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Abstract 

Biomacromolecules are fundamental in virtually all aspects of biology. Developing 

a deep understanding about how these complex molecular systems behave is crucial for 

understanding their biological function and exploiting their physical properties for new 

technologies. For example, the self-assembly of these biomacromolecules can produce 

interesting materials which exhibit emergent physical properties such as self-healing and 

stimuli responsiveness. Furthermore, both enzymes and non-canonical DNA secondary 

structures are popular targets for small molecule therapeutics. However, in order to 

develop these molecules, scientists need to know how stable these structures are, how 

strongly they interact with their targets, and how to improve their desired properties. 

However, due to their highly complex nature, there are many examples of when 

conventional experimental techniques fail. Thus, new methods which enable quantitative 

characterization of these more complex systems are highly desirable.  

This thesis explores novel biophysical analyses that combine common laboratory 

equipment with modern day computational power and mathematical modelling to address 

the need for rapid and cost-effective biomacromolecular characterization. Chapter 2 

details a global-fitting analysis for non-equilibrium thermal denaturation experiments and 

its application to the folding dynamics of guanine quadruplexes (G4s), four stranded non-

canonical nucleic acid structures formed from guanine rich sequences that are implicated 

in wide variety of cancers. We demonstrate that these sequences can fold into several 

different structures via parallel pathways which significantly increases their folding rate, 

potentially influencing their biological function.  

Chapter 3 proposed the concept of G4 containing regions (G4CRs). We then 

developed a bioinformatic algorithm which characterizes these G4CRs based on their 

length and total number of G4 structures. This algorithm was applied to human promoter 

sequences where we found G4CRs that were up to several hundred nucleotides long and 

had the potential to form thousands of G4 structures. These polymorphic G4CRs were 

clustered directly adjacent to the transcription start site, suggesting that polymorphism 

has a functional role in biology.  

In Chapter 4, we developed an experimental approach based off cyclic heating and 

cooling ramps which can measure thermodynamic information on slowly assembling 
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supramolecular structures, information which was previously unobtainable with any other 

method.  We used this technique to study the co-assembly of poly-adenosine strands and 

cyanuric acid (CA) into long supramolecular fibres. We discovered that roughly one third 

of CA binding sites were unoccupied, which has implications for the use of this system as 

a drug delivery vehicle.  

Finally, Chapter 5 describes how to measure the binding kinetics of covalent 

enzyme inhibitors using isothermal titration calorimetry (ITC). Our new method allowed 

for faster and more robust characterization of these inhibitors when compared to 

conventional methods and removes the need for modified or spectroscopically active 

substrates as ITC is able to directly measure the rate of enzymatic catalysis. Together, 

these approaches represent powerful new additions to researchers' toolkit for rigorous 

characterizations of biomacromolecular folding, assembly, and function. 
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Resume 

Les biomacromolécules ont un rôle fondamental dans pratiquement tous les 

aspects de la biologie. Il est essentiel de développer une compréhension profonde du 

comportement de ces systèmes moléculaires complexes pour comprendre leur fonction 

biologique et exploiter leurs propriétés physiques dans les nouvelles technologies. Par 

exemple, l'auto-assemblage des biomacromolécules peut mener à des matériaux 

intéressants avec des propriétés physiques émergentes, telles que l’autorégénération et 

le contrôle par stimuli. De plus, les enzymes et les structures secondaires non canoniques 

de l'ADN sont des cibles populaires pour les thérapies à petites molécules. Pour 

développer ces molécules, les scientifiques doivent savoir quelle est la stabilité de ces 

structures, de quelle manière elles interagissent avec leurs cibles et comment améliorer 

les propriétés souhaitées. Cependant, en raison de la nature extrêmement complexe de 

ces systèmes, il existe de nombreux exemples où les techniques expérimentales 

conventionnelles échouent. Par conséquent, de nouvelles méthodes permettant une 

caractérisation quantitative de ces systèmes plus approfondies sont en demande. 

Cette thèse explore des analyses biophysiques innovantes qui combinent les 

équipements de laboratoire courants avec la puissance de calcul moderne et la 

modélisation mathématique pour adresser la nécessité d'une caractérisation 

biomacromoléculaire rapide et rentable. Le Chapitre 2 détaille une méthode d’analyse 

d'ajustement global pour les expériences de dénaturation thermique non équilibrée et son 

application à la dynamique de repliement des quadruplexes de guanine (G4), des 

structures nucléiques non canoniques à quatre brins formés à partir de séquences riches 

en guanine qui sont, entre autres, impliquées dans une grande variété de cancers. Nous 

démontrons que ces séquences peuvent se replier en plusieurs structures différentes via 

des voies parallèles, ce qui augmente considérablement leur vitesse de repliement, ce 

qui pourrait influencer leur fonction biologique. 

Le Chapitre 3 propose le concept des régions contenant des G4 (G4CR). Nous 

avons ensuite développé un algorithme bioinformatique qui caractérise ces G4CR en 

fonction de leur longueur et de leur nombre total de structures G4. Cet algorithme a été 

appliqué à des séquences de promoteurs humains où nous avons trouvé des G4CR 

pouvant atteindre plusieurs centaines de nucléotides et ayant le potentiel de former des 
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milliers de structures G4. Ces G4CR polymorphes étaient regroupés directement à côté 

du site de début de transcription, ce qui suggère que le polymorphisme joue un rôle 

fonctionnel en biologie. 

Dans le Chapitre 4, nous avons développé une approche expérimentale basée sur 

des rampes de chauffage et de refroidissement cycliques qui permet de mesurer des 

informations thermodynamiques sur les structures supramoléculaires à assemblage lent, 

informations qui n’étaient auparavant pas possible d’obtenir avec d’autres méthodes. 

Nous avons utilisé cette technique pour étudier le co-assemblage de brins poly-

adénosine et de l’acide cyanurique (CA) en longues fibres supramoléculaires. Nous 

avons découvert qu'environ un tiers des sites de liaison au CA étaient inoccupés, une 

découverte qui a des implications pour l'utilisation de ce système comme véhicule de 

livraison de médicaments. 

Enfin, le Chapitre 5 décrit comment mesurer les cinétiques de liaison des 

inhibiteurs covalents en utilisant la calorimétrie à titration isothermique (ITC). Notre 

nouvelle méthode a permis une caractérisation plus rapide et plus robuste de ces 

inhibiteurs par rapport aux méthodes conventionnelles et élimine le besoin de substrats 

modifiés ou spectroscopiquement actifs, car l'ITC peut mesurer directement la vitesse de 

la catalyse enzymatique. Ensemble, ces approches représentent des ajouts puissants 

aux outils des chercheurs pour des caractérisations rigoureuses du repliement, de 

l'assemblage et de la fonction des biomacromolécules. 
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 Chapter 1: Introduction and literature review of 

biomacromolecular structures 

1.1 Biomacromolecules 

Biomacromolecules play fundamental roles in virtually all aspects of biology. They 

are large polymeric molecules made up of small monomeric units which exhibit diverse 

emergent physical properties based on their structure and sequence. In biology there are 

four main classes of biomacromolecules: nucleic acids, proteins, carbohydrates, and 

lipids. This thesis will focus on two of these classes: nucleic acids and proteins, which are 

both critical to the cell and have complex dynamics, folding and assembly pathways, and 

functions. This introduction will provide a background on the structural characteristics of 

these molecules along with their importance to biology. Three systems in particular will 

be highlighted: in section 1.2, guanine quadruplexes (G4s) and polyadenosine-cyanuric 

acid supramolecular fibres will be discussed as these systems are studied in detail in 

Chapters 2-4 of this thesis. In section 1.3 covalent enzyme inhibition will be introduced 

and common techniques to measure it will be discussed. Finally, two key biophysical 

analysis methods will be introduced, thermal analysis and isothermal titration calorimetry. 

These techniques are expanded upon throughout the chapters of this thesis, with each 

chapter describing the development of a new technique. The methods described in this 

thesis vary from incremental advances in classical methods, to the development of 

completely novel techniques which are able to measure properties of systems which were 

previously unobtainable by any other means. 

 

1.2 Nucleic Acids  

1.2.1 Nucleotides 

Nucleic acids are biopolymers found in all cellular organisms and viruses1, 2. Their 

monomeric unit is referred to as a nucleotide, which consists of a nitrogenous base, a 

pentose sugar, and a phosphate group (Figure 1.1a). The pentose sugars are either 

ribose, which gives rise to ribonucleic acid (RNA), or deoxyribose, which give 

deoxyribonucleic acid (DNA). While deoxyribose is simply ribose which has been 

dehydrated at the C2’ position, this dehydration plays an important part in dictating the 
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final structures and stabilities of both DNA and RNA. Both nucleic acids have substantial 

roles in biology, for DNA these include information storage and gene regulation, for RNA 

protein synthesis and signaling. The bases are planar aromatic heterocycles, either built 

from purine or pyrimidine scaffolds. Three bases are shared between DNA and RNA: 

Adenine (A), Guanine (G), and Cytosine (C). The fourth base in RNA is Uracil (U) and in 

DNA it is Thymine (T). As elaborated further in this section, interactions between these 

nucleotides give rise to a diverse range of secondary structures which leads to emergent 

physical properties necessary for biological function and exploitable in nanotechnology.  

The non-planar nature of the pentose sugar causes the five-membered ring to 

“pucker”, resulting in two major conformations: the C3’ endo (North) and C2’ endo (South) 

puckers. Figure 1.1b shows the orientations of these conformations, where the North 

conformation has the C3’ carbon above the plane of the O4’, with the opposite being true 

for the South pucker. These two conformations can interconvert but have large energetic 

barriers that have important implications for the overall structure of nucleic acids3, 4. The 

sugar pucker is influenced by interactions between the substituents at the four carbons 

of the sugar with hydrogen-bonding and steric hinderance playing a large part in 

determining the conformation.  
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Figure 1.1: Nucleotide structures. a) a nucleic acid polymer consisting of the four basic 

nucleotides for DNA and RNA, glycosidic bond angles are shown in the anti-conformation. 

b) North (C3’-endo) and South (C2’-endo) sugar puckers. c) Syn and anti conformations 

shown with the Cytosine moiety.   

The bases are connected to the sugars via a glycosidic bond located between the 

C1’ of the pentose sugar and either the N9 of the purine or the N1 of pyrimidine bases. In 

biology this bond is in β-stereochemistry with the base located above the plane of the 

sugar. However, ⍺-nucleotides can be synthesized and exhibit resistance to nuclease 

degradation and increased intracellular stability, making them an attractive option for 

nucleic acid therapeutics5. This glycosidic bond is able rotate giving rise to two main 

conformations, anti and syn. Shown in Figure 1.1c, the anti-conformation has the N1 of 

purines, and the N3 of pyrimidines facing away from the sugar resulting in an angle 

between -120° and 180°, angles in the region near -90° are described as high anti. 
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Conversely, in the syn conformation these atoms are angled towards the phosphate 

backbone and have angles between 0° and 90°. The orientation of this bond is highly 

sensitive to the identity of the base, pucker of the sugar, and hydrogen bonding pattern 

the bases are participating in1. 

The final component of nucleic acids is a phosphate group which connects two 

pentose rings via the C5’ of the sugar below the phosphate and the C3’ of the sugar above 

(Figure 1.1a). This allows polymeric nucleic acid strands to form, with a long phosphate 

and sugar backbone and a sequence of different bases. By convention the sequence of 

nucleic acid polymers is written starting with the base which has a terminal 5' phosphate 

and ending with the base with the terminal 3' OH. When referring to DNA, nucleotide 

sequences are often preceded by a small “d” denoting the deoxyribose sugar (dATCG), 

and RNA strands are preceded by a small “r” for ribose (rATCG). This phosphate 

backbone has highly negatively charged, which is generally stabilized by divalent cations 

such as Mg2+, but monovalent cations can also lead to changes in stability and strucutre6, 

7. DNA and RNA biomacromolecules can contain millions of monomeric units, which, as 

elaborated below, leads to a diverse array of secondary structures. 

 

Figure 1.2: Watson-Crick Hydrogen bonding patterns.  a) A-T base pairs with R2 = Me, A-

U base pairs with R2 = H. b) G-C base pairs. 

A key feature of nucleic acids is the ability of the bases to pair with each other in a 

well-defined pattern. This is accomplished via the hydrogen bonding patterns occurring 

between specific bases. In canonical base pairing, referred to as Watson-Crick base 

pairing, A will preferentially bind to either T or U, and C with G (Figure 1.2). These base 

pairs both contain a purine and a pyrimidine base and have similar distances between 

the C1’ carbon of the pentose sugars, leading to a relatively constant dimensions for base 
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pairs8. While the bases themselves are planar, the hydrogen bonds can have several 

different angles dictating the twist, buckle, roll and slide, along with others, between paired 

bases and stacked bases9. Other types of hydrogen bonding patterns taking advantage 

of different atoms for each base has been observed in nucleic acid structures, as well as 

during protein-DNA binding10, 11.  

 

1.2.2 Deoxyribonucleic acid structures 

1.2.2.1 Duplex structures 

The most common structure of deoxyribonucleic acid (DNA) is that of the double 

helix12. These structures are made up of two antiparallel nucleic acid strands which are 

held together by the interaction between complementary bases. Hydrogen bonding, -  

stacking, and London dispersion forces, all influence duplex formation13, 14. Within this 

family, double-helical structures can adopt several conformational forms, including the 

right-handed B-DNA, the left-handed Z-DNA, and the more compact right-handed A-

DNA1. They can be formed either intermolecularly between two complementary DNA 

strands, or intramolecularly, when a single DNA strand has complementary regions and 

folds in on itself. The structure of B-DNA was first published in 1953 in a paper by James 

Watson and Francis Crick, which was part of a trio of papers detailing the fundaments of 

nucleic acid structures15-17. One of the key pieces of experimental evidence supporting 

their model was X-ray crystallography data acquired by Rosalind Franklin while under the 

supervision of Maurice Wilkins18. B-DNA is the most prevalent form under cellular 

conditions and is characterized by having Watson-Crick base pairing, anti-glycosidic bond 

angles and South sugar puckers (Figure 1.3a). The Watson-crick base pairing in this 

structure has both phosphate backbones on the same side of the bases, leading to a 

distinct major and minor groove. These grooves play an important part in protein and 

small molecule binding19, 20. In B-DNA, the separation between the bases is nearly 

identical to the helical rise, causing the bases to be nearly perpendicular to the axis. 

Double helical nucleic acid sequences tend to be quite dynamic and are able to adopt 

transient Hoogsteen base pairing21 and bulged residues22, as well as being able to 

incorporate damaged bases23. 
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Figure 1.3: Duplex structures of deoxyribonucleic acid. a) Space filling and cartoon 

representations of B-DNA. b) Space filling and cartoon representations of A-DNA. c) 

Space filling and cartoon representations of Z-DNA. M and m represent the major and 

minor grooves of all structures respectively. Adapted from Neidle and Sanderson With 

permissions1. 

A-DNA is one of the other double helical structures and is a more compact right-

handed DNA helix (Figure 1.3b). It is characterized by anti-glycosidic bonds and North 

sugar puckers. RNA tends to adopt A helices due to the 2’-OH group favoring the North 

sugar pucker1. Base pairs are displaced from the axis of the helix which leads to a hole 

being present through the middle of the duplex. The preference for B and A conformations 

is influenced by humidity, with A conformations being stable at low humidity and B 

conformations being stable at high humidity1. Z-DNA is a left-handed helix which occurs 

with specific nucleic acid sequences such as the repeating CGCGCG sequence, 

particularly under conditions of high salt (usually >2.5M NaCl) (Figure 1.3c)24. It has 

different sugar puckers and glycosidic angles depending on the identity of the base25. 

Purine bases have syn-glycosidic angles and the North sugar puckers. Pyrimidine bases 

have anti-glycosidic angles and south sugar puckers. While Z-DNA requires very specific 

conditions to form, it has been shown to occur near transcription start sites, and is 

implicated in gene expression26. 
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1.2.2.2 Triplex structures 

Triplex nucleic acid structures were first discovered just 3 years after the original 

B-DNA duplex structure was proposed27. They are formed from when a third nucleic acid 

strand binds to the major groove of a polypyrimidine and polypurine duplex (Figure 1.4a). 

The triplex-forming strand can be either an additional polypyrimidine or polypurine strand 

which forms Hoogsteen pairs with the purines of the duplex28. The hydrogen bonding 

patterns for the T-AT and C*-GC triplexes are shown in Figure 1.4b/c, in the case of the 

C*-GC triplex, half of the cytosine residues must be protonated. Triplexes can be made 

from a mixture of DNA and RNA strands, however the stability of these mixtures varies 

substantially29.  The sugar puckers can also vary. They are generally South puckers30, 

but RNA strands often take on the North pucker31.  From a biological perspective, triplex 

DNA has garnered attention due to its potential role in gene regulation32, DNA repair33, 

recombination34, and mutagenesis35. Triplex formation has been shown to be highly 

selective36, however the close proximity of the phosphate backbones can cause 

interactions to be transient and make residency times for the third strand short, limiting 

its potential as a therapeutic target1. 
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Figure 1.4: Triplex structures.  a) Space filling and cartoon representations of a parallel 

triplex nucleic acid structure. A poly purine-pyrimidine duplex is shown in grey, with purine 

bases shown in red and pyrimidine bases shown in blue. It is bound to a third poly 

pyrimidine strand shown with a blue backbone and blue bases. b) Hydrogen bonding 

pattern of T-AT triplex, the Watson-Crick face of the adenine base is pointing to the right 

and the Hoogsteen face is pointing up. c) Hydrogen bonding pattern of C*-GC triplex, the 

Watson-Crick face of the guanine is pointing to the right and the Hoogsteen face is 

pointing up. Adapted from Neidle and Sanderson With permissions1. 

1.2.2.3 Tetrameric structures 

Tetrameric DNA complexes deviate significantly from the canonical B-DNA double 

helix. Guanine quadruplexes, commonly referred to as G-quadruplexes or G4s, are one 

of these structures, forming from guanine rich nucleic acid sequences37. They are 

enriched in specific regions in the genome, such as telomeres and promoters, and have 

been implicated in a many cellular processes38. G4s can form from both DNA and RNA 

and are generally made up of four tracts of three guanines, referred to as G-tracts, 

separated by loops of one to seven nucleotides (G3N1-7G3N1-7G3N1-7G3). Structures with 

only two guanines in each G-tract have been shown to fold but are generally less stable39. 

Longer G-tracts of six or seven guanines have also been hypothesized40, however 
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experimental studies have shown that these sequences only form G4s with four tetrads41.  

In G4s, one guanine from each of the four G-tracts form planar arrangements referred to 

as G-quartets that are stabilized via Hoogsteen hydrogen bonding, and the coordination 

of cations to the O6 of each guanine (Figure 1.5b)42. Generally, this cation is monovalent 

such as K+ or Na+, Rb+, Tl+, NH4
+

, however under certain conditions divalent cations 

including Ca2+, Pb2+, Sr2+, and Ba2+
, have also shown to promote quadruplex formation43-

54. The identity of this cation has a large effect on both the stability of the G4 as well as 

its overall structure42, 55 56. Cations are also able to interact with nucleotides in the loops 

of quadruplexes, further stabilizing their structure57.  

 

 

Figure 1.5: Guanine quadruplex structures. a) Possible loop arrangements for G4s. Red 

circles represent guanines with blue squares representing the G-quartets. Blue circles 

represent any nucleotide. Arrows show direction of the nucleic acid strand. b) Hydrogen 

bonding pattern of a G-quartet. M represents a metal ion (such as K+ or Na+). 

There are three main types of topologies that quadruplexes can adopt. These 

different topologies are characterized by the directions of the four G-tracts relative to each 

other along with the orientations of the loops which connect them (Figure 1.5a)58. Parallel 

topology occurs when all four G-tracts are oriented in the same direction, anti-parallel 

topology occurs when only two of the four G-tracts are aligned, and hybrid topology occurs 

when three tracts are aligned59. In the parallel topology all the glycosidic bonds are either 
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anti or syn and in both anti-parallel and hybrid there is a mixture58. G4s have been shown 

to be able to form both right and left handed structures60, 61. While it is still unclear why 

certain G4s adopt different topologies, G-tract length, loop length, and loop interactions 

have been shown to play roles41, 62, 63 . Furthermore, RNA quadruplexes are exclusively 

found in the parallel conformation, due to their favoring the North sugar pucker64. 

The i-motif is another type of tetrameric nucleic acid structure which can form from 

C-rich regions of either DNA or RNA. These structures were first studied in 1963 and 

thought be dimers65, however their true tetrameric structure was identified 30 years later 

in 199366. They tend to form under slightly acidic conditions from cytosine-rich strands. 

Their structure consists of two parallel duplexes intercalated together in an antiparallel 

configuration (Figure 1.6a) stabilized by hemi-protonated cytosine-cytosine+ base pairs, 

where one of the cytosines is protonated at the N3 position (Figure 1.6b). This unique 

base pairing makes i-motifs highly sensitive to pH, as values that are too high or too low 

cause the structure to become unstable67. They are the most stable near the pKa of the 

N3 of a cytosine, which is roughly 4.5, conditions under which roughly half of the cytosines 

are protonated68. Like G4s, i-motifs can adopt multiple topologies depending on the 

intercalation of the two duplexes, referred to as either 5’E, where the outermost CC+ base 

pair occurs at the 5’ end of the sequence, or 3’E where this base pair occurs at the 3’ end 

of the sequence69. In i-motifs, the glycosidic bond tends to be anti and the sugar mainly 

adopts the North conformation70.  
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Figure 1.6: i-motif structures. a) Possible intercalation topologies. Yellow circles represent 

cytosines with yellow circles representing the C+C base pairs. Blue circles represent any 

nucleotide. b) Hydrogen bonding pattern of a C+C base pair. 

The biological role of i-motifs is not well understood. Initially it was thought that 

they couldn’t form under cellular conditions due to their stability being pH dependent58. 

However, it has since been shown that there are indeed sequences in the human genome 

that can form i-motifs at neutral pH71. i-motifs can be further stabilized by molecular 

crowding72, secondary loop interactions73, backbone interactions74, and longer C-tracts75. 

Furthermore, non-natural chemical modifications such as locked nucleic acids (LNA)76, 

2’-Fana substitutions77, and end ligation78 can all increase i-motif stability. i-motifs have 

been visualized in cells using antibodies and several proteins have been found which bind 

i-motifs79-81. Like G4s they are enriched in the promoter regions of genes as well as the 

telomeres and have been shown to affect both transcription and telomerase activity82, 83. 

Interestingly, while G4s and i-motifs are located in the same places in the genome, several 

studies have shown that their formation is mutually exclusive, and suggested that this is 

due to steric hinderance and their stability under different conditions84-86. 

i-motifs find significant applications in biotechnology87. Their dynamic response to 

pH fluctuations makes them well-suited for pH-sensitive biosensors, enabling the 

detection of specific pH changes associated with biological processes or external 

stimuli88. Additionally, the pH-dependent stability of i-motifs can be leveraged in targeted 
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drug delivery systems, allowing controlled release of therapeutic agents in response to 

acidic microenvironments89. Finally, they have been used to produce the first DNA 

molecular motor which is driven by pH changes90.  

 

1.2.2.4 Aptamers and Riboswitches 

Nucleic acid aptamers are short sequences of nucleotides which bind selectively 

to non-nucleic acid molecules. These molecules were first described in two seminal 

papers in 199091, 92. These papers outline well-defined procedures for developing 

aptamers based upon an iterative approach called systematic evolution of ligands by 

exponential enrichment (SELEX). The process begins with an initial library of nucleic 

acids which contains segments of randomized nucleotides as well as constant regions 

which allow for the hybridization of polymerase chain reaction (PCR) primers. Basic 

aptamers are created with the four natural nucleotides which causes the number of 

unique strands to grow as N4, where N is the length of the randomized nucleotide 

sequence93. This initial library is then run through a selection process to find sequences 

which have the highest binding affinity for the target molecule. This selection process can 

be based on capillary electrophoresis94, or immobilization95 among other techniques, and 

may include a counterselection step to prevent nonspecific binding.  The selected 

sequences are then amplified using error-prone PCR to introduce a few new mutations, 

creating a new pool of potential aptamer sequences which are then subjected to selection 

again. After several rounds of SELEX, aptamers can be found which are selective for the 

desired ligand with affinities in the nanomolar range96. Some groups have increased the 

chemical space of aptamers by using non-canonical nucleotides97 as well as 

functionalizing the nucleic acids with different chemical groups98.  
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Figure 1.7: Aptamer and riboswitch structures. a) Cartoon representation of the MN4 

aptamer bound to quinine99. b) Cartoon representation of the SAM-VI riboswitch100.  

Aptamers structures can incorporate a diverse array of nucleic acid motifs, 

including hairpins, guanine quadruplexes, and pseudoknots (Figure 1.7a)99, 101, 102. Their 

tertiary structure is critical in their ability to bind selectively to their ligands101. The relative 

ease of developing aptamers has made them attractive for biotechnological applications 

including sensing103, drug delivery104, and diagnostic tools105. There are cases however, 

where aptamers can have off-target interactions that negatively impact their use. For 

example, an aptamer which was initially designed to bind to cocaine has been shown to 

interact with quinine roughly 30- to 40-fold more tightly99, 106. This would have detrimental 

effects if this aptamer was used in a drug sensing application as quinine is an ingredient 

in tonic water, the common drink. Thus, properly measuring both the selectivity and 

binding affinity of aptamers is important before using them in real world applications96. 
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Initially aptamers were believed to be completely synthetic, however in the early 

2000’s it was discovered that biology has been making use of small molecule binding 

RNA molecules, called riboswitches100, 107-109 (Figure 1.7b). These messenger RNA 

(mRNA) sequences selectively bind to small molecules and then undergo structural 

rearrangements, effectively switching structures in the presence of a specific molecule110. 

Typically, these structures occur in the 5’ untranslated region (5’-UTR) of bacterial mRNA 

transcripts, where they have been shown to control gene expression111 however they 

have also been discovered in eukaryotes, albeit to a lesser extent112. Their prevalence in 

bacteria has made them an interesting target for novel therapeutics and antibiotics113. 

 

1.2.3 Guanine Quadruplex folding and function 

1.2.3.1 Position in the genome 

Guanine rich sequences were first identified in gene promoters114, 115 and 

chromosomal telomeres116. Many of these sequences were later shown to fold into 

quadruplex structures117. After the consensus sequence of the human genome was 

published in 2001118, interest grew in searching it for guanine rich, potential G4-forming 

sequences. Quadparser was the first bioinformatic algorithm designed to located and 

predict the formation of G4s from a sequence of DNA119. The authors searched the 

genome for segments which followed a folding rule where “a sequence in the form 

d(G3+N1-7G3+N1-7G3+N1-7G3+) will fold into a quadruplex under near-physiological 

conditions”119. They came to this sequence after investigating synthetic quadruplex 

sequences using a combination of biophysical techniques and molecular modelling120. 

This initial search predicted 376,000 quadruplex sequences, and they found that half of 

all genes had a putative G4 structure near their transcription start site.  Further studies 

have shown G4s are not just clustered near the transcription start site of promoters114, 115, 

121-124 and the telomeres of many eukaryotes125-128, but also at splice sites and the 5’ and 

3’ UTRs of RNA129-132127. While this initial study provided a solid foundation for predicting 

the formation of G4s, it suffered from having many false negatives, where a sequence 

which was not predicted to form a G4 could indeed form a stable structure133. To 

overcome this weakness, the G4hunter algorithm was developed, this algorithm wasn’t a 

simple pattern matching algorithm like Quadparser, and instead scored sequences based 
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on their G-richness and G-skewness133. This algorithm increased the accuracy of 

predicting if a G4 would form from a specific sequence, and concluded that the number 

of sequences in the human genome which could possibly form G4s was significantly 

higher than what was predicted with Quadparser133. While Quadparser and G4Hunter 

remain the most used algorithms for predicting G4 formation, a host of different algorithms 

have been developed to predict different features of G4 formation including G4s with long 

loops, hairpins, multimeric quadruplexes, and prediction using machine learning 

algorithms, with each of these algorithms having their upsides and downsides which were 

all recently reviewed134. 

Whereas bioinformatic searches and G4 prediction serve as a good basis for the 

identification of G4 structures in the genome, new sequencing methods have been 

developed which allow for the in vitro identification of both DNA (G4-seq)135 and RNA 

(rG4-seq)136 quadruplexes directly from the sequence itself. G4-seq relies on Illumina 

next-generation sequencing137, and the observation that the quality of the sequencing 

data, quantified by Phred quality scores138, lowers when G4’s are formed (Figure 1.8). In 

G4-seq, two sequencing runs are produced, one where the sequencing buffer contains 

Li+ or Na+ cations, which do not strongly promote G4 formation, and one where the buffer 

contains K+ cations which do promote G4 formation. The quality of this sequencing data 

is then assessed, and regions with high-quality sequencing data in the Li+/Na+ buffer and 

low-quality sequencing data in the K+ buffer are identified as quadruplex forming regions. 

This study identified over 700,000 regions forming G4s in the human genome, nearly 

double what was predicted with the original Quadparser algorithm. Surprisingly, 70% of 

identified structures do not fit the canonical sequence G4s and have since been shown 

to adopt structures which include shorter and longer G-tracts, bulged residues, missing 

guanines, and longer loops135, 139. G4-seq has since been applied a host of different 

genomes140, providing valuable information for G4 prediction, especially in the case of 

machine learning algorithms which have seen a rise in popularity over the last few 

years141-143.  
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Figure 1.8: Example of a G4-seq workflow.  The first read is done under conditions which 

do not promote G4 formation, in this case a buffer with Na+ which does not stabilize G4s 

as much as K+. The second read is done under G4 stabilizing conditions, in this case a 

buffer with K+. The Phred quality score is then compared to see where the G4 start site 

is. Adapted from Chambers et al. with permission135.  

Following the development of in vitro detection methods for G4s, several methods 

have been developed to detect G4s in vivo. These techniques generally use imaging to 

visualize quadruplexes in cells, and have used either fluorescent nanobodies144 or small 

ligands145, 146 which have been designed to selectively bind to G4s. However, these 

molecules can influence G4 stability, which begs the question of whether they are 

promoting G4 formation in vivo. Consequently, groups tend to try minimize the 
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concentrations of these ligands to reduce this effect146. These examples show some of 

the first steps in detecting G4s in vivo, however this still remains a challenging task147.  

 

1.2.3.2 Biological function 

Guanine quadruplexes (G4s) have been hypothesized to influence many biological 

processes38. They are implicated in telomere maintenance and structure125, 127, 148, 149, 

DNA replication150-152, chromatin strcuture153-155, transcription control121-123, 156, 157, 

translation control132, 158, 159, and DNA damage response160-162. Their prevalence in 

regulatory elements has made them attractive targets for the development of novel cancer 

therapeutics163-165, and they have been suggested as both anti microbial166, and 

antiviral167, 168 targets. However, there are currently no approved G4 targeting 

therapeutics, with only a few examples making it to phase 2 clinical trials169. 

Understanding how G4s influence biology as well as how to selectively target them when 

they are critical in so many different processes remains a large challenge for 

researchers170.  

 

Quadruplexes in telomeres 

The telomeres of most eukaryotes contain quadruplex sequences which are able 

to form stable G4s in vitro171. They are able to cap chromosome ends38, and recruit 

telomeric proteins that bind G4 structures149, 172. In humans, the telomeric repeat 

d(TTAGGG) can reach lengths of 5-25kb with a single stranded overhanging region of 

around 35-600 nt173-175. This long single stranded region theoretically allows dozens of 

quadruplexes to fold simultaneously, and questions remain as to how these quadruplexes 

interact and what structure(s) these regions adopt in vivo. When studied in its monomeric 

form, d(TTAGGG)4 can fold into many different topologies. Parallel125, hybrid176, and 

antiparallel117 structures have all been observed in vitro, and are  all stable under different 

solution conditions with cation identity and molecular crowding agents promoting specific 

folds. Studying the extended form of the telomeric region containing multiple d(TTAGGG)4 

motifs is much more challenging than studying the monomer containing a single 

d(TTAGGG)4 motif. Several structural studies have shown that longer telomeric repeats 

form a “beads-on-a-string” arrangement, where the maximum number of quadruplexes is 
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formed177, 178. Recent work has shown that longer segments of the human telomeric 

repeat adopt multiple G4 topologies in the same strand179. However, these studies only 

looked at shorter sequences which could only fold 2-4 quadruplexes, which is 

substantially smaller than what could theoretically be formed in vivo. 

Work from previous members of the Mittermaier lab has shown that longer 

telomeric regions tend to have unfolded regions, especially at the ends of the DNA 

sequence180. This is an important consideration, as the formation of G4s at the ends of 

telomeres has been shown to control access of telomerase, an RNA-reverse 

transcriptase which extends the telomeric region181. Indeed, telomere length has been 

shown to be modulated by adding G4 interacting compounds182, as well as depleting G4-

unwinding helicases183. Furthermore, G4s have been shown to prevent alternative 

lengthening mechanisms (ALT), where telomerase is not used to lengthen the 

telomeres184. This is of particular interest, as ALT is a mechanism which is activated in 

15% of cancers and preliminary results have shown that ligands targeting G4s are able 

to kill these cells38, 184, 185. The fact that G4s can modulate both telomerase activity and 

ATL makes them attractive targets for controlling this process in vivo.  

 

Quadruplexes in DNA synthesis and damage 

 Quadruplexes have long been known to block polymerase read through in vitro, 

and this feature is often used as evidence to support the formation of G4 in a DNA 

strand186. However, there has been also been mounting evidence that the formation of 

G4 structures impedes replication in vivo187, where they have been shown to prevent both 

lagging strand188 and leading strand synthesis189. G4s have been found in the vast 

majority of identified origins of replication152 where they promote replication-fork collapse, 

leading to double-strand breaks and genome instability190. Deletions caused by this 

collapse have been shown occur directly adjacent to quadruplexes, leaving a distinct 

genomic “scar” after multiple rounds of mitotic division is C. elegans (Figure 1.9a)191. 

Interestingly, when a sequence of DNA is predicted to form multiple different G4s at 

different positions, patterns of deletions will emerge near each of these expected 

structures (Figure 1.9b). This suggests that different quadruplexes can be formed in vivo 

and can give insight into which quadruplexes are more likely to form. 
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Figure 1.9: Genomic deletions from G4 formation. G-tracts are shown in red, any 

nucleotide other than guanine is represented by n, and the position of deletions is shown 

as triangles. a) Deletions occurring near a single quadruplex. b) Deletions occurring in a 

sequence with two possible G4s. Adapted from Lemmens et al. with permission191. 

Another form of evidence that G4 formation can lead to DNA damage comes from 

looking at diseases which have mutations in G4-unwinding helicases. In these diseases, 

the activity of a helicase is generally negatively impacted, leading to a lower efficiency in 

unwinding DNA structures. Increased deletions adjacent to G4 have been observed in 

these diseases, along with telomere damage192. The Werner Syndrome Helicase (WRN) 

is one of these examples. This helicase has the ability to unfold G4s, and its function 

prevents telomere loss during the lagging strand replication193. Mutations in this gene 

causes Werner Syndrome, an autosomal recessive disorder which is characterized by 

premature aging194. Recent work looking at zebrafish as a model system has shown that 

the WRN helicase regulates short-stature homeobox (SHOX) expression through its G4-

unwinding activity, suggesting that WRN has multiple different functions195. 
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Quadruplexes in gene regulation  

While quadruplexes are abundant in regulatory elements, the role they play in gene 

regulation is not well understood196, 197. Depending on their sequence and position they 

have been shown to upregulate or downregulate both transcription and translation159, 198-

202. Holder et al.  attempted to understand how G4s affected the processes by performing 

a systematic study on how G4s influenced both transcription and translation based on 

their position in a gene (Figure 1.9)198. They inserted different model G4 sequences into 

the promoter, 5’-UTR, and 3’-UTR of a gene encoding for the green fluorescent protein in 

E. coli. To account for potential artifacts arising from the specific promoter sequence used, 

they opted to run each experiment on two different promoter sequences. They measured 

gene expression by looking at the resulting fluorescence in E. coli cultures, and further 

studied mRNA levels to determine if transcription or translation was playing a role in the 

gene expression. The model G4 sequences that they measured all had different stabilities 

and topologies. G2T and G2TC were the least stable (Tm < 60°C) quadruplexes they 

studied, both forming only two tetrads, with either parallel or anti-parallel topologies 

respectively. G3T and G3A both form highly stable (Tm > 80°C) three-tetrad parallel 

structures. When located in the promoter directly adjacent to the transcription start site 

(TSS), G4s had no effect on transcription or translation in the coding strand, however a 

large decrease in gene expression was seen when there was a G4 in this region in the 

non-coding strand. This decrease in gene expression in the non-coding strand was 

correlated with the stability with more stable G4s repressing gene expression more. 

Furthermore, mRNA levels were also notably decreased, suggesting that a G4 in this 

position effected transcription and not translation. This was expected as any G4 before 

the transcription start site (TSS) shouldn’t be transcribed into mRNA.  
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Figure 1.10: Positional dependence of G4s on gene regulation. Adapted from Holder et 

al with permission198. 

When a G4 was placed into the 5’-UTR of the non-coding strand gene expression 

was increased. This once again correlated well with G4 stability, and mRNA levels were 

increased relative to the gene expression, suggesting that a G4 in this position had an 

effect on transcription and not translation once again. G4’s in the 5’-UTR of the coding 

strand had a much different effect, when located close to the TSS gene expression was 

reduced. However, there was no difference in mRNA levels, suggesting that at this 

position a G4 had a negative effect on translation but not transcription. When the G4 was 

located close to the open reading frame of the gene but still in the 5’-UTR, translation was 

once again affected, but this time it could either be upregulated or downregulated 

depending on the sequence used.  

 In conclusion, while quadruplexes have been shown to effect gene expression 

there is still no consensus on how this is accomplished. In some cases, G4s downregulate 

transcription which is hypothesized to occur due to blocking polymerase readthrough195. 

In other cases, they have been shown enhance transcription by recruiting transcription 

factors, or by blocking rehybridization of the duplex DNA202. We do know that the position 

of the G4 drastically changes its ability to alter gene expression, and that helicases can 
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help unwind quadruplexes to influence gene expression. However, there is still a lot to 

learn about the impact quadruplexes have on gene expression and understanding their 

structure, stability, and interactions with other molecules will provide a basis to exploit 

them as therapeutic targets. 

 

Guanine quadruplex therapeutics 

Development of quadruplex targeting therapeutics has been ongoing for years203-

205. However, to date, only a few G4 interacting compounds have made it into clinical 

trials. Two examples are Quarfloxin and Pidnarulex, which are fluoroquinolones 

developed to have dual topoisomerase II and G4 interactions (Figure 1.11)169. Quarfloxin 

was the first-in-class G4 targeting therapeutic which went through both phase 1 

(NCT00955292) and phase 2 (NCT00780663) clinical trials for lymphoma and solid 

tumors. It was originally developed by Cylene Pharmaceutical, however it was withdrawn 

from clinical studies after phase II in the favor of newer derivatives. 

 

 

 

Figure 1.11: Chemical structures of G4 interacting compounds. a) Quarfloxin. b) 

Pidnarulex. 

 Pidnarulex is a much more recent derivative of quarfloxin that recently finished a 

phase I clinical trial (NCT02719977) for breast carcinoma and malignant solid tumors169. 

In this trial, 40 patients were treated across 10 different dose levels. Responses were 

observed in 14% of patients. Interestingly, patients with defective homologous 
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recombination were more likely to show a response to treatment206. Homologous 

recombination has previously shown to be effected by G4s207, and Pidnarulex is now in a 

phase I clinical trial focusing on this mechanism of action (NCT04890613). The drug was 

well tolerated and showed clinical activity without the characteristic toxicities of other 

topoisomerase inhibitors, suggesting a different mechanism compared to current 

therapeutics. While these two drugs are the first specifically designed to interact with G4s, 

some indenoisoquinolines that have entered phase 1 clinical trials have recently been 

shown to bind and stabilize G4s in vitro208. Important questions remain on G4 

therapeutics169: What is the importance of selectivity in G4 interacting compounds? How 

do epigenetic features change quadruplex therapeutics? What are the roles other DNA 

structures such as i-motifs and triplexes? 

 

1.2.3.3 Energy landscape 

The energy landscape of guanine quadruplexes is quite complex. Even a simple 

G4 made up of exactly four runs of three guanines folds through a kinetic partitioning 

mechanism with many possible folds and transition states (Figure 1.12)209. The situation 

gets even more complex when G-tracts contain more than three guanines, which leads 

to different G-register isomers, where G-tracts are shifted either in the 3’ or 5’ direction210. 

Sequences can also contain more than four G-tracts, which leads to different spare-tire 

isomers211, and when sequences contain eight or more G-tracts multiple G4s can fold 

together180. Finally, secondary interactions with loop residues and intermolecular 

association of other DNA or RNA G-tracts can also occur, complicating folding 

substantially139.  
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Figure 1.12: Representation of energy landscapes.Left) Funnel landscape with only a 

single free-energy basin. Right) Kinetic partitioning landscape with many competing free-

energy basins. Adapted from Šponer et al. with permissions209. 

To start, let us take the simplest case of a G4 made up of four tracts of three 

guanines separated by three loops (L), which do not interact with the structure at all, 

GGG-L1-GGG-L2-GGG-L3-GGG (Figure 1.13a). Upon first inspection, there is only one 

set of twelve guanines which can make up the core of this structure. However, each of 

these guanines can be adopt multiple sets of both sugar puckers and glycosidic bond 

angles. In fact, just through glycosidic bond angles alone, a G4 core can adopt 4096 (212) 

independent structures, with 2336 of these forming either two or three complete 

tetrads209. The combinations of these angles is what defines the loop arrangements and 

G-tract orientations, leading to either parallel, antiparallel, or hybrid G4-topologies209. 

Furthermore, the folding of this quadruplex proceeds through intermediates such as G-

duplexes and G-triplexes which contain incomplete G-tetrads212-215, and the final 

structures can have missing cations56 or incorrect topologies216.  Studying this number of 

both intermediate and folded states experimentally can be challenging, as most 

spectroscopic methods cannot differentiate between syn and anti angles, and methods 

that can are not sensitive enough to detect small populations of intermediates209. 
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Molecular dynamics, however, can give insight into how this large number of syn and anti 

patterns effect the energy landscape. Šponer et al. have shown that this extreme 

complexity is what causes the exceptionally long folding times observed for G4s when 

compared to duplex DNA and that even this simple sequence folds through a kinetic 

partitioning mechanism209.  

Now let us consider the case where a sequence is made up of more than the 12 

guanines required to form the core of the G4 structure. Take the sequence GGGG-L1-

GGG-L2-GGG-L3-GGG, which has four guanines in its first G-tract (Figure 1.13b). In this 

case, not including the loop and angle isomers described in the last paragraph, the 

molecule can form two distinct isomers. The isomers are created by the using a subset 

of the four guanines in the first tract to create the core. For example, taking the first three 

guanines leaves the fourth to be in the first loop, GGG-GL1-GGG-L2-GGG-L3-GGG, or 

taking the G-GGG-L1-GGG-L2-GGG-L3-GGG, resulting in two possible isomers. In the 

first case, the odd G in the loop is shifted to the 3’ end of the sequences, and thus we 

refer to this as a 3’ shifted isomer. In the second case the odd G is shifted to the 5’ direction 

and is therefore the 5’ isomer. In a previous study from the Mittermaier lab, Harkness et 

al. studied this type of isomer, referred to as a G-register isomer210. In this case they were 

able to study the isomers independently by mutating select guanine residues to either 

thymine or inosine nucleotides. They characterized the isomers and the wildtype and 

developed a thermodynamic model to explain this behavior, finding that the presence of 

these isomers increased the entropic stabilization of the folded state, leading to the full 

sequence being more stable than either of the two isomers themselves. 

Next, consider a sequence of five tracts of three guanines separated now by four 

loops, where any subset of four tracts can make distinct isomers, GGG-L1-GGG-L2-GGG-

L3-GGG-L4-GGG (Figure 1.13c). Once again, along with the isomers describe previously, 

this sequence can make five different isomer using different G-tracts. For example, you 

can make a G4 from the first four G-Tracts, GGG-L1-GGG-L2-GGG-L3-GGG-L4-GGG, 

leaving the last G-tract as dangling nucleotides at the 3’ end of the sequence, referred to 

as the 1234 Isomer. You can also take all but the middle G-tract, GGG-L1-GGG-L2GGGL3-

GGG-L4-GGG, where the third G-tract, along with loops two and three, now form the 

middle loop of the quadruplex. This quadruplex would be referred to as the 1245 
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quadruplex. You can continue to do this to find five different isomers, which are called 

spare tire isomers. Grun et al. dissected the folding kinetics of this type of isomer in detail, 

finding that the G4 forms many of these isomers, getting caught in kinetic traps along its 

conformational landscape211.  

Finally, consider a sequence made up of eight tracts of three guanines, now 

separated by seven loops, GGG-L1-GGG-L2-GGG-L3-GGG-L4-GGG-L5-GGG-L6-GGG-

L7-GGG (Figure 1.13d). Once again a single quadruplex can be formed from any subset 

of four G-tracts. In fact, assuming only one G-tract can be in a loop, there are twenty-

eight different ways to fold a single quadruplex. However, only two of these possibilities 

allow for the folding of a second adjacent quadruplex. While this two G4 folded form is 

likely to be the most energetically favorable folded state, the formation of any one of the 

other twenty-six single quadruplexes will prevent two G4s from folding. This is a 

phenomenon referred to as frustrated folding, which was studied in detail by a previous 

member of the Mittermaier lab. Carrino et al. studied these sequences by mutating 

specific G-tracts into T-tracts to prevent formation of some G4s, and showed that this 

effect can inhibit complete formation of multiple quadruplexes, even when there are 

cooperative effects pushing the system to be fully formed180. Even at equilibrium, 

sequences do not always form the maximally folded structure instead leave single 

stranded regions, especially near the ends of the sequence. 

Even after a folding event occurs, G4’s still exhibit a large degree of dynamics. G-

tracts that contain more than 3 guanines can slide to incorporate different guanine 

residues in the core, without the need for complete unfolding216, cations can also 

exchange from the core of the quadruplex217. While originally only the thermodynamically 

most stable G4 was favored for study, there is growing evidence to suggest that kinetic 

partitioning early in quadruplex folding is more biologically relevant139. 
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Figure 1.13: Possible G4 isomers. a) Topology isomers arising from different syn and anti 

patterns. b) G-register isomers resulting from tracts with more than 3 guanines. c) Spare 

tire isomers resulting from more than 4 G-Tracts. d) Folding frustration in multimeric 

quadruplexes. 
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Figure 1.14: Naturally occurring G4 sequences. Sequences of c-MYC, BCL2, hTERT, and 

cKIT quadruplexes. Validated G-tracts are underlined and well studied individual G4s are 

highlighted. Adapted from Grün et al. with permissions139. 

While the previous examples have all been model sequences, naturally occurring 

G4 sequences often have more guanines than can form a single G4 core (i.e. more than 

four tracts of three G’s, or G-tracts with more than three G’s), potentially leading to large 

degrees of structural polymorphism (Figure 1.14). Because of this, G4 folding is 

challenging to study with conventional techniques. For example, most spectroscopic 

methods are not able to differentiate between different intermediates and folds, and 

instead measure ensemble effects139. More sophisticated structural techniques such as 

NMR are unable to resolve the large number of peaks caused by this structural diversity, 

making assignment difficult139. Nevertheless, spectroscopy is one of the main biophysical 

techniques used to study G4 stability, structure, and kinetics. In these cases folding data 

from the ensemble often resembles a two-state, all or none mechanism218 where the 

unfolded DNA strand proceeds through a single transition state towards the folded 

structure. This type of analysis provides important insight into the folding mechanism of 

quadruplexes. However, effects such as negative activation enthalpy219, are often 

observed, likely due to a zippered folding mechanism which has been observed for other 

DNA structures such as duplexes220, triplexes221, and i-motifs222. Experimentalists can 

use mutations to study single isomers and use mathematical models to help probe the 

kinetic mechanisms, which provides a deep level of insight into G4s folding and 

dynamics180, 210.  
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1.2.4 Higher order DNA assemblies in nanotechnology 

Nucleic acids have a remarkable structural diversity which, along with their ease 

of synthesis and bioavailability, has given them prominence in the nanotechnology 

field223. The simple rules of Watson-Crick base pairing allow sequences to be designed 

with highly predictable behavior. Combinations of the different structures described in 

Section 1.2.2. have been used to create novel 2- and 3-dimensional assemblies which 

have applications in the biomedical and biotechnology fields223. The fabrication of these 

structures uses two main approaches: top down and bottom up224. Top-down fabrication 

begins with a large structure which is then shaped and reduced in size to the desired 

assembly, akin to folding a large piece of paper in the art of origami. Bottom-up fabrication 

uses small discrete units to build the larger desired structure, akin to the use of bricks to 

build houses.  

 

1.2.4.1 Nucleic acid junctions 

Nucleic acid junctions represent an important tool in designing higher order nucleic 

acid structures. They occur when multiple stands of nucleic acids cross over each other 

to create a branched junction and can be exploited to make 2- and 3-dimensional 

structures using simple duplex DNA. The most famous of these is the Holliday  junction 

which is a naturally occurring DNA structure that is involved in the process of homologous 

genetic recombination and was first described by Robin Holliday in 1964 (Figure 

1.15a)225. It is built from two pairs of near parallel helices which cross over, as shown in 

Figure 1.14. In the 1980’s Ned Seeman theorized that other types of DNA junctions could 

be created, theoretically allowing for the creation of novel 2- and 3-D structures226. In 

practice, the Holliday junction was too flexible to form some more complicated structures, 

which led to development of double crossover junctions (DX) (Figure 1.15b)227. These 

junctions have two DNA strands coupled via two crossover events and exhibit much 

higher rigidity than the simple Holliday junction, thus serving as a basis for the creation of 

more complicated nanostructures described below.  
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Figure 1.15: Cartoon representation of DNA junctions. Different DNA strands are shown 

in different colours, and arrows point on the 5’-3’ direction. a) Holliday junction. b) Double-

crossover (DX) junction. 

1.2.4.2 DNA Origami 

The concept of DNA origami revolves around the systematic folding of a long, 

single-stranded DNA molecule, often derived from a bacteriophage, into a predetermined 

structure228. This is a top-down assembly approach which is achieved by using numerous 

short "staple" oligonucleotides, to bind specific sections of the long strand, guiding its 

folding into the desired geometry via DX junctions (Figure 1.16a). Dr. Paul Rothemund, 

who introduced the term "DNA origami" in 2006, demonstrated this technique's potential 

by folding DNA into diverse two-dimensional shapes, such as stars, triangles, and even 

intricate designs like smiley faces (Figure 1.16b)229. Since 2006 DNA origami has evolved 

to more complex 3-D shapes and structures via intricate crossover patterns230, for 

example allowing researchers to create hollow boxes which respond to external stimuli231, 

polyhedral meshes232, and DNA robots that can sort cargo233. Due to the predictable 

nature of DNAs interactions, a variety of software has been developed to predict both 2- 

and 3-dimensional structures, giving the sequences of all DNA staple strands required to 

form a specific structure228.  
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Figure 1.16: DNA origami structures. a) Two-dimensional representation of a DNA 

origami fold. b) Different two-dimensional shapes created from DNA origami. Adapted 

from Rothemund with permission229. 

1.2.4.3 Wireframe structures 

DNA wireframe structures are generally constructed through a bottom-up 

methodology, distinct from the aforementioned DNA origami234. This approach involves 

the self-assembly of numerous short DNA sequences into larger complex structures 

(Figure 1.17a). A notable advantage of this method lies in its avoidance of the synthesis 

or purification processes of long DNA strands235. Large assemblies are formed through 

the predictable self-assembly of easily synthesized smaller structures. Furthermore, the 

absence of predetermined length facilitates the creation of longer assemblies. Wireframe 

structures require fewer unique strands, leading to a significant reduction in production 

costs. The construction of elongated repetitive structures typically involves the design of 

two complementary building blocks: "rungs" forming the base structure, often in the shape 

of a lower-order polygon, and "linking strands" connecting these rungs (Figure 1.17b)236. 

Linking strands can be either short nucleotides complementary to both ends of a rung,  

leading to polydisperse assembles, or they can be synthesized to yield a backbone of a 

predesigned length, resulting in monodisperse assemblies237. 
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Figure 1.17: Wireframe DNA nanostructures.  a)Polyhedral DNA structures, adapted from 

Seeman et al. with permission223. b) DNA nanotubes made from small rungs and 

connected with a long backbone, adapted from Saliba et al. with permission236.   

1.2.4.4 Supramolecular co-assembly 

While the natural assembly of DNA using only four bases is sufficient for design of 

nanostructures, moving to structures with different functions can be challenging. One way 

to expand the DNA alphabet is to use non-natural nucleotides, however this can be 

synthetically challenging and expensive. Other approaches involve the use of small 

molecules that co-assemble with DNA238, 239. These small molecules can be incorporated 

without the need for modifying the DNA strand. One example of these molecules is 

cyanuric acid (CA). CA has previously been shown to form large supramolecular 

assemblies with the small molecule melamine, which bears a resemblance to 

adenosine240. Indeed, CA is complementary to two sides of adenosine, and early 

experiments showed that mixtures of polydeoxyadenosine (polyA) strands would 

assemble with cyanuric acid to form long hexameric fibres (Figure 1.18a)239. Importantly, 

when in the bound form only two of the three faces of CA are involved in binding, which 

allows the third face of the CA molecules to be functionalized (Figure 1.18b)241. These 
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structures form impressively stable hydrogels which exhibit self-healing and pH 

responsiveness242. However, understanding their assembly can be quite challenging. 

 

Figure 1.18: Structure of supramolecular fibres created from polyadenosine and cyanuric 

acid. a) Model of helicine structure, adapted from Alenaizan et al. with permission243. b) 

Hydrogen bonding pattern of polyA-CA fibres adapted from Hennecker et al. with 

permission244. 

These have complex assembly pathways245, along with large energetic barriers, 

hindering their assembly kinetics246. Harkness et al. was able to show that these 

structures assemble in a nucleation-elongation model. This model was first developed by 

Fumio Oosawa and Michiki Kasai to describe the linear aggregation of 

macromolecules247, and later expanded  on by Robert Goldstein and Lubert Stryer (Figure 

1.19a)248. In this model, the co-assembly of CA and polyA is modelled as monomers (M) 

coming together into elongated fibres. As discussed in Chapter 4 of this thesis, this is an 

oversimplification of the true mechanism, but still provides insight into how these fibres 

assemble. The nucleation-elongation model (Figure 1.19) has two distinct stages: 

nucleation and elongation. In the nucleation stage, assembly and disassembly of 

monomers (M) up to a certain size, referred to as the nucleus (Ms), is modelled with one 

set of association (kn+) and dissociation constants (kn-) to give the equilibrium constant 

(Kn = kn+/kn-)249. In the elongation stage, fibres larger than the nucleus are described with 
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another set of constants (ke+, ke-, and Ke = ke+/ke-). Importantly, for cooperative assembly 

the stability of the fibres is greater than the stability of the pre-nucleated species (Ke
-1 < 

Kn
-1), resulting in the growth of these fibres only when the free monomer concentration is 

greater than the stability of the fibres ([M] > Ke
-1)249. This monomer concentration is often 

reffered to as the critical monomer concentration ([M]c), and can be used as a measure 

of the stability of these fibres ([M]c = Ke
-1). 

 

Figure 1.19: Nucleated-elongation model. a) kinetic and thermodynamic representation 

of the full model. 

1.2.5 Thermal analysis of nucleic acid structures 

Measuring the thermodynamic stability and kinetics of nucleic acid structures gives 

important insight into their chemical interactions and the mechanisms underlying their 

formation. Even short nucleic acid sequences can have intricate folding (intramolecular) 

or assembly (intermolecular) pathways. A common strategy for measuring their stability 

is using thermal denaturation/renaturation experiments218. In this approach, nucleic acids 

are generally first held at a high temperature (>90 °C), driving disassembly/unfolding of 

the structure. The temperature is then lowered at a constant rate (
𝑑𝑇

𝑑𝑡
) which shifts the 

equilibrium towards the folded/assembled form. As this process occurs, the relative 

populations of the folded/assembled and unfolded/disassembled structures are 

monitored, typically either spectroscopically using techniques such as absorbance210, 

fluorescence250, circular dichroism251, and nuclear magnetic resonance252, or 

calorimetrically using differential scanning calorimetry253. The resulting profiles can be 

analyzed to extract equilibrium populations210 as well as both thermodynamic and kinetic 
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parameters218. In order to extract this kind of information, thermal 

denaturation/renaturation profiles must be fit to physical chemical models. Take for 

example, the intramolecular folding of a DNA strand follow the scheme 

𝑈 

𝑘𝐹  
→ 

𝑘𝑈 
← 
 𝐹      (Scheme 1.1) 

where U and F are the unfolded and folded forms and kF and kU are the rate constants 

for folding and unfolding respectively.  When under thermodynamic equilibrium, the 

system can be described in terms of its temperature dependent equilibrium constant using 

the van ‘t Hoff equation 

 

 𝐾𝑒𝑞 =
𝑘𝐹

𝑘𝑈
= 𝑒−

𝛥𝐺

𝑅∗𝑇   (Equation 1.1) 

 

where 𝐾𝑒𝑞 is the equilibrium constant, Δ𝐺 is the free energy of folding, 𝑅 is the ideal gas 

constant, and 𝑇 is the temperature. The fraction of folded species at a given temperature 

can be calculated using 

 

𝜃𝑇 =
𝐾𝑒𝑞

1+𝐾𝑒𝑞
    (Equation 1.2) 

 

Heating and cooling then produce sigmoidal transitions between the folded and unfolded 

species, with lower temperatures favouring folding. In the case of a system which is not 

at equilibrium, Equation 1.2 will not adequately explain the observed behaviour of thermal 

traces. Instead, differential equations must be written to describe the time dependence of 

each species. For Scheme 1.1 this leads to the following two equations 

 

𝑑[𝑈]

𝑑𝑡
= −𝑘𝐹[𝑈] + 𝑘𝑈[𝐹]  (Equation 1.3) 

 

𝑑[𝐹]

𝑑𝑡
= 𝑘𝐹[𝑈] − 𝑘𝑈[𝐹]   (Equation 1.4) 
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The temperature dependences of both kF  and kU  are described by the Arrhenius 

equation 

𝑘 = 𝐴𝑒−
𝐸𝑎
𝑅∗𝑇      (Equation 1.5) 

 

Where k is a rate constant (kU or kF), A is the pre-exponential factor and Ea is the activation 

energy. These differential equations often have to be numerically integrated. However, for 

some simple mechanisms, analytical descriptions are possible. The integration of these 

equations provide values of 𝜃 =
[𝐹]

[𝑈]+[𝐹]
, which can be related back to thermal analysis 

traces. 

This thesis makes use of temperature-controlled UV-spectroscopy to monitor the 

folding/assembly and unfolding/disassembly of nucleic acid structures. UV-spectroscopy 

represents a rapid and inexpensive way to monitor these processes since there are often 

measurable differences in the absorbance of light in the region of 250-290 nm between 

unstructured and structured DNA. It does not require the use of expensive fluorophores, 

and multiple samples can be measured in parallel giving it an advantage over single 

sample machines such as differential scanning calorimeters.  

UV-spectroscopy relates absorbance to the concentration of DNA using Beers law 

 

𝐴 =  𝜀𝑐𝑙       (Equation 1.6) 

 

Where 𝐴 is the absorbance, 𝜀 is the extinction coefficient at the measured wavelength for 

the specific species, 𝑐 is the species concentration, and 𝑙 is the pathlength of the cuvette. 

A typical thermal trace contains three distinct regions (Figure 1.20a); 1) A high 

temperature region where DNA is completely unfolded/disassembled. 2) a transition 

region (generally sigmoidal but can be more complicated when more than two species 

are present), where populations of both unfolded/disassembled and folded/assembled 

species are present. 3) A low temperature region where the DNA is completely 

folded/assembled. Both the high temperature and low temperature regions may be 

sloped, this can be due to temperature dependent changes in 𝜀  caused by subtle 

rearrangements of the structure, degradation of the sample, spectrophotometer drift, or 
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evaporation at high temperatures and condensation at low temperatures218. Absorbance 

traces are converted into fractions or concentrations of folded/assembled or 

unfolded/disassembled by fitting linear baselines to the high-temperature and low-

temperature regions (Figure 1.20b).  

The fraction of folded/assembled DNA is given by218 

𝜃𝑇 =
𝐿0𝑇−𝐴𝑇

𝐿0𝑇−𝐿1𝑇
      (Equation 1.7) 

Where 𝜃𝑇 is the fraction of folded DNA, 𝐴𝑇 is the measured absorbance, 𝐿0𝑇 is the 

high-temperature baseline and 𝐿1𝑇 is the low-temperature baseline, all at temperature T. 

A typical thermal analysis will include both a renaturation trace (found from cooling the 

sample), and a denaturation trace (found from heating the sample). These two traces are 

required to determine if the system is at thermal equilibrium under the chosen 

temperature scanning rate (Figure 1.20c), or if the system is not under thermal equilibrium 

(Figure 1.20d), resulting in thermal hysteresis and a distinct offset of the denaturation and 

renaturation profiles, with the denaturation profile is offset to higher temperatures, and 

the renaturation profile is offset to lower temperatures; the true equilibrium curve lies 

somewhere between the two traces (Figure 1.20d). Physical models which describe how 

the different species in a system change with temperature can be fit to these traces to 

give a wealth of information on the folding/assembly and unfolding/disassembly 

thermodynamics and kinetics, as well as information on the mechanisms dictating their 

formation218, 246.    
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Figure 1.20: Thermal analysis by UV-spectroscopy. a) Raw absorbance traces, high 

temperature baselines is shown as the dotted black line, low temperature baseline is 

shown as the dashed black line. The experimental absorbance showing the transition 

between unfolded/disassembled and folded/assembled is shown as the solid black line. 

b) Baseline corrected absorbance profile to give a plot of fraction folded/assembled as a 

function of temperature. c) thermal analysis traces of a system at equilibrium d) Thermal 

analysis traces showing a system which is not at equilibrium, the true equilibrium is shown 

as the black dashed line. In panels c and d, denaturation profiles are shown in red and 

renaturation profiles are shown in blue. 
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1.3 Proteins 

1.3.1 Amino acids 

Proteins are essential biomacromolecules which play fundamental roles in 

biology254. They have functions including but not limited to, structural255, signaling256, and 

catalytic processes257. As with all other biomacromolecules, they are built from the 

combination of small building blocks, in this case amino acids, which dictate their overall 

structure and function. Amino acids are molecules which contain amino and carboxyl 

functional groups in addition to specific side chains bonded to a central -carbon (Figure 

1.21a). There are twenty side chains which are directly coded for in the human genome, 

all of which have specific shapes, charges, reactivity, hydrogen-bonding patters, and 

hydrophobicity.  

 

Figure 1.21: Structure of polypeptides.  a) structure of a single amino acid, the R group 

refers to the side chain which differs between amino acids. b) The resonance structures 

between adjacent amino acids. c) Structure of two amino acids, showing the planes of 

each amino acid and the possible rotations of the  and  angles. d) The representation 

of a polypeptide chain. Adapted from Pal with permissions254. 
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Amino acids are joined together by a covalent bond between the carboxyl group 

of one amino acid and the amino group of another. This leads to the loss of water from 

the single amino acid structures, and the formation of a C-N bond, commonly referred to 

as the peptide bond. Rotation around this bond is prevented by two resonance structures, 

which leads to the peptide group having a rigid, planar structure (Figure 1.21b). The other 

two bonds, between the C−C and N−C are single bonds. Thus, amino acids are free to 

rotate these bonds, leading to two defining angles: phi () which describes the rotation 

around N−C  and psi () which describes the rotation around C−C (Figure 1.21c). Long 

chains of amino acids are referred to as polypeptides. The order of amino acids in a 

protein is referred to as its primary structure (Figure 1.21d). By convention, the sequence 

of amino acids is written from the amino terminus to the carboxyl terminus. When in a 

polypeptide chain, amino acids can be referred to as residues, and are generally 

described by a single letter which is unique to each side chain. Proteins are formed from 

one of more polypeptides and can contain hundreds or thousands of amino acids which 

then form different secondary, tertiary, and quaternary structures. 

 

1.3.2 Secondary structure 

Combinations of different  and  angles give rise to different secondary structures 

of the amide backbone. The  helix is one of these structures, which forms when the 

carboxyl group of the nth forms a hydrogen bond with the amino group of the (n+4)th 

residue (Figure 1.22a). This leads to a distinctly cylindrical structure where every carboxyl 

and amino group is hydrogen-bonded (not including residues at either the start or end). 

Adjacent residues are rotated by 100° and offset by 1.5 Å which leads to 3.6 residues per 

turn and a pitch of 5.4 Å. The orientation of each residue in the  helix leads to the dipole 

moments of individual residues being aligned, creating a macrodipole where the amino-

terminal end of the helix is positive, and the carboxyl-terminal end is negative.  
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Figure 1.22: Secondary structures of polypeptide chains. a) The  helix. b) the  sheet. 

Adapted from Pal with permissions254.  

The  sheet occurs when two or more polypeptides are arranged side by side with 

each other in either a parallel or anti-parallel fashion (Figure 1.22b). In contrast to the  

helix,  sheets have nearly fully extended polypeptide chains. Hydrogen bonds form 

between the amino groups of one polypeptide strand and the carboxyl group of another, 

which join these strands.  sheets can be relatively flat, or adopt a slightly twisted shape. 

The  helix and  sheet make up the two most common secondary structures, however 

proteins can adopt other structural elements which include  turns,  hairpins, and   

loops, along with other hydrogen bonding patterns that help give the protein its shape and 

function. 

 

1.3.3 Tertiary and quaternary structure 

The tertiary structure is the overall three-dimensional structure adopted by a single 

polypeptide chain. It includes the specific positions and interactions of each atom in a 

polypeptide, including those in the amide backbone, and those of the individual side 

chains. The tertiary structure is influenced by the different hydrogen bonding patterns 

between both the side chain and backbones, along with van der waals forces, 

hydrophobic effects, and electrostatic effects. Water molecules are often found on the 

surface of the structures and can sometimes be used as structural elements to bridge 

hydrogen bonding interactions. Polypeptides tend to form compact globular structures. 

While small polypeptide chains tend to be approximately spherical, larger polypeptides 
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can fold into more than one globular cluster, which are referred to as domains (Figure 

1.23a). Domains are able to fold independently, and often have specific functions in the 

protein. 

 

Figure 1.23: Tertiary and quaternary structures.  a) the tertiary structure of RecA showing 

three distinct domains along with multiple  sheets and  helices.  b) The quaternary 

structure of two subunits of undecaprenyl pyrophosphate synthetase from E. Coli. 

Adapted from Pal with permissions254. 

Quaternary structures occur when proteins are made up of more than one 

polypeptide chain. These individual chains are called subunits, and have their own 

primary, secondary, and tertiary structures. Subunits are joined by complementary 

interactions, with hydrogen bonding, electrostatics and hydrophobic effects playing large 

roles in the stabilization of this interface (Figure 1.23b).  
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1.3.4 Enzymes 

Enzymes are proteins that act as biological catalysts to accelerate chemical 

reactions in biological contexts. They have important roles in many cellular processes, 

including but not limited to, sensing, metabolism, transport, and regulation258-261. Their 

prevalence in these critical functions have made them attractive drug targets, as many 

diseases involve the modulation of enzyme activity to some extent262. Beyond their clinical 

relevance, they are highly desirable in industrial applications where they can lead to a 

reduction in process time, lowering the number of required reactions for a specific 

transformation, and decreasing the amount of waste produced263, 264. Furthermore, 

enzymes have been engineered to process substrates which have no natural enzyme, 

leading to the ability to generate specific chemical conversions265. They are able to 

accelerate reactions up to 1019-fold266, which they can accomplish in a variety of different 

ways. The simplest of these ways is by stabilizing the reaction transition state through 

hydrogen-bonding267 or electrostatic interactions268. Besides transition state stabilization, 

enzymes can also lower the solvent reorganization energy269 and their dynamics can aid 

the substrate progressing along the reaction pathway270. Finally, some enzymes have 

been shown to change the reaction mechanism completely271. 

 

1.3.4.1 Michaelis-Menten and Briggs-Halden kinetics 

The simplest form of enzyme catalysis involves three distinct reversible steps, 

which are depicted in Scheme 1.2:  

𝐸 + 𝑆 

𝑘1  
→ 

𝑘−1
← 

 𝐸𝑆 

 𝑘𝑐  
→ 

𝑘−𝑐
← 

 𝐸𝑃 

𝑘𝑟  
→ 

𝑘−𝑟
← 

 𝐸 + 𝑃     (Scheme 1.2) 

1) The binding of the substrate (S) to the enzyme (E), to form the enzyme-substrate 

complex (ES). This reversible binding is described by the association (k1) and dissociation 

(k-1) rate constants. 2) The conversion of substrate to product to produce the enzyme-

product complex (EP). This step is described by the rate of chemical conversion (kc) and 

the reverse rate of chemical conversion (k-c). 3) The release of product (P) from the 

enzyme-product complex (EP), which is described by the rate of product release (kr) and 

binding (k-r). 
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The two most common enzyme kinetic models, referred to as Briggs-Haldane272 

and Michaelis-Menten, simplify Scheme 1.2 into a two-state process (Scheme 1.3): 

𝐸 + 𝑆 

𝑘1  
→ 

𝑘−1
← 

 𝐸𝑆
𝑘𝑐𝑎𝑡  
→    𝐸 + 𝑃     (Scheme 1.3) 

 where both the chemical conversion of the enzyme-substrate (ES) to enzyme-

product (EP) complex and the release of product (P) from the enzyme-product complex 

(EP) are assumed to be both fast and irreversible. (i.e. kc >> k-c and kr >> k-r). When these 

assumptions are made, kc and kr can be grouped into a single catalytic rate constant 

(𝑘𝑐𝑎𝑡  =
𝑘𝑟∗𝑘𝑐

𝑘𝑟+𝑘𝑐
), and the rate of product formation can be described as 

𝑑[𝑃]

𝑑𝑡
= 𝑣 = 𝑘𝑐𝑎𝑡[𝐸𝑆]      (Equation 1.8) 

where the concentration of the enzyme-substrate complex (ES) is described by 

𝑑[𝐸𝑆]

𝑑𝑡
= 𝑘1[𝐸][𝑆] − 𝑘−1[𝐸𝑆] − 𝑘𝑐𝑎𝑡[𝐸𝑆]   (Equation 1.9) 

In both the Michaelis-Menten and Briggs-Haldane kinetic models, the steady state 

approximation (
d[ES]

dt
= 0) is used to simplify Equation 1.8 and Equation 1.9 to 

𝑑[𝑃]

𝑑𝑡
= 𝑣 =

𝑘𝑐𝑎𝑡[𝐸]0[𝑆]

[𝑆]+𝐾𝑚
      (Equation 1.10) 

where [E]0 is the total concentration of enzyme. In Briggs-Haldane kinetics, Km is 

equal to 𝐾𝑚 =
𝑘−1+𝑘𝑐𝑎𝑡

𝑘1
. In Michaelis-Menten kinetics, the free enzyme and substrate are 

assumed to be in rapid equilibrium, with the dissociation rate of the substrate being much 

larger than the catalytic rate (𝑘−1 ≫ 𝑘𝑐𝑎𝑡). In this case 𝐾𝑚 can be simplified to just be the 

dissociation constant of the substrate (𝐾𝑚 = 𝐾𝑑 =
𝑘−1

𝑘1
). Importantly, both cases predict the 

same hyperbolic dependence of substrate concentration on the rate of catalysis (Figure 

1.24a).  



 45 

 

Figure 1.24: Graphs to visualize enzyme activity. a) The dependence given by Equation 

1.10 is shown as the black solid line. The maximum rate of product formation (Vmax) is 

shown as the blue dashed line. The Km is given by the substrate concentration when v = 

½ Vmax and is shown as the red dashed line. b) The Lineweaver-Burk plot which linearizes 

panel a. Here the y-intercept is 1/Vmax and the x-intercept is -1/Km. 

At high substrate concentrations ([S] >> Km), Equation 1.10 simplifies to 

𝑑[𝑃]

𝑑𝑡
= 𝑉𝑚𝑎𝑥 = 𝑘𝑐𝑎𝑡[𝐸]0      (Equation 1.11) 

Which is defined as the maximum velocity of the reaction and occurs when all the 

enzyme in solution is bound to substrate. Furthermore, Equation 1.10 shows that the 

substrate concentration which produces a rate of catalysis equal to half of the Vmax is 

equal to the Km. In the rest of this thesis, Equation 1.10 is referred to as Michaelis-Menten 

kinetics, and Km is referred to as the Michaelis constant.  

Finally, it is often beneficial to linearize Equation 1.10 by taking the inverse of each 

side, which gives 

1

𝑣
=

1

[𝑆]
∗

𝐾𝑚

𝑉𝑚𝑎𝑥
+

1

𝑉𝑚𝑎𝑥
       (Equation 1.12) 

Thus, a plot a 
1

v
  vs 

1

[S]
 , commonly called a Lineweaver-Burk plot (Figure 1.24b), 

produces a line where the y-intercept is equal to 
1

Vmax
 and the x-intercept is equal to −

1

Km
. 
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As discussed below, molecules which inhibit enzyme activity change one or both of these 

parameters and produce very distinct trends when plotted on a Lineweaver-Burk plot. 

 

1.3.4.2 Enzymes in drug discovery 

Much of modern drug-discovery is focused on modulating the activity of enzymes. 

This is often accomplished by developing small molecules which interact with specific 

enzymes that are dysregulated in a certain disease, restoring their activity back to normal 

levels273, or by targeting enzymes present only in a specific bacteria274 or virus275. This is 

development is typically a multi-step process which begins with identification of the 

enzyme of interest, followed by high-throughput screening assays to find molecules which 

inhibit their activity. These high-throughput screens are increasingly done in silico with the 

aid of molecular docking programs276, but are also commonly done in vitro via 

fluorescence277, mass spectrometry278, among others. Molecules which are found to 

interact favorable with the enzyme of interest are referred to as “hits” and are then 

optimized into “leads” by introducing chemical modifications while characterising their 

potency and selectivity (Figure 1.25). This is done by combining knowledge of their 

structure and potency to develop a deep understanding of their structure-activity 

relationships. Lead compounds then proceed to both pre-clinical and clinical trials, before 

they can be sold as drugs279. This development can be very costly, with only 1 in every 

10 compounds that enter clinical trials becoming a drug280, and new drugs having an 

average development cost of 2.6 billion281. 

 

Figure 1.25: Drug development workflow from target identification to clinical development. 
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1.3.4.3 Enzyme inhibition 

The early stages of drug development are typically focused on characterizing the 

potency of inhibitors in vitro. This potency is usually expressed in terms of the affinity 

between the inhibitor and the target enzyme, usually by extracting the dissociation 

constant (Kd), which is commonly referred to as the inhibition constant (Ki). Inhibitors can 

interact with either the free enzyme (E) (Scheme 1.4), the enzyme-substrate complex 

(ES) (Scheme 1.5), or both. 

𝐸 + 𝐼 
𝐾𝑖(1)
←   𝐸𝐼       (Scheme 1.4) 

𝐸𝑆 + 𝐼 
𝐾𝑖(2)
←   𝐸𝑆𝐼      (Scheme 1.5) 

Where Ki(1) is the dissociation constant for the inhibitor binding to the free enzyme 

 𝐾𝑖(1) =
[𝐸][𝐼]

[𝐸𝐼]
       (Equation 1.13) 

And Ki(2) is the dissociation constant for the inhibitor binding to the enzyme-

substrate complex 

𝐾𝑖(2) =
[𝐸𝑆][𝐼]

[𝐸𝑆𝐼]
       (Equation 1.14) 

Equation 1.13 and Equation 1.14 can be combined with Equation 1.10 to give a 

full description of possible enzyme inhibition patterns to give 

𝑑[𝑃]

𝑑𝑡
= 𝑣 =

𝑘𝑐𝑎𝑡[𝐸]0[𝑆]

[𝑆](1+
[𝐼]

𝐾𝑖(2)
)+𝐾𝑚(1+

[𝐼]

𝐾𝑖(1)
)

    (Equation 1.15) 

This equation describes mixed inhibition, which occurs when the inhibitor binds to 

both the free enzyme, preventing substrate binding, and the enzyme-substrate complex, 

preventing conversion of the substrate to the product. This leads to changes in both 

Michaelis-Menten parameters (Km and kcat) (Figure 1.26a). Furthermore, the limits in this 

equation lead to the three main forms of inhibition:  

1

𝐾𝑖(2)
→ 0,   

𝑑[𝑃]

𝑑𝑡
= 𝑣 =

𝑘𝑐𝑎𝑡[𝐸]0[𝑆]

[𝑆]+𝐾𝑚(1+
[𝐼]

𝐾𝑖(1)
)

    (Equation 1.16) 

1) Competitive inhibition (Equation 1.16) occurs when the inhibitor binds to only 

the free enzyme and is able to block the binding of the substrate. Often times, these types 

of inhibitors are structural mimics of the substrate and bind into the active site of the 

enzyme282. In competitive inhibition, only the Km of the enzyme is affected, leading to a 

Lineweaver-Burk plot where increasing inhibitor concentration leads to a decrease in the 
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x-intercept, but no effect on the y-intercept (Figure 1.26b). This lowers the enzyme activity 

when at lower substrate conditions, but still sees the same activity when [S] >> Km.  

1

𝐾𝑖(1)
→ 0,   

𝑑[𝑃]

𝑑𝑡
= 𝑣 =

𝑘𝑐𝑎𝑡[𝐸]0[𝑆]

[𝑆](1+
[𝐼]

𝐾𝑖(2)
)+𝐾𝑚

    (Equation 1.17) 

 2) uncompetitive inhibition (Equation 1.17) occurs when the inhibitor binds to the 

enzyme-substrate complex and blocks the conversion of substrate to product. This type 

of inhibition is much less common than the other two283, however there have still been 

several described in the literature284-286. Since the conversion of substrate to product in 

the enzyme-substrate complex is lowered, the kcat changes where k1 and k-1 are 

unaffected. This leads to both lower values of both Michaelis-Menten parameters (Figure 

1.26c). 

1

𝐾𝑖(1)
=

1

𝐾𝑖(2)
=

1

𝐾𝑖
,   

𝑑[𝑃]

𝑑𝑡
= 𝑣 =

𝑘𝑐𝑎𝑡[𝐸]0[𝑆]

([𝑆]+𝐾𝑚)∗(1+
[𝐼]

𝐾𝑖
)
   (Equation 1.18) 

3) Non-competitive inhibition (Equation 1.18) occurs when the affinities for both the 

free enzyme and the enzyme-substrate complex are equal. When this happens, only the 

kcat will change, this leads to a Lineweaver-Burk plots of increasing inhibitor concentration 

having the same x-intercept, but different slopes and y-intercepts (Figure 1.26d). 



 49 

 

Figure 1.26: Types of inhibition patterns viewed on a Lineweaver-Burk plot. a) Mixed 

inhibition, b) competitive inhibition, c) uncompetitive inhibition, d) noncompetitive 

inhibition. Increasing inhibitor concentrations are shown from a orange to red gradient, 

with orange indicating low inhibitor concentration and red indicating high inhibitor 

concentration. 

In a drug discovery pipeline, it is often too labour intensive to measure the full 

inhibition profiles for all inhibitors. In this case, the IC50 is generally measured as a way 

to determine the potency of inhibitors relative to each other. An IC50 is commonly defined 

as either the concentration of inhibitor required to lower enzyme activity by 50%, or the 

concentration of inhibitor required to reduce product formation at a given time by 50%287. 

In order to find the IC50, measurements of enzyme rate or product formation are taken at 

different inhibitor concentrations and normalized to that of the enzyme and substrate 

alone. When the %activity or %of product formation is plotted vs the log of inhibitor 

concentration a sigmoidal curve is obtained. When the enzyme binds exactly one inhibitor, 

this graph can be fit to the following equation 

%𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
100

1+
[𝐼]

𝐼𝐶50

    (Equation 1.19) 
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Figure 1.27: Determination of IC50. Substrate concentration is plotted on a log axis. 

More complicated forms of this equation can account for multiple inhibitors binding 

and different upper and lower asymptotes288. Furthermore, in the case of competitive 

inhibition, the Ki can be directly calculated from the IC50 as long as the Km of the substrate 

is known by using the Cheng-Prusoff relationship289 

𝐾𝑖 =
𝐼𝐶50

1+
[𝑆]

𝐾𝑚

      (Equation 1.20) 

 

1.3.4.4 Covalent inhibition 

While the aforementioned types of inhibition are by far the most common, inhibitors 

which form covalent bonds with the target of interest have become increasingly popular. 

These types of inhibitors were often not pursued due to concerns regarding their toxicity 

and off target effects290. However, many blockbuster drugs were found to be covalent long 

after their initial discovery291. These includes Clopidogrel292, an anti-coagulant, and 

Aspirin293, a common pain-killer. In fact, nearly a third of currently available drugs form 

covalent bonds with their targets294. Due to this discovery, design of covalent drugs has 

been increasing as they have several beneficial properties over their non-covalent 

counterparts. 
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Covalent inhibitors bind to their target enzyme in a two-step reaction following 

𝐸 + 𝐼 

𝑘𝑜𝑛  
→  

𝑘𝑜𝑓𝑓
←   𝐸𝐼 

𝑘𝑖𝑛𝑎𝑐𝑡 
→    

  𝑘𝑟𝑒𝑣  
←   

 𝐸 − 𝐼    (Scheme 1.6) 

Where EI is a non-covalent complex, similarly to what is seen in typical non-

covalent inhibition (𝐾𝑖 =
𝑘𝑜𝑓𝑓

𝑘𝑜𝑛
), and E-I is the covalently bound enzyme-inhibitor complex. 

Here, kinact represents the rate of covalent bond formation and krev represents the 

cleavage of the covalent bond. It should be noted that this mechanism is not necessarily 

exclusive to covalent inhibition but can also explain two-step inhibitors which don’t form 

a covalent bond, such as those who bind a target that then undergoes a slower structural 

rearrangement.   

One advantage of covalent inhibitors over their noncovalent counterparts, is the 

strength of the covalent bonds, which leads to very slow krev and long drug-residence 

times291. When krev << kinact inhibitors effectively become irreversible, making them potent 

therapeutics. While this is a distinct advantage of covalent inhibitors, they are not without  

their disadvantages. Among these is that their more complex mechanism means that 

classical inhibitor analysis is unable to fully quantify their inhibition. Take for example a 

measurement of IC50. In the case of a noncovalent inhibitor, the analysis is quite trivial. 

However, when the inhibitor forms a slow irreversible covalent bond, the IC50 value 

becomes time-dependent, with longer experimental times leading to lower IC50 values. 
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Figure 1.28: Time-dependent IC50 measurements of an irreversible covalent inhibitor. a) 

IC50 traces as a function of time. B) IC50 values vs time.  

𝐼𝐶50(𝑡) = 𝐾𝑖 ∗ (1 +
[𝑆]

𝐾𝑚
) ∗ (

2−2𝑒
−𝜂𝐼𝐶50

∗𝑘𝑖𝑛𝑎𝑐𝑡∗𝑡

𝜂𝐼𝐶50∗𝑘𝑖𝑛𝑎𝑐𝑡∗𝑡
)    (Equation 1.21) 

𝜂𝐼𝐶50 =
𝐼𝐶50(𝑡)

𝐾𝑖∗(1+
[𝑆]

𝐾𝑚
)+𝐼𝐶50(𝑡)

       (Equation 1.22) 

In fact, when taken to the limit of t → infinity, all irreversible covalent inhibitors have 

the same 𝐼𝐶50 =
[𝐸]

2
 (assuming one active site per enzyme). Although taking the IC50 of 

inhibitors at a constant time can provide a good measurement of the potency of those 

molecules,295 it does not provide any information on whether the inhibitor tightly binds the 

enzyme and then slowly forms a covalent bond (low Ki, low kinact), or if the inhibitor binds 

weakly to the enzyme and reacts quickly (high Ki, fast kinact). This an important distinction 

as an inhibitor which reacts too quickly can lead to off target effects. Furthermore, having 

information on both the Ki and kinact aids in the optimization of initial hits to leads during a 

drug discovery pipeline. 

A second common way to measure covalent inhibition is through inhibitor 

concentration-dependent progress curves analysis (IDPC), which requires measuring 

product formation by the enzyme at different concentrations of inhibitor. These 

experiments require a way to observe either product formation or substrate consumption 

as a function of time, which is often done spectroscopically using techniques such as 
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fluorescence. In the example below, the observable comes from monitoring the increasing 

fluorescence caused by product formation.  In its simplest form, it requires the reaction to 

be performed under conditions of constant product formation (i.e. linear product formation 

as a function of time in the no-inhibitor control), however corrections for non-linear 

behaviour can be added296. Two-step inhibitors following Scheme 1.6 show decreasing 

activity with increasing inhibitor concentration, and distinctly non-linear product formation 

(Figure 1.29a). This non-linear behaviour is caused by the enzyme becoming irreversibly 

inhibited over time. In the case of two-step inhibition, the traces can be fit independently 

to the following equation 

 𝐹𝑡 = 𝐹0 +
𝑣𝑖

𝑘𝑜𝑏𝑠
∗ (1 − 𝑒−𝑘𝑜𝑏𝑠∗𝑡)      (Equation 1.23) 

Where Ft is the fluorescence at time t, F0 is the background fluorescence, vi is the 

initial slope of the plot, and kobs is the observed rate of inactivation. This analysis provides 

a series of kobs values which, when plotted vs inhibitor concentration, gives a hyperbolic 

curve (Figure 1.29b). This curve can fit to the following equation  

𝑘𝑜𝑏𝑠 =
[𝐼]

[𝐼]+𝐾𝑖(1+
[𝑆]
𝐾𝑚

)
𝑘𝑖𝑛𝑎𝑐𝑡       (Equation 1.24) 

where Km is the Michaelis-Menten constant, and [S] is the concentration of substrate 

during the measurement. 
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Figure 1.29: Inhibitor concentration-dependent progress curves analysis. a) two-step 

inhibition following Scheme 1.6, with Ki = 5 μM and kinact = 5e-3 s-1. b) hyperbolic curve of 

kobs values fit from panel b. Orange to red curves and dots represent increasing inhibitor 

concentrations. Black lines in panel a/b represent no-inhibitor controls. The black line in 

panel b represents the curve generated by Equation 1.24 and the corresponding 

parameters for panel a. 

1.3.4.5 Measuring enzyme inhibition using isothermal titration calorimetry 

There are many ways to measure the velocity of an enzymatic reaction. These 

include techniques such as NMR spectroscopy297, UV-Vis spectroscopy298, Fluorescence 

spectroscopy299, mass spectrometry300, electrophoresis301, chromatography302, and 

isothermal titration calorimetry303. All of the aforementioned techniques, besides ITC, 

measure the concentration of either product or substrate as a function of time and relate 

this back to the enzyme velocity by taking a first derivative of the data. ITC on the other 

hand, can relate the velocity of the enzyme directly to the experimental signal measured 

by the ITC using the following equation 

∆𝑃 = 𝑣 ∗ ∆𝐻𝑟𝑒𝑎𝑐𝑡 ∗ 𝑉     (Equation 1.25) 

Where 𝑣  is the velocity of the enzyme, ∆𝐻𝑟𝑒𝑎𝑐𝑡  is the molar enthalpy of the 

reaction, 𝑉 is the volume of the ITC’s cell, and ∆𝑃 is the instantaneous power measured 

by the ITC instrument.  

This is an important distinction, as it gives ITC a unique advantage over other 

methods, since extracting the Michaelis-Menten parameters requires measuring the 
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velocity of the enzyme at different substrate concentrations. Furthermore, by measuring 

how these parameters change as a function of inhibitor concentration, key parameters 

such as the affinity of the inhibitor (Ki) and the mechanism of inhibition can be extracted. 

Measuring the velocity of the enzyme directly is not the only advantage ITC has over 

other techniques. It also does not require the use of spectroscopically active, or labelled 

substrates, and can be done even in the presence of a high concentration of UV-

absorbing material such as bovine serum albumin. This makes ITC a near universal 

enzyme activity assay, as demonstrated in 2001 by Matthew J Todd and Javier Gomez, 

who were able to measure the Michaelis-Menten parameters for all six classes of 

enzymes303.  

 

 

Figure 1.30: Measuring enzyme velocity with a single injection ITC experiment.  a) Raw 

ITC trace. b) Conversion of panel a into a plot of enzyme turnover vs the substrate 

concentration using Equation 1.25 and Equation 1.26. The reaction is trypsin catalyzing 

the hydrolysis of BAEE with (thick line) and without (thin line) benzamidine. Adapted from 

Todd and Gomez with permissions303. 

A typical ITC enzyme activity assay involves the injection of a substrate, held in 

the syringe of the calorimeter, into the enzyme, held in the sample cell of the calorimeter. 

This initiates the reaction, and, as the injection is occurring (typically over the period of 1-
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80 seconds), the differential power begins to increase (in the case of an endothermic 

reaction) or decrease (in the case of an exothermic reaction). After the injection is 

complete the velocity of the reaction will lower back to the baseline signal of the 

instrument (Figure 1.30a). The experimental trace can be converted into a measure of 

enzyme velocity as a function of substrate concentration (Figure 1.30b), by first converting 

the power measured by the ITC (∆𝑃) to enzyme velocity (𝑣) using Equation 1.25 and then 

converting the measured heat (∑∆𝑃 ) to substrate concentration using the following 

equation.  

𝑆𝑡 = 𝑆0 ∗ (1 −
∫ ∆𝑃𝑡
𝑡
𝑡=0

∫ ∆𝑃𝑡
∞
𝑡=0

)      (Equation 1.26) 

Where ∆𝑃𝑡 is the ITC signal at time t, and S0 is the initial substrate concentration.  

 

In order to extract the Michaelis-Menten parameters, the final concentration of 

substrate in the cell after the injection is complete should be sufficiently high (S>> Km). 

This high concentration is required as, at lower substrate concentrations Equation 1.10 

simplifies to 

𝑑[𝑃]

𝑑𝑡
= 𝑣 =

𝑘𝑐𝑎𝑡[𝐸]0[𝑆]

𝐾𝑚
      (Equation 1.27) 

 Where only the ratio of the Michaelis-Menten parameters can accurately be 

extracted304. A single injection ITC experiment is able to measure the velocity of an 

enzyme at a range of different substrate concentrations, thus when this experiment is 

performed under ideal conditions, a single injection experiment is able to extract both the 

Km and kcat of an enzymatic reaction. 

For the past several years, members of the Mittermaier lab have been expanding 

the toolkit of ITC methods available to experimentalists. For example, Di Trani et al. 

developed a way to fully characterize non-covalent inhibition in a single multi-injection 

experiment305. This experiment requires the sample cell to contain the enzyme of interest, 

and the syringe to contain a mixture of a inhibitor and substrate. Multiple injections of this 

mixture are made into the sample cell, and the Michaelis-Menten parameters are 

extracted from each injection individually. In each injection, the same amount of substrate 

is titrated into the sample cell and consumed fully. However, each injection also adds a 

certain amount of inhibitor. This inhibitor is not consumed at any point during the 
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experiment, so each injection is measuring the velocity of the enzyme under both different 

substrate concentrations and different inhibitor concentrations. The resulting ITC trace is 

shown in Figure 1.31a, where sequential injections have progressively shorter and 

broader peaks, which shows that the velocity of the enzyme is reduced with each 

injection.  

 

Figure 1.31: Multi-injection ITC experiment characterizing the inhibition of enzymatic 

reaction. a) Normalized ITC signal. b) Each injection from panel a converted into a 

Lineweaver-Burk plot, showing competitive inhibition. Adapted from Di Trani et al. with 

permissions305. 

Each of these peaks can then be converted into a Lineweaver-Burk plot (Figure 

1.31c). In this specific example, the trend shows that as the inhibitor concentration 

increases, the maximum velocity of the enzyme remains constant, but the Michaelis-

Menten constant (Km) increases after each injection. This is characteristic of competitive 

inhibition as shown in Figure 1.26b, where the apparent Km (𝐾𝑚(𝑎𝑝𝑝) ) increases as a 

function of inhibitor concentration according to 
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𝐾𝑚(𝑎𝑝𝑝) = Km (1 +
[I]

Ki(1)
) 

Thus, a plot of apparent Km vs inhibitor concentration produces a straight line, with 

the y-intercept being the uninhibited Km, and the x-intercept being the negative of the Ki. 

In another example Di Trani et al. were able to quantitatively model the trace of an 

ITC signal using the instruments response function enabling them to measure rapid time-

scale kinetics306. They used this fitting technique to develop two new multi-injection ITC 

experiments, the kinetics of inhibition and the kinetics of initiation307. In the kinetics of 

inhibition experiment, a mixture of enzyme and a large excess of substrate are held in the 

sample cell of the ITC. Thus, at the start of the ITC experiment the reaction is occurring 

at a constant rate. Upon injection of inhibitor into the sample cell, the rate of the reaction 

slows down gradually until coming to a new equilibrium. This gradual decrease in activity 

is caused by the inhibitor slowly binding to the enzyme. This binding can be described by 

𝑑[𝐸𝐼]

𝑑𝑡
= 𝑘𝑜𝑛[𝐸][𝐼] − 𝑘𝑜𝑓𝑓[𝐸𝐼]     (Equation 1.28) 

Where kon and koff are the on and off rate of the inhibitor respectively. The velocity 

of the enzyme will be affected by the loss of free enzyme ([E]) to the enzyme inhibitor 

complex (EI), following  

𝑑[𝑃]

𝑑𝑡
= 𝑣 =

𝑘𝑐𝑎𝑡[𝑆]([𝐸]0−[𝐸𝐼])

[𝑆]+𝐾𝑚
      (Equation 1.29) 

Thus, by fitting these equations to multiple injections of inhibitor, both the on and 

off rates can be extracted. 

 

Figure 1.32: Kinetics of inhibition and initiation ITC experiments. ITC trace of kinetics of 

inhibition experiment. b) Overlay of each injection in panel a, fit to Equation 1.28 and 

Equation 1.29 is shown in black. Adapted from Di Trani et al. with permissions307. 
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1.4 Thesis objectives 

Biomacromolecules play a pivotal role in a diverse set of biological processes, and 

measuring their fundamental physical characteristics is key to understanding their 

biological relevance and developing novel therapeutics to modulate their function. These 

molecules fold and assemble through complex pathways which can have large energetic 

barriers. Conventional techniques are not always suitable for characterizing these 

processes. This thesis aims to increase the experimental methods available by combining 

common laboratory equipment with modern day computational power and mathematical 

modeling to develop techniques which address the need for the swift and cost-effective 

characterization of biomacromolecules. Chapter 2 delves into a global-fitting analysis 

tailored for non-equilibrium thermal denaturation experiments, applied specifically to 

unravel the folding dynamics of guanine quadruplexes (G4s). These four-stranded, non-

canonical nucleic acid structures are implicated in cancer and exhibit multiple folding 

pathways, potentially influencing their biological function. Chapter 3 introduces the 

concept of guanine quadruplex containing regions (G4CRs), contiguous DNA stretches 

with the potential to form multiple stable G4 structures. GReg, a bioinformatic algorithm 

which is able to find and characterize G4CRs within a sequence of DNA is applied to 

human promoter sequences. In Chapter 4, an experimental approach involving cyclic 

heating and cooling ramps is presented to measure thermodynamic information on slowly 

assembling supramolecular structures. This technique, which can extract information 

previously unattainable with other methods, is employed to study the co-assembly of poly-

adenosine strands and cyanuric acid into long supramolecular fibers, and is discussed in 

terms of small-molecule loading. Finally, Chapter 5 details a method for measuring the 

binding kinetics of covalent inhibitors using isothermal titration calorimetry. This approach 

offers faster and more robust characterization of these inhibitors, eliminating the need for 

modified substrates, as ITC directly measures the rate of enzymatic catalysis. Together, 

these innovative approaches constitute valuable additions to the researcher's toolkit, 

enabling rigorous characterizations of biomacromolecular folding, assembly, and 

function. 
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 Chapter 2: Parallel reaction pathways accelerate folding of a 

guanine quadruplex 

2.1 Preface 

The work in the following chapter was a result of a collaborative effort with Robert 

Harkness. Rob was a previous member of the Mittermaier lab and spent a lot of time 

training me when I started. He helped drive a lot of the conclusions of this chapter and 

helped me optimize my experimental and fitting procedures to extract the necessary 

kinetic parameters from my thermal hysteresis traces. Rob had previously looked at how 

structural heterogeneity effected the thermodynamic stability of the c-MYC quadruplex210, 

and I took the main experimentalist role in incorporating the techniques from his paper to 

address how this structural heterogeneity affected the kinetics of the c-MYC quadruplex. 

We are co-first authors of the manuscript from which this chapter was adapted. Rob 

validated our use of guanine to inosine mutations to create structural mimics of each G4 

isomer using a combination of NMR and CD. Furthermore, he ran simulations to show 

how a three-state mechanism involving a slightly populated intermediate can still be 

analyzed as a two-state transition by incorporating sloped baselines. I have removed 

these sections from the chapter, as they represent a large body of work done which was 

not performed by me and have instead referenced his conclusions where appropriate. 

Our results were also orthogonally validated with isothermal NMR photo-caging 

experiments performed by our collaborators under the supervision of Prof. Harald 

Schwalbe. One again I have removed this section of the paper and referenced the results 

in the necessary sections. I measured and analyzed all of the thermal hysteresis data 

which drove the main conclusions of the chapter that the c-MYC quadruplex contains four 

distinct assembly pathways to different isomers, and that the presence of these pathways 

leads to a net folding acceleration of greater than 2.5-fold. 

 

This chapter was adapted with permission from: Harkness, R. W.†, Hennecker, C.†, Grün, 

J. T., Blümler, A., Heckel, A., Schwalbe, H., & Mittermaier, A. K. (2021). Parallel reaction 

pathways accelerate folding of a guanine quadruplex. Nucleic acids research, 49(3), 

1247-1262. 
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2.2 Abstract 

G-quadruplexes (G4s) are four-stranded, guanine-rich nucleic acid structures that 

influence a variety of biological processes such as the transcription and translation of 

genes and DNA replication. In many cases, a single G4-forming nucleic acid sequence 

can adopt multiple different folded conformations that interconvert on biologically relevant 

timescales, entropically stabilizing the folded state. The coexistence of different folded 

conformations also suggests that there are multiple pathways leading from the unfolded 

to the folded state ensembles, potentially modulating their folding rate and biological 

activity. This chapter details the development of an experimental method for quantifying 

the contributions of individual pathways to the folding of conformationally heterogeneous 

G4s that is based on mutagenesis, thermal hysteresis kinetics experiments, and global 

analysis. We applied this method to the regulatory Pu22 G4 from the c-MYC oncogene 

promoter, which adopts at least four distinct folded isomers. We found that the presence 

of four parallel pathways leads to a 2.5-fold acceleration in folding; that is, the effective 

folding rate from the unfolded to folded ensembles is 2.5 times as large as the rate 

constant for the fastest individual pathway. Since many G4 sequences can adopt many 

more than four isomers, folding accelerations of more than an order of magnitude are 

possible via this mechanism. 

 

2.3 Introduction 

G-quadruplexes (G4) are four-stranded, helical, nucleic acid structures formed 

when guanine (G)-rich tracts in DNA or RNA come together to form G-tetrads, 

arrangements of four planar, Hoogsteen-hydrogen bonded Gs that are stacked to form 

the core G4 structure, with a cation (typically, Na+ or K+) coordinated between each pair 

of tetrads (Figure 2.1A,B)63, 124. G4s are typically associated with sequences following the 

pattern 5’-G3-5N1-7G3-5N1-7G3-5N1-7G3-5-3’59, 119, where three G-tetrads form the canonical 

core structure. However, divergent patterns are also sometimes observed that include 

G4s with bulges308, vacant positions in their cores309, and those formed with two or more 

than three G-tetrads310, 311. G4-forming sequences are found in genomes from all three 

domains of life140, 312, 313 as well as in mitochondria314, and viruses315. G4s are implicated 

in the regulation of many biological processes such as DNA replication316, transcription317, 
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mRNA translation318, alternative splicing319, and post-translational protein processing320. 

Intriguingly, G4 sequences frequently adopt multiple folded conformations of similar free 

energy, leading to conformational ensembles of interconverting structures. For example, 

we have shown that many G4 sequences within the promoter regions of human genes 

contain G-tracts with non-identical numbers of Gs321. This type of sequence produces an 

ensemble of different strand-shifted conformations we term G-register (GR) isomers59, 321, 

where each structure incorporates a unique subset of the available Gs in the G4 core 

(Figure 2.1a). Previously, we have investigated the influence of adopting multiple GR 

isomers on the thermal stability of the c-MYC Pu18, VEGFA, and PIM1 G4s321. Through 

mutational analysis, thermal melting-based global fitting, and computer simulations, we 

demonstrated that these G4s all populate an ensemble of GR isomers at equilibrium. The 

minimum number of GR isomers is given simply by the number of G-tract alignments 

afforded by their additional core dG residues. We found that for the PIM1 G4, GR isomers 

can also have different topologies such that G-tract shifting is accompanied by strand 

reversals, pointing to the existence of a complex conformational energy landscape. 

Remarkably, in all cases we found that these structural dynamics thermodynamically 

stabilize G4s by reducing the equilibrium entropy penalty for folding in a manner that 

correlates with the number of GR isomers populated by the sequence321. Since G4 

stability is known to have a direct influence on gene expression levels322, 323 and 

regulatory proteins can to bind to different GR isomers324, these dynamics offer an 

additional level of control. In another recent NMR folding kinetics study, we explored the 

kinetic mechanism of GR exchange dynamics216. We demonstrated that the GR 

exchange mechanism can depend on the particular G4 sequence. For example, we found 

for the c-MYC Pu18 and hTERT promoter G4s that GR isomers exchange with one 

another largely via the unfolded state in a three-state manner; that is, each GR isomer 

transits through the unfolded state without populating other structural intermediates. For 

the c-MYC Pu-18, the exchange can also occur to some extent through direct G-tract 

sliding216.  
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Figure 2.1: G4 structures and sequences were investigated in this study. (A) GR isomers 

with exchanging dG residues colored red and blue. (B) G-tetrad structure. (C) The WT c-

MYC Pu22 and trapped mutant sequences were investigated in this study. dG to dI 

mutations to the WT sequence are shown in pink. Full corresponds to the fully trapped 

sequences that contain dual mutations, whereas half indicates the half-trapped 

sequences with a single mutation that are capable of undergoing two-state GR exchange. 

Numbers indicate the direction that the G-tract is locked by mutation; for example, the 33 

sequence has both exchanging G-tracts locked in the 3′ direction. The exchanging G-

tract for the half-trapped sequences is denoted by X. 

The roles of G4s in the cell have been rationalized in terms of thermodynamic 

equilibria between duplex and G4 forms of DNA 325. Yet, many of the processes that G4s 

help to control are fundamentally nonequilibrium and folding kinetics could become highly 

influential326, 327. Several groups have studied G4 folding in a double-stranded DNA 

background where multiple folded G4 populations were observed in coexistence with the 

unfolded or duplex states328, 329 pointing to a rich dynamic repertoire that could help 
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regulate biological function. For example, during transcription and replication, helicases 

actively unwind the stable DNA duplex, briefly offering single-stranded regions unique 

opportunities to fold. mRNA secondary structures are unwound by the ribosome with each 

round of translation. The relative rates of G4 formation versus other processes such as 

polymerase and ribosomal engagement and movement and interactions with binding 

proteins could represent decisive factors in G4 function. For instance, RNA Pol II 

generates a transcription bubble of roughly 18-25 unwound base pairs330. The enzyme 

can spend several minutes at the site of initiation before achieving promoter escape331 – 

it often pauses at promoter-proximal sites332 – and the rates of polymerization can vary 

greatly even within the same gene, providing a highly variable and dynamic environment 

for single-stranded DNA to adopt the G4 fold. There is evidence that passage of RNA Pol 

II can promote G4 folding, blocking DNA replication and generating genome instability in 

yeast317. In another example, synthesis of the lagging strand during DNA replication 

involves generating thousands of bases of single stranded DNA while the polymerase 

synthesizes the complimentary strand through a backstitching mechanism333. The DNA, 

thus exposed, is protected through interactions with replication protein A (RPA), which 

binds 30 single-stranded nucleotide stretches with sub-nanomolar affinity334, 335, 

preventing reannealing of the DNA and degradation by nucleases. A recent model of RPA 

function proposes that proteins bind individually to single-stranded DNA and then close 

the gaps between them by sliding to form a contiguous coating334, potentially leading to 

brief and fluctuating opportunities for G4 formation. Finally, folding of mRNA into G4 

structures has been reported to impede translation in both prokaryotes and eukaryotes in 

vitro and in vivo327, 336, although some aspects remain controversial337. Secondary 

structures are absent from mRNAs immediately after they emerge from RNA Pol II or the 

ribosome. Therefore translation inhibition by G4s depends on the balance between their 

folding rates and the delays between transcription and subsequent rounds of 

translation338. An additional level of dynamic control can exist when the G4-forming region 

can adopt meta-stable alternative folds such as hairpin structures327, 339 or partly-

structured folding intermediates like three-stranded triplexes340-342. Thus, characterizing 

G4 folding mechanisms and elucidating rules for how the primary nucleotide sequence 

influences folding rates are key to understanding how G4s function in the cell. 
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G4 folding has been studied by a variety of approaches such as rapid mixing with 

cations216, 343, thermal melting combined with singular-value decomposition344, atomic 

force microscopy345, or single-molecule Förster resonance energy transfer (smFRET)346, 

347. In general, folding studies of G4s have focused on quantifying the properties and 

populations of partly structured intermediates along the folding trajectory, though some 

G4s have been found to fold in a two-state manner321. Here we have investigated the 

possibility that conformational heterogeneity of the folded-state ensemble may be an 

important factor in controlling how quickly G4s are able to fold, and one that until now has 

been largely overlooked. We previously investigated how conformational heterogeneity 

influences thermodynamics, and how different folded conformers interconvert216, 321. 

However, the relationship between conformational heterogeneity and folding rates has 

been largely unexplored and is important for understanding G4 function. In essence, this 

relationship is based on the idea that the transition from the unfolded state to each 

conformational isomer making up the folded state can be considered a separate folding 

pathway, particularly when the exchange between folded isomers is slow321. In principle, 

the existence of multiple parallel pathways accelerates biomolecular folding, since the 

apparent macroscopic folding rate constant is equal to the sum of the microscopic rate 

constants for the individual pathways348. However, to our knowledge, this effect has never 

been quantified for G4s. Here we investigate the relationship between pathway multiplicity 

and the folding kinetics of G4s for the regulatory c-MYC oncogene promoter Pu22 G4, 

which we have found to adopt a minimum of four distinct GR isomers in the folded state 

with conserved parallel topologies. Consequently, the formation of this ensemble can be 

described by folding through four parallel pathways. This G4 controls 80-90% of the 

expression of the potent c-MYC oncogene349, with c-MYC estimated to be deregulated in 

>50% of human cancers350. Our approach combines mutagenesis, thermal hysteresis 

(TH) kinetics melting experiments218, 246, and a novel global fitting procedure to dissect 

the kinetic contributions of individual pathways to the overall folding rate. We find that 

folding of the Pu22 G4 is accelerated by roughly a factor of 2.5 due to the existence of 

four parallel pathways, with a macroscopic folding rate about 2.5 times as large as that of 

the most rapid individual route. Orthogonal kinetic experiments performed using NMR to 

monitor the folding of G4s following laser photolysis of caging groups gave results in good 



 66 

agreement with the thermal hysteresis analysis351. Isothermal folding through multiple 

pathways leads to a transient conformational ensemble where the populations of folded 

isomers are controlled kinetically rather than thermodynamically; the equilibrium 

populations are then gradually reached via GR exchange. The principle of folding 

acceleration by parallel reaction pathways extends to more complex GR conformational 

ensembles that can have 20 or more distinct structural isomers, potentially giving an order 

of magnitude rate increases. Our TH-based approach is widely applicable to complex 

nucleic acid folding mechanisms and provides a simple and effective method for 

unraveling the contributions of parallel reaction pathways. 

 

2.4  Results 

2.4.1 Trapping individual GR isomers by systematic mutation 

We studied the c-MYC Pu22 G4 sequence, 5’-

TGAGGGTGGGGAGGGTGGGGAA-3’, which is derived from the promoter region of the 

human c-MYC oncogene352. This sequence contains four dG residues in its 2nd and 4th 

G-tracts and three in the 1st and 3rd (Figure 2.1C). Thus there are two ways for both the 

2nd and 4th tract to align with respect to the to the 1st and 3rd, giving rise to four GR isomers 

in total (Figure 2.1a)321. Exchange between c-MYC GR isomers takes place on the 

minutes timescale (~210-2  min-1) at ambient temperatures216; therefore, the transition 

from the unfolded state to each of the folded isomers can be considered a distinct folding 

pathway. In order to study each pathway separately, we used site-directed mutagenesis 

to trap the 2nd and 4th G-tracts shifted in either the 5’ or 3’ direction with respect to the 3 

G-tetrads of the G4 core. We substituted surplus dG residues in the 2nd and 4th G-tracts 

with deoxyinosine (dG>dI) which lacks an N2 amino group but is otherwise identical to 

guanine. The hypoxanthine base can therefore closely mimic the physical properties of 

surplus guanines in loop positions, but cannot form the full complement of H-bonds in a 

G-tetrad and is therefore disfavored within the G4 core351. In what follows, we refer to the 

c-MYC Pu22 as wild-type (WT), sequences containing two dG>dI substitutions as fully-

trapped mutants, and those with a single dG>dI mutation as half-trapped mutants. We 

have previously shown that trapped mutants are excellent structural and thermodynamic 

mimics of the corresponding WT GR isomers321, 351. For instance, the Pu22 double mutant 
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5’-TGAGGGTIGGGAGGGTIGGGAA-3’ mimics the WT GR isomer in which both the 2nd 

and 4th G-tracts are shifted in the 5’ direction, and we refer to this as the 55 fully-trapped 

mutant. The Pu22 single mutant 5’-TGAGGGTGGGGAGGGTIGGGAA-3’ mimics the two 

WT GR isomers in which the 4th G-tract is shifted in the 5’ direction and the 2nd G-tract 

can shift in either 3’ or 5’ directions, and we refer to this as the X5 half-trapped mutant. 

We systematically mutated positions 8, 11, 17, and 20 in the Pu22 G4 to generate a library 

of 4 fully-trapped (55, 33, 35, 53) and 4 half-trapped (5X, 3X, X5, X3) mutants, in addition 

to the WT sequence. 

 

2.4.2 Folding kinetics characterized by thermal hysteresis 

We used TH measurements to characterize the folding kinetics and 

thermodynamic stabilities of the Pu22 WT G4 and trapped mutants. The TH approach is 

based on spectrophotometric detection of folding/unfolding as the temperature is varied, 

similarly to simple thermal melting experiments. In the case of TH, the temperature ramp 

rate is adjusted to be fast compared to the length of time required by the molecules to 

equilibrate such that populations of folded and unfolded states lag behind their equilibrium 

values. This causes the melting mid-point on the up-scan to occur at a higher temperature 

than the refolding mid-point on the down-scan. The gap between heating and cooling 

profiles increases with increasing scan rates and gives detailed information on the folding 

and unfolding rate constants of the system246. The transition temperatures themselves 

are related to the thermodynamic stability of the system.  

We measured TH datasets for the Pu22 WT G4 and trapped-mutant sequences at 

6 temperature scan rates ranging from -4 to 4 °C min-1 (Figure 2.2). The data were 

baseline (See Materials and methods, Supplementary Figure 2.4) and temperature 

corrected (Supplementary Figure 2.3) as described previously246. TH absorbance 

thermograms were collected at both 260 and 295 nm for the fully trapped mutants to test 

whether folding is two-state, since the presence of well-populated intermediates such as 

triplexes can lead to large discrepancies between folding/unfolding curves collected at 

these two wavelengths341. Data for the fully-trapped mutants collected at the two 

wavelengths overlaid closely (Supplementary Figure 2.1), suggesting that partly 

structured folding intermediates with very different spectroscopic properties are not 
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appreciably populated and the fully-trapped mutant G4s fold in an effectively two-state 

manner. We further tested this assumption by comparing the kinetic parameters extracted 

from global fits to the TH datasets at both wavelengths, finding similar values in all cases 

(details given below, Table 2.1, Supplementary Table 2.14, and Figure 2.3), which further 

supports the idea that folding is effectively two-state for these mutants. Finally, CD spectra 

collected over a range of temperatures superimpose extremely closely to one another, 

suggesting that no well populated structural intermediates are formed at temperatures 

near the transition (Figure 2.4). This agrees with several other studies of the Pu22 G4. 

For instance, mechanical unfolding measurements obtained using magnetic tweezers 

were consistent with a two-state transition353. Similarly, a two-state kinetic model gave 

good agreement with TH measurements for dT-variants of the trapped mutants studied 

here (dG>dT instead of dG>dI substitutions)354. Finally, it has been shown that under 

some circumstances, Pu22 folding can involve well-populated folding intermediates355, 

but as we discuss below, this does not preclude the rigorous use of two-state equations 

to describe folding in the current study. Specifically, Gray et al. found that when folding of 

the dT-variant of the 33 fully trapped mutant (dT-33) is initiated by the rapid addition of K+ 

ions, antiparallel intermediates are formed early in the process, followed by slow 

conversion to the parallel topology ground state355. Similarly, mass spectrometric 

analyses of K+-initiated G4 folding detected long-lived, incompletely K+-coordinated G4 

folding intermediates56. However, we have found that folding reactions starting from a K+-

free unfolded state (i.e. K+-initiated) differ fundamentally and are slower by about two 

orders of magnitude, compared to reactions starting from a K+-equilibrated unfolded state, 

such as in TH experiments216. The folding intermediates detected in K+-initiated folding 

experiments likely represent kinetic traps that are not present when the unfolded state is 

allowed to equilibrate with K+ ions, as they do in this study. Gray et al. also analyzed 

circular dichroism thermal unfolding traces of the dT-33 fully trapped mutant using 

singular value decomposition. They found that unfolding involved three-states: folded (F), 

unfolded (U) and an intermediate (I). The difference in enthalpy between F and I was only 

12% of the total enthalpy of unfolding, and the reconstructed parallel topology CD spectra 

of the F and I states were very similar. Therefore, the I state appears to involve a modest 

rearrangement or slight partial unfolding of the F state.  
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Figure 2.2: Global fits of a parallel pathways model to TH data for the WT and trapped-

mutant G4s. TH datasets (295 nm) for the fully trapped (A), half-trapped (B) and WT (C) 

G4s. Fit residuals are shown in the subpanel below each dataset. Light to dark blue and 

orange to red indicate slowest to fastest annealing and melting scan rates, respectively. 

Experimental data are shown as colored circles, while optimized global fit data are colored 

lines. 

GR 
isomer 

EF  

(kJ mol-1) 

kF  

(min-1) 

EU  

(kJ mol-1) 

kU 

(min-1) 

Tm  

(C) 

55 -36.0  0.7 (387  6)10-3 121  1 (162  3)10-3 41.5 

35 -47.9  0.8 (572  6)10-3 140.4  0.8 (72.1  0.9)10-3 46.1 

53 -54.6  0.6 (917  8)10-3 144.5  0.4 (23.2  0.2)10-3 52.5 

33 -54.4  0.5 (1220  9)10-3 164.3  0.3 (7.2  0.1)10-3 57.0 

Table 2.1: Kinetic parameters extracted from global fits to the c-myc Pu22 and trapped 

mutants. TH datasets were collected at 295 nm according to Scheme 2.1c with kex = 0 

min−1. Rate constants are reported at T0 = 37 °C. Equilibrium Tm values were extracted 

from two-state fits of slow scanning (0.2 °C min−1) thermal melts monitored at 295 nm 

(Figure 2.2). Errors were calculated using a Monte-Carlo approach as described in the 

materials and methods356. 
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Figure 2.3: Correlations of optimized folding (a,b) and unfolding (c,d) kinetic parameters 

from global fits to the c-MYC Pu22 and trapped mutant TH datasets collected at 295 and 

260 nm respectively. In (a,c), rate constants are reported at 37 C. 
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Figure 2.4: CD spectra for fully trapped mutants at three different temperatures (yellow - 

25°C, orange - 30°C, red - 35°C). 

Equilibrium melting temperatures  (i.e. thermal stability) for the trapped mutants 

followed the order 55 < 35 < 53 < 33 (Table 2.1), which is consistent with equilibrium 

melting and differential scanning calorimetry experiments performed previously on fully 

trapped mutants of the slightly shorter c-MYC Pu18 G4321. In general, the melting 

transitions occurred at higher temperatures for the half-trapped mutants than for the fully-

trapped ones, and the melting transitions for the WT occurred at the highest temperatures 

of all (Table 2.3). We have previously shown that the Pu18 WT G4 melts at a higher 

temperature than any of its fully-trapped mutants due to entropic stabilization of the folded 

state by GR exchange321. We expect the situation is similar here as well, with the half-

trapped and WT molecules able to adopt 2 and 4 GR isomers, respectively, compared to 

the fully-trapped molecules which have only a single GR isomer available. Conformational 

entropy from GR exchange thus dictates that both the half-trapped and WT are more 

stable than the single most stable GR isomer within their conformational ensembles. 

Visual inspection of the TH datasets indicates that all four potential pathways 

contribute to the effective folding rate of the Pu22 WT G4 folding. The temperature gap 

between the apparent melting points on the heating and cooling scans (Tm) decreases 

as the rates of folding and unfolding increase (note that at the equilibrium Tm these rates 
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are equal). A mutation that decreases the folding rate but does not affect the unfolding 

rate will lead to a lower apparent melting temperature, slower kinetics, and larger Tm. 

Alternatively, a mutation that increases the unfolding rate will also lead to a lower apparent 

melting point, but with faster kinetics and a smaller Tm (Figure 2.5). Here, the ΔTm for 

the WT is smaller than those of the half-trapped mutants, which in turn are smaller than 

those of the fully trapped mutants (Table 2.2). This implies that the effective folding rate 

of the WT is greater than those of the half-trapped mutants, which are greater than those 

of the fully trapped mutants. Since each mutation reduces the number of folding pathways 

by a factor of 2, and in every case the apparent folding rate decreases, this implies that 

all four folding pathways makes non-negligible contributions to the overall folding rate of 

the WT. 

 

Figure 2.5: A hypothetical Arrhenius plot of G4 folding and unfolding rates. The activation 

energy for folding and unfolding are positive and negative, as observed experimentally. 

The intersection of the two lines is the equilibrium melting point (Tm) where kU = kF. A 

decrease in the folding rate (from black dotted to blue dotted line) or increase in the 

unfolding rate (from black dashed to blue dashed line) shifts the Tm to lower temperature. 

In the case of decreasing kF, the resulting kex = kU + kF at the new Tm is smaller (point B) 

and more hysteresis is expected. In the case of increasing kU, the resulting kex at the new 

Tm (point A) is larger and less hysteresis is expected. 
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G4 ΔTm C 

c-MYC Pu22 WT 3.5  0.2 

3X 4.4  0.2 

5X 4.4  0.2 

X3 4.3  0.2 

X5 4.3  0.2 

33 4.8  0.2 

53 5.4  0.2 

35 5.0  0.1 

55 5.9  0.1 

Table 2.2: TH values (ΔTm) as a model-free measure of parallel-pathway folding 

acceleration. TH values were calculated from the experimental datasets collected at 295 

nm as the difference between the maxima of the first derivatives of the slowest heating 

and cooling scans for each G4, i.e. at the temperature where the G4 is 50% unfolded. A 

linear interpolation was used to estimate the 50% point between the nearest two flanking 

data points. Errors reported are the standard deviation of the values from three replicate 

TH datasets for each G4. 

 

2.4.3 Globally fitting a parallel pathways folding model 

The qualitative analysis of ΔTm values described above suggested that increasing 

numbers of folding pathways lead to increasing folding rates. In order to test this 

conclusion, we analyzed whether TH data for G4s with two and four possible pathways 

(half-trapped and WT) are quantitatively consistent with TH data for the fully trapped 

mutants, which approximate folding through each individual pathway. TH kinetic data 

have typically been analyzed assuming two-state folding behavior described by 

temperature-dependent folding kF and unfolding kU rate constants (Scheme 2.1a)218. 

Briefly, in this approach the spectroscopic thermal melting data are used to estimate the 

fraction of folded (θF) and unfolded molecules (1 - θF) as a function of temperature, by 

applying appropriate folded and unfolded baselines. The shapes of the TH profiles are 

then given by the expressions: 
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(
𝑑𝜃𝐹

𝑑𝑇
)
ℎ𝑒𝑎𝑡𝑖𝑛𝑔

= (𝑘𝐹(1 − (𝜃𝐹)ℎ𝑒𝑎𝑡𝑖𝑛𝑔) − 𝑘𝑈(𝜃𝐹)ℎ𝑒𝑎𝑡𝑖𝑛𝑔) (
𝑑𝑡

𝑑𝑇
)
ℎ𝑒𝑎𝑡𝑖𝑛𝑔

  (Equation 2.1) 

and 

(
𝑑𝜃𝐹

𝑑𝑇
)
𝑐𝑜𝑜𝑙𝑖𝑛𝑔

= (𝑘𝐹(1 − (𝜃𝐹)𝑐𝑜𝑜𝑙𝑖𝑛𝑔) − 𝑘𝑈(𝜃𝐹)𝑐𝑜𝑜𝑙𝑖𝑛𝑔) (
𝑑𝑡

𝑑𝑇
)
𝑐𝑜𝑜𝑙𝑖𝑛𝑔

,  (Equation 2.2) 

where the values, (θF)heating,cooling, and slopes, (
𝑑𝜃𝐹

𝑑𝑇
)heating,cooling, of the curves are 

obtained directly from the data and the inverses of the temperature ramp rates, 

(
𝑑𝑡

𝑑𝑇
)heating,cooling, are set by the user. At any given temperature, this gives a system of two 

equations and two unknowns (kF, and kU) which are obtained algebraically as a function 

of temperature. The temperature dependences of the rate constants can then be fitted to 

extract the activation energies from an Arrhenius plot. Examples of this type of classical 

analysis for the sequences studied here are shown in Figure 2.6. 

 

Scheme 2.1: Folding mechanisms for the WT c-MYC Pu22 ensemble and trapped 

mutants.The fully trapped G4s adopt a single folded (F) conformation from the unfolded 

state (U). (B) The half-trapped G4s fold into two GR isomers (A and B) from the unfolded 

state, which can then slowly equilibrate by direct interconversion (indicated by small 

arrows)216. (C) The WT c-MYC Pu22 ensemble primarily folds by directly adopting the 

four GR isomers from U in parallel, with slow GR exchange between isomers. 
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Figure 2.6: Arrhenius plots from classical two-state analysis of TH profiles. The folding 

(kF) and unfolding (kU) rate constants calculated from the experimental datasets are 

shown as circles and stars respectively, while the corresponding rate constants calculated 

from two-state fits to each dataset are shown as solid and dashed red lines respectively. 

Arrhenius plots calculated at all experimentally employed scan rates are overlaid. The 

equilibrium melting temperatures are at the intersections of the folding and unfolding lines. 
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The analysis of TH data for half-trapped and WT G4s quickly becomes more 

complicated, due to the existence of multiple GR isomers in the folded state ensemble, 

as visualized directly by NMR spectroscopy. For example, in the case of a half-trapped 

mutant whose folded state ensemble consists of the GR isomers A and B, the kinetics of 

the system is now described in terms of two folding rates, kF,A and kF,B, two unfolding rates, 

kU,A and kU,B, as well as the rates of GR exchange, kAB and kBA, for A→B and B→A, 

respectively (Scheme 2.1B). The fraction of folded molecules is the sum of fractions of A 

and B isomers, θF = θA + θB, and the shape of the TH profile is given by 

𝑑𝜃𝐹

𝑑𝑇
= ((𝑘𝐹,𝐴 + 𝑘𝐹,𝐵)(1 − 𝜃𝐹) − 𝑘𝑈,𝐴𝜃𝐴 − 𝑘𝑈,𝐵𝜃𝐵)

𝑑𝑡

𝑑𝑇
,   (Equation 2.3) 

where the relative amounts of the A and B isomers obey the equations 

𝑑𝜃𝐴

𝑑𝑇
= (𝑘𝐹,𝐴(1 − 𝜃𝐹) + 𝑘𝐵𝐴𝜃𝐵 − (𝑘𝐴𝐵 + 𝑘𝑈,𝐴)𝜃𝐴)

𝑑𝑡

𝑑𝑇
,  (Equation 2.4) 

𝑑𝜃𝐵

𝑑𝑇
= (𝑘𝐹,𝐵(1 − 𝜃𝐹) + 𝑘𝐴𝐵𝜃𝐴 − (𝑘𝐵𝐴 + 𝑘𝑈,𝐵)𝜃𝐵)

𝑑𝑡

𝑑𝑇
,   (Equation 2.5) 

and the principle of detailed balance 357 requires that 

𝑘𝐵𝐴 = 𝑘𝐴𝐵
𝑘𝐹,𝐴

𝑘𝑈,𝐴
∙
𝑘𝑈,𝐵

𝑘𝐹,𝐵
.        (Equation 2.6) 

In the case of the Pu22 WT G4, there are four folding rates, four unfolding rates, 

four GR exchange rates and 12 associated activation energies (Scheme 2.1C). Note that 

the half-trapped and WT datasets are very well fit by two-state folding models (Figure 

2.7). The apparent folding rates extracted from these fits match the ΔTm analysis above, 

with each half-trapped mutant generally folding faster than their two corresponding fully 

trapped mutants, and the WT generally folding faster than the half-trapped mutants (Table 

2.3). However, this simple model does not capture the underlying equilibrium since the 

WT and half-trapped mutants contain multiple, slowly exchanging folded isomers. Clearly, 

data from the heating and cooling scans are insufficient to extract all of the half-trapped 

parameters algebraically, or even by nonlinear least squares fitting to a single dataset. 

 Although it is not possible to reliably extract all the relevant folding kinetic 

parameters for half-trapped and WT G4s from analyses of their individual TH datasets 

alone, we can still rigorously test whether their data are consistent with a parallel 

pathways folding mechanism by fitting the data for all sequence variants globally. We 

applied an extension of a global fitting approach we had developed previously to analyze 
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the thermodynamics of GR exchange210. We simultaneously analyzed the data for the 

Pu22 G4 WT and all fully trapped and half-trapped mutants with the assumption that the 

kinetic parameters for any folding or unfolding transition in the WT or half-trapped mutant 

are equal to those of the corresponding fully trapped mutant, and that all rate constants 

obey an Arrhenius temperature dependence (see Materials and methods). This produces 

a global fit where kinetic parameters for 12 independent transitions are extracted from 

data for 9 different sequence variants, which compare favorably to the simple two-state 

case where kinetic parameters for two transitions (folding and unfolding) are extracted 

from data for one sequence variant. The global fit provides a quantitative test of the 

parallel folding pathways model. Large systematic deviations between calculated and 

experimental TH profiles in the global fit would indicate that either the half-trapped or WT 

G4s do not follow a parallel pathways mechanism as depicted in Scheme 2.1C and/or the 

fully-trapped G4 folding kinetics are not good measures of the individual pathways. 

However in actuality, we found that the parallel pathways model gave excellent 

simultaneous agreement with all nine datasets (Figure 2.2), providing validation for the 

model and justifying the use of fully-trapped mutants to mimic the individual GR isomers. 

The sum of squared residuals from the global fit is only ∼3.8-fold greater than that 

obtained from fitting data for each sequence variant independently (Figure 2.7), even 

though the global fit contains 20 fewer adjustable parameters overall (16 versus 36 kinetic 

parameters in the global and independent fits, respectively) and therefore represents the 

simpler model. Furthermore, the global fit yields rate constants and activation enthalpies 

for all folding and unfolding transitions of the WT (listed in Table 2.1), providing some 

insight into how the WT Pu22 c-MYC G4 folds. 
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Figure 2.7: Independent two-state fits to TH data for the c-MYC Pu22 WT and trapped 

mutant G4s. Each TH profile was independently fit to a two-state kinetic model according 

to Scheme 2.1a in the main text (see Results and Materials and methods). Fit residuals 

are shown below each panel. The independent two-state fits here used a total of 36 kinetic 

parameters (4 each of the 9 independent fits), compared to the global fit (Figure 2.2) 

which only requires 16 kinetic parameters that are shared between all 9 datasets and is 

therefore the simpler kinetic model. The sum of the residual sum-of-squares (RSS) for 

the 9 independent fits is 2.17×10-5, while the global fit RSS is 8.24×10-5. 

G4 sequence EF kJ mol-1 kF min-1 EU kJ mol-1 kU min-1 Tm C 

WT -45 ± 2 0.87 ± 0.01 172 ± 2 0.079 ± 0.002 59.9 

55 -36 ± 1 0.227 ± 0.003 126 ± 1 1.09 ± 0.02 41.8 

53 -50 ± 1 0.369 ± 0.002 141 ± 1 0.256 ± 0.002 51.7 

35 -42 ± 5 0.32 ± 0.02 140 ± 5 0.67 ± 0.03 46.5 

33 -47 ± 2 0.540 ± 0.006 165 ± 2 0.116 ± 0.002 56.4 

5X -49 ± 1 0.638 ± 0.004 154 ± 1 0.190 ± 0.002 55.3 

X5 -34 ± 1 0.338 ± 0.004 141 ± 1 0.690 ± 0.007 46.3 

3X -63.1 ± 2 0.87 ± 0.01 164 ± 2 0.079 ± 0.002 59.4 

X3 -43.9 ± 1 0.539 ± 0.005 164 ± 1 0.117 ± 0.002 56.5 

Table 2.3: Kinetic parameters extracted from two-state fits reported at 50°C. Note that the 

reference temperature of 50°C was chosen because these fits are less well constrained 

than the global fit, so we have less confidence in the extrapolation to 37°C. 
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The rates of folding into each of the four GR isomers were similar at 37 °C, with 

only ∼5-fold variation between the different folding pathways. In contrast, the unfolding 

rates differed by up to 15-fold between the most- and least-stable GR isomer. This 

suggests that the specific molecular interactions that give the GR isomers different 

stabilities are largely formed after the G4 folding transition state. All of the activation 

energies for folding were negative on the order of -35 to -55 kJ mol−1, implying that 

enthalpically favorable interactions are made in the transition states for folding, as have 

been observed previously for other G4s358. The activation energies for unfolding were all 

large and positive (∼120–170 kJ mol−1) and followed an identical order to the stabilities 

of the isomers at 37 °C and their melting temperatures, i.e. 55 < 35 < 53 < 33. Unlike the 

folding and unfolding transitions, the rates of direct GR exchange (i.e. transitions from 

one GR isomer to another without unfolding) were not precisely defined by the data. 

However, we could place limits on how rapidly these transitions might occur. We 

performed global fits fixing all four direct GR exchange rates (kex = kAB + kBA) to values 

between 1 × 10−6 and 1 × 105 min−1 while optimizing all other kinetic parameters 

(Supplementary Figure 2.2). We obtained optimal agreement with kex = 0.1 min−1, i.e. on 

a similar timescale to the unfolding rate constants, and slightly worse fit qualities 

at kex below this value. Fixing kex to faster values resulted in substantially worse 

agreement with the data as evinced by larger residual sum of squared differences (RSS) 

between experimental and calculated values. This agrees well with a recent dynamic 

NMR study of GR exchange rates that found a Pu18 half-trapped mutant undergoes 

transitions between GR isomers on a timescale that is approximately 10-fold faster (kex ∼2 

× 10−2min−1) than global unfolding (kU ∼2 × 10−3 min−1) at 25 °C216. Importantly, 

all kF, kU, EF and EU values were not at all sensitive to the particular value of kex (≤1 × 

103 min−1), so all the values reported in Table 2.1 are well-defined by the fits. We further 

tested the robustness of the extracted global fit folding rate constants by generating 

pairwise parameter correlation surfaces (See Materials and methods section, 

Supplementary Figure 2.5) that additionally show that the parameters are well-defined in 

the global fit. We note that this dataset was collected in 2 mM K+ to produce folding 

kinetics that was slow enough for TH and isothermal NMR folding measurements (see 
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below). This is far below the biological K+ concentration of ∼140 mM359, and therefore we 

collected an additional TH dataset for the fully trapped mutants at 5 mM K+ to test whether 

these results held at higher K+ concentrations. We found a strong linear correlation 

between rate constants in 2 and 5 mM K+, with approximately 2- to 3-fold faster folding 

and slower unfolding, respectively, in 5 mM K+ at 37 °C (Figure 2.8). This suggests that 

the folding rates of the GR isomers in the Pu22 WT ensemble scale similarly with respect 

to K+ concentration, and the results of our model can be extrapolated to higher, more 

biologically relevant salt conditions. The extracted kinetic parameters from either the 2 or 

5 mM K+ TH datasets reveal the extent to which parallel reaction pathways accelerate 

folding of the Pu22 WT G4. The effective rate constant for the transition from the unfolded 

state to the ensemble of folded conformations is given by the sum of folding rate constants 

for the four pathways leading to the four GR isomers, 

𝑘𝐹,𝑊𝑇 = 𝑘𝐹,33 +  𝑘𝐹,35  + 𝑘𝐹,53  +  𝑘𝐹,55     (Equation 2.7) 

giving a value of kF,WT = 3.1 min-1 in 2 mM K+. For comparison, the rate constant 

for the fastest folding and most stable GR isomer (33) is kF,33 = 1.2 min-1, meaning that 

folding is accelerated by at least a factor of 2.5 due to the presence of multiple pathways. 

It is worth noting that compared to the average rate constant, folding acceleration is 

always equal to the number of pathways, four in this case. In other words, 

𝑘𝐹,𝑊𝑇

〈𝑘𝐹,33,35,53,55〉
 =  4        (Equation 2.8) 

where angled brackets indicate the mean value.  
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Figure 2.8: Correlation of rates for the fully-trapped c-MYC Pu22 mutants in the presence 

of 2 and 5 mM K+ at 37 °C. Folding (a) and unfolding (b) rates in 2 and 5 mM K+. Individual 

two-state fits were performed on the fully-trapped G4 datasets in 5 mM K+ and compared 

with results of the global fit performed on all data at 2 mM K+. 

The different folding and unfolding rates for the four reaction pathways imply the 

existence of some interesting nonequilibrium behavior when an unfolded Pu22 WT chain 

is allowed to fold under ambient conditions. We performed a numerical simulation of the 

folding reaction using the measured kinetic constants (see Materials and methods) 

according to Scheme 1C with kex = 0 and the optimal value of 0.1 min−1, and plotted the 

relative amounts of each GR isomer as a function of time (Figure 2.9). Interestingly, the 

populations of the 35 and 55 isomers built up relatively quickly to reach maxima near ∼1 

min (Figure 2.9a) and then decreased by up to a factor of 10 at longer time points (Figure 

2.9b). At very long times, the relative populations are thermodynamically controlled and 

the folded ensemble consists of 77%, 18%, 4% and 1% of the 33, 53, 35 and 55 GR 

isomers, respectively, in agreement with our previous studies of c-MYC G4s210. In 

contrast, at the early stages of folding, populations are determined by the rate rather than 

the equilibrium constants of folding and the ensemble consists of approximately 40%, 

30%, 18% and 12% of the 33, 53, 35 and 55 GR isomers, respectively, which explains 

the transient buildup of the less stable 35 and 55 forms. Similar results were obtained for 

simulations including direct GR isomer exchange at the optimal value of kex (Figure 2.9), 

with only slightly more rapid equilibration of the folded ensemble. Thus, the composition 
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of the Pu22 G4 structural ensemble is different at short and long time-points following the 

initiation of folding. Furthermore, the effective rate constant for unfolding depends on the 

instantaneous populations of GR isomers according to 

𝑘𝑈,𝑊𝑇 = 𝑘𝑈,33𝜃33 + 𝑘𝑈,53𝜃53 + 𝑘𝑈,35𝜃35 + 𝑘𝑈,55𝜃55.   (Equation 2.9) 

Initially, kU,WT  ≈ 0.043 min-1 while at very long times, kU,WT = 0.014 min-1. Thus the 

average lifetime of a folded G4 (=1/kU,WT) is about 20 minutes in the ensemble of 

conformations that forms initially, but increases to over an hour as the populations of more 

stable GR isomers are enriched with time. 

 

 

Figure 2.9: Isothermal folding simulations for the c-MYC Pu22 WT ensemble including 

direct GR isomer interconversion at the optimal rate constant kex = 0.1 min-1. Simulations 

were performed according to Scheme 2.1c and the parameters from Table 1 in the main 

text (see Supplementary Methods). Short and long timescales are shown in (a) and (b). 

2.5 Discussion 

A key question in this research is the extent to which conformational heterogeneity 

in the folded state implies the existence of parallel pathways that accelerate effective 

folding rates. Specifically in this case, does the existence of multiple GR isomers in the 

Pu22 WT folded ensemble lead to more rapid adoption of a folded state, starting from an 

unfolded chain? If the commitment to a particular GR isomer occurs after the transition 

state for G4 folding, then the answer is likely no. The folding rate would depend only on 

the height of a single dominant barrier, regardless of the number of possible GR isomers 

existing on the far side, which would be separated from each other by smaller energy 
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barriers. In contrast, if the commitment to a given GR isomer occurs early in the folding 

process then there is a separate transition state for each GR isomer. Each pathway 

corresponds to a separate folding pathway, whose rates sum to produce a net 

acceleration. There are several lines of evidence suggesting that the second scenario 

applies to the G4s studied here. First, the exchange between different GR isomers occurs 

quite slowly. Rates are on the same timescale and enthalpic barriers are similar to those 

for complete unfolding of the G4216. If commitment to a given G-register occurred after 

the transition state, one would expect GR isomers to be separated by energy barriers 

smaller than the one separating the folded and unfolded states, which is not what is 

observed. Second, model-free ΔTm values and effective two-state folding rates extracted 

from our TH data indicated that fully-trapped G4s with a single GR isomer generally fold 

more slowly than half-trapped mutants with two GR isomers, which largely fold more 

slowly than the WT with four. This is consistent with the idea that increasing the number 

of possible GR isomers accelerates folding. Finally, the global analysis verifies that the 

folding rates of the Pu22 WT and half-trapped mutants can be quantitatively accounted 

for in terms of parallel folding pathways, where the rate of each pathway is given by the 

folding rate of the corresponding fully trapped mutant. 

The existence of parallel folding pathways in protein energy landscapes has long 

been recognized, both theoretically and experimentally360-365, and pathway multiplicity 

has been directly linked to the overall folding rate. For example, Aksel and Barrick studied 

consensus ankyrin repeat proteins (CARPs), where the number of distinct folding 

pathways is equal to the number of repeats348. They characterized the folding kinetics of 

CARPs of different lengths and observed that the folding rate constant increased in 

proportion to the number repeats present, directly demonstrating acceleration due to 

multiple folding pathways. The folding mechanisms of nucleic acids have been less 

intensively studied than those of proteins; however, there are examples of molecules with 

multiple folding reaction pathways similar to those observed here. For example, in a study 

of the vertebrate telomeric i-motif sequence, Lieblein et al. observed formation of the 

thermodynamically more stable 5′E intercalation topology through a rapidly folding and 

slowly unfolding 3′E topology intermediate69. Bessi et al. studied a telomeric G4 

sequence, which initially formed two different topologies with similar rate constants215. 
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The initial folding reaction was followed by a period of several days over which the 

population ratio shifted from about 1:1 to 4:1 for the two isomers. Similarly to what was 

seen here, the effective overall folding rate for the telomere G4 is about twice as large as 

for either of the individual isomers, and the effective unfolding rate decreases by about a 

factor of two as the populations slowly equilibrate. 

One unique aspect of systems undergoing GR exchange is that the existence of 

parallel folding pathways can be inferred directly from the nucleotide sequence, unlike 

other nucleic acids where multiple pathways are only revealed by detailed biophysical 

analyses. In principle, an estimate of the number of GR isomers is given by210 

𝑅𝑇 = ∏ (𝑛𝑖 − 2)4
𝑖=1       (Equation 2.10) 

where ni is the number of dG residues in the ith G-tract and a G4 core of three G-

tetrads is assumed. When a G4 folds with only two G-tetrads310, even more GR isomers 

become available to the sequence, since there would then be n - 1 possible alignments 

for a given G-tract with respect to the other G-tracts that form the core as opposed to n - 

2 in Equation 2.10. We note that this equation does not account for additional 

conformational heterogeneity that may exist in addition to, or superposed on GR 

exchange. In principle, each GR isomer can have a different topology, or populate multiple 

alternate topologies, as we have previously shown for the PIM1 and hTERT promoter 

G4s210, 216. Some G4s form bulges where internal Gs are extruded from the core and the 

flanking Gs shift inward to fill these gaps308. As well, some DNA sequences include a 

fifth, or ‘spare tire’ G-tract366, with G4s forming from different subsets of four of the five G-

tracts367, 368. Additional conformations present in the folded ensemble would likely lead to 

additional parallel folding pathways that could further accelerate folding. If we make the 

very rough approximation that the folding rate of each pathway is comparable, then the 

total acceleration factor due to the existence of parallel pathways is simply equal to the 

number of pathways (similar to Equation 2.8). Equation 2.10 gives a conservative 

estimate for the number of GR isomers that can be formed by a given DNA sequence and 

the associated acceleration factor for G4 folding. We previously analyzed a database of 

human gene promoter regions for potential G4-forming sequences that could undergo 

GR exchange, according to Equation 2.10. Of roughly 28 000 putative G4s, nearly 20% 
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could adopt 12 or more GR isomers and 5% could form >20210. Assuming that folding 

rates to the individual GR isomers are relatively similar (as they are for Pu22) many of 

these G4s could fold more than an order of magnitude faster than they would if they only 

adopted a single GR isomer. 

There is an important distinction to be made between parallel folding pathways 

and misfolding. In the Pu22 G4, as well as the telomeric G4 and i-motif mentioned above, 

some or most of the folding pathways lead to conformational isomers that are not highly 

populated at equilibrium. These rarer states are formed transiently after folding is initiated, 

but essentially disappear at long time-points. This begs the question of whether their 

formation represents folding acceleration or rather kinetic trapping by transiently 

misfolded species. The best answer to this question lies in the details of biological 

function. In many cases, it is believed that G4s exert their biological effects simply by 

virtue of being folded. For instance, folded G4s are proposed to act as physical obstacles 

that impede the procession of DNA and RNA polymerases316. Alternatively, G4 folding in 

the nontemplate strand of DNA could reduce its ability to displace RNA:DNA hybrids 

formed after RNA synthesis, leading to stalling of the polymerase317. Similarly, G4 folding 

in both open reading frames and untranslated regions of mRNAs can reduce translation 

and influence ribosomal frameshifting and co-translational protein folding327. In all of these 

examples, it would be expected that folding to both thermodynamically favored and 

disfavored states would have similar biological consequences. Thus, reaction pathways 

to rare GR isomers can be considered to legitimately accelerate folding. In other cases, 

a greater degree of structural specificity might be expected. There are examples of 

transcription factors and other proteins that recognize the G4 fold170. Nucleolin, which 

binds G4s in the c-MYC and VEGF gene promoter regions369, binds different c-MYC GR 

isomers with different affinities324. Similarly, it has been reported that different helicases 

are active on different G4 folds370. Nevertheless, the ability of G4s to influence 

transcription, translation and replication simply by folding suggests that, for the most part, 

a reaction pathway leading to any member of the folded conformational ensemble 

contributes to the activity of a functional G4. 

The relationships between G4 sequence, folding kinetics and biological function 

are still in the very early stages of being uncovered. Many of the relevant processes are 
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highly complex and orchestrated through the coordinated activity of diverse molecular 

machines. Furthermore, G4 stability is highly sensitive to the concentrations of K+ and 

Na+ ions, molecular crowding, and mechanical stress (e.g. helical over- or under-

winding)52, 371, 372 and folding rates are likely to be similarly affected373. This study was 

performed on short, homogeneous oligonucleotides, at a concentration of K+ lower than 

that found intracellularly (2 mM versus ∼140 mM), and in the absence of crowding agents, 

so the absolute rates of folding are different (and likely much slower) than those 

occurring in vivo. Nevertheless, the principle of folding acceleration by parallel reaction 

pathways applies universally, since the rates of all pathways likely scale similarly as 

solution conditions vary, as we have shown in Figure 2.8. The combination of 

mutagenesis, TH, and global fitting that we have developed provides a rapid and 

inexpensive of way of mapping folding landscapes with parallel pathways, and requires 

only that folding occurs slowly enough to produce thermal hysteresis and that individual 

folded isomers can be trapped with nucleotide substitutions. Parallel G4 folding pathways 

associated with GR isomerization are likely common in nature, can be easily identified by 

sequence analysis, and lend themselves to being characterized by this approach. These 

techniques thus provide an avenue toward a better understanding of the complex 

dynamics underlying G4 function. 

 

2.6 Materials and methods 

2.6.1 Sample Preparation 

Oligonucleotide samples were purchased from the Yale Keck Oligonucleotide 

Synthesis facility (Yale University, USA) or were synthesized using a MerMade 12 

oligonucleotide synthesizer with standard solid-phase phosphoramidite chemistry. 

Samples for TH measurements were subjected to cartridge purification and analyzed by 

LC-mass spectrometry for purity. DNA strands were dissolved in MilliQ water and 

concentrations were calculated using nearest neighbour extinction coefficients374. Prior to 

usage, the DNAs were HPLC purified and desalted. All experiments were performed in 

TH buffer: 10 mM lithium phosphate, pH 7.0, supplemented with 2 mM KCl. The buffer 

pH was titrated using 1 M LiOH to avoid the further addition of stabilizing Na+ or K+ 
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cations. Our reaction conditions employed 2 mM K+ ions, since higher concentrations 

(physiological is approximately 140 mM359) lead to much higher melting temperatures with 

undetectably small amounts of hysteresis and short or nonexistent unfolded baselines. 

 

2.6.2 Circular dichroism spectroscopy 

CD experiments were performed using a JASCO J-810 (JASCO, USA) 

spectropolarimeter with a cell path length of 0.1 cm. Spectra were recorded with 10 µM 

samples and at temperatures of at 25, 30, and 35 °C. The samples were scanned three 

times from 330 to 230 nm for signal averaging. The CD spectra were baseline corrected 

using a buffer blank. 

 

2.6.3 Thermal hysteresis measurements 

TH datasets were collected using a Cary Win-UV spectrophotometer (Agilent 

Technologies, USA) and cuvettes with a 1 cm path length. Absorbance profiles were 

measured as a function of temperature at 260 and 295 nm over the interval of 5–90 °C 

with 10 μM samples. Scan rates of ±2, ±3 and ±4 °C min−1 were chosen to induce TH 

between the heating and cooling scans. The samples were equilibrated at high and low 

temperatures for 5 min. A layer of mineral oil was placed on top of the sample solution in 

the cuvettes to mitigate evaporation. Measurements were repeated in triplicate yielding a 

total of 27 datasets (3 replicates for each of the 9 G4 sequences studied herein). We 

applied baseline and temperature corrections to all datasets as described previously246 

to account for deviations between the true solution temperature and the block 

temperature reported by the instrument. TH datasets were collected in both 1 and 0.1 cm 

cuvettes to assess the influence of heat transfer in the two cell volumes at the rapid 

scanning rates employed here (Supplementary Figure 2.3). We measured nearly identical 

TH datasets using either cuvette, implying that heat transfer throughout the cell volume 

is efficient in both cases, even at very fast scanning rates. TH measurements collected in 

1 cm cuvettes represent the primary dataset used below. 
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2.6.4 Thermal hysteresis global fitting 

TH datasets for the c-MYC Pu22 WT and trapped mutants were globally fit with a 

kinetic model that assumes the temperature dependences of the folding and unfolding 

rate constants obey the Arrhenius equation 

𝑘(𝑇) = 𝑘0𝑒
𝐸𝑎
𝑅
(

1

𝑇𝑟𝑒𝑓
−
1

𝑇
)
       (Equation 2.11) 

where k0 is the rate constant at the reference temperature T0, Ea is the activation 

energy, and R is the ideal gas constant. The fully- and half-trapped mutant profiles were 

fit simultaneously with the wild-type dataset using the following rate equations 

Fully-trapped 

𝑑

𝑑𝑇
[33] = (𝑘𝐹,33[𝑈] − 𝑘𝑈,33[33])

𝑑𝑡

𝑑𝑇
      (Equation 2.12) 

𝑑

𝑑𝑇
[35] = (𝑘𝐹,35[𝑈] − 𝑘𝑈,35[35])

𝑑𝑡

𝑑𝑇
      (Equation 2.13) 

𝑑

𝑑𝑇
[53] = (𝑘𝐹,53[𝑈] − 𝑘𝑈,53[53])

𝑑𝑡

𝑑𝑇
      (Equation 2.14) 

𝑑

𝑑𝑇
[55] = (𝑘𝐹,55[𝑈] − 𝑘𝑈,55[55])

𝑑𝑡

𝑑𝑇
      (Equation 2.15) 

Half-trapped 

𝑑

𝑑𝑇
[𝑋3] = ((𝑘𝐹,33 + 𝑘𝐹,53)[𝑈] − 𝑘𝑈,33[33] − 𝑘𝑈,53[53])

𝑑𝑡

𝑑𝑇
  (Equation 2.16) 

𝑑

𝑑𝑇
[𝑋5] = ((𝑘𝐹,35 + 𝑘𝐹,55)[𝑈] − 𝑘𝑈,35[35] − 𝑘𝑈,55[55])

𝑑𝑡

𝑑𝑇
  (Equation 2.17) 

𝑑

𝑑𝑇
[3𝑋] = ((𝑘𝐹,33 + 𝑘𝐹,35)[𝑈] − 𝑘𝑈,35[35] − 𝑘𝑈,33[33])

𝑑𝑡

𝑑𝑇
  (Equation 2.18) 

𝑑

𝑑𝑇
[𝑋5] = ((𝑘𝐹,35 + 𝑘𝐹,55)[𝑈] − 𝑘𝑈,35[35] − 𝑘𝑈,55[55])

𝑑𝑡

𝑑𝑇
  (Equation 2.19) 

Pu22 WT 

𝑑

𝑑𝑇
[𝑊𝑇] = (

(𝑘𝐹,33 + 𝑘𝐹,53 + 𝑘𝐹,35+𝑘𝐹,55)[𝑈]

−𝑘𝑈,33[33] − 𝑘𝑈,53[53] − 𝑘𝑈,35[35] − 𝑘𝑈,55[55]
)
𝑑𝑡

𝑑𝑇
   (Equation 2.20) 
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where dt/dT is the inverse experimental scan rate in min °C-1. We also performed 

fits and simulations where the rate equations were modified to include direct GR isomer 

exchange terms (see main text Results) according to 

𝑑

𝑑𝑇
[33]  =  (𝑘𝐹,33[𝑈]  − 𝑘𝑈,33[33]  − (𝑘33−53 + 𝑘33−35)[33]  + 𝑘53−33[53]  +

 𝑘35−33[35])      (Equation 2.21) 

The interconversion rates were set by invoking the principle of detailed balance 

[33]

[𝑈]

[53]

[33]

[𝑈]

[53]
=

𝑘𝐹,33

𝑘𝑈,33

𝑘33−53

𝑘53−33

𝑘𝑈,53

𝑘𝐹,53
= 1   (Equation 2.22) 

and defining 

𝑘𝑒𝑥 = 𝑘33−53 + 𝑘53−33    (Equation 2.23) 

from which it can be shown that 

𝑘33−53 = 𝑘𝑒𝑥
𝐾𝐹,53

𝐾𝐹,53+𝐾𝐹,33
    (Equation 2.24) 

where 𝐾𝐹,53 =
𝑘𝐹,53

𝑘𝑈,53
  and 𝐾𝐹,33 =

𝑘𝐹,33

𝑘𝑈,33
  are the equilibrium constants for folding into 

the 33- and 53-shifted GR isomers. The reverse rate constant 𝑘53−33 is then determined 

by Equation 2.24). We have shown the case for the 33 trapped mutant as an example, 

though similar equations hold for the other trapped mutants by substitution of the 

appropriate rate and equilibrium constants. 

The set of folding rate equations for the WT and trapped mutants was numerically 

integrated as a function of temperature using the ordinary differential equation (ODE) 

solvers in MATLAB. Absorbance TH profiles were calculated from the numerically 

integrated concentrations according to 

𝐴(𝑇) = 𝐴𝐹(𝑇)𝜃𝐹(𝑇) + 𝐴𝑈(𝑇)𝜃𝑈(𝑇)  (Equation 2.25) 

where 𝜃𝐹(𝑇)  and 𝜃𝑈(𝑇)  are the fractions of the folded and unfolded states 

respectively, and 𝐴𝐹(𝑇)  and 𝐴𝑈(𝑇)  are the linear folded and unfolded absorbance 

baselines. Fractions of the folded state were given by 

Fully-trapped 

𝜃𝐹,33(𝑇) =
[33]

𝐶𝑇
     (Equation 2.26) 
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Half-trapped 

𝜃𝐹,3𝑋(𝑇) =
[33]+[35]

𝐶𝑇
       (Equation 2.27) 

c-MYC Pu22 WT 

𝜃𝐹,𝑊𝑇(𝑇) =
[33]+[35]+[53]+[55]

𝐶𝑇
     (Equation 2.28) 

where 𝐶𝑇 is the total experimental concentration and for brevity, we have shown 

only the calculations for the 33 and 3X trapped mutants. The fraction of the unfolded state 

was given by 

𝜃𝑈(𝑇) =
[𝑈]

𝐶𝑇
= 1 − 𝜃𝐹(𝑇).      (Equation 2.29) 

The linear folded and unfolded absorbance baselines were calculated using 

𝐴𝐹(𝑇) = 𝑚𝐹𝑇 + 𝑏𝐹       (Equation 2.30) 

𝐴𝑈(𝑇) = 𝑚𝑈𝑇 + 𝑏𝑈       (Equation 2.31) 

where 𝑚𝐹, 𝑚𝑈, 𝑏𝐹, 𝑏𝑈 are the slopes and intercepts for the folded and unfolded 

baselines respectively (Supplementary Figure 2.4). All 27 TH datasets (triplicate 

measurements for each of the WT and 8 trapped mutant G4s) were fit by minimizing the 

residual sum-of-squared (RSS) differences between the experimental and modelled data 

𝑅𝑆𝑆 = ∑ ∑ (𝐴𝑒𝑥𝑝,𝑛(𝑇𝑘) − 𝐴𝑚𝑜𝑑𝑒𝑙,𝑛(𝑇𝑘, 𝜉))
2

𝑘
27
𝑛=1    (Equation 2.32) 

where 𝑇𝑘  is the kth experimental temperature,  𝐴exp  and  𝐴model  are the 

experimental and fitted TH data respectively, and  𝜉 is the set of folding and unfolding rate 

constants and activation energies for the four GR isomers. Optimized fraction unfolded 

profiles from the global fits are displayed in the main text. 

 

2.6.5 Isothermal parallel pathway folding simulations 

Isothermal folding simulations were performed by numerical integration of the time-

dependent rate equations for the unfolded state, wild-type, and trapped mutants, 

(Equation 2.11 to Equation 2.29 and Scheme 2.1c with kex = 0 or 0.1 min -1) with the 

optimized folding parameters from the TH global fitting analysis (Table 1, 295 nm) at the 
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reference temperature of 37 C. The simulations were initiated from an initial condition U 

= 1 and all other populations set to 0. 

 

2.6.6 Monte Carlo errors 

Experimental errors for the TH data were calculated by simulating 500 experiments 

with random error equal to that of the experimental data for the 9 G4 sequences studied 

herein. The resulting synthetic datasets were globally fit in an identical fashion to the 

experimental data according to Scheme 2.1 in the main text and the methods, and the 

errors in Table 1 were reported as one standard deviation of the 500 extracted parameter 

sets. 

 

2.6.7 Residual sum of squares parameter correlation contour plots 

Contour plots were created by performing a grid search for each pair of fitted on 

rates for each fit and calculating the RSS at each point. The confidence level (CL) at each 

RSS value was calculated as375 

𝐶𝐿𝑖,𝑗 = 𝐹𝐶𝐷𝐹 ((
𝑅𝑆𝑆𝑖,𝑗

𝑅𝑆𝑆𝑚𝑖𝑛
− 1) ∗ (

𝐷𝑜𝑓

𝑀
) ,𝑀, 𝐷𝑜𝐹)  (Equation 2.33) 

Where FCDF is the F distribution cumulative density function and RSSmin is the 

residual sum of squares at the minimum found via global fitting. RSSi,j is the RSS at the 

point i,j for each of the ith,jth pair of fitted parameters. DOF is the degrees of freedom of 

the fit (equal to the number of points – M), and M is the total number of fitted parameters. 

The resulting %CL contour plots are shown in Figure 2.1. 
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2.7 Supplementary Information 

 

Supplementary Figure 2.1: Overlays of baseline-corrected experimental TH data for the 

fully-trapped mutants collected at 260 and 295 nm. The 295 nm dataset for each mutant 

is shown as dark blue (cooling) and red (heating) lines, while the corresponding 260 nm 

dataset is shown as light blue (cooling) and yellow lines (heating). Only the slowest and 

fastest heating and cooling scans are shown here for clarity (2 and 4 C min-1 

respectively). 

GR isomer EF kJ mol-1 kF min-1 EU kJ mol-1 kU min-1 

55 -36  2 (290  4)10-3 129  2 (162  3)10-3 

35 -52  3 (520  10)10-3 139  3 (73  3)10-3 

53 -57  3 (890  40) 10-3 149  3 (23  1)10-3 

33 -60  3 (1200  70)10-3 167  3 (7  0.6)10-3 

Supplementary Table 2.14: Parameters extracted from global fits of the c-MYC Pu22 WT 

and trapped mutant TH datasets at 260 nm. Fit to Scheme 2.1c in the main text with kex 

= 0 min-1. Rate constants are reported at 37 C. Errors were calculated according to the 

covariance matrix approach376. 
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Supplementary Figure 2.2: TH global fit residual sum-of-squares (RSS, 295 nm) as a 

function of direct GR isomer interconversion rate kex. 

 

Supplementary Figure 2.3: Temperature correction of TH data sets.  Overlays of TH data 

for the fully–trapped mutants collected in a 1 cm cuvette (triplicates shown in black, grey, 

and light grey respectively) and 0.1 cm cuvette (red). Data were temperature corrected 

as previously described246. 
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Supplementary Figure 2.4: Baseline correction of TH datasets.  Temperature-corrected 

c-MYC Pu22 WT and trapped mutant G4 TH data (295 nm) are shown with folded and 

unfolded baselines in black. Slow to fast heating and cooling scan rates are shown as 

orange to red and light blue to dark blue respectively. Datasets were converted to fraction 

unfolded profiles and displayed in Figure 2.2. 

 



 95 
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Supplementary Figure 2.5: Global fit parameter correlations and confidence intervals. 

Confidence level plots were generated according to the Supplementary Methods for the 

primary TH dataset in 2 mM K+, 1 cm cuvette conditions. Colour bars indicate the 

normalized confidence level, with 95% being approximately at the cyan-white interface. 

Only correlation surfaces between the folding rate constants, folding rate constants and 

activation energies, and folding and unfolding rate constants are shown. 
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 Chapter 3: Structural polymorphism of guanine quadruplex-

containing regions in human promoters 

3.1 Preface 

The work in this chapter follows from the results of Chapter 2, where we found that 

the c-MYC G4 had parallel folding pathways which led to a net acceleration in its folding. 

This led us to ask the simple question: What was the prevalence of structural 

polymorphism of G4s in human promoters? To address this, I developed a new 

bioinformatic algorithm to find G4 motifs from a sequence of DNA and combine them into 

regions which overlapped with each other, called the GReg algorithm. There are many 

possible G4 motifs, and not all of them have the same stability. As described in this 

chapter, stability decreases with increasing loop length, and with increasing the number 

and size of bulges. In order to only search for highly stable G4 motifs, Lynn Yamout 

developed Equation 3.3 which I then incorporated into the GReg algorithm. Lynn Yamout 

also wrote and analyzed all of the data present in Section 3.4.2, which details her 

development of Equation 3.3. In order to make the GReg algorithm easy to use and more 

widely available, it was adapted into a python-based webserver. This work was done by 

Chuyang (Amos) Zhang, with help from David Hiraki. The description of this webserver is 

found in Section 3.4.7. I, with guidance from Prof. Anthony Mittermaier, completed all of 

the rest of the work for this chapter. 

 

This chapter was adapted with permission from: Hennecker, C., Yamout, L., Zhang, C., 

Zhao, C., Hiraki, D., Moitessier, N., & Mittermaier, A. (2022). Structural polymorphism of 

guanine quadruplex-containing regions in human promoters. International Journal of 

Molecular Sciences, 23(24), 16020. 

 

 

 

 

 

 



 98 

3.2 Abstract 

Intramolecular guanine quadruplexes (G4s) are non-canonical nucleic acid 

structures formed by four guanine (G)-rich tracts that assemble into a core of stacked 

planar tetrads. G4-forming DNA sequences are enriched in gene promoters and are 

implicated in the control of gene expression. Most G4-forming DNA contains more G 

residues than can simultaneously be incorporated into the core resulting in a variety of 

different possible G4 structures. While this kind of structural polymorphism is well 

recognized in the literature, there remain unanswered questions regarding possible 

connections between G4 polymorphism and biological function. Here we report a detailed 

bioinformatic survey of G4 polymorphism in human gene promoter regions. Our analysis 

is based on identifying G4-containing regions (G4CRs), which we define as stretches of 

DNA in which every residue can form part of a G4. We found that G4CRs with higher 

degrees of polymorphism are more tightly clustered near transcription sites and tend to 

contain G4s with shorter loops and bulges. Furthermore, we found that G4CRs with well-

characterized biological function tended to be longer and more polymorphic than genome-

wide averages. These results represent new evidence linking G4 polymorphism to 

biological function and provide new criteria for identifying biologically relevant G4-forming 

regions from genomic data. 

 

3.3 Introduction 

Intramolecular guanine quadruplexes (G4s) are four-stranded nucleic acid 

structures formed when four tracts of contiguous guanine residues, separated by three 

loops, come together in stacked planar tetrads stabilized by Hoogsteen hydrogen bonding 

and metal coordination (Figure 3.1a). Putative G4s are plentiful in the human genome, 

and are found in functional regions including origins of replication, introns, 5’ and 3’ 

untranslated regions, as well as in promoter regions, where they help to regulate gene 

expression38, 135, 187, 377-379. The stability of these structures is influenced by a variety of 

different factors such as the presence of different cations, pH, and molecular crowding380. 

Some of the best-characterized G4s have relatively simple structures consisting of four 

tracts of 3 Gs, with all 12 G residues engaged in the core structure381, 382. However, in 

general, G4-forming DNA sequences are polymorphic. They contain more Gs than can 



 99 

be simultaneously incorporated into a single structure, resulting in ensembles of different 

conformations with different subsets of Gs engaged in the core383-386. These 

polymorphisms can take many different forms (Figure 3.1b). For example, stable G4s can 

form from G-tracts that contain non-G residues which are bulged out from the core 

structure 308, 387, 388. Alternatively, when the tracts contain different numbers of Gs, the 

strands can effectively slide with respect to one another, a type of motion we refer to as 

G-register exchange 210, 216, 351. For example, the Pu18 sequence from the human MYC 

promoter (AGGGTGGGGAGGGTGGGG) has two tracts of 3 Gs and 2 tracts of 4 Gs and 

can form 4 different G-register isomers: aGGGtGGGgaGGGtGGGg, 

aGGGtgGGGaGGGtGGGg, aGGGtGGGgaGGGtgGGG, and 

aGGGtgGGGaGGGtgGGG, where guanine residues participating in the tetrad core are 

capitalized and loop residues are in bold type. Of these, the first isomer is the most 

thermodynamically stable 210.  As well, there are several examples of biologically relevant 

G4s that contain extra (>4), or “spare tire” G-tracts, such that stable G4s can form from 

different subsets of four of the tracts389, 390. For example, the Pu27 sequence from the 

human MYC promoter comprises the Pu18 sequence (above) and a 5th G-tract appended 

at the 5’ end. Three alternative G4s have been reported for this region in which the tetrad 

core is formed from tracts 1234, 1245, and 2345 (the Pu18 sequence)211, 389. Similarly, G-

rich minisatellite DNA can contain dozens of consecutive G-tracts391, 392 and can form 

enormous numbers of different G4 folded states involving different subsets of G-tracts, 

potentially leading to a highly frustrated energy landscape180. Finally, many different chain 

topologies are possible, with the strands running parallel or anti-parallel to one-another393 

or adopting snap-back conformations394. G4s composed of G-tracts containing between 

two395 and six40 consecutive Gs have been reported.  G4s can be stabilized by DNA 

hairpin formation in the loops and bulges396, 397, additional hydrogen bonding of core 

guanines to loop residues398, and stacking of adjacent G4s399 leading to some highly non-

canonical G4 structures400. 
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Figure 3.1: Guanine quadruplex structures. a) Hydrogen bonding pattern of a G-tetrad in 

the G4 core. b) Representative structural features of G4s: Topological isomers, Spare tire 

isomers, G-register isomers, Bulges, Snap back structures, and multimeric G4s. 

There are several ways in which the polymorphism of G4s has been proposed to impact 

their biological function121, 139, 401-403. For example, we have found that the existence of 

multiple G register isomers can accelerate folding351 and stabilize the folded state210, with 

implications for G4 function. It has been shown that the presence of spare tire G-tracts 

can provide resilience to DNA damage390. G4-binding proteins such as nucleolin can 

differentiate between different folding isomers (G4s), while different DNA helicases have 

strong preferences for unwinding different G4 structures404. The fact that a single G-rich 

DNA sequence from a gene promoter region can fold into multiple different structures has 

been identified as hurdle to designing effective specific G4-targetting drugs401. Many of 

best-characterized G4s with validated biological functions are capable of undergoing both 

spare tire (>4 G-tacts) and G-register (G-tracts of different lengths) isomerism. For 

example, the well-studied Pu-27 sequence from the promoter of the oncogene MYC 

contains 2 tracts of GGG and 3 tracts of GGGG. When 8 or more G tracts are present, 

then in principle 2 or more adjacent G4s can form. For example, a stretch of 68 

nucleotides from the telomerase (TERT) gene promoter contains 5 tracts of GGG and 7 

tracts of GGGG and can fold into two405 or three406 consecutive G4s.  

While seemingly common in naturally occurring G4s, these types of structural 

polymorphism have not yet been surveyed in a systematic manner, thus their prevalence 

and functional significance remain poorly understood. Recent reviews have split the 

bioinformatic approaches for predicting the locations of G4s into the categories of regular 
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expression matching, scoring, sliding window scoring, machine learning, and specialized 

tools 134. For example, the quadparser algorithm focuses on identifying short segments 

of DNA that are likely able to adopt a stable fold, by matching the sequence of interest to 

a consensus motif 119. Alternatively, the G4hunter algorithm predicts the tendency of DNA 

to form G4s by evaluating G richness and G skewness (i.e. the density of tracts containing 

consecutive Gs) 133. Newer approaches such as the QPARSE algorithm have identified 

the prevalence of multimeric G4s in the human genome, along with sequences that can 

form hairpin loops 407. However, none of these methods quantify the extent of G4 

structural polymorphism. Thus, the extent, prevalence, distribution, and functional 

significance of G4 polymorphism remains largely unknown.  

We have set out to evaluate G4 structural polymorphism in promoter regions of the 

human genome. To begin, we recognized that the basic functional unit is not a single G4 

structure, but rather a G-rich stretch of DNA that can adopt between one and a multitude 

of different G4 folds. We defined a G4 containing region (G4CR) as a contiguous stretch 

of DNA containing G-tracts, such that each G-tract can, in principle, form a stable G4 with 

the G-tracts on either side. In other words, G4CRs may be thought of as regions of DNA 

where every single residue has the potential to be included in at least one G4, in either a 

core, bulge, or loop position. We found that G4CRs can be anything from about 15 

nucleotides (nt) ((GGGN)3GGG) to several hundred nt in length. They can form between 

one and several thousand structural distinct G4s, with up to about 25 simultaneously 

adjacent. In parallel, we also calculated the structural multiplicity of individual G residues, 

which we defined as the number of structural distinct G4s that incorporate a particular G 

residue into the core. Since multiplicity is defined on a per-G basis, this provides a simple 

approach for mapping structural polymorphism onto a DNA sequence with single-residue 

precision. We found that multiplicity values can vary between about one and a thousand 

for different G residues within a single G4CR. Intriguingly, the degree of polymorphism 

within a G4CR appears related to both the location of the G4CR relative to the 

transcription start site, and also the lengths of loops and presence of bulges in the G4 

structures it forms. Furthermore, a variety of well-characterized biologically relevant G4 

containing regions from the MYC, VEGFA, BCL2, KIT, and KRAS gene promoters have 

greater than average degrees of polymorphism. This is new evidence that polymorphism 
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itself may be related to the biological function of G4CRs and provides new criteria for 

identifying potentially important regulatory sites in DNA. 

 

3.4 Results  

3.4.1 Calculating G4 polymorphism.  

Predicting the number of possible different G4 conformations available to a single 

stretch of G-rich DNA becomes intractable if every source of structural variation is 

considered. For example, we are not aware of any method for reliably predicting a priori 

which topology or topologies (parallel, antiparallel, hybrid) a particular DNA sequence will 

favour. Non-canonical inter-G4 stacking and additional base-pairing between core and 

loop and flanking residues are usually only identified by biophysical analyses and full 

three dimensional structural elucidation 408, although this is complicated somewhat by the 

fact  that crystal packing can influence G4 structure 409. Therefore, we have opted to 

simplify the problem by considering only a subset of the structures that G-rich DNA can 

adopt. Specifically, we calculated the number of ways to incorporate different sets of 

twelve G residues into a stable, three-tetrad, G4 core, while ignoring topology and non-

canonical or higher-order interactions. We considered potential G4s with loop lengths of 

up to 7 residues 119 and bulges with lengths of up to 3308.  For example, a hypothetical 

sequence G3TG4TG3TG3TG could adopt 4 different structures: 

GGGtGGGgtGGGtGGGtg, GGGtgGGGtGGGtGGGtg, GGGtGGGgtGGGtgGG(t)G, 

and GGGtgGGGtGGGtgGG(t)G, where G’s in the core are capitalized, looped residues 

are lowercase and bolded, and bulged residues are lowercased, bolded, and put in 

parenthesis. Bulged G’s were not considered, since the non-bulged variant would always 

be more stable.  We note that, while two-tetrad G4s exist, they are usually quite unstable 

in the absence of additional non-canonical interactions, which is beyond the scope of this 

analysis395, 410. G4s containing more than 3 tetrads have been reported40, 61, although 

other studies suggest that strand-shifted conformations with 3-tetrad cores may be still 

be preferred, even when all G-tracts contain more than 3 G’s41. Furthermore, while we 

have restricted our analysis to a maximum loop length of 7, structures with larger loops 

are present in the human genome as well as other G4 forming sequences which do not 

fit our simplified model135. Thus in the following analysis, it should be remembered that 
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we have considered an important but partial subset of the possible G4 structures formed 

by any given DNA sequence. The true number of accessible conformations is likely 

somewhat larger.  

 

3.4.2 Predicting stable G4 structures.  

In order to realistically evaluate G4 polymorphism, it is important to account for the 

fact that some G4 structures are more likely to form than others. Previous studies have 

related experimental melting temperatures (Tm) of G4s to the lengths of the loops (L1-3)411 

and number (Nb) and size (Lb) of bulges308. Unsurprisingly, Tm decreases with increasing 

total loop length (L1+L2+L3) (Figure 3.2a). The dependence is reasonably well fit by a 

linear relationship, however the prediction breaks down for the most stable G4s with the 

shortest loops. For example, the calculated melting temperature of the extremely stable 

(G3T)3G3 sequence (77.6°C) indicated by the red circle in Figure 3.2a is actually lower by 

6.4°C than the measured melting temperatures of the longer-loop variants (84°C and 

81.8°C, respectively), when the reverse should be true. Notably, when data for a single 

loop are examined in detail, Tm values show a curvilinear decrease with increasing L 

(Figure 3.2b), which is perhaps to be expected since theory suggests that the entropic 

cost of closing a loop during macromolecular folding varies as the logarithm of the length 

of the loop 412. Plotting Tm as a function of log(L) produces far better linear relationships 

(Figure 3.2e). When data for all variants are plotted as a function of 

log(L1)+log(L2)+log(L3) (=log(L1L2L3)), a linear relationship is obtained (Figure 3.2d) with 

an improved R2 value compared to Figure 3.2a. The Tm predicted for (G3T)3G3 (at the y-

intercept) is 6°C higher than those determined experimentally for the longer-loop variants, 

as expected. The melting temperature can therefore be estimated for this dataset by the 

empirical equation 

𝑇𝑚(𝐿1, 𝐿2, 𝐿3) = 𝑎 − 𝑏 ∙ 𝑙𝑜𝑔{𝐿1𝐿2𝐿3}    (Equation 3.1) 

where a=89.9°C and b=19.2°C. 

Stability data have also been reported for G4s containing different numbers of 

bulges of different lengths308. Introduction of a bulge leads to a roughly 20°C reduction in 

Tm, and each additional residue in the bulge reduces the Tm by about another 10°C. We 

found that the data are well fit by the empirical relationship 
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𝑇𝑚(𝑁𝑏 , 𝐿𝑏) = 𝑐 − 𝑑 ∙ 𝑁𝑏 − 𝑓 ∙ (𝐿𝑏 − 𝑁𝑏)    (Equation 3.2) 

where Nb and Lb are the total number of bulges and the total number of bulged 

residues, respectively. For data obtained with 12 mM K+, c= 89.9°C, d= 20.5°C, and f= 

8.5°C (Figure 3.2c). For data obtained with 60 mM K+, c= 97.8°C, d= 19.4°C, and f= 8.5°C 

(Figure 3.2f). Since the 12mM K+ data and 60mM K+ data produced similar values for d 

and f we took the mean of these two parameters giving d = 20°C and f = 8.5°C. We 

combined Equation 3.1 and Equation 3.2 to estimate the stabilities of all predicted G4s 

on the basis of their loop lengths, and number and length of bulges according to: 

 𝑇𝑚
𝑒𝑠𝑡(𝐿1, 𝐿2, 𝐿3, 𝑁𝑏 , 𝐿𝑏) = 𝑎 − 𝑏 ∙ 𝑙𝑜𝑔{𝐿1𝐿2𝐿3} −𝑑 ∙ 𝑁𝑏 − 𝑓 ∙ (𝐿𝑏 − 𝑁𝑏)  

          (Equation 3.3) 

It should be kept in mind that the Tm
est parameter is not a precise predictor of the 

melting temperature, given the scatter evident in Figure 3.2a and Figure 3.2d, and 

possible contributions of non-canonical and higher order interactions in naturally 

occurring G4s 400. Rather, a high Tm
est value indicates that a putative G4 structure has 

short loops and a small or no bulge while a low Tm
est values is indicative of long loops 

and/or bulges, with the values tied to physically reasonable melting temperatures.  
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Figure 3.2: Effect of loop length on Tm. a) Dependence of experimental Tm on total loop 

length. b) Dependence of experimental Tm on the length of L2 for L1,L3 = TTT (blue) and 

L1,L3 = T (red). c) Correlation between experimental and predicted Tm values for bulges 

of different lengths in 12mM potassium according to Equation 3.3. d) Dependence of 

experimental Tm on the logarithm of the product of the loop lengths. e) Dependence of 

experimental Tm on the logarithm of the product of the loop lengths for L1,L3 = TTT (blue) 

and L1,L3 = T (red). f) Correlation between experimental and predicted Tm values for 

bulges of different lengths in 60mM potassium according to Equation 3.3. Data in a,b,d,e 

taken from411. Data in c,f taken from308.   

 

3.4.3 Identifying G4 regions (G4CRs) in DNA sequences.  

To locate G4CRs within a given stretch of DNA, we identified all sets of 12 core G 

residues within the sequence that can theoretically form a G4 with Tm
est ≥ 50°C according 

to Equation 3.3, together with the accompanying loops (limited to ≤7 nt) and bulges 

(limited to ≤3 nt). Regions encompassing overlapping sets of Gs were defined as G4CRs. 

Figure 3.3 illustrates a hypothetical example in which the first G4CR (G4CR1) contains 6 

G-tracts and can form G4s with 8 distinct subsets of G residues. The second G4CR 

(G4CR2) is separate from the first because no stable G4 includes both the 3’ G-tract of 
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G4CR1 and the 5’ G-tract of G4CR2. Note that for very G-rich sequences, the distinction 

between different G-tracts and between looped and bulged residues becomes somewhat 

blurred. For example, in G4CR2, the T is part of a loop in G41, G42, and G43 and a bulge 

in the third G-tract in G44 and G45. The G immediately following the T is part of the fourth 

G-tract in G41, part of a loop in G42 and G43, and part of the third G-tract in G44 and G45. 

Regardless, the locations and lengths of G4CRs can be assigned unambiguously.  

Interestingly, the contributions of each G residue to the entire ensemble of G4s 

formed by the G4CR are quite different. For example, the Gs of the first tract in G4CR1 

are only folded in 2 of the 8 possible structures. In contrast, those of the third G-tract are 

folded in all 8 of the possible structures. We refer to these relative contributions of each 

G as the folding multiplicity; values are listed for each G beneath the sequence in Figure 

3.3. The values of multiplicity and the total number of G4s formed by a G4CR are related. 

Since each G4 is composed of exactly 12 G core residues in our simplified model, the 

total number of G4s is given by the sum of the multiplicities for all G residues in the G4CR, 

divided by twelve. 

 

Figure 3.3: Hypothetical stretch of DNA containing two G4CRs. Filled circles above the 

sequence indicate the core G residues in each possible isomer. The multiplicity of each 

G residue is indicated at the bottom of the figure. 

3.4.4 Characteristics of G4CRs in human promoters.  

We analyzed portions of the human genome within -1999 and 2000 base-pairs of 

the transcription start sites (TSS) of 16528 genes using the first promoter listed in the 

eukaryotic promoter database413, considering both coding and non-coding strands of 

DNA. A cumulative plot of the incidence of G4CRs is shown in Figure 3.4, where the 

curves give the number of genes with fewer than a given number of G4CRs. As found 

previously for individual G4s, most (85%) genes contain at least one G4CR within the 
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examined region133. The median number of G4CRs per gene (i.e. the value at the 50th 

percentile) is 3, while about 1% of genes (154) have over 15 G4CRs. In some cases, 

these promoters contain G4CR-rich stretches that correspond to repetitive minisatellite 

DNA, as discussed below. We identified a total of 2847 G4CRs in these top 1% of genes. 

This is only about 5% of the total number of G4CRs we found in all genes (63,303), 

meaning that the statistics we report for G4CRs below are dominated by non-repetitive, 

non-satellite DNA. 

 

Figure 3.4: Cumulative plot of the number of G4CRs for human genes considering both 

coding and non-coding strands. The number of G4CRs is plotted on a logarithmic scale. 

The bottom panel represents the first 99% of genes whereas the top panel represents the 

top 1% of genes.   

Figure 3.5a-d shows cumulative plots of the distributions of the lengths, G-content, 

total number of G4 isomers (Ntot), and total number of G4s that can form simultaneously 

in tandem (Ntand). Data for G4CRs from the coding and non-coding strands were pooled, 

since we did not observe any substantial differences between the two strands. The 

median length of a G4CR is about 25 nt, and 75% are shorter than about 32 nt (Figure 

3.5a). However, a substantial number of G4CRs are much longer. Roughly 1%, or about 

600 G4CRs are longer than 71 nt, which is a considerable number when one recalls that 

this refers to a continuous stretch of nucleotides where each nucleotide has the potential 

to form part of a G4 structure. Figure 3.5e shows cumulative plots of the estimated melting 

temperatures of the G4s predicted to be formed within the G4CRs. The median Tm
est is 
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60°C, with about 10% predicted to melt above 70°C. Identical Tm
est curves were obtained 

for G4CRs of different lengths (Figure 3.5e). The guanine content of most G4CRs is 

between about 50% and 75%, although a few G4CRs were identified with 100% G-

content, i.e. stretches of poly-guanosine (Figure 3.5b). Interestingly, different Tm
est profiles 

were obtained for G4CRs with different G-content, such that G4s located in G4CRs with 

higher G-content tended to have higher estimated melting points (Figure 3.5f). For 

example, the fraction of G4s with Tm
est > 70°C was about 4-fold higher for G4s derived 

from G4CRs with >84% G than for those with ≤68% G. This implies that putative G4s 

from G4CRs with high G content have shorter loops and bulges compared to those from 

G4CRs with low G-content. The median number of different G4 isomers (Ntot) formed by 

a G4CR is 4, but there are many with far greater degrees of polymorphism (Figure 3.5c). 

25% of G4CRs form greater than 14 different isomers, 1% form more than 179 G4 

isomers, while 20 G4CRs can potentially form over 1000 distinct G4 structures each. 

Similarly to what was seen with G-content, Tm
est values are higher for G4s derived from 

G4CRs with larger Ntot, compared to those with lower Ntot (Figure 3.5g). In other words, 

G4s from G4CRs with greater degrees of polymorphism tend to have shorter loops and 

bulges. The overwhelming majority (>95%) of G4CRs can only form one G4 structure at 

a time (Ntand=1), as shown in Figure 4d. About 1% can form 3 or more tandem G4s and 

0.1% (or about 100 G4CRs) can form 5 or more at one time. We did not observe any 

difference in the predicted stabilities of G4s derived from G4CRs with different Ntand values 

(Figure 3.5h).  
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Figure 3.5: Characteristics of G4CRs. Cumulative plots of the a) Length, b) G-content, c) 

Ntot, d) Ntand of G4CRs found in the human promoters. Cumulative plots of the estimated 

melting temperatures for G4s derived from G4CRs binned by e) Length, f) percentage of 

residues that are G (G-content), g) Total number of G4 isomers (Ntot), h) maximum 

number of simultaneous tandem G4s (Ntand). 

We next explored the correlation between the G4CR characteristics by 

constructing scatter plots for every pair of the four parameters discussed above (Figure 

3.6). Surprisingly, apart from the strong and expected increase in number of tandem G4s 

with increasing G4CR length (Figure 3.6b), correlations among the other parameters were 

weak at best. For example, G4CRs with between about 25 and 60 nt in length can have 

anywhere from 2 to over 500 isomers (Figure 3.6a). Thus, the number of G4 isomers 

formed by a G4CR does not depend strongly on the length of the region. The very highest 

G contents were observed for the shortest G4RCs, implying that stretches of nearly 100% 

guanosine are limited to about 15-25 nt in length (Figure 3.6c). The lowest contents of G 

(≈40%) were observed for G4CRs about 40 nt in length. Conversely, the very longest 

G4CRs of several hundred bases (Figure 3.6c) and those with the largest number of 

tandem G4s (more than 10, Figure 3.6f) had intermediate G contents of 60-80%. These 

intermediate G content G4CRs formed anywhere between 1 and >1000 G4 isomers. Low 

G content (<50%) led to small Ntot values, likely due to a lack of G residues to form 

alternative structures. Very high G content (>90%) was associated with moderate Ntot 

values (<100), likely because these G4CRs tended to be short. The fact that the key 
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characteristics of G4CRs are largely uncorrelated implies that G4CRs can be classified 

into multiple categories: short vs long, low vs high G content, and small vs large numbers 

of isomers (Ntot) (relative to the median values). Note that longer G4CRs are strongly 

associated with larger number of tandem G4s, so Ntand does not represent a separate 

parameter for the purposes of categorization. This rough division give 8 different classes 

of G4CR. It is an interesting question to which extent these different classes have 

divergent biophysical properties, functional relevance, or biological roles. 

 

Figure 3.6: Scatter plots of each of the different features of G4CRs found in this study: 

Length, percentage of residues that are G (G-content), Total number of G4 isomers (Ntot), 

maximum number of simultaneous tandem G4s (Ntand). 

3.4.5 Distribution of G4CRs in gene promoters.  

It is well known that the distribution of putative G4 forming sequences within the 

human genome is distinctly non-random. G4 motifs are enriched adjacent to transcription 

start sites (TSSs) in gene promoters from humans119, 133, 407 and a wide range of other 

eukaryotes414, with asymmetric densities on coding vs non-coding strands, pointing to a 

general regulatory role for G4s163. Plots of G4 propensity calculated using the quadparser, 

G4Hunter, and QPARSE algorithms all produce characteristic sharp peaks about 100 nt 

immediately upstream from the TSS, equally sharp dips in the 100 nt immediately 

following the TSS, and broader peaks over the next roughly 500 nt119, 133, 407. The first 
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peak and dip are evident on both coding and non-coding (template) strands, while the last 

peak is far more prevalent on the coding strand compared to the template strand. We set 

out to evaluate the extent to which the distribution of G4CRs matches these previous 

results and whether the distributions are correlated with the degree of polymorphism or 

other G4CR characteristics. We first calculated the fraction of genes in which a given 

position relative to the TSS lies within a G4CR bearing certain characteristics of length, 

G content, etc. for a region extending from -1999 (upstream) to +2000 (downstream) of 

the TSS of all 29598 promoters listed in the eukaryotic promoter database413. We then 

normalized the distributions to facilitate comparisons between G4CRs with differing 

characteristics. This was done by setting the sum of probabilities over all 4000 positions 

in the calculation window equal to 1, which accounts for the fact that the likelihoods of 

lying within longer and/or more common types of G4CRs (i.e. with characteristics close 

to the mode) are larger overall. Figure 3.7 shows the normalized probability distributions 

for G4CRs for coding (Figure 3.7a-d) and non-coding (Figure 3.7e-h) strands. All of the 

plots closely mirror what was reported using the quadparser, G4Hunter, and QPARSE 

algorithms with sharp peaks upstream on both coding and non-coding strands and broad 

peaks downstream of the TSS, particularly on the coding strand. Interestingly, the 

sharpness of the distributions varies depending on the characteristics of the G4CR. For 

example, Figure 3.7a,e shows the normalized probabilities of lying within G4CRs of 

different lengths for the coding (Figure 3.7a) and non-coding (Figure 3.7e) strands. The 

pre-TSS (left) peaks are substantially sharper for longer G4CRs than for shorter ones, 

with highest peak for G4CRs with length>69 nt followed by those 31<length≤69 nt. As a 

result, the enrichment in G4CRs in the -200 to 0 relative to -1500 to -1300 regions (relative 

to TSS) is 11-fold for G4CRs longer than 69 nt compared with only 5-fold for G4CRs less 

than 25 nt. In other words, longer G4CRs are more tightly clustered immediately upstream 

from the TSS, compared to shorter ones. Figure 3.7b,f show similar data for G content. 

In this case, G4CRs with intermediate %G values (69-73% and 74-84%) exhibit the 

highest pre-TSS peaks in probability. In terms of polymorphism, G4CRs with the highest 

total number of G4 isomers (>168 and 14-168) show the sharpest clustering prior to the 

TSS, compared to G4CRs with fewer than 13 isomers, while G4CRs with 2 and 3 tandem 

G4CRS show a higher peak than those with more than 3 or just a single isomer. The 
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greater clustering of long G4CRs with high numbers of G4 isomers that form 2 or more 

contiguous G4s points to a relationship between these characteristics and G4 biological 

function. 

 

Figure 3.7: Distribution of G4CRs in gene promoters. Likelihood that a residue lies within 

a G4CR possessing certain characteristics, plotted as a function of the residue’s position 

relative to the transcription start site (TSS), for human gene promoters. Colours represent 

the bottom 50% of G4CRs (black), 50-75% of G4CR, 76-99%, and top 1% of G4CRs. 

Specific values are given in the legend of each panel. Panels a-d are for the coding strand 

(Length, G-content, Ntot, and Ntand respectively). Panels e-h are for the non-coding strand 

(Length, G-content, Ntot, and Ntand respectively). 

We then extended this analysis by considering promoter regions from a variety of 

organisms including the vertebrates M. mulatta (monkey), M. musculus (mouse), R. 

norvegicus (rat), C. familiaris (dog), G. gallus (chicken), and D. rerio (fish), the 

invertebrates D. melanogaster (fly), A. mellifera (bee), and C. elegans (worm), the plants 

A. thaliana (thale cress) and Z. mays (corn), the yeasts S. cerevisiae and S. pombe, and 

the parasitic protozoan P. falciparum (see Supplementary figures). Many of these 

organisms have been previously analyzed using the G4hunter algorithm and classified as 

containing a high density (human, monkey, mouse, rat, dog, and chicken), an 
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intermediate density (fly, bee, and fish), a low density (yeasts, worm, and thalecress), or 

very low density (protozoan) of G4-forming sequences. We obtained similar results, with 

an average of 3.6 G4CRs identified per promoter in the high G4 density group, 0.19 

G4CRs per promoter in the intermediate G4 density group, 0.08 G4CRs per promoter in 

the low G4 density group, and 0.005 G4CRs per promoter in the protozoan (Table 3.1 

and Table 3.2). We found that corn (which was not examined by G4hunter) has a relatively 

high abundance of G4CRs (0.96 per promoter). This is intriguingly similar to rice, which 

was included in the high G4 density group along with mammals and chicken, in the 

G4hunter study. We next examined distributions of G4CRs relative to the TSS for the 

species listed above. For all of the high G4-density vertebrate species, we observed 

clustering of G4CRs similar to that in humans (Figure 3.11). On both coding and non-

coding strands, distributions show a large peak just upstream of the TSS, followed by a 

sharp dip at the TSS, and a second peak just downstream. In monkeys, the longest and 

most polymorphic G4CRs clustered more tightly near the TSS than shorter and less 

polymorphic ones, as we saw for humans. For other high G4-density organisms (mouse, 

rat, dog, and chicken) this trend was still present, albeit to a slightly lesser extent. For 

these species, the shortest and least polymorphic 50% of G4CRs were less clustered 

near TSS than longer and more polymorphic ones. But unlike humans and monkeys, the 

most tightly clustered G4CRs were not necessarily the top 1% of G4CRs in terms of length 

or polymorphism. For species with less G4-rich genomes, essentially no clustering of 

G4CRs was observed near the TSS at all, similarly to what we observed with randomly 

shuffled human promoter sequences (Figure 3.16). Thus, in animal genomes with a high 

propensity to form G4s, G4CRs are highly enriched near the TSS, and longer and more 

polymorphic G4CRs are more enriched than shorter and less polymorphic ones. 

Interestingly in corn, the distribution of G4CRs was very different than that seen in 

animals. Clustering was much more pronounced on the non-coding strand compared to 

the coding one, and the distribution had a single peak, with no sharp dip at the TSS 

(Figure 3.13).  
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Coding Strand 

Species # 

Promoters 

# G4CRs #G4 

motifs 

Length %guanosine Ntot 

H. sapiens 29598 61012 921566 25 65 4 

M. mulatta 9575 17619 241709 24 65 4 

M. musculus 25111 35503 857790 24 67 5 

R. norvegicus 12601 15768 256013 24 66 4 

C. familiaris 7545 20590 572821 25 67 6 

G. gallus 6127 15340 375948 25 66 6 

D. melanogaster 16972 2339 25600 22 63 3 

A. mellifera 6493 464 6223 22 68 5 

D. rerio 10728 800 37917 22 67 4 

C. elegans 7120 290 16698 22 74 4 

A. thaliana 10728 800 37917 22 67 4 

Z. mays 17081 6165 188183 22 65 3 

S. cerevisiae 5117 63 490 21 63 2 

S. pombe 4802 24 79 21 64 2 

P. falciparum 5597 13 46 20 76 2 

Table 3.1: Statistics on analysis of the coding strand of eukaryote promoters. 

Length, %guanosine, and Ntot are reported as their median values. 
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Non-coding Strand 

Species # 

Promoters 

# G4CRs #G4 

motifs 

Length %guanosine Ntot 

H. sapiens 29598 50524 833421 24 65 4 

M. mulatta 9575 14818 211580 24 65 4 

M. musculus 25111 30783 862230 24 67 6 

R. norvegicus 12601 13324 238733 23 67 5 

C. familiaris 7545 18475 645158 26 67 6 

G. gallus 6127 11463 322532 25 67 5 

D. melanogaster 16972 2726 26668 22 63 3 

A. mellifera 6493 373 6851 22 70 6 

D. rerio 10728 790 49703 22 68 4 

C. elegans 7120 616 33230 22 74 5 

A. thaliana 10728 790 49703 22 68 4 

Z. mays 17081 10195 360194 23 65 4 

S. cerevisiae 5117 79 584 21 64 2 

S. pombe 4802 56 312 21 63 2 

P. falciparum 5597 14 84 18 67 1 

Table 3.2: Statistics on analysis of the non-coding strand of eukaryote promoters. 

Length, %guanosine, and Ntot are reported as their median values. 
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3.4.6 Analysis of G4CRs with validated biological activity. 

There are several oncogene promoters where ample experimental evidence exists 

to show that G4 formation is correlated with gene expression. It is therefore of interest to 

examine in some detail the G4CRs from these genes and compare their characteristics 

to those of G4CRs, in general. A useful tool in this regard is the calculation of multiplicities, 

i.e. the number of distinct G4 structures that include a particular G residue in the core, as 

these provide a measure of polymorphism at the single nucleotide level. As shown in 

Figure 3.8, about 20% of Gs in G4CRs have a multiplicity of 1, which matches our 

observation that 18% of G4CRs form only a single G4 structure. The median multiplicity 

of G residues in G4CRs is 4, while about 1% of G’s have multiplicities of over 100.  

 

Figure 3.8: Cumulative plot of multiplicity for guanines participating in at least one G4 

structure in a G4CR. Multiplicity is plotted on a logarithmic scale. The bottom panel 

represents the first 99% of multiplicities whereas the top panel represents the top 1% of 

multiplicities.   
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Figure 3.9: Multiplicities of G residues located within promoter regions of biologically 

relevant genes discussed in this paper plotted as a function of position relative to the 

transcription start site (TSS). The coding strand is shown as the top panel and all G4CRs 

are labeled with a lowercase c. The non-coding strand is the bottom panel and all G4CRs 

are labeled with a lowercase n. G4CRs were numbered from left to right, and multiplicity 

is plotted on a logarithmic scale. The G4CR corresponding to the most discussed in the 

literature is shown in red for each gene. 
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MYC 

G4CR Length 

(nt) 

G-Content 

(%) 

Ntot Ntand Distance 

to TSS 

Tm 

(min) 

Tm 

(median) 

Tm 

(max) 

1c 27 74 7 1 -887 50.9 54.5 60.7 

2c 54 69 21 1 1654 50.6 53.0 60.7 

1n 25 64 6 1 -1034 56.3 61.2 64.5 

2n 59 64 85 2 -94 50.7 60.3 84.1 

3n 31 58 4 1 321 50.7 61.4 69.2 

4n 21 62 1 1 1309 50.7 50.7 50.7 

Table 3.3: Statistics on all the G4CRs found in the human MYC promoter. G4CRs found 

on the coding strand are indicated by “c” and G4CRs found on the non-coding strand are 

indicated by “n”. 

We first examined the promoter region of the MYC proto-oncogene, which is 

overexpressed in more than 50% of cancers 350. The region -142 to -115 upstream of the 

TSS on the non-coding strand of DNA has been shown to fold into a parallel G4 

structure121, 386, 389. Disruption of the G4 by mutation was shown to increase the 

expression of a reporter gene under the control of the MYC promoter by about 3-fold. 

Conversely, addition of a G4-stabilizing ligand decreases MYC gene expression, only 

when the promoter contains the G4 element121. Our analysis identified 6 G4CRs in the 

MYC promoter, 2 on the coding strand and 4 on the non-coding strand (Figure 3.9 and 

Table 3.3). The previously studied G4 is contained in G4CR n2, which is the longest of 

the 6 (at 59 nt), contains the largest number of G4 isomers (at 85) and highest multiplicity 

values (at 70), and has the G4s with the highest values of Tm
est (at 84°C). The G4 isomer 

whose structure was solved by NMR spectroscopy and is commonly referred to as the 

“biologically relevant” conformation is predicted to have the highest melting temperature 

of the 85 isomers (tied with 3 others). Interestingly, the G4CR encompasses a longer 

region than is typically studied and allows a maximum of two G4s to form simultaneously. 

A recent report investigated this longer region experimentally, concluding that two G4s 

can, in fact, fold in tandem 402.  
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VEGFA 

G4CR Length 

(nt) 

G-Content 

(%) 

Ntot Ntand Distance 

to TSS 

Tm 

(min) 

Tm 

(median) 

Tm 

(max) 

1c 23 74 20 1 -1786 50.7 57.4 80.7 

2c 26 65 2 1 -1322 54.5 56.6 58.7 

3c 30 70 19 1 -59 52.2 66.8 78.4 

4c 19 79 4 1 634 55.0 59.5 64.1 

5c 28 71 11 1 1575 50.6 53.0 58.7 

1n 31 71 9 1 -1085 52.2 55.0 64.1 

2n 19 74 5 1 -388 55.0 58.4 72.6 

3n 22 64 2 1 1328 50.7 59.3 67.9 

4n 22 64 1 1 1675 53.7 537 53.7 

5n 20 70 3 1 1703 51.6 52..6 55.0 

6n 27 67 6 1 1739 55.0 74.1 80.7 

7n 19 79 6 1 1866 52.6 56.7 60.7 

Table 3.4: Statistics on all the G4CRs found in the human VEGFA promoter. G4CRs 

found on the coding strand are indicated by “c” and G4CRs found on the non-coding 

strand are indicated by “n”. 

We next examined VEGFA, which is overexpressed and promotes tumour survival, 

growth, and metastasis in a range of human cancers415, 416. A region 50-85 nt upstream 

of the TSS forms a parallel G4417, 418. It is essential to VEGF expression419, recruiting the 

transcription factor Sp1, which binds tightly to both duplex and G4 conformations420. 

Conversely, G4-binding ligands suppress VEGF expression421. We identified 12 G4CRs 

in the VEGFA promoter (Figure 3.9 and Table 3.4). The one corresponding to the 

functional region (c3) is the second longest (30, as opposed to 31 nt for n1), has the 

second most G4 isomers (19 as opposed to 20 for c1), and has the third-highest maximum 

Tm
est (78, as opposed to 81 for c1 and n6). Notably, these other regions (c1, n1, and n6) 

are all more than 1 kb distant from the TSS. Of the 19 isomers we identified for the G4CR 

c3, the one we predicted to be the most stable is the one observed experimentally. 
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BCL2 

G4CR Length 

(nt) 

G-Content 

(%) 

Ntot Ntand Distance 

to TSS 

Tm 

(min) 

Tm 

(median) 

Tm 

(max) 

1c 21 67 1 1 -329 55.0 55.0 55.0 

2c 33 70 16 1 -198 50.6 54.6 58.4 

3c 25 72 12 1 1359 55.8 60.6 64.9 

1n 21 76 6 1 -544 50.7 55.3 56.5 

2n 20 70 3 1 -292 51.6 52.6 55.0 

3n 80 69 40 3 -11 50.7 57.5 69.9 

Table 3.5: Statistics on all the G4CRs found in the human BCL2 promoter. G4CRs found 

on the coding strand are indicated by “c” and G4CRs found on the non-coding strand are 

indicated by “n”. 

For BCL2, whose overexpression is linked to a large variety of cancers422, deletion 

of a G4-forming region immediately before the TSS increases promoter activity423, and 

when this region is placed upstream from a reported gene, G4-disruptive mutations 

increase expression while G4-binding ligands reduce it397. We found 6 G4CRs in the 

BCL2 promoter region (Figure 3.9 and Table 3.5). G4CR 3n, which corresponds to the 

previously identified region, is by far the longest (at 80 nt), has the by far largest number 

of G4 isomers (at 40), and has the G4 with the highest Tm
est. However, the dominant 

conformations determined in solution have long (>10 nt) hairpin loops, which are not 

captured by our algorithm397, 422, 424.  
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KIT 

G4CR Length 

(nt) 

G-Content 

(%) 

Ntot Ntand Distance 

to TSS 

Tm 

(min) 

Tm 

(median) 

Tm 

(max) 

1c 33 73 14 1 -90 50.7 52.6 76.5 

2c 22 73 6 1 -51 50.7 56.7 66.8 

3c 31 65 9 1 1220 52.2 55.6 64.5 

Table 3.6: Statistics on all the G4CRs found in the human KIT promoter. G4CRs found 

on the coding strand are indicated by “c” and there are no G4CRs found on the non-

coding strand of the KIT promoter. 

The proto-oncogene KIT, which is associated with a large number of human 

cancers425, has previously been found to contain 3 adjacent G4s, containing 3, 2, and 3 

G-tetrads, respectively390, 426. Reporter gene assays have shown that disruptive mutations 

of the first G4 elevates gene expression, while in the second two, expression is 

suppressed, likely due to reduced recruitment of the transcription factor Sp1390. 

Furthermore, G4 stabilizing ligands reduce KIT expression in carcinoma cell lines427. We 

identified only 3 G4CRs in the KIT promoter region (Figure 3.9 and Table 3.6). G4CR c1 

encompasses the first G4 and part of the second, which with only 2-tetrads is not selected 

by our algorithm. This G4CR has a length (33), Ntot (14), and maximum Tm
est (76 °C) on 

par with the other functionally validated G4CRs examined here. The experimentally 

determined structure of the first G4 matches the most stable isomer identified for G4CR 

c1428. The G4CR c2 corresponds exactly to the third, previously studied G4, and its G4 

isomer predicted to be the most stable by our algorithm matches the structure determined 

experimentally426. The three G4s of the KIT promoter are believed to be stabilized by 

higher order stacking interactions that are not captured by our algorithm139, 390.  
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KRAS 

G4CR Length 

(nt) 

G-Content 

(%) 

Ntot Ntand Distance 

to TSS 

Tm 

(min) 

Tm 

(median) 

Tm 

(max) 

1c 62 69 103 2 343 50.6 56.3 75.0 

1n 52 65 25 2 -165 50.7 56.3 64.9 

2n 26 58 2 1 -120 51.9 55.1 58.4 

3n 31 71 3 1 225 53.0 63.4 66.8 

4n 41 69 48 1 595 50.7 55.8 65.8 

Table 3.7: Statistics on all the G4CRs found in the human KRAS promoter. G4CRs found 

on the coding strand are indicated by “c” and G4CRs found on the non-coding strand are 

indicated by “n”. 

The promoter of KRAS contains two G4-forming regions, termed the near-G4 and 

mid-G4429, 430. (A far-G4 region exists, but does not, in fact, form a stable G4 structure). 

The near-G4 region has been shown to recruit nuclear factors affecting gene 

expression157. In addition, binding of G4-ligands to the KRAS promoter decreases 

expression of a reporter gene, an effect that is primarily mediated by the mid-G4 region, 

rather than the near-G4431. Interestingly, the G4CR n1, which corresponds to the mid-G4 

is longer (52 vs 26 nt), more polymorphic (25 vs 2 isomers), and has a higher maximum 

Tm
est (65 vs 58 °C), compared to G4CR n2, which corresponds to the near-G4 (Figure 3.9 

and Table 3.7). Considering all 62,791 G4CRs we identified in all gene promoter regions, 

the median length of a G4CR is 25, and median Ntot value is 4. Thus, among these 

biologically validated promoter G4s, there appears to be an over-representation of longer 

and more polymorphic G4CRs that contain G4s with shorter loops and fewer bulges. 

Applying this lesson to KRAS, the longest (62 nt), most polymorphic (103 isomers), and 

most stable (max Tm
est 75 °C) G4CR we identified is located about 300 nt downstream 

from the TSS on the coding strand (G4CR c1), and would therefore be transcribed into 

mRNA. There is already some evidence for mRNA G4 regulation of KRAS translation, 

involving several two-tetrad structures432, but to our knowledge the G4CR c1 has not yet 

been investigated. We would conclude that characteristics of this G4CR would identify it 

as being a particularly interesting candidate for future study. 
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3.4.7 The GReg webserver 

We have made our G4-Containing Region (GReg) algorithm available as a 

webserver on our labs webpage (https://www.mcgill.ca/mittermaierlab/greg-webserver). 

This website allows users to enter an unlimited number of DNA sequences up to 32k nt 

in length. It provides both graphical and text output describing multiplicities (similar to 

Figure 3.9), lengths, positions, G-content, Ntot, and Ntand of all G4CRs present in the 

inputted sequences, as well as detailed listings of every putative G4 formed in each G4CR 

and its Tm
est.  

 

3.5 Discussion 

Polymorphism has long been recognized as an intrinsic property of G4s. In fact, 

some of the earliest algorithms (as well as later ones) used to enumerate G4s in genomic 

data explicitly recognized and eliminated multiple structures involving the same region of 

Gs to avoid overcounting119, 133, 407. Similarly, mutations are routinely used to trap single 

conformations and eliminate unwanted dynamics in structural studies408. However, these 

approaches discard a great deal of information on the nature, prevalence, and potential 

roles of G4 polymorphism. To some extent, the discussion thus far has been guided by 

our tendency to refer to the G4 structure as the biologically active unit. In cases with low 

polymorphism, it makes intuitive sense to assign a single conformation as the “biologically 

relevant” one, and account for simple dynamics in terms of “G-register exchange”210 or 

“spare tire” motions211. However, nature provides many examples that do not fit neatly 

into this kind of single-structure, single function paradigm. An extreme example of this is 

minisatellite DNA, also known as variable number tandem repeats (VNTRs). These are 

repeating tandem units of more than two nucleotides that can be repeated several 

hundred times433, 434. The number of repeats differs from individual to individual and 

VNTRs are useful as genetic markers433, 435. When the repeating units are G-rich, VNTRs 

can form G4s. In fact, several characterized G4 structures are derived from short regions 

of VNTR DNA391, 392. In their entirety, VNTRs can produce a rich diversity of structures, in 

part because G-tracts repeated more than about 20 times in tandem can lead to a 

frustrated energy landscape with an enormous number of different folded G4 forms 180. 

Furthermore, G4 folding has been linked to the genetic instability of VNTRs436-438 while 
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the number of repeats in VNTRs located in gene promoter regions is related to the 

expression levels of the corresponding proteins439, echoing the influence of G4 folding on 

gene expression. In examples such as these, it makes little sense to ascribe the biological 

activity to a single folded G4. Instead, the concept of the G4CR, as defined in this study, 

provides an alternative definition of the biologically relevant unit that can be rigorously 

defined even when the structural folding landscape becomes exceedingly complex. In 

fact, our algorithm picked out several G4CRs that have previously been identified as 

VNTRs 440-442. Notably, there is no clear division between short G4CRs that form a unique 

G4 and those that form thousands. The G4CRs we identified present continuums of length 

and polymorphism spanning several orders of magnitude. The concept of the G4CR 

provides a common framework for understanding the role of genomic G4s in all the 

different contexts in which they appear. 

Our systematic survey quantitatively confirms the picture that has been emerging 

from studies of dozens of G4s with multiple isomers; polymorphism is a ubiquitous feature 

of G4 folding. In fact, only a minority of G4CRs (≈20%) contain a solitary G4 structure 

(Figure 4c). Even relatively short G4CRs that form only one G4 structure at a time can 

adopt up to hundreds of different folds sequestering different subsets of G residues in the 

core (Figure 5d). Furthermore, there are hints that higher degrees of polymorphism are 

related to biological function. We found that enrichment immediately upstream of the TSS 

is greatest for G4CRs that are longer and contain greater numbers of G4 isomers (Figure 

6a,c). As well, some of the best studied G4CRs with validated activities in controlling gene 

expression are longer and more polymorphic than the median, as discussed above. This 

result opens up new possibilities for uncovering biological relevant sequences. More 

research is needed to clarify the relationships between G4CR characteristics and activity, 

however it already seems that longer, more polymorphic G4CRs may be good candidates 

for deeper study. As well, our bioinformatic search has uncovered a sizeable number of 

interesting regions that defy the paradigm of a single biologically relevant isomer. These 

have hundreds to thousands of different isomers, leading to a situation where 

polymorphism itself may play more of a role in governing the biophysics and activity of 

these DNA regions than the three-dimensional structure of any single isomer. Such highly 

polymorphic sequences are found in promoters of genes implicated in different forms of 
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cancer and are listed in Table 3.8. Furthermore, some of the sequences we identify are 

unusually G rich (up to 83%) and unusually long (up to 369 nt). The complementary 

strands therefore contain regions that are equally C rich and equally long. Previous work 

has shown that i-motifs, four stranded structures formed by C-rich DNA are generally 

unstable at physiological pH 70, but that longer and more C rich sequences fold more 

readily 443. I-motifs have putative roles in controlling gene expression, similarly to G4s70. 

Thus these exceptionally C-rich regions in gene promoters are highly interesting in their 

own right. 

 

Gene Strand Length 

(nt) 

G-Content 

(%) 

Ntot Ntand Distance 

to TSS 

Diseases 

CAPN12 Non-

coding 

329 71 2363 13 -3 Pancreatic 

cancer444 

USF2 Non-

coding 

90 80 907 4 -1 Small cell 

lung 

cancer,445 

breast 

cancer446 

TTLL12 Coding 328 74 1311 14 3 Ovarian 

cancer447 

ANO7 Coding 306 70 895 11 -48 Prostate 

cancer448, 449 

RAE1 Coding 127 83 3134 7 -290 Lymphoid 

and 

epithelial 

tumors450 

Table 3.8: A subset of G4CRs with high Ntot, Ntand, G-content, and length that are found 

close to the transcription start site for genes which are dysregulated in a number of 

different cancers.  
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It is useful to consider exactly how polymorphism may impact G4 function. We note 

that the isomers predicted by our algorithm are likely not equally populated. In most cases, 

the ensemble of structures will be dominated by the one or several most stable isomers, 

while many of the less stable ones may only be present at levels of a fraction of a percent 

at equilibrium. Nevertheless, the existence of many less stable isomers can still be 

functionally relevant. For example, we previously characterized G-register exchange 

among 4 structural isomers in a portion of the main G4CR from the MYC promoter. We 

found that even though a single isomer accounted for as much as 80% of the folded 

ensemble, the presence of 3 additional weakly populated isomers doubled the apparent 

folding equilibrium constant and increased the effective melting temperature by 3.4 °C 

due to entropic stabilization of the folded state210.  Furthermore, the existence of the minor 

states increases the apparent folding rate by a factor of 2.5351, since the folding of each 

of the four isomers represents a separate and parallel pathway to the folded state. This 

is particularly relevant to situations where G4 function relies more on kinetics (rapid 

folding) than on thermodynamics (high stability)139. While these effects are modest in the 

case of MYC, there are many G4CRs with orders of magnitude more isomers. 

Determining how the effects scale with the number of isomers is an interesting avenue 

for future research, as the impact on highly polymorphic G4CRs could be substantial. The 

existence of multiple weakly populated isomers is also relevant to the resilience of DNA 

to oxidative damage.  Oxo-guanine residues located in a G4 core are not always 

accessible to base excision repair enzymes451. However, it has been shown that a fifth G-

tract, if present, can replace the damaged G-tract, hence the “spare tire” terminology. This 

extrudes the oxo-guanine into a long loop where it becomes a substrate of the repair 

machinery 366. Some of the polymorphism we have calculated using our algorithm falls 

explicitly into the category of spare tire dynamics with one complete G-tract replacing 

another. Other types of isomerization events might represent cryptic spare tire motions 

as well. In fact, the transition between any two isomers identified by our algorithm 

extrudes at least one G residue into a loop or flanking region, by definition. For example, 

the hypothetical oxidised G4 ggGG[oG]tGGGtGGGtGGG could isomerize to place the 

damaged G residue in a loop (gGGG[og]tGGGtGGGtGGG), without directly replacing 

one G-tract with another. While the relationship of G4 structure and accessibility to DNA 
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repair enzymes is not yet fully understood 452, access to larger numbers of alternative 

structural isomers can be considered potentially protective against oxidative damage. As 

well, our analysis has shown that both higher G content and larger numbers of isomers 

are statistically correlated with the presence of more stable G4s (i.e. those with shorter 

loops and bulges, Figure 3.5b,c) We have examined this relationship in slightly more 

detail, comparing the distribution of Tm
est values as simultaneous functions of both %G 

and Ntot. We find that G4CRs with lower G content and fewer isomers than the medians 

(blue in Figure 3.10a,b) have lower Tm
est values than those with lower G content and more 

isomers (yellow). Similarly, G4CRs with higher G content and fewer isomers (orange) 

have lower Tm
est values than those with higher G content and more isomers (purple). Thus 

higher levels of polymorphism are directly correlated with G4s having shorter loops and 

bulges. We speculate that G-rich, highly polymorphic sequences are more evolutionarily 

accessible than unique, highly stable sequences such as (G3T)3G3, implying that the 

evolutionary path towards stable G4s creates a large number of additional G4 isomers. 

Overall, both the functional (entropic stabilization, parallel folding pathways) and collateral 

(more stable individual G4 isomers) explanations are mutually consistent and both may 

be at play in explaining the ubiquity of G4 polymorphism. 
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Figure 3.10: G-content and total number of isomers. a) Scatter plot of Ntot and G-content. 

Ntot is plotted on a logarithmic scale, whereas G-content is plotted on a linear scale. The 

graph is sectioned into four sections; G4CRs which contain less than the median value 

of Ntot and G-content (blue), G4CRs which contain more than the median value of Ntot but 

less than the median value of G-content (yellow), G4CRs which contain more than the 

median value of Ntot and of G-content (purple),  G4CRs which contain less than the 

median value of Ntot but more than the median value of G-content (orange),  b) 

Dependence of estimated melting temperatures for G4s contained in each of the different 

sections of a. Colours represented in b are the same as those in a. 

It must be noted that our algorithm is quite conservative in the identification of G4 

isomers. For example, it does not consider stabilizing interactions outside the G4 core, 

such as stacking of bases398, or hairpin formation in loops and bulges396, 397, or higher 

order G4/G4 interactions399. This inevitably led us to discard to G4 structures as unstable 

that might form readily in reality. We ignored G4s with only two tetrads395, although these 

can be stabilized considerably by non-canonical interactions, and we discarded structures 

with loops longer than 7 nt, although much longer loops are sometimes observed in stable 

G4s135, 411. We also disallowed bulges containing G residues, since the isomer with the G 

in the core would be expected to be far more stable, even though bulged Gs are possible 

in principle and could be relevant in cryptic spare tire dynamics, as discussed above. The 

flip side is that all the isomers we predict are likely to be stable. Their presence may be 

obscured by more energetically favourable isomers that make up the bulk of the 
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ensemble. However if all non-core G residues were replaced with mimics such as 

inosine210, 351, it is highly probable that the 12 G residues predicted to be in the core would 

fold into a G4 with three tetrads. Thus, the very large numbers of isomers we calculate 

for many of the G4CRs likely underestimate rather than exaggerate the true number. 

Additionally, given the prevalence of G4s in telomeres453 and the promoter regions 

of oncogenes, and their ability to affect expression levels, targeting specific G4s with small 

molecule drugs has been an attractive new avenue towards developing cancer 

therapeutics163. However, the fact that most G4CRs can adopt multiple structures raises 

some fundamental questions about how this is best achieved. Selectivity is already an 

issue in targeting particular G4s, since unlike proteins, G4s possess similar cores and 

differ primarily in the identity of the loop residues. Even if a drug achieves specificity for a 

particular G4 with a unique three-dimensional structure, what is the likelihood that the 

target adopts alternative isomers and escapes binding? Conversely, to what extent might 

one of the many isomers of an off-target G4 bind the drug? Interfaces between tandem 

G4s have been proposed as more specific drug targets401, 402. However even here, 

polymorphism introduces complications. There are far fewer ways to fold a G4CR with 

the maximum number of tandem G4s than there are with a smaller number of G4s180. 

Therefore, most of the possible isomers formed by a G4CR lack the targeted interface, 

although this is potentially compensated by stabilizing higher-order interactions, which 

would increase the relative populations of the tandem structures. Thus, analyzing drug 

targets in terms of polymorphic G4CRs rather than as unique G4 structures seems a surer 

way to account for the complexity of this challenge. 

Ultimately, the bioinformatic tools we have developed here and made publicly 

available on the GReg webserver will facilitate a better understanding of how G4 

polymorphism intersects with biological function and evolution. They simplify the 

identification of longer and more polymorphic G4CRs, which we have found are positively 

associated with biological activity. They make it easy to identify the boundaries of G4 

containing regions, thereby ensuring the full sequence can be analyzed. For example, 

our algorithm identified a longer region in the MYC promoter than had been typically 

studied; this longer region was just recently found to have structural relevance402. By 

mapping out the polymorphic landscape of G4CRs, our tools will make it easier to predict 
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and interpret the effects of genetic variation on G4 formation, both between species and 

between individuals. This same information may also help us to better direct G4 ligands 

specifically to one stretch of G4-containing DNA over another. Finally, this bioinformatic 

analysis has underlined some fundamental unanswered questions regarding G4 

containing regions. Why do some putative G4s occur in isolation and form a single unique 

structure, while others occur in the context of contiguous G4-forming regions hundreds of 

nucleotides long with potentially many thousands of alternate folded states? How do the 

biophysical properties of these various types of G4-containing regions differ and how 

does this impact biological function? We hope that the bioinformatic tools reported here 

will serve as a steppingstone towards answering these questions and developing a 

deeper biophysical understanding of G4s and their activity. 

 

3.6 Materials and methods 

3.6.1 The GReg algorithm 

3.6.1.1 Generating possible G4 sequences (get_GQs) 

Initially, a series of matrices (G4matrix) were generated that encoded, in their rows, 

every possible G4 configuration, where core G positions were indicated by values of 1, 

loop positions were assigned 0, and bulged positions were assigned a value greater than 

12 (13 was used here). The number of columns of a particular G matrix was given by the 

total number of loop and bulged residues plus 12 (core positions). We used a maximum 

loop length of 7 and bulge length of 3. Only one bulge was considered, since two or more 

bulges reduced the Tm
est below the selected threshold of 50°C. Thus 21 different G 

matrices were generated, containing between 15 columns (for three loops of 1 and no 

bulge) to 36 columns (for three loops of 7 and a bulge of 3). The rows were generated 

combinatorically, combining every possible length of the three loops with every possible 

bulge position and length. This gave a total of 8,575 different sequences: 7383 + 73 for 

(three loops of 1-7 residues)(two possible bulge locations per G-tract)(bulge lengths of 

one to three) + (the possible G4 sequences with no bulge). Next, the Tm
est corresponding 

to each row of each G4matrix was calculated using Equation 3, and only rows with Tm
est ≥ 

50 °C were kept for further analysis resulting in 699 different G4 motifs. Thus each row of 

each G4matrix corresponded to a pattern of core, loop, and bulged residues that would 
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produce a G4 structure with an estimated melting temperature greater than 50°C. For 

example, a hypothetical G4matrix with 18 columns is shown below. The first row 

corresponds to a G4 with no bulges and loop lengths of [1,3,2]. The second row 

corresponds to a G4 with  loop lengths of [1,1,2] and a bulge of two residues between the 

second and third G in the second G-tract. The third row corresponds to a G4 with no 

bulges and  loop lengths of [1,4,1]. 

 

𝐺4𝑚𝑎𝑡𝑟𝑖𝑥 = (

1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1
1 1 1 0 1 1 (13) (13) 1 0 1 1 1 0 0 1 1 1

1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1
⋮

) 

 

3.6.1.2 Converting original DNA sequence (convert_Seq) 

Next, the DNA sequence of interest was converted into a column vector wherein 

all G residues were indicated by 1s and all other residues were indicated by 0s. Note that 

this encoding is different from the one used in the G4matrix, above. The sequence was then 

split into possible G4CRs (pG4CRs), by removing all stretches of 0s longer than the 

maximum loop length (7), and retaining the intervening regions. Any pG4CR with a sum 

less than 12 were discarded, as these contain fewer than 12 G residues.  For example, 

the following DNA sequence: 

𝑇 𝐶 𝑇 𝐴 𝐶 𝐴 𝐴 𝐴 𝑮 𝑮 𝑮 𝑇 𝑮 𝑮 𝑮 𝐴 𝑮 𝑇 𝑮 𝑮 𝑮 𝑮 𝑇 𝑮 𝑮 𝑮 𝑇 𝐴 𝑇 𝐶 𝑇 𝐶 𝐴 𝑇 𝑮 𝑮 𝐴 𝑮 𝐶 𝑇 𝐶 𝑇 𝑇 𝐴 𝐶 𝐴 

would be split into 2 pG4CRs:  

𝑝𝐺4𝐶𝑅1 = [1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1]𝑇 

𝑝𝐺4𝐶𝑅2 = [1 1 0 1]𝑇 

where the second pG4CR would be immediately discarded. 

       

3.6.1.3 Analyzing possible G4CRs (analyze_Seq) 

The number of possible G4 structures in each pG4CR was evaluated by matrix 

multiplication with each G4matrix in turn. A sliding window with the same number of 

elements as the number of columns in the G4matrix was extracted from the pG4CR and 

multiplied by the G4matrix, producing a column vector (GRegvector) with the same number 

of rows as the G4matrix. The value of each element of the GRegvector indicates whether or 
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not the window contains G residues at all core positions indicated by the corresponding 

row in the G4matrix. A value of 12 indicates that Gs are present at all core positions. A value 

less than 12 indicates that some core positions do not contain G residues in the window. 

A value greater than 12 indicates that a G is present in a bulged position, as illustrated 

below.  

𝐺4𝑚𝑎𝑡𝑟𝑖𝑥 ⋅ 𝑝𝐺4𝐶𝑅 = 𝐺𝑅𝑒𝑔𝑣𝑒𝑐𝑡𝑜𝑟 

(

1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1
1 1 1 0 1 1 (13) (13) 1 0 1 1 1 0 0 1 1 1

1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1
⋮

) ⋅ [1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1]𝑇 = (

12
25
11
⋮

) 

In the hypothetical example above (in which the length of the pG4CR happens to 

be equal to the width of the G4matrix), only the [1,3,2] loop isomer (top row) is counted as 

a G4 structure in the pG4CR. The pG4CR contains G residues at bulge positions for the 

[1,1,2] loop isomer (second row) resulting in a value of 25. One core position in the [3,2,1] 

loop variant (third row) did not correspond to a G in the pG4CR, leading to a GRegvector 

element of 11. The analysis was repeated with the sliding window incremented across the 

entire pG4CR and for each G4matrix. The total number of G4 isomers formed by a pG4CR 

was calculated as the total number of GRegvector elements that are equal to 12, summing 

over all positions of the sliding window and all G4matrixs. pG4CRs that did not produce a 

single GRegvector element equal to 12 were discarded. pG4CRs which produce multiple 

GRegvector elements equal to 12, but which had sections of non-overlapping G4 motifs 

were split into separate G4CRs. The multiplicity of each guanine in the pG4CR was 

calculated by aligning each selected row of each G4matrix with the original sequence and 

summing over the columns. 

 

3.6.2 Analysis of human promoters 

The locations of all human promoters were downloaded from the Eukaryotic 

Promoter Database.413 The promoter sequences were extracted from the GRCh38 build 

of the human genome with a window of -1999 to 2000bp surrounding the transcription 

start site. For the analysis of G4CRs in the human genome, 16528 unique promoters were 

analyzed using the first promoter labelled on the eukaryotic promoter database. Both 

coding and non-coding strands were analyzed together. Redundant promoters were not 
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analyzed to avoid over counting G4CRs which appeared multiple times. When analyzing 

the positional dependence of G4CRs all 29598 promoters were analyzed, and coding and 

non-coding strands were analyzed separately. 

 

3.6.3 Scripting 

The GReg algorithm and genome-wide searches were performed using in house 

MATLAB scripts, using MATLAB 2021a. Commented examples of each script for the 

GReg algorithm, an intuitive GUI for the GReg algorithm, and the python code used on 

the GReg webserver can be found at https://github.com/Christopher-Hennecker/GReg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/Christopher-Hennecker/GReg
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3.7 Supplementary Figures 

Animals 
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Figure 3.11: Distribution of G4CRs in animal promoters. Likelihood that a residue lies 

within a G4CR possessing certain characteristics is plotted as a function of the residue’s 

position relative to the transcription start site (TSS). Colours and letters match those used 

in Figure 3.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 137 

Invertebrates 
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Figure 3.12: Distribution of G4CRs in invertebrate promoters. Likelihood that a residue 

lies within a G4CR possessing certain characteristics is plotted as a function of the 

residue’s position relative to the transcription start site (TSS). Colours and letters match 

those used in Figure 3.7. 
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Plants  

 

Figure 3.13: Distribution of G4CRs in plant promoters. Colours and letters match those 

used in Figure 3.7. Likelihood that a residue lies within a G4CR possessing certain 

characteristics is plotted as a function of the residue’s position relative to the transcription 

start site (TSS). 
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Fungi 

 

Figure 3.14: Distribution of G4CRs in fungil promoters. Likelihood that a residue lies within 

a G4CR possessing certain characteristics is plotted as a function of the residue’s position 

relative to the transcription start site (TSS). Colours and letters match those used in Figure 

3.7. 
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Protozoa 

 

Figure 3.15: Distribution of G4CRs in protozoa promoters. Likelihood that a residue lies 

within a G4CR possessing certain characteristics is plotted as a function of the residue’s 

position relative to the transcription start site (TSS). Colours and letters match those used 

in Figure 3.7. 
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Shuffled 

 

Figure 3.16: Distribution of G4CRs in shuffled DNA sequences. Likelihood that a residue 

lies within a G4CR possessing certain characteristics is plotted as a function of the 

residue’s position relative to the transcription start site (TSS). Colours and letters match 

those used in Figure 3.7. 
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 Chapter 4: Using transient equilibria (TREQ) to measure the 

thermodynamics of slowly assembling supramolecular 

systems. 

4.1 Preface 

The work in this chapter presents the first method to measure the thermodynamics 

of slowly assembling supramolecular systems reliably and robustly. It starts by using 

simulations to show how common methods fail to capture the thermodynamics of these 

systems, and how ignoring the effect of thermal hysteresis leads to completely incorrect 

characterization. It then introduces TREQ and discusses the theory behind how the 

method works and provides a guide for collecting and analyzing TREQ data. Finally, we 

use TREQ to study the copolymerization of polyadenosine DNA strands and the small 

molecule cyanuric acid (CA). We are able to understand the small-molecule loading 

efficiency of these fibres by measuring their stability as a function of CA concentration. 

We made the surprising discovery that about 33% of the CA binding sites in these fibres 

were unoccupied, and then developed a multivalent binding model to explain this 

behavior. In this chapter, Christophe Lachance-Brais performed nearly all of the 

experimental work, with the exception of the data found in Figure 4.6,  Figure 4.13, and 

Supplementary Figure 4.1, which were data I collected. All of the code required to produce 

the simulations present in this chapter was developed by me, and I worked with Prof. 

Anthony Mittermaier to develop the mathematical models required to explain our results. 

 

This chapter was adapted with permission from: Hennecker, C. D., Lachance-

Brais, C., Sleiman, H., & Mittermaier, A. (2022). Using transient equilibria (TREQ) to 

measure the thermodynamics of slowly assembling supramolecular systems. Science 

Advances, 8(14), eabm8455. 
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4.2 Abstract 

Supramolecular chemistry involves the non-covalent assembly of monomers into 

materials with unique properties and wide-ranging applications. Thermal analysis is a key 

analytical tool in this field, as it provides quantitative thermodynamic information on both 

the structural stability and nature of the underlying molecular interactions. However there 

exist many supramolecular systems whose kinetics are so slow that the thermodynamic 

methods currently applied are unreliable or fail completely. We have developed a simple 

and rapid spectroscopic method for extracting accurate thermodynamic parameters from 

these systems. It is based on repeatedly raising and lowering the temperature during 

assembly and identifying the points of transient equilibrium as they are passed on the up- 

and down-scans. In a proof-of-principle application to the co-assembly of 

polydeoxyadenosine containing 15 adenosines (polyA) and cyanuric acid (CA), we found 

that roughly 30% of the CA binding sites on the polyA chains were unoccupied, with 

implications for high-valence systems. 

 

4.3 Introduction 

Supramolecular chemistry is emerging as a rich source of diverse materials with 

novel and valuable properties. Potential applications range from drug-delivery and tissue 

regeneration to optical sensors and organic electronics454. This approach involves the 

non-covalent self-assembly of tens to thousands of monomeric units into larger structures 

with emergent physical properties that derive from both the structures of the individual 

components and their interactions and arrangement with respect  to one another455. 

Reversible assembly has some distinct advantages compared to traditional covalent 

synthesis. The dynamic nature of supramolecular interactions allows bonds to break and 

reform leading to materials with self-healing properties. Furthermore, many 

supramolecular systems have the ability to generate multiple morphologies and sets of 

physical properties from a single set of building blocks with only small modifications of the 

assembly conditions456. Nevertheless, there are unique challenges associated with this 

approach. Chief among these is characterizing the products of a non-covalent assembly 

reaction. Much of the excitement surrounding supramolecular chemistry comes from the 

fact that there remains much to be understood regarding the relationships between the 
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chemical structures of the monomeric units, the supramolecular architectures, and the 

emerging physical properties, and there is wide possibility for new and unexpected 

discoveries. However, this implies that the nature of supramolecular products is difficult 

to predict, and that rigorous structural and thermodynamic analyses are critical to 

advancing the field. 

A variety of tools have been used to elucidate the structures produced by 

assembly, including atomic force, electron, and super-resolution microscopies, and solid-

state NMR spectroscopy457-459. The stabilities of the assemblies are most commonly 

measured by thermal analysis. Most supramolecular structures dissociate when they are 

heated and reassemble when the monomer mixtures are cooled. This process can be 

quantified either by calorimetry460 or by spectroscopically-detected melting and 

annealing461, 462. Detailed analyses of melting curves yield the enthalpies, ΔH, entropies 

ΔS, and free energies, ΔG, of assembly and shed light on the forces holding the 

supramolecular structures together218. This information is essential for determining 

structure/function relationships and the rational design and improvement of self-

assembling systems463, 464. However, there exists a large class of supramolecular 

systems with extremely slow kinetics that only assemble or disassemble at useful rates 

when they are pushed far from equilibrium, i.e. under very highly stabilizing or 

destabilizing conditions. Common examples include amyloid fibrils, viral capsids, and a 

variety of self-assembling non-biological small molecules246, 351, 463-477. Interest in these 

kinds of slowly assembling supramolecular systems has grown in recent years, since they 

allow the size distributions of the resulting fibres to be tightly controlled474, 476-478. Current 

thermodynamic analyses rely on systems reaching equilibrium before the measurement 

is taken. In principle, this precludes thermodynamic analyses of slowly assembling 

systems, since equilibrium is not reached on practical timescales. Nevertheless, it is 

common practice in the supramolecular field to interpret non-equilibrium thermal data 

using equations derived for equilibrium systems, despite warnings in the literature that 

this is invalid218. Our mathematical simulations (see below) indicate this can lead to errors 

in reported thermodynamic parameters of >100% and equilibrium constants that differ 

from their true values by orders of magnitude. Thus a lack of reliable thermodynamic 
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information for slowly-assembling systems is an impediment to the advancement of the 

supramolecular chemistry field.  

We have developed a new experimental approach that can be performed using a 

standard temperature-controlled spectrophotometer and exploits transient equilibria 

(TREQ) to provide rigorous thermodynamic data on slowly assembling systems. Rather 

than waiting for the system to equilibrate (which can take days or weeks), the temperature 

is repeatedly raised and lowered, driving cyclic, non-equilibrium disassembly and 

assembly. We find that the system briefly passes through an instant of equilibrium on 

each up-scan and down-scan at which the rates of assembly and disassembly are equal. 

The temperatures and concentration values at which these moments of equilibrium occur 

can be clearly identified from the spectroscopic trace, allowing the full thermodynamic 

melting curve to be mapped in just a few hours.  

As an example, we applied TREQ experiments to better understand the recently 

discovered co-assembly of polydeoxyadenosine (polyA) and the small molecule cyanuric 

acid (CA) into fibres whose biocompatibility and low cost make them promising 

candidates for tissue engineering and drug delivery239. A cross-section of the proposed 

structure (Figure 4.1) shows the adenosine of three different DNA strands hydrogen 

bonding to CA molecules in a continuous supramolecular helicene241, 243. We note that 

the ideal helicene structure has a 1:1 ratio of dA residues and CA molecules. We recently 

characterized the kinetics of polyA-CA fibre assembly using non-equilibrium melting 

methods246. Equilibration of the fibres near the melting point could take up to a month of 

constant instrument use. Using TREQ experiments, we determined the ΔG, ΔH, and ΔS 

values for adding a polyA chain to the end of a growing fibre in a single 10-hour 

experiment. By repeating these measurements at different concentrations of CA, we 

determined the minimum polyA:CA ratio necessary for assembly and made the surprising 

discovery that about 30% of the available CA binding sites are unfilled under our 

conditions. These results have implications for the future development of asymmetric 

systems involving components of very different valences, such as polyA and CA, and 

demonstrate the potential of the TREQ approach for learning about slowly assembling 

systems. 
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Figure 4.1: Putative supramolecular structure of polyA-CA fibres. Supramolecular fibres 

formed from the co-assembly of poly-adenosine strands and cyanuric acid (left). A cross 

section of a single hexameric helicene (right). 
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4.4 Results 

4.4.1 Theory 

Fibre assembly can be described by kinetic schemes such as the Goldstein-Stryer 

(GS) cooperative kinetic model:239, 246, 248 

 

Scheme 4.1: The Goldstein-Stryer cooperative kinetic model. 

where MN is a fibre containing N monomers. Association and dissociation of 

monomers from short oligomers less than the critical nucleus size, s, are described by 

the nucleation rate constants kn+ and kn- respectively, while oligomers larger than s are 

described with the elongation rate constants ke+ and ke–.  An assembly parameter of great 

importance is the critical monomer concentration, [M]c, at which the net rate of assembly 

or disassembly is zero, thus at this monomer concentration the system is at equilibrium. 

For rapidly-equilibrating systems, [M]c versus T curves can be measured directly by 

traditional melting or reannealing experiments and analyzed to obtain the enthalpies, 

entropies, and equilibrium dissociation constants for a monomer adding to the end of a 

fibre (ΔHe, ΔSe, and Ke, respectively) as well as the corresponding parameters for fibre 

nucleation249. For cooperative assembly, where nucleation is far less favourable than 

elongation, [M]c≈Ke and a simplified analysis is commonly used; the maximum 

temperature at which fibres barely begin to form is identified as the elongation 

temperature, Te, this temperature can be found by either fitting the elongation process or 

can be approximated from the assembly curve,479, 480 while [M]c is equated to the total 

monomer concentration, cT. The experiment is repeated several times at different cT 

values (Figure 4.2a), where increasing cT leads to an increase in Te. A van ‘t Hoff plot of 

ln(cT) vs 1/Te is then used to extract values of ΔHe and ΔSe. 
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Figure 4.2: Traditional kinetic and thermodynamic analyses of supramolecular 

assembly. a) Simulated assembly curves for different total concentrations of monomer 

(cT), increasing concentrations are shown as a gradient from grey to black, Te values are 

shown as points using a purple gradient. b) Fibre assembly/disassembly simulated using 

the Goldstein-Stryer model (Scheme 4.1) and kinetic parameters that give similar melting 

and annealing curves (solid lines) with drastically different equilibrium curves (dashed 

lines). Heating curves are shown in red/orange and cooling curves are shown in 

blue/cyan. The offset between heating and cooling data is due to thermal hysteresis (TH). 

Simulation parameters are listed in Supplementary Table 4.1. 

The situation is far more complicated for slowly assembling systems, such as 

polyA-CA fibres studied here. In these cases, the rate at which the system relaxes to 

equilibrium is far slower than available temperature scan rates, thus both folding (cooling) 

and unfolding (heating) occur out of equilibrium. The populations effectively lag behind 

the changing temperature such that the cooling and heating scans are offset, in a 

phenomenon known as thermal hysteresis (TH). Data for the up-scan lie to the right of 

the equilibrium [M]c vs T curve, and data for the down-scan lie to the left, as illustrated in 

Figure 4.2b. The resulting TH loops are rich in kinetic information, but are unsuitable for 

thermodynamic analyses, since the shape and location of the equilibrium curve is ill-

defined, apart from the fact that it must lie somewhere between the heating and cooling 

scans218, 246. To illustrate, fibres obeying the GS assembly model can have very different 
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thermodynamic parameters and equilibrium curves and yet produce nearly 

superimposable thermal hysteresis data (Figure 4.2b).    

Nevertheless, data for systems exhibiting pronounced thermal hysteresis have 

frequently been analyzed as if they were obtained at equilibrium. Heating curves are 

typically used together with the concentration-dependent Te approach described 

above464, 473-475, although sometimes cooling scans have been employed instead463, 470-

472. Interestingly, in their seminal 2003 review, Mergny and Lacroix point out that “analysis 

of the concentration dependency of the denaturation profile only is seriously flawed” and 

urge “great caution about conclusions reached solely by analysis of the heating curves, 

a recurrent theme in the literature”, when thermal hysteresis is present218. To gain a 

clearer picture of the magnitude of the problem, we simulated TH data using GS 

parameters matching our polyA-CA system at different values of cT and analyzed the 

resulting concentration dependent Te values. Using heating scans, the extracted value of 

ΔHe was 2.6-fold too large, using cooling scans it was 2-fold too small, and Ke values 

were incorrect by two to seven orders of magnitude (Figure 4.3 and Table 4.1). In some 

studies476, 477, different temperature scan rates produce superimposable heating data and 

it has been argued this validates their use in the concentration dependent Te analysis. To 

test this hypothesis, we slightly modified our GS kinetic parameters to reproduce this 

effect and repeated the calculations. The resulting ΔHe value was still about 1.8-fold too 

large (Figure 4.3 and Table 4.2). Thus, commonly used thermal melting and reannealing 

experiments do not provide reliable thermodynamic data for slowly assembling systems. 

Notably our TREQ method reproduces the thermodynamic parameters in these 

simulations with a high degree of accuracy (Figure 4.3, Figure 4.4 and Table 4.1, Table 

4.2). 
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Figure 4.3: Thermodynamic analysis of simulated data. a) Simulated TH traces at 0.5, 1, 

and 2°C/min scan rates, showing hysteresis in both the heating and cooling traces. 

Cooling traces are shown as a cyan-blue gradient, heating traces are shown as an 

orange-red gradient, the true equilibrium trace is shown as the black dashed line. b) Te 

analysis of the heating (red), cooling (blue) and equilibrium (black) curves at 25, 50, 75, 

100, 125 uM total monomer concentration. The heating and cooling curves ran at 

0.5°C/min. c) Simulated TREQ Analysis performed at 0.5°C/min, cooling traces are 

shown in blue and heating traces are shown in red. Extrema from each trace are shown 

as dots, and the true equilibrium is shown as a dashed black line. 

Activation  

Energies 

Rate  

constants 

Thermodynamic 

Constants 

Te 

Analysis 

Cooling 

Te 

Analysis  

Heating 

TREQ 

Analysis 

En+ -14 kn+ 2.6 x 106 ΔGe -16 -12 -28 -16 

En- 11 kn- 5.9 x 103 ΔHe 67 31 175 66 

Ee+ -9 ke+ 1.7 x 106 ΔSe 193 80 532 191 

Ee- 58 ke- 2.0 x 10-1 Ke 1.2e-7 6.2e-6 3.5e-13 1.1e-7 

Table 4.1: Kinetic and thermodynamic parameters used to simulate the data in Figure 

4.3. TREQ values were found by fitting the elongation region of the transition to the model 

developed by Meijer and coworkers.479, 480 En+, En-, Ee+, Ee-, ΔGe and ΔHe values are 

reported in kcal mol-1, kn+ and ke+ are reported in M-1 min-1, kn-, and ke- are reported in min-

1, ΔSe is reported in cal mol-1 K-1, Ke values are reported in M. Rate constants, equilibrium 

constants, and ΔGe are reported at a reference temperature of 25˚C. 
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Figure 4.4: Thermodynamic analysis of simulated data with no hysteresis observed during 

heating. a) Simulated TH traces at 0.5, 1, and 2°C/min scan rates, showing hysteresis in 

only the cooling traces. Cooling traces are shown as a cyan-blue gradient, heating traces 

are shown as an orange-red gradient, the true equilibrium trace is shown as the black 

dashed line. b) Te analysis of the heating (red), and equilibrium (black) curves at 25, 50, 

75, 100, 125 uM total monomer concentration. The heating and cooling curves performed 

at 0.5°C/min. c) Simulated TREQ Analysis ran at 0.5°C/min, cooling traces are shown in 

blue and heating traces are shown in red. Extrema from each trace are shown as dots, 

and the true equilibrium is shown as a dashed black line. 

Activation  

Energies 

Rate  

constants 

Thermodynamic 

Constants 

Te Analysis  

Heating 

TREQ 

Analysis 

En+ 5 kn+ 1.5 x 105 ΔGe -19 -29 -19 

En- 53 kn- 1.5 x 102 ΔHe 125 222 125 

Ee+ -2 ke+ 9.8 x 105 ΔSe 380 688 380 

Ee- 123 ke- 3.5 x 10-3 Ke 3.6e-9 2.1e-13 3.6e-9 

Table 4.2: Kinetic and thermodynamic parameters used to simulate the data in Figure 

4.4. TREQ values were found by fitting the elongation region of the transition to the model 

developed by Meijer and coworkers.479, 480 En+, En-, Ee+, Ee-, ΔGe and ΔHe values are 

reported in kcal mol-1, kn+ and ke+ are reported in M-1 min-1, kn-, and ke- are reported in min-

1, ΔSe is reported in cal mol-1 K-1, Ke values are reported in M. Rate constants, equilibrium 

constants, and ΔGe are reported at a reference temperature of 25˚C. 
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Recent work from the Yamaguchi lab469 has explored how the spectra of slowly 

equilibrating, self-assembling systems respond to repeated heating and cooling cycles481. 

Depending on the starting and ending temperatures and ramp rates, a rich diversity of 

shapes (thermal hysteresis loops) have been observed, providing qualitative information 

on the underlying assembly reactions. However, to date there has not been a 

straightforward way to extract quantitative thermodynamic information from these data.  

 

Figure 4.5: Analysis of a simulated TREQ experiment. a) Kinetic simulations of a typical 

hysteresis experiment (bold lines) and TREQ experiment (narrow lines). Cooling traces 

are shown in blue, heating traces are shown in red. The experiment begins by cooling 

from 45°C to 36°C, this is followed by the first up-scan (36°C to 44°C), a second down-

scan (44°C to 35°C), a second up-scan (35°C to 43°C), a third down-scan (43°C to 34°C), 

etc.  The equilibrium profile is shown as the dashed black line, with the extrema of each 

TREQ cycle shown as points. b) An isolated TREQ cycle: assembly occurs only in the 

blue shaded region; disassembly only occurs in the red shaded region. The interface of 

these two regions represents a system at equilibrium. Coloured points represent the 

position of calculated monomer flux in panel c. c) Calculated monomer flux of fibres for 

points shown in panel b, the horizontal extrema of the TREQ cycle have 100-fold less flux 

then either the high or low temperature values. 

Our new TREQ approach uniquely fills this gap. In order to illustrate the 

fundamental principles, we performed kinetic simulations using the GS assembly model 

(Scheme 4.1) and parameters for polyA-CA fibres (Figure 4.5a, see Materials and 

methods). The dashed black line indicates the equilibrium [M]c versus T curve, while the 

simulated heating and cooling scans give the left- and right-shifted blue and red curves, 
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respectively. Thus the location of the true [M]c equilibrium curve is obscured by the 

thermal hysteresis.   

The TREQ method is based on our discovery that repeatedly raising and lowering 

the temperature such that it repeatedly traverses the equilibrium curve reveals the precise 

locations of the hidden equilibria. Simulating TREQ data for polyA-CA assembly gives a 

series of concave-up and concave-down arcs on the heating and cooling scans, 

respectively (narrow red and blue curves Figure 4.5a). Strikingly, the [M]c values (black 

line) pass directly through the extrema (concentration maxima and minima) of the cooling 

and heating arcs. Thus experimentally determined extrema can be interpreted as a set of 

[M]c(T) values. The physical process underlying this behaviour can be understood as 

follows: for cooperatively assembled fibres, such as polyA-CA, equilibrium is reached 

when the rate of monomer addition to the end of a fibre (ke+[M]c) is exactly equal to the 

rate of monomer dissociation from the end of a fibre (ke–), such that the net rate of fibre 

growth is zero (thus [M]c≈Ke)249. When [M1] < [M]c there is net dissociation and [M1] 

increases with time, corresponding to the red region below the [M]c curve in Figure 3b. 

When [M1] > [M]c there is net association and [M1] decreases with time, corresponding to 

the blue region above the [M]c curve. Every cooling scan starts in the red region with net 

dissociation (increasing [M1]) and ends in the blue region with net association (decreasing 

[M1]). As the temperature crosses the boundary where [M1]=[M]c, net fibre growth is zero, 

the arc is exactly horizontal, and the maximum is reached. Conversely, every heating 

scan starts in the blue region with decreasing [M1] and ends in the red region with 

increasing [M1]. As the temperature crosses the [M1]=[M]c boundary, the free monomer 

concentration is at a minimum. To validate this interpretation, we calculated the net rate 

of monomer addition to each length of fibre in the simulation. At the lower and upper 

limiting scan temperatures (orange and cyan), the rates of monomer addition and release 

are at least 100-fold greater than at the horizontal extrema of the heating and cooling arcs 

(green and purple) (Figure 4.5c). 

It must be noted that under certain conditions, polyA-CA co-assembly can deviate 

from the GS mechanism depicted in Scheme 4.1. For example, when polyA chains are 

mixed with CA at room temperature, fibres grow by a mixture of monomer addition (as 

described by the GS model) and coagulation (fibres joining end-to-end)245. The 
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coagulation process introduces structural defects that can be backfilled with additional 

monomers. In contrast, when free monomers are gradually added to the system over a 

period of about an hour (through a process of proton dissipation), fibres grow almost 

exclusively by monomer addition and defects are rare245. Since fibre growth during a 

TREQ experiment occurs slowly as well, we would expect defects to also be rare in our 

experiments. In addition, polyA-CA chains are observed to form cable-like structures 

when formed under proton dissipation conditions245. We note samples subjected to TREQ 

heating and cooling cycles do not show evidence of cable formation by atomic force 

microscopy244. Nevertheless, it is worthwhile to discuss the potential effects of such 

higher order structures on the TREQ experiment. Cables and other forms of self-

association may sequester fibre ends, possibly blocking monomer association and 

dissociation. However the termini of the cables are frayed into many individual polyA-CA 

fibres, where the processes of monomer association and dissociation can be safely 

assumed to be identical to those in isolated polyA-CA fibres245. The total rates of monomer 

uptake and release are both directly proportional to the number of exposed fibre ends239, 

246, 248. Thus self-association would be expected to alter both rates by the same factor. In 

contrast, the value of [M]c and the thermodynamics of adding a monomer to a growing 

fibre do not depend on the number of exposed fibre ends. In the TREQ experiment, the 

shapes of the heating and cooling arcs depend on the kinetics of polymerization and 

depolymerization. Slower kinetics due to higher order structures that sequester fibre ends 

might be expected to produce flatter arcs. However, the locations of the extrema of the 

arcs are restricted to lying along the [M]c(T) curve, which is independent of the number of 

free ends. Thus, the TREQ experiment is expected to report the thermodynamics of 

forming individual fibres, but does not provide insight into whether or not fibres self-

associate or the energetics of such processes. 

 

4.4.2 Experimental validation of the TREQ experiment 

It is not possible to experimentally confirm that TREQ data follow equilibrium 

values using the co-assembly of polyA and CA as a model system, since the process is 

so slow that the equilibrium curve is inaccessible to all other experimental techniques that 

could be used for cross-validation. We therefore turned to a much simpler system, the 
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intramolecular folding of a DNA guanine quadruplex (G4) to experimentally test our 

approach. G4s are four-stranded, non-canonical nucleic acid structures composed of four 

tracts of consecutive guanine residues that form stacked, planar, guanine tetrads held 

together by Hoogsteen hydrogen bonds and coordination to monovalent cations210. Their 

folding reactions are effectively 2-state under many conditions,210 and the timescale of 

folding can be tuned over several orders magnitude simply by adjusting the salt 

concentration. Heating and cooling scans collected for an intramolecular G4 (see 

Materials and methods) with a temperature ramp rate of 1 K min-1 are offset by about 6 

degrees (Figure 4.6a), mimicking the TH observed for polyA-CA, albeit to a lesser extent. 

In contrast, data for the G4 obtained with a 0.1 K min-1 ramp rate are offset by only 0.5 

degrees, meaning that they are close to equilibrium during both melting and refolding 

processes. This small amount of hysteresis, together with the simple folding mechanism, 

makes it possible to calculate the true equilibrium folding curve with a high level of 

confidence by performing a simple Arrhenius analysis (Supplementary Figure 4.1)218. We 

then performed TREQ analysis on the G4 sample with ±1 K min-1 ramp rates, by 

repeatedly raising and lowering the temperature over a window of roughly 5°C that shifted 

from (42.3-45.7) to (26.3-33.7) °C in 8 cycles while we monitored the spectroscopic 

absorbance at 295 nm. The high and low temperature absorbance regions were fitted to 

linear baselines and assigned 0% and 100% folded, respectively, giving the converted 

data shown in Figure 4.6b. Notably, the experimental equilibrium curve calculated from 

Arrhenius analysis of the TH experiments passes nearly exactly through the extrema of 

the TREQ heating and cooling arcs. The Arrhenius analysis of the 0.1 K min-1 ramp rates 

gave ΔH=148 ± 2 kJ mol-1 and ΔS=479 ± 6 J mol-1 K-1 (Supplementary Figure 4.1) and 

van ‘t Hoff analysis of the extrema of the TREQ experiment (described below) gave 

ΔH=146 ± 3 kJ mol-1 and ΔS=470 ± 10 J mol-1 K-1 (Figure 4.6c). Thus, the TREQ 

experiment closely reproduced the results of a traditional equilibrium melting 

measurement, in a special case where both measurements could be made on the same 

system. 
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Figure 4.6: Experimental validation of the TREQ method using an intramolecular guanine 

quadruplex. a) Thermal hysteresis traces of intramolecular G4 folding. Heating and 

cooling scans at 1 K min-1 are shown in red and blue respectively. Heating and cooling 

scans at 0.1 K min-1 are shown in orange and light blue. b) TREQ data for intramolecular 

G4 folding, experimental traces obtained at a scan rate of 1 K min-1 are shown in blue for 

cooling and red for heating. Picked extrema are shown as circles, and the equilibrium 

curve found from analyzing 0.1 K min-1 hysteresis traces is shown as the black dashed 

line. c) Van ‘t Hoff analysis of experimental TREQ points, the line of best fit is shown as 

the grey solid line and the equilibrium curve found from analyzing 0.1 K min-1 hysteresis 

traces is shown as the black dashed line. 

4.4.3 Guide for acquisition of TREQ data 

The design of a TREQ experiment involves selecting an appropriate scan rate and 

choosing a series of temperature set points that define the cooling and heating scans, for 

example (cooling T1→T2), (heating T2→T3), (cooling T3→T4), (heating T4→T5), etc. 

Slower scan rates lead to better-defined TREQ maxima and minima but longer 

experiments. We would suggest scan rates on the order of 0.2 to 1 K min-1. Slower 

assembly/disassembly kinetics require slower scan rates, although the success of the 

experiment is not particularly sensitive to the choice of scan rate. The selection of 

temperature set points is more critical as they will determine whether or not the system 

will pass through transient equilibria on the cooling and heating scans and generate a 

series of minima and maxima in the spectrophotometric data. We have developed a 

simple method for selecting the temperature set points that reliably produces high quality 

TREQ data. In the first step, a full cooling scan from maximum (Tmax≈95°C) to minimum 

(Tmin≈5°C) temperature is performed at the chosen scan rate, followed by a heating scan 
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from Tmin to Tmax. The cooling scan will lie to substantially lower temperatures than the 

heating scan, due to thermal hysteresis, and the desired equilibrium curve lies 

somewhere between two. The temperatures at which the cooling scan generates 10, 20, 

30, 40, etc. percent assembly are identified, yielding TC10, TC20, TC30, TC40, etc. 

respectively. The same analysis is performed for the heating scan, giving TH10, TH20, TH30, 

TH40, etc. We find that the oscillating cooling sequence Tmax → TC10 → TH10 → TC20 → TH20 

→ … → TC90 → TH90 → Tmin → Tmax reliably gives good quality TREQ data. The final 

heating scan is performed in order to obtain an adequate low temperature baseline. In 

principle, the oscillating heating sequence: Tmin → TH90 → TC90 → TH80 → TC80 → … → TH10 

→ TC10 → Tmax → Tmin also produces similar TREQ data, however we prefer to begin each 

experiment with a fully thermally denatured sample for the sake of reproducibility (i.e. the 

first sequence). Note that we chose 10% increments in assembly because our 

spectrophotometer software allows up to 20 scans to programmed in advance. 

 

4.4.4 Guide for processing TREQ data 

The first step in analyzing TREQ data is converting the raw spectroscopic output 

into fractions of folding or assembly, or equivalently, concentrations of unfolded or 

unassembled monomers. Thermal melting and annealing data typically have linear 

regions at temperatures below and above the transition.218 The linear data points are 

identified by eye and fitted by linear regression to obtain the slopes, mL and mU, and y-

intercepts bL and bU of the lower and upper linear regions, respectively. The fraction folded 

or assembled, θ(T), is then calculated as 

𝜃(𝑇) =
(𝑚𝐿𝑇+𝑏𝐿)−𝑆𝑒𝑥𝑝(𝑇)

(𝑚𝐿𝑇+𝑏𝐿)−(𝑚𝑈𝑇+𝑏𝑈)
    (Equation 4.1) 

where Sexp(T) is the experimental absorbance (or fluorescence, or circular 

dichroism) measurement.  The temperature-dependent monomer (M1) concentration is 

calculated from θ(T) according to 

[𝑀1](𝑇) = (1 − 𝜃(𝑇))[𝑀]𝑡𝑜𝑡     (Equation 4.2) 

where [M]tot is the total concentration of monomers in all assembled forms. 

The reliability of the TREQ experiments depends on accurately pinpointing the 

extrema of the scans, i.e. choosing the values of Text, [M]ext, where [M]ext is the maximum 
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or minimum value of [M] on each cooling or heating scan and Text is the temperature at 

which this is reached. Simply picking the maximum- or minimum-valued datapoint of each 

arc is inaccurate. Due to instrument noise, roughly half of the measured points lie above 

the true curve and the other half lie below. The point with the largest (or smallest) value 

will therefore almost certainly over (or under) estimate the true [M]ext value. Furthermore, 

the convex and concave cooling and heating arcs are fairly broad, meaning that the 

temperature at which the single largest- or smallest-valued point occurs is strongly 

influenced by the stochastic nature of the experimental noise and will almost certainly 

differ from Text. We have developed two different approaches at two different levels of 

computational difficulty for accurately identifying the extrema. The first is simply to 

calculate a sliding window average, selecting the extreme value of the average as [M]ext 

and the centre of the window as Text. The second is to smooth the experimental data by 

fitting a curve to the data points and identifying the extremum of the fitted curve as Text, 

[M]ext. We prefer to use an empirical polynomial function for smoothing rather than a 

mechanistic (eg GS model) calculation, since we wish to apply the TREQ approach even 

to systems where the precise kinetic mechanism is unknown. 

To test the accuracy of these methods, we generated synthetic noisy TREQ data 

based on the GS fibre assembly model (see below) for which the true maxima and minima 

were known and compared these values with the results of the sliding window and 

polynomial smoothing calculations. The simulated TREQ data are shown in Figure 4.7a 

with dashed lines indicating the true (error-free) curves and black circles indicating 

synthetic data, sampled at 0.3°C intervals with 1% random noise. We found that a rolling 

average of 9 to 12 data points gave extrema close the true values. A van ‘t Hoff plot of the 

true data (dashed lines) and sliding average of ten points (purple circles) shows good 

agreement (Figure 4.7b). We repeated the calculation 1,000 times with a resampled 

selection of the data points, and the resulting standard deviations of the extrema are 

shown as error bars482. Next, we fit the upper halves of cooling curves and lower halves 

of heating curves to polynomial functions of different orders. We found qualitatively that 

polynomials of orders of about 5 to 15 delivered the best performance. Polynomials of 

lower orders were not able to faithfully reproduce the overall shape of the data and higher 

orders began to overly mimic the simulated noise. Extrema taken from fitted 5th-order 
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polynomials (green circles) align with the true values even more closely than the sliding 

averages (purple circles). Bootstrapped uncertainties in the extrema were low; error bars 

are smaller than the symbols used in Figure 4.7b. We conclude that the polynomial 

smoothing approach provides a more accurate extraction of the extrema, however the 

performance of the sliding average approach is satisfactory and is simpler to apply if using 

standard spreadsheet software to analyze data. We have used polynomial smoothing 

throughout.  

 

Figure 4.7: Analysis of simulated TREQ data with random noise. a) Dashed lines 

represent a simulated TREQ data, grey circles represent the top or bottom half of each 

trace with added random noise. b) van ‘t Hoff analysis of TREQ data, the dashed black 

line represents the true equilibrium curve. In both panels green circles represent extrema 

which were picked using a 5th order polynomial, magenta circles represent extrema which 

were picked using an averaging window of 10 data points and blue points represent 

extrema which were picked from raw data (i.e. max and min datapoints). Error bars in 

both monomer concentration and temperature are shown in both panels but are often 

smaller than the symbols. 

4.4.5 Analysis of experimental TREQ data for polyA-CA coassembly 

We performed a TREQ experiment on a mixture of CA and polyA chains (Figure 

4.8a). The lower and upper absorbance regions were fitted to linear baselines and 

assigned 100% and 0% folded, i.e. [M1] = 0 and 25 μM, respectively. The fraction of folded 

monomers at a given temperature was taken as the difference between the measured 
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absorbance and the lower baseline, divided by the difference between the upper and 

lower baselines (Equation 4.1 and Equation 4.2), as is typically done in spectroscopic 

analyses of supramolecular assembly218, 246, 463, 464, 471, 473, 476, 477. The converted data are 

shown in Figure 4.8b, with blue and red indicating cooling and heating, respectively, and 

open circles placed at the extrema. These experimental arcs have a remarkable similarity 

to the calculations shown in Figure 4.5a. The y- and x-values of the extrema correspond 

directly to critical monomer concentration, [M]c, and temperature pairs. As discussed 

above, [M]c values are equivalent to the equilibrium dissociation constant, Ke, for adding 

a polyA to the end of an elongating fibre, for this system. A van ‘t Hoff plot of ln([M]c)=ln(Ke) 

vs 1/T  is linear with a slope of –ΔHe/R and y-intercept of ΔSe/R (Figure 4.8c), giving ΔHe= 

100 ± 2 kcal mol-1 and ΔSe = 335 ± 7 cal mol-1 K-1. Notably, although the values of ΔHe 

and ΔSe determined by TREQ differ from those obtained by kinetic fits to TH data by 

factors of 1.6 (Supplementary Table 4.2), repeating the TH analysis with ΔHe and ΔSe 

fixed to the TREQ-derived values gives good agreement with experimental data (Figure 

4.9), illustrating the insensitivity of the kinetic fits to these thermodynamic parameters. In 

general, we would strongly recommend that, even if assembly kinetics are the main 

interest, the combination of TREQ and thermal hysteresis experiments provide more 

robust solutions than thermal hysteresis alone, as TREQ resolves ambiguity in the fitted 

rate constants and ratios thereof. 
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Figure 4.8: Analysis of TREQ data for polyA-CA co-assembly. a) Raw absorbance data 

for a 15mer polyA-CA coassembly with 25 µM dA15 and 15 mM CA at pH 4.5, blue lines 

represent cooling traces and red lines represent heating traces. Unfolded (top black line) 

and folded (bottom black line) baselines are also shown. b) TREQ data processed 

according to Equations S1 and S2 with extrema of each cycle shown as points. c) Van ‘t 

Hoff analysis of experimental TREQ points, line of best fit is shown as the black dashed 

line. 

Furthermore, the thermodynamic parameters provide a basis for comparing polyA-

CA fibres to other nucleic acid structures. For example, polyA/polyT (dA15dT15) duplex 

dissociation is predicted to have approximately ΔH = 108 kcal mol-1 and ΔS = 335 cal mol-

1 K-1 under similar solution conditions to those used here,
483 It is intriguingly similar to the 

values we measured for polyA-CA assembly (100 kcal mol-1 and 335 cal mol-1 K-1). At first 

glance, we would have expected polyA-CA fibres to show much higher enthalpies and 

entropies than dAdT duplexes, since there are three strands rather than two, each dA 

forms twice as many hydrogen bonds and immobilizes a CA molecule in the putative 

polyA-CA structure (Figure 4.1). However partial vacancy of CA binding sites may help to 

reconcile these observations, as elaborated below. 
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Figure 4.9: Fits of experimental TH curves for polyA-CA coassembly. With ΔHe extracted 

from TH data alone (blue and red solid lines) and ΔHe constrained to be equal to the value 

extracted from TREQ measurements (dashed cyan and orange lines). Simulation 

parameters are listed in Supplementary Table 4.2. 

One of the great advantages of quantitative thermodynamic data is that much can 

be learned about the system of interest through careful analyses of how energetic 

parameters vary with changing conditions. For instance, the presumptive structure of 

polyA-CA fibres shows that one molecule of CA is present for every deoxyadenosine 

residue in each polyA chain. In other words, when one of the dA15 polyA chains binds the 

end of an elongating fibre, it should be accompanied by 15 CA molecules. While 

equilibrium dialysis experiments are consistent with this structure,239 they have relatively 

low precision and the stoichiometry is very difficult to measure with accuracy. This 

property is of great interest since a CA:polyA stoichiometry of less than 15 would reveal 

the existence of defects, which could potentially be targeted with other small molecules. 

Thermodynamic data can help to resolve this issue, since the apparent dissociation 

constant, Ke, for a polyA chain binding to the end of the fibre should vary with CA 

concentration in a predictable way. For instance, if a polyA chain always brings with it c 

molecules of CA, i.e. 

𝑀𝑛 +𝑀1 + 𝑐𝐶𝐴
𝐾𝑒𝑞
← 𝑀𝑛+1    (Equation 4.3) 
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(following the nomenclature of Scheme 4.1), then the full equilibrium dissociation 

constant for the process is given by 

𝐾(𝑇)
° =

[𝑀𝑛][𝑀1][𝐶𝐴]
𝑐

[𝑀𝑛+1]
       (Equation 4.4) 

This is something of an over-simplification, as elaborated below, but for now it 

serves to illustrate the dependence of Ke on [CA]. For polyA-CA fibres, CA is always in 

great excess so that its concentration is effectively constant for any set of assembly 

conditions. The apparent polyA dissociation constant Ke is related to the full equilibrium 

constant according to 

𝐾𝑒 =
[𝑀𝑛][𝑀1]

[𝑀𝑛+1]
|
[𝐶𝐴]

= 𝐾(𝑇)
° [𝐶𝐴]−𝑐     (Equation 4.5) 

with the temperature dependence of the standard equilibrium constant (𝐾(𝑇)
° ) 

described by 

𝐾(𝑇)
° = 𝑒𝑥𝑝 (−

(∆𝐻(𝑇)−𝑇∆𝑆(𝑇))

𝑅𝑇
)     (Equation 4.6) 

Therefore, measuring Ke at a series of different CA concentrations should produce 

offset van ‘t Hoff plots where the vertical distance between each line follows the 

stoichiometry of CA. To proceed, we noted that stabilization of polyA-CA fibres at high 

[CA] is largely entropic in nature, since it is primarily driven by differences in the entropy 

of dilution when dissociation of a polyA chain concomitantly releases c molecules of CA 

into solution. 

We repeated the TREQ experiment at four CA concentrations between 7.5 and 15 

mM (Figure 4.10). Van ‘t Hoff plots of the resulting Ke values are shown in Figure 4.11. 

Fitting Equation 4.4 to this data set allows us to directly obtain the stoichiometry of CA. 

To account for the possibility of a temperature dependent enthalpy value we extracted 

global values of ΔHe and ΔCp. The heat capacity change of binding, ΔCp, accounts for 

any temperature-dependent differences in the slopes of the different experiments 

according to:  

∆𝐻𝑒(𝑇) = ∆𝐻𝑒(𝑇0) + ∆𝐶𝑝(𝑇 − 𝑇0)    (Equation 4.7) 

∆𝑆𝑒(𝑇) = ∆𝑆𝑒(𝑇0) + ∆𝐶𝑝 ln (
𝑇

𝑇0
)   (Equation 4.8) 
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The extracted ΔCp = -0.6 ± 0.3 kcal mol-1 K-1 indicates that the enthalpy of adding 

a polyA chain to a growing fibre has only a slight temperature dependence.  This is 

perhaps unsurprising, since ΔCp values associated with nucleic acid folding are largely 

sequence dependent and have been observed to vary from slightly negative to positive 

values484. The global fit was in good agreement with experimental data points (Figure 

4.11 and Table 4.3). Surprisingly, the extracted stoichiometry coefficient, c = 10.4 ± 0.6, 

implies that 30% of possible CA binding sites are unoccupied in polyA-CA fibres under 

these conditions.  

 

 

Figure 4.10: TREQ experiments of polyA-CA assembly. At 15mM (a-d), 12.5mM (e-h), 

10mM (i-l), and 7.5mM (m-p) cyanuric acid. Cooling traces are indicated in blue, heating 

traces are indicated in red. Extrema are shown as circles. 
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Figure 4.11: van ‘t Hoff plot of TREQ data obtained at different CA concentrations. 

Coloured symbols represent experimental data from TREQ traces, solid-coloured lines 

represent a global fit of Equation 4.5 and dashed coloured lines represent a global fit of 

Equation 9. Solid and dashed lines are virtually superimposed on each other. 

Experimental errors are smaller than the size of the symbols. 

 

ΔHe 99.5 ± 0.2 kcal mol-1 

ΔSe 213.2 ± 0.5 cal mol-1 K-1 

ΔCpe -0.69 ± 0.02 kcal mol-1 K-1 

ce 10.15 ± 0.08 

Table 4.3: Thermodynamic parameters from a Van ‘t Hoff fit of the constant stoichiometry 

model in Figure 4.10. ΔSe and ΔSe are reported at a reference temperature of 25˚C. 

 



 167 

4.4.6 Master equations for high-valence assembly 

The thermodynamics of multivalent supramolecular assembly can be summarized 

in terms of two main trends: the “principle of maximum occupancy” which refers to the 

tendency of systems to evolve toward the most stable state with full occupancy of binding 

sites, and the “entropy factor” which favours the state of the system with the largest 

number of product species485. For most of the supramolecular systems studied to date, 

the valency (number of binding sites per monomer) is relatively small (<6), the principle 

of maximum occupancy dominates, and the all sites are generally filled in the assembled 

materials486 487. However, for high-valence monomers, such as the polyA chains studied 

here, the entropy factor strongly opposes the principle of maximum occupancy and more 

complex behaviour emerges. For example, each dA15 chain creates an additional 15 

potential CA binding sites, on average, as it adds to the end of growing fibre; one site 

must be created for each additional dA residue to achieve the theoretical 1:1 dA:CA 

stoichiometry. The number of ways to fill c of the 15 binding sites with c molecules of CA 

is given by the binomial coefficient488 

𝑁𝑐 =
15!

𝑐!(15−𝑐)!
      (Equation 4.9) 

   While there is only N=1 way completely fill all 15 binding sites (c=15), there exists 

a total of N=32,766 distinct ways fill the sites with 1≤c≤14 molecules of CA. A simplified 

model of this energy diagram is seen in Figure 4.12b, where partially filled states are 

higher in energy but are more numerous. Therefore, even though a polyA chain with 15 

bound CA molecules may represent the single lowest energy configuration, there exists 

such an enormous number of partly-filled configurations that these dominate, with a broad 

distribution of CA uptake and just 10 of the 15 sites being filled on average as seen in 

Figure 7c.  

This explanation implies that polyA chains can bring a variable number of CA 

molecules with them when they attach to the end of a growing fibre, which is inconsistent 

with Equation 4, where the stoichiometry is fixed. To resolve this inconsistency, we 

developed a simple combinatorial model to describe polyA-CA fibre elongation. There is 

a free energy penalty for bringing an unbound polyA chain in close proximity to the end 

of a fibre, ΔGpolyA=ΔHpolyA – TΔSpolyA. This is compensated by energetically favourable 

binding of CA molecules to the newly-created 15 binding sites. All CA molecules are 
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assumed to bind with equal free energy ΔGCA=ΔHCA-TΔSCA. The total free energy change 

for a polyA chain binding along with a specific configuration of c CA molecules is ΔGpolyA 

+ cΔGCA. Overall, the apparent equilibrium dissociation constant for polyA chain binding 

is given by489  

(𝐾𝑒)
−1 = 𝐾𝑝𝑜𝑙𝑦𝐴(1 + 𝐾𝐶𝐴[𝐶𝐴])

15   (Equation 4.10) 

where KpolyA=exp(–ΔGpolyA/RT) and KCA= exp(–ΔGCA/RT). The average number of 

CA molecules can be calculated using the following equation 

〈𝑐〉 = 15
𝐾𝐶𝐴[𝐶𝐴]

1+𝐾𝐶𝐴[𝐶𝐴]
     (Equation 4.11) 

and the fraction of bound states with a given number of CA molecules can be 

calculated by 

𝜃𝑐 = (
15!

𝑐!(15−𝑐)!
)

𝐾𝐶𝐴[𝐶𝐴]
𝑐

(1+𝐾𝐶𝐴[𝐶𝐴])15
    (Equation 4.12) 

We fit Equation 4.10 to the TREQ data, obtaining excellent agreement, and 

extracting ΔHpolyA, ΔSpolyA, ΔHCA, and ΔSCA (Figure 4.11 and Table 4.4). These parameters 

allowed us to calculate the fractions of polyA chains with different numbers of CA 

molecules bound at different temperatures and [CA], providing a highly detailed 

description of assembly (Figure 4.12c). Under highly stabilizing conditions of high [CA] 

and low temperature, the Equations predict that almost all binding sites are filled, in 

agreement with previous dialysis experiments239.  Importantly, Equation 4.10 and 

Equation 4.11 explain why we observe 10 bound CA, and not more or less, even though 

experiments were performed at different [CA]. All experiments used 25 μM polyA, which 

means that we only detected Ke values between about 3 μM and 22 μM in all cases. This 

implies that the KCA[CA] values are nearly identical in all experiments (since KpolyA does 

not change much with temperature) From Equation 4.11, this implies that <c> is very 

similar in all experiments, ranging from 10 to 11, and in excellent agreement with the 

simple fit described in the previous section. 

High valence supramolecular systems have many useful properties that are only 

just beginning to be explored, such as the ability to self-heal, responsiveness to stimuli, 

and simple, inexpensive chemical derivatization. Examples include small molecule-

directed nucleic acid assembly (CA + polyadenosine or polydeoxyadeonsine239, 246; 

melamine + polythymine238) and non-covalent polymer crosslinking via multiple metal 
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chelation486, 490 or host/guest interactions491, 492. Equation 4.10 and Equation 4.11 can 

serve as starting points for quantitatively describing assembly in such systems, where 

simple probabilistic considerations ensure that some of the binding sites will remain 

vacant under many conditions. Furthermore, we find that TREQ-derived data are 

sufficient to extract the relevant thermodynamic parameters robustly, providing a new 

avenue for gaining insight into these complex materials. 

ΔHpolyA -0.5 ± 0.5 kcal mol-1 

ΔSpolyA 8 ± 2 cal mol-1 K-1 

ΔHCA 9.46 ± 0.05 kcal mol-1 

ΔSCA 20.7 ± 0.2 cal mol-1 K-1 

Table 4.4: Thermodynamic parameters from Van ‘t Hoff fit of the independent sites model 

in Figure 4.11. The relatively large errors in ΔHpolyA and ΔSpolyA are caused by a correlation 

in the two parameters. 
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Figure 4.12: Mechanisms of high valence assembly. a) A simple constant stoichiometry 

assembly model where the end of a growing fibre (Fn) assembles with one monomer M 

and 4 ligand molecules L to create a fibre of length n+1 (Fn+1). b) A free energy diagram 

of a variable stoichiometry assembly model where the end of a growing fibre (Fn) can 

assembly with a monomer M and any number of ligand molecules L up to a maximum of 

4, the insert represents the populations of each stoichiometry. c) The populations of each 

stoichiometry for the self assembly of polyA-CA fibres at 25˚C with a concentration of 

12.5mM CA. 
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4.4.7 Generality of the Method 

Our aim for the TREQ method is that it can be used as a general tool to determine 

the thermodynamic parameters of supramolecular assembly when standard thermal 

melting and annealing experiments are unsuitable for thermodynamic analysis. Towards 

this end, we have also tested the method on a tetrameric intermolecular guanine 

quadruplex (G4) in aqueous buffer, and zinc-porphyrin self-assembly in mixture of 

methylcyclohexane and chloroform. In both cases, we obtained series of concave-up and 

concave-down arcs, similar to those of the polyA-CA fibres (Figure 4.13). In parallel, we 

used computer simulations to model the TREQ experiment for different types of self 

assembling systems and observed two patterns of behaviour: either all the extrema 

aligned with the equilibrium curve or the maxima for the cooling curves and minima for 

the heating curves were offset from one another (Figure 4.13). This provides a useful 

guide for interpreting TREQ data on new systems of interest: when the extrema align, 

they can be used to trace out the equilibrium curve (as for polyA-CA fibres and the 

intermolecular G4). When they are offset, they cannot be directly equated to equilibrium 

temperature/concentration pairs, although the data are still information-rich. Furthermore, 

when the extrema are offset, the system can be assumed to have violated one or both of 

two criteria outlined below. To proceed we make the following definitions: We will use 

species to refer to any set of assemblies that are kinetically and spectroscopically 

indistinguishable, and which may or may not be structurally identical. For instance, all GS 

fibres larger than the nucleus grow or shrink at the same rate and they can be collectively 

considered a single species, even though they comprise individual fibres of different 

lengths. The spectroscopic TREQ measurements report the concentration of just one 

species. This is referred to as the probed species, while all others are referred to as 

unprobed. Fast and slow chemical kinetics are defined relative to the temperature scan 

rate. The two TREQ criteria are 1) the effective rates at which the probed species 

interconverts with all other significantly populated species must be slow and 2) the 

effective rates at which all significantly populated unprobed species interconvert with each 

other must be fast. 
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Figure 4.13: Simulated and experimental TREQ traces for different systems.  Top row) 

TREQ traces for sequential tetramolecular GQ assembly. a) Kinetic traces which have 

minimal kinetic intermediates. b) Kinetics which allow for build up of dimer intermediates. 

c) Experimental TREQ data of GQ assembly showing that there are no kinetic 

intermediates. Bottom row) TREQ traces for a zinc porphyrin system which has parallel 

pathways (one Isodesmic, one cooperative). d) A system with fast Isodesmic aggregation 

kinetics and slow cooperative aggregation kinetics. e) A system with slow Isodesmic 

aggregation kinetics and slow cooperative aggregation kinetics. f) Experimental TREQ 

data of the zinc porphyrin system showing a system which has slow Isodesmic 

aggregation kinetics and slow cooperative aggregation kinetics. Kinetic parameters for 

each simulation can be found in Supplementary Table 4.3. 
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For the polyA-CA fibres, there are only two significantly populated species: 

monomers (probed) and fibres larger than the nucleus (unprobed). Computer simulations 

of TREQ data show that the extrema align with the equilibrium curve. However, we have 

also investigated assembly pathways that differ from the standard GS model. For 

instance, we previously studied the assembly of tetrameric guanine quadruplexes using 

thermal hysteresis246. The kinetics of assembly are consistent with a monomer ↔ dimer 

↔ trimer ↔ tetramer pathway where only monomers (probed) and tetramers (unprobed) 

are significantly populated. Simulated TREQ data show that extrema closely follow the 

equilibrium curve (Figure 4.13a), in good agreement with experimental data where the 

extrema align (Figure 4.13c). In contrast, if we consider the situation where dimers 

(unprobed) are also well populated and in fast exchange with monomers, criterion 1 is 

violated since the probed species exchanges rapidly with a well populated unprobed 

species. Simulated TREQ maxima and minima are now offset in this scenario (Figure 

4.13b). Finally, we studied a system that undergoes a parallel assembly mechanism. 

Tetra-amidated porphyrin molecules can assemble into either chiral fibres or achiral 

aggregates. As the temperature is reduced, the monomers first assemble into achiral 

aggregates that slowly convert to chiral fibres at low temperatures.493 In this case, there 

are three well-populated species: chiral fibres (probed), achiral aggregates (unprobed), 

and monomers (unprobed). We performed a simulation in which achiral aggregates and 

monomers interconvert rapidly. This does not violate either criterion and the computed 

TREQ extrema align with the equilibrium curve (Figure 4.13d). We then performed a 

simulation in which achiral fibres and monomers interconvert slowly, in violation of 

criterion 2, and the computed maxima and minima are offset from the equilibrium curve 

(Figure 4.13e). Notably, this simulation closely matches experimental TREQ data for this 

system (Figure 4.13f) which shows the same pattern of offset extrema. Therefore, these 

data strongly suggest that interconversion between achiral fibres and monomers occurs 

slowly under these conditions and provide experimental validation for using offset 

extrema to identify situations that lie outside the scope of TREQ. 
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Fortunately, many slowly assembling supramolecular structures are amenable to 

the TREQ approach and, in these cases, it provides thermodynamic information that is 

not readily available from other sources. For example, a polyA-CA [M]c dataset similar to 

the one reported here would require a scan rate of <0.001 K min-1 in traditional melting 

measurements, leading to experiments on the impractically long timescale of a month. 

Our study demonstrates how the ready availability of high-quality thermodynamic 

dynamic data can lead to new insights, such as the prevalence of unfilled CA binding sites 

in polyA-CA fibres, and provides an opportunity to test theoretical developments, such as 

our master equation for high-valence assembly. These advances would not have been 

realistically possible for polyA-CA structures using previously existing methods.  

A large number of slowly assembling supramolecular systems have been 

described in the literature, with only a subset referenced in this study246, 351, 463-477. This 

field is expected to expand in the coming years, since slow, nonequilibrium, nucleated 

assembly is a living polymerization process. The advantages of living polymers in 

supramolecular chemistry are an area of active research, with benefits already evident in 

the level of control they give over fibre length and monodispersity474, 476-478. Notably, 

thermodynamic information for slowly assembling systems is either completely lacking or 

determined using methods that we and others218 have shown to be unreliable for such 

systems.  We believe that the TREQ method presented here is a big step towards filling 

this gap in our knowledge. It can be applied to a wide variety of systems using common 

benchtop laboratory equipment and measurement times are on the order of 10 hours. 

The experiments are straightforward to set up and a typical analysis (eg van ‘t Hoff plot), 

can be performed entirely using standard spreadsheet software. We believe that the 

TREQ method will prove generally useful to the supramolecular chemistry community. 

 

4.5 Materials and methods 

4.5.1 Materials 

4.5.1.1 Intramolecular G4 

A 22mer mutant of the c-MYC G4 (TGAGGGTIGGGAGGGTGGGIAA) was 

synthesized using a MerMade-12 Oligonucleotide Synthesizer with standard solid-phase 

phosphoramidite chemistry.351 The G4 Samples were cartridge purification and analyzed 
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by LC-mass spectrometry for purity. DNA strands were dissolved in MilliQ water and 

concentrations were calculated using nearest neighbor extinction coefficients.  buffer: 10 

mM lithium phosphate, pH 7.0, supplemented with 250 uM KCl. The buffer pH was titrated 

using 1 M LiOH to avoid the further addition of stabilizing Na+ or K+ cations. 

4.5.1.2 polyA-CA 

Cyanuric acid (CA), tris(hydroxymethyl)aminomethane (Tris), magnesium chloride 

hexahydrate (MgCl2ꞏ6 H2O), sodium chloride (NaCl), glacial acetic acid and urea were 

used as purchased from Sigma-Aldrich. Boric acid was obtained from Fisher Scientific 

and used as supplied. Acrylamide/bis-acrylamide (40% 19:1) solution, ammonium 

persulfate and tetramethylethylenediamine (TEMED) were used as purchased from 

BioShop Canada Inc. 

d(A15) oligonucleotides were synthesized on a Mermade-12 synthesizer, purified 

by denaturing polyacrylamide gel electrophoresis (PAGE 20%, 1xTBE running buffer, 8 

M urea) and desalted with Gel-Pak desalting columns from Glen Research. Purity of the 

strand was confirmed by HRMS (Calculated mass: 4635.18; Observed mass: 4634.28).  

Stock solutions of 20 mM CA were prepared by dissolution in 100 mL of Milli-Q 

water in a volumetric flask and adjusted with acetic acid to pH 4.5. To properly dissolve 

and degas the solutions, they were heated at 65 °C and sonicated, then cooled down to 

room temperature before being used.  

Samples of 100 µL of dA15 (25 µM) and CA (7.5, 10.0, 12.5 and 15.0 mM) in pH 

4.5 Mg(OAc)2 buffer (7.6 mM) were made in quadruplicates. A thin layer (~30 µL) of silicon 

oil was applied on top to prevent evaporation during experiments.  

 

4.5.2 Instrumentation 

4.5.2.1 Intramolecular G4 

UV-Vis absorbance studies were performed using a 10 mm quartz cuvette with a 

3mm aperture and monitored at 295 nm on an Agilent Cary 3500 Series UV-Vis 

Spectrophotometer equipped with a Peltier temperature controller and in-cell thermal 

probe. A thermal hysteresis scan was performed from 60-10 °C at 1 K min-1 and 0.1 K 

min-1 with an equilibration time of 30 min at both high and low temperatures. TREQ 

experiments were ran at 1 K min-1 with temperature windows chosen from the TH scans. 
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The maximum number of scans on the Cary 3500 is 10 so two TREQ experiments were 

ran and combined to create Figure 4.6a and c. 

 

4.5.2.2 polyA-CA 

UV-Vis absorbance-based quantification of d(A15) was performed on a Nanodrop 

Lite spectrophotometer from Thermo Scientific. DNA purification by PAGE was carried out 

on a 20 x 20 cm vertical acrylamide Hoefer 600 electrophoresis unit. 

UV-Vis absorbance studies were performed using a 1.0 mm quartz cuvette and 

monitored at 260 nm on an Agilent Cary 300 Series UV-Vis Spectrophotometer equipped 

with a Peltier temperature controller and water recirculator. A variable temperature range 

which started from 50-40 °C and went down to 10-4 °C was scanned at a rate of 0.5 

°C/min and with an equilibration time of 30 min at the maximum and minimum 

temperatures. Argon gas and drierite were used to dry the chamber at temperatures 

below 10 °C.  

 

4.5.3 Thermodynamic analysis 

TREQ data for polyA-CA fibres (critical polyA monomer concentrations, [M]c, as a 

function of temperature, obtained at different CA concentrations) were fitted using two 

different physical models. In both cases, [M]c values were equated to the equilibrium 

dissociation constant for adding a monomer to the end of a growing fibre (Ke). The first 

model invoked constant CA:polyA stoichiometry (Equation 4.3 to Equation 4.5) and was 

essentially an extension of a classical van ‘t Hoff ln(Ke) vs 1/T analysis in which heat 

capacity changes and [CA] dependence are taken into account. The second model 

explicitly took into account the statistical effects of partially filling multiple binding sites 

(Master equations for high valence systems, Equation 4.10). In both cases, for each value 

of [CA], a [M]c(T) dataset was calculated in a temperature range from 10-50˚C with a 

resolution of 0.01˚C. Each model’s parameters were optimized using total least squares 

regression, which accounts for errors in both x- and y- dimensions. Fits were optimized 

by finding thermodynamic parameters to minimize the target function 
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Figure 4.14: Minimization function for total-least squares regression and visualization of 

the horizontal (magenta) and vertical (green) distances of an experimental data point (red) 

to the simulated line (black). 

Where ∆ln([𝑀]𝑐(𝑗))
 is the vertical distance of the jth experimental data point to the 

point on the simulated curve which minimized the horizontal distance. ∆ 1

𝑇(𝑗)

  is the 

horizontal distance of the jth experimental point to the point on the simulated curve which 

minimized the vertical distance. 𝜎ln ([𝑀]𝑐(𝑗))
  and 𝜎1

𝑇
(𝑗)

 are the experimental errors in the 

vertical and horizontal dimensions respectively. Errors for fitted parameters were 

calculated using a bootstrapping approach,482 in which each bootstrap sample was 

obtained by random resampling of the original data. For example, if the original dataset 

contained N points, each bootstrap sample was constructed by randomly selecting N of 

these data points, such that points may be selected more than once or not at all. 500 

bootstrap samples were constructed and fitted using the thermodynamic models 

described above. The errors in the extracted parameters were taken as the standard 

deviations of the 500 sets of parameters obtained for all bootstrap samples. 

 

4.5.4 TREQ Simulations 

TREQ experiments were simulated using the kinetic models described below. In 

all simulations the rate constants were assumed to have an Arrhenius temperature 

dependence following the equation 

𝑘(𝑇) = 𝑘0𝑒
𝐸𝑎
𝑅
(

1

𝑇𝑟𝑒𝑓
−
1

𝑇
)
        (Equation 4.13) 
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Each set of differential equations were numerically integrated as a function of 

temperature using MATLABs built in ODE solver ode15s. Temperature windows were 

chosen from experimental data windows, and kinetic parameters can be found in 

Supplementary Table 4.1, Table 4.1, Table 4.2, Supplementary Table 4.2, and 

Supplementary Table 4.3.  

4.5.4.1 TGGGG Assembly 

Assembly of TGGGG strands into a guanine quadruplex was modelled as a 

sequential addition of monomers (M) into dimers (D), trimers (Tr) and tetramers (Q) using 

the following rate equations 

𝑑

𝑑𝑡
[𝑀] = 2𝑘−1[𝐷] − 2𝑘1[𝑀]

2 − 𝑘2[𝑀][𝐷] + 𝑘−2[𝑇𝑟] − 𝑘3[𝑀][𝑇𝑟] + 𝑘−3[𝑄](Equation 4.14) 

𝑑

𝑑𝑡
[𝐷] = 𝑘1[𝑀]

2 − 𝑘−1[𝐷] + 𝑘−2[𝑇𝑟] − 𝑘2[𝑀][𝐷]         (Equation 4.15) 

𝑑

𝑑𝑡
[𝑇𝑟] = 𝑘2[𝑀][𝐷] − 𝑘−2[𝑇𝑟] + 𝑘−3[𝑄] − 𝑘3[𝑀][𝑇𝑟]       (Equation 4.16) 

𝑑

𝑑𝑡
[𝑄] = 𝑘3[𝑀][𝑇𝑟] − 𝑘−3[𝑄]          (Equation 4.17) 

 

4.5.4.2 polyA Assembly 

polyA fibre formation was modelled following the Goldstein-Stryer model for 

cooperative self-assembly as described previously248. This model assumes reversible, 

cooperative stepwise addition of monomers (M) to nuclei (Ms), which then elongate to 

form fibres (MN). The model has two distinct phases, where the pre-nucleus equilibria are 

governed by the nucleation rate constants kn+ and kn-, and post-nucleus equilibria are 

governed by the elongation rate constants ke+ and ke-. In order to limit the number of 

equations that must be numerically integrated, only fibres up to size N are explicitly 

described. A sparse Jacobian matrix was created to define the species which are related, 

this allowed for simulations of large fibre sizes (N = 1000). The Goldstein-Stryer model is 

described by the following rate equations 

 

Monomer 

𝑑

𝑑𝑡
[𝑀] =  −𝑘𝑛+[𝑀] (2[𝑀] +∑[𝑀𝑖]

𝑠−1

𝑖=2

) − 𝑘𝑒+[𝑀] (∑[𝑀𝑖]

𝑁−1

𝑖=𝑠

) 
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+𝑘𝑛−(2 ∗ [𝑀2] + ∑ [𝑀𝑖]
𝑠
𝑖=3 ) + 𝑘𝑒−∑ [𝑀𝑖]

𝑁
𝑖=𝑠+1      (Equation 4.18) 

 

Pre-nucleus oligomers 

𝑑

𝑑𝑡
[𝑀𝑖] =  𝑘𝑛+[𝑀]([𝑀𝑖−1] − [𝑀]) + 𝑘𝑛−([𝑀𝑖+1] − [𝑀𝑖])   (Equation 4.19) 

 

Nucleus           

𝑑

𝑑𝑡
[𝑀𝑠] =  𝑘𝑛+[𝑀][𝑀𝑠−1] − 𝑘𝑒+[𝑀][𝑀𝑠] + 𝑘𝑒−[𝑀𝑠+1] + 𝑘𝑛−[𝑀𝑠]  (Equation 4.20) 

 

Post-nucleus fibres 

𝑑

𝑑𝑡
[𝑀𝑖] =  𝑘𝑒+[𝑀]([𝑀𝑖−1] − [𝑀]) + 𝑘𝑒−([𝑀𝑖+1] − [𝑀𝑖])   (Equation 4.21) 

 

Fibre length N 

𝑑

𝑑𝑡
[𝑀𝑖] =  𝑘𝑒+[𝑀][𝑀𝑁−1] − 𝑘𝑒−[𝑀𝑁]     (Equation 4.22) 

 

4.5.4.3 Porphyrin Assembly 

Zinc porphyrin assembly was modelled as a system with two distinct parallel 

pathways, where one pathway assembles via the Goldstein-Stryer model of assembly 

with pre-nucleated and post-nucleated rate constants of kn+/kn- and ke+/ke- up to a 

maximum length of N and a nucleus size s and one pathway forms Isodesmic aggregates 

which assembly with the rate constants ki+/ki- with a maximum length L. The parallel 

pathways model is described by the following rate equations. 

 

Monomer 

𝑑

𝑑𝑡
[𝑀] =  −𝑘𝑛+[𝑀] (2[𝑀] +∑[𝑀𝑖]

𝑠−1

𝑖=2

) − 𝑘𝑒+[𝑀] (∑[𝑀𝑖]

𝑁−1

𝑖=𝑠

) + 𝑘𝑛− (2 ∗ [𝑀2] +∑[𝑀𝑖]

𝑠

𝑖=3

) 

+𝑘𝑒− ∑ [𝑀𝑖]
𝑁
𝑖=𝑠+1 − 𝑘𝑖+[𝑀](2[𝑀] + ∑ [𝐼𝑖]

𝐿−1
𝑖=2 ) + 𝑘𝑖− ∗ (2 ∗ [𝐼2] + ∑ [𝐼𝑖]

𝐿
𝑖=3 )(Equation 4.23) 

 

Pre-nucleus oligomers 

𝑑

𝑑𝑡
[𝑀𝑖] =  𝑘𝑛+[𝑀]([𝑀𝑖−1] − [𝑀]) + 𝑘𝑛−([𝑀𝑖+1] − [𝑀𝑖])  (Equation 4.24) 
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Nucleus           

𝑑

𝑑𝑡
[𝑀𝑠] =  𝑘𝑛+[𝑀][𝑀𝑠−1] − 𝑘𝑒+[𝑀][𝑀𝑠] + 𝑘𝑒−[𝑀𝑠+1] + 𝑘𝑛−[𝑀𝑠]  (Equation 4.25) 

 

Post-nucleus fibres 

𝑑

𝑑𝑡
[𝑀𝑖] =  𝑘𝑒+[𝑀]([𝑀𝑖−1] − [𝑀]) + 𝑘𝑒−([𝑀𝑖+1] − [𝑀𝑖])   (Equation 4.26) 

 

Fibre length N 

𝑑

𝑑𝑡
[𝑀𝑁] =  𝑘𝑒+[𝑀][𝑀𝑁−1] − 𝑘𝑒−[𝑀𝑁]     (Equation 4.27) 

 

 

Isodesmic aggregates 

𝑑

𝑑𝑡
[𝐼𝑖] =  𝑘𝑖+[𝑀]([𝐼𝑖−1] − [𝑀]) + 𝑘𝑖−([𝐼𝑖+1] − [𝐼𝑖])    (Equation 4.28) 

 

Isodesmic aggregate length L 

𝑑

𝑑𝑡
[𝐼𝐿] =  𝑘𝑖+[𝑀][𝐼𝐿−1] − 𝑘𝑖−[𝐼𝐿]       (Equation 4.29) 
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4.6 Supplementary information 

ΔHe = 50 : ΔSe = 138 ΔHe = 100 : ΔSe = 301 

Activation 

Energies 

Rate constants Activation 

energies 

Rate constants 

En+ -1.0 kn+ 2.9 x 105 En+
 0 kn+

 9.2 x 105 

En- 53 kn- 54 En- 74 kn- 8.6 

Ee+ 7.5 ke+ 3.1 x 105 Ee+
 -30 ke+

 2.1 x 104 

Ee- 58.5 ke- 7.4 x 10-2 Ee-
 70 ke-

 8.1 x 10-4 

ΔHe = 150 : ΔSe = 472 ΔHe = 200 : ΔSe = 644 

Activation 

energies 

Rate constants Activation 

energies 

Rate constants 

En+ 0 kn+ 3.4 x 106 En+ 0 kn+ 8.5 x 106 

En- 81 kn- 23 En- 78 kn- 60 

Ee+ -82 ke+ 5.9 x 103 Ee+ -129 ke+ 2.7 x 102 

Ee- 68 ke- 6.8 x 10-4 Ee- 71 ke- 5.1 x 10-4 

Supplementary Table 4.1: Kinetic parameters for each TH simulation in Figure 4.2a. 

Activation energies are given in kcal mol-1 rate constants are in M-1 min-1 and min-1 for 

forward and reverse steps respectively and reported at a reference temperature of 25˚C. 

ΔHe values are given in kcal mol-1 and ΔSe values are given in cal mol-1 K-1. 
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Supplementary Figure 4.1: Arrhenius plots from classical two-state analysis of 

intramolecular G4 TH profiles taken at 0.1 K min-1. The analysis was applied to the portion 

of the curve between 0.15 < 𝜃U < 0.75. The folding (kF) and unfolding (kU) rate constants 

calculated from the experimental datasets are shown as circles and squares respectively, 

while the corresponding line of best fit to each dataset are shown as solid and dashed 

red lines respectively. The equilibrium melting temperatures are at the intersections of the 

folding and unfolding lines, and the equilibrium profile can be calculated from the ratio of 

kF and kU
218. 
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Unconstrained Parameters 

ΔHe = 62 : ΔSe = 197 

Constrained Parameters 

ΔHe = 100 : ΔSe = 335 

Activation energies Rate constants Activation energies Rate constants 

En+ -24 kn+ 7.6 x 106 En+ -13 kn+ 5.2 x 106 

En- -5 kn- 8.7 x 103 En- 62 kn- 46 

Ee+ -9 ke+ 6.9 x 105 Ee+ -31 ke+ 1.7 x 104 

Ee- 53 ke- 1.2 x 10-1 Ee- 69 ke- 7.5 x 10-4 

RSS 2.6 x 10-4 Tref 25 RSS 3.7 x 10-4 Tref 25 

Supplementary Table 4.2: Kinetic parameters for each TH fit in Figure 4.9. Activation 

energies are given in kcal mol-1 rate constants are in M-1 min-1 and min-1 for forward and 

reverse steps respectively. ΔHe values are given in kcal mol-1, ΔSe values are given in cal 

mol-1 K-1 and ΔCp values are given in kcal mol-1 K-1 in the constrained fit, a CA 

concentration of 15mM was used. 
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Panel A Panel B 

Activation 

energies 

Rate constants Activation 

energies 

Rate constants 

E1 -5.4 k1 3.0 x 102 E1 -5.4 k1 3.0 x 102 

E-1 14.4 k-1 5.0 x 103 E-1 14.4 k-1 5.0 x 103 

E2 -4.0 k2 1.6 x 105 E2 -4.0 k2 2.0 x 104 

E-2 15.9 k-2 3.1 x 10-1 E-2 15.9 k-2 3.9 x 10-2 

E3 -3.8 k3 8.2 x 102 E3 -3.8 k3 8.2 x 102 

E-3 37.4 k-3 8.4 x 10-3 E-3 37.4 k-3 8.4 x 10-3 

 Tref 45  Tref 45 

Panel D Panel E 

Activation 

energies 

Rate constants Activation 

energies 

Rate constants 

En+ -12.0 kn+ 6.0 x 107 En+ -12.0 kn+ 6.0 x 107 

En- 6.0 kn- 1.7 x 104 En- 6.0 kn- 1.7 x 104 

Ee+ -12.0 ke+ 6.0 x 107 Ee+ -12.0 ke+ 6.0 x 107 

Ee- 12.4 ke- 1.7 Ee- 12.4 ke- 1.7 

Ei+ -12.0 ki+ 3.0 x 106 Ei+ -12.0 ki+ 3.0 x 104 

Ei- 1.0 ki- 9.8 Ei- 1.0 ki- 9.8 x 10-2 

 Tref 25  Tref 25 

Supplementary Table 4.3: Kinetic parameters for each TREQ simulation in Figure 4.13.  

Activation energies are given in kcal mol-1 rate constants are in M-1 min-1 and min-1 for 

forward and reverse steps respectively. Reference temperatures are in °C. 
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 Chapter 5: Mechanistic Characterization of Covalent 

Inhibition by Isothermal Titration Calorimetry Kinetic 

Competition (ITC-KC) 

5.1 Preface 

The chapter details the development of a new method to measure both the affinity 

(Ki) and reactivity (kinact) of two-step irreversible covalent inhibitors. This method is based 

around isothermal titration calorimetry (ITC), which is a technique that measures the heat 

released from chemical reactions. We use ITC to measure the velocity of an enzyme as 

a function of time while the enzyme is being inactivated by the inhibitors. We show how 

we are able to differentiate between simple inactive compounds, one-step reversible 

inhibitors, one-step irreversible inhibitors, and two-step irreversible inhibitors by 

performing two injections of enzyme into a mixture of substrate and inhibitor. We use 

simulations with random noise to determine the range of Ki and kinact values that this 

method can accurately measure and compare it to conventional inhibitor concentration-

dependent progress curve (IDPC) analysis and time-dependent IC50 (TDIC50) analysis. 

Furthermore, we identified a systematic error in TDIC50 analysis, and provide a new way 

of fitting this data to remove the error. We use this new technique to study 19 inhibitors, 

10 of which have different covalent warheads, and 10 of which have different scaffolds. 

We discuss how the different warheads and scaffolds change both the affinity and 

reactivity of the molecules. The experimental ITC data from this chapter were all collected 

by Felipe Venegas. The IDPC analysis and synthesis of the compounds was done by 

Guanyu (Chris) Wang and Julia Stille. I performed all of the analysis and simulations of 

the ITC experiments, along with the comparisons to both IDPC and TDIC50. Finally, Prof. 

Anthony Mittermaier and I wrote the manuscript, and I have adapted it for this thesis. 
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5.2 Abstract 

Covalent inhibitors are increasingly sought after in drug discovery efforts due to their 

potential for high potency and specificity. Unlike non-covalent inhibitors which usually bind 

in a one-step mechanism, covalent inhibition typically requires at least two steps: 

formation of a non-covalent intermediate complex, followed by formation of a covalent 

bond, which locks the complex together. Rational optimization of covalent inhibitors 

requires quantitative information on both these steps, namely Ki, the dissociation affinity 

constant for the non-covalent complex and kinact, the first order rate constant for covalent 

bond formation. Current methods for measuring these parameters are technically 

demanding, time consuming, and are not well suited for routine insertion into drug 

discovery pipelines. We have developed a new approach for measuring Ki and kinact using 

isothermal titration calorimetry kinetic competition (ITC-KC) that overcomes many of 

these challenges. The technique measures the heat released by catalysis, making it a 

nearly universal approach, since virtually all enzymatic reactions produce a measurable 

signal. Furthermore, by measuring heat flow, our new ITC-KC method circumvents the 

weaknesses of current methods as it can measure enzyme activity directly and not 

through product formation or substrate depletion. We applied ITC-KC to a library of 19 

potential inhibitors of 3CLpro from SARS-CoV-2, obtaining results consistent with 

traditional inhibitor concentration dependent progress curve analyses. The ITC-derived Ki 

and kinact parameters shed light on the complex interplay between the warhead and 

scaffold portions of covalent inhibitors and the affinity of the non-covalent intermediate 

complex and rate of covalent bond formation. 

 

5.3 Introduction 

Covalent inhibitors, which form covalent chemical bonds with their enzyme targets, 

have been historically disfavoured in drug development campaigns due to concerns over 

off-target effects. However, it is becoming increasingly recognized that covalent inhibitors 

can offer superior specificity, affinity, and residence times, compared to non-covalent 

drugs291, 494. In fact, several common medications have been found to be covalent drugs 

years after their initial discovery, including aspirin and penicillin495. There is now an 

increasing interest in discovering new covalent drugs for a wide variety of diseases495. 
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However, there are currently barriers to developing these molecules. A crucial early step 

in the drug development process is the experimental characterization of potential hits291. 

This information is required to understand how changes in the chemical structure of a 

molecule alter its potency, and ultimately guides the optimization of hits into lead 

compounds and drug candidates. The approaches typically used to characterize 

structure-activity relationships in non-covalent inhibitors do not transfer well to covalent 

ones, due to fundamental differences in their binding mechanisms. 

Most non-covalent inhibitors bind to their targets in a one step reaction, 

𝐸 + 𝐼

𝑘𝑜𝑛  
→  

𝑘𝑜𝑓𝑓
←  𝐸𝐼       (Scheme 5.1) 

where kon and koff are the kinetic rate constants for association and dissociation, and E, I, 

and EI are the enzyme, inhibitor, and inhibited complex, respectively. The experimental 

metric of potency is the equilibrium dissociation constant of the enzyme/inhibitor complex 

(Ki=koff/kon), where lower values indicate tighter binding. The value of Ki is usually obtained 

by measuring enzyme activity as a function of inhibitor concentration. The concentration 

of inhibitor required to reduce activity by 50% is referred to as the IC50, which can be 

converted to a Ki value using the Cheng-Prusoff equation289. In contrast, covalent 

inhibitors bind their targets in at least two steps according to, 

𝐸 + 𝐼

𝑘𝑜𝑛  
→  

𝑘𝑜𝑓𝑓
←  𝐸𝐼

𝑘𝑖𝑛𝑎𝑐𝑡
→   

𝑘𝑟𝑒𝑣   
←   

𝐸 − 𝐼     (Scheme 5.2) 

where they first establish a non-covalent intermediate complex with the target (EI) and 

subsequently form a covalent chemical bond with it (E–I). In this case, the dissociation 

constant Ki=koff/kon refers to the affinity of the noncovalent intermediate while the first 

order rate constants kinact and krev describe covalent bond formation and breakage, 

respectively. These molecules often react slowly, on the timescale of minutes or hours. 

Thus, potency can depend as much on the rate of formation as it does on the stability of 

the E–I state, since tight binding is meaningless if the covalently bound complex does not 

form on a therapeutically relevant time scale. For irreversible covalent inhibitors, the 

stability of the E–I state is effectively infinite, so the key property that distinguishes a good 

irreversible inhibitor from a poor one is the rate of formation of the E–I complex. 
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Optimizing covalent drugs for rapid E–I formation is complicated by the fact that 

there are distinctly different ways in which altering an inhibitor structure can affect binding 

kinetics. For example, a certain change that accelerates the formation of the covalently 

bound species (E-I) may do so by stabilizing EI (decreasing Ki), by increasing the rate of 

covalent bond formation (increasing kinact), or by any changes in both parameters, 

possibly opposing ones, that result in a net increase in the overall rate of inhibition. Thus 

to establish meaningful structure activity relationships, we must be able to measure both 

Ki and kinact for covalent drug candidates. Currently, most studies employ one of two 

approaches to obtain this information296: The rate of E–I formation can be determined as 

a function of inhibitor concentration, [I], and the dependence analyzed by a linearized 

Kitz-Wilson plot or non-linear least squares fitting to give Ki and kinact
496. Alternatively, the 

dependence of IC50 values on incubation time can be fitted to yield these parameters497. 

However, these are time-consuming, labour-intensive, and technically challenging 

experiments. They involve running multiple enzyme assays (>10) for each inhibitor. As 

elaborated below, the data points most critical for accurate parameter estimation tend to 

be the least well defined. This weakness becomes increasingly acute for potent inhibitors 

with rapid kinact values. Furthermore, commonly applied analysis techniques lead to 

systematic errors in the parameters extracted using the IC50 approach. Finally, only a 

subset of enzymes have readily available continuous (real-time) assays. Otherwise, one 

must use discontinuous assays in which ancillary techniques such as chromatography302, 

electrophoresis301, or mass spectrometry498 are employed to quantify substrates and 

products. This adds considerable time and expense to the analysis and limits the number 

and accuracy of data points that can be collected. Consequently, mechanistic 

characterization is not routinely applied to covalent inhibitors, limiting their 

advancement499. 

We have developed a new approach for measuring Ki and kinact values of covalent 

inhibitors that addresses many of the shortcomings of current methods. It is based on 

isothermal titration calorimetry (ITC), which was originally developed to measure the 

thermodynamics of host-guest interactions, but is increasingly used to characterize 

enzyme kinetics303, 500. ITC detects in real time the heat that is absorbed or released when 

a titrant in a syringe is injected into an analyte in the sample cell. In our assay, enzyme in 
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the syringe is added to a sample cell containing both substrate and inhibitor, which 

compete kinetically to produce either catalysis or inhibition, respectively. Thus, we refer 

to this as a kinetic competition, or ITC-KC experiment. Since virtually all chemical 

reactions absorb or release heat, ITC is an essentially universal enzyme assay303. It can 

be used with natural substrates under near-physiological conditions, even with 

spectroscopically opaque solutions, and does not require downstream separation of 

substrates and products501. ITC detects heat flow even while injections (typically 1-80 

seconds) are taking place, giving it many of the benefits of stopped-flow and rapid mixing 

devices306. Furthermore, ITC directly measures the instantaneous rate of catalysis. This 

contrasts with virtually all other enzyme assays in which substrate or product 

concentrations are measured, and reaction rates are calculated indirectly from time-

dependent changes in concentration. This difference leads to substantial advantages in 

quantifying changes in enzyme activity while inhibitors are in the process of binding307. 

As proof of principle, we applied our ITC-KC method to a library of 19 potential 

inhibitors of the 3C-Like protease (3CLpro) from SARS-CoV-2 we synthesized as part of 

our ongoing efforts to develop new COVID-19 and pan-coronavirus therapeutics502. 

3CLpro cleaves the viral polyprotein in a critical step of the replication cycle, and is the 

target of the clinically-approved drugs Paxlovid (Pfizer)503 and Xocova (Shionogi)504. The 

ITC-KC experiment characterized each inhibitor in about an hour with just two injections 

of enzyme. Fortunately, the technique is suitable for automation, and using an auto 

PEAQ-ITC instrument (Malvern Panalytical), we could perform an initial analysis of the 

entire panel in under 24 hours. Results from the ITC-KC assay compared favourably with 

those of traditional fluorescence-based enzyme assays, providing validation for the 

method. Counter to our expectations, the data showed that both the reactive warhead 

and the scaffold portions of the molecules contribute to both the stability of the non-

covalent intermediate (Ki) and the rate of covalent bond formation (kinact), shedding new 

light on structure activity relationships for these important molecules. 
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5.4 Results 

5.4.1 The isothermal titration calorimetry kinetic competition (ITC-KC) experiment   

In the ITC-KC experiment, the syringe of the calorimeter contains a solution of 

enzyme, while the sample cell contains either the substrate alone or a mixture of substrate 

and inhibitor. Two short (5 seconds) injections of enzyme are made, spaced roughly 30 

minutes apart, and the differential heat flow to the sample cell (dQ/dt) is measured as a 

function of time. Simulated traces are shown in Figure 5.1 to illustrate the types of data 

that are expected for different inhibition strengths and mechanisms, based on the 

Michaelis-Menten parameters (Supplementary Figure 5.1 and Supplementary Table 5.1) 

we extracted for the 3CLpro system. A simulated ITC trace for the negative control with no 

inhibitor is shown in Figure 5.1a. The deflection of the ITC signal following the first 

injection at t=10 minutes reports the heat flow due to the enzymatic reaction. Endothermic 

reactions produce positive deflections (as for 3CLpro and simulated here), while 

exothermic reactions produce negative ones. The magnitude of the deflection is directly 

proportional to the velocity of the reaction according to303 

𝑑𝑄

𝑑𝑡
(𝑡) = −𝜈(𝑡) × ∆𝐻𝑟 × 𝑉𝑐𝑒𝑙𝑙      (Equation 5.1) 

where ν(t) is the reaction velocity, Vcell is the volume of the cell (200 μL in this case), and 

ΔHr is the molar enthalpy of the reaction, which can be determined by dividing the total 

amount of heat absorbed (area of the peak) by the amount of substrate initially in the cell.  

Thus, ITC traces provide quantitative, real-time readouts of enzymatic activity. The 

simulated heat signal decays in Figure 5.1a, returning to baseline after about 10 minutes, 

as all the substrate is consumed. The second injection of enzyme at about 45 minutes 

therefore produces no heat signal, since there is no substrate remaining at that time. The 

shape of the first peak provides enough information to determine the Michaelis Menten 

enzymatic parameters, Km and kcat, for the enzyme; the displacement (dQ/dt) gives the 

instantaneous velocity, ν(t), while the fraction of substrate remaining at any time, t, is 

given by the area of the peak to the right of t divided by the area of the entire peak305. In 

practice, we fit the peak shapes using the ordinary differential equation solver routines in 

MATLAB, which also take into account the finite response time of the calorimeter306. 
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Figure 5.1: Simulated Isothermal Titration Calorimetry Kinetic Competition (ITC-KC) 

traces. a) No-inhibitor control. b) One-step rapid equilibrium with Ki = 100, 50, 20, and 

10uM. c) Two-step rapid pre-equilibrium with Ki = 50uM and kinact = 1e-2, 2e-2, 3e-2, and 

5e-2 s-1. d) Two-step rapid pre-equilibrium with Ki = 100, 50, 20, and 10uM and kinact = 

3e-2 s-1.  The concentration of inhibitor was set at 50uM for all simulations. Colours 

represent the different simulations listed in order: the first simulation is blue, the second 

is red, the third is orange, and the fourth is purple. 

ITC-KC data obtained when the enzyme is injected into substrate/inhibitor mixtures 

fall into several different categories. I) Inactive compounds give traces identical to that of 

the negative control (Figure 5.1a). II) Compounds that rapidly and reversibly bind to the 

enzyme lead to shorter, elongated ITC peaks. The tighter the binding, the lower the initial 

velocity and the longer it takes the enzyme to complete the reaction, leading to broader 

peaks (Figure 5.1b). Nevertheless, once the signal returns to the baseline, all the 

substrate has been consumed, therefore the second injection of enzyme produces no 

peak. An exception occurs when the second injection is made before the first peak has 
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returned to the baseline and some substrate remains (purple curve of Figure 5.1b). In this 

case, the second injection does produce a small peak. This can be avoided by increasing 

the spacing between the injections, increasing the amount of enzyme (to accelerate the 

reaction) or reducing the amount of inhibitor in the cell. These adjustments are not strictly 

necessary, as the analysis can be applied in either case. However, they are 

recommended, to ensure that all of the substrate is truly consumed in the first peak. 

Conversely, compounds that completely inactivate the enzyme give peaks with 

much smaller areas, corresponding to less substrate cleavage than in I or II. In these 

cases, the rapid return of the ITC signal to the baseline is largely due to inhibition of the 

enzyme rather than exhaustion of the substrate. Consequently, the second injection 

produces a similar peak to the first, since there is substrate remaining in the sample cell 

(Figure 5.1c/d). This gives a simple visual test for the nature of inhibition; the presence of 

a second peak after the first returns to baseline clearly indicates that the inhibitor fully 

inactivates the enzyme on the seconds or minutes timescale. III) When EI is weakly 

populated (Ki>>[I]), the inhibitor does not instantaneously inactivate the enzyme when 

they are first mixed. Instead, the enzyme becomes progressively inhibited over time, 

following second order kinetics with a rate constant given by kinact/Ki
296. Thus the initial 

height of the ITC peak is identical to the negative control and returns to baseline in a 

manner that depends on the value of kinact/Ki. (Figure 5.1c). IV) When E and EI are in 

rapid equilibrium and EI is substantially populated, the enzyme is immediately partly 

inhibited, leading to an ITC peak that is initially lower than the negative control by an 

amount that depends on the value Ki. The enzyme then becomes progressively more 

inhibited, and the ITC signal returns to baseline at a rate that depends on the value of 

kinact (Figure 5.1d). Thus, for type II data, only the value of Ki can be extracted, for type III 

data, only the value of kinact/Ki can be determined, and for type IV data, the values of both 

Ki and kinact can be determined. 
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Figure 5.2: Chemical structures of the inhibitor library. 1a-10a contain the same chemical 

scaffold with different covalent warheads. 1a-1j have the same covalent warhead with 

different chemical scaffolds. 

5.4.2 Mechanistic characterization of 3CLpro inhibitors 

To test our ITC-KC method, we selected a subset of compounds we had previously 

reported as potential 3CLpro inhibitors502. These 19 molecules all share the same 

peptidomimetic core, shown in black in Figure 5.2. The first 10 molecules contain a 

cyclohexyl group at the R' position (blue). 9 of these bear different covalent warheads at 

the R position (red). Compound 2a is the well-studied non-covalent inhibitor X77505 with 

an imidazole at this location. The next nine molecules all contain a vinyl sulfonamide 

warhead with various replacements of the cyclohexyl group on the scaffold. In our 

nomenclature, the warheads at R are labelled 1 through 10 and the substitutions at R' are 

labelled a through j. This sampling of chemical space provides us with an opportunity to 
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separately evaluate the influence of the reactive warhead and the scaffold on the inhibition 

mechanism. 

We applied ITC-KC to the library of compounds described above (Figure 5.2) in an 

overnight experiment. No-inhibitor controls with 3CLpro in the syringe and only substrate 

(a short peptide containing a native SARS-CoV-2 polyprotein cleavage site) in the sample 

cell were included in the series. The resulting ITC traces (Supplementary Figure 5.1) were 

fit to a Michaelis-Menten enzyme kinetic model, yielding the parameters (Km= 290 ± 60 

μM, kcat = 2.2 ± 0.3 s-1) which are close to the ranges of values previously reported for this 

enzyme506-510. For the inhibitors, experiments were initially performed with [I] = 50 μM. A 

second overnight experiment was then performed with [I] of either 10 or 100 μM; those 

compounds showing little inhibition with [I] = 50 μM were remeasured at a higher 

concentration while those giving substantial inhibition with [I] = 50 μM were remeasured 

at a lower concentration. 

The ITC-KC data at two inhibitor concentrations were analyzed simultaneously 

according to Scheme 5.2, yielding values of Ki, 1/Ki, kinact, kinact/Ki, and the corresponding 

experimental uncertainties for each compound (see Materials and methods, Figure 5.3, 

and Table 5.1). The covalent inhibition type (I, II, III, or IV) was then assigned based on 

the relative values of the parameters and their uncertainties. A parameter was considered 

ill-defined and not significantly different from zero when its uncertainty was larger than its 

value. As summarized in Table 5.1, compounds were assigned as type I (inactive) when 

1/Ki, kinact, and kinact/Ki were all ill-defined. Note that 1/Ki was used in this test, since its 

value is zero for compounds that do not interact, in contrast to Ki, whose value is infinite 

for non-binders. Compounds were assigned as type II (rapid equilibrium only) when only 

kinact and kinact/Ki were ill-defined, and 1/Ki was well-defined. Type III (slow, complete 

inhibition with negligible EI formation) was assigned when 1/Ki and kinact were ill-defined 

and kinact/Ki was well-defined. Type IV (slow, complete inhibition with substantial EI 

formation) was assigned when all the parameters were well-defined. As listed in Table 1, 

the library contained two type I compounds (with no reported parameters), two type II 

compounds (with reported Ki values), two type III compounds (with reported kinact/Ki 

values) and thirteen type IV compounds (with reported kinact and Ki values). 
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Figure 5.3: Baseline corrected experimental ITC traces for all compounds. Concentrations 

and compound names are shown on each plot individually. Black lines represent baseline 

corrected experimental data, red lines represent the best-fit parameters for the pre-

equilibrium irreversible inhibition model described in the methods section. 

 

 



 196 

Table 5.1: Kinetic constants calculated for each inhibitor.  Errors were calculated as 

described in the Materials and methods. Fitted parameters which had errors larger than 

their mean value are not reported. (*) Asterisk indicates parameters which were found 

from IDPC analysis. 

To validate our results, we also performed traditional inhibitor-dependent progress 

curve (IDPC) analysis for five of the compounds in our library using a continuous FRET-

based assay (Figure 5.4)296, 496. These values were largely aligned with the ITC-KC results 

(Table 5.1). The compound with largest kinact and kinact/Ki values according to ITC-KC (1b, 

710-2 s-1, 1600 M-1 s-1) also had the largest kinact and kinact/Ki values according to IDPC 

(1.510-2 s-1, 900 M-1 s-1), while the compound with the smallest kinact value (6a, 310-4 s-

1) showed essentially no covalent bond formation in the IDPC analysis. The compound 

with the largest Ki value according to ITC-KC (1h, 40 μM) also had the largest Ki value by 

IDPC (100 μM). The Ki values of the rest of the compounds varied between 18 and 31 

Compounds kinact (s-1) Ki (µM) 1/Ki (µM-1)  kinact/Ki 

1a 3.0e-2 ± 0.5e-2 18 ± 4 6e4 ± 1e4  1600 ± 100 

1a* 1.2e-2 ± 0.3e-2 14 ± 4 7e4 ± 2 900 ± 300 

2a - 1.9 ± 0.1 5.3e5 ± 0.3e5  - 

3a  3.5e-2 ± 0.1e-2 27 ± 2 3.8e4 ± 0.3e4  1340 ± 70 

3a* 7e-3 ± 1e-3 8 ± 2 1.3e5 ± 0.3e5 900 ± 300 

4a -  - -  - 

5a - 450 ± 40 2.2e3 ± 0.2e3  - 

6a  3e-4 ± 2e-4 31 ± 1 3.2e4 ± 0.1e4  11 ± 7 

6a* - 6 ± 1 -  

7a - - -  - 

8a  - - -  30 ± 10 

9a  - - -  21 ± 9 

10a  1.81e-3 ± 0.07e-3 39 ± 3 2.6e4 ± 0.2e4  46 ± 3 

1b  7e-2 ± 1e-2 20 ± 5 5e4 ± 1e4  3700 ± 300 

1b* 1.5e-2 ± 0.4e-2 6 ± 2 1.7e5 ± 0.6e5 3000 ± 1000 

1c  4.1e-2 ± 0.4e-2 17 ± 3 6e4 ± 1e4  2400 ± 200 

1d  9e-2 ± 1e-2 18 ± 4 6e4 ± 1e4  5200 ± 300 

1e  1.9e-2 ± 0.2e-2 120 ± 20 9e3 ± 1e3  163 ± 8 

1f  4.8e-2 ± 0.4e-2 10 ± 2 1.0e5 ± 0.1e4  4500 ± 300 

1g  4e-2 ± 1e-2 700 ± 300 1.5e3 ± 0.6e3  48 ± 3 

1h  2.8e-2 ± 0.4e-2 40 ± 7 2.6e4 ± 0.4e4  710 ± 30 

1h* 1.3e-2 ± 0.8e-2 100 ± 77 1.0e4 ± 0.7e4 100 ± 100 

1i  1.6e-2 ± 0.5e-2 240 ± 50 4.4e3 ± 0.9e3  66 ± 3 

1j  5.6e-2 ± 0.8e-2 15 ± 3 7e4 ± 1e4  3600 ± 200 
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μM according to ITC-KC and between 6 and 14 μM according to IDPC. The overall 

agreement of ITC-KC and IDPC kinact/Ki values (r=0.99, Supplementary Figure 5.2c) was 

higher than the agreement of Ki (r=0.78, Supplementary Figure 5.2b) or kinact (r=0.81, 

Supplementary Figure 5.2b) values obtained from the two methods, which is consistent 

with the results of simulations, described below, which showed that the accuracy of IDPC-

derived kinact/Ki values is much better than that of Ki or kinact, alone. 

 

Figure 5.4: Experimental Inhibitor Dependent Progress Curve (IDPC) data. a) Compound 

1a. b) Compound 3a. c) Compound 6a, IDPC analysis could not be run due to low kobs so 

Dixon analysis was used instead511. d) Compound 1f. e) Compound 1h.  

5.4.3 Comparison of ITC-KC with traditional methods 

Mechanistic information on covalent inhibitors has historically been obtained by 

mixing enzyme, substrate, and various concentrations of inhibitor and monitoring the 

formation of product over time. When a continuous assay is available for the enzyme of 

interest, the reaction can easily be sampled at a large number of time points, and the data 

are analyzed in terms of inhibitor concentration-dependent progress curves (IDPCs)296, 

496. When no continuous assay is available, typically many fewer time points are taken, 

and a series of time-dependent IC50(t) values are calculated as input for a TDIC50 

analysis296, 497. To quantify the performance of our new ITC-KC method relative to these 
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techniques, we have performed extensive simulations of the three approaches. We found 

that ITC-KC most accurately reproduced the correct Ki and kinact values in all the 

simulations, sometimes by a large margin. IDPC produced slightly more accurate kinact/Ki 

ratios under some, but not all, conditions tested. Furthermore, we found that the standard 

analysis method used for TDIC50 datasets introduces large systematic errors in the 

extracted Ki, kinact, and kinact/Ki values. This can be corrected with a simple modification of 

the fitting procedure. However, even with the improved fitting, TDIC50 simulations 

produced the least reliable values, which is unsurprising given the smaller number of data 

points collected in these experiments. 

IDPC (and TDIC50) experiments are performed under conditions where the 

uninhibited progress curves are linearly increasing, i.e. the rate of catalysis is constant 

throughout the experiment. However, in the presence of inhibitor, the enzyme gradually 

loses activity, leading to a curved profile that becomes horizontal after the enzyme is fully 

inactivated (Fig 3a). The shape of the progress curve measured by fluorescence is given 

by296 

𝐹𝑡 = 𝐹0 +
𝑣𝑖

𝑘𝑜𝑏𝑠
∗ (1 − 𝑒−𝑘𝑜𝑏𝑠∗𝑡)    (Equation 5.2) 

where kobs is the rate of formation of the E-I complex and νi is the initial slope of the curve, 

Ft is the fluorescence at time t and 𝐹0 is the background fluorescence. The value of kobs 

depends on both the population of the EI intermediate (which is related to [I] and Ki) and 

the rate of covalent bond formation, kinact, according to: 

𝑘𝑜𝑏𝑠 =
[𝐼]

[𝐼]+𝐾𝑖(1+
[𝑆]
𝐾𝑚

)
𝑘𝑖𝑛𝑎𝑐𝑡     (Equation 5.3) 

Thus a plot of kobs versus [I] is hyperbolic with a maximum value of kinact and is half-

maximal when [I]=Ki(1+[S]/Km) (Figure 5.4a,b,d,e, Figure 5.5b). The values of kinact and Ki 

can then be extracted from a Kitz-Wilson linearized plot496 or by non-linear least-squares 

fitting296. A major technical challenge is that data must be obtained with [I] > Ki(1+[S]/Km) 

in order to define the hyperbola. However, under those conditions, the enzyme is already 

mostly in the EI inhibited state at t=0, meaning that very little product is formed at all and 

these data points suffer from low signal to noise ratios. 
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In a TDIC50 analysis, the IC50 depends only on Ki at t=0. At longer times, the value 

of IC50 decreases in a Ki- and kinact-dependent manner, reaching zero after an infinitely 

long incubation (Figure 5.5g). The shape of the time-dependent IC50 profile is given by497:  

𝐼𝐶50(𝑡) = 𝐾𝑖 ∗ (1 +
[𝑆]

𝐾𝑚
) ∗ (

2−2𝑒
−𝜂𝐼𝐶50

∗𝑘𝑖𝑛𝑎𝑐𝑡∗𝑡

𝜂𝐼𝐶50∗𝑘𝑖𝑛𝑎𝑐𝑡∗𝑡
− 1)    (Equation 5.4) 

𝜂𝐼𝐶50 =
𝐼𝐶50(𝑡)

𝐾𝑖∗(1+
[𝑆]

𝐾𝑚
)+𝐼𝐶50(𝑡)

       (Equation 5.5) 

The value of IC50(t) appears on both the left- and right-hand sides of Equation 5.8, 

thus its value cannot be computed directly from values of Ki and kinact. In order to extract 

these parameters from a fit of experimental IC50(t) values, the experimental values are 

used in place of IC50(t) in Equation 5.9, and the values of Ki and kinact are varied so that 

the left-hand side of Equation 5.8 matches the experimental values as closely as 

possible497. A technical challenge here is that IC50(t) values must be measured after very 

short incubations in order to confidently define the values of Ki and kinact. However, very 

little product is formed after such short incubations, therefore these IC50(t) curves are 

poorly defined and the extracted IC50(t) values are inaccurate (Figure 5.5f/g). 

We calculated 1000 sets of synthetic experimental data for IDPC,TDIC50, and ITC-

KC experiments, using simulated noise that matched the amplitude and time correlations 

of our actual data sets, setting Ki=10 μM and kinact=0.1 (Figure 5.5), 0.01 (Supplementary 

Figure 5.3), and 0.001 (Supplementary Figure 5.4) s-1. Representative synthetic raw data 

are shown in Figure 5.5a,f,k. The IDPC and TDIC50 data sets were analyzed to yield 1000 

sets of kobs and IC50(t) values, superimposed as thin black lines in Figure 5.5b and Figure 

5.5g, respectively. Each set of kobs and IC50 values was then fitted to extract the apparent 

values of Ki, kinact, and kinact/Ki, with histograms of the resulting values shown in Figure 

5.5c-e and Figure 5.5h-j. For comparison, a representative synthetic ITC-KC dataset is 

shown in Fig 3k, and histograms of the 1000 extracted parameters are shown in Figure 

5.5l-m. The Ki and kinact distributions obtained from IDPC and TDIC50 simulations are far 

broader than those obtained using the ITC-KC method. For IDPC experiments, this is 

largely due to the large uncertainties in kobs values obtained with large [I], visualized in the 

wide spread of the black lines in Figure 5.5b, and discussed above. For TDIC50, the 

problem is two-fold. Firstly, the approximation of using experimental IC50(t) values in the 

right-hand side of Equation 5.8 leads to large systematic errors, such that extracted Ki 
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and kinact parameters (yellow histograms in Figure 5.5h,i) are about 10-fold smaller than 

the true values. We find this can be partly corrected by a numerical, self-consistent 

solution of Equation 5.8 (blue histograms in Figure 5.5h,i). Even then, most of the 

extracted Ki and kinact are still far from the correct values, due to the sharp decay of the 

IC50(t) curve and high uncertainty of the IC50(t) values at short times, as discussed above 

(Figure 5.5g). In contrast, the distribution of IDPC-derived kinact/Ki values (Figure 5.5e) is 

much narrower than those of the individual Ki and kinact values, and slightly narrower than 

the corresponding ITC-KC distribution (Figure 5.5n). This is because the kinact/Ki ratio is 

equal to slope of the kobs vs [I] curve at low [I], which is much better defined than the 

asymptote at high [I] (Figure 5.5b). For TDIC50, the approximate approach systematically 

underestimates kinact/Ki, while the self-consistent calculation produces a distribution that 

is centred on the correct value (Figure 5.5j) and is only slightly wider than ITC-KC 

distribution (Figure 5.5n). Simulations with kinact=0.01 s-1 produce similar results 

(Supplementary Figure 5.3). The IDPC and TDIC50 Ki and kinact distributions are narrower 

than with kinact=0.1 s-1, but still substantially more broad than those of ITC-KC. For TDIC50, 

the approximate solution to Equation 6 leads to large underestimations of Ki, kinact, and 

kinact/Ki which are rectified by the self-consistent numerical approach. Finally, in 

simulations with kinact=0.001 s-1, ITC-KC outperformed IDPC and TDIC50 in reproducing 

correct Ki, kinact, and kinact/Ki (Supplementary Figure 5.4). While extending the length of the 

progress curves past 15 minutes could improve the IDPC results, longer incubations push 

the system out of the linear regime and are thus not straightforward. Therefore, ITC-KC 

provides more accurate values of Ki and kinact than does either the IDPC or TDIC50 method 

over a wide range of reaction rates. 
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Figure 5.5: Comparison of IDPC, TDIC50, and ITC-KC at Ki = 10µM and kinact = 0.1 s-1. a) 

Fluorescence traces at increasing inhibitor concentrations (yellow is low [I], red I high [I]). 

Dots indicate simulated noisy data, lines indicate fits to Equation 5.2. The black line 

indicates the no-inhibitor control. b) kobs as a function of different inhibitor concentrations. 

Black lines represent 1000 samples from panel a, red line represents the true value. c-e) 

Histograms of kinetic parameters found from 1000 analyses, the red vertical line 

represents the true value. f) TDIC50 traces at different time points (fast times points are in 

yellow, long time points are in red). g) IC50 values as a function of time, black lines 

represent 1000 samples from panel f, red line represents the true values. h-i) Histograms 

of kinetic parameters found from 1000 analyses, the red vertical line represents the true 

value. k) ITC-KC plot at 10 µM inhibitor. i-n) Histograms of kinetic parameters found from 

1000 analyses, the red vertical line represents the true value. 

5.4.4 Scope of the ITC-KC experiment 

We then tested the scope of the ITC-KC experiments by analysing simulated noisy 

data generated with Ki values ranging from 10 nM to 1 mM and kinact ranging from 10-5 to 

1 s-1, with 600 data sets generated for each Ki, kinact pair (see Materials and methods). 

Relative RMSDs were calculated between the true and fitted values of Ki, kinact, and 

kinact/Ki, and are shown as contour plots in Figure 5.6a-c. The shaded areas indicate the 
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values of Ki and kinact for which ITC-KC can extract the true values to within a relative 

RMSD of 25%, and scatter plots of the true versus fitted values are shown in Figure 5.6d-

f. The method can reliably measure all three parameters over about 4 orders of 

magnitude. The tightest Ki values that allowed reliable parameter extraction were about 

100 nM. This limit is effectively set by the concentration of enzyme used in the assay, as 

it is not possible to accurately measure binding affinity when the enzyme is in large excess 

of the Ki. Thus, using lower concentrations of enzyme will enable one to characterize 

compounds with lower Ki values, but will reduce the magnitude of the heat signal. The 

optimal concentration will depend on the particular enzyme being used and the properties 

of the compounds of interest. The largest values of Ki that allowed Ki and kinact to be 

extracted separately was about 100 μM. Increasing the concentration of inhibitor beyond 

that used in these simulations (50 μM) would extend this limit, but in practice would be 

constrained by compound solubility. The values of kinact/Ki could be extracted from 

systems with even weaker Ki’s, provided that kinact was large enough to produce relatively 

rapid inhibition with a negligible population of EI (Type III curves). The smallest values of 

kinact that could be measured were roughly 10-4 s-1. In principle, this could be extended to 

even slower rates by increasing the amount of substrate and leaving longer delays 

between the enzyme injections. However, this would substantially reduce the throughput 

of the experiment. Values of Ki can be measured for arbitrarily slow kinact, as the ITC 

curves simply become Type II as the rate of the covalent step approaches zero. The 

fastest measurable kinact values were slightly above 0.1 s-1. This upper limit is set by the 

response function of the calorimeter, which is effectively the dead time of the instrument.  
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Figure 5.6: Root-mean squared deviation plots of Ki and kinact for several orders of 

magnitude. All plots are on a log scale. The contours in a/b/c represent RMSD values of 

5% (black) up to 25% (cyan). Panels d/e/f represent show the fitted parameters vs the 

real parameters used in the simulations. 

5.5 Discussion 

Our groups have previously developed approaches for using ITC to characterize the 

kinetics of inhibitor binding307, however, ITC-KC has many capabilities that these previous 

methods did not. Firstly, and most importantly, ITC-KC allows one to determine the values 

of both Ki and kinact for covalent inhibitors. Our previous approach only measured the net 

association and dissociation rates, meaning that crucial mechanistic detail was lost. 

Secondly, ITC-KC is suitable for automation, as the enzyme and substrate/inhibitor 

solutions used to fill the syringe and sample cell are stable for hours or days in 96-well 

plates. In contrast, our previous method required an enzyme/substrate mixture reacting 

at a constant rate that had to be prepared by hand immediately prior to starting the 

experiment, and therefore was not amenable to automation. More generally, ITC-KC 

offers many advantages over current approaches for quantifying the mechanisms of 

covalent and other slow inhibitors. In our simulations, ITC-KC performed much better than 

the commonly used inhibitor dependent progress curve (IDPC) approach or the time-
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dependent IC50 (TDIC50) method at determining Ki and kinact values, and nearly as well in 

determining the ratio kinact/Ki. The availability of separate Ki and kinact parameters is crucial 

for mechanism-based optimization of covalent inhibitors. Furthermore, both IDPC and 

TDIC50 require tens of enzyme assays to be performed for each inhibitor of interest296. In 

contrast, ITC-KC yields Ki and kinact in a single, hour-long experiment (plus a no-inhibitor 

control that is shared for all compounds tested). Finally, ITC is an essentially universal 

approach, in that nearly all enzymatic reactions release or absorb heat, which is detected 

by the calorimeter, meaning that this approach can be applied generally in drug 

development programs. In contrast, current approaches rely on pre-existing assays which 

are different for each enzyme. Continuous (real-time) assays are usually not possible with 

the native substrate alone; discontinuous assays are relatively time-consuming, costly, 

and necessitate the use of the TDIC50 approach which performed by far the most poorly 

in our simulations. The main drawback of the ITC-KC method is that its sensitivity 

depends on the enthalpy of the reaction (ΔHr) and the velocity of the enzyme (kcat); slower 

enzymes catalyzing more isothermic reactions will need to be present at higher 

concentrations to generate sufficient quantities of heat. For example, our ITC-KC  

experiments utilized ~1.5 μM 3CLpro during each injection (kcat=2.2 ± 0.3 s-1, ΔHr = 3.6 ± 

0.2 kcal mol-1) while the fluorescence-based IDPC experiments were performed at 40 nM. 

To some extent, the fewer number of experiments needed for ITC-KC and the cheaper 

(non-fluorogenic) substrate balance the costs of the experiments. However, higher 

concentrations of enzyme place a lower limit on the values of Ki that can be measured. It 

should be noted that much lower concentrations would be needed for more active 

enzymes. For example, prolyl oligopeptidase (kcat=42.19 s-1, ΔHr = -6.72 ± 0.06 kcal mol-

1) produces similar heat signals to the ones measured here at a concentration of just 40 

nM307. 

Our method has a number of adjustable run parameters which can be tuned to 

optimize sensitivity, dynamic range, as well as material and time requirements. These are 

i) the amounts of substrate and enzyme used, ii) the concentration of inhibitor used, and 

iii) the delays between the injections. Firstly, the concentration of substrate used should 

be greater than or equal to the Km. We find that this is the minimum requirement for 

determining Km and kcat from an ITC peak. The value of Km must be known in order to 
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account for competition between inhibitor and substrate during the reaction. The 

concentration of enzyme should be large enough to generate enough heat for accurate 

quantitation. We recommend peaks that are greater than or equal to 1 μcal s-1 in height. 

The amount of enzyme required to achieve this will vary with Km, kcat, ΔHr, and [S]. An 

important consideration is that wider ITC peaks allow the experiment to characterize more 

slowly binding inhibitors. An inhibitor must be able to completely inactivate the enzyme 

before all of the substrate is consumed on order to reliably obtain Ki and kinact values. The 

higher the initial concentration of substrate, the more time inhibitors will have to inactivate 

the enzyme. However, widening the peak also requires the injections to be further apart, 

which lengthens the experiment and reduces the throughput. Secondly, the concentration 

of inhibitor in the cells must be large enough to produce a clear effect on the ITC signal. 

For Type II (rapidly equilibrating) peaks, this means that the concentration of inhibitor 

must not be substantially lower than the dissociation constant; we find that values of [I] 

greater than about Ki/4 produce quantifiable slowing of catalysis. On the other hand, the 

inhibitor concentration must be low enough so that the enzyme can still consume all of 

the substrate in a reasonable length of time; we find that values up about 20-fold the Ki 

are suitable. Similar considerations hold for Types III and IV (slow, completely inhibited) 

peaks. In order to quantify the stability of the non-covalent intermediate EI, the inhibitor 

concentration must not be much lower than Ki. On the other hand, the concentration must 

still be low enough to maintain a population of active enzyme at the start of the 

experiment. Furthermore, the rate of E–I formation increases with increasing [I]; this rate 

should not exceed about 2 min-1 in order to be quantifiable by ITC-KC. We recommend 

performing an initial scan with a mid-range inhibitor concentration and a second scan with 

a higher or lower concentration, depending on the initial data, as was done in this study. 

Finally, the drawback to increasing the delay between injections is lengthening of the 

experiment time. Conversely, the benefit is increased tolerance to highly broadened 

peaks brought about by potent, yet incomplete inhibition of the enzyme. Ultimately, there 

is no single set of parameters that are optimized for every enzyme. We would recommend 

starting with [S] > Km and sufficient [E] to fully convert S to P with 10 to 20 minutes. If 

experimental IC50 values are available, then [I] should be set close to the upper end of 

these values if the IC50 incubation time was short (<5 minutes). If the incubation time was 
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long (>20 minutes), then [I] values of 5- to 10- fold greater than the IC50 would be 

appropriate. For a pilot experiment, leaving a generous delay between injections (60-90 

minutes) is advantageous for ensuring peaks have time to return to the baseline. As 

parameters are optimized, the delay between injections can be reduced to slightly more 

than the width of the broadest peak. Fortunately, this optimization need only be performed 

once for a given enzyme and class of inhibitors. All subsequent inhibitors within a 

chemical series can be rapidly characterized using ITC-KC with no further optimization. 

The ITC-KC screen has provided us with a comprehensive set of mechanistic data 

to better understand structure-activity relationships within our library of potential 3CLpro 

inhibitors (Fig 2 and Table 1). We tested ten different warheads in this study, all with the 

same chemical scaffold. Four of them showed complete inhibition with a well-populated 

EI intermediate (Type IV peaks): 1a (vinyl sulfonamide), 3a (alkyne), 6a (diacetyl), and 

10a (nitrile). Two showed complete inhibition with negligible EI formation (Type III peaks): 

8a (acrylate) and 9a (ethyl ester), and two showed a rapid equilibrium with no slow step 

(Type II peaks): 2a (the parent non-covalent compound X77) and 5a (vinyl ketone). As 

expected, different warheads produced very different reactivities with kinact ranging over 

more than two orders of magnitude from unmeasurably slow (5a) to slow (0.0003 s-1, 6a), 

to relatively rapid (0.035 s-1, 3a). Interestingly, the stability of the non-covalent 

intermediate EI also varied widely. The vinyl sulfonamide (1a, Ki=18 μM) bound about 10-

fold more weakly than the parent non-covalent compound (2a, Ki=1.9 μM), which has an 

imidazole group in place of a reactive group. This may be explained by the presence of 

an extra hydrogen bond formed between the enzyme and the imidazole group which has 

been seen in the crystal structure502. 5a bound about 200-fold more weakly than 2a, while 

the Type III compounds 8a and 9a bound so poorly that the population of EI was 

undetectable, indicating a highly destabilized non-covalent complex. Taken together, this 

points to an important role for the warhead in modulating the affinity of the non-covalent 

intermediate in addition to reacting to form the covalent bond. The warheads in this study 

differ in their stabilization of the non-covalent intermediate by more than an order of 

magnitude, and all are far less stabilizing than the imidazole of non-covalent 2a. 
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We also characterized 10 different scaffolds with the same vinyl sulfonamide 

warhead. All of these compounds behaved as two-step, Type IV covalent inhibitors. 

Seven of these compounds gave similar Ki values in the 10 to 40 μM range, including 1a. 

Three others bound 5- and 10-fold more weakly than 1a. Interestingly, five of the 

compounds had larger kinact values than 1a, even though they all shared the same reactive 

group. In the case of 1c, in which the cyclohexyl group on the scaffold was replaced with 

an m-chlorotolyl group, the non-covalent complex was destabilized by about 50%, but the 

warhead reacted more than twice as rapidly, leading to a slight increase in potency. The 

most potent compound we tested, 1d, formed the third most stable non-covalent 

intermediate within the library (behind 2a and 1f) and reacted the most rapidly of all 

compounds studied. These results strongly suggest that the inhibitor scaffold plays a role 

not just in stabilizing the EI and E–I complexes through non-covalent interactions, but 

also helps to position the warhead to effectively react with the target.  

 

5.6 Conclusion 

Our ITC-KC method represents a powerful new tool for characterizing covalent 

inhibition in the context of pharmacological drug and probe development. As a 

calorimetry-based method, it offers an essentially universal way to screen potential 

covalent inhibitors without the need to develop or adapt new assays for each enzyme of 

interest. Furthermore, it promises to provide more robust mechanistic parameters than 

current methods, particularly the elucidation Ki and kinact. As proof of principle, we applied 

ITC-KC to 19 rationally designed potential 3CLpro inhibitors. We collected a complete 

dataset in under 48 hours, which we validated with traditional time-dependent IC50 

measurements. Our dataset illuminated the complex interplay between the chemistries of 

the scaffold and warhead, Ki and kinact. The scaffold not only stabilizes the target/inhibitor 

complex, but also influences the rate of covalent bond formation. The warhead not only 

reacts to form a covalent bond but also participates in stabilizing the non-covalent 

intermediate complex. This highlights the need to collect mechanistic information to guide 

covalent drug design. We believe that our new ITC-KC experiment will be a valuable asset 

in meeting this need. 
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5.7 Materials and methods 

5.7.1 Protein production and purification 

SARS-CoV-2 3-chymotrypsin-like cysteine protease (3CLpro) was expressed and 

purified as previously described and stored in aliquots at -80°C502. 

 

5.7.2 ITC Experimental Conditions 

All experiments were carried out in potassium phosphate buffer with 68.5 mM 

NaCl, 1.35 mM KCl, 4 mM Na2HPO3, 1 mM KH2PO4, and 0.5% (v/v) DMSO. Inhibitors 

were dissolved into DMSO then diluted into buffer prior to the experiment. The sample 

cell contained 362 μM of the peptide Cbz-TSAVLQSGFRK (CanPeptide, Montreal, QC, 

Canada) dissolved in the phosphate buffer with either 10 μM inhibitor, 50 μM inhibitor, 

100 μM inhibitor, or DMSO. The injection syringe contained 115 μM 3CLpro dissolved in 

the phosphate buffer with 0.5 mg/mL BSA, and 1mM DTT.  

 

5.7.3 ITC Data Collection 

ITC experiments were performed on either an automated PEAQ ITC instrument, 

using a 96-well plate which was held in a temperature-controlled chamber and set at 4 °C 

or run manually on an ITC200 instrument (Malvern Panalytical Ltd, UK). Each experiment 

was run at 25 °C in high-feedback mode with a 1s signal averaging window, a stirring rate 

of 750 rpm, pre-injection delay of either 600 s (automated PEAQ-ITC) or 120 s (ITC200), 

and a reference power of 7. The syringe was held at room temperature for 10 minutes to 

allow the solution temperature to equilibrate. Two sequential injections of 2.5 μL were 

injected over a period of 5 s and measured for 2000 s each. Each inhibitor was run at two 

different concentrations, 50 μM for the initial screen and then ran at either 10 μM or 100 

μM depending on the level of inhibition. A negative control was run before each set of 

inhibitors. 3a was run on the ITC200 and all other inhibitors were run on the automated 

PEAQ-ITC. 

 

5.7.4 Kinetic simulations 

All simulations were performed with MATLAB 2023a. The differential equations 

shown below describe Michaelis-Menten kinetics and pre-equilibrium irreversible 
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inhibition. These equations were numerically integrated using MATLAB’s built in ODE 

solver ode15s.  

 

Michaelis-Menten Kinetics 

𝑑[𝑆]

𝑑𝑡
= −

𝑘𝑐𝑎𝑡[𝐸][𝑆]𝑡

𝐾𝑚+[𝑆]𝑡
      (Equation 5.6) 

 

 

𝑑[𝑃]

𝑑𝑡
= 

𝑘𝑐𝑎𝑡[𝐸][𝑆]𝑡

𝐾𝑚+[𝑆]𝑡
      (Equation 5.7) 

 

Pre-equilibrium irreversible inhibition 

[𝐸𝑆]𝑡 =
𝐾𝑖[𝑆]𝑡[𝐸]𝑡

𝐾𝑚𝐾𝑖+𝐾𝑖[𝑆]𝑡+𝐾𝑚[𝐼]𝑡
     (Equation 5.8) 

 

[𝐸𝐼]𝑡 =
𝐾𝑀[𝐼]𝑡[𝐸𝑆]𝑡

𝐾𝑖[𝑆]𝑡
      (Equation 5.9) 

 

𝑑[𝑆]

𝑑𝑡
= −

𝑘𝑐𝑎𝑡[𝐸]𝑡[𝑆]𝑡

𝐾𝑚(1+
[𝐼]

𝐾𝐼
)+[𝑆]𝑡

      (Equation 5.10) 

 

𝑑[𝑃]

𝑑𝑡
= 

𝑘𝑐𝑎𝑡[𝐸]𝑡[𝑆]𝑡

𝐾𝑚(1+
[𝐼]

𝐾𝐼
)+[𝑆]𝑡

      (Equation 5.11) 

 

𝑑[𝐼]

𝑑𝑡
= −𝑘𝑖𝑛𝑎𝑐𝑡[𝐸𝐼]𝑡      (Equation 5.12) 

 

𝑑[𝐸]

𝑑𝑡
= −𝑘𝑖𝑛𝑎𝑐𝑡[𝐸𝐼]𝑡      (Equation 5.13) 

 

𝑑[𝐸−𝐼]

𝑑𝑡
= 𝑘𝑖𝑛𝑎𝑐𝑡[𝐸𝐼]𝑡      (Equation 5.14) 
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where 𝑘𝑐𝑎𝑡and 𝐾𝑀 are the catalytic rate and the Michaelis constant respectively. 

[𝐸]𝑡 , [𝑆]𝑡, [𝑃]𝑡, [𝐼]𝑡, [𝐸𝐼]𝑡, and [𝐸 − 𝐼]𝑡  are the total concentrations of enzyme, substrate, 

product, inhibitor, non-covalently bound enzyme-inhibitor complex, and covalently bound 

enzyme inhibitor complex at time 𝑡. 𝐾𝑖 and 𝑘𝑖𝑛𝑎𝑐𝑡 are the affinity of the inhibitor and the 

reactivity of the warhead respectively.  

 

5.7.5 ITC Fitting procedure.  

The automated PEAQ ITC had two no-inhibitor controls and the ITC200 had one. 

∆𝐻𝑟   values were averaged from the no-inhibitor controls, inactive compounds, and 

competitive inhibitors of the automated PEAQ-ITC, and were found to be 3.6 ± 0.2 kcal 

mol-1. The DMSO control for the ITC200 experiments had a lower ∆𝐻𝑟 than the PEAQ-

ITC at 2.5 kcal mol-1, which was likely due to measurement errors when weighing out the 

substrate. To account for this discrepancy the concentration of substrate for experiments 

run on the ITC200 was normalized by using the ratio of the ∆𝐻𝑟 measured in the ITC200 

and automated PEAQ-ITC. All the no-inhibitor controls were fit to the Michaelis-Menten 

model to obtain the parameters kcat = 2.2 ± 0.3 s-1 and Km = 290 ± 60 μM. The pre-

equilibrium irreversible inhibition model was used for all inhibitors. Fits were initiated with 

the starting parameters of kinact = 0, 1e-3, 1e-2, 1e-1 s-1 and Ki = 1, 10, 100, 1000 μM.  

Kinetics were simulated using Equation 5.8 to Equation 5.14 with the inclusion of 

Equation 5.15 to account for dilution of the contents of the cell during the duration of the 

injection. Each species present in the model used the following equation to account for 

dilution, which was included alongside the rate equations for each mechanism. 

𝑑[𝑐𝑒𝑙𝑙]

𝑑𝑡
= [𝑠𝑦𝑟𝑖𝑛𝑔𝑒]𝑡 ∗

𝑉𝑖𝑛𝑗

𝑉𝑐𝑒𝑙𝑙∗𝑡𝑖𝑛𝑗
− [𝑐𝑒𝑙𝑙]𝑡 ∗

𝑉𝑐𝑒𝑙𝑙+𝑉𝑖𝑛𝑗

𝑡𝑖𝑛𝑗
  〈𝐹𝑜𝑟 𝑡 = 0: 𝑡𝑖𝑛𝑗〉 (Equation 5.15) 

Where 𝑉𝑖𝑛𝑗 and 𝑉𝑐𝑒𝑙𝑙 are the volume of each injection and total volume of the cell 

respectively. 𝑡𝑖𝑛𝑗 is the length of the injection. 

The instantaneous heat, ℎ(𝑡), is calculated from the enthalpy of the reaction, ∆𝐻𝑟, 

the total volume of the cell, 𝑉𝑐𝑒𝑙𝑙, and the rate of product formation, 
𝑑[𝑃]

𝑑𝑡
 , according to 

ℎ(𝑡) =  ∆𝐻𝑟 ∗ 𝑉𝑐𝑒𝑙𝑙 ∗
𝑑[𝑃]

𝑑𝑡
        (Equation 5.16) 
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The instantaneous heat generated by the reaction, ℎ(𝑡), was then convoluted with 

the instrument response function 𝑓(𝑡) according to obtain the theoretical experimental 

signal 𝑔(𝑡)306. 

𝑔(𝑡) = ℎ(𝑡) ⨂  𝑓(𝑡)      (Equation 5.17) 

A second order polynomial 𝑏(𝑡), with coefficients 𝑎, 𝑏, and 𝑐 was used to account 

for curved baselines in the experimental ITC signal, 

𝑏𝑎𝑠𝑒(𝑡) = 𝑎𝑡2 + 𝑏𝑡 + 𝑐     (Equation 5.18) 

Injection artifacts 𝑖𝑛𝑗(𝑡)  caused by mismatch between the solutions in the syringe 

and cell were determined by averaging the second injection from the no-inhibitor controls 

for each instrument and subtracted from each injection individually. 

The kinetic parameters were globally fit to all replicates by minimizing the target 

function 

𝑅𝑆𝑆 =  ∑ (
𝑑𝑄

𝑑𝑡
(𝑡𝑛) − 𝑔(𝑡𝑛) − 𝑏𝑎𝑠𝑒(𝑡𝑛) − 𝑖𝑛𝑗(𝑡𝑛))

2
𝑁
𝑛=0  (Equation 5.19) 

where the RSS is the residual sum of squared differences,  
𝑑𝑄

𝑑𝑡
(𝑡𝑛)  is the raw 

experimental data, and 𝑁  is the total number of time points. The minimization of this 

function was done in MATLAB 2023a using fminsearch. 

 

5.7.6 Statistical analysis 

We found large errors in the amount of substrate present in the ITC cell, from our 

no-inhibitor and inactive compounds. This could come from pipetting errors, or from 

enzyme diffusing out of the syringe during ITC equilibration. In order to account for this, 

errors for fitted parameters were calculated using a Monte-Carlo approach, where the 

concentration of substrate in the cell was varied according to the mean (3.6 kcal mol-1) 

and standard deviation (0.2 kcal mol-1) of the ∆𝐻𝑟 values seen in the experiments. Each 

inhibitor was fit 1000 times using different substrate concentrations drawn from a normal 

distribution with the experimental mean and standard deviation, and resampling each 

trace with replacement, resulting in 1000 different sets of kinetic parameters. The Ki and 

kinact values for each inhibitor were then taken as the mean of these fitted parameters, 

and the error was reported as the standard deviation. 
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5.7.7 ITC Noise generation 

Distinctly non-random noise from the ITC signal was observed in experimental 

residuals. This was modelled by taking the mean absolute value of the Fourier transform 

of our inactive inhibitor and no-inhibitor control residuals. Half of this Fourier transform 

was taken and multiplied by random noise with a mean of zero and a standard deviation 

of one. This was joined with its reverse conjugate and an inverse Fourier transform was 

performed to give random noise with the same frequency spectrum as the original 

residuals. Finally, noise was weighted corresponding to the standard deviation of each 

time point, measured as the standard deviation of the experimental residuals at time t. 

 

5.7.8 Inhibitor concentration-dependent progress curve simulations 

Kinetics were generated using Equation 5.8 to Equation 5.14 with the modification 

of 
𝑑[𝑆]

𝑑𝑡
= 0, which was necessary to produce linear product formation in the no-inhibitor 

control. Conversion from [P] was done with a factor of 277 Counts/μM, which was 

measured from experimental no-inhibitor controls. Random noise was added to each 

trace which had a standard deviation of 18 counts, once again taken from our no-inhibitor 

controls. Kinetics were simulated for 15 minutes in 20 second intervals, matching what 

was achieved experimentally. The concentration of substrate was 25 μM, the 

concentration of enzyme was 40 nM, and the concentrations of inhibitor was 1, 2, 3, 5, 8, 

13, 21 ,34, 55, 89 μM.  

1000 simulated fluorescence traces at each inhibitor concentration were fit to 

Equation 5.2 to obtain values of kobs. This gave 1000 values of kobs at each inhibitor 

concentration, outliers were removed from each set of kobs using MATLABs isoutlier 

function, fitting weights were used as the standard deviation (𝜎) of this set of kobs. Finally, 

1000 sets of kobs values at each inhibitor concentration were randomly sampled with 

resampling to produce 1000 sets of kobs at each inhibitor concentration. Traces were fit 

using MATLABs fminsearch function and Equation 5.3 to according to 

𝑅𝑆𝑆 =  ∑ (
𝑘𝑜𝑏𝑠(𝑒𝑥𝑝)𝑛 −𝑘𝑜𝑏𝑠(𝑐𝑎𝑙𝑐)𝑛

𝜎𝑛
)𝑁

𝑛=0

2

    (Equation 5.20) 
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 Where 𝑘𝑜𝑏𝑠(exp)  is the rate found from fitting to the Equation 5.2 to simulated 

fluorescence traces. 𝑘𝑜𝑏𝑠(calc) is the rate given by Equation 5.3 at a specific Ki and kinact, 

and 𝜎 is the standard deviation of 𝑘𝑜𝑏𝑠(exp) at a specific inhibitor concentration (n). 

 

5.7.9 Time-dependent IC50 Simulations 

Fluorescence data was generated as described above in the inhibitor 

concentration-dependent progress curves simulations, using concentrations of inhibitor 

of 0.01 to 1000 μM. Time points of 1, 3, 5, 7, 9, 11, 13, and 15 minutes were used. At 

each time point, IC50 curves were fit the five-parameter asymmetric equation below 

𝐹([𝐼]) =  𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛 +
𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛

(1+(2
1
𝑆−1)∗(

𝐼𝐶50
[𝐼]

)
𝐻
)

𝑆     (Equation 5.21) 

 Where 𝐹([𝐼]) is the fluorescence at a specific inhibitor concentration ([I]), 𝐹𝑚𝑎𝑥 

and 𝐹𝑚𝑖𝑛 are the maximum and minimum fluorescence values. H is the Hill slope, and S 

is the symmetry parameter. IC50 is the inhibitor concentration where half of the product 

is formed when compared to the no-inhibitor control. 

 1000 simulated Time-dependent IC50 experiments were ran. This gave 1000 

values of IC50(exp) at each time point, outliers were removed from each set of IC50(exp) 

using MATLABs isoutlier function, fitting weights were used as the standard deviation 

(𝜎) of this set of IC50(exp). Finally, 1000 sets of IC50(exp) values at each inhibitor 

concentration were randomly sampled with resampling to produce 1000 sets of kobs at 

each inhibitor concentration. In order to find Ki and kinact, simulated IC50(t)(sim) values 

were found by optimizing IC50(calc) in Equation 5.4 and Equation 5.5, using a specific 

kinact and Ki.  

𝑅𝑆𝑆 =  ∑ (
𝐼𝐶50(𝑒𝑥𝑝)𝑡 −𝐼𝐶50(𝑐𝑎𝑙𝑐)𝑡

𝜎𝑡
)𝑁

𝑡=0

2

    (Equation 5.22) 

Where IC50(exp)t  is the IC50 value at time t from fitting to simulated fluorescence time points 

to Equation 5.21. 𝐼𝐶50(𝑐𝑎𝑙𝑐)𝑡 is the self-conisitent IC50 value at time t at a specific Ki and 

kinact using Equation 5.4 and Equation 5.5, and 𝜎 is the standard deviation of IC50(exp)t  at 

a specific time t. 
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5.8 Supplementary information 

 

Supplementary Figure 5.1: ITC traces of no-inhibitor control. a) and b) were ran on the 

automated PEAQ-ITC over two different days. c) was ran on the ITC200 separately. The 

traces have been baseline corrected with a 2nd order polynomial baseline, and the red 

line show the best fit parameters of Michaelis-Menten kinetics as described in the 

methods section. 

 kcat (s-1) Km (μM) kcat/Km (M-1 s-1) ΔH (kcal/mol) 

PEAK-ITC (day 1) 1.9 220 8600 3.8 

PEAK-ITC (day 2) 2.5 320 8000 3.4 

ITC200 2.2 330 6700 3.6* (2.5) 

Average 2.2 ± 0.3 290 ± 60 8000 ± 1000 - 

Supplementary Table 5.1: Best fit parameters from Supplementary Figure 5.1 for each 

no-inhibitor control. See Materials and methods for the fitting procedure. Errors are 

reported as the standard deviation of the three replicates. The ITC200 control had a lower 

ΔH than the PEAQ-ITC controls, likely due to errors in measuring the substrate. The kcat 

and kinact of the ITC200 control comes from fitting the data with the corrected substrate, 

detailed in the Materials and methods. 

 

Supplementary Figure 5.2: Correlations between ITC-KC and IDPC parameters. a) Ki 

values. b) kinact values. c) kinact/Ki values. Correlation coefficients are shown on each plot. 
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Supplementary Figure 5.3: Comparison of IDPC, TDIC50, and ITC-KC at Ki = 10µM and 

kinact = 0.01 s-1. a) Fluorescence traces at increasing inhibitor concentrations (yellow is 

low [I], red I high [I]). Dots indicate simulated noisy data, lines indicate fits to Equation 

5.2. The black line indicates the no-inhibitor control. b) kobs as a function of different 

inhibitor concentrations. Black lines represent 1000 samples from panel a, red line 

represents the true value. c-e) Histograms of kinetic parameters found from 1000 

analyses, the red vertical line represents the true value. f) TDIC50 traces at different time 

points (fast times points are in yellow, long time points are in red). g) IC50 values as a 

function of time, black lines represent 1000 samples from panel f, red line represents the 

true values. h-i) Histograms of kinetic parameters found from 1000 analyses, the red 

vertical line represents the true value. k) ITC-KC plot at 30 µM inhibitor. i-n) Histograms 

of kinetic parameters found from 1000 analyses, the red vertical line represents the true 

value. 
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Supplementary Figure 5.4: Comparison of IDPC, TDIC50, and ITC-KC at Ki = 10µM and 

kinact = 0.1 s-1. a) Fluorescence traces at increasing inhibitor concentrations (yellow is low 

[I], red I high [I]). Dots indicate simulated noisy data, lines indicate fits to Equation 5.2. 

The black line indicates the no-inhibitor control. b) kobs as a function of different inhibitor 

concentrations. Black lines represent 1000 samples from panel a, red line represents the 

true value. c-e) Histograms of kinetic parameters found from 1000 analyses, the red 

vertical line represents the true value. f) TDIC50 traces at different time points (fast times 

points are in yellow, long time points are in red). g) IC50 values as a function of time, black 

lines represent 1000 samples from panel f, red line represents the true values. h-i) 

Histograms of kinetic parameters found from 1000 analyses, the red vertical line 

represents the true value. k) ITC-KC plot at 50 µM inhibitor. i-n) Histograms of kinetic 

parameters found from 1000 analyses, the red vertical line represents the true value. 
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 Discussion 

This thesis has described the development of multiple different biophysical assays, 

and has touched on the themes of kinetics, thermodynamics, bioinformatics, and drug 

discovery. This section will serve as a discussion of the results of each project, and the 

impact they have had on their fields. Some of the methods developed here have been 

used to answer other questions for collaborators or have been picked up by independent 

groups and applied to their research projects. Much of the work presented in this thesis 

was an advancement of the work previously done by members of the Mittermaier lab, and 

in a similar vein, these projects have begun to be carried on by new members of the lab. 

Each chapter’s work will be discussed as it relates to the project as well as to the broader 

research community, and future directions for each project will give a foundation for new 

researchers to continue the work from this thesis. 

 

6.1 Chapter 2 and 3 

As described in the introduction of this thesis, guanine quadruplexes are a unique 

non-canonical DNA structure which exhibit a diverse array of dynamics139. They have 

been shown to fold into a multitude of different isomers. However, the physical and 

biological implications of this polymorphism are not fully understood. Chapters 2 and 3 

were aimed at understanding these phenomena and used a mixture of different 

biophysical and bioinformatic techniques to give us fundamental insight into both the 

kinetic effects of polymorphism, and its prevalence in the human genome.  Together with 

Robert Harkness, a previous graduate student from the Mittermaier lab and co-first author 

of the manuscript adapted in Chapter 2, we began a multifaceted approach to tease out 

the kinetics and assembly mechanism of a quadruplex located in the promoter region of 

the c-MYC oncogene. This quadruplex has been studied extensively and has been shown 

to regulate c-MYC expression in E. coli199. This particular sequence contains four G-

tracts, two with four guanines each and two with three guanines. This asymmetry in G-

tract length leads to the presence of four distinct isomers. Previously, Rob had shown that 

these isomers entropically stabilize the folded ensemble, causing the wild-type ensemble 

to be more stable than any of the individual isomers210. However, questions regarding the 

exact folding mechanism of these sequences remained. Did these sequences all fold 
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through the same transition state? Or were there multiple pathways leading to different 

folded conformations?   

We addressed these questions by creating eight distinct variations of the wild-type 

sequence by substituting select guanines to inosines. This effectively allowed us to trap 

the wild-type sequence into either a single isomer (referred to as the fully-trapped 

mutants) by substituting two guanines, or into two isomers (referred to as the half-trapped 

mutants) by substituting only a single guanine. Rob showed that these mutants were good 

structural mimics using a series of NMR experiments. This was further supported by CD 

experiments, showing that each isomer was in its native parallel conformation512. After 

confirming that our mutants were appropriate mimics, I ran thermal hysteresis 

experiments to determine the folding kinetics of each isomer.  

My thermal hysteresis measurements were the key piece of evidence, which 

showed that all of the fully trapped mutants folded more slowly (lower kon), and were less 

stable (lower kon/koff), than their half-trapped counterparts (i.e. 55 folded slower and was 

less stable than both 5X and X5, 33 folded more slowly and was less stable than both 3X 

and X3). Furthermore, all the mutated sequences folded more slowly than the wild-type 

sequence. This was a key piece of information, as it allowed us to better understand the 

folding mechanism of these sequences: if all of the GR isomers fold through the same 

transition state, then they should all share the same folding rate and differ only based on 

their unfolding rate. However, this was not the case and implies the presence of individual 

pathways to each of the distinct isomers. This type of mechanism would lead to a net 

increase in the folding rate of the wild-type ensemble. We were able to further support 

this conclusion by globally fitting a model with parallel pathways to all TH datasets 

simultaneously and obtained good agreement with experimental data.  

The discovery of this net folding acceleration has important implications for the 

biological function of G4s. Firstly, it demonstrates that measuring the folding rates of 

individual G4 structures does not adequately describe the folding kinetics of an overall 

system.  Secondly, our simulations show that the initial distribution of isomers is far from 

their equilibrium populations. We show that G4s initially fold into distributions based on 

their folding rates, not their thermodynamic stability. In the case of the c-MYC quadruplex 

we studied, this meant that two isomers which were populated at about 1% at equilibrium 
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were actually both populated near 10% after initial folding. This is an important 

observation, as G4 interacting helicases have been shown to interact differently 

depending on the topology of the G4370. Furthermore, this type of redistribution was 

directly observed by our collaborators in the Schwalbe lab, who looked at the folding of 

the X3 G4 and saw fast folding followed by a slow exchange to equilibrium distributions. 

 

 

Figure 6.1: Isothermal NMR exchange experiments. An isothermal experiment for folding 

of a half-trapped c-MYC 3X G4. The NMR peak with the red fitted line corresponds to the 

33 isomer, the NMR peak with the blue fitted line corresponds to the 53 isomer. Reprinted 

from Grün et al. with permission216. 
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Our discovery that G4s containing multiple isomers leads to a net increase in the 

folding rate of the wild-type ensemble led us to ask the simple question: How polymorphic 

are quadruplexes in the human genome? The role polymorphism plays for G4s has been 

examined in a large number of papers published in recent years, where they are 

discussed as both a novel therapeutic target and important in a biological context139, 401, 

513. However, many of the bioinformatic approaches used to identify quadruplexes simply 

rank quadruplexes based on their stability, and do not give an overall indication of how 

many quadruplexes could form. Furthermore, other students from the Mittermaier lab 

found that multimeric quadruplexes cause an inherent frustrated folding landscape which 

had implications in G4 folding180, however the prevalence of these effects outside of the 

telomeric region has not been studied. To address this, we developed a new algorithm 

which was able to find G4 motifs in a sequence of DNA. We included only G4 motifs which 

contained relatively short loops, and contained no or few bulged residues.  

Our results were surprising, previous members of our lab had attempted to analyze 

the human promoters and found that 5% of G4 sequences could form more than 20 G4s, 

in contrast, we found that this number is actually much higher. In fact, some of the 

previously unidentified G4CRs that we found could form thousands of different G4 

isomers and be hundreds of nucleotides long. Furthermore, we found that these more 

polymorphic sequences were tightly clustered around the transcription start site (TSS), 

which suggests that they may be more functionally relevant than less polymorphic 

G4CRs. The reason behind this polymorphism is not understood. Some groups have 

reasoned that the presence of different isomers could be a mechanism to repair DNA 

damage366, and as the Mittermaier lab has shown, these sequences can also increase 

the stability and folding rate of the G4CR210. We were able to identify several highly 

polymorphic G4CRs which were located in the promoters of oncogenes, which could 

provide useful therapeutic targets. The multimeric nature of these G4CRs may also allow 

them to be more selectively targeted when compared to a single G4 sequence. The fact 

that this polymorphism is much more prevalent than we previously thought, along with the 

physical implications we have shown them to have provide the groundwork for future 

scientists to understand how this affects the biological context of the G4CRs. 
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6.1.1 Future directions 

Throughout Chapters 2 and 3 of this thesis, we have demonstrated both the 

prevalence of polymorphism and physical consequences on G4s in the human promoters. 

However, questions still remain such as:  

 

1) Does the net folding acceleration scale to the degree we see from our 

bioinformatic approach? We only showed this acceleration on a sequence which could 

form four isomers, however we now know that there are sequences out there which can 

form many more. In order to analyze these effects, sequences with more G4 isomers 

should be studied. These types of sequences are often hard to synthesize, but new 

enzymatic techniques may be the key to overcoming these problems514. Running the TH 

experiments on a sequence containing more G4 isomers would provide more evidence 

that this is a phenomenon that occurs more generally. Furthermore, experiments could 

be performed on RNA G4s, as they have been found to exhibit some differences in 

folding515. 

 

2) We saw a distinct trend in polymorphic G4CRs being more clustered near the 

transcription start site, as well as being more prevalent in high-order genomes. This leads 

to questions as to the evolutionary pressure to forming a G4CR. Can we explain this 

increase just based on the mutations we expect to see, or is nature purposefully creating 

these regions and if so why? This is an ongoing project in the Mittermaier lab, currently 

being pursued by Amos Zhang, who along with the Blanchette lab here at McGill 

university, is using ancestral genomic data to understand how polymorphism evolved over 

millions of years. 
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6.2 Chapter 4 

The TREQ method described in Chapter 4 represents a novel way of using existing 

experimental equipment to measure values that have been previously unobtainable. Prior 

to the development of this method, several groups have performed analyses which we 

have shown to be unreliable in practice463, 464, 470-475. In this Chapter, we described how 

we used the technique to determine the small molecule loading efficiency of polyA-CA 

fibres and made the discovery that about 33% of CA binding sites were unoccupied. This 

was initially a surprising result to us and in order to reconcile this with data taken from the 

original manuscript describing the formation of these fibres, we created a mathematical 

model to describe the multivalent assembly of these structures. In parallel with the work 

shown in this thesis, Felix Rizzuto and Casey Platnich used single molecule experiments 

to probe the assembly mechanism of these structures245. They found that isothermally 

assembled polyA-CA fibres were able to incorporate shorter strands of polyA even after 

assembling. This indicates that these fibres are, in fact, assembling with defects, which 

taken with our results, could explain why the lower occupancy is observed. 

This, however, was not the only critical information that TREQ was able to provide 

for these fibres. My colleague and collaborator Dr. Christophe Lachance-Brais, used 

TREQ to understand how functionalizing one of the faces of the CA molecule would affect 

the stability of the fibres241. Christophe tested two series of molecules, where in each 

group the length of the alkyl chain increased from two to six carbons: One using a 

negatively charged hydroxyl group, and one using a positively charged amino group 

(Figure 6.2a). We found that all of the substitutions were destabilizing to the fibres which 

may be explained in part by the entropic cost of losing one of CA’s binding faces. While 

some of the substitutions were too destabilizing to measure thermodynamics robustly, we 

were able to establish two trends in our data. 1) The hydroxyl substitutions showed 

decreasing stability with increasing chain length (Figure 6.2b). 2) The amines showed that 

C2 amine was the most stable, C3 was the least stable, and C4 and C5 had comparable 

stabilities (Figure 6.2c).  
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Figure 6.2: Thermodynamics of CA derivatives binding to polyA. a) chemical structures 

of the two series of molecules which were studied. Top, the more negatively charged 

hydroxyl series. Bottom, the more positively charged amine series. b) Thermodynamic 

parameters for amine series. c) Thermodynamic parameters for hydroxyl series. d) 

Percentage of h-binding phosphates determined by molecular dynamics simulations for 

each series as a function of the length of the alkyl chain, comparing expected results from 

the syn and anti conformations. Adapted from Lachance-Brais et al. with permission241. 

To further understand why this distinct trend was occurring in the amine group, 

Christophe turned to molecular dynamics simulations. Previously, it was impossible to 

determine the glycosidic bond angle of the adenosine molecules, as both structures were 

consistent with experimental data. However, Christophe was able to show that the syn 

angles predicted a low stability for the CAC2NH2 molecule, and the anti angles a high 

stability for this molecule, along with a valley of low stability for C4 (Figure 6.2d). When 

compared to the TREQ thermodynamic data, the trends for the anti conformation were 

more consistent with the thermodynamic results. This led to the conclusion that the polyA 

fibres form using syn glycosidic bond angles, showing once again how robust 

thermodynamic characterization of these systems can lead to a deeper understanding of 

their structure. 
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 TREQ has not just been used to study the assembly of polyA-CA fibres. An 

independent group lead by Stefano Mezzasalma and Marek Grzelczak used the 

technique to look at the thermal reversible clustering of gold nanoparticles516. They had 

previously studied this clustering and noticed the presence of thermal hysteresis517. 

TREQ allowed them to measure the thermodynamic parameters (ΔH and ΔS) of this 

clustering for the first time, and they were able to use this characterization, along with 

physical chemical theory to develop a mathematical model to describe the behavior they 

observed. This demonstrates the applicability of TREQ to different systems, as a method 

to gain robust thermodynamic information. 

 

Figure 6.3: TREQ analysis on the reversible clustering of gold nanoparticles.TREQ trace, 

with heating minima shown in red, and cooling maxima shown in blue. Arrows indicate 

the direction of the temperature ramp. b) Van ‘t Hoff analysis of the critical monomer 

concentrations in panel a. Reproduced with permission from Mazzasalma et al. with 

permission516. 

6.2.1 Future directions 

TREQ was developed as primarily a way to measure the thermodynamics of slowly 

assembling supramolecular systems. However, through our investigations it became 

clear that not only does TREQ provide a way to get these thermodynamics, but may also 

provide a robust kinetic profile of the system as well. For example, TH traces of the polyA-

CA fibres can be described well by the GS model of nucleated self assembly (Figure 

6.4a). This however, is not the case for a TREQ experiment (Figure 6.4b), where we see 



 225 

systematic deviations from the model itself. These fibres have been shown to assemble 

not only via monomer addition, but also by coagulation245. These multiple assembly 

pathways could be causing these systematic deviations from the GS fits, as they are not 

considered. It should be noted that these extra assembly mechanisms would not affect 

the thermodynamic stability of the fibres, and thus not the TREQ analysis itself. The 

benefits of running these heating and cooling cycles has been the subject of much of 

Masahiko Yamaguchi’s research in recent years, who has observed many different types 

of hysteresis loops in self-catalytic reactions518. This diverse number of patterns emerging 

from these hysteresis loops, and inability to be reproduced with simple models, indicates 

that they contain rich kinetic information which could lead to more robust characterization 

of these slowly assembling systems. 

 

 

Figure 6.4: Example kinetics fits of TH and TREQ traces. a) Fits to polyA-CA TH traces 

at 15mM CA and 1 K/min. b) Fits to polyA-CA TREQ traces at 15mM CA and 1 K/min. 

Heating traces are shown in red/orange, cooling traces are shown in blue/cyan. 

Experimental data is shown as dots and curve fits are shown as the solid lines. Residuals 

are plotted in the bottom panel of each figure. 
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6.3 Chapter 5: 

Chapter 5 represents the only unpublished research in this thesis, because of this 

no other groups have yet incorporated the KC-ITC technique into their drug discovery 

platforms. However, as shown in the chapter, the KC-ITC technique outperforms both 

IDPC analysis and Time-dependent IC50 analysis over a range of different Ki and kinact 

values. It provides a robust characterization of covalent inhibitors in a single hour-long 

experiment and can be performed using either a standard or an automated-ITC 

instrument. Within this chapter we also discovered a systematic error in Time-dependent 

IC50 analysis where we showed it would underestimate the true values. We described a 

new way of fitting this data to account for this systematic deviation. Furthermore, while 

IDPC and Time-dependent IC50 analysis have been around for many years, drug 

discovery efforts still tend to only measure either the kinact/Ki or a single IC50 value due to 

the time-consuming and costly nature of measuring the values individually519. Finally, both 

IDPC and Time-dependent IC50 analysis require the ability to measure the amount of 

product formation over time. Typically, this is done with fluorescently labelled substrates 

which can be expensive. KC-ITC measures the heat released by the enzymatic reaction 

and thus does not require spectroscopically active substrates, making it a near universal 

assay for measuring the kinact and Ki of covalent inhibitors. 

 

6.3.1 Future directions 

In recent years, the Mittermaier lab has been collaborating with the Moitessier lab 

here at McGill University to create novel covalent inhibitors of the main proteases of 

coronaviruses. Now that we have demonstrated the power of KC-ITC we need to take 

advantage of the technique to see what insights it can give us into the structure-activity 

relationships of our inhibitors. Ongoing projects include the development of inhibitors for 

3CLpro502, which was the protease studied in Chapter 5, and PLpro which is another 

protease from SARS-CoV-2 which has not been discussed in this thesis520. KC-ITC gives 

us the tool we need to start measuring the reactivity and affinity of our molecules in a 

relatively high-throughput manor, and this information will give important insight into 

developing new generations of inhibitors. 
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 Conclusion 

In conclusion, this dissertation describes the development and implementation of 

several new biophysical tools to measure biomacromolecular systems. Chapter 2 details 

the combined approach of mutagenesis, thermal hysteresis experiments, and global 

analysis to study the parallel folding pathways of the c-MYC quadruplex. This approach 

is not only of general use to the G4 community, but also allowed us to make the discovery 

that these parallel pathways accelerate the folding of this G4 by over 2.5-fold. This 

acceleration had been previously seen for proteins, but had not yet been discovered in 

G4 DNA, and has implications for the biological function of these structures. Chapter 3 

followed along with the research from Chapter 2, and described the development of the 

GReg algorithm which is the first bioinformatic algorithm for finding and classifying 

G4CRs. We observed that more polymorphic G4CRs are tightly clustered around the 

transcription start site. Chapters 4 introduces TREQ, which is the first method to allow for 

robust thermodynamic characterization of slowly assembling supramolecular systems. It 

details best-practices for setting up a TREQ experiment and describes how to correctly 

analyze the data the method produces. We show how other methods are completely 

inadequate for characterizing slowly assembling supramolecular systems, and use our 

new method to study the small-molecule loading efficiency of polyA-CA fibres. We made 

the surprising discovery that nearly 33% of the CA binding sites were unoccupied and 

developed a generalized multivalent binding model to describe the experimental data we 

observed. Finally, Chapter 5 describes my part in the Mittermaier and Moitessier labs 

ongoing effort to develop novel covalent inhibitors for the main protease of SARS-CoV-2. 

We show how one can measure both the affinity (Ki) and reactivity (kinact) of covalent 

inhibitors using a multi-injection isothermal titration calorimetry method. We showed that 

this new method provides a more robust characterization of these parameters compared 

with traditional methods and that our method can measure Ki and kinact values over 4 

orders of magnitude. We further pointed out a systematic flaw in time-dependent IC50 

analysis, and gave a solution to fitting these types of data. After characterizing 19 

molecules with different covalent warheads and scaffolds, we showed that changes in 

both of these features can have dramatic effects on both the affinity (Ki) and reactivity 

(kinact) of covalent inhibitors. 
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This thesis shows the value of combining experimental approaches and 

mathematical modelling and gives three distinct new techniques to the scientific 

community. The GReg algorithm, TREQ, and ITC-KC represent three significant 

contributions to their respective fields, some of which are already being used by 

independent research groups. 
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