
The Kronecker Product for Efficient Natural

Language Processing

Ali Edalati

Department of Electrical and Computer Engineering

McGill University, Montreal

April, 2023

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Science

©Ali Edalati, April 2023



ii



To the victims of Flight PS752

iii



Abstract

The development of Transformers has heralded a major breakthrough in deep learning

and its application. For example, modern Natural Language Processing (NLP) systems

have achieved marvelous results by utilizing Pre-trained Language Models (PLMs) as a

backbone in their structure. Most PLMs are huge models, developed by stacking several

layers of Transformers. These models are pre-trained on a massive dataset to learn a

general knowledge of natural languages.

However, there are some major challenges associated with the superior performance

of Transformer-based PLMs. Firstly, the size of these models is so huge that it is im-

possible to apply them on edge devices with limited memory, energy, and computation

capacity. Secondly, fine-tuning PLMs on downstream datasets faces two main challenges

that are crucial to address considering the ever-growing size of PLMs. First, it has be-

come more time-consuming. Second, fine-tuning requires devices with large memories

that enable training as well as storing the fine-tuned weights for each dataset.

To mitigate the mentioned issues, there has been a growing volume of research fo-

cused on two directions. In the first direction, the goal is compressing a model by reduc-

ing its number of parameters while maintaining the performance and expressiveness of

the model. This direction is named Model Compression. The second direction is Param-

eter Efficient Tuning (PET), which aims to fine-tune a model by reducing the number of

trainable parameters, which usually results in accelerated training and reduced memory

consumption.
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In this work, we use the Kronecker product in the two mentioned directions sepa-

rately. First, a Model Compression technique is developed, called Kronecker Decom-

position, that uses the Kronecker product as a backbone. This technique is applied to

Generative Pre-trained Transformer-2 (GPT-2); a PLM with few existing compressed ver-

sions. We use Kronecker Decomposition to decompose GPT-2 into Kronecker Generative

Pre-trained Transformer-2 (KnGPT2). After decomposition that initializes KnGPT2, a lim-

ited pre-training is required to retrieve the performance of the compressed model. Then,

KnGPT2 is adapted to downstream tasks by fine-tuning, similar to the uncompressed

models. Note that a proposed Intermediate Layer Knowledge Distillation (ILKD) tech-

nique is used during both the pre-training and fine-tuning stages to minimize the perfor-

mance drop of Kronecker Decomposition.

Second, we aimed to improve the performance of Adapter-based PET techniques by

incorporating the Kronecker product. Adapter-based methods are considered one of the

most successful PET techniques. Adapters are often low-rank modules that are inserted

into a model. While the model is frozen during fine-tuning, the adapters are tuned to

simulate fine-tuning of the model. Nonetheless, the low-rank nature of adapters limits

their representation power. In this work, we developed Kronecker Adapter (KronA) by

incorporating the Kronecker product in adapters to address the mentioned problem.

Finally, by providing empirical results, we show that our proposed KnGPT2 signif-

icantly outperforms DistilGPT2 as a baseline on both language modeling and the Gen-

eral Language Understanding Evaluation (GLUE) tasks. Also, we applied the proposed

Kronecker-based adapters as well as other novel PET techniques to Text-to-Text Trans-

fer Transformer (T5) to evaluate them on the GLUE benchmark. The results support our

hypothesis about the high potential of the Kronecker product in PET since our proposed

Kronecker-based modules outperformed the state-of-the-art baselines.
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Abrégé

Le développement de Transformateurs a marqué une révolution dans l’apprentissage

profond et ses applications. Par exemple, les systèmes modernes de Traitement Traite-

ment Automatique du Langage Naturel (TALN) ont obtenu des résultats merveilleux en

utilisant des Modèles de Langage Pré-entraı̂nés (MLP) comme une base de leur structure.

La plupart de ces MLP sont immenses, sont développés en empilant plusieurs couches de

Transformateurs et sont pré-entraı̂nés sur un ensemble de données massif pour appren-

dre une connaissance générale des langues naturelles.

Néanmoins, des défis majeurs sont associés à la performance supérieure des modèles

pré-entrainés basés sur les Transformateurs. Premièrement, la taille de ces modèles est

si énorme qu’il est quasiment impossible de les déployer sur des appareils périphériques

dotés d’une capacité de mémoire, d’énergie et de calcul limitée. Deuxièmement, le réglage

fin de ces MLP sur les ensembles de données en aval est confronté à deux défis cruciaux:

Tout d’abord, cette tâche peut prendre beaucoup de temps à réaliser. Aussi, le réglage fin

nécessite des appareils ayant de grandes mémoires qui permettent l’entrainement ainsi

que le stockage des poids affinés pour chaque ensemble de données.

Pour atténuer ces problèmes mentionnés, il y a eu un grand volume de recherches

axées sur deux directions. Dans le premier sens, le but est de compresser un modèle en

réduisant son nombre de paramètres tout en conservant les performances et l’expressivité

du modèle. Cette direction est connue comme Compression du Modèle. La deuxième

direction est le Tuning de Paramètres Efficace (TPE) Ceci vise à affiner un modèle en

vi



réduisant le nombre de paramètres entraı̂nables, ce qui se traduit généralement par un

entraı̂nement accéléré et une consommation de mémoire réduite.

Nous utilisons le produit Kronecker dans les deux directions mentionnées auparavant.

D’abord, une technique de Compression de Modèle est développée, appelée Décomposi-

tion de Kronecker. Cette technique utilise comme épine dorsale le produit de Kronecker.

Cette technique est appliquée au GPT-2 qui est un modèle pré-entraı̂né avec peu de ver-

sions compressées existantes. Particulièrement, nous utilisons la Décomposition de Kro-

necker pour décomposer GPT-2 en KnGPT2. Après décomposition, un préapprentissage

léger est nécessaire pour atteindre une bonne performance du modèle compressé. En-

suite, KnGPT2 est adapté aux tâches en aval par un réglage fin, similaire aux modèles non

compressés. Notez qu’une technique proposée de Distillation de Connaissances par les

Couches Intermédiaires (DCCI) est utilisée pendant les étapes de pré-entrainement et de

réglage fin pour minimiser la baisse de performance de la Décomposition de Kronecker.

Ensuite, nous avons amélioré les performances des techniques TPE basées sur des

adaptateurs en incorporant le produit Kronecker. Les méthodes basées sur les adapta-

teurs sont considérées comme l’une des techniques les plus réussies. Les adaptateurs

sont souvent des modules de bas rang qui sont insérés dans un modèle. Pendant que le

modèle est gelé pendant le réglage fin, les adaptateurs sont réglés pour simuler le réglage

fin du modèle. Cependant, la nature de bas rang des adaptateurs limite leur pouvoir de

représentation. Dans ce travail, nous avons développé KronA en incorporant le produit

Kronecker dans des adaptateurs pour résoudre le problème mentionné.

Enfin, à travers des résultats empiriques, nous montrons que notre KnGPT2 proposé

surpasse de manière significative DistilGPT2 comme référence à la fois sur la modélisat-

ion du langage et sur les tâches GLUE. En outre, nous avons appliqué les adaptateurs

proposés à base de Kronecker ainsi que d’autres nouvelles techniques TPE à T5 pour les

évaluer sur le benchmark GLUE. Les résultats confirment notre hypothèse sur le potentiel

élevé du produit Kronecker en TPE puisque nos modules basés sur Kronecker proposés

ont surpassé les performances des modèles de l’état de l’art.

vii



Acknowledgements

First and foremost, I would like to express my most profound appreciation and grati-

tude for my supervisor, Prof. James J. Clark, whose guidance, support, patience, and

encouragement have been invaluable throughout this research project. He guides all of

his students with heart. I learned a lot from his deep and vast knowledge. Also, I will

never forget his incredible compassion, understanding, and generosity.

I am deeply in debt to Prof. Warren J. Gross, Prof. Brett H. Meyer, and Prof. James J.

Clark, co-directors of McGill Edge Intelligence Laboratory (MEIL), for creating this great

lab that raises opportunities for top-notch research.

From the bottom of my heart, I would like to say a special thank you to Dr. Mehdi

Rezagholizadeh, my former supervisor during my internship at Huawei Noah’s Ark Lab-

oratory. Without his support and guidance, performing this work was not possible. Also,

I am highly grateful to Dr. Vahid Partovi Nia, my latter supervisor at Huawei Noah’s Ark

Laboratory, who had an important role in this research.

This endeavor would not have been possible without the support of Huawei Noah’s

Ark Laboratory. Also, special thanks to all of my colleagues, specifically Dr. Marzieh

Tahaei, Ahmad Rashid, and Dr. Ivan Kobyzev.

I would like to acknowledge my lab mates at MEIL and Centre for Intelligent Ma-

chines (CIM) at McGill. I wish you all the best. Specifically, Ibtihel Amara, who helped

me with writing the French abstract.

Words cannot express my gratitude to my beloved parents and sister, whose consistent

support has been the main motivation in my life.

viii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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Chapter 1

Introduction

Utilizing large Pre-trained Language Models (PLMs) in Natural Language Processing

(NLP) systems has enabled achieving State-of-the-Art (SOTA) results [Devlin et al., 2019,

Radford et al., 2019, Shoeybi et al., 2019, Yang et al., 2019]. Transformers are the main com-

ponent in the architecture of most PLMs. The most common paradigm in using PLMs is

first pre-training on a huge unlabeled dataset, then fine-tuning on a specific downstream

dataset.

One recent problem is that the ever-growing size of PLMs (from hundreds of millions

to hundreds of billions of parameters) prevents the deployment on lower-capacity de-

vices with memory, computation, and energy constraints. Examples of these devices are

smartphones and smartwatches.

In addition to the mentioned problem, large PLMs need to be adapted to downstream

tasks. On the one hand, In-Context Learning methods [Liu et al., 2022, Xie et al., 2022]

are a potential solution to adapt a pre-trained model to downstream tasks by providing

the model with several examples of a task. However, these methods notably increase the

required time, memory, and computations of the inference stage since the model should

process all of the provided examples for each inference sample. On the other hand, Full

Fine-Tuning (FT) of a pre-trained model on each downstream task usually achieves better

results without increasing the time, memory, or computations required for the inference.
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In spite of the mentioned benefits, FT of large PLMs has become remarkably time-taking,

memory-consuming, and resource-demanding due to their huge size. In addition, a sepa-

rate checkpoint of the model’s tuned weights should be stored for each downstream task,

which consumes a tremendous amount of memory [Edalati et al., 2022a].

There is one research direction called Model Compression, which aims to compress

large models by decreasing their number of parameters while maintaining their perfor-

mance. Note that by compressing a model, the required memory for storing the model

in both the training and inference phases decreases. Also, the Model Compression tech-

niques may reduce the training or inference time. The main approaches for compression

of PLMs are [Edalati et al., 2022b, Tahaei et al., 2022]: Quantization [Prato et al., 2020,

Zhang et al., 2020], Pruning [Han et al., 2016], Knowledge Distillation (KD) [Hinton et al.,

2015] and Matrix Decomposition [Lioutas et al., 2020, Yu et al., 2017].

Parameter Efficient Tuning (PET) techniques are developed to address the challenges

related to fine-tuning large PLMs. These approaches tune a relatively small number of

parameters that could be either inserted into or a subset of the original parameters of the

pre-trained model. By reducing the number of trainable parameters, the required time

and memory for fine-tuning decreases. Also, by storing only the set of trainable param-

eters (which is significantly smaller compared to the entire model), the tuned checkpoint

for each downstream task can be reproduced. Therefore, the need for large memories to

store the entire tuned checkpoints is eliminated.

On the one hand, the compression of encoder-based PLMs (mostly Bidirectional En-

coder Representations from Transformers (BERT) family) has been sufficiently studied

in the literature. TernaryBERT [Zhang et al., 2020], DistilBERT [Sanh et al., 2019], Mo-

bileBERT [Sun et al., 2020], MATE-KD [Rashid et al., 2021], Annealing-KD [Jafari et al.,

2021], ALP-KD [Passban et al., 2021], TinyBERT [Jiao et al., 2020], and BinaryBERT [Bai

et al., 2021] are all example of BERT compression. On the other hand, decoder-based

Language Models (LMs) such as Generative Pre-trained Transformer-2 (GPT-2) have a

few compressed versions [Li et al., 2021]. DistilGPT2 is a well-known compressed ver-
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sion of GPT-2 which is developed by Knowledge Distillation (KD) from GPT-2 during

pre-training on the Open Web Text (OWT) dataset [Edalati et al., 2022b].

Soft Prompt Tuning approaches are one category of PET methods that concatenate

trainable vectors to the input of frozen pre-trained models [Lester et al., 2021, Li and

Liang, 2021]. Increasing the length of the input sequence, which leads to a notable expan-

sion of inference computations, is considered a disadvantage of these methods. Adapter-

based approaches are another category of PET techniques that insert several trainable

modules, called adapters, to frozen pre-trained models during the fine-tuning stage. Base-

d on the architecture of an adapter and its position in a model, there are several versions

of adapters. For example, Adapter and Parallel Adapter (PA) [He et al., 2022a] insert ba-

sic adapters into the Transformer blocks sequentially and in-parallel, respectively. Com-

pacter [Karimi Mahabadi et al., 2021] is a sequential adapter that has a complex architec-

ture composed of a combination of the Kronecker product and normal matrix multipli-

cation. Low Rank Adaption (LoRA) [Hu et al., 2022] is a type of parallel adapter that is

applied to the weight matrices instead of blocks. In contrast to other adapters, LoRA does

not have a non-linear activation function and it is applied to the linear weight matrices in-

stead of non-linear blocks. Therefore, LoRA adapters can be merged into the pre-trained

model after fine-tuning. Consequently, LoRA does not increase the inference latency and

memory in contrast to the other adapters.

Our work introduces two methods for Model Compression and PET, respectively.

Firstly, we modified the algorithm that is developed by [Tahaei et al., 2022] to compress

GPT-2. This method is called Kronecker Decomposition. In our method, the weight ma-

trices of GPT-2’s linear layers are decomposed into corresponding Kronecker factors. The

decomposition leads to a significant performance drop. Therefore, we perform a lim-

ited pre-training on 10% of the DistilGPT2 pre-training data to retrieve the performance.

Then, KnGPT2 is fine-tuned on downstream tasks to be compared with the baseline. A

developed Intermediate Layer Knowledge Distillation (ILKD) technique is utilized at the

pre-training and fine-tuning stages to further improve the performance. The ILKD tech-
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nique uses the teacher’s intermediate layers outputs as well as the last layer output to

train the compressed model, KnGPT2. Although we applied this technique to GPT-2, it

can be utilized to compress other Transformer-based models as well.

Secondly, we developed adapters that replace the normal matrix multiplication with

the Kronecker product to introduce three versions of Kronecker-based adapters. Kro-

necker Adapter (KronA) that is applied to fine-tune weight matrices and can be merged

into the pre-trained model at the inference stage. Therefore, KronA does not increase the

inference latency. In addition, we developed Kronecker Adapter for Blocks (KronAB) by

inserting the Kronecker adapters in-parallel to pre-trained blocks instead of weight ma-

trices. While KronAB outperforms KronA, it increases the inference latency since KronAB

modules cannot be merged into the pre-trained model. We also introduced Kronecker

Adapter for Blocks with Residual Connection (KronAB
res), which benefits from a scaled

residual connection to achieve a better performance at the expense of even more latency.

To show the superiority of our proposed techniques, we evaluated KnGPT2 on Casual

Language Modeling (CLM) in addition to the General Language Understanding Evalu-

ation (GLUE) benchmark [Wang et al., 2019]. Also, our proposed PET methods are only

evaluated on GLUE to study the impact of the Kronecker product.

We summarized our contributions in the following points:

• According to the information we have, this is the first work that uses Kronecker

Decomposition to compress GPT-2, which is a large generative PLM.

• We proposed a compression technique that generates KnGPT2. While KnGPT2 sig-

nificantly outperforms the baseline, DistilGPT2, in terms of the GLUE score and

CLM Perplexity, it is pre-trained remarkably faster.

• We developed KronA, an adapter that uses the Kronecker product as a backbone

and is utilized to fine-tune the weight matrices of a pre-trained model.
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• We introduced KronAB and KronAB
res, two modified versions of KronA for fine-

tuning blocks of a pre-trained model to achieve better results at the expense of an

increased inference latency.

• We compared our proposed Kronecker adapters to SOTA baselines in terms of the

GLUE score, training time, and inference time to show their advantages.

1.1 Thesis Organization

The remainder of the thesis is organized as follows. In Chapter 2, required preliminaries

and related work to the thesis are discussed. Our methodology and solutions for Model

Compression and PET are introduced in Chapters 3 and 4, respectively. Details about the

experimental setups are provided in Chapter 5. Chapter 6 covers an ablation study on

our work. The results are discussed in Chapter 7. Finally, the conclusion can be found in

Chapter 8 and the references are mentioned in the remaining pages.

1.2 Materials from Published Works

Our results for the GPT compression are published as a paper at the 60th Annual Meeting

of the Association for Computational Linguistics (ACL) 2022. The title of the paper is

”Kronecker Decomposition for GPT Compression” [Edalati et al., 2022b]. Also, our results for

the PET direction are published as a paper, titled ”KronA: Parameter Efficient Tuning with

Kronecker Adapter”, on arXiv [Edalati et al., 2022a]. This thesis is written based on the two

mentioned works. The thesis author, Mr. Ali Edalati is the first author of both papers.

[Edalati et al., 2022b] and [Edalati et al., 2022a] are licensed under CC BY 4.0 which

allows re-using, redistribution, remix, and transformation of the materials such as figures

and tables under the below conditions:

• Providing proper citation.
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• Providing a link to the license.

• Mentioning if any modification is made to the original material.

All of the re-used materials (figures and tables) in this work are licensed under CC

BY 4.0. To re-use these materials, we respected the license conditions. In the caption of

the re-used tables or figures, their source is cited, their license link is mentioned, and the

applied modifications are explained where applicable1.

The re-used figures and tables from the published work in addition to their source and

license which allows re-using are mentioned in Tables 1.1 and 1.2, respectively.

Figure Source License

2.7 [Devlin et al., 2019] CC BY 4.0
2.9 [Lewis et al., 2020] CC BY 4.0

2.10 [Lewis et al., 2020] CC BY 4.0
2.11 [Raffel et al., 2020] CC BY 4.0
2.14 [Chen et al., 2021] CC BY 4.0
2.15 [Zhang et al., 2020] CC BY 4.0
2.16 [Chen et al., 2021] CC BY 4.0
3.2 [Tahaei et al., 2022] CC BY 4.0

Table 1.1: This table shows the re-used figures and their corresponding source and li-

cense. Note that for each figure, re-using is allowed by its licenses.

1.3 Statement of Contribution in the Published Papers and

Thesis

Prof. James J. Clark, Mehdi Rezagholizadeh, and Vahid Partovi Nia supervised the progr-

ess in addition to revising and editing [Edalati et al., 2022a,b]. Ali Edalati, Ahmad Rashid,

Marzieh Tahaei, and Mehdi Rezagholizadeh contributed to the writing of [Edalati et al.,

2022b]. Also, Ali Edalati, Marzieh Tahaei, and Mehdi Rezagholizadeh contributed to the
1In this thesis, ”GPT-2small” which represents GPT-2 in the [Edalati et al., 2022b] tables is modified to

”GPT-2base”. Also, the Kronecker factors are denoted by Ak and Bk in [Edalati et al., 2022a] but in this
thesis, they are denoted by AK and BK .
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Table Source License

4.1 [Edalati et al., 2022a] CC BY 4.0
5.1 [Edalati et al., 2022b] CC BY 4.0
5.3 [Edalati et al., 2022a] CC BY 4.0
5.4 [Edalati et al., 2022a] CC BY 4.0
5.5 [Edalati et al., 2022a] CC BY 4.0
5.6 [Edalati et al., 2022a] CC BY 4.0
5.7 [Edalati et al., 2022a] CC BY 4.0
5.8 [Edalati et al., 2022a] CC BY 4.0
5.9 [Edalati et al., 2022a] CC BY 4.0

5.10 [Edalati et al., 2022a] CC BY 4.0
5.11 [Edalati et al., 2022a] CC BY 4.0
5.12 [Edalati et al., 2022a] CC BY 4.0
5.13 [Edalati et al., 2022a] CC BY 4.0
6.2 [Edalati et al., 2022b] CC BY 4.0
6.3 [Edalati et al., 2022b] CC BY 4.0
6.4 [Edalati et al., 2022a] CC BY 4.0
6.5 [Edalati et al., 2022a] CC BY 4.0
6.6 [Edalati et al., 2022a] CC BY 4.0
6.7 [Edalati et al., 2022a] CC BY 4.0
7.1 [Edalati et al., 2022b] CC BY 4.0
7.2 [Edalati et al., 2022b] CC BY 4.0
7.3 [Edalati et al., 2022b] CC BY 4.0
7.4 [Edalati et al., 2022b] CC BY 4.0
7.5 [Edalati et al., 2022a] CC BY 4.0
7.6 [Edalati et al., 2022a] CC BY 4.0
7.7 [Edalati et al., 2022a] CC BY 4.0

Table 1.2: This table shows the re-used tables from published works. Note that for each

table, re-using is allowed by its licenses.

writing of [Edalati et al., 2022a], and Ivan Kobyzev revised it. Note that all of the co-

authors have allowed the thesis author to re-use the materials from the published works

in the thesis.

Marzieh Tahaei developed the code of the Kronecker layer, which is modified and

used by Ali Edalati for the experiments in this work. All of the experiments in [Edalati

et al., 2022b], [Edalati et al., 2022a], and the thesis are performed by Ali Edalati.
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The thesis is written by Ali Edalati. Also, Ibtihel Amara helped the author translate

the abstract from English to French and permitted the thesis author (Ali Edalati) to use

the translated abstract in the thesis.
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Chapter 2

Related Work and Background

In this chapter, Section 2.1 provides a brief background about LMs. Since Transformer-

based LMs are the main focus of our work, these types of models are discussed in more

details separately in Section 2.2. In Section 2.3, related works to the Model Compression

direction are mentioned. Finally, Section 2.4, covers related works and baselines for the

PET direction.

2.1 Language Models (LMs)

In the field of NLP, researchers have been trying to find automatic systems that can per-

form tasks related to a natural language. Translating from one language to another lan-

guage, generating a coherent and cohesive essay about a given topic, understanding if

two sentences are semantically equivalent, answering a question, and summarizing an

article are all examples of NLP tasks.

To perform the NLP tasks, the automatic system should be able to either understand

the lingual instances as input or generate the lingual instances as output or both. There-

fore, a language model, abbreviated to LM, is used as a backbone in most of the NLP

systems to help the system understand or generate the language.
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Rule-based approaches were used in the early NLP systems in which a natural lan-

guage was modeled with manually written rules. However, these naive approaches were

extremely time-taking. Besides, they were not capable of modeling many aspects of nat-

ural language ambiguity. Meanwhile, LMs were developed as a result of data-driven ap-

proaches for providing probability indication of the word sequences [Jing and Xu, 2019,

Rosenfeld, 2000].

Language models are exposed to real instances of natural language output (sentences)

during the training. Generally, by increasing the size of the training corpus, the perfor-

mance of LMs is improved. Since the 1980s, LMs has been utilized as the core component

of the NLP systems. The main duty of an LM is to predict the probability of a sequence of

words based on the knowledge that is gained by being exposed to a natural language. Sta-

tistical LMs were the first generation of data-driven models, which are developed mainly

based on the Markov assumption [Bengio et al., 2003, Grave et al., 2017, Jing and Xu, 2019,

Rosenfeld, 2000, Shoenfield, 1962].

Afterward, LMs that have a neural network backbone were introduced and outper-

formed the statistical ones. Nowadays, Transformer-based models that are considered

the most recent version of neural network LMs are dominating the field. The following

sections discuss the two mentioned categories of LMs.

2.1.1 Statistical Language Models

Let s = (w1, w2, ..., wN) be a sequence of N tokens (or words). A statistical LM com-

putes the probability of the existence of s as a natural language output by multiplying

the conditional probability of each token given its predecessors, which is extracted from

the training corpus [Bahl et al., 1983, Bengio et al., 2003, Jing and Xu, 2019, Niesler and

Woodland, 1996].

P (s) = P (w1, w2, ..., wN) = P (w1)P (w2|w1)...P (wN |w1, w2, ..., wN−1)
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Furthermore, the Markov assumption [Shoenfield, 1962] is used to simplify the problem:

P (wt|w1, ..., wt−1) ≈ P (wt|wt−K+1, ..., wt−1)

An LM that uses up to K − 1 predecessors to calculate the probability of a token is called

a K-Gram LM [Katz, 1987]. Different strategies are deployed to improve the performance

of the statistical LMs. However, the emergence of neural network based LMs has made

statistical models obsolete.

2.1.2 Neural Network Language Models (NNLMs)

NNLMs are developed based on a neural network that predicts the next token of a given

sequence of tokens [Bengio et al., 2003, Grave et al., 2017, Jing and Xu, 2019]. These models

represent each token (or word) by a vector of real-valued numbers, called an embedding

vector. Therefore, tokens of the input sentence that were naturally in a discrete space are

projected into a continuous space which facilitates the calculation of the joint distribution

function of the tokens. Furthermore, a K-Gram statistical model used for modeling a

vocabulary of N tokens requires computing NK−1 parameters, which is quite challenging

for large vocabularies. Instead, neural networks enable modeling large vocabularies with

significantly fewer parameters. The current growing interest in NNLMs is caused by their

superior performance over statistical models. Here, some types of NNLMs are mentioned

[Bengio et al., 2003, Grave et al., 2017, Jing and Xu, 2019, Mikolov et al., 2010, Sundermeyer

et al., 2015].

Feed Forward Language Models (FFLMs)

In this category, a feed-forward neural network is the main component of an LM. [Bengio

et al., 2003] proposed a model (considered one of the first successful works) that utilizes

neural networks for language modeling. Figure 2.1 shows the architecture of this model

in which C is the weight matrix that projects the input words to the embedding space.

11



Embedding

Linear Layer

...

. . .

Linear Layer

Figure 2.1: This figure shows the structure of the FFLM developed by [Bengio et al., 2003]

Input (t) Context (t-1)

Context (t)

Output (t)

Figure 2.2: This figure depicts the workflow of the RNNLM developed by [Mikolov et al.,

2010].

Recurrent Neural Network Language Models (RNNLMs)

RNNLMs utilize Recurrent Neural Networks (RNNs) [Rumelhart et al., 1986] in the struc-

ture of a LM instead of feed-forward networks [Mikolov et al., 2010, 2011a,b]. One reason

is that sentences are sequential series of words (or tokens), so the order of words plays

an important role in the meaning of sentences. RNNs can capture those order informa-

tion better than feed-forward networks. Also, RNNs reduce the number of parameters
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since they use parameter sharing. In addition, the context of RNNLMs can have a flexible

length which is a benefit of these models over FFLMs [Jing and Xu, 2019, Mikolov et al.,

2010, Sundermeyer et al., 2015]. RNNLMs outperformed FFLMs significantly. However,

RNNs fail in training on long sequences because of the gradient vanishing or explosion,

which means that they cannot capture the long-range dependent information in sentences

[Li et al., 2018, Sundermeyer et al., 2015].

Long-Short Term Memory (LSTM)-Based Language Models

LSTMs [Hochreiter and Schmidhuber, 1997] were designed to address the gradient van-

ishing (or explosion) problem of RNNs by adding a gating mechanism to the model which

controls forgetting or keeping the information flow during the training. Figure 2.3 shows

an LSTM module.

sigmoid sigmoid sigmoidtanh

tanh

Figure 2.3: This figure depicts an LSTM [Hochreiter and Schmidhuber, 1997] module.
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[Sundermeyer et al., 2012] used an LSTM as the backbone in an LM to introduce

LSTM-based LMs. This model was able to capture longer dependencies than RNNLMs.

However, training LSTMs is time-taking. In addition, the gradient vanishing (explosion)

problem of LSTMs is not addressed completely since the training data is fed to LSTMs

sequentially [Sundermeyer et al., 2015]. Finally, Transformers [Vaswani et al., 2017] were

invented, which outperformed previous models in many aspects. Also, Transformers do

not suffer from the gradient vanishing since the training data is fed to them in parallel,

enabling them to capture long-range dependencies in the texts.

2.1.3 Masked Language Modeling (MLM) vs Casual Language Model-

ing (CLM)

LTRI saw an elephant in the ... I saw an elephant in the zoo

BidirectionalI saw an [masked] in the zoo I saw an elephant in the zoo

a) CLM

b) MLM

Figure 2.4: This figure shows how CLM and MLM are performed

Language models can be categorized based on their method for processing the order

of the input tokens. Previously, language modeling was defined as predicting the proba-

bility of a series of natural language tokens (for example, words). On the one hand, some

models take a series of tokens and find the most probable token in the vocabulary to be

the next token of the series. This is called CLM and a model which performs this task is

called a Left To Right (LTR) model since it reads the input from left to right to predict the

next token.
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On the other hand, some models take the entire masked sequence of tokens (for exam-

ple, a masked sentence) as the input. A masked sequence is a sequence in which some of

the tokens are replaced with a masked token and the model should predict these masked

tokens. This task is called MLM and a model usually should be able to read the sen-

tence from both directions to predict the masked token. These models are categorized as

Bidirectional models.

2.2 Transformer-Based Models

Feed Forward
Network

Layer Norm

Multi Head
Attention

Layer Norm

Encoder

Input Embedding

Inputs

Feed Forward
Network

Layer Norm

Masked Multi 

Head Attention

Layer Norm

Decoder

Output Embedding

Right Shifted Outputs

Multi Head
Attention

Layer Norm

Head

Output

Figure 2.5: This figure shows the architecture of the Transformer-based model developed

by [Vaswani et al., 2017].
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[Vaswani et al., 2017] first proposed to replace RNNs and LSTMs with a novel architec-

ture that uses the attention mechanism. The role of the attention mechanism is to find the

relation and connection between all of the elements in the input sequence. For example,

when a sequence of words is fed to a trained attention block, the output will be a mapping

that shows for every word, how much attention is paid to all of the words in the sequence.

In this mechanism, the entire input sequence is given to the model simultaneously, which

addresses the problem of forgetting long-range dependencies.

This new architecture is named Transformer. Figure 2.5 illustrates the structure of the

first Transformer-based model, assembled from an encoder on the left and a decoder on

the right.

The goal of the encoder is to capture information about the entire input sequence. The

goal of the decoder is to generate the next token of the output sequence based on the infor-

mation from the encoder and the already generated tokens. Therefore, the attention block

of the encoder computes the attention mappings for the entire input sentence. However,

the attention block of the decoder focuses on computing the attention between already

generated tokens.

Transformer layers are made from an FFN which comes after an attention block. FFN

is a reversed bottleneck block which is composed of an up-projection (Wcfc ∈ Rdh×dff ),

a non-linear activation function and a down-projection (Wcproj ∈ Rdff×dh), respectively.

Equation 2.1 shows how the output of the FFN is computed given the input, X ∈ Rlseq×dh ,

where bcproj ∈ Rdh and bcfc ∈ Rdff refer to biases in the projections, lseq is the length of

the input sequence, dh is the embedding dimension of the model, and dff is the FFN’s

dimension. Please note that the input itself is used as a residual connection to compute

the output. The residual connection is used to increase stability during the optimization

process.

FFN(X) = activation(XWcfc + bcfc)Wcproj + bcproj +X (2.1)

In the MHA block, there are several attention heads. The output of each attention

head is named headi∈[1:H], where H is the number of heads in the MHA. The attention
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head, itself is composed of linear layers which calculate the Query, Key, and Value by

multiplying the input matrix, X, by WQ
i ,W

K
i ,W

V
i ∈ Rdh×dh/H , respectively. Besides,

there is a final linear projection, WO ∈ Rdh×dh , at the end of the block. Also, similar to the

FFN, there is a residual connection in the MHA. Equations 2.2, 2.3, 2.4, 2.5, and Figure 2.6

show how the attention mechanism works in the MHA block.

Qi = XWQ
i ,Vi = XWV

i ,Ki = XWK
i (2.2)

Attention(Qi,Ki,Vi) = softmax(
QiK

T
i√

dh
)Vi (2.3)

headi(X) = Attention(XWQ
i ,XWK

i ,XWV
i ) (2.4)

MHA(X) = X+ Concat(head1(X), ...,headn(X))WO
i (2.5)

Furthermore, the model has an embedding layer, which maps the input tokens into a

set of vectors that represent the input sequence. This layer has a weight matrix (called

Wwpe ∈ Rdh×dh , dh is the embedding/hidden dimension) which is responsible for learning

the order and position of tokens in the input sequence. In addition, the embedding layer

uses another weight matrix called Wwte ∈ Rv×dh (v is the size of the vocabulary) to project

each token of the input sequence to a vector. Finally, there is a head layer in Transformers

that projects the output of the transformer into the desired output format. Often, the head

is a linear layer plus a softmax. For more details about Transformers, see [Vaswani et al.,

2017].

In the following subsections, a brief discussion of the models that are related to our

experiments is provided. The source of the information related to the configuration of

these models is Hugging Face1.

1For more details, see https://huggingface.co/models.
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Q K V

Multiplication
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Optional
Masking

Softmax

Multiplication

Scaled Dot Product Attention

Multi Head Attention

Scaled Dot Product Attention

Concatinate

Figure 2.6: This figure shows the architecture of a MHA block on the right and the scaled

dot product attention block on the left. The figure is re-drawn inspired by [Vaswani et al.,

2017].

2.2.1 Bidirectional Encoder Representations from Transformers (BERT)

BERT is one the first Transformer-based LMs [Devlin et al., 2019]. This model is developed

by stacking several layers of Transformer encoders in addition to an embedding layer.

There are two versions for this model and Table 2.1 shows their structural configurations.

Also, Figure 2.7 depicts the BERT architecture.

Name Encoder Layers Attention Heads Embedding Dimension Parameters (M) Volume (GB)

BERTbase 12 12 768 110 0.44

BERTlarge 24 16 1024 340 1.34

Table 2.1: This table shows the configuration of different versions of BERT.

This model is pre-trained on English Wikipedia and Book Corpus [Zhu et al., 2015]

datasets. BERT is a bidirectional LM. Therefore, 15% of input tokens in the train data are
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Figure 2.7: This figure shows the architecture of BERT. The figure is directly re-used with

permission from [Devlin et al., 2019].

masked for pre-training and the model tries to predict them. Also, BERT is pre-trained

on a classification task named Next Sentence Prediction (NSP) in which the model should

determine whether the second sentence from the concatenation of two masked input sen-

tences follows the first one. The goal of MLM is to teach the language, while the goal of

NSP is to teach the relation between two consequent sentences to BERT. Please note that

NSP could be beneficial for tasks like Question Answering.

Then, the model can be fine-tuned on downstream datasets like the GLUE benchmark

while the gained knowledge during pre-training helps the model to achieve successful

results. Please note that BERT is not a generative model so it cannot be used for those

tasks that require generating a sequence of tokens as the output like Machine Transla-

tion or Summarization. Instead, it is an appropriate model for NLU tasks like the GLUE

benchmark.

2.2.2 Generative Pre-trained Transformer (GPT)-2

GPT-2 [Radford et al., 2019] architecture (Figure 2.8) is composed of several identical

Transformer decoders in addition to an embedding layer. GPT-2 is a generative model
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Embedding Layer

Decoder Layer

Decoder Layer

Head

Layer Norm

Masked MHA

Layer Norm

FFN

GPT-2 Decoder
GPT-2

Figure 2.8: This figure shows the architecture of GPT-2

(also called auto-regressive), which means that it can be used for generation tasks like

Question Answering in addition to NLU tasks. However, since it is not designed for

comprehension, it usually underperforms BERT on NLU.

GPT-2 is pre-trained on a huge general domain dataset, called WebText [Radford et al.,

2019], for CLM. The pre-training dataset is collected by crawling through public web

pages, but it is not available to the public yet.

GPT-2 has different versions based on the number of parameters. Table 2.2 shows the

structural configuration of the different GPT-2 versions. Although the proposed com-

pression technique is only applied to GPT-2base in this work, it can be easily applied to the

larger versions.

Name Decoder Layers Attention Heads Embedding Dimension Parameters (M) Volume (GB)

GPT-2base 12 12 768 124 0.55

GPT-2medium 24 16 1024 355 1.52

GPT-2large 36 20 1280 774 3.25

GPT-2xlarge 48 25 1600 1500 6.43

Table 2.2: This table shows the configuration of the different GPT-2 versions.
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Figure 2.9: This figure shows a comparison between schematics of BERT, GPT and BART.

The figure is directly re-used with permission from [Lewis et al., 2020].

2.2.3 Bidirectional and Auto-Regressive Transformer (BART)

[Lewis et al., 2020] introduced BART. This model uses a bidirectional encoder like BERT

[Devlin et al., 2019], in addition to a LTR decoder like GPT [Radford et al., 2019]. Figure

2.9 shows how the output is generated using the input in BERT, GPT, and BART. Table

2.3 shows the configuration of the two BART versions that are published.

Name Encoder Layers Decoder Layers Attention Heads Embedding Dimension Parameters (M) Volume (GB)

BERTbase 6 6 12 768 139 0.56

BERTlarge 12 12 16 1024 406 1.02

Table 2.3: This table shows the configuration of the BART versions.

For pre-training, the model should reconstruct the input data which is corrupted using

the following transformations:

• Token Masking: Randomly selected tokens in the input are replaced with a special

token called [mask].
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Figure 2.10: This figure shows the transformations used for pre-training data generation

for the BART. The figure is directly re-used with permission from [Lewis et al., 2020].

• Token Deletion: Randomly selected tokens are removed from the input.

• Text Infilling: Inspired by [Joshi et al., 2020], randomly selected spans of tokens

from the input are replaced with one [mask] token. The length of the span is drawn

from a Poisson distribution in which λ = 3.

• Sentence Permutation: The order of the input sentences is shuffled randomly.

• Document Rotation: The input is rotated to put a randomly selected token at the

beginning.

Figure 2.10 shows how the mentioned transformations corrupt the input data. The loss

function is the negative log-likelihood between the intact input and the generated output.

While this model is able to perform the NLU tasks, it can perform the best on the

generation tasks. Also, a multilingual version of BART - named Multi-Lingual Bidirec-

tional and Auto-Regressive Transformer (mBART) - is developed specifically for Machine

Translation by pre-training on a dataset containing sentences from different languages

[Liu et al., 2020].
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2.2.4 Text-to-Text Transfer Transformer (T5)

Developed by [Raffel et al., 2020], T5 is a Transformer-based model which is composed of

several encoder and decoder layers similar to BART. Table 2.4 shows the configuration of

the different T5 versions.

Name Encoder Layers Decoder Layers Attention Heads Embedding Dimension Parameters (M) Volume (GB)

T5small 6 6 8 512 60 0.24

T5base 12 12 12 768 220 0.89

T5large 24 24 16 1024 770 2.95

T53B 24 24 32 1024 2800 11.4

T53B 24 24 128 1024 1100 45.2

Table 2.4: This table shows the configuration of the different T5 versions.

T5 is a generative model so it generates an output text sequence given an input text

sequence. The model is pre-trained unsupervisedly on a dataset named Colossal Clean

Crawled Corpus (C4) which is the cleaned version of Common Crawl2. Please note that

the mentioned pre-training for T5 is an example of CLM.

For fine-tuning on each task, data samples should be converted to a text-to-text format.

To distinguish tasks from each other, a prefix is added to the input data samples. For

example, for Machine Translation from German to English, ”Translate German to English”

is added as a prefix to the input. Figure 2.11 shows how the model performs different

tasks by adding an appropriate prefix to the input.

This model has different versions based on the number of layers and parameters. In

our work, we used the base version with 220 Million parameters. This model represents

a group of large PLMs that are difficult to fine-tune due to resource or time limitations,

thus we selected this model for evaluation of the proposed PET methods. Please note that

our proposed PET methods are not model dependent and they can be easily applied to

any Transformer-based model.

2Common Crawl is a public dataset that contains web extracted texts. For more information please see
here
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Figure 2.11: This figure shows how T5 converts different tasks to a text-to-text format.

The figure is directly re-used with permission from [Raffel et al., 2020].

2.2.5 Generative Pre-trained Transformer (GPT)-3

Developed by OpenAI3 [Brown et al., 2020], this model is considered one of the most

recent and hugest LMs. It uses roughly the same Transformer architecture as GPT-2.

However, the size of the model is considerably larger. Table 2.5 shows the configuration

of the different GPT-3 versions.

Name Number of Layers Attention Heads Embedding Dimension Parameters

GPT-3small 12 12 768 125M

GPT-3medium 24 16 1024 350M

GPT-3large 24 16 1536 760M

GPT-3xl 24 24 2048 1.3B

GPT-32.7B 32 32 2560 2.7B

GPT-36.7B 32 32 4096 6.7B

GPT-313B 40 40 5140 13B

GPT-3175B or ”GPT-3” 96 96 12288 175B

Table 2.5: This table shows the configuration of the different GPT-3 versions. The table is

drawn based on the information provided in [Brown et al., 2020].

GPT-3 is pre-trained on the datasets that are shown in Table 2.6.

3https://openai.com/
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Dataset Common Crawl WebText2 Book1 Book2 Wikipedia

Tokens Number (Billion) 410 19 12 55 3

Table 2.6: This table shows the number of tokens in the datasets used for pre-training of

GPT-3. The table is drawn based on the information provided in [Brown et al., 2020].

Fine-Tuning
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Output
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(e.g. خیابان)
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Gradient Update 

Model weights are updated based on the calculated loss.
This process repeats with different pairs of input/output until convergence.

Zero-Shot Learning

Model

Input:
Task Description
(e.g. Translate from English to Persian)
+
Prompt
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Target Output
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(e.g. Translate from English to Persian)
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+
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(e.g. Translate from English to Persian)
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Figure 2.12: This diagram shows the definition of the learning based on zero-shot, one-

shot, and few-shot samples compared to the fine-tuning. The diagram is drawn based on

the information provided in [Brown et al., 2020].

Similar to GPT-2, this model is able to perform both NLU and generation tasks. Also,

[Brown et al., 2020] showed that GPT-3 has a significantly better zero-shot, one-shot and

few-shot performance compared to smaller LMs. Figure 2.12 shows the definition of zero-

shot, one-shot, and few-shot learning compared to fine-tuning. The huge size of GPT-

3 causes unacceptable training time and resources required for fine-tuning this model.

Therefore, the few-shot learning scenario is studied for deploying GPT-3 on the down-

stream tasks.
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2.2.6 DistilGPT2

The development process of DistilGPT24 is similar to DistilBERT [Sanh et al., 2019]; The

parameters of DistilGPT2 are initialized randomly. Then, the model is pre-trained on

OWT [Gokaslan and Cohen, 2019], which is a reproduction of the OpenAI’s WebText

dataset. During the pre-training, KD is used to transfer the information from the teacher

- GPT-2base - to DistilGPT2. Thus DistilGPT2 is considered a compressed GPT-2. KD and

its application as a compression technique is further discussed in Section 2.3.3. Similar to

the teacher, DistilGPT2 is a LTR model which performs CLM.

It is worth mentioning that the compression of GPT-2 is not well-studied in the liter-

ature and DistilGPT2 is the only well-known compressed version of GPT-2. Therefore,

it is considered the only baseline in our work. Table 2.7 shows the configuration of the

DistilGPT2.

Name Decoder Layers Attention Heads Embedding Dimension Parameters (M) Volume (GB)

DistilGPT2 6 12 768 82 0.35

Table 2.7: This table shows the configuration of DistilGPT2.

2.3 Related Works to the Model Compression Direction

In Figure 2.13, some of the well-known LMs, their number of parameters, and their release

date are depicted. Just a glance is enough to conclude that the size of LMs is expanding

rapidly. There are several reasons for developing such huge models, such as increasing

the robustness to new domain data, improving the few-shot performance, and enabling

the model to perform a wide range of tasks. Usually, when powerful computational re-

sources are available, larger LMs are preferred since they achieve a better performance.

However, there are some scenarios in which the size of the model matters. In other

words, resource limitations push using smaller models even at the expense of a slight

4For more details, see https://huggingface.co/distilgpt2
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Figure 2.13: This figure shows the size of some of the well-known LMs based on their

release date and number of parameters.

drop in performance. For example, enabling edge devices5 to perform NLP tasks by using

LMs is an open problem. While the performance of small LMs is not acceptable, edge

devices cannot deploy huge models like GPT-3. A solution could be sending the task as a

query to a central LM which is deployed on a powerful device or cloud and receiving the

output. However, this solution is ineffective when the internet is not available. Also, users

might be concerned about the privacy of their information. Therefore, a better solution

should enable edge devices to deploy LMs with an acceptable performance.

Model Compression is a research direction that investigates different approaches to

reduce the size of the models while minimizing their performance drop. In other words,

Model Compression efficiently reduces the size of huge models to enable using them

where resources are limited. Model Compression approaches can be divided into four

categories discussed in the following subsections.

2.3.1 Pruning

Pruning compresses neural networks by removing those parameters from a model that

have the most negligible effect on the final performance. Pruning methods can be di-

vided into Structured (Channel) or Unstructured (Weight) Pruning [Liang et al., 2021]. In

Structured Pruning [He et al., 2017, 2018], a group (channel) of parameters like layers or

5Devices that have limited computational resources, such as smartwatches and smartphones.
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filters are removed while Unstructured Pruning [Gordon et al., 2020, Zhang et al., 2018]

eliminates the parameters individually, resulting in a sparse network. Figure 2.14 depicts

the mentioned types of Pruning.

Figure 2.14: This figure shows Unstructured (a) and Structured (b) Pruning. The figure is

directly re-used with permission from [Chen et al., 2021].

A simple algorithm for Pruning is mentioned here. First, a parameter or a group of

parameters is temporarily removed. Second, the performance drop of the model is mea-

sured. Third, the decision about the permanent removal of the parameter(s) or preserving

it (them) is made based on the desired threshold on the final performance. Finally, the

mentioned steps are repeated until achieving the desired size for the compressed model

[Liang et al., 2021]. In addition, further training after Pruning can be done to improve the

performance [Han et al., 2016] where KD can be utilized [Chen et al., 2021] as well.

This method reduces the size of a model by removing its parameters and may result

in speed-up depending on the structure of the compressed model.

2.3.2 Quantization

Normally, parameters of a neural network are in full-precision format, which means that

their data type is float32 and 32 bits are used to keep each parameter of the model.

In Quantization, the data type of the parameters is changed to reduce the number of

required bits for saving or loading a model, which results in speed-up and model com-
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Figure 2.15: This figure shows the technique used for compressing BERT into Ternary-

BERT. QW (W) is the operator that converts a full-precision weight matrix - W - into the

equivalent quantized matrix, Ŵ. The figure is directly re-used with permission from

[Zhang et al., 2020].

pression. For example, BinaryBERT [Bai et al., 2021] and TernaryBERT [Zhang et al., 2020]

are developed based on quantizing the weights of BERT into two and four bits, respec-

tively. [Gong et al., 2014, Prato et al., 2020, Shen et al., 2020, Zafrir et al., 2019] are some

works that use Quantization as a compression tool.

There are two categories of Quantization-based techniques. First, Post-Training Quan-

tization [Liu et al., 2021] that quantizes model parameters to low bits after training. There-

fore, the type of parameters during training is intact. This technique is quite fast but usu-

ally suffers from performance drop. Second, Quantization-Aware Training [Zafrir et al.,

2019, Zhang et al., 2020] that trains a quantized model. While it is slower than the pre-

vious one, it can achieve better results. Also, these two Quantization methods can be

combined together or with other techniques like KD to improve the performance of the

compressed model [Zhang et al., 2020]. Figure 2.15 shows the compression algorithm of

TernaryBERT which uses KD and Quantization.
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2.3.3 Knowledge Distillation (KD)

Figure 2.16: This figure shows the schematics of the vanilla response-based KD. The fig-

ure is directly re-used with permission from [Chen et al., 2021].

To train a model - named the student model - on a dataset, KD could be used as a

training technique that aims to transfer information from a model that is already trained

- named the teacher - to the student by forcing the student to mimic the teacher. There are

three categories of KD [Gou et al., 2021]:

• Response-based: In this category, the distance between outputs of the student and

teacher models is minimized [Hinton et al., 2015].

• Feature-based: This category minimizes the distance between the outputs of the last

and intermediate layers - extracted features - of the student and teacher [Xu et al.,

2020].

• Relation-based: In this category, the relationships between various pairs of layers

or input samples are investigated [Yim et al., 2017].

Also, there are three schemes for the distillation [Gou et al., 2021]:
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• Offline Distillation: The teacher is already trained and frozen. Therefore, the teach-

er is not updated during the distillation. [Hinton et al., 2015, Passalis and Tefas,

2018]

• Online Distillation: In addition to the student, the teacher is trained during the

distillation. [Kim et al., 2021]

• Self Distillation: A single model plays the role of the teacher and student. [Huang

et al., 2020, Zhang et al., 2019]

In addition, KD could be utilized as a compression technique since its goal is com-

pressing and transferring (distillation) knowledge from a teacher, which is often the larger

model, to a smaller student. To compress a model by KD, it should be used as a teacher

to train a smaller student model, which is randomly initialized. However, the perfor-

mance of the student is often worse than the teacher. [Jafari et al., 2021, Jiao et al., 2020,

Rashid et al., 2021, Sanh et al., 2019, Sun et al., 2020] are examples of KD-based methods

for compression. Also, DistilGPT2, which is discussed in Section 2.2.6, is another example

of using KD for Model Compression.

2.3.4 Matrix Decomposition

Matrix Decomposition represents the weight matrices of a model by a group of smaller

matrices such that the total number of parameters in the group of smaller matrices be-

comes less than the number of parameters in the original matrix. Therefore, the size of

the model decreases.

A version of the Kronecker decomposition with summation was first used to compress

convolutional and linear layers in [Wu, 2016]. Later, [Hameed et al., 2022] used another

version of the Kronecker decomposition with summation to compress the convolutional

layers of ResNet [He et al., 2016]. Also, [Thakker et al., 2019] applied a Kronecker-based

compression technique to small LMs for Internet of Things (IoT) applications. [Thakker
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et al., 2020] extended the previous technique to non-IoT applications by adding some

modifications.

[Tahaei et al., 2022] is one of the most recent works that applied a Kronecker-based

compression technique to BERT. [Tahaei et al., 2022] can be considered a backbone in our

approach. However, in chapter 6.2, we will further discuss [Tahaei et al., 2022] and the

modifications we made to their approach to improve the performance and introduce ours.

To the best of our knowledge, Quantization and Pruning are not applied to compress

GPT-2. Our baseline, DistilGPT2 is the result of applying KD to compress GPT-2 and this

work is the first attempt to compress GPT-2 using the Kronecker decomposition.

2.4 Related Works to the PET Direction

2.4.1 Pre-training and Fine-tuning

The current dominant training paradigm of LMs on NLP tasks contains two stages:

1. Pre-training on a huge general domain dataset for MLM or CLM once to gain gen-

eral knowledge about the targeted natural language.

2. Fine-tuning the pre-trained model on downstream tasks to develop a specialized

model for each task.

Pre-training improves the robustness of models on out-of-domain data samples in addi-

tion to optimizing the fine-tuning stage and lowering the variance of fine-tuned models

[Brown et al., 2020, Erhan et al., 2010, Hendrycks et al., 2019].

2.4.2 Fine-tuning Challenges

Previously, the growing size of LMs and its downsides on the deployment of huge models

were discussed (Section 2.3). Here, another challenge related to huge models is explained:

time and resource-consuming training.
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By increasing the size of models, not only calculation of the forward and backward

path requires more operations, but also more parameters should be updated in the train-

ing. Therefore, training huge models requires considerable time, computationally pow-

erful devices with large memories, and notable power consumption.

The growing size of LMs makes both the pre-training and fine-tuning stages challeng-

ing. In contrast to the pre-training, which is done only once for an LM, the fine-tuning

needs to be done for each downstream task. Besides, a checkpoint of the fine-tuned LM

should be saved for each downstream task which requires significantly large memory

since there are many downstream tasks. Therefore, a line of research - called PET - aims

to make the fine-tuning efficient by lowering the number of required parameters.

The following subsections discuss a high-level overview of the related work and base-

lines for PET.

2.4.3 Full Fine-Tuning (FT)

This method fine-tunes the entire weights of a model on a downstream dataset. Usually,

this method achieves notably good results. However, it has downsides like time and

resource-consuming training. These downsides are the main motivations to develop more

efficient methods.

2.4.4 BitFit Tuning

As discussed in Section 2.2, a Transformer-based model is composed of linear layers. A

bias, b, is added to the multiplication of the input vector, x, and a weight matrix, W, to

compute the output, y, in a linear layer (Equation 2.6). BitFit Tuning suggested tuning all

or a subset of the biases while the other parameters of the model are frozen [Ben Zaken

et al., 2022].

y = xW + b (2.6)
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Although this method is relatively fast during training and does not increase the in-

ference latency, it underperforms most of the SOTA PET techniques.

2.4.5 Prompt Tuning

Prompt Tuning suggests prepending fixed-length vectors, named prompts, to the input

sequence and tuning the prompts while the original weights of a model are frozen [Lester

et al., 2021, Liu et al., 2023].

Prompts can be divided into two categories of hard and soft prompts. Hard prompts

are discrete tokens that usually correspond to a natural language phrase, while soft prom-

pts are continuous vectors that may not have any meaning in the natural language. Dif-

ferent strategies can be followed to initialize the prompts.

This method enables storing a small number of parameters for each downstream task;

thus, it is a suitable solution for switching between tasks. However, there is still more

space for improving the performance of this technique to meet the SOTA.

2.4.6 Prefix Tuning

Prefix Tuning [Li and Liang, 2021] is similar to Prompt Tuning. However, it concatenates

the fixed-length vectors - named prefix - to Key, Ki, and Value, Vi matrices of the model

[He et al., 2022a]. Also, the prefix vectors are generated by a Multi Layer Perceptron

(MLP), resulting in more stable optimization and training.

Prefix Tuning outperforms Prompt Tuning. However, using the MLP adds a large

number of parameters to the training phase compared to other SOTA methods. In addi-

tion, other SOTA methods can achieve better results than Prefix Tuning.

2.4.7 Adapter Tuning

[Houlsby et al., 2019] introduced Adapter Tuning. An adapter is a module inserted into

a model to adapt the model for a downstream task. While the model is frozen, inserted
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adapters are tuned and simulate training of the model. [Houlsby et al., 2019] suggested

to insert adapters sequentially after the MHA and FFN blocks.

In a basic adapter module, first, a down-projection is performed on the input matrix

(X ∈ Rl×dh) by multiplying it by a low-rank matrix (A ∈ Rdh×r) and adding a bias (b1 ∈

Rr). This reduces the dimension from dh to r. Second, a non-linear function is applied.

Third, an up-projection is applied by multiplying by another low-rank matrix (B ∈ Rr×dh)

and adding a bias (b2 ∈ Rd
h), which returns the dimension from r to dh. Finally, the input

is added as a residual connection to compute the module’s output. Figure 2.17 shows

where the adapters are inserted in a Transformer on the left and the structure of a basic

adapter on the right. Equation 2.7 shows how the output of an adapter is computed given

the input matrix, X.

Non-Linearity

Adapter 

MHA

Adapter

FFN

Adapter

Transformer with Adapter

Figure 2.17: The right figure shows the structure of a basic adapter. The left figure shows

the position of the adapters that are inserted sequentially in a Transformer as suggested

by [Houlsby et al., 2019]. For simplicity, the layer normalization blocks and biases are not

depicted.

Adapter(X) = X+ NonLinearity(XA+ b1)B+ b2 (2.7)
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This method accelerates the training while requiring a small number of trainable param-

eters. However, the inserted adapters increase the inference time of models and the per-

formance is worse than the SOTA methods.

2.4.8 Compacter

Developed by [Karimi Mahabadi et al., 2021], Compacter is a modified version of the se-

quential adapter that is another baseline for comparison in our work. Compacter achieves

acceptable performance while its design enables reducing the trainable parameters sig-

nificantly. However, it requires more training and inference time than other SOTA PET

methods.

In a Compacter module, the down and up projection matrices, WD ∈ Rdh×r and WU ∈

Rr×dh , are replaced by the sum of the Kronecker product of I pairs of matrices. To further

decrease the parameters, ADi
∈ RI×I and AUi

∈ RI×I matrices are shared across all of

the Compacter modules. Also BDi
∈ R

dh
I
× r

I and BUi
R r

I
× dh

I matrices are generated by

the multiplication of two row and column vectors (Equations 2.9 and 2.8). In addition,

Compacter uses GELU as the non-linear activation function. Equation 2.10 show how

Compacter works.

WD =
∑
i∈[1:I]

ADi
⊗BDi

=
∑
i∈[1:I]

ADi
⊗ (sDi

t⊤Ui
) (2.8)

WU =
∑
i∈[1:I]

AUi
⊗BUi

=
∑
i∈[1:I]

AUi
⊗ (sUi

t⊤Ui
) (2.9)

Compacter(X) = X+ GELU(XWD)WU (2.10)

2.4.9 Parallel Adapter (PA)

[He et al., 2022a] introduced PA, which is one of the updated versions of the basic adapters

[Houlsby et al., 2019]. To the best of our knowledge, PA outperforms other versions of

adapters so far; thus, PA is a baseline in our work.
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To develop a PA module, four modifications are made to a basic adapter module:

• PA is inserted into the model in parallel to a PLM module while a basic adapter is

inserted sequentially after a PLM module.

• Based on the empirical results, it is recommended to apply PA only to the FFN

blocks.

• The output of PA is scaled by a constant factor, s, which is a hyperparameter.

• PA does not need to have a residual connection since it is inserted in parallel to

FFNs, which has a residual connection.

Empirical results in [He et al., 2022a] show that these modifications significantly improve

the performance and speed of PA.

Figure 2.18 shows the structure of a PA module and where it is inserted into a model.

Equation 2.11 shows how the output of PA is calculated and Equation 2.12 shows how

it is added to FFN to generate FFN’(X) which is the output of FFN after applying PA.

[He et al., 2022a] uses ReLU as the non-linear activation function so in Figure 2.11 and

Equation 2.11, ReLU is used directly.

PA(X) = s(max(0,XA+ b1)B+ b2) (2.11)

FFN’(X) = FFN(X) + PA(X) (2.12)

2.4.10 Low Rank Adaption (LoRA)

Similar to PA, LoRA inserts trainable modules into a PLM and only tunes them while the

PLM parameters are frozen [Hu et al., 2022]. There are down and up projection matrices

(A ∈ Rdh×r, and B ∈ Rr×dh) in a LoRA module. However, the non-linear activation

function is removed. It also scales the output by a constant factor, s. Figure 2.19 shows
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Frozen
PLM Module

(FFN)

Scale

ReLU

Figure 2.18: This figure shows the structure of a PA [He et al., 2022a] module and how it

is inserted in-parallel to an FFN module.

Frozen Pretrained
Weights

(Query or Value)

Scale

Figure 2.19: This figure depicts the structure and position of a LoRA [Hu et al., 2022]

module.

the structure of the LoRA module in addition to its position in a PLM. Equation 2.13

shows how the output of LoRA is computed.

LoRA(X) = sXAB (2.13)
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There are two main differences between PA and LoRA. First, PA is inserted in parallel

to FFN, which is a PLM module. Instead, LoRA can be inserted in parallel to the PLM

weight matrices and [Hu et al., 2022] suggested applying them on top of the WQ and WV

matrices in the MHA blocks. Second, due to the removal of the non-linearity and applying

to matrices instead of modules, LoRA projections, A and B, can be multiplied and added

to the original PLM weight matrix, W, when the training is finished. Therefore, LoRA

does not add any parameters or modules to the model at the inference phase. Thus, LoRA

does not increase the inference latency of the model. This is a crucial benefit of LoRA over

other methods which makes it fast at the inference phase. Equation 2.14 shows how the

LoRA projections are merged to generate the final weight matrix, Wmerged, during the

inference phase.

Wmerged = W + sAB (2.14)

A disadvantage of the techniques like LoRA, PA, and Compacter is reducing the dimen-

sion, consequently the rank of the input matrix by the down-projection. Therefore the

mentioned methods are rank deficient. The down-projection and rank deficiency leads

to information loss, which might negatively affect the performance. We expected that

this rank deficiency could be addressed by using the Kronecker product to achieve better

results.
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Chapter 3

Kronecker Decomposition for GPT

Compression

In this chapter, our method for compressing models using Kronecker Decomposition is

explained. Although we applied this method only to GPT-2, it can be simply applied to

any model that has linear layers.

3.1 Kronecker Product and Decomposition

The Kronecker product is a mathematical operation that results in a block matrix given

two input matrices (Equation 3.1). Let A ∈ Ra1×a2 and B ∈ Rb1×b2 be the inputs. The

Kronecker product of A and B is equal to W ∈ Rw1×w2 . The block (i, j) of W is equal to

ai,jB. Therefore, the shape of W (w1 × w2) is equal to the multiplication of the shapes of

the input matrices where w1 = a1 × b1 and w2 = a2 × b2 [Edalati et al., 2022a,b].

W = A⊗B =


a11B · · · a1nB

... . . . ...

am1B · · · amnB,

 (3.1)

40



Therefore, a large matrix can be represented as the Kronecker product of two smaller

matrices, which leads to parameter reduction. In our work, this idea is used for Model

Compression.

Also, the Kronecker product has the following features:

A⊗ (B+C) = A⊗B+A⊗C

(A⊗B)−1 = A−1 ⊗B−1

(A⊗B)⊤ = A⊤ ⊗B⊤

for more details see [Henderson et al., 1983].

Furthermore, we utilized another feature of the Kronecker product to reduce the num-

ber of Floating Point Operations Per Second (FLOPS) in the PET direction. Equation 3.2

shows this feature which enables calculating the output of the Kronecker adapters with-

out the direct reconstruction of (A⊗B). This reduces the required FLOPS based on Equa-

tion 3.3 and speeds up the calculation. In Equation 3.2, A, B, and x are the Kronecker

factors and input vector, respectively. Also, γ(.) is an operator that stacks the columns of

the input matrix to reshape it into a vector. In contrast, ηm×n(.) reshapes the input vector

(e.g.,x ∈ Rmn) into a matrix (e.g., X ∈ Rm×n)

(A⊗B)x = γ(Bηb2×a2(x)A
⊤) (3.2)

(2a1b1 − 1)a2b2

min
(
(2b2 − 1)b1a2 + (2a2 − 1)b1a1, (2a2 − 1)b2a1 + (2b2 − 1)b1a1

) (3.3)

Besides, one feature of the Kronecker product motivated us to apply it in the PET

direction. In all of the previously discussed adapters, the rank of the input matrix is de-

creased since it is multiplied by a low-rank down projection. This reduces the representa-

tion power of the adapters and makes them rank deficient. However, the rank reduction
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does not happen if the Kronecker product and Equation 3.2 are used in adapters, instead.

Therefore, we expected to improve the performance of the existing adapters by incorpo-

rating the Kronecker product.

3.2 Linear Layer Compression Using Kronecker Decompo-

sition

Equation 3.4 shows how the output of a linear layer, y ∈ Rw1 , is calculated given the

input, x ∈ Rw2 , where b ∈ Rw1 is a bias and W ∈ Rw1×w2 is a weight matrix. To compress

this layer, the weight matrix can be represented by the Kronecker product of two smaller

matrices (called Kronecker factors), A ∈ Ra1×a2 and B ∈ Rb1×b2 , such that W = A ⊗ B

and w1 = a1b1, w2 = a2b2. Therefore, the number of parameters is decreased from w1w2 to

a1a2 + b1b2. For example, let w1 = w2 = 1024, a1 = a2 = 2, and b1 = b2 = 512. Then, the

compression rate will be computed based on Equation 3.5.

Wx+ b = y (3.4)

10242

5122 + 22
≈ 4 (3.5)

If we represent the weight matrix by two Kronecker factors using Kronecker Decomposi-

tion, Equation 3.4 changes to Equation 3.6.

(A⊗B)x+ b = y (3.6)

We can simply reconstruct W by obtaining A ⊗ B and multiply it by x to compute

the output of the Kronecker layer. It is possible to use Equation 3.2 to further accelerate

Equation 3.6. However, using this technique requires GPUs with a larger memory during

training. Since our resources were limited, for GPT compression we did not use Equation

3.2. Instead, we simply reconstructed A⊗B directly.
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Figure 3.1: This figure shows how SVD is used to decompose a matrix - W - into the

Kronecker factors such that W ≃ A⊗B.

To estimate the corresponding Kronecker factors for a given W, we used a pair of

Kronecker factors (A,B) that minimize the L2 loss function stated in Equation 3.7. To

solve Equation 3.7, SVD of W was calculated (Equation 3.8) where U is the left singular

vectors matrix, Σ is the singular values matrix and V is the right singular vectors matrix.

Smax is the largest singular value. Also, us and vs are the corresponding column and row

to Smax in U and V matrices, respectively. us and vs were multiplied by
√
smax, then

reshaped as (a1 × a2) and (b1 × b2), respectively, to be exploited as the corresponding

Kronecker factors (Equations 3.9 and 3.10). Figure 3.1 shows the described process for

decomposing W into the Kronecker factors. Obviously, this decomposition method is not

completely precise and W ≃ A ⊗ B. Please see [Tahaei et al., 2022, Van Loan, 2000] for

more details.

(A,B) = arg min
(Â,B̂)

∥W − Â⊗ B̂∥2 (3.7)

W = UΣV (3.8)

A = reshape(a1×a2)
(
√

Smaxus) (3.9)

B = reshape(b1×b2)
(
√

Smaxvs) (3.10)
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3.3 Embedding Layer Compression Using Kronecker De-

composition

Figure 3.2: This figure illustrates our method for the embedding layer compression. The

figure is directly re-used with permission from [Tahaei et al., 2022].

In the modern LMs, the size of Wwte ∈ Rv×dh is significantly larger than Wwpe ∈ Rdh×dh

since v ≫ dh. Therefore, Wwpe was compressed similarly to the linear layers while the

compression of Wwte was slightly different.

The corresponding Kronecker factors to Wwte are Awte ∈ Rv×d/n and bwte ∈ R1×n. We

represented the second Kronecker factor with a vector instead of a matrix for two reasons.

First, to set the shape of Awte similar to Wwte so that each token is embedded using a single

row in Awte. Second, Awte(i, :) ⊗ bwte is equal to the embedding vector of the ith token.

The computation complexity of Awte(i, :) ⊗ bwte becomes efficient (O(d)). This algorithm

is introduced by [Tahaei et al., 2022]. Figure 3.2 shows how the embedding compression

works.
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3.4 GPT2 Compression Using Kronecker Decomposition

Section 2.2 explains how Transformers are developed based on linear layers. Also, Sec-

tions 3.2 and 3.3 discuss how Kronecker Decomposition is applied to compress linear and

embedding layers. We used Kronecker decomposition to compress the embedding and

linear layers of GPT-2, which is a Transformer-based model. We call the new compressed

model KnGPT2. Figure 3.3 shows how our method decomposes GPT-2 into KnGPT2.

Layer Norm

Masked MHA

Layer Norm

FFN

GPT-2 Decoder

Embedding Layer




Figure 3.3: This figure shows how different linear layers of GPT-2 are decomposed into

the Kronecker factors to generate the compressed model, KnGPT2.

3.5 Intermediate Layer Knowledge Distillation (ILKD)

As discussed in Section 3.2, Kronecker Decomposition is not accurate. Therefore, the per-

formance of the decomposed GPT-2 is notably worse than the original model. However,

the lost performance can be retrieved by a brief pre-training.

Inspired by [Jiao et al., 2020, Tahaei et al., 2022], we developed an ILKD technique

which is utilized at the pre-training and fine-tuning stages. Our ablation study (Section

6.1.2) shows that using the ILKD is essential to achieve the best results.
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Term Definition

S The student model, KnGPT2

T The teacher model, GPT-2

(X,Y) A batch of data

AttSlast(X) The output of the student’s last attention block

AttTlast(X) The output of the teacher’s last attention block

HS
l (X) The normalized output of the student’s lth layer

HT
l (X) The normalized output of the teacher’s lth layer

LCE(X,Y) Cross Entropy (CE) between the model’s output, given X as the input, and Y

K-L{X||X′} Kullback–Leibler (K-L) divergence between X and X′

MSE(X,X′) Mean Squared Error (MSE) between X and X′

α1, α2, α3 The scales used in the loss function

L Number of the hidden states

Table 3.1: This table defines the terms used in our ILKD algorithm.

Please see Table 3.1 for the definition of the terms used in this section. Inspired by

[Wang et al., 2020], K-L divergence between the outputs of the models’ last attention

block (Equation 3.11) was used in our algorithm. Also, we utilized MSE between the hid-

den states of the teacher and student (Equation 3.12) to match the student’s intermediate

outputs to the teacher’s. The output of the embedding layer or each Transformer layer

was considered a hidden state. In addition, CE between the ground truth outputs and

generated outputs was calculated.

As Equation 3.13 shows, the final loss function is obtained by adding the three weight-

ed loss items.

LAttention(X) = K-L{AttSlast(X)||AttTlast(X)} (3.11)

LHidden States(X) =
1

L

∑
l

MSE{HS
l (X),HT

l (X)} (3.12)
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Ltotal(X,Y) =
∑
(X,Y)

α1LAttention(X) + α2LHidden States(X) + α3LCE(X,Y) (3.13)
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Chapter 4

Parameter Efficient Tuning with

Kronecker Adapter

This chapter explains how we used the Kronecker product to develop modules that are

used in efficient tuning of PLMs.

4.1 Kronecker Adapter (KronA)

The structure of a LoRA module is depicted in Figure 4.1 where dh is the embedding

dimension, r is the rank of LoRA that is selected based on the desired number of training

parameters, A ∈ Rdh×r is the down-projection matrix, and B ∈ Rr×dh is the up-projection

matrix. Equation 4.1 shows how the output of LoRA is calculated given the input, X ∈

Rlseq×dh , where s is the scale.

LoRA(X) = sXAB (4.1)

A KronA module is developed by replacing the LoRA projections with the Kronecker

factors, AK ∈ Ra1×a2 and BK ∈ Rb1×b2 , which are randomly initialized. Instead of ma-

trix multiplication, the Kronecker factors are multiplied by the input using the Kronecker

product (Equation 3.2). Based on the desired number of trainable parameters, the shapes

of the Kronecker factors are selected as a hyperparameter. Table 4.1 summarizes the men-
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Frozen Pretrained
Weights

(Query or Value)

Frozen Pretrained
Weights

(Query or Value)

Scale

LoRA KronA

Scale

Figure 4.1: This figure shows the structure of LoRA [Hu et al., 2022] (left) and KronA

[Edalati et al., 2022a] (right) module.

tioned information. Equation 4.2 shows how the output of a KronA module is computed,

where s is the scale.

KronA(X) = sX[AK ⊗BK ] (4.2)

Module Name Factor Name Symbol Shape Parameters Module Parameters Constraint

KronA Kronecker Factor AK a1 × a2 a1a2 a1a2 + b1b2 a1b1 = a2b2 = dhKronecker Factor BK b1 × b2 b1b2

LoRA Down Projection A dh × r dhr 2dhr r < dh
2Up Projection B r × dh dhr

Table 4.1: This table compares the features of LoRA with KronA. The table is re-used with

permission from [Edalati et al., 2022a].

KronA is a linear block that is inserted in parallel to the linear weight matrices of

a PLM. Therefore, similar to LoRA, KronA modules can be merged into the PLM after

training. Therefore, the inference latency is not increased by using KronA. Equation 4.3

shows the merging mechanism.
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Wmerged = W + s[AK ⊗BK ] (4.3)

Therefore, both LoRA and KronA do not increase the inference time.

For the initialization, we set BK to zero and initialize AK from a Kaming-Uniform

(KU) distribution [He et al., 2015]. In Section 6.2.1, a brief ablation study on the effect of

the weight initialization is done.

4.2 Kronecker Adapter for Blocks (KronAB)

Frozen
PLM Module

(FFN)

Scale

ReLU

Frozen
PLM Module

(FFN)

Scale

PA KronAB

Figure 4.2: This figure depicts the structure of a PA module [He et al., 2022a] on the left

and a KronAB [Edalati et al., 2022a] module on the right.

[He et al., 2022a] proposed PA which also uses a low-rank decomposition in-parallel

to FFNs and achieves a promising performance on downstream applications. Equations

4.4 and 4.5 show how PA works in a Transformer-based model. Also, the structure of a

PA module is depicted in Figure 4.2.

PA(X) = s(max(0,XA+ b1)B+ b2) (4.4)
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FFN’(X) = FFN(X) + PA(X) (4.5)

The promising performance of PA motivated us to develop a Kronecker-based ver-

sion of PA. Therefore, we replaced the PA projections with the Kronecker factors. Also,

our empirical results show that removing the non-linearity from KronAB improves the

performance and speed. Therefore, the non-linearity is removed from KronAB blocks (see

Section 6.2.2 for more details). Equations 4.6 and 4.7 show how the output of KronAB is

computed and added to the FFN’s output to generate the final output, FFN’(X), where b

is a bias.

KronAB(X) = sX[AK ⊗BK ] + b (4.6)

FFN’(X) = FFN(X) + KronAB(X) (4.7)

Although KronAB is a linear block, there is a non-linear activation function within

FFNs which prevents merging the KronAB blocks into FFNs during the inference phase.

Therefore, similar to PA, KronAB increases the inference latency and memory.

4.3 Kronecker Adapter for Blocks with Residual Connec-

tion (KronAB
res)

We developed a third version of our Kronecker adapter, which is slower than the previous

versions but achieves a better performance. This adapter is developed by adding a scaled

residual connection to the KronAB module. This residual connection was scaled by a

learnable factor, sres, which is initialized with one at the beginning of fine-tuning. Figure

4.3 shows the structure of a KronAB
res module. Also, Equation 4.8 shows how the output

of KronAB
res is calculated.

KronAB
res(X) = sX[AK ⊗BK ] + b+ sresX (4.8)
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Figure 4.3: This figure shows the structure of a KronAB
res [Edalati et al., 2022a] module.

52



Chapter 5

Experimental Details

In this chapter, first, the datasets used in our experiments are explained in Section 5.1.

Then, the evaluation metrics are discussed in Section 5.2. Finally, Sections 5.3 and 5.4 are

dedicated to explaining the experimental details (including hyperparameters, hardware,

etc.) about the Model Compression and PET directions, respectively.

5.1 Datasets

5.1.1 Open Web Text (OWT)

WebText [Radford et al., 2019] is a huge general domain dataset that is collected by Ope-

nAI1. The original version of this dataset is not published yet. However, a replication of

this dataset called OWT [Gokaslan and Cohen, 2019] has been published2. This dataset

contains eight million documents in the training set. [Li et al., 2021] proposed an algo-

rithm to clean the dataset from noisy data including the HTML codes or sentences with

a high ratio of non-alphabetical characters. We used the cleaned version of OWT. Also,

only the first 10% of data samples in the dataset were selected as our pre-training dataset

in this work.
1See https://openai.com/
2See Hugging Face and OpenWebTextCorpus.
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5.1.2 WikiText-103

WikiText-103 [Merity et al., 2017] is a language modeling dataset with more than 100

million tokens. Containing numbers, punctuation, a relatively large vocabulary, and the

original case of words are considered among the advantages of this dataset. We used

WikiText-103 to evaluate the models on CLM.

5.1.3 General Language Understanding Evaluation (GLUE)

GLUE is a well-known benchmark in NLP that includes ten downstream tasks [Wang

et al., 2019]. In our work, two (WNLI and AX) out of ten GLUE tasks were excluded since

they have too small datasets leading to unstable and inconclusive results. Here, a short

description of the utilized tasks is provided [Wang et al., 2019]:

• Corpus of Linguistic Acceptability (CoLA): This is an English dataset collected

from articles on linguistic theory. The model should predict if a sample sentence is

grammatically correct [Warstadt et al., 2019].

• Multi-Genre Natural Language Inferenc (MNLI): An English dataset that includes

data samples from different sources. Each data sample has a hypothesis and a

premise sentence. The model should predict whether the hypothesis is entailed

by the premise [Williams et al., 2018].

• Microsoft Research Paraphrase Corpus (MRPC): An English dataset extracted from

the online news in which every data sample is composed of two sentences. The task

is predicting if the two sentences are equivalent in terms of semantics [Dolan and

Brockett, 2005].

• Question-Answering Natural Language Inference (QNLI): A dataset developed

based on SQuAD [Rajpurkar et al., 2016] that has changed the Question-Answering

task into a classification task. Data samples in QNLI are composed of an article and
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a question and the task predicting if the answer to the question can be found in the

article [Demszky et al., 2018].

• Quora Question Pairs (QQP): A dataset collected from question pairs found in

Quora3. The task is about predicting if the two input questions are equivalent in

terms of their semantics.

• Recognizing Textual Entailment (RTE): This dataset is collected from the news

and Wikipedia. Data samples contain a hypothesis and a premise sentence and the

model should predict whether the hypothesis is entailed by the premise [Bar Haim

et al., 2006, Bentivogli et al., 2009, Dagan et al., 2006, Giampiccolo et al., 2007].

• Stanford Sentiment Treebank-2 (SST-2): This dataset is made from comments abo-

ut movies and the task is to predict if the sentiment of the comment is positive or

negative [Socher et al., 2013].

• Semantic Textual Similarity Benchmark (STS-B): This dataset is developed by ex-

tracting sentence pairs from the news headlines and captions of images and videos.

The task is to assign a number from 1 to 5 to show the similarity of the sentence

pairs [Agirre et al., 2007].

The GLUE tasks have three splits: train, dev, and test. In our Model Compression di-

rection, all models were trained on the train set, then, evaluated on the dev set to tune the

hyperparameters. Finally, they were tested on the test set by submitting the results to the

GLUE leaderboard4. Please note that the original test labels of GLUE are not published so

the test evaluation requires submitting the predictions to the GLUE leaderboard, which

is time-taking. Therefore, for the PET experiments, we generated our test sets from the

dev and train data similar to [Karimi Mahabadi et al., 2021, Zhang et al., 2022]. To gen-

erate the test set of tasks with a relatively larger dataset (MNLI, QNLI, QQP, SST-2), we

3See https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
4See https://gluebenchmark.com/
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excluded 1k randomly selected samples from the train set. for other tasks (CoLA, RTE,

MRPC, STS-B), half of the dev set were considered as the test set.

5.2 Evaluation Metrics

The metrics that are utilized for evaluation are discussed in this section.

5.2.1 Perplexity (PPL)

PPL is a metric to measure the ability of LMs to generate semantically and syntacti-

cally correct sentences. By generating more natural and correct sentences, PPL of an

LM decreases. Equation 5.1 shows the formula to measure PPL of an LM where X =

(x0, x1, ..., xN) is a sequence generated by the model and pθ(xn|Xn−1) means the probabil-

ity of generating xn when the model has already generated Xn−1 = (x0, x1, ..., xn−1) [Bahl

et al., 1983, Clarkson and Robinson, 1999]. A lower PPL means that the model generates

the sentences that are found in the test set (assumed to be semantically and syntactically

correct) by a higher probability. This metric is used for the evaluation on WikiText-103.

PPL(X) = e

− 1

N

N∑
n=0

log pθ(xn|Xn−1)

(5.1)

5.2.2 Accuracy (Acc)

This metric is usually used for the evaluation of classifier models. Acc [Powers, 2011]

simply reports the percentage of those data samples that are classified correctly divided

by the total data samples (Equation 5.2). This metric is used for the evaluation on RTE,

MNLI, QNLI, QQP and SST-2.

Acc =
Number of samples classified correctly

Number of total samples
× 100 (5.2)
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5.2.3 F1

F1 is often used to evaluate the classification ability of models. In our work, F1 was used

to evaluate the models on MRPC. To calculate F1 for a classifier’s output, the below terms

must be defined first [Powers, 2011]:

• True Positive (TP) is the number of data samples assigned to a class correctly.

• True Negative (TN) is the number of data samples not assigned to a class correctly.

• False Positive (FP) is the number of data samples assigned to a class incorrectly.

• False Negative (FN) is the number of data samples not assigned to a class incor-

rectly.

Now, Equations 5.3 and 5.4 show how two other related metrics - named Precision

and Recall - for each class are defined.

Precision(class) =
TP(class)

TP(class) + FP(class)
(5.3)

Recall(class) =
TP(class)

TP(class) + FN(class)
(5.4)

Finally, Equation 5.5 shows how F1 for each class is defined based on Recall and Pre-

cision. Note that in our work, the F1 percentage was reported, so it was scaled by 100.

F1(class) =
2× Precision(class)× Recall(class)

Precision(class) + Recall(class)
(5.5)

5.2.4 Matthews’s Correlation Coefficient (MCC)

MCC [Chicco et al., 2021, Matthews, 1975] is a metric that measures the similarity of the

predicted labels to the true labels. it is commonly used to evaluate classifiers on CoLA.
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Equation 5.6 shows how MCC is calculated.

MCC =
TN × TP − FN × FP√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5.6)

5.2.5 Pearson’s Correlation Coefficient (PCC)

The goal of STS-B is to measure the similarity of two sentences by assigning a number.

Therefore, it is a regression task that requires an appropriate metric. PCC [Rodgers and

Nicewander, 1988] is a metric that can measure the similarity of two series of numbers.

Let y = (y1, ...yN) and x = (x1, ...xN) be the true and predicted numbers for the similarity

of N sentences, respectively. Then, Equation 5.7 shows how this metric is calculated in

which:

µx =
1

N

N∑
i=1

xi

µy =
1

N

N∑
i=1

yi

.

PCC(y,x) =

∑N
i=1 (xi − µx)(yi − µy)√∑N

i=1 (xi − µx)2
√∑N

i=1 (yi − µy)2
(5.7)

5.2.6 Spearman’s Rank Correlation Coefficient (SCC)

Similar to PCC, SCC [Dodge, 2008, Spearman, 1904] is a metric to measure the similarity

of two series of numbers. Assume that x = (x1, ...xN) is a series of numbers and R(x, i)

is an operator which sorts the vector x and returns the order of the element xi in the

sorted vector. Therefore, SCC of two series of numbers, x and y, is defined as Equation

5.8 shows.

SCC(x,y) = 1− 6
∑N

i=1 (R(x, i)−R(y, i))2

N(N2 − 1)
(5.8)

We reported the average of PCC and SCC to evaluate the models on STS-B.
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5.3 Experimental Details Related to the Model Compres-

sion Direction

All of the experiments were done on NVIDIA Tesla V100 GPUs, using Pytorch5 [Paszke

et al., 2019] and the Huggingface Transformers library [Wolf et al., 2020]. While we used

eight GPUs for experiments related to the pre-training or fine-tuning on WikiText-103,

one GPU is used for each GLUE experiment.

Our baseline, DistilGPT2 has roughly 82 million parameters. We wanted to compress

the base model, GPT-2 with 124 million parameters, to the size of the baseline for a fair

comparison. Therefore, odd-numbered Transformer layers besides the embedding layer

of GPT-2 were decomposed by a factor of 2. In other words, only half of the Transformer

layers and the embedding layer were compressed to initialize KnGPT2. In this scenario,

KnGPT2 has 83 million parameters.

Table 5.1 shows the sizes of the matrices in GPT-2base, DistilGPT2 and KnGPT2. The

hyperparameters that we used for Model Compression experiments are provided in Table

5.2.

Model Embedding Q,K,V FFN6

GPT-2base 50527× 768 768× 768 3072× 768
DistilGPT2 50527× 768 768× 768 3072× 768
KnGPT27 A : 50527× 384, B : 1× 2 A : 384× 768, B : 2× 1 A : 1536× 768, B : 2× 1

Table 5.1: The shape of the weight matrices of the models studied in the Model Compres-

sion direction are mentioned in this table. The table is directly re-used with permission

from [Edalati et al., 2022b].

5See https://github.com/pytorch/pytorch
6Due to the space limitation, only the shape of Wcproj is mentioned. The shape of Wcfc is in the reversed

order of Wcproj
.

7Only the shape of decomposed weight matrices is mentioned. Half of the Transformer layers were not
decomposed.
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Phase Dataset Model Epoch Seq Length Batch size Learning rate α1 α2 α3 α4

P OWT(10%) KnGPT2 1 1024 1 0.00025 0.5 0.5 0.1 0
F WikiText-103 KnGPT2 1 1024 1 0.00025 0.5 0.5 0.1 0
F WikiText-103 DistilGPT2 1 1024 1 0.00025 0 0 1 0
F Wikitext-103 GPT-2 1 1024 1 0.00025 0 0 1 0
F GLUE GPT-2 20 128 16 2e-5 0 0 1 0
F GLUE DistilGPT2 20 128 16 2e-5 0 0 1 0
F GLUE DistilGPT2+KD 20 128 16 2e-5 0 0 0.5 0.5
F GLUE KnGPT2 20 128 16 2e-5 0 0 1 0
F GLUE KnGPT2+ILKD 20 128 16 2e-5 0.5 0.5 0.02 0

Table 5.2: This table shows the hyperparameters used for the pre-training (shown by P)

and the fine-tuning (shown by F) of the models used in the Model Compression direction.

Also, α4 represents the scale of the vanilla KD loss for fine-tuning DistilGPT2 with KD.

5.4 Experimental Details Related to the PET Direction

5.4.1 Experimental Setup

All of the discussed PET methods were applied to fine-tune T5 [Raffel et al., 2020]. Ou-

r code implementation was based on Hugging Face Transformers8 [Wolf et al., 2020],

LoRA9 [Hu et al., 2022], PA10 [He et al., 2022a], and Compacter11 [Karimi Mahabadi et al.,

2021] official public repositories. Similar to the mentioned repositories, our code was de-

veloped based on Pytorch. One NVIDIA Tesla V100 GPU was utilized to run the PET

experiments.

Except for BitFit Tuning, the other techniques used approximately the same number

of trainable parameters. Therefore, we can have a fair comparison. Note that it was not

possible to increase the trainable parameter of BitFit tuning due to the limited number of

biases in T5. Furthermore, KronAB or KronAB
res modules can benefit from one or two bias

vectors, which can slightly change the number of trainable parameters. For each GLUE

task, the final performance indicated whether to use one or two biases.

Also, Table 5.3 shows the position of the studied PET modules in the model.

8See https://github.com/huggingface/transformers
9See https://github.com/microsoft/LoRA

10See https://github.com/jxhe/unify-parameter-efficient-tuning
11See https://github.com/rabeehk/compacter
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Method FT BitFit Adapter Compacter LoRA PA KronA KronAB KronAB
res

Block Entire Model Biases FFN & Attention FFN & Attention Query & Value FFN Query & Value FFN FFN

Table 5.3: This table shows the position of the PET modules in a Transformer-based

model. The table is directly re-used with permission from [Edalati et al., 2022a].

5.4.2 Hyperparameters

Based on the target number of trainable parameters, the Kronecker factors of our pro-

posed adapters can have various shapes. The shapes of the Kronecker factors of KronAB

and KronAB
res were arbitrarily chosen due to the time limitation. However, we tuned the

shape of the Kronecker factors, reported in KronA experiments, based on the best dev

results. The options that were investigated as the shape of Kronecker factors and their

resulting accuracy on MNLI are reported in Table 5.4 to show the effect of the Kronecker

factors shape on the final performance. In this example, (2, 384) and (384, 2) are selected

as the shape of AK and BK , respectively.

Shape of AK Shape of BK MNLI (Accuracy)

(48, 16) (16, 48) 86.50
(32, 24) (24, 32) 86.31
(3, 256) (256, 3) 86.16
(24, 32) (32, 24) 86.40
(2, 384) (384, 2) 86.63
(192, 4) (4, 192) 86.46
(12, 64) (64, 12) 86.56

Table 5.4: The investigated options for the shape of KronA Kronecker factors and their

corresponding MNLI accuracy is reported in this table. The table is adapted with per-

mission from [Edalati et al., 2022a]. The column ”Shape of BK” is added to this table

compared to the original table.

The hyperparameters that are used for each experiment are provided in Tables 5.5,

5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, and 5.13. To reproduce the reported performances of

FT, BitFit, and Compacter in [Karimi Mahabadi et al., 2021], we used the exact set of

hyperparameters reported in [Karimi Mahabadi et al., 2021]. For LoRA, PA, and Adapter
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experiments, the rank was selected differently from [Karimi Mahabadi et al., 2021] to

match the trainable parameters with other baselines. We also tuned the learning rate for

the mentioned in addition to our proposed methods. The checkpoint that achieved the

best dev results during 20 epochs of training was evaluated on the test set.

FT hyperparameters

Task learning rate batch size warmup steps source sentence length epoch

GLUE 3e-4 100 500 128 20

Table 5.5: The hyperparameters of FT experiments are reported in this table. The table is

directly re-used with permission from [Edalati et al., 2022a].

BitFit hyperparameters

Task learning rate batch size warmup steps source sentence length epoch

GLUE 3e-4 100 500 128 20

Table 5.6: The hyperparameters of BitFit Tuning experiments are reported in this table.

The table is directly re-used with permission from [Edalati et al., 2022a].

Adapter hyperparameters

Task learning rate batch size task reduction factor epoch

GLUE 3e-3 100 32 20

Table 5.7: The hyperparameters of Adapter experiments are reported in this table. The

table is directly re-used with permission from [Edalati et al., 2022a].

Compacter hyperparameters

Task learning rate batch size hypercomplex division task reduction factor epoch

GLUE 3e-3 100 4 32 20

Table 5.8: The hyperparameters of Compacter experiments are reported in this table. The

table is directly re-used with permission from [Edalati et al., 2022a].

62

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


PA hyperparameters

Task learning rate batch size rank scale epoch

CoLA 3e-3 100 2 16 20

RTE 5e-3 100 2 16 20

MRPC 5e-3 100 2 16 20

SST-2 1e-3 100 2 16 20

STS-B 1e-3 100 2 16 20

MNLI 1e-3 100 2 16 20

QNLI 1e-3 100 2 16 20

QQP 1e-3 100 2 16 20

Table 5.9: The hyperparameters of PA experiments are reported in this table. The table

is re-used with permission from [Edalati et al., 2022a]. In the original table, the name of

STS-B is written SSTS-B, which is corrected here.

LoRA hyperparameters

Task learning rate batch size rank s epoch

GLUE 1e-3 100 1 1 20

Table 5.10: The hyperparameters of LoRA experiments are reported in this table. The

table is directly re-used with permission from [Edalati et al., 2022a].
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KronA hyperparameters

Task learning rate batch size AK BK s epoch

CoLA 1e-3 100 (32,24) (24,32) 1 20

RTE 2e-3 100 (32,24) (24,32) 1 20

MRPC 1e-3 100 (32,24) (24,32) 1 20

SST-2 1e-3 100 (24,32) (32,24) 1 20

STS-B 1e-3 100 (2,384) (384,2) 1 20

MNLI 1e-3 100 (2,384) (384,2) 1 20

QNLI 1e-3 100 (3,256) (256,3) 1 20

QQP 1e-3 100 (24,32) (32,24) 1 20

Table 5.11: The hyperparameters of KronA experiments are reported in this table. The

table is re-used with permission from [Edalati et al., 2022a]. In the original table, the

name of STS-B is written SSTS-B, which is corrected here.

KronAB hyperparameters

Task learning rate batch size AK BK s module bias epoch

CoLA 1e-3 100 (32,24) (24,32) 16 2 20

RTE 5e-3 100 (32,24) (24,32) 16 1 20

MRPC 5e-3 100 (32,24) (24,32) 16 1 20

SST-2 1e-3 100 (32,24) (24,32) 4 1 20

STS-B 1e-3 100 (32,24) (32,24) 16 1 20

MNLI 1e-3 100 (24,32) (32,24) 4 2 20

QNLI 1e-3 100 (24,32) (32,24) 4 1 20

QQP 1e-3 100 (32,24) (24,32) 4 1 20

Table 5.12: The hyperparameters of KronAB experiments are reported in this table. The

table is re-used with permission from [Edalati et al., 2022a]. In the original table, the name

of STS-B is written SSTS-B, which is corrected here.
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KronAB
res hyperparameters

Task learning rate batch size AK BK s module bias epoch

CoLA 1e-3 100 (32,24) (24,32) 16 2 20

RTE 5e-3 100 (32,24) (24,32) 16 2 20

MRPC 5e-3 100 (32,24) (24,32) 16 2 20

SST-2 1e-3 100 (32,24) (24,32) 16 1 20

STS-B 9e-4 100 (32,24) (32,24) 16 1 20

MNLI 1e-3 100 (32,24) (24,32) 16 1 20

QNLI 1e-3 100 (32,24) (24,32) 4 2 20

QQP 1e-3 100 (32,24) (24,32) 16 1 20

Table 5.13: The hyperparameters of KronAB
res experiments are reported in this table. The

table is re-used with permission from [Edalati et al., 2022a]. In the original table, the name

of STS-B is written SSTS-B, which is corrected here.
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Chapter 6

Ablation Study

In this chapter, an ablation study related to our experiments for both directions is pro-

vided. These experiments and studies helped us to efficiently design our approaches and

techniques.

6.1 Experiments Related to KnGPT2

6.1.1 The Importance of Pre-training

We did an experiment to show the importance of pre-training after decomposition. In

the first case, the Kronecker decomposed model was fine-tuned and evaluated on MNLI,

without pre-training. In the other case, the decomposed model was pre-trained on WikiT-

ext-103 before fine-tuning on MNLI. Table 6.1 shows that pre-training the decomposed

model, even on a small dataset, significantly improves the performance.

Model WikiText-103(PPL) MNLI (f1)

KnGPT2not pre-trained 28608 69.33
KnGPT2pre-trained 23.04 77.97

Table 6.1: This table shows the effect of pre-training on KnGPT2’s performance. The table

is drawn based on the results provided in [Edalati et al., 2022b].
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6.1.2 Improvement of the ILKD

We utilized a modified version of the ILKD algorithm developed in [Tahaei et al., 2022]

to improve the performance of Kronecker Decomposition. In [Tahaei et al., 2022], the

attention outputs of all layers of the teacher and student were compared using MSE loss

function. However, motivated by [Wang et al., 2020], we only used the output of the last

attention block to accelerate the distillation while keeping the performance. In addition,

we replaced MSE with K-L divergence as the distance metric [Edalati et al., 2022b, Wang

et al., 2020]. Table 6.2 shows the superiority of using K-L divergence over MSE.

Model CoLA RTE MRPC SST-2 MNLI QNLI QQP Average

KnGPT2 + ILKDMSE 41.65 68.95 88.89 90.48 80.69 87.66 90.00 78.33
KnGPT2 + ILKDKL 45.36 69.67 87.41 91.28 82.15 88.58 90.34 79.25

Table 6.2: This table shows the dev score of KnGPT2 that uses K-L divergence or MSE

(Equation 3.11) during the fine-tuning. The table is directly re-used with permission from

[Edalati et al., 2022b].

Furthermore, in [Tahaei et al., 2022], the CE loss (Equation 3.13) was not used during

the pre-training. Therefore, the student was pre-trained only based on the knowledge

distilled from the teacher. However, our empirical results (provided in Table 6.3) show

that using the CE loss in addition to other losses mentioned in Section 3.5 improves the

final performance. Therefore, during both pre-training and fine-tuning, we used Equation

3.13 in our ILKD algorithm.

Model α3 CoLA RTE MRPC SST-2 MNLI QNLI QQP Average

KnGPT2 + ILKD 0 40.80 70.04 88.25 90.71 80.12 87.64 89.64 78.17
KnGPT2 + ILKD 0.1 45.36 69.67 87.41 91.28 82.15 88.58 90.34 79.25

Table 6.3: This table shows the effect of inactivating the CE loss during the pre-training

stage on KnGPT2’s performance. α3 is the scale of the CE loss. The table is directly re-

used with permission from [Edalati et al., 2022b].
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6.2 Experiments Related to the PET Direction

6.2.1 KronA Initialization

We compared two strategies for the initialization of the Kronecker factors in KronA mod-

ules. The first strategy used a Normal distribution to initialize AK and BK :

AK ,BK ∼ N (0,
1

dh
)

While the second strategy initialized BK with a zero vector and AK from a Kaming-

Uniform (KU) distribution [Hu et al., 2022] where a =
√
5. For the main experiments,

we followed the second strategy since as Table 6.4 shows, it achieves better GLUE results.

Init Method CoLA RTE MRPC SST-2 STS-B MNLI QNLI QQP Avg

AK ,BK ∼ Normal 63.36 66.91 91.69 91.97 90.46 86.03 92.33 90.19 84.12
AK ∼ KU, BK=0 63.27 77.70 92.52 94.04 91.26 86.03 93.13 90.57 86.06

Table 6.4: The effect of the initialization strategies on the performance of KronA is re-

ported in this table. The table is re-used with permission from [Edalati et al., 2022a]

6.2.2 Step by Step Improvement of KronAB

Here, the modifications made to a common adapter [Houlsby et al., 2019] to improve it

into KronAB are discussed. Table 6.5 shows the results of applying these modifications.

In the first row, Adapter was transformed into the first version of KronAB by removing

the non-linearity and incorporating the Kronecker product instead of the normal matrix

multiplication. Note that the first version was applied sequentially on both attention and

FFN blocks. In the second row, KronAB was applied in parallel to the PLM blocks, which

improved the performance significantly. In the third row, a scaling factor was added to

the module.

Then, we inserted different non-linear activation functions (Mish [Misra, 2020], ReLU

[Glorot et al., 2011], GELU [Hendrycks and Gimpel, 2016], and SiLU [Elfwing et al., 2018])
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between the Kronecker multiplications (by AT
K and BK in Equation 3.2) and evaluated it

on QNLI to study the effect of non-linearity in our proposed adapter. As Table 6.6 shows,

SiLU achieves the best results. However, as the fourth row of Table 6.5 shows, adding

SiLU to KronAB reduces the averaged GLUE score. Also, adding non-linearity increases

the latency of KronAB. Consequently, we decided to remove the non-linearity.

Finally, as the last row of Table 6.5 shows, KronAB achieved the best results when it

was removed from attention blocks and applied only to FFNs. Therefore, the final version

of KronAB is applied only in parallel to FFNs while it has a scaling factor instead of a non-

linear activation function.

Modification CoLA RTE MRPC SST-2 STS-B MNLI QNLI QQP Avg

Sequential 15.26 53.28 86.39 87.38 83.78 74.70 84.29 86.63 71.46
Parallel 58.17 69.78 91.58 93.81 90.86 85.68 93.35 90.14 84.17

Parallel+Scale (PS) 62.27 70.50 91.58 94.04 91.01 86.16 93.39 90.61 84.94
PS+SiLU 62.74 69.78 91.89 94.15 90.97 85.98 93.30 90.15 84.87

PS only on FFN 63.74 72.66 92.20 94.72 90.98 85.98 93.12 90.68 85.51

Table 6.5: The effect of each modification applied to KronAB on its final performance is

reported in this table. The table is re-used directly with permission from [Edalati et al.,

2022a].

nonlinear function Mish ReLU GELU GELUnew SiLU

QNLI Performance 93.21 93.28 93.13 93.26 93.30

Table 6.6: This table shows the effect of incorporating different non-linear activation func-

tions on the QNLI score of KronAB. The table is adapted with permission from [Edalati

et al., 2022a]. In the original table, the name of activation functions is not capitalized,

which is done in this table.

6.2.3 Bounded Scaling of the Residual Connection

We performed an ablation study to choose an optimal method for incorporating the resid-

ual connection in KronAB
res. We investigated two strategies based on the possible values
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for the scale of the residual connection, sres. In one scenario, sres was bounded between

zero and one by applying a sigmoid function. This module is called KronAM
sig-res. In the

other scenario, the scale was not bounded, as discussed in Section 4.3. Table 6.7 shows

the equations that these two scenarios used to calculate the output in addition to their

corresponding GLUE score and latency.

Method Output Equation GLUE Score Latency

KronAB
res KronAB

res(X) = sX[AK ⊗BK ] + b+ sresX 86.57 1
KronAM

sig-res KronAM
sig-res(X) = sX[AK ⊗BK ] + b+ sigmoid(sres)X 86.42 1.18

Table 6.7: This table compares the performance of effect of KronAB
res and KronAM

sig-res to

show the effect of bounding Sres using a sigmoid function. The table is adapted with per-

mission from [Edalati et al., 2022a]. Compared to the original table, the column ”Output

Equation” is added to this table. Also, ”Avg Score” is replaced with ”GLUE Score”.

Based on our empirical results, adding the sigmoid function to bound sres increases

the latency and reduces the GLUE score. Therefore, we only recommend using KronAB
res

and discarding KronAM
sig-res.
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Chapter 7

Results and Discussion

In this chapter, Section 7.1 provides the results of our experiments related to using Kro-

necker Decomposition for Model Compression. Section 7.2 shows how our Kronecker

adapters perform compared to the other PET baselines. Finally, a general discussion of

our results, limitations, and future works are mentioned in Section 7.3.

7.1 Compression with Kronecker Decomposition

7.1.1 Pre-training Acceleration

GPT-2base DistilGPT2 KnGPT2

Parameters1 124 82 83
Training time (hrs) - > 902 6.5
Dataset size (GB) 40 38 3.2

Table 7.1: This table shows the required time and size of the dataset to pre-train the

studied models. The table is re-used with permission from [Edalati et al., 2022b].

1The classification head is excluded from the reported number of parameters
2Since we did not pre-train DistilGPT2, we did not know the exact pre-training time of this model.

DistilBERT has a relatively similar architecture to DistilGPT2 and the size of the pre-training dataset for
both models is similar. Therefore, we reported the pre-training time of DistilBERT mentioned in [Sanh
et al., 2019]. This number is a reasonable estimation for the pre-training time of DistilGPT2.
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As mentioned previously, a brief pre-training is required to calibrate the compressed

model weights. Since we used only 10% of OWT, the pre-training of KnGPT2 was signifi-

cantly faster than the baseline, which is pre-trained on the entire OWT. This is considered

an important benefit of KnGPT2 over DistilGPT2. As Table 7.1 demonstrates, using our

method reduces the required time and data samples for pre-training, remarkably.

7.1.2 Downstream Results

After the compressed model was calibrated with a brief pre-training, it was fine-tuned on

downstream tasks using our proposed ILKD technique.

CLM

WikiText-103 is considered a well-known downstream dataset to evaluate LMs on CLM.

We evaluated KnGPT2 on this dataset. As Table 7.2 demonstrates, the Perplexity of

KnGPT2 is roughly 3 points lower than DistilGPT2, which means that our model out-

performs the baseline with a large margin.

GPT-2base DistilGPT2 KnGPT2

PPL 18.8 23.7 20.5

Table 7.2: This table shows the Perplexity of the studied models on the test set of

WikiText-103. The table is re-used with permission from [Edalati et al., 2022b].

GLUE

The models were evaluated on the GLUE tasks as well. KnGPT2 was fine-tuned using the

ILKD method in one case. In another case, we did not use the ILKD for fine-tuning our

model to highlight its effect.
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To have a fairer comparison, We also applied the vanilla KD [Hinton et al., 2015, Jafari

et al., 2021] to fine-tune the baseline3. Tables 7.3 and 7.4 show the performance of the

studied models, where the teacher in those experiments that utilized KD was GPT-2base.

Based on our results, KnGPT2 outperforms the baseline by a significant gap. Although

using the vanilla KD slightly improved the performance of DistilGPT2, it still fails to com-

pete with KnGPT2. In addition, utilizing the ILKD to fine-tune KnGPT2 significantly im-

proves the performance of our model and makes it roughly similar to the uncompressed

model, GPT-2small.

Model CoLA RTE MRPC SST-2 MNLI QNLI QQP Average

GPT-2base 44.0 63.2 84.5 92.8 81.75 88.7 88.0 77.56

DistilGPT2 32.4 61.9 84.3 90.8 79.55 85.4 87.3 74.52
DistilGPT2 + KD 33 61.5 84.4 90.7 79.85 85.7 87.6 74.67
KnGPT2 36.7 64.4 84.5 89.0 78.45 85.6 86.5 75.02
KnGPT2 + ILKD 41.8 63.7 86.5 91.5 81.6 88.4 88.5 77.42

Table 7.3: This table shows the GLUE score (test) of the models studied in the Model

Compression direction. The table is re-used with permission from [Edalati et al., 2022b].

Model CoLA RTE MRPC SST-2 MNLI QNLI QQP Average

GPT-2base 47.6 69.31 87.47 92.08 83.12 88.87 90.25 79.81

DistilGPT2 38.7 65.0 87.7 91.3 79.9 85.7 89.3 76.8
DistilGPT2 + KD 38.64 64.98 87.31 89.80 80.42 86.36 89.61 76.73
KnGPT2 37.51 70.4 88.55 88.64 78.93 86.10 88.87 77
KnGPT2 + ILKD 45.36 69.67 87.41 91.28 82.15 88.58 90.34 79.25

Table 7.4: his table shows the GLUE score (dev) of the models studied in the Model

Compression direction. The table is re-used with permission from [Edalati et al., 2022b].

3On the one hand, the teacher (GPT-2) and student (DistilGPT2) have a different number of layers. On
the other hand, several experiments are required to find the optimal method for using ILKD techniques
where the teacher and student have mismatched layers. Therefore, we did not apply our proposed ILKD
method to fine-tune DistilGPT2.
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7.2 PET with the Kronecker Product

Our proposed Kronecker-based adapters were evaluated on the GLUE tasks and their

performance, in terms of the GLUE score, training, and inference time was compared to

the SOTA techniques. The discussed methods were utilized to fine-tune T5 with tuning

roughly 0.07% of the entire parameters.

KronA and KronAB have a very similar architecture to LoRA and PA, respectively.

Therefore, a comparison between the performance of KronA and LoRA or KronAB and PA

would give us an insightful conclusion about the benefits of incorporating the Kronecker

product in adapters.

7.2.1 The GLUE Score

Method Params4 (%) CoLA RTE MRPC SST-2 STS-B MNLI QNLI QQP Avg

FT 100 63.37 74.82 92.73 93.58 90.07 86.16 92.77 91.74 85.65

BitFit 0.12 58.19 68.34 92.58 94.61 90.69 85.73 92.91 90.33 84.17
Adapter 0.07 64.66 71.94 91.27 94.84 90.49 85.91 92.97 90.35 85.30
LoRA 0.07 64.76 74.10 92.10 93.92 91.21 86.08 92.97 90.68 85.73
Compacter 0.07 64.42 76.26 91.52 93.92 91.04 86.14 92.93 90.36 85.82
PA 0.06 64.80 74.10 93.20 94.04 91.10 86.24 93.12 90.30 85.86

KronA 0.07 63.27 77.70 92.52 94.26 91.30 86.34 93.15 90.57 86.14
KronAB 0.07∗ 65.74 75.54 92.78 94.72 91.41 86.22 93.19 90.68 86.28
KronAB

res 0.07∗ 66.73 76.98 93.15 94.38 91.35 86.20 93.21 90.57 86.57

Table 7.5: In this table, the GLUE score of our Kronecker-based adapters is compared to

the other SOTA techniques for PET. The table is re-used with permission from [Edalati

et al., 2022a]. In this table, the column ”Params” from the original table is modified to

”Params (%)” to clarify that the reported numbers are the percentage of the trainable

parameters.

Table 7.5 shows the results of our PET experiments. Generally, in most of the GLUE

tasks in addition to the averaged score, all of the proposed Kronecker-based adapters

4Please note that KronAB and KronAB
res might have one or two biases depending on the dev results.

Therefore, the number of trainable parameters can be slightly different from the reported number.
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outperform the baselines. Also, KronAB achieves a better score than KronA. Further-

more, KronAB
res outperform all of the studied methods, including KronAB KronA, which

demonstrates the effect of the incorporated residual connection.

7.2.2 Inference Time

Our algorithm to measure the inference time demanded after applying each studied PET

method contains the below steps:

• Step 1: Generating a dummy input. The sequence length of the dummy input was

arbitrarily set to ten.

• Step 2: Warming up the GPU by processing the dummy input for 150 iterations5.

• Step 3: Calculating the average time that the model required to process the dummy

input for 200 times.

• Step 4: Repeating the above steps for three times and reporting the averaged infer-

ence time.

The normalized inference latencies are shown in Table 7.6. As expected, BitFit, LoRA,

and KronA do not increase the inference latency. Therefore, KronA could be an appro-

priate candidate for latency-sensitive applications. However, PA is slightly faster than

KronAB. In addition, KronAB
res is around 10% slower than KronAB due to the extra resid-

ual connection.

Method FT LoRA KronA BitFit Adapter PA Compacter KronAB KronAB
res

Inference Latency(%) 100 100 100 100 146 113 181 127 136

Table 7.6: The inference time demanded by each method is normalized and shown in this

table. The table is adapted with permission from [Edalati et al., 2022a]. The third row of

the original table is removed in this table.

5To measure the accurate inference time that a model requires to process an input sample on a GPU, the
GPU must be warmed up first to exclude the required time for activation and initialization of the GPU.
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7.2.3 Training Time

Please note those hyperparameters that affect the training time (e.g, batch size, epochs,

and gradient accumulation steps) were fixed in our experiments for all of the PET meth-

ods. Therefore, the comparison between the training speed up of the methods was fair.

Finally, the training time of each method on the GLUE tasks is normalized and shown in

table 7.7.

By comparing the training time of KronA and LoRA or KronAB and PA, we can con-

clude that using the Kronecker product marginally increases the training time. Similar to

the inference time, adding the residual connection increases the training time of KronAB
res.

Generally, our Kronecker-based adapters are marginally slower than the baselines. How-

ever, the gap is not significant and using our proposed methods notably reduces the train-

ing time, compared to FT.

Method CoLA RTE MRPC SST-2 STS-B MNLI QNLI QQP Avg

FT 1 1 1 1 1 1 1 1 1

BitFit 0.58 0.64 0.65 0.66 0.66 0.65 0.64 0.62 0.64
Adapter 0.82 0.71 0.72 0.78 0.76 0.72 0.69 0.69 0.73
LoRA 0.79 0.69 0.7 0.76 0.72 0.7 0.68 0.68 0.72
KronA 0.8 0.72 0.75 0.81 0.77 0.74 0.73 0.73 0.75
Compacter 0.88 0.74 0.78 0.86 0.81 0.75 0.74 0.76 0.79
PA 0.7 0.78 0.81 0.73 0.7 0.67 0.66 0.65 0.71
KronAB 0.84 0.7 0.72 0.79 0.75 0.72 0.7 0.71 0.74
KronAB

res 0.91 0.85 0.81 0.91 0.76 0.78 0.73 0.74 0.81

Table 7.7: The training time demanded by each method is normalized and shown in this

table. The table is re-used with permission from [Edalati et al., 2022a].
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7.3 General Discussion

7.3.1 Key Findings

First, we show that an auto-regressive LM like GPT-2 can be compressed by decompos-

ing its weight matrices into smaller matrices using Kronecker Decomposition. Also, a

relatively brief pre-training is sufficient to retrieve the lost information during Kronecker

Decomposition. In addition, the proposed ILKD from the base model to the compressed

model plays a crucial role in performance improvement.

Second, our results in Table 7.5 illustrate that using the Kronecker product instead of

the low-rank projections, improves the performance of the PET approaches. Based on

Tables 7.7 and 7.6, although using the Kronecker product slightly increases the training

time, it still reduces the training time compared to FT and some of the baselines such as

Compacter, significantly. The mentioned point is valid during the inference phase except

for KronA since it does not increase the inference latency.

7.3.2 Interpretation of the Findings

Our findings for the compression direction mean that an efficient and powerful compres-

sion technique in terms of the pre-training time and performance is developed by combin-

ing Kronecker Decomposition and the ILKD. This compression technique can effectively

compress LMs while maintaining their performance. Since this technique decomposes

linear weight matrices, it could be theoretically utilized to compress every neural net-

work composed of linear layers.

Also, our PET results mean that it is possible to efficiently fine-tune a PLM on a down-

stream task by tuning only the Kronecker-based adapters inserted in the specific blocks

of the model. Although the parameters of these adapters are negligible compared to the

huge size of a PLM, the Kronecker-based adapters perform better than the traditional

low-rank adapters on the downstream tasks. Also, at the expense of more latency, we can
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improve the performance of the Kronecker-based adapters by adding a learnable residual

connection where applicable. The Kronecker-based adapters can meet our performance

expectations, especially when a slight increase in training or inference time is tolerable.

7.3.3 Limitations

The performance of the Kronecker-based layers, in terms of accuracy and latency, is sen-

sitive to the shape of the Kronecker factors. Therefore, it is needed to find the optimal

shapes. In our analysis, we only tuned the Kronecker factor shapes of the KronA mod-

ules while the shape of KronAB and KronAB
res was fixed across different tasks. Therefore,

our results can be sub-optimal. Finding the optimum shape per task and investigating

the computation overhead through hyperparameter search is an area for future work.

The proposed compression technique is not compared with other techniques like Pru-

ning or Quantization since those were not applied to our target model, GPT-2. Therefore,

our conclusion for the superiority of Kronecker Decomposition needs further experiments

to be proven. One might ask about the reason for choosing GPT-2. The answer is that we

wanted to apply our method to a model that is not already compressed efficiently.

In addition, due to time and resource limitations, we only applied Kronecker Decom-

position to the smallest version of GPT-2. However, more experiments on larger models

and compression ratios are needed for a more solid conclusion.

Theoretically, Kronecker Decomposition could be applied to every neural network

with linear layers. However, more experiments are needed to confirm it practically.

Application of the proposed Kronecker adapters is limited to the acceleration of the

fine-tuning stage. They are not recommended to be utilized for the pre-training stage

since their limited representation power should not be sufficient to capture the general

domain pre-training information.

Further experiments are needed to measure the occupied dynamic memory of the

Kronecker adapters compared to the other baselines.
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Due to resource limitations, we did not use Equation 3.2 to efficiently calculate the

Kronecker layers’ output. Therefore, the compressed model might not gain any inference

speed-up or FLOPS reduction.

7.3.4 Future Works

To generate a fixed-size matrix, W, by the Kronecker product of two smaller matrices,

usually, there are several options for the shape of the Kronecker factors. In our work, we

noticed that the shape of the Kronecker factors can affect the final results significantly. To

the best of our knowledge, the effect of the Kronecker factors shape on the performance

of the Kronecker product is not studied yet. One potential next step for our work could

be a study on the effect of the Kronecker factors shape on the performance to develop

an algorithm for finding the optimal shapes. This study can be applied to improve the

performance of our proposed methods as well as other works that exploit the Kronecker

product.

Based on [Hameed et al., 2022], summation can improve the performance of Kronecker

Decomposition for compression of the convolutional layers. Also, the summation is used

in Compacter [Karimi Mahabadi et al., 2021] for PET. Summation means adding the Kro-

necker product of several pairs of the Kronecker factors,

∑
n∈[1:N ]

AKn ⊗BKn

instead of using one pair of the Kronecker factors, AK ⊗ BK . Adding the summation

might improve the performance of our proposed methods. However, we did not study

the summation effect due to time limitations; thus, it can be a promising future direction.

Our results show that Kronecker Decomposition can successfully compress GPT-2.

Also, it can easily be applied to other Transformer-based models. Nevertheless, the ability

of Kronecker Decomposition to achieve good results for the compression of larger models,

which require larger compression rates, is an open question.
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While most of the mentioned baselines and our approaches for PET achieve compara-

ble results to the fine-tuning on in-domain data, the robustness of models trained by these

techniques on out-of-domain data and adversarial attacks is not studied yet. On the one

hand, using the PET methods might increase the robustness of models since they train

a model by using fewer parameters compared to FT. Training by fewer parameters for a

downstream task that often uses a relatively small dataset, may prevent over-fitting. Con-

sequently, the performance on a new domain data is improved. On the other hand, some

other works [Brown et al., 2020, Du et al., 2023] show that by decreasing the number of

trainable parameters, the ability of PLMs to generalize on a new domain data decreases.

Therefore, this is an interesting line of research that we could not follow due to time limi-

tations.

Some recent works have used a unified framework to combine the existing PET base-

lines to achieve SOTA results [He et al., 2022a, Mao et al., 2022, Zhang et al., 2022]. In-

spired by the mentioned papers, combining the proposed methods in our work for PET

might significantly improve the performance.

Finally, the mentioned approaches for PET in our work can be applied to other fields of

Machine Learning, where Transformer-based models are used such as Computer Vision

[He et al., 2022b], Speech Recognition, and Time-Series Prediction.
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Chapter 8

Conclusion

In this work, improving the efficiency of NLP models by using the Kronecker product

is studied. First, some of the challenges regarding the ever-growing size of NLP mod-

els, which are time and resource consuming fine-tuning and difficulty of deployment on

edge devices, are mentioned. Then, two research directions for the efficient NLP are ex-

plained. Also, the methodology of existing baselines and SOTA methods in addition to

their strengths and weaknesses, are discussed.

The first studied direction is Model Compression, which enables reducing the size

of PLMs while keeping their performance. We have developed a compression technique,

called Kronecker Decomposition, by combining Matrix Decomposition and KD as two ex-

isting approaches for Model Compression. Our technique reduces the size of the weight

matrices in linear layers of a model. In this direction, we have focused on the compres-

sion of GPT-2. Nevertheless, our proposed approach for GPT compression can easily be

applied to every model that is composed of linear layers.

Therefore, we compress GPT-2 into KnGPT2 by Kronecker Decomposition. Then,

KnGPT2 is pre-trained on a relatively small dataset for one epoch to retrieve the lost

knowledge during the decomposition process. Pre-training of KnGPT2 is significantly

faster than its rival, DistilGPT2. However, KnGPT2 outperforms DistilGPT2 when both

are fine-tuned on the downstream datasets such as WikiText-103 and GLUE. We also

81



have introduced an ILKD method, which is used for both pre-training and fine-tuning

of KnGPT2 to improve its performance.

Second, we have focused on the PET methods, which aim to make the fine-tuning

process more efficient in terms of the required time or resources while keeping the per-

formance. In this direction, we have proposed to replace the common matrix multipli-

cations of the down and up projection weight matrices in adapters with the Kronecker

product. Therefore, by removing the low-rank projections, the rank deficiency problem

of the mentioned methods is solved, which improves the downstream results.

We have developed KronA and KronAB as the updated versions of LoRA and PA,

respectively. We also have suggested adding a residual connection scaled by a learnable

factor to KronAB to further improve the fine-tuning results at the expense of less speed-up

during both the training and inference phases.

Our proposed PET methods outperform the other SOTA baselines on the GLUE bench-

mark. Also, the speed-up of our proposed methods is comparable to the other baselines.

Consequently, our methods significantly reduce the required training time compared to

FT.
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