
Addressing Concurrency U sing

UML-Based Software Development

by

Jie Xiong

School of Computer Science

McGill University, Montreal

June 2004

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of Master of Science

Copyright © Jie Xiong 2004

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-494-06474-9
Our file Notre référence
ISBN: 0-494-06474-9

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Distributed systems, systems that interact with real-time devices, responsive GUI

interfaces, systems that interact with hundreds of clients simultaneously have to

function correctly even in a concurrent environment. Complex concurrent

activities and interactions however make the development, i.e. understanding,

analyzing, designing and implementing, of such systems extremely difficult. It is

important to have a systematic approach to treat the many issues when developing

concurrent systems.

In this thesis, we describe an approach that addresses concurrency in aIl phases of

object-oriented software development. We show how to identify inherent

concurrency at early stages of the development, and we propose a way to

systematically refine the resulting declarative specification into an object-oriented

design, which controls concurrency and provides data consistency using

transactions or monitors.

Key words: Concurrency, UML, Fondue, Transactions, Monitors, Object­

oriented, Auction System

1

Résume

De nos jours, de plus en plus de logiciels doivent faire face à la concurrence

inhérente dans leur environnement. Les systèmes distribués, ainsi que les

systèmes temps-réels, les logiciels avec interfaces graphiques sophistiqués, et les

systèmes qui gèrent des centaines de clients simultanément doivent fonctionner

d'une manière correcte même en présence de parallélisme. Pourtant, les

interactions coopératives et compétitives d'activités parallèles compliquent

considérablement la compréhension, l'analyse, la concéption et l'implémentation

de logiciels. Pour produire des applications correctes et fiables, il est important de

suivre une approche systématique de traitement de la concurrence pendant le

cycle de développement d'un logiciel.

Dans ce travail de maîtrise je présente une approche qui s'occupe de la

concurrence pendant toutes les phases du processus de développement d'un

logiciel. Initialement, je montre comment identifier la concurrence inhérente dans

l'environnement, puis comment spécifier la concurrence d'une manière déclarative

pendant l'analyse. Ensuite, cette spécification déclarative est transformée en une

conception orienté-objet, qui gère la concurrence en utilisant les moniteurs ou les

transactions.

Mots clés: concurrence, UML, Fondue, Transactions, Moniteurs, Orienté-objet,

Système des enchères

ii

Acknowledgement

1 am extremely grateful to Dr. Jorg Kienzle, my thesis superVisor, for his

supervision and inspiration on my work. Throughout the 2003-2004 academic

year, Dr. Kienzle guided me through my research in the Software Engineering

Lab at School of Computer Science of McGill University. His guidance inspired

my research ideas. His constant motivations helped me overcome the difficulties 1

met during my research. His reviews and suggestions greatly helped me improve

the quality of my thesis. 1 greatly benefited from the discussions with him with

respect to the research. His accuracy and talent become the drive that always

motivates me to learn by heart and work hard. It was with Dr. Kienzle's great help

that 1 worked out creative solutions for this concrete research topic.

1 would also like to thank my parents and my brother for supporting my pursuit

for higher education. It is with their deep love and constant encouragement that 1

am able to finish my work here.

iii

TABLE OF CONTENTS

ABSTRACT ... 1

RÉSUME ... II

ACKNOWLEDGEMENT ... III

LIST OF FIGURES & TABLES .. VI

CHAPTER 1. INTRODUCTION .. 1

1.1 BACKGROUND .. 1

1.2 PROBLEM DESCRIPTION .. 3

1.3 THESIS PREPARATION ... 3

1.4 THESIS ORGANIZATION .. .4

1.5 ABBREVIATIONS ... 6

CHAPTER 2. OVERVIEW OF ONLINE AUCTION SYSTEM ... 7

2.1 SYSTEM ARCHITECTURE ... 7

2.2 GENERAL SERVICES AND RULES ... 8

2.3 CUSTOMER ACTIVITIES ... 10

2.4 GOODS DELIVERY AFf ER AUCTION .. 12

2.5 FAULT-TOLERANCE REQUIREMENTS .. 12

CHAPTER 3. FONDUE AND CONCURRENCY ... 13

3.1 THE FUSION DEVELOPMENT METHOD .. 13

3.1.1 The Fusion Process .. 14
3.1.2 Advantages and Disadvantages of Fusion ... 14

3.2 UML ... 15

3.2.1 Statie UMLDiagrams .. 15
3.2.2 Dynamic UML Diagrams ... 16

3.3 THE FONDUE DEVELOPMENT METHOD ... 17

3.3.1 Novelty in Fondue .. 17
3.3.2 The Fondue Process ... 18
3.3.3 The Fondue Notations .. 19
3.3.4 The Fondue Models .. 20
3.3.5 The Visualized View for Fondue .. 23

3.4 ADDRESSING CONCURRENCY .. 25

3.4.1 Concurrency ... 25
3.4.2 Solution .. 25

3.4.2.1 Monitor - A Simple Solution ... 26
3.4.2.2 Transaction - Advanced Solution .. 26

CHAPTER 4. REQUIREMENT ELICITATION .. 29

IV

4.1 THE FONDUE REQUIREMENT EUCITATION ... 29

4.2 THE BUY AND SELL GOODS USE CASE ... 31

CHAPTER 5. ANALYSIS .. 35

5.1 THE FONDUE ANAL YSIS PROCESS ... 35

5.2 ENVIRONMENTMoDEL ... 36

5.3 CONCEPT MODEL. ... 38

5.3.1 Building the Model ... 38
5.3.2 Derived Constraints and Attributes ... 40

5.4 PROTOCOL MODEL .. .42

5.5 REFERENCE TABLE .. .48

5.6 OPERATION MODEL .. 53

5.6.1 The Sequential Version .. 53
5.6.2 ldentifying Shared Concepts .. 56
5.6.3 The Concurrent Version ... 58

5.7 SUMMARY OF FONDUE ANALYSIS ... 62

CHAPTER 6. DESIGN ... 63

6.1 IDENTIFYINGOBJECTS ... 63

6.2 SEQUENTIAL INTERACTION MODEL .. 64

6.3 CONCURRENT INTERACTION MODEL .. 69

6.3.1 Transaction-oriented Design ... 71
6.3.2 Monitor-based Design ... 73
6.3.3 Mapping between Analysis and Design ... 75

6.4 DESIGN CLASS MODEL ... 77

6.4.1 Transaction-oriented Design Class Model .. 77
6.4.2 Monitor-based Design Class Model.. ... 80

CHAPTER 7. FUTURE WORK .. 82

CHAPTER 8. CONCLUSION ... 84

APPENDIX 1: REFERENCES .. 1

v

List of Figures & Tables

Figure 1. Auction System Architecture ... 8

Figure 2. Fondue template for operation schema .. 21

Figure 3. Fondue, from Analysis to Design .. 24

Figure 4. Template of Fondue Use Case .. .30

Figure 5. The Buy and Sell Goods by Auction Use Case .. .32

Figure 6. The Buy and Sell Goods by Auction Use Case Diagram ... 32

Figure 7. The Buy Item on Auction Use Case .. 34

Figure 8. Environment Model of the Auction System .. 37

Figure 9. Concept Model of the Auction System .. 39

Figure 10. Protocol Model of the Auction System .. 44

Figure 11. The UserActivity Auto-concurrent State .. .45

Figure 12. BiddingActivity, SellingActivity and CreditManagementActivity 46

Figure 13. The AuctionView Auto-concurrent State .. 47

Figure 14. Sequential Operation Schema for the placeBid Operation .. 56

Figure 15. Concurrent Operation Schema for the placeBid Operation ... 61

Figure 16. Sequential interaction diagram for placeBid .. 66

Figure 17. Pseudo code for placeBid .. 68

Figure 18. Pseudo code for isGuaranteed .. 69

Figure 19. Pseudo code for insertBid .. 69

Figure 20. The post condition of concurrent placeBid operation schema 70

Figure 21. Transaction-oriented Execution of placeBid .. 72

Figure 22. Monitor-based Execution ofplaceBid ... 75

Figure 23. Transaction-oriented Design Class Model.. ... 78

Figure 24. Monitor-based Design Class Model... .. 80

Table 1. Fondue models VS. UML notations .. 19

Table 2. General reference table for Auction System .. .49

Table 3. Specifie Reference table for the Auction View .. 52

Table 4. Mapping from Analysis to Design .. 76

vi

Chapter 1.

Introduction

Coopter l.Introduction

In this chapter, we start by introducing the concepts that are in the domain of

Object-Oriented Software Development and issues that are related to Concurrency.

Then, a problem description reveals the core problem we are addressing in this

thesis. The thesis organization briefly introduces the content of each chapter.

1.1 Background

Object-Oriented Software Development Object-oriented software

development (OOSD) is a dominating method in today's software industry to let

the software system model the reaI world. Basically, we use object-oriented

model as an abstracted representation of the real entities and their relationships.

These models are usually represented by using standard software engineering

notations such as Unified Modeling Language (UML) [1]. Then, we use the se

models to capture the functionalities, services or problems that need to be solved

in the real world. Finally, applications will be developed based on these models.

The basic unit of an object-oriented model is the class. A class is an

abstraction of objects. Objects are instances of the class. An object consists of

several fields that are called attributes, describing the state of an object. An object

aIso contains a set of methods, describing the behavior of the object.

1

Charter l.lntroduction

The Software Development Process In today' s software engineering

industry, a typical software development process usually follows the core phases

of capturing requirements, analysis, design, implementation, testing and

deployment on an iterative development base. A well-known example of such a

process is called Rational Unified Process (RUP) [2]. Other processes could have

more or less development phases than RUP and hence have different advantages

and disadvantages.

In this thesis, we will follow another OOSD process called Fondue [3], a

software development method that specifically addresses reactive systems.

Fondue is an extension of the Fusion [4] method. An introduction of Fusion and

Fondue will be presented later in chapter 3.

Concurrency Modern software applications have a growing trend of

employing more concurrency control, or providing more concurrency support, as

we can easily see from sorne examples.

In distributed client-server systems, the server usually provides

multithreaded services. For instance, a library system provides online book

searching and reservation services. The user interacts with the central server via

the user interface at different terminaIs. Although each user interface is intended

to be single-threaded, the server, on the contrary, usually has to correspond to

multiple requests initiated from users at different terminaIs at the same time.

In e-Commerce applications, such as online shopping systems, the web

servers usually have to handle a significant number of concurrent and multiple

connections from users coming from different locations in the world. These

services must be highly reliable. Data must be kept consistent in spite of

concurrency and failures.

2

Chapter 1.lntroduction

1.2 Problem Description

There has been research interest in links between OOSD and concurrency more

than a decade ago. Throughout the years, object-oriented software applications

(especially the Internet-based applications) are growing more and more complex.

They are required to respond to an increasing number of simultaneous

requirements and operations. Thus we see a growing concern for addressing

concurrency in OOSD.

However, complex concurrent applications are more likely to contain

software design problems, which will eventually lead to system failure. Using ad

hoc solutions to address concurrency in object-oriented systems usually makes the

systems unnecessarily complicated. It also makes it hard to maintain the pro gram

code of the systems and thus results in poor application performance.

The target of this thesis is to concentrate on a couple of particular means

for achieving concurrency control as a concrete and systematic approach in

object-oriented systems. We will discuss transaction-oriented design and monitor­

based design. Ultimately, we aim at integrating transactions and monitors into

software development process to address concurrency. In the meanwhile, we will

emphasize using transactions as an advanced solution in more complex, highly

concurrent and distributed systems.

As a result of addressing concurrency, we will be able to identify the need

for using transactions or monitors in the system and finally elaborate a structured

way of establishing their boundaries.

1.3 Thesis Preparation

Prior to this thesis, 1 have done a reading course under the guidance of Professor

Jorg Kienzle. From the reading course 1 gained profound understanding of Fusion,

3

Charter l.lntroduction

Fondue, and RUP, which helped me build a solid background with respect to

software development process in object-oriented systems.

ln parallei to this master' s thesis, 1 have contributed part of my work to the

paper Addressing Concurrency du ring Software Development, which has been

submitted to the UML2004 conference for review. The authors are Professor Jorg

Kienzle at McGill University, Professor Shane SendaIl at University of Geneva

and me. My thesis extended the problems addressed in this paper and solutions

proposed in this paper.

1.4 Thesis Organization

This thesis contains eight chapters. The content of each chapter is briefly

described below.

Chapter one is the introduction of the entire thesis. In this chapter,

essential knowledge background for this thesis is briefly introduced. After

describing our targeted problem and our aim to solve the problem, the contents of

each chapter are introduced.

ln chapter two we gave an overview of the Online Auction System 1. The

overview introduced the mIes of the Auction System that are from the most weIl

known auction type, English auction. In addition, the overview introduced the

services provided in the system, the possible user activities and the physical

architecture of the system.

Chapter three is an introduction to the Fondue development method and an

overview of Concurrency related issues. The introduction to Fondue included a

brief introduction to Fusion, a brief introduction to UML, an explanation of their

relationships with Fondue and a summary of Fondue. The overview of

1 For simplicity reason, from now on in the thesis we will just calI the Online Auction System as
Auction System.

4

Chapter l.Introduction

concurrency explained the concept of concurrency, the possible problems that are

related to concurrency in software applications and our proposed solutions.

Chapter four is about Fondue requirement engineering, which is the first

phase in the Fondue development process. In this chapter we discussed the

Fondue style use cases. To present a systematic view of the Auction System, we

elaborated on the Buy and Sell Item by Auction use case.

In chapter five we illustrated the Fondue analysis process by working on

the Auction System case study. The purpose of this chapter is to show how we

conduct the Fondue analysis step by step and how we extend Fondue by

specifying concurrency that the system has to deal with in the analysis phase.

New notations especially designed to demonstrate concurrent states of the models

have been added to the original analysis models.

Chapter six is the chapter for design and implementation. Our purpose in

this chapter is to find a design that can provide the required functionalities and the

requested concurrency and data consistency. In order to illustrate how to handle

concurrency related problems, we made sequential design and concurrent designs

focusing on the placeBid operation in the Auction System.

In chapter seven, we proposed sorne new thoughts about addressing

concurrency under a more complex environment. To illustrate our new concern,

we altered the placeBid example and suggested sorne future work with respect

to the modification.

Chapter eight is the conclusion of this thesis. We reviewed the Fondue

development process with respect to the auction case study. Finally we concluded

our systematic approach to handle concurrency in a higher level of abstraction.

5

Chapter l.Introduction

1.5 Abbreviations

The meanings of abbreviations used in this thesis are explained below:

UML

OCL

RUP

OOSD

OOSE

OMT

GUI

ACID

Unified Modeling Language

Object Constraint Language

Rational Unified Process

Object-Oriented Software Development

Object-Oriented Software Engineering

Object Modeling Technique

Graphie User Interface

Atomic, Consistency, Isolation, Durability

6

Chapter 2.0verview ofOnline Auction System

Chapter 2.

Overview of Online Auction
System

The original information of the auction service example cornes from [5] and an

informaI description of the Auction System is found in [6]. The overview that

will be given here is based on the two references mentioned above. In addition,

there are also sorne specialized auction websites where live examples can be

found. Their mIes can be used as references for the system we are introducing.

These websites include eBay, uBid and iBazar. Among them, iBazar has been

bought by eBay; uBid was founded in 1997 and now it is a major force in the e­

Commerce world. The URLs of these websites are as follows:

eBay http://www.ebay.com

uBid http://www.ubid.com

iBazar http://www.ibazar.com

2.1 System Architecture

Figure 1 illustrates the physical architecture of the Auction System.

7

User Terminal
with Interfac e

Chapter 2.0verview ofOnline Auction System

Figure 1. Auction System Architecture

network
connection

As we can find out from the above figure, the whole system consists of a

dedicated central server, a network that connects a group of computers and credit

institutions. The server can communicate with the credit institutions via the

network. The computers that are connected to the network are the terminaIs that

users can use to access the system. A Graphicai User Interface (GUI) is provided

on each terminal. The terminaIs can mn on different operating systems, such as

Windows, Unix, Linux and Macintosh OS.

2.2 General Services and Rules

Briefly, registered users of the system can browse items, buy and sell items in the

system. To buy or sell items, the users must follow the pre-specified auction mIes.

In our case study, we will only use the mIes of the English Auction as example.

Priee Setting To conduct an English Auction, the item for sale will have

a minimum starting price, i.e. a priee set by the seller that is supposed to be Iow

enough to attract buyers (other registered users) to start bidding on the item.

8

Chapter 2.0verview ofOnline Auction System

There should also be a minimum increment priee for each valid new bid. That is,

a user can make as many bids as he/she wishes till the end of the auction, but each

new bid should obey the minimum increment rule.

Winning an Auction In an English Auction, the user who makes the

highest valid bid wins the auction. If there is a winner of the auction, the system

will withdraw the winner' s bid amount from his/her account. After charging a

commission fee of the winning bid, the rest amount of the bid money will be

deposited into the seller' s account.

Registration All interested users who want to participate in the Auction

System must sign up to become registered users 2. Required registration

information includes the user' s real name, address, email address, desired

username and password. Once a user successfully registered with the system,

he/she will become a customer. If a customer wants to buy or sell item in the

system, he/she will be required to input his/her credit information. That is, the

customer will provide his/her credit card number to the system. In addition, he/she

will specify a certain amount of money that can be withdrawn from his/her credit

card and then be transferred to his/her associated bidding account in the Auction

System. The bidding accoune is specifically used for the buying (via placing bids)

and selling activities.

Since a customer has credit card and an account, he/she can transfer fund

between the credit card and the account. For instance, if a user' s account balance

is not sufficient to place a valid bid, he/she can ask the system to debit a certain

amount of money from his/her credit card and deposit it to his/her account. The

money in the user' s account can also be transferred back by the system to his/her

credit card in case of need. Since a customer can place multiple bids, the sum of

2 By default and to keep it simple, we will just call registered users customers in the following
chapters of the thesis

3 For simplification reason, we will call bidding account as account in the following chapters of
the thesis

9

Charter 2.0verview ofOnline Auction System

all bids he/she placed should never exceed the total amount of money available in

his/her account.

2.3 Customer activities

A registered user (customer) can have a series of activities in the system,

depending on the procedure of the auction and his/her purpose.

Login A customer must login the Auction System using his/her username

and password before he/she can use the system. Once logged in, the customer can

browse the current auctions, consult the history of an ongoing auction, join an

ongoing auction, sell item by starting an auction, and manage hislher account.

Browse current Auctions After successful login, a customer can

browse a list of auctions that are currently active. The system keeps a li st of active

auctions and it shows the title of each active auction with a description of the item

for sale, the closing time of the auction and the current highest bid amount.

Bidding in an Auction A customer who wishes to place bid in an auction

must first request to join the auction. The system only allows the customer to join

an active auction. An active auction means the auction is still open.

To place a bid in an auction, the customer must follow certain rules:

1. The seller him/her self cannot bid, i.e. the bidder of the auction must not

be the starter of the auction.

2. The initial bid should be at least as high as the minimum starting price of

the auction item. Each new valid bid should satisfy the minimum

increment rule.

3. A valid bid must ensure guaranteed balance on the bidder's account. That

is, while playing a new bid, the customer' s account balance should be no

lower than the sum of or his/her pending bids plus the amount of the new

bid.

10

Chapter 2.0verview ofOnline Auction System

As long as the customer satisfies the above requirements, he/she is

allowed to place bids across as many auctions as he/she wishes.

The Auction System supports concurrent operations. Therefore, multiple

customers can place bids in the auction at the same time. More generally, multiple

users can interact with the system simultaneously.

Starting an Auction A customer who wants to sell in the Auction

System acts as a seller. By default, one auction has one item for sell. The auction

will be started by the seller.

To start an auction, the seller must provide enough information to the

auction by means of filling out an item form. In the form, the seller will give a

title of the item for sale, provide a detailed description for the item, set a

minimum starting priee, reserve price and minimum increment, the starting date

of the auction and the duration of the auction. The duration can be either a fixed

period or a pre-defined time out. For instance, a fixed period could be 7 days, 14

days or even 30 days. A pre-defined time out could be a one-day idle period since

the last bid.

The seller has the right to cancel the auction anytime before it is started.

Once the auction has been started, the auction will be active and the seller cannot

cancelit.

Closing an Auction Vsually there are two ways to determine the end of

an auction. As we mentioned before, sorne auctions have a fixed period of

duration, e.g 7 days or 14 days or 30 days. Vpon the end of the duration, the

auction is c1osed. Altematively, sorne other auctions set a time-out value to every

new bid. That is, if there is no new valid bid after a certain time-out since the

CUITent valid highest bid, the auction will be c10sed and the winner will be

announced.

11

Chapter 2.0verview ofOnline Auction System

Upon an auction's closing, if there is not a single valid high bid, i.e. if

none of the customers has placed a valid bid or the highest bid does not meet the

reserve priee set by the seller, the auction is regarded as unsuccessful. In this case,

neither the seller nor the buyer who participated in the bidding will be charged.

Consult Auction History Bach auction keeps track of aU the bids

placed in the auction. Once a customer joins an active auction, he/she can browse

the bid history of the auction.

2.4 Goods Delivery after Auction

Usually it is the seller's responsibility to send out the item to the winner of the

auction soon after the auction is c1osed. Once the winner receives the item, he/she

can vote on the quality of the delivery, which will later on be reflected as the

seller's credit ranking in the system by means of recording seller's history. The

auction site eBay is an ex ample of this. Other auction sites could have different

ways to guarantee goods delivery. For example, sorne sites will hold the winner's

money and will not deposit it to the seller' s account until the winner recei ves the

goods and is satisfied on its condition.

2.S FauU-Tolerance Requirements

Software fault tolerance is highly desired in the Auction System. In fact, the

system must be able to tolerate any failure during the operations. As we

mentioned in the problem statement section of chapter one, the system is required

to have the ability to handle concurrently executed operations, i.e. be able to

interact with multiple users simultaneously. In addition, if there is any system

crash, the state of the system should not be corrupted. Specifically, money

transfer between different accounts should be atomieally executed. Any partial

execution of such operations is not allowed in any case.

12

Chapter J.Fondue and Concurrency

Chapter 3.

Fondue and Concurrency

In this chapter, we will systematically summarize the Fondue method, one of the

software engineering methods that are based on object-oriented systems. A

detailed introduction to Fondue can be found in [7], an electronic lecture notes

about Fondue from Swiss Federal Institute of Technology. Briefly, we will coyer

the relationship between Fondue and UML, the relationship between Fondue and

Fusion, the Fondue process and the Fondue models. Afterwards, we will discuss

the concepts of concurrency and its solutions. Here, the contribution of the thesis

is extending Fondue to handle concurrency in OOSD.

3.1 The Fusion Development Method

Fondue is based on Fusion, but it uses UML as notation. Fusion is a systematic

and logical OOSD method originally devised by Derek Coleman and other

researchers in 1994.

Compared with Fondue, Fusion cornes at a relatively early stage in OOSD.

Fusion integrates the essential object-orientation concepts and techniques from

Object Modeling Technique (OMT) by Rumbaugh [8] and Object-Oriented

Software Engineering (OOSE) by Jacobson [9]. Fusion extends these existing

methods and specifically addresses reactive systems.

13

Chapter 3. Fondue and Concurrency

3.1.1 The Fusion Process

The Fusion method covers the phases of analysis, design and implementation. A

special characteristic of Fusion is that Fusion has no requirements capturing phase,

since business customers usually conduct the work by themselves.

The Fusion analysis describes what the system does. It includes:

• Capturing the concepts and relationships of the object model in the

domain of the problem

• Creating the object model

• Developing the interface of the system

• Completing the life-cycle model and operation model

• Reviewing the analysis models by checking modeling consistency against

requirements

The Fusion design describes how the system works. It includes

• Developing object interaction graphs

• Developing visibility graph which shows the structure of the object­

oriented system

• Building class descriptions which specify the internal state and external

interface required by each class

• Developing an inheritance graph of the classes

• Updating class descriptions with the new inheritance information

Implementation is the final stage of the Fusion method, which means

mapping the design to a programming language. Generally, the implementation

phase includes coding, performance inspection and testing.

3.1.2 Advantages and Disadvantages of Fusion

14

Chapter J.Fondue and Concurrencv

Compared with other OOSD methods, Fusion is relatively simple, but it is

comprehensive at the same time since it covers the stages from analysis to

implementation. This nature makes Fusion weIl suited for developing small and

medium-sized systems.

The disadvantage of Fusion method is that it is relatively limited in the

scope of application. For example, Fusion does not deal with user interface design

and database design; Fusion does not deal with synchronization of concurrent

operations in distributed systems; Fusion cannot be applied to real-time systems,

etc.

3.2 UML

UML is the unification of notations used in OMT and OOSE. It also absorbed

contributions from other OOSD notations, such as Harel's [10] Statecharts. UML

has been adapted as a standard by the Object Management Group (OMG). The

current version of UML is 1.5 and UML 2.0 is very close to completion.

As an industry-standard modeling language, UML is designed for a broad

range of applications. The goal of having UML is to provide graphical tools to

visualize, specify, construct and document the software systems.

UML has a set of diagrams that can be used to describe a software system

from different viewpoints. In terms of modeling, different UML diagrams can be

used to show different concems within the sc ope of the modeled system.

3.2.1 Static UML Diagrams

By "static" we mean the diagrams that display structure, state, relationships, and

functionality of the system model.

15

Chapter J.Fondue and Concurrency

The Use Case Diagram describes what the system does from an external

point of view.

The Class Diagram describes the structure of the system by identifying

class entities and their relations. The relations include association, aggregation

and generalization, etc.

The Component Diagram groups different elements of the system into

components. It shows the organization of the components and the relationships

among the components.

The Deployment Diagram reflects the run-time configurations of the

elements in the system, including hardware nodes and software components that

are installed on the nodes.

3.2.2 Dynamic UML Diagrams

By "dynamic" we mean the diagrams that display behaviors of the objects and

elements of the system.

A Sequence Diagram focuses on the time issue and shows how a group of

objects collaborate with each other. A sequence diagram can reflect the behavior

of a use case.

A Collaboration Diagram displays similar information as a sequence

diagram but it focuses on the message passing issue. All messages are numbered

with arrows showing their ordering.

An Activity Diagram represents the control flow of an entire process or

multiple processes of the system. The control flow consists of a set of operations

where the completion of one operation invokes execution of another operation.

16

Chapter J.Fondue and Concurrency

A Statechart Diagram provides a detailed view of state changes of an

individual object and transitions among these states. Usually astate refers to a

value of the attributes of the object being described.

3.3 The Fondue Development Method

As we mentioned, Fondue is based on Fusion, but it extends Fusion in many ways.

Fondue inherited methods and models buiIt in Fusion, but Fondue also extended

these methods and models so that it can deal with a wide variety of applications.

A contribution of the the sis is that we find a way to deal with concurrency

problems in OOSD by extending the Fondue method, which is impossible to be

done in Fusion.

3.3.1 Novelty in Fondue

Because Fondue extended Fusion, there are important improvements or new

properties of Fondue.

First of all, Fondue uses UML as notation instead of using Fusion's own

notations. This makes Fondue widely understandable.

Secondly, Fondue introduces pre condition and post conditions in

operation schemas using Object Constraint Language (OCL)[ll]. This is special

and new in Fondue. It makes the Fondue operation schema more precise with

more formaI specifications.

Thirdly, Fondue uses a restricted form of state diagrams to describe

sequencing of system operations. Using the state diagrams makes the information

visible and makes it easier to understand than describing the same information

using regular expressions as done in Fusion.

17

Chapter 3. Fondue and Concurrency

Fourthly, in Fondue the Concept Madel is finally refined into a Design

Class Model which makes implementation more straightforward. Fusion does not

have such a refinement.

3.3.2 The Fondue Process

Requirements Like other OOSD methods, the requirements capturing

phase addresses the needs of the stakeholders. Use cases are used at this level to

capture the goals of the stakeholders, and a domain model is built to establish a

common vocabulary for the system being modeled.

Analysis During the analysis phase, Fondue defines the intended behavior of

the system, producing a precise specification.

The Concept Madel, Environment Madel, Protocol Madel and Operation

Madel are built at this stage. These models describe the conceptual classes of the

system and their relationships, the operations of the system and the allowed

sequence of the execution of these operations. The models will be described in

more detail in chapter 5.

Design During the design phase, the Interaction Madel, Dependency

Madel, Inheritance Madel and Design Class Madel are produced. The models

here display the attributes and methods of each class, the inheritance relationships

between classes if any, and the interaction among the classes and how these

interactions implement the system operations.

Implementation During the implementation phase, the design is mapped to a

particular programming language. Fondue has pre-defined mapping for Ada95

and Java.

18

Chapter J.Fondue and Concurrency

Verification Verification here means consistency check. In other words,

Fondue defines rules that allow a developer to check the models at each phase for

consistency (correctness and completeness).

3.3.3 The Fondue Notations

As we mentioned before, Fondue uses UML notations. Table 1 shows the

corresponding relationship between the Fondue models and the UML diagrams.

Use Case Model Use Case Diagrams and Text

Concept Model Class Diagram

Dependency Model Class Diagram

Design ClassModel Class Diagram

Table 1. Fondue models VS. UML notations

*. The star symbol here indicates that Fondue makes use of the UML notation

for its own model. This is not direct mapping but shows the corresponding

relationships between Fondue models and UML diagrams. For example, The

Fondue Concept Madel uses UML Class diagram

19

Charter J.Fondue and Concurrency

3.3.4 The Fondue Models

In the following sections, we will introduce the main models we will use for our

case study and briefly introduce other models.

The Environment Model As we can see from table 1, the Fondue

Environment Model makes use of the UML Collaboration Diagram. The

environment model consists of a system and a set of actors. The actors send input

message(s) to the system and receive output message(s) from the system.

An input message will trigger an event in the system. An event can also be

triggered by time (called a time-triggered event). These two kinds of events are

called input events. An input event has an effect on the system, such as a change

of system state or outputting of a message. The effect together with its associated

input event is called a system operation.

The entire environment model consists of a set of input messages (that

invokes a corresponding set of system operations) sent from external actors to the

system, and a set of corresponding output messages returned form the system to

the actors. Note that at any one point of time within the system, there can only be

a single input event and thus a single system operation active. If there are

multiple operations that need to be executed simultaneously, we will need to

provide sorne technique to handle concurrency. Details regarding this issue will

be discussed later on.

The Domain Model The Domain Model extracts and identifies the

concepts in the problem domain. It also establishes relationships between the

concepts. For example, classes are extracted from the specification of a problem.

Relationships between classes are established afterwards. These relationships

include Association, Aggregation, Generalization, Specialization and so on. The

classes and their relationships form the domain model.

20

Chapter J.Fondue and Concurrency

The Concept Mode} The Concept Madel is a subset of the Domain

Madel. It is created by adding the system boundary to the domain model. AlI

objects, classes and relationships that belong to the environment are excluded

from the concept model. The actors and their communication paths to the system

that originally belong to the domain model are also excluded from the concept

model. Classes and relationships of the concept model only specify concepts that

belong to the system itself.

The Operation Model The Operation Madel specifies effects of the system

operations on the conceptual state specified in the concept model. In addition, the

generated output messages are specified. Every system operation specified in the

environment model must be described in the operation model by an operation

schema. The template for the Fondue operation schema is shown in figure 2.

Operation: The system class name followed by the operation name and its

parameter list, if any.

Description: A description of the purpose and effects of the operation

Notes: Any additional comments of the operation (optional)

Use Cases:

Scope:

Message:

New:

Alias:

Pre:

Post:

List of related use cases. (optional)

List of aIl classes and associations involved in the operation

List of message types that are output by the operation together with

their receiving actor classes

List of the names of the new objects that are to be created by the

operation

List of names that act like aliases (optional)

Pre stands for precondition. It is a Boolean expression written in

OeL, representing a condition that must be met in order for the

operation to be defined.

Post stands for post condition. It is a Boolean expression written in

OCL, representing the effects of the operation on the system

Figure 2. Fondue template for operation schema

21

Chapter 3.Fondue and Concurrency

In order to guarantee the post condition to be true, the precondition must

be met before executing the operation. Otherwise, the effect of the operation is

undefined. Statements in the post condition are instantaneous semantics, meaning

that each state change is executed atomically.

The Protocol Model The Protocol Madel is depicted by a Statechart

diagram, which allowed sequencing of input messages that can be sent to the

system throughout its lifetime. That is, from the initial state of the system to the

final state of the system.

The protocol model does not use the full power of UML Statecharts. The

advantage is that such a diagram keeps a high level of abstraction, which is good

for the analysis phase. Moreover, it avoids duplicated information that is already

presented in the concept model and environment model.

The Interaction Model The Interaction Madel shows how the run-

time interaction among objects takes place to support the functionality specified

in the operation model.

The interaction model consists of collaboration diagrams, and pseudo code

if needed. Since a collaboration diagram can only show interactions among

objects, pseudo code might be needed to describe complicated algorithms within a

method. Every operation schema from the analysis phase must be described by a

collaboration diagram.

To create an interaction model, firstly aIl relevant objects that are involved

in the operations must be identified. (The operation schema from the analysis

phase can provide related information.) Then the roles of the objects can be

established, such as which object is the controller and which objects are the

collaborators. Afterwards, the messages and the message sending paths between

22

Chapter 3. Fondue and Concurrencv

objects must be decided. Finally, we need to check consistency between the

collaboration diagrams.

The Design Class Model The Design Class Madel is built based on

the completed Interaction Madel. The Dependency Madel and the Inheritance

Madel are also helpful when building the Design Class Madel.

The dependency model de scribes the dependencies among classes. The

communication paths between the interacting objects are also shown in the

dependency model. The inheritance model describes the inheritance structure

between classes. The design class model consists of all design classes with

attributes and methods used in all collaboration diagrams of the interaction model,

and aIl associations among these classes.

3.3.5 The Visualized View for Fondue

Figure 3 shows a visualized workflow indicating how the analysis is realized in

the design during the Fondue process. The workflow is based on the fact that the

use case model has been built in the requirement elicitation phase. In the figure,

the Environment Madel, Concept Madel, Protocol Madel and Operation Madel

belong to the analysis phase. The Interaction Madel, Dependency Madel, Design

Class Madel and Inheritance Madel belong to the design phase.

23

Chapter J.Fondue and Concurrency

~+> each input event
-> system op eration . .§ [j

'li! [;

~ ~ Verify al! output
->operation schema

Œ.l ê' ! .~ events and actors ,-___z... ___ ---.,.

S'J [;
:::
<<8

Protocol Model

analysis classes -> collaborators

Concept Model

al! analysis classes
should be used

al! navigable associations
should be represented

classes and attribut es

'" ","0
"0 [j
a ~

il.,g
El Sb
§'ê
~"O
8 ~

generation 1 specification re1ationships ,-_---"_---''---__ ---.

Inheritance Model

Figure 3. Fondue, from Analysis to Design

"0
Œ.l
N

j '" Œ.l

Œ.l ~
.0 .0
"0 '5
"3 ~ a
.fii "0

'" ~
"0 '" a "0

il
a

il El El
~

24

Chapter 3. Fondue and Concurrency

3.4 Addressing concurrency

Concurrency is our major concern in this thesis. However, the Fondue method

does not automatically handle concurrency. A major purpose of this thesis is to

extend the Fondue method to deal with concurrency. We will discuss concepts

and solutions about concurrency here. How the concurrency related problems are

solved during the Fondue development process will be illustrated in the following

chapters.

3.4.1 Concurrency

Where does it come from? In general, concurrency refers to simultaneous

execution of multiple processes or operations in computer systems. Concurrency

exists in both centralized and distributed systems. In a centralized system, a

concurrent situation could be that the system is sending out messages while

listening to mouse clicks at the same time. In a distributed system, the concurrent

situation arises when two or more operations from different client sides are trying

to access the same piece of data on the server at the same time. We are more

interested in dealing with concurrency in distributed systems.

What is the problem? Suppose we have an online banking system.

At a certain time, the bank teller is depositing a customer's weekly salary into

his/her account. In the meanwhile, the customer is trying to transfer funds from

his/her account. Both of the operations will modify the account balance. Before

transferring funds, the customer needs to check the account balance to see if

he/she has enough money. In this case, the customer should not be able to get the

balance until the deposit operation is fini shed. Otherwise, the customer will get an

incorrect balance and make a wrong decision on whether to transfer funds or not.

3.4.2 Solution

25

Chapter 3. Fondue and Concurrency

Briefly, the point in addressing conCUITency is to make updates atomic. In our

example above, the customer should not see an intermediate balance when the

deposit operation is being executed. He can see the balance either before or after

the deposit. In addition, the deposit operation and the fund transfer operation

cannot modify the balance at the same time. Even if the two modifications are

invoked simultaneously, one modification should be blocked outside the data until

the other modification is fini shed.

3.4.2.1 Monitor - A Simple Solution

The concept of monitor originaIly cornes from a paper of Hoare [12] in 1974. The

use of Monitors is a simple technique that guarantees atomic updates.

When we apply monitor to sorne data (for instance, an object, a variable),

the monitor adds a lock to the data so that the data inside the monitor is not

accessible from the outside until the lock is released. For example, if there are

multiple procedure caIls that are trying to access sorne data inside the monitor

simultaneously, only one procedure calI enters the monitor at any one time. AlI

other procedure caIls have to wait outside of the monitor until the CUITent

procedure in the monitor is fini shed and leaves the monitor. This property ensures

atomic updates on the data.

In addition to providing mutual exclusion, monitors also have other

properties. For instance, internaI variables are private and they are not visible

from outside the monitor, hence they do not reference data outside the monitor

except through parameters.

3.4.2.2 Transaction - Advanced Solution

A transaction [13] is a logical single unit of work that groups together a set of

operations performed on transactional objects (also known as data objects).

26

Chapter 3. Fondue and Concurrency

The operations begin, commit and abort are the three standard operations

of a transaction. They form the boundary of a transaction. The operation begin

marks the start of a new transaction, operations to modify transactional objects

can now be executed. A transaction can abort during its execution. If this happens,

the system will roll back to the state at the beginning of the transaction. When a

transaction commits, it means the transaction has executed successfully and it

wants to finalize the results. The effects of a committed transaction become

permanent and will be visible to the outside.

A transaction has the ACID properties: Atomicity, Consistency, Isolation

and Durability.

Atomicity A transaction is either performed completely, i.e. all of its

data modifications are performed, or not at all. There is no observable

intermediate state between the initial state and the result state.

Consistency Transactions preserve the consistency of the application

state. The results of a transaction are considered to be consistent if the produced

data satisfies all constraints and specifications of the application. Since the

consistency criterion is application dependent, it is up to the programmer to write

transactions in such a way that they produce consistent results.

Isolation Isolation requires that concurrently executed transactions

do not affect each other. Data modifications made in a transaction are isolated

from any other concurrent transactions. Transactions can share objects but data

modifications must be serialized.

Durability Durability requires that the effects, or in other words, the

data modification of a successfullY completed transaction stays permanently in the

system. Even after system failure, the system must be able to resolve the results.

27

Charter 3. Fondue and Concurrency

These properties of a transaction ensure atomic updates on the data. Since

a transaction can contain a group of operations that involve multiple transactional

objects, it is a more advanced technique to handle concurrency compared with

monitor.

28

Chapter 4. Requirement Elicitation

Chapter 4.

Requirement Elicitation

This chapter is about requirement engineering, which is the first stage in Fondue

method. To discover and document the functional requirements of the system,

Fondue uses use case [14] as a communication means between the technical

developer and the non-technical stakeholder of the software.

4.1 The Fondue Requirement Elicitation

A use case is a textual description describing the interactions of a particular actor

with the system in pursuit of a precise goal. It must contain information on:

(1) How the use case starts and ends

(2) The context of the use case

(3) The actors and system behavior described as intensions and

responsibilities

(4) AU the circumstances in which the primary actor's goal is reached or not

reached

(5) What information is exchanged

The Fondue use case addresses the behavioral requirements of the desired

system in a way that is c1early related to the motivation for the system. The

29

Chapter 4. Requirement Elicitation

motivation, in most cases, refers to the business vision of stakeholders. The

general text-based use case style that Fondue uses is proposed by Cockburn [15].

Use cases in Fondue are c1assified into three levels: summary-Ievel, user

goal-Ievel and subfunction-Ievel. The summary level is the highest level, which

gives a global view of all possible interactions with the system. The user goal

level is the median level use case, which describes a goal that a primary actor is

trying to achieve in the system. The sub-function level is the lowest level. Sub­

function use cases are usually interactions that are required to be carried out in

several user goallevel use cases.

Fondue provides a template for use cases. (See figure 4)

Use Case:

Scope:

Level:

Intension:

Frequency:

Define the use case name

Define what system is being involved

Define the level of the use case

Statement of the goal and the conditions that make the goal happen

Indicate any possible concurrency that exists in the system. (This is

a new section of the template that is added by us to address

concurrency)

Primary Actor: Role name or description of the primary actor

Precondition (optional): The condition in the system that has to be satisfied

before the use case can be conducted

Main Success Scenario:

Extensions:

Use numbered steps to describe the interactions between the

primary actor and the system

Each extension refers to a step in the main success scenario,

providing either altered condition or exception al behavior

Figure 4. Template of Fondue Use Case

30

Chapter 4. Requirement Elicitation

4.2 The Buy and Sell Goods Use Case

Now we can apply the use case template to our case of Auction System and create

the use cases. The Buy and Sell Goods by Auction use case (See figure 5) is the

summary level use case. It presents the general view about the eus tomer' s

activities within the Auction System.

Use Case:

Scope:

Level:

Buy and Sell Goods by Auction

Auction System

Summary

Intension: The intension of the User is to buy and sell goods by auctions over

time.

Frequency: A User can be involved in multiple auctions at any one time.

Multiple Users can interact with the system concurrently.

Primary Actor: User (becomes Customer once he/she has registered hirn/herself

with the system)

Main Success Scenario:

All Users must first register with the system before they have the right to use the

system.

1. User registers with System, providing System with registration

information.

2. System validates the registration information and enroUs the User.

3. Customer4 identifies hirnlherself to System.

Steps 4-6 can be performed in paraUel and individually repeated. A Customer

may bid and sell in many auctions at any one time.

4. Customer increases credit with system.

5. Customer buys an item on auction.

6. Customer seUs an item by auction.

7. Customer exits System.

8. Customer requests to cancel his/her enroUment.

4 Now the User becomes a Customer since he/she successfully registered with the system

31

Chapter 4.Requirement Elicitation

Extensions:

la. User is a1ready enrolled with the system. Use case continues at step 3.

2a. System ascertains that User did not provide sufficient information to

register himlher.

2a.l System informs User, use case continues at step 1.

3a. System fails to identify Customer; use case ends in failure.

Figure 5. The Buy and Sell Goods by Auction Use Case

Note the underlined phrases in the above use case refer to user goallevel

use cases that need to be elaborated further.

User!
Cn'itomer

Figure 6 shows the Ruy and Sell Goods by Auction Use Case Diagram.

«include» ./
./

User Registration ;

1
«include»;

1

Increase Credit

1

;

1

Auction System

\

\

< <include>">
\

«inc1ude» 1
1

1

Search for Auction
Item

< <inc1ude> >

" «inc1ude» "

"­
«include» "

1 dentify Customer

Sel! item on
Auction

«include» 1

1

Cio s e Auction

Figure 6. The Buy and Sell Goods by Auction Use Case Diagram

In the above diagrarn, each short text description circled in an ellipse

represents a use case. Each dashed line with an arrowhead indicates a directed

32

Chapter 4. Requirement Elicitation

connection between two use cases and the «include» stereotype specifies the

hierarchical relationship between the two use cases. As indicated in figure 6, aIl

use cases are included within the scope of the auction system. The solid line

between the external actor and the summary level use case indicates the

interaction relationship between the customer and the system.

In addition, the user goal level use case, Ruy item on Auction, will be

presented in detail (see figure 7) since it is closely related to the placeBid

ex ample we will use in the foIlowing chapters to address concurrency.

Use Case:

Scope:

Level:

Buy item on Auction

Auction System

User Goal

Intension: The intension of the Customer is to foIlow the auction, which may

then evolve into an intention to buy an item by auction, i.e. he/she

may choose to bid for an item.

Frequency: The Customer may bid in many different auctions at any one time.

Primary Actor: Customer

Precondition: The Customer has aIready identified himlherself to the System

Main Success Scenario:

Customer may leave the auction and come back again later to look at the

progress of the auction, without effect on the auction; in this case, the Customer is

required to join the auction again.

1. Customer searches for an item under the auction.

2. Customer requests System to join the auction of the item.

3. System presents a view of the auction to Customer.

The steps 4-5 can be repeated according to the intensions and bidding policy of

the Customer

4. Customer makes a bid on the item to System

5. System validates the bid, records it, secures the bid amount from

Customer' s credit, releases the security on the prevlOus high bidder' s

33

Chapter 4.Requirement Elicitation

credit (only when there was a previous standing bid), informs participants

of new high bid, and updates the view of the auction for the item with new

high bid to an Customers that are joined to the auction.

The user has the high bidfor the auction

6. System closes the auction with the winning bid by Customer

Extensions:

2a. Customer requests System not to pursue item further; use case ends in

failure

3a. System informs Customer that auction has not started: use case ends in

failure.

3b. System informs Customer that auction is closed: use case ends in failure.

5a. System determines that bid does not meet the minimum increment.

5a.1 System informs Customer; use case continues at step 4.

5b. System determines that Customer does not have sufficient credit to

guarantee the bid:

5b.1 System informs Customer; use case ends in failure.

6a. Customer is not the highest bidder:

6a.l. System closes the auction; use case ends in failure.

Figure 7. The Buy Item on Auction Use Case

From the use case, it can be seen that the customer' s intention to buy an

item in the auction triggers the interactions between the customer and the system.

In the body of the use case, The Main Success Scenarios and Extensions of the

use case de scribe the interactions between the system and the external actor.

In both the summary Ievel use case (figure 5) and the user goal level use

case (figure 7), we used the Frequency section to indicate the possible

occurrences of concurrent interactions between the actors and the system. This is

interesting in the Fondue use case model because in this way it can be described

in the context of concurrent applications.

34

Chapter 5.

Analysis

Chapter 5.Analysis

The Fondue analysis is conducted by describing the system and its environment

using a collection of models, each model describing a different aspect or view.

This chapter walks through the Fondue analysis phase by working on the Auction

System case study.

In our specification of the Auction System, we created the Environment Madel,

Concept Madel, Protocol Madel and Operation Madel. As an extension to the

tradition al Fondue models, we added new notations in most of these models to

address concurrency. To clearly indicate potential occurrences of concurrent

operations in the system, we invented a set of reference tables based on the

protocol model. These tables work with the sequential operation schema to help

the developer identify shared concepts and eventually transform a sequential

operation model into a concurrent version.

5.1 The Fondue Analysis Process

In the Fondue requirement elicitation phase, we have developed the Use Case

Madel and specified the problem domain. The Fondue analysis phase cornes right

after the requirement elicitation. Typically, the process of analysis follows the

steps as described below:

35

(1). Develop the Environment Madel

(2). Develop the Concept Madel

Chapter 5.Analysis

(3). Develop the Behavior Madel, which consists of the Protocol Madel

and the Operation Madel

(4) Check the specification of the models for consistency and

completeness

5.2 Environment Model

The Environment Madel consists of a set of input messages sent from the actors

(i.e. entities external to the system), and the corresponding set of output messages

sent from the system to the actors.

Because Fondue is designed for developing reactive systems, every

transformation of system state, executed in form of a system operation, must be

triggered by an input event sent by sorne actor. The only exception is time­

triggered events. The associated system operations are executed by the system in

an automated way, triggered by elapsed time. One can however, for the sake of

uniformity, imagine that they are triggered by a fictitious external clock actor.

Figure 8 shows aIl the input and output messages that involve User actors

(including registered and unregistered users) and Credit Institution actors in the

Auction System.

36

Chapter 5.Analysis

register
deRegister
logOn : Allct10nSystem
logOff
proposeAuction
cane elA.uction
browseAuction
joinAuction
placeBid
getHistory

*
addCredit
removeCredit Transfer c

* :."" =:, 0 .. * ..
""'"' ""'"'

~O •••

«active» requestF ailed _ e :C redit, In'ititllwm

: User invalidEnrollment_ e
trans ferSuc c es s

invalidLoglnfo _ e
invalidBid _ e
auctionOpen
auctionClosed «lime triggered operations»
auctionCancel1ed
bidSucceeded clos eAuction
bidF ailed _ e
itemSold

Figure 8. Environment Model of the Auction System

In general, input and output events are asynchronous. As a result, a system

operation that is triggered by an input event coming from an actor most of the

time sends back an output event in order to inform the actor of the outcome of the

operation. Output events that notify an actor of exceptional outcomes use the

naming convention _e . In the Auction System, for instance, placing a bid by

sending the placeBid event might trigger the following output events:

• bidSucceeded, in case the user wins the auction

• bidFailed_e, in case sorne other user places a higher bid

• invalidBid_e, in case the proposed bid is not valid, e.g. bid amount is lower

than the CUITent bid

To illustrate that we have considered conCUITency in the environment model, we

added the multiplicity notation "O .. *" to the actors and the input events. Adding

multiplicity to user actors means multiple users can interact with the system at

37

Chapter 5.Analvsis

any one time, and several actors can spontaneously send input messages to the

system at a given time. Similarly, multiple Credit Institutions can interact with the

system at the same time. Adding multiplicity to input events means several users

can send input messages to the system at the same time. We also added the

«active» stereotype to the user actor, stating that when the users are in a

spontaneous and active state that they can send input messages to the system as

they wish. The reactive system must be able to handle concurrent requests sent by

different users.

5.3 Concept Model

The Concept Madel is a subset of the Domain Madel. The Domain Madel

captures aIl concepts within the domain of the problem, such as aIl classes and

their relationships, external actors and their communication paths with the system.

The Concept Madel offers insight into the problem domain, and excluded those

objects, classes and relationships that belong to the environment. In our case, the

concept model provides a description of the conceptual system state of the

Auction System represented as classes, attributes and associations between classes.

5.3.1 Building the Model

To construct the concept model, one must first brainstorm a list of candidate

classes. Real entities such as people, organizations, places, and physical objects

can be considered as candidate classes. It is also possible to use abstract concepts

as candidate classes. In the Auction System, key concepts or objects can be

identified by going through aIl use cases and highlighting aIl nouns. From the Buy

Item on Auction use case (figure 7), we extracted the classes Customer,

Auction, Bid, Account, and relationships such as Makes and JoinedTo.

The complete concept model for the Auction System is shown in Figure 9.

The system class name is called AuctionSystem.

38

Chapter 5.Analysis

.:: <Systellt,'> >
AuctiouSystem

clUTeotDate: Date
creditDetail: CrediInfo

BM myBids Makes
1 <<l~l;» .. 1

O •• *
Cl"ellitIlI.'ltitutiou

amount: Money

institution 1

currentHighBid 0 .. 1 0 .. * history

"0 c:: 1 i 'tl
~

ACCOlUlt ~
., .. iiii

crec1itDetai!: crec1itInfo tE 4!
acutalB alanc e: M oney
IguaranteecIBalance: Money

wins 0 .. 1 it 1

AllctÎon

startingDateDate bidder

startingPric e: Money
Sellsln ,II; reservePrice: Money 0

minimumIncremeot: Money myAuct10fts seller
1

description: Goodslnfo
0 .. * O •• .. Cu~tomel'

started: B 0 olean JoinedTo
clos ed: Boolean detai!: CustomerInfo

joinedAuctions currentMbrs loggec\On: Boolean

1 1

1 1
Fî:l-edPerlodAuction BidTiIne(lAuc tion

1

1 1

«rep»
duratian: P eria d maxBidPause: Period User

Figure 9. CouceptModel of the Auction System

Note the concept model itself is not extended to address concurrency.

However, it provides the base to identify possible shared concepts at a later stage.

The concept model of the AuctionSystem system consists of six (normal) classes:

Auction, FixedPeriodAuction, BidTimedAuction, Bid, Customer and Account, two

«rep» classes: User and Creditlnstitution that represent external actors, and

several (non-composition) associations.

• Auction and Bid:

39

Chapter 5.Analysis

The Auction class contains bids that are made for the goods on sale in an

auction. The HasHighBid association is derived: it stands for a link between an

auction and its highest bid. Auction is an abstract class that has two subclasses:

FixedPeriodAuction and BidTimedAuction. These two classes inherit aIl attributes

and associations of the Auction class.

• Customer:

The Sellsln and loinedTo associations link customers to the auctions that

they sell goods in and that they are joined to, respectively. The Makes association

links customers to their bids. The Has association links customers to their

accounts. As indicated by the multiplicity for customer and for account, one

customer has one account.

• Account:

The Account class contains two attributes and one derived attribute:

creditDetails represents the information needed by a credit institution to perform

a transfer into or out of the bank account of the associated customer.

actualBalance represents the amount of credit that the associated customer has

with the Auction System. The guaranteedBalance is a derived attribute that will

be discussed in the section 5.3.2.

The concept model also shows two system-wide attributes, currentDate

and creditDetail, which hold the information needed by a credit institution to

perform a transfer into or out of the bank account of the enterprise owning the

Auction System. This information will be needed when depositing the

commissions of the auctions.

5.3.2 Derived Constraints and Attributes

Sorne concepts that are relevant cannot be expressed in UML. We can, however,

specify them by using addition al OCL constraints.

40

Chapter 5.Analysis

For instance, the invariant allPositiveBalancesForCusts states that account

balances must not drop below zero:

context: Account inv allPositiveBalancesForCusts:

self.actualBalance ~ 0;

The invariant onlyActiveAuctsHaveMbrs states that only auctions that have

been started but are not closed can have links to customers via the loinedTo

association.

context: Auction inv onlyActiveAuctsHaveMbrs:

not self.started or self.closed irnplies

self.currentMbrs~isEmpty 0;

A customer can only be joined to an auction if he or she is logged on:

context: AuctionManager inv 10ggedOutCustsAreNotJoinedToAnyAuct:

self.customer~

foraH (c 1 not c.loggedOn implies c.joinedAuction~isEmpty 0);

The concept model of the Auction System defines a derived attribute and a

derived association. The association HasHighBid, which links an auction to its

current highest bid, is defined in OCL as follows:

context: Auction inv:

self.currentHighBid =
self.history ~ any(bl b.amount = self.history ~ maxO)

41

Chapter 5.Analysis

The textual form translation of the association is: The CUITent high bid

(named currentHighBid) of an auction is equivalent to the bid that has the

maximum amount of aIl the placed bids on the auction.

The guaranteedBalance attribute of the Account c1ass is a derived attribute.

It can be regarded as an invariant throughout the operation. Its definition in oeL
is as follows:

context: Account inv:

self.guaranteedBalance = self.actualBalance - self.myBids -+

select (bl b.wins -+ exists(al not a.c1osed)).amount -+sumO

The guaranteedBalance attribute stands for the maximum amount of

money that the customer has available in his/her account for bidding. It is

calculated by subtracting from the customer' s actual balance aIl out standing high

bids he/she has in aIl active auctions.

5.4 Protocol Model

The Protocol Model uses the state diagrams of UML. It specifies the sequence

that the events are to be sent to the system under development. It can also be

extended by adding the «concurrent» stereotype to the model in order to record

the inherent concurrency of the system.

The Auction System is a highly dynamic system, featuring competitive

and collaborative concurrency. It stems from the fact that a customer can

participate in multiple auctions simultaneously, and that the system must be able

to serve multiple customers. In order to describe the concurrency of such a system,

two partitioning techniques are adopted. One is called divide-by-actor, and the

other is called divide-by-collaboration.

42

Chapter 5.Analysis

The divide-by-actor technique de scribes the interaction protocol between

the system and each actor type separately by using a composite state, which is

referred to as an actor-activity-state. For the purpose of naming convention, such

states take an ... Activity suffix. After identifying aIl actor types, each actor­

activity-state will be given a multiplicity that matches the number of possible

concurrent instances for each actor type. The partitioning results in actor-activity­

states. In the concurrent sense, the states are conjoined with each other to form the

protocol model for the system. As a result, this way ensures establishing aIl

inherent concurrency for the system, and capturing aIl events generated on the

reception of messages from actors.

The divide-by-collaboration technique is used in sorne systems where the

interaction between the system and each actor is fairly simple, but the

collaborative behavior is complex. The technique specifies the interaction

protocol between the system and its actors in terms of distinct types of

collaboration between them. Again, as a naming convention, the collaboration is

represented by astate named with a ... View suffix, which stands for a view-state.

The view-states do not necessarily represent inherent concurrency of the system.

Instead, they restrict the concurrent behavior of collaborating independent actors.

This is different from the actor-activity-states.

The protocol model for the AuctionSystem system is shown in Figure 10. It

uses the partitioning techniques we mentioned above and therefore it consists of

two concurrent states: UserActivity and Auction View.

The UserActivity state models the protocol that represents the interactions

between the system and the User actors. As we mentioned in the concept model,

User actor here includes User of the system and the Credit Institution. The

Auction View state models the protocol for the auctions, representing the

collaboration between various parties during the auctions. Since the number of

opening auctions is dynamic, the Auction System is auto-concurrent, meaning that

43

ChaRter 5.Analysis

a dynamic number of auctions are opening concurrently. Similarly, the number of

customers participating in an auction is dynamic. Thus the UserActivity and

Auction View states are modeled as auto-concurrent states, as marked by the

multiplicity notation "0 .. *". Each concurrent state represents the interaction

between the system and an individu al User actor.

«concurrent»
AuctionManagerActivity

< < concurrent> >
UserActivity

< <c oncurrent> >
Auction View

Figure 10. Protocol Model of the Auction System

o . .'"

0.,*

Note the model and its two sub-states, UserActivity and AuctionView, are

marked by the «concurrent» stereotype. The «concurrent» stereotype

notation is an extension to the Fondue protocol mode!. It highlights the fact that

events in the model can be invoked concurrently.

Figure Il shows the sub-states of the UserActivity auto-concurrent state.

44

Charter 5.Analysis

«concurrent»
UserActivity

MemberActivity

0 ... "

Active

~~ ______ Bi_ddm_'_~_c_tim_'t_y ____ o'_"*~J
--- -----

~~------s-~-.-~-c-tim-'t-y----o.-.. *~J

- - -
~----c-re-di-.tNIana--gem-en-tA-cti-\n-'ty-0-.-.. ---· J

Figure 11. The UserActivity Auto-coucurrent State

The above figure indicates that a user must register before he/she start to

use the system. Once registered, a user (becomes a customer) also needs to log on

before he/she is able to participate the bidding, selling or credit management

activities. In the reallife, because a customer cannot physically perform multiple

activities in parallel, the Active state is not concurrent. Likewise, although a

customer is allowed to log off the system at any time after he/she has logged on,

he/she cannot physically log off while placing a bid (or perform any other

operation) at exactly the same time.

45

BrowseAuction n
Bidding Activity

JoinAuction

CreditManagementActivity

addCredit
removeCredit

Chapter 5.Analysis

o. ..
Selling Activity o

Figure 12. BiddingActivity, SellingActivity and CreditManagementActivity

Figure 12 shows the sub-states of the BiddingActivity, the SellingActivity

and the CreditManagementActivity. The BiddingActivity is auto-orthogonal. This

means that the customer can be participating in possibly many different auctions

at any one time. The SellingActivity state is aIso auto-orthogonal. Similarly to

BiddingActivity, this means that a customer can be selling in possibly many

auctions at any one time. The CreditManagementActivity state is orthogonal, for a

Customer has only one account to manage during the auction.

There are transitions in systems that are triggered by time events. In the

Auction System, the BiddingActivity and SellingActivity states contain transitions

with when (timeToStart) and when (timeToClose) time events. They

are defined as Boolean expressions that evaluate to true when the auction in

question is started or c1osed. The OCL definition of timeToStart is presented

46

Chapter 5.Analysis

be1ow. In this context, a is the auction object in question and self is the system

object. timeToStart is true if the start date of the auction has arrived.

declares: timeToStart: Boolean Is a.startingDate >= self.currentDate;

Figure 13 shows the Auction View auto-concurrent state. It precisel y

captures the concurrency that concentrates on the collaborations between actors

who send input events to the system. The figure shows the accepted input events

from the auction point of view. Joining, bidding and reading (getting history) are

only permitted when the auction has started and until the auction closes.

«concurrent»
AuctionView

«concurrent»
Started

0.*

«concurrent» 0 «concurrent» 0 «concurrent» 0 ...
Joining Bidding

PlaceBid Q
~-~]<

-----------:Jo<:. when(timeToClose)/c1oseAuction
cance1Auction

Reading

GetHistory

Figure 13. The Auction View Auto-concurrent State

The closing time of an auction depends on the kind of auction. For this

reason, the OeL expression for timeToClose contains an if-then-else construct.

In the case of fixed-period auctions, timeToClose is true if the starting date

plus the fixed duration has arrived. In the case of bid-timed auctions,

timeToClose is true if the state Bidding of AuctionView has been active for

longer than the maximum pause allowed in bidding. In order to express this part

of the condition, the definition makes use of actTime, a predefined attribute of

47

Chapter 5.Analysis

every state, which measures the time that has elapsed since last entering the state.

In the model, the auto-concurrent state Bidding is reentered (and actTime is

restarted) every time a bid is placed.

declares:

timeToClose: Boolean Is

if a.oclIsTypeOf (FixedPeriodAuction) then

a.startingDate + a.duration <= self.currentDate

else

Auction View: :Bidding.actTime > a.maxBidPause

endif;

5.5 Reference Table

The protocol model has shown us the sequence of the operations. Since we have

extended the protocol model by adding the «concurrent» stereotype, we can

also extract essential information about what operations might be executed

concurrently. According to this, we can create a reference table to give the

developer a clear view of those concurrent operations.

General Reference Table The protocol model of a dynamic system

contains information about concurrency. Any Activity or View sub-state of the

protocol model indicates the possible concurrency of input events. In our case, we

need to look at Auction View and UserActivity.

The purpose of the general reference table is to extract the concurrency

information from the protocol model, and then lists potential concurrent input

events in a table by grouping them according to the Activity and View sub-states.

At a later stage, the developer will be able to use the table as a reference to look

up possible concurrency information when he/she is creating the concurrent

operation schema (see section 5.6.3). Table 2 is the general reference table for the

Auction System. The input events are grouped by AuctionView and UserActivity.

48

Chapter 5.Analysis

Note that aIl input events for the AuctionView, including events that

belong to its sub-state Started, focus on collaborations on the auction itself, so we

do not need to divide them into smaller groups to further examine their potential

concurrency status respectively.

The UserActivity has sub-states, namely, bidding activity, selling activity

and credit management activity. AlI input events concentrate on different types of

activities. They might not affect each other even in the case when they are

invoked concurrently. Renee, to examine their possible concurrency status, we

would be better to divide them into smaller groups by the nature of the activities.

Protocol Model Concurrent Input Events

proposeAuction

caneelAuction

Auction View
joinAuction

closeAuction

getRistory

placeBid

Registration
register

deRegister

Logging
10gOn

UserActivity
10gOff

addCredit
Credit

removeCredit

browseAuction

Table 2. General reference table for Auction System

49

Chapter 5.Analysis

Table 2 shows that concurrent input events of auctions include

proposeAuction, cancelAuction, joinAuction, closeAuction,

getHistory and placeBid. Concurrent input events of user activity include

registration related (register and deRegister), logging related (logOn and

logOff), credit related (addCredi t and removeCredi t) and browsing

(browseAuction). The input events that belong to both UserActivity and

Auction View are not repeated in the UserActivity part of the table.

Specifie Reference Table The general reference table groups potential

concurrent input events, but it is not specifie enough to indicate possible

concurrent invocations between every two input events. For instance, although aU

operations in Auction View are grouped together, suggesting they have the

possibility to run concurrently, there could be two of these operations that will

never be executed concurrently. Obviously, such information is needed when the

developer is working on the concurrent operation schema (see section 5.6.3).

To further specify the occurrence of concurrent invocations of the input

events, we can create separate reference tables for the View part and the Activity

part of the general reference table, respectively. The concurrency information

provided in the separate reference tables will be more specifie.

The specifie reference table can be created with the help of the protocol

model. On one hand, the protocol model naturaUy specifies the execution

sequence of the input events. On the other hand, with our extension to add

«concurrent» stereotype to the model, concurrency information for the input

events can be extracted.

In our case, we should create separate specifie reference tables for

Auction View and UserActivity. For UserActivity, smaller specifie tables can be

created according to different types of activities. We will take the table for

Auction View as the example.

50

Chapter 5.Analysis

The specifie reference table focuses on input events to a specifie auction.

For all the input events in Auction View, we want to see if one event could be

invoked concurrently with other events. An input event leads to a system

operation.

For each auction, there is only one item for sell, therefore only one

proposeAuction operation is needed, i.e. it is not possible to have two

proposeAuction operations running concurrently. From the protocol model

for AuctionView, the sequence indicates the proposeAuction operation is

executed before all other operations (see figure 13 in section 5.4). Therefore,

proposeAuction will never run concurrently with any other operation.

The «concurrent» stereotype for the Started sub-state of Auction View in

figure 13 indicates that the Started sub-state is auto-concurrent. Thus, the three

operations that belong to the Started sub-state, namely, j oinAuction and

placeBid and getHistory, could be executed concurrently.

In addition, the joining, bidding, reading (getting history) activities

themselves are auto-concurrent, respectively (see figure 13). For instance,

multiple customers could join the auction at the same time. Rence, one

j oinAuction operation could be executed concurrently with another

j oinAuction operation invoked by a different customer. Similarly, multiple

placeBid operations could be executed concurrently, and multiple

getHistory operations could be executed concurrently.

According to the auction rules, once an auction is started, it can not be

cancelled. As indicated in figure 13, a seller can either start an auction or cancel

an auction after proposing the auction. Rence, a cancelAuction operation cannot

be executed concurrently with any other operation. Since only the seller of the

auction can cancel it, it is not possible to have multiple cancelAuction

operations run concurrently.

51

Chapter 5.Analysis

The closeAuction operation is a time-triggered event. It could fire

anytime during the auction, so it could run concurrently with j oinAuction,

placeBid and getHistory.

Once the analysis for potential occurrences of concurrent input events is

finished, the specifie reference table can be created easily. Table 3 is a specifie

reference table for concurrent input events of the auction, i.e. the Auction View.

For space reason we cannot list the full names of all the operations. The

abbreviations and their corresponding operations are:

Propose: proposeAuction

Bid: placeBid

Cancel: cancelAuction

~ Propose Join

Propose - N

Join N Y

Bid N Y

History N Y

Cancel N N

Close N Y

Bid

N

Y

Y

Y

N

Y

Join: joinAuction

History: getHistory

Close: closeAuction

History Cancel Close

N N N

Y N Y

Y N Y

Y N Y

N - N

Y N -

Table 3. Specifie Reference table for the Auction View

In table 3, the symbols Y, N and - are used to indicate whether

concurrency is possible between two input events in a certain auction. An

occurrence of Y means two operations could happen concurrently. An occurrence

of N means two operations cannot happen concurrently. An occurrence of -

means concurrency is not applicable here.

52

Chapter 5.Analysis

5.6 Operation Model

The Operation Model specifies effects of the system operations on the conceptual

state specified in the concept model. The generated output messages are also

specified. To build the operation model, a separate operation schema has to be

written for each operation. The operations for the AuctionSystem system inc1ude:

register, deRegister, logOn, logOff, joinAuction,

proposeAuction, cancelAuction, placeBid, browseAuction,

getHistory, addCredit, removeCredit, and the time-triggered

closeAuction. To illustrate how to create an operation schema, we will use

the placeBid operation as an example.

Firstly, we will have a simple, sequential version of operation schema for

placeBid ignoring concurrency issues and focusing on the functionality of the

operation only. Based on the sequential version, we will then develop a more

complex, concurrent operation schema for placeBid. The concurrent version

shows the execution effects on the system when concurrency has been taken into

account.

5.6.1 The Sequential Version

To create a sequential operation schema for placeBid (see Figure 14 at the end

of this section), we need to apply the operation schema template to this operation.

The template has been introduced in the Fondue overview (see Figure 2 in section

3.3.4). Let's look into details about how to create the schema.

The first line of the schema with the key word Operation specifies the

context of the operation. In our case, the system c1ass name is AuctionSystem,

which can be found in the concept model. Then the system c1ass name is followed

by the name of the operation, i.e. placeBid, and the parameters. The parameters

should indicate the concepts that are directly involved in the operation. In the case

53

Chapter 5.Analysis

of placeBid, a customer specifies a bid amount ta place a bid in an auction.

Hence, we take customer, bid amount and auction as the parameters. It is

possible for us to obtain a customer' s account information from customer, sa we

do not need account to be a separate parameter.

The parameter types are usually OCL types, including the base types of

most programming languages such as integers, strings and self-defined OCL types.

In any case, we assume either the GUI of the actor is powerful enough to gather

the parameter values directly and send them with the event, or, alternatively, the

actor sends parameter values that can be interpreted by our system and mapped to

the appropriate types. For example, an operation that takes a customer object as a

parameter might be invoked from an actor, passing the name of the customer in

the form of a String instead of a customer object.

The Description clause briefly describes the content of the placeBid

operation.

The Scope clause lists aH the classes and associations that are used in the

precondition and post condition. These classes and associations come from the

concept model of the system. In our case, the classes Auction, Bid, Customer and

Account are involved. They are connected through the associations ArePlacedln,

Makes, Has, and HasHighBid.

The Message clause declares the possible output events resulting from the

execution of the operation. For each message, its type and destination actor must

be specified. In our case, if placeBid is not successful during the operation, an

invalidBid_e message will be propagated to the calling customer.

The New clause declares aH the names that refer to the new objects that are

potentiaHy created by the operation. These objects will be instantiated in the Post

clause using the predefined operation ocllsNew. In our example, if the

54

Chapter 5.Analysis

placeBid operation is successful, a new bid object will be created, so we

declare newBid as the potential new object.

The Pre clause declares the precondition that has been assumed for the

operation. From the mIes of the auction, we know that in order to place a bid, the

auction must have started and not been closed yet, and the customer that wants to

place the bid must have joined the auction. Therefore we consider this as the

precondition and translate it into OCL expressions.

The Post clause defines the required state of the system at the end of the

operation, also using OCL syntax. Only conceptuaI system state changes must be

mentioned here, any unmentioned state remains the same. This is called the

minimum set principle by SendaIl [16].

Since we have done the requirement analysis (see section 4.2), we know

that a successful bid has to be vaIid first (condition 1, a valid bid means the bid

amount is no less than the current high bid plus the minimum increment), then

the customer that is placing the bid must have enough money (condition 2, the

customer' s guaranteed account balance is no less than his/her bid amount for the

item in the auction). If the two conditions can be satisfied, the bid is made.

Otherwise, if any of these two conditions is not satisfied, the bid is unsuccessful

and the system will propagate a message informing the customer that the bid is

invalid. We translate these concepts into OCL expressions and they become the

post condition in the operation schema.

Figure 14 presents the complete operation schema for the sequential

placeBid operation.

Operation: AuctionSystem::placeBid (a:Auction, c:Customer,

bidAmount:Money);

55

Charter 5.Analysis

Description: A customer requests to place a bid in the given auction: the system

must decide whether the bid is valid and if so make the bid the

current high bid for the auction;

Scope:

Messages:

New:

Pre:

Auction; Bid; Customer; Account; ArePlacedIn; Makes; Has;

HasHighBid; JoinedTo;

Customer:: {InvalidBid_e };

newBid: Bid;

a.currentMbrs -> includes(c) & a.started & not a.closed;

Post: if bidAmount ~ a.currentHighBid.amount + a.minimumIncrement

then

else

endif

if c.account,guarranteedBalance ~ bidAmount then

newBid.oclIsNew(amount => bidAmount) &

a.bid~ inciudes(newBid) &

c.myBids~ inciudes(newBid)

else

senderl\invalidBid(Reason:: insufficientFunds)

endif

senderl\invalidBid(Reason: :invalidBid)

Figure 14. Sequeutial Operation Schema for the placeBid Operation

5.6.2 Identifying Shared Concepts

The sequential operation schema for an operation can present us a simple

and straightforward view of the functionality of the operation. However, if the

protocol model 5 or the reference tables indicate that the operation might be

executed concurrently with other operations, a sequential operation schema is not

enough to elaborate on our concem for concurrency. In this case, a concurrent

5 The protocol model here is the one that has been extended with «concurrent» stereotype

56

Chapter 5.Analysis

version of the operation schema must be created. However, before we proceed to

create the concurrent operation schema, we must first identify exactly what are

the shared concepts that are involved in the concurrent operations.

In our case, the Auction View state of the protocol model (see figure 13)

and the reference table for AuctionView (table 3 in section 5.4) have indicated that

placeBid could potentially be executed concurrently with placeBid,

j oinAuction, getHistory that are issued by other users. Thus, we must

create a concurrent operation schema for placeBid to address concurrency.

From the Scope clause of the sequential operation schema, we are able to

see all conceptual states and relations that are accessed by the operation and

therefore might be shared. In our case of placeBid (see figure 14), these

accessed concepts include Auction, Bid, Customer, Account, and these accessed

relations include ArePlacedln, Makes, Has, HasHighBid and JoinedTo. Through

analysis, we can find that:

(1). Since different customers issue concurrent placeBid operations, the

Customer concept is not shared.

(2). Since each bid is made by a different customer, the Makes concept is

not a shared.

(3). Since each placeBid operation creates a new bid, the Bid concept is

not shared.

(4). For each new high bid, the HasHighBid relation is updated

concurrently, so HasHighBid is shared.

(5). Since each new bid is inserted into a list of bids of an auction, the

ArePlacedln relation is modified and hence it is shared.

(6). As the result of the placeBid's modifying the HasHighBid relation,

the guaranteedBalance of the customer who was previously holding the

highest bid is modified. Therefore, the Account.guaranteedBalance

concept is shared.

57

Chapter 5.Analysis

(7). When placeBid fUns concurrently with joinAuction, the

j oinAuction operation modifies the loinedTo relation and placeBid

consults this relation, so loinedTo is shared.

(8). Since there is a time-triggered event closeAuction, which can

result in closing the auction at any time, the close attribute of Auction is

shared.

Once aIl the shared concepts have been identified, they will be recorded in

a new Shared clause of the concurrent operation schema, as illustrated in figure

15.

5.6.3 The Concurrent Version

After identifying shared concepts for potential concurrent operations, we are now

ready to transform the sequential operation schema to its concurrent version.

In order to create the concurrent operation schema for an operation,

essential changes (especially changes to the Pre and Post conditions) must be

made based on its sequential version. The following paragraphs (identified by

change 1 to change 4) explain why we make the changes and how to make the

changes.

Change 1. A new clause called Shared will be added after the Scope clause.

The Shared clause is needed because it records aIl shared concepts of the

concurrent operations.

Change 2. Sorne conditions that have been originally stated as a precondition

in the sequential operation schema may have to be changed. When operations are

executed concurrently, it might not be enough to check a condition at the

beginning of an operation. We want to be able to rely on the fact that the

condition remains satisfied while performing certain changes.

58

Chapter 5.Analysis

To emphasize su ch a constraint, we propose to use the rely statement in

the concurrent operation schema. The structure of the rely statement is rely A

then B fails Cendre, where the words rely, then, fails and endre are keywords,

and A is a condition and B, C are state changes. The statement asserts that either

condition A keeps being true when all state changes specified in B are realized, or,

aIl state changes specified in C will be realized.

Change 3. Since we want to guarantee atomic execution results, an if

statement (with the structure if A then B else C endif) in the sequential operation

schema might have to be transformed into a corresponding rely statement. This

situation arises when the condition is based on shared concepts that might change

due to a concurrently executing operation.

Change 4. Because of introducing concurrency and using the rely A then B

fail Cendre statement, extra output messages may need to be added to the post

condition, in order to inform the environment about ab normal outcomes due to

interference with other operations.

Now let's look at the concurrent operation schema for placeBid, shown

in figure 15.

(1). A Shared clause has been added. This clause records aIl concepts that

placeBid shares with operations that execute concurrently. (See section 5.6.2)

(2). The not a.closed precondition in the sequential version has been removed and

replaced by a rely statement in post condition of the concurrent version.

In the sequential version, the not a.closed condition is considered as part

of the precondition because the sequential operation schema has instantaneous

semantics. Since every operation is executed atomicaIly, specifying not a.closed

in the precondition is sufficient to guarantee that the customer places a bid while

59

Chapter 5.Analysis

the auction is still active. In the concurrent version, however, the not a.closed

condition must be ensured while the placeBid operation is in progress.

When the rely statement is used to emphasize the not a.closed condition

in the post condition of the concurrent version (marked by <*> in figure 15), it

means either a bid is successfully placed (all related changes and updates are

made) and during all this time the auction is not closed, or an error message is

sent to the customer who requested to place the bid.

(3). The two nested if statements in the sequential version will be replaced by two

nested rely statements «1> and <2> in figure 15) in the concurrent version. The first

rely statement states that there must be no other placeBid operation to modify

the current high bid while the auction is accepting a new high bid. The second

rely statement states that the current high bidder must continuously have

sufficient funds according to his/her guaranteed balance.

(4). A new error message called auctionClosed will be added to the post condition

because of introducing concurrency. This error message is not necessary in the

sequential operation schema for placeBid. In the concurrent version, however,

it might happen that the auction closes while a bid is placed.

Figure 15 shows the concurrent operation schema for placeBid.

Operation: AuctionSystem: :placeBid(a:Auction, c:Customer,

bidAmount:Money);

Description: A customer requests to place a bid in the given auction: the system

must decide whether the bid is valid and if so make the bid the

current high bid for the auction;

Scope: Auction; Bid; Customer; Account; ArePlacedIn; Makes; Has;

HasHighBid; JoinedTo;

60

Shared:

Messages:

New:

Pre:

Post:

Chapter 5.Analysis

Account.guaranteedBalance; HasHighBid; ArePlacedln; JoinedTo;

Auction.closed;

Customer:: {invalidBid_e };

newBid: Bid;

a.currentMbrs -> includes(c) & a.started

<*>rely not a.closed then

<1> rely bidAmount 2: a.currentHighBid.amount +

a.minimumIncrement then

<2> rely c.account.guarranteedBalance 2: bidAmount then

fail

endre

fail

newBid.oclIsNew(amount => bidAmount) &

a.bid~ inciudes(newBid) &

c.myBids~ inciudes(newBid)

senderAinvalidBid(Reason: :insufficientFunds)

senderAinvalidBid(Reason: :invalidBid)

endre

fail

senderAinvalidBid(Reason:: auctionClosed)

endre;

Figure 15. Concurrent Operation Schema for the placeBid Operation

In summary, after aH the changes made from sequential version to concurrent

version, the execution effects of the concurrent placeBid are:

If the auction stays open (marked by <*», if the bid stays over the current

high bid plus the minimum increment (marked by <1», and if the customer has

sufficient account balance (marked by <2», then the bid is successful and the bid is

made by the system (asserted by the expressions showing the new bid is made).

61

Chapter 5.Analysis

Otherwise, if any of the conditions change during the execution of the state

changes, the system will send an invalidBid message to the CUITent customer.

5.7 Summary of Fondue Analysis

We have stepped through the Fondue analysis by using the Auction System as our

example. The example demonstrated that the analysis phase should be conducted

by building the analysis models one after another. Each model focuses on a

different aspect of the system.

The Environment Model identifies the system and its external actors. It

also shows the message passing between the system and the actors. The Concept

Model then extracts aIl classes of the system and connects them by their

association relationships. Afterwards, the Protocol Model shows the sequence of

operations in the system. Finally, operation schemas for each of the operations are

created in the Operation Model, specifying their execution effects to the system.

In order to address concuITency in the analysis phase, we have extended

the models by adding new notations that specifically address concurrency. The

multiplicity notations added to external actors and input messages in the

environment model means multiple actors can interact with the system

concurrently, and several actors can spontaneously send input messages to the

system at a given time. A «concurrent» stereotype added to a protocol model

emphasizes real concurrency in state diagrams. Reference tables listing potential

concurrent operations can be created based on the proto col model and are used to

help creating concurrent operation schemas in the operation model. A concurrent

operation schema can only be created after its sequential version has been built

and all related shared concepts have been identified.

62

Chapter 6.

Design

Chapter 6.Design

This chapter covers design and implementation. Moving from object-oriented

analysis to design means we have to map the conceptual state to objects. In other

words, in the design phase we have to determine how the functionality specified

during analysis is to be provided by the system, by means of interacting objects.

The output of the design phase is like a devised blueprint satisfying the

requirements defined in the analysis phase.

6.1 Identifying objects

In general, migrating from analysis to design results in that sorne concepts may be

implemented using several objects, or, altematively, sorne concepts may be

implemented as attributes of classes. The system efficiency is affected by how we

identify the objects. A weIl designed system should have a proper decomposition

on the granularity of objects. A system with too fine-grained decomposition might

become hard to analyze because it could have thousands of objects with high

coupling. Such a system could also generate huge communication overhead. On

the other hand, a coarse decomposition will generate objects with unclear

responsibilities and thus unavoidably create bulky architectures. Therefore, a

well-designed system should have maximized object coherence and minimized

object coupling [17], which lead to proper architecture size and high efficiency. In

63

Chapter 6.Design

our case of the Auction System, we have extracted the initial candidate objects

including Auction, Account, Customer and Bid from analysis. They will be used

as design objects to hold the application state.

An addition al but critical issue that must be considered in the design of

concurrent systems is the shared state. Sorne object-oriented programming

languages such as Java [18] and Ada [19], support concurrency by providing

monitor objects for consistent access to shared data. This is because mutual

exclusion guarantees that state updates that are encapsulated inside a monitor will

not be preformed concurrently.

In the Auction System, we have identified the shared concepts when

placeBid is executed concurrently with other operations. These concepts

include: Account.guaranteedBalance, Auction.closed, BidHistory, HasHighBid,

ArePlacedIn, and loinedTo (see Fig. 15). Since one of our concerns in the design

phase is to allow maximum concurrent execution (for optimization reason), each

shared concept must be represented by at least one object.

6.2 Sequential Interaction Model

Just as we did during analysis, we suggest developing a sequential design for each

operation first, focusing on the functionality. In a second step, concurrency issues

will be addressed. (See section 6.3)

The Interaction Model shows how the design objects interact at run-time

to provide the behavior specified in the operation schema. It is usually presented

in form of an object interaction diagram. In the diagram, the object that receives

the external stimulus is called the controller. It is responsible for executing the

required state changes, or to further delegate responsibilities to additional

collaborator objects. Since the interaction is conducted by way of communication

between objects, the messages for communication and their parameters are chosen.

Then they are added to the interfaces of the corresponding objects. In addition to

64

Chapter 6. Design

the objects representing the application state, if there are new objects that

represent abstractions of computational mechanisms but are not identified during

analysis, it is often necessary to introduce them into the design.

Before we construct the interaction diagram for the Auction System,

several decisions about how to implement sorne concepts that are identified in

analysis have to be made.

In terms of the guaranteed balance, we have decided to actuaUy withdraw

the money from a customers account when he/she places the bid, and to deposit

the money back to the account if ever someone else places a higher bid later on.

Using this technique, the actual balance of the account corresponds to the

guaranteed balance.

AIso, we decided to pass the customer information as a parameter in the

initial placeBid caU to the controUer. Because the customer knows his/her

account information, we can get reference of the CUITent customer' s account from

the customer information, instead of passing account as an additional but

redundant parameter.

The concept of the bid history is also realized in the design. In analysis,

the bid history is reflected as an association from Auction to Bid. In the design, we

realized the concept by using an insertBid method, which is a method of the

BidHistory class. Every time a successful bid is made, the Auction caUs the

BidHistory to add a new bid to its list. The BidHistory accomplishes the task by

calling the Bid class to generate a new Bid object with details (as we have

mentioned before) and then insert the new bid into the bid history.

The sequential interaction diagram of the placeBid operation is shown

in Figure 16.

65

Chapter 6.Design

,
;Jo. 1

11
1

..:..QQ.cl;

5 time date .= getTimeAnc1DateO

Pla C eBid (CUll'entCus : Customer,
1. is V alid(bidAmount)

;Jo.
bidAmount: Integer)

1 ~ 3. isGuaranteed(bidAmount)
;Jo. 1 ;Jo. 1

1
a: Auction

1 1
cwentA cc' e. cc ollnt

1

4. updateBid(bidAmount)
;Jo.

2. cUll'entA cc;: getA c c ount()

1 7. re1e as eBid (1astBidAmount)

1
cUll'entCus : Customer

1

;Jo. 1 pteYioJ.lsAcc . ACCl:ll.Ult
1

6. insertBid (bidAmount,time,date)
;Jo.

6.1. Create(bidAmount, time, date) 1

0(

: theHisto!Jr · BidHistoty -W 1 neYlBid· Bid(lleYl) :

Figure 16. Sequential interaction diagram for placeBid

We can see from the figure that the auction object is the controller, for it

receives the initial method call. The initial method call also passes the parameters

currentCus and bidAmount to the controller. The parameter currentCus is of type

Customer that stands for the CUITent customer object. The CUITent customer object

contains an information of a customer, such as user id and the account

information of the customer that is placing the bid. The parameter bidAmount is of

type Integer, which stands for the amount the customer bids on the auction. (For

simplicity purpose, we assume the bids have no decimal part.) The ordered

numbers in the figure represent the execution sequence of the operations.

Firstly, we check if the bid is valid, i.e. if the bid is higher than or at least

equal to the CUITent bid plus the minimum increment. If this fails, an exception is

propagated back to the caller.

66

1

1

Chapter 6.Design

Secondly, we acquire the customer's account information. The auction

object makes a method call to the CUITent customer, then the currentAcc object is

returned. This object stands for current account, which is the account of the

customer that is placing the bid.

Thirdly, we check that whether or not the user has enough money in

his/her account (see if the user's actual balance is greater than or equal to the

user's bid amount). If yes, the amount is withdrawn (the actual balance is

modified by deducting the bid amount from the user' s actual balance). In case of

any failure, an exception is propagated to the caller.

Fourthly, the current high bid is updated.

Afterwards, the controller calls the Clock (which stands for the system

dock) to get time and date of the bid. Note there is only one dock in the entire

system.

In order to keep a record of all bids associated with an auction, every

execution of placeBid instantiates a Bid object, initializes the state with the

amount, time and date of the bid, and inserts the new bid into an ordered list

associated with the auction. As stated in the above figure, the list is BidHistory.

Finally, if there has been a previous bid, we deposit the amount of the now

obsolete bid back to the account of the previous bidder.

For sorne methods it makes sense to give more details in form of pseudo

code. This is the case for the controller method placeBid and its related

methods isGuaranteed and insertBid:

(1). Pseudo code for placeBid

67

Chapter 6. Design

Operation Auction :: placeBid(currentCus: Customer, bidAmount : integer)

currentAcc := currentCus.getAccountO;

begin

if isValid(bidAmount) then

else

if currentAcc.isGuaranteed(bidAmount) then

updateBid(bidAmount) ;

else

endif

bidNumber ++;

theHistory. insertBid(bidAmount);

if bidNumber > 1 then /lif not first bid

previousAcc.releaseBid(lastBidAmount);

endif

previousAcc := currentAcc;

lastBidAmount := bidAmount;

Exception("invalidBid: insufficientFunds");

Exception("invalidBid");

endif

end placeBid;

Figure 17. Pseudo code for placeBid

(2). Pseudo code for isGuaranteed

Operation Account::isGuaranteed(bidAmount : Integer)

OK : boolean;

begin

if currentAcc.actualBalance - bidAmount 2: 0 then

currentAcc.acutalBalance =
currentAcc.actualBalance - bidAmount;

OK = true;

68

Chapter 6. Design

else

OK = false;

endif

return OK;

end isGuaranteed

Figure 18. Pseudo code for isGuarauteed

(3) Pseudo code for insertBid

Operation BidHistory::insertBid(bidAmount : Integer, time : Time, date: Date)

bidList : Vector; //the Vector is like the Vector in Java

begin

newbid = new Bid(time, date, bidAmount); //create new bid object

bidList.add(bidAmount); //insert

end insertBid

Figure 19. Pseudo code for iDsertBid

The placeBid ex ample demonstrated how the sequential design is

conducted in form of an interaction diagram that implements conceptual state

changes by interacting objects at run-time. A complete design practice, however,

should include design for aIl of the system operations.

6.3 Concurrent Interaction Model

To deal with concuITency in the design, we must ensure multiple readers / single

writer access to aIl shared resources. In a sense, we want to isolate accesses from

each other. In the meanwhile, we also have to make sure that the rely conditions

stated in the concurrent operation schema hold during the execution of the

respective state changes they belong to. In our example of placeBid operation,

for instance, we must ensure that while the bidding is ongoing, the auction does

not close, the new high bid is higher than the CUITent bid, and the customer has

69

Chapter 6. Design

enough money in his/her account. In other words, the checking and the updating

must be made atomic.

If we look at the post condition of the concurrent version of the operation

schema for placeBid again (figure 20), we will find the concepts of atomic

checking and updating have already been specified ..

<3> rely not a.c1osed then

rely bidAmount ~.a.currentHighBid.amount + a.minimumIncrement then
<2>

<1>

fail

endre

fail

elldre

l'ely c.account.guaranteedBalance ~ bidAmount then

fail

newBid.oclIsNew(amount => bidAmount) &
a.bid ~ includes(newBid) &
c.myBids ~ Încludes(newBid)

sellderl\invalidBid(Reason :: insufficientFunds)

endre

senderl\invalidBid(Reason :: invalidBid)

senderl\invalidBid(Reason :: auctionClosed)

Figure 20. The post condition of concurrent placeBid operation schema

It can be noticed that the three rely statements in the post condition are

structured like nested layers. We indicate this structure by giving numbers to the

layers, namely, layer 1, 2 and 3. In each rely statement, each pair of keywords

rely and endre can be imagined as a pair of c10sed brackets.

In the design phase, our solution to ensure the concurrent operation is to

set each layer as a critical region. In terms of implementation, only one thread can

70

ChaRter 6.Design

access the region at any one time. Since the layers are overlapped, we can

consider setting the biggest layer as the sole critical region that covers all other

smaller critical regions.

There are essentially two different ways of achieving isolation and

atomicity with respect to the critical region: using transactions or using monitors

and locks.

6.3.1 Transaction-oriented Design

As we briefly introduced in section 3.4.2, a transaction groups together a set of

operations, and gives them the so-called ACID properties. Atomicity - either aIl

operations are executed, or none is; consistency - transactions move the

application from one consistent state to another one; isolation - concurrently

executing transactions do not see intermediate results of other transactions; and

durability - state changes made by a transaction are recorded on stable storage.

Therefore, if the application modifies sensitive or important data, data that

persists, or data that must be kept consistent even in the presence of crash failures,

then transactions should be used to regulate access to shared objects.

The transaction-oriented design of the placeBid operation is shown in

Fig. 21. For the sake of providing maximum concurrent execution, the auction

state and the current bid have been encapsulated in separate objects.

The entire placeBid operation executes from within a transaction. This

is shown in the sequence diagram by a gray activation rectangle. At the beginning

of the transaction, the Auction calls the i sOpen method to check the auction

state. This is a read operation on the auction state, and the atomicity and isolation

property of transactions can ensure that the value will not change until the

transaction commits. Secondly, the Auction validates the bid by the getBid

method. A valid bid amount must be higher than the current high bid plus the

71

Chapter 6.Design

minimum increment. Thirdly, the bid is deducted from the customer's account by

the isGuaranteed method if there is enough balance. Fourthly, the current bid

of the auction is updated by the setBid method. Afterwards, the Auction caUs

the system clock for time and date, and then passes them together with

bidAmount as pararneters to BidHistory. Then the new high bid is created and

inserted into the BidHistory. At the last step, the account of the previous high

bidder is credited. AlI these operations are executed as part of the transaction.

a'Al~çtiQn 1 .;illfit.'~! 1 ~

. Customer
rg:-E5!;,~!Jt]!, ~~a~,,;f~ ,?aù!ffl~~ry!l

1 !,~?1! 1~~~"I!f!,~ 1 ~f~~'"
placeBid 1 1 1 1 t---_."r. """1

1

. isOpen 1 1 1 1 1 1

getBid

I~~t---r------~~

.~ 1 s etBid(bidAiliount)
l;l 1

Il

1

1~_==7"I
__ +--___ -+-____ +--~m:tml ~lIIfmzr:'l

1

1

insertBid(bidAmount, time, ~ate) Cre~te(bidAmollf!t,time,date) 1

W~~---~------+---~--~

1 •
rele as eBid(1~stBidAmount) 1 ,

Figure 21. Transaction-oriented Execution of placeBid

During the transaction, AuctionState, Account, Bid and BidHistory are

transactional objects, as shown in the diagrarn by gray object symbols. Since

transactional objects have persistent state, they can even survive crash failures. If

any one of the conditions is not satisfied, or if any failures occur during the

execution of placeBid, the transaction will be rolled back, i.e. aIl state changes

made so far will be undone. Using transaction avoids the scenario that a bid is

placed without crediting the account of the previous bidder. Because of the

isolation property of transaction, no other operations will be affected in case of a

72

Charter 6.Design

rollback. The Clock does not have to be transactional, for the system will just read

time and date from the Clock.

Interestingly, the actual way of ensuring isolation is still not specified. It

depends on the kind of concurrency control that is used by the underlying

transaction support. In pessimistic, lock-based concurrency control [20], once

shared resources are accessed, they are locked and will not be released until the

transaction ends. In our case of Auction System, if a close auction event fires, the

closeAuction operation would be blocked until aIl pending placeBid

operations have terminated and released their locks on the auction state. An

alternate means is using optimistic concurrency control [21], such as time-stamp

based versioning. In this case, the auction might decide to let the auction close,

and abort aIl concurrently executing placeBid operations.

6.3.2 Monitor-based Design

Using transactions requires extensive ron-time support, and thus slows down the

execution significantly. Alternatively, if an application does not require

persistence and tolerance to crash failures, then a simple monitor-based design

can provide the same behavior with considerably better performance.

The monitor-based design is very similar to the transaction-oriented

design except for few changes. Firstly, the transactional objects are now monitors,

i.e. their methods provide multiple readers / single writer semantics (for instance,

synchronized methods in Java6
, protected objects in Ada). Secondly, the atomicity

needed for implementing the rely conditions is achieved by acquiring read or

write locks when checking the condition (sirnilar to lock-based pessimistic

6 The CUITent version of Java does not provide monitors, or RIW lock directly. However, by
following strict prograrnrning conventions, for instance, using classes with synchronized methods
and private attributes only, monitors can be programmed. For more detailed information on how to
program monitors in Java see [22].

73

Chapter 6. Design

concurrency control\ A lock prevents other threads from changing the condition

while the operation is being executed. The locks will not be released until after

the state changes that rely on the condition.

The monitor-based design of placeBid is shown in Fig. 22.

AuctionState, Account, Bid and BidHistory are now monitors. Again, they are

highlighted in the sequence diagram by gray object symbols. This time, the first

step would be the system's acquiring a read lock (shown in the figure by a dotted

gray activation rectangle) when checking the auction status. If there is an

attempted concurrent closeAuction operation (which would have to acquire a

write lock), the acquired read lock would block it. Similar to the transaction­

oriented design, the Clock does not have to be monitor.

By careful analysis, we can find the balance of a customer's account can

only grow while the placeBid operation is executing 8
, because the same

customer cannot physically place two bids at the same time, or try to remove

credit while placing a bid. In this sense, it is not necessary to acquire a lock to

guarantee the balance when accessing the account of the customer that is placing

the bid. Consequently, checking and withdrawing the bid amount from the

account can be simply performed in one operation, and because the accounts are

monitors, the operation itself is atomic. Furthermore, checking and updating the

current high bid can be done in a similar way. After the new bid object has been

created and inserted into the bid history, we release the read lock on the auction

state. Finally, we release the bid of the previous high bidder (if the CUITent bid is

successful), or, if the bid is invalid, the money has to be put back on the CUITent

bidders account.

7 If read and write locks are not provided by the programming language, the programmer can
consider using semaphores to implement it.
8 The guaranteed balance can grow during the operation placeBid if, for instance, a customer

A bids in auction a, and then, while bidding in auction h, a customer B overbids A in a.

74

Chapter 6.Design

getTimeAn

[suc c]ins e Cl)late(bic1Amount,time,date

releaseLo

Figure 22. Monitor-based Execution of placeBid

6.3.3 Mapping between Analysis and Design

To present a more straightforward view of how the analysis is mapped to the

design, we create table 4 below. The content of operations in the sequential design

and the concurrent design are almost the same, but they are implemented in

different ways. For example, transaction-oriented design and monitor-based

design have different method caUs for checking the validity of the bid and

different method caUs for updating bid.

Here we are discussing the mapping from analysis to the design that refers

to both sequential and concurrent versions. Basically, the major concepts that

have been identified in the operation schema from the analysis phase are mapped

to certain corresponding operations in the design phase. The left column of the

table lists the operations in the analysis phase written in oeL expressions. The

right column of the table lists the corresponding operations in the design phase.

75

Chapter 6.Design

Analysis - Operation Schema Design - operations

sequential:

is V alidO of Auction c1ass

transaction:
bidAmount 2: a.currentHighBid.amount +

getBidO and setBidO
a.minimumIncrement

ofBid c1ass

monitor:

checkAndUpdateO of Bid c1ass

sequential:

isGuaranteedO of Account c1ass

transaction:
c.account.guaranteedBalance 2: bidAmount

isGuaranteedO of Account c1ass

monitor:

isGuaranteedO of Account c1ass

sequential:

updateBidO of Auction c1ass,

insertBidO of BidHistory c1ass,

newBid.oclIsNew(amount =>
CreateO of Bid c1ass

transaction:
bidAmount) &a.bid~ inc1udes(newBid)

&
setBidO and CreateO of Bid c1ass,

c.myBids~inc1udes(new Bid)
insertBidO of BidHistory c1ass

monitor:

checkAndUpdateO and CreateO

ofBid c1ass

insertBidO of BidHistory c1ass

Table 4. Mapping from Analysis to Design

Sorne operations may not be directly mentioned in an operation schema.

For instance, if the current customer' s bid is valid and his/her account balance can

be guaranteed, and the bid is set as current high bid, then we need to go one step

76

Chapter 6.Design

further to release the previous high bid (if there is any) and retum the money to

the previous bidder. This is realized by the method releaseBid in both of the

designs.

6.4 Design Class Model

Once interaction diagrams have been devised for every system operation, it is

possible to build the final Design Class Model. The design class model depicts the

design classes, together with their attributes and their methods. It also includes aIl

the mechanisms to deal with concurrency. In the previous sections we presented

two different ways of handling concurrency, one using transactions and the other

one using monitors and locks. Monitors / transactional classes can be highlighted

using the «monitor» or «transactional» stereotype. The following sections

present the two resulting design class models.

6.4.1 Transaction-oriented Design Class Model

Figure 23 shows the transaction-oriented design class model.

77

«Il<UL~actil:ma];;»

Ac('OWlt

actualBalance : Integer

isOuarante e d
releaseBid

«U<U1.~actiolla]»

Cu,tomel'

getAceount

1
FixedP erio dAuction

duration: Period

1
ACtOWlt

1
AuctiollState

'--____ ---' myState

Clork

getTimeAndDate

«U'allSactul''Ù'·'>
AUttiollState

state: AState

isOpen

Anctioll

eurrentHighBid: Inte ger
bic1Number: Integer

plaeeBid

~

1
Cu~tomel'

Auclioll

Chapter 6.Design

«U..,It~ac tiona]> >
BidHistOl'Y

bicll.ist : V e etor

insertBid

«tl'mL~Mliollal»

BkI
time: Time
date: Date
bidAmount : Integer

getBid
setBid
Create

BidTimeAuction

maxBidPause: Period

Bîd

1 ,--_....lI-_--,

theHistory

Figure 23. Transaction-oriented Design Class Model

The transaction-oriented design c1ass model shows the static structure of

the Auction System, considering only the placeBid operation. The upper part

78

Charter 6.Design

of figure 23 shows aIl the design classes, their attributes and methods. The lower

part of the figure shows the relationships of the classes.

The design classes in the model include Account, Customer, Auction,

AuctionState, Bid, BidHistory and Clock. AlI the classes, except for the Auction

class and the Clock class, have the transactional stereotype on top of them, which

means the objects created from these classes are transactional objects, i.e. their

state is stored durably in sorne database. The attributes and methods of these

classes come from the interaction model.

In the AuctionState class, the type AState is an enumerations type. It' s

OCL definition is as folIows:

type AState is enum { open, closed}

The inheritance relationship of the Auction class indicates that there are

two subclasses of Auction. One is FixedPeriodAuction and the other is

BidTimeAuction, representing an auction with fixed period of time length and an

auction with predefined maximum pause time length between bids, respectively.

From the lower part of the figure, we can easily see aIl design classes are

connected by navigable associations. A link with an arrowhead in the diagram

indicates a navigable association from one class to another. The arrow headed link,

together with the role-name at the end of the link, will be implemented as a

permanent reference. At the time of implementation, a permanent reference will

bec orne an object attribute of the class, which makes a class be able to return a

reference to another object. For example, the permanent reference with the name

previousAcct results in a navigable association from Auction to Account. Upon

implementation, we can use the reference Auction.previousAcct to refer to an

account object of the Account class.

79

Chapter 6.Design

6.4.2 Monitor-based Design Class Model

Figure 24 shows the monitor-based design class mode!.

«lllOlutor'·>
.-'keolUlt

actuaIBalance : loteger

isGuarante e d
releaseBid

«lllOlutor»
Cu~tOIner

getAccount

1
FixedPeriodAuction

duration: Period

ACCOlUlt

AnctlouSta:te

(rock

getTimeAodDate

«lUOlùtol":»

AuclionS ta te
state: AState

reac1Lock
releaseLock

Auction

curreotHighBid: loteger
bidNumber: loteger

placeBid

~

«.InOlutor>.;,
BidHi~tol'Y

bidList : V e ctor

insertBid

«mOlutol~' ;>

Bid

lime: Time
date: Date
bidAmount: loteger

checkAodUpdate
Create

BidTimeAuction

maxBidPause: Period

Figure 24. Monitor-based Design Class Model

80

Chapter 6.Design

The monitor-based design c1ass model is very much similar to the

transaction-oriented one except sorne minor differences.

Basically, the navigable associations and permanent references between

classes remain the same. Since transactional objects now bec orne monitors in the

monitor-based model, all the design classes that used to bear the transactional

stereotype now bear the monitor stereotype. Since the atomicity in the monitor­

based model is achieved by acquiring read or write locks, the methods in the

AuctionState classes have been changed from isOpen to readLock and

releaseLock. In addition, the methods in the Bid class have been changed from

getBid and setBid to checkAndUpdate

Based on the design class model and the interaction model, the

implementation of the system is straightforward.

81

Chapter 7.

Future Work

Chapter 7.Future Work

The work presented in this thesis shows how concurrency can be integrated into

the Fondue development method. The original Fondue abstracts away execution

time. Every system operation is assumed to execute instantaneously. The

extension presented in this thesis relaxes this as sumption , allowing system

operations to execute concurrently. In order to still guarantee consistency of the

application state, atomic checks and updates can be specified during analysis, and

implemented in the design phase using transactions or monitors.

The techniques presented in this thesis work fine as long as atomic checks

and updates do not span multiple system operations. This is, for example, the case

when a logical operation has to be split into several system operations because

intermediate information has to be obtained from an external actor.

In the Auction System, for example, we could introduce an auto-withdraw

feature. In case the customer makes a valid bid but does not have sufficient fund

to guarantee the bid, the Auction System automatically contacts the customer's

credit institution and requests to transfer funds to the customer' s account. At this

moment in time, the placeBid operation cannot decide yet if the bid is

successful. It first has to receive feedback from the credit institution. If the

82

Chapter 7.Future Work

following return message indicates that the funds have been successfully

transferred from the credit institution to the customer' s account, the bid can be

completed. Otherwise, the bid fails. The main problem is that the Auction

System' s judgment on the customer' s guaranteed balance is based on the

information that has to be obtained from an external actor.

During analysis, where we previously were able to specify atomic checks

and updates using the rely construct in an operation schema, we must now find

other means to specify atomicity that spans multiple operations.

In terms of design and implementation, if we use transaction as the

solution, the transaction will have to span over the scope of the Auction System.

In other words, within the transaction, all state changes that are directly related to

the placeBid operation inside the Auction System have not committed yet

when the operation stops in the middle. Then a transfer fund operation that

involves the participating of external actor will be executed. Then the placeBid

operation continues according to the execution result of transfer fund. To solve

this problem, one might consider using more complicated transaction models,

such as chained transactions or nested transactions. If we use monitors with locks

as the solution, we might have to use locks that we acquired in one operation, and

released in a subsequent one.

The ideas presented in this thesis focused on ensuring that inherent

concurrency is discovered during the development of an application, and that

shared data structures are accessed in mutual exclusion in order to prevent data

corruption. Other issues related to concurrency, such as fairness, scheduling

assumptions, memory models, and deadlock situations, have not been addressed

directly and are left for future work.

83

Chapter 8.

Conclusion

Chapter 8. Conclusion

Concurrency exists in many object-oriented software applications. Any ad hoc

solution to address concurrency usually turns out to be unnecessarily complex,

inefficient and uns table. We need a systematic approach to deal with concurrency

to achieve highly reliable systems.

In this thesis, we stepped through an Auction System case study by

following the Fondue method. By adding concurrency notations to the Fondue

models, we approached a way to treat inherent concurrency during the early

stages of software development.

In the requirement elicitation phase, we added the Frequency key word to

the use case model, indicating the fact that a user can participate in several

auctions simultaneously.

In the analysis phase, we added the multiplicity notations to external

actors and communication channels in the environment model, showing the

inherent concurrency in the environment. The concept model itself has not been

extended, but it provides the base to identify shared concepts at a later stage. The

«concurrent» stereotype has been added to the protocol model, stating the

84

Chapter 8. Conclusion

auto-concurrent status of a model. The reference tables, which are derived from

the protocol model, list potential concurrent operations, and are very helpful to

identify shared concepts. In the operation model, we proposed using the rely

statements in concurrent operation schema to guarantee atomic execution results.

During the design phase, the declarative specifications are refined into an

object-oriented design that handles concurrency. We proposed using transactions

or monitors to guarantee atomic checks and updates.

Transactions are especially useful to deal with concurrency. Due to the

ACID properties, using transactions can ensure atomic execution results in highly

concurrent and distributed systems. Examples of such applications are online

banking systems, online flight / hotel reservation systems, online shopping

systems and online auction systems. In addition, transactions provide tolerance to

crash failures.

Monitors can also provide atomicity, but are a lot simpler and hence

produce less run-time overhead than transactions. For example, in the object­

oriented programming language Java, monitors can be programmed to support

concurrency by using synchronization. Thus a Java class, method, or object can

be synchronized to ensure atomic operations. This property makes monitors

especially suitable when developing small and centralized multithreaded systems.

In the Auction System case study, both design ideas are presented in the

form of Fondue interaction models, and finally design class models. The design

class models contain all the design classes with attributes and methods. The

classes are connected via navigable associations. The transactional objects or

monitors are identified using stereotypes. Thus, the implementation based on

these models is straightforward.

85

Chapter 8. Conclusion

We believe that our approach helps to better understand the concurrent

nature of the problem and the possibilities for addressing the resulting issues in

software. Our systematic process leads the developers through the different

development stages, focusing on concurrency and providing guidelines on how to

transform models when moving from one stage to the other. The approach

considerably raises the level of abstraction in which we can describe concurrency

and eventually automate software development.

86

Appendix 1: References

Appendix 1:

References

[1] OMG Unified Modeling Language Specification, March 2003 version 1.5

formal/03-03-0 1.

[2] Kruchten P.: The Rational Unified Process, Addison-Wesley, 1999.

[3] Sendall, S.; Strohmeier, A: "UML-based Fusion Analysis". In

Proceedings of UML '99, Fort Collins, CO, USA, October 28-30, pp. 278-

291, LNCS 1723, Springer Verlag, 1999.

[4] Coleman D.; Arnold P.; Bodoff S.; Dollin c.; Gilchrist H.; Hayes F.;

Jeremaes P. : Object-Oriented Development: The Fusion Method, Prentice

Hall, Englewood Cliffs, NJ, 1994.

[5] Vachon, J.: COALA: A Design Language for Reliable Distributed

Systems. Ph.D. Thesis, Swiss Federal Institute of Technology, Lausanne,

Switzerland, December 2000.

[6] Kienzle, J.; Strohmeier, A; Romanovsky, A: "Auction System Design

Using Open Multithreaded Transactions". Proceedings of the 7th IEEE

International Workshop on Object-Oriented Real-Time Dependable

1

Appendix 1: References

Systems (WORDS'02), San Diego, CA, USA, January 7th - 9th, 2002, pp.

95 - 104, IEEE Computer Society Press, Los Alamitos, California, USA,

2002.

[7] Strohemier, A; The Fondue Method, Lecture Notes in Software

Engineering Lab, Swiss Federal Institute of Technology, Lausanne,

Switzerland,2003.

[8] Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; Lorensen, W.;

Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs,

NJ, 1991.

[9] Jacobson, 1.; Christerson, M.; Jonsson, M.; van Overgaard, P.: Object­

Oriented Software Engineering: A Use Case Driven Approach, Addison­

Wesley, Reading, MA, 1992.

[10] Harel, D.; Politi, M.: Model Reactive Systems with Statecharts. McGraw­

Hill,1998.

[11] Warmer, J.; Kleppe, A: The Object Constraint Language : Precise

Modeling with UML. Addison-Wesley Pub Co Addison Wesley

Longman 1999.

[12] C.AR. Hoare. Monitors: An Operating System Structuring Concept.

Communications of the ACM, vol. 17, no 10, 549-557, October 1974.

[13] Kienzle, J.: Open Multithreaded Transactions: A Transaction Model for

Concurrent Object-Oriented Programming. Kluwer Academie Publishers,

2003.

II

Appendix 1: References

[14] Larman, C.: Applying UML and Patterns: An Introduction to Object­

Oriented Analysis and Design. Second Edition, Prentice Hall, 2001.

[15] Cockburn, A.: Writing Effective Use Cases, Addison-Wesley, 2000.

[16] Sendall, S.: Specifying Reactive System Behavior. Ph.D. Thesis, no. 2588,

Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland, 2002.

[17] Fenton, N. E.; Pfleeger, S. L.: Software Metrics: a rigorous and practical

approach, 2nd ed. London; Boston: PWS Publishers., c1997.

[18] Gosling, J.; Joy, B.; Steele, G. L.: The Java Language Specification. The

Java Series, Addison Wesley, Reading, MA, USA, 1996.

[19] ISO: International Standard ISO/IEC 8652: 1995(E): Ada Reference

Manual, Lecture Notes in Computer Science 1246, Springer Verlag, 1997;

ISO, 1995.

[20] Gray, J.; Reuter, A.: Transaction Processing: Concepts and Techniques.

Morgan Kaufmann Publishers, San Mateo, California, 1993.

[21] Kung, H. T.; Robinson, J. T.: "On Optimistic Methods for Concurrency

Control", ACM Transactions on Database Systems 6(2), June 1981, pp.

213 - 226.

[22] Brinch Hansen, P. : Java's Insecure Parallelism, ACM SIGPLAN Notices,

Volume 34, Issue 4, Pages: 38 - 45, April 1999.

III

