interrupted-plate
array. A geometrically similar module, such as ABCDE in Fig. 2,

extends over the region between the leading edge of a plate to the lead-
ing edge of an adjacent plate in the colinear interrupted-plate array.
Within each module, the region between the trailing edge of the plate to
the exit plane of the module comprises the wake region of the flow com-
ing off the plate. With reference to Fig. 19, pressure measurements
are taken at LE, LC, CP, CT, TE, G1, G2, and G3 locations in each of the
first 11 modules downstream of the reference pressure port, as well as
at the LE location of the twelfth module. The plots in Figs. 49(a) to
51(b) show that in each module, there 1s a drop in the time-mean wall
static pressure over the leading-edge region of a plate and a partial
recover of this pressure drop in the wake region just downstream of a
plate trailing edge. A detailed examination and discussion of this

intramodular pressure behaviour is presented in Chapter IX.

Each test run required 90 minutes to 120 minutes to complete, and
each repeatability run was performed 10 minutes to 15 minutes after the
corresponding initial run. The maximum I uncertainty in (P"O-P')"1
values is 0.024, 0.046, 0.033, 0.058, .055, and 0.11, in Figs. 49(a),

49(b), 50(a), 50(b), 51(a), and 5i1(b), respectively. The max imum
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uncer tainty in (x'-x'o)m vaiues is * 0.041 in all of these figures. A
detailed description of the uncertainty analysis used is given in
Appendix 5, where a sample calculation of the uncertainty in Re, is pre-
sented. The results from the initial and repeated runs for the maximum
flow rates in Ducts 1, 2, and 3, shown in Figs. 49(a), 50(a), and 51(a),
respectively, are almost indistinguishable from each other, indicating
very good repeatability. The results shown in Figs. 49(b), 50(b), and
51(b) for the minimum flow rates in these three ducts, also show good
agreement between the initial and repeated runs, aithough not as good as
those for the maximum flow rates. The measurement errors relative to
the magnitude of flow rates and pressure differentials will be larger at
lower flow rates than at higher flow rates. However, both initial and
repeated sets of data plotted in each of Figs. 49(b), 50(b), and 51(b)
do agree within the limits of the experimental uncertainty in the
measurements. A better quantitative measure of the overall repeatabil-
ity of the data presented in Figs. 49(a) to 51(b) can be obtained by

comparison of the corresponding modular friction factor - Reynolds num-

ber values.

As was discussed in Chapter Il, the behaviour of the time-mean
static pressure in the periodic fully developed region of turbulent
flows in interrupted plate ducts is given by Eqs. (2-17) to (2-19). To

facilitate the following discussion, these equations are repeated here:

{ P(x,y,z) - P(x+L+s,y,z} } = { P(x+L+s,y,z) - P(x+2L+2s,y,2) }

= { P(x+2L+2s,y,z) - P(x+3L+3s,y,z) } (2-17)

and

]

ot
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P(x,y,z) = -fx + ;(x.y.Z) (2-19)

where

- { P(x,y,z) - P(x+L+s,y,z) }
b= (L+s) (2-18)
P is related to the pressure drop required to generate the overall mass
flow rate in the duct. P(x,y.,z) is the periodically varying component
of the pressure related to the details of the local flow field in each

geometrically similar module:

P(x,y,z) = P(x+L+s,y,z) = P(x+2L+2s,y,2) = ... (2-20)

This periodicity in the time-mean wall static pressure variation can

be seen in the results in Figs. 49(a) to 51(b).

Equations (2-17) and (2-18) imply that the same drop in time-mean
static pressure occurs between any two points that have the same (y,z)
coordinates and are separated by a periodic distance of (L+s) in the x
direction. Therefore, in Figs. 49(a) to 51(b), if pericdic fully devel-
oped flow conditions prevail downstream of the reference pressure port,
then any set of data points having a periodic spacing of (L+s) in the x
direction should all fall on a straight line. The method of least
squares was used to fit a straight line through each of 8 sets of
(P*,-P"), versus (x"-x"_ ), data points having a periodic spacing of
(L+s): With reference to Fig. 19, lines were fitted through sets of data
points located at the LE, LC, CP, CT, TE, G1, G2, and G3 locations of
the 11 modules shown in Figs. 49(a) to 51(b). The LE data point of the

twelfth module, located at the exit of the eleventh module, is also




Lol

213

included in the LE data set. The correlation coefficient and slope cf
each line were calculated: The correlation coefficient serves as a

n . » * * *
measure of the linearity of the (P -P" ), versus (x -x ), data, and the

slope is equal to the module triction factor, f,, as defined in

Eq. (2-46):
B Dn
g = —mm—— (2-46)
=2
% ¢ Un

The f, values reported without any additional subscript are the
average of the eight local values, f ¢, foicr fmces fmers fmres fmgio
fag2+» @and fpoq.3, calculated for the aforementioned sets of periodically
spaced data points. In principle, for each run, all module friction
factor values should be the same. A comparison of the eight local
module friction factors with the average module friction factor was used

L]

as an internal consistency check on the experimental (P'O-P )m versus
(x"-x",), data obtained for each run, as discussed in the following

paragraphs.

The correlation coefficients and f, values produced by the above
mentioned analysis of the data in Figs. 49(a) to 51(b) are presented
in Table 14. The correlation coefficient in every case is better than
0.9985. The resuits also indicate, quantitatively, the repeatability of
the data in Figs. 49(a) to 51(b). The deviation in f of the repeated
run from the initial run is less than + 2.7 percent for all cases and
less than * 0.7 percent for all the maximum flow rate tests. The corre-
sponding Reynolds number deviations are all less than * 0.8 percent.

These results demonstrate the ability of the flow facility to provide
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steady air flow rates and repeatable time-mean wall static pressure
measurements in each of the three interrupted-plate duct test sections,

over the range of module Reynolds numbers investigated.

For each of Ducts 1 to 3, seven different Reynolds numbers were con-
sidered: Thus a total of 21 different combinations of flow rates and
interrupted-plate geometries were investigated. The establishment of
periodic fully developed flow for each of these combinations can be ver-
ified by examining the deviations of the local values, f, ¢, foic fncps
focrs fmre fmo1 fmgz» @nd foq3, from the average value o! f . These
are given in Table 15 along with corresponding values of correlation
coefficients. The deviation of all local f, values from the average
value for any given Re, is less than £ 1.6 percent in all cases.

Indeed, in only four instances did any of the local values deviate from
the average f  value by more than + 1 percent. These deviation limits
are roughly the same as, or better than, the deviation limits obtained
from the repeatability checks discussed in the previous paragraph, and
all fall within the experimental uncertainty of the corresponding aver-
age f, values rcported in Table 16. In addition, all correlation coef-
ticients for local f values were better than 0.9985, indicating a good
degree of linearity in the sets of periodically spaced points. To pro-
vide a visual appreciation of the linearity and internal consistency of

the data at periodical ly spaced points, (P' -P*)  versus (x"-x" data

on
points for the LC, TE, and G3 locations of Duct 3 for the maximum Re,
are presented in Fig. 52, along with the plots of the corresponding
least-squares straight lines: The Reynolds number for this run is

Re, = 32.32x10°.




Based on the resuilts presented in this section, it was concluded

that steady and repeatable time-mean wall static pressure measurements
could be obtained with the experimental facility end procedures used in
this work, over the entire range of Reynolds numbers considered. In
addition, for this Re;, range, it was concluded that periodic fully
developed flows are established in Ducts 1 to 3 downstream of the refer-

ence pressure tap located at port 91.

8.3 MODULE FRICTION FACTOR -~ REYNOLDS8 NUMBER RESULTS

The module friction factor - Reynolds number results for Ducts 1 to
3 are presented in this section, As was mentioned in the preceding sec-
tion, a total of 21 different combinations of interrupted-plate duct and
flow rates were investigated. As was discussed in Chapter {1, for a
given flow rate, two different Reynolds numbers can be defined for

interrupted-plate ducts: one based on U} and one based on U;:

Rep = E—Q%JQL (2-45)
and
Rey = Ly.)K‘__D.h.k. (2-39)

with U; and Uy given by Egs. (2-47) and (2-41), resnectively. As
discussed in Section 8.2, the two dimensional form of D, is used, Eq.
(8-3), and similarly, D,, is given by the two dimensional form of Eq.

(2-42):

Dyy = AH - t) (L+s)

(2L +s) (8-4)




The method used to calculate the module friction factor, f,, has
already been described in Section 8.2. Another commonly used module

friction factor, f,, was defined in Eq. (2-40), and discussed in

Section 2.6.2. It is related to f_ by the following equation:
Dhk Um 2
fk =fm ( — ) (—) (8-5)
Dy, Uy

The f  versus Re, results for Ducts 1 to 3 are shown in Table 16, and
the corresponding f, versus Re, results are presented in Table 17. The
nominal geometric dimensions of modules in Ducts 1 to 3 are equiva-
lent, except for the plate thickness, 2t. Thus, for a given mass flow
rate, m, the only variable which changes in the fn values for Duct 1,
Duct 2, and Duct 3, is the module pressure gradient term, A. However,
due to the different values of 2t in Duct 1, Duct 2, and Duct 3, if fy
and Rex values are considered, the average flow velocity, U}. the
module hydraulic diameter, D,,, and f are all variable quantities. To
facilitate a direct evaluation of the effect of plate thickness on the
overall module pressure drop, the discussion in this thesis will be
focussed on the f  versus Re, data for Ducts 1 to 3. The f versus Re,

values are presented for completeness only.

Graphical representation of the f, versus Re, results for Ducts 1,
2, and 3 are shown in Fig. 53. As indicated in Table 16, the
uncertainty in the f  values ranges from * 12 percent at the lowest
Reynolds numbers to less than * 2 percent at the higher Reynolds num-

bers, and it is less than * 5 percent for most of the data. The
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corresponding uncertainty in Re, values is less than + 2.25 percent in all
cases. Within the limits of the experimental uncertainty reported in
Table 3, the anly difference in the geometries of Ducts 1, 2, and 3 is

the piate thickness parameter, t*, which is approximately doublied from

w

Duct 1 to 2 and from Duct 2 to 3: t* = 0.027 for Duct 1; t* = 0.056 for

Duct 2; and t* = 0.11C for Duct 3.

The effects on overall pressure drop caused by changing t* and Re,,
can be seen in the friction factor data plotted in Fig. 53. For all
three ducts, the friction factors follow the same general trend: The
values of f_ become smaller as Re, increases, with the decrease in f_
becoming progressively less as Re, increases. When t* increases so does
the overal !l pressure drop, as demonstrated by the increase in the levels
of f, from Duct 1 to Duct 2, and the even greater increase in the f_
level from Duct 2 to Duct 3. A more detailed analysis of these results

will be deferred until Chapter IX, where the numerical results are also

presented.

8.4 INTRAMODULAR TIME~-MEAN WALL STATIC PRESSURE RESULTS

In this section, nondimensionalized time-mean wall static pressure
distributions within a module are presented. Detailed experimental data
on intramodular pressure distributions for periodic fully developed'flow
in interrupted-plate ducts, or any other periodically interrupted flow
passages, have not been reported in the published literature by any
other investigators for either laminar or turbulent conditions. There-
fore the results presented in this section for various combinations of

the plate thickness parameter, t*, and the module Reynolds number, Re,,
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add new information to the fluid fiow data in the published literature,

and are considered as an important original contribution of this thesis.

Seven different Reynolds numbers were considered for each of Ducts 1
to 3. The 21 time-mean wall static pressure distributions obtained
from this experimental investigation are presented in Figs. 54(a) to (d)
and Figs. 55(a) to (c) for Duct 1; Figs. 56(a) to (d) and 57(a) to (c)
for Duct 2; and Figs. 58(a) to (d) and Figs. 59(a) to (c) for Duct 3. iIn
these figures, the intramodular time-mean wall static pressure distribu-
tions are plotted as (P*, -P*)y versus (x"-x",)n: P's and x's are
nondimensionalized by {(1/2)pU&2} and Dy, respectively, and the sub-
script, i, is used to denote quantities pertaining to the wall static
pressure tap located over the leading edge of the plate in the periodic
fully develioped module. The pressure values shown are the arithmetic
averages of the nondimensional time-mean wall static pressures at corre-
sponding x locations, having a pericdic x spacing of (L+s), in each of
the 11 modules where pressure measurements were taken: With reference to
Fig. 19, arithmetic averages of pressure measurements at the LE, LC, CP,
CT, TE, G1, G2, G3, and LE at the exit of each module, are presented in

Figs. 54(a) to 539(c). In these figures, the experimental data points

are represented by the symbol o, and the vertical lines denote the loca-
tions of the leading edge ( ), the center (——— — — — — ),
and the trailing edge ( - - ) of the plate. The corresponding

plate locations are also the arithmetic averages of the measured LE, CT,
TE, and module exit LE locations of the 11 modules in which pressure
measurements were taken. iIn these figures, the maximum uncertainty in
(x*-x";), values is less than 1.3x10"%, and the maximum uncertainty in

the (P";-P"), values ranges from a minimum of 8.3x10°% for Duct 1 with




219

Re

. = 33.49x10° , to a maximum of 1.5x10°2 for Duct 3 with

Re 4.997x10°: The maximum uncertainties of nondimensional pressure

values corresponding to each duct and Re, combination are given in the

caption accompanying each of the figures.

From Figs. 54(a) to 59(c), it is observed that for all Reynolds
numbers, there is a steep drop in time-mean wall static pressure over
the leading-half of th: plate, a rise in this pressure over the first
half of the interrupted-plate gap, and a drop in the time-mean wall
static pressure in the second half of the gap as the next plate leading
edge is approached. OQver the second half of the plate, the time-mean
wall static pressure begins to rise before the trailing edge of the
plate is reached in all cases, except for the lowest Reynolds number of
Duct 1 where the rise in time-mean wall static pressure does not begin
until the flow has entered the interplate gap region. These experimen-
tal results shall be examined and discussed in more detail in
Chapter IX, after all the experimental and numerical data has first been
presented. To aid in the use of the experimental intramodular time-mean
wall static pressure distributions in future investigations, the actual
values of (P*;-P") versus (x'-x";), data points which correspond to the
minimum and maximum flow rates in Ducts 1, 2, and 3 are presented in

Tabie 18.
8.5 INTERRUPTED-PLATE SURFACE STREAMLINE RESULTS
The nature of the flow over the surface of an interrupted-plate in

periodic fully developed turbulent flow was investigated using the sur-

face oil-flow technique described in Chapter V'. Initially, two types




220

of kerosene based paints were used: one containing a Day-glo orange
fluorescent pigment and the other containing powdered titanium dioxide
(TiO,). A detailed discussion concerning the paint compositions and
application procedures was presented in Section 6.6.4. The results

of this surface flow visualization study are presented in the current

section.

The clear acrylic flow visualization section used in this work was a
continuation of the interrupted-plate geometry of the upstream alumi-
num duct section. Within the limits of the reported measurement uncer-
tainties, the dimensions of the flow visualization section for Ducts 1
to 3 are the same as those values presented in Table 3 for the corre-
sponding aluminum duct sections. The module-to-module repeatability,
characteristic of velocities at periodically spaced (L+s) points in the
x direction with the same (y,z) locations, is demonstrated, qualita-
tively, by the similarity in the surface streamline patterns on the
three successive plates shown in Fig. 60 for Re, = 8.087x10°® in Duct 2.
The main-flow direction in this figure is from right to left and, start-
ing from the upstream positior., these plates are located in the fourth,
fifth and sixth periodic modules downstream of the start of the flow
visualization section. This type of repeatability was exhibited for all
of the 21 interrupted-plate duct geometry and module Reynolds number

combinations investigated.

As explained in Section 6.1.1, each of the plates in Fig. 18 has a
total cross-flow width of 175.0 mm, of which the central 152.4 mm makes
up the plate width, b, that is located in the turbulent air flow. As

seen from the dark streaks that run in the flow-oriented (length-wise)
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direction of the three plates shown in Fig. 60, the flow over the
surface of each plate can be considered to be two-dimensional over at
least the central 80 percent of the aforementioned 152.4 mm width of

plate.

The surface streamline patterns in Fig. 60 show three distinct

regions from the leading edge to the trailing edge of a plate: (1) a
leading-edge region where little or no streaking is observed; (2) a
central region where dark streaks are seen extending towards the trail-
ing edge of the plate; and (3) a trailing edge zone which begins where
an accumulation of paint is observed. These three regions were observed

in each of the 21 different cases considered.

The plat?-surface streamline patterns characteristic of the periodic
ful Iy developed turbulent flows investigated are presented in Figs. 61
to 81: Results are shown for each value of Re,, beginning with the min-
’ imum value and increasing to the maximum value, in Figs. 61 to 67, Figs.
68 to 74, and Figs. 75 to 81, for Duct 1, Duct 2, and Duct 3,
respectively. In each of these photographs, the upper edge of the plate

is the leading edge and the bottom edge is the trailing edge. To

enhance the details of the streamline patterns, only close-up photo-

graphs, which in most cases show the central 70 percent of the plate
cross-flow width, b, are presented in Figs. 61 to 81. The streamlines
in Figs. 61 to 67 for Duct 1 were obtained using the TiQO, paint, while
the patterns shown in Figs. 68 to 81 were obtained using the Day-glo
orange fluorescent paint. The reasons for this are discussed in the

next paragraph.

L
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From preliminary tests, it was found that both the Day-glo and TiO,
paints show similar streamline patterns, but the TiO, paint gave a finer
rasolution of the details than the Day-glo paint in some cases. To
determine if the TiO, paint would give the best results over the whole
range of flow rates investigated, both the TiO, and Day-glo paints were
used in the experimental runs with Duct 1, Four plates were painted, two
with the TiO, paint and two with the Day-glo paint, and placed in the
flow visualization saction at the beginning of each run. After enough
time had elapsed to allow the kerosene to evaporate and leave the dried
TiO, or Day-glo pigment on the plate in the form of the surface stream-
line patterns, the plates were removed from the flow visualization sec-
tion and photographed. Figures 66 and 67 are examples of dried TiO,
flow patterns, and Figs. 68 to 81 are examples of dried Day-glo flow
patterns. It was found that the streamline patterns could be more
cliearly photographed from the dried Day-glo paint patterns than the
dried TiO, patterns. The TiO, streamline patterns appear finer than the
Day-glo patterns when visually examined, but the TiO, details are more
difficult to distinguish in a photograph, at least when dried. On the
other hand, the Day-glo pigment is flunrescent when illuminated by
ultraviolet light and even faint flow patterns can be made quite visible
and easily photographed. The photographs shown in Figs. 61 to 65 are
also TiO, patterns, but these were taken through the top of the flow
visualization section when the plates were still in the air flow and the
paint had not yet dried. 7The detail in these photographs is clearer
than those of Figs. 66 and 67, but it was very difficult and tedious to
take such photographs with the photographic equipment available for this
work. Specifically, it was difficult to position the camera close

enough to the plate to capture the details of the flow pattern without
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the camera-support stand partially obstructing the view of the plate, as
occurred in Fig. 64, or without interfering with the lighting, as is
shown by the dark patches caused by shadows in Figs. 61 and 63. Because
of the good photographic quality of the surface streamline patterns
obtained using the Day-glo fluorescent paint, and the relative ease and
efficiency of the procedure used to obtain these photographs, it was
decided that the Day-glo paint would te used for the experiments with
Ducts 2 and 3. With each of these ducts, the Day-glo paint was applied
to the fourth, fifth and sixth piates downstream of the start of the

flow visual ization section, as shown in Fig. 60.

In Figs. 61 to 81, the streamline patterns over the central region
of the plate indicate that the flow over the surface is essentially two-
dimensional: There is no indication of cross flows, as all streamlines
extend over the entire plate in the x, or main-flow, direction. It is
also observed that the accumulation of paint in the trailing-edge region
starts further upstream of the trailing edge as the value of Re,
decreases: At the lowest Re, values, this region begins at an upstream
distance that is as much as 20 to 25 percent of the streamwise plate
length, L. As the maximum value of Re, is approached in all ducts, the
extent of this trailing-edge zone decreases, and paint accumulation
along the plate leading edge is also observed. A detailed analysis of
these plate-surface streamline results will be deferred to Chapter IX,

after the results of the numerical investigation have been presented.




224

CHAPTER IX

RESULTS8 OF THE NUMERICAL INVESTIGATION AND DISCUSSION

Iin this chapter, the results of the numerical investigation of tur-
bulent two-dimensional periodic fully developed flow in interrupted-
plate rectangular ducts are presented and discussed with respect {o the
corresponding experimental data that was presented in Chapter VIill.
There are nine sections in this chapter. The first section describes
some of the key features of the numerical investigation, including the
results of a performance evaluation done to finalize the k-¢ model of
turbuience used in this study. In the remaining eight sections, the
focus is on the presentation and discussion of the results of the numer-

ical investigation, in the context of the experimental results presented

in Chapter Vilt.

All the numerical results presented in this chapter were obtained by
performing the computations on the CRAY X-MP/22 supercomputer operated
by the Centre for Large Scale Computation (CLSC) at the University of
Toronto. The Cray FORTRAN Compiler (CFT) was used to compile the
FORTRAN source code. All real numbers and variables were specified as
single precision type. This allowed real numbers between 1072466 and

102465 to be approximated to 14 significant digits of precision [124].
9.1 KEY FEATURES OF THE NUMERICAL INVESTIGATION

9.1.1 Introduction

During the course of this research, a computer code incorporating
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the numerical formulation described in Chapter IV was developed. This
code was tested, debugged, and validated by applying it to several test
problems, including the periodic fully developed laminar flow discussed
in Chapter VIi. In addition, the Jones and Launder (JL) [B89] and the
Launder and Sharma (LS) [91] k-¢ models of turbulence were evaluated in
the context of fully developed turbulent flow in a channel. Based on
the results presented in Section 7.2.1, it was concluded that the JL k-«
model was better than the LS model for low-Reynolds-number,

5.00x103 < (Rey) < 25.0x10%, fully developed turbulent channel flows.

nom
The turbulent periodic fully developed, two-dimensional, interrupted-
plate duct flows (5.00x103 < {Rep)nom < 30.0x103) of this investiga-
tion, however, are more complex than fully developed two-dimensional
channel flows. Therefore, a final comparison of the JL and LS models was
undertaken to see if the JL mooel is indeed the better one of the two to

use for the numerical simulation of such flows. These resuits are pre-

sented in Section 9.1.4.

As was discussed in Section 3.6, in the numerical investigations of
Hanjalic and Launder [96] and Rodi and Scheuerer [97], the prediction
capabilities of k-¢ modeis in adverse pressure gradient turbulent flows
were improved by incorporating the Hanjalic and Launder [96] modifica-
tion to the ¢ equation production term P_ . This modification brings in
a term that favours higher dissipation for irrotationail strains compared
to that for rotational strains. With this modification, the P, term of
S¢, Eq. (5-11), is modelled by Eq. (5-12). In the interrupted-plate duct
flows investigated here, due to the sudden change i1n module cross-
sectional area that occurs when the plate ends and the interplate gap

begins, it was expected that the flow within a module would experience
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an adverse pressure gradient and undergo some deceleration in this
region. The experimental values of intramodular time-mean wall static
pressure distributions, presented in Figs. 54(a) to 59(c), do indeed
indicate an adverse pressure gradient in this region of the module. It
was assumed, therefore, that the Hanjalic and Launder modification [96]
would be useful when modelling the periodic turbulent flows studied in
this thesis. To confirm this, however, results of the JL model! [89]
with and without the modification were compared to corresponding exper-

imental data. These results are given in Section 9.1.4.

Following these preliminary tests and performance evaluations, the
computer code, incorporating the JL model of turbulence [89] with the
Hanjalic and Launder modification [96], was used to investigate turbu-
lent, two-dimensional, periodic fully developed flows in interrupted-
plate rectangular ducts. The key features of this numerical investiga-

tion are discussed in this section.

9.1.2 Problem Description

The problem of interest involves turbulent periodic fully developed

flow in a straight rectangular two-dimensional interrupted-plate duct.

As was discussed in Chapter 1}, for such flows, it is possible and suf-
ficient to calculate the fiow field in gnly one geometrically similar

module, such as the moduie ABCDE shown in Fig. 2. The x and y momentum
and the continuity equations governing this type of flow are given by

Eqs. (5-1), (5-2), and (2-7) . The complete set of governing equations
includes Eqs. (5-5) and (5-10) for k and ¢, respectively, and £Eq. (3-B)

for the calculation of the u, field.
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The investigation was p.vformed for three module geometries which
are designated as Duct 1, 2, and 3. A schematic representation of these
ducts is given in Fig. 2. The nondimensional plate length parameter,
L*, and plate thickness parameter, t*, for these ducts in the numerical
study were the same as those used in the experimental investigation, and
they are given in Table 3. Considering the range of measurement uncer-
tainties specified in this table, the values of s* and L" can be consid-
ered the same. In the numerical formulation of the problem, the value

of s" was, therefore, set equal to the value of L" specified in Table 3.

Hereafter in this chapter, uniess otherwise specified, reference to
Duct 1, 2, or 3 will imply one geometric module in the periodic fully
developed region of the flow in these ducts. Furthermore, the words

duct and module wili be used interchangeably.

Four flow rates (with nominal Re, values of 5x103, 10x10%, 15x103
and 25x10%) were investigated for each of the three module geometries.
The value specified for the modular pressure gradient, £, in Eq. (5-3)
determines the mass flow rate through a module. The specified values of
g in the numerical investigation were obtained from the experimental

module friction factor - Reynolds number, f_ versus Re,, data for Runs

1, 3, 4, and 6 for each of Ducts 1, 2, and 3, given in Table 16.

9.1.3 Numerical Details

The calculation domain was discretized in the manner described in

Section §.2.1 It was determined that nonuniform x-y grid distributions
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of 72x78, 72x100, and 72x100 provided essentially grid-independent
results for the module configurations of Ducts 1, 2, and 3, respec-
tively, over the range of Reynolds numbers investigated. Further
details are given in Section 9.1.4. These grids are shown in Figs. 13,
14, and 15. 1t should be noted that the y dimension of the grids in
these figures has been expanded to three times its actual size relative
to the x dimension. This was done in order to clearly illustrate the
relative changes in the y control-volume lengths across the module.
Details of the grid generation procedure are given in Appendix 1, and

more will be said about how these grids were chosen in Section 9.1.4.

The derivation of the discretized forms of the governing equations
was discussed in Chapter IV, The procedures used to specify boundary
conditions and the treatment of the blocked-off plate regions were dis-

cussed in Sections 5.2.3 and 5.2.4, respectively.

The iterative procedure that was used to solve the discretized gov-
erning equations was summarized in Section 5.2.5. In Step 1 of this
procedure, the relaxation parameters, a's, were set to 0.9 in the dis-
cretized x and y momentum and the k and ¢ equations. In the first run
for each of Ducts 1, 2, and 3, the initial guess values of the U veloci-
ties were set equal to the value of the cross-sectional average mean-
flow velocity, based on the appropriate experimental value of Re_ and
the appropriate flow passage cross-sectional dimension of the module.
Initial guess values of k and ¢ were also specified as constant values
for a given stream-wise location. The guess values of k were arbi-
trarily set to 3.5 percent of the local mean-flow kinetic energy, and

the values of ¢ were determined based on an arbitrary fength scale,
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chosen as (0.2 x H): The guess values of ¢ were set equal to

k3/2/(0.2 H). The initial values of V and P were set to zero. After the
first run, in subsequent runs for a given duct, the converged solutions
for U, V, P, k, and ¢ from a previous run, having the value of Re,
closest to the nominal Re, value of the current run, were used as ini-
tial guess values. This resulted in fewer overall iterations to achieve
the new converged solutions than the number required if arbitrary con-

stant-value initial values were specified.

The convergence tolerance was set to 10°8, with the convergence

criteria stated in Section 5.2.7.

The block correction procedure described in Section 4.1.7 was used
in Steps 3, 4, and 6 of the overall iterative solution procedure, when
solving for the U, V", and P/ values, but it was turned off in Steps 9
and 10 when solving the k and ¢ equations, respectively. It was found
that block correction on k and ¢ did not improve the overali rate of
convergence of the solution. The number of internal 1ine-by-1ine TDMA
and CTDMA iterations used when solving the linearized, decoupled, U, V,
P/, k, and ¢ discretization equations was initially set to 2, 2, 10, 3,
and 3, in Steps 3, 4, 6, J, and 10, respectively. |t was found that
after an initial fifty iterations these internal iterations could be
reduced to 1, 1, 5, 1, and 1, without adversely affecting the overall

number of iterations needed to achieve a converged solution.
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9.1.4 Preliminary Numerical Results

Notes on Nondimensionallzation

The results of grid checks and a final performance evaluation of the
JL [89] and LS[91] k-¢ turbulence models are discussed in this section.
These results, and other numerical results in this chapter, are pre-
sented in terms of nondimensional values. in most cases, nondimen-
sional variables and parameters are the same as those defined and used
in Chapter VIII to present the experimental data. Two dimensional vari-
ables which need special mention, however, are the average module velo-
city, Un, and a periodic fully developed friction velocity, uy, that

are used in the nondimensionalization of the numerical data.

The mass flow rate through a geometric module of height H, such as
ABCDE in Figs. 2 and 11, is m/2. As was discussed in Section 4.1.2
with reference to the nomenclature in Figs. 6 and 10(c), in the discret-
ized calculation domain, the main-grid nodes are located at the inter-
sections of the vertical and horizontal main-grid lines: Such a main-
grid node P is located at the intersection of the lines | and J. Two
control -volume faces of length AY, are located on the two adjacent U-
velocity staggered-grid lines, at i and i+1, adjacent to the main-grid
line | shown in Fig. 10(c). The corresponding x-direction mass flow
rate across a vertical centrol-volume face of length AY, on the i grid
line can be expressed as (p U,,J AY,). Since it is assumed that there is
no mass flow in or out of the top or bottom horizontal boundaries of a
module, the total mass flow rate through the module is the same across
any vertical cross section of the moduie. This value is calculated by

summing the local stream-wise mass flow rate across all AY,
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control-volume faces located on the same i grid line:

2
(p Ui,y &Yy) for 2 < i< L2 (9-1)
2

nmx

U
R
As was stated in Chapter IV, the boundary values of AY, (AY, and AY,,)
are zero, hence, the summation is from 2 to M2, M2 = M1-1. The corre-
sponding two-dimensional value of U;, Eq. (2-47) with b = 1, is then

calculated using the m/2 value obtained from Eq. (9-1):

- n 1 .
U = 5 2R (9-2)

A friction velocity value is used in the nondimensionalization of k

and ¢ values presented in this chapter. The friction velocity, U., is
defined by Eq. (3-30) as:
172

Ur = (M) (3-30)
which for fully developed turbulent duct flows can be written in the
form of Eq. (7-9):

aP
Ur = {(- 3z H) / p}1/2 (7-9)

In contrast to fully developed duct flows, the vaiue of U, given by
Eqs. (3-30) and (7-9) is not constant in periodic fully developed duct
flows, because (- 8P/dx) is not constant. Since it is desirable to use
a constant value of friction velocity in the nondimensionalization of
the data for a particular run, in this work, a periodic fully developed

friction velocity, u_, was defined based on 8, the constant part of the

T

module pressure gradient. In analogy to the expression in Eq. (7-9),
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the value of u, was defined as:

ur = {(BH) / p}1/2 (9-3)

Grid Checks

As was stated in Section 9.1.3, the calculation domains of Ducts 1,
2, and 3, were discretized into nonuniform x-y grid distributions of
72x78, 72x100, and 72x100 nodes. These grids were chosen after a care-
ful examination of the values ot the computed variables obtained with
many di fferent nonuniform grid distributions. These type of grid checks
were performed for the maximum Reynolds number flow in each of Ducts 1,
2, and 3. It was assumed that grids which give grid-independent solu-
tions at maximum Reynolds numbers will also give grid-independent solu-

tions over the whole range of Reynolds numbers considered for a particu-

lar duct.

A quantitative estimate of the numerical accuracy of the solutions
was obtained by determining how well the above-mentioned grids allow
truly grid-independent solutions to be approached. As was discussed in
Section 7.2.1, grid-independent sclutions can often be wel! approximated
using the extrapolation procedure used by de Vahl Davis in [118].
Because of the compliex elliptic nature of the turbulent periodic fully
developed flows investigated here, densely packed uniform grids were
required to obtain solutions that could be extrapolated to the true
grid-independent limit. The use of such grids is computationally very
expensive, so a quantitative estimate of numerical accuracy was done for
only one case, involving the maximum flow rate in Duct 3. This numeri-
cal error was assumed to be a conservative estimate of the numerical

errors in all other interrupted-plate turbulent flow computations, for
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the reasons discussed in the following paragraph.

Steep velocity and turbulence property gradients are expected to
occur in regions near solid surface - fluid interfaces. These gradients
generally become greater as the tlow Reynolds number increases, thus
requiring a larger number of grid points to ensure proper resolution of
the flow field. Therefore, a grid that gives a grid-independent solu-
tion for a large value of flow Reynolds number would be expected to give
a grid-independent solution at smaller values of Reynolds number for the
same flow-passage configuration. In Ducts 1, 2, and 3, most of the
solid surface - fluid interfaces occur paralle!l to the main-flow, or x,
direction, and the y dimension of each corresponding module is about one
quarter of the x dimension: As a result, the greatest concentration of
grid points, per unit length, is required in the y direction to ensure
adequate resolution of the flow properties. The most compiex flow
regions to be resolved involve recirculation, and these zones are larg-
est in the interplate-gap region, shown by dcCD in Fig. 11, extending
in the y direction fromy = 0 to the height of the plate, v = t. In
this region, the number of grid points in the y direction per unit of
the plate thickness parameter, t*, was the smallest for the grid used in
Duct 3: for example, 254 points per unit of t* compared to 370 for Duct
1 and 393 for Duct 2. For this reason, it was considered that the least
accurate solution of the flow field will result for this duct, grid, and
maximum flow combination. The numerical accuracy of all the other tur-
bulent periodic fully developed flow solutions would be at least as good
as, or better than, the accuracy of the solution obtained for Duct 3

with the maximum value of Re,, .
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For Duct 3, with a specified 8 corresponding to the maximum flow
rate, the extrapolated grid-independent value of Re, was 27.27x10%. This
was obtained by assuming that with fine grids the numerical method used
is second order accurate [41,125], and by extrapolating Re, vaiues
obtained with grids of 124x174, 124x201, 146x174, and 146x201 nodes,
uniformly spaced in the x and y directions. Full details of how the
extrapolated grid-independent solution for Re, was obtained are given in
Appendix 6. The value of Re;, obtained using the nonuniform 72x100 grid
distribution, Re, = 27.84x10%, was within 2 percent of the extrapolated
grid-independent value. This is representative of the accuracy of

all other overall flow results calculeted using this grid.

A visual appreciation of this numerical accuracy can be obtained by
examining Figs. 82(a) and (b); and 83(a) to (d). These ftigures show
plots of various nondimensional variables obtained with the nonuniform
72x100 grid and tne uniformly spaced 146x201 grid. The value of Re, for
the 146x201 grid was 27.21x103, a difference of less than 0.25 percent
from the extrapolated grid independent value of 27.27x103. Figure 82(a)
shows plots of the nondimensional U velocity profile at the module cross
section located at the plate trailing edge. The location of the plate in
these plots is shown by the region of zero velocity extending from
y/H = 0 to 0.110. Figure 82(b) shows the variation of the cross-stream
x-momentum flux with distance along the length of the module: The plate

leading-edge, center-point, and trailing-edge locations are denoted by

the vertical lines ( )y (—————), and (— — — —),
respectively. The cross-stream x-momentum flux will be referred to as

the axial momentum flux, and for a given x location, it is defined as

fol lows:
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* L]
M; = L
J

2 - —

(Ui, s Uy,o AYy) / (+ Un Ug Dn) for 2 < i =Ll2 (9-4)
2

where D, and U, are defined by Eqs. (8-3) and (9-2), respectively.

Plots of nondimensional k profiles are shown in Figs. 83(a) and (b),
and nondimensional ¢ profiles are shown in Figs. 83(c) and (d). These
profiles are for module cross sections located over the first half of
the plate and the first half of the interplate-gap region, at
(x*-x";), = 0.1414 and 1.027, respectively. The plots in Figs. 82(a)
and (b), and 83(a) to (d) show that there is good agreement between the
results obtained with the 146x201 uniform grid and those obtained with
the nonuniform 72x100 grid: However, the CPU time required to obtain
the solution using the nonuniform grid is in the order of 50 minutes,
and this is less than half that required with the uniformly spaced grid.

This indicates the computational efficiency attained by using the non-

uniform grid distribution.

To summarize, it was concluded that the nonuniform 72x100 grid
yielded numerical solutions of overall flow rates that were within 2
percent of the true grid-independent value in the case of Duct 3. For
reasons already discussed, this was used as a conservative estimate of
the agreement expected between extrapolated grid-independent solutions
and the numerical solutions reported for Ducts 1 and 2, using 72x78 and

72x100 node nonuni form grid distributions, respectively.

Turbulence Models: Final Performance Evaluation

The final performance evaluation of the k-e¢ turbulence models
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consisted of two-parts: First, the effect of using the Hanjalic and
Launder modification {96], discussed in Sections 3.6 and 9.1.1, was
examined; and second, the relative performance of the Jones and Launder
[89], JL, and Launder and Sharma [91], LS, k-¢ models of turbulence was
evaluated. These evaluations were done by comparing the numerically cal-
culated friction factor - Reynolds number, t, versus Re,, values for
Duct 1 with those obtained from the corresponding experimental investi-

gation.

The effect of using the Hanjalic and Launder {96) modification for

the ¢ equation production term, P_, was studied using the JL turbulence

model. To indicate that this modification has been incorporated into
the JL turbulence model, H will be added to the two letters representing
the model: In this case, the JL model becomes the JLH model. The

results of the computations are shown by the f versus Re, plots in Fiy.
84. In this figure, the symbols ® , [(J , and O denote the experimen-
tal results for Duct 1, the solutions obtained with the JL model, and
the solutions obtained with the JLH model, respectively. 1t can be seen
that the f, values calculated using the JL and the JLH models follow the

same general trend: At low values of Re,, Re, < 15x10%, the numerical

mo
values of f_ are underpredicted with respect to the experimental values;
but as the value of Re, increases, the experimental values of f
decrease faster than the numerical values, and the numerical values
eventually become larger than the experimental values. The cross-over

point, where the numerical f values become greater than experimental

]
values, occurs at Re, ~ 25x10° with the JLH mode! and at Re, =~ 15x10
with the JL model. From the experimental time-mean wall static pressure

measurements for Duct 1, presented in Figs. 54(a) to (d) and 55(a) to
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(c), it is observed that the recovery in the time-mean wall static pres-
sure ove ' the region extending from just upstream of the plate trailing
edge to the center of the interplate gap becomes larger, refative to the
total time-mean static pressure drop over the entire module, as Reg,
increases. It is not surprising that the difference in the predictions
of the JIH and the JL models becomes greater in flows where the relative
effect of adverse pressure gradients increases, with the JLH values

showing closer agreement with experimental values, as shown in Fig. 84.

As a result of this performance evaluation, it was concluded that
the inclusion of the Hanjalic and Launder modification [968] in the k-e¢
turbulence mode! results in numerical predictions that are generally in
better agreement with the experimental data over the range of Reynolds

numbers studied in this investigation.

The relative performance of the JL and LS k-¢ turbulence mode!s was
examined for the flows with the maximum and minimum values of Re, in
Duct 1. For this comparison, the Hanjalic and Launder modification [96]
was incorporated into both models, and designated as the JLH and LSH
models. The results of this study are also shown in Fig. 84 where O
denotes the results using the LSH model and, as stated previously, O
denctes the results using the JLH model. These results confirm the
trend that was observed in the turbulent channe! flow data prosented in
Section 7.2: At Re, = 25x10° both mode!s give approximately the same
results for f ., but as Re, decreases, the i, values calculated using the
LSH model show poorer agreement with experimental values than those pre-
dicted by the JLH model. It was concluded that for the range of

Reynolds numbers of interest in this investigation, the JLH model is
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better than the LSH model .

The numerical predictions of turbulent periodic fully developed flow
presented in the remainder of this thesis were done using the Jones and
Launder [89] k-¢ model of turbulence with the modification proposed by
Hanjalic and Launder [96]. The values of the constants used in this

turbulence model are given in Table 1.

9.2 MODULE FRICTION FACTOR - REYNOLDS NUMBER RESULTS

As was previously stated, numerical calculations were done for a
total of twelve interrupted-plate duct and flow rate combinations: four
flow rates through each of Ducts 1, 2, and 3. In this section, the
module friction factor - Reynolds number results obtained from these
numerical studies are presented and compared to the corresponding exper-
imental results presented in Section 8.3. A discussion of these f, ver-

sus Re, results is also presented in this section.

The f, versus Re, results of the numerical investigation for Ducts
1, 2, and 3 are given in Table 19. The respective graphical representa-
tions of these numerica! results along with the corresponding experimen-
tal results are shown in Figs. 85(a), (b), and (c). 1{in these figures,
the numerical data points are joined by continuous |ines, and the corre-
sponding experimental data points are shown with ervror bars representing

the uncertainties reported for these values in Table 16.

In Figs. 63 and B85(a) to (c), it is observed that both the experi-

mental and numerical values exhibit the same general trends: (a) f,
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drops with increasing Re, for a given duct, but this drop becomes pro-
gressively smaller as Re, increases; and (b) as t* increases from Duct 1
to Duct 2, and again from Duct 2 to Duct 3, so does the overall level of
f,. These trends can be understood by noting that an overall pressure
drop over a module is required to overcome: (i) wall friction, or shear
forces, at the walls and plate surfaces of the module; and (ii) the so-
called inertial losses [26], that are propcrtional to 0;2 and occur in
regions of separation and recircuiation at the leading and trailing edge
of the plate. At low Reynolds numbers, the contribution of the wall
friction to the overall module pressure drop is significant, and the

module friction factor, f responds noticeably to changes in the module

me
Reynolds number, Ren. However, at high Reynclds numbers, the inertial
losses dominate the wall friction losses, and fn, {= 8 Dn/(sUn-/ 2)},
becomes relatively insensitive to changes in Re,. This accounts for the
above-mentioned Trend (a). Trend (b) iv a result of the decrease in
minimum flow area, A, ., caused when t* is approximately doubled from Duct
1 to Duct 2, and then again from Duct 2 to Duct 3. For the same values
of Re,, as A_ decrcases, the flow rate through the plate region of a
moduie increases, and this in turn results in greater frictional losses
due to the larger shear stresses on the plate surface and at the duct
walls. Furthermore, the increased blockage effect of the plates with
increasing t*, and the accompanying increase in the flow rate for the

same Re,, lead to greater regions of separation and recirculation, caus-

ing the inertial losses to also increase in magnitude.

Figures 85(a) to (c) give an indication of the overall accuracy of
the numerical predictions obtained in this study. In all cases, the

difference between numerical and experimental results is greatest at the




lowest values of Re, (~5x10%). As Re, increases, the experimental
values of f decrease at a greater rate than the numerical values, and
they eventually cross-over, and become lower than, the numerical values
for Re, > 25x10°. Over the range of Re, investigated, agreement between
the numerical and experimental data is best for Duct 1, t* = 0.027, and
becomes progressively less satisfactory as t* increases to 0.056 for Duct
2, and 0.110 for Duct 3, as shown in Figs. 85(a) to (c). A quantitative
measure of the differences between the numerical and experimental sets
of data is given 1n Table 20. The differences in the numerically calcu-
lated values of Re,, reported in Table 19, from the corresponding exper-
imental values, reported in Table 16, range from 7.90 percent to -1.94
percent for Duct 1, 7.63 percent to -0.563 percent for Duct 2, and 14.4
percent to 0.00 percent for Duct 3 over the Reynolds number range of
5x103 < Rep < 28x103. Considering the range of the uncertainties
reported for Rey in Tables 16 and 20, it may be stated that the
numerical and experimental data agree tor Reynolds numbers in the range
16x103 < Re, < 28x103. Although the Hanjalic and Launder modification
[96] to the ¢ equation production term, P_, has improved the numerical
results at the higher Re, values, there is a need for further
improvement of the JLH model in order to obtain better agreement of the

numerical f  versus Re, results with those obtained experimentally.

It was demonstrated in [97] that without the Hanjalic and Launder
modi fication [96], the k-¢ turbulence model gives values of skin fric-
tion coefficients that are too high when applied to two-dimensional
decelerated thin shear layers. As is evident from Eqs. (5-8) and (5-12),
in the presence of large gradients of velocities, 8U/dx or dV/dy, such as

those experienced when strong deceleration or acceleration of the flow
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occurs, the modification suggested in [96] will give rise to larger ¢
values than those obtained without the modification, and, as a result,
smaller values of k and smaller values of p,, are obtained. In turn,
the value of the effective viscosity, (u+u,), becomes less, and larger

flov rates, hence smaller values of f are calculated for a specified

m 1
modular pressure gradient, . This is observed in Fig. 84 where the f,
versus Re, results for the JLH model are shifted downward from the

corresponding JL model results, most noticeably for Re, > 15x10% .

The interrupted-plate duct flows of this investigation are more com-
plex in nature than the two-dimensional decelerated thin shear layers of
[96] and [97]. In contrast to the results of those two investigations,
where skin friction factors were all overpredicted before the modifica-
tion of P, in the interrupted-plate duct flows of this study, the over-
prediction in f, values only occurred at Rey > 15x103. At these large
vaiues of Req, as already discussed, the overprediction of the fg
values by the numerical model is due, at least partially, to the under-
prediction of the effects of irrotational strains on the dissipation of
the turbulence kinetic energy in flows experiencing acceleraticn or
deceleration. This has been corrected to a noticeable extent by imple-
menting the Launder and Hanjalic modification [96] to P, . However, in
the results of Duct 1 shown in Fig. 84, a comparison of the f  values of
the JL and JLH models reveals that this modification to P, has had rela-
tively Iittle effect at low vaiues of Re,, where frictionai losses are
significant. One possible explanation of these results may be obtained
by examining the streamline patterns on the plates shown in the flow
visualization results of Figs. 60 to 81. They indicate that over the

central 80 percent of the duct, the mean-flow field can be considered to

bl
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be two-dimensional. However, at low values of Re,, the wall friction
makes a significant contribution to the overall module pressure drop.
Unlike the ideai two-dimensional flow module used in the numerical cal-
culations, the experimental flow module has side walls that lead to an
increase in total wall friction forces, and, hence, a greater mc.ule
pressure drop is required to obtain the same flow rate as for the ideal
two-dimensional situation. It is thus expested that experimental f val-
ues should be larger than the two-dimensional numerical salues, espe-

cially at relatively low values of Re,, when frictional losses become

more significant relative to inertial losses.

As a final note in this section, it must be remembered that the ¢
equation, Eq.(3-18), was derived from Eq. (3-12) only after some rather
"ad hoc" assumptions, and in its present form, even after the modifica-
tion to P, [96], it is still a very simplistic model. Considering the
complex nature of turbulent periodic fully developed duct flow, some
improvenents to the ¢ equation and the viscous damping functions
empioyed in the JL form of the k-¢ model are necessary before accurate
predictions can be achieved over a wide range of Re,. Specific recom-
mendations for such improvements require detailed analytical and numer-
ical studies, supported by detailed experimental measurements of U, V,
k, and Reynolds stresses, using hot-wire and laser-Doppler anemometry.

Such studies and measurements are beyond the scope of this thesis.

9.3 DISCUSSION OF SURFACE STREAMLINE RESULTS

The behaviour of the flow over the surface of a plate can be deter-

mined by careful examination of the surface streamiine results shown in
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Figs. 61 to 81. The interpretation of these results has been done after
studying surface streamline patterns and discussions presented by Mal tby

and Keating [47] for separating and reattaching flows.

Regions of surface flow separation are indicated by either dark
patches, indicating the absence of paint, or solid bright regions which
indicate the accumulation of paint at one location [47]. Regions of
paint accumulation in the vicinity of the leading edge of the plate are
clearly visible in all of Figs. 61 to 81, except in the case of the low-
est Reynolds number runs for each duct, Figs. 61, 68, and 75, and for
Runs 2, 3, and 4, (Re, = 8.806x10%, 11.22x10%, and 17.17x10%, respec-
tively) with Duct 1. In the cases without leading-edge paint accumula-
tion, it cannot be conclusively stated that a leading-edge separation
and recirculation zone does not occur, but only that no definite indica-
tion of its occurrence appears in the surface streamline data. In the
cases where leading-edge paint accumulation does occur, the paint was
actually seen to be recirculating in, and confined to, these regions
before it dried. Furthermore, it will be noticed that immediately down-
stream of these leading-edge paint accumulation zones, there is a small
region where streaks are not clearly defined or are completely absent.
This would indicate a region of tow surface shear relative to the region
just downstream cf this one, where the streaks are very distinct,
extending along the length of the plate towards the trailing edge. It
is to be expected that just downstream of a separation zone, as the main
flow reattaches to the wall, the wall shear will be initially weak as
the surface boundary layer will require some distance to strongly

reestablish itself [47].
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For flows with Re, less than 20x10®, there is another region of
separation and recirculation that appears upstream of the plate trailing
edge, particularly noticeable at the lowest Re, values for each Duct. In
Figs. 61, 68, and 75, showing the results for Run 1 with Ducts 1 , 2 and
3, respectively, the two-dimensional streamline patterns on the central
region of the plates are ended abruptly by a line of accumulated paint
that stretches across the width of the plate. This is best seen in the
case of Duct 1, Fig. 61, where the paint has accumulated at a location
roughly 25 percent of the plate length, ~ 0.25 L, upstream of the trail-
ing edge. Behind this region, is a clear dark region where, 1nitially,
paint was observed to be recirculating until it began to dry and accumu-
late at the indicated location. With the other duct and flow ccmbina-
tions, for Re, < 20x10%, the same type of phenomena is evident in the
streamline patterns, although less distinctly. 1in some cases, specks uf
paint broke through the recirculation <cne and flowed towards the trail-
ing edge, where a secord region of paint accumutation is observed in the
streamline photographs. A distinct dark !ine demarcates the boundary
between these two regions. During the experiments, before the paint had
dried, it was observed that no paint would cross this dark line, except
in the case where specks broke through. 1t is plausible that the dark
line indicates the end of the trailing-edge separation zone, but this
could not be definitely confirmed from the results obtained here As the
value of Re, increases, the extent of these trailing-edge recirculation
zones decreases, until for Rej > 20x 103, Figs. 85 to 67, 72 to 74, and
79 to 81, the zones become so small that it 1s not possible to defini-
tely determine if the accumulation of paint at the trailing edges is due
to such zones or is simply the result of paint on the upstream surface

of the plate being pushed downstream until 1t arrives at the trailing
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edge.

To summarize, three distinct regions were observed in the streamline
patterns on the surface of the plates in turbulent periodic fully devel-
oped interrupted-plate duct flows: 1) a leading-edge separation and
recircuiation zone, followed by a region of low surface shear relative
to that on the central region of the plate; 2) a central zone character-
ized by strong shear in the mean axial-flow direction; and 3) a region
adjacent to the trailing edge characterized by paint accumufation and,
for Re, < 20x10%, a zone of surface flow separation and recirculation

that extends as much as =~ 0.25 L upstream of the plate trailing edge for

the minimum Re, values. The occurrence of the first two of these regions

was anticipated, but the presence of a separation zone upstream of the
trailing edge was unexpected, and to the best of this author's knowledge
no similar phenomena has been reported in the literature to date. The

first step in formulating an explanation for the observed experimental

results i1s to examine the numerical data to see if the same phenomena are

predicted.

9.4 STREAMLINE PLOTS

Streamline plots were generated from the numerical solutions
obtained for flows through Ducts 1, 2, and 3. Using the terminology
adopted in Table 19, the streamline plots for Runs 1, 3, 4, and 6,
appear in Figs. 86(a) to (d) for Duct 1, 87(a) to {d) for Duct 2, and
88(a) to (d) for Zuct 3. In these figures, the uppermost horizontal
line represents the streamline on the upper duct wall, shown by line AB

in Fig. 2, and will be denoted as the first streamline. The value of
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the stream function values corresponding to the next nine streamlines
below it, to the tenth streamiine, decrease by equal amounts; and the
stream f:unction values of the four streamlines immediately below these,
the eleventh to fourteenth streamlines, also decrease by an equal, but
smaller, increment. The values of these fourteen stream functiuns are
given in Table 21 tor Ducts 1, 2, and 3. The location of the plate
within the module is shown by the cross-hatchad area, and the zero
stream function is shown by the zero streamline located along the plate
surface - fluid interface. The flow direction is indicated by the

arrows. All recirculation zones are also bounded by the zero streamline.

In the streamline plots shown in Figs. 86(a) to 88(d), flow separa-
tion and recirculation is evident immediately downstream of the plate
trailing edge in the interplate gap, and, except for Run 1 of Duct 1 in
Fig. 86(a), a leading-edge separation and recirculation zone 1s also
seen. This leading-edge separation zone is difficult to see for the
results of Duct 1, and Run 1 of Duct 2, because of the small size of the
recirculation region compared to the resolution of the plots. The
stream-wise extents of these recirculation zones vary as Re, and t*
increase. The streamwise lengths of the leading-edge and trailing-edge
recirculation zones, appearing in Figs. B6(a) to 88(d), are presented in
Figs. 89 and 90, respectively, in terms of a nondimensional length,
xg/t, versus a plate Reynolds number, Rep: xg is the length of the
recirculation zone in the mean-flow, or x, direction, and t is the plate
half-thickness, shown by the length of line Dd in Fig. 11. The plate

Reynolds number is defined as:

Rep = E—t"k—l (9-5)
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where Uy, given by Eq. (2-41) with b = 1, is the mean-flow average
velocity per unit width based on the minimum flow cross-sectional area,

A_, which occurs in the region where the plate is located. The confin-

¢
ing effect of duct walls on the flow around a rectangular plate has been
found to cause significant changes in the characteristics of the flow
around such a plate [126]. This confinement effect is expecied to
change as the blockage caused by the plate, indicated by the value of

t", changes. This is reflected by the differences in the data for

Ducts 1 to 3 in Figs. 89 and 90.

The length of a recirculation zone is infiuenced by the rate of
spread of the separated shear layer in the cross-stream, or y, direc-
tion [127]. MWhen this shear layer encounters a solid surface and reat-
taches to it or, 1n the case of trailing-edge separation in the inter-
plate gap, when it merges with its counterpart that has separated from
the opposite surface of the plate, a recirculation zone is established,
As the value of Rep is increased, starting from relatively low val-
ues, the streamwise extent of the recirculation zone initially
increases, then decreases, and finally becomes essentially constant, as
seen in Figs. 89 and 90. At low values of Re,, the rate at which the
separated shear layer diffuses in the cross-stream, or y, direction is
determined primarily by viscous diffusion [127-129]. As Rep increases,
it reaches a critical value beyond which the separated shear layer
becomes initially unstable, experiencing oscillations in the y direc-
tion, and, as the increase in Rep continves, turbulent mixing also
increases [126-128,130,131]: The y di:ection spread of the separated

shear layer tends to be dominated by these latter two processes relative
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to the viscous diffusion process. Eventually, at very high values of
Rep. the viscous effects become comparably negligible and the length of
the recirculation zone becomes essentially constant, independent of Rep
[126-131]. It must be remembered, however, that the recirculation zones
predicted by the numerical model used in this thesis are based on the
assumption of statisticaliy-steady time-mean flows. Thus, the numerical
model cannot account for instabilities that develop in the separated
shear layer. As a result, the critical value of Rep in Figs. 89 and 90
occurs only when turbulent mixing begins to dominate over the viscous
diffusion of the separated shear layer: The critical value of Rep would

be smaller if unsteady effects in the shear layer were also modelled.

Evidence that the reduction in the length of recirculation zones
with Rep. for relatively high Rep, is caused by the increased effects of
turbulence, compared to viscous effects, can also be obtained by examin-
ing the levels of the turbulence Reynolds number, Re,, in regions of the
flow where such zones occur. Streamwise profiles of Re, in the inter-
plate gap are shown in Figs. 91(a) to (c¢) for Ducts 1 to 3, respec-
tively. These profiles are representative of Re, levels throughout the
interplate-gap region, where y/H < t". In all cases, as Re_, and hence
Rep. increases for a given duct, so does the level of Re,. Of particular
interest is the region immediately downstream of the plate, where the
trailing-edge recirculation zones, shown in Figs. B86(a) to 88(d), occur:
For the minimum flow rates in each duct, the values of Re, in the recir-
culation zones are less than 10, 20, and 100 for Ducts 1, 2, and 3,
respectively. As Re, increases, it is cleariy seen that the levels of

Re, increase rapidly in the near-plate-wake region.
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The flow in the interplate gap between two pairs of colinear
rectangular plates was studied experimentally by Roadman and Loehrke
[27]. Their results indicated that the downstream plate provided an
upstream influence, which has an effect on the "natural” disturbances in
the wake of the upstream plate. This caused a decrease in the critical
Reynolds number for which unsteadiness in the wake of the upstream plate
would occur. |t was also observed that this "feedback process" was less
evident as the flow rates increased beyond the critical Reynolds number
value. A similar sort of unsteady effect, caused by one plate on the
next plate located immediately upstream of it, could also contribute to
the observed characteristics of the aforementioned recirculation zones
that became smaller as flow rates were ir-reased. At higher flow rates,
the elliptic nature of the flow is diminished due to the larger flow
Peclet numbers, and the effect of a downstream plate on its upstream

neighbour is reduced.

9.5 FLOW OVER A PLATE UPSBTREAM OF THE TRAILING EDGE

The numerical results show a trailing-edge separation zone only
downstream of a plate, in the interplate gap. The flow visualization
results for Re, < 20x103, however , show that there is a region of sepa-
ration and recirculation on the surface of the plate upstream of its
trailing edge. Since this upstream trailing-edge separation region is
not predicted numerically, it was concluded that it is due to some
unsteady flow phenomena. In the case of an abrupt channel expansion,
where the main flow reattaches to the channe! wall downstream of the
recirculation zone, unsteady oscillations in the separated shear layer

have been observed when the streamwise length of the recirculation zone
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stops increasing and begins to decrease with increasing flow rate [127].
The effects of turbulence become important after the initial onset of
this instability which causes the length of the recirculation zone to
begin decreasing [127]. In the case of the present numerical simula-
tions, since the decrease in recirculation-zone length can only be
accounted for by increased turbulent mixing in the flow, it was con-
cluded that when this decrease was observed numerically, the separated
shear layer in the actual fiow situation would already be experiencing
unsteady disturbances. However, the onset of instability in a separated
shear layer in the wake of a bluft body, such as a rectangular plate, is
usually accompanied by the well-known von Karman vortex street, the phe-
nomenon of periodic vortex shedding from alternate sides of the body
[130-132]. Such a periodic shedding of vortices could conceivably cause
the sepayation zone upstream of the pl~.e trailing edge. To confirm
this, unsteady flow simulations or local flow measurements using hot-
wire or laser-Doppler anemometry are needed. Such investigations are

suggested as extensions of the work reported in this thesis.

9.6 FLOW OVER THE CENTRAL REGION OF A PLATE

As previously mentioned, in Figs. 61 to 81, immediately downstream
of a plate leading-edge separation zone, there was either an absence of
streaks in the surface paint pattern or they were not very distinct.
Further downstream, over the central region of a plate, there were very
distinct streak patterns indicating that the shear stress on the
plate surface was greater here than in the region immediately downstream
of the plate leading edge. This observation is confirmed by the numeri-

cal results, as shown from the plots of nondimensional plate-¢ ‘rface
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shear stress presented in Figs. 92(a), 93(a), and 94(a) for Ducts 1, 2,

and 3, respectively. in these figures, the plate leading-edge, center-
point and trailing-edge locations are denoted by the vertical lines
( ), (—/——— — ), and (— — — —), respectively, and

the nondimensional plate-surface shear stress, r'p, has been defined for

a given U-velocity staggered-grid line location, i, as:
Yi.se = 2 o
e = u =/ (+r Un) for 2<i <ip  (9-6)
(—)
2

where ip denotes the value of i at the U-velocity staggered-grid line
that falls on the trailing edge of the plate, and Jp derotes the hori-
zontal main-grid line located in the flow immediately above the horizon-
tal surface of the plate. (AY;p/2) is, therefore, the vertical distance
from the location of U, y4p to the plate surface. U; is obtained from

Eq. (9-2).

In all cases of the numerical investigation, except for Rurn 1 with
Duct 1 (Re, = 5.764x10%), the value of r'p is less than zero at the
leading edge of the plate, thus indicating the presence of a leading-
edge separation and recirculation zone. r'p increases rapidly along the
first upstream quarter of the plate and then increases relatively slowly
along the rest of the plate to its trailing edge. Compared to the
region where the surface boundary layer reestablishes itself just down-
stream of a leading-edge recirculation zone, the shear stress over the
central region of the plate is large. This behaviour was also evident

in the surface streamline results shown in Figs. 61 to 81, further vali-

dating the qualitative prediction capabilities of the numerical model. In




252

the case of the lowest Re, of Duct 1, in Fig. 92(a), no leading-edge
separation was predicted, and the surface shear stress in the immediate
vicinity of the leading edge of the plate is larger than that on the
central section of plate. This is expected, as large velocity gradients
occur when the leading edge cof the plate is encountered and the fluid is
suddenly brought to rest at its surface, with only a very small or no

separation zone.

9.7 PLATE BHEAR STRESS8, WALL SHEAR STRESS8, AXIAL MOMENTUM

FLUX, AND U VELOCITY DISTRIBUTIONS

Profiles of nondimensional shear stress at the plate surface, r'p.

the shear stress at the upper-wall surface, " axial momentum flux,

u ’
M*, and cross-sectional profile plots of nondimensional U velocities,
U/Un, are discussed in this section. M* and r*, have already been

defined by Egs. (9-4) and (9-6), respectively. r", is defined in an

]
analogous fashion to r',:

UI,JH _2
| (0 Un) for 2 <i <l2 (9-7)

™M T W
AY
()

where the subscript Jw denotes the horizontal main-grid line located
immediately below the upper-wall surface, shown by line AB in Fig. 11,

and (AY;,/2) is the vertical distance from U, to the wall. The plots

Jw

* . r . and M" are shown, respectively, in Figs. 92(a), (b) and (c)

of r p "

for Duct 1, in Figs. 93(a), (b) and (¢) for Duct 2, and in Figs. 94(a),
(b) and (c) for Duct 3. To aid in the discussion of these results, at
eight (x"-x"

,)m locations along a module, cross-sectional profile plots
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of nondimensional U velocities are presented for the minimum and maximum

Re, values in each duct. These eight streamwise locations, denoted as

X1, X2, ..., to X8, and are shown in Figs. 95(a) to (c) for Ducts 1 to
3, respectively. In these figures, the plate leading-edge, center-point
and trailing-edge locations are denoted by the vertical lines

( ), /¢ —— — — ), and {(—— — — ——), respectively. With

reference to the nomenciature in Fig. 19, X1 to X4 are located over the

plate at approximately the LE, LC, CP and TE locations, respectively.

X5 to X8 are located in the interplate gap: X5 is just downstream of the
TE location, and X6, X7, and X8 correspond approximately to the G1, G2,

and G3 locations. The corresponding plots of U/G} for the minimum and

maximum Re_, values, Runs 1 and 6 in Table 19, appear in Figs. 96 to 101.

The plots of (P*,-P*)m, r*p, r*w, M*, and U/Up exhibit similar
trends for all values of Re, and t" in this investigation. Consequently,
the discussion of these results will be focused on the data of Duct 3,
for the case of Run 6, Re, = 27.84x10°. The relative changes in velo-
city profiles at different streamwise locations along the module are
greater for this duct and tlow combination than for others, and will,
therefore, facilitate the following discussion.

The profites of r*_ , r*,, and M" for Re, = 27.84x10* in Duct 3,

p’ W'

Figs. 94(a) to (c¢), can be explained by examining the corresponding
cross-sectional profiles of UIU; for the X1 to X4, and X5 to X8 module
locations shown in Figs. 10t(a) and (b), respectively. Just upstream of
a plate, the fluid in the 0 < y/H < t" region of the interplate gap has

a nonzero velocity, as seen by the profile for position X8 in Fig.

101(b). At the inlet plane of a geometric module, the flow encounters
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the plate, which has blunt, square, leading and trailing edges. The flow
separates at the leading edge of the plate, and, in order to satisfy
continuity requirements, undergoes a strong streamwise acceleration in
the region just outside the separation zone. This is evident in the
velocity profile at X1, in Fig. 101(a): the presence of the plate is
indicated by the region of zero velocity for 0 < y/H < 0.110; the lead-
ing-edge separation is indicated by the negative values of U/Up; and the
strong acceleration near the plate surface is seen by the steep gradient
of U/Up in this region. At a short distance downstream of the leading
edge, the flow reattaches to the plate surface ard begins to develop in
the streamwise direction, as shown by the velocity profiles at X2, X3,
and X4 in Fig. 101(a). |t can be seen that the presence of the plate
causes the flow to be initially deflected towards the upper wall, as
displayed by the following featuies of the velocity profile at X2 com-
pared to that at X1: (i) the upward shift in the location of the maximum
velocity and the increase in its magnitude; (ii) the flatter velocity
profile in the region near the upper wall; and (iii) the reduced cross-
stream gradients in velocity just above the plate. These changes in
velocity profile also result in an increase 1n the axial momentum flux
of the flow from X1 to X2, shown by the appropriate M* profile in Fig.
94(cj. As the flow adjusts to the presence of the plate, it begins to
redistribute itself 1n a more symmetric fashion, resulting in a decrease
of the maximum velocity, with a slight shift downward in its location,
and an increase in the flatness of the velocity profile in the region
adjacent to the plate, as can be seen from the relative change in the
velocity profiles going from X2 to X3 to X4 These changes in velocity
profile are reflected and confirmed in Figs. 94(a), (b), and (c), by the

] . L] . . * A 4
continuous increase of r ,, and the continuous decrease in 7 and M,
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over the plate from X2 to the trailing edge at X4.

The cross-sectional U/Un velocity profiles in the interplate gap
develop as shown by the plots in Fig. 101(b). The flow begins to redis-
tribute itself more towards the centerline of the duct, shown by the
symmetry line COE in Figs. 2 and 11, as it adjusts to the increased flow
area resulting from the absence of the plate. In Fig. 101(b), progress-
ing from location X5 through to X8, the magnitude of the maximum velo-
city continually decreases, the U velocity along the centerline
increases, and the velocity gradients near the upper wall become
smaller. At location XB, however, the decrease in the maximum velocity
levels off, and the fluid begins to accelerate towards the upper half of
the module as it approaches the leading edge of the next downstream
plate, resulting in steeper velocity gradients along the upper wall.

This behaviour is also evident in the corresponding profiles of r*_ and

M* shown in Figs. 94(b) and (c).

9.8 INTRAMODULAR TIME-MEAN WALL STATIC PRESSURES

9.8.1 Results

The experimenta! intramodular time-mean wail static pressure distri-
butions measured for the 21 different combinations of interrupted-plate
duct and flow rate have been presented in Figs. 54(a) to 59(c) and
described briefly in Section 8.4. With reference to the run numbers in
Tables 16 and 19, the corresponding numerical data for Runs 1, 3, 4, and
6 are also presented in Figs. 54(a), (c), (d) and 55(b) for Duct 1; in

Figs. 56(a), (c), (d), and 57(b) for Duct 2; and in Figs. 58(a), (b),
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(c) and 59(b) for Duct 3, respectively. The numerical data displays
good qualitative agreement with the experimental data. For all Reynolds
numbers, there is a steep drop in time-mean wall static pressure in the
region located over the first half of the plate, followed by a rise in
pressure that begins in the region above the last quarter of the plate
and continues over the first half of the interplate-gap region. The
time-mean wall static pressure begins to drop again over the last half
of the interplate-gap region as the next plate is approached. The only
instance vwhere the wall static pressure behaviour is slightly different
is in the experimental data pertaining to the minimum Re, in Duct 1,
Run 1 displayed in Fig. 54(a): The time-mean wall static pressure
decreases all the way to the trailing edge of the plate, albeit mildly
over the last quarter, and the pressure recovery, of decrease in

(P*.-P") _, begins only in the region over the interplate gap.
1 m

The numerical values of (P";-P") are iower than the experimental
ones, with the difference becoming smaller as Re, increases. The best
agreement between numerical and experimental data is at the maximum Re,
values, as was the case for the f  versus Re, data of Section 9.2.

The largest difference in the experimental and numerical results
occurs in the magnitude of the maximum pressure drop along the wall
region located over the plate. With respact to the nomenclature illus-
trated in Fig. 19, this occurs on the wall at a position corresponding
to CT, located midway between the center of the plate and its trailing

edge.

Although the quantitative accuracy of the numerical data requires

improvement, the qualitative accuracy is generally quite gooa.
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Therefore, the numerical results may be used in a qualitative manner, in
conjunction with the experimental data, to gain insight into the turbu-
lent fluid flow phenomena occurring within a periodic fully developed
flow module. As was mentioned in Chapter |, in the published literature
there is a lack of both detailed numerical and experimental intramodular
results for periodic fully developed turbulent flows. Therefore the
resuits presented in this section are considered as an important origi-

nal contribution of this thesis.

9.8.2 Discussion of Results

The variations observed in the measured values of the intramodular
time-mean wall static pressures, presented in Figs. 54(a) to 59(c) for
all the 21 combinations of interrupted-plate duct and flow raiz combina-

tions, will now be discussed.

An increase in M", or an increase in overall frictional losses

caused by increases in «*_ or '

" P will result in a drop of the

timc-mean static pressure within a module. For Run 6 of Duct 3, as
observed in Figs. 94(b) and (c), r'H and M" increase in the region
immediately downstream of the leading edge of a plate. They then level
off and start decreasing slowly towards the traiiing edge of the plate,
while r'p gradually increases. The corresponding plot in Fig. 59(b)
shows that the time-mean wall static pressure undergoes a large drop
from LE to LC as the piate is encountered by the flow: This is to be

expected because the increase in M and r'H in this region overshadows

the local effects caused by the rise in static pressure on the plate

surface at the leading-edge separation zone. However, the time-mean
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wall static pressure is observed to continue dropping, although progres-
sively less, from LC to CP to CT. Since both M* and r'u decrease
gradually over this region of the module, it must be assumed that the
observed increase in r'p is large enough to overshadow these drops,
resulting in a net increase in overall losses and accounting for the
continually decreasing time-mean static pressures experienced at the
wall, shown in Fig. 59(b) as increased leveis of (P'§-P')n. From
locations CT to TE, in Fig. 59(b), the values of (P"i-P")"| begin to
decrease, indicating that the decreases in M" and r"

» have become large

enough to cance! the effects caused by the increase in r*_ over this

P
region.

in Fig. 59(b), over the interplate-gap region, from TE to G2, a
sharp rise in static pressure is observed to occur. This occurs because
the total transport of axial momentum associated with the velocity pro-
files in this region continues *to decrease, as does the wall shear
stress, and the elimination of the plate surface results 1n a sizeable
reduction in the overall frictional losses. About halfway aiong the
length of the interplate gap, r'N begins to increase again and the value
of M begins to leve!l off, as shown in Figs. 94(b) and (c). The net
effect of these events is a decrease in static pressure, as seen by the
increased drop of wall pressure at G3 in Fig. 59(b). This drop in time-
mean static pressure continues as the flow approaches the leading edge

of the next plate, and M* and r"_ continue to inciease.

L
Reasoning similar to that presented above to explain time-mean wall
static pressure distributions for Run 6 of Duct 3 can be used to explain

the results for the other cases investigated and presented in
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Figs. 54(a) to 59(c). As the value of Re  decreases, the most notice-
able change in these results is that the recovery of the time-mean wall
static pressure over the plate is observed to begin further along the
module towards the [E location. The reasons for this can be seen by
examining the data plotted i1n Figs. 92(a) to 94(c). As Re, decreases:

(i) the relative rise in r"_ over the plate becomes greater; (ii) along

p
the plate region of the module, the relative decrease in M" becomes
less, or in the case of Run 1 for Cuct 1, M actually increases over
most of the plate region; and (iii) the wall shear stress increases to
its maximum value at a point further downstream from the region over the
leading edge of the piate but, relative to this increase, its rate of
decrease over the last half of the plate is greater. 7The net effect of
(i) and (ii) is to cause the time-mean static pressure to decrease in
the region over a plate, but the effect of (iii) over the last half of
the plate moderates, and eventually cancels, this decrease, and the
time-mean wall static pressure begins to increase. This recovery of
time-mean wall static pressure, shown as decreased values of

*

(P - P')m. occurs closer to the trailing edge of the piate as Re
decreases. In the case of Duct 1, for the minimum value of Re,, shown

in Fig. 54(a), the time-mean wall static pressure continues to drop all

the way to the trailing-edge region.

The preceding explanations have been based on the assumption that
the numerical solutions accurately represent, at least qualitatively,
the time-averaged behaviour of turbulent periodic fully developed flow
through an interrupted-plate duct. In the case of the time-mean wall
static pressure data, this has been shown to be true. However, the filow

visualization data, Figs. 61 to 81, shows a flow separation and
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recirculation region that extends ypstream from the trailing edge of the
plate for Re, < 20x10%, and the time-averaged numerical model does not
predict this. The effect of such a zone is to reduce frictional losses
due to f'p, although, it would be expected that the corresponding change
in the shape of the velocity profile may act to increase M* and r'u as
well. Quantitatively, the magnitude of these changes and the net effect
on the local cross-sectional time-mean static pressure values cannot be
determined without measurements of the local flow fieid. However, based
on the qualitative agreement shown between present numerical and exper-
imental pressure data, the local effect of the above-mentioned separa-
tion and recirculation region on time-mean wall static pressures appears
to be small. In terms of the overall losses through a module, an addi-
tional zone of separation and recirculation, and the effective increase
in the y-direction extent of the plate wake that could be caused by the
periodic shedding of vortices [132], will increase the inertial losses
in the flow. As a result, a higher pressure drop across a module is
needed to maintain the same flow rate in the presence of these increased
losses. This would explain, in part, why the experimental values of Re,
are lower than the numerical values calculated for the same value of
module pressure gradient, 8, for flow rates corresponding to

Re, < 20x10%.

9.9 TURBULENCE RESULTS

As a final point of interest, the numerically predicted cross-
sectional profiles of the turbulence kinetic energy, k, and the
turbulence Reynolds number, Re,, are presented for the minimum and maxi-

mum Re, values in Ducts 1, 2, and 3 at four locations along the module.
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These locations correspond approximately to the X1, X4, X5, and X8 posi-
tions shown in Figs. 95(a) to (c) and are labelled as such. The exact
locations, given in Figs. 102(a) to (c) for Ducts 1 to 3, are slightly
different from the corresponding velocity locations, because k and Re,
values are calculated at main-grid points rather than at the staggered

U-velocity grid locations.

The profiles of nondimensionalized k values are shown in Figs. 103
to 105, and profiles of Re, are shown in Figs. 106 to 108, for Ducts 1,
2, and 3, respectively. In Figs. 103 to 105, it is observed that the
presence of the plate, or lack of it, has little effect on the k pro-
files in the proximity of the upper wall for a given duct and flow rate.
It may be recalied from Chapter Vil, that values of Re, in the range
100 < Re, < 400 corresponded to y* values of approximately 30 < y* < 100
for a fully developed turbulent channel flow. This is the region where
boundary conditions are specified for the standard k-¢ turbulence model
used in conjunction with wall functions. It was found from the investi-
gation presented in Chapter VII that the standard, or high Reynolds num-
ber, k-¢ model performed poorly, compared to the JL k-e¢ model, in the
calculation of overall flow rates when the levels of Re, were not
greater than the above-mentioned range over most of the flow domain. In
Figs. 106(a), 107(a), and 108(a) the Re, protiles for Re, values of
5.764x10% in Duct 1, 5.809x10% in Duct 2, and 5.71€<10% in Duct 3,
respectively, show that all these fiows exhibit a low level of turbu-
lence: Re, < 200 for Duct 3, and less than 140 in the case of Ducts 1
and 2. The levels of Re, increase for the maximum Re, flows, presented
in Figs. 106(b), 107(b), and 108(b) corresponding to Re, values of

27.27x10% in Duct 1. 26.47x10% in Duct 2, and 27.84x10% in Duct 3.
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However, even in these flows, the level of Re, is less than 900, and it
is less than 400 over at least 20 percent of the flow domain. These
results confirm the reasoning presented in Chapter V and the conclusions
reached in Chapter Vi1 that the low-Reynolds-number form of the k-¢ tur-
bulence model is better suited for the simulation of the flows of inter-

est than the standard, or high-Reynolds-number, model.

This concludes the presentation and discussion of the results of

this investigation.
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CHAPTER X

CONCLUSION

This chapter is divided into two main sections: In the first sec-
tion, the main contributions of this thesis are concisely reviewed; and
some recommendations for the extension and improvement of this work are

presented in the second section.

10.1 CONTRIBUTIONS OF THE THESIS

In this research work, complementary experimental and numerical
investigations of turbulent periodic fully developed flows in three dif-
ferent interrupted-plate ducts have been carried out. The results of
these investigations include (i) overall pressure drop data presented in
the form of module friction factor - Reynolds number plots; (it) plots
of intramodular time-mean wall static pressure distributions in the
periodic fully developed regime; (iii) plate surface streamline photo-
graphs taken as part of the experiments; and (iv) numerical predi-tions
of streamlines, and distributions of plate shear stress, wall shear
stress, axial momentum flux, and axial (U) velocities. In addition,
profiles of mean turbulence kinetic energy, k, and turbulence Reynolids

numbers, Re,, have been presented as part of the numerical results.

The main achievements and contributions of the work reported in this

thesis are summarized in the following subsections.
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10.1.1 Place of this Work in Relationship to Available

Literature

Exper imental Investigation

A literature review pertaining to experimental investigations of
turbulent fully developed flows in rectangular ducts and periodic fully
developed flows in interrupted-plate passages was presented in Sections
1.2.1 and 1.2.3, respectively. |t was found that experimental data on
overall heat transfer and pressure drops in full-scale heat exchanger
models have been reported in the published literature, but they are not
suitable for use as critical tests of numerical predictions because they
lack the necessary accuracy and local details. The results of several
laboratory investigations of fluid fiow and heat transfer i1r rectangular
interrupted-surface flow passages are also available 1n the literature,
but there is still a shortage of detailed and accurate data on heat
transfer and fluid flow in such geometries. The experimental work pre-
sented in this thesis is an effort to fulfill a part of this need, and
it has also provided new insights into fluid flow 1n interrupted-plate

rectangular ducts.

Numerical Investigation

It is evident from the literature survey presented in Section 1.2.3
that several numerical studies concerned with laminar flows through
interrupted-surface passages are available in the literature. It was
found, however, that there 1s an absence of numerical studies that deal
with the simulation of low-Reynolds-number turbulent flows in such pas-
sages. Such flows are commonly encountered in heat exchange equipment.

The module Reynolds numbers ranged from approximately 5x10° to 33x103% in
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this numerical investigation.

Based on the review of turbulence models presented in Section 1.2.2,
it was decided that the two equation k-¢ mode! of turbulence would be
incorporated into the computer code developed as a part of this
research. The computational costs associated with this model are rela-
tively low compared to the more elaborate higher-order models. Further-
more, this model has been found to give satisfactory results for many
complex two-dimensional turbulent flows encountered in industrial appli-
cations. In Section 5.1, it was decided that oniy the Jones and Launder
[89] (JL), and the Launder and Sharma [91] (LS) low-Reynolds-number ver-
sions of the k-¢ model would be considered for use in the simulation of
the interrupted-plate duct flows of irterest. These two versions of the
model possess the desirable feature of having viscous damping functions
that are dependent only oin local properties of the flow, unlike func-
tions in the other low-Reynolds-number models which are also dependent
on the normal distance to the nearest wall, and, therefor., unsuitable

for flows in interrupted-surface geometries.

10.1.2 Experimental Facility and Procedures

Initial tests performed with the rectangular duct test section,
without an interrupted-plate array, established that the flow facility
and procedures used in this research were capable of providing flow rate
and time-mean wall static pressure measurements that are repeatable and
accurate over the range of Reynolds numbers investigated:
10x10° < Rey < 60x10%. The fully developed duct flow data yielded

Reynolds number values that have an uncertainty of less than
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+ 2.4 percent and are repeatable to within less than 1 percent of a pre-
vious run at the same flow rate. The friction factor values, f,, have an
uncertainty of less than + 5.0 percent, they are repeatable to within
less than t+ 2.5 percent of a previous run at the same flow rate, and
they deviate from the corresponding Prandtl-Jones (PJ) correlation [54]

values by less than + 2.7 percent.

From initial tests with each of the three interrupted-plate duct
configurations used in this work, it was concluded that the experimental
faci lity was capable of providing flow rate and time-mean pressure
measurements that were repeatable to within the following experimental
uncertainties: The uncertainty in module Reyn>ids numbers, Re,, was
less than * 2.3 percent; and the uncertainty in module friction factors,
fn, ranged from 12 percent at the smallest flow rates (Re, ~ 5x10%) to
2 percent or less at the largest flow rates (Re, =~ 33x103). These 1ni-
tial test results, along with surface streamline flow visualization
data, also confirmed that periodic fully developed flows were generated
throughout the portion of the test section where measurements and obser-

vations were made.

Based on the surface streamline flow patterns observed over the cen-
tral region of a plate in periodic fully developed flow, for the range
of Reynolds numbers investigated (5x103 < Re, =< 33.5x103), 1t was con-
ciuded that the flow over the central 80 percent of the plate surface is
essentially two-dimensional: The module aspect ratio was A ~ 10.6, for

the three ducts investigated.
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10.1.3 Computer Code

A computer code for the simulation of two-dimensional, steady,
spatially-periodic fully developed flows in interrupted-plate channels
was developed and tested as a part of this work. This code is based on
the finite volume method of Patankar [41]. It incorporates the SIMPLEC
procedure of Van Doormaal and Raithby [113}, along with line-by-line
TDMA [41] and CTDMA [13] algorithms and block correction procedures
[114], for the solution of the coupled nonlinear discretization equa-
tions. The code is written in FORTRAN, and it was run on the

CRAY X-MP/22 with the Cray FORTRAN Compiler.

An evaluation of this computer code was undertaken in the context of
periodic fully developed laminar flows, before final incorporation of a
turbulence model. The results for laminar flows were compared to those
obtained by Patankar and Prakash [23] for similar flows. It was con-
cluded that the numerical method formulated in Chapter IV has been prop-

erly implemented in this code.

10.1.4 Performance Evaluations of gsome k-¢ Models of

Turbulence and Related Implementation Procedures

Performance evaluations were done to determine the suitability of
some of the available k-¢ models of turbulence, and related implementa-
tion procedures, for the simulation of the flows considered in this
thesis. The standard (ST) [75], the Jones and lLaunder (JL) [89], and
the Launder and Sharma (LS) [91] versions of the k-¢ model were examined

in detail. The low-Reynolds-number JL and LS models were tested with
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and without the Hanjalic and Launder modification [96] discussed in

Sections 1.2.2, 3.6, and 5.2.2. The sets of numerical results obtained

with these models were compared to each other, and, whenever possible,

they were also checked against experimental data and correlations avail-
able in the literature. These performance evaluations lead to the fol-
lowing conclusions:

(i) In low-Reynolds-number two-dimensional fully developed turbulent
flows in a channel (5x103 < Re, < 30x10%), where a significant
portion of the flow field has a low turbulence Reynolds number, Re,,
the overal!l mass flow calculations, and hence friction factor -
Reynolds number predictions, of the ST model {75] can be improved by
assuming, and integrating, a simple two-piece velocity profile over
the near-wall boundary control volume, rather than using the pre-
vailing assumption practice, as described in Section 7.2.1.

(ii) Of the four different combinations of k and ¢ equation source term
linearizations presented in Section 5.3.3, the formulation desig-

nated as Sk,-S¢;-A ensures that a converged solution is efficiently

achieved for the entire range of Reynolds numbers
(5x10% < Rey < 244x103) used in the numerical investigation of tully
developed channel flow. This desirable performance of the Sk1-S‘,-A
formulation is also realized in the simulatton of steady, spatially-
periodic, fully developed turbuient flows in interrupted-plate chan-
nels.

(iii) In the simulation of fully developed channel flows, the LS model
[91] predicts U velocity profiles that are greater in magnitude than
those obtained with the JL model [89], over the whole range of

Reynolds numbers investigated (5x10° < Rey < 244x10%). Based on a

comparison with experimental and analytical data available in the |
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(iv)

(v)

literature, it was concluded that the JL model gives better

predictions of the flow field than the LS model over the low-
Reynolds-number range (5x103 < Rey < 30x103). This conclusion was
based on the qualitative agreement with the i1ogarithmic velocity
profile, Eq. (3-29), and the gquamitative agreement of the numerical
friction factor results with the PJ correlation [54] values: The
friction factor values of the JL model are all within * 2 percent of
the PJ values, while those of the LS model deviate by as much as -14
percent at the smallest flow rate.

Of the k-¢ modeis of turbulence considered in this evaluation, the
JL mode!l [89] with the Hanjalic and Launder modification [96], and
the mode! constants listed in Table 1, is the best suited for the
prediction of the steady spatially-periodic fully developed turbu-
lent fiows considered in this thesis.

For given values of the module pressure-drop parameter, £, the cor-
responding flow rates were calculated: The numerically calculated
values of Re, ranged from being as much as 14.4 percent greater than
the corresponding experimental values at the lowest flow rates

(Re, =~ 5x103), to 1.94 percent lower than experimental vaiues at the
highest flow rates (Re, =~ 27x103). In general, as the plate thick-
ness was increased and the flow rate was decreased, the numerical
data were qualitatively good, but the quantitative differences
between corresponding numerical and experimental data became
greater, particularly in the lower range ot Reynolds numbers

(5x10° < Re, < 16x103) where numerical flow rates were higher than

the experimental flow rates.

Al though the quantitative accuracy of the numerical data requires
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improvement, the qualitative accuracy of the numerical results is quite
good. It was therefore concluded that computer code developed for this
research may be used, in conjunction with the experimental data. to gain
an enhanced understanding of turbulent fluid flow phenomena within a

periodic fully developed module.

10.1.5 Module Friction Factor - Reynolds Number Results

The module friction factor - Reynolds number results show the fol-
lowing:

(i) At low Reynolds numbers, both the inertial and frictional losses
make a significant contribution to the overall pressure drop, and
the module friction factor responds noticeably to changes i1n the
module Reynolds number. However, as the Reynolds number increases,
the inertial losses begin to dominate the frictional losses, and the
module friction factor becomes less sensitive to changes in the
Reynolds number.

(ii) As the plate thickress is increased, for the same duct aspect ratio
and module Reynolds number, both the flow rate through the plate
regions and the effective blockage of the plates increase. This
causes an increase in the frictiona! and inertial icsses, respec-

tively, and increases the value of the moduie {riction factor.

10.1.6 Intramodular Time-Mean Wall S8tatic Pressure

DPistributions

The intramodular time-mean wall static pressure distributions

presented in this thesis, along with those in earlier work by the author
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[109,110], represent the fi-,t contribution of such data to the litera-
ture on fluid flow in ircerrupted-surface geometries. These results
show clearly that sprtially-periodic time-mean fully developed turbulent
flows were indeed sbtained in the experiments undertaken in this work.,
In addition, these results show that there is a steep drop in wall
static pressura over the first half of a plate, and there is a signiti-
cant recover,; in this pressure in the initial part of the wake region.
Except for .he lowest flow and thinnest plate combination, this pressure
recovery i1 wall static pressure starts in the region above the second

haif of tre plate.

10.1.7 iurface Streamline Results

The trurface streamline results also show that spatially-periodic
fully de.eloped turbulent flows were obtained in this investigation.
Furthermare, the flow in the central 80 percent of the ducts was essen-

tially tw)-dimensional.

The su'face streamline results, and the numerical predictions of U
velocity anu shear stress at the plate surface, show that a small sepa-
ration zone o'curs aver the leading-edge region of the plates , except
at the lowest t ow rate and thinnest plate combination. This separation
zone is followed \v a region of low surface shear stress, just after

reattachment of the .ir flow to the plate surface.

The surface streamline data has also shown for the first time the
existence of a second separation and recirculation region which occurs

over the plate inmediately ypstream of its trailing edge, for values of
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module Reynolds numbers in the range 5x10° < Re, < 20x10°. At the
lowest flow rates, this region extends upstream of the trailing edge by
as much as one quarter of the plate length, ard decreases in its
upstream extent as the flow rote increases. This region is not predicted
by the steady state numerical model. It may thus be concluded that this
separation region is caused by some unsteady phenomena in the flow, such

as periodic shedding of vortices from the plates.

10.1.8 Turbulence Kinetic Energy and Turbulence Reynolds

Number Results

The numerically predicted profiles of mean turbulence kinetic
energy, k, and turbulence Reynolds number, Re,, show that, for the flow
rates considered, there can be large regions where the turbulence level
is low within a periodic module (Re, < 400). Thus the low-Reynolids-
number form of the k-¢ model is more suitable than the standard form of
this turbulence model for the prediction of flows similar to those con-

sidered in this research

10.2 BUGGESTION8 FOR EXTENSIONS AND IMPROVEMENTS OF THIS

WORK

New insights into the local ftiow phenomena occurring in a periodic
fully developed fiow module in an interrupted-plate duct have been
obtained as a result of the work presented in this thesis. While this
success has been encouraging, there are some extensions and improvements
of this work that would be worthwhile to undertake in future research.

Some suggestions in this regard are presented in this section.
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In the initial performance evaluation of the turbulence models con-
sidered for use in this work, it became evident that there is a lack of
exper imental data available for low-Reynolds-number flows
(5x103 < Rey = 30x103), especially in the region close to a wall
(y* < 30). In this region, it would be very usefui to obtain detailed
velocity measurements using techniques such as laser-Doppler and thermal
anemometry [133]. Such data are needed in order that a critical perfor-
mance evaluation, and fine-tuning, of the low-Reynolds-number turbulence
models may be carried out. These flow measurement techniques could also
be used to obtain local velocity measurements within a periodic module
in interrupted-plate duct flows. Such data are also urgently needed,
particularly in the region where a separation zone upstream of the
trai ling edge of the plate has been indicated by the surface streamline

resul ts of this investigation.

The results of this research indicate that some improvements to the
¢ equation and the viscous damping functions employed in the JL form
[89] of the k-¢ model are in order. In addition, the surface streamline
results of this investigation have indicated the existence of a separa-
tion zone upstream of the trailing edge of the plate. To properiy simu-
late this flow, the present steady-state numerical mode! should be
extended to model unsteady flow phenomena. The results obtained by
using such a mode! could be compared to those obtained using the present
model to determine the extent of any error that ts introduced by model -
ling only the time-averaged behaviour of the flow. Another lcgical
extension of the numerical investigation would be to incorporate heat

transfer into the present computer code. The two-dimensional numerical
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formulation used in this work could also be expanded to a three-

dimensional one.

In conjunction with the above-mentioned extensions of the numerical
research, additional experimental research could include the study of
heat transfer, and three-dimensional flows in interrupted-plate pas-
sages. An experimental investigation otf periodic fully developed heat
transfer in such ducts could be directed towards obtaining, first, aver-
age Nusselt number data and, then, local Nusselt number data. Such
local heat transfer data could be acquired by using electrically heated
thin films of gold or stainless steel [134,135], or by using mass trans-
fer experiments and the analogy between convective transport of mass and
the convective transport of thermal energy [136]. The naphthalene subli-
mation studies of Sparrow et al. [12-14] are examples of heat transfer
studies based on mass transfer experiments. Flows through modules with
small aspect ratios, for example 1 < X < 5, could be studied to obtain

three-dimensional flow and heat transfer data.

Both the experimental and numerical investigations could also be
extended to include turbulent periodic fully developed flows in other
interrupted-surface flow passages that are used in heat transfer
devices. Such flow passages include louvered plate-fin ducts, rod or
tube arrays, and shrouded pin-tin arrays [1]. The test section used in
this experimental study could be reconfigured to allow simulation of
flows through such passages. The numerica! model would require semiau-
tomatic curvilinear grid-generation procedures [137], and modifications
similar to those elaborated by Raithby and Schneider [42]. Fol!lowing

that, the numerical simulation of fluid flow and heat transfer in actual
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heat transfer equipment having interrupted-surface flow passages [1,2]

could be under taken.

In conclusion, it is hoped that the work presented in this thesis
will lead to a better understanding of the fluid flow and heat tiansfer
phenomena that occur in interrupted-surface flow passages, and enable

improvements of the numerical methods suitable for the prediction of

these phenomena.
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APPENDIX I

GRID- GENERATION

In the finite volume methods used in this work, the calculation
domain is first divided into rectangular main-grid control volumes.
Then all other main-grid and staggered-grid locations are determined, as

described in Section 5.2.1.

The purpose of this appendix is to describe the procedure that was
used to calculate the position of the rectangular main-grid control-
volume faces within a calculation domain. The first part of the appen-
dix deals with the generation of grids having nonuniform distributions
of control volumes in the x- and y-coordinate directions, and the second
part outlines the procedure employed to obtain the uniform grid distri-
butions used in the grid independence tests mentioned in Section 9.1.4

and described in Appendix 6.

Al.1 NONUNIFORM GRID DISTRIBUTIONS

Each calculation domain was first divided into rectangular zones, or
subdomains, in the x- and y-coordinate directions: The distribution of
the respective x and y control-volume face locations within each zone
was then determined. The calculation domains used in this research
where divided into: (i) 1 y-zone for turbulent fully developed two-
dimensional channel flows, as described in Section 5.3.2; (ii) 2 x-zones
and 3 y-zones for laminar periodic fully developed flow in a two-
dimensional interrupted-plate passage, in the manner stated in

Section 7.3.2; and (iii) 2 x-zones and 2 y-zones for periodic fully
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developed turbulent flows in two-dimensional interrupted-plate ducts, as
discussed in Section 5.2.1. The general procedure that was used to

determine the iocation of control-volume faces within each zone will be
discussed next, using the calculation of y control-volume face locations

within a y-zone as an example.

In the genera! procedure, the length of the calculation domain, Lz',
in the y-coordinate direction was divided into N zones, each of length
Lz;, where i= 1 to N, as depicted in Fig. 109(a). Each of these zones
was symmetrically subdivided into two outer layers, B and C, and one
inner layer, A, that extends from lines cc to dd, as shown for Zone 2 in
Fig. 109(b). Because of this symmetrical subdivision, control-volume
face locations calculated in one half of a zone can be used to obtain
the locations in the other half of the zone. The dimensions of control
volumes were expanded from a minimum value at the outer boundaries of
the zone, located at iines aa and bb with respect to Zone 2 in Fig. 109,
to a maximum value in the central region of the zone: This expansion
was done using a power-law formulation across the outer layers and a
geometric-growth formulation across the inner layer. The y dimension of
the inner layer varied from zone to zone, but the y dimension of the
outer layers and the number of control volumes in them was kept the same
for all zones: This ensured that there were no sudden changes in con-
trol-volume size across zone boundaries, such as lines aa and bb in

Fig. 109.

With reference to the nomenclature employed in Fig. 109 and using
Zone 2 in this figure as an example, the details of the general discre-

tization process are as follows for the y-coordinate direction.
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{ Specify:

(1) Lz, the y dimension of the zone.

(2) L°, the common y dimension of all outer layers in each zone.

(3) N°Y°, the number of y control volumes into which each outer layer is
subdivided: This value is kept the same for all y-zones in
the calculation domain.

(4) NV, the desired total number of control volumes within the partic-

ular zone of interest. N°Y! must be an odd number to ensure

that there will be one control volume that symmetrically spans
the zonal line of symmetry, line xx for Zone 2 in
Fig. 109(b).

Calculate:
(5) n1, the index number of the y control-volume face located at the
common boundary of Outer Layer B and Inner Layer A, shown by

line cc in Fig. 109(b). This value is calculated as:
n1 = n0 + Ncvo (A1-1)

where n0 is the index number of the first y control-volume face
at the bottom of the zone, on line aa in Fig. 109(b). |If this

focation is the boundary of the calculation domain, then n0 = 2,
otherwise, it is the number of the top-most control-voliume face

of the adjacent zone, Zone 1 in this case.

(6) CVj. the y control-volume face locations in Quter Layer B. This

. is done using the following power - |aw expansion:




CVj = CVno + {(j - n0)/(n1-n0)} - Lo
' for | = (n0 + 1) to n1 (A1-2)

where Pow is the "Power-Law" expansion exponent which was

assigned a value of 1.4 for the grids generated in this work.

(7) LCV;, the y dimension of the control-volumes in Quter Layer B, given

by:

LCVj.1 = CV; - CVj-y
for j = (n0 + 1) to n1 (A1-3)

(8) Li", the y dimension of the inner layer:
Lin = Lz - 2 Lo (A1-4)

(9) N°¥1  the total number of y control volumes desired in the inner

layer:
Nevi = Nevt . 2 Ncvo (A1-5)
(10) LCV™* | the desired maximum control-volume length in the inner layer:
LCvmx = Lin [ Nevi (A1-6)

(11) Cv;, LCV;, in the bottom half of Inner Layer A, from lines cc to xx

in Fig. 109(b). These are calculated by doing a
geometric expansion of the dimension of the last control
volume in Outer Layer B:

CV; =CVj-1 + (LCVj.2) GF (A1-2a)
LCV;.q1 = CVj - OV, (A1-38)

for j = (n1 + 1) to n2
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(12) L°%,

(13) NCVC ,

where GF is the geometric expansion factor, and n2

is the value of j for which one of the two follow-

ing conditions is satisfied:

(a) (LCVj-y 2 LCvmx)
or
(b) {(Lin/2) - CV,)} < {(LCVj-1) GF}

the dimension of that position of the central-core region of
the inner layer where control-volume faces have yet to be

located:

Let = Lin - 2 (CVn2-1 - CVn1) (A1'7)

the number of control volumes that can be located over the
remaining central region of length Lt. This number must be
an integer value, and it is calculated in the following man-

ner.

(i) If only (b) in Step (11) has been satisfied then:

Neve = Integer value of (Le¢t / LCVp2-1) (A1-8)
otherwise:
Ncve = Integer value of (Lct [/ LCvVmx) (A1-8a)

(ii) 1f NEY® from (i) is an even number then, in order to
ensure that symmetry in the control-voiume distribution

is preserved:

Neve = Neve - 1 (A1-8b)

otherwise the value calculated in (i) is used for Ncve,
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(14) LCVEY, the length of the control volumes in the central portion of

Inner Layer A:
LCvet = |ct [ Neve (A1-9)

(15) CV;, LCV;, in the remaining portion of the bottom half of

Iinner Layer A, between the lines cc and xx in

Fig. 109(b):
CVjsq1 = CVj + LCvet (A1-2b)
LCV,.q = CV; - CV,. (A1-3b)

for j = (n2 - 1) to (N3 + 1)
where
n3 = (n2 - 1) + {(Ncve-1)/2)} (A1-10)

(16) Cv;, LCv;,

for the upper half of the zone, from line xx to bb in
Fig. 109(b). These are calculated from the values

obtained for the lower half of the zone:

CVn3+j = (CVno + LZz) - (CVp3+1-j - CVpo)

for j = 1 to (n3 - n0) (A1-2¢)

CV2(n3y-1 = (CVpo + Lz) (A1-2d)
LCV; = CVj+«1 - CV,

for j = n3 to {2(n3) - 2} (A1-3c)

The position of the x-zone control volume faces are calculated in an
analogous fashion. The values of the variables that were used to gener -
ate the nonuniform grids in this work are given in Table 22 for each

zone.
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Al.2 UNIFORM GRID DISTRIBUTIONS

As was discussed in Section 9.1.4, various uniform grid distribu-
tions were employed to compute values of Re, in Duct 3, with the speci -
fied B corresponding to the maximum flow raie in the complementary
experiments, and these solutions were extrapolated using the method in
[118] to calculate the grid-independent value of Re,. The extrapolation
method is discussed in detail in Appendix 6, and the details of the

uni form-grid generation procedure are presented in this section.

The calculation domain was divided into the same 2 x-zones and 2
y-zones as were used to generate the nonuniform grid distributions dis-
cussed in Section A1.1. This ensured that main-grid control-voiume
boundaries were located at the interface between the plate surface and
the fluid. The control-volume dimensions within a y-zone were calcu-
lated as follows, using the nomenclature presented in Section A1.1 and

Fig. 109.

(1) Specify N°¥T, the number of y-direction control volumes ire
across the entire y-dimension, Lz", of the calcula-
tion domain.

(2) Calculate N°¥t, the number of y control volumes located within a

given zone of length Lz.

Nevt = the nearest integer value of (%fr NevT)
(A1-11)
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(3) Calculate h, CV;. the length of the control volumes and their
boundary- locations, respectively:
_ Lz
h = Nevt (A1-12)

for j = (n0O + 1) to (n0 + Nevt)  (A1-13)

If Lz" is an integer multiple of &ll Lz values, then h is the same
value for all zones. For the geometry of Duct 3, this is not the case
for the 2 y-zones used as (Lz'/Lz)= 9.06 for the bottom zone and 1.12
for the top zone. However, by using the aforementioned procedure and by
choosing an appropriate value of N°YT, the h values of the two zones can
be made almost equal. The average of these two h values is the value
used in Table 23 for each uniform y-grid distribution, and it was the
value used for the extrapoiation of Re,. The differences in h values
for the two y-zones of the same grid from the average of these two val-

ues in all cases was less than 0.07 percent.

The 2 x-zones used have the same x dimensions, and the value of h is
therefore the same for both zones. These values are also shown in
Table 23 for the uniform grid distributions, and they were used in
Appendix 6 in the extrapolation procedure used to obtain grid-

independent values of Re,.
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APPENDIX II

PERFORMANCE CHARACTERISTICS OF THE AIR BLOWER

The air blower used in this research was operated in the suction
mode. |t is a centrifugal-type, constant speed, blower (Regenair
R7100A). The blower is driven by a 10 HP AC motor (550 volts, 3 phase,
60 Hz) with a rotor speed of 3450 rpm, and it has a no-load air fjow
capacity of 660 m®/hr when operated in the suction mode. A more com-
plete description of the physical and operational characteristics of the
biower are given 1n the manufacturer’'s "GENERAL SPECIFICATIONS* sheet
presented on the next page. It should be noted that the 460 volts line
voltage specified for the 3 phase motor unit in the specification sheet

was changed to 550 volts in this application.
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APPENDIX IIIX

CALIBRATION OF THE BAROCEL PRESSURE TRANSDUCER

All ditterential pressures of less than 1 kPa were measured using an
Integral Barocel Pressure Transducer (Datametrics Model
590-D-1-kPa-2Q8-V1X-4D). A cut-away sketch of this pressure transducer
is shown in Fig. 110. This unit has a full scale range of 0 to 1 kPa
and an output signal of 0 to 10 volts DC. Other details of the specifi-

cations provided by the manufacturesr can be found in [109].

The manufacturer’'s calibration curve for the Barocel pressure
transducer is shown in Fig. 111: |t shows that the output signal of 0 to
10 volts is iinearly proportional to positive differential pressures
applied across the Barcucel's diaphragm. Since this calibration curve
was supplied with the unit at the time of its purchase, some four years
prior to this work, a calibration was done in (he Heat Transfer
Laboratory to verify the accuracy of the curve given in Fig. 111, This

procedure is outlined briefly in the followirng text.

The Barocel pressure transducer was calibrated using an Askania
manometer (Model WS-Minimeter). This manometer has a full scale range
of 0 to 100 mm with a resofution of 0.0t mm, and the manometer fluid is
distilled water. When converted to Pascals, the unce:tainty in the
manometer reading was * 0.1 Pa. The Barocel pressure transducer and the
manometer were connected in parallel and measurements of differential
pressures ranging from 0 2 Pa to 900 Pa were recorded with both units.
The final value of the Barocel output voltage for a given pressure dif-

ferential was obtained by using the following procedures: 60 readings
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were taken over an interval of 13 seconds, and the average zero-pressure
output signal of the Barocel was subtracted from the arithmetic mean of
the 60 readings to obtain the zero-corrected Barocel output voltage.
Since the calibration measurements were of steady static pressure dif-
ferentials, it was assumed that the any uncertainty in the Barocel out-
put signal would be due to fluctuations that were caused by the unit
itself, and not due to any intrinsic fluctuations in the prassures being
measured. A quantitative measure of this uncertainty was obtained by
calculating the standard deviation of the 60 readings taken to obtain
each zero-ccrrected Baroce! output voltage Three sets of pressure
measurements were made, ranging from. 10 Pa to 800 Pa; 1 Pa to 10 Pa;
and 0.2 Pa to 1 Pa The pooled standard deviation, Eq. 6.6, of all
recorded output voltag's for each range were doubled and used as the
estimate of uncertainty in the recorded zero-corrected output voltage.
From this data, a value of * 500 uV was established as a conservative
estimate of the uncertainty in the voltage output signal of the Barocel

pressure transducer, for measurements ranging from 0.2 Pa to 900 Pa.

The results of the calibration tests for the three pressure ranges
already mentioned are shown in Figs. 112(a) to (¢} . The solid line is
from the manufacturer's calibration curve, Fig. 111, and it has a slope
of 1.000x10°2 V/Pa. The data points from the present calibration, o,
are shuwn to agree with this line, within the limits of uncertainty that
are also plotted. In Figs. 112(a) and (b), the uncertainty in the data
points is barely discernable on the plots: The slope of the least-
squares (best-fit) line to the data, in both figures, differs from
1.000x10°2 V/Pa by less than 0.02%. At differential pressures less than

1 Pa, it is shown from the data in Fig. 112(c) that the Barocel output
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begins to deviate from its linear behaviour. However, within the limits
of uncertainty, the data points still show agreement with the manufac-

turer’'s calibration line.

From this calibration, it was concluded that for the range of pres-
sure differentials measured in this work, the uncertainty in the output

voltage of the Barocel can be given as * 6V , = % 500 uV.
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APPENDIX IV

FLOW VISUALIZATION PAINTS

This appendix consists of two sections: The first section gives a
brief description of the substances from which the flow visualization

paints were prepared; and the second section presents the basic recipes

used to make these paints.

A4.1 PROPERTIES OF THE PAINT CONSTITUENTS

As discussed in Section 6.5.5, two types of kerosene based flow
visualization paints were used. Titanium dioxide, Ti0,, was used as
the pigment in one paint, and fluorescent orange Day-gio pigment was
used in the other. 1In addition, when required, Oleic acid (C,gH;,0,)
was used as an additive to control the extent of flocculation by pigment

particles in the kerosene. The properties of these substances are

listed in this section.

Kerosene

Pure odourless kerosene was used (Fisher Scientific K10-4). After
refining, less than 1% of the aromatic content remained and the

combustible flash point, as specified by the manufacturer, was

63.3 °C (146 °F).

Titanium Dioxide Pigment: TiO0,
The TiO, pigment used was an opaque fine white powder

(Fisher Scientific T-315). The content analysis of the powder, supplied

by the manufacturer, is as follows:
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Ti0, Formula Weight 79.90

Water Soluble Salts 0.12%

Arsenic (As) 0.4 ppm
lron (Fe) 0.01%
Lead (Pb) 0.005%
Zinc (Zn) 0.01%

Day-glo Pigment

The Day-glo pigment used was a fluorescent orange powder
(Day-glo Corp., A-15-N Blaze Orange). The physical properties of this
pigment were specified by the manufacturer as:

Specific Gravity 1.36

Average Particle Size (microns) 3.5 - 4.0

Softening Point 115-120 °C

Decomposi tion Point 195°C

0i! Absorption (g/100g pigment) 47

Oleic Acid: C,gH;,0,
Purified oleic acid was used (Fisher Scientific A-222). As
specified by the manufacturer, this substance has a formula weight of

282.47, low linoleic acid content, and a maximum of 5% polyunsaturates.

A4.2 DPAINT RECIPES

The composition of the TiO, and Day-glo paints was based on com-
binations given in [47]. The recipes presented in this section were
found to work well for the particular circumstances prevailing in this

work. As explained in Section 6.6.4, the basic recipes presented here
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were often “fine-tuned" during the application procedures employed in

this work.

Ti0, Paint

By weight, the composition of this paint was 1 part TiO, to 4 parts
kerosene to 1 part Oleic acid. Slight changes in the amount of Oleic
acid were often necessary to fine-tune the quality of the streak pat-

terns produced as flow rates varied.

Day-glo Paints

Three different basic paint recipes were used in order to provide
required adjustments as the flow rates varied: (i) for flows with
Re, < 25x103, 1 part Day-glo powder to 4.5 parts kerosene, by weight,
plus 2 drops Oleic acid; (ii) for Re, ~ 25x10%, 1 part Day-gln powder to
3 parts kerosene, by weight; and (iii) for Re, =~ 30x103, 1 part Day-glo

powder to 2 parts kerosene, by weight.
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APPENDIX V

S8AMPLE CALCULATION: MODULE REYNOLDS NUMBER

In this appendix, a samplie calculation is presented to demonstrate
the method used to obtain final experimental results and corresponding
overall uncertainties. A general description of these procedures has
been given in Section 6.6. As an example, the calculation of the module
Reynolds number, Re,, and its uncertainty, * 6Re,, is done for the mini-
mum flow rate, Run 1 in Table 16, in Duct 3. The calculation of Re, is

discussed first, and this is followed by that of éRe.

A5.1 CALCULATION OF Re,

Re, is defined in Eq. (2-45) as:
Re, = £Dh Un (2-45)

b

where Up and D, are given as:

Un = 2 poH (2-47)
Dh = 2H (8-3)
Using Eq. (6-3), the experimental value of m is ca culated:

m = p Use Age (6-3)

in the above equations, the area of the flow metering cross section,
A¢y, was calculated using the internal radius of the fiow tube, measured

during flow-rate calibration tests; values of b and H were obtained from
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measurements of the test section dimensions after final assembly; and
the measured values of the ambient atmospheric pressure, and the air
temperature and static gauge pressure in the flow metering cross sec-
tion, were used to calculate values of u and p, as described In

Section 6.6.2 The values of A;,, b, u, and p are shown in Table 24.

The average fluid velocity through the flow metering cross section,
Uy, in Eq. (6-3), was calculated from ten measured values of den. using
the ten-point log-tinear rule [45]: The ten measurement locations along
the internal diameter of the flow tube are shown in Fig. 113. In terms

of the ten values of den, Us, can be expressed as:

= (%1% A_
Uft - (P) 10 (A5'1)
where
i=10 172
A= [ E{Payn = (1 +CFupx)}i ] (1 + CFigin) (AS-2)

The CFpr and CF(gln terms in Eq. (A5-2) are correction factors. As
the pitot stagnation probe approaches the wall of the fiow metering
tube, the wall-probe interaction causes deflection of the flow and
results in a negative error in the pressure measurement {46]. From the
data in [46], a wall-proximity correction factor, (CF“px)i, was esti-
mated at each of the 10 measurement points shown in Fig. 113. The
CFigin correction factor accounts for the estimated error in the average
flow calculated using the ten-point log-linear integration technique.
For the flow rates of this investigation, the value of Cthln was esti-

mated from the results provided in [45]. The values of the (CFupx)'

and CF o, correction factors are given in Table 25.
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Correction factors were also used in the calculation of den. The
value of P, , at any one of the 10 focations shown in Fig. 113 is calcu-

lated using the following equation:

(Payn)r = 100 (Vdyn - Vzero)i (1 - CFerp - CFyg + CFatn)
for i =1 to 10 (A5-3)

The errors in the measured values of (den)i due to the turbulence in
the flow, viscosity effects, and possible slight misalignment of the

pitot tube with the flow direction were accounted for by the CF

trb?*
CF, s, and CF,  , correction factors, respectively. The values of CF,
and CFalgn were estimated from the data in {119] and [46], respectively.

These values are given in Table 25, and they are the same at all ten
measurement locations. The value of CF_ _ depends on the value of a
Reynolds number that is based on the local velocity, U, and the internal
diameter of the pitot stagnation tube. The appropriate values are given
in Table 25: They were obtained by interpolation of the data presented
in [46].

in Eq. (A5-3), Vgyn and V,ero are the output voitages from the

Barocel pressure transducer that correspond to the (Pstag - Pgtatic)

differential pressure measurement and the averaged zero-reading, dis-
cussed in Sections 6.6.2 and 6.6.1, respectively. The factor of 100 is
to convert Volts to Pascals. In this example,

Viero = (1840 % 454) x 10°® V and the values of (V4 ), are shown in
Table 25, along with the corresponding values of (Payn)i calculated

using Eq. (A5-3).



..... - S S S R

307

Substituting the appropriate values, presented in Tables 24 and 25,
a value for A can be calculated using Eq. (A5-2), and it is given in

Table 24.

Substitution of Eqs. (2-47), (8-3), (6-3), (A5-1), and (A5-2) into

Eq. (2-45) allows Re, to be expressed as:

172
= {(2p) Afr A
Ren = =005 (A5-4)

This particular formulation facilitates the calculation of the
uncertainty in Re,, * éRe,, discussed in the next section of this appen-
dix. Using the values given in Table 24, the value of Re, in this

example was calculated to be 4.997x103 .

A5.2 CALCULATION OF 5Re,

The method of Constant Odds Combination [48,49], discussed in
Section 6.6.3, was used to calculate the magni tude of the uncertainty in
Re,, éRe,. Starting from Eq. (A5-4), analogous to the derivation of
Eq. (6-4), an expression for 5Re, can be derived . After some rearrang-

ing of terms, this expression can be written as:

2 2 2 2 2
- i fb" 1 Ep LLYTS 6A)° 12
BRem = Ren { () + (D) +7 B+ (T v ) )

(AS5-5)

The values of éu, éb, 6p, and 6A,, were calculated from the

estimated uncertainty in the measurements used to obtain these values

. and, when necessary, with the use of Eq. (6-4). The squared values of
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(6ulp), (8b/b), (&p/p), and (6A, [A;,) are presented in Table 24. The
calculation of §A is not as simple as the other aforementioned é§ values,
as is evident from the equsiion for A, Eq. (A5-2). §A is calfculatad
using the same assumptions and procedures as those used to calculate

éRe In the caiculation of SRe,, A, is then treated as an Indepencent

variable having a normal distribution and 20 to 1 odds for éA.

i

Using Eq. (6-4), the magnitude of the uncertainty in A, as given by
Eq. (A5-2), can be written as:

iz1

1210 -1/72 2 2
6A = [ [.2 zl{PdY“ 6Payn (1 + CFupx)}i ] (1 + CFigin)

2 2
6CFupx)}i J (1 + CFigin)
172
2 2
(1 + CFupx)}i ] 8CFigtLn (A5-6)

The uncertainties in all the CF correction factors used in Eqs.
(A5-2) and (A5-3) were conservatively approximated as * 100 percent of

the respective values given in Table 25.

The uncertainty in values of (den)i , as given by Eq. (A5-3), was

calculated using Eq. (6.4), and can be expressed as:
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2 2
(6Vdyn + 8Viero )
(6Pgyn)i = | Payn { - 3
(den‘vzero)
2 2 2
(6CFerp + 6CFys + 8CFaip ) 172
+
2
(1‘CFtrb'CFvs+CFaln) i
for i = 1 to 10 (A5-7)

The uncertainty in den is due to (i) the random uncertainty in the
Barocel output signal, §V_,,, mentioned in Section 6.5.1 and calcu-
lated in Appendix 3; and (ii) the random uncertainty, 6V4p, in the mag-
nitude of the pressure differential that is being measured. The proce-
dure for obtaining éV,, has been described in Section 6.6.3. In this
example, 6V ., and §V,, have values of 500 uV and 623 uV, respectively,
and are combined to give 6den in the following way:

2 2 1/2
6Vdyn = { (6Veal) + (6Vap) } (AS-8)

From the values given in Table 25, the values of (6Pyyn); were cal-
culated using Eq. (A5-7). The results are listed as the * uncertainties

in (den)i values in the same table.

6A was calculated using Eq. (A5-6) and the data in Table 25: The

value of (6A/A)? is given in Table 24.

§Rey
6Ren was calculated from Eq. (A5-5) using the value of Res calcu-
lated in Section A5.1 and the values given in Table 24 for (6u/u)?,

(6b/b)2, (6p/p)%, (6A; /A¢, )2, and (6A/A)2: Re, = 96.21. Therefore,
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Re, = 4.997x10% + 1.92 % for Run 1 in Duct 3. From the values of the
terms in Eq. (A5-6), as presented in Table 24, it is seen that the

uncertainty in A, and A are the dominant tactors in determining éRe,.

The complete uncertainty analysis presented in this appendix was
incorporated into the general software of the data acquisition system
and was, therefore, performed for each flow rate. Similar procedures
were used to determine the uncertainties in the pressure-drop data that

is also reported in this thesis.
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APPENDIX VI

EXTRAPOLATIOR OF Re, TO A GRID-INDEPENDENT VALUE

As discussed in Section 9.1.4, to determine the accuracy of the
solutions obtained for the interrupted-plate duct flows of this study,
it is necessary to establish how well these solutions approach true
grid-independent values. The grid-independent value of Re, was calcu-
lated for the maximum flow rate in Duct 3, Run 6 in Table 19, and used
to obtain a quantitative estimate of the numericai accuracy of the cor-
responding Re™ value reported in Table 19: This estimate was used as a
conservative estimate of the accuracy in all other interrupted-plate
duct solutions, for the reasons discussed in Section 9.1.4. The extra-
polation method used to obtain the grid-independent value of Re, is

described in this appendix.

Employing the extrapolation method presented by de Vahl Davis [118],
the grid-independent value of Re_ , Re ., can be found from the following

equation set:
Remt = (Rep)i + C (hi)" i = 1,2,3 (A-1)

where the subscript i indicates values obtained with one of three
different grid spacings; h is the characteristic control-volume length
of a grid; C is a constant assumed to be independent of h , and n is the

order of the truncation error for the numerical method used Re C,

mt
and n are unknowns in this set of equations. The value of h is constant
in a given coordinate direction for the grid distribution of interest.

From the set of equations given by Eq. (A6-1), the following relation




can be obtained and used to solve for the value of n:

n n
(Rem)2 - (Rem)y  (h1) - (h2)

= (A6-2)
n n
(Ren)3 - (Ren)2 (h2) - (h3)
With this value of n, the value of C can be calculated as:
(Rem)2 - (Repm)
C = (A6-3)

(h1)" - (h2)"

‘
|
; In the present extrapolation, the values of h; were different for
; the x- and y-coordinate directions of the grids that were used. To
| perform this extrapotation for Re,, using Eqs. (A6-1) to (A6-3), values
ot Re, were required from nine different x-y grid combinations: Three
uniform x-grid distributions, X1, X2, and X3, and three uniform y-grid
distributions, Y1, Y2, and Y3, were used. A value of Re,, was obtained
for a fixed x-grid distribution, by extrapolating values of Re, obtained
for the three y-grid distributions: For example, values of Re, calcu-
lated using grid distributions of X1 x Y1, X1 x Y2, and X1 x Y3, were
used with the values of (hy)yy, (h;)y,, and (h3)y3 to solve for n,, and
Cyy, and then calculate a value of (Re,. )yy. Extrapolated Re, values
were obtained in this manner with respect to the changing y-grid distri-
butions, to obtain values for (Reyy)yq (Req¢)x2» and (Reg )yy. Using
Eqs. (A6-1) to (A6-3) in a similar fashion, these values of (Regpe Ixi
were then extrapolated in the x-coordinate direction to obtain the final
extrapoiated value of Re,,. If this were the true grid-independent
value, the same value of Re,, would be obtained by doing the extrapota-
tion in the other grid-direction (i.e. extrapolating first with respect

to changing x-grid distributions and then extrapolating these (Repe )y
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values with respect to changing y-grid distributions). In addition, it
would be expected that the vatue of n should always be close to 2, since

the numerical method becomes second order accurate as h, —> 0 [41,125].

In the present study, values ot Re, were calculated for three uni-
form x- and three uniform y-grid distributions: The number of grid
points for each was X1 = 100, X2 = 124, X3 = 146, Y1 = 147, Y2 = 174,
and Y3 = 201. The corresponding h; values are given in Table 23, in
nondimensional form, and details of the general! grid-generation proce-
dure are given in Appendix 1. The computed values of (Re;),, y, are
shown in Table 26, as are the extrapolated (Re,,),, and (Re., )y, values.
The calculated values of n ranged from 0.5 to 5.0, indicating that true
quadratic convergence had not been achieved with the grids used. The
reason for this 1s probably due to the fact that with the coarsest
grids, Eqs. (A6-1) are not quite vaiid, thus contaminating the extrapo-
lated solution. This is demonstrated in the results shown in Table 26,
where osciliations are observed in the value of (Re,,),, as the y-grid
spacing becomes finer, making it impossible to extrapolate to an accu-
rate value of Re;,. The obvious solution to this problem is to conduct
additional runs using finer grids, however, the financial resources to
do so were not available, since CPU times in excess of 120 minutes were
required for each such run. Due to this restriction, it was assumed
that the contamination of the extrapolated solutions had been caused by
grids with either the coarsest x or y distributions, X1 and Y1. Grids
that had either X2 or X3, and Y2 or Y3 distributions were assumed to he
sufficiently fine that a value of n = 2 could be assumed. Assuming this
value of n, the values of (Re,, )y, and (Re,. )y; could be calculated by

solving Egs. (A6-3) and (A6-1). The results of these calculations are
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shown in Table 27, where two values of Re,, are given: One was extrapo-

tated from the (Re,,)y; values and the other from the (Re,,)y; values.
These two Re,, values differ by less than * 0.004 percent fro.a the

average of the two values, Re, = 27.27x10%, which is reported ss the
grid-independent value of Re, for Run 6 in Duct 3. This verifies that

the assumptions required to make this extrapolation from the available

data were indeed reasonable.
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FIGURES




Figure 1: Straight rectangular interrupted-plate duct.
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Figure 2: Cross section of a rectangular interrupted-plate duct,
associated nomenclature, and representation of a geometrically
similar module ABCDE.
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Figure 3: (a) Schematic representation of a compact heat exchanger
core; and (b) details of rectangular plate-fin flow passages.

LIE




les
|

in para .

ct

COEIEDEDED 232

f
s
s
f
!

T Ve Ve Vo> V> pn.mm

i
i
i
i
i

Ve aees\

T\

offset-fin arrangem

(4]; and (b) array of e
t boards that

deployed along circui

heat exchanger core

Figure 4: (a) Typ | tangul



Figure 5: Straight rectangular duct.
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Figure 6: Locations of grid points relative to their associated
control-volume faces in a two-dimensional calculation domain.
Shown in this diagram are: internal grid points (@ ); boundary
grid points (O): control-volume face locations (— — —), num-
bered as i=2 to L1 in the x direction and j=2 to M1 in the y
direction; main-grid lines { }, numbered as I=1 to L1 and
J=1 to M1 in the x and y directions, respectively; an internal
control volume (EXXXXN), associated with point P; and a
boundary control volume (ZZZZ73), associated with point B.
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- Figure 7: Schematic of the control volume associated with node P in
Fig. 6. Distances between neigbouring nodes and control-volume
faces are shown: (6x),. = &X;/2 and (éy),.= AYp/2.
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) velocities:
control-volume face locations (— — —); main-grid lines
}; and main-grid points (@).
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(c) -1 i | i+1 |+1 +2 [+2

Figure 10: Staggered momentum control volumes for: (a) U velocity; (b) Vv

velocity; and (c) U, velocity showing neigbouring node and
velocity locations.
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Figure 11: Positions and distances within the geometric flow module
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Figure 12: Location of U and V velocities at a plate surface-fluid

interface: U velocity ( o) and V velocity ( A ). The plate
region is in the bottom left-hand corner of the figure,
enclosed by the bold-dashed lines which indicate the location
of its horizontal and vertical surfaces
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Figure 13: Control-voiume f(ocations in the domain discretization used
for the turbulent periodic fully developed flow simulations
in Duct 1: 72x78 x-y grid. This figure is not to scale, as
the y dimensions have been expanded relative to the x dimen-

sions in order to aid the visual aspect of the presentation
{true scale is XL:YL = 4:1).
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Figure 14: Gontrol-volume locations In the domain discretization used
for the turbulent periodic fully developed flow simulations
in Duct 2: 72x100 x-y grid. This figure is not to scale, as
the y dimensions have been expanded relative to the x dimen-

sions in order to aid the visual aspect of the presentation
(true scale is XL:YL = 4:1),
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Figure 15: Control-volume locations in the domain discretization used
for the turbulent periodic fully developed flow simulations
in Duct 3: 72x100 x-y grid. This figure Is not to scale, as
the y dimensions have been expanded relative to the x dimen-

slons in order to aid the visual aspect of the presentation
(true scale is XL:YL = 4:1).
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Figure 16: Schematic of the overall experimental setup.

right to left:
visualization duct of the test section;

Photograph of the experimental ftlow faci.ity, showing from
the aluminum duct and the acrylic flow

followed by the flow

redevelopment duct and flow adjustment box of the flow

transition section;
the black colored rubber and plastic ducts
valves of the flow control,

The Baroce! pressure transducer

trol
tion.

the flow metering section;

and some of

, and two flow con-
and exhaust sec-
in the pro-

generation,
is mounted

tective wooden casing visible in the middle right-hand por-

tion of the photograph,

air flow

is from right to

just above the aluminum duct
feft.

The




Figure 18: An exploded view of the aluminum section of Duct 3:

- All dimensions are in millimeters.

@ top
wall; (:) bottom wall; location and alignment shoulders

for inner side walls; location and alignment shoulders
for outer side walls: (5 upper set of inner side walls;
f’ lower set of inner side walls; outer side walls;
() steel dowel pins used for positioning of the interrupted
plates; C) interrupted plates: aiuminum angles used for
attachment of the duct to the rest of the flow circuit; and
static pressure tap holes.
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Figure 19: Intramodule wall static pressure measurement locations LE,
LC, CP, CT, TE, G1, G2, G3, and LE. The length of the
geometric module is (2L) and nominal spacing between adjacent

pressure measurement points is (L/4).

Figure 20: Photograph of an assembled interrupted-plate rectangular duct
test section, showing the aluminum duct on the right and the

downstream acrylic flow visualization duct on the left.
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Figure 21: Photograph of a disassembled aluminum interrupted-plate
duct, showing the top and bottom plates, the inner and outer
side walls, and the array of colinear interrupted plates.

Figure 22: Photograph of the acrylic flow visualization duct, sealed and
mounted in the flow facility. The colinear array of plates
are clearly seen along the duct's length: The three orange

calored plates were painted with Day-glo paint for surface
flow visualization.
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Figure 23: Photograph showing the acrylic duct with the central top
section removed to allow easy access to the array of
interrupted plates.

Figure 24: Photograph showing the acrylic duct and the remova! of one of
the interrupted plates used in the surface flow visualization
studies.
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Figure 25: Close-up view, from above, of the acrylic duct test section
with the central top plate section and one of the plates
removed. Details of the duct inner side walls, the plates
and dowel pins used to construct the colinear interrupted-
plate array, and the interplate spacers used to fill the gaps
between plates along the inner side walls, are clearly seen.
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Figure 26: Repeatability checks o) time-mean wall static pressure
measurements for fully developed flow in a straight rectangu-
lar duct: (a) maximum flow rate, (b) minimum flow rate. The
maximum uncertainty in (P -p* )g values is + 0. 012 |n (a) and
+ 0.024 in (b); and the maxumum uncertainty in (x"- 0)d
values is less than * 0.019 in both (a) and (b).
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Re 4=60.09x10°

A 1 e 3 " - " 1 -

0.0 2.0 4.0 6.0 8.0 10.0 12.0
(X‘ - X*O)d

Figure 27: Least- squares straight tine fitted to the (P -p* )d
versus (x"-x" ), data for fully developed duct flow max imum
flow rate. The maximum uncertainty In (P -p* )g values is
+ 0.012 and is less than % 0.019 in (x"-x °)d values.
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Figure 28: Friction factor - Reynolds number results for fuliy developed
duct flows: o denotes the experimental results of this inves-
tigation ; (————) denotes the results obtained from the PJ
correlation [54]; and (— — — —) denotes * 5% deviation in the
PJ correlation values. The uncertainty in all experimental f,
and Rey values is less then * 5.00% and % 2.35%, respec-
tively.
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Figure 29: Results of grid-independence checks done with the JL [89] k-e¢

model of turbulence for Re; ;. = 10.5x103: M1 = 193 (

)'

M1 = 183 (—— — — —}, M1 = 133 (——-), and

M1

93 (

. Shown are profiles of: (a) U/U,; (b) k/U,%;
and (¢ H)/U3 for (c) 0 < y/H < 0.2, and (d) 0.1 < y/H < 1.0.
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Figure 30: Results of grid-independence checks done with the JL [89]) k-¢
model of turbulence for Re¢.;. = 3.72x102: M1 = 161 { ),
M1 = 141 (— — — —), M1 = 101 (—— =), and
M1 =81 (- )._ Shown are profiles of: (a) u/U,; (b) k/U,Z:
and (c) (e H)/U3.
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Figure 31: Behaviour of the E, term relative to the D, term in the k
equation, Eq. (3-14), of the JL { ) [89] and LS (— ~ ~)
[81] turbulence modeis for fully developed duct fiow calcula-
tions: (a) maximum Reynolds number; and (b) minimum Reynolds
number .
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Figure 32: Behaviour of f.,, as a function of Re, in the JL [89] and
LS [91] turbulence models.
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Figure 33: Behaviour of f.  as a function of Re, in the JL (
and LS (———) f91] models of turbulence:
(a) 0 < Re, < 50; and (b) 0 < Re, < 3000.
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Figure 34: Profiies of Re, obtained with the JL { ) [89], LS (———-)
{91}, and ST (----- ) [75] models of turbulence: (a) maximum
Reynolds number; and (b) minimum Reynolds number.




341
y/H
3.86—4 1.0E- 1.0E-2 0.1 1.0
1.0% — — — -
0.84
0.6+
S ]
0.4

3
Remc=10.5x1 0

0.2 1
=
0.0 + o } 4 bttt -+t -+
1.0 10.0 100.0 1000.0
+
y
(@)
y/H
0.0 0. 02 03 04 05 06 0.7 08 09 1.0
0.8 -+ttt et e e ettt
0.7%
0.6% T T T T T -~
1 P -~
p 7
0.5? p,
S o0.4i
b ] 2
0'3 -:r Rcfﬁc=3.72x1 0
0.2
0.11
T/
O O R T A s e o T
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 S0.0
+
y
b)

Figure 35: Profiles of f. 6 calculated with the JL ( ) [89], and
LS (———) [91] models of turbulence: (a) maximum Reynolds
number; and (b) minimum Reynolds number.
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Figure 36: U velocity distributions of wall bounded shear flows:
Eq. (7-11) for y* < 11.5 ( ). Eq. {3-29) for
y' > 11.5 { ): and experimental measurements of
Comte-Bellot (— — — —) [62] with Hag = 57.0x10%;
Clark (———) [63] with Re,,, = 15.2x10°; and Hussain and
Reynolds (----- ) [64] with Re,,,=13.8x10%.
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Figure 37: U velocity distributions of two-dimensional channel flows

calculated with the JL model O [89],

the ST model ¢ [75].

(

) for y* < 11.5 and y* > 11.5,

(a) and (b).

the LS model (J [91], and

Eqs. (7-11) and (3-29) are plotted

respectively:
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Figure 37: U velocity distributions of two-dimensional channe! flows
calculated with the JL mode! O [89], the LS model (J [91], and
. the ST mode! € [75]. Egs. (7-11) and (3-29) are plotted
4 ( ) for y* < 11.5 and y* > 11.5, respectively:

(c) and (d).
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Figure 37: U velocity distributions of two-dimensional channel flows

calculated with the JL mode! O [89], the LS model [(J [91], and
the ST mode! ¢ [75]. Eqs. (7-11) and (3-29) are plotted

( ) for y* < 11.5 and y* > 11.5, respectively:
(e) results of Clark (—— ~) [63] with Re,,, = 15.2x10%, and
Hussain and Reynolds (*---- ) [64] with Re_,, = 13.8x10%; and
(f) Comte-Bellot (—=——) [62] with Re, = 57.0x10%.




100.00

=
~

g

(a)

w/ u

(b)

3.8e-4 1.0E- 3

it Rt

1.0E-

y/H
2

$emrerseiads

0.1

el

346

1'0

PP T
Y-

oy

10.00 4

<
-
<
-

1.00 ¢

)
0.10 ¢

.
<4

i
* /

ol
ML

3
Refﬁc=10.5x1o

0.01
1.0

0.0 01

y/H

02 03 0.4 05 0.6 0.7 08 08

‘.l JJ_‘.AA‘_L]ALAL‘

1000.0

1.0

A.A.LA...

bt
+—+

POy

=+

) SLAS A AR o . A a4 T

2
Refﬁc'-3-72X 10

+ IAJ TRy lLA_ALJ e

LJ 2n e ue 3

.Lu‘.l

0.0

y+

bafpete

100 20.0 300 400 50.0 60.n 700 80.0 90.0

Figure 38: Protiles of u,/u in two-dimensional channel flows calculated

with the JL (

} [89] and LS (— — —) [91] modelis:

(a) maximum Reynolds number; and (b) minimum Reynolds number.
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Profiles of mean turbtulent kinetic energy in two-dimensional
channel flow. Plots show the results obtained with the

JL O [89], LS [0 [91]. and ST & [75] models with
Re;,,. = 3.00x10%; and the experimental data of Clark (~——
[63] with Re,,, = 15.2x10%: (a) near-wall protfiles; and (b)
profiles across the channe! half-height, 0 < y/H < 1.0.
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Figure 40: Profiles of mean turbulent kinetic energy in two-dimensional
channel flow. Plots show the results of computations done
with the JL O [89]), LS [ [91], and ST 4 [75] models
with Re;.;. = 10.5x10°; and the experimental data of
Comte-Bellot ( ) [62] with Re, = 57.0x10%.
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Figure 41: Profiles of mean turbulent kinetic energy in two-dimensional
channe! flow. Plots show the results of computations done
with the JL O [#9], LS [J [91], and ST ¢ [75] models
with Re, ;. = 3.72x102.



Figure 42: Friction factor - Reynolds number results of the computations
for tully developed channel flows: JL model O [89]; LS
mode! [0 [91); ST mode! @ [75); (——) denotes the
results obtained from the PJ correlation [54}; and {— — — =)
denotes * 5% deviation in the PJ correlation values.
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Figure 43: Friction factor - Reynolds number results obtained with the
ST mode! [75] using the prevailing assumption ¢ and the two-
piece near-wall velocity profile integration ¢ methods.
(———) denotes the results obtained from the PJ correla-
tion [54], and (— — — —) denotes * 5% deviation in the PJ
correlation values.




Figure 44: An interrupted-plate passage showing associated nomenclature
and a geometrically similar module, ABCDEF.
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Flgure 45:

XL

Contro!-volume locations in the domain discretization used
for laminar periodic fully developed flow simuiations. This
figure is noi to scale as the y dimensions have been expanded
relative to the x dimensions to allow a clear representation
of the relative changes in y-direction control-voiume dimen-
sions (trus scale is XL:YL= 4:1).
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Results of grid checks for laminar periodic fully developed
flow: Profiles of nondimensional U velocities at the inlet
plane of module ABCDEF in Fig. 44 are shown for Re;=2000 and
x-y grids of 56x11 ( ), 88x73 (— - ), and

112x105 (- ).

5.000

4.000-

3.000+

2.000 +

1.000 -

//

0.000 ++ -+ ~+ bt

Friction factor - Reynolds number plots for laminar periodic
fully developed flow in an interrupted-plate passage with
L/H= 1.0 and t/H = 0.3: numerical results of this
investigation ([J—~ — —[3) and of Patankar and

Prakash [14} (o o).
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Figure 48: Module streamline plots for maximum and minimum values of
Re,: (a) this investigation; and (b) Patankar and Prakash
[14].
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Repeatability checks on time-mean wall static pressure
measurements for periodic fuily developed flow in Duct 1
showing the initial run (O) and the repeated run ([]) for
maximum and minimum flow rates: (a) Re, = 33.49x10° (Q),
Re, = 33.50x10° ([3J); and (b) Re, = 5.432x10° (O), . .
Re, = 5.398x10% ([J). The maximum uncertainty in (P 0P In
values is * 0.024 in (a) and = 0.046 in (b); and it is

£ 0.041 in the (x"-x"_),values in both (a) and (b).
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Figure 50: Repeatabi lity checks on time-mean wall static pressure

measurements for periodic fully developed flow in Duct 2
showing the initial run { Q) and the repeated run ([J) for
maximum and minimum flow rates: (a) Re, = 32. 93x103 (O),
Re, = 32.70x10°> ((J); and (b) Re,=5. 397x10% (O). .
Re = 5.388x10° ([J). The maX|mum uncertainty in (P P )
values is £ 0.033 in (a) and £ 0.058 in (b); and it is

+ 0.041 in the (x"-x"_),values in both (a) and (b).
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Repeatability checks on time-mean wall static pressure
measurements ftor periodic fully developed flow in Duct 3
showing the initial run (Q) anc the repeated run ;[‘_‘]) tor
maximum and minimum flow rates: (a) Re, = 32.32x10° (Q),
Re, = 32.15x10% ([J); and (b) Re, = 4.997x10° (O),
Re, = 4.980x10°> ([J). The maximum uncertainty in (P -P*)
values is * 0.055 in (a) and £ 0.11 in (b); and it is
* 0.041 in the (x"-x"_ ) values in both (a) and (b).
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Figure 52: Least-squares straight lines fitted to the (P* -P"), vs.
(x"-x",), data points for_the LC, TE, and G3 locations of
Duct 3 for Re, = 32.32x10%.
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Figure 53: Module friction factor vs. Reynolds number (f, vs. Re_) .
results from the experimental investigations performed with
Ducts 1, 2, and 3.
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Figure 56: Intramodular time-mean wall static pressure distributions in Duct 2. For the

exper imental data (o) of each graph, the (i) run number, (ii) Re,, and the maximum
uncertainties in (i1i) (P*{-P*)_ and (iv) (x"-x",), values are, respectively:

(a) 1, 5.397x103, + 7.7x10°3, and + 1.3x10°3;

(b) 2, 8.087x10%, + 3.1x10°3, and + 1.3x10°3;

(c) 3, 10.94x103, * 2.4x10°3, and + 1.3x10°3; and

(d) 4, 16.28x10%, * 1.4x10°3, and + 1.3x10°3.

Numerical data ( ) Is shown for Runs 1,3, and 4: See Table 19 for Re, values.
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Figure 57: intramodular time-mean wall static pressure distributions in Duct 2. For the
exper imental data (o) of each graph, the (I) run number, (il) Re,, and the maximum
uncertainties in (iitl) (P -P* ) @nd (iv) (x -x* {)a values are, respectively:
(a) 5, 21.33x10%, t 1.2x10° 3, and + 1.3x10°3
(b) 6, 26. 62x1o3. + 1.2x10°3, and = 1.3x10° 3, and
(c) 7, 32.93x10%, % 1.0x10°3, and * 1.3x10°3
Numerical data ( ) is shown for Run 6: See Table 19 for Re, valuse.
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Figure 58: Intramodular time-mean wall static pressure distributions in Duct 3. For the
experimental data (o) of each graph, the (i) run number, (ii) Re,, and the maximum
uncertainties In (ill) (P* -P")_ and (iv) (x"-x";), values are, respectively:

(a) 1, 4.997x103, + 1.5x10 2, and * 1.3x10°3;

(b) 2, 8.682x10%, * 3.2x10°3, and * 1.3x10°3;

(c) 3, 10.98x103, + 2.9x10°3, and * 1.3x10"3; and

(d) 4, 16.93x10%, + 2.1x10°3, and + 1.3x10°3.

Numerical data ) is shown for Runs 1,3, and 4: See Table 19 for Re, values.
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Figure 59: Intramodular time-mean wall static pressure distributions in Duct 3. For the
experimental data (o) of each graph, the (i) run number, (ii) Re,, and the max i mum

uncertalnties in (ili) (P*;-P"), and (iv) {
(a) 5, 21.85x103, * 1.9x10°3, and * 1.3x10°3;
(b) 6, 27.84x103, * 1.8x10°3,

and * 1.3x10°3; and

(c) 7, 32.32x10%, * 1.6x16°3, and % 1.3x10°3.

Numericai data (

x"-x",), values are, respectively:
3

) is shown for Run 6: See Table 19 for Re, value.
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Figure 60: Surface streamline patterns on plates in the
and sixth periodic modules downstream of the
flow visualization section in Duct 2 for Run
Re, = 8.087x103: The main-flow direction is
left.

fourth, fifth
start of the
2!

from right to



Figure 61: Plate-surface stream!ine pattern for periodic fully developed
turbulent flow in Duct 1 with Re, = 5.432x103: The main-flow
direction is from top to bottom.

Figure 62: Plate-surface strcamline pattern for periodic fully developed
turbulent flow in Duct 1 with Re, = 8.806x10%: The main-flow

direction is from top to bottom.



Figure 63: Plate-surface streamline pattern for periodic fulily developed
turbulent fiow in Duct 1 with Re, = 11.22x10%: The main-flow
direction is from top to bottom.
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Figure 64: Plate-surface streamline pattern for periodic fully developed

turbulent flow in Duct 1 with Rem = 17.17x103: The main-flow
direction is from top to bo.tom.
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Figure 65: Plate-surface streamiine pattern for pericdic fully developed
turbulent flow in Duct 1 with Re, = 22.06x10°: The main-flow
direction is from top to bottom.

Figure 66: Plate-surface streamline pattern for periodic fully developed
turbulent fiow in Duct 1 with Re, = 27 81x10°. The main-flow
direction is from top to bottom.
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Figure 67: Plate-surface streamline patiern for periodic fully developed
turbulent flow in Duct 1 with Re, = 33.49x10°: The main-flow
direction is from top to bottom.

ke Figure 68: Plate-surface streamline pattern for periodic fully developed
turbulent flow in Duct 2 with Re, = 5.397x10%: The main-flow
direction is from top to bottom.




Figure 69: Plate-surface streamline pattern for periodic fully developed
turbulent flow in Duct 2 with Re, = 8.087x103: The main-flow
direction is from top to bottom.

Figure 70: Plate-surface streamline pattern for periodic fully developed
turbulent flow in Duct 2 with Re, = 10.94x10%: The main-flow
direction is from top to bottom.
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Figure 71: Plate-surface streamline pattern for periodic fully developed
turbulent flow in Duct 2 with Re, = 15.28x10%. The main-flow
direction is from top to bottom.

Figure 72: Plate-surface streamline pattern for periodic fully developed
turbulent flow in Duct 2 with Re, = 21.33x10%: The main-flow
direction is from top to bottom.
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Figure 73: Plate-surface streamline pattern for periodic fully developed
turbulent flow in Duct 2 with Re, = 26.62x10%: The main-flow
direction is from top tc bottom.

Figure 74: Plate-surface streamline pattern for periodic fully developed
turbulent flow in Duct 2 with Re, = 32.93x10%: The main-flow
direction is from top to bottom.
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Figure 75: Plate-surface streamline pattern for periodic fully develoned
turbutent flow in Duct 3 with Re, = 4.997x10%: The main-flow
direction is from top to bottom.

Figure 76: Plate-surface streamline pattern for periodic fully developed
turbulent flow in Duct 3 with Re, = 8.682x10°: The main-flow
direction is from top to bottom.
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Figure 77: Plate-surface stream!ine pattern for periodic fully developed
turbulent flow in Duct 3 with Re, = 10.98x103: The main-flow
direction is from top to bottom.

Figure 78: Plate-surface streamline pattern for periodic fully developed
turbulent flow in Duct 3 with Re, = 16.93x103: The main-flow
direction is from top to bottom.
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Figure 79: Plate-surface streamline pattern for periodic fully developed
turbulent flow in Duct 3 with Re, = 21.85x103: The main-flow
direction is from top to Ltottom.

Figure 80: Plate-surface streamline pattern for periodic fully developed
turbulent flow in Duct 3 with Re, = 27.84x10%: The main-fiow
direction is from top to bottom.
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Figure 81: Plate-surface streamline pattern for periodic fully developed
turbulent flow n Duct 3 with Re, = 32.32x10%: The main-flow
direction is ‘com top to bottom.
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Figure 82: Comparison of nondimensional results obtained from numerical
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the JL, JLH, and LSH versions of the k-¢ turbulence model.
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Module friction factor vs. Reynolds number results from the
experimental ( @ ) and the numerical (O—Q) investiga-

tions: (a) Duct 1; (b) Duct 2; and (c) Duct 3. The uncer-
tainty in the experimental data is shown by the error bars.
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Figure 86° Streamline plots for Duct 1: (a) Run 1, Re, = 5.764x103 ;
(b) Run 3, Re_ = 11.72x10%; (c) Run 4, Re, = 17.42x10%; and
(d) Run 6, Re, = 27.27x10% . (Diagrams are not to scale, true
horizontal:vertical dimensions = 4:1.)
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Figure 87. Streamline plots for Duct 2: (a) Run 1, Re, = 5.809x103;
(b) Run 3, Re, = 11.56x10%; (c) Run 4, Re, = 16.76x10%; and
(d) Run 6, Re, = 26.47x16°. (Diagrams are not to scale, true
horizontal:vertical dimensions = 4:1.)
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Figure 88: Streamline plots for Duct 3: (a) Run 1, Rey = 5.718x10%;
(b) Run 3, Re, = 11.78x103; (c) Run 4, Re, = 17 .42x10%; and
(d) Run 6, Re, = 27.84x103. (Diagrams are not to scale, true
horizontal:vertical dimensions = 4:1.)
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Figure 89: Variation of nondimensional stream-wise lengths of leading-
edge recirculation zones, as a function of plate Reynolds num-
ber.
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Figure 90: Variation of nondimensional stream-wise lengths of trailing-
edge recirculation zones, as a function of plate Reynolds num-
ber.
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Figure 91: Streamwise profiles of Re, in the interplate gap (y/t = 0.5).

Profiles for Run 1 (----" ), Run 3 (——-), Run 4 ( ),
and Run 6 (—— — — ——) are shown for each of Ducts 1 to 3.
The respective values of Re, for Runs 1, 3, 4, and 6, are:
(a) 5.764x10%, 11.72x10%, 17.42x103, and 27.27x10® in Duct 1;
(b) 5.809x10%, 11.56x103, 16.76x10° and 26.47x10> in Duct 2;
and (c) 5.718x10%, 11.78x10%, 17.42x10° and 27.84x10% in
Duct 3.
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Figure 92: Axial profiles of nondimensional variables in Duct 1

with Re, = 5.764x103 {e ), 11.72x103 (— —--), 17.42x10°

( ), and 27.27x10° (—— ~ — —-): (a) nondimensional
plate shear stress; (b) nondimensional wall shear stress; and
(c) nondimensional axial momentum flux.
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Figure 93: Axial profiles of nondimensional variables in Duct 2

with Re, = 5.809x103 § ----- ), 11.56x10% (-——), 16.76x10°

( ), and 26.47x10° (—— — — —): (a) nondimensional
plate shear stress; (b) nondimensional! wall shear stress; and
(c) nondimensional axial momentum flux.
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Figure 95: The eight intramodular locations, X1 to X8, for the
U velocity plots presented in Figs. 96 to 101: (a) Duct 1;
(b) Duct 2; and (c) Duct 3.
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Figure 96: Nondimensiona! U velocity profiles for Duct 1,
Re, = 5.764x103, at: (a) X1 (----° ), X2 (—— == —),
X3 (——-), and X4 { }; and (b) X5 (-~ )
X6 (— — ——), X7 (——-), and X8 ( ). (Refer to
Fig. 95 for locations of X1 to X8.)
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Figure 97: Nondnmens&onal U velocity profiles for Duct 1,

Re, = 27.27x10%, at: (a) X1 (*--° ), X2 (— — = —),
X3 (—-—),and X4 ( ): and (b) X5 (**-°* ),
X6 (— — ——), X7 (—=-), and X8 (—). (Refer to

Fig. 95 for locations of X1 to X8.)
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Figure 99: Nondimensiona! U velocity profiles for Duct 2,

Re, = 26.47x10%, at: (a) X1 (-*--- ), X2 (— = = —),
X3 (—-—=), and X4 ( ); and (b) X5 (-°-"" )y
X6 (—————), X7 (——~), and X8 ( ). (Refer to

Fig. 95 for locations of X1 to X8.)
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Figure 100: Nondimensional U velocity profiles for Duct 3,
Re, = 5.718x10%, at: (a) X1 (----- ), X2 (— ———),
X3 (——-), and X4 ( }); and (b) X5 (- )
X6 (—— ~—~—), X7 (——-), and XB ( ). (Refer to
Fig. 95 for locations of X1 to X8.)
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Figure 101: Nondimensional U velocity profiles for Duct 3,
Re, = 27.84x103, at: (a) X1 (*---- ), X2 (— = ——),
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X6 (—m— — = —), X7 (—— ), and X8 ( ). (Refer to
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Figure 102: The intramodular locations, X1, X4, X5, and X8, for the
profile plots of k and Re, presented in Figs. 103 to 108:
(a) Duct 1; (b) Duct 2; and (c) Duct 3.
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Figure 103: Nondimensional mean turbulence kinetic energy, k, profiles
in Duct 1 at X1 (----" ), X4 (—m ———), X5 (——-), and
X8 ): (a) Re, = 5.764x10%; and (b) Re, = 27.27x10°% .
(Refer to Fig. 102 for locations X1, X4, X5, and X8.)
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X8 ( ): (a) Re, = 5.809x10%; and (b) Re, = 26.47x103.
(Refer to Fig. 102 for locations X1, X4, X5, and X8.)
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Figure 105: Nondimensional mean turbulence kinetic energy, k, profiles
in Duct 3 at X1 (*--"" ), X4 (—m ———), X5 (—--), and
X8 ( ): (a) Re, = 5.718x10>; and (b) Re, = 27.84x10°.
(Refer to Fig. 102 for locations X1, X4, X5, and X8.)
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106: Profiles of turbulence Reynolds numbers, Re,, in Duct 1 at

X1 (- ), X4 (-—-————-—-)'XS ('———), andXB( ):
(a) Re, = 5.764x10%; and (b) Re, = 27.27x103. (Refer to
Fig. 102 for locations X1, X4, X5, and X8.)
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Figure 107: Profiles of turbulence Reynolds numbers, Re,, in Duct 2 at

X1 (0" ), X4 (— ———), X5 (——-—), and X8 ( )
(a) Re, = 5.809x10°; and (b) Re, = 26.47x10°. (Refer to
Fig. 102 for locations Xi, X4, X5, and X8.)
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Figure 108: Profiles of turbulence Reynolds numbers, Re,, in Duct 3 at
X1 (r=0e- ).X4 (= —=—), X5 (——-), and X8 ( ):
(a) Re, = 5.718x10%; and (b) Re, = 27.84x103. (Refer to
Fig. 102 for tocations X1, X4, X5, and X8.)
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Figure 113: Sampling points used in the ten-point log-linear method. D

is the internal diameter of the flow metering tube and |
y* = {(distance from the inner tube wall) / D}: Values of

y' for the sampliing points shown are given in Refs. [45] and l
[109]. |
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Table 1

Values of the constants used in the k-¢ models of turbulence [112].

Cp Cie Cae Ty T
0.09 1.44 1.9z 1.0 1.3
Table 2

Functions for the k-¢ models. Models are designated by the following
two-letter codes:

ST - standard or high-Reynolds-number [75]

JL - Jones and Launder [80,89]

LS - Launder and Sharma [91]

CH - Chien [92]

LB - Lam and Bremhorst [93]

r
L}
)
d teu tere feae E, Ey ¢
] at
) wall
ST 1.0 1.0 1.0 0 0 +
2 2 172 2
-2.5 2 26, 3 U, ax )
JL |exp{ ——————a} 1.0 1-0.3exp(-(Re,) } -— ) 2u{ } 0
(1+0.02Re, ) p é))(jal(,l 8x|
2 2 172 2
3.4 2 2pp, 3 U, a(k )
LS {exp{ ————— } 1.0 1-0.3exp{-(Re,) } | — ( ) 2u( -y |0
(140.02Re, )? P Ox, 3%, ax;
2
Re, ] k
CH |1-exp(-0.0115 y*) 1.0 1-0.22exp{-(—) } 2p—}exp(-0 Sy* )| 2p -; 0
6 y Yy
3 2
2 0.05 2 8k
LB {1-exp(-0.0165 Re )} [1+( ) 1-exp{-(Re,) } 0 0 u—z'
1 dy
20 5 #
x (1+——)
R%

+ near-wall ¢ value is specified using wall functions.
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Table 3

Cross-sectional ,and modular dimensions of interrupted-plate rectangular duct test sections
(Ducts 1 to 3).+

Duct b H L t s )\ L* t’ s
No. (mm) {mm) (mm) (mm) (mm) =b/H | =L/H | =t/H]| =s/H
1 152.54 | 14.50 | 25.45 | 0.40 25.36 | 10.52 { 1.755 | 0.027 § 1.749
2 152.46 | 14.40 | 25.45 | 0.80 25.36 | 10.59 | 1.767 | 0.056 | 1.761
3 152.52 14.40 | 25.50 | 1.59 25.30 | 10.59 | 1.771 } 0.110 | 1.757
. Values of H and t ware calculated from measured values of 2H and 2t.
. The uncertainty in all values of b, H, L, and s, is less than *1.0% of the
reported valug.
. The uncertainty in al! values of t is *0.01 mm.
The uncerta.nty in all values of X\, L', and s* is less than +1.1% of the reported value.
. The uncertainty in all vaiues of t* is less than 10.0014.

60¢



Table 4

Locations of the centers of the wall static pressure tap holes for the aluminum duct
portion of the test section.

= t -
1% ¥zoizoooooooizozie
oo (£ - X ) X o]
wol (z_x)+ Hols (l.x)+ ot (l-x)+ nol (t-xﬁ: [ ol (l-X)+ tot ((.x):*: nole ([-x)+] Hole (t-x)* Hole (C.‘)+
] no No Mo No Ho Xo No "o .
(mm) | (mm) (mm) (mm) Amm) (mm) {mm) (mm) (mm)
1 62 99 26 221 61 S1 IR0 S0 76 539 33 101 698 16 126 856 97 151 1015 86 175 1174.64 201 133348
2 69 09 27 227 97 52 186 85 77 545 &3 102 704 64 127 863,38 152 1022 16 177 1181.01 202 130
] 75 4% b ] 114 25 33 39) 3¢ 78 552 17 101 710 96 128 269,73 153 1023 63 178 1137.3) 203 134609
L} a1 a4 29 240 6) 4 392 6% 79 558 %? 104 717 40 119 a1% 51 154 103%.01 179 1193.70 04 1352. %3
5 88 16 30 247 00 55 403 92 80 564 30 105 723 43 130 082 52 155 1043 20 180 1200.07 205 1358. 8¢
6 94 37 N 253 4 113 412 26 a1 571 20 106 730 07 111 888.74 158 1047.61 18} 1206.52 206 136S.17
7 100 98 32 59 73 L) g 71 02 577 &4 107 736 53 132 895 16 157 1053 98 192 1212 79 207 1373.43
] 107 2% 1) 265 98 58 424 32 8) 503 91 108 747 69 122 901 5¢ 158 1060 30 123 1219.19 200 1377.6%
L] 1313 13 34 272 44 59 431 34 84 590 34 109 749 04 134 907 B9 153 1066 60 104 1225.54 209 11¢4.19
10 119 94 35 2178 94 60 437 12 s 596 86 110 75% 33 13% 214,21} 160 1073 02 19% 1221.%0 210 139%0.%7
1 126 17 36 25 19 61 444.16 a6 602 08 113 761 78 136 93G.51 181 1079 4¢ 186 1238 37 m 13%7.01
12 112 &5 37 191.6) 62 350 44 87 609 10 112 768 08 13?7 925 32 182 1085 17 187 1244.%0 12 1403 2)
13 139 06 38 197 ag 5) 456 7% 8% £15.88 11) 774 40 138 233 28 16} 1092.113 183 1250 7 3 1409 &3
14 145 31 1] j04 20 54 453 20 09 821 95 114 730 84 139 939 59 164 1093.39 189 1257 27 218 1¢15.%0
13 154 8% 40 110 5O 6% 89 42 90 629 an 1ns 787 10 140 945 93 16% 1104 93 130 1263 58 213 1¢22.17
16 158 0% 41 318 89 (1.3 4714 94 91 634.75 1ns 153 43 141 $%2.31 165 111 ©7 19 1249.93 e 1429.77
17 164 146 42 1. 8 67 432 18 92 641 04 17 199 89 142 933 65 187 1117 4% 192 1275 13 217 243%.93
18 170 79 43 129 &7 (3] 488 60 93 647 35 118 B80S 1% 141 %5 0@ 152 1113 246 i93 12082.62 210 1441.2%
19 177 20 a 136 09 69 435 00 33 651 85 119 2812 51 14e 971 4% 169 1129 %3 194 1260.99 219 1447.72
20 193,61 4 342 43 70 $0) 39 23 650 17 120 818 93 145 377 79 170 1136.41 138 1293.18 120 1454.14
n 129 85 46 148 18 71 S07 %S4 b3 6556 51 121 825 31 136 oRe 12 1 1142.90 136 1301.70 221 1460.%35
22 196 23 47 1%% 23 32 $14 0% 97 672 83 122 331.5% Q7 990 4% 172 1149 238 197 1307.95
23 202.50 [T} 6 49 73 530 40 99 679 13 123 837 €6 188 996 .58 173 1155.91 13- 1314.39
b1} 200.91 49 167 76 74 516 80 29 £95.50 133 844 34 169 § 1003.07 174 1162 04 199 1320.64
s 215 218 30 374 25 75 533.10 100 $91 3} 12% B350 60 150 | 1009.37 173 1168.32 200 132¢.94

+ (¢-x) dimension is shown in the table as the pressure tap
ured with the respect to the exit plane of the
+ Tolerances on all (f-x) values are less than C.10 mm.

hole positions were meas-

atuminum duct section, at x=f.

oy
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Table 5

Cross-sectional dimensions of the rectangular duct test section.+

b 2H ¢
(mm ) (mm ) =b/H
152.57 28.74 5.309

(20.10) | (#0.05) (20.010)

4+ Refer to Fig. 5 for a description of the nomenclature.

Table 6

Fully developed turbulent flow in the rectangular duct: repeatability
checks.

Rey Run Red+ fd++ Correlation#= % Deviation
Range No. x 1003 | x 102 | Coefficient in Red++ in fd*+#
1 9.284 3.336 | 0.9978
(Red )m"n '0.77 ‘2.34
2 9.211 3.258 | 0.9978
1 60.09 2.039 0.9978
(Reg )max -0.47 | 1.57
2 59.81 2.071 0.9980

Uncertainty in all f, values is less than * 5.00%.
Correlation coefficient for (P,* - P*), vs. (x" - x" ), data points
[123].
==i (% deviation in Rey) = (Rey, - Reyy) / Reyy x 100%.
= (% deviation in f,) = (f4, - f44) / fgq x 100%.

1}. Uncertainty in Re, values is less than + 2.35%.




Fully developed turbulent flow in the rectangular duct: comparison

of friction fact04§ with those obtained using the Prandtl-Jones

correlation [54).

HWN -

Table 7

Regy fy (fg)py)| % Deviation
x10°3 | x102 | x102 | from (fy),,
9.284 | 3.336 | 3.321 | 0.45
15.46 | 2.887 | 2.900 | -0.45
20.57 | 2.697 | 2.698 | -0.04
30.28 | 2.379 | 2.454 | -3.06
40.05 | 2.272 | 2.298 | -1.13
49.87 | 2.145 | 2.184 | -1.79
60.09 | 2.039 | 2.095 | -2.67

. Uncertainty in Re; values is less than * 2.35%,
. Uncertainty in f; values is less than * 5.00%.
. Estimated uncertainty in (fg)p, values is % 5%

(% Deviation from (f4),,) = {fy = (f4)p,}/(f4)p, x 100%.

[54].
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Table 8

413

Nominal values of Re; and the corresponding values of Res.;. and M1, the

number of grid points used in the numerical

investigation of fully

developed turbulent flow in a two-dimensional channel.

(Reg)nom Res, e M1 = (number of grid points)
x10°3 x10°3 JL and LS models | ST mode!
5.00 0.372 161 81
10.0 0.669 165 85
15.0 0.948 169 89
25.0 1.48 173 93
56.2 3.00 181 101
92.8 4.69 185 105
129. 6.30 189 109
228. 10.5 193 113




Table 9

Values of Rey and f, calculated from the solutions obtained with the JL [89], LS[91], and

ST [75] models.

JL model LS mode! ST model

Re¢ric || Reg | fg |(fglpy| ¥ Diff. || Reg | f4 [(fq)py [% DIff. || Rey | 4 [(fg)p,|% Diff.
x1073 [ 1x10°3 [x100 [x100 [in f, T ||x10°3 |x100 |x100 |in f, T||x10°3|x100 |x100 |in 1, t
0.372|| 5.16| 4.16| 4.17 | -0.240 || 5.64| 3.49| 4.07 | -14.2 || 5.50] 3.67| 4.10 | -10.5
0.669{| 10.3| 3.36( 3.42 | -1.75 11.1| 2.88( 3.35 | -14.0 {{ 10.8( 3.10{ 3.38 | -8.28
0.948)| 15.4] 3.01] 3.07 | -1.95 16.6] 2.61f 3.01 | -13.3 || 16.1| 2.78] 3.03 | -8.25
1.48 || 25.6| 2.65| 2.69 | -1.49 27.4| 2.32| 2.85 | -12.4 || 26.7| 2.44| 2.66 | -8.27
3.00 || 57.3{ 2.20| 2.22 | -0.900 || 60.8] 1.95} 2.19 | -11.0 || 59.8| 2.02) 2.20 | -8.18
4.69 i| 94.3| 1.98| 1.99 | -0.500 {| 99.7| 1.77| 1.96 | -9.69 || 98.5} 1.81| 1.97 | -8.12
6.30 || 131.| 1.85| 1.85 | 0.000 || 138.| 1.66| 1.83 | -9.29 || 137.] 1.70| 1.83 | -7.10
10.5 || 231.| 1.65] 1.65 | 0.000 || 243.| 1.49]| 1.63 | -8.59 || 241.] 1.52} 1.63 | -6.75

+ (% Diff. in fy) = { £, -

(fadps } / (tg)p, x 100%.
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Table 10
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Values of Rey and f, obtained with the ST model [75] when using a two-
piece velocity profile to calculate near-wall (y* < 30) flow rates.

292555 XR?8'3 X :30 ifqggJ ?nD:ff.+

d
0.372 | 5.04 4.37 4.20 4.05
0.669 | 10.3 3.38 3.42 -1.17
0.948 | 15.6 2.95 3.06 -3.59
1.48 26.3 2.53 2.68 -5.60
3.00 59.4 2.05 2.20 -6.82
4.69 98.0 1.83 1.97 -7.11
6.30 136. 1.71 1.84 -7.06
10.5 240. 1.53 1.63 -6.13

+ %Diff. infy = [ fy - (fg)py, 1/ (fg)p, x 100%.

Table 11

Effect on the the overall rate of convergence when employing
different k and ¢ equation source term formulations in the JL

model. Procedure A was used with all source term combinations
listed. (Refer to Section 7.2.2 for details.)
Re¢p ;e Normal i zed Execute Units +
X 10-3 Sk1-S€1 Skt'sfz Sk2-351 Skz’sez
0.372 1.00 1.00 0.970 0.970
1.48 1.00 1.40 1.03 1.19
3.00 1.00 1.30 0.840 1.10
10.5 1.00 4.72 2.58 2.49
{ Yalues shown are the number of execute units required, normalized

by the execute units required for the Sk,-S¢, combination at the
same value of Re; ;.-




R e A A i i
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. Table 12

Effect on the the overal!l rate of convergence when employing different k
and ¢ equation source term formulations in the ST model. Procedure A
was used with all source term combinations listed, and all relaxation
parameters, a's, are 1.0. (Refer to Section 7.2.2 for details).

Re”ic Normal ized Execute Units +

x 10°3 || sk, .s¢, | sk, .s¢, | sk,-s¢, | sk,-8¢,
0.372 1.00 1.75 ne T 4.00
10.5 1.00 ne F ne F ne F

%- Values shown are the number of execute units required, normalized by
the execute units required for the Sk.,-S‘1 combination at the same
value of Re; ;..

NC - no convergence achieved

Table 13

Re;, and f, values used to determine the input value of g for the
periodic fully developed laminar flow calculations.

Re, fs
from [14] from [14]
100 0.500
200 1.00
500 1.90
1000 3.25
2000 5.00
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Table 14
Periodic fully developed turbulent flow in Ducts 1 to 3: repeatability
checks.
Duct Re, Run Re_+’ l_++' Corretationt % Deviation
No. Range | No. x 10°3| x 102 | Coefficlent in Re H| in 1 HF
1 5.432 4.522 | > 0.9993
(Reg)in -0.63 0.84
2 5.398 4.560 | > 0.9995
1 33.49 2.735 > 0.9990
(Reg )max 0.03 0.00
2 33.50 2.735 > 0.9990
1 $.397 5.678 > 0.9991
(Reg )nin -0.17 -2.32
2 5.388 5.546 > 0.9990
1 32.93 3.756 > 0.9985
(Rey ) ax -0.70 | -0.61
2 32.70 3.733 > 0.9985
1 4.997 9.723 > 0.9990
(Reg ) pin -0.34 -2.60
2 4.980 9.470 > 0.9993
1 32.32 6.352 > 0.9990
(Rey ) max -0.53 | -0.52
2 32.15 6.319 > 0.9988

h

F

Uncertainty in Re, values is less than + 2.25%.

The estimated experimental uncertainty in f_  values is less than or
equal to * 2.00% and * 12% of the reported values corresponding to
Re,., and Re_; , respectively. . . . .

Correlation coefficients for (P,” - P") vs. (x" - x",) data points
[123]. The value shown is the minimum value obtained for the sets of
periodic data points used to calculate local f, values.

(% deviation in Re,) = (Re,, - Re,;) / Re,, x 100%.

(% deviation in f.) = (f_, - f,4) / fo, x 100%.
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_ Table 15

Deviation of local friction factors from the average friction factor
calculated for the various module Reynolds numbers of Ducts 1, 2, and 3.

(See Table 16 for average friction factor values, f,, and uncertainty in
Re, values.)

% Deviation ot focal f, values from average 1, value t  |corretation

2510.3 fart farc face | tact | fate luct tag2 fagy [Coelticients ¥
5.432 0.28 0.54 -0.42 -0.23 | -0.61 0.26 0.07 0.1 2 0 9993
D 8.806 0 28 0.14 0 14 0.47 -1.54 0.08 -0.50 0.94 2 0 9993
z 11.22 -0.58 0.06 0.09 0.27 0 24 0.18 -0.13 -0.12 2 0.9994
t 17.17 -0.08 -0 06 0.24 0.17 -0.32 0 21 -0.03 -0 14 2 0 9992
1 22.06 -0.37 -0.50 0 13 0.42 -0 10 0.25 0.05 0 12 2 0 8992
27.81 -0 18 -0 21 -0 33 0.12 { -0 36 073 -0 13 0.37 2 0.9982
33 49 -0 24 -0.42 -0 22 0 10 -0 42 0 65 0 25 0.30 2 0.9890
§ 397 -0 08 0 67 -0 07 0 65 -0 37 -0.43 -0 62 0 26 2 0.9991
D 8 087 0 15 -0.24 -0 24 -0.31 -0 60 0.28 0.81 0.15 2 0 9990
z 10 94 0.02 -0.24 -1 02 .27 -0 13 0.32 0 39 0.39 2 D 9988
l 16 28 0 19 -3.06 0.16 0 04 -0 53 -0 24 0 Q3 0.41 2 0 9987
2 21.33 -0 02 -0.22 «0.25 -0.31 -0.25 0 20 -0 04 0 89 2 0 9986
26,62 -0 13 -0.735 -0 37 -0.31 -0 28 0.19 0 45 0 80 2 0 9986
32 93 0 01 -0.52 -0.18 -0 16 -0.48 0.02 0 51 0 81 2 0.9985
4,997 0 57 -0.88 0 87 0.06 [ -0.05 -0.53 -0.52 0.38 2 0 9850
D 8 682 -0 13 -0.38 0.01 0.35 | -0.25 -0.33 0.32 0 40 2 0 9895
: 10.98 0 15 -0 71 -0 08 0.06 -0 07 0.26 -0 17 0.54 2 0.9994
t 16 93 0.30 -0.85 0.02 0 22 0.09 -0.06 0 12 0.17 2 0 9994
? 21.85 0.30 -0 98 -0 03 0.42 -0.20 -0.13 0.02 0.59 2 0.9992
27.84 0.09 -1.00 0.18 -0 04 -0 27 0.10 0.53 0 41 2 0.9992
32 32 0 28 -1.35 0.19 0 15 -0 01 0.18 0 19 0 37 2 0 99390

I

% Deviation in local f  from average fo = ({alocatl - f,) / i, x 100%
Correlation coefticients for periodically spaced (P'O-P ) vs.
(x'-x'o) data points [123]. The value shown is the minimum value
obtained from all 8 sets of the periodic data points used to calcu-
late the local value of f,.




Tabile 16

Experimenta! values of module Reynolds number, Re, and corresponding
module friction factor, f_ ., values fcr periodic fully developed turbu-
lent flow 1n interrupted-plate rec*angular ducts: Ducts 1, 2, and 3.

Duct 1 Duct 2 Duct 3
Run
Re, T | wt || Rre, T |1, w6, F || Re, T ]+, +f, H
Ne- x10°3 | x102 % x10"3 | x102 % x10°3 | x10° %
1 5.432 | 4.522 12. 5.397 | 5.678 10. 4.997 9.723 12.
2 8.806 | 3.871 7.1 8.087 | 5.227 4.4 8.682 8.257 2.8
3 11.22 | 3.664 4.5 10.94 | 4.874 3.7 10.98 7.975 2.4
4 17.17 | 3.234 2.8 16.28 | 4.453 2.0 16.93 7.157 1.9
5 22.06 | 3.056 3.7 21.33 | 4.146 1.8 21.85 6.854 1.6
6 27.81 | 2.875 2.9 26.62 | 3.990 2.0 27.84 6.569 1.6
7 33.49 | 2.735 2.0 32.93 | 3.756 1.7 32.32 6.352 1.5

+ Uncertainty in Re, values is less than * 2.25%.

= +f_ (%) = ( uncertainty in f,) / f_ x 100%.

184



Reyrolds number, Re, , and corresponding module friction factor, f, ., v
ues tor periodic fully developed turbulent flow in Ducts 1, 2, and 3

.

Table 17

Duct 1 Duct 2 Duct 3
Re, T | 1, Re, T | f, Re, T | 1,
x10°3 | x102 x10°3 ’ x102 x10°3 | x10°
7.238 | 5.467 7.191 | 6.374 || 6.654 | 9.114
11.74 | 4.748 10.78 | 5.868 11.56 | 7.740
14.95 | 4.494 14.58 | 5.472 14.62 | 7.476
22.87 | 3.967 21.70 | 4.999 || 22.55 | 6.709
29.40 | 3.748 28.43 | 4.654 || 29.08 | 6.425
37.06 | 3.526 35.47 | 4.479 || 37.07 6.158
44.63 | 3.355 43.88 | 4.216 || 43.04 5.954

Uncertainty in Re, values is less than + 3.00%.
f, values derived from fn values of Table 16, using Eq. (8-3).

420
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Table 18

Intramoduia* (P*; - P*), vs. (x* -x";), data points igrresponding to ine
minimum and maximum flow rates in Ducts 1, 2, and 3.

Duct 1 Duct 2 Duct 3
(" -x" ) [(P* 4 -P%)a x 102 || (x"-x" ;) [(P"{-P" ), x 102 | [(x"-x"{) [(P*y-P"), x 10?
x10 Re, = | Re, = x10 Re, = | Re, = x10 Re, = | Re, =
5.432 33.49 5.397 32.93 4,997 32.32
x10% x103 x10® | x10° x10% | x10°
0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 0.000 | 0.000 | G.000
2.186 3.105 2.565 2.201 5.191 4.348 2.201 10.35 7.985
4.396 £.857 4.007 4.427 9.079 6.758 4.427 16.98 11.71
6.578 7.523 4.469 6.624 10.73 6.805 6.624 18.58 11.56
8.776 7.699 3.860 8.837 10.47 5.306 8.837 16.84 8.948
10.96 7.006 2.570 11.04 8.982 2.605 11.04 i3.70 3.954
13.14 6.087 1.909 13.23 6.900 1.177 13.23 9.960 0.5086
15.34 6.192 2.672 15.45 6.528 | 2.362 15.45 9.799 2.870
17.53 7.871 4 783 17.66 10.09 6.615 17.66 17.22 11.268
# 1. Uncertainty in all Re,, values is I?ss than + 2.25%.
2. The maximum uncertannty in (x" - x i ) values is less than
+ 1.3x10°3,
3. The maximum uncertainty |n the (P - P* )m values ranges from a

minimum value of * 8.3x10"% for Duct 1, with Re, = 33.49x10%, to
t 1.5x10°2 for Duct 3, with Re, = 32.32x103
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. Table 19

Numerical values of module Reynolds number, Re, and corresponding module
friction factor, f_, for periodic fully developed turbulent flow in
interrupted-plate rectangular ducts: Ducts 1, 2, and 3.

Duct 1 Duct 2 Duct 3
Run
Re, T | f, Re, T ] 1, Re, T |,
No.
x10°3 | x102 x10°3 | x102 x10°3 | x10°
1 5.764 | 4.018 5.809 | 4.901 5.718 7.425
3 11.72 | 3.356 11.56 | 4.368 11.78 6.935
4 17.42 | 3.143 16.76 | 4.204 17.42 6.762
6 27.27 | 2.989 26.47 | 4.035 27.84 6.570

+—Difference between reported Re, values and grid-independent values is
estimated to be less than 2% of the grid-independent values.

Table 20

Percent deviation of numerical values of Re, in ,Table 19 from
corresponding experimental values in Table 16. +

Run | Duct 1 Duct 2 Duct 3
No.
1 7.90 7.63 14.4
3 4.46 5.67 7.28
4 1.46 2.95 2.89
6 -1.94 -0.563 0.00
+ (Percent deviation) = (Numerical - Experimental) / Experimental x 100%




Table 2

1

Values of stream functions corresponding to streamlines plotted in Figs. 86(a) to 88(d) for

Ducts 1,

2, and 3.

lowed by Streamline number 2 immediately below it,
are numbered 3 to 14 in the same manner. Streamline Number 14 is located immediately above the
horizontal surface of the plate.

in these figures, Stream!ine Number 1 is the uppermost horizontal

line fol-

followed by the streamlines below it which

Stream Function Values
(m/s) x 10%
Duct 1 Duct 2 Duct 3
Stream- I ,
fine Re, = |Re, = |Re, = |Re, = ||Re, = [Re, = |Re, = |[Re, = ||Re, = !Re, = Re, = |Re, =
No. £.764 |11.72 |17.42 {27.27 5.809 [i1.56 |[16.76 [26.47 5.718 |11.78 |17.42 }|27.8B4
x103  [x10® |x10® |x103 x10}  |x103 [|x103 }x103 x10®  |x10® |[x103 |x10%
1 432.1 1878.9 (1306. (2044. 420.6 (882.2 (1285. (2016. 423.3 [866.7 |[1282. [2090.
2 388.9 (791.0 |1176. |1840. 378.5 [794.0 }1156. |1814. 381.0 {780.0 {1154, |[1881.
3 345.7 {703.1 (1045. ;1636. 335.5 {705.7 }1028. |1613. 338.6 (6393.4 |3026. [1672.
4 302.5 §615.2 [914.5 |1431. 294.4 |617.5 18989.4 1411, 296.3 |606.7 [897.4 |1463.
5 259.3 {527.3 |783.8 |[1227. 252.4 529.3 {770.9 1210, 254.0 |520.0 [769.2 (1254,
] 216.0 1439.4 1653.2 [1022. 210.3 [441.1 j642.4 |1008. 211.6 1433.3 |641.0 |1045.
7 172.8 {351.6 |522.6 [817.8 168.2 |352.9 |513.9 [B06.3 |[}{169.3 1346.7 {512.8 {835.8
8 1298.6 |263.7 (391.9 [613.3 126.2 |264.6 1385.5 1604.8 127.0 {260.0 |384.6 [626.9
9 86.42 |175.8 (261.3 ]408.S 84.12 |176.4 |257.0 {403.2 84.66 1173.3 |256.4 (417.9
10 43.21 |87.82 1130.6 |204.4 42.06 |88.22 }i28.5 [201.86 42,33 |86.67 {128.2 ]209.0
11 32.76 {66.79 }99.35 |155.6 ||31.71 |68.54 [96.93 |i52.1 ||32.05 |65.68 |97.12 {158.5
12 22.31 |45.70 {68.07 (106.6 21.35 [44.87 |658.37 |102.6 21.77 |44.65 |66.04 }108.1
i3 11.86 {24.60 [36.78 157.75 11.00 [23.19 ;33.81 {53.05 11.49 [23.64 134.96 157.70
14 1.417 |3.502 ]5.498 |[8.855 .6416 [1.519 {2.251 |3.538 1.207 |2.626 [3.880 (7.273

1XA4 4



Table 22

Values of variables used In the generation of the nonuniform x and y grids that were employed in
the simulations of turbulent fully developed channe! filow (Turb.F.D.Ch.Flow), and laminar and
turbulient periodic fully developed (P.F.D.) flows. (See Appendix 1 for further detalls).

Turbd. Laminar P.F.D. Turbulent P.F.D.
F.D. fnterrupted-Plate Interrupted-Plate
Ch.Fiow Passage Flow Duct Fiow
Grid
1 2 3 2 2
y zone X z0n8s y ZOmes X zones y zones
Variable
Upstrm |Top Upstrm Bottom Top
& & Middie & .
Dwnstim|Bottom Dwnstrm|{Duct 1iDuct 2{Duct 3|Duct 1|Duct 2|Duct 3
:
GF 1.2 12 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
60 *
Le/Lz’ { } 0.05 0.06 | 0.06 0.05 5.45 i.1 2.21 5.45 1.1 | 2.21
Reg, (. x10°3 | x10°2| x10°2| x10°3 | x10°2| x10°?2
Neve 40 10 8 8 8 3 7 9 3 7 9
Lz/Lz' 1.000 0.500 0.300( 0.400 0.500 0.027] 0.973} 0.056]| 0.944| 0.110{ 0.890
NCV! :
specify 159 41 23 27 33 7 13 17 93 97 87
calculate!l| +F 43 23 25 35 11 23 29 85 75 89 ‘

Corresponds to a distance of y* = 30 from the channel wall.
See Table 8: N°Y' = (M1 - 2) for JL and LS models;
NEYE = {{(NV'),L modet - 2(N°Y°)} for ST model.

vey
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Uniform X and Y grid distributions used in Appendix 6.

Table 23

Grid | Number of h/LZY
Grid Points
X1 100 1.020 x 10°2
X2 124 8.196 x 10°3
X3 146 6.945 x 1073
Y1 147 6.899 x 1073
Y2 174 5.813 x 10”3
Y3 201 5.022 x 1073
Table 24

425

Values of variables, denoted as n; in this table, used in the sample
calculation of Re, * 6Re,. (See Appendix 5 for details.)

n, Value of 5, (Jn/n)iz

Ay | 6.204x10°3 [m?] 1.21Cx10"%
b 0.1525 [m] 4.299x10°7
b 1.782x10°° [kg/(m-s)] | 1.545x10°7
p 1.203 [kg/m*] 1.432x10°8
A 14.11 [Pal’/2) 2.485x10° 4




Table 25

Values of variables, and their associated uncertainties, used In the calculation of A and £ A
terms in Eqs. (A5-2) and {A5-6), respectively.

1
MP.Ll CFigin | CFip | CFatgn | CFupy CF,, Vayn Payn
x103 x102 x102 x103 x103 (v) x10é (Pa)
1 5.0 5.0} 1.0 1.0} 1.0 *1.0| 2.5 *2.5] 20.32 +20.32| 11569 +799| 0.9531 +0.09319
2 5.0 #5.0] 1.0 +1.0]| 1.0 #1.0| 0.0 +0.0| 14.29 +14.29| 20516 +799| 1.841 +0.098086
3 5.0 #5.0{ 1.0 £1.0]| 1.0 #1.0| 0.0 +0.0| 12.69 +12.69| 24509 +799| 2.238 10.1004
4 5.0 35.0( 1.0 1.0 1.0 *1.0{ 0.0 #0.0] 11.80 +11.80{ 26903 1799| 2.476 0.1018
5 5.0 5.0/ 1.0 #1.0{ 1.0 1.0} 0.0 #0.0] 11.28 #11.28] 28373 %799} 2.625 10.1028
6 5.0 +5.0| 1.0 *1.0| 1.0 +1.0| 0.0 +0.0| 11.36 +11.36| 28128 +799| 2.600 +0.1026
7 5.0 5.0} 1.0 *1.0] 1.0 *1.0| 0.0 %0.0] 11.85 +11.85| 26786 +799| 2.465 +0.1018
8 5.0 #5.0{ 1.0 £1.0] 1.0 #1.0{ 0.0 *0.0{ 12.53 +12.53| 24937 +799| 2.280 +0.1007
S 5.0 5.0 1.0 #1.0| 1.0 *1.0| 0.0 #0.0] 14.15 +14.15| 20846 *799| 1.874 10.09827
10 5.0 ¥5.0] 1.0 +1.0| 1.0 *1.0| 2.5 +2.5| 21.33 +21.33| 11079 *799| 0.9042 10.09299

4+ M.P.L. = measurement point location (see Fig. 113).
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Table 26

427

Values of (Re, )x,v obtained using uniform X-Y grid distributions, and
values of (Re")x and (Re,,), extrapolated from these values using the
method described in Appendix 6.

Y +
(Reg, )
X 147 174 201
100 27105 27036 26945 — 26739
124 27317 27171 27115 - 27063
146 27398 27265 27208 —> 27143
i Voo
(Re,.)y | 28086 28551 27500

F Re,, values were extrapolated from the Re, values.

Extrapotation of (Re,), y

Table 27

values, to grid-independent value of Re,,

]———»27270 = Re,, T

assuming n = 2 in Eq. 6-1).
Y +
(Rent)x
X 174 201
124 27171 27115 —» 26950
146 27265 27208 — 27040
27270
{ v
(Reqe )y 27504 27445 —» 27269
i ﬁ%.Remt values were extrapolated from the Re, values.
estimated grid-independent value of Re,,
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