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Abstract (English) 

Objectives: This systematic review aims to map existing surgical computer vision models, 

identify the leading disciplines in medical CV technology and pinpoint existing gaps as well as 

to study the segmentation tasks, open-source databases, types of neural networks, and available 

AI resources. 

Methods: This systematic review was performed according to the PRISMA 2020 statement 

guidelines. PubMed® database website was used to identify eligible studies. The search criteria 

included original works on surgical CV models, published between 2014 and 2024, written in 

English and conducted with data from humans. 

The extracted variables included the segmentation task, the surgical/medical discipline, the 

dataset type and source, the neural network type and the anatomical region in focus. 

Results: The search criteria identified 3,355 articles. After excluding non-eligible articles 

(3,266), abstracts of the remaining 89 were reviewed and 71 models were included in the final 

analysis. 

The stomach was the most popular organ in surgical CV models (12.7%) and the two most 

common disciplines were general surgery and gastroenterology. Most models concentrated on 

identifying pathological features (tumors, inflammation, etc.). Endoscopies were the leading 

source of data (26.7%), followed by laparoscopies (22.7%). Open-source datasets were used in 

22.5% of the studies. 

Nearly all models used CNNs with ResNet as the leading network architecture. Ten percent of 

the models incorporated pre-training methods, and optimization methods were employed in 12% 

of the studies. 
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Conclusion: This work provides a detailed analysis of surgical segmentation models from a 

surgeon's perspective. It offers recommendations for advancing surgical CV technology 

important for transitioning from proof-of-concept to practical application stage. 
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Abstract (French) 

Objectifs: Cette revue systématique vise à cartographier les modèles existants de vision par 

ordinateur en chirurgie, à identifier les disciplines dominantes dans la technologie de la vision 

par ordinateur médicale et à repérer les lacunes existantes. Elle étudie les tâches de segmentation, 

les bases de données open source, les types de réseaux neuronaux et les ressources en IA 

disponibles. 

Méthodes: Cette revue systématique a été réalisée selon les lignes directrices de la déclaration 

PRISMA 2020. La base de données PubMed® a été utilisée pour identifier les études éligibles. 

Les critères de recherche incluaient des travaux originaux sur les modèles de vision par 

ordinateur en chirurgie, publiés entre 2014 et 2024, rédigés en anglais et réalisés sur des données 

humaines. 

Les variables extraites comprenaient la tâche de segmentation, la discipline 

chirurgicale/médicale, le type et la source de données, le type de réseau neuronal et la région 

anatomique ciblée. 

Résultats: Les critères de recherche ont identifié 3,355 articles. Après exclusion des articles non 

éligibles (3,266), les résumés des 89 articles restants ont été examinés et 71 modèles ont été 

inclus dans l'analyse finale. 

L'estomac était l'organe le plus populaire dans les modèles de vision par ordinateur en chirurgie 

(12.7%) et les deux disciplines les plus courantes étaient la chirurgie générale et la 

gastroentérologie. La plupart des modèles se concentraient sur l'identification des 

caractéristiques pathologiques (tumeurs, inflammations, etc.). Les endoscopies étaient la 

principale source de données (26.7%), suivies par les laparoscopies (22.7%). Les bases de 

données open source étaient utilisées dans 22.5% des études. 
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Presque tous les modèles utilisaient des CNN avec ResNet comme architecture de réseau 

principale. Dix pour cent des modèles incorporaient des méthodes de pré-formation et des 

méthodes d'optimisation étaient employées dans 12% des études. 

Conclusion: Ce travail fournit une analyse détaillée des modèles de segmentation chirurgicale 

du point de vue d'un chirurgien. Il offre des recommandations pour faire progresser la 

technologie de la vision par ordinateur en chirurgie, essentielle pour passer de l'étape de preuve 

de concept à celle de l'application pratique. 
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Introduction 

Computer vision (CV) involves the automated interpretation of images and videos by computer 

systems to understand the environment. It draws inspiration from the human vision (1). A digital 

image is a two-dimensional array of numbers captured by modern cameras or created by imaging 

software. A video is a sequence of digital images. CV provides meaning to digital images. 

Numbers transform into objects, and by learning the relationships among these objects within an 

image, as well as tracking the transitions across consecutive images, the computer develops a 

sense of vision. 

Modern surgery increasingly relies on imaging, endoscopy, and minimally invasive methods. 

Endoscopic procedures allow surgeons to access internal organs through natural orifices or small 

incisions. Concurrently, sophisticated imaging techniques such as MRI and CT scans provide 

detailed internal views that guide surgical decisions and procedures. These minimally invasive 

approaches improve the accuracy of surgeries, significantly shorten hospital stays, and lessen 

postoperative pain (2–5). This shift towards technologically advanced surgical methods opens 

numerous opportunities for CV applications.  

The integration of CV technology into surgical practice holds great potential to advance modern 

medicine. By enabling automated visual data analysis, CV technologies can enhance surgical 

precision, reduce errors, and improve patient outcomes. Recent years have seen an explosion of 

surgical CV models with various applications, including pre-operative planning, intra-operative 

navigation, and postoperative assessment. These models are concentrated on several key 

segmentation tasks: detection of anatomical structures, identification of surgical instruments and 

phases, integration with robotic systems, tissue discrimination and surgical skill assessment. 
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Despite the rapid development and promising results, the application of CV technologies varies 

significantly across different surgical disciplines. Some areas, such as ophthalmology and 

gastroenterology are benefiting from multiple CV research projects, while in other medical fields 

CV research is minimal (6,7). Furthermore, the clinical implementation of these technologies 

varies widely, with significant discrepancies in the development and real-world application of 

CV models. 

Rationale and Objectives of the Review 

This systematic review aims to map the existing landscape of surgical CV models.  The goal is to 

identify which medical disciplines are leading CV technology development and where gaps exist 

that require further research and new models. This includes studying the milieu of the 

segmentation tasks, the use of open-source databases, the types of neural networks, and the AI 

resources utilized for building and training these models. 

Mapping of CV models to surgical disciplines and body areas 

This review will catalogue the various CV models according to the specific surgical disciplines 

and body areas. Analyzing the disciplines and organs used in current models will help to identify 

new research opportunities.  

Resource for new researchers  

The review will gather information about key components of CV research, including open-

source databases and popular neural network architectures. This will help new researchers in the 

field with planning and conducting their research. 
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Methods 

This systematic review was performed according to the PRISMA 2020 statement guidelines (8). 

The gathering and analysis of data, as well as results reporting and discussion, followed the 

checklist provided in the PRISMA 2020 publication.  

PubMed® database website was used to identify eligible studies. The last search was on April 15, 

2024. All the eligible studies were arranged in one group for analysis.   

Inclusion criteria 

• Original work on surgical CV models 

• Published in the last decade (2014 - 2024) 

• Written and published in English 

• Conducted with data from human subjects 

Exclusion criteria 

• Non-original articles (review, meta-analysis) 

• Retracted studies and studies with no abstract available 

• Non-CV studies and non-surgical or medical models 

• Non-human data (e.g. mice) 

Data collection process 

The following keywords were used to generate the search criteria: surgery, minimally invasive 

surgery (MIS), robotic surgery, laparoscopy, endoscopy, computer vision, object recognition, 

surgical scene segmentation, and anatomical structure identification. 

Using the advanced search option and the designated keywords, a search string was generated: 
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“(Surgery OR "Minimally Invasive Surgery" OR Laparoscopy OR Endoscopy OR "Robotic 

Surgery") AND (Computer Vision OR "Object Recognition" OR "Surgical Scene Segmentation" 

OR "Anatomical Structure Identification")”. 

Initial refining to exclude ineligible results was done by applying filters for publication date (10 

years), article type (not review or systematic review), article language (English), species 

(Humans) and text availability (Abstract). 

After initial refining, the abstracts of eligible studies were manually reviewed to exclude non-

surgical or medical models and retracted articles. 

The remaining articles were included in the analysis and reviewed by a single reviewer (the 

author of this thesis). The inclusion of all the eligible studies prevented selection bias and risk of 

bias assessment was not performed. 

Data items description 

For each article, the following variables were extracted, categorized and organized for analysis: 

1. Segmentation task: Identifies the specific computer vision task (e.g. surgical phase/step 

detection). Similar tasks were grouped by category. If a model performed multiple 

segmentation tasks, each task was counted independently. 

2. Surgical/medical discipline: Specifies the surgical or medical specialty in the study. In 

studies encompassing more than one discipline, each discipline was counted 

independently. Sub-specialties were categorized into the main disciplines. For instance, 

bariatric surgery, upper GI surgery and colorectal surgery were categorized as general 

surgery. Models involving imaging were categorized into radiology.   

3. Dataset type and source: Classifies the dataset used for CV model training (e.g. 

laparoscopy videos). Open-source datasets were also noted. 
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4. Neural network type and backbone/framework: Categorizes the types of neural networks 

used in the model’s architecture as well as the network’s backbone and pre-training 

methods. 

5. Anatomical region: Groups the models by organs or anatomical areas. 

All the relevant data was systematically collected to eliminate any possible biases.  

Ethical considerations 

This systematic review did not require ethical approval as it did not involve any patient data, and 

thus there were no concerns regarding privacy or confidentiality. The review solely involved the 

collection and analysis of publicly available academic literature and published research. 

The protocol of the review ensures that no copyright violations occur.  
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Results 

The search criteria identified 3,355 articles. 1,100 articles were published before 2014 and were 

excluded. 38 excluded for non-English language and 825 were omitted for data from non-human 

subjects. 1,093 were non-original articles (e.g. reviews or meta-analyses) and 210 were without 

an abstract, retracted or found to be non-CV studies. 

The remaining 89 abstracts were manually reviewed and 18 were excluded for non-surgical or 

medical models. The final analysis included 71 studies (Figure 1.1). 

 
Figure 1.1: Data selection flow chart (PRISMA diagram) 
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The stomach was the most prevalent organ in segmentation models (12.7%), followed by the eye 

(9.9%) and the esophagus (8.4%). Overall, the gastrointestinal (GI) system was the most 

segmented system of the human body. CV models, focusing on organs of the alimentary tract 

(from the esophagus to the rectum), comprised 36.6%. After adding digestive and endocrine 

organs (liver, gallbladder and pancreas) this ratio increased to 43.7%. Figure 1.2 shows a body 

map of all the CV projects included in the review.  

The two most common medical disciplines in CV models were general surgery and 

gastroenterology. Data from these two disciplines was the focus of 23.6% of models, each, and 

together they cover roughly 50% of all the models. Figure 2.3 illustrates the distribution of CV 

models by medical discipline. 

Overall, 13 different segmentation tasks were identified. Recognition of pathological anatomy, 

such as tumors, fractures and inflammation, was the most popular category, seen in 36.8% of the 

models. The second most common task was the detection of surgical instruments, found in 

18.4% of studies and surgical step/phase identification was the third (15.8%). Figure 2.4 

visualizes the spreading of segmentation tasks among models.  

Most data were derived from endoscopies and laparoscopic surgeries, 26.7% and 22.7% 

respectively. Open surgeries comprised 18.6%, mostly cataract and other eye surgery (50% of 

the open surgeries). Most data were derived from internal or restricted access sources, with only 

22.5% of the studies using open-source datasets. Some of the most notable open-source datasets 

are: 

1. CATARACTS – Consists of 50 high-definition videos of cataract surgeries.  

URL: https://ieee-dataport.org/open-access/cataracts 

https://ieee-dataport.org/open-access/cataracts
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2. Cholec80 – Contains 80 video recordings of cholecystectomy surgeries. 

URL: https://paperswithcode.com/dataset/cholec80 

3. Bypass40 – Includes 40 videos of gastric bypass surgeries. 

URL: https://arxiv.org/abs/2102.12218v1 

4. KVASIR - Features gastrointestinal tract images from endoscopies. 

URL: https://datasets.simula.no/kvasir/ 

5. MISAW - Includes 27 sequences of micro-surgical anastomosis. 

URL: https://paperswithcode.com/dataset/misaw 

6. PH2 – A dermoscopic image database of skin lesions. 

URL: https://github.com/dataset-ninja/ph2 

7. ISIC – A collection of dermoscopic images for melanoma diagnosis. 

URL: https://www.isic-archive.com 

8. EndoVis – includes surgical videos and images for various tasks. 

URL: https://www.endovis.org 

9. PTB ECG – Contains ECG recordings with clinical summaries. 

URL: https://physionet.org/content/ptbdb/1.0.0/ 

10. MICCAI 2017 – Various datasets from the MICCAI 2017 challenge, including liver 

tumor segmentation and robotic instrument segmentation. 

URL: https://github.com/ternaus/robot-surgery-segmentation 

11. BCCD – A small-scale dataset for blood cell detection, that includes annotated images 

of white and red blood cells. 

URL: https://github.com/Shenggan/BCCD_Dataset 

https://paperswithcode.com/dataset/cholec80
https://arxiv.org/abs/2102.12218v1
https://datasets.simula.no/kvasir/
https://paperswithcode.com/dataset/misaw
https://github.com/dataset-ninja/ph2
https://www.isic-archive.com/
https://www.endovis.org/
https://physionet.org/content/ptbdb/1.0.0/
https://github.com/ternaus/robot-surgery-segmentation
https://github.com/Shenggan/BCCD_Dataset
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12. LISC – For leukocyte segmentation and classification, includes hematological images 

of peripheral blood. 

URL: https://universe.roboflow.com/wbcs/wbc-lisc 

13. LUNA16 – For pulmonary nodule detection in CT scans, annotated by experienced 

radiologists. 

URL: https://luna16. grand-challenge.org 

14. Ali Tianchi – Includes CT scans for pulmonary nodule prediction. 

URL: https://tianchi.aliyun.com 

15. HAM10000 – 10,015 dermoscopic images of pigmented skin lesions.  

URL: 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T 

16. VocalFolds - Dataset of 536 laryngeal images.  

URL: https://github.com/imesluh/vocalfolds 

  

https://universe.roboflow.com/wbcs/wbc-lisc
https://luna16.grand-challenge.org/
https://tianchi.aliyun.com/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T
https://github.com/imesluh/vocalfolds
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Figure 1.2: Map of computer vision models 
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Figure 1.3: Distribution of medical disciplines in computer vision models

 
 

Nearly all models utilized convolutional neural networks (CNNs). ResNet was the leading  

architecture of CNNs, used in 18.6% of the models. Earlier architectures, AlexNet and VGG 

(Visual Geometry Group) were used in 3% and 1% of the models respectively. MobileNet was 

seen in 3% of the models and GoogleNet (Inception) in 5%. 

Ten percent of the models incorporated pre-training methods using visual data from ImageNet 

and Microsoft COCO (Common Objects in Context) datasets. 

Optimization methods such as SENet (Squeeze-and-Excitation Network), YOLO (You Only 

Look Once) and YOLACT (You Only Look At CoefficienTs) were employed in 12% of the 

studies.  
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Detectron (Facebook), Tensorflow (Google) and IBM Visual Insights (IBM) were the most 

common object detection and segmentation platforms. 

Figure 1.4: Spreading of segmentation tasks in computer vision models 
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Figure 4. Spreading of segmentation tasks in CV models
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Discussion 

This review presents an analysis of surgical segmentation models from the surgeon’s 

perspective. Of the 3,355 academic articles found in the original search, 71 were found to be 

eligible according to our inclusion/exclusion criteria and were systematically reviewed. The 

majority of the studies were from general surgery or gastroenterology, and the GI tract was the 

most segmented anatomical system (Figures 1.2, 1.3). While there is a clear correlation between 

the anatomical site and the medical discipline it is unclear why other medical disciplines are 

underrepresented in current segmentation models. This may be partially explained by the 

availability of open-source and limited-access surgical datasets. Of the 16 open-source datasets 

and one limited-access database of the Japanese Society of Endoscopic Surgery (JSES), six 

(35.3%) contain images or videos of the GI tract. CV models of ophthalmic surgeries, a 

discipline with good representation (9.7%), relied on open-source data (CATARACTS dataset) 

in 33.3% of the studies. These findings likely explain the low number of models in some 

disciplines, such as neurosurgery (1.4%), with few or no available open-source data. Therefore, 

to increase the spread of CV technology to various medical fields, it is imperative to develop 

high-quality open-source datasets. This data can be derived from volunteers, anonymized real 

medical or surgical data or new data created with generative AI (9).  

The most common segmentation tasks included the detection of pathological changes in normal 

anatomy, identification of surgical instruments and recognition of surgical steps or phases 

(Figure 2.4). Most models (71%) focused on one of these three categories. There was a 

redundancy in each of these categories despite existing models with good accuracy. For powerful 

pathology detection models, the use of multiple sources may be logical due to the extreme 

variability of this type of data and the high cost of overlooking. However, the detection of 
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surgical instruments requires less data and many instruments are shared between different 

surgical disciplines. Moreover, robust algorithms for this purpose were previously published 

(10). Few of the analyzed models concentrated on the detection of surgical anatomy. It was 

mostly anatomical landmarks detection (10.5%), rather than specific anatomical structures 

(6.6%). Upgrading surgical CV technology from the proof-of-concept stage to the next phase 

with practical applications in real surgery requires a coordinated approach. Similarly to The 

Human Genome Project (11), it is time for complete segmentation of the human anatomy. This 

can be achieved only by organized and systematic collection of labelled surgical data, system by 

system and organ by organ. While this task is undoubtedly challenging and requires significant 

time and resources, the benefits it yields are even greater and well worth the effort. The surgical 

robot will evolve from a device that passively mimics the surgeon’s movements to an advanced 

system that enhances surgical precision and assists with operating decision-making. This will 

pave the way for autonomous surgical machines. 

This review found that CNNs were the backbone of most CV models, which is not surprising. By 

exploring the neural network architectures employed in the studies we can learn the 

fundamentals of CV models and analyze common optimization methods. ResNet (Residual 

Network), the most common type of CNN in this review was published in 2015 by Microsoft 

Research (12,13). Earlier neural network designs, like AlexNet and VGGNet, faced a challenge; 

as more layers were added during training, accuracy began to decline. ResNet architecture solved 

this problem by enabling the use of extremely deep neural networks while maintaining very high 

accuracy. The original publication introduced a 152-layer residual network that achieved a 

staggering 3.57% error rate, surpassing the average 5% human error rate (13). 



Ó Yoav Brezinov 2024 28 

In machine learning (ML), the “learning” is either by supervised or unsupervised methods or in 

some cases a mix of the two (semi-supervised). In supervised learning, the model is trained on 

labelled data. With high-quality labels and data, this is the most accurate training method, but 

also the most resource-intensive. When labelled data is unavailable or resources are scarce 

unsupervised or semi-supervised methods are used. Unsupervised learning can be used for 

exploring unknown patterns or categories, such as the study of genes or diseases (14,15). For 

medical CV projects, the supervised approach is the most common and associated with the best 

results (16). Semi-supervised learning is based on partially labelled data. Reinforcement 

learning, another common type of ML is based on rewards and penalties. It can be used for 

robotic motion, decision-making and drug dosing. For training a fully automated robotic system, 

the combination of multiple ML methods is prudent.  

In this review, analyzing surgical CV systems, it was found that supervised ML was used 

consistently across all the models. Ten percent of the models incorporated transferred learning. 

This method reuses models trained on related data at the starting point of model training. 

Alternatively, labelled data (not necessarily medical) is used for pre-training. This improves 

model performance on the target task, especially when the new dataset is small (17). 

ImageNet and Microsoft COCO were the most common sources for pre-training. 

1. ImageNet - Large visual database with millions of annotated images organized 

according to the WordNet hierarchy, where each node is depicted by hundreds or 

thousands of images. 

URL: http://www.image-net.org/ 

http://www.image-net.org/
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2. COCO (Common Objects in Context) - Contains over 330,000 images, with more than 

200,000 labelled images and over 1.5 million object instances. 

URL: https://cocodataset.org/ 

3. YouTube-8M - Labelled video dataset that consists of millions of YouTube videos with 

high-quality annotations of 3,800 visual entities. 

URL: https://research.google.com/youtube8m/ 

Hosseinzadeh et al. (17) tested transferred learning from general objects to medical images. They 

found that for image segmentation, it is more important to have detailed, specific features rather 

than broad, general ones and self-supervised learning models on ImageNet outperform 

supervised ones. They conclude that ImageNet models can be improved with training on data 

specific to the medical field. This statement underscores the significance of developing 

extensive, open-source databases of medical images. 

Twelve percent of the studies employed other optimization methods such as SENet, YOLO or 

YOLACAT. 

1. SENet (Squeeze-and-Excitation Network) - Enhances feature representation, best for 

detailed classification tasks. 

2. YOLO (You Only Look Once) - Fast object detection, optimal for real-time 

applications. 

3. YOLACT (You Only Look At CoefficienTs) - Combines fast detection with instance 

segmentation, suitable for applications needing both speed and detail. 

By combining all the information from this review, we can summarize the basics of a surgical 

CV project. First, it’s essential to define the objects of interest and the segmentation task. Since 

data from existing models can be transferred to new models, it’s important to focus on areas with 

https://cocodataset.org/
https://research.google.com/youtube8m/
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low CV coverage to avoid redundancy. The next step is to select the data source. Some open-

source datasets were previously listed. If a new dataset is created, it is advisable to make it 

publicly available whenever possible. The quality of the labels should be addressed, and 

specialized personnel should be involved when labelling difficult anatomical structures. Since 

there are effective models for delineating the borders of a structure by drawing a bounding box 

or clicking on the structure (e.g., Facebook's Segment Anything Model), the use of polygons to 

create manual masks is unnecessary (18). Once the labelled dataset is created, the model can be 

built and trained. The appropriate neural network architectures can be selected such as ResNet 

and optimization techniques like YOLACT can be utilized. Supervised learning is the most 

popular training method.  Semi-supervised techniques are employed when the number of labels 

is limited. Transferred learning is important for improving performance. Optimal pre-training 

involves using medical or surgical data, which is scarce. Nonetheless, pre-training with general 

objects (e.g., ImageNet dataset) is also effective. Although not covered by this review, it is 

equally crucial to consider the content of the testing set and model performance metrics. Finally, 

making the trained model available on code-sharing platforms like GitHub can facilitate 

knowledge transfer to future projects. 

Strengths and Limitations 

The strength of this review is the systematic analysis of a large number of studies, providing a 

comprehensive overview of current surgical CV models. It offers insights into areas with low CV 

coverage, provides sources of surgical data, and outlines a general framework for model 

structure and training. 

This review has limitations. It mainly covers general surgery and gastroenterology and may not 

represent the full scope of surgical CV models. Some studies may be overlooked when scanning 
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a single archive with strict search criteria. This review does not cover commercial CV models 

that have not been published in the academic literature. Since conducted by a single reviewer 

some selection biases and subjective conclusions may persist. 

Conclusion 

This work provides a detailed analysis of surgical segmentation models from a surgeon's 

perspective, identifying trends and gaps in the current research. It offers valuable 

recommendations for advancing surgical CV technology. These efforts are important for 

transitioning CV models from proof-of-concept to practical applications, upgrading MIS and 

paving the way for autonomous surgical systems. 
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Abstract (English) 

Objectives: This work aims to develop and validate an AI algorithm for tissue delineation in 

robotic gynecologic cancer surgery. 

Methods: Videos of robotic surgeries for gynecologic cancer were collected and catalogued. The 

timestamps for each surgical phase were recorded. Instances of anatomical structures such as the 

ureter, obturator nerve, IP ligament, and internal and external iliac arteries were also 

documented. Each frame was labelled by a surgeon using the polygonal mask method. With this 

data, a surgical computer vision algorithm was created employing supervised training and 

transferred learning methods.  

Results: From 2013 to 2022, 897 videos were recorded. 4,526 frames were extracted and 6,040 

masks were created. The AP in the training set was 42.94%. AP at 50% IOU was 87.6% and 

37.5% with a 75% IOU threshold. Smaller objects had lower AP, 23.92% compared to medium 

and large objects, 53.14% and 57.34%, respectively. 

Conclusion: This is the first CV model focusing on the automatic recognition of key pelvic 

structures with high segmentation complexity. Future versions with improved performance 

coupled with existing algorithms for surgical tool recognition could be implemented in robotic 

surgeries assisting in surgical navigation, increasing surgical precision and reducing intra-

operative complications. 

The proof of concept established here sets the stage for future research and implementation of 

CV in robotic surgeries. 
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Abstract (French) 

Objectifs: Ce travail vise à développer et valider un algorithme d'IA pour la délimitation des 

tissus en chirurgie gynécologique robotisée du cancer. 

Méthodes: Des vidéos de chirurgies robotiques pour le cancer gynécologique ont été collectées 

et cataloguées. Les horodatages de chaque phase chirurgicale ont été enregistrés. Des cas de 

structures anatomiques telles que l'uretère, le nerf obturateur, le ligament IP et les artères iliaques 

internes et externes ont également été documentés. Chaque image a été étiquetée par un 

chirurgien selon la méthode du masque polygonal. Avec ces données, un algorithme chirurgical 

de vision par ordinateur a été créé utilisant une formation supervisée et des méthodes 

d’apprentissage transférées.  

Résultats: De 2013 à 2022, 897 vidéos ont été enregistrées. 4,526 images ont été extraites et 

6,040 masques ont été créés. L'AP dans l'ensemble de formation était de 42.94%. AP à 50% 

d'IOU était de 87.6% et 37.5% avec un seuil de 75% d'IOU. Les objets plus petits avaient un AP 

inférieur, 23.92%, par rapport aux objets moyens et grands, 53.14% et 57.34%, respectivement. 

Conclusion: Il s'agit du premier modèle CV axé sur la reconnaissance automatique des 

structures pelviennes clés présentant une complexité de segmentation élevée. Les futures 

versions offrant des performances améliorées, associées aux algorithmes existants de 

reconnaissance des outils chirurgicaux, pourraient être mises en œuvre dans les chirurgies 

robotisées facilitant la navigation chirurgicale, augmentant ainsi la précision chirurgicale et 

réduisant les complications peropératoires. 

La preuve de concept établie ici ouvre la voie à de futures recherches et à la mise en œuvre du 

CV dans les chirurgies robotiques.  
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Introduction 

The rationale for this work is the integration of computer vision (CV) into minimally invasive 

surgery (MIS). Surgery has evolved from large incisions and inert tools to operations performed 

through keyhole openings with sophisticated devices. While effective, this technology has 

integral challenges related to abdominal access, intra-abdominal navigation and access to deep 

tissues. The lack of haptic feedback in robotic surgery (RS) demands advanced surgical skills 

and complicates tumor palpation to verify its complete removal. CV technology holds the 

potential to overcome all these challenges and beyond. By leveraging its capabilities, surgical 

precision can be increased, reducing complications and improving oncological outcomes. The 

integration of CV with RS is the first step towards autonomous surgical systems. 

 

The objective of this project is to develop a CV model for the automatic identification of 

complex pelvic structures encountered in gynecologic oncology surgeries.   
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Literature review 

This literature review will explore three fundamental domains: surgical treatment of 

gynecological cancer, minimally invasive surgery (MIS), and computer vision. The final part of 

the review will concentrate on integrating computer vision with MIS methods to improve the 

surgical treatment of gynecological cancer. 

Surgical treatment of gynecological cancer 

Surgery is a key factor in the diagnosis and management of gynecological cancers. Worldwide, 

more than one million surgeries are performed each year for the three most common 

gynecological cancers: endometrial, ovarian and cervical. One-tenth of these surgeries are 

performed in northern America (Table 2.1).  

Table 2.1: Gynecological cancer incidence, mortality and surgical burden 
 Endometrial Ca. Ovarian Ca. Cervical Ca. Total 

Incidence  
World 420,368 324,603 662,301 1,407,272 
Northern 
America 

73,977 24,484 15,654 114,115 

Mortality  
World 97,723 206,956 348,874 653,553 
Northern 
America 

13,543 15,554 6,692 35,789 

Surgeries (est.)  
World ~407,000 ~292,000 ~331,000 1,030,000 
Northern 
America 

~71,000 ~22,000 ~7,000 100,000 

• Source: International Agency for Research on Cancer, WHO (1).  
• Surgeries are estimated by assuming that most Stage I-III endometrial (97%) and ovarian (90%) cancers 

are treated surgically. For cervical cancer surgery is performed mostly for localized disease and only for a 
small portion of regional and distant cases – 50% of all cases. 

 

Most cases of endometrial cancer (EC), the most common gynecological cancer in northern 

America, are confined to the uterus at diagnosis (2). Surgery is the main treatment, with adjuvant 

radiotherapy prescribed according to patients’ age and histological risk factors. Chemotherapy is 
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reserved for patients with advanced-stage or high-grade cancers (3). The standard surgery 

includes total hysterectomy (removal of the uterus body and cervix), bilateral adnexectomy 

(removal of both ovaries and fallopian tubes) and bilateral lymphadenectomy (removal of pelvic 

and para-aortic lymph nodes). The lymphadenectomy can be either complete (removal of all the 

lymph nodes in the area) or by mapping and removing sentinel lymph nodes only. In some very 

low-risk patients, the lymphadenectomy may be omitted, on the other hand, any suspicious nodes 

must be removed (4). Additional procedures may be performed for staging or disease control, 

such as omentectomy and tumor debulking.  

The surgery can be performed either by laparotomy or by minimally invasive methods (next 

section). MIS is widely used and recommended for the surgical treatment of EC (4). Although 

hysterectomy can be performed vaginally, this method is not recommended for oncological cases 

and will not be discussed. 

Most patients (80%) undergo these surgeries without or with only mild complications (5). 

Nausea, ileus and pain are the most frequent complications. Blood transfusions and infections are 

also common. More severe, infrequent complications, include wound dehiscence, 

thromboembolic events and injuries to vital organs (5). Some complications can be mitigated 

with MIS, but the rate of intra-operative organ injuries is similar or even higher in some reports 

(6). Bladder, bowel, ureteric and vascular injuries are most prominent.  

Ovarian cancer (OC), the second most common gynecological cancer in North America, is 

usually in advanced stage when diagnosed (7). Surgery remains the main component of treatment 

with adjuvant or neo-adjuvant chemotherapy (NACT). The surgical goal is the complete removal 

of macroscopic tumor tissue (debulking) and the amount of residual disease has a direct impact 

on patients’ survival (7). In addition to tumor debulking, hysterectomy with bilateral 
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adnexectomy and omentectomy are routinely performed. Lymphadenectomy is reserved for 

bulky lymph nodes and staging. Tumor debulking may involve bowel resection, diaphragmatic 

stripping, splenectomy, peritonectomy and other radical procedures. In early-stage disease, the 

surgery is limited to the removal of the uterus with the adnexa, infracolic omentectomy, multiple 

biopsies of the peritoneum and any suspicious lesions, and selected pelvic and para-aortic 

lymphadenectomy.  

Today, most of these surgeries are performed by minimally invasive methods. MIS is also 

possible in advanced OC, especially in cases of interval debulking (surgery after NACT) with a 

good response to NACT (8). Studies comparing oncological outcomes of interval debulking with 

primary debulking have shown similar results (9).  

OC surgeries are associated with a higher rate of complications compared to EC, due to a higher 

ratio of advanced cases and more radical resections. Nevertheless, the types of complications are 

similar and MIS has not been shown to reduce the rate of organ injuries. 

Cervical cancer is the most common gynecological cancer worldwide. However, it is the least 

common of the three cancers in Western countries, as shown in Table 2.1. This decrease is due to 

the universal implementation of HPV immunization and screening for pre-invasive cervical 

changes. 

Like other cancers, the type of surgical treatment depends on the disease stage. Small tumors 

confined to the cervix with limited depth of invasion can be treated by conization (resection of 

the distal part of the cervix) or by simple hysterectomy with or without adnexectomy (10,11). 

Deeply invasive tumors limited to the upper two-thirds of the vagina can be treated by radical 

hysterectomy (RH) or by chemoradiation based on clinical factors. RH involves the removal of 

the uterus, the proximal part of the vagina, the uterosacral and uterovesical ligaments, and the 
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parametrium bilaterally with pelvic lymphadenectomy. Some advanced cases and recurrences are 

treated by pelvic exenteration – complete resection of the pelvic organs, including the urinary 

bladder and the distal part of the intestine (rectum and sigmoid). 

While MIS is routinely used for simple hysterectomies and in selected pelvic exenterations, its 

use in RH has been restricted following the LACC study. This study found higher mortality and 

recurrence rates in patients after MIS compared to laparotomy (12). 

The core of onco-gynecological surgeries is the excision of the uterus with the uterine cervix and 

the adnexa (ovaries and fallopian tubes) along with pelvic lymph node dissection. All these 

procedures can be performed by MIS. 

Minimally Invasive Surgery (MIS) 

MIS employs endoscopic techniques and specialized instrumentation to conduct surgical 

interventions through small (1-2cm) incisions, markedly reducing the physical trauma 

traditionally associated with open surgical procedures. To visualize the abdominal content and 

create operating space the abdomen is inflated with CO2 (inert and transparent gas). Then, a 

camera with a light source is introduced into the abdominal cavity and the image is displayed on 

a screen. Next, surgical tools, specially designed for laparoscopy, are inserted. The surgeon looks 

at the screen and operates with the tools inside the abdomen (Figure 2.1). 

Robotic surgery (RS) is an advanced evolution of laparoscopy. In robotic surgery, the surgeon 

operates a console that controls robotic arms docked to surgical instruments and a 3D camera. 

This setup provides enhanced dexterity, a greater range of motion, and a magnified, three-

dimensional view of the surgical site. The robotic system translates the surgeon's hand 

movements into smaller, more precise movements. The surgeon is capable of performing 
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complex procedures with increased precision and reduced fatigue, given the ergonomic design of 

the console. 

 

Figure 2.1: Image of laparoscopic surgery 

 
• Royalty-free image. Downloaded from https://pixabay.com/ 

 

Although experiments with laparoscopic devices started more than a century ago, real 

laparoscopies began only in the 70s after the development of fiber optic technology (13). MIS 

was initially adopted by gynecologists for tubal ligation. Ten years later, in 1988, the first 

laparoscopic cholecystectomy (excision of the gall bladder) was performed and after a relatively 

short adaptation period, it became the standard of care. The evident advantages of MIS, such as 

less post-operative pain, faster recovery and minimal scaring have contributed to its widespread 

https://pixabay.com/
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recognition and acceptance (14,15). Reducing post-operative pain, not only improves patients’ 

satisfaction but also decreases the need for pain medication and the associated side effects. 

Furthermore, improved pain control after surgeries is associated with lower rates of other 

surgical complications, such as atelectasis (collapsed lung sections) and thromboembolic events 

because less abdominal pain enables deeper inspiration and earlier mobilization. This results in 

faster recovery and shorter hospital stay, which increase surgical service capacities and reduce 

operative costs. Oncological patients also benefit from shorter intervals between surgery and 

adjuvant chemotherapy. 

The introduction of MIS into surgical oncology was more gradual. Although diagnostic 

laparoscopic procedures had started in 1971, therapeutic MIS began twenty years later with the 

development of advanced coagulation and tissue dissection tools (13). The first laparoscopic 

hysterectomy was reported in 1989 and pelvic lymphadenectomy in 1993 (16). In the following 

years, minimally invasive gynecologic oncology was continuously developed and today this is 

the standard method for EC (4). Obesity is common among patients with endometrial cancer and 

MIS has proven to be beneficial for these cases (17,18). 

Robotic surgery debuted 25 years ago with the first report of robotically assisted tubal re-

anastomosis (19,20). Due to improved ergonomics and visualization, this MIS method is gaining 

popularity in gynecologic oncology enabling to perform the most sophisticated surgeries with 

great precision. Casarin et al. explored the modes of endometrial cancer surgery from 2008 to 

2015 and found an increase from 9% to 57% of these surgeries performed robotically (21). They 

showed that RS had better outcomes and comparable costs. The feasibility of RS in ovarian 

cancer after NACT was affirmed by Abitbol et al. and others (22–24).    
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While the benefits of MIS are clear, some concerns regarding the use of this technique in 

oncology exist. First, the method requires special training and expensive equipment not readily 

available. Second, it requires larger operating rooms and additional operating time. Palpation is 

not possible and there is a concern about missing tumor tissue or inadequate tumor resection. 

There were reports on port-site metastasis and the negative effect of pneumoperitoneum on 

tumor spread (25–27). While concerning, many of these claims were disputed. Still, no 

prospective studies comparing MIS with laparotomy for ovarian cancer are available, and the 

retrospective data is inconclusive, mandating judicious use.     

The advanced capabilities of robotic systems enable us to perform the most complex oncological 

procedures – debulking for ovarian cancer and pelvic exenteration for recurrent cervical cancer. 

The challenge is to develop MIS further to make it safer, faster and easier to perform. This, 

potentially, will translate to cost reduction and improved surgical and oncological outcomes. 

One compelling method to achieve that is by incorporating computer vision into MIS systems. 

Computer Vision (CV) 

Computer vision (CV) is a group of artificial intelligence (AI) algorithms that process visual data 

and make decisions or provide instructions. The core of CV models is the ability to recognize 

patterns in a digital image. Training a computer to “understand” the scene requires a substantial 

amount of data and sophisticated machine-learning methods.  

Similar to a baby learning its environment, a computer needs to learn from multiple different 

images. The most common method is supervised learning, where the objects in the image are 

outlined and labelled. The machine “sees” a digital image as a matrix of numbers. Each cell in 

this matrix is a pixel (colored dot). The location of the cell in the matrix is the location of the 

pixel in the image, and the number stored in this cell is the color of this pixel (Figure 2.2). By 
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outlining an object in the image, the computer learns its shape and colors. When a new image is 

presented, it will try to identify familiar patterns and classify the objects (object detection). For 

example, an algorithm to identify a tumor on a snapshot from surgery requires multiple images 

of surgical scenes with and without tumors for training. Each image has to be labelled by 

marking the areas of the tumor and the normal tissue. A portion (usually 20-25%) of these 

images is used for testing the algorithm’s accuracy (internal validation). The accuracy can be 

improved by choosing a different training model and by adding labelled data. 

 
Figure 2.2: The digital image (illustration) 

 

 

The introduction of neural networks revolutionized computer vision and many models available 

today surpass human vision capabilities. Deep learning is a subset of machine learning that 

involves neural networks with many layers. Convolutional neural networks (CNNs) are a 

specific type of deep learning model that incorporates convolutional layers. CNNs are used with 

great success for object detection, image segmentation, facial recognition, and medical image 

analysis (28). Their convolutional part involves a filter (kernel) applied to an image to produce a 

feature map. This operation effectively captures patterns in an image, such as edges, textures, 

and shapes. The number of layers (network depth) is equal to the number of filters applied. By 

stacking multiple convolutional layers, with each layer capable of recognizing more complex 
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patterns, CNNs can learn increasingly complex features (29,30). This makes them particularly 

effective for image and video recognition (Figure 2.3). U-Net, DeepUnet, ResNet and DenseNet 

are the most popular CNN models used for medical image analysis (30). 

Performance metrics are used to compare and assess machine learning models. For CV models, 

the interception over union (IOU) is used to evaluate the accuracy of object detection (Figure 

2.4).  

 

Figure 2.3: Convolutional neural network architecture 

 
 

 

Interception is the area of overlap between the ground truth (manual mask of the object) and the 

model prediction. Union is the sum of these areas. The best possible IOU is 100% when the 

masks are identical. In reality, the prediction cannot be perfect and a threshold is used according 

to task requirements. Mean average precision (mAP) is an important metric to estimate the 

detection of multiple objects within an image. It is a combination of precision ( !"
!"#$"

) and recall 

( !"
!"#$%

). While precision is the ratio of correct predictions from all the predictions, recall is the 

ratio of correct predictions from all the possible objects. Average precision (AP) is calculated 
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individually for each class of objects. In a model designed to detect surgical tools, tumors and 

blood vessels in an image of a surgical scene, the AP is calculated separately for each type 

(class) of objects. The AP is computed by plotting several precision-recall curves with different 

IOU thresholds. This method avoids the problem of choosing a single IOU threshold to evaluate 

the model. Finally, the mAP is the average of APs of all the classes. Today, mAP is the standard 

metric used by computer vision researchers to evaluate object detection models. 

Existing CV models were able to recognize the surgical phases of cholecystectomy with 90% 

accuracy (31,32) and evaluate surgical skills with high precision (33). A robust model for 

detecting polyps during colonoscopy was developed (34) and strong models for surgical tools 

detection exist (35). The existing data and technology can be developed to enhance many 

minimally invasive surgical procedures, including gynecologic oncology.  

 

Figure 2.4: Intersection over Union (IOU) 

 
 
 

Integrating CV with MIS to improve surgical and oncological outcomes 

Combining CV with MIS is like mixing two powerful ingredients to create a super medicine. The 

unique set-up of laparoscopic and robotic surgery creates a solid foundation for the application of 

computer vision technologies (32). This fusion can make surgeries more precise and efficient and 

set the stage for the development of autonomous surgery in the future. 
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Complete tumor removal is a key component of oncologic surgery and is strongly associated 

with progression-free and overall survival (36). Existing methods to improve intra-surgical tumor 

detection include pre-operative imaging, palpation of abdominal organs and infusion of tumor-

specific fluorescence dyes (37). Since RS systems lack haptic feedback, palpation is not possible 

and the imaging techniques are invasive and associated with adverse effects. Tumor detection by 

CV is a non-invasive and potentially very effective method. Furthermore, it may facilitate the 

detection of microscopic and “hidden” tumor tissue by incorporating hyperspectral imaging and 

fusion with computed tomography (CT) scans (38,39). 

Surgical navigation is another domain that can be enhanced with CV. Some tumors are very 

challenging to locate, due to their size and location. Although detected pre-operatively by 

positron emission tomography (PET) scanning, it takes a great deal of time to find and resect 

them. Usually, they are located retroperitoneally, or deeply embedded in abdominal tissue, 

impossible to see with the naked eye. CV algorithm can assist in locating those tumors by fusion 

of PET and CT scans and surgical image registration. Every modern smartphone contains a 

gyroscope and accelerometer and these sensors are small enough to be installed in a dissection 

tool. Then, by using an accessible anatomical point as a reference (e.g. aortic bifurcation) the AI 

model can navigate the surgeon from this point to the tumor. 

Lymph node dissection, a routine procedure of many oncological surgeries, can cause significant 

injuries to major blood vessels, the obturator nerve and the ureters. The resection of tumor tissue 

from healthy organs and dissection of the bladder from the uterine cervix during hysterectomy 

are challenging and associated with significant morbidity. Some of these complications may be 

avoided by CV methods. First, the computer can assist visually by delineating important 

anatomical structures. Second, it can use audio alerts to warn the surgeon when a surgical tool is 



Ó Yoav Brezinov 2024 49 

dangerously close to a vital organ. Lastly, the tools themselves can be manipulated by the 

computer when in proximity to certain structures. For example, thermal injuries of the ureter are 

caused by electrocautery tools during dissection in the area. CV algorithm trained to detect 

ureters can manipulate the energy of the tool according to its distance to the ureter, potentially 

avoiding those injuries. 

CV models for tumor detection, surgical navigation or dissection require training on labelled 

surgical data. Similar to surgeons, comprehensive anatomical knowledge is an essential 

component of any surgical CV algorithm. In this project, a large database of surgical images was 

created and labelled to produce a working prototype of a surgical CV model.  
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Methods 

Data collection 

Video data was collected from consecutive robotic surgeries in the Department of Gynecologic 

Oncology at the Jewish General Hospital (JGH) from 2013 to 2022. The videos were captured by 

Intuitive da Vinci surgical system proprietary endoscopic camera and recorder. The recording 

started with the activation of the camera and concluded following its retraction from the 

abdominal cavity at the end of the surgery. Segments of the procedure before introducing the 

camera and after its removal were not captured on video. In total 897 videos were collected and 

organized into a database. Most videos are between 2-4 hours in length. 

Data labelling 

The supervised machine-learning method was used for algorithm training. The video content was 

catalogued by surgical phases and anatomical structures with the corresponding timestamps 

(Table 2.2). Clips with ureters and obturator nerves were used for frame extraction. Label Studio 

ver. 1.11.0, an open-source data labelling platform, was used for labelling. The frames were 

uploaded to the labelling platform and annotated by a surgeon (the author of this thesis) utilizing 

both semantic and polygonal segmentation methods (Figure 2.5). In addition to labelling the 

structures of interest (ureters and obturator nerves), adjacent anatomical structures were also 

segmented to increase the algorithm’s accuracy. Frames of indocyanine green (ICG) imaging, 

used for sentinel lymph node mapping, were also labelled. 
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Table 2.2: Surgical recordings catalogue (sample) 
 Surgery 

ID 
Clip 
name 

Surgical 
Phase 

Anatomical 
Structure 

Side Start 
Time 

End 
Time 

Comments 

1 YO12345 Vid001 Retroperitoneal 
Dissection 

Ureter Right 1:10:15 1:12:29 Bleeding 

2 --- Vid002 Retroperitoneal 
Dissection 

Ureter Left 1:42:12 1:53:41 --- 

3 --- Vid003 Lymphadenectomy Obturator 
n. 

Right 2:12:23 2:17:56 EndoBag 

4 AV67890 Vid001 Uretrolysis Ureter Right 0:55:43 1:06:12  

5 --- Vid002 Uretrolysis Ureter Left 1:31:01 1:35:23  

6 --- Vid003 Vaginal vault 
closure 

Ureter Both 2:36:12 2:45:10 Gauze 

7 BR54321 Vid001 Ligation of the IP 
ligament 

Ureter Right 1:14:32 1:17:33  

8 --- Vid002 Lymphadenectomy Obturator 
n. 

Left 1:30:12 1:34:55 ICG 

9 --- Vid003 Ligation of the 
uterine a. 

Ureter Left 1:50:55 1:53:33  

10 EZ09876 Vid001 Ligation of the IP 
ligament 

IP ligament Right 1:33:18 1:36:20  

11 --- --- --- Ureter Right 1:34:22 1:34:50  

12 --- Vid002 Retroperitoneal 
Dissection 

Ureter Left 2:18:22 2:23:14  

13  --- Retroperitoneal 
Dissection 

Internal 
iliac a. 

Left 2:19:20 2:22:12 Bleeding 

14 IN16505 Vid001 Uretrolysis Ureter Left 0:45:14 0:49:23  

15 --- Vid002 Uretrolysis Ureter Left 0:50:12 0:55:22  
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Figure 2.5: Polygonal mask labelling method with Label Studio

 
 

Data splits  

The training and testing sets were designed to include frames from different patients. In real life, 

the technique of each surgery is slightly different and some anatomical variations between 

patients exist. When frames are extracted sequentially from a video of the same surgery, similar 

and even identical frames are common, especially during periods of minimal surgical activity. 

Splitting such images randomly between the training and the testing sets can artificially increase 

the model performance. To overcome this phenomenon, different clips from the same surgery 

were allocated to the training set and one surgery was chosen to serve exclusively as the testing 

set. This method allows more credible model testing and simulates a more realistic situation.  
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Image format selection 

Frames, i.e., snapshots of surgical scenes extracted from surgical videos, were stored and 

processed in Portable Network Graphics (PNG) format. In comparison to the more commonly 

used Joint Photographic Experts Group (JPEG) format, PNG holds the following key 

advantages: 

• Lossless Compression - The image data is preserved exactly as it was originally 

captured, without any loss of detail or quality. 

• Bit Depth - PNG supports a higher bit depth than standard JPEG images, allowing for a 

broader range of colors and finer details. 

• Absence of Artifacts – Images in JPEG format are compressed to reduce file size. This 

compression can introduce artifacts such as blurring and loss of details. 

• Consistency – The lossless and artifact-free nature of the PNG format provides 

reproducibility across different computer vision experiments and ensures that the 

algorithm’s performance is not influenced by variability in image quality. 

Given these advantages, PNG was chosen as the preferred image format for this study.  

Model selection and training 

For optimal results, a combination of frame-based and video segmentation models was used 

incorporating transfer learning techniques (Figure 2.6).  
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Figure 2.6: Transferred learning method for model training 

 

 

PointRend (Point-based Rendering) (40) is the image segmentation model that was chosen and 

video segmentation was performed with DVIS++ (Decoupled Video Segmentation) (41). 

PointRend was pre-trained on the Microsoft COCO (Common Objects in Context) dataset (42) 

and the YTVIS (YouTube Video Instance Segmentation) dataset (43) was used for DVIS++ pre-

training. PoindRend enables smooth and accurate object delineation (Figure 2.7). This is an 

important attribute, especially for oncological surgeries when fine dissection of crucial 

anatomical structures is performed. Pre-training on the Microsoft COCO dataset, containing 

2,500,000 labeled instances of 328,000 images utilizing over 70,000 worker hours provides the 

model solid capabilities for general world image segmentation. This technique of knowledge 

transfer between models effectively compensates for classification challenges imposed by 

training sets of limited size (44). The same principle was used for pre-training the DVIS++-based 

model utilizing 3,859 high-resolution YouTube videos – 2,985 training videos, 412 validation 
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videos and 453 test videos. In total, the YTVIS 2021 version repository contains 232,000 high-

quality manual annotations (https://youtube-vos.org/dataset/vis/).  

 
Figure 2.7: PointRend model outputs crisp object boundaries in areas over-
smoothed by other methods 

 

 

After pre-training, the final model was trained on the Jewish General Hospital dataset containing 

labelled data of gyne-oncological robotic surgeries. 

Model parameters 

The following hyperparameters were used for model tuning (Figure 2.8): 

 
Figure 2.8: Video Classification Model Hyperparameters 

 

 

• Images per batch – The number of images processed together in one pass (one batch) 

during the training of the model. A batch size of 16 means that the model will update its 

weights after learning from 16 images. This is a balanced number that can provide a 

stable estimate while being computationally manageable. 

Figure 7: PointRend outputs crisp object boundaries in areas that are over-smoothed by other methods  

Original image before segmentation. Object segmentation without PointRend.
Arrows point to over-smothed areas.

Object is accurately outlined by PointRend.
A B C
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• Base learning rate – The initial rate at which the model learns. It determines the size of 

the steps taken during optimization. A learning rate of 0.0001 is relatively small, this 

cautious approach to learning where the model makes minor adjustments to weights can 

be more beneficial. 

• Max iteration – The total number of training cycles the model will pass during training. 

Setting the max iterations to 10,000 ensures the model will have sufficient full dataset 

passes until convergence or satisfactory performance is achieved. 

• Weight decay – A regularization technique used to prevent overfitting by penalizing 

large weights. With a weight decay of 0.05, the model applies a moderate penalty to the 

weights, which helps in generalizing the learning and avoiding overfitting the training 

data. 

Performance metrics 

The model was evaluated by traditional performance metrics for video classification tasks. 

• Precision – The ratio of correct predictions from all the predictions made by the model 

( !"
!"#$"

). High precision is especially important in tasks sensitive to false positive results 

including surgical scene segmentation. This metric is equivalent to the positive predictive 

value used in evaluating medical diagnostics. 

• Recall – The ratio of correct predictions from all the existing objects ( !"
!"#$%

). Contrary to 

precision, recall estimates the model coverage or the ratio of objects missed by the model. 

This metric is identical to sensitivity in medical studies.  

• Intersection over union (IoU) – Measures the overlap between the ground truth (defined 

manually by the labeller) and the model prediction !&'()	+,	-./('0(1/2+.
&'()	+,	3.2+.

" on a scale 
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between 0 (no overlap) and 1 (perfect overlap). In this project, an IoU of 40% was set as 

the threshold for correct prediction due to the complexity of predicting anatomical 

structures.    

• Average precision (AP) – Usually a tradeoff between precision and recall exists. For 

tasks requiring high performance in both metrics (most cases), AP is used to balance 

between these parameters. It provides a single metric to assess model quality across 

different precision and recall levels. In this study, the area under the precision-recall 

curve was used to calculate the AP. 

𝐴𝑃 = &𝑃(𝑘)∆𝑟(𝑘)
%

456

 

Ethical considerations 

This study was approved by the Jewish General Hospital's ethics board and was conducted with a 

firm commitment to upholding ethical standards, particularly in terms of patient confidentiality. 

The video content was edited to eliminate any visuals that could potentially identify patients or 

surgical team members. All utilized patient data underwent irreversible de-identification, 

stripping away personal identifiers like names, birthdates, IDs, medical record numbers and 

Régie de l'assurance maladie du Québec (RAMQ) codes.  
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Results 

In total, 4,526 frames from 19 clips were extracted with 6,040 masks. The majority of the data is 

from two main surgical phases: retroperitoneal dissection and lymph node extraction. The 

training set contained 5,465 (90%) labelled structures and the testing set 575 (10%). Table 2.3 

shows the anatomical structures in each set. 

 

Table 2.3: Training and testing sets 
 Anatomical 

Structure 
Training Set Testing Set Total Average 

Precision 
1 IP ligament 133 63 196 --- 

2 External iliac 
artery 

212 --- 212 63.94% 

3 Internal iliac 
vein 

1 --- 1 --- 

4 Internal iliac 
artery 

399 --- 399 32.89% 

5 Obturator nerve 1742 --- 1742 45.78% 

6 Ureter 2978 512 3490 36.05% 

  5465 575 6040  

 

The AP in the training set was 42.94%. AP at 50% IOU was 87.6% and 37.5% with a 75% IOU 

threshold. Smaller objects had lower AP, 23.92% compared to medium and large objects, 

53.14% and 57.34%, respectively. Per structure, the external iliac artery had the highest AP - 

63.94%, followed by the obturator nerve with 45.78%, the ureter with 36.05% and the internal 

iliac artery with 32.89% average precision (Table 2.3). In the external validation set, the mean 

average precision (mAP) was 10.4%. 
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Figure 2.9: Ground truth and model predictions on distinct images  
A. Frame #4431 (right ureter) 

Original 
frame 

 

Ground 
truth 

 

Model 
prediction 
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B. Frame #4639 (right ureter) 

Original 
frame 

 

Ground 
truth 

 

Model 
prediction 
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Figure 2.9 demonstrates two examples of model predictions. The original frame, extracted from a 

surgical clip can be seen, followed by the manual label, in this case, of the right ureter. The third 

image in Figures 2.9A and 2.9B shows the label created by the model. In both instances, the 

correct location of the right ureter was identified, but there was not a complete overlap between 

the ground truth and the predicted mask. Although the alignment is not perfect, the actual 

discrepancy is only a few millimeters, with questionable practical significance. 

After testing the model on distinct frames, the model was tested on an unseen surgical video 

from a “new” patient. This simulates a more realistic and practical usage of the model. Figure 

2.10 shows some snapshots taken during real-time model implementation. The ureter, the IP 

ligament and the external iliac artery are accurately delineated and classified correctly in Figures 

2.10A-C. In Figures 2.10D and 2.10E the ureter is not identified. However, the external iliac 

artery was properly identified in the same image. Figure 2.10F demonstrates the opposite 

situation where the ureter is outlined perfectly but the external iliac artery is overlooked by the  

model. This is probably related to the surgical tool crossing it. 

Figure 2.10: Real-time classification of an unseen surgical clip 

 

A. 
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B. 

C. 
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D. 

E. 
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F. 

G. 
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In Figure 2.10G the model mistakenly identified two ureters. One (on the left) is correct, while 

the second structure (on the right) is the genitofemoral nerve. This structure wasn’t labelled and 

usually ignored by the model as can be seen in Figure 2.10H. The final snapshot, Figure 2.10I, 

shows two errors made by the model. While the ureter is outlined properly, the external iliac 

artery is missed and the IP ligament is incorrectly masked.  

H. 

I. 
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Discussion 

This work is a prototype system for the automatic recognition of important anatomical structures 

encountered in gyne-oncologic surgery. Incorporating MIS in gynecologic oncology offers 

significant benefits to patients and surgeons and provides an opportunity to advance oncologic 

surgery to the next level. Incorporating CV in these surgeries will increase precision, reduce 

complications and potentially improve oncological outcomes.  

In traditional abdominal surgeries (i.e. laparotomies), the surgeons rely on their eyes and 

experience to identify critical anatomical structures. To increase precision, some surgeons use 

magnifying lenses. Laparoscopy, using sophisticated optical systems, further improves 

visualization. Robotic surgery, by canceling tremor, combines advanced vision with precise 

motion. CV can delineate anatomical structures and tumors with great accuracy. Adding this to 

robotic systems will significantly increase the surgical precision. This will have a direct effect on 

patients’ outcomes by reducing the rate of intra-operative complications and enabling the 

complete removal of tumor tissue. For instance, ureteral injuries can be significantly reduced by 

AI-assisted delineation of the ureter. This will aid surgeons to safely dissect tumor and other 

tissues from the ureter. Moreover, AI and CV can manipulate the surgical tools, in proximity to 

the ureter, to avoid injury.  Finally, the complete removal of tumor will increase the rates of 

progression free and overall survival. 

While accurate models for surgical tool detection exist (45), models for the identification of 

pelvic anatomy are scarce and focus on simple structures (e.g. uterus) rather than more 

challenging objects (e.g. ureter). During surgery, great effort is made to locate these structures 

and carefully dissect the tissue surrounding them to avoid complications. Thus, a model capable 

of precisely identifying them will have a significant impact on gyne-oncologic surgery.  
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In this project, a large video dataset of robotic surgeries for gynecologic cancer was created and 

organized. Videos were divided into surgical phases and the beginning, the end, and the 

anatomical structures of each phase were recorded. A surgeon labelled nineteen clips from this 

data. While labelling all the clips in the dataset is not feasible, it establishes a strong basis for the 

ongoing development of the model and new surgical CV systems. 

Data annotation was done in three steps. First, watching the entire surgery and documenting 

timestamps of surgical phases and anatomical structures. Second, creating clips of specific 

phases with important anatomical structures. Third, extracting frames from the clips and labeling 

the anatomical structures in each frame. The main challenge was to accurately identify and 

consistently label the structure, as it was often only partially visible or obscured by surgical 

tools, blood, or smoke.  

The polygonal mask method was used for labeling. In this method, a series of connected points is 

drawn around an object to form a polygon that outlines the object’s shape. This polygon is then 

used to create a binary mask, with the interior of the polygon representing the object and the 

exterior representing the background. This method is particularly useful for objects with complex 

or irregular shapes such as tumors and some anatomical structures. Polygonal masks closely 

follow the contours of an object, making them ideal for tasks that require detailed segmentation, 

such as medical imaging. Other existing methods are bounding boxes and pixel-wise annotations. 

Polygonal masks are a good balance between annotation efficiency and accuracy, making them 

more practical for large datasets (46).  

The labelled structures included the ureters, obturator nerves, iliac arteries, and infundibulopelvic 

(IP) ligament. These are the main structures in pelvic surgery. Successful and uncomplicated 

surgery relies on a clear understanding of their location and pathway. Other pelvic organs, such 
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as the uterus or ovaries were omitted since models for their identification exist (Chapter 1). 

Moreover, the results of this work show that large or superficial structures require considerably 

fewer labels to achieve high AP, compared to small or deep organs. For example, the AP of the 

external iliac artery is 63.94% with only 212 labels, while the AP of the obturator nerve is 

45.78% with 1742 labels. 

PointRend and DVIS++ were chosen for medical data labeling, specifically for segmenting 

anatomical structures, due to their advanced capabilities in handling complex image 

segmentation tasks. PointRend excels at refining the boundaries of objects, which is crucial for 

accurately delineating anatomical structures that often have intricate and irregular shapes. 

DVIS++, on the other hand, is tailored for dynamic video segmentation, allowing it to maintain 

consistent tracking of anatomical structures across surgical procedures where the field of view is 

constantly changing. 

The selection of these models over alternatives like Mask R-CNN or U-Net is based on their 

superior performance in previous studies, particularly in tasks requiring precise boundary 

refinement and temporal consistency. These features are vital for medical applications, where the 

accurate identification of anatomical boundaries can directly impact clinical outcomes. While 

other models may be easier to implement or require less computational power, they often lack 

the precision necessary for medical environments. 

The model was trained by the supervised learning (SL) method. Although this is the most 

resource-intensive technique, it yields the highest accuracy. In the next stage of model 

development, labels will be created automatically (by the model) and then evaluated and adjusted 

manually. This approach resembles semi-supervised learning (SSL). Works directly comparing 

supervised and semi-supervised learning for training medical models are inconsistent. Some 
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argue that SSL achieves comparable accuracy with considerably fewer labelled data (47), while 

others disagree and find no benefit in adding unlabeled data (48). Probably SL is the optimal 

method for medical and surgical models, as accuracy is crucial, and the cost of errors is high. 

To optimize the model, it was pre-trained on general objects in images and videos from COCO 

and DVIS datasets. These two databases are common sources of labelled data for transferred 

learning (TL), however they contain no medical or surgical data. Since no other sources of 

relevant surgical data were available, this was the best option for improving the model. The use 

of TL is widespread in medical CV models (49), however, its ability to improve medical or 

surgical object segmentation is questioned and not without challenges (50,51). While all 

acknowledge the necessity of developing public archives of medical and surgical data, using TL 

from general objects is the next best option until then. 

The hyperparameters are crucial for the performance and efficiency of CV models. In this work, 

the hyperparameters setting attempts to balance between computational effort and performance. 

Setting images per batch to 16 provides stable gradient estimation, fitting well within GPU 

memory limits. A learning rate of 0.0001 allows for cautious, incremental weight updates, 

improving convergence and model performance. Max iterations at 10,000, enable sufficient 

space for thorough learning, ensuring satisfactory performance without overloading resources. A 

weight decay of 0.05 helps prevent overfitting by penalizing large weights and aiding in model 

generalization. Together, these hyperparameters optimize training effectiveness and resource 

management, leading to a robust and efficient model. 

Standard metrics of CV model performance were used in this study. Intersection over Union 

(IoU) and Average Precision (AP) were selected due to their popularity, reliability and precision 

in evaluating computer vision systems (52,53). IoU is particularly important for medical or 
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surgical objects where precise detection is crucial. AP is complementary to IoU and measures the 

area under the precision-recall curve (PR-AUC). Since the curve is plotted by calculating the 

precision (correct predictions out of all predictions) and recall (correct predictions out of all 

objects) across different IoU thresholds, it provides a balanced estimation of the model’s 

performance. 

The AP50 (AP at 50% IoU) of the current version of the model is 87.6%, however, the AP75 is 

significantly lower. As discussed previously, the AP of larger and more superficial structures 

detection is significantly higher compared to smaller and deeper organs. Furthermore, they are 

often partially covered by a surgical tool or not fully dissected from the surrounding tissue, 

making the segmentation even more challenging. Another important factor that significantly 

influences the model's metrics is the allocation of images into the training set. Typically, data for 

prediction models is randomly split after shuffling into training and testing sets at ratios of 70-30 

or 80-20. However, for CV models, especially when extracting images from videos, stratified 

sampling is more appropriate. Since the frames can be highly correlated (repeating frames), 

random splitting may achieve misleadingly high AP. Yet, the model will perform poorly on 

unseen data (external validation), leading to a model that is not generalizable. 
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Figure 2.11: Relations of key structures in retroperitoneal dissection 

 

To avoid this problem the images in the testing set were strictly from patients and surgeries not 

included in the training set. This may explain the relatively lower AP compared to other surgical 

models. However, there are no available models segmenting the same structures and accurate 

comparison may not be possible. Testing the model on unseen data is more practical since the 

metrics resemble real-life model performance therefore increasing the clinical relevance and 

generalizability of the system.  

The most effective way to improve performance metrics is by adding more labelled data. The 

current version of the system was trained on 5,465 images. While it may be sufficient for some 

simpler structures, such as the external iliac artery, complex structures, such as the ureter require 

an extensive training set for accurate segmentation. Assessing the model's behavior on new data 
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gives us further insights for improvement. This model is capable of outlining anatomical 

structures with high precision but tends to misclassify them (Figure. 2.10D, 2.10G). The two 

main options to increase the accuracy of the classifications are temporal information integration 

and incorporating anatomical landmarks and relations. 

Temporal information is derived from the change in video content over time. By “understanding” 

the dynamics between sequential frames, video CV models can use time-related context in their 

segmentation tasks. For instance, the ureter has a very typical motion pattern – vermiculation. 

This peristaltic movement resembling a slithering worm (hence the term) or snake, can only be 

identified by analyzing temporal information from successive frames. Since this motion is 

specific to the ureter, it can assist in its identification in complex situations. Furthermore, after 

detecting the ureter by vermiculation, its location can be tracked by temporal information 

analysis. This allows the system to identify the ureter in the next frames even without the 

vermiculation. Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) 

Networks and 3D Convolutional Neural Networks (3D-CNNs) are the most common neural 

network types used for temporal information integration. 

Incorporating anatomical relations and landmarks is another powerful option for model 

improvement. Figure 2.11 depicts the anatomical relations of crucial pelvic organs. These 

structures are key components of pelvic retroperitoneal dissection in gyne-oncological surgeries. 

To achieve optimal oncological results and minimize complications, it is crucial to expose them 

and meticulously dissect the surrounding tissues. Feeding the relations in Figure 2.11 into the 

model can improve its performance significantly. We previously discussed that the model can 

accurately identify the external iliac artery, and the use of temporal information will facilitate the 

detection of the ureter. The internal iliac artery location can then be inferred since it branches 
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from the external iliac and the uterine artery, in turn, branches from the internal iliac artery and 

crosses above the ureter (“water under the bridge”) towards the uterus. Locating the obturator 

nerve is also simplified because its pathway is deep in the pelvis between the external and the 

internal iliac arteries (Figure 2.11). 

Study limitations 

Despite the encouraging results demonstrated by our surgical CV model, it has some limitations 

that need to be discussed. The labelling was performed by a single person and wasn’t reviewed 

by others. In controversial cases, it may lead to subjective labelling and impact generalization. 

Increasing the number of labellers could have resulted in a higher volume of labels and 

facilitated a more even distribution of errors. 

The training data is from real surgeries performed by different surgeons. The level of exposure of 

the anatomical structures can vary significantly. This leads to extreme variability in the training 

data which influences the model’s convergence. This phenomenon is further aggravated by the 

presence of artifacts, such as debris or blood. 

This model was trained exclusively on robotic surgeries from one center. Most of the surgeries 

were for endometrial cancer, performed by one of the three attendings. This may limit the model 

generalizability. While the human anatomy is similar, its visualization varies between different 

types of surgeries, surgeons and subjects. This model may not perform well in laparoscopic or 

open surgeries because of different optics and different surgical approaches. Surgeons in other 

centers may use different surgical techniques with distinct exposure of key anatomical structures. 

Patient’s previous surgeries or medical conditions can distort the anatomy and impact the model 

metrics. The model may not be usable by other disciplines since its focus is oncologic surgeries 

in the pelvis.  
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The ratio of the training to testing sets was 90 to 10 which is not standard. This was dictated by 

the requirement to test the model on an unseen surgery and patient. The limited size of the testing 

set may reduce the accuracy of the model’s performance estimation. 

The model’s training possibilities are also limited by the available computational power. 

Study strengths 

While there are some limitations, the study has notable strengths. This study represents 

innovative work focusing on structures in which segmentation is very complex. The created 

database of surgical videos is extensive with a considerable volume of labeled data. 

The labels were created by a surgeon using the polygonal masks method and the model was 

trained only on labeled data. This is the most accurate method for training CV algorithms. 

The testing set is from unseen labelled data simulating model performance in realistic conditions.  

The AI infrastructure underlying this CV model is powerful and reliable. 
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Conclusion and summary 

This is the first model focusing on key pelvic structures with high segmentation complexity. 

This system can be combined with existing algorithms for surgical tool recognition. Future 

versions with improved performance could be implemented in robotic surgeries to assist in 

surgical navigation, increase surgical precision and reduce intra-operative complications. 

The development of such systems lays the foundation for the future of autonomous surgical 

machines. 
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