
Three Essays on
Data Science for Healthcare and
Retail Operations Management

Zahra Jalali
Doctor of Philosophy

Desautels Faculty of Management

McGill University

Montreal, Quebec, Canada

April 23, 2024

A thesis submitted to McGill University in partial

fulfillment of the requirements of the degree of

Doctor of Philosophy

©Zahra Jalali, 2024



Abstract

This thesis comprises three essays that delve into the realm of data analytics

in healthcare and retail operations management. The first essay explores the

impact of boarding congestion on patients’ treatment time in emergency de-

partments (EDs) through a multimethodology approach. Empirical analyses

using data from eight EDs show an inverted U-shaped relationship between

boarding congestion and ED treatment time. Two mechanisms contributing

to this relationship are identified: increased workload on ED resources due

to boarding patients and scheduling of hospitalist visits triggered by board-

ing congestion. Building on the empirical findings, an analytical framework

is devised, proposing two operational interventions to mitigate the impact

of boarding congestion on treatment time. Simulation results demonstrate

that these interventions can collectively reduce the impact of boarding con-

gestion by 68% in a typical ED, offering valuable insights for making sound

operational decisions in ED management.

In the second essay, an exploration of the increasingly popular retail practice

of pickup partnerships is studied. These partnerships enable online retailers

to offer in-store pickup services by collaborating with physical stores. The

study examines two common policies adopted by online retailers in these

partnerships: the fixed fee policy and the coupon policy. A stylized model is

developed to capture the essential features of pickup partnerships. Findings

reveal that while the coupon policy can expand the online retailer’s market

coverage, it may not always lead to increased profits. The research identifies

the circumstances under which an online retailer should opt for the fixed fee
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or coupon policies in a pickup partnership. The analysis also show that these

two policies may entail inefficiencies when the incentives of the two parties

are not aligned. To alleviate such inefficiencies, a new policy that aims to

align both parties’ incentives is proposed. By proposing a new policy, it also

strives to make pickup partnerships more efficient than current practices.

In the third essay, the impact of sales is investigated concerning simultaneous

changes in the vertical locations of multiple products, and whether this effect

varies across products. To measure these effects, a novel field experiment is

designed and deployed in six retail stores for 20 weeks. The results indicate

that the effect of vertical location change is (i) contingent on how other

products are reorganized as a result of that change and (ii) heterogeneous

across products. On average, sales are generated at 13.8% and 8.5% higher

levels relative to the stoop and stretch levels, respectively, when products

are placed at the eye-level. The product profiles that benefit the most from

being displayed at the eye-level are characterized. It is also conveyed that the

eye-level shelf boost in sales comes at the expense of a sales loss for products

moved to other shelves. Specifically, a pure substitution pattern is observed,

leading to no change in the overall sales of the shelving unit. Given the

differences in product margins and interplay among products (arising from

simultaneously changing vertical locations), the careful selection of products

to display at the eye-level can benefit retailers. A counterfactual analysis

shows that profits can be increased by 2.2% by optimizing planograms while

considering the average interplay among products. Moreover, profits can be

boosted by up to 3% by incorporating product heterogeneity into planogram

optimization.

These essays contribute to the fields of data analytics in healthcare and retail

operations management, providing valuable insights for improving decision-

making processes and optimizing operational strategies in their respective

domains.
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Abrégé

Cette thèse comprend trois essais qui plongent dans le domaine de l’analyse

des données dans les soins de santé et la gestion des opérations de vente au

détail. Le premier essai explore l’impact de la congestion de l’embarquement

sur le temps de traitement des patients dans les services d’urgence par le biais

d’une approche multiméthodologique. Des analyses empiriques utilisant des

données provenant de huit services d’urgence montrent une relation en forme

de U inversé entre la congestion de l’embarquement et le temps de traite-

ment du service d’urgence. Deux mécanismes contribuant à cette relation

sont identifiés : l’augmentation de la charge de travail sur les ressources des

urgences due à l’embarquement des patients et la programmation des vis-

ites des hospitalistes déclenchée par la congestion de l’embarquement. Sur

la base des résultats empiriques, un cadre analytique est élaboré, proposant

deux interventions opérationnelles pour atténuer l’impact de la congestion de

l’embarquement sur le temps de traitement. Les résultats de la simulation

démontrent que ces interventions peuvent collectivement réduire l’impact de

l’embarquement de 68% dans un service d’urgence typique, offrant des in-

formations précieuses pour prendre des décisions opérationnelles judicieuses

dans la gestion des services d’urgence.

Le deuxième essai étudie la pratique de plus en plus populaire des partenar-

iats de ramassage dans le commerce de détail. Ces partenariats permettent

aux détaillants en ligne d’offrir des services de ramassage en magasin en

collaborant avec des magasins physiques. L’étude examine deux politiques

communes adoptées par les détaillants en ligne dans le cadre de ces parte-
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nariats : la politique des frais fixes et la politique des coupons. Un modèle

stylisé est développé pour saisir les caractéristiques essentielles des partenar-

iats de ramassage. Les résultats révèlent que si la politique des coupons peut

étendre la couverture du marché du détaillant en ligne, elle n’entrâıne pas

toujours une augmentation des bénéfices. L’étude identifie les circonstances

dans lesquelles un détaillant en ligne devrait opter pour une politique de frais

fixes ou de coupons dans le cadre d’un partenariat de ramassage. L’analyse

montre également que ces deux politiques peuvent entrâıner des inefficacités

lorsque les incitations des deux parties ne sont pas alignées. Afin d’atténuer

ces inefficacités, une nouvelle politique visant à aligner les incitations des

deux parties est proposée. En proposant une nouvelle politique, elle s’efforce

également de rendre les partenariats de ramassage plus efficaces que les pra-

tiques actuelles.

Dans le troisième essai, l’impact des ventes est étudié en ce qui concerne les

changements simultanés dans les emplacements verticaux de plusieurs pro-

duits, et si cet effet varie d’un produit à l’autre. Pour mesurer ces effets,

une nouvelle expérience de terrain est conçue et déployée dans six maga-

sins de détail pendant 20 semaines. Les résultats indiquent que l’effet d’un

changement d’emplacement vertical (i) dépend de la manière dont les autres

produits sont réorganisés à la suite de ce changement et (ii) est hétérogène

d’un produit à l’autre. En moyenne, les ventes sont générées à des niveaux

supérieurs de 13.8% et de 8.5% par rapport aux niveaux du perron et de

l’étirement, respectivement, lorsque les produits sont placés à la hauteur des

yeux. Les profils de produits qui bénéficient le plus d’une présentation à hau-

teur des yeux sont caractérisés. Il est également précisé que l’augmentation

des ventes des produits placés au niveau des yeux s’accompagne d’une perte

de ventes pour les produits déplacés vers d’autres rayonnages. Plus précisément,

on observe un modèle de substitution pure, qui n’entrâıne aucun changement

dans les ventes globales de l’unité de rayonnage. Compte tenu des différences

de marges sur les produits et de l’interaction entre les produits (résultant
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d’un changement simultané d’emplacement vertical), les détaillants peuvent

tirer profit d’une sélection minutieuse des produits à exposer au niveau des

yeux. Une analyse contrefactuelle montre que les bénéfices peuvent être

augmentés de 2.2% en optimisant les planogrammes tout en tenant compte

de l’interaction moyenne entre les produits. En outre, les bénéfices peu-

vent être augmentés de 3% en intégrant l’hétérogénéité des produits dans

l’optimisation des planogrammes.

Ces essais contribuent aux domaines de l’analyse des données dans les soins

de santé et de la gestion des opérations de vente au détail, en fournissant des

informations précieuses pour améliorer les processus de prise de décision et

optimiser les stratégies opérationnelles dans leurs domaines respectifs.
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4.1.1 Illustration of two potential new planograms derived from

the base planogram (shown in the middle). . . . . . . . . . . 154

4.3.1 Illustration of a fridge and treated shelves. . . . . . . . . . . 162

4.3.2 All potential planograms with three vertical locations. . . . . 164

4.3.3 Field experiment design. . . . . . . . . . . . . . . . . . . . . 167

xv



4.4.1 Average pre-intervention sales across treatment and control

groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.5.1 Normalized vertical location effect on sales. . . . . . . . . . . 183

4.5.2 Heterogeneity of the vertical location effect with respect to

price. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.5.3 Heterogeneity of the vertical location effect with respect to

promotion discount. . . . . . . . . . . . . . . . . . . . . . . . 188

4.5.4 Heterogeneity of the vertical location effect with respect to

a broken assortment. . . . . . . . . . . . . . . . . . . . . . . 189

4.5.5 Heterogeneity of the vertical location effect with respect to

market concentration. . . . . . . . . . . . . . . . . . . . . . . 190

4.5.6 Heterogeneity of the vertical location effect with respect to

the number of substitute products. . . . . . . . . . . . . . . 191

A3.1 Heterogeneity of the vertical location effect with respect to

price (revenue). . . . . . . . . . . . . . . . . . . . . . . . . . 215

A3.2 Heterogeneity of the vertical location effect with respect to

promotion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A3.3 Heterogeneity of the vertical location effect with respect to

a broken assortment. . . . . . . . . . . . . . . . . . . . . . . 219

A3.4 Heterogeneity of the vertical location effect with respect to

market concentration. . . . . . . . . . . . . . . . . . . . . . . 221

A3.5 Heterogeneity of the vertical location effect with respect to

the number of substitute products. . . . . . . . . . . . . . . 223

A3.6 Heterogeneity of the vertical location effect with respect to

package size. . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

A3.7 Heterogeneity of the vertical location effect with respect to

package size. . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

A3.8 Heterogeneity of the vertical location effect with respect to

product flashiness. . . . . . . . . . . . . . . . . . . . . . . . . 228

A3.9 Heterogeneity of the vertical location effect with respect to

product flashiness. . . . . . . . . . . . . . . . . . . . . . . . . 229

xvi



List of Tables

2.1 Effects of Boarding Congestion on Treatment Time . . . . . 22

2.2 Estimation of Model 2.4 . . . . . . . . . . . . . . . . . . . . 26

2.3 Estimation of Model 2.5 . . . . . . . . . . . . . . . . . . . . 28

2.4 Estimation of Model 2.6 . . . . . . . . . . . . . . . . . . . . 29

2.5 Simulation Results of Boarding Patient Flow Control Policies 37

2.6 Simulation Results of Hospitalist Visit Scheduling (HVS)

Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Percentage Improvements in based on ED Characteristics . . 42

A1.1 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . 55

A1.2 Effect of Boarding Time on Waiting Time . . . . . . . . . . 55

A1.3 Effects of Boarding Congestion on Treatment Time . . . . . 58

A1.4 Estimation of Model A1.3 . . . . . . . . . . . . . . . . . . . 58

A1.5 Boarding Congestion’s Effect on Treatment Time (Alterna-

tive Proxies for Boarding Congestion). . . . . . . . . . . . . 59

A1.6 Boarding Congestion’s Effects on Treatment Time by Con-

sidering ED Census. . . . . . . . . . . . . . . . . . . . . . . . 60

A1.7 Boarding Congestion’s Effect on Treatment Time based on

Diagnostic Codes. . . . . . . . . . . . . . . . . . . . . . . . . 61

A1.8 Boarding Congestion’s Effect on Treatment Time in Each

Hospital. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A1.9 Spline Regressions - Piecewise Linear Function . . . . . . . . 63

A1.10 Estimation of Model A1.4 . . . . . . . . . . . . . . . . . . . 63

A1.11 Estimation of Model A1.5 . . . . . . . . . . . . . . . . . . . 64

xvii



A1.12 Impact of Boarding Congestion on the Number of Diagnostic

Tests Ordered . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A1.13 Parameters Used for the Test Suite . . . . . . . . . . . . . . 73

A1.14 Optimal action over various µc values. . . . . . . . . . . . . . 73

A1.15 Optimal action over various λr values. . . . . . . . . . . . . . 74

A1.16 Optimal action over various λc values. . . . . . . . . . . . . . 74

A1.17 Optimal action over various γr
γc

values. . . . . . . . . . . . . . 75

A1.18 Optimal action over various p values. . . . . . . . . . . . . . 75

A1.19 Optimal action over various α values. . . . . . . . . . . . . . 76

A1.20 Comparing the simulation model and real data. . . . . . . . 77

A1.21 Comparing a secondary hospital’s simulation model and real

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A1.22 Simulation results of a secondary ED’s boarding patient flow

control policies. . . . . . . . . . . . . . . . . . . . . . . . . . 78

A1.23 Simulation Results of hospitalist Visit Scheduling Policies (A

Secondary ED) . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.1 Summary of Customer Utilities and Profit Functions . . . . . 96

3.4.1 Optimal Policy based on Online Retailer Characteristics . . . 106

A2.1 Summary of Notation . . . . . . . . . . . . . . . . . . . . . . 127

4.4.1 Descriptive statistics for the data sample from our A/A test. 171

4.4.2 Estimation results for our A/A test. . . . . . . . . . . . . . . 172

4.4.3 Descriptive statistics for the data sample from our pilot ex-

periment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.4.4 Estimation results for our pilot experiment. . . . . . . . . . . 177

4.5.1 Descriptive statistics for the data sample from our main ex-

periment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.5.2 Estimation results to examine customer confusion. . . . . . . 180

4.5.3 Estimation results for the vertical location effect. . . . . . . . 182

4.5.4 Estimation results for the overall sales. . . . . . . . . . . . . 185

xviii



4.6.1 Estimation results for linear and random-slope models. . . . 194

A3.1 Correlation matrix for the data used in A/A test. . . . . . . 203

A3.2 Correlation matrix for the data used in the pilot experiment. 203

A3.3 Correlation matrix for the data used in the main experiment. 204

A3.4 Descriptive statistics of the data sample in our pilot experi-

ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A3.5 Estimation results for our pilot experiment. . . . . . . . . . . 206

A3.6 Estimates for Equation (4.5.1). . . . . . . . . . . . . . . . . . 207

A3.7 Estimates for Equation (4.5.2). . . . . . . . . . . . . . . . . . 208

A3.7 Estimates for Equation (4.5.2). . . . . . . . . . . . . . . . . . 209

A3.7 Estimates for Equation (4.5.2). . . . . . . . . . . . . . . . . . 210

A3.8 Estimates of the vertical location effect on the overall sales. . 211

A3.9 Estimation results for cross-group comparison specification. . 213

A3.10 Estimation results for heterogeneous vertical location effect

(price). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

A3.11 Estimation results for heterogeneous vertical location effect

(promotion). . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

A3.12 Estimation results for heterogeneous vertical location effect

(broken assortment). . . . . . . . . . . . . . . . . . . . . . . 218

A3.13 Estimation results for heterogeneous vertical location effect

(market concentration). . . . . . . . . . . . . . . . . . . . . . 220

A3.14 Estimation results for heterogeneous vertical location effect

(number of substitute products). . . . . . . . . . . . . . . . . 222

A3.15 Estimation results for heterogeneous vertical location effect

(package size). . . . . . . . . . . . . . . . . . . . . . . . . . . 224

A3.16 Estimation results for heterogeneous vertical location effect

(flashiness). . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

xix



1
Introduction

In the dynamic landscape of today’s global economy, the integration of

data science has emerged as a transformative force, reshaping traditional

paradigms in industries ranging from healthcare to retail operations man-

agement. This revolution is particularly evident in the realms of healthcare

and retail, where the power of data-driven insights has become a corner-

stone for informed decision-making, efficiency optimization, and enhanced

customer experiences.

1.1 Data Science in Healthcare

The healthcare sector, a cornerstone of societal well-being, has witnessed a

remarkable evolution with the advent of data science. From patient care

and diagnostics to research and administrative processes, the integration of

advanced analytics and machine learning has unleashed a new era of pos-

sibilities. Electronic Health Records (EHRs) have become a treasure trove
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of valuable information, allowing healthcare professionals to analyze patient

histories, predict disease trends, and personalize treatment plans.

Furthermore, predictive analytics plays a pivotal role in proactive healthcare

management. By leveraging historical data, machine learning algorithms

can forecast patient outcomes, enabling healthcare providers to intervene

early, reduce hospital readmissions, and optimize resource allocation. This

predictive capability is not only enhancing patient care but is also proving

instrumental in managing healthcare costs efficiently.

The amalgamation of data science and healthcare extends beyond individ-

ual patient interactions. Population health management, a key focus area,

involves the analysis of large datasets to identify and address health trends

across communities. This proactive approach aids in preventive care initia-

tives, policy planning, and the overall improvement of public health out-

comes.

Data also helps healthcare systems improve their operations by enhancing

processes and identifying bottlenecks. One notable bottleneck, particularly

in Canada, is within emergency departments. Emergency department (ED)

crowding is a widely acknowledged issue, denoting a scenario where the de-

mand for ED services surpasses the capacity to provide timely care.

ED crowding has been a persistent challenge in Quebec for over 40 years. De-

spite increased attention from political, administrative, and public spheres,

instances of ED overcrowding persist, escalating in both frequency and sever-

ity. Comparative international studies reveal that the Quebec population

not only has the highest rate of ED visits but also experiences the lengthiest

waiting times for care in ED settings.

Successfully addressing the overcrowding problem involves three key phases:

1) assessing delays in the patient flow within ED and determining their im-

pact on care quality, 2) investigating factors contributing to these delays,

and 3) developing and testing interventions to alleviate ED crowding. This

comprehensive approach relies on access to a detailed dataset encompassing
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emergency patients’ trajectories and characteristics.

I have access to a rich and unique dataset, comprising over 500,000 ED

visits to eight hospitals in the Greater Montreal region during the 2015–2016

fiscal year. This dataset includes three types of information: (i) patient-flow

measures, (ii) patient-level details, and (iii) organizational and operational

characteristics of the EDs and associated hospitals. The availability of such

a comprehensive dataset enables me to undertake a thorough examination

of delays impacting the flow of ED patients through the continuum of care,

addressing all three key phases mentioned above. Further details on this

research can be found in Chapter 2 of this thesis.

1.2 Data Science in Retail Operations Man-

agement

In the fast-paced world of retail, where customer preferences shift rapidly,

data science is a game-changer for operations management. Retailers are

leveraging data to understand consumer behavior, optimize supply chain

operations, and create personalized shopping experiences.

Customer-centricity is at the forefront of retail strategies, and data science

enables the collection and analysis of customer data to understand pref-

erences, predict trends, and tailor marketing strategies. Recommendation

systems, powered by machine learning algorithms, provide customers with

personalized product suggestions, enhancing the overall shopping experience

and driving sales.

Supply chain management is another domain where data science is revolu-

tionizing retail operations. Predictive analytics helps in demand forecasting,

inventory management, and supply chain optimization, ensuring that retail-

ers can meet customer demands efficiently while minimizing costs. This not

only improves operational efficiency but also contributes to sustainability

efforts by reducing waste.

In this thesis, I undertook two projects aimed at enhancing retail opera-
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tions. Firstly, I delved into the concept of ”Pickup Partnership,” a business

model extensively utilized by companies such as Amazon and Wish in the

era of omnichannel retailing. This model strategically involves online stores

collaborating with physical establishments, like convenience stores, to offer

customers an alternative pickup option instead of home delivery.

The rationale behind this business model is multifaceted. Primarily, it al-

lows companies to diminish shipping costs and delivery times while providing

customers with a convenient alternative. This option proves advantageous

for individuals who may face challenges receiving orders at their homes. The

Pickup Partnership model is mutually beneficial, enhancing customer satis-

faction for the online store and attracting more customers who seek quicker

deliveries without additional fees.

From the perspective of the location partner, engaging in a pickup partner-

ship proves advantageous as well. Firstly, it generates additional foot traffic

within the physical store, potentially leading to cross-selling opportunities as

visitors may make additional purchases (e.g., coffee or snacks). Secondly, the

location partner may have a revenue-sharing or fixed-fee arrangement with

the online store for processing pickup orders, establishing a potential win-win

scenario for both parties.

In the third chapter of this thesis, I focus on quantifying the benefits of

such partnerships and explore various iterations to determine the optimal

implementation of this model. The research aims to shed light on the most

effective ways to capitalize on the Pickup Partnership business model, offering

valuable insights for both online stores and their physical location partners.

Many retailers have limited shelf space available, leading to the necessity

of strategically allocating this scarce resource among stocked items. The

position of products on the shelf plays a pivotal role in influencing prod-

uct sales, impacting consumers’ choices and overall shopping convenience.

Surveys examining supermarket shopping behavior consistently reveal that

approximately one-third of purchases are impulse buys triggered by visual
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elements. This presents a significant opportunity for retailers to enhance

incremental revenues and profits through an effective shelf arrangement that

heightens shopper awareness and impulsiveness.

Understanding the impact of each shelf space on customer choices empowers

retailers in negotiations with suppliers, allowing them to secure reservation

fees for high-value locations within the store. While some suppliers currently

pay location reservation fees based on agreements, the profitability for retail-

ers to deviate from the optimal shelf arrangement for the agreed reservation

fee remains uncertain. Therefore, comprehending the effect of shelf layout

also aids retailers in estimating the optimal reservation fee for each space in

the store.

In Chapter Four, I present findings from a field experiment conducted in

convenience stores, where I systematically measure the vertical location of

products on sales shelves. This research aims to provide practical insights

into the implications of shelf positioning, offering valuable information for

retailers seeking to optimize their shelf arrangements for increased sales and

profitability.
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2
On the Effects of Boarding

Congestion on Treatment Time

in Emergency Departments

2.1 Introduction

Emergency department (ED) boarding refers to the temporary holding of

patients in the ED after making the decision to admit them (American Col-

lege of Emergency Physicians 2018). Various factors can cause long boarding

times in EDs such as high inpatient services occupancy (Powell et al. 2012),

patient-flow-related issues (Feizi et al. 2023), and inefficiencies in the admis-

sion process (Mohr et al. 2020). According to the (Agency for Healthcare

Research and Quality 2018) survey, 9 out of 10 US hospitals reported holding

admitted patients in the ED, with boarding patients accounting for 10-20%
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of all ED census (McKenna et al. 2019). ED boarding has been associated

with numerous negative consequences for the boarding patients, including

lower-quality care (Rabin et al. 2012), decreased patient safety (Armony

et al. 2015), delays in receiving timely care (Sills et al. 2011), prolonged in-

hospital stays (Chan et al. 2017), and reduced patient satisfaction (Viccellio

et al. 2013).

In addition to its detrimental effect on patients’ health conditions, ED board-

ing can have adverse effects on ED performance, affecting all stages of ED

patient flow, from the waiting room and treatment section to the boarding

area (Batt and Terwiesch 2017). Several studies have investigated the im-

pact of boarding congestion on the length of stay (LOS)1 in EDs (e.g., White

et al. (2013), Khare et al. (2009)). These studies demonstrate that boarding

congestion increases the LOS for both admitted and discharged EDs. Some

studies have also investigated the effect of boarding congestion on ED waiting

time2 (e.g., Hoot and Aronsky (2008), Saghafian et al. (2015)). These stud-

ies reveal that boarding congestion can prolong waiting times in the waiting

room as boarding patients continue to occupy ED beds, thereby impeding

the admission of new patients to the treatment section. However, to the

best of our knowledge, prior studies have not investigated how overcrowding

caused by boarding patients in emergency departments affects the time it

takes to provide treatment to patients, nor have they explored the potential

mechanisms underlying this relationship. Understanding this impact and

the underlying mechanisms can provide valuable insights into the effects of

boarding congestion and facilitate the development of effective solutions to

mitigate its potential negative impact. Therefore, this study aims to address

the following questions:

1LOS refers to the duration of time a patient spends in the ED from the moment they
registered until they are either discharged or admitted to the hospital for further treatment
(Yoon et al. 2003).

2The waiting time refers to the duration from when the customer is registered in the
ED until they are transferred to the treatment section (Batt and Terwiesch 2017).
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• How does boarding congestion impact treatment time in EDs?

• What are the key mechanisms that contribute to the impact of boarding

congestion on treatment times?

• How can we effectively mitigate the potential adverse impact of board-

ing congestion on treatment times?

ED boarding may influence the treatment time in multiple ways. First,

boarding patients may increase the workload and multitasking level of ED

staff. While admitted patients are technically under the care of the hospital-

ists, there are cases where ED staff are required to provide medical attention

to boarding patients (Armony et al. 2015). It is not surprising that, when

boarding times are prolonged, these patients may require interim medical

attention; thus, ED staff (e.g., physicians and nurses) may often need to

provide inpatient services to these patients (Mohr et al. 2020). Additionally,

some boarding patients may require diagnostic tests while waiting to be ad-

mitted to the hospital (Coil et al. 2016). Prior literature shows that such an

increase in care providers’ workload and multitasking level can impact service

throughput. For instance, Kc (2014) illustrates that while initial multitask-

ing improves productivity, excessive multitasking decreases productivity due

to increased non-value-added activities and task switching. Moreover, multi-

tasking often results in increased interruptions (Chisholm et al. 2001), further

deteriorating the service rate. All of these factors can contribute to longer

treatment times for patients in the ED.

Second, boarding congestion might affect the discretionary behavior of care

providers. Previous studies show that crowding in EDs increases physicians’

“cognitive load” (Pines 2017), which leads to certain alterations in their be-

haviors related to diagnostic test ordering and patient prioritization. Specif-

ically, in the face of crowding, the ED physician may order more diagnostic

tests to temporarily reduce their workload while waiting for other test re-

sults (Berry Jaeker and Tucker 2019). Furthermore, as the level of boarding
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congestion increases, physicians may order more diagnostic tests to prevent

unnecessary admissions, particularly for the “gray area” patients for whom

the correct disposition decision remains ambiguous (Soltani et al. 2022). Ad-

ditionally, under conditions of increased workload, care providers may change

their prioritization schemes to manage their workload between boarding pa-

tients and emergency patients3 (Armony et al. 2015). Particularly, higher

levels of congestion may lead care providers to prioritize easier tasks, driven

by the behavior known as “task completion preference”(Kc et al. 2020).

Lastly, the congestion in the boarding section can result in an increase in

hospitalist visits to the ED, as hospitalists–who specialize in the care of hos-

pitalized patients–may be called upon to provide care in the boarding section

(Apker et al. 2007). Therefore, when evaluating the impact of boarding con-

gestion on treatment times, it is important to consider its effect on the added

workload for ED resources and the frequency of hospitalist visits.

In this paper, we adopt a multimethodology approach to evaluate the im-

pact of boarding congestion on treatment time and propose interventions

to mitigate its adverse effects. First, we investigate the impact of boarding

congestion on treatment time using a large dataset collected from eight hos-

pitals, including five tertiary and three secondary hospitals, encompassing

over 470,000 ED visits. Our analyses reveal an inverted U-shared relation-

ship between boarding congestion and treatment time. More specifically,

after controlling for hospital occupancy, we find the treatment time increases

from an average of 318 minutes to nearly 420 minutes when boarding conges-

tion increases from 1 to 20 patients. This translates to a 5-minute increase in

treatment time for every additional patient in boarding congestion. However,

once congestion increases from 25 to 40 patients per hour, treatment time

decreases to 378 minutes.

Second, we explore two mechanisms to explain this phenomenon: (i) the

3We refer to patients as ”emergency patients” while they are in the waiting room or
treatment section and ”boarding patients” while they are in the boarding section.
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additional workload imposed on ED resources by boarding patients and (ii)

the hospitalist’s visits triggered by boarding congestion. Regarding the first

mechanism, our findings suggest that boarding congestion increases the de-

mand for ED resources. Regarding the second mechanism, our analysis

demonstrates that as boarding congestion increases, the likelihood of hospi-

talist visits to the boarding section also increases. Furthermore, we observe

a reduction in the utilization of ED resources, including ED physicians and

diagnostic tests, for boarding patients after being visited by hospitalists.

Finally, based on our empirical findings, we propose two interventions to

mitigate the impact of boarding congestion on treatment time: (i) priori-

tizing patients in the treatment section and (ii) implementing streamlined

operational policies for hospitalists’ visits to the boarding section.

Regarding the first intervention, the prioritization of patients in the treat-

ment section becomes crucial when both emergency and boarding patients

require ED resources. Currently, our partner hospitals prioritize boarding

patients without standardized protocols or guidelines. In response, we pro-

pose a new prioritization policy based on insights derived from an analytical

model. Initially, we develop a Markov decision process (MDP) with reen-

tries to capture the impact of boarding congestion on patient flow in the

treatment section. We demonstrate that the optimal course of action for

selecting the next patient to serve depends on the treatment census, chal-

lenging the current practice and providing evidence for the need to optimize

prioritization. Next, we numerically extract the optimal policy properties of

our MDP model. Based on these insights, we present a practical policy to

control patient flow in the treatment section. To validate the effectiveness of

our approach, we calibrate a simulation model using our data. Simulation

results indicate that implementing our proposed policy in a tertiary hospi-

tal can reduce the treatment census by 4 patients and decrease the total

treatment time by 2 patient-years compared to the current practice.

Regarding the second intervention, although hospitalist visits are an ongoing
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practice in EDs to overcome ED boarding issue (Howell et al. 2010), no prior

work has directly addressed the operational challenges pertinent to this role,

particularly in providing effective care to boarding patients without increas-

ing their workload in the inpatient ward. Discussions with staff members at

partner hospitals revealed that hospitalists often visit boarding patients who

are going to be admitted to the inpatient ward where they work. However,

these visit plans vary from one hospital or inpatient ward to another, even

within the same hospital, due to the absence of standardized protocols. To

address this issue, we propose time-based and census-based visiting policies

for hospitalists, aiming to reduce the extra workload of ED resources caused

by boarding patients without increasing the existing workload of hospital-

ists (Zhu 2018). The simulation results demonstrate that the census-based

policy outperforms the time-based policy, mitigating the adverse impact of

boarding patients on the treatment section by 48% with 2.7 fewer patient-

years of total treatment time and 4.6 fewer patients in the treatment section

on average. Furthermore, our results illustrate that implementing both pro-

posed interventions together can alleviate the impact of boarding congestion

on treatment time by up to 68%.

2.2 Literature Review

Our work is related to two areas of research: empirical works that study the

impact of crowding on service times; and prior studies on boarding patients,

patient flow control, and the role of hospitalists in EDs’ performance.

2.2.1 The Impact of Crowding on Service Time

Fundamental queuing theory traditionally assumes that service times remain

fixed in system congestion (Wolff 1989). However, recent empirical studies

in operations management have demonstrated that crowding can have an

impact on service time across various sectors, including banking (Staats and

Gino 2012), hospitality (Tan and Netessine 2014), and retail (Wang and Zhou

11



2018). In the healthcare literature, the impact of crowding on service time

has received considerable attention, likely due to the criticality of service

time in healthcare systems and the limited control of overcrowding within

these systems. Prior literature has investigated the effects of crowding mea-

sures on service time in different healthcare settings, including intensive care

units (ICUs) (Kim et al. 2017), hospital inpatient wards (Berry Jaeker and

Tucker 2017), patient transport services and cardiothoracic surgeries (Kc and

Terwiesch 2009).

In the context of EDs, several studies examine the effects of crowding at

different stages of ED on the treatment time (e.g., Batt and Terwiesch (2017),

Kc (2014)). For instance, Batt and Terwiesch (2017) investigate the impact

of waiting room census on the treatment time and identifies an inverted U-

shaped relationship. They attribute this relationship to early task initiation,

delay in medication delivery, and nurse rushing. Moreover, they show that

the treatment time increases with a higher treatment census, which can be

explained by ED staff multitasking caused by overcrowding in the treatment

section (Kc 2014). Additionally, various medical studies evaluate the impact

of ED crowding (including crowding in the waiting room, treatment section,

and boarding section) on LOS and waiting time (e.g., McCarthy et al. (2009),

Timm et al. (2008), Lucas et al. (2009)). These studies, employing statistical

analysis, consistently report that ED crowding leads to increased LOS and

waiting time (e.g., Hoot and Aronsky (2008), Morley et al. (2018)).

There is a limited number of medical studies investigating the effects of ED

boarding on LOS and waiting times (e.g., White et al. (2013), Khare et al.

(2009), Carmen et al. (2018)). These studies consistently demonstrate that

boarding congestion contributes to prolonged LOS and waiting times, as pa-

tients awaiting admission occupy valuable ED beds and hinder the smooth

movement of new patients to the treatment section. Despite focusing on the

impact of ED boarding on waiting times, the influence of boarding congestion

on treatment time has been largely overlooked in both operations manage-
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ment and medical literature. In operations management literature, there

are only two exceptions: First, Carmen et al. (2018) analytically show that

boarding patients adversely affect ED congestion and maximum throughput.

Second, based on data from a large Israeli hospital, Armony et al. (2015)

observe that a boarding patient requires an average of 1.5 minutes of the ED

physician’s time every 15 minutes. However, this study did not examine any

causal effect of boarding patients on ED performance.

Similarly, in medical literature, there are only a few studies demonstrating

that hospital occupancy prolongs LOS in EDs and negatively impacts ED

performance (e.g., Hillier et al. (2009)). However, it is essential to exam-

ine the impact of boarding congestion separately from hospital occupancy.

Although hospital occupancy is recognized as a critical factor contributing

to boarding congestion (Powell et al. 2012), other factors such as inefficient

admission processes and patient-flow issues also play a role in this problem

(Luo et al. 2013, Feizi et al. 2023). Moreover, it is important to acknowledge

that the effects of boarding congestion and hospital occupancy on the ED

staff may differ since hospital occupancy is not directly observable to the ED

staff.

Therefore, our research contributes as the first empirical evidence of the im-

pact of congestion caused by boarding patients on ED treatment time. We

provide empirical evidence demonstrating that the utilization of ED resources

by boarding patients is one of the mechanisms underlying the relationship

between boarding congestion and treatment time. Building upon these find-

ings, we propose two interventions to manage boarding patients and mitigate

the negative impact of boarding congestion on ED performance: (i) patient

flow control in the treatment section and (ii) scheduling of hospitalist visits.

In the following sections, we provide a review of the existing literature on

these two interventions.
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2.2.2 Patient Flow Control and Hospitalists

The first intervention is to control boarding patient flow in EDs by allocating

ED resources judiciously between boarding patients requiring the attention

of the ED staff and other ED patients. Most studies focusing on prioritizing

patient problems in EDs aim to balance the work of ED physicians based

on two classes of patients: new patients after triage and in-progress pa-

tients (e.g., He et al. (2019)). Other classifications of patients in EDs for the

patient flow control problem are based on predicting patients’ dispositions

(e.g., Saghafian et al. (2012)) and the complexity of treatment procedures

(e.g., Saghafian et al. (2014)) (More details on customer classifications in

hospital and other healthcare systems can be found in (Helm et al. 2011,

Ranjan et al. 2017)). All existing research on prioritizing patients in EDs

assumes that patients do not need the ED staff’s attention during boarding

time. One exception is the study conducted by De Boeck et al. (2019), which

compares four ad-hoc priority policies to balance the ED physician’s work-

load on boarding and other ED patients using simulation. They assume that

boarding patients waiting to be checked up again by ED physicians cannot

move to the inpatient ward before being evaluated by the ED physician. We

relax this assumption in our MDP and simulation model, which is consistent

with our observations in the study EDs.

The second intervention proposes a planning framework for hospitalist visits

in the boarding section. Using hospital staff in EDs to provide service to

boarding patients, often referred to as the ”ED hospitalist role,” represents

one of the the operational solutions proposed by medical studies to combat

the negative impacts of boarding congestion (Kathuria et al. 2010). Some

medical studies report the benefits of employing the ED hospitalist role to

mitigate the negative impacts of prolonged boarding time and improve ED

performance in practice (e.g., Hrycko et al. (2019)). However, there is a

lack of prior OM/OR literature focusing on this role in EDs, particularly

regarding scheduling policies. Our study is the first to provide a scheduling
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framework for ED hospitalist visits.

2.3 Empirical Analyses

In this section, we begin by providing an overview of the clinical setting

and providing a description of our data. Next, we examine the effect of

the boarding congestion on the treatment time. Finally, we deploy several

robustness tests to validate our results.

2.3.1 Clinical Context and Data Description

Our data come from eight hospitals located in a metropolitan area in Canada.

These hospitals consist of three secondary hospitals and five tertiary hospi-

tals. Tertiary hospitals are typically larger facilities with specialized equip-

ment and inpatient wards compared to secondary hospitals (Flegel 2015).

However, the patient flow in the EDs of both secondary and tertiary hospi-

tals is similar. Figure 2.1 illustrates a typical patient flow in these emergency

departments.

Upon arrival, patients are assessed by a triage nurse who measures vital signs

and assigns a triage code based on the Canadian Triage and Acuity Scale

(CTAS), indicating their priority. After triage, patients wait in a waiting

area until they are called into a treatment room. In the treatment room,

an ED physician examines the patient, determines the necessary diagnostic

and treatment procedures, and may request additional tests or specialist

consultations. At the end of the treatment stage, a decision is made regarding

whether the patient should be discharged or admitted.

For patients requiring admission, there is a boarding stage where they wait

to be assigned a bed in the requested inpatient ward. However, boarding

times in the ED can become prolonged. In such cases, boarding patients

may require the utilization of ED resources, including ED physicians and di-

agnostic tests, in addition to continuous monitoring by ED nurses (Armony

et al. 2015). While admitted patients are technically under the care of hos-
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Figure 2.1: Typical Patient Flow.

pitalists, they cannot provide continuous monitoring for boarding patients in

the ED. Therefore, the responsibility of providing medical attention to these

patients falls upon the ED staff. Hospitalists may visit the boarding patients

who are scheduled for admission to their respective inpatient wards. How-

ever, it is important to mention that there are no standardized protocols for

hospitalist visits in the study hospitals. The hospitalists are informed about

the number of boarding patients awaiting admission to their ward, and they

choose when to visit them among their other tasks in the hospital.

In our study hospitals, long boarding times have been identified as an issue,

with an average boarding time of approximately eight hours. This provides an

opportunity to assess the impact of boarding congestion on ED performance.

Our dataset consists of nearly 566,000 ED visits recorded over a span of 18

consecutive months. The observations in our dataset are recorded at the

patient-visit level, meaning that each observation corresponds to a single

patient visit to one of the eight EDs. For each visit, the dataset includes

essential patient information, such as the mode of arrival (e.g., walk-ins or

ambulance), demographics (e.g., age and gender), the emergency severity in-

dex measured by CTAS, diagnostic code, and major timestamps capturing

critical events like triage, physician assignment, diagnostic tests, and admis-

sion. We apply a set of exclusion criteria that involve excluding incomplete

ED visits, patients with triage levels 1 and 5, visits with unusual arrival

modes, visits with missing information, and visits that occurred during the
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first and last week of the study period (for details, see Section A1.1). By

applying these exclusion criteria, we obtain a final dataset comprising more

than 470,000 ED visits across eight EDs.

2.3.2 Outcome and Explanatory Variables

In our analysis, the outcome variable is the treatment time, which measures

the duration from when the patient is called to a treatment section until the

physician makes the disposition decision. This definition aligns with previous

studies in the field (e.g., Batt and Terwiesch (2017)).

To construct our explanatory variables, we leverage patient-visit level and

operational data. Our primary explanatory variable is the boarding con-

gestion experienced by each patient during their treatment time. Drawing

from previous studies (Batt and Terwiesch 2017, Chan et al. 2017), we define

the hourly average boarding census during the patient’s treatment time as a

proxy for boarding congestion. To ensure robustness, we define two alterna-

tive proxies: the boarding census and the total remaining boarding time of

boarding patients at the start of treatment.

We also consider several patient-visit-specific covariates, including age, gen-

der, mode of arrival, CTAS (triage level), assignment to a stretcher (ED bed),

hospital admission, and diagnostic code (indicating the category of diagnosed

diseases). Leveraging the panel structure of data, we add time and hospital

fixed effects to control various dimensions of heterogeneity. For example, the

staffing level plays a key role in our analyses because the impact of boarding

congestion may differ depending on the number of care providers (Batt and

Terwiesch 2017, Kim et al. 2015). In discussions with hospital administra-

tors, it became evident that all EDs adhere to a specific scheduling plan.

This plan entails a fixed staffing arrangement for each shift on any given

day of the week and month. Consequently, to account for these consistent

staffing patterns, our model incorporates time fixed effects. These effects

include variables such as year, month, day of the visit, a weekend indicator,

hour, and the interaction between weekend and hour variables, providing us
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with a way to control for variations in staff scheduling.

Considering the shared resources between the hospital and ED (McCarthy

et al. 2009, Allon et al. 2013), we include the hospital occupancy level at

the beginning of the patient’s treatment as a control variable in our model.

This variable helps account for the potential impact of hospital occupancy

on both boarding congestion and treatment time. Descriptive statistics of

the outcome and explanatory variables can be found in Table A1.1 in the

Appendix.

2.3.3 Model Formulation

We utilize a duration regression model to examine the relationship between

treatment time (TRT TIME) and boarding congestion (BOARD CGSTN).

Duration regression is a statistical modelling technique employed to predict

the time or duration of an event or process based on a set of input variables

or features (Greene 2012). Specifically, we employ a parametric accelerated-

failure-time (AFT) model, which is a type of duration regression model that

relates the logarithm of the duration to a vector of covariates and a random

error term ϵ through a linear equation (Greene 2012). The general form of

the model is as follows:

ln(TRT TIMEi,h) = β1BOARD CGSTNi,h + β2BOARD CGSTN2
i,h

+Wi,hθ + Zi,hϕ+ ηHOSP OCCi,h + α + αh + ϵi,h,

(2.1)

where the subscripts i and h denote the patient–visit pair and the ED, re-

spectively. α is a constant term and αh is the hospital fixed effect. The

vectors Wi,h and Zi,h contain patient-visit and time covariates, respectively.

HOSP OCCi,h captures the hospital occupancy level at the start of patient

i’s treatment. Both the linear and squared terms of boarding congestion

(BOARD CGSTN) are considered to account for the potential nonlinear

effect of boarding congestion on treatment time.

In AFT models, the error term ϵi,h is typically defined as the natural loga-
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rithm of the time-to-event variable τi,h (i.e., ϵi,h = ln(τi,h)). The distribu-

tional assumption of τi,h determines the underlying hazard function charac-

teristics. After testing various distributional assumptions, we find that the

Weibull distribution provides the best fit based on the Bayesian information

criterion (BIC) (BIC = 1, 422, 164). We also assess variance inflation factors

(VIFs) and the condition number to ensure multicollinearity is not a concern

in our analysis. It is important to note that boarding congestion does not ex-

hibit a perfect correlation with the hospital’s occupancy level. This is due to

the influence of various other factors, including ED admission policy, patient

flow, and the occupancy level in the corresponding inpatient wards where

boarding patients are expected to be admitted (McCarthy et al. 2009, Song

et al. 2020, Kim et al. 2015, Mohr et al. 2020).

Despite the rich dataset, there might be unobservable factors that could

simultaneously influence both treatment time and boarding congestion. For

example, the skill and experience levels of the ED staff can affect both the

treatment time and the boarding congestion (Hoot and Aronsky 2008). These

unobservable factors introduce the possibility of bias in our estimation of β1

and β2 (Heckman 1998). To address this potential omitted variable bias,

we enhance our previous specification by employing an instrumental variable

(IV) approach, specifically the control function (CF) method. This approach

has also been utilized in similar studies (e.g., Soltani et al. (2022), Kim et al.

(2015)).

To establish a valid IV, two conditions must be met: (i) the IV should have

a significant impact on the endogenous variable (BOARD CGSTN) (rele-

vance condition), and (ii) the IV should be uncorrelated with unobserved

factors that influence the dependent variable (TRT TIME) (exclusion re-

striction) (Wooldridge 2015). We define the average boarding time of ED

patients transferred to the hospital in the previous shift before the patient’s

arrival to the ED (LAG BOARD TIME) as the IV. This choice is moti-

vated by the notion that the boarding time of recently transferred patients
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can serve as a reliable predictor of the current boarding time, which, in

turn, drives the boarding congestion (Khare et al. 2009). Consequently,

LAG BOARD TIME satisfies the relevance condition. Furthermore, the

boarding time of patients admitted in the previous shift is unlikely to di-

rectly impact the treatment time of patients in the current shift. Given that

some ED staff have changed as the shift has been changed, it is less proba-

ble that the boarding time of admitted patients during the previous period

influences the behaviour of the current ED staff and subsequently affects the

treatment time of current patients. However, there might be mechanisms

that invalidate the exclusion restriction. We discuss these mechanisms be-

low.

First, it is essential to investigate whether lengthy boarding times and board-

ing congestion in EDs can influence patient arrival patterns and potentially

introduce selection bias. We explore two potential factors that may affect

patient arrival patterns. Firstly, patients may strategically choose to arrive

when boarding congestion is low. This is unlikely as information regarding

ED and boarding congestion is not publicly available, and there is no com-

mon practice of ambulance diversion among the studied EDs. However, we

evaluate this possibility by examining the relationship between ED board-

ing time and the arrival rate of patients with different characteristics, such

as high, medium, and low triage levels. Our analysis reveals no evidence

of a correlation between boarding time and patient arrival rate, indicating

the absence of systematic selection bias in our IV (see Appendix A1.2 for de-

tails). Secondly, the presence of patients who leave the waiting room without

being seen by an ED physician (referred to as LWBS patients) can impact

the patient mix in the treatment section of the ED. If this filtering varies

with boarding congestion, the patient composition during periods of high

and low boarding congestion may differ. We find that 8% of patients with

triage levels 2, 3, and 4 leave the ED before being called into the treatment

section. However, after controlling for patient-visit, time-visit, and waiting
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room census, we observe that the coefficient of boarding congestion is not

significantly different from zero when assessing its potential impact on aban-

donment probability (see Appendix A1.2 for further details). As a result, we

do not need to be overly concerned about patient abandonment leading to a

selection bias.

Second, we address the concern that LAG BOARD TIME might affect the

patient’s waiting time, which, in turn, can influence their treatment time and

potentially compromise the validity of our IV (Wooldridge 2015). To examine

the effect of LAG BOARD TIME on the waiting time, we use an AFT

model while controlling for patient-visit and time covariates. Our analysis

reveals no significant evidence of a potential effect of LAG BOARD TIME

on waiting time (see Appendix A1.2 for more details).

Third, we consider the possibility that treatment congestion may impact

boarding congestion through admission probability. To address this con-

cern, we conduct preliminary analyses to explore the relationship between

treatment and boarding congestion and the probability of admission deci-

sion. However, we do not find any evidence supporting such relationships.

This observation may be attributed to the fact that, in the studied EDs, the

admission decision is made by specialists rather than ED physicians. For

further details, see Appendix A1.2.

Based on our analyses, we find that LAG BOARD TIME can be considered

a valid IV in our setting. By incorporating this IV into the CF approach,

we can use the following first- and second-stage equations to investigate the

impact of boarding congestion on treatment time:

The first-stage specification

BOARD CGSTNi,h = α + βLAG BOARD TIMEi,h +Wi,hθ + Zi,hϕ

+ ηHOSP OCCi,h + αh + vi,h
(2.2)

The second-stage specification

21



ln (TRT TIMEi,h) = α + β1BOARD CGSTNi,h + β2BOARD CGSTN2
i,h

+Wi,hθ + Zi,hϕ+ ηHOSP OCCi,h + γv̂i,h + αh + ϵi,h.

(2.3)

where v̂i,h is the predicted residual from the first-stage specification. Note

that it is sufficient to estimate the first stage of CF only forBOARD CGSTNi,h

because the residuals from the first stage also adjust for the endogeneity of

the quadratic term (Wooldridge 2015).

2.3.4 Results

This section provides our main empirical findings about the impact of board-

ing congestion on treatment time. The first- and second-stage estimation

results are presented in Table 2.1. The positive and significant coefficient

of the instrument from the first-stage estimation shows that the higher the

boarding time of the patients admitted to the hospital before the patient

arrival, the higher the degree of boarding congestion.

Table 2.1: Effects of Boarding Congestion on Treatment Time

with IV without IV

first stage second stage

BOARD CGSTN ln(TRT TIME) ln(TRT TIME)

LAG BOARD TIME 0.062∗∗∗ (0.017)

BOARD CGSTN 0.143∗∗∗ (0.038) 0.097∗∗∗ (0.027)

BOARD CGSTN2 −0.023∗∗ (0.007) −0.025∗∗ (0.008)

γ −0.073∗∗∗ (0.020)

Observations 470,173 470,173 470,173

Notes. All models include all controls, including hospital fixed effect, time fixed effects, patient
covariates, and hospital occupancy. Clustered robust standard errors in parentheses. *p < 0.1;
**p < 0.05; ***p < 0.01.

Our results from the second-stage estimation show that an inverted U-shaped

relationship exists between boarding congestion and ED treatment time. The
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treatment time initially increases with boarding congestion (β1 = 0.143 (p <

0.01)), and then decreases (β2 = −0.023 (p < 0.05)). We verify the inverted

U-shaped relationship by testing that the slopes at the beginning and end of

the curve are indeed positive and negative, respectively (Lind and Mehlum

2010). Note that the comparison of results from estimating the baseline

specification with and without IV in Table 2.1 suggests that accounting for

the potential endogeneity of boarding congestion does not change the nature

of the relationship between boarding congestion and treatment time.

The model’s nonlinear nature and inclusion of the quadratic boarding con-

gestion term make direct interpretation of the estimated coefficients difficult.

Therefore, we depict the estimated treatment time over the boarding con-

gestion for a tertiary and a secondary hospital ED in Figures 2.2(a) and

2.2(b), respectively, where the bars correspond to 95% confidence intervals.

Both Figures 2.2(a) and 2.2(b) confirm the inverted U-shaped relationship

between treatment time and boarding congestion. Figure 2.2(b) illustrates

that in a large tertiary ED, as boarding congestion ranges from 1 to 20

patients per hour, the mean treatment time increases from 318 minutes to

almost 420 minutes, i.e., an increase of nearly one patient per hour in board-

ing congestion leads to a 5-minute increase in treatment time. However,

once congestion increases from 25 to 40 patients per hour, the mean treat-

ment time decreases from 420 to 378 minutes. Our results show that this

inverted U-shaped relationship between boarding congestion and treatment

time exists in both tertiary and secondary EDs, suggesting that our findings

can be generalizable to both types of hospitals.

2.3.5 Robustness Checks

We conduct several additional analyses to examine the robustness of our

findings. In this section, we provide a summary of the results while directing

readers to Section A1.3 of the Appendix for detailed information and further

discussions.

First, we explore two alternative proxies to capture boarding congestion. The
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(a) Secondary hospital (b) Tertiary hospital

Figure 2.2: Effects of Boarding Congestion on Treatment Time

first proxy is defined as the boarding census at the beginning of a patient’s

treatment. This proxy is inspired by the work of Batt and Terwiesch (2017).

They utilize the waiting room census at treatment initiation to capture the

workload associated with waiting patients. The second proxy is a time-based

metric based on the findings of Carmen et al. (2018), which analytically show

the impact of both boarding census and boarding time on ED performance.

Specifically, we define the remaining boarding time of boarding patients at

the start of a patient’s treatment as the observed boarding congestion for that

patient (similar to the measure used in queue theory by (Niu 1988)). The

results obtained from these alternative proxies, as presented in Table A1.5

of the Appendix, are consistent with our main findings reported in Table

2.1, demonstrating the robustness of our conclusions under these alternative

measures.

Batt and Terwiesch (2017) show that waiting room and treatment census

affect treatment time. To examine the possible effect of congestion in the

waiting room and treatment section, we add the linear and quadratic terms of

the number of patients in these two sections at the beginning of treatment to

Model 2.1, similar to the model used by Batt and Terwiesch (2017). As seen

in Table A1.6 in the Appendix, the results confirm that the main conclusion
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regarding the impact of boarding congestion is consistent with the baseline

results provided in Table 2.1.

To address the concern regarding heterogeneity across the diagnostic codes

and EDs, we conduct subsampling analyses. The results of our analyses indi-

cate that grouping observations by EDs or diagnostic codes has no discernible

effect on our findings (see Table A1.7 and A1.8 in the Appendix for the results

of subsampling analyses over diagnostic codes and EDs, respectively).

Finally, in the baseline analyses, we include both linear and quadratic terms

of boarding congestion to allow for a nonmonotonic response to boarding

congestion. To provide for further robustness test, following prior literature

(Tan and Netessine 2019, Soltani et al. 2022, Kesavan et al. 2014), we conduct

spline regression with two and three knots. The results confirm the inverted

U-shaped relationship from thebaseline estimations (see Table A1.9 in the

Appendix).

2.4 Potential Drivers of Boarding Congestion

Effect: Models and Results

Building upon the patterns observed in Figure 2.2, we now explore poten-

tial mechanisms that explain the inverted U-shaped impact of the boarding

congestion on the treatment time. Relying on existing literature and our

discussions with clinicians at the partner hospitals, we particularly focus on

(i) the additional workload on ED resources imposed by boarding patients

and (ii) the hospitalists’ visits triggered by boarding congestion.

2.4.1 Mechanism 1: Workload Imposed by Boarding

Patients

Contrary to popular opinion, it is common for ED staff to continue providing

treatment to patients in cases of long boarding times after the admission deci-

sion (Armony et al. 2015). While most of these routine checks are carried out

by nurses, there are instances where boarding patients may need to return to
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the treatment area for reassessment (i.e., checkup) or to undergo additional

diagnostic tests (Liu et al. 2011). It is important to note that ”return” in

this context refers to the patient’s need to utilize ED resources, including ED

physicians, laboratory, and imaging facilities, rather than physically return-

ing to the treatment room. These revisits impose an additional workload on

ED resources and have the potential to delay treatment procedures for other

patients (Armony et al. 2015).

To examine the impact of boarding patients’ returns as a mechanism under-

lying the effects of boarding congestion on treatment time, we estimate the

following model:

REENTRANT CNGSTi,h = α + γ1BOARD CNGSTi,h + γ2BOARD CNGST 2
i,h

+ Zi,hϕ+ αh + ϵi,h,

(2.4)

where REENTRANT CNGSTi,h is the hourly average number of boarding

patients returning to the treatment section during the treatment time of pa-

tient i. Note that in this model, γ1 and γ2 capture the effects of boarding

congestion on the average number of boarding patients returning to the treat-

ment section. As shown in Table 2.2, γ1 and γ2 are positive and negative,

respectively (p < 0.05), indicating that as boarding congestion increases, the

number of boarding patients returning to ED initially increases and then

decreases.

Table 2.2: Estimation of Model 2.4

REENTRANT CNGST

BOARD CNGST 0.979∗∗∗ (0.230)

BOARD CNGST 2 −0.100∗∗ (0.042)

N 470,173

Notes. The model includes all controls, including hospital fixed effect, time fixed effects, patient
covariates, and hospital occupancy. Clustered robust standard errors in parentheses. *p < 0.1;
**p < 0.05; ***p < 0.01.
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These findings suggest that boarding congestion contributes to the workload

of ED resources by increasing the number of boarding patients who need to

return to the treatment area. While this additional workload can explain the

association between boarding congestion and treatment time, we still need to

explore a mechanism to understand why a further increase in boarding con-

gestion leads to a decrease in both the number of boarding patients returning

to the treatment section and the ED treatment time. In the next subsection,

we introduce a potential mechanism to explain the declining segment.

2.4.2 Mechanism 2: Hospitalists’ Visit Schedule Trig-

gered by Boarding Patients

As discussed in Section 2.2.2, hospitalists, who are responsible for oversee-

ing the care of hospitalized patients, occasionally visit the boarding patients

who are to be admitted to the inpatient wards where these hospitalists work.

These visits can help alleviate the workload caused by boarding patients on

ED resources (Hrycko et al. 2019, Chadaga et al. 2012). To examine the

impact of the frequency of hospitalist visits on the boarding patients’ return

to the treatment section, we first investigate the relationship between board-

ing congestion and the likelihood of hospitalist visits. Then, we assess the

relationship between hospitalist visits and the boarding patients’ likelihood

of returning to the treatment section.

We estimate the relationship between boarding congestion and hospitalist

visits using the following model:

HOSP V ISITi,h = α + γ1BOARD CNGSTi,h + γ2BOARD CNGST 2
i,h

+ Zi,hϕ+ αh + ϵi,h,

(2.5)

Here, HOSP V ISITi,h is a binary variable indicating whether at least one
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hospitalist visit occurred during patient i’s treatment time in ED h4.

Because our focus is on estimating marginal effects rather than making pre-

dictions, we opt to estimate a linear probability model instead of a binary

outcome model. The results presented in Table 2.3 suggests that as the

boarding congestion increases, as expected, the likelihood of hospitalist visit

to the boarding section also increases.

Table 2.3: Estimation of Model 2.5

HOSP V ISIT

BOARD CNGST 0.127∗∗∗ (0.031)

BOARD CNGST 2 0.002∗ (0.001)

N 470,173

Notes. The model includes all controls, including hospital fixed effects and time fixed effects. Clustered
robust standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.

Next, in order to assess the possible effect of a hospitalist’s visits onREENTRANT CNGSTi,h,

we estimate the following model:

REENTRANT CNGSTi,h = α + γ1BOARD CNGSTi,h + γ2BOARD CNGST 2
i,h

+ γ3HOSP V ISITi,h + Zi,hϕ+ αh + ϵi,h,

(2.6)

As shown in Table 2.4, the negative and significant coefficient γ3 confirms

that hospitalist visits reduce the number of boarding patients returning to

the treatment area during the patient i’s treatment period. This decrease in

patient returns lessens the additional workload imposed on ED resources.

Boarding patients typically revisit the treatment section for two primary

4”Ideally, we would prefer to utilize the total count of hospitalist visits during patient
i’s treatment time. However, we possess only the timestamp for when a boarding patient
is visited by a hospitalist, and we lack detailed information about the exact timing of each
hospitalist’s visit to the boarding section. This absence of precise timing data hinders our
ability to calculate the frequency of visits to the boarding section accurately. Consequently,
we must rely on the binary indicator variable to record the occurrence of any hospitalist
visit during a patient’s treatment time.
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Table 2.4: Estimation of Model 2.6

REENTRANT CNGST

BOARD CNGST 0.764∗∗ (0.322)

BOARD CNGST 2 −0.054∗ (0.025)

HOSP V ISIT −0.021∗∗∗ (0.004)

N 470,173

Notes. The model includes all controls, including hospital fixed effects and time fixed effects. Clustered
robust standard errors are provided in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.

reasons: (i) to receive a checkup from an ED physician or (ii) to undergo

additional diagnostic tests (Liu et al. 2011). To investigate the impact of

hospitalist visits on each of these types of returns, we conduct an analy-

sis. We provide the technical details behind this analysis in Appendix A1.4.

Here, we summarize the key insights of this analysis. Our findings indicate

that when boarding patients are visited by hospitalists, their probability of

needing to be seen by ED physicians decreases. Additionally, we observe

that boarding patients who are visited by ED physicians have a higher prob-

ability of experiencing diagnostic tests during their boarding time compared

to those visited by hospitalists5. This observation can be attributed to the

increased work pressure experienced by ED physicians during periods of high

boarding congestion, leading to an increased cognitive load and a more risk-

averse mindset (Soltani et al. 2022). Furthermore, the awareness that their

work during the boarding period will be reviewed by hospitalists may fur-

ther enhance the physician’s risk aversion, resulting in a higher likelihood

of ordering diagnostic tests for boarding patients (Deck and Jahedi 2015).

ED physicians may also rely on ordering diagnostic tests as an alternative to

direct patient contact when they have limited time available to spend with

5We also investigated whether boarding congestion influences the diagnostic test-
ordering behaviour of ED physicians for patients in the treatment section. However, we
did not find any evidence of changes in physicians’ diagnostic test-ordering behaviour for
patients in the treatment section in response to changes in boarding congestion.
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boarding patients (Batt and Terwiesch 2017).

In contrast, when hospitalists visit boarding patients who are admitted to

their respective inpatient wards, they typically have a higher level of exper-

tise and familiarity with the patient’s health issues. As a result, hospitalists

may order fewer tests, which aligns with previous studies indicating that ex-

perienced physicians often demonstrate a more selective approach in ordering

diagnostic tests (Ma et al. 2005).

In summary, an increase in boarding congestion triggers hospitalist visits,

which helps relieve ED resources from the extra workload imposed by the

boarding patients, leading to a decrease in the average treatment time in

the ED. These findings suggest that managing boarding patients’ return to

the treatment section and scheduling hospitalists’ visits are important op-

erational levers to mitigate the adverse impact of boarding congestion. We

operationalize these strategies in the next section.

2.5 Operational Interventions

The results obtained from empirical analyses suggest two operational in-

terventions to mitigate the impact of boarding congestion: (i) prioritizing

patients in the treatment section and (ii) streamlining operational policies

for hospitalists’ visits to the boarding section. Regarding the first interven-

tion, in Section 2.5.1, we introduce an MDP model and extract the optimal

policy’s properties through numerical analysis. Leveraging insights from the

MDP model, we propose a practical heuristic policy to control patient flow

in the treatment section. Moreover, by employing a simulation model based

on real data, we demonstrate the benefits of our policy. Regarding the lat-

ter intervention, we employ our simulation model to investigate alternative

hospitalist visit policies and illustrate the advantages of different policies.
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2.5.1 Patient Flow Control in Treatment Section

This section presents our MDP model for addressing the patient flow control

problem in the treatment area, along with the simulation model we develop to

evaluate the efficacy of the proposed heuristic policy in a real-world context.

Model Framework.

We formulate the problem of patient flow control as a continuous-time,

infinite-horizon average cost MDP. Our MDP model aims to strike a balance

between the waiting time cost of boarding patients and emergency patients

when both require the same resources within the ED. In this section, we

provide a brief overview of the problem setting and direct readers to Sec-

tion A1.6 for a detailed specification of the system state, action, transition

dynamics, cost, and objective function.

EDs are inherently complex, involving multiple stages and services, which

can present challenges when trying to model the precise patient flow using

an MDP. Hence, we begin by developing a simplified model and then lever-

age insights from the model to propose a heuristic policy. Then, we evaluate

the effectiveness of our proposed policy in a realistic scenario through sim-

ulation analysis. Figure 2.3 illustrates the simplified patient flow model in

the treatment section of EDs. Specifically, our system comprises two distinct

queues: a treatment queue for emergency patients who have already started

their treatment and await its completion and a checkup queue for boarding

patients waiting to return to the treatment section.

In our model, we assume that emergency patients arrive according to a Pois-

son process with the rate λr per unit time, and their treatment time is ex-

ponentially distributed with the rate µr. After treatment completion, the

service provider decides whether to admit the patient to the hospital (with a

probability p) or discharge her (with probability 1− p). If admitted, the pa-

tient is transferred to the boarding section, and we assume her waiting time

for a hospital bed follows an exponential distribution with a rate of µb. While
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Figure 2.3: Boarding Patient Flow Control System.

waiting for admission, boarding patients may need to revisit the treatment

section. Such requests arrive according to a Poisson process with rate λc,

and the service time for returned boarding patients follows an exponential

distribution with rate µc. If a hospital bed becomes available, a patient in

the checkup queue may leave. Thus, we assume that patients in the checkup

queue depart according to an exponential distribution with a rate of µbd. In

this setting, once a service is completed, a decision is made regarding which

queue is chosen to serve the next patient.

Structure of Optimal Policy.

Finding the optimal policy form for the MDP model described above is chal-

lenging due to its inherent complexity, which arises from the combination of

a tandem and a reentrant queue. While the structural properties of tandem

queue systems have been theoretically analyzed in related literature (Koole

2004), studies focusing on queue systems with reentrance often rely on nu-

merical methods to evaluate their structural properties (Koole and Pot 2006).

Therefore, in alignment with previous research, we use numerical methods

to determine the optimal policy for the MDP model.

To achieve this, we construct a comprehensive test suite encompassing a

wide range of parameter values (further details of the test suite are provided

in Appendix A1.6). For each instance in our test suite, we use the value

iteration algorithm to solve the MDP and record the optimal actions at each

state.
Figure 2.4 exhibits switching curves as a function of xr (i.e., the treatment
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(a) xb = 0 (b) xb = 10 (c) xb = 20 (d) xb = 30

Figure 2.4: Optimal Actions - Base Case

queue in the x-axis) and xc (i.e., the checkup queue in the y-axis) for four

levels of the boarding census, xb. Note that the top left corner of each

figure represents the case of no patients in both queues, and dark red regions

indicate the optimal policy that prioritizes emergency patients over boarding

patients. These results highlight that the optimal actions are influenced by

both the number of emergency and boarding patients awaiting treatment or

checkups, as well as the presence of boarding patients who are not in the

checkup queue.

Although the complexity of the optimal policy structure is evident in these

results, they provide valuable insights and suggest specific forms of prioriti-

zation policy, as presented in Figure 2.5.

Figure 2.5: The Approximation of the Optimal Policy Structure

As one might expect, the precise form of the optimal policy is intricate and

varies according to the model parameters. However, we can estimate the

optimal action structure using the following threshold policy (TP), which is
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shown to be optimal under a special case (see Section A1.6 for more details):

TP =


Choose from treatment queue if xr ≥ L1

Choose from treatment queue if L2 ≤ xr < L1, xc ≤ L3

Choose from checkup queue Otherwise.

(2.7)

where L1, L2, and L3 show thresholds that are functions of the system pa-

rameters. While this policy provides an approximation of the optimal patient

flow control, we demonstrate in the subsequent section, through a simulation

model, that it can be significantly beneficial in practice.

Simulation.

We now focus on assessing the performance of our proposed policy in a real-

world scenario using a simulation model. We use our estimation results and

historical data to calibrate the simulation model. We develop two simula-

tion models: one based on data from a secondary hospital and another one

based on data from a tertiary hospital. We evaluate our policies based on

three metrics: average treatment time per patient, hourly average treatment

section census, and total treatment time. We aim to determine whether the

proposed patient control policy outperforms the existing policy.

We simulate an ED comprising two sections: a treatment section and a

boarding section (similar to Figure 1, excluding triage and waiting room).

Patient arrival to the treatment section follows an empirical distribution

derived from the available data. We estimate the treatment time distribution

by utilizing an empirical distribution based on the data and our findings from

Section 2.4.2. Therefore, the treatment time for patients in the treatment

section is prolonged when a boarding patient returns to the treatment section.

Upon completing the treatment process, patients are either assigned to the

boarding section or exit the system. The admission rate is determined based

on the available data. Boarding patients’ checkup request times and boarding

times are determined using empirical distributions. Subsequently, we utilize
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the data to calculate the probability of a checkup request. For a checkup

request, three possible events can occur based on the control policies: (i) the

request is accepted, and the patient reenters the treatment section; (ii) the

request is rejected, and the patient remains in the boarding section; or (iii)

the patient is placed in a virtual queue (referred to as the checkup queue) to

reenter the treatment section at the appropriate time.

The timestamp at which a boarding patient returns to the boarding section

was not recorded in our available data. Therefore, the checkup duration

cannot be directly derived from the data. To address this, we compare the

simulation results of several potential distribution functions with the data to

select the best distribution function for the checkup time.

Once the checkup is completed, patients return to the boarding section and

wait until their admission time. Upon reaching their admission time, they

are admitted to the hospital and leave the ED system. Boarding patients

whose admission time has arrived when they are in the treatment section

are admitted to the hospital immediately after returning to the boarding

section, just as they would in reality. A patient can leave the checkup queue

before visiting the treatment section if her admission time arrives while she

is waiting in the checkup queue.

We verify and validate our simulation model’s accuracy using the strategies

proposed by Sargent (2010), Shechter (2010), Werker et al. (2009). We record

the time of each patient’s main events, which helps us verify that (i) patients

follow a reasonable path in the system and (ii) the correct number of pa-

tients are flowing through the system. We validate the simulation model by

comparing it with an actual ”real-world” ED system. By examining key sys-

tem features such as the average (hourly) census in both the treatment and

boarding sections and the volume of boarding patients, we demonstrate the

alignment between our simulation results and the observations in the selected

hospital. For detailed information, refer to Table A1.20 and Figure A1.4.

When formulating our proposed TP, we estimate its parameters L1, L2, and
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L3 using a simulation-based optimization technique. The objective of this

optimization is to minimize the combined average treatment time and waiting

time of boarding patients in the checkup queue. Alternatively, we can define

the objective function as minimizing the total average census of both the

treatment section and checkup queues.

Considering the potential challenges in implementing boarding-congestion-

dependent values for L1, L2, and L3 in practical settings, we propose an

alternative approach. In this approach, we calculate L-values for low, mod-

erate, and high congestion scenarios in the boarding section. Firstly, we de-

termine the first and third quartiles of the boarding congestion distribution.

Subsequently, we compute the optimal values of L1, L2, and L3 for three

different scenarios: boarding congestion below the first quartile, between the

first and third quartiles, and above the third quartile. This approach allows

us to adapt the TP based on the different levels of congestion in the boarding

section, providing a more flexible and practical solution.

In order to assess the effectiveness of TP, we consider two benchmark sce-

narios. Firstly, we examine the existing situation in which boarding patients

are given priority over emergency patients in utilizing ED resources. We re-

fer to this scenario as the ”status quo.” Secondly, we evaluate a situation in

which boarding patients are redirected to a completely separate system, effec-

tively eliminating any additional burden they may impose on ED resources.

This scenario represents a lower bound for the treatment time. We refer to

this scenario as the ”lower bound.” By comparing TP with these benchmark

scenarios, we can evaluate its performance and understand its potential for

improvement.

Results: To evaluate the different policies, we conduct a simulation over

the course of one full year, with a warm-up period of one month and 1,000

iterations. The results for the tertiary hospital are summarized in Table 2.5

(refer to Table A1.22 for the results of the secondary hospital).

The first row of the table displays the outcomes obtained under the current
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policy, which align well with the observed data. A comparison between the

status quo and the lower bound reveals that boarding patients can potentially

increase the treatment time by approximately 15%, highlighting the need for

ED administrators to consider the additional workload caused by boarding

patients when making operational decisions, such as staffing levels.

Our analysis strongly supports the effectiveness of the proposed TP in miti-

gating the negative impact of boarding congestion on treatment time. Specif-

ically, when implementing TP, we observe a reduction of four patients in the

treatment section (corresponding to a 66.67% improvement in treatment time

congestion) and a decrease of two patient years on average in total treatment

time (representing a 45.32% improvement) compared to the current policy.

Table 2.5: Simulation Results of Boarding Patient Flow Control Policies

Policy Average treatment Hourly average Total treatment time*
time treatment section (patient-years)

(minute) census

Status quo (SQ) 378.84 (0.48) 40 (0.14) 44.64 (0.05)

Lower Bound (LB) 330.40 (0.39) 34 (0.13) 38.95 (0.04)

Threshold Policy (TP) 361.92 (0.42) 36 (0.13) 42.63 (0.04)
34.92% 66.67% 45.32%

Notes. Pct. improvement compared to the status quo and lower bound presented in the last row (i.e.,
(SQ-TP)/(SQ-LB)·100). Standard errors in parentheses for 1000 iterations. * Total treatment time is calculates as
(average treatment time · total annual patient volume)/(60 · 24 · 365)

2.5.2 Hospitalist Visit Scheduling (HVS)

In Section 2.4, we demonstrate the beneficial impact of hospitalist visits on

relieving ED resources from the increased workload caused by boarding pa-

tients. Typically, hospitalists are called to the ED based on the number of

boarding patients requiring admission to their inpatient wards. Nevertheless,

the timing of these visits is often influenced by the hospitalists’ other respon-

sibilities within the wards. To address this issue, we propose and evaluate

two policies for hospitalist visits in this section (for scheduling policies used

in other healthcare systems, refer to e.g., Robinson and Chen (2003, 2010)).
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One of the challenges faced by operational policies in this context is the

heterogeneity of hospitalists across different inpatient wards. The number

of patients requiring hospitalist visits varies significantly depending on the

type or specialty of the ward. Additionally, hospitalists may have different

preferences when it comes to scheduling. They often have busy schedules at

their respective facilities, and checking on boarding patients may disrupt their

rounds and other activities. Moreover, some hospitalists may prefer fixed

visit times rather than irregular visits based on the census in the boarding

section (Zhu 2018).

To address these challenges, we consider two types of policies for hospitalist

visits: census-based and time-based policy. The census-based policy suggests

that hospitalists should visit the boarding section when a certain number of

boarding patients waiting to be admitted to their ward is reached. This

number is referred to as the ”census-based scheduling threshold.” On the

other hand, in the time-based policy, hospitalists visit the boarding section

at predetermined intervals (e.g., every 6 hours), regardless of the census.

This predetermined interval is called the ”time-based scheduling threshold.”

Using simulation-based optimization, we determined the optimal level for

census-based scheduling threshold and time-based scheduling threshold for

census-based and time-based policy, respectively. Our objective function

considers two primary goals: (i) to minimize the additional workload on

the treatment section imposed by boarding patients (i.e., to maximize the

number of boarding patients visited by a hospitalist in the early hours of

boarding time before the checkup request), and (ii) to minimize the frequency

of hospitalist visits. Therefore, we introduce a new key performance metric

alongside the metrics discussed in the previous section: the daily average

number of hospitalist visits.

To account for the heterogeneity of patient volume across different inpatient

wards, we determine the optimal scheduling threshold for each policy based

on varying demand rates. This approach empowers hospitalists to select
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the most suitable policy, whether it is time-based or census-based schedul-

ing, taking into consideration their preferences and the specific demand rate

of their respective inpatient ward. Through this framework, we effectively

facilitate policy selection, streamlining the decision-making process.

Results.

This section presents the results using the historical data of a tertiary hospi-

tal. The findings for the secondary hospital, provided in A1.7, align closely

with those presented here. Our proposed framework is visually summarized

in Figures 2.6(a) and 2.6(b). With this framework, EDs can seamlessly choose

the optimal policy by taking into account the demand rate and hospitalists’

preferences regarding time- and census-based scheduling.

(a) Census-based scheduling framework (b) Time-based scheduling framework

Figure 2.6: A Tertiary ED’s Scheduling Framework for an ED-hospitalist.

Table 2.6 shows the results for the “status quo” and “threshold policy (TP).6”

A comparison between time-based and census-based policies reveals that,

despite hospitalists’ preference for fixed visit times in the time-based policy,

the census-based policy yields fewer hospitalist trips to the boarding section

and outperforms the time-based policy in terms of average treatment time

and census.

Implementing such an operational policy can mitigate the adverse impact of

6Threshold policy refers to the patient flow control intervention discussed before.
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boarding patients on the treatment section by 48% with two fewer patient-

years of total treatment time and five fewer patients in the treatment section

on average. By combining both interventions, the improvement can reach

68%, translating to 3.89 fewer patient-years and six fewer patients in the es-

timated current system, in terms of total treatment time and census, respec-

tively. It is important to highlight that these improvements can be achieved

while keeping the expected daily number of hospitalist visits to the ED al-

most the same (i.e., 2.97 vs. 2.91). Furthermore, while the mean waiting

time of boarding patients for a checkup under TP (with the existing pat-

tern of hospitalists’ visits) is 39 minutes, it is reduced to 4 minutes with the

combined approach of TP and census-based visit policy.

Table 2.6: Simulation Results of Hospitalist Visit Scheduling (HVS) Policies

Average treatment Hourly average Daily average number
time treatment section of hospitalist visit

(minute) census per category*

Policy Status quo TP Status quo TP Status quo TP

Without HVS** 378.84 (0.48) 361.92 (0.42) 40 (0.14) 37 (0.12) 2.97 (0.02) 2.97 (0.02)

Time-based HVS 363.46 (0.44) 347.08 (0.39) 35 (0.12) 34 (0.11) 3.11 (0.02) 3.19 (0.02)

Census-based HVS 361.93 (0.42) 345.77 (0.39) 35 (0.12) 34 (0.11) 2.86 (0.01) 2.91 (0.01)

Mixed HVS 362.29 (0.40) 346.11 (0.38) 35 (0.13) 34 (0.13) 3.04 (0.01) 3.17 (0.02)

Notes. * We consider four categories. Standard errors in parentheses. 1000 iterations.

Lastly, we assess the efficacy of the proposed interventions considering the

characteristics of the emergency department (ED). Our primary focus re-

volves around the arrival rate of emergency patients, treatment time, and

the probability of boarding for patients. We consider three levels for each

characteristic: a low scenario (25% less than the base case), a medium sce-

nario (base case), and a high scenario (25% more than the base case). Here,

we summarize our key findings as follows.

Observation 1. Table 2.7 suggests that both census-based and time-based

HVS, as well as the TP, exhibit greater improvements as the arrival rate
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or treatment time of patients increases. This suggests that congested EDs

with higher arrival rates or longer treatment times can benefit more from

the proposed interventions. This observation aligns with intuition, as the

effectiveness of these policies increases with the level of congestion in the ED.

By effectively preventing the overflow of boarding patients into the treatment

section, these policies alleviate the additional burden on ED resources.

Observation 2. As arrival rate and/or treatment time increase, the difference

between census- and time-based policies and the additional benefit from HVS

policy on top of TP reduces. This phenomenon occurs due to the increased

congestion in the ED when the arrival rate and treatment time are high.

In such scenarios, both census-based and time-based policies recommend a

higher number of visits for hospitalists. Consequently, the additional advan-

tages offered by census-based HVS diminish in these demanding settings.

Observation 3. We observe that as the boarding probability increases, the

effectiveness of both interventions (HVS and TP) decreases. However, this

decrease is more pronounced when only the TP is in place. This suggests that

HVS policies are more robust in mitigating the negative effects of boarding

congestion across different situations. The underlying intuition behind this

observation is that as the boarding probability increases, prioritizing board-

ing patients over emergency patients (which is the current practice) becomes

the optimal policy in most instances. Therefore, the relative improvement

offered by the TP over the status quo diminishes. This observation has po-

tentially important implications for identifying the scenarios in which HVS

and/or TP are most effective. It indicates that congested EDs that primarily

handle less acute or complex patients, such as those in primary or secondary

hospitals like community hospitals, are more likely to benefit from such poli-

cies compared to EDs with a higher proportion of acute cases, such as tertiary

hospitals and trauma centers.

In summary, this simulation analysis provides two valuable managerial in-

sights. First, by improving patient flow control and effectively managing
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Table 2.7: Percentage Improvements in based on ED Characteristics

Time-based HVS + TP Census-based HVS + TP

Arrival Treatment Boarding percentage Boarding percentage Boarding percentage

Rate Time Low Med High Low Med High Low Med High

Low Low 25.56% 21.36% 10.18% 51.86% 49.48% 44.47% 54.60% 52.72% 46.69%

Med 29.71% 23.46% 13.06% 65.96% 61.36% 50.99% 68.45% 63.78% 53.48%

High 39.42% 27.89% 18.07% 73.90% 64.42% 59.62% 77.83% 67.26% 62.22%

Med Low 31.79% 24.40% 18.24% 55.22% 51.64% 46.66% 58.03% 53.94% 48.51%

Med 48.84% 34.92% 24.59% 72.74% 65.26% 58.74% 76.47% 68.27% 61.01%

High 53.73% 37.24% 27.98% 74.56% 71.16% 62.87% 78.35% 73.82% 65.01%

High Low 41.61% 30.74% 22.06% 61.30% 58.71% 51.78% 63.76% 60.62% 53.35%

Med 57.85% 39.12% 27.57% 73.89% 66.89% 60.13% 76.75% 69.15% 61.78%

High 60.85% 41.12% 29.01% 76.42% 72.43% 63.57% 79.32% 74.38% 65.21%

resources such as hospitalists, the adverse effects of boarding congestion on

ED treatment time can be significantly mitigated without the need for addi-

tional financial investments. Second, the characteristics of ED can influence

the effectiveness of proposed interventions in alleviating the negative impact

of boarding congestion on treatment time.

2.6 Discussion and Conclusion

Using a comprehensive dataset comprising eight different EDs (three sec-

ondary and five tertiary), we examine the impact of boarding congestion on

treatment time. Previous studies have often assumed that boarding patients

simply occupy ED beds and potentially hinder access for patients awaiting

treatment, focusing on waiting time or LOS as metrics. In contrast, our study

specifically examines treatment time and reveals a nuanced relationship be-

tween boarding congestion and treatment duration, characterized by an in-

verted U-shape pattern. For instance, in a typical secondary ED, increasing

boarding congestion from one patient to nine patients per hour results in an

average treatment time increase of 10%. However, this positive relationship

between boarding congestion and treatment time only persists up to a cer-
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tain threshold, beyond which treatment time starts to decrease with further

increases in boarding congestion. We demonstrate the robustness of our find-

ings through a range of robustness tests, including the use of instrumental

variables, alternative proxy definitions, and subsampling analyses.

We also investigate the potential mechanisms underlying the relationship

between boarding congestion and treatment time. Our analysis reveals that

boarding congestion generally places an additional workload on ED resources,

as boarding patients may require further checkups by ED physicians or un-

dergo additional diagnostic tests. This finding aligns with the observations

made by Armony et al. (2015), who estimated that approximately 10% of

ED physicians’ workload is attributed to boarding patients. Furthermore,

we show that the likelihood of hospitalist visits to the boarding section in-

creases as boarding congestion rises. This, in turn, leads to a decrease in the

number of visits made by boarding patients back to the treatment section.

This explains the decreasing segment of the inverted U-shaped relationship

between boarding congestion and treatment time in the ED.

Based on empirical analyses, we propose two interventions to mitigate the

impact of boarding congestion on treatment time: boarding patient flow con-

trol and hospitalist visit scheduling policies. The simulation results illustrate

that implementing these two interventions together can reduce the effects of

boarding congestion by 68% for a tertiary hospital.

2.6.1 Implications for Theory

Our study has several implications for healthcare operations management

theory. The first implication is for staff levels in EDs. Our study corrobo-

rates the descriptive findings in Armony et al. (2015) regarding the additional

workload on the ED staff resulting from congestion caused by boarding pa-

tients. Although patient boarding is a common issue in EDs globally (Khare

et al. 2009), we do not find any OM/OR study quantifying the impact of the

congestion caused by boarding patients on treatment time and considering

it in ED staffing decisions. Previous studies have generally assumed that
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admitted patients promptly leave the ED, regardless of whether they are

immediately transferred to the inpatient ward or remain in the ED awaiting

admission. However, our findings exhibit the significance of the boarding con-

gestion effect, emphasizing the need for researchers to consider the presence

of boarding patients when planning for staffing levels.

The second implication relates to patient flow in EDs. Previous studies on

patient flow typically categorize patients into two groups: ”new patients”

waiting for treatment and ”in-process patients” already in the treatment

section. However, our analysis across eight EDs reveals that approximately

60% of boarding patients require additional ED resources beyond regular

nurse checkups during their boarding period. These findings highlight the

importance of accounting for boarding patients in ED patient flow models in

future studies.

Thirdly, our study holds implications for scholars interested in examining the

role of hospitalists in EDs. While hospitalists play a crucial role in mitigating

the adverse effects of boarding congestion on ED performance and patient

outcomes (Chadaga et al. 2012), we are not aware of any OR/MS study that

specifically focuses on this role or addresses operational questions related to

it. This study proposes an easy-to-implement framework for selecting the

optimal HVS policy for a given hospitalist based on their inpatient ward’s

demand volume. This opens up a promising avenue of research on the role of

hospitalists in the ED and its impact on both ED and hospital performance.

2.6.2 Implications for Practice

Our study also has implications for practice. First, by analyzing the data

of more than 470,000 patients from eight EDs, our study highlights the im-

portance of patient boarding in EDs and shows that the adverse impact of

boarding congestion on the ED’s performance is far beyond what was docu-

mented previously. These findings emphasize how important it is for hospital

administrators to carefully characterize boarding congestion for their ED op-

erations. Ignoring this impact on treatment times when making operational
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decisions may result in persistent overcrowding and an inability to respond

to patients with quality and timely care.

Financial incentives and the volatility of demand for ED services inevitably

lead to the phenomenon of patient boarding in some EDs. This study pro-

poses two easily implementable interventions to mitigate the negative impact

of congestion caused by boarding patients on treatment time. These inter-

ventions are based on optimizing the use of ED and hospital resources and

do not require major resource allocation or structural changes. ED managers

can consider these interventions and customize them according to the size

and complexity of the patient mix in their EDs to alleviate the adverse effects

of boarding patient congestion on ED performance.

Our findings suggest that prioritizing boarding patients over emergency pa-

tients for using ED resources can be effective. However, this policy is not

universally optimal for all EDs. Figure 2.7 summarizes the results of our

sensitivity analyses (the details are provided in Section A1.6), which sug-

gest that prioritizing boarding patients is best suited for EDs with (i) a high

arrival rate of checkup requests from boarding patients, (ii) a high probabil-

ity of emergency patients to be admitted to the hospital, and (iii) a longer

duration of checkup time for boarding patients in the treatment section. In

general, our results indicate that EDs handling a more acute and/or complex

patient mix, including patients with lower triage codes, more comorbidities,

or older ages, can improve their ED performance by prioritizing boarding

patients. Conversely, EDs managing less acute or severe cases, such as com-

munity hospitals, may consider prioritizing emergency patients to improve

their ED performance.

Regarding our second intervention, our analyses reveal that census-based

HVS consistently outperforms time-based HVS across various ED character-

istics. However, the advantages of this policy become more prominent as

the ED experiences higher levels of congestion, while its mitigating effect di-

minishes as the probability of patient boarding increases. Thus, we can infer
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Figure 2.7: Patient Flow Control Based on Key Characteristics of the ED

that highly congested EDs in primary or secondary hospitals can benefit most

from this intervention, particularly when combined with TP. Future research

can delve into exploring novel interventions to address patient boarding and

its impact on ED performance and patient outcomes.

Finally, the hospital admission team faces a dilemma when deciding whether

to assign a patient to a nonprimary bed (off-service placement) when all pri-

mary beds are occupied or wait until a primary bed becomes available, thus

leaving a nonprimary bed unused (Dai and Shi 2019). Given that off-service

placement has negative impacts on patient outcomes and hospital length of

stay, some studies recommend assigning patients to primary beds, even if it

results in prolonged boarding time (Song et al. 2020). By quantifying the

effects of boarding congestion on ED performance, our study provides valu-

able assistance to the hospital admission team in navigating this trade-off.

However, further research is needed to develop a framework that guides prac-

titioners in determining the optimal timing for off-service placement based

on the current state of boarding and the hospital.
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A1 Appendix for Article 1

A1.1 Sample Selection and Descriptive Statistics

We impose a set of exclusion criteria on the data for our analyses. First, we exclude

the observations in which patients leave before seeing an ED physician. They ac-

counted for approximately 5% of ED visits. We exclude these observations because

of an incomplete visit. Second, we exclude patients encounter with a CTAS code

of 1 and 5, which constitute approximately 1.5% and 9.9% of total visit volume,

respectively. The patients with a CTAS level of 1 are always given high priority

because of their elevated risks; they are generally tracked separately from other

patients. Usually, patients with CTAS 5 are also tracked separately, because their

treatment needs are relatively simpler and they only have one-time interaction

with the ED physician for more than 95% of cases. Next, we eliminate patients

who come by helicopters or are escorted by police, because different protocols were

followed for these patients. Finally, we exclude the ED visits with missing infor-

mation (less than 1% of the observations). We also exclude the data of first and

last weeks to avoid censored estimation of occupancy. The final dataset includes

more than 470,000 ED visits over eight EDs. See Figure A1.1 for the summary

of the data-extraction procedure. We provide the descriptive statistics in Table

A1.1.

A1.2 Details on Main Model

Patient Characteristics and Boarding Time

To address concerns of selection bias in our instrumental variable (IV) analysis,

we conduct several analyses. First, we demonstrate significant variation in the

hourly rate of ED arrivals at different levels of average boarding time. As shown

in Figure A1.2, no consistent pattern is found between ED arrivals and average

boarding time.

Second, we assess the similarity of patients visiting the ED during different average

boarding times by examining their observable characteristics including age, gender,
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Figure A1.1: Selection of the emergency department (ED) visit sample.

triage level, diagnostic code, and arrival mode. In Figure A1.3, we present the

arrival rates for different patient groups across four different levels of boarding

time. Furthermore, we conduct a multivariate analysis of variance (MANOVA) to

test for differences in patient characteristics and severity levels among those visiting

the ED during different levels of average boarding time. The analysis reveals no

significant differences in patient characteristics among the different levels of the

average boarding time (Wilks’ λ= 0.96, p = 0.14).

Boarding Time and Waiting Time

In this section, we estimate the potential relationship between the proposed in-

strumental variable (LAG BOARD TIME) on waiting time. To assess this re-

lationship, we use a parametric accelerated-failure-time (AFT) model, which is

formulated as follows:

ln(WAIT TIMEi,h) = α + β1LAG BOARD TIMEi,h + β2LAG BOARD TIME2
i,h

+Wi,hθ + Zi,hϕ+ αh + ϵi,h,

(A1.1)

Table A1.2 presents the results indicating that the average boarding time of pa-
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Table A1.1: Summary Statistics

Secondary Tertiary

H1 H2 H3 H4 H5 H6 H7 H8

N 50,362 39,302 23,688 72,684 78,154 111,693 50,742 43,548

Age 51.93 (0.096) 48.67 (0.114) 49.18 (0.148) 53.41 (0.085) 49.65 (0.092) 52.72 (0.064) 50.90 (0.091) 49.81 (0.105)

Female 0.37 (0.002) 0.47 (0.003) 0.46 (0.003) 0.45 (0.002) 0.45 (0.002) 0.44 (0.001) 0.45 (0.002) 0.50 (0.002)

Arrival type: 0.77 (0.002) 0.70 (0.002) 0.80 (0.003) 0.68 (0.002) 0.71 (0.002) 0.82 (0.001) 0.75 (0.002) 0.61 (0.002)
Ambulant

Triage 2 0.08 (0.001) 0.15 (0.002) 0.04 (0.001) 0.28 (0.002) 0.29 (0.002) 0.24 (0.001) 0.18 (0.002) 0.25 (0.002)

Triage 3 0.45 (0.002) 0.45 (0.003) 0.31 (0.003) 0.46 (0.002) 0.43 (0.002) 0.44 (0.001) 0.45 (0.002) 0.40 (0.002)

Admission 0.14 (0.002) 0.13 (0.002) 0.08 (0.002) 0.23 (0.002) 0.26 (0.002) 0.16 (0.001) 0.17 (0.002) 0.18 (0.002)
probability

Reentrance 0.41 (0.002) 0.17 (0.001) 0.38 (0.002) 0.59 (0.003) 0.29 (0.001) 0.59 (0.002) 0.38 (0.002) 0.32 (0.002)
probability*

Diagnostics 5.73 (0.027) 1.28 (0.009) 1.92 (0.022) 4.87 (0.017) 1.8 (0.010) 4.26 (0.013) 4.16 (0.023) 4.08 (0.023)
ordered

Treatment time 333 (1.863) 385 (2.513) 310 (3.122) 372 (1.462) 406 (1.875) 320 (1.128) 434 (2.124) 471 (2.204)
(minute)

Boarding 5.45 (0.013) 4.65 (0.018) 3.61 (0.012) 24.81 (0.026) 25.59 (0.032) 21.93 (0.022) 9.47 (0.017) 6.72 (0.016)
congestion

Hospital 0.88 (0.007) 0.82 (0.008) 0.79 (0.01) 0.91 (0.006) 0.89 (0.008) 0.93 (0.007) 0.89 (0.01) 0.90 (0.008)
occupancy level

Notes. * Contingent on being admitted. Standard errors in parentheses

tients admitted to the hospital during the previous shift prior to patient arrival

does not have a significant impact on the patient’s waiting time.

Table A1.2: Effect of Boarding Time on Waiting Time

(1)

LAG BOARD TIME 0.002 (0.001)
LAG BOARD TIME2 0.001 (0.001)

Observations 470,173

Notes. The model includes all controls including hospital fixed effect, time fixed effects, and patient
covariates. Clustered robust standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.
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Figure A1.2: The Relationship between ED Arrivals and Average Boarding
Time

Admission Probability and ED Congestion

Here, we examine the possible relationship between the workload in the treatment

section and admission probability. Specifically, we estimate the following equation:

ADMITi,h = αh + β1WORKLOADi,h + β2WORKLOAD2
i,h +Wi,hθ + Zi,hϕ+ ϵi,h

(A1.2)

where WORKLOADi,h is defined as the treatment section census divided by the

number of available ED physicians when treatment begins for patient i. Since

we are interested in the marginal effects of workload on hospital admission rather

than the hospital admission prediction, we use a linear probability model rather

than a binary outcome model. Table A1.3 presents the results indicating that the

physician’s workload does not have a significant effect on the admission proba-

bility. These findings differ from previous literature (e.g., Pines (2017), Freeman

et al. (2017)). One possible explanation for this discrepancy is that in the eight

study EDs, specialists, rather than ED physicians, possess the authority to make

admission decisions.

Using Model A1.2, we also examine the potential impact of boarding conges-

tion on the admission probability (we use variable BOARD CNGST instead of

WORKLOAD in Model A1.2) . However, as shown in Table A1.3, we do not

find any evidence of a significant effect of boarding congestion on the admission
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(a) Triage-level groups (b) Diagnostic-code groups

(c) Age groups

Figure A1.3: Patient Arrival Rate

probability.

Boarding Congestion and Abandonment Behavior

To evaluate the possible effect of the boarding congestion on the patients’ aban-

donment behavior, we use the following model:

LWBSi,h = α + β1BOARD CNGSTi,h + β2BOARD CNGST 2
i,h

+Wi,hθ + Zi,hϕ+ αh + ϵi,h,
(A1.3)

The vectors Wi,h and Zi,h contain patient-visit and time covariates, respectively.

The vectors Wi,h also includes waiting time and waiting room census observed by i

in ED h. Because we are interested in marginal effects rather than predictions, we

choose to estimate a linear probability model rather than a binary outcome model.

The results presented in Table A1.4 indicate that boarding congestion does not
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Table A1.3: Effects of Boarding Congestion on Treatment Time

(1) (2)
ADMIT ADMIT

WORKLOAD 0.0034 (0.0035)

WORKLOAD2 -0.0002 (0.0003)

BOARD CNGST -0.0004 (0.0003)

BOARD CNGST 2 -0.0000 (0.0000)

N 470,173
R2 0.294 0.294

Notes. the models includes all controls including hospital fixed effect, time fixed effects, and patient
covariates. Clustered robust standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.

have a significant impact on patients’ abandonment behavior.

Table A1.4: Estimation of Model A1.3

LWBS

BOARD CNGST 0.015 (0.011)

BOARD CNGST 2 0.001 (0.001)

N 470,173

Notes. The model includes all controls including hospital fixed effect and time fixed effects. Clustered
robust standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.

58



A1.3 Robustness Check and Sensitivity Analysis

Alternative Proxies for Boarding Congestion

Table A1.5: Boarding Congestion’s Effect on Treatment Time (Alternative
Proxies for Boarding Congestion).

(1) (2)

Boarding congestion Boarding census upon Total remaining boarding

proxy start of treatment time upon start of treatment

BOARD CNGSTN 0.043∗∗∗ (0.007) 0.021∗∗ (0.008)

BOARD CNGSTN2 −0.006∗∗ (0.002) −0.003∗∗ (0.000)

Observations 470,173 470,173

Notes. The model includes all controls including hospital fixed effect, time fixed effects, and patient

covariates. Clustered robust standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.

Boarding Congestion’s Effects on Treatment Time by Considering Other

Census Variables

We investigate the impact of boarding congestion on treatment time by incorpo-

rating the census of the waiting room and treatment section7. Specifically, we

introduce the linear and quadratic terms of the number of patients in the waiting

room and treatment section once treatment begins for patient i into Model 2.1,

following a similar approach to Batt and Terwiesch (2017). As presented in Table

A1.6, the effect of boarding congestion on treatment time remains robust even

after accounting for the number of patients in the waiting room and treatment

section.

7Note that the treatment census does not include boarding patients who return to the
treatment section for a checkup.
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Table A1.6: Boarding Congestion’s Effects on Treatment Time by
Considering ED Census.

(1) (2) (3)

BOARD CNGSTN 0.143∗∗∗ (0.038) 0.139∗∗∗ (0.036) 0.139∗∗∗ (0.035)

BOARD CNGSTN2 −0.023∗∗ (0.007) −0.024∗∗ (0.007) −0.024∗∗ (0.007)

WAIT CENSUS -0.016 (0.026) -0.016 (0.025)

WAIT CENSUS2 0.001 (0.005) 0.001 (0.005)

TRTMT CENSUS 0.013 (0.017)

TRTMT CENSUS2 -0.000 (0.001)

Observations 470,173 470,173 470,173

Notes. the models include all controls including hospital fixed effect, time fixed effects, patient
covariates, and hospital occupancy level. Clustered robust standard errors in parentheses. *p < 0.1;
**p < 0.05; ***p < 0.01.

Subsample Analysis

We conduct subsample analyses based on diagnostic codes and individual hospitals.

The estimated coefficients from these subsamples are presented in Table A1.7,

demonstrating that the effect of boarding congestion on treatment time remains

consistent with our baseline estimation results discussed in Section 2.3.

A1.4 Impact of Hospitalist Visit on Boarding Patients

To examine the impact of hospitalist visits on boarding patients’ need to be visited

by ED physicians, we estimate the following model:

CHECKUPj,h = α + β1HOSPITALIST V ISITj,h +Vj,hγ +Wj,hθ + Zj,hϕ+ αh+ ϵj,h,

(A1.4)

Here, the subscripts j and h indicate the boarding patient j and hospital h, re-

spectively. CHECKUPj,h is a binary variable indicating whether boarding pa-

tient j has returned to the treatment section to be visited by an ED physician.

HOSPITALIST V ISITj,h is a binary variable indicating whether patient j has
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Table A1.7: Boarding Congestion’s Effect on Treatment Time based on
Diagnostic Codes.

(1) (2)

Most common Least common
diagnostic code diagnostic code

BOARD CNGSTN 0.104∗∗∗ (0.026) 0.207∗∗ (0.061)

BOARD CNGSTN2 −0.026∗∗ (0.008) −0.041∗∗ (0.012)

Observations 138,964 12,985

Notes. the models include all controls including hospital fixed effect, time fixed effects, patient
covariates, and hospital occupancy level. Clustered robust standard errors in parentheses. *p < 0.1;
**p < 0.05; ***p < 0.01.

been visited by a hospitalist before being seen by an ED physician. The vector

Vj,h contains census covariates, including the boarding census and treatment cen-

sus at the beginning of the boarding time for patient j. The vectors Wj,h and Zj,h

contain patient-visit and time covariates, respectively.

Because our interest lies in examining the marginal effects rather than making pre-

dictions, we opt to estimate a linear probability model instead of a binary outcome

model. The results shown in Table A1.10 reveal that the estimated coefficient β1

is negative and statistically significant. This indicates that boarding patients who

are visited by a hospitalist during their boarding time are less likely to require a

visit by an ED physician during their boarding time.

We examine whether there is a correlation between boarding patients who are

visited by an ED physician and their likelihood of receiving diagnostic tests, as

opposed to those who are visited by a hospitalist. To explore this association, we

use the following model for estimation:

TESTj,h = α + β1PHY SICIAN V ISITj,h + β2HOSPITALIST V ISITj,h

+Vj,hγ +Wj,hθ + Zj,hϕ+ αh+ ϵj,h,

(A1.5)
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Table A1.8: Boarding Congestion’s Effect on Treatment Time in Each
Hospital.

Hospital Observations BOARD CNGSTN BOARD CNGSTN2

1 50,362 0.082∗∗∗ (0.027) −0.038∗∗∗ (0.010)

2 72,684 0.103∗∗∗ (0.031) −0.054∗∗∗ (0.018)

3 78,154 0.093∗∗ (0.032) −0.028∗∗ (0.014)

4 111,693 0.128∗∗∗ (0.042) −0.025∗∗∗ (0.007)

5 39,302 0.124∗∗ (0.051) −0.085∗∗ (0.037)

6 50,742 0.085∗∗∗ (0.027) −0.036∗∗∗ (0.011)

7 43,548 0.096∗∗ (0.033) −0.012∗∗ (0.005)

8 23,688 0.056∗∗∗ (0.014) −0.016∗∗ (0.006)

Notes. the models include all controls including time fixed effects, patient covariates, and hospital
occupancy level. Robust standard errors are clustered by diagnostic codes in parentheses. *p < 0.1;
**p < 0.05; ***p < 0.01.

Where TESTj,h is a binary variable indicating whether boarding patient j expe-

rienced a diagnostic test during her boarding time. PHY SICIAN V ISITj,h and

HOSPITALIST V ISITj,h are binary variables indicating whether boarding pa-

tient j was visited by an ED physician and hospitalist, respectively. The vector

Vj, h includes census covariates and boarding time of patient j. The vectors Wj, h

and Zj, h contain patient-visit and time covariates, respectively. The error term

is denoted as ϵj,h.

The coefficients β1 and β2 quantify the effects of each type of visit on the likelihood

of receiving diagnostic tests during the boarding time. The results, presented in

Table A1.11, indicate that when boarding patients are visited by an ED physician,

they have a higher probability of receiving additional diagnostic tests during their

boardin time compared to those visited by a hospitalist.

A1.5 Diagnostic Tests

To explore the potential impact of boarding congestion on the number of diagnostic

tests ordered during treatment time, we employ a zero-inflated negative binomial

(ZINB) model. The ZINB model combines a binary logit process for inflation and
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Table A1.9: Spline Regressions - Piecewise Linear Function

(1) (1)
Two knots Three knots

BOARD CNGSTN1 0.031∗∗∗ (0.008) 0.044∗∗ (0.018)

BOARD CNGSTN2 −0.083∗∗∗ (0.022) -0.015 (0.010)

BOARD CNGSTN3 −0.183∗∗∗ (0.017)

Observations 470,173 470,173

Notes. the models include all controls including hospital fixed effect, time fixed effects, patient
covariates, and hospital occupancy level. Clustered robust standard errors in parentheses. *p < 0.1;
**p < 0.05; ***p < 0.01.

Table A1.10: Estimation of Model A1.4

CHECKUP

HOSPITALIST V ISIT −0.0203∗ (0.0089)

N 84,932

Notes. The model includes all controls including hospital fixed effect and time fixed effects. Clustered
robust standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.

a negative binomial count process for the count of tests ordered, as our dependent

variable is discrete and relatively small. Let finf (.) represent the probability den-

sity of the logit process and fcount(.) denote the probability density of the negative

binomial count process. The ZINB model defines the density function as follows:

f(y|x) =

{
finf (1|x) + {1− finf (1|x)} fcount (0|x) if y = 0

{1− finf (1|x)}fcount (y|x) if y ≥ 1
(A1.6)

Hence, the mean of the model is given by:

E[DIAG TESTi|xi] =
1

1 + exp (xiηinf )
× exp (xiηcount) , (A1.7)

Here, xiηinf and xiηcount represent the predicted values for the inflation and count

processes, respectively, using the same set of explanatory variables as in Equation
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Table A1.11: Estimation of Model A1.5

TEST

PHY SICIAN V ISIT 0.0233∗∗∗ (0.0021)

HOSPITALIST V ISIT −0.0184∗∗ (0.0071)

N 84,932

Notes. The model includes all controls including hospital fixed effect and time fixed effects. Clustered
robust standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.

2.1. The equation can be written as:

xi,hηj = αj + ηj,1BOARD CGSTNi,h + ηj,2BOARD CGSTN2
i,h

+ βHOSP OCCi,h +Wi,h,jθj + Zi,h,jϕj + αh for j = inf, count.
(A1.8)

Table A1.12 provides a summary of the results from Model A1.8. Due to the ZINB

model’s nonlinear and two-part nature, direct interpretation of the coefficients

is challenging. Therefore, the bottom panel of Table A1.12 presents the mean

marginal effect of the variables of interest. Our findings indicate that the number

of diagnostic tests ordered remains unaffected by boarding congestion.

A1.6 Patient Flow Control in Treatment Section

Model Formulation

We formulate the patient flow control as a continuous-time dynamic program,

which let us limit our attention only to times of a change in the state of the system

(Puterman 1994). The time horizon is considered infinite, which is consistent with

the idea of running an ED.

State Variable: The system’s state includes information about the number of

patients in the treatment queue, boarding section, and checkup queue. Let x =

(xr, xb, xc)
T represent the system’s state, where xr, xb, and xc correspond to the

number of patients in the treatment queue, boarding section, and checkup queue,
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Table A1.12: Impact of Boarding Congestion on the Number of Diagnostic
Tests Ordered

(1)

Count process

BOARD CNGSTN 0.001 (0.007)

BOARD CNGSTN2 -0.000 (0.000)

Inflation process

BOARD CNGSTN −0.069∗∗ (0.028)

BOARD CNGSTN2 0.001∗∗ (0.000)

Marginal effect

BOARD CNGSTN 0.028 (0.027)

Observations 470,173

Non-zero obs. 336,624

Zero obs. 133,549

Notes. the models includes all controls including hospital fixed effect, time fixed effects, patient
covariates, and hospital occupancy level. Clustered robust standard errors in parentheses. *p < 0.1;
**p < 0.05; ***p < 0.01.

respectively. We assume that the capacity of each queue or section is limited to

K, and thus x ∈ S(x) = (xr, xb, xc)|xr, xb, xc ≤ K. Consequently, the state space

is finite.

Actions: The possible actions are to serve the next patient from either the treat-

ment or checkup queue. Therefore, we can define actions as follows:

A(x) = {a ∈ {0, 1}|a ≤ xr} (A1.9)

The variable a is a binary variable, where its value of “1” represents choosing a

patient from the treatment queue. Clearly, this can happen only where there is at

least one patient in this queue. Thus, the constraint a ≤ xr forces a to be equal

to 0 when there is no patient waiting for treatment.

Transition Probabilities: Let T denote the random time between two deci-

sion points. Because all the events follow Poisson processes, T is exponentially
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distributed (Porteus 2002). The distribution rate is the sum of all rates, i.e.,

v(x) = λr + max{µr, µc} + xbλc + xbµb + xcµbd. Also, when a transition occurs

at time t, the probability that the transition is caused by a specific event is the

rate of the event divided by the sum of all rates. This probability is independent

of the time that has passed. Because the system’s state changes over time, the

transition rate in each period is not constant. To transform such a system into a

Markov chain with a uniform transition rate, we apply the uniformization tech-

nique (Lippman 1975). While using this technique, we note that an upper bound

for the transition rate is vmax = λr +max{µr, µc}+Kλc+Kµb+Kµbd. We define

the discrete time parameters after uniformization corresponding to the transition

probabilities in the embedded discrete time Markov chain (DTMC) as follows:

λ′
r = λr/v

max, µ′
r = µr/v

max, µ′
c = µc/v

max, λ′
c = λc/v

max, λ′
db = λdb/v

maxand

µ′
b = µb/v

max.

Let A, Dr, Trb, Tbc, Dc, and Db be events representing an emergency patient arrival

at the treatment queue, a discharge of an emergency patient, a patient’s transfer

from the treatment section to the boarding section, a patient’s transfer from the

boarding section to the checkup queue, a discharge/leave from the checkup queue,

and finally a discharge from the boarding section. These operators are defined as

follows:
Ax = (xr + 1, xb, xc)

Drx = (max{xr − 1, 0}, xb, xc)

Trbx =

{
(xr − 1, xb + 1, xc) if xr ≥ 1

x if xr = 0

Tbcx =

{
(xr, xb − 1, xc + 1) if xb ≥ 1

x if xb = 0

Dcx = (xr, xb,max{xc − 1, 0})

Dbx = (xr,max{xb − 1, 0}, xc)

(A1.10)

With this notation, the one-step state transition probabilities after uniformization
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are given by the following:

p(xk+1|xk, ak) =



λ′
r, if xk+1 = Axk

a(1− p)µ′
r, if xk+1 = Drxk

apµ′
r, if xk+1 = Trbxk

xbλ
′
c, if xk+1 = Tbcxk

xcµ
′
db + (1− a)µ′

c, if xk+1 = Dcxk

xbµ
′
b, if xk+1 = Dbxk

1− (λ′
r + aµ′

rt + xbλ
′
c + xcµ

′
db + (1− a)µ′

c + xbµ
′
b) , if xk+1 = xk

(A1.11)

Bellman Optimality Equation: Let α be the continuous-time discount factor

in the original problem and ξ be an exponential random variable with rate vmax

(the length of time for one transition in the discrete chain). Then, the equivalent

discrete time discount factor for the uniformized model becomes the following:

β = E[eαξ] =

∫ ∞

0

(
e−αt

) (
vmaxe

−vmaxt
)
dt =

vmax

vmax + α
. (A1.12)

Let γr be the per unit time cost associated with holding a patient in the treatment

queue, and γc be the per unit time cost associated with holding a patient in

the checkup queue. In addition, assume that hr and hc are the costs associated

with reaching the treatment and checkup queues’ capacity, respectively. When

the treatment queue and checkup queue reach capacity, the ED cannot accept

any patient in the treatment section; thus, hr and hc show the costs that ensue

from blocking the treatment section. As with the original problem, consider α the

continuous-time discount factor and let ξ be an exponential random variable with
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rate vmax. We can write the discount time instantaneous one-stage cost as follows:

C(x) = E

[ ∫ ξ

0

(γrxr + γcxc + hrI{xr=K} + hcI{xc=K})e
−αtdt

]
=

1− β

α
(γrxr + γcxc + hrI{xr=K} + hcI{xc=K})

=
γr

vmax + α
xr +

γc
vmax + α

xc +
hr

vmax + α
I{xr=K} +

hc

vmax + α
I{xc=K}

= γ
′

rxr + γ
′

cxc + h
′

rI{xr=K} + h
′

cI{xc=K},

(A1.13)

where γ
′
r, γ

′
c, h

′
r, and h

′
c are continuous-time costs.

Now, we can formulate a recursive optimality equation that considers the finite-

horizon optimal expected discounted cost:

Vn+1,β(x) =C(x) + β

[
I{xr<K}λ

′

r

(
Vn,β(x+ e1)− Vn,β(x)

)
+ I{xb>0,xc<K}xbλ

′

c

(
Vn,β(x− e2 + e3)− Vn,β(x)

)
+ I{xb>0}xbµ

′

b

(
Vn,β(x− e2)− Vn,β(x)

)
+ I{xc>0}xcµ

′

db

(
Vn,β(x− e3)− Vn,β(x)

)
+ I{xr>0,xc>0,xb<K}min

{
µ

′

r

(
(1− p)Vn,β(x− e1)

+ pVn,β(x− e1 + e2)− Vn,β(x)
)
, µ

′

c

(
Vn,β(x− e3)− Vn,β(x)

)}
+ I{xr>0,xc=0,xb<K}µ

′

r

(
(1− p)Vn,β(x− e1) + pVn,β(x− e1 + e2)− Vn,β(x)

)
+ I{xr=0,xc>0}µ

′

c

(
Vn,β(x− e3)− Vn,β(x)

)
+ Vn,β(x)

]
,

(A1.14)

where Vn,β(x) represents the optimal cost of the n-period β-discounted problem

starting in state x = (xr, xb, xc), and I{.} is the indicator function. Here, ei rep-

resents the ith unit vector. In other words, ei is a vector that contains all zeros

except for a 1 in the ith position. The initial condition, V0,β ≡ 0 is assumed for

mathematical convenience and has no effect on the infinite-horizon problem’s re-

sults. In Equation A1.14’s last line, the negative term Vn,β(x) as well as the last

term are associated with no state change. These are added for uniformity.
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Exploring Treatment Census’ Effect on Patient Flow Control.

In this model, we focus on the impact of the treatment census alone on the decision-

making process. Therefore, we exclude the boarding section and assume that some

patients need to return to the treatment section after completing their treatment.

The system must make a decision regarding whether to accept these patients’

requests. Patients whose requests are accepted join the treatment queue, while

those whose requests are denied incur a cost of c due to the potential impact

on the boarding patient’s health outcome. Although this MDP model simplifies

the problem, it offers valuable insights into the role of the treatment census and

facilitates the development of practical policies for complex systems.

In this model, the state variable x ∈ •+ represents only the patients in the

treatment queue, as we do not explicitly include the boarding section. Conse-

quently, C(x) is adjusted accordingly. Therefore, the value function in Equation

A1.15represents the uniform version of this model.

Vn+1,β(x) =C(x) + β
[
λ

′

rVn,β(x+ 1) + µ
′

r[I{x>0}((1− p)Vn,β(x− 1) + pmin{Vn,β(x− 1) + c, Vn,β(x)})

+ I{x=0}Vn,β(x)]
]
.

(A1.15)

We can reformulate this model using event-based dynamic programming operators

(see Koole (1998)) and easily show that the value function in Equation A1.15 is

convex by the event operators’ closure under convexity.

theoremhe value function as defined in Equation A1.15 is convex.

W e can define the following operators as the arrival, discharge, and checkup deci-

sion operators.

TAf(x) = f(x+ 1). (A1.16)

TDf(x) =

{
f(x− 1) if x > 0

f(x) if x = 0
(A1.17)
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TCf(x) =

{
min{f(x− 1) + c, f(x)} if x > 0

f(x) if x = 0
(A1.18)

By defining the cost operator as TCOf(x) = C(x) + f(x) and uniformization op-

erator as TU [f1(x), f2(x), f3(x)] = βλ
′
rf1(x) + (1− p)βµ

′
rf2(x) + pβµ

′
rf3(x), we can

rewrite Equation A1.15 using these operators:

Vn+1,β(x) = TCOTU [TAVn,β(x), TDVn,β(x), TCVn,β(x)] (A1.19)

Thus, we can see that the value function is convex by demonstrating the closure

if the these operators are under convexity, because Vn,β is only a combination of

these operators with the initial convex value function V0. V0,β ≡ 0 is trivially

convex. The closure under other operators’ convexity is shown in Koole (1998).

proposition 1. The optimal policy for the value function as defined in Equation

A1.15 is a threshold policy.

Proof of Proposition 1. The optimal policy’s threshold structure follows directly

from the value function’s convexity.

These results illustrate that the optimal policy is a function of the treatment

census. Consequently, the current practice of prioritizing boarding patients over

emergency patients cannot be an optimal policy unless the cost of rejecting checkup

requests is so high that c > f(x)− f(x− 1) for any x.

Numerical Results for MDP

We examine the structure of the optimal policy for the MDP presented in Equation

A1.14 using numerical analysis. To thoroughly investigate the existence of a robust

optimal policy, we create a test suite including a wide range of parameters (refer

to Table A1.13). The first column in Table A1.13 provides details about a typical

ED setting. The second column indicates the specific parameter ranges we test

while keeping the values of other parameters based on Case 1. Lastly, the last

column represents a randomized test suite. We solve 1,000 instances from the

randomized test suite. It is important to note that in all cases, we assume that
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λr < minµr, µc. Additionally, to maintain realism, we assume that the average

boarding time exceeds the average time before requesting a checkup (i.e., µb < λc).

For each parameter set provided in Table A1.13, we solve the MDP using the value

iteration algorithm and record the optimal actions for each state. To visualize the

complexity of the optimal structure, we plot the minimizing action against the

number of patients in the regular queue (xr, on the horizontal axis) and the number

of patients in the checkup queue (xc, on the vertical axis). However, it is important

to note that the optimal action is also influenced by the boarding census. Hence,

we generate these plots for four levels of the boarding census (0, ⌊K
3
⌋, ⌊2K

3
⌋, K).

While we conduct these experiments for over 1,000 instances, we only present

results that demonstrate significant differences in the optimal structure to gain

insights into how the optimal structure varies across different parameter levels.

Figure 2.4 in the main body of the paper displays switching curves that illustrate

the relationship between the regular queue (xr) and the checkup queue (xc) for

three levels of the boarding census (xb). It is important to note that the optimal

actions are dependent on the boarding census. When the boarding section is empty,

the optimal policy closely resembles a threshold policy, where a patient from the

regular queue is selected when xr ≥ L, and a patient from the checkup queue is

chosen when xr < L. Here, L∗ represents the threshold value. As the census in

the boarding section increases, the optimal policy increasingly favors the checkup

queue. This can be attributed to the fact that an increase in the boarding census

results in a higher arrival rate of boarding patients, while the arrival rate of regular

patients remains constant and unaffected by the boarding census.

Furthermore, our analysis reveals that the optimal policy continues to prioritize

the checkup queue as the census in the boarding section increases. We also observe

that when the arrival rate of patients in the checkup queue (λc) is relatively low

(e.g., λc = 0.5), the optimal policy gives preference to patients in the treatment

queue, unless the boarding census is high. More detailed results can be found in

Figures A1.15 and A1.16.

Another crucial parameter that has a significant impact on the optimal policy is
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the service rate, represented by µc and µr. In our base case, we assume that the

service time for boarding patients is shorter than that for emergency patients, as

is typically observed in practice (i.e., µr > µc). However, if the service time for

checkups is assumed to be equal to the service time for emergency patients, the

optimal policy consistently prioritizes emergency patients when the census of the

checkup queue falls below a certain threshold (as shown in the first row of Table

A1.14). Conversely, when the checkup time is shorter than expected, the optimal

policy primarily favors boarding patients, particularly if the boarding census is

high, in order to alleviate congestion in the overall system.

The admission probability (represented by p) exhibits similar effects to the board-

ing arrival rate. As the admission probability decreases, the number of patients in

the boarding section diminishes, resulting in a decline in the arrival rate of board-

ing patients. Consequently, the optimal policy tends to accept regular patients

more frequently in order to prevent congestion in the regular queue (refer to Table

A1.18).

In Case 1, we assume that the waiting time cost per unit is the same for both regular

and boarding patients. The waiting time cost plays a critical role in determining

the optimal policy. As expected, when we increase the ratio of the waiting time

cost for a ”regular patient” to that of a ”boarding patient,” the optimal policy

predominantly gives priority to regular patients (see Table A1.17).

While other parameters also influence the optimal policy, our analysis of over 1,000

instances reveals that most of the variations can be attributed to changes in the

following parameters: arrival rates (λr and λc), admission probability (p), service

rates (µr and µc), and waiting time cost ratios (γr
γc
). We present additional results

in the tables below.
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Table A1.13: Parameters Used for the Test Suite

Case 1 Case 2 (tested values) Case 3 (randomized test suite)

λr 3 [1, 2, 3.5] U[0.5, 3]

λc 2 [0.5, 1, 3, 4] U[0.5, 6]

µr 4 [3.5, 6, 8, 10] U[4, 10]

µc 6 [4, 8, 10] U[4, 10]

µb 0.25 [0.1, 0.5, 1, 1.5] U[0.1, 2] & < λc

µdb (µ−1
b − λ−1

c )−1 - -

p 0.1 [0.3, 0.5, 0.7] U[0.1, 0.9]

K 30 [10, 20, 50] 30
γr

γc
1 [0.5, 0.75, 1.5, 2] U[0.25, 4]

hr

hc
1 [0.5, 0.75, 1.5, 2] U[0.25, 4]

hr

γr
1 [1.5, 2, 3] U[1, 4]

α 0.5 [0.1, 0.9] 0.5

Table A1.14: Optimal action over various µc values.

xb = 0 xb = 10 xb = 20 xb = 30
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Table A1.15: Optimal action over various λr values.

xb = 0 xb = 10 xb = 20 xb = 30

Table A1.16: Optimal action over various λc values.

xb = 0 xb = 10 xb = 20 xb = 30
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Table A1.17: Optimal action over various γr
γc

values.

xb = 0 xb = 10 xb = 20 xb = 30

Table A1.18: Optimal action over various p values.

xb = 0 xb = 10 xb = 20 xb = 30
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Table A1.19: Optimal action over various α values.

xb = 0 xb = 10 xb = 20 xb = 30
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A1.7 Simulation Model

Table A1.20: Comparing the simulation model and real data.

Treatment time Treatment census Boarding time Boarding census checkup Admission
request Probability
probability

Mean SD Mean SD Mean SD Mean SD

Real data 377.96 283.75 39.88 8.14 976.96 741.41 28.01 6.77 0.58 0.23

Simulation 376.26 281.75 39.65 7.81 987.79 735.07 27.54 5.82 0.60 0.22

Notes. We performed 1,000 iterations.

(a) Hourly treatment census (in a randomly
selected 3,000-hours interval)

(b) Hourly boarding census (in a randomly
selected 1,000-hours interval)

Figure A1.4: Comparing the simulation model output and real data.
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Simulation Results for a Secondary ED

Table A1.21: Comparing a secondary hospital’s simulation model and real
data.

Treatment time Treatment census Boarding time Boarding census checkup Admission

request Probability

probability

Mean SD Mean SD Mean SD Mean SD

Real data 329.87 267.35 34.17 7.26 613.13 580.65 6.18 2.80 0.41 0.13

Simulation 330.17 250.16 34.21 7.15 615.53 577.95 6.37 2.59 0.40 0.13

Notes. We performed 1,000 iterations.

Table A1.22: Simulation results of a secondary ED’s boarding patient flow
control policies.

Policy Average treatment Hourly average Total treatment time

time treatment section (patient years)

census

Status quo 330.17 (0.35) 34 (0.12) 25.13 (0.02)

Threshold Policy 317.82 (0.35) 33 (0.13) 24.19 (0.02)

Lower Bound 302.74 (0.37) 31 (0.11) 23.04 (0.02)

Notes. We performed 1,000 iterations.
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(a) Census-based scheduling framework (b) Time-based scheduling framework

Figure A1.5: A Secondary ED’s Scheduling Framework for an
ED-hospitalist.

Table A1.23: Simulation Results of hospitalist Visit Scheduling Policies (A
Secondary ED)

Average treatment Hourly average Daily average

time treatment section number of

census hospitalist visit

per category*

Patient flow Status quo TP*** Status quo TP Status quo TP

control policy

Without HS** 330.17 (0.36) 317.82 (0.33) 34 (0.12) 33 (0.12) - -

Time-based HS 320.14 (0.34) 308.09 (0.30) 31 (0.11) 30 (0.11) 2.67 (0.01) 2.95 (0.01)

Census-based HS 317.83 (0.34) 306.81 (0.31) 31 (0.11) 30 (0.10) 2.38 (0.01) 2.58 (0.01)

Mixed HS 319.04 (0.34) 307.11 (0.31) 31 (0.11) 30 (0.11) 2.46 (0.01) 2.72 (0.01)

Notes. * We consider four categories. 1000 iterations.
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3
Offline-Online Retail

Collaboration via Pickup

Partnership

In the previous chapter, we demonstrated the profound role of data science in

tackling complex healthcare challenges, particularly emergency department

overcrowding. Now, shifting focus to the retail domain, the subsequent chap-

ters will provide examples of how data science can revolutionize operations

and address potential issues within the retail sector. Specifically, we will ex-

plore how leveraging data-driven insights can enhance the efficiency of retail

operations, optimizing processes and maximizing outcomes.

In an upcoming chapter, we will introduce a stylized model aimed at im-

proving partnership dynamics among retailers in the context of pickup part-

nerships, fostering collaboration and synergy to create mutually beneficial
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outcomes for all involved parties—a true win-win situation.

3.1 Introduction

Customer demand for increasingly convenient shopping (Boston Retail Part-

ners 2021) has exacerbated the competition between pure online retailers and

multichannel retailers. To stay ahead in this competition, taking advantage

of their physical presence to enhance the customer experience (Chen et al.

2021), many multichannel retailers have started offering in-store pickup ser-

vices that allow customers to pick up online orders in physical stores(Gao and

Su 2017). Due to their convenience, in-store pickup services have rapidly be-

come popular among customers. In 2020, in-store pickup sales in the United

States doubled the previous year’s total, and this trend is expected to con-

tinue to grow at an annual rate of at least 15% until 2024 (Chevalier 2021).

To remain competitive and respond to the growing customer demand for

in-store pickup services, pure online retailers have recently started forming

strategic partnerships with brick-and-mortar retailers (referred to as offline

partners in the rest of this paper), which is termed pickup partnership.

A pickup partnership enables an online retailer to use an offline partner’s

stores as pickup locations for customers who prefer to pick up their online

orders from a nearby store at no additional shipping cost. Under this fulfill-

ment option, the online retailer ships the customer order to the offline part-

ner store chosen by the customer and notifies the customer when the order is

ready for pickup. When the customer arrives for pickup, the offline partner

handles the process using its own staff and informs the online retailer at the

end of the process. Amazon Hub Counter (AHC) is a widely known example

of such pickup partnerships. Through AHC, physical retailers collaborate

with Amazon to make their stores assisted-pickup locations for Amazon or-

ders. Examples include Rite Aid, GNC, Health Mart, and Stage Stores in

the United States, NEXT in the U.K., Librerie Giunti al Punto, Fermo-

point, and SisalPay in Italy, and ParcelPoint in Australia. Similarly, Uniqlo,
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a Japanese fashion retailer, has partnered with 5,700 7-Eleven convenience

stores in Tokyo to offer in-store pickup services.1

Pickup partnerships promise several benefits to both online retailers and

offline partners.For online retailers, offering a convenient in-store pickup op-

tion should translate into increased sales. In addition, compared to direct-

delivery shipments, in-store pickup fulfillment is likely to reduce online retail-

ers’ freight costs due to the possibility of pooling several orders and hence

decreasing (expensive) last-mile delivery costs (Morganti et al. 2014). For

offline partners, in-store pickups induce additional foot traffic that can gen-

erate increased revenue through cross-selling. It has been reported that 45%

of customers who used in-store pickup services made an in-store purchase

during the pickup visit (UPS 2015). In addition, online retailers may com-

pensate offline partners for handling each pickup order, creating an additional

revenue stream for offline partners. These benefits suggest that the trend of

forming pickup partnerships is likely to persist or even expand in the future.

This trend raises the question of the best way to establish pickup partnerships

between online retailers and offline partners. In practice, we observe two

different policies (see Figure 3.1.1 for illustrative examples). The first is

a fixed fee policy under which the online retailer pays a fixed commission

to the offline partner for each in-store pickup order (Morganti et al. 2014,

Fang et al. 2019).2 For example, this type of pickup partnership has been

established between Maturin and LOCO, between Lufa Farms (a Canadian

online grocery retailer) and local stores as illustrated in Figure 3.1.1(a), and

between Amazon and thousands of AHC retailers.3 The second is a coupon

policy under which the online retailer issues a coupon to the customers who

select the in-store pickup delivery option. Customers can redeem this coupon

1https://ww.fashionnetwork.com/news/uniqlo-japan-launches-in-store-pic

kup-service-with-7-eleven,625015.html
2https://join.healthmart.com/pharmacy-marketing-and-promotions/becoming

-an-amazon-hub-counter/
3https://www.pudoinc.com/member-benefits/pudopoint-counter/
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to make a discounted purchase at the offline partner’s store. If the coupon

is redeemed, the online retailer will then reimburse the offline partner for

the discounted amount. The pickup partnership between Cookit (a meal-kit

retailer) and Metro (a Canadian grocery retailer) is based on the coupon

policy, as illustrated in Figure 3.1.1(b). It is worth noting that even though

the compensation payment for each in-store pickup order is similar between

the two policies, the recipient of the payment depends on the policy. Under

the fixed fee policy, the online retailer pays the offline partner, whereas under

the coupon policy, the payment is made to the customer, making the two

policies structurally different.

(a) Lufa Farm and Local Stores (b) Cookit and Metro

Figure 3.1.1: Illustration of the Fixed Fee Policy (Left) and the Coupon
Policy (Right)

When establishing a pickup partnership, should online retailers pay a fixed fee

directly to the offline partner or incentivize customers by offering a coupon?

We are not aware of any academic study on pickup partnerships. From a

practitioner perspective, the fixed fee policy may be more desirable as it

generates a readily visible revenue stream for offline partners through the

fixed commission paid for each in-store pickup order. At the same time,
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the coupon policy may also be desirable since incentivizing customers will

likely drive more traffic to offline partners’ stores, resulting in more cross-

selling opportunities. Overall, it is not clear which of the two policies is more

beneficial. This leads to our first two research questions: How should an

online retailer choose between fixed fee and coupon policies when establishing

a pickup partnership? What type of online retailer is more suitable for the

fixed fee policy versus the coupon policy?

The presence of fixed fee and coupon policies in practice does not necessarily

imply that they always help retailers establish an efficient pickup partner-

ship. After all, a pickup partnership is tantamount to a contract between

two parties. The supply chain contract literature (see Tsay et al. 1999) has

established that inefficient contracts are common in practice (Loch and Wu

2008) and arise due to misaligned incentives between the two parties (Pavlov

et al. 2022). From this perspective, just like inefficient contracts, pickup

partnerships may also entail inefficiencies when the incentives between the

online retailer and the offline partner are misaligned. This leads to our next

two research questions: Do fixed fee and coupon policies result in an inef-

ficient pickup partnership? If so, can we propose an alternative policy that

mitigates such inefficiencies?

To answer our research questions, we develop a stylized model that captures

the key features of a pickup partnership. Specifically, we consider an online

retailer who sells a product only via an online channel. The online retailer

contemplates the opportunity to offer an in-store pickup service to her cus-

tomers through a partnership with an offline partner. The online retailer’s

objective is to maximize her profit while ensuring that the proposed partner-

ship is also beneficial to the offline partner. When the pickup partnership

is established, customers strategically decide between the direct-delivery and

in-store pickup options to maximize their utility. We first analytically exam-

ine the effect of the partnership on the demand and profits of both partners

under each policy. We then identify conditions under which each policy is
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beneficial; that is, both partners earn higher profits (in a non-strict sense)

under the pickup partnership than they would without that. Armed with

these results, we compare the two policies and characterize when each policy

is optimal for the two parties. We then infer what type of online retailers are

more suitable for the fixed fee policy versus the coupon policy when estab-

lishing a pickup partnership. Lastly, we examine the conditions under which

the two policies generate inefficiencies and prescribe an alternative policy,

termed the hybrid policy, to mitigate those inefficiencies.

Our study makes several contributions. First, we find that establishing a

pickup partnership (regardless of policy) affects the demand for the online

retailer’s product in two ways: (i) the pickup partnership enables the online

retailer to expand its market coverage due to the increased convenience of

the direct-delivery option; (ii) the in-store pickup option incentivizes some

existing customers to switch their delivery mode to the in-store pickup option.

While the former effect (i.e., market expansion) on demand increases the

online retailer’s profit, the latter effect (i.e., demand shift) can actually hurt

the online retailer’s profit if the profit margin from in-store pickup orders is

lower than the profit margin from direct-delivery orders. Hence, the pickup

partnership will be beneficial as long as these two demand streams result in

a net profit gain. Second, our results reveal that the two demand streams

induced by the partnership are more substantial under the coupon policy.

Indeed, beyond offering the convenience of the in-store pickup option (as in

the fixed fee policy), the coupon policy also incentivizes additional customers

to use the in-store pickup option to take advantage of the coupon. These

additional customers do not necessarily increase the online retailer’s profit,

especially when the in-store pickup fulfillment is less profitable, on a per item

basis, than the direct-delivery fulfillment. Thus, choosing between the fixed

fee and coupon policies when establishing a pickup partnership requires a

careful assessment of both partners’ cost structures. Third, when examining

the pickup partnership with respect to the offline partner’s cost structure, we
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find that the online retailer should use the coupon policy if the offline partner

can manage in-store pickups at a low handling cost. A low handling cost

allows the online retailer to pay a low compensation per in-store pickup order,

hence increasing the profit margin of in-store pickup orders. Consequently,

the additional customers attracted by the coupon policy (relative to the

fixed fee policy) will increase the online retailer’s profit. When the offline

retailer’s handling cost is moderate, we show that the fixed fee policy is the

best option for the partnership, but when the offline partner’s handling cost

is high, a partnership becomes plausible only with high compensation, so

that the online retailer is better off not establishing a pickup partnership.

When examining the pickup partnership with respect to the online retailer’s

cost structure, we find that a pickup partnership is not profitable for online

retailers with low direct-delivery fulfillment costs or high in-store pickup

fulfillment costs. Otherwise, the fixed fee policy is more suitable for online

retailers with moderate direct-delivery fulfillment costs, moderate in-store

pickup fulfillment costs, or low-priced products, whereas the coupon policy

is more beneficial for online retailers with high direct-delivery fulfillment

costs, low in-store pickup fulfillment costs, or high-priced products.

Finally, while our model suggests that the two policies used in practice can

ensure a profitable partnership, it remains unclear whether these policies al-

low online retailers to fully unlock the potential benefits of such partnerships.

In fact, we find that both policies can be inefficient in the sense that selecting

the optimal policy (either fixed fee or coupon) for the partnership comes with

an opportunity cost for the online retailer. In such cases, the online retailer

has to establish the partnership under a suboptimal compensation value. To

mitigate such inefficiencies, we propose a new hybrid policy that leverages

the features of both the fixed fee and the coupon policies. In particular, the

hybrid policy allows the online retailer to split the compensation such that

a portion is paid to the offline partner as a fixed fee commission, with the

remainder offered as a coupon to customers. We find numerically that ineffi-

86



cient pickup partnerships occur frequently and that the profit improvement

generated from the hybrid policy can be substantial.

The rest of the paper is organized as follows. In Section 2, we review the

related literature, and in Section 3, we formalize our model. We then analyze

the model and derive several analytical results in Section 4. We consider

various extensions in Section 5. In Section 6, we identify inefficiencies induced

by the current policies and propose a new policy. Finally, we conclude and

outline the managerial implications of our results in Section 7.

3.2 Literature Review

This paper is related to three streams of literature: in-store pickup services,

retail partnerships, and coupon promotions.

In-Store Pickup Services.

The recent growth of in-store pickup services (e.g., click-and-collect and ship-

to-store) has led to an increase in research on that topic. The literature has

examined two types of in-store pickup services: buy-online-pickup-in-store

(BOPIS) and ship-to-store (STS). The major difference between the two is

the order fulfillment point. BOPIS orders are fulfilled using store inventory

and can thus only be placed for products available in a store (Gao and Su

2017), whereas STS orders are fulfilled using the distribution center inventory

and can be placed for any product available online, regardless of whether it

is stocked in any store (Ertekin et al. 2021).

Gallino and Moreno (2014) empirically show that even though using BOPIS

can reduce online sales, the sales generated from the additional store traffic

can make retailers better off when offering such services. Focusing on individ-

ual products, Gallino et al. (2017) find that STS services may shift sales from

high-selling products to low-selling products. In the same vein, Ertekin et al.

(2021) find that STS has a heterogenous effect on sales of online-only prod-

ucts versus products available both online and offline. The authors conclude

that considering the STS effect when choosing channel(s) to sell a product
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can improve the performance of in-store pickup services. Akturk and Ket-

zenberg (2021) evaluate the competitive impact of BOPIS. They show that

both online and store sales at a focal retailer are adversely affected after the

competitors’ launch of a BOPIS service. Focusing on customer behavior,

Song et al. (2020) find that BOPIS has a positive effect on offline purchase

frequency and on online purchase amounts. Glaeser et al. (2019) demonstrate

that the location of the pickup stores can have a significant effect on BOPIS

profitability.

Among analytical studies, Gao and Su (2017) examine the impact of BOPIS

on store operations. The authors find that despite enabling retailers to in-

crease demand from new customers, BOPIS may not be suitable for products

that sell well in stores. Hu et al. (2022) demonstrate that retailers can lever-

age the additional demand induced by BOPIS to improve their store fill rates.

Ertekin et al. (2021) illustrate that when implementing STS, retailers should

offer easy-to-substitute products only online and difficult-to-substitute prod-

ucts both online and in stores. Similarly, Cao et al. (2016) find that in-store

pickups may not be suitable for all products. Finally, Gao et al. (2022) show

that it might be optimal for retailers to reduce their physical store presence

under BOPIS.

The studies in this literature primarily examine in-store pickup services when

the retailer owns both the online and offline channels. In contrast, our paper

investigates in-store pickup services when offered by a pure online retailer

that partners with an offline store. Thus, some of the highlighted benefits of

BOPIS or STS for multichannel retailers (e.g., cross-selling, additional store

traffic) will not be present for online retailers under the pickup partnership.

More importantly, unlike a pickup partnership, which can be implemented

using different policies, traditional in-store pickup services (whether BOPIS

or STS) are quite standard across retailers. Therefore, existing studies on

traditional in-store pickup services cannot help identify which policy retailers

should use when establishing a pickup partnership. Overall, we contribute to
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this literature by developing a theoretical model (i) to demonstrate when and

how a pickup partnership should be established, (ii) to identify how online

retailers should choose between fixed fee and coupon policies, and (iii) to

propose an alternative policy to improve the pickup partnership efficiency.

Retail Partnerships.

These kinds of partnerships have been studied in several settings, ranging

from supply chain contracts and coordination (see Cachon and Lariviere 2005,

for a comprehensive review) to coalition and coopetition contracts (Nagara-

jan and Sošić 2007, Cohen and Zhang 2022, Yuan et al. 2021). Our work is

closely related to a growing stream in this literature that studies offline-online

partnerships to enhance omnichannel retailing offerings, such as buy online,

return in-store (Hwang et al. 2021, Nageswaran et al. 2021) and search offline,

buy online (i.e., showrooming) (Dan et al. 2021). In this stream, Nageswaran

et al. (2021) theoretically examine the potential of a return partnership be-

tween a pure online retailer and an offline partner that serves as the in-store

return location for the online retailer. The authors find that such a return

partnership can be formed either when there is only a small product as-

sortment overlap between the two parties, or when the offline partner has

a small number of physical locations. Hwang et al. (2021) empirically show

that such return partnerships generate additional sales for the offline part-

ner. Most studies on offline showrooming focus on a single company (e.g.,

Bell et al. 2018, Gao et al. 2022). Dan et al. (2021) analytically study how

an online retailer should choose between competing and non-competing of-

fline retailers to offer a physical showrooming service and how the type of

offline retailer (competing or non-competing) can affect an online retailer’s

pricing strategy under an exogenous commission fee. In these studies, the

focus is primarily on the types of offline partners that should be selected as

partners. By contrast, our study focuses on how online retailers should select

partnership policies according to offline partners’ characteristics. Even when

we extend our review to the broader retail partnership literature, we could
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not find any study with guidance on how online retailers and offline part-

ners should establish a pickup partnership. We contribute to this stream by

studying the impact of the two pickup partnership policies on the decisions

and payoffs of the key stakeholders.

Coupon Promotions.

There is a large literature stream on coupon redemption (e.g., Reibstein

and Traver 1982, Danaher et al. 2015), coupon effects on customer behavior

(e.g., Narasimhan 1984, Neslin et al. 1985, Heilman et al. 2002, Su et al.

2014), and marketing effects and optimal coupon scheduling (e.g., Sethura-

man and Mittelstaedt 1992, Reimers and Xie 2019, Baardman et al. 2019).

We position our work with respect to papers that consider the role of coupon

promotions in channel coordination. Among those, Martin-Herran and Sigué

(2015) find that manufacturers prefer coupon promotions over a cooperative

pricing strategy. Li et al. (2020) evaluate how issuing coupons by either man-

ufacturers or retailers can affect the supply chain profit. Pauwels et al. (2011)

show that offering online promotions can also increase the demand for the

offline channel, creating a channel synergy effect. Despite all these valuable

contributions, there is no study that leverages coupons to facilitate a pickup

partnership between an online retailer and an offline partner. Our study

contributes to this literature by demonstrating how a coupon promotion can

be used to design an effective mechanism for pickup partnerships.

3.3 Model Description

In this section, we develop a stylized model to characterize the key features

of a pickup partnership between an online retailer and an offline partner. In

the following subsections, we describe our modeling framework, introduce a

baseline policy in which the pickup partnership does not exist, and consider

two different pickup partnership scenarios by building on the baseline policy.
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3.3.1 Modeling Framework

The model consists of an online retailer that sells a product through its online

channel at price p. Consistent with the literature that models interactions

between retailers and customers using the circular location model (e.g., Bal-

asubramanian 1998, Shulman et al. 2009, Gao et al. 2022), we assume that

the online retailer serves customers who are uniformly distributed on the cir-

cumference of a circular city with a circumference of one (Salop 1979). The

online retailer’s warehouse is located at the center of the circular city and is

thus equidistant from all customers. Without loss of generality, we assume

that the size of the market is normalized to one.

To provide customers with an in-store pickup service for online orders, the

online retailer considers establishing a partnership with an offline partner.

When such a partnership does not exist, the online retailer can only offer

a direct-delivery option to its customers under which orders are shipped

directly to customers. If a pickup partnership is established, in addition

to the direct-delivery option, customers are now able to select a free in-store

pickup option. With this option, the online retailer ships orders to the offline

partner, and customers pick up their orders by visiting the offline partner at

their convenience. We assume that the offline partner is randomly located

on the circumference of the circle. We also assume that the product sold by

the online retailer is not offered by the offline partner.

Customers: We assume that customers make purchasing decisions based

on their utility. The valuation of product is v for all customers. If customers

opt for the direct-delivery option, they incur a “hassle” cost ho that includes

both the shipping cost and the inconvenience of waiting for the delivery.

We assume that customers are heterogeneous with respect to ho such that

ho ∼ U [0, 1]. If customers opt for the in-store pickup option, they incur a

hassle cost of hpx for visiting the store to pick up their order, where hp is

the hassle cost per unit distance and x is the distance between a customer’s

location and the offline partner’s location. Since customers are uniformly
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distributed on the circumference of the circular city, we have x ∼ U [0, 1/2].

Online Retailer: When the online retailer fulfills an order via direct deliv-

ery, she incurs a direct delivery fulfillment cost of co < p due to the logistics

required to ship the order from her warehouse to the customer’s doorstep.

When the online retailer fulfills an order via the in-store pickup option, she

incurs an in-store pickup fulfillment cost of cp due to the logistics required

to ship the order from her warehouse to the offline partner. Following the

literature (Morganti et al. 2014), we assume that, compared to the direct-

delivery fulfillment option, the online retailer can save on logistics costs with

the in-store pickup fulfillment option by pooling multiple orders into a sin-

gle delivery; that is, cp ≤ co. Without loss of generality, we assume a zero

procurement cost.

Offline Partner: When the offline partner acts as an in-store pickup point,

she incurs a handling cost cs for each pickup order because she must tem-

porarily store the order and assign staff to process in-store pickups. Cus-

tomers who visit the offline partner to pick up their orders can generate

cross-selling opportunities for the offline partner. To capture this effect, fol-

lowing the cross-selling literature (Gao and Su 2017, Ertekin et al. 2021), we

assume that the offline partner earns a profit r from customers who visit the

offline partner to pick up their order.

3.3.2 Baseline Policy

Under the baseline policy, the online retailer does not form a partnership with

the offline partner and consequently offers only the direct-delivery option to

her customers. Under this benchmark scenario, the utility of purchasing with

the direct-delivery option amounts to uB
o = v−p−ho, where the superscript B

denotes the baseline policy. We let dBo denote the online retailer’s endogenous

demand from customers who opt for the direct-delivery option under the

baseline policy. Then, the online retailer’s profit under the baseline policy is
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given by (details of the demand derivation appear in Appendix A2.2)

πB
o = (p− co)d

B
o . (3.3.1)

Since there is no partnership, the offline partner does not earn any profit

from the online retailer’s customers (i.e., πB
s = 0) under the baseline policy.

3.3.3 Fixed Fee Policy

Under the fixed fee policy, the online retailer and the offline partner establish

a pickup partnership under which the online retailer pays the offline partner

a fixed fee α for each in-store pickup order. Subsequently, the online retailer

offers both direct-delivery and in-store pickup options to her customers. Cus-

tomers who opt for the direct-delivery option earn a utility uF
o = v− p− ho,

where the superscript F denotes the fixed fee policy. Customers who opt for

the in-store pickup option earn a utility uF
p = v − p − xhp. We let dFo and

dFp denote the online retailer’s demand for the direct-delivery and in-store

pickup options, respectively, under the fixed fee policy. Then, the online

retailer’s profit under this policy is

πF
o (α) = (p− co)d

F
o + (p− cp − α)dFs . (3.3.2)

In turn, the offline partner’s profit from the partnership under the fixed fee

policy is equal to

πF
s (α) = (r + α− cs)d

F
s . (3.3.3)

3.3.4 Coupon Policy

The coupon policy establishes a pickup partnership between the online re-

tailer and offline partner under which the online retailer provides a coupon

with monetary value β to customers who opt for the in-store pickup option.

Customers can then redeem the coupon to receive a discount on any purchase

made at the offline partner. The online retailer reimburses the offline partner
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the amount β for any redeemed coupon.

We assume that customers who opt for the in-store pickup option will make

a purchase from the offline partner to redeem the coupon with probability

θ.4 Consistent with the literature showing that customers increase purchase

amounts when they have a coupon (Gupta 1988, Krishna and Shoemaker

1992), we assume that when the coupon is redeemed, the offline partner’s

profit from the cross-selling opportunity increases by β (i.e., the profit due to

cross-selling becomes r+β with probability θ). Under this policy, customers

who opt for the direct-delivery option earn a utility uC
o = v − p− ho, where

the superscript C denotes the coupon policy. Customers who opt for the

in-store pickup option earn a utility uC
p = v + θβ − p− xhp. We let dCo and

dCp denote the online retailer’s demand for the direct-delivery and in-store

pickup options, respectively, under the coupon policy. Consequently, the

online retailer’s profit is equal to

πC
o (β) = (p− co)d

C
o + (p− cp − θβ)dCs , (3.3.4)

whereas the offline partner’s profit amounts to

πC
s (β) = (r + θβ − cs)d

C
s . (3.3.5)

Under this modeling framework, the timeline of events shown in Figure 3.3.1

unfolds as follows:

1. The online retailer decides whether and with which policy to form a

pickup partnership with the offline partner. Under the fixed fee policy,

the online retailer determines the optimal parameter α to maximize her

profit πF
o (α), subject to the offline partner’s rationality constraint; that

is, πF
s (α) ≥ 0. Under the coupon policy, the online retailer determines

4An alternative way to model the coupon redemption probability θ is to assume that
θ increases with β, implying that customers are more likely to redeem coupons as their
value increases. Our findings remain valid under this alternative modeling framework.
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Figure 3.3.1: Timeline of Events

the optimal coupon value β that maximizes her profit πC
o (β), subject

to the offline partner’s rationality constraint πC
s (β) ≥ 0.

2. The offline partner accepts or rejects the partnership.

3. The customers decide whether to purchase the product from the online

retailer and, if so, select one of the available delivery options.

4. The online retailer fulfills the order based on each customer’s preferred

delivery option.

5. The online retailer pays the offline partner according to the partnership

policy.

Figure 3.3.2 reports the partnership policies considered by the online re-

tailer and offline partner and the customer decision tree under each policy.

Table 3.3.1 summarizes the customer utilities, online retailer’s profit, and

offline partner’s profit under each policy. Appendix A2.1 summarizes the

notation used throughout the paper.

3.4 Results

In this section, we first assess the feasibility and potential benefits of the fixed

fee and coupon policies by comparing each policy to the baseline policy. We

then compare all three policies to identify the most preferred policy for both
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Figure 3.3.2: Partnership Policies and Customer Decision Trees

Table 3.3.1: Summary of Customer Utilities and Profit Functions

Policy Customer Utility Online Retailer’s Profit Offline Partner’s Profit

Baseline uB
o = v − p− ho (p− co)d

B
o 0

Fixed fee uF
o = v − p− ho (p− co)d

F
o + (p− cp − α)dFs (r + α− cs)d

F
s

uF
p = v − p− xhp

Coupon uC
o = v − p− ho (p− co)d

C
o + (p− cp − θβ)dCs (r + θβ − cs)d

C
s

uC
p = v − p− xhp + θβ
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the online retailer and the offline partner. Finally, we examine whether a

given policy is suitable for certain types of online retailers as characterized

by the various model parameters.

3.4.1 Fixed Fee Policy

We start by comparing the fixed fee policy to the baseline policy. We let

∆dio, ∆dis, and ∆di denote the differences in direct-delivery demand, in-store

pickup demand, and total demand, respectively, between a pickup part-

nership policy, where i ∈ {F,C}, and the baseline policy. We thus have

∆di = ∆dio +∆dis. We derive analytical expressions for ∆dFo , ∆dFs , and ∆dF

in the following proposition (details on the demand derivations appear in

Appendix A2.2).

proposition 2. Compared to the baseline policy, the fixed fee policy affects

direct-delivery demand, in-store pickup demand, and total demand by

∆dFo = − (v − p)2

hp︸ ︷︷ ︸
Demand shift due to

convenience

∆dFs =
2(v − p)(1− v + p)

hp︸ ︷︷ ︸
Market expansion due to

convenience

+
(v − p)2

hp︸ ︷︷ ︸
Demand shift due to

convenience

∆dF =
2(v − p)(1− v + p)

hp︸ ︷︷ ︸
Market expansion due to

convenience

Proposition 2 reveals that the fixed fee policy induces two effects on the on-

line retailer’s demand relative to the baseline policy. First, some customers

who were not purchasing under the baseline policy (due to the inconvenience

caused by its high direct-delivery hassle cost) will now make a purchase via

the in-store pickup option under the fixed fee policy. Specifically, these cus-
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tomers find visiting the offline partner’s store to pick up their order more

convenient due to the lower hassle cost. We call this effect the market expan-

sion effect induced by the fixed fee policy. Second, due to the convenience

of in-store pickups, some existing customers under the baseline policy will

now choose this option. We call this effect the demand shift effect induced

by the fixed fee policy. As a result, the fixed fee policy decreases direct-

delivery demand due to its demand shift effect and creates a new demand

stream through in-store pickups due to its market expansion and demand

shift effects. Subsequently, the total demand increases only due to the mar-

ket expansion effect since the demand shift effect simply transfers the existing

demand from the direct-delivery option to the in-store pickup option.

A natural question that arises is how these demand changes affect the online

retailer’s and offline partner’s profits, and whether it is beneficial to establish

a pickup partnership under the fixed fee policy. We formally answer this

question in Proposition 3. We let ∆πi
o(α) and ∆πi

s(α) denote the profit

differences for the online retailer and the offline partner, respectively, between

a pickup partnership policy, where i ∈ {F,C}, and the baseline policy.

proposition 3. (a) Compared to the baseline policy, the fixed fee policy

with α affects the online retailer’s and offline partner’s profits by

∆πF
o =

2(v − p)(1− v + p)

hp

(p− cp − α)︸ ︷︷ ︸
Increase due to market expansion

+
(v − p)2

hp

(co − cp − α)︸ ︷︷ ︸
Change due to demand shift

∆πF
s =

(v − p)(2− v + p)

hp

(r + α− cs)︸ ︷︷ ︸
Change due to market expansion and demand shift

(b) It is beneficial for both parties to establish a pickup partnership under

the fixed fee policy if and only if α ∈ [α, ᾱ], where α = max{0, cs − r}
and ᾱ = p− cp − v−p

2−v+p
(p− co).

Proposition 3 shows that the two demand streams induced by the fixed fee
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policy are key to its profitability for both parties. For the online retailer,

the market expansion effect induced by the fixed fee policy increases profit

due to the additional margins obtained from the new customers. However,

the impact of the demand shift effect on the profit is more intricate. When

α is relatively small, the cost of direct-delivery (co) is higher than the cost

of in-store pickup (cp + α). Subsequently, the demand shift effect results in

another profit increase for the online retailer due to the additional margins

obtained from existing customers who alter their delivery option when the

pickup partnership is available. By contrast, a sufficiently high α will make

the in-store pickup option more costly for the online retailer, so customers

generating the demand shift effect will lower the profit. In that case, the gain

from new customers will be sufficient to compensate the loss from existing

customers so long as α ≤ ᾱ. Otherwise (i.e., when α > ᾱ), the fixed fee

policy will decrease the online retailer’s profit. For the offline partner, the

margin from each new or existing customer who opts for the in-store pickup

option is equal to r + α − cs. When α ≥ α, this margin is positive, so that

the fixed fee policy will benefit the offline partner. Otherwise (i.e., when

α < α), the offline partner will be worse off under the fixed fee policy. We

note that even if there is no fixed fee compensation (i.e., α = 0), the pickup

partnership can still be beneficial for the offline partner when the profit from

cross-selling purchases is high enough (i.e., r > cs).

Proposition 3 also establishes that when the fixed fee compensation lies in

[α, ᾱ], neither party will be worse off under the fixed fee policy, resulting in

a beneficial partnership.5 Otherwise, one of the parties will always be worse

off; hence, a pickup partnership will not be established under the fixed fee

policy. We note that as α increases, the profit will decrease (resp., increase)

for the online retailer (resp., offline partner). This implies that the optimal

value of α is α for the online retailer and ᾱ for the offline partner. However,

the optimal α that maximizes one party’s profit will result in the other party

5The word beneficial is used in a non-strict sense throughout the paper.
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earning no profit from the partnership. To avoid this situation and ensure

that both parties are strictly better off under the fixed fee policy, the pickup

partnership can be established by choosing a value of α such that α < α < ᾱ.

Such a well-designed partnership will yield a win-win situation, in a similar

spirit as a revenue-sharing contract between a supplier and a retailer in supply

chain management (Cachon and Lariviere 2005).

3.4.2 Coupon Policy

We compare the demand under the coupon and baseline policies in the fol-

lowing proposition.

proposition 4. Compared to the baseline policy, the coupon policy affects

direct-delivery demand, in-store pickup demand, and total demand by

∆dCo = − (
(v − p)2

hp︸ ︷︷ ︸
due to convenience

+
(v − p)

hp

β̂︸ ︷︷ ︸
due to promotion

)

︸ ︷︷ ︸
Demand shift

∆dCs =
2(v − p)(1− v + p)

hp︸ ︷︷ ︸
due to convenience

+
(1− v + p)

hp

ˆ̂
β︸ ︷︷ ︸

due to promotion︸ ︷︷ ︸
Market expansion

+
(v − p)2

hp︸ ︷︷ ︸
due to convenience

+
(v − p)

hp

β̂︸ ︷︷ ︸
due to promotion︸ ︷︷ ︸

Demand shift

∆dC =
2(v − p)(1− v + p)

hp︸ ︷︷ ︸
due to convenience

+
(1− v + p)

hp

ˆ̂
β︸ ︷︷ ︸

due to promotion︸ ︷︷ ︸
Market expansion

where β̂ and
ˆ̂
β are increasing functions of β, as shown in Appendix A2.2.

Proposition 4 conveys that, similar to the fixed fee policy, the coupon policy

induces both market expansion and demand shift effects, albeit with higher

magnitudes. This is due to the fact that the coupon policy provides two

levers to influence demand. First, as in the fixed fee policy, it attracts new
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customers and shifts some existing customers from direct-delivery to in-store

pickup due to the increased convenience of the in-store pickup option. Sec-

ond, unlike the fixed fee policy, the coupon policy induces additional new and

existing customers who are incentivized by the monetary value of the coupon.

In particular, some customers who were not purchasing under the fixed fee

policy (despite its convenience) will now make a purchase under the coupon

policy to take advantage of the discount they receive at the offline partner

store when picking up their online order. Consequently, the coupon policy

induces a greater market expansion effect relative to the fixed fee policy.

Similarly, some existing customers who use the direct-delivery option under

both the baseline and the fixed fee policies will opt for the in-store pickup

option under the coupon policy to take advantage of the coupon at the offline

partner, resulting in a greater demand shift effect compared to that under

the fixed fee policy. Thus, the pickup partnership’s effects on direct-delivery

demand, in-store pickup demand, and total demand are greater under the

coupon policy than under the fixed fee policy.

Proposition 5 characterizes the corresponding change in profit for both part-

ners and the condition when it is beneficial to establish a pickup partnership

under the coupon policy.

proposition 5. (a) Compared to the baseline policy, the coupon policy af-

fects the online retailer’s and offline partner’s profit by

∆πC
o = (

2(v − p)(1− v + p)

hp

+
(1− v + p)

hp

ˆ̂
β)(p− cp − θβ)︸ ︷︷ ︸

Increase due to market expansion

+(
(v − p)2

hp

+
(v − p)

hp

β̂)(co − cp − θβ)︸ ︷︷ ︸
Change due to demand shift

∆πC
s = (

(v − p)(2− v + p)

hp

+
(1− v + p)

hp

ˆ̂
β +

(v − p)

hp

β̂)(r + θβ − cs)︸ ︷︷ ︸
Change due to market expansion and demand shift
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(b) There exist two thresholds β and β̄ such that it is beneficial for both

parties to establish a pickup partnership under the coupon policy if and

only if β ∈ [β, β̄]. Within this range, for the online retailer, the optimal

coupon value is β∗ = max{β, β̌}.

The closed-form expression for β̌ is reported in Appendix A2.2. Proposition 5

shows that the profit implications of the demand change under the coupon

policy are similar to those under the fixed fee policy. In short, the online

retailer will be better off under the coupon policy so long as the additional

profit margin earned from new customers induced by the market expansion

effect offsets the loss from existing customers induced by the demand shift

effect (i.e., when β < β̄). Similarly, the offline partner will benefit from the

partnership if she can collect a positive margin from customers who pick

up their orders (i.e., when β ≥ β). Thus, when the monetary value of the

coupon lies in [β, β̄], no party is worse off under the coupon policy relative

to the baseline policy.

As in the fixed fee policy, the offline partner prefers the highest possible

value of the coupon (i.e., β̄) to maximize her profit under the coupon policy,

which comes at the expense of a zero gain for the online retailer. However,

unlike the fixed fee policy, the optimal coupon value for the online retailer

is not necessarily the minimum feasible value (i.e., β) under the coupon

policy. The rationale is that although an increase in β will decrease the

profit margin from an in-store pickup order for the online retailer, it may

also lead to more customers (both new and existing) opting for the in-store

pickup delivery option to take advantage of the higher discount β. If the net

profit from these customers offsets the decrease in profit margin per in-store

pickup order, then the optimal coupon value for the online retailer would

be β∗ > β. Such a coupon also provides a strictly positive gain from the

partnership for the offline partner, resulting in a win-win situation for the

two parties. Otherwise, the optimal coupon value for the online retailer is

β∗ = β, which makes the offline partner indifferent between the baseline and
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coupon policies. In that case, as with the fixed fee policy, a win-win pickup

partnership under the coupon policy can be established with β < β < β̄.

3.4.3 Optimal Policy

Having characterized each pickup partnership in the previous subsections,

we next compare all three policies to identify the optimal policy for both

the online retailer and the offline partner. To do so, we first find the opti-

mal solution for each policy and then compare the three optimal solutions

to determine the best policy. To ensure that the two pickup partnership

policies are compared objectively, we impose the constraint that the average

compensation per in-store pickup order is the same under both policies (i.e.,

α = θβ). Proposition 6 characterizes the results of this analysis conditional

on cs. We condition the analysis on cs because it represents the offline part-

ner’s operational cost related to the partnership. Therefore, given that the

process to establish a partnership starts with the online retailer selecting a

partnership policy, the proposition conditioned on cs can enable the online

retailer to make that choice based on the offline partner’s operational char-

acteristics. We examine the sensitivity of the optimal policy with respect to

other parameters in Section 3.4.4.

proposition 6. There exist two thresholds cs and c̄s such that it is optimal

for the online retailer and the offline partner

• not to establish a pickup partnership when cs > c̄s,

• to establish a pickup partnership under the fixed fee policy with param-

eter α ∈ [cs − r, c̄s − r] when cs < cs ≤ c̄s, and

• to establish a pickup partnership under the coupon policy with parameter

β ∈ [max{0, cs−r
θ

}, cs−r

θ
] when cs ≤ cs.

The rationale behind Proposition 6 is as follows. When the offline partner’s

in-store pickup handling cost is high (i.e., cs > c̄s), she finds the partnership
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beneficial only if the compensation for each in-store pickup order (i.e., α or

β) is sufficiently high. However, such a high compensation makes the online

retailer worse off with any pickup partnership (as we show in Figure 3.4.1,

when cs > c̄s, the online retailer is better off under the baseline policy).

Therefore, a beneficial partnership does not exist, making the baseline policy

the best option.

Figure 3.4.1: The Online Retailer’s Profit under the Fixed Fee, Coupon,
and Baseline Policies

When a beneficial partnership exists (i.e., cs ≤ c̄s), the optimal policy is de-

termined by the additional customers (both new and existing) who opt for the

in-store pickup delivery option only under the coupon policy (i.e., customers

forming the “market expansion due to promotion” and “demand shift due

to promotion” segments shown in Proposition 4). When the in-store pickup

handling cost is moderate (i.e., cs < cs ≤ c̄s), a beneficial partnership (under

both fixed fee and coupon policies) can be established only with a moder-

ately high compensation (β or α). In this case, the coupon policy increases

the profit by boosting the demand relative to the fixed fee policy. However,

a moderately high compensation makes the in-store pickup fulfillment more

costly (and thus less profitable) than direct-delivery fulfillment for the online

retailer. Therefore, the coupon policy also decreases the profit by making
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more existing customers who would choose the direct-delivery option under

the fixed fee policy switch to the more costly in-store pickup option. When

the coupon value is moderately high, the increase in profit due to the demand

boost effect cannot offset the loss due to the demand shift effect. As a result,

the online retailer is worse off under the coupon policy with a moderately

high β than under the fixed fee policy with an economically equivalent com-

pensation (i.e., a moderately high α), making the fixed fee policy optimal.

This can be seen in Figure 3.4.1, which shows that the online retailer’s profit

is higher under the fixed fee policy when cs < cs ≤ c̄s.

Finally, when the in-store pickup handling cost is low (i.e., cs ≤ cs), a benefi-

cial partnership under both fixed fee and coupon policies can be established

with low compensation. In this case, the net profit from the additional new

and existing customers induced by the coupon policy with a low β makes the

online retailer better off relative to the fixed fee policy. Thus, the coupon

policy is optimal when cs ≤ cs.

3.4.4 Comparative Statics

In this section, we investigate whether a given optimal policy is more suitable

for certain types of online retailers that can be characterized based on three

key model parameters; namely co, cp, and p. To do so, we examine the

sensitivity of the optimal policy with respect to co, cp, and p. All the technical

details related to this analysis appear in Appendix A2.5.

We make three main observations. First, we find that the benefit of the

pickup partnership increases as the direct-delivery fulfillment cost (co) in-

creases and the in-store pickup fulfillment cost (cp) decreases. Under a high

co and a low cp, the direct-delivery becomes a more costly (and less profitable)

fulfillment method for the online retailer relative to the in-store pickup deliv-

ery. Consequently, the online retailer will earn a higher profit with the pickup

partnership (under either a fixed fee or a coupon policy) due to customers

choosing the relatively less costly in-store pickup delivery option. Second, be-

tween the two partnership policies, the coupon policy outperforms the fixed
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fee policy as co increases and cp decreases. Since the coupon policy gener-

ates more in-store pickup demand than the fixed fee policy (as characterized

by Proposition 4), then the increasing benefit of the pickup partnership (as

co increases and cp decreases) becomes more pronounced under the coupon

policy. Third, as the product price (p) increases, the coupon policy becomes

more profitable than the fixed fee policy. An increase in p has two competing

effects. While it increases the profit margin for both direct-delivery orders

and in-store pickup orders, it also leads to lower demand for both types of or-

ders. Since the coupon policy will generate a higher demand than the fixed

fee policy (due to its promotional lever), the negative impact of the price

increase on demand is more mitigated under the coupon policy.

Overall, as summarized in Table 3.4.1, these results suggest that a pickup

partnership is not suitable for online retailers with low direct-delivery ful-

fillment cost (co) or high in-store pickup fulfillment cost (cp) (e.g., online

jewelry and luxury fashion retailers). The fixed fee policy is suitable for retail-

ers with moderate direct-delivery cost, moderate in-store fulfillment cost, or

low-priced products (e.g., online farmer marketplaces, online supermarkets),

whereas the coupon policy is suitable for retailers with high direct-delivery

cost, low in-store fulfillment cost, or high-priced products (e.g., meal kit

companies, cosmetics retailers).

Table 3.4.1: Optimal Policy based on Online Retailer Characteristics

co(cp)

High (Low) Moderate (Moderate) Low (High)

p
High Coupon Coupon/Fixed fee Baseline

Low Coupon/Fixed fee Fixed fee Baseline

3.5 Extensions

Having established the fundamental features of the pickup partnership under

two different policies, we now consider several extensions of our theoretical

model. In particular, we examine the pickup partnership with (i) a budget
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constraint, (ii) multiple pickup locations, and (iii) the consideration of con-

sumer surplus. In this section, we summarize the results from these analyses;

the technical details appear in Appendix A2.6.

3.5.1 Budget Constraint

In our main model, we assumed that the online retailer was willing to pay any

compensation (α or β) for each in-store pickup so long as it is profitable. In

practice, however, the online retailer may have a limited budget to establish

a pickup partnership. In this subsection, we evaluate how such a budget

constraint affects the optimal pickup partnership policy.

We define the partnership budget K as the total amount of money allocated

by the online retailer to compensate the offline partner for all in-store pickup

orders. Note that the expected overall compensation to meet all potential

in-store pickup orders equals αdFs under the fixed fee policy and θβdCs under

the coupon policy (we highlight that dFs and dCs are different). Therefore, the

budget constraint imposes that the expected overall compensation for in-store

pickup orders should not exceed the online retailer’s budget (i.e., αdFs ≤ K

under the fixed fee policy and θβdCs ≤ K under the coupon policy).6 Under

a budget constraint, we make three observations.

First, when the budget is small (i.e., K < K where the expression of K is

provided in Appendix A2.6), for each in-store pickup order, the online retailer

can compensate the offline partner with a maximum fixed fee of α < α

under the fixed fee policy and a maximum coupon value of β < β under

the coupon policy. As Propositions 3 and 5 imply, such compensation levels

are not high enough to incentivize the offline partner to accept the pickup

partnership under any policy. As a result, the pickup partnership cannot be

established under a small budget. Second, when the budget is moderate (i.e.,

K ≥ K > K̄; the expression of K̄ appers in Appendix A2.6), the maximum

6Alternatively, the budget can also be defined per in-store pickup order such that the
compensation for each in-store pickup order cannot exceed a certain budget. Under this
type of budget constraint, we find consistent results.
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compensation that the online retailer can pay is α > α under the fixed fee

policy and β < β under the coupon policy, making the partnership beneficial

only under a fixed fee policy. In this case, it is beneficial for both parties to

establish a pickup partnership under the fixed fee policy so long as α ∈ [α, K
dFs
].

Third, when the budget is large (i.e., K ≥ K̄), both policies are beneficial.

In this case, the online retailer can choose an optimal policy as characterized

in Proposition 6, along with the budget consideration. As such, an optimal

fixed fee policy can be implemented with parameter α ∈ [α,min{c̄s− r, K
dFs
}].

Similarly, an optimal coupon policy can be implemented with parameter

β ∈ [β,min{ cs−r

θ
, K
θdCs

}].
In summary, the budget allocated by the online retailer to the pickup part-

nership will determine the policy to be chosen. Due to the additional demand

it generates for in-store pickup orders, the coupon policy requires a higher

budget than the fixed fee policy. Therefore, for online retailers with a limited

budget, a pickup partnership is beneficial only under a fixed fee policy. A

partnership with a coupon policy is beneficial only for online retailers with

a higher budget.

3.5.2 Multiple Pickup Locations

So far, we have assumed that the offline partner had only one pickup lo-

cation. While the single-location assumption allows us to characterize the

fundamental features of pickup partnership policies, in practice, offline part-

ners can designate multiple stores as pickup locations. In such cases, it is

managerially important to understand (i) whether the optimal pickup part-

nership policy depends on the number of in-store pickup locations, and (ii)

how retailers should determine the optimal number of in-store pickup loca-

tions for a given pickup partnership policy. Next, we extend our model to

examine the scenario with multiple pickup locations.

We assume that the offline partner has n ≥ 1 stores that are spread uni-

formly along the circumference of a circular city. Thus, the distance between

two nearby stores is 1/n. Since customers are uniformly distributed on the
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circumference of the circular city (Salop 1979), x ∼ U [0, 1/2n]. This implies

that customers’ hassle cost for visiting the nearest store to pick up an order

(i.e., hpx) decreases as the number of pickup locations increases (regardless

of partnership policy). Consequently, more customers will find the in-store

pickup option more convenient than the direct-delivery option, increasing the

demand for in-store pickups.

Under this modeling framework, we find that the number of pickup locations

can change the optimal policy structure derived in Proposition 6 only when

the coupon policy is optimal (i.e., when cs ≤ cs). In Figure 3.5.1, we plot the

relationship between the number of pickup locations and the optimal policy

structure for that case. Since the demand for in-store pickup orders increases

with n, once the number of pickup locations in the pickup partnership reaches

a certain threshold, the online retailer will cover the entire market (i.e., each

customer in the market will make a purchase via either the direct-delivery or

in-store pickup option). The notations n̄F and n̄C in Figure 3.5.1 represent

this threshold for the fixed fee and coupon policies, respectively, when cs ≤ cs.

Since the total demand (i.e., demand for both direct-delivery and in-store

pickup) is higher under the coupon policy relative to the fixed fee policy

(Proposition 4), the online retailer can cover the entire market with fewer

pickup locations under the coupon policy (i.e., n̄C ≤ n̄F ).

We next summarize our findings. First, the online retailer’s profit increases

with n under both partnership policies so long as n < n̄C and a partner-

ship is beneficial. Indeed, as n increases, the market expansion and demand

shift effects under both policies become more substantial. Consequently, the

coupon policy remains more profitable than the fixed fee policy. Second,

when n̄C ≤ n < n̄F , since the market is still not fully covered under the fixed

fee policy, the market expansion and demand shift effects are still at play,

and thus, profit continues to rise with n under the fixed fee policy. How-

ever, since the entire market is fully covered under the coupon policy, any

increase in n will only amplify the demand shift effect of the coupon policy,
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whereas the market expansion effect remains the same. If the margin from

an in-store pickup order is greater than the margin from a direct-delivery

order (as illustrated in Figure 3.5.1(a)), then the online retailer’s profit will

continue to increase with n, albeit at a decreasing rate, under the coupon

policy. In this case, the coupon policy still remains more profitable than the

fixed fee policy. By contrast, if the in-store pickup fulfillment is more costly

to the online retailer (as illustrated in Figure 3.5.1(b)), the profit under the

coupon policy will decrease with n due to customers changing their prefer-

ences from direct delivery to in-store pickup. In this case, the two policies

become equally profitable with a certain number of pickup locations (refer to

the point in Figure 3.5.1(b) at which both lines intersect), and any increase

in n beyond that point will make the fixed fee policy optimal. Third, when

n > n̄F , the entire market is covered under both policies. Therefore, any

increase in n will only amplify the demand shift effect under both policies

while keeping the relative profitability the same. Hence, the coupon policy is

optimal when the direct-delivery fulfillment is more costly (Figure 3.5.1(a)),

whereas the fixed fee policy is optimal when the in-store pickup fulfillment

is more costly (Figure 3.5.1(b)). Fourth, when n becomes large enough, the

entire market makes a purchase only via the in-store pickup option under

both policies, so that the online retailer becomes indifferent between the two

policies (as illustrated in Figure 3.5.1(a)).

The above discussion suggests that the optimal number of pickup locations

for a partnership depends on the comparison between the profit margin from

an in-store pickup order and the profit margin from a direct-delivery order.

When the margin is higher for the in-store pickup order, as illustrated in

Figure 3.5.1(a), the minimum number of pickup locations, which enables the

online retail to fully cover the market using only the in-store pickup option,

is optimal under both partnership policies. When the margin is higher for

the direct-delivery order, as illustrated in Figure 3.5.1(b), then the optimal

number of pickup locations is equal to the smallest number that ensures
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(a) Direct-delivery Fulfillment is more Costly (b) In-store Pickup Fulfillment is more Costly

Figure 3.5.1: The Effect of n on the Online Retailer’s Profit under Fixed
Fee and Coupon Policies

full market coverage (i.e., n̄F for the fixed fee policy and n̄C for the coupon

policy).

Overall, our analysis suggests that a larger number of pickup locations does

not necessarily yield a higher profit for the partnership. Before negotiat-

ing the number of pickup locations, online retailers should carefully compare

their profit margins between the direct-delivery and in-store pickup options.

When the in-store pickup fulfillment is more costly than the direct-delivery

fulfillment, online retailers can establish a partnership under the coupon pol-

icy using a smaller number of pickup locations. Otherwise, a larger number

of locations will increase the partnership profitability.

3.5.3 Total Welfare

In our main model, the optimal partnership policy was chosen to maximize

the profit of the online retailer while ensuring that the offline partner is not

worse off relative to the setting without a partnership. With the increasing

awareness of social responsibility, retailers may alternatively seek partnership

solutions that also consider the customers’ interests. Therefore, in this sub-

section, we evaluate how the optimal policy changes when the online retailer

seeks to maximize the total welfare earned by all stakeholders (i.e., herself,

111



the offline partner, and customers).

Our analysis reveals that when maximizing total welfare (i.e., the sum of

the online retailer profit, offline partner profit, and consumer surplus), the

threshold c̄s increases. In other words, the range under which a beneficial

pickup partnership exists will expand. This result is expected because the

pickup partnership (under any policy) will always increase the consumer

surplus relative to the baseline policy, since it offers an additional delivery

option for customers. Therefore, the increase in consumer surplus is yet

another benefit of establishing a pickup partnership. It is worth noting that

even in this case, the pickup partnership may still not be beneficial for high

values of cs.

More importantly, our analysis shows that when setting the objective as the

total welfare, the fixed fee is no longer the optimal policy for a pickup part-

nership. Recall that as shown in Proposition 6, when the online retailer max-

imizes her own profit, the fixed fee policy is optimal when the profit from the

additional new customers induced by the coupon policy cannot offset the loss

from the additional existing customers (switching from the direct-delivery to

in-store pickup option), again induced by the coupon policy. When the on-

line retailer maximizes total welfare, the consumer surplus is higher under

the coupon policy than under the fixed fee policy, since the probability of

redeeming the coupon provides an additional utility to customers. Conse-

quently, compared to the fixed fee policy, the profit from additional new

customers, coupled with the higher consumer surplus, will always offset the

loss from additional existing customers under the coupon policy. Therefore,

the online retailer is always better off by establishing the pickup partnership

under the coupon policy relative to the fixed fee policy when considering the

total welfare.
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3.6 Pickup Partnership with Hybrid Policy

An optimal partnership policy, as we identified in Proposition 6, aims to

maximize the online retailer’s profit subject to the offline partner’s rational-

ity constraint. Thus, to establish a pickup partnership, the online retailer has

to offer either a fixed fee policy or a coupon policy while ensuring that the of-

fline partner is not worse off relative to the baseline policy. In some situations,

this may force the online retailer to select a partnership parameter that is

not necessarily a profit maximizer for herself, implying that an optimal part-

nership policy can entail inefficiencies for the online retailer. Equivalently,

we investigate when the offline partner’s rationality constraint is tight. In

this section, we first examine under which cases such inefficiencies exist for

the two policies (fixed fee and coupon) used in current practices. We then

prescribe a novel pickup partnership policy that alleviates such inefficiencies.

3.6.1 Inefficiency from Fixed Fee and Coupon Policies

We start by examining the optimal fixed fee policy. Recall from Proposition 6

that, when cs < cs ≤ c̄s, the online retailer prefers the fixed fee policy over

the coupon policy with a moderately high β∗. Figure 3.6.1 illustrates the

corresponding market segmentation under the optimal fixed fee policy. We

observe that the optimal fixed fee policy with α generates a partial market

coverage so that some customers (as depicted by the dotted region at the top-

right corner in Figure 3.6.1) leave the market without making a purchase.

Note that the online retailer can achieve the same market segmentation under

the coupon policy by setting the coupon value to zero (i.e., β = 0). Consistent

with Proposition 4, this implies that with any positive coupon value under a

hypothetical coupon policy, the online retailer would generate additional sales

from some of the customers in the dotted region, although a positive coupon

value would also motivate some existing customers to change their delivery

mode from direct-delivery to in-store pickup. As shown in Proposition 6,

when the coupon value is low enough, the net profit change with any positive
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coupon value under that hypothetical coupon policy relative to the optimal

fixed fee policy would be positive, representing an opportunity cost for the

online retailer under the optimal fixed fee policy. When cs < cs ≤ c̄s, since

the online retailer can encourage the offline partner to establish a partnership

under the coupon policy using only a moderately high β∗ (which makes the

net profit change under the coupon policy compared to the optimal fixed

fee policy negative), she prefers to establish the pickup partnership under a

fixed fee policy despite its opportunity cost. Therefore, the aforementioned

opportunity cost represents the inefficiency of the pickup partnership under

the optimal fixed fee policy (relative to the hypothetical coupon policy with

a low β).

Figure 3.6.1: Market Segmentation under the Optimal Fixed Fee Policy

We next examine the optimal coupon policy. As discussed in Proposition 6,

when cs ≤ cs, the online retailer can induce the offline partner to establish

a pickup partnership under the coupon policy with a relatively low β∗, mak-

ing the coupon policy optimal. Figure 3.6.2 illustrates the corresponding

market segmentation under the optimal coupon policy. We observe that the

optimal coupon policy with β∗ allows the online retailer to cover the entire

market (i.e., all customers will make a purchase via direct-delivery or in-store

pickup). However, as shown in Figure 3.6.2, β∗ under the optimal coupon
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policy is greater than the minimum coupon value βm under a hypothetical

coupon policy that can allow the online retailer to just cover the entire mar-

ket. This implies that the market expansion effect of the coupon policy is

maximized when β = βm < β∗. Thus, when the coupon value increases from

βm to β∗, the online retailer no longer generates new customers. Rather, as

illustrated by the dotted region in Figure 3.6.2, an increase in the coupon

value beyond βm only induces more existing customers to change their deliv-

ery option from direct-delivery to in-store pickup. When the profit margin

from an in-store pickup order is lower than the profit margin from a direct-

delivery order, the customers in the dotted region will decrease the online

retailer’s profit relative to the profit under the hypothetical coupon policy

with βm. Despite this profit loss, when cs ≤ cs, the online retailer constructs

the optimal coupon policy with β∗ > βm, because any β lower than β∗ will

make the offline partner worse off under the partnership. Thus, in order to

fairly compensate the offline partner under the optimal coupon policy, the

online retailer will absorb the loss from the customers in the dotted region.

Hence, the absorbed loss from these customers represents the inefficiency

of the pickup partnership under the optimal coupon policy (relative to the

hypothetical coupon policy with βm).

Overall, we find that, despite being optimal, both the fixed fee and coupon

policies may entail inefficiencies for the online retailer. In the next subsection,

we prescribe an alternative partnership policy to alleviate such inefficiencies.
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Figure 3.6.2: Market Segmentation under the Optimal Coupon Policy

3.6.2 Hybrid Policy

We show that an alternative partnership can be established such that for each

in-store pickup, the online retailer can compensate the offline partner with

a total compensation γ, of which αh is paid to the offline partner as a fixed

fee, and βh (where βh = γ−αh

θ
) is offered to the customers as a coupon. We

term this policy the hybrid policy. We note that in this setting, the average

compensation per in-store pickup order becomes equivalent to those under

the fixed fee and coupon policies (i.e., γ = α = θβ).

Customer utilities for direct-delivery and in-store pickup options under the

hybrid policy remain the same as under the coupon policy. We let dHo and

dHp denote the online retailer’s demand for direct-delivery and in-store pickup

options, respectively, where the superscript H denotes the hybrid policy.

Then, the online retailer’s profit is equal to

πH
o (γ) = (p− co)d

H
o + (p− cp − γ)dHs , (3.6.1)

whereas the offline partner’s profit is equal to

πH
s (γ) = (r + γ − cs)d

H
s . (3.6.2)
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Proposition 7 characterizes how the optimal policy structure presented in

Proposition 6 changes in the presence of the hybrid policy.

proposition 7. There exist thresholds c̄p, cs, and
¯̄cs such that

(a) if cp < c̄p, it is optimal for the online retailer and the offline partner

• not to establish a pickup partnership when cs > c̄s,

• to establish a pickup partnership under the fixed fee policy with

parameter α ∈ [cs − r, c̄s − r] when ¯̄cs < cs ≤ c̄s,

• to establish a pickup partnership under the hybrid policy with pa-

rameters βh = βm and αh ∈ [max{cs − r − θβm, 0}, ¯̄cs − r − θβm]

when c
s
< cs ≤ ¯̄cs, and

• to establish a pickup partnership under the coupon policy with pa-

rameter β ∈ [max{0, cs−r
θ

}, c
s
−r

θ
] when cs ≤ c

s
.

(b) otherwise (i.e., cp ≥ c̄p), the optimal policy structure from Proposition 6

remains the same.

The closed-form expressions for c̄p, c
s
, and ¯̄cs appear in Appendix A2.4.

Proposition 7 reveals that the hybrid policy can be a valuable lever for the

online retailer to improve partnership efficacy only when the profit margin

of the in-store pickup order is smaller than the profit margin of the direct-

delivery order (i.e., cp < c̄p and c
s
< cs ≤ ¯̄cs). In this case, the optimal

policy structure characterized in Proposition 6 (labeled as “Without hybrid

policy” in Figure 3.6.3) changes as shown by the “With hybrid policy” case

in Figure 3.6.3. The figure shows that the retailer is better off under the

hybrid policy relative to the coupon policy in Region I and relative to the

fixed fee policy in Region II.

In Region I of Figure 3.6.3 (i.e., when c
s
≤ cs < cs), in the absence of the

hybrid policy, the online retailer establishes the partnership using the coupon

policy with a relatively low β∗ while absorbing the loss from the customers in
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Figure 3.6.3: Optimal Policy with and without the Hybrid Policy

the dotted region of Figure 3.6.2, as discussed in Section 3.6.1. The hybrid

policy enables the online retailer to mitigate this loss. In particular, as

illustrated in Figure 3.6.4, the online retailer will set the optimal hybrid policy

coupon value β∗
h to βm to cover the entire market, making the customers in

Region A better off with the direct-delivery option and hence eliminating the

loss from these customers. Since β∗
h is not high enough for the offline partner

to accept the partnership, the online retailer will pay the remaining αh of the

hybrid policy compensation γ as a fixed fee to ensure that the offline partner

is not worse off under the partnership.

Figure 3.6.4: Market Segmentation under the Optimal Hybrid Policy

In Region II of Figure 3.6.3 (i.e., when cs ≤ cs < ¯̄cs), in the absence of the

hybrid policy, the online retailer establishes the partnership using the fixed
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fee policy, while missing the additional profit opportunity from customers

who leave the market without making any purchase (i.e., customers in the

blue dotted region in Figure 3.6.1), as discussed in Section 3.6.1. As illus-

trated in Figure 3.6.4, the hybrid policy enables the online retailer to attract

those customers. In particular, by setting the optimal hybrid policy coupon

value β∗
h to βm, the online retailer will cover the entire market, including the

customers in Region B, thus generating an additional profit. However, this

will also induce some of the existing customers (illustrated by Region C in

Figure 3.6.4) to change their preference from direct-delivery under the fixed

fee policy to in-store pickup under the hybrid policy, generating an additional

loss. Since β∗
h represents a low β, as implied by Proposition 6, the former’s

additional profit becomes greater than the latter’s additional loss, ultimately

making the online retailer better off under the hybrid policy.

We next conduct a numerical study to quantify the extent to which the

hybrid policy can benefit the online retailer. Using a wide range of model

parameters, our study results in 5,540 instances for which the partnership is

beneficial to both parties under either the fixed fee or coupon policies.7 We

find that the hybrid policy can improve the online retailer’s profit for 24.06%

(1,333 of 5,540) of those instances. The average improvement in the online

retailer’s profit amounts to 5.14% (with a standard deviation of 3.13%), with

minimum and maximum values of 0.78% and 14.45%.

To summarize, our proposed hybrid policy allows the online retailer to min-

imize the potential inefficiencies of the pickup partnership established under

either the fixed fee policy or the coupon policy while ensuring that the part-

nership remains beneficial for the offline partner. To our knowledge, such

a hybrid policy has not yet been deployed in practice, potentially due to

7The parameter values are as follows: p ∈ [0.7, 0.95] with 0.05 increments, co ∈
[0.05p, 0.25p, 0.5p, 0.75p, 0.95p], cp ∈ [co, 0.75co, 0.5co, 0.25co, 0], hp ∈ [0.45, 0.75] with 0.1
increments, and cs ∈ [0, 1] with 0.05 increments. Other parameters are set to v = 1, r = 0,
and θ = 1. After dropping the instances that do not satisfy model assumptions, the nu-
merical study results in 5,946 instances, of which, 5,540 (i.e., 93.17%) lead to a beneficial
pickup partnership for both parties.
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the fact that pickup partnerships in retail are still in a fairly nascent stage.

Nevertheless, our results suggest that online retailers should consider imple-

menting a hybrid policy when establishing a pickup partnership since such a

policy is likely to yield a more efficient partnership, especially when in-store

pickup delivery fulfillment is costly.

3.7 Conclusion

To survive in the omnichannel era, many pure online retailers (e.g., Ama-

zon, Cookit, Maturin) have recently started to form pickup partnerships with

offline stores to provide their customers with convenient in-store pickup ser-

vices. Despite this evolving business model, the literature on how to design

and assess the impact of a pickup partnership is non-existent. To our knowl-

edge, this paper is the first to develop an analytical model to theoretically

examine the benefits of implementing a pickup partnership. In particular,

we first analyze the two policies, the fixed fee and the coupon policies, that

practitioners use to form pickup partnerships. We then characterize whether

and how online retailers should choose between these two policies. We also

convey that despite being optimal, both policies entail inefficiencies leading

to an opportunity cost for the online retailer. We then prescribe a new type

of policy that mitigates such inefficiencies.

Our results indicate that the cost structures of the online retailer and offline

partner determine whether the two parties should form a pickup partnership

and if so, which policy they should use. Specifically, we find that the coupon

policy is particularly suitable for offline partners that can manage the in-

store pickup process efficiently (i.e., those with low in-store pickup handling

cost) and online retailers with a high direct-delivery fulfillment cost, a low in-

store pickup fulfillment cost, or high-priced products. In contrast, the fixed

fee policy is suitable for offline partners with a moderate in-store pickup

handling cost and online retailers with a moderate direct-delivery fulfillment

cost, a moderate in-store fulfillment cost, or low-priced products. We also
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find that the partnership will not be beneficial for offline partners with a high

in-store pickup handling cost or for online retailers with a low direct-delivery

fulfillment cost or a high in-store fulfillment cost.

We later extend our model to examine the pickup partnership under three

different scenarios. First, we find that the presence of a budget constraint

may reduce the online retailer’s willingness to adopt a coupon policy, making

the fixed fee policy a more suitable option for online retailers with limited

budgets. Second, we consider an offline partner with multiple pickup loca-

tions and find that a larger number of pickup locations does not necessarily

yield a higher profit for the partnership, especially when in-store pickup ful-

fillment is more costly than direct-delivery fulfillment. Third, we consider an

online retailer maximizing total welfare for all parties (including customers)

and find that the coupon policy always outperforms the fixed fee policy due

to the additional utility earned by customers from the discounted coupons.

Finally, we find that both policies entail inefficiencies due to the misaligned

incentives of the online retailer. More precisely, to ensure that the offline

partner is not worse off with the partnership (relative to no partnership),

in some cases the online retailer has to propose a partnership that does not

necessarily maximize her own profit. In such cases, the online retailer can-

not fully leverage the potential of the partnership. To address this issue, we

propose a hybrid policy that allows the online retailer to split the compen-

sation amount per in-store pickup order between the offline partner (in the

form of a fixed fee) and customers (in the form of a coupon). We then show

that our proposed hybrid policy allows the online retailer to minimize these

inefficiencies, while ensuring that the pickup partnership remains attractive

for the offline partner. In a numerical study, we find that such inefficient

partnerships can be common and that the profit improvement generated by

the hybrid policy is substantial.

Our results provide several managerial implications for retailers seeking to

establish a pickup partnership. First, a newly established partnership may
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require a fixed investment cost for the offline partner (e.g., setting up a

pickup point in the store, assigning staff to process pickups) and the volume

of in-store pickup orders is likely to increase over time as customers become

more familiar with this service. Thus, the offline partner’s handling cost is

likely to be high in a newly established partnership. However, it will likely

decline over time as the volume of in-store pickup orders increases and the

offline partner improves the process through learning-by-doing. Therefore, a

direct implication of our study is that a pickup partnership should initially

be established using the fixed fee policy. As the offline partner becomes more

efficient in processing in-store pickup orders, both parties can be better off

by switching from the fixed fee policy to the coupon policy. In fact, our

glance at the current pickup partnerships in the industry reveals an observa-

tion consistent with our implication. We observe that at this nascent stage

of pickup partnerships, as implied by our study, firms mostly prefer the fixed

fee policy relative to the coupon policy. Second, our results suggest that the

parties are better off by customizing the partnership not only based on the

stage of their relationship but also on the specific characteristics of the busi-

ness setting. For example, for low-priced staple items, the fixed fee policy

is more beneficial, whereas for high-priced niche items, the coupon policy is

better. Since the hybrid policy encompasses both the fixed fee and coupon

policies, it allows the online retailer to be more flexible in the partnership

implementation. Third, although our results show that the optimal parame-

ters for both the fixed fee and coupon policies depend on the characteristics

of the business setting, we believe that the coupon policy may be an easier-

to-implement option. For example, under the fixed fee policy, if the online

retailer wants to set a fee that depends on the product price, both the online

and offline partners need to keep track of actual transactions to determine the

total transfer amount owing to the pickup partnership. Under the coupon

policy, however, the online retailer can easily set a different coupon value

based on the product price and make a transfer to the offline partner based
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on the redeemed amount.

Admittedly, more studies are needed to examine the growing trend of pickup

partnerships. We can think of at least two potential avenues for future re-

search. First, it would be interesting to investigate how the online retailer’s

and offline partner’s operational decisions (e.g., assortment, price, inventory

decisions) are affected by partnership policies. Second, it might be beneficial

to empirically investigate the long- and short-term effects of each partnership

policy for both the online retailer and the offline partner.
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A2 Appendix for Article 2

A2.1 Tables and Figures

Table A2.1: Summary of Notation

Symbol Definition

Notation related to the customer
v Customer’s valuation for the product
ho Customer’s hassle cost of using the direct-delivery option (e.g., shipping cost and delivery time)
x Distance between customer’s location and pickup location
hp Customer’s hassle cost per unit of distance to visit the pickup location
θ Probability that the customer redeems the coupon at the offline partner’s store when picking up the order
r Offline retailer’s cross-selling profit per customer who picks up the order in-store
p Price of the product

Notation related to the online retailer
co Online retailer’s handling cost for each direct-delivery order (e.g., direct shipping cost)
cp Online retailer’s handling cost for each in-store pickup order (e.g., cost of shipping to the pickup location)
α Compensation value paid by the online retailer to the offline partner for each in-store pickup order
β Monetary value of the coupon offered by the online retailer to be redeemed at the pickup location
dio Online retailer’s expected demand for direct-delivery orders under policy i ∈ {F,C}
dis Online retailer’s expected demand for in-store pickup orders under policy i ∈ {F,C}
πi
o Online retailer’s expected profit under policy i ∈ {F,C}

Notation related to the offline partner
cs Offline partner’s handling cost per in-store pickup order (e.g., staff and storage)
πi
s Offline partner’s expected profit from the partnership under policy i ∈ {F,C}

A2.2 Demand Functions

To avoid trivial cases, in all appendices, we assume that under the baseline and

fixed fee policies, there are some customers who leave the market, that is, v−p < 1

and (v − p)/hp < 1/2.

A2.3 Baseline Policy

Under the baseline policy, based on their utility, customers can either purchase the

product via direct delivery or leave the market. Since the customer’s utility from

leaving the market is zero, a customer will purchase the product if her utility from

buying is positive. Thus, since ho ∼ U [0, 1] and x ∼ U [0, 1/2], the online retailer’s

demand under the baseline policy is simply dBo = v − p.
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Fixed Fee Policy

Under the fixed fee policy, customer decisions are as follows:

a. When ho ≤ min{v − p, xhp}, the customer purchases via direct delivery.

b. When x ≤ min{ho

hp
, v−p

hp
}, the customer purchases via in-store pickup.

c. When v − p < min{ho, xhp}, the customer leaves the market.

Therefore, the demand for the direct-delivery and in-store pickup options are given

by:

dFs =
(v − p)(2− v + p)

hp

and dFo =
[
1− (v − p)

hp

]
(v − p).

Coupon Policy

Under the coupon policy, customer decisions are as follows:

a. When ho ≤ min{v− p, xhp − θβ}, the customer purchases via direct delivery.

b. When x ≤ min{ho+θβ
hp

, v−p+θβ
hp

}, the customer purchases via in-store pickup.

c. When v − p < min{ho, xhp − θβ}, the customer leaves the market.

Therefore, the demand for the direct-delivery and in-store pickup options are given
by:

dCs =


2θβ+(2−v+p)(v−p)

hp
, 0 ≤ β ≤ hp−2(v−p)

2θ

(1− (hp−2θβ)2

4hp
)

hp−2(v−p)
2θ ≤ β ≤ hp

2θ

1 β ≥ hp

2θ

and dCo =


(1− (v−p+2θβ)

hp
)(v − p), 0 ≤ β ≤ hp−2(v−p)

2θ

(hp−2θβ)2

4hp
,

hp−2(v−p)
2θ ≤ β ≤ hp

2θ

0, β ≥ hp

2θ

A2.4 Proofs of Statements

Proof of Proposition 2. The proof of Proposition 2 follows directly from the demand

function derived in Appendix A2.2.

Proof of Proposition 3. (a) For the online retailer, we have

∆πF
o = (p−co)∆dBo +(p−cp−α)∆dFs =⇒ ∆πF

o =
2(v − p)(1− v + p)

hp
(p−cp−α)+

(v − p)2

hp
(co−cp−α),

128



and for the offline partner, we have

∆πF
s = (r + α− cs)∆dFs =

(v − p)(2− v + p)

hp

(r + α− cs).

(b) The offline partner will accept the pickup partnership offer if and only if

∆πF
s ≥ 0. Since ∆dFs > 0 and α ≥ 0, ∆πF

s is positive if

r + α− cs ≥ 0 =⇒ α ≥ max{0, cs − r} = α.

Similarly, the online retailer will initiate the partnership under the fixed fee

policy if and only if ∆πF
o ≥ 0, and thus

∆πF
o =

2(v − p)(1− v + p)

hp
(p−cp−α)+

(v − p)2

hp
(co−cp−α) ≥ 0 =⇒ α ≤ p−cp−

v − p

2− v + p
(p−co) = ᾱ.

Therefore, the partnership under the fixed fee policy is beneficial only when

α ∈ [α, ᾱ].

Proof of Proposition 4. The proof of Proposition 4 directly follows from the demand

functions derived in Appendix A2.2. We note that β̂ and
ˆ̂
β are given by:

β̂ =


2θβ 0 ≤ β ≤ hp−2(v−p)

2θ

4θβ(hp+θβ)−h2
p

v−p + hp − v + p
hp−2(v−p)

2θ ≤ β ≤ hp

2θ

(hp − v + p) β ≥ hp

2θ

and
ˆ̂
β =


2θβ 0 ≤ β ≤ hp−2(v−p)

2θ

(hp−2v+2p)
2 β ≥ hp−2(v−p)

2θ

Proof of Proposition 5. (a) This result can be shown by substituting the demand

function into the profit function reported in Section 3.3.

(b) The existence proof of β follows a similar argument to that of α. Thus, we

only show the existence of β̄, and we can then find β∗. To show the existence

of β̄, it is enough to show that πC
o (β) is a continuous and unimodal function of

β (i.e., there exists a β̌ such that πC
o (β) is increasing for β < β̌ and decreasing

for β ≥ β̌) and that πB
o ≤ πC

o (β = 0).

One can easily show that πB
o < πC

o (0) and that πC
o (β) is a continuous function.
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Thus, we only need to show that πC
o (β) is a unimodal function of β. The online

retailer’s profit under the coupon policy can be written as the following piece-wise

function of β:

πC
o (β) =


(1− 2θβ+v−p

hp
)(v − p)(p− co) +

2θβ+(2−v+p)(v−p)
hp

(p− cp − θβ), 0 ≤ β ≤ hp−2(v−p)
2θ

(hp−2θβ)2

4hp
(p− co) + (1− (hp−2β)2

4hp
)(p− cp − θβ),

hp−2(v−p)
2θ ≤ β ≤ hp

2θ

(p− cp − θβ) β ≥ hp

2θ

(A2.1)

The first term in πC
o (β) is a quadratic function of β, which is denoted by A(β).

We thus have

∂A(β)

∂β
=

2θ

hp

[
p− cp − (v − p)(p− co)−

(2− v + p)(v − p)

2
− 2θβ

]
.

The root of ∂A(β)
∂β

is given by:

β∗
A =

p− cp
2θ

− (v − p)(p− co)

2θ
− (2− v + p)(v − p)

4θ
.

This root maximizes A(β) if 0 ≤ β∗
A ≤ hp−2(v−p)

2θ
. In other words, β∗

A maximizes

A(β) if

(v−p)co+(1−v+p)p+
(2 + v − p)(v − p))

2
−hp ≤ cp ≤ (v−p)co+(1−v+p)p−(v − p)(2− v + p)

2
.

If cp > (v − p)co + (1 − v + p)p − (v−p)(2−v+p)
2

, then β∗
A < 0, meaning that A(β)

is decreasing in β for 0 ≤ β ≤ hp−2(v−p)

2
. If cp < (v − p)co + (1 − v + p)p +

(2+v−p)(v−p))
2

− hp, then β∗
A > hp−2(v−p)

2θ
, meaning that A(β) is increasing in β for

0 ≤ β ≤ hp−2(v−p)

2θ
.

The second term in πC
o (β) is a cubic function of β, which is denoted by B(β) and
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can be written as follows:

B(β) = (p− cp − θβ) +
h2
p + 4(θβ)2 − 4hpθβ

4hp

(cp + θβ − co)

=
1

hp

(θβ)3 +
cp − co − hp

hp

(θβ)2 + (co − cp − 1 +
hp

4
)θβ + (

hp

4
(cp − co) + p− cp).

Since θ3

hp
> 0, Figure A2.1(a) depicts the only possible pattern for B(β).

(a) Possible Pattern for B(β) (b) Plot of ∂B(β)
∂β

Figure A2.1

The first derivative of B(β) is given by:

∂B(β)

∂β
= −θ+

hp − 2θβ

hp

θ(co−cp)−
hp − 2θβ

hp

θ2β+
(hp − 2θβ)2

4hp

θ,
hp − 2(v − p)

2θ
< β ≤ hp

2θ
.

When β = hp

2θ
, we have ∂B(β)

∂β
= −θ < 0. Therefore, hp

2θ
∈ [a, b], where a and b are

the roots of ∂B(β)
∂β

(see Figure A2.1).
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When β = hp−2(v−p)

2θ
, we have

∂B(β)

∂β
=

2(v − p)

hp

θ(co − cp)−
2(v − p)

hp

(
hp

2
− v + p)θ +

(v − p)2

hp

θ − θ

=
[2(v − p)

hp

(co − cp)− (v − p) +
3(v − p)2

hp

− 1
]
θ.

If cp ≤ co +
3(v−p)

2
− hp

2
− hp

2(v−p)
, then ∂B(β)

∂β
≥ 0 for β = hp−2(v−p)

2θ
. It means that

hp−2(v−p)

2θ
< a, where a is the first root of ∂B(β)

∂β
(see Figure A2.1). Therefore, when

cp ≤ co+
3(v−p)

2
− hp

2
− hp

2(v−p)
, a maximizes B(β). Since ∂B(β)

∂β
is a quadratic function

of β, a is given by:

a =
1

6θ

[
2(hp + co − cp)−

√
(2cp + hp)2 + 4co(co − hp − 2cp) + 12hp

]
.

When cp > co +
3(v−p)

2
− hp

2
− hp

2(v−p)
, ∂B(β)

∂β
< 0 for β = hp−2(v−p)

2θ
. Therefore,

hp−2(v−p)

2θ
∈ [a, b], where a and b are the roots of ∂B(β)

∂β
. Thus, B(β) is decreasing

in β when β ∈ [hp−2(v−p)

2θ
, hp

2θ
] and β = hp−2(v−p)

2θ
maximizes B(β).

The third term of πC
o (β) is a linear function of β, which is denoted by C(β). Since

∂C(β)
∂β

= −θ < 0, C(β) is decreasing in β.

We define c1 = co− hp

2
− hp

2(v−p)
+ 3(v−p)

2
, c2 = (v−p)co+(1−v+p)p+ (2+v−p)(v−p)

2
−hp,

and c3 = (v−p)co+(1−v+p)p− (v−p)(2−v+p)
2

. Since we assume that v−p < 1 and
v−p
hp

≤ 1
2
(i.e., there are some customers who leave the market under the baseline

and fixed fee policies), we can show that c3 ≥ c2 ≥ c1. Since πC
o (β) is continuous,

πC
o (β) can have only one of four possible patterns as shown in Figure A2.2. We

thus conclude that πC
o (β) is a continuous and unimodal function.

Since πC
o (β) is a continuous and unimodal function, there exists a unique β̌ (see
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closed-form expression below) that maximizes πC
o (β).

β̌ =



1
6θ

[
2(hp + co − cp)−

√
(2cp + hp)2 + 4co(co − hp − 2cp) + 12hp

]
, cp ≤ c1

1
2θ

[
hp − 2(v − p)

]
, c1 < cp ≤ c2

1
4θ

[
2(p− cp)− 2(v − p)(p− co)− 2(v − p) + (v − p)2

]
, c2 < cp ≤ c3

0, cp > c3

where c1 = co− hp

2
− hp

2(v−p)
+ 3(v−p)

2
, c2 = (v−p)co+(1−v+p)p+ (2+v−p)(v−p)

2
−hp,

and c3 = (v − p)co + (1− v + p)p− (v−p)(2−v+p)
2

.

The variable β̌ maximizes the online retailer’s profit under the coupon policy with-

out considering the offline partner’s rationality constraint. If β = β̌ does not satisfy

the rationality constraint, then the online retailer should increase the value of β.

Since πC
o (β) is decreasing for β > β̌, in that case, the optimal value is the smallest

value that satisfies the offline partner’s rationality constraint, that is, cs−r
θ

. As a

result, the optimal value of β is min{ cs−r
θ

, β̌}.

Proof of Proposition 6. First, we show that there exists a unique ¯̄β such that under

condition θβ = α, the online retailer will prefer the coupon policy over the fixed

fee policy when β ≤ ¯̄β (i.e., for α = θβ ≤ θ ¯̄β, πF
o (α) ≤ πC

o (β)). We also show that

θ ¯̄β ≤ ᾱ and ¯̄β < β̄. By combining these findings with Propositions 3 and 5, it

is straightforward to show that the optimal policy is (i) the coupon policy when

cs ≤ r+ θ ¯̄β = cs, (ii) the fixed fee policy when r+ θ ¯̄β = cs < cs ≤ r+ ᾱ = c̄s, and

(iii) the baseline policy when cs > c̄s.

The existence of ¯̄β can be shown using the characteristics of πC
o (β) as discussed in

the proof of Proposition 5. For α
θ
= β > β̌, the online retailer’s profit is decreasing

in the partnership parameter under both the fixed fee and the coupon policies,

and |∂π
C
o (β)
∂β

| > θ|∂π
F
o (α)
∂α

| for β > hp−2(v−p)

2θ
. Therefore, πC

o (β) = πF
o (α) has a unique

solution.

Since πF
o (α = 0) = πC

o (β = 0), πC
o (β) is a unimodal function, and πF

o (α) is a

decreasing function of α, if we show that θβ̄ ≤ ᾱ, then we can conclude that θ ¯̄β < ᾱ
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Figure A2.2: The Online Retailer’s Profit under the Coupon Policy

(see Figure A2.3). To show this, it is enough to show that πC
o (

ᾱ
θ
) < πF

o (ᾱ) = πB
o

where ᾱ = p− cp − v−p
2−v+p

(p− co). The following tree situations are then possible:

1. ᾱ > hp

2
. In this case, we have

πC
o (

ᾱ

θ
) = (p− cp − ᾱ) =

v − p

2− v + p
(p− co) < (v − p)(p− co) = πB

o ,

where the last inequality follows from v − p < 1.

2. hp−2(v−p)

2
< ᾱ ≤ hp

2
. In this case, we have

πC
o (

ᾱ

θ
) =

[
p− cp − ᾱ+ (cp + ᾱ− co)

(hp − 2ᾱ)2

4hp

]
=

[
1− (hp − 2ᾱ)2

4hp

] v − p

2− v + p
(p− co) +

(hp − 2ᾱ)2

4hp
(p− co).

We next show that if πC
o (

ᾱ
θ
) ≤ πB

o , we then reach to a strict inequality. We
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Figure A2.3: Possible Relationship Between ¯̄β, β̄, and ᾱ

have[
1− (hp − 2ᾱ)2

4hp

]
(

v − p

2− v + p
)(p−co)+

(hp − 2ᾱ)2

4hp
(p−co) ≤ (v−p)(p−co) =⇒ (hp−2ᾱ)2 ≤ 2hp(v−p)

=⇒ (hp − 2(p− cp) +
2(v − p)

2− v + p
(p− co))

2 ≤ 2hp(v − p).

Since 4(v − p)2 ≤ 2hp(v − p), then

[
hp−2(p−cp)+

2(v − p)

2− v + p
(p−co)

]
< 2(v−p) =⇒ hp − 2(v − p)

2
≤ (p−cp)−

v − p

2− v + p
(p−co) = ᾱ.

3. ᾱ < hp−2(v−p)

2
. As in the second case, if πC

o (
ᾱ
θ
) ≤ πB

o , then we reach a strict

inequality.

πC
o (

ᾱ

θ
) =

2ᾱ+ (2− v + p)(v − p)

hp
(p−cp−ᾱ)+(1−v − p+ 2ᾱ

hp
)(v−p)(p−co) ≤ (p−co)(v−p)

=⇒ 2ᾱ(p− cp − ᾱ) + (2− v + p)(v − p)(p− cp − ᾱ) < (v − p+ 2ᾱ)(v − p)(p− co).

Since ᾱ = (p− cp)− v−p
2−v+p

(p− co), we have

2ᾱ
v − p

2− v + p
(p−co)+(2−v+p)(v−p)

v − p

2− v + p
(p−co) ≤ (v−p+2ᾱ)(v−p)(p−co)
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=⇒ 2ᾱ

2− v + p
+ v − p ≤ v − p+ 2ᾱ =⇒ 1 ≤ 2− v + p,

where last inequity follows from v − p < 1. We then have θ ¯̄β ≤ ᾱ.

Therefore, we conclude that when α = θβ < θ ¯̄β, we have πC
o (β) > πF

o (α) > πB
o ,

when θ ¯̄β < α = θβ < ᾱ, we have πF
o (α) > max{πC

o (β), π
B
o }, and when α = θβ > ᾱ,

we have πB
o > πF

o (α) > πC
o (α). Thus, based on Propositions 3 and 5, when

cs ≤ r + θ ¯̄β = cs, the online retailer’s profit under a beneficial coupon policy is

higher relative to the fixed fee policy, and the coupon policy is beneficial for any

β ∈ [max{0, cs−r
θ

}, ¯̄β]. When cs < cs ≤ r+ ᾱ = c̄s, the online retailer’s profit under

a beneficial fixed fee policy is greater than a beneficial coupon policy, and the

fixed policy is beneficial for any α ∈ [cs− r, c̄s− r]. Lastly, when cs > c̄s, neither a

fixed fee policy nor a coupon policy can improve the online retailer’s profit when

compared to the baseline policy, and hence the baseline policy is optimal.

Proof of Proposition 7. We first show that when cp > v − hp

2
− (v−p)(p−co)

hp
= c̄p, the

hybrid policy cannot be optimal, and so the optimal policy remains the same as

in Proposition 6.

When cp > c̄p, we have ¯̄β ≤ hp−2(v−p)

2θ
, so that πC

o (β = hp−2(v−p)

2θ
) < πF

o (α =
hp−2(v−p)

2
). We next show that when cp > c̄p, the optimal policy is either the

coupon policy or the fixed fee policy.

Although the online retailer’s profit is a piece-wise function of β, in this case, it is

enough to focus on the first part of the function (i.e., when β ≤ hp−2(v−p)

2θ
) because

the coupon policy can be optimal only when β ≤ hp−2(v−p)

2θ
. We assume that there

exists an optimal hybrid policy with parameters β∗
h and α∗

h (where β∗
h, α

∗
h > 0).

Namely, β∗
h and α∗

h maximize the online retailer’s profit, while satisfying the offline

partner’s rationality constraint (r + α∗
h + θβ∗

h − cs)d
H
s ≥ 0. Thus, the online

retailer’s profit under the hybrid policy must be higher than the profit under the

coupon policy with the coupon value β∗ =
θβ∗

h+α∗
h

θ
and the fixed fee policy with

α∗ = θβ∗
h + α∗

h.
We let πH

o (γ = θβh+αh) denote the online retailer’s profit under the hybrid policy.
For the online retailer’s profit under the hybrid policy to be higher relative to the
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coupon policy, we must have the following (without loss of generality, we assume
θ = 1):

πH
o (γ∗ = β∗

h + α∗
h) > πC

o (β
∗) =⇒ 2β∗

h + (2− v + p)(v − p)

hp
(p− cp − β∗

h − α∗
h) + (1− v − p+ 2β∗

h

hp
)(v − p)(p− co) >

2β∗ + (2− v + p)(v − p)

hp
(p− cp − β∗) + (1− v − p+ 2β∗

hp
)(v − p)(p− co)

=⇒ β∗
h + α∗

h > p− cp − (v − p)(p− co). (A2.2)

In addition, the online retailer’s profit under the hybrid policy must be higher
relative to fixed fee policy, that is,

πH
o (γ∗ = β∗

h + α∗
h) > πF

o (α
∗) =⇒ 2β∗

h + (2− v + p)(v − p)

hp
(p− cp − β∗

h − α∗
h) + (1− v − p+ 2β∗

h

hp
)D(v − p)(p− co) >

(2− v + p)(v − p)

hp
(p− cp − α∗) + (1− v − p

hp
)(v − p)(p− co)

=⇒ βh∗+ α∗
h < p− cp − (v − p)(p− co). (A2.3)

Inequalities (A2.2) and (A2.3) cannot hold simultaneously, and so when cp > c̄p,

the hybrid policy cannot be optimal. The online retailer will opt either for the

fixed fee policy or for coupon policy based on Proposition 6.

We next show that when cp < c̄p (i.e., ¯̄β > hp−2(v−p)

2θ
), the hybrid policy can be

optimal only when c
s
= r + hp−2(v−p)

2
≤ cs < r + p − cp − (p − co)(v − p) = ¯̄cs.

When cp < c̄p, there are three possible cases:

1. cs ≤ θβ̌ + r. Based on Propositions 5 and 6, the online retailer’s profit is

maximized when β = β̌, and since cs ≤ θβ̌ + r, β = β̌ satisfies the offline

partner’s rationality constraint, so that the coupon policy is optimal.

2. θβ̌ + r < cs ≤ r + ᾱ. In this case, the online retailer can maximize her

profit under the fixed fee and coupon policies with parameters cs − r and
cs−r
θ

, respectively (i.e., to maximize her profit, the online retailer will pay the

minimum compensation value under either policy, and so the offline partner’s

rationality constraint is binding). Therefore, the online retailer determines
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the optimal decision by using the following optimization formulation:

max
βh,αh

πo(γ) = (p− co)d
H
o + (p− cp − αh − θβh)d

H
s

(r + αh + θβh − cs)d
H
s ≥ 0

αh + θβh = cs − r

αh, βh ≥ 0.

(A2.4)

As a result, it is enough to solve

max
βh

πo(βh) = (p− co)d
H
o + (p− cp − cs + r)dHs . (A2.5)

If β†
h is the solution of Equation (A2.5), then the solution of Equation (A2.4) is

(β∗
h, α

∗
h) = (β†

h, cs−r−β†
h). We will find β†

h based on the first-order condition.

The profit function πo(βh) in Equation (A2.5) can be written as

πo(βh) =


(p− co)(1− v−p+2θβh

hp
)(v − p) + (p− cp − cs + r)2θβh+(2−v+p)(v−p)

hp
, 0 ≤ βh ≤ hp−2(v−p)

2θ

(p− cp − cs + r)− (hp−2θβh)
2

4hp
(r + co − cp − cs),

hp−2(v−p)
2θ < βh ≤ hp

2θ

(p− cp − cs + r) βh ≥ hp

2θ

Thus, the first derivative of πo(βh) is given by:

∂πo

∂βh

=


2θ
hp

[
p− cp − cs + r − (p− co)(v − p)

]
, 0 ≤ βh < hp−2(v−p)

2θ

θ
hp
(hp − 2θβh)(r + co − cp − cs),

hp−2(v−p)

2θ
< βh ≤ hp

2θ

0 βh ≥ hp

2θ

Therefore, when cs > r+p−cp− (p−co)(v−p), we have β†
h = 0. In this case,

the optimal policy is the fixed fee policy. When cs < r+p−cp−(p−co)(v−p),

we have β†
h = hp−2(v−p)

2θ
. In this case, the optimal policy can be either the

coupon policy or the hybrid policy. More specifically, if cs ≥ r + hp−2(v−p)

2
,

then the hybrid policy with β∗
h = hp−2(v−p)

2θ
and α∗

h = cs − r − hp−2(v−p)

2θ
is
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optimal. Otherwise, the coupon policy with β∗ = cs−r
θ

is optimal.

3. cs > r + ᾱ. In this case, based on Proposition 6, none of the policies are

beneficial.

A2.5 Details for Comparative Statics

We let ∆πC−F
o denote the difference in the online retailer’s profit between the

coupon policy and the fixed fee policy with the same average compensation value

per pickup order (i.e., α = θβ). We first chracterize how ∆πF
o , ∆πC

o , and ∆πC−F
o

are changing with respect to cp and co. We have

∂∆πF
o

∂cp
= −(v − p)(2− v + p)

hp
< 0 and

∂∆πC
o

∂cp
= −

[(v − p)(2− v + p)

hp
+
(1− v + p)

hp

ˆ̂
β+

(v − p)

hp
β̂
]
< 0.

Thus, we conclude that the profitability of the fixed fee and coupon policies

decreases with cp. We also have

∂∆πC−F
o

∂cp
= −

[(1− v + p)

hp

+
(v − p)

hp

β̂
]
< 0.

Since ∂∆πC−F
o

∂cp
< 0, we conclude that the profitability of the coupon policy decreases

with cp faster than that of the fixed fee policy.

Similarly, for co, we have

∂∆πF
o

∂co
=

(v − p)2

hp

> 0 and
∂∆πC

o

∂co
=

(v − p)2

hp

+
(v − p)

hp

β̂ > 0.

Thus, we conclude that the profitability of the fixed fee and coupon policies in-

creases with co. We also have

∂∆πC−F
o

∂co
=

(v − p)

hp

β̂ > 0.

Since ∂∆πC−F
o

∂co
> 0, we conclude that the profitability of the coupon policy increases

with co faster than the fixed fee policy. Next, we show how ∆πC−F
o changes with
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respect to p.

∆πC−F
o =


2θβ(1−v+p)

hp
(p− cp − θβ + 2θβ(v−p)

hp
(co − cp − θβ)) p ≥ θβ + v − hp

2

(hp−2v+2p)(1−v+p)
2hp

(p− cp − θβ) + (θβ − (θβ)2

hp
− (hp−2(v−p))2

4hp
)(co − cp − θβ) p ≤ θβ + v − hp

2 , β ≤ hp

2θ

(hp−2(v−p))(1−v+p)
2hp

(p− cp − θβ) + (1− v−p
hp

)(v − p)(co − cp − θβ) p ≤ θβ + v − hp

2 , β >
hp

2θ

More specifically, ∂∆πC−F
o

∂p
can be characterized as follows:

• When p ≥ θβ + v − hp

2
, we have

∂∆πC−F
o

∂p
=

2θβ

hp

(1− v + 2p− co) ≥ 0.

• When p ≤ θβ + v − hp

2
, θβ ≤ hp

2
, we have

∂∆πC−F
o

∂p
=

1

2hp

[
(p−cp−θβ)(2(1−v+p)+(hp−2(v−p))+(hp−2(v−p))(1−v+p−2(co−cp−θβ))

]
.

When co ≤ cp + θβ, we can show that ∂∆πC−F
o

∂p
> 0. When co > cp + θβ, it is

enough to show that

2(p−cp−θβ)(1−v+p)+(p−cp−θβ)(hp−2(v−p))+(hp−2(v−p))(1−v+p) ≥ 2(co−cp−θβ)(hp−2(v−p))

so that

2(p− cp − θβ)(1− v + p)

(hp − 2(v − p))
+ (p− cp − θβ) + (1− v + p) ≥ 2(co − cp − θβ),

where the above inequality follows from p+ cp + θβ + 1− v + p ≥ 2co.

• When p ≤ θβ + v − hp

2
, θβ > hp

2
, we have

∂∆πC−F
o

∂p
=

1

hp

((1− v + p)(p− cp − θβ) +
(hp − 2(v − p))(p− cp − θβ)

2
+

(hp − 2(v − p))(1− v + p)

2
+ (co − cp − θβ)(2(v − p)− hp)).
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Since p + cp + θβ + 1 − v + p ≥ co, we can show that ∂∆πC−F
o

∂p
> 0 when

p ≤ θβ + v − hp

2
and θβ > hp

2
.

As a result, by increasing p, the coupon policy becomes more profitable for

the online retailer.

A2.6 Proofs of Statements from Section 3.5

Budget Constraint

In this subsection, we provide the details of our findings related to the model in

the presence of the budget constraint. We let K denote the total budget. There

exists K = max{0, cs − r}dFs so that when K < K, neither the fixed fee policy

nor the coupon policy are feasible. This follows from the fact that the minimum

compensation value under which the offline partner is not worse off under the

fixed fee policy is max{0, cs − r}, and the demand for in-store pickup orders is

dFs . As a result, the minimum budget under which the fixed fee policy is beneficial

is max{0, cs − r}dFs . Note that the minimum budget under the coupon policy is

higher than max{0, cs − r}dFs . Indeed, based on Proposition 4, the demand for in-

store pickup orders is always higher under the coupon policy than under the fixed

fee policy (i.e., dFs < dCs ). Thus, when K > K, the fixed fee policy is beneficial.

The maximum fixed fee value that the online retailer can pay to the offline partner

under the budget constraint is K
dFs
. However, based on Proposition 6, the fixed fee

policy will be beneficial only when α ∈ [α, c̄s − r]. Therefore, when K > K the

fixed fee policy with parameter α ∈ [α,max{c̄s − r, K
dFs
}] is beneficial.

We next identify conditions under which the coupon policy is beneficial (for the

model with a budget constraint). Recall that the offline partner is not worse off

under the coupon policy only when β > β = max{0, cs−r
θ

}. Therefore, the mini-

mum budget under which the coupon policy is beneficial is K̄ = max{0, cs−r
θ

}dCs ,
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which is characterized as

K̄ =



0, cs − r ≤ 0

2(cs−r)+(2−v+p)(v−p)
hp

(cs − r), 0 < cs − r ≤ hp−2(v−p)

2

(1− (hp−2(cs−r))2

4hp
)(cs − r) hp−2(v−p)

2
≤ cs − r ≤ hp

2

cs − r cs − r ≥ hp

2

As a result, the coupon policy is beneficial only when K ≥ K̄. In this case,

the maximum coupon value that the online retailer can pay is K
θdCs

. Based on

Proposition 6, the coupon policy is beneficial when β ∈ [β,
cs−r

θ
]. Therefore, when

K > K̄, the coupon policy is beneficial for any β ∈ [β,min{ cs−r

θ
, K
θdCs

}]. Since

K̄ > K, when K > K̄, both the fixed fee and the coupon policies are beneficial

and they become optimal strategies based on the results of Proposition 6.

Multiple Pickup Locations

First, we examine how the optimal policy changes when there is more than one

pickup location. To do so, we evaluate how the demand function varies when there

are n pickup locations under the fixed fee and coupon policies. We will then infer

the optimal policy.

The demand for the direct-delivery (dFo ) and in-store pickup (dFs ) options, when

there are n pickup locations under the fixed fee policy are given by (recall that

when n pickup locations are available, the maximum distance between a customer

and a pickup location is 1
2n

based on the circle model from Salop (1979)):

dFo =


(1− n(v−p)

hp
)(v − p), n < ⌈ hp

2(v−p)
⌉

hp

4n
, n ≥ ⌈ hp

2(v−p)
⌉

and dFs =


n(2−v+p)(v−p)

hp
, n < ⌈ hp

2(v−p)
⌉

(1− hp

4n
), n ≥ ⌈ hp

2(v−p)
⌉

The demand under the baseline policy is independent of n and remains to be

(v− p). We can now substitute the demand function into the online retailer’s and

offline partner’s profit functions under the fixed fee and baseline policies, and then,
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by comparing them, we can find the conditions under which the fixed fee policy is

beneficial.

As in the main model, the offline partner is better-off under the fixed fee policy

if and only if α ≥ α = max{cs − r, 0} (using the same argument as in the main

model). The online retailer is better-off under the fixed fee policy if and only if

α ≤ ᾱ, where ᾱ is given by:

ᾱ =


(p− cp)− v−p

2−v+p
(p− co), 1 ≤ n < ⌈ hp

2(v−p)
⌉

(p− cp)− 4n(v−p)−hp

4n−hp
(p− co), n ≥ ⌈ hp

2(v−p)
⌉

Thus, similar to Proposition 3, the fixed fee policy is beneficial ∀α ∈ [α, ᾱ].

Under the coupon policy, the demand functions for the direct-delivery and in-store

pickup options are given by:

dCo =



[
1− n(v−p+2θβ)

hp

]
(v − p), 0 ≤ β < max{0, hp−2n(v−p)

2nθ
}

(hp−2nθβ)2

4nhp
, max{0, hp−2n(v−p)

2nθ
} ≤ β < hp

2nθ

0 β ≥ hp

2nθ

dCs =


n
hp
(2θβ + (2− v + p)(v − p)), 0 ≤ β < max{0, hp−2n(v−p)

2nθ
}[

1− (hp−2nθβ)2

4nhp

]
, max{0, hp−2n(v−p)

2nθ
} ≤ β < hp

2nθ

1 β ≥ hp

2nθ

Thus, the online retailer’s profit under the coupon policy with n pickup locations
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is given by:

πC
o (β) =



[
1− n(v−p+2θβ)

hp

]
(v − p)(p− co)+ 0 ≤ β < max{0, hp−2n(v−p)

2nθ
}

n
hp

[
2θβ + (2− v + p)(v − p)

]
(p− cp − θβ)

(hp−2nθβ)2

4nhp
(p− co) + (1− (hp−2nθβ)2

4nhp
)(p− cp − θβ), max{hp−2n(v−p)

2nθ
, 0} ≤ β < hp

2nθ

(p− cp − θβ) β ≥ hp

2nθ

As in Proposition 5, we can show that πC
o (β) is unimodal so that there exist unique

β̄ and β such that the coupon policy is beneficial when β ≤ [β, β̄]. Consequently,

the optimal coupon value from the online retailer’s perspective is β∗ = max{cs −
r, β̌}. The expression of β̌ depends on the vale of n as follows:

(i) If n < ⌈ hp

2(v−p)
⌉, then we have

β̌ =



1
6nθ

[
2(n(co − cp) + hp)−

√
4n(co − cp)(n(co − cp)− hp) + hp(hp + 12n)

]
, cp ≤ c1

hp−2n(v−p)

2nθ
, c1 < cp ≤ c2

(p−cp)

2θ
− (v−p)(p−co)

2θ
− (2−v+p)(v−p)

4θ
, c2 < cp ≤ c3

0, cp > c3

Here c1 = co − hp

2n
+ 3(v−p)

2
− hp

2n(v−p)
, c2 = p− (v− p)(p− co − 2) + (v−p)2

2
− hp

n
, and

c3 = p− (v − p)(p− co + 1) + (v−p)2

2
.

(ii) If n ≥ ⌈ hp

2(v−p)
⌉, then we have

β̌ =


1

6nθ

[
2(n(co − cp) + hp)−

√
4n(co − cp)(n(co − cp)− hp) + hp(hp + 12n)

]
, cp ≤ co +

hp

4n
− 1

0 cp > co +
hp

4n
− 1

The derivation of the above expressions is similar to the derivation of the expres-

sions in the proof of Proposition 5.
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Therefore, when n < ⌈ hp

2(v−p)
⌉, all of our previous findings still hold. When n >

⌈ hp

2(v−p)
⌉ (i.e., the case of market saturation under the pickup partnership), the

coupon policy can be optimal only when the profit margin of in-store pickup orders

is higher than the profit margin of direct-delivery orders (i.e., cp + θβ < co).

Based on the above findings, we can now obtain the optimal number of pickup

locations under each policy. Suppose that α ∈ [α, ᾱ], the online retailer’s profit as

a function of n is given by:

πF
o =


(p− co)(1− n(v−p)

hp
)(v − p) + (p− cp − α)(2− v + p) (v−p)n

hp
, 1 ≤ n ≤ ⌈ hp

2(v−p)
⌉

hp

4n
(p− co) + (p− cp − α)(1− hp

4n
), n ≥ ⌈ hp

2(v−p)
⌉

We assume that n is a continuous variable, so that the derivative of πF
o can be

written as

∂πF
o

∂n
=


− (p−co)(v−p)2

hp
+ (p− cp − α) (2−v+p)(v−p)

hp
, 1 ≤ n < hp

2(v−p)

hp

4n2 (co − cp − α), n ≥ hp

2(v−p)

Since we assume that α ∈ [α, ᾱ], we have ∂πF
o

∂n
> 0 when n < hp

2(v−p)
. Thus, the

optimal n under the fixed fee policy is given by:

n∗ =

+∞ α ≤ co − cp

⌊ hp

2(v−p)
⌋ α > co − cp
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Under the coupon policy, we have:

∂πC
o

∂n
=



(v−p)
hp

[
(2− v + p)(p− cp − θβ)− (p− co)(v − p)

]
+ 1 ≤ n < ⌈ hp

2(θβ+v−p)
⌉

2θβ
hp

[
p− cp − θβ − (v − p)(p− co)

]
,

(h2
p−4n2θβ2)(co−cp−θβ)

4hpn2 , ⌈ hp

2(θβ+v−p)
⌉ ≤ n < ⌈ hp

2θβ
⌉

0 n ≥ ⌈ hp

2θβ
⌉

Therefore, the optimal n under the coupon policy is given by:

n∗ =


⌈ hp

2θβ
⌉ θβ ≤ co − cp

⌊ hp

2(θβ+v−p)
⌋ θβ > co − cp

By comparing n∗ under the fixed fee and coupon policies, we conclude that the

online retailer prefers a larger number of pickup locations under the fixed fee policy.

We next evaluate how the profitability of the coupon policy depends on n. We let

∆πC−F
o denote the difference between the online retailer’s profit under the fixed

fee and the coupon policies when α = θβ. We have

∆πC−F
o =



2nα
hp

[
p− cp − α− (v − p)(p− co)

]
, 1 ≤ n < ⌈ hp

2(α+v−p)
⌉

(hp−2nα)2

4nhp
(cp + α− co)− n(v−p)(1−v+p)

hp
(p− cp − α), ⌈ hp

2(α+v−p)
⌉ ≤ n < ⌈ hp

2(v−p)
⌉

+(1− n(v−p)
hp

)
[
p− cp − α− (v − p)(p− co)

]
(hp

4n
− (hp−2nα)2

4nhp
)(co − cp − α), ⌈ hp

2(v−p)
⌉ ≤ n < ⌈hp

2α
⌉

hp

4n
(co − cp − α) n ≥ ⌈hp

2α
⌉

When α = θβ ≤ co − cp, we have ∆oπ
C−F ≥ 0. We next compute the first-order
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derivative:

∂∆πC−F
o

∂n
=



2α
hp

[
p− cp − α− (v − p)(p− co)

]
1 ≤ n < ⌈ hp

2(α+v−p)
⌉

hp−2nα

nhp

[
α + (hp−2nα)

4n

]
(co − α− cp)+ ⌈ hp

2(α+v−p)
⌉ ≤ n < ⌈ hp

2(v−p)
⌉

(v−p)
hp

[
(v − p)(p− co)− (2− v + p)(p− cp − α)

]
[
(hp−2nα)2

4n2h2
p

+ α(hp−2nα)

nhp
− hp

4n2

]
(co − cp − α) ⌈ hp

2(v−p)
⌉ ≤ n < ⌈hp

2α
⌉

− h
4n2 (co − cp − α) n ≥ ⌈hp

2α
⌉

Therefore, when α = θβ ≤ co − cp, one can show that ∆πC−F
o is increasing in n

when the market is not saturated (i.e., 1 ≤ n < ⌈ hp

2(α+v−p)
⌉) and is decreasing for

n > ⌈ hp

2(α+v−p)
⌉. In addition, when n → ∞, we have ∆πC−F

o → 0.

When α = θβ > co − cp, since α ≤ β̄
θ
≤ ᾱ = p − cp − v−p

2−v+p
(p − co), we can

conclude that ∆πC−F
o is increasing in n when the market is not saturated (i.e.,

1 ≤ n < ⌈ hp

2(α+v−p)
⌉). When the market is saturated, the profitability of the

coupon policy over the fixed fee policy decreases with n, and there exists a unique

n ∈ [⌈ hp

2(α+v−p)
⌉, ⌈ hp

2(v−p)
⌉], so that ∆πC−F

o becomes negative. Then, for n > ⌈ hp

2(v−p)
⌉,

∆πC−F
o starts to increase with n again, and when n → ∞, we have ∆πC−F

o → 0.

Total Welfare

We find that when the objective is set to maximize the total welfare, the optimal

policy is either the baseline policy when cs is high or the coupon policy when cs is

low. To show this, we first prove that when cs > p+r−cp− v−p
2−v+p

[p−co+
2(v−p)

3
−1],

the total welfare under the baseline policy is higher than the total welfare under the

fixed fee policy. Since the values of total welfare under the fixed fee and baseline

policies are constant, this can be easily shown by comparing the total welfare under

both policies. We let TW F and TWB denote the total welfare under the fixed fee

and baseline policies, respectively. Then, TW F and TWB can be characterized as

follows:

TWB = (p− co)(v − p) +
(v − p)2

2
,
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TW F = (p−co)
[
1−(v − p)

hp

]
(v−p)+(p+r−cp−cs)

(v − p)(2− v + p)

hp

+
(v − p)2

2

[ 2

hp

+1−4(v − p)

3hp

]
.

By comparing TWB to TW F , we can show that when cs > p+ r− cp − v−p
2−v+p

(p−
co +

2(v−p)
3

− 1), we have TWB ≥ TW F .

We next show that when cs < p + r − cp − v−p
2−v+p

[p− co +
2(v−p)

3
− 1], the coupon

policy always improves the total welfare relative to the fixed fee policy. To do so,

we show that when β = 0, the total welfare is equal between the coupon and the

fixed fee policies, and then the total welfare under the coupon policy increases with

β. Since the total welfare under the fixed fee policy is constant, this will conclude

the argument. We let TWC(β) denote the total welfare under the coupon policy.

It is then enough to show that the first derivative of TWC(β) is positive. The

total welfare under the coupon policy is given by:

TWC(β) =



(p− co)
[
1− (v−p+2θβ)

hp

]
(v − p) + (p+ r − cp − cs)

[
2θβ+(2−v+p)(v−p)

hp

]
+

(θβ)2+θβ(v−p)(2−v+p)
hp

+ (v−p)2

2

[
2
hp

+ 1− 4(v−p)
3hp

]
, 0 ≤ β ≤ hp−2(v−p)

2θ

(v + r − cp − cs)− (hp−2θβ)2

4hp
(r + co − cp − cs)+[

(θβ)2

2 − (θβ)3

3hp
+ θβ(1− hp

4 ) + hp(
hp

24 − 1
4 )
]
,

hp−2(v−p)
2θ ≤ β ≤ hp

2θ

v + θβ + r − cs − cp − hp

4 , β ≥ hp

2θ

It is clear that when β = 0, TWC(β) = TW F . The first derivative of TWC(β) is

given by:

∂TWC(β)

∂β
=



θ
hp

[
2(p+ r − cp − cs)− 2(v − p)(p− co) + θβ + (v − p)(2− v + p)

]
, 0 ≤ β ≤ hp−2(v−p)

2θ

θ
[
(
hp−2θβ

hp
)(r + co − cp − cs) + θβ − (θβ)2

hp
+ 1− hp

4

]
,

hp−2(v−p)
2θ ≤ β ≤ hp

2θ

θ β ≥ hp

2θ

For the first part, we need to show that for β ∈ [0, hp−2(v−p)

2θ
], we have

θ

hp

[
2(p+ r − cp − cs)− 2(v − p)(p− co) + θβ + (v − p)(2− v + p)

]
≥ 0.
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Therefore, it is enough to show that

p+r−cp−cs−(v−p)(p−co)+
(v − p)(2− v + p)

2
≥ 0 =⇒ cs ≤ p+r−cp+

(v − p)(2− v + p)

2
−(v−p)(p−co).

Since we assume that cs ≤ p+ r − cp − v−p
2−v+p

[p− co +
2(v−p)

3
− 1], it is enough to

show that

p+r−cp+
(v − p)(2− v + p)

2
−(v−p)(p−co) ≥ p+r−cp−

v − p

2− v + p

[
p−co+

2(v − p)

3
−1

]
(A2.6)

or equivalently

v − p

2− v + p

[
1− 2(v − p)

3
− p+ co

]
≤ (v − p)(2− v + p)

2
− (v − p)(p− co).

Note that [1− 2(v−p)
3

− p+ co] > 0, v − p > 0, and 2− v + p > 1, so we have

v − p

2− v + p

[
1− 2(v − p)

3
− p+ co

]
≤ (v − p)

[
1− 2(v − p)

3
− p+ co

]
≤ (v − p)

[
1− v − p

2
− p+ co

]
=

(v − p)(2− v + p)

2
− (v − p)(p− co).

For the second part, we need to show that for β ∈ [hp−2(v−p)

2θ
, hp

2θ
], we have

θ
[
(
hp − 2θβ

hp

)(r + co − cp − cs) + θβ − (θβ)2

hp

+ 1− hp

4

]
≥ 0.

The above equation is a continuous concave quadratic function of β and, thus,

it is enough to show that this function is positive at both threshold values (i.e.,
hp−2(v−p)

2θ
and hp

2θ
). For β = hp

2θ
, we have

hp

2
− 1

hp

(
hp

2
)2 + 1− hp

4
= 1 > 0,
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and for β = hp−2(v−p)

2θ
, we have

θ
[2(v − p)

hp

(r+ co− cp− cs)+
hp

2
− (v− p)− 1

4hp

(h2
p+4(v− p)2− 4hp(v− p))

]
≥ 0

2(v − p)

hp

(r+co−cp−cs)−
(v − p)2

hp

+1 ≥ 0 =⇒ cs ≤ r+co−cp−
v − p

2
+

hp

2(v − p)
.

Since we assume cs ≤ p+ r− cp − v−p
2−v+p

(p− co +
2(v−p)

3
− 1), it is enough to show

that

r + p− cp +
v − p

2− v + p

[
1− 2(v − p)

3
− p+ co

]
≤ r + co − cp −

v − p

2
+

hp

2(v − p)
.

By using Inequality (A2.6), it is enough to show that

p+ r − cp +
(v − p)(2− v + p)

2
− (v − p)(p− co) ≤ r + co − cp −

v − p

2
+

hp

2(v − p)

=⇒ hp

2(v − p)
− v − p

2
− p+ co ≥ (v − p)

[
1− v − p

2
− p+ co

]
,

where the last inequality follows from v− p ≤ 1 and v−p
hp

≤ 1
2
, and hence concludes

the proof.
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4
Vertical Product Location

Effect on Sales: A Field

Experiment in Convenience

Stores

In the previous chapter, we introduced a stylized model and demonstrated

its efficacy in optimizing retail operations. Building upon this foundation,

subsequent chapters will delve into utilizing data to further enhance retail

efficiency. A significant challenge faced by most brick-and-mortar stores re-

volves around strategically placing assortments within limited space to at-

tract customers in today’s fiercely competitive marketplace. Addressing this

challenge necessitates an understanding of how product placement influences
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sales. However, deciphering this relationship is hindered by confounding vari-

ables within current store layouts, making it impossible to directly discern

the impact from observational data alone.

To overcome this hurdle, we propose innovative experiments that leverage

data to provide insights into one of the most pressing questions for brick-

and-mortar retailers. By designing experiments tailored to isolate the effects

of product placement, we aim to offer actionable solutions that empower

retailers to optimize their store layouts and drive sales in an increasingly

competitive landscape.

4.1 Introduction

It is a well-known fact that customers rely on shelf layout to infer product

quality (Valenzuela and Raghubir 2015, Atan et al. 2023), product popular-

ity (Valenzuela et al. 2013), and brand value (Parker and Koschmann 2018),

which collectively influence their product selection. As a result, retailers seek

effective shelf layout strategies to convert shoppers into buyers. At the same

time, manufacturers routinely negotiate with retailers for favorable place-

ments on retailers’ limited shelf space to enhance their products’ visibility

and increase their market share. In the present study, among the various

dimensions defining shelf layout (e.g., total space, vertical location, horizon-

tal location, number of facings), we focus on the vertical shelf location of

products.

Vertical location indicates the height of the position occupied by a specific

product (Chen et al. 2021) and has been identified as a critical dimension

of shelf layout because of its direct impact on product visibility. Vertical

location is divided into four zones: stretch-level, eye-level, touch-level, and

stoop-level. A shelf at the eye-level is located at (or near) an average adult’s

eye-level when standing upright in front of the shelf. A shelf at the touch-

level is located approximately at an adult’s waist height and is considered

the “eye-level” for kids. A shelf at the stretch-level is located above the eye-
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level and requires customers to stretch upward to reach products. Finally,

a shelf at the stoop-level is located below the touch-level and requires cus-

tomers to bend down to reach products (Ebster 2011). As implied by the

famous motto “eye-level is buy level,” retailers strategically place products

with higher profitability at the eye-level to boost sales (Ausick 2017), and

most retailers require an additional fee (called slotting fee) from manufactur-

ers that want to secure the prime eye-level location in retail stores (Alexander

2003, Rivlin 2016, Meyersohn 2022, Logie 2022). In the early 2000s, 85% of

retailers were charging slotting fees to manufacturers, and today, slotting

fees have become a standard in the retail industry (Chelstad 2018). As such,

the Center for Science and the Public Interest (CSPI) estimates that the

annual slotting fees paid by manufacturers to retailers amount to $50 billion

(Rivlin 2016), representing more than 16% of manufacturers’ new product

introduction costs (Touche et al. 1990, Sudhir and Rao 2006).

Although the practice of offering the eye-level location as a sales-enhancing

lever to manufacturers is prevalent and well established in practice, the way

that retailers reorganize their shelf layout to take advantage of the eye-level

effect is not as straightforward. As a motivation, consider the situation

where a retailer sells three products on a shelving unit using the following

planogram: product A is located on the stretch-level shelf, product B is lo-

cated on the eye-level shelf, and product C is located on the stoop-level shelf.

Suppose that the manufacturer of product A and the manufacturer of prod-

uct C both would like to secure the eye-level shelf. Which product should the

retailer move there? Once the retailer has decided on the eye-level, which

product should be displayed at the stretch-and stoop-levels, respectively?

Consider the two planogram changes displayed in Figure 4.1.1, where prod-

ucts A and C are moved to the eye-level in the left and right planograms,

respectively. In essence, these changes lead to two different planograms com-

pared with the initial planogram in the middle. Although moving product A

or C to the eye-level will likely increase the sales of these products, it is not
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Figure 4.1.1: Illustration of two potential new planograms derived from the
base planogram (shown in the middle).

clear what will happen to the sales of the other products that are moved to

the stretch- and stoop-levels. Will the sales increase for the eye-level shelf be

offset by the decrease in sales for products on other shelves? Does this inter-

play differ in the left and right planograms? The answers to these questions

are of practical importance to retailers when deciding which new planogram

to operationalize, and uncovering this requires a complete understanding of

the effect of simultaneously changing the vertical locations for multiple prod-

ucts. Surprisingly, we are not aware of an empirical study that examines (i)

the interplay among a set of products for which the vertical locations change

simultaneously and (ii) how this interplay influences the overall sales. This

leads to the following research question: How does simultaneously changing

vertical product locations of a set of products influence product-level sales and

overall sales?

The aforementioned interplay may not be the same for all products. Consider

products with different market shares, price points, or market concentration

levels. Does the eye-level effect increase or decrease if we place at the eye-level

shelf a product with a high market share compared to a product with a low

market share? Similarly, what happens to the eye-level effect of a product

on promotion compared to a product with no promotion? These questions

are practically important because, despite being placed in favorable shelf lo-

cations, 80–90% of products fail to generate the desired sales, according to

a report published by the U.S. Federal Trade Commission (Federal Trade

Commission 2001). Consistent with this estimate, many manufacturers re-
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port that some products fail to earn enough revenue to cover the slotting

fees (Alexander 2003). Overall, these anecdotal observations imply that the

eye-level effect—and more broadly the vertical location effect—is likely to be

heterogeneous across products. Particularly, if the increase in revenue from

displaying a product at the eye-level does not outweigh the overall revenue

loss (if any) across all products available in a planogram, the retailer would

be better off by not bringing that product to the eye-level or by charging

its manufacturer a higher slotting fee. The empirical literature has remained

silent on the heterogeneity of the vertical product location effect across all

products in a planogram. This brings us to our second research question:

What type of products benefit the most from being displayed at the eye-level?

To answer our research questions, we conducted a field experiment in col-

laboration with one of the largest retail chains operating convenience stores

(C-stores). Targeting 818 products displayed on the stretch-level, eye-level,

and stoop-level shelves, our field experiment was carried out across six con-

venience stores located in a North American metropolitan area for 20 weeks

in 2022. Designing a field experiment within the constraints of the real-world

retail realm while controlling for all sources of variation across observations

is naturally challenging (Gallino and Moreno 2018, Bianchi-Aguiar et al.

2021, Bandi et al. 2022). To address this challenge, we designed a novel

two-stage field experiment using a treatment-switch approach where we sys-

tematically switched the planograms over time at the treatment stores while

keeping them constant at the control stores. This design enabled us to use an

identification strategy to accurately estimate the causal effect of the vertical

location change on sales.

Our research provides several fundamental contributions, which can be sum-

marized as follows:

• We find that the effect of changing the vertical location of a product

depends on how the vertical locations of other products are reorganized as

a result of that change. For instance, we estimate that bringing a product
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from the stretch-level to the eye-level with a particular planogram change

increases sales by 9.2%. However, moving a product from the eye-level back

to the stretch-level with a different planogram change decreases sales by only

6.9%, as opposed to an expected decrease of 9.2%. The difference in these

two estimated effects (despite representing the same—yet reverse—vertical

location changes) arises because the vertical locations of the other products

differ between the two planograms. This highlights the interplay among

products when the vertical location changes simultaneously for multiple

products.

• When we average these asymmetric effects, we find strong evidence

for the vertical location effect and quantify it in our setting. Relative to

displaying a product at the stoop-level, displaying the same product at the

eye-level and stretch-level increases its sales on average by 13.8% and 5.3%,

respectively. Despite these vertical location effects on individual products,

when we consider all products across the three shelves, we find that the

overall sales remain the same among all planograms. This implies that the

vertical location effect on sales is likely to arise because of a pure substitution

effect among products. As such, the incremental sales for products displayed

at the eye-level just compensate for the sales loss for products displayed at

the stretch- and stoop-levels.

• Our results demonstrate that the vertical location effect is amplified

when we consider dollar sales. Relative to the stoop-level, the sales are,

on average, 31.2% and 14.6% higher when a product is placed at the eye-

and stretch-levels, respectively. When we consider the sales for all products

across the three shelves, unlike the volume sales, we find that the overall dol-

lar sales are significantly higher for certain planograms. This implies that,

for certain planograms, the incremental dollar sales for products displayed

at the eye-level can be higher than the dollar sales loss from the products

displayed at the other levels, hence resulting in increased revenue for re-
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tailers. Therefore, despite the potential pure substitution among products

displayed on different shelves, retailers can still increase the overall dollar

sales by selectively placing certain products at the eye-level. To identify

such products, we examine the heterogeneity of the vertical location effect

with respect to several product characteristics. We find that the vertical

location effect varies by product profile. In particular, products with high

prices, low discounts, that are displayed in a complete assortment, that are

in a category with a low market concentration, and that have a high num-

ber of substitute products will benefit more from being displayed at the

eye-level. This finding suggests that optimizing planograms while account-

ing for the heterogeneity in the vertical location effect across products can

boost profits.

• We conduct a counterfactual analysis and find that, compared with the

business-as-usual planograms, planograms that are optimized by considering

the average effect of the interplay among a set of products (arising from

simultaneously changing vertical locations) can increase the profit by 2.2%.

Given the fact that profit margins in the retail sector hover around single

low digits, an increase of 2.2% in profits shows the importance of considering

planogram optimization as a holistic process rather than just focusing on

the eye-level. In addition to considering the effect of the interplay, when

we also account for the heterogeneity in that effect across products, we

find that, compared with the business-as-usual planograms, the planogram

optimization can increase the profit by 3%, hence testifying to the economic

significance of our empirical findings.

• As a secondary contribution, our study develops a novel two-stage ex-

perimental design that is less invasive to retailers’ daily store operations,

reduces the time and budget required for a full factorial design by half, and

still accurately captures the interplay among a set of products displayed at

different vertical locations.
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4.2 Related Literature

The retail practice of offering eye-level location as a sales-enhancing lever

has received significant attention in academic research. Most of empirical re-

search on the vertical location effect has been conducted using controlled lab-

oratory experiments, with a few exceptions that use secondary data. These

experimental studies either use eye-tracking technology in a physical store

to examine the visual attention toward products placed on different shelves

(e.g., Chen et al. 2021) or are based on a virtual setting that aims to mimic a

physical retail store on a computer screen to understand customer intentions

toward vertical location placement (e.g., Chandon et al. 2009, Valenzuela

et al. 2013, Valenzuela and Raghubir 2015). Consistent with retail practice,

these studies demonstrate that products located on eye-level or touch-level

shelves gain more visual attention relative to those placed on stretch-level or

stoop-level shelves. The additional attention attributed to the eye-level and

touch-level positions has been shown (i) to influence brand evaluation (Chan-

don et al. 2009), price perception, and quality perception (Valenzuela and

Raghubir 2015), (ii) to attenuate as customers navigate through the store

(Chen et al. 2021) or when the store layouts are not informative regarding

product popularity (Valenzuela et al. 2013), and (iii) not to arise from a ten-

dency to look more at the center (Atalay et al. 2012). Consistent with the

experimental studies, empirical studies that leverage secondary data from

grocery retailers also report that sales increase as the location of a product

gets closer to the eye-level (Dreze et al. 1994, Van Nierop et al. 2008). One

exception is Frank and Massy (1970), who find an insignificant vertical loca-

tion effect on sales. However, the authors acknowledge that their results can

be because of the bias arising from the uncontrolled variables in their model.

In summary, the literature provides ample empirical evidence for the eye-

level effect. However, this stream of the literature examines the vertical

location effect on sales from the perspective of an individual product with-

out considering the lateral effect on the products located on other shelves.
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Thus, it ignores how (i) moving a product to an eye-level shelf influences

sales for products that are simultaneously moved to other shelves and (ii)

the rearrangement of vertical locations of several products on a shelving

unit influences the overall sales on that shelving unit. Furthermore, even

though the empirical literature demonstrates that the vertical location effect

can vary across product categories displayed at different shelving units (e.g.,

the eye-level effect for canned soup shelves vs. bath tissues shelves) (Dreze

et al. 1994), we are not aware of any paper that empirically examines the

heterogeneity in the vertical location effect across products within the same

shelving unit (e.g., the eye-level effect for Progresso chicken noodle soup vs.

Pacific chicken and wild rice soup, which are both displayed on the same

shelving unit).

Even when we turn to the literature relying on analytical models, we do not

find any clear suggestions for these aforementioned gaps. For instance, with

respect to the overall sales, some papers (e.g., Hansen et al. 2010, Gencosman

and Begen 2022) assume that the vertical location change simply results in

demand substitution among products, without affecting the overall sales,

whereas others (e.g., Smirnov and Huchzermeier 2019, Hübner et al. 2021)

assume that such a change can enhance the overall sales. Similarly, although

most analytical papers assume a homogeneous vertical location effect across

products within a shelving unit (e.g., Bianchi-Aguiar et al. 2016, Smirnov

and Huchzermeier 2019, Hübner et al. 2021, Gencosman and Begen 2022),

a few papers consider that the vertical location effect is heterogeneous (e.g.,

Van Nierop et al. 2008, Russell and Urban 2010). Collectively, these studies

motivate competing hypotheses regarding (i) the effect of the vertical location

change on the overall sales, and (ii) the heterogeneity in the vertical location

effect across products within a shelving unit, which are amenable to empirical

validation.

Overall, the present paper contributes to the literature by conducting the

first field experiment (i) to identify the effect of the vertical location change
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on individual product and overall sales, and (ii) to assess the heterogeneity

in the vertical location effect across products within a shelving unit.

4.3 Experiment Design

In this section, we present the design of our field experiment. We partnered

with a global convenience store chain that has an extensive presence in many

countries, encompassing thousands of stores worldwide. Our field experiment

was conducted in a metropolitan area in North America, where our partner

company has over 100 stores. These stores operate 24 hours a day, seven

days a week. Strategic store-level operational decisions (i.e., product assort-

ments, pricing, planogram design, and promotions) are centrally made by the

regional marketing and operations teams, whereas day-to-day operational de-

cisions (i.e., inventory and ordering) are made in a decentralized manner by

the store managers. The planograms are designed by using a simple approach

that relies on expert opinions (rather than using data-driven optimization

techniques). For instance, each shelving unit in a store is assigned to a spe-

cific product category, and products are typically arranged vertically based

on their size, with smaller items occupying the top shelves and larger items

occupying the bottom shelves. Based on the contractual agreements with

the suppliers, certain products need to be placed in specific store locations.

However, because of the requirements of our field experiments, we received

permission to temporarily deviate from these arrangements.

In collaboration with our retail partner, we designed a novel, two-stage ex-

periment using a treatment-switch approach where the planograms would

be systematically switched over time at the treatment stores, whereas they

would remain constant at the control stores. This design provides an identi-

fication strategy that can accurately estimate the causal effect of the vertical

location on the focal products’ sales, as well as on total sales. Similar de-

signs have been used in the context of airline pricing (Cohen et al. 2023) and

hotel revenue management (Lopez Mateos et al. 2022). We next discuss the
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various parameters of our design.

Shelving unit: The retailer carries over 1,500 stock-keeping units (SKUs)

across 35 product categories. The products are displayed on different shelving

units, including fridges, gondolas, checkout desks, and promotion stands,

which differ in height and number of vertical shelves. Our study focuses

on fridges for the following reasons: First, similar fridges are available in

other retail settings, such as supermarkets and grocers, hence enhancing

the generalizability of our study. Second, unlike other shelving units, such

as gondolas and checkout desks, whose heights range from 40′′ to 60′′, the

height of fridges is 85′′, allowing us to examine all vertical positions, including

the stretch-level. Third, products displayed on fridges at our retail partner

represent 38% of all product offerings and account for 45% of the overall

sales, hence allowing us to examine the vertical location effect across a broad

range of products. The product categories stored in fridges include juices,

water, energy drinks, sports drinks, carbonated soft drinks, beer, and wine.

Treated shelves: In C-stores, fridges typically consist of six shelves. As

illustrated in Figure 4.3.1, our intervention in the experiment focuses on

the first (from the top), second, and fifth shelves. The height from the

floor is 72′′ for the first shelf, 60′′ for the second shelf, and 24′′ for the fifth

shelf. These heights correspond to the commonly known stretch-level, eye-

level, and stoop-level in the literature (Chen et al. 2021). Thus, we name

the first shelf the stretch-level, the second shelf the eye-level, and the fifth

shelf the stoop-level throughout the paper.1 Focusing on these three shelves

makes a full-factorial field experiment (i.e., testing all possible combinations

of product locations) feasible,2 while capturing the essence of the vertical

location dimension of shelf layout (i.e., stretch-, eye-, and stoop-levels).

1We exclude the sixth shelf (i.e., the closest to the floor) from our analysis for examining
the stoop-level because the products placed on this shelf are large and heavy and, thus,
cannot be moved to other shelves.

2An experiment involving three shelves results in 3! = 6 different planograms, whereas
an experiment with six shelves would result in 6! = 720 different planograms, which is
clearly cost-prohibitive and infeasible.
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Figure 4.3.1: Illustration of a fridge and treated shelves.
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Experimental unit: In the experiment, we switch the planograms by mov-

ing all the products on a shelf to a different shelf. This allows us to keep the

number of facings and horizontal location of each product constant through-

out the experiment and attribute any effect on sales to the change in the

vertical location (i.e., our treatment). Consistent with this approach, we de-

fine the experiment unit as the set of products placed on a given shelf (i.e.,

hereafter referred to as a product set), rather than an individual product on a

shelf. This selection allows us to estimate the average vertical location effect

across all potential numbers of facings and horizontal locations (whereas the

vertical location effect estimated with an individual product being the treat-

ment unit would be conditional on the number of facings and the horizontal

location). This selection is also consistent with the retailer’s store execution

practices, given that managers often prefer to display products within the

same brand and/or the same category in adjacent locations.

Design and treatment: Our goal is to design an experiment within the

real-world retail realm while controlling for any source of variation across

observations. Changing the vertical location of product sets at the three

treated shelves would result in six different planograms, as illustrated in

Figure 4.3.2. The effect of a vertical location change can be identified if

a product set is observed across all planogram combinations. However, a

store can implement only one planogram for a fridge at a time. To overcome

this shortcoming, we consider several stores and observe a product set across

all planograms at the same time by launching different planograms across

several stores. This, however, may introduce between-store variation across

observations. To remove this variation, we also implement all combinations

of planograms within stores over time, by launching one planogram at a time

while ensuring that a planogram can be observed in at least one store at a

given time. Although this approach is robust to between-store variation, it

results in temporal variation within the treated stores. To disentangle the

temporal variation, we use a group of control stores where the planograms
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Figure 4.3.2: All potential planograms with three vertical locations.

remain unchanged throughout the experiment so the change in sales at those

stores is only subject to temporal factors.

Overall, a robust full-factorial design requires six treated stores (to imple-

ment each planogram in one store at a time) and six rounds of planogram

changes over time (to implement all planograms in each store over time).

Considering one control store for each treated store, the full-factorial design

implies that the research team would need to intervene with the daily store

operations across 12 stores for a long period of time. The retailer perceive this

design to be invasive to its daily store operations and expressed reluctance

to accommodate the full-factorial design.

To address the retailer’s request for a less invasive experiment while still

ensuring a robust design, we propose the following reduced design: Consider

that across all six planograms (in Figure 4.3.2) required for a full-factorial

design, a specific vertical location change for a product in a planogram can

be operationalized by replacing that planogram with one of the two potential

other planograms. For instance, product set B at the stretch-level in P3 can

be moved to the eye-level by switching the planogram either from P3 to P1 or

from P3 to P4. In this example, if one assumes that the effect of the vertical

location change remains the same for product set B between switching to

P1 and switching to P4, the effect of the vertical location change from the

stretch-level to eye-level for product set B in P3 can be estimated using only

one of the two planograms (i.e., P1 or P4). Note that having the same vertical

location change effect for product set B between switching from P3 to P1 and
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from P3 to P4 would be tantamount to having no change in sales for product

set B between P1 and P4. In other words, the assumption implies that when

the neighboring product sets are swapped (as is the case for product set B

between P1 and P4), the sales for the focal product set remain the same.

A similar argument can be developed for P1 and P5 for moving product

set C to the stoop-level, as well as P1 and P6 for moving product set A

to the stretch-level. We term this assumption the insensitivity assumption.

This captures the essence of our reduced experiment. In particular, if we

can demonstrate that the insensitivity assumption holds, then the effect of

the vertical location change can be estimated efficiently using only three

planograms. Thus, the full-factorial design with 12 stores over six rounds

can be reduced to an experiment with six stores (i.e., three treatment stores

and three control stores) over three rounds, translating into a 50% reduction

in time/budget and, hence, making the experiment less invasive and costly.

We formally test this assumption through another field experiment (which

we call the pilot experiment).

A natural question that arises is which three planograms (as shown in Fig-

ure 4.3.2) should be used in the reduced design. Among all planograms in

Figure 4.3.2, we let P1 represent the business-as-usual status quo at the

retailer. Hence, we label any product set that, before the experiment, is

located at the stretch-level as product set A, at the eye-level as product set

B, and at the stoop-level as product set C. For the reduced experiment, we

choose a combination of three planograms, which enable us to observe any

product set at all three vertical locations across the combination. There are

only two such combinations: P1-P2-P3 and P4-P5-P6. Between these two,

we choose the combination P1-P2-P3 for the following reason: the retailer

allows us to test a different planogram in a store for a duration of three

weeks. Thus, we switch planograms across the treatment stores every three

weeks. With these frequent changes, some customers may be confused with

new planograms and may not immediately find their desired products. As
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a result, the changes in sales we observe over time may commingle both the

vertical location effect and that from the potential confusion experienced by

customers. The combination P1-P2-P3 allows us to observe the business-as-

usual planogram (i.e., P1) both before and during the experiment (yet at

different times). Therefore, if customer confusion is likely, we can identify

it by comparing P1 before the experiment to P1 during the experiment and

account for this factor in our identification of the vertical location effect. We

use the combination P4-P5-P6 to test the insensitivity assumption.

In light of the above background, we design a two-stage experiment, as illus-

trated in Figure 4.3.3. In particular, we first observe the business-as-usual

planogram (i.e., P1) across all treatment and control stores before the exper-

iment between March 21, 2022, and April 16, 2022 (i.e., Round 0).3 We then

use the data from this pre-intervention round to conduct an A/A test be-

tween the treatment and control group stores (as detailed in Section 4.4). We

next conduct a pilot experiment between April 18, 2022, and May 28, 2022

(i.e., Round 1). In the pilot experiment, the business-as-usual planograms

are replaced with P4, P5, and P6 in each of the three treated stores. The

pilot experiment aims to validate the insensitivity assumption (as detailed

in Section 4.4). Finally, having established the validity of the reduced de-

sign, we conduct the main experiment between May 30, 2022, and August

6, 2022 (i.e., Rounds 2, 3, and 4). In the main experiment, we implement

the combination P1-P2-P3 within a store, as illustrated in Figure 4.3.3. We

ultimately draw our research insights using the main experiment (as detailed

in Section 4.5).

To summarize, our reduced design from Figure 4.3.3 has three features that

make our main experiment robust, conditional on the insensitivity assump-

tion. First, it enables us to observe a product set across all three vertical

3On March 14, 2022, we visited all six stores and ensured that all the fridges were
equally organized based on the P1 planogram. We used the first week in this phase as a
warm-up period to allow the store staff and the field team to familiarize themselves with
the process and with their responsibilities.
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Figure 4.3.3: Field experiment design.

locations at the treated stores. Second, it allows us to observe a product set

across all three vertical locations over time within the treated stores and,

thus, to control for the between-store variation across observations from the

treated stores. Third, by maintaining the business-as-usual planogram (i.e.,

P1) at the control stores throughout the experiment, we can control for tem-

poral variations across observations from the treated stores.

Treated and control stores: When selecting stores for the treatment and

control groups, we considered two factors. First, because our objective is to

compare different planograms between the two groups, we identified stores

that carry the same assortment of products in refrigerated shelving units.

Second, the retailer has both traditional stand-alone C-stores and C-stores

located in gas stations. Because the customers of these two types of stores

are likely to differ in terms of shopping behavior, we limit our study to the

traditional stand-alone C-stores. These two criteria resulted in 20 stores

available for our study. Among these, we randomly selected six stores and

randomly assigned three of them to the treatment group and three of them
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to the control group.

Implementation and compliance: To deploy our field experiment, we

collaborate with the marketing managers and store staff (i.e., store man-

agers and cashiers). In addition, we form a field team of six trained assis-

tants, each assigned to one of the six stores throughout the experiment. At

the beginning of the study, before Round 0, the field team visited all six

stores to ensure that the business-as-usual planograms (i.e., P1) are properly

respected. During the pilot and main experiments, all planogram imple-

mentations at the treated stores were scheduled on Sundays and handled

by the field team alongside the store staff. We ensured compliance in two

ways. First, the field team visited each store on a daily basis to monitor each

planogram, take planogram pictures, ensure that the planograms are orga-

nized as planned, and record the inventory, as well as the number of facings

per product on each treated shelf. Second, the marketing managers used the

same assortment, pricing, and marketing decisions (e.g., promotions, adver-

tising campaigns, etc.) for products in the fridges between the treated and

control stores throughout our field experiment.

Data collection, unit of analysis, and variable definitions: We ob-

tained transactional data that included the number of items sold in each

transaction, the product price, and the promotional discounts. If we do

not observe any sales for a particular product on a specific day, we use the

planogram pictures to identify whether this is because of a stockout or ab-

sence of demand. Thus, our data also include stockout occurrences.

We define the unit of analysis as a triplet of product set-store-day (denoted

by i, j, and t, respectively) and aggregate the transactions over these triplets

to obtain sales figures. We operationalize two outcome variables to measure

sales: sales quantity and sales revenue. Because the number of facings on

a shelf can vary from one product set to another due to the physical size

of the products, we normalize our outcome variables by dividing them by

the number of facings in a product set. To this end, we operationalize sales
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quantity, Quantityijt, as the natural logarithm of the average number of

items sold per facing in product set i at store j on day t and sales revenue,

Revenueijt, as the natural logarithm of the average dollar sales per facing in

product set i at store j on day t.4

We use several control variables in our analyses. At the product level, we

control for the price of all the products in set i on day t (Priceit) by using

the average price of all unique SKUs included in that set. We also control for

promotional activities in a fridge using two variables: SetPromotionit repre-

sents the average monetary value of discounts across all unique SKUs present

in product set i on day t, whereas FridgePromotionit represents the average

monetary discount value across all unique SKUs displayed on all other shelves

in the same fridge on day t (excluding products in product set i). We also

control for stockouts in a fridge using two variables: SetStockoutit represents

the number of SKUs that are out of stock in product set i on day t, while

FrdigeStockoutit represents the number of SKUs that are out of stock on

all other shelves in the same fridge on day t (excluding products in product

set i). The variable NumFacesit represents the number of faces in product

set i on day t. We also control for differences in product categories using indi-

cator variables representing the category where the products in product set i

belong to (ProdCati). At the store level, we control for potential unobserved

differences across stores with fixed effects using an indicator variable repre-

senting store j that product set i belongs to (Storej). Finally, we control for

seasonality using three fixed effects: Holidayt represents whether day t is a

national holiday, Weekendt represents whether day t is a weekend day, and

DoWt represents the day of the week.

4To avoid non-normality because of having a distribution with a long-tail, we take the
natural logarithm of a variable when needed, as is commonly done.
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4.4 A/A Test and Pilot Experiment

In this section, we conduct the A/A test to assess whether the control group

would provide an accurate baseline for the treatment group and examine the

insensitivity assumption in our setting.

4.4.1 A/A Test

In our study, the treatment and control groups include stores with the same

assortment, subject to the same set of operational decisions (i.e., pricing,

inventory, and promotions) under a centralized management style, located in

the same metropolitan area, serving similar customers, and, thus, being ex-

posed to comparable geographical and macroeconomic trends. Nonetheless,

it is likely that some unobserved factors (e.g., store employee competence,

competing businesses in the same neighborhood, etc.) may cause the ran-

domly selected treatment and control stores to be inherently different. If

such factors result in treatment and control groups responding to the same

intervention differently, then the estimated effects could also be attributed

to the unobserved inherent differences between the two groups. We investi-

gate this matter by conducting an A/A test using pre-intervention data (i.e.,

Round 0) from both the control and treatment group stores.

The data from the A/A test include all the observations in Round 0. Despite

all the collaboration efforts with the marketing team to prevent stockouts

in the targeted fridges across the six stores, stockouts are alas inevitable

(e.g., unpredicted demand spikes, unexpected delays in replenishment lead

times caused by manufacturers or third-party logistics providers). As a rule

of thumb, we exclude all daily observations from a fridge if more than 30%

of the products in that fridge (including those placed on the other shelves

not considered in our study) are out of stock. We retain 6,245 observations

for the A/A test after removing around 10% of all observations because

of stockouts. By conducting a t-test, we can demonstrate that the removed

observations are statistically balanced between the control and treated stores
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(t = 12.56, p − val = 0.13). Although we follow the same data exclusion

rule across all our analyses throughout the present paper, our results are

robust to the inclusion of observations that are removed because of stockouts.

Table 4.4.1 provides the descriptive statistics for all continuous variables for

the treatment and control group stores. The correlation matrices for all

experiments are reported in Appendix A3.1.

Table 4.4.1: Descriptive statistics for the data sample from our A/A test.

Treated stores Control stores
Mean SD Mean SD

1. Quantity 0.28 0.33 0.53 0.38
2. Revenue 0.64 0.69 1.21 0.77
3. Price 5.53 4.09 5.28 3.98
4. SetPromotion 0.69 0.93 0.70 0.87
5. FridgePromotion 0.51 0.60 0.62 0.73
6. SetStockout 0.46 0.74 0.80 1.07
7. FridgeStockout 0.53 0.43 0.89 0.67
8. NumFaces 5.83 1.51 5.83 1.52
Number of product sets 146 109
Sample Size 6,245

As detailed in Section 4.5, we identify the vertical location change effect as

the change in sales trend when a product set is moved from one vertical

location to another. Here, the control group can serve as a baseline for the

treatment group if the sales trend for a product set is the same between both

groups when using the same planogram. This is the main essence of our A/A

test.

Our dataset represents a panel containing daily observations from 255 prod-

uct sets over 27 days. Thus, we use a longitudinal panel data regression to

compare the trend in outcome variables between the treatment and control

groups when operating under the same planogram setting. In this and all

subsequent analyses, we use a fixed-effect model because the Hausman test

suggests that the random effect formulation is not consistent. We specify our
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model as follows:

Yijt =β0 + β1Timet × Treatmentj + β2Timet + TV Controlsijt + Seasonalityt + ui + ϵijt,

(4.4.1)

where Yijt can be either Quantityijt or Revenueijt, Timet counts the number

of days between the first day of Round 0 and day t, Treatmentj represents

whether storej is a treated store (i.e., Treatmentj = 1) or a control store

(i.e., Treatmentj = 0), TV Controlsijt represents all time-variant control

variables, including Price, SetPromotion, FridgePromotion, SetStockout,

FridgeStockout, and NumFaces, Seasonalityt represents the three season-

ality fixed effects, ui represents the fixed effect for product set i, and ϵijt is the

random error term. We account for heteroscedasticity (in Equation (4.4.1)

and in all other estimation processes throughout our analyses) by using ro-

bust standard errors clustered at the product set level.

Table 4.4.2: Estimation results for our A/A test.

(1) (2) (3) (4)
Quantity Quantity Revenue Revenue

Time× Treatment 0.0000 -0.0005 0.0020 0.0014
(0.0014) (0.0014) (0.0026) (0.0026)

Time 0.0056∗∗∗ 0.0065∗∗∗ 0.0098∗∗∗ 0.0115∗∗∗

(0.0012) (0.0012) (0.0021) (0.0022)

TV Controls No Yes No Yes
Sample size 6,245 6,245 6,245 6,245
Adj. R2 0.081 0.105 0.078 0.086

Notes: Standard errors are clustered at the product set level and
reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In this specification, a statistically significant β1 would indicate that the trend

in sales is different between the treatment and control groups when using the

same planogram, hence failing the A/A test. Table 4.4.2 demonstrates the

results from estimating Equation (4.4.1) for both outcome variables with

and without control variables. In all models, β1 is statistically nonsignificant

172



(a) Quantity (b) Revenue

Figure 4.4.1: Average pre-intervention sales across treatment and control
groups.

(p > 0.428). Figure 4.4.1 plots the average Quantity and Revenue for both

groups during Round 0. Collectively, these results support that the trend in

sales between the two groups remains the same when operating under the

same planogram, establishing that the control group is comparable to the

treatment group.

4.4.2 Pilot Experiment

We next conduct our pilot experiment to justify the choice of a reduced design

over a full-factorial design for our main field experiment by empirically testing

the validity of the insensitivity assumption. As discussed, this assumption

implies that the effect estimated for a vertical location is not sensitive to

swapping the product sets in the two other vertical locations.

We examine the insensitivity assumption using both pre-intervention data

(i.e., Round 0) and data from the pilot experiment (i.e., Round 1). As illus-

trated in Figure 4.3.3, relative to Round 0, in the pilot experiment, we keep

the vertical location of one product set at each treated store the same and

swap the product sets on the other two shelves. For example, in Treatment

Store 1, compared with Round 0, we keep the product sets on the eye-level
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shelves (labeled as B) fixed and swap the product sets on the stretch-level

and stoop-level shelves (labeled as A and C). The vertical locations of all

product sets in the control stores remain the same in both rounds.

We use only the data from the product sets whose vertical locations are kept

constant between Rounds 0 and 1 (i.e., product set B in Treatment Store 1,

product set C in Treatment Store 2, product set A in Treatment Store 3, and

all product sets in the control stores). After removing 6% of observations

based on our stockout filtering rule, we retain 9,822 observations for our

analysis. Table 4.4.3 reports the descriptive statistics for the data used in

our analysis.

Table 4.4.3: Descriptive statistics for the data sample from our pilot
experiment.

Round 0 Round 1
Treated Control Treated Control
stores stores stores stores

Mean SD Mean SD Mean SD Mean SD
1. Quantity 0.29 0.34 0.53 0.38 0.40 0.37 0.55 0.39
2. Revenue 0.66 0.70 1.21 0.77 0.92 0.81 1.26 0.78
3. Price 5.52 4.27 5.28 3.98 5.88 4.22 5.71 3.99
4. SetPromotion 0.69 1.02 0.70 0.87 1.36 1.33 1.46 1.27
5. FridgePromotion 0.50 0.56 0.62 0.73 1.07 1.00 1.21 1.03
6. SetStockout 0.49 0.74 0.80 1.07 0.68 0.89 1.03 0.99
7. FridgeStockout 0.53 0.43 0.89 0.67 0.81 0.55 1.10 0.61
8. NumFaces 5.93 1.42 5.83 1.53 5.87 1.50 5.54 1.55
Number of product sets 49 109 48 123
Sample Size 9,822

To test the insensitivity assumption, we measure the change in sales in

Round 1 (relative to Round 0) for product sets whose vertical locations are

kept fixed in both rounds at the treated stores relative to the control stores.

If the insensitivity assumption holds, then we would expect that a change

in sales for those targeted shelves at the treated stores (where the product

sets in the other two shelves are swapped) would not be statistically differ-

ent from that at the control stores (where the product sets in the other two
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shelves are not swapped).

More formally, we use a difference-in-differences (DiD) model. The DiD

model estimates double differences between treatment and control groups

in two steps: (i) the difference in the outcome variables across time within

each group, and (ii) the difference between the two group-specific differences

estimated in the first step. This method makes our identification robust

to both the omitted variable bias that may arise from any time-invariant

unobserved heterogeneity and trend-specific differences between treatment

and control groups (Card and Krueger 1994, Cui et al. 2020, Arslan et al.

2022).

The product sets whose vertical locations are kept constant in both rounds

are at the eye-level in Treatment Store 1, at the stoop-level in Treatment

Store 2, and at the stretch-level in Treatment Store 3. We capture this vari-

ation by estimating vertical location-specific DiD estimators. More specif-

ically, to test the insensitivity assumption in each vertical location, we es-

timate a triple difference (DDD) model. We specify the fixed-effect DDD

model as follows:

Yijt =β0 + β1Postd × Treatmentj + β2Postt + β3V erLoci × Postt × Treatmentj

+ V erLoci × Postt + TV Controlsijt + Seasonalityt + ui + ϵijt,

(4.4.2)

where Postt is a binary variable that equals one for time periods in Round 1

and 0 for time periods in Round 0, and V erLoci is an indicator variable

representing whether the vertical location of product set i is kept fixed in

both rounds at the stretch-level, eye-level, or stoop-level. In our estimation,

we set the stoop-level to be the reference level for the variable V erLoci. The

coefficients of interest to test the insensitivity assumption are β1 and β3.

The fundamental assumption of the DiD model is the parallel trends as-

sumption, which implies that, in the absence of the treatment, the trend in

the outcome variable should be the same between the treatment and control

175



groups. In our study, Round 0 corresponds to the period before the inter-

vention. As we have estimated in our A/A test (see Table 4.4.2), the trend

in sales is not statistically different between the treatment and control group

stores during the preintervention period. Thus, this provides support for the

parallel trends assumption for our data.

Table 4.4.4 reports the results from the estimation of Equation (4.4.2) for

Quantity and Revenue with and without control variables. Across all esti-

mation results, (i) the DiD estimator for the stoop-level (β = 0.149, p > 0.05)

is not statistically significant and (ii) the DiD estimators for the stretch-level

(β = −0.0873, p > 0.05) and the eye-level (β = −0.144, p > 0.05) are not

significantly different from the DiD estimator for the stoop-level. Further-

more, we compare the DiD estimators for the stretch-level and the eye-level

using a Wald test, finding that they are not statistically different from each

other (F = 1.46, p = 0.24). These results establish that the sales of a prod-

uct set at a vertical location are not sensitive to swapping the product sets

in the other two vertical locations. This provides evidence that the insensi-

tivity assumption is satisfied in our setting. In Appendix A3.2, we conduct

an additional robustness test, finding that the insensitivity assumption for a

vertical location is also robust to the type of product set that is kept at that

location.

In summary, the A/A test and pilot experiment establish that we can conduct

our main field experiment with the selected treatment and control group

stores using our proposed reduced design to efficiently estimate the vertical

location effect. We next present our main experiment.

4.5 Main Experiment: Measuring the Verti-

cal Location Effect

In this section, we first discuss the data and implementation of our main ex-

periment, examining whether customer confusion because of frequent planogram

changes exists. We then estimate the vertical location effect for a product set
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Table 4.4.4: Estimation results for our pilot experiment.

(1) (2) (3) (4)
Quantity Quantity Revenue Revenue

Post× Treatment 0.149 0.146 0.520 0.512
(0.0835) (0.0844) (0.270) (0.270)

V erLoc(StretchLevel)× Post× -0.0873 -0.113 -0.413 -0.463
Treatment (0.0907) (0.0916) (0.278) (0.279)

V erLoc(EyeLevel)× Post× -0.144 -0.123 -0.509 -0.487
Treatment (0.100) (0.100) (0.294) (0.295)

TV Controls No Yes No Yes
Sample size 9,822 9,822 9,822 9,822
Adj. R2 0.069 0.092 0.072 0.087

Standard errors clustered at the product set-level are presented in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

and for the overall sales. Next, we explore the heterogeneity of the vertical

location effect with respect to several product characteristics.

4.5.1 Data and Implementation

We conducted our main experiment using the reduced design. In particular,

after the pilot experiment (i.e., Round 1), we rotated the planograms in the

treated stores in three rounds, as illustrated in Figure 4.3.3, while keeping

the vertical locations of all product sets in the control stores unchanged.

The data for our main experiment consist of the observations in Round 0

(i.e., pre-intervention period), Round 2, Round 3, and Round 4 (i.e., post-

intervention period) from all six stores. After removing 9.02% of observations

based on the stockout filtering rule, the final dataset contains 20,291 observa-

tions. The descriptive statistics for this dataset are provided in Table 4.5.1.

4.5.2 Customer Confusion

As discussed in Section 4.3, because of the frequent planogram changes, some

customers may not immediately adapt to the new planogram and, subse-

quently, decide not to purchase anything or to purchase a substitute prod-
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Table 4.5.1: Descriptive statistics for the data sample from our main
experiment.

Round 2 Round 3 Round 4
Treatment Control Treatment Control Treatment Control

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
1. Quantity 0.42 0.39 0.59 0.40 0.53 0.40 0.67 0.39 0.50 0.41 0.63 0.41
2. Revenue 0.97 0.78 1.38 0.82 1.24 0.83 1.52 0.84 1.18 0.81 1.48 0.84
3. Price 6.04 4.16 5.86 4.00 5.97 4.13 5.43 3.68 6.25 4.30 5.94 4.06
4. SetPromotion 1.36 1.28 1.46 1.21 1.37 1.27 1.48 1.25 1.28 1.23 1.37 1.21
5. FridgePromotion 1.15 1.04 1.23 1.00 1.16 1.06 1.35 1.08 1.09 1.06 1.24 1.06
6. SetStockout 0.74 0.92 0.76 0.99 0.75 0.98 0.64 1.05 0.87 1.01 0.63 0.95
7. FridgeStockout 0.82 0.63 0.82 0.75 0.95 0.71 0.79 0.70 1.08 0.74 0.80 0.75
8. NumFaces 5.64 1.68 5.77 1.76 5.64 1.66 6.12 1.82 5.53 1.73 5.82 1.64
Product sets 142 119 137 108 139 121
Sample Size 4,649 3,786 5,611

Notes. Descriptive statistics for Round 0 are provided in Table 1.

uct. After they become familiar with the new planogram and locate their

preferred product, they may reinstate their original purchasing behavior. In

this case, the initial change in purchasing behavior (i.e., not purchasing any-

thing or purchasing a substitute product) arises from not adapting to the new

planogram (i.e., customer confusion) and cannot be attributed to the verti-

cal location change. Hence, any change in sales in our main experiment may

commingle both the vertical location effect and potential customer confusion

effect.

To identify whether the aforementioned customer confusion is present in our

main experiment, we first compare the sales under the business-as-usual

planogram (i.e., P1) during the preintervention period (i.e., Round 0) to

the sales when the same planogram is reinstated during the postintervention

period (i.e., Round 2 for Treatment Store 1, Round 4 for Treatment Store

2, and Round 3 for Treatment Store 3). If the sales under P1 are signifi-

cantly different between these two periods, the difference can be attributed

to customer confusion because the vertical locations of all products remain

the same. Our identification relies on comparing the change in sales for the

product sets in the postintervention period (relative to the preintervention

period) at the treated stores relative to the control stores. To do so, we

modify the traditional DiD model, as follows:

• Unlike the traditional DiD setting where there is a single intervention,
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our main experiment consists of three interventions (i.e., Rounds 2-

3-4). We capture these interventions by using three binary variables:

(i) Intervention1
t is equal to 1 for time periods in Round 2 and 0

otherwise, (ii) Intervention2
t is equal to 1 for time periods in Round 3

and 0 otherwise, and (iii) Intervention3
t is equal to 1 for time periods

in Round 4 and 0 otherwise.

• Another difference is that the treated stores in our experiment are

exposed to different treatments (i.e., planograms) across all three in-

terventions (as opposed to the same treatment). For instance, during

the first intervention in Round 2, the planograms applied to Treatment

Stores 1, 2, and 3 are P1, P2 and P3, respectively. We capture the

difference in treatment during the intervention using the categorical

variable Treatedlj, where l ∈ {1, 2, 3}, which indicates whether store j

is Treatment Store 1 (l = 1), Treatment Store 2 (l = 2), or Treatment

Store 3 (l = 3). We set the control group as the reference group.

Following these modifications, we specify our fixed-effect DiD model as fol-

lows:

Yijt =β0 +
∑

k∈{1,2,3}

β1kIntervention
k
t +

∑
l∈{1,2,3}

∑
k∈{1,2,3}

β2lkTreated
l
t × Interventionk

t

+ TV Controlsijt + Seasonalityt + ui + ϵijt.

(4.5.1)

We present the results from the estimation of Equation (4.5.1) in Table A3.6,

which is relegated to the appendix. In Table 4.5.2, we report the summary

of our estimation results. First, the change in product set sales between

preintervention P1 and postintervention P1 is not statistically significant

(β = 0.035, p = 0.171). This implies that there is no statistical evidence for

customer confusion in our main experiment. Thus, any significant change in

product set sales in our experiment when the planogram is switched from

P1 to P2 or from P1 to P3 can be attributed solely to the vertical location
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effect. Second, product set sales significantly change when the planogram is

switched from P1 to P2 (β = 0.043 p = 0.09) and from P1 to P3 (β = 0.057

p = 0.02). This provides evidence for the presence of the vertical location

effect. Despite this evidence, it is still not clear how much the relative sales

gain/loss is when a product is placed at a specific vertical location compared

with other vertical locations. We next rigorously estimate these gains and

losses.

Table 4.5.2: Estimation results to examine customer confusion.

Planogram change Coefficient Std. err. p-value
From To
P1 P1 0.0350 0.0255 0.172
P1 P2 0.0430 0.0257 0.094
P1 P3 0.0511 0.0256 0.047
Sample size 20,291

4.5.3 Vertical Location Effect

To identify the vertical location effect, we extend the DiD model in Equa-

tion (4.5.1) to a triple difference model. We do so because, within a store,

launching a new planogram implies different interventions for our experimen-

tal units (i.e., product sets). For instance, in Treatment Store 1, launching P2

in Round 3 implies that product set A is moved from the stretch-level to eye-

level, product set B is moved from the eye-level to stoop-level, and product

set C is moved from the stoop-level to stretch-level. To capture this prod-

uct set–specific variation in interventions, we define the categorical variable

ProductSetmi , which indicates whether product set i is labeled as A (m = A)

or B (m = B) in our study. We set product set C as the reference group.

We interact ProductSetmi with the DiD estimators in Equation (4.5.1) (i.e.,

Treated × Intervention) to identify product set–specific treatment effects,

making our model a triple difference model, as follows:
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Yijt =β0 +
∑

k∈{1,2,3}

β1kIntervention
k
t +

∑
l∈{1,2,3}

∑
k∈{1,2,3}

β2lkTreated
l
t × Interventionk

t

+
∑

m∈{A,B}

∑
k∈{1,2,3}

β3mkProductSetmi × Interventionk
t

+
∑

m∈{A,B}

∑
l∈{1,2,3}

∑
k∈{1,2,3}

β4mlkProductSetmi × Treatedlt × Interventionk
t

+ TV Controlsijt + Seasonalityt + ui + ϵijt.

(4.5.2)

To provide intuition, let α1, α2, and α3 denote the coefficients of Treated2 ×
Intervention1, ProductSetA×Treated2×Intervention1, and ProductSetB×
Treated2×Intervention1, respectively. These coefficients capture the change

in sales at Treatment Store 2 between Round 2 and Round 0. In particular,

(i) α1 represents the effect of bringing product set C from the stoop-level

to stretch-level on product set C sales, (ii) α1 + α2 represents the effect of

bringing the product set A from the stretch-level to eye-level on product set

A sales, and (iii) α1 + α3 represents the effect of bringing the product set B

from the eye-level to stoop-level on product set B sales.

We present the results from estimating the model in Equation (4.5.2) in

Table A3.7 in the appendix. We summarize the key results in Table 4.5.3 and

draw several observations from these results. First, we find that the vertical

location change significantly affects the quantity sold for a product set, yet

this effect is not necessarily symmetric. For instance, moving a product set

from the stretch-level to the eye-level increases the sales by 9.2% (β = 0.092,

p = 0.012), whereas the opposite move (i.e., from the eye-level to stretch-

level) decreases the sales by only 6.9% (β = −0.069, p = 0.089). Similarly,

moving a product set from the eye-level to the stoop-level decreases the sales

by 10% (β = −0.100, p = 0.009), whereas the opposite move (i.e., from the

stoop-level to eye-level) increases the sales by 19.6% (β = 0.196, p = 0.000).

Finally, moving a product set from the stoop-level to stretch-level increases
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Table 4.5.3: Estimation results for the vertical location effect.

Planogram change Vertical location change Quantity Revenue
From To From To

P1 P2

Stretch-level Eye-level
0.092∗ 0.212∗∗

(0.036) (0.060)

Eye-level Stoop-level
-0.100∗∗ -0.165+

(0.038) (0.088)

Stoop-level Stretch-level
0.128∗∗ 0.357∗∗

(0.049) (0.116)

P1 P3

Stretch-level Stoop-level
0.025 0.085
(0.036) (0.058)

Eye-level Stretch-level
-0.069+ -0.111
(0.041) (0.094)

Stoop-level Eye-level
0.196∗∗∗ 0.583∗∗∗

(0.047) (0.126)

Sample size 20,291

Standard errors are clustered at the product set-level and presented in
parentheses. +p < 0.10, ∗p < 0.05,∗∗ p < 0.01, ∗∗∗p < 0.001

the sales by 12.8% (β = 0.128, p = 0.009), whereas the opposite move (i.e.,

from the stretch-level to stoop-level) does not change the sales (β = 0.025,

p > 0.1). These asymmetric effects arise because the reorganization of the

vertical locations of the other product sets when moving a product set from

one shelf to another is different than that when moving a product set in the

opposite direction. For instance, when moving a product set from the stretch-

level to eye-level (while changing the planogram from P1 to P2), the product

set in the stoop-level is moved to the stretch-level. However, when moving a

product set from the eye-level to stretch-level (while changing the planogram

from P1 to P3), the product set in the stoop-level is moved to the eye-level.

This indicates that the effect of the vertical location change depends on

how other products are reorganized as a result of that change, signifying the

importance of the interplay among products whose vertical locations change

simultaneously. Using the estimated coefficients in Table 4.5.3, we obtain the

average vertical location effects for Quantity and illustrate the normalized
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results in Figure 4.5.1.a. On average, we find that displaying the products

at the stoop-level results in the lowest sales. Compared with the stoop-level,

the sales are 5.3% higher when the products are placed at the stretch-level

and 13.8% higher when they are placed at the eye-level.

(a) Quantity (b) Revenue

Figure 4.5.1: Normalized vertical location effect on sales.
Note: All the errors bars are at 95% confidence intervals.

Second, as can be inferred from Table 4.5.3, the vertical location change

effect is amplified when considering revenue sales. Figure 4.5.1.b illustrates

the corresponding normalized vertical location effects for Revenue. Here,

compared with the stoop-level, on average, the dollar sales are 14.6% higher

when the products are placed at the stretch-level and 31.2% higher when

products are placed at the eye-level. This suggests that the vertical location

effect in dollar sales likely depends on both the change in demand and product

prices.

Overall, these results provide the first rigorous empirical evidence from a field

experiment for the causal effect of vertical location on sales, supporting that

“eye-level is buy level.” Our results also demonstrate that the eye-level effect

potentially comes at the expense of a sales loss for products placed at the

stretch-level and/or stoop-level. These results lead to the following question:

How are the overall sales in a fridge affected when the vertical locations of

three shelves change simultaneously? We proceed to answer this question.
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4.5.4 Vertical Location Effect on Overall Sales

In this section, we investigate whether the gain in sales at the eye-level com-

pensates for the loss in sales at the stretch- or stoop-levels. More formally,

we examine whether retailers can increase their sales across all treated prod-

ucts with a planogram change or if such a change simply results in pure

substitution among the treated products. For this analysis, we change the

experimental unit from a product set to a fridge, subsequently aggregating

the data from the product set-level to the fridge-level. We define Yijt as

the outcome variable (i.e., Quantity or Revenue) representing the sales of

all product sets on all three shelves (i.e., stretch-, eye-, and stoop-levels) in

fridge i in store j at time t. Using this aggregate outcome variable, we esti-

mate the DiD model specified in Equation (4.5.1), presenting the results in

Table A3.8 in the appendix.

Table 4.5.4 summarizes the key results from the estimated model. Here,

changing planograms from P1 to P2 or from P1 to P3 does not have a signif-

icant effect on the overall quantity sold in a fridge. Hence, the sales increase

at the eye-level comes at the expense of a sales loss at the stretch- and stoop-

levels, suggesting that the planogram change results in a pure substitution

pattern among products. Combined with the Quantity results in Table 4.5.3,

these results demonstrate that although the market share of individual prod-

ucts can change depending on the vertical location, for retailers, the over-

all sales across all products remain the same, regardless of the planogram

used. To our knowledge, this finding provides the first empirical evidence

for the literature assuming pure substitution in the theoretical modeling of

planogram optimization problems (e.g., Hansen et al. 2010, Gencosman and

Begen 2022).

The results regarding the overall revenue are noteworthy. Here as with the

quantity, changing planograms from P1 to P2 does not have a significant

effect on the overall revenue in a fridge. However, changing planograms from

P1 to P3 results in a significant increase in revenue from all treated products
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Table 4.5.4: Estimation results for the overall sales.

Planogram Change Quantity Revenue
From To

P1 P1
0.036 0.116
(0.029) (0.079)

P1 P2
0.034 0.094
(0.028) (0.076)

P1 P3
0.043 0.158†
(0.020) (0.080)

Sample size (N) 7,753

Standard errors are clustered at the fridge-level
and presented in parentheses.
† p < 0.10, ∗p < 0.05.

in a fridge by 15.8% (β = 0.158, p = 0.05). In summary, the analysis

on the overall sales demonstrates that, although the overall sales for the

retailer remain the same across different planograms, the overall revenue can

vary depending on the planogram used. This arises because of two factors.

First, as shown in Table 4.5.3, the effect of vertical location change on sales

depends on both the specific level at which the product is placed and on how

the other products are reorganized as a result of that change. Second, the

products placed at different levels have different price points. Consequently,

the overall effect of a vertical location change on the entire shelving unit’s

revenue depends not only on which products are moved to the eye-level, but

also on which products are simultaneously moved to the stretch- and stoop-

levels. In the next subsection, we proceed to characterize the type of products

better suited for the eye-level shelves versus stretch- and stoop-level shelves.

4.5.5 Heterogeneous Vertical Location Effect

In the previous section, we estimated the vertical location effect by averag-

ing all the products in a set. In this section, using a product-level analysis,

we examine the heterogeneity of the vertical location effect with respect to

several product characteristics, including price, promotions, broken assort-
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ment, market concentration, number of substitute products, package size,

and flashiness. We provide the technical details behind this analysis in Ap-

pendix A3.4. Here, we summarize the key insights of this analysis and inter-

pret the results.5

First, as illustrated in Figure 4.5.2, product price positively moderates the

vertical location effect. This suggests that vertical location is more impor-

tant for high-priced than low-priced items. We conjecture that customers’

price sensitivity is a likely explanation for this result. Price-sensitive cus-

tomers may have a low search cost and typically would purchase low-priced

items, whereas price-insensitive customers would be more likely to have a high

search cost and typically purchase high-priced items. Thus, price-sensitive

customers are likely to spend more time than their price-insensitive coun-

terparts to locate and purchase their preferred products (particularly when

those items are placed on shelves far from the eye-level), making low-price

products less sensitive and high-priced products more sensitive to the vertical

location effect.

5For brevity, we present the results for Quantity. The results for Revenue are quali-
tatively similar, yet the magnitude of the heterogeneity is more pronounced, making the
results presented here more conservative.
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(a) High price (b) Medium price

(c) Low price

Figure 4.5.2: Heterogeneity of the vertical location effect with respect to
price.

Second, regarding promotion, as shown in Figure 4.5.3, the vertical location

effect diminishes as the monetary value of the discount offered for a product

increases. This finding aligns with our earlier result on price and supports

our conjecture on customer price sensitivity because a higher discount implies

a lower price and vice versa.

Previous research has demonstrated that broken assortments (because of

stockouts), which are often attributed to low supplier replenishment perfor-

mance (Grant and Fernie 2008), can have a negative impact on sales per-

formance. Certain products can be characterized as chronically exposed to

broken assortments if other products provided by suppliers with a low re-

plenishment performance face frequent stockouts. Thus, as the third step,

we investigate the moderating role of a broken assortment on the vertical

location effect. As illustrated in Figure 4.5.4, in contrast to our main results,
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(a) High promotion (b) Medium promotion

(c) Low promotion

Figure 4.5.3: Heterogeneity of the vertical location effect with respect to
promotion discount.

we find that the vertical location effect is no longer statistically significant

when a product is exposed to a broken assortment. The vertical location

effect is present only when the assortment is complete. This finding further

supports our conjecture on search cost. As the number of missing items in a

planogram increases, the search cost decreases (Mantrala et al. 2009) and the

likelihood of finding the preferred item (particularly those placed at shelves

far from the eye-level) increases, thus attenuating the vertical location effect.
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(a) Broken assortment (b) Complete assortment

Figure 4.5.4: Heterogeneity of the vertical location effect with respect to a
broken assortment.

Fourth, we examine the heterogeneity of the vertical location effect regarding

market concentration. Market concentration is defined as the degree to which

a market is dominated by a small number of brands (Rhoades 1993). We

operationalize market concentration by using the data from three months

prior to the experiment date. In particular, following Rhoades (1993), we

calculate the Herfindahl–Hirschman Index (HHI) to characterize the market

concentration for each product category. As shown in Figure 4.5.5, we find

that the vertical location effect is more pronounced for products in categories

with a low market concentration. A market with a low concentration is not

dominated by large players, so it is considered to be competitive (Karuna

2007); this often arises when customers do not have strong preferences among

alternative options (Chaudhuri 1999). In these cases, the products placed at

the eye-level are more likely to be purchased because exploring other shelves

for alternative products for which customers are likely indifferent creates an

additional search cost, hence amplifying the vertical location effect.
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(a) High market concentration (b) Low market concentration

Figure 4.5.5: Heterogeneity of the vertical location effect with respect to
market concentration.

Fifth, we assess how the vertical location effect changes with the number

of substitute products. For a given product, we determine its substitutable

products based on a set of product attributes including brand, size, flavor,

alcohol level, diet/zero, and weight. Using these attributes, we calculate

the Gower’s distance between each pair of products in the same category

and normalize the distance value to between 0 and 1. We then consider a

product to be a substitute for another product if the distance value falls

below a certain threshold. Specifically, we evaluate three threshold values

(0.1, 0.15, and 0.2). Because our findings remain consistent across all three

values, we present the results when using a threshold of 0.1. As shown in

Figure 4.5.6, the vertical location effect becomes more pronounced as the

number of substitute products increases. This finding is also consistent with

our previous conjecture on search cost. Indeed, it is known that the search

cost increases with the number of substitute products (Chernev and Hamilton

2009). Finally, as detailed in Appendix A3.4, we assess whether the vertical

location effect is moderated by the package size and the flashiness level,

finding no evidence for such moderation.
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(a) High number of substitutes (b) Medium number of substitutes

(c) Low number of substitutes

Figure 4.5.6: Heterogeneity of the vertical location effect with respect to
the number of substitute products.

In summary, our analysis shows that the vertical location effect (i) is am-

plified with the price and the number of substitute products and (ii) is at-

tenuated with promotional discounts, stockouts, and market concentration.

Our results suggest that retailers can enhance their revenue by displaying

products with high prices, with low discounts, from a complete assortment,

in a category with a low market concentration and with a large number of

substitute products at the eye-level.

4.6 Economic Implications

Our study establishes that the vertical location effect depends on how the

products on the other shelves are reorganized simultaneously. Combined with

the difference in profit margins, this suggests that retailers can earn higher

profits by optimizing their planograms holistically while considering the in-
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terplay among products at all vertical location levels rather than myopically

focusing on the eye-level effect. In addition, the vertical location effect is

heterogeneous across products, which, if incorporated into the planogram

optimization, can further enhance the profitability of the holistic approach.

To assess the economic significance of our empirical results, we conduct a

counterfactual analysis in two stages.

First, we (mistakenly) assume that the vertical location effect is independent

of the product characteristics. Using this homogeneous vertical location ef-

fect, we optimize the planogram on each fridge and calculate the potential

profit change compared with the business-as-usual practice at the focal re-

tailer. Second, we solve the same planogram optimization by allowing the

vertical location effect to be a function of the product characteristics and

calculate the additional gain in profit from incorporating the heterogeneity

in the vertical location effect into the planogram optimization.

For both counterfactual studies, we consider the following linear integer pro-

gramming model that serves as the foundational base for several planogram

optimization problems in the literature (e.g., Yang and Chen 1999, Lim et al.

2004, Bianchi-Aguiar et al. 2018, Bianchi-Aguiar et al. 2021):

Max
∑

i=1,...,N

∑
k=1,2,3

di × pi × ak × yik

s.t.
∑

k=1,2,3

yik = 1 ∀i ∈ {1, ..., N}∑
i=1,...,N

mi × yik ≤ Ck ∀k ∈ {1, 2, 3}

yik ∈ {0, 1},

(4.6.1)

where (i) di is the base demand/sales of product i when product i is placed

at the stoop-level (i.e., the vertical location that results in the lowest sales),

(ii) pi is the profit margin of product i, (iii) k represents the vertical location

where 1 denotes the stretch-level, 2 denotes the eye-level, and 3 denotes the

stoop-level, (iv) ak is the multiplier for the sales change when a product
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is located in vertical location k (i.e., the vertical location effect on sales

quantity), where a3 is normalized to 1, (v) mi is the number of facings for

product i, and (vi) Ck is the capacity of shelf k in terms of number of facings.

The decision variable, yik, is a binary variable indicating whether product i is

displayed on shelf k. The optimization formulation in (4.6.1) can be used to

maximize the profit in a fridge, which is subject to two constraints: (i) each

product must be placed in only one vertical location, and (ii) the number of

products on a shelf must not exceed the shelf capacity. Here, the planogram

optimization model in Equation (4.6.1) assumes that the vertical location

effect, ak, is homogeneous (i.e., independent of the products). To obtain a

model that considers a heterogeneous vertical location effect, we replace ak

in Equation (4.6.1) with aik, where aik represents the vertical location effect

for product i when placed in vertical location k and ai3 is normalized to 1.

In our counterfactual analysis, we set mi and Ck to values that match the

practice at the focal retailer. This enables us to quantify the impact of

changing only the vertical locations of products on profitability. We obtain

data on profit margin (i.e., pi) for each product. To operationalize ak, using

post-intervention data from the treated stores, we estimate the following

regression model:

Quantityijt = β0+β1Stretchijt+β2Eyeijt+TV Controlsijt+Seasonalityt+ui+ϵijt,

(4.6.2)

where Stretchijt and Eyeijt are binary variables indicating whether product i

in store j on day t is placed on the stretch-level and eye-level, respectively

(with the stoop-level being the reference). Using the estimated model in

Equation (4.6.2), we can operationalize a1 as 1 + β̂1 and a2 as 1 + β̂2.

To operationalize di and aik, using the same data, we estimate the follow-

ing random-slope model, in which the vertical location effect varies across
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Table 4.6.1: Estimation results for linear and random-slope models.

Linear model Random-slope model
Stretch 0.0539∗∗∗ 0.0589∗∗∗

(5.83) (6.06)

Eye 0.116∗∗∗ 0.0996∗∗∗

(11.53) (9.76)

TV Controls Yes Yes
σζ0i - 0.111
σζ1i - 0.126
σζ2i - 0.312

Wald χ2 - 839.99∗∗∗

LR test χ2 - 9,431.79∗∗∗

Sample size (N) 36,876 36,876

Standard errors are clustered at the product level and presented in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

products:

Quantityijt =β0 + β1Stretchijt + β2Eyeijt + TV Controlsijt + Seasonalityt

+ ζ0i + ζ1iStretchijt + ζ2iEyeijt + ui + ϵijt.

(4.6.3)

In Equation (4.6.3), (i) ζ0i denotes the deviation of product i’s intercept from

the mean intercept β0, (ii) ζ1i denotes the deviation of product i’s slope for

the stretch-level effect from the mean slope β1 for the stretch-level effect, and

(iii) ζ2i denotes the deviation of product i’s slope for the eye-level effect from

the mean slope β2. Thus, for product i, the eye-level effect and the stretch-

level effect (compared with the stoop-level effect) are estimated to be β2+ζ2i

and β1 + ζ1i, respectively. Using the estimated model in Equation (4.6.3),

we operationalize (i) ai1 as 1 + β̂1 + ζ̂1i, (ii) a2 as 1 + β̂2 + ζ̂2i, and (iii) di

as the average of the predicted outcome variable (obtained after the vertical

location is set to the stoop-level) across all observations of product i.

Table 4.6.1 shows the estimation results of the models specified in Equa-

tions (4.6.2) and (4.6.3). Consistent with our heterogeneity analysis, the sig-

194



nificant log-likelihood ratio test statistic (i.e., the LR test χ2) in the random-

slope model indicates that the vertical location effect is indeed product spe-

cific, implying that the random-slope model specification is the correct spec-

ification. In addition, the estimated eye-level and stretch-level effects in both

models are similar to those obtained using the DiD model in Section 4.5.3,

thus providing a sanity check for our counterfactual analysis and serving as

another robustness test for the DiD specification.

For our counterfactual analysis, we consider three scenarios. The first sce-

nario represents the current practice. For this, we recode the vertical location

variables Stretchijt and Eyeijt to represent the business-as-usual planogram

(i.e., planogram P1 in Figure 4.3.3). Using the estimated random-slope

model from Equation (4.6.3) along with these recoded data, we make an

out-of-sample prediction to obtain the predicted sales (Quantityijt). Multi-

plying the predicted sales with the profit margin pi results in the estimated

profit for each observation. The retailer’s estimated overall profit under the

current practice is then equal to the summation of the estimated profit across

all observations.

The second scenario represents the counterfactual case in which the retailer

optimizes its planograms using the homogeneous vertical location effects. For

this scenario, using ak estimated in the linear model from Equation (4.6.2), we

solve the planogram optimization model in Equation (4.6.1) and obtain the

values of yik (i.e., the vertical location decision for each product in a fridge).

We recode Stretchijt and Eyeijt in the data to represent the values of yik. We

then repeat the same out-of-sample prediction steps as in the first scenario to

obtain the estimated overall profit (i.e., the counterfactual profit in the second

scenario). Finally, the third scenario represents the counterfactual case in

which the retailer optimizes its planograms while using the heterogeneous

vertical location effects. The steps to obtain the counterfactual profit in

this scenario are similar to those in the second scenario, with the exception

of solving the planogram optimization model using aik in Equation (4.6.1)
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(instead of ak), as estimated in the random-slope model.

We quantify the counterfactual profit improvement by comparing the esti-

mated profits across the three scenarios. We find that, relative to the current

practice, the profit could have been 2.2% higher if the retailer had optimized

its planograms using homogeneous vertical location effects. Given the notori-

ously low single-digit profit margins in the retail industry, this result suggests

that considering the interplay among products (arising from simultaneously

changing vertical locations) significantly increases profit. In addition, the

profit could have been 3% higher if the retailer had optimized its planograms

using heterogeneous vertical location effects. These results testify to the

economic and practical importance of the empirical findings in the present

paper.

4.7 Conclusion

The belief that “eye-level is buy level” forms the basis for planogram opti-

mization for retailers and contractual agreements between retailers and man-

ufacturers. Although several studies have investigated the effect of eye-level

placements on customer attention and sales, it is not clear (i) how this effect

influences the products placed on other shelves, and thus, the overall sales,

and (ii) whether that effect varies across products on the same shelving unit.

To address these gaps, we conducted a novel two-stage field experiment in

collaboration with a North American convenience store chain. Our study

contributes to the literature by conducting the first field experiment to iden-

tify the interplay among a set of products for which the vertical locations

change simultaneously.

Theoretically, our study contributes by providing evidence that the effect of

changing the vertical location of a product depends not only on the level at

which that product is moved, but also on how the vertical locations of the

other products change as a result of that move. Subsequently, we find that

the same vertical location change, which can be achieved by two different
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planograms, can result in two different sales outcomes if the vertical loca-

tions of the other products change differently between these two planograms.

When we average these asymmetric vertical location change effects, we find

that the stoop-level placement results in the lowest sales, whereas the eye-

level placement results in the highest sales. Second, our study contributes

by demonstrating that the incremental sales for products displayed at the

eye-level just compensates for the sales loss for products displayed at the

stretch- and stoop-levels, leading to no change in the overall sales. This

implies that changing vertical locations through a change in the planogram

results in a pure substitution pattern among products. As a third theoretical

contribution, our study demonstrates that the vertical location effect is het-

erogeneous across products in the same shelving unit. Because products have

different margins and prices, this implies that, despite the pure substitution

among products, retailers can still improve their overall profitability by care-

fully selecting the products to display at the eye-level versus at other levels.

Our counterfactual analysis shows that optimizing planograms by consider-

ing the average interplay among products (arising from simultaneous vertical

changes) increases profit by 2.2%. Our results indicate that products with

high prices, and low discounts, that are displayed in a complete assortment,

in a category with low market concentration, and with a large number of

substitute products benefit more from being displayed at the eye-level. In-

corporating this heterogeneity into planogram optimization can improve the

performance of planogram optimization by 36.4% (i.e., from 2.2% to 3%) for

the focal retailer.

There are several implications of our research for managers. First, retail-

ers should carefully assess the heterogeneity in the vertical location effect

across products and optimize their planograms accordingly. Retailers can

identify such heterogeneity by replicating our two-stage experimental design

within a reasonable time frame and budget. Second, our study can be used

to improve the contractual agreements for slotting fees between retailers and
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manufacturers. The existing contracts in practice often arise from an un-

balanced negotiation because determining the optimal value for such fees

is challenging due to the information asymmetry and misaligned incentives

(Caro et al. 2020, Rao and Mahi 2003, Cachon and Kök 2010). Our results

on heterogeneous vertical location effects can enable retailers and manufac-

turers to overcome this challenge. In particular, with a clear understanding

of the product characteristics associated with greater eye-level effects (e.g.,

high price, low discount, low stockout), retailers and manufacturers can have

better-informed negotiations. For instance, if a contractual agreement neces-

sitates the retailer to display at the eye-level a product that is unlikely to

benefit from such a location, thus requiring the retailer to deviate from the

optimal vertical location placement, the retailer could negotiate a slotting fee

that is high enough to at least mitigate the loss because of this suboptimal

placement. Likewise, a manufacturer operating in a competitive category

can be more determined and willing to pay a high slotting fee to reserve the

eye-level location because the additional sales at the eye-level will likely off-

set the slotting fee, whereas a manufacturer selling a niche product (that is

less exposed to competition) may not necessarily be interested in securing the

eye-level location. Third, our results suggest that retailers and manufacturers

should consider the vertical location effect when making promotion decisions

because high promotions diminish the vertical location effect. For instance,

reserving the eye-level location may not go hand in hand with a frequent pro-

motion strategy for manufacturers. Finally, procurement teams can leverage

our results in the context of their sourcing and category management strate-

gies. In particular, given the scarcity of available eye-level locations in a

physical store, retail managers can be more inclined to reserve such locations

for manufacturers with a predictable and consistent pricing strategy (leading

to no promotions), a reliable replenishment capability (leading to a complete

assortment), and a high product variety (leading to more competition).
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A3 Appendix to Article 3

A3.1 Correlation Matrices for Experiments

Table A3.1: Correlation matrix for the data used in A/A test.

1 2 3 4 5 6 7 8

1. Quantity 1

2. Revenue 0.87 1

3. Price -0.27 0.03 1

4. SetPromotion 0.16 0.04 -0.39 1

5. FridgePromotion 0.03 -0.05 -0.28 0.51 1

6. SetStockout 0.13 0.14 0.03 0.03 -0.00 1

7. FridgeStockout 0.15 0.19 0.01 -0.02 0.02 0.53 1

8. NumFaces -0.02 -0.11 -0.34 0.14 0.01 -0.41 -0.24 1

Sample Size 6,245

Table A3.2: Correlation matrix for the data used in the pilot experiment.

1 2 3 4 5 6 7 8

1. Quantity 1

2. Revenue 0.86 1

3. Price -0.28 0.08 1

4. SetPromotion 0.15 0.01 -0.40 1

5. FridgePromotion 0.07 -0.04 -0.28 0.65 1

6. SetStockout 0.09 0.10 0.04 0.03 -0.02 1

7. FridgeStockout 0.10 0.17 0.13 -0.00 0.03 0.53 1

8. NumFaces -0.02 -0.16 -0.37 0.14 0.04 -0.44 -0.33 1

Sample Size 9,822
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Table A3.3: Correlation matrix for the data used in the main experiment.

1 2 3 4 5 6 7 8

1. Quantity 1

2. Revenue 0.87 1

3. Price -0.32 -0.00 1

4. SetPromotion 0.22 0.09 -0.44 1

5. FridgePromotion 0.13 0.04 -0.32 0.62 1

6. SetStockout 0.14 0.12 -0.01 0.02 -0.02 1

7. FridgeStockout 0.17 0.16 -0.03 0.03 0.02 0.52 1

8. NumFaces -0.03 -0.11 -0.32 0.12 0.05 -0.50 -0.35 1

Sample Size 20,291

A3.2 Robustness Check for Testing the Insensitivity As-

sumption in the Pilot Experiment

In the pilot experiment, we test the insensitivity assumption by comparing the

sales for product sets whose vertical locations are kept constant between Round

0 and Round 1. One can say that across the three treatment stores, the product

sets whose vertical locations are kept constant between Round 0 and Round 1

are not only different products (i.e., product set B in Treatment Store 1, product

set C in Treatment Store 2, and product set A in Treatment Store 3), but also

displayed at different vertical locations (i.e., at the eye-level in Treatment Store

1, at the stoop-level in Treatment Store 2, and at the stretch-level in Treatment

Store 3). Hence, the estimated indifference in sales can also be attributed to the

differences in vertical locations at which a product set is kept constant. To address

this concern, we consider the data from Rounds 1 and 2 in our experiment. As

illustrated in Figure 4.3.3, between Rounds 1 and 2, the product sets remain the

same always at the eye-level in the three treatment stores. Hence, a comparison of

the sales for products sets at the eye-level between Round 1 and Round 2 enables

us to test the insensitivity assumption while controlling for the vertical locations

of those products.

We have a total of 9,041 observations for our analysis by focusing on the data from
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the products placed at eye-level. Table A3.4 provides the descriptive statistics for

the data used in this robustness test. We estimate Equation (4.4.2) with only

one modification: Postd now represents a binary variable that equals 1 for time

periods in Round 2 and 0 for time periods in Round 1. We also replace V erLocg

with ProductSetg, indicating whether the product set placed at the eye-level is

product set A, B, or C.

Table A3.4: Descriptive statistics of the data sample in our pilot
experiment.

Round 1 Round 2

Treated Control Treated Control

stores stores stores stores

Mean SD Mean SD Mean SD Mean SD

Quantity 0.39 0.37 0.55 0.39 0.43 0.39 0.55 0.39

Revenue 0.90 0.74 1.26 0.78 0.98 0.77 1.27 0.78

Price 5.99 4.00 5.71 3.99 5.90 3.96 5.86 4.00

SetPromotion 1.29 1.28 1.46 1.27 1.32 1.26 1.46 1.21

FridgePromotion 1.10 1.02 1.21 1.03 1.16 1.04 1.23 0.99

SetStockout 0.76 0.88 1.03 0.99 0.65 0.84 0.76 0.99

FridgeStockout 0.83 0.57 1.10 0.61 0.83 0.63 0.82 0.75

NumFaces 5.58 1.59 5.54 1.55 5.73 1.72 5.77 1.76

Number of product sets 49 123 47 119

Sample Size 9,041

Table A3.5 provides the results. We find that the DiD estimators are not sta-

tistically significant in any specifications. Furthermore, in all specifications, we

compare the DiD estimators using a Wald test and find that they are not statis-

tically different from each other (F = 2.1, p = 0.125). The results establish that

controlling for the vertical locations, the sales of a product set at a vertical location

is not sensitive to swapping the product sets in the other two vertical locations,

ruling out the alternative explanation for the insensitivity assumption test.
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Table A3.5: Estimation results for our pilot experiment.

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

Post× Treatment 0.0338 0.00683 0.0712 0.0175

(0.0298) (0.0292) (0.0769) (0.0765)

ProductSet(A)× Post× -0.0796 -0.0381 -0.183 -0.0988

Treatment (0.0441) (0.0463) (0.104) (0.113)

ProductSet(B)× Post× 0.0522 0.0587 0.138 0.151

Treatment (0.0573) (0.0579) (0.121) (0.124)

TV Controls No Yes No Yes

Sample size 9,041 9,041 9,041 9,041

Adj. R2 0.068 0.086 0.064 0.074

Standard errors are clustered at the product set-level and presented

in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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A3.3 Main Experiment: Tables

Table A3.6: Estimates for Equation (4.5.1).

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

Intervention1 0.114∗∗∗ 0.0827∗∗∗ 0.229∗∗∗ 0.182∗∗

(0.0243) (0.0243) (0.0561) (0.0676)

Treated1 × Intervention1 0.0558 0.0527 0.112 0.0933

(0.0365) (0.0344) (0.0736) (0.0700)

Treated2 × Intervention1 -0.0164 -0.0290 0.0352 0.0137

(0.0291) (0.0282) (0.0667) (0.0661)

Treated3 × Intervention1 0.0661∗ 0.00890 0.167∗ 0.0860

(0.0332) (0.0310) (0.0722) (0.0653)

Intervention2 0.159∗∗∗ 0.124∗∗∗ 0.342∗∗∗ 0.288∗∗∗

(0.0240) (0.0249) (0.0499) (0.0632)

Treated1 × Intervention2 0.143∗∗∗ 0.132∗∗∗ 0.316∗∗∗ 0.283∗∗∗

(0.0381) (0.0358) (0.0722) (0.0702)

Treated2 × Intervention2 0.0712∗ 0.0579 0.301∗∗∗ 0.284∗∗

(0.0351) (0.0340) (0.0875) (0.0875)

Treated3 × Intervention2 0.0762∗ 0.0201 0.193∗∗ 0.114

(0.0343) (0.0339) (0.0720) (0.0711)

Intervention3 0.164∗∗∗ 0.138∗∗∗ 0.360∗∗∗ 0.318∗∗∗

(0.0254) (0.0255) (0.0595) (0.0713)

Treated1 × Intervention3 0.101∗ 0.0866∗ 0.221∗ 0.181∗

(0.0426) (0.0379) (0.0911) (0.0855)

Treated2 × Intervention3 0.0577 0.0323 0.183∗ 0.145

(0.0365) (0.0349) (0.0892) (0.0895)

Treated3 × Intervention3 0.106∗ 0.0263 0.246∗∗ 0.120

(0.0412) (0.0385) (0.0828) (0.0770)

TV Controls No Yes No Yes

Sample size 20,291 20,291 20,291 20,291

Adj. R2 0.139 0.163 0.139 0.149

Standard errors are clustered at the product-set level and presented in

parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A3.7 Estimates for Equation (4.5.2).

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

Intervention1 0.00176 -0.0316 0.00339 -0.0380

(0.0460) (0.0436) (0.119) (0.127)

ProductSetA × Intervention1 0.113∗∗ 0.118∗∗ 0.223∗ 0.227∗

(0.0548) (0.0525) (0.128) (0.126)

ProductSetB × Intervention1 0.233∗∗∗ 0.233∗∗∗ 0.472∗∗∗ 0.450∗∗∗

(0.0601) (0.0551) (0.150) (0.141)

Treated1 × Intervention1 0.0960∗ 0.103∗ 0.261∗ 0.253∗

(0.0580) (0.0545) (0.149) (0.144)

Treated2 × Intervention1 0.100∗ 0.0830 0.360∗∗∗ 0.324∗∗

(0.0544) (0.0512) (0.137) (0.130)

Treated3 × Intervention1 0.156∗∗ 0.115∗ 0.425∗∗∗ 0.363∗∗

(0.0624) (0.0598) (0.149) (0.142)

ProductSetA × Treated1 × Intervention1 0.0329 0.00605 -0.0605 -0.0895

(0.0857) (0.0808) (0.176) (0.174)

ProductSetA × Treated2 × Intervention1 -0.129∗ -0.114∗ -0.408∗∗∗ -0.384∗∗

(0.0677) (0.0659) (0.153) (0.149)

ProductSetA × Treated3 × Intervention1 -0.0781 -0.106 -0.240 -0.270

(0.0797) (0.0780) (0.171) (0.170)

ProductSetB × Treated1 × Intervention1 -0.170∗∗ -0.166∗∗ -0.412∗∗ -0.401∗∗

(0.0799) (0.0761) (0.189) (0.183)

ProductSetB × Treated2 × Intervention1 -0.230∗∗∗ -0.236∗∗∗ -0.585∗∗∗ -0.572∗∗∗

(0.0727) (0.0678) (0.176) (0.169)

ProductSetB × Treated3 × Intervention1 -0.202∗∗ -0.222∗∗∗ -0.556∗∗∗ -0.580∗∗∗

(0.0817) (0.0739) (0.190) (0.178)

Intervention2 0.136∗∗ 0.0956∗ 0.335∗∗∗ 0.281∗∗

(0.0525) (0.0531) (0.116) (0.127)

ProductSetA × Intervention2 0.0232 0.0308 -0.0570 -0.0473

(0.0617) (0.0608) (0.125) (0.126)

ProductSetB × Intervention2 0.0454 0.0520 0.0744 0.0648

(0.0629) (0.0610) (0.137) (0.134)

Treated1 × Intervention2 0.148∗∗ 0.140∗∗ 0.367∗∗ 0.330∗∗

(0.0709) (0.0676) (0.147) (0.145)

Continued on next page
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Table A3.7 Estimates for Equation (4.5.2).

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

Treated2 × Intervention2 0.233∗∗∗ 0.214∗∗∗ 0.720∗∗∗ 0.701∗∗∗

(0.0675) (0.0658) (0.178) (0.178)

Treated3 × Intervention2 0.0296 -0.000798 0.0114 -0.0315

(0.0710) (0.0688) (0.147) (0.142)

ProductSetA × Treated1 × Intervention2 0.114 0.0958 0.195 0.182

(0.0911) (0.0867) (0.172) (0.171)

ProductSetA × Treated2 × Intervention2 -0.239∗∗∗ -0.219∗∗∗ -0.604∗∗∗ -0.597∗∗∗

(0.0815) (0.0769) (0.194) (0.190)

ProductSetA × Treated3 × Intervention2 0.0564 0.0167 0.254 0.206

(0.0883) (0.0841) (0.168) (0.161)

ProductSetB × Treated1 × Intervention2 -0.136 -0.123 -0.352∗∗ -0.319∗

(0.0887) (0.0834) (0.176) (0.171)

ProductSetB × Treated2 × Intervention2 -0.180∗∗ -0.187∗∗ -0.539∗∗ -0.552∗∗∗

(0.0885) (0.0850) (0.213) (0.212)

ProductSetB × Treated3 × Intervention2 0.0742 0.0394 0.266 0.207

(0.0858) (0.0849) (0.187) (0.187)

Intervention3 0.0376 0.0113 0.108 0.0751

(0.0448) (0.0437) (0.123) (0.134)

ProductSetA × Intervention3 0.151∗∗∗ 0.146∗∗∗ 0.317∗∗ 0.306∗∗

(0.0547) (0.0514) (0.133) (0.130)

ProductSetB × Intervention3 0.239∗∗∗ 0.242∗∗∗ 0.457∗∗∗ 0.438∗∗∗

(0.0622) (0.0580) (0.160) (0.153)

Treated1 × Intervention3 0.275∗∗∗ 0.259∗∗∗ 0.738∗∗∗ 0.688∗∗∗

(0.0579) (0.0556) (0.171) (0.171)

Treated2 × Intervention3 0.0993 0.0678 0.165 0.117

(0.0680) (0.0622) (0.158) (0.152)

Treated3 × Intervention3 0.225∗∗∗ 0.163∗∗ 0.518∗∗∗ 0.418∗∗∗

(0.0766) (0.0732) (0.164) (0.152)

ProductSetA × Treated1 × Intervention3 -0.191∗∗ -0.187∗∗ -0.648∗∗∗ -0.628∗∗∗

(0.0928) (0.0842) (0.203) (0.201)

ProductSetA × Treated2 × Intervention3 -0.0749 -0.0502 -0.0677 -0.0469

(0.0826) (0.0766) (0.174) (0.166)

ProductSetA × Treated3 × Intervention3 -0.0627 -0.0899 -0.215 -0.233

Continued on next page
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Table A3.7 Estimates for Equation (4.5.2).

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

(0.0986) (0.0937) (0.193) (0.188)

ProductSetB × Treated1 × Intervention3 -0.333∗∗∗ -0.330∗∗∗ -0.889∗∗∗ -0.864∗∗∗

(0.0963) (0.0872) (0.228) (0.221)

ProductSetB × Treated2 × Intervention3 -0.0520 -0.0626 0.128 0.131

(0.0867) (0.0816) (0.222) (0.219)

ProductSetB × Treated3 × Intervention3 -0.308∗∗∗ -0.329∗∗∗ -0.623∗∗∗ -0.677∗∗∗

(0.0976) (0.0891) (0.210) (0.193)

TV Controls No Yes No Yes

Sample size 20,291 20,291 20,291 20,291

Adj. R2 0.158 0.181 0.164 0.172

Standard errors are clustered at the product set-level and presented in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A3.8: Estimates of the vertical location effect on the overall sales.

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

Intervention1 0.108∗∗∗ 0.0646∗ 0.217∗∗ 0.155

(0.0276) (0.0324) (0.0753) (0.103)

Treated1 × Intervention1 0.0648 0.0608 0.127 0.117

(0.0440) (0.0431) (0.0944) (0.0973)

Treated2 × Intervention1 -0.00535 -0.0113 0.0556 0.0391

(0.0325) (0.0295) (0.0844) (0.0801)

Treated3 × Intervention1 0.0828∗ 0.0415 0.213∗ 0.172∗

(0.0416) (0.0386) (0.0939) (0.0852)

Intervention2 0.193∗∗∗ 0.151∗∗∗ 0.540∗∗∗ 0.490∗∗∗

(0.0257) (0.0321) (0.0675) (0.0962)

Treated1 × Intervention2 0.114∗∗ 0.100∗ 0.0675 0.0615

(0.0397) (0.0382) (0.0817) (0.0790)

Treated2 × Intervention2 0.0472 0.0388 0.198∗ 0.165

(0.0414) (0.0364) (0.0952) (0.0955)

Treated3 × Intervention2 0.0562 0.00394 0.0649 0.00181

(0.0378) (0.0386) (0.0842) (0.0945)

Intervention3 0.186∗∗∗ 0.150∗∗∗ 0.463∗∗∗ 0.418∗∗∗

(0.0287) (0.0334) (0.0870) (0.116)

Treated1 × Intervention3 0.0687 0.0510 0.0642 0.0423

(0.0543) (0.0485) (0.112) (0.108)

Treated2 × Intervention3 0.0611 0.0442 0.158 0.120

(0.0425) (0.0394) (0.112) (0.112)

Treated3 × Intervention3 0.0872 0.0127 0.160 0.0585

(0.0484) (0.0410) (0.104) (0.0931)

TV Controls No Yes No Yes

Sample size 7,753 7,753 7753 7,753

Adj. R2 0.239 0.271 0.275 0.302

Standard errors are clustered at the product set-level and presented in

parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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A3.4 Heterogeneous Vertical Location Effect: Details and

Tables

With the heterogeneity analysis, our intention is to identify the types of products

that benefit the most from being placed at the eye-level locations, rather than to

identify the asymmetric effect of the change in vertical location. Therefore, for this

analysis, we use data only from the post-intervention period (i.e., from Rounds 2, 3,

and 4) at the treatment stores. Because the experiment is randomized, we expect

that the estimated vertical location effects from this analysis would be comparable

to those obtained using the DiD specification in Section 4.5.3 and reported in

Figure 4.5.1. Thus, a linear regression on post-intervention data only from treated

stores serves as an alternative specification (compared to our DiD specification)

for the estimation of the vertical location effects. To verify this, we first specify

the following linear regression model:

Yijt = β0 + β1Stretchijt + β2Eyeijt + TV Controlsijt +Seasonalityt + ϵijt, (A3.1)

where Stretchijt and Eyeijt are binary variables indicating whether product set i in

store j on day t is placed at the stretch- and the eye-levels, respectively. Therefore,

β1 and β2 capture the vertical location effect when a product set is placed at the

stretch-level and at the eye-level, respectively, compared to at the stoop-level.

Table A3.9 shows the estimation results from this specification. The estimated

eye-level and stretch-level effects are consistent with those obtained using the DiD

model in Section 4.5.3, serving as a robustness test for our DiD identification

strategy and providing a sanity check for our specification for the heterogeneity

analysis.
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Table A3.9: Estimation results for cross-group comparison specification.

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

Stretch 0.0560∗∗ 0.0495∗∗∗ 0.132∗∗∗ 0.128∗∗∗

(0.0168) (0.0141) (0.0320) (0.0301)

Eye 0.0965∗∗∗ 0.0912∗∗∗ 0.283∗∗∗ 0.275∗∗∗

(0.0183) (0.0169) (0.0498) (0.0490)

TV Controls No Yes No Yes

Sample size 8,155 8,155 8,155 8,155

Adj. R2 0.025 0.216 0.042 0.085

Standard errors are clustered at the product set-level

and presented in parentheses.
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Because in the heterogeneity analysis, we aim to identify the product characteris-

tics that are associated with more eye-level effects, we construct product-level data

using observations from the post-intervention period at treatments stores. To es-

timate the heterogeneity, we specify the following linear regression model with the

interaction terms as follows:

Yijt = β0 + β1Stretchijt + β2Eyeijt + β3Stretchijt × ProductFeaturei + β4Eyeijt × ProductFeaturei

+ ProductFeaturei + TV Controlsijt + Seasonalityt + ϵijt,

(A3.2)

where β3 and β4 capture the moderating effect of a specific product feature (i.e.,

ProductFeature) on the stretch-level and eye-level effects (compared to the stoop-

level), respectively. The product features we evaluate include price, promotions,

broken assortment, market concentration, number of substitute products, package

size, and flashiness.

Price: We create a categorical ProductFeature variable by dividing the products

into three groups based on the price value: low, medium, and high. We use the

33rd and 66th percentiles of the price distribution to create these groups. We set

the low price level to be the base level and estimate Equation A3.2. The results
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are reported in Table A3.10 and Figure A3.1.

Table A3.10: Estimation results for heterogeneous vertical location effect
(price).

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

Stretch 0.0549∗∗ 0.0585∗∗ 0.0952∗∗ 0.103∗∗

(0.0203) (0.0196) (0.0333) (0.0318)

Eye 0.0621∗∗ 0.0657∗∗ 0.116∗∗∗ 0.123∗∗∗

(0.0212) (0.0209) (0.0340) (0.0335)

Price(Medium) -0.0916∗ -0.0740+ -0.0313 -0.0241

(0.0379) (0.0385) (0.0621) (0.0636)

Price(High) -0.342∗∗∗ -0.205∗∗∗ -0.361∗∗∗ -0.310∗∗∗

(0.0334) (0.0444) (0.0587) (0.0781)

Stretch× 0.00902 0.00424 0.0325 0.0214

Price(Medium) (0.0301) (0.0295) (0.0521) (0.0511)

Stretch× -0.0141 -0.0259 0.00318 -0.0104

Price(High) (0.0244) (0.0235) (0.0463) (0.0455)

Eye× 0.0357 0.0257 0.0657 0.0453

Price(Medium) (0.0319) (0.0316) (0.0548) (0.0546)

Eye× 0.0837∗∗ 0.0673∗ 0.296∗∗∗ 0.275∗∗∗

Price(High) (0.0272) (0.0271) (0.0573) (0.0574)

TV Controls No Yes No Yes

Sample size 36,876 36,876 36,876 36,876

Adj. R2 0.062 0.078 0.032 0.041

Standard errors are clustered at the product level and presented

in parentheses + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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(a) High price (b) Medium price

(c) Low price

Figure A3.1: Heterogeneity of the vertical location effect with respect to
price (revenue).

Promotion: Similarly, we create a categorical ProductFeature variable by di-

viding the products into three groups based on the monetary value of the promo-

tions using the 33rd and 66th percentiles of the promotions distribution. We set

the low promotion level to be the base level and estimate Equation A3.2. The

results are reported in Table A3.11 and Figure A3.2.
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Table A3.11: Estimation results for heterogeneous vertical location effect
(promotion).

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

Stretch 0.0495∗∗ 0.0489∗∗ 0.111∗∗∗ 0.107∗∗∗

(0.0167) (0.0152) (0.0326) (0.0321)

Eye 0.143∗∗∗ 0.140∗∗∗ 0.375∗∗∗ 0.367∗∗∗

(0.0170) (0.0163) (0.0403) (0.0399)

Promotion(Medium) 0.326∗∗∗ 0.317∗∗∗ 0.438∗∗∗ 0.543∗∗∗

(0.0343) (0.0423) (0.0564) (0.0702)

Promotion(High) 0.235∗∗∗ 0.388∗∗∗ 0.331∗∗∗ 0.675∗∗∗

(0.0310) (0.0613) (0.0563) (0.104)

Stretch× -0.0145 -0.0118 -0.0434 -0.0314

Promotion(Medium) (0.0318) (0.0304) (0.0564) (0.0554)

Stretch× 0.000928 0.0113 -0.00384 0.0143

Promotion(High) (0.0286) (0.0274) (0.0520) (0.0509)

Eye× -0.0744∗ -0.0673+ -0.239∗∗∗ -0.226∗∗∗

Promotion(Medium) (0.0357) (0.0347) (0.0651) (0.0646)

Eye× -0.0878∗∗ -0.0779∗∗ -0.244∗∗∗ -0.231∗∗∗

Promotion(High) (0.0298) (0.0293) (0.0598) (0.0594)

TV Controls No Yes No Yes

Sample size 36,876 36,876 36,876 36,876

Adj. R2 0.055 0.087 0.036 0.049

Standard errors are clustered at the product level and presented in

parentheses + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Broken Assortment: We define a product on a shelf as having a broken assort-

ment (i.e., ProductFeature = 1) if at least one item within that shelf is out of stock

and not having a broken assortment otherwise (i.e., ProductFeature = 0). The

216



(a) High promotion (b) Medium promotion

(c) Low promotion

Figure A3.2: Heterogeneity of the vertical location effect with respect to
promotion.

results from the estimation of Equation A3.2 with this variable are demonstrated

in Table A3.12 and Figure A3.3.
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Table A3.12: Estimation results for heterogeneous vertical location effect
(broken assortment).

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

Stretch 0.0636∗∗∗ 0.0609∗∗∗ 0.117∗∗∗ 0.121∗∗∗

(0.0163) (0.0148) (0.0291) (0.0280)

Eye 0.183∗∗∗ 0.174∗∗∗ 0.382∗∗∗ 0.379∗∗∗

(0.0170) (0.0162) (0.0330) (0.0324)

BrokenAssortment 0.0604∗∗ -0.0298 0.101∗∗ -0.0523

(0.0217) (0.0225) (0.0374) (0.0398)

Stretch× -0.0318 -0.0249 -0.0309 -0.0357

BrokenAssortment (0.0283) (0.0250) (0.0503) (0.0469)

Eye× -0.195∗∗∗ -0.174∗∗∗ -0.340∗∗∗ -0.334∗∗∗

BrokenAssortment (0.0273) (0.0263) (0.0507) (0.0502)

TV Controls No Yes No Yes

Sample size 36,876 36,876 36,876 36,876

Adj. R2 0.019 0.078 0.022 0.043

Standard errors are clustered at the product level and presented in

parentheses + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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(a) Broken assortment (b) Complete assortment

Figure A3.3: Heterogeneity of the vertical location effect with respect to a
broken assortment.

Market Concentration: We create a binary ProductFeature variable by di-

viding the products into two groups based on the HHI using the 50th percentile

of the HHI distribution. We also explored alternative split points using the mean,

yielding a similar finding. We set the low market concentration level to be the

base level and estimate Equation A3.2. The results are reported in Table A3.13

and Figure A3.4.

219



Table A3.13: Estimation results for heterogeneous vertical location effect
(market concentration).

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

Stretch 0.0474∗∗∗ 0.0490∗∗∗ 0.0933∗∗∗ 0.0950∗∗∗

(0.0108) (0.0108) (0.0211) (0.0211)

Eye 0.101∗∗∗ 0.100∗∗∗ 0.186∗∗∗ 0.184∗∗∗

(0.0109) (0.0109) (0.0212) (0.0212)

MarketConcentration(Low) -0.347∗∗∗ -0.333∗∗∗ -0.568∗∗∗ -0.546∗∗∗

(0.0197) (0.0198) (0.0384) (0.0386)

Stretch× 0.0134 0.0105 0.0464+ 0.0426

MarketConcentration(Low) (0.0141) (0.0142) (0.0276) (0.0277)

Eye× 0.0252+ 0.0245+ 0.143∗∗∗ 0.143∗∗∗

MarketConcentration(Low) (0.0141) (0.0141) (0.0274) (0.0276)

TV Controls No Yes No Yes

Sample size 36,876 36,876 36,876 36,876

Adj. R2 0.011 0.012 0.010 0.011

Standard errors are clustered at the product level and presented in

parentheses + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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(a) High market concentration (b) Low market concentration

Figure A3.4: Heterogeneity of the vertical location effect with respect to
market concentration.

Number of Substitute Products: We create a categorical ProductFeature

variable by dividing the products into three groups based on the number of sub-

stitute products using the 33rd and 66th percentiles of the number of substitute

products distribution. We set the low substitution level to be the base level and

estimate Equation A3.2. The results are reported in Table A3.14 and Figure A3.5.
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Table A3.14: Estimation results for heterogeneous vertical location effect
(number of substitute products).

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

Stretch 0.0463∗∗ 0.0452∗∗ 0.102∗∗∗ 0.100∗∗∗

(0.0155) (0.0151) (0.0284) (0.0277)

Eye 0.101∗∗∗ 0.100∗∗∗ 0.227∗∗∗ 0.226∗∗∗

(0.0152) (0.0150) (0.0307) (0.0304)

SubstituteProducts(Medium) -0.0758∗∗ -0.0572∗ -0.115∗ -0.0840+

(0.0277) (0.0272) (0.0491) (0.0485)

SubstituteProducts(High) -0.129∗∗∗ -0.0943∗∗ -0.257∗∗∗ -0.198∗∗

(0.0343) (0.0341) (0.0663) (0.0670)

Stretch× 0.00590 0.00870 0.0207 0.0247

SubstituteProducts(Medium) (0.0220) (0.0216) (0.0417) (0.0410)

Stretch× 0.0160 0.0177 0.0339 0.0362

SubstituteProducts(High) (0.0228) (0.0224) (0.0430) (0.0423)

Eye× -0.00577 -0.00514 -0.0135 -0.0128

SubstituteProducts(Medium) (0.0253) (0.0252) (0.0509) (0.0506)

Eye× 0.0510∗ 0.0481∗ 0.145∗∗ 0.140∗∗

SubstituteProducts(High) (0.0234) (0.0233) (0.0523) (0.0523)

TV Controls No Yes No Yes

Sample size 36,876 36,876 36,876 36,876

Adj. R2 0.025 0.027 0.027 0.028

Standard errors are clustered at the product level and presented in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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(a) High number of substitutes (b) Medium number of substitutes

(c) Low number of substitutes

Figure A3.5: Heterogeneity of the vertical location effect with respect to
the number of substitute products.

Package Size: We create a binary ProductFeature variable by dividing the

products into two groups based on the package size using the 50th percentiles of

the package size distribution. We also explored alternatives split points using the

mean, yielding a similar finding. We set the small package size level to be the base

level and estimate Equation A3.2. The results are reported in Table A3.15 and

Figures A3.6–A3.7.
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Table A3.15: Estimation results for heterogeneous vertical location effect
(package size).

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

Stretch 0.0401∗∗ 0.0389∗∗ 0.0830∗∗ 0.0802∗∗

(0.0152) (0.0147) (0.0271) (0.0267)

Eye 0.0884∗∗∗ 0.0845∗∗∗ 0.181∗∗∗ 0.170∗∗∗

(0.0173) (0.0174) (0.0321) (0.0326)

PackageSize(large) 0.0613∗ 0.194∗∗∗ 0.148∗∗ 0.261∗∗∗

(0.0311) (0.0303) (0.0521) (0.0532)

Stretch× 0.0289 0.0298 0.0591 0.0624

PackageSize(large) (0.0241) (0.0217) (0.0427) (0.0406)

Eye 0.0224 0.0245 0.118 0.128+

PackageSize(large) (0.0252) (0.0719) (0.0496) (0.0724)

TV Controls No Yes No Yes

Sample size 36,876 36,876 36,876 36,876

Adj. R2 0.018 0.092 0.026 0.050

Standard errors are clustered at the product level and presented in

parentheses + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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(a) Small package size (b) Large package size

Figure A3.6: Heterogeneity of the vertical location effect with respect to
package size.

(a) Small package size (b) Large package size

Figure A3.7: Heterogeneity of the vertical location effect with respect to
package size.

Flashiness: In our experiments, we keep images of all shelves during store visits

to archive these images for future reference. Additionally, the marketing team re-

sponsible for designing the planogram possesses images of all the products. These

images were used to calculate the flashiness level of the different products. More

specifically, to measure the flashiness, we employ two different metrics. The first

metric is based on the hue, color saturation, and color value of the product pack-

age, as proposed by Gorn et al. (1997). The second metric of flashiness is visual

saliency, which refers to the extent to which an object stands out from its sur-
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rounding objects (Gidlöf et al. 2017). We use the algorithm proposed by Itti et

al. (1998) to calculate the visual saliency of each product on the shelf, assigning a

saliency factor between 0 and 1 based on elements that are known to attract visual

attention, such as color, intensity, contrast, and edge orientation. We then create

a categorical ProductFeature variable by dividing the products into three groups

based on their flashiness levels using the 33rd and 66th percentiles of the flashiness

distribution. We set the low flashiness level to be the base level and estimate

Equation A3.2. The results are presented in Table A3.16 and Figures A3.8–A3.9.
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Table A3.16: Estimation results for heterogeneous vertical location effect
(flashiness).

(1) (2) (3) (4)

Quantity Quantity Revenue Revenue

Stretch 0.0606∗∗ 0.0583∗∗ 0.113∗∗ 0.112∗∗

(0.0205) (0.0189) (0.0380) (0.0369)

Eye 0.106∗∗∗ 0.101∗∗∗ 0.244∗∗∗ 0.233∗∗∗

(0.0214) (0.0210) (0.0435) (0.0435)

Flashiness(Medium) 0.0315 0.0214 0.0220 0.0190

(0.0362) (0.0324) (0.0630) (0.0590)

Flashiness(High) 0.0261 0.0264 -0.00459 -0.00721

(0.0367) (0.0328) (0.0631) (0.0597)

Stretch× -0.0165 -0.0164 -0.0241 -0.0279

Flashiness(Medium) (0.0297) (0.0277) (0.0529) (0.0512)

Stretch× -0.00829 -0.00803 0.00264 0.00487

Flashiness(High) (0.0282) (0.0257) (0.0511) (0.0496)

Eye× -0.00291 0.00128 -0.00426 0.00359

Flashiness(Medium) (0.0308) (0.0301) (0.0616) (0.0616)

Eye× -0.0156 -0.0170 -0.0216 -0.0172

Flashiness(High) (0.0307) (0.0297) (0.0609) (0.0606)

TV Controls No Yes No Yes

Sample size 36,876 36,876 36,876 36,876

Adj. R2 0.015 0.070 0.018 0.035

Standard errors are clustered at the product level and presented in

parentheses + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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(a) High level of flashiness (b) Medium level of flashiness

(c) Low level of flashiness

Figure A3.8: Heterogeneity of the vertical location effect with respect to
product flashiness.
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(a) High level of flashiness (b) Medium level of flashiness

(c) Low level of flashiness

Figure A3.9: Heterogeneity of the vertical location effect with respect to
product flashiness.
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5
Conclusions

In this thesis, the exploration into the realm of data analytics in healthcare

and retail operations management unfolds through three distinct essays, each

addressing pivotal issues in these domains. The primary objective of these

projects is to leverage data science to enhance the efficiency of healthcare

and retail operations.

In the first essay, the primary focus is the critical issue of crowding in emer-

gency departments (EDs). Drawing upon data from 500,000 patients across

eight hospitals, I employed a multimethodology approach to investigate the

reasons behind the EDs’ crowding issue in Quebec. Initially, my analysis

identified boarding congestion as one of the reasons behind ED overcrowding

in the studied hospitals. Further examination revealed an inverted-U shaped

relationship between boarding congestion and treatment time in EDs.

Utilizing econometric analysis, I demonstrated that the increased workload

on ED resources due to boarding patients, coupled with hospitalist visits trig-
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gered by boarding congestion, constitutes the primary cause of this observed

phenomenon. Subsequently, using an analytical framework, I introduced two

operational interventions aimed at mitigating the negative impact of board-

ing congestion on treatment time.

Simulation results indicate that implementing these two interventions to-

gether can result in a 68% reduction in the impact of boarding congestion,

providing valuable insights for informed decision-making in ED management.

In the second essay, I redirected my attention to the retail sector, focusing on

the growing trend of pickup partnerships. These partnerships empower online

retailers to provide in-store pickup services by collaborating with physical

stores. Within this study, I assessed two prevalent policies adopted by online

retailers in these partnerships: the fixed fee policy and the coupon policy.

Through the creation of a stylized model, I identified circumstances guiding

the choice between fixed fee and coupon policies. Additionally, the analysis

highlighted potential inefficiencies stemming from misaligned incentives and

proposed a new policy to enhance the overall efficiency of pickup partnerships.

In the third essay, I delved into the impact of sales amid simultaneous changes

in the vertical locations of multiple products within retail stores. I conducted

a novel field experiment spanning 20 weeks across six retail stores, revealing

that the effect of vertical location changes is contingent on product reorga-

nization and heterogeneous across products. The study quantifies the sales

boost at eye-level shelves and identifies product profiles benefiting the most

from this strategic placement.

Moreover, the research underscores the importance of a meticulous selection

of products at eye level and offers insights into optimizing planograms. These

optimizations have the potential to lead to profit increases of up to 3%.

In conclusion, the incorporation of data science into healthcare and retail op-

erations management marks a fundamental shift in the operational landscape

of these industries. The capability to leverage data for informed decision-

making, personalized experiences, and enhanced operational efficiency is re-
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defining the trajectory of healthcare and retail, presenting a promising out-

look for improved outcomes for businesses and the individuals they serve.

As these industries persist in embracing and adapting to the data-driven era,

the potential for innovation and positive impact is limitless. Throughout this

thesis, I demonstrate the tangible ways in which data science contributes to

the realms of healthcare and retail operations management.
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