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Abstract. A 2-complex X has nonpositive towers if every tower map Y → X from a con-

nected compact 2-complex Y either has χ(Y ) ≤ 0 or Y contractible. We give a short exposition

of the consequences of nonpositive towers and ways to detect the stronger property of nonpos-

itive immersions. We then show that compact contractible 3-manifold spines can fail to have

nonpositive immersions but always have nonpositive towers.

Abstract. Un 2-complexe X a la propriété de “nonpositive towers” si chaque “tower map”

Y → X d’un 2-complexe Y qui est connexe et compact satisfait χ(Y ) ≤ 0 ou a le Y contractile.

On donne une courte exposition des conséquences des “nonpositive towers” et des façons de

détecter la propriété plus restrictive de “nonpositive immersions”. On montre ensuite que les

épines connexes, compactes et contractiles de 3-variétés peuvent ne pas avoir de “nonpositive

immersions” mais ont toujours des “nonpositive towers”.
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1. Introduction

Definition 1.1. A 2-complex X has nonpositive immersions if for every combinatorial immer-

sion Y → X with Y compact and connected, either χ(Y ) ≤ 0 or Y is contractible.

A 2-complex X has nonpositive towers if for every tower map Y → X with Y compact and

connected, either χ(Y ) ≤ 0 or Y is contractible.

The objective of this paper is to motivate these definitions through their consequences on

2-complexes and their fundamental groups, and show via some recent examples that nonpositive

towers do not imply nonpositive immersions.

Tower maps and tower lifts will be defined in Section 2. The former are the main maps of

interest in the rest of the paper, and the latter are important in the following section.

In Section 3, we will restate the above definitions and review some of the consequences

of nonpositive towers and immersions. In particular, we show that a 2-complex X having

nonpositive towers is aspherical with π1X locally indicable.

While nonpositive immersions are a stronger condition than nonpositive towers, the former

are often easier to detect. In Section 4, we give some tests for determining whether a 2-complex

has nonpositive immersions, and list some classes of 2-complexes having nonpositive immersions.

In Section 5, we give two sources of counterexamples to the conjecture that contractible 2-

complexes have nonpositive immersions. The second of these is the following original theorem

[2], which is a special case of Proposition 5.5:

Theorem 1.2. Every collapsed compact spine of a simply-connected 3-manifold containing a

disc has an immersed sphere.

It was shown in [19] that every aspherical 3-manifold with nonempty boundary has a spine

with nonpositive immersions. This utilized that there exists a spine with no near-immersion

of a 2-sphere [3]. However, it was shown in [5] that for n ≥ 3, every PL n-manifold M with

∂M ̸= ∅ has a spine X such that ∂M → X is an immersion, and moreover, such spines are

generic among all spines. So Theorem 1.2 is a variant of the simplest instance of their result.

We show in Section 6 (see Theorem 6.7) that these spines still have nonpositive towers. This

is another original result [2]:

Theorem 1.3. Every compact spine of an aspherical 3-manifold has nonpositive towers.

Acknowledgement: I am extremely grateful to Dani Wise, my thesis supervisor and coau-

thor of [2], for guiding my learning over the past year, for lots of interesting and helpful conver-

sations, and for being supportive throughout. I am also grateful to Piotr Przytycki, my thesis
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reviewer, for the thorough and useful feedback. And I am of course very appreciative of my

friends and family, who helped keep me sane during this degree.

2. Towers

In this section, we define towers and tower lifts. The latter will be a useful construction in

Section 3. We then give a proof by Howie and Wise of the existence of maximal tower lifts.

Definition 2.1. A combinatorial 2-complex is a 2-dimensional CW-complex whose 2-cells are

attached to the 1-skeleton by a finite concatenation of homeomorphisms onto 1-cells. That is,

the attaching maps of each 2-cell is specified up to homotopy by the finite sequence of 1-cells it

traverses.

Convention 2.2. All 2-complexes in this paper are assumed to be combinatorial.

Definition 2.3. A combinatorial map between 2-complexes is a continuous map that maps

open cells homeomorphically onto open cells. A map Y → X between topological spaces is an

immersion if every point in Y has an open neighbourhood that is mapped injectively into X.

A combinatorial map Y → X between connected 2-complexes is a tower map if it factors as a

finite composition of subcomplex inclusions and covering maps. That is,

Y ↪→ Ân ↠ An ↪→ Ân−1 ↠ An−1 ↪→ · · · ↪→ Â1 ↠ A1 ↪→ X.

Since inclusions and covering maps are immersions, so are tower maps. Note also that, if Y is

finite, then we can take each Ai to also be finite by restricting our attention to the image of Y

at each step.

Tower maps arose in Papakyriakopolous’ classical 3-manifold proofs, and also arose naturally

in one-relator group theory [10].

Definition 2.4. Let f : Y → X be a map of connected CW-complexes. Then a map f̃ : Y → T

is a tower lift of f if there is a tower map t : T → X with t ◦ f̃ = f .

A tower lift f̃ : Y → T is maximal if, for any further tower lift f̃ ′ : Y → T ′ of f̃ , the tower

map T ′ → T is an isomorphism of CW complexes.

Some important properties of maximal tower lifts is that they are surjective and π1-surjective.

Indeed, if a tower map f : Y → T is not surjective, then it can be factored as Y → im(f) ↪→ T

where im(f) ↪→ T is a tower map, and so f is not maximal. Similarly, if f : Y → T is not
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π1-surjective, then it lifts to a covering space T̂ corresponding to im(f∗) ≤ π1T with T̂ ↠ T a

tower map, and so f is again not maximal.

The surjectivity and π1-surjectivity of maximal tower lifts will be very convenient for us in

the next section. If we want to make the most of them, it would be great to know that such

maximal tower lifts always exist. We end this section with the following lemma, proved in the

combinatorial case by Howie in [9] and then extended to the case of maps sending open cells to

open cells by Wise in [19], which tells us that this is true when the domain is finite:

Lemma 2.5. Let X and Y be connected CW-complexes with Y finite. Then any map f : Y → X

mapping open cells onto open cells (of possibly lower dimension) has a maximal tower lift.

Proof. Let size(·) denote the total number of cells in a finite complex. Let T0 = X, and for each

i ≥ 0 let Y → Ti+1 be a surjective tower lift of Y → Ti. Note that Ti → X is a combinatorial

immersion and each open cell in Y maps to a single open cell in X, so each open cell in Y must

map to a single open cell in Ti. Since Y → Ti is surjective, we have size(Ti) ≤ size(Y ) for each

Ti. But size(Ti+1) > size(Ti) whenever Ti+1 → Ti fails to be an isomorphism, since Ti+1 → Ti

is a combinatorial surjection. So Ti+1 → Ti can only fail to be an isomorphism at most size(Y )

times, and so a maximal tower lift exists. □

Remark 2.6. For any continuous map f : Y → X, there exists a subdivision of Y and X into

simplices so that f is homotopic to a simplicial map by the Simplicial Approximation Theorem.

Such a map sends open cells to open cells.

3. Nonpositive Towers and Nonpositive Immersions

In this section, we define nonpositive towers and nonpositive immersions, which will be the

main focus of the rest of this paper. We will then motivate these definitions by looking at some

of their consequences.

Definition 3.1. A 2-complex X has nonpositive immersions if for every combinatorial immer-

sion Y → X with Y compact and connected, either χ(Y ) ≤ 0 or Y is contractible.

Similarly, a 2-complex X has nonpositive towers if for every tower map Y → X with Y

compact and connected, either χ(Y ) ≤ 0 or Y is contractible.

Note that nonpositive immersions imply nonpositive towers. There are several variants of

these definitions. For example, one can weaken the requirement on Y to “either χ(Y ) ≤ 0 or

π1Y = 1”, or simply “χ(Y ) ≤ 1”. There are also variations requiring χ(Y ) ≤ −c|Y | for some

“size” |Y | of Y .
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These ideas have promise as a contextualizing framework towards Whitehead’s asphericity

conjecture, as well as towards understanding coherence [19]. The main consequesnces of non-

positive immersions are also enjoyed by complexes with nonpositive towers. The rest of this

section will go over some of these consequences.

3.1. Asphericity. In this section, we talk about the connection between nonpositive towers and

asphericity. We start by showing that any 2-complex having nonpositive towers is aspherical.

This was proved in [19] for a more general version of nonpositive towers. The simplified proof

below applies only to our stronger definition.

Theorem 3.2. Let X be a 2-complex with nonpositive towers. Then X is aspherical.

Proof. Let f : S2 → X represent an element of π2X. By Remark 2.6, we can assume that f

maps open cells onto open cells after subdividing and homotoping. By Lemma 2.5, f factors as

f : S2 f̃−→ T
t−→ X, with f̃ a maximal tower lift and t a tower map. Since f̃ is surjective, T is

compact and connected. Since f̃ is π1-surjective, π1T = 1 and so χ(T ) = b0(T )−b1(T )+b2(T ) =

1+ b2(T ) ≥ 1. So T must be contractible, since t is a tower. So f factors through a contractible

space T , and is therefore nullhomotopic. □

Since having nonpositive towers is a property inherited by subcomplexes, they could be a

way towards resolving Whitehead’s famous asphericity conjecture [16]:

Conjecture 3.3. Every subcomplex of an aspherical 2-complex is aspherical.

In hopes of resolving the above, it was conjectured in [19] that all contractible 2-complexes

have nonpositive immersions. This will be shown to be false in Section 5, but we are still led

to the following:

Conjecture 3.4. Every contractible 2-complex has nonpositive towers.

If this were true, then Whitehead’s asphericity conjecture would immediately follow. Let X

be aspherical, and let Y ⊆ X be a subcomplex. Then there is some covering space Ŷ of Y

which embeds in the universal cover X̃ of X. Since X̃ is contractible, it would have nonpositive

towers. Then Ŷ would have nonpositive towers and so be aspherical, and so Y would also be

aspherical.

3.2. Local Indicability.

Definition 3.5. A group G is locally indicable if every nontrivial finitely generated subgroup

H ≤ G surjects homomorphically onto Z (or equivalently, has infinite abelianization Ab(H)).
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We end this section with the following algebraic consequence of nonpositive towers [18]:

Theorem 3.6. Let X be a 2-complex with nonpositive towers. Then π1X is locally indicable.

Proof. We wish to show that every nontrivial finitely generated subgroup of π1X has infinite

abelianization. LetH ≤ π1X be finitely generated subgroup with presentation ⟨h1, . . . , hn | r1, r2, . . .⟩

and having finite abelianization Ab(H).

We construct a 2-complex Y and a map f : Y → X as follows: let Y have a single 0-cell

mapped by f to some basepoint in X. Let Y have a 1-cell for each hi, mapped to representative

closed paths in X1. Ab(H) is determined by a finite subset {ri} of the relators. For each such

ri, attach a corresponding 2-cell to Y . We can extend the map f |∂ri to ri, since the closed path

in X corresponding to ∂ri is nullhomotopic. This gives us a map f : Y → X.

Note that Y is connected and compact, and has Ab(π1Y ) = Ab(H). Note also that the

induced map f∗ : π1Y → π1X surjects onto H.

By Remark 2.6, we can assume that f maps open cells onto open cells after subdividing and

homotoping. By Lemma 2.5, f factors as f : Y
f̃−→ T

t−→ X, with f̃ a maximal tower lift and

t a tower map. Since f̃ is surjective, T is compact and connected. Since f̃ is π1-surjective,

Ab(π1T ) is finite, and so χ(T ) = 1 − 0 + b2(T ) ≥ 1. So T must be contractible, since X has

nonpositive towers and t is a tower. This means that t∗ : π1T → π1X is the trivial map. But

since f∗ surjects onto H, so does t∗. So we have that H is trivial. □

4. Tests for Detecting Nonpositive Immersions

While having nonpositive towers is more general than having nonpositive immersions, the

latter property is often more easily detected. In this section, we give a few tests for nonpositive

immersions.

4.1. Sieradski Colouring Test. The following is an example of a test that uses angle assign-

ments to detect nonpositive immersions.

Definition 4.1. An angled 2-complex X is a 2-complex with an assignment of real-valued angles

to all corners of 2-cells.

Definition 4.2. The link of a 0-cell v in a 2-complex X, denoted link(v), is a graph with a

vertex for each end of a 1-cell incident with v, and an edge for each corner of a 2-cell incident

with v, connecting the vertices corresponding to its two adjacent ends of 1-cells.

Definition 4.3. A 2-complex X satisfies the colouring test if it admits an assignment of angles

such that
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(1) all angles are either 0 or π,

(2) every 2-cell in X has at least two corners with angle 0,

(3) every cycle in the link of each 0-cell in X contains at least two edges with angle π.

This test was used by Sieradski in [15] to detect asphericity, but Wise showed in [17] that

it also implies nonpositive immersions. (In fact, it implies “nonpositive generalized sectional

curvature”, a stronger property which then implies nonpositive immersions.) The proof that we

give here will be more streamlined to our purposes, but first, we will need to define a notion of

curvature for angled 2-complexes.

Definition 4.4. Let X be an angled 2-complex.

The curvature κ(f) at a 2-cell f of X is κ(f) =
∑
c∈f

∡c− (|∂f | − 2)π, where |∂f | denotes the

path length of ∂f , and the sum is over the corners of f .

The curvature κ(v) at a 0-cell v of X is defined as κ(v) = (2−χ(link(v)))π−
∑

c at v
∡c, where

the sum is over all 2-cell corners meeting at v.

The curvature at a 2-cell is just the amount that its angle sum deviates from that of a euclidean

polygon. The curvature at a 0-cell can also be thought of as the deviation from the “flat” case.

For example, on a surface, the equation reduces to κ(v) = 2π −
∑

c at v
∡c, corresponding to the

deviation from the angle sum around a point in the euclidean plane.

Relating these curvatures to χ(X), we have the following combinatorial version of the Gauss-

Bonnet theorem, which was first proven by Ballmann and Buyalo in [1] and rediscovered by

McCammond and Wise in [13].

Theorem 4.5 (Combinatorial Gauss-Bonnet). Let X be an angled 2-complex. Then

2πχ(X) =
∑
f∈X

κ(f) +
∑
v∈X

κ(v).

This is the main tool that we will need to show that the colouring test implies nonpositive

immersions. Before the proof, we will need one more property of 2-complexes which will simplify

the argument:

Definition 4.6. A 2-complex is collapsed if no cell has a free face - i.e. no 0-cell has degree 1,

and no 1-cell is incident to a single side of a 2-cell.

If a 2-complex contains a cell with a free face, then it collapses. That is, it deformation

retracts to a subcomplex missing that open cell and face.

Theorem 4.7. If a 2-complex X satisfies the colouring test, then X has nonpositive immersions.
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Proof. Let Y ↬ X be a combinatorial immersion with Y compact and connected. Since Y

collapses to a collapsed subcomplex which is homotopy equivalent to Y , we can assume that Y

is collapsed.

Note that the angles in X induce an assignment of angles in Y . If the angles in X satisfy

the colouring test, then so do the induced angles in Y . To see this, note that 2-cells of Y are

sent to 2-cells in X and so contain at least two corners with angle 0, and cycles in links in Y

are sent to cycles in links in X and so contain at least two edges with angle π. We give Y such

an assignment of angles.

If Y is a single point, then we are done, so we assume that this is not the case.

For any 0-cell v in Y , we know that link(v) is nonempty and finite, is not just a single vertex,

and has no vertices of degree 1. Indeed, nonempty and finite follow from the fact that Y is

connected, compact, and not just a single point. If the link were a single vertex, then v would

be a free face of some 1-cell in X. Any vertex of degree 1 in the link would correspond to a free

face of a 2-cell in X.

Let v be a 0-cell in Y . Consider the subgraph link0(v) ⊆ link(v) obtained by deleting all edges

with angle π. If link0(v) has no edges, then it must have at least two connected components. If

link0(v) contains an edge, then that edge is part of a cycle in link(v) since there are no vertices

with degree 1. This cycle must contain an edge e with angle π. If the endpoints of e lay in

the same connected component of link0(v), then link(v) would contain a cycle having only one

edge with angle π. So the endpoints of e lie in different components of link0(v), and so link0(v)

again has at least two connected components. Note that each component of link0(v) is a tree,

and so χ(link0(v)) ≥ 2.

For any 0-cell v in Y , let n be the number of edges in link(v) with angle π. Then we have

κ(v) = (2− χ(link(v)))π −
∑

c at v
∡c = (2− χ(link0(v)) + n)π − nπ ≤ (2− 2 + n)π − nπ = 0.

We also have for any 2-cell f in Y that κ(f) =
∑
c∈f

∡c− (|∂f | − 2)π ≤ 0, since f has at most

|∂f | − 2 corners with angle π. So by Theorem 4.5, 2πχ(Y ) =
∑
f∈X

κ(f) +
∑
v∈X

κ(v) ≤ 0. □

Example 4.8. Consider the Baumslag-Solitar group BS(m,n) = ⟨a, b | bamb−1a−n⟩ with

m,n ≥ 1. Then its presentation complex has nonpositive immersions. See Figure 1 for an angle

assignment satisfying the colouring test.

4.2. Good Stackings. The following geometric test for nonpositive immersions was devel-

oped by Louder and Wilton in [11]. In contrast with the colouring test, which relied on the

combinatorial Gauss-Bonnet theorem, this test computes the Euler characteristic directly.
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Figure 1. An angle assignmtment for the Baumslag-Solitar presentation com-
plex BS(m,n) with m,n ≥ 1 and the link at its 0-cell.

Definition 4.9. Let X be a 2-complex with 2-cells whose boundary circles {wi} immerse in

X1. Let φ :
⊔
i
wi → X1 be the immersion of these circles, and let pX and pR be the projections

of X1 × R onto X1 and R. Then a stacking is an embedding σ :
⊔
i
wi ↪→ X1 × R such that

pX ◦σ = φ. A stacking is good if, for each wi, there exist points hi, ℓi ∈ wi such that pR(σ(hi)) is

the highest point in pR(σ(φ
−1(φ(hi)))) and pR(σ(ℓi)) is the lowest point in pR(σ(φ

−1(φ(ℓi)))).

A good stacking can be thought of as a stacking where each embedded wi is “partially visible”

to both an observer looking down from X1 × {+∞} and one looking up from X1 × {−∞}, in

the sense that their view is not blocked by any other embedded circles.

Continuing with this idea of an observer, we can ask what such an observer would see when,

say, looking at the wi from above. If every edge in X1 is traversed by some wi, they would see

a decomposition of X1 into circles and open arcs, with each arc belonging to a single wi and

ending when another arc passes above it. We can use this decomposition to calculate the Euler

characteristic.

Theorem 4.10. Let X be a 2-complex that admits a good stacking. Then X has nonpositive

immersions.

Proof. Let Y ↬ X be a combinatorial immersion with Y compact connected. Note that the

good stacking on X pulls back to a good stacking on Y . Without loss of generality, we can

assume that Y is collapsed. If Y is a graph, we are done, so we also assume that Y contains at

least one 2-cell.

Let {wi} be the boundary circles of 2-cells in Y . Consider the subcomplex of Z ⊆ Y 1 traversed

by the wi. Then, looking at the wi in the stacking from above, we get a decomposition of Z into
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circles and open arcs. This decomposition is actually entirely composed of open arcs. To see

this, suppose that this decomposition included a circle. Then there is some wi that is entirely

visible from above. Since it is also partially visible from below, there must be some point in wi

visible from both, and so some point p in Z traversed only once by a wi. This means that p is

contained in a free 1-cell of Y , contradicting the assumption that Y is collapsed.

So Z decomposes into open arcs {Aj}. Since each wi is visible, each contributes at least one

arc. So χ(Y ) = χ(Y 1) + |{wi}| ≤ χ(Z) + |{wi}| = −|{Ai}|+ |{wi}| ≤ 0. □

Definition 4.11. A group presentation is staggered if there is a linear order on the relators

and on a subset of the generators such that each relator contains an ordered generator, and for

any relators r1 < r2, (min r1) < (min r2) and (max r1) < (max r2), where (min r) and (max r)

denote the minimal and maximal generators appearing in r.

It can be shown [11] that the standard complexes of 1-relator presentations without torsion

admit good stackings, and so have nonpositive immersions. Similarly, staggered presentations

yield complexes with good stackings. It was shown using other methods [12] that 1-relator

presentation complexes with torsion also have nonpositive immersions, so we get the following:

Theorem 4.12. If X is a the standard complex of a 1-relator or staggered presentation, then

X has nonpositive immersions.

4.3. Slimness. We end this section with one more test, developed by Helfer and Wise in [8]. It

uses another method of directly computing the Euler characteristic, based on maximal elements

of a particular preorder on 1-cells.

Definition 4.13. A preorder on a set S is a reflexive transitive relation on S, denoted by ⪯.

For a subset A ⊆ S, an element a ∈ A is strictly maximal in A if there is no b ∈ A− {a} with

a ⪯ b.

Definition 4.14. Let X be a 2-complex. Then X is slim if there is a π1-invariant preorder on

1-cells of X̃ such that

(1) each 2-cell r in X̃ has a unique strictly maximal 1-cell e+r ∈ ∂r, which is traversed

exactly once by the boundary path of r,

(2) for distinct 2-cells r1 and r2 in X̃, e+r1 ⊆ ∂r2 =⇒ e+r1 ≺ e+r2 .

This can be thought of as follows: the assignment of e+r corresponds to a “direction of flow”

out of each 2-cell r of X̃, and this choice of direction is π1-invariant. Condition 1 adds the
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restriction that flow is directed out through a 1-cell of multiplicity one in the attaching map of

r, and condition 2 then tells us that this flow from one 2-cell to another cannot double back on

itself and cannot form directed cycles.

Definition 4.15. Let X be slim and let Y ↬ X be a combinatorial immersion. A widge in Y

is an open 1-cell that is mapped to some e+r in X. An isle in Y is a connected component of

Y 1 with the widges removed.

It is shown in [8] that for Y compact connected, if any isle in Y is a tree, then Y collapses to

a point. So from that, we get the following:

Theorem 4.16. Let X be a slim 2-complex. Then X has nonpositive immersions.

Proof. Let Y ↬ X be a combinatorial immersion with Y compact connected. We can assume

that Y is collapsed. If any isle in Y is a tree, then Y is a point and we are done. So suppose

that this is not the case.

Note that Y has at least one widge for each 2-cell, since each 2-cell is mapped to a 2-cell

in X that has an associated e+r and these e+r are distinct by condition 2 of slimness. So

χ(Y ) ≤ χ(Y 1) + |{widges}| =
∑
I isle

χ(I) ≤ 0. □

While this looks very different from the previous test based on good stackings, it turns

out that good stackings imply slimness. In fact, it was proven in [6] that good stackings are

equivalent to bislimness, a stronger version of slimness also introduced in [8]. So torsion-free

1-relator and staggered presentation complexes are slim. There are however classes of complexes

that are slim but do not always admit a good stacking:

Definition 4.17. A group presentation is reducible if there is a linear order on the relators and

on the generators such that each relator contains an ordered generator, and for any relators

r1 < r2, (max r1) < (max r2), where (max r) denotes the maximal generator appearing in r.

Complexes from reducible presentations without torsion do not always admit a good stacking,

but it was shown in [8] that such complexes are slim, and so have nonpositive immersions.

5. Contractible Complexes without Nonpositive Immersions

As mentioned in Section 3, there exist contractible CW-complexes failing to have nonpositive

immersions. In this section, we examine two such families: certain contractible 3-manifold

spines and certain two-relator presentations of the trivial group.
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Figure 2. An immersed sphere (left) in Bing’s house (right).

5.1. 3-Manifold Spines. In this section, we show that compact collapsed contractible 3-

manifold spines containing a 2-cell fail to have nonpositive immersions. This is one of the

main results in a paper that I recently coauthored with Wise [2]. Most of this section is taken

directly from that paper.

Definition 5.1. A spine of a 3-manifold M is an embedded 2-complex X ⊆ M such that M

deformation retracts to X.

Let’s start with a motivating example: Bing’s “house with two rooms” is obtained from a

3-ball by dividing it into two rooms via a pair of collapses, corresponding to entering the left

room from the right side of the house and entering the right room from the left side. See

Figure 2 for an example of an immersed 2-sphere. The collapses can also be thought of as

follows: homeomorphically deform the 3-ball to create the two tunnels and the two rooms. The

result is a “thickened” version of the house (still a 3-ball) which then deformation retracts onto

it. The immersed 2-sphere corresponds to the boundary 2-sphere of the “thickened” complex.

To extend this idea to other 3-manifold spines, we will have to formalize this idea of a thickening.

Construction 5.2. Let X be a compact connected collapsed 2-complex with no isolated vertex

or edge that PL-embeds in a 3-manifold M . A thickening T = T (X) is given by the following

construction, which also gives a cell structure on its boundary ∂T :

∂T 0 For each vertex v in X, consider a regular neighbourhood N(v) ⊆ M of v. Add a 0-cell in

each component of N(v)−X. The union of these 0-cells is ∂T 0.

∂T 1 For each edge e in X, consider a regular neighbourhood N(e) ⊆ M of e containing the 0-

cells in ∂T 0 associated with the endpoints of e. Add a 1-cell in each component of N(e)−X

that contains a 0-cell associated to each endpoint of e. That 1-cell joins those 0-cells. If n

sides of discs are incident with e in X, then this process yields n 1-cells parallel to e. The

union of ∂T 0 with these 1-cells is ∂T 1.

∂T 2 For each disc d of X, consider a regular neighbourhood N(d) ⊆ M of d containing the 1-cells

in ∂T 1 associated with the ∂d. Add a 2-cell in each component of N(d) − X containing
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Figure 3. Part of ∂T (X) for a complex X. The 0-cells of ∂T are red, and the
1-cells of ∂T are blue. The 2-cells of ∂T run parallel to the grey discs in X,
forming a “bubble” hovering around X.

1-cells associated to all edges of ∂d. Attach this 2-cell to those 1-cells according to ∂d. This

yields two 2-cells on opposite sides of d in M . The union of ∂T 1 with these 2-cells is ∂T .

The submanifold T ⊆ M is the union of ∂T and the component of M − ∂T containing X.

Lemma 5.3. T = T (X) deformation retracts to X. The retraction r : T → X induces an

immersion ∂T → X. If X is simply-connected, then ∂T is a union of 2-spheres.

Proof. Consider the map ∂T → X sending i-cells in ∂T to their associated i-cells in X.

T is homeomorphic to the mapping cylinder of ∂T → X, yielding a deformation retraction.

Let c1 and c2 be closed i-cells in ∂T with c1 ∩ c2 ̸= ∅. Suppose r(c1) = r(c2) = c. Then

c1 ∪ c2 is a connected subset of the neighbourhood N(c) used in the construction of ∂T . At

most one i-cell was added for each component of N(c), so c1 = c2. Thus r|∂T : ∂T → X is an

immersion.

The map ∂T → X can also be seen geometrically to be an immersion: in terms of Figure 3,

each cycle of 2-cells around a vertex in ∂T is mapped to a cycle of discs in X associated to a

corner of M −X.

Suppose π1X = 1. Then T is a compact orientable 3-manifold with rank(H1(T )) = 0, so

rank(H1(∂T )) = 0 by “half lives, half dies” [7, Lem 3.5]. Thus ∂T is a union of 2-spheres. □

Lemma 5.4. Let X be a compact 2-complex with a collapsed subcomplex Y containing a disc.

Then X has a connected collapsed subcomplex Y ′ with no isolated vertex or edge, whose inclusion

map Y ′ ↪→ X is π1-injective.

Proof. If X contains a free i-face, delete that face and its attached (i + 1)-cell. This deletion

does not affect π1. Repeat this process until the remaining subcomplex is collapsed. Delete all

isolated edges leaving a disjoint union X ′ of collapsed components X ′
i without isolated vertices
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or edges. Each X ′
i ↪→ X is π1-injective. As the disc from Y must be contained in some X ′

i, we

let Y ′ = X ′
i. □

Proposition 5.5. Let X be a compact 2-spine of a simply-connected 3-manifold. Then X has

an immersed combinatorial 2-sphere if and only if X has a collapsed subcomplex containing a

disc.

Proof. Suppose S2 ↬ X is a combinatorial immersion. Then im(S2 ↬ X) is a collapsed

subcomplex containing a disc.

Conversely, suppose X has a collapsed subcomplex Y containing a disc. By Lemma 5.4, we

can assume Y has no isolated vertex or edge, and π1Y ≤ π1X = 1. Then by Lemma 5.3, ∂T (Y )

is a union of 2-spheres that immerses in Y ⊆ X. □

In particular, this shows that collapsed compact contractible 3-manifold spines having a 2-cell

fail to have nonpositive immersions, since χ(S2) = 2 and S2 is not contractible. Section 6 will

be dedicated to showing that this family of 2-complexes still has nonpositive towers.

5.2. Miller-Schupp Presentation Complexes. The rest of this section will examine another

class of contractible 2-complexes failing to have nonpositive immersions. These were found by

Fisher in [4] by using foldings to generate immersions from compact complexes with high Euler

charateristic.

Definition 5.6. Let f : Y → X be a combinatorial map between finite 2-complexes. Then a

folding of f is a combinatorial immersion Y ′′ ↬ X obtained as follows [12]:

If any vertex of Y has two incident ends of 1-cells being mapped to the same end of a 1-cell

in X, identify those 1-cells in Y . Repeat this until there are no such pairs of 1-cells in Y , and

call the resulting complex Y ′. We get a new map Y ′ → X, where the 1-skeleton of Y ′ immerses

in X. If any 2-cells of have the same attaching map in Y ′ and the same image in X, identify

them, and call the resulting complex Y ′′. The map Y ′′ → X is then an immersion.

Note that the map Y → Y ′′ given by a folding is π1-surjective. Indeed, every cycle in the

1-skeleton of Y ′′ comes from a cycle in the 1-skeleton Y , and all 2-cells coning off nullhomotopic

cycles in Y are preserved in Y ′′.

Using this tool, we get the following simple algorithm:

(1) For each 2-cell F in X, take the map from a disc D to F ⊆ X and fold it into an

immersion. Call the set of such immersions S1.
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(2) For each immersion Y ↬ X in Sn, consider every combinatorial map Y ∨D → X, where

Y ∨D is the wedge sum at a 0-cell of Y with a disc D, and fold it into an immersion.

Discard any immersions where a pair of 2-cells get identified during the folding process,

and call the set of all remaining immersions the children of Y ↬ X. The set of all

children of immersions in Sn is then Sn+1.

Note that each child Y ′ ↬ X of Y ↬ X satisfies χ(Y ′) ≥ χ(Y ). This happens because all

2-cells of Y survive the folding process, so the second homology cannot decrease, and folding is

π1-surjective, so the rank of the first homology cannot increase. So we get χ(Y ′) = 1− b1(Y
′)+

b2(Y
′) ≥ 1 − b1(Y ) + b2(Y ) = χ(Y ). With a bit of luck, the above algorithm will eventually

generate an immersion from a complex with Euler characteristic ≥ 2.

Presentations of the form ⟨a, b | w, banb−1a−(n+1)⟩ with w a word with exponent sum 1

in b were shown by Miller and Schupp in [14] to give the trivial group. The exponent sums

ensure that the corresponding presentation complexes have trivial second homology, and so the

complexes are contractible by the theorems of Hurewicz and Whitehead. The above algorithm

was used in [4] to show that the presentation complexes of ⟨a, b | w, bab−1a−2⟩ fail to have

nonpositive immersions for w ∈ {ab2ab−1, a−1b2a−1b−1, a2b−1ab2, ab−1a−2b2, a2b2a−1b−1}.

Note that, while these examples fail to have nonpositive immersions, they (and any 2-relator

simply-connected presentation complex) still have nonpositive towers. LetX be the presentation

complex for the trivial presentation ⟨a, b | r1, r2⟩. Since X has no nontrivial connected covering

space, the last step of any tower map Y → X must be an inclusion. In particular, Y → X

factors as Y → Z ↪→ X, where Z has at most one 2-cell and Y → Z is a tower map. Since all

one-relator groups have nonpositive immersions, either χ(Y ) ≤ 0 or Y is contractible.

6. Nonpositive Towers in 3-Manifold Spines

The goal of this section is to prove the nonpositive tower property for a compact aspherical

2-complex X embedded in a 3-manifold M . This is the other main result of my paper with

Wise [2], and most of this section is taken directly from it.

The idea of the proof is to consider the thickening T of X in M , which deformation retracts to

X. The asphericity of X ensures that ∂T has no 2-sphere, which in turn ensures χ(X) ≤ 0. As-

phericity is preserved by towers, since it is preserved by both covering maps and subcomplexes.

The latter is ensured by a simple argument using the Sphere Theorem.

We start by giving another construction of the thickening of X, this time building it up as a

handlebody so that we can talk about “thickenings” of cells in X.
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Construction 6.1. Let X be a locally finite 2-complex. A thickening of X is a 3-manifold

T = T (X) with boundary, and a continuous map Θ : T → X, constructed as follows:

• Let T 0 be a disjoint union of closed 3-balls, one for each vertex in X, and let Θ map

each ball to its corresponding vertex.

• For each edge e in X, define T (e) ∼= [0, 1] × D2, and identify {0} × D2 and {1} × D2

with discs on the boundary of the components of T 0 corresponding to the endpoints of

e. Let Θ map (0, 1)×D2 onto int(e). The resulting complex is T 1.

We require that each T (e) embeds and that T (e1) ∩ T (e2) = ∅ for e1 ̸= e2.

• For each disc F in X, define T (F ) ∼= D2×[0, 1], and identify the outer cylinder S1×[0, 1]

with an embedded cylinder on the boundary of T 1 which is mapped by Θ to the attaching

loop of F in X. Let Θ map int(D2)× [0, 1] onto int(F ). The resulting complex is T .

We require that each T (F ) embeds and that T (F1) ∩ T (F2) = ∅ for F1 ̸= F2.

Since T (X) and Θ are defined cell by cell, we use T (A) to denote the thickening Θ−1(A) ⊆ T (X)

for any union of open cells A ⊆ X.

Remark 6.2. If a thickening T of X exists, then by construction, T is a 3-manifold with

boundary. Furthermore, there is a PL-embedding X ↪→ int(T (X)) such that T deformation

retracts to X, with T (A) retracting to A for any subcomplex A ⊆ X. By construction, this

retraction is homotopic to Θ.

Remark 6.3. If X PL-embeds in a 3-manifold M , then we can take T to be a closed regular

neighbourhood of X in M . Then T has a handlebody decomposition whose structure follows

that of X. Taking Θ to be a map sending each i-handle to its corresponding i-cell, T and Θ

give a thickening of X.

Lemma 6.4. Let X be a locally finite aspherical connected 2-complex that PL-embeds in a

3-manifold. Then any subcomplex Y ⊆ X is also aspherical.

Proof. If T (X) is non-orientable, we can consider an orientable double-cover T̂ (X). This induces

a double-cover X̂ of X, which is locally finite, aspherical, connected, and PL-embeds in T (X̂) =

T̂ (X). Consider the induced double-cover Ŷ ⊆ X̂ of Y . It suffices to prove that Ŷ is aspherical,

since this would imply that Y is aspherical. Since the non-orientable case with X and Y reduces

to the orientable case with X̂ and Ŷ , we can assume without loss of generality that T (X) is

orientable.

Suppose for contradiction that Y is not aspherical. Let (T (X),Θ) be an orientable thickening

ofX. By Hurewicz andWhitehead’s theorems, π2(int(T (Y ))) ̸= 0. Since int(T (Y )) is orientable,
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int(T (Y )) has an embedded 2-sphere S representing a nontrivial element of π2(int(T (Y ))) by

the Sphere Theorem [7, Thm 3.8]. Since X is aspherical, S bounds a contractible submanifold

B ⊆ int(T (X)) by [7, Prop 3.10]. Note that T (X)− S has two connected components: int(B)

and the component C containing ∂T (X).

Let {Ui} be the set of connected components of T (X)−T (Y ). For each Ui, we have Ui∩S = ∅,

since S ⊆ T (Y ). Since Ui is connected, it must lie either entirely in int(B) or entirely in C. By

construction of T (X), Ui is the thickening of some union of open cells of X, so Ui∩∂T (X) ̸= ∅.

So Ui ⊆ C.

Since this is true for all Ui, we have int(B) ⊆ T (X)−
⋃
i
Ui = T (Y ). Since int(B) is an open

submanifold of T (Y ), it is contained in int(T (Y )). So S bounds a contractible submanifold B

of int(T (Y )), and so is trivial in π2(int(T (Y ))) by [7, Prop 3.10]. This is a contradiction. □

Lemma 6.5. Let M be a compact orientable 3-manifold with boundary. Then χ(M) = 1
2χ(∂M).

And if ∂M does not contain a 2-sphere then χ(M) ≤ 0.

Proof. Let M̃ be the manifold obtained by gluing two copies of M along ∂M . Since M̃ is a

closed orientable 3-manifold, 2χ(M) − χ(∂M) = χ(M̃) = 0. So χ(M) = 1
2χ(∂M). Since M

is orientable, each component of ∂M is an orientable surface. Since ∂M contains no 2-sphere,

every component of ∂M has nonpositive χ. So χ(M) = 1
2χ(∂M) ≤ 0. □

Lemma 6.6. Let X ′ → X be a finite-sheeted cover of a compact connected 2-complex X. Then

X has nonpositive towers if and only if X ′ has nonpositive towers.

Proof. Suppose X has nonpositive towers. Let Y → X ′ be a tower map. Then Y → X ′ ↠ X

is a tower map, so either χ(Y ) ≤ 0 or Y is contractible.

Suppose that X ′ has nonpositive towers. Let t : Y → X be a tower map. Let n be the

degree of the cover p : X ′ → X. Then there is an induced tower map Y ′ → X ′, where Y ′ is an

n-sheeted cover of Y , and maps to p−1(t(Y )). Either χ(Y ′) ≤ 0 or Y ′ is contractible.

If χ(Y ′) ≤ 0, then χ(Y ) = 1
nχ(Y

′) ≤ 0. If Y ′ is contractible, then Y ′ is the universal cover

of Y , so Y is a K(π1(Y ), 1) complex with |π1Y | = n. A nontrivial finite group does not have a

compact K(π, 1), so π1Y = 1. Thus Y = Y ′ is contractible. □

Theorem 6.7. Let X be an aspherical compact connected 2-complex that PL-embeds in a 3-

manifold M . Then X has nonpositive towers.

Proof. Since X is compact, it PL-embeds in a thickening T (X) in M that is a compact sub-

3-manifold with boundary. So without loss of generality, we can assume that M = T (X) is a

compact 3-manifold with boundary that deformation retracts to X.
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If M is non-orientable, we consider an orientable double cover of M that deformation retracts

to a double cover X ′ of X. By Lemma 6.6, it suffices to show that X ′ has nonpositive towers.

So without loss of generality, we can assume that M is orientable.

X itself is either contractible or has χ(X) ≤ 0. Indeed, if ∂M includes a 2-sphere S, then

asphericity of M ensures that S bounds a contractible submanifold of M [7, Prop 3.10]. Since

M is connected, this submanifold must be M itself, and so M and X are contractible. If ∂M

does not include any 2-spheres, then χ(X) = χ(M) ≤ 0 by Lemma 6.5.

Note that any covering map X̂ → X (with X̂ connected) extends to a covering map M̂ → M ,

where X̂ PL-embeds in int(M̂). Then X̂ is locally finite, aspherical, connected, and PL-embeds

in a 3-manifold.

Let X ′ be a compact connected subcomplex of X̂. By Lemma 6.4, X ′ is aspherical. And X ′

also PL-embeds in int(M̂). Therefore, X ′ satisfies the same hypotheses as X, and is also either

contractible or has χ(X ′) ≤ 0.

Any tower map Y → X is a composition of maps X ′ ↪→ X̂ ↠ X, so we are done. □
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