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Abstract 

The minerals industry has recently encountered significant price fluctuations leading to more 

business risk and unexpected overall returns on capital fund invested. This situation forces mining 

corporations to find new decision-making processes to improve productivity and efficiency in 

allocation or prioritization of business-related spending, including sustaining and working capital 

projects. This research aims to propose new portfolio management strategies to be used at the 

senior management level of global mining companies. Given that decision-making processes 

regarding a portfolio require risk management and diversification components, the main emphasis 

is on managing the trade-offs between risks and returns. Therefore, the effect of business unit 

performance of a project initiator, the country stability where the project will be implemented, the 

commodity market behavior under unexpected extreme events were reviewed and developed in 

the proposed portfolio optimization models. Quantification techniques were explored for portfolio 

optimization with operational performance, commodity market behavior, and international and 

country risks for extreme events. In addition, the phenomena affecting risk quantification such as 

reproduction of relationships between portfolio elements and reaction to unexpected cases were 

further embedded in the decision-making process. Risk indicators to be generated were used in the 

optimization process to maximize the return from a corporate portfolio while considering the risk-

taking capacity of a global mining company. Ultimately, this research contributes to the 

development of effective and efficient portfolio management approaches, including prioritization 

of a weighted decision-making criterion in optimization models, such that mining stakeholders 

will benefit from optimal returns at an acceptable risk. 
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Résumé  

L’industrie minière a connu de graves turbulences de prix ces dernières années. Ce qui oblige les 

entreprises minières à améliorer leurs processus de prise de décision de manière à inclure la 

productivité et l'efficacité de l'allocation ou de la priorisation des dépenses liées aux 

investissements, y compris les projets de remise à neuf et de maintien de fond de roulement. Cette 

recherche a pour objectif de proposer de nouvelles stratégies de gestion de portefeuille à utiliser 

par les cadres supérieurs des sociétés minières mondiales. Étant donné que les processus 

décisionnels concernant un portefeuille nécessitent des composants de gestion du risque et de 

diversification, l'accent a été mis sur la gestion du compromis entre risque et rendement. Les 

impacts de performance de l’unité d’affaire initiateur d’un projet à approuver, la stabilité du pays 

dans lequel le projet doit être implanter et le comportement des marches de commodité sous 

pression évènements extrêmes inopinés ont été revues et développés dans ce travail de recherche. 

En outre, les techniques d’évaluation de gestion optimale de portefeuilles liées à la performance 

opérationnelle, le comportement des commodités, les risques internationaux, la stabilité des pays 

pour des évènements extrêmes ont été explorées dans cette étude. En plus les phénomènes affectant 

la quantification ainsi que la relation entre les éléments de portefeuille et leurs impacts ont été 

inclus dans le processus de prise de décisions. Les indicateurs de risque à générer ont été utilisés 

dans le processus d’optimisation afin de maximiser le rendement du portefeuille de la société, ceci 

en tenant compte de la capacité de prise de risque d’une société minière mondiale. En fin de 

compte, ces travaux de recherche contribuent à la mise au point d’approches de gestion de 

portefeuille efficaces et efficientes, incluant la priorisation de l’importance des critères de prise de 

décision, dans les modelés d’optimisation de manière à ce que les parties prenantes des entreprises 

minières bénéficient d’un retour sur investissement optimal à un niveau de risque acceptable. 
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Chapter 1: Introduction 
 

1.1 Sustainable healthy returns in the minerals industry  

A fundamental principle in capital investment is that the decision to make a massive capital 

investment is often associated with the ability to quickly obtain an acceptable return on investment 

(ROI). Mining companies typically rush toward early production after intensive investment in the 

mine development to take advantage of high commodity prices (Rahmanpour & Osanloo, 2015). 

This early production helps companies benefit from uninflated construction costs and high profit 

margins.  

Over the last 10 years, commodity price index has fluctuated dramatically (Figure 1.1). The index 

dropped almost 56% between 2011 and 2016.  The same trend was experienced for the metal price 

index, with almost same drop of 56% (Figure 1.2). For a typical metal such as iron ore, a more 

drastic  price drop occurred for the same period (Figure 1.3). The iron ore price has varied from a 

high value of US$188.90 per metric tonne in 2011 to a  low value of US$38.54 per metric tonne 

in 2015 (IndexMundi, 2019). Compared to a decade ago, current commodity prices are low 

because supply exceeds demand (Ives, 2016). These low commodity prices combined with high 

operating costs mean that mineral resources companies do not consistently achieve high profit 

margins (Raffaini, 2016). High-cost producers are running out of cash and suspending operations, 

and low-cost producers are working to overcome this challenging market, though they face 

increased competition.  
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Has 

 

Figure 1.1: Monthly commodity price index (IndexMundi, 2019) 

 

The commodity price index is represented by the weighted average of commodity prices based on 

spot or future prices. This fixed-weight index has three main categories, namely:  

1- Metals: e.g.,  Base metals and precious metals  

2- Energy: e.g.,  natural gas, propane, gasoline, oil or coal  

3- Agriculture: e.g., Grains, Softs and Livestock 
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Figure 1.2: Monthly commodity metals price index (IndexMundi, 2019) 

 

 

Figure 1.3: Monthly commodity iron ore price index (IndexMundi, 2019) 

 

For company decision-makers, the challenge is to improve the effectiveness of current 

assets/resources/projects and better manage the risk to allocate capital investment to the most 

valuable initiatives. This challenge also deals with making decisions over time, which translates 
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to a dynamic optimization problem: a decision made at one time affects future possibilities. It is 

critical to take this effect into account when making a decision today. The dynamic optimization 

model should consider the following characteristics of the minerals industry: 

 Highly competitive, cyclical, and globalized 

 Complex spot and future markets 

 Ample room for speculation 

 Tendency to be oligopolistic 

 Highly sensitive to environmental sustainability and local communities 

 Specific management and policy problems such as resource curse and the Dutch disease 

 Significant technical, financial, political, environmental, and safety risks 

 High sensitivity to economics of emerging countries 

 Specific financing models 

Considering these key economic, social, and environmental drivers, a sequence of effective 

decisions needs to be made to achieve the objective function. This will allow mining companies 

to obtain a safe (acceptable risk) and stable optimal ROI—also defined as a sustainable healthy 

return—which is a social, political environmental and financial thresholds where the companies’ 

profitability and key stakeholders’ benefit will always be greater than the company’s closure value 

for continuing growth during any given period.  

International corporations diversify their activities with regard to commodity type, sales 

agreements (e.g., spot or future markets), and production and sales in different regions of the world. 

This increases the resilience of corporations against extreme events or unexpected occurrences and 

generates sustainable healthy returns. For example, if the price of one product decreases, the 

corporation can yield sustainable returns with other commodities. Similarly, if one operation stops 



5 
 

due to unexpected political events, the corporation will continue to see returns from operations 

elsewhere the world.  

In addition to the diversification strategy, mine-specific improvements can increase the value of 

an operation. For example, replacement by new technology or new management/organization 

strategies or harnessing new operations research and computer science technologies for mine 

planning, design, and operation can provide new value to an operation. 

Generating sustainable healthy returns depends upon risk diversification or mine-specific 

improvements, as well as also project portfolio management. The life of a specific mine is finite 

(Van Zyl, 2007), but the life of a global mining corporation is theoretically infinite: once one mine 

is closed, a new mine can be opened.  

 A global mining corporation holds a project portfolio containing groups of projects at different 

levels of development: licensing/permitting and exploration, development, production, and closure 

(IMF, 2016a) (Figure 1.1). Given that startup of a new mine takes several years, corporate 

decision-makers must manage the portfolio such that risks are mitigated and healthy returns are 

sustained.  
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Figure 1.4: Stages in the life of a resource project (IMF, 2016b) 

 

To sustain healthy returns, decision-makers must determine if projects: (a) proceed through the 

stages in Figure 1.1, (b) are taken out of the portfolio (e.g., stop exploration if there are no 

promising outcomes), or (c) are added to the portfolio through mergers or acquisition. The 

portfolio is dynamic, changing qualitatively and quantitatively over time, and it requires a complex 

decision-making process. Since the healthy returns also highly depend on the risks associated with 

the geographical location of the mining project, the sustainability of these returns depends on local 

communities and  the indigenous people close to the mining zone. In search of social license to 

operate, various mining specialist teams will move across the indigenous lands at every stage of 

mine development, namely: geologists, surveyors, engineers, construction workers, maintainers 

and operators. Despite this diverse expertise, there is often a lack of an adequately consistent, solid 

strategy. The indigenous community on the other hand remains more consistent such that provide 

positive and negative feedback about the mining project. Thus, these feedbacks are ingrained in 

the communal memory.  This is why a  representative of the mining company negotiating a “single 

issue”  will often comment during the process that the community keep complicating the 
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conversation or adding issues or returning to the past. This is simply a reflection of the depth and 

interconnectedness of these accumulated narratives of their mining life experiences  dating back 

to the first days of survey and exploration. Hence, the indigenous community and the mine’s 

“license to operate”   heavily affect the proposed corporate portfolio optimization models.  

 

1.2 Indigenous communities and social license to operate 

In the mineral industries, social risk or risk associated with social license to operate is seen as one 

of the most significant risk sources. Despite the major mining companies’ several decades of 

implementing global communities and social responsibilities, community relations remain the 

single greatest threat to any project located on or in close geographic range of the indigenous 

population lands.  What follows is an attempt to explain why the potential for conflict with 

indigenous communities remains a critical area of strategic focus within the industry. The 

challenge of ensuring the wellbeing of the communities and sustaining the healthy returns of the 

mining project seems to be a difficult task. The fact that interactions with indigenous communities 

will play out differently compounds the problem. For example, a mining company can achieve a 

productive community collaboration around an operation in one location, but fail and forcibly a 

similar operation in another location. The cultural, political, economic, geographic, historical and 

environmental variables are so specific to each indigenous community that although the lessons 

from one experience could relate to a new operation elsewhere, there is no guarantee for success. 

This uniqueness remains the heart of the sense of fragility and endangerment of indigenous 

communities. It drives the determination to preserve and protect a way of life for future 

generations, and affects the license to operate a mine. These social drivers heavily influence the 

sustainable healthy return of the mining companies. 
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1.3 Knowledge gap 

In the mining industry, the current corporate project portfolio allocation approaches do not 

consider historical operations performance of the project initiators in the decision making process. 

Furthermore, country risk, which is a significant concern for multinational mining companies, in 

the capital allocation decision was not investigated. In addition, the effect of the poor consideration 

of commodity market behaviors under extreme events in the mining investment and divestment 

decisions was not sufficiently focused in the mining research. In this regard, this research proposes 

the integration in a single mining project portfolio model, the operations performance, the country 

stability and the commodity market behaviors.  

 

1.4 Research objectives 

This research project has two main objectives. The first is to develop portfolio optimization models 

with key sustainability and economics drivers of mining companies, integrating processes and 

synergies between operational performance, country stability, and commodity market behavior 

with capital investment decision. These models are practical, relevant aids to decision-makers in 

selecting profitable mining product groups (PGs)/commodity classes or mining projects with the 

dual achievement of maximum ROI and minimum risk. The second objective is to develop 

investment and divestment strategies to deal with uncertainties associated with project location 

and commodity type so that the corporation will be resilient to catastrophic events such as poor 

market conditions. Furthermore, as a part of the risk management strategy, the relationship 

between a country’s stability and unexpected events within a portfolio is embedded in the 

investment decision-making process. Multi-national mining companies are not only producers but 

also players in the markets: many commodities are traded in derivative markets to assist mining 
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company in hedging some of their risks. Therefore, this research investigates the effects of 

commodity market behavior on the capital investment decision.  

This project uses the analytic hierarchy process (AHP) and technique for order of preference by 

similarity to ideal solution (TOPSIS) to prioritize the key decision-making PGs preference under 

the same portfolio. The Preference Ranking Organization METHod for Enrichment Evaluations 

(PROMETHEE), an additional MCDM alternatives ranking method, is used to validate the 

TOPSIS results. Evaluating operational performance will identify key aspects of the effectiveness 

of current and future developments of mining projects or commodity classes under the same 

portfolio. The overview of the portfolio will include a cost-effective mining scheme and 

procedures for rational evaluation of uncertain projects (Montiel, et al., 2016). Knowing that every 

orebody is different, optimization model development takes into account specific conditions at 

each mine. Considering the high sunk costs of the mining industry and assuming the large scale of 

mines requires continual injection of capital, this research will contribute to improving companies’ 

capacities through guiding decisions to invest or improve. To minimize the risk to invest and 

maximize profitability, decision-making procedures associated with capital investments in a risk 

environment are proposed.  

This research solves a portfolio optimization problem that helps mining companies make realistic 

optimal investment decisions to maximize ROI and minimize risk, which facilitates achieving or 

sustaining their full potential. The developed portfolio optimization models help mining 

corporations to effectively and efficiently allocate capital funds at the right time to the right PG. 

The proposed portfolio optimization models help mining corporations respond to high risk 

exposure business and invest capital funds for safe and stable profitability. 
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The input data used throughout this research are based on expert judgment, experience, and current 

top mining corporation trends, which are available on the internet. However, all data in this 

research are hypothetical. Any assumption in this thesis does not refer to any specific mining 

company. 

 

1.5 Original contribution to knowledge 

Unlike traditional net present value (NPV) or ROI methodologies, this thesis develops 

optimization models that consider criteria such as the operational performance of the initiator of 

the capital fund approval request and risk associated with the geographical location of the 

investment. These additional criteria are key quantitative elements in the decision-making process 

for capital allocation to a PG/business unit. By considering commodity market behavior during 

extreme event conditions, more realistic capital allocation can be achieved within the corporate 

portfolio of multiple PGs. Contrary to current mining corporate portfolio management trends, 

funds are allocated with the basic principle of the non-utilization of all available capital funds.  

This research solves the optimization problem for corporate portfolio management in market 

conditions at high or low commodity prices with investment and divestment decisions in specific 

countries. The developed models include multiple PGs within the same corporate portfolio and 

provide more realistic capital expenditure decisions in addition to key economics drivers.  

This study provides the mining industry with improved knowledge and understanding in modeling 

capital portfolio allocation with enterprise-wide risk management. Given that the mining industry 

has a low credit rating because of high risks, this research produces mining risk management 

practices that can achieve a sustainable financial benefit for the company and associated 
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communities. More specifically, mining corporations will have new tools for investment or 

divestment decisions, shareholder strategies, merger and acquisition negotiations, public offerings, 

environmental permits and management, taxation and royalty policies, the sustainability of local 

economies, and evaluation of business performance. The research output facilitates the 

development of mining engineering strategies against the backdrop of technical, political, 

environmental, unexpected, and extreme events. It introduces more realistic project valuation 

methods that consider the cyclical and volatile nature of commodity prices and the mining business 

in general. 

Financial institutions will have new approaches to assess mining projects and more opportunities 

to fund projects. Given that mining corporate portfolios include licensing/exploration, 

development, production, and closure projects that are diversified in terms of geography, 

commodity type, environmental sensitivities, and integrated value chain, coordinating risk among 

different types of projects/processes allows determining the right investment and operation 

strategies with the weighting of key optimization criteria. 

Mining companies run in a dynamic operational mode in the face of many uncertainties and the 

random behavior of currency prices, stocks, commodity prices, and resources. Integration of these 

random variables, which characterize the stochastic environment, into this project generates four 

optimization models across the value chain of a global mineral resource company.  

1. The first portfolio optimization model simulates the operational performance of the 

business unit and country risk related to the investment.  

2. The second optimization model incorporates operational performance, country risk, 

commodity market behavior, and investment/divestment decisions for extreme events—
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characterized as a drastic drop in the commodity price or an unusual turnover rate within a 

very short period due to a catastrophic failure of a key asset within one of the top 

commodity producers. An unpredicted change into government policy within the world’s 

top three biggest economies is also considered in this model.  

3. The third model is an integrated optimization model that includes production efficiency 

across the operations value stream, operating cost, country stability, and unexpected events 

with a direct relationship between countries and unexpected events.  

4. The last model reinforces the importance of criteria weights in the capital allocation fund 

with the inclusion of AHP, TOPSIS and PROMETHEE methodologies in the weightage 

criteria, alternatives ranking and portfolio decision-making process. The validation of the 

alternatives ranking results also provide a more realistic capital allocation fund within the 

whole portfolio.  

 

1.6 Outline of the thesis 

Chapter 1 provides a brief introduction to this research with objectives and contribution to original 

knowledge.  

Chapter 2 is a literature review of capital budgeting decision methods, portfolio management, risk 

management, and dynamic optimization, highlighting Monte Carlo simulation and multi-criteria 

decision-making (MCDM).  

Chapter 3 proposes a new portfolio management strategy that helps mining corporations improve 

decision-making processes associated with capital allocation to proposed projects within a 

turbulent environment. The proposed approach considers operational performance when 



13 
 

prioritizing business-related spending on capital projects. The problem is formulated as the 

minimization of risk at the desired ROI under the constraints of the operational performance 

requirement of the project initiator (i.e., PG initiating the project). Results show that, in addition 

to the NPV criteria, the more diverse the portfolio, the greater the potential increase in the corporate 

portfolio ROI. Further, as the performance of the PG increases, so too does the number of approved 

projects at the corporate level.  

Chapter 4 proposes a portfolio optimization model—solved using MATLAB programming—to 

address the global economic downturn coupled with the current uncertain atmosphere surrounding 

the prices of the commodities, both of which have negatively affected the growth of the mining 

industry. The model will help mining corporations improve decision-making procedures under 

extreme events so as to consider the global economic downturn in the investment or divestment of 

a portion of the corporate portfolio. This chapter proposes new portfolio management strategies to 

be used at the executive level of global mining companies. It identifies the most valuable PG in 

which to invest and the low-value PG to divest at the efficient frontier.  

Chapter 5 develops a model to help a mining corporation face the high pressure from their 

intensive capital funds requirement. Combining commodity market behavior with country stability 

and a correlation with unexpected events heavily influences the distribution of capital funds within 

the corporate portfolio. In this chapter, the quantification of the country risk is discussed in detail 

along with different approaches. This chapter highlights the fact that, to be more realistic, the 

investment or divestment decision-making process should always consider the current operational 

performance of the capital fund initiator, the commodity market behavior, and the country stability 

in addition to the traditional financial criteria of NPV, internal rate of return, ROI, profitability 

index, and payback period.  
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Chapter 6 compares and weights all the decision-making criteria used in the previous chapters. 

The decision to invest in a project has typically been based on known financial decision criteria, 

without considering a systematic approach to weight them.  The AHP decides the weight of each 

criterion and the TOPSIS and PROMETHEE II techniques are used to rank the projects.  They 

also serve benchmarking each other. . The preferred alternative is selected and used to allocate 

capital funds among multiple PGs of an existing corporate portfolio.  

Chapter 7 provides the conclusions and proposes future work. 
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Chapter 2: Literature review 
 

2.1 Investment committees in mining organizations 

Multi-national mining organizations often comprise multiple product groups (PGs), which in turn 

comprise multiple business units. At each level, investment committees play a prominent role in 

making investment decisions. Investment committee members are very often the most senior 

executives at that level. They follow an established decision-making process centered on the nature 

of the investment, the impact on safety/people, and the financial profitability.  

The level of approval associated with each investment committee is defined by the amount of 

capital funds required. For a relatively small investment (generally less than US$2 MM), final 

approval is usually granted at the business unit level. For larger investments (e.g., US$2–5 MM), 

the final decision is often made at the PG level. For investments greater than US$5 MM, the 

ultimate decision-making is often done at the corporate level, though approval at the business unit 

and PG levels is required before moving the project to the level above.  

The fundamental financial question decision-makers need to answer before approving a project is 

how quickly they can get the capital funds back if the project is approved and implemented as 

scheduled. Capital budgeting decisions use financial analysis tools (Andrew, 2016) such as net 

present value (NPV), payback period, profitability index, internal rate of return, return on 

investment (ROI), and accounting rate of return (Sekhar, 2018). All of these methods use a 

“snapshot” of the current knowledge of the condition to provide the analysis. In reality, outcomes 

are only valid if compared to benchmark financial data.  



16 
 

Further, project implementation must proceed through multiple critical milestones that involve 

several known and unknown criteria that could invalidate the initial hypothesis behind a given 

financial analysis. These criteria include:  

 the capability of the project owner (their operational performance);  

 the country risk (defined in section 2.3) where the project will be implemented,  

 the commodity market behavior; and  

 potential extreme events.  

These criteria could heavily affect the investment decision-making process. Unfortunately, in 

many mining organizations, they are not consistently quantified and embedded in corporate 

portfolio management. 

 

2.2 Mining corporate portfolio management 

Mining companies typically have a project portfolio for each stage in the life of the resource 

project: licensing/exploration, development, production, and closure (see Figure 1.1). Production 

of mineral resources and supply requires creation of a value chain, which has a series of sequential 

processes (e.g., drilling, blasting, loading, hauling, blending, concentrating, railing, and ship-

loading) to convert raw materials—varying qualitatively and quantitatively—to an intermediate 

product in a controlled fashion. Mineral resource companies with a sophisticated portfolio 

structure encounter serious risks associated with investment strategy, organization, portfolio 

management, and operational decision-making. The mining industry is known to be capital-

intensive due to the high level of associated risks (Rudenno, 2012), yet current portfolio 

management methodologies, technologies, applications, and standards are not adequate. 
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Corporate portfolio management is defined as the centralized management of a group of programs, 

projects, and operations to achieve corporate strategic objectives. One of the key challenges is to 

adequately allocate resources to achieve the business plan in alignment with the overall corporate 

strategy (PMI, 2013). Mining corporations target a combination of multiple commodity-markets, 

thus mining corporate portfolio management is also known as management of multi-diversified 

mining programs/projects issues from mergers or acquisitions (Nippa, et al., 2011).  

Effective portfolio management is a formalized and standardized process with facilitation thinking, 

including integration analysis of all individual strategic business units (Pidun, et al., 2011). Three 

key elements of effective corporate portfolio management for corporate-level decision-making 

should be considered in any business analysis (Pidun, et al., 2011): 

1. market-based view, defined as the market attractiveness and competitive position; 

2. value-based view, defined as the current value and anticipated financial returns; and 

3. resource-based view (also called the parenting advantage), defined as value creation by the 

parent company.  

Key performance indicators of the corporate portfolio are measured against corporate goals; this 

is built around value creation, the balance along with the cash generation versus cash use, the 

growth versus the profitability, and the risk versus the ROI (Pidun, et al., 2011). Bowman and 

Ambrosini (2000) defined two concepts related to value creation: 

1. The “use value” is a subjective and individualist term referring to customers’ perceptions 

of the quality of the product in relation to their needs (Bowman & Ambrosini, 2000). 

2. The “exchange value” is the monetary gains realized when goods are exchanged at a given 

point in time (Velamuri, 2013).  
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A company is considered to generate cash (to be profitable) when it makes more money than is 

used for investment and for payment of all the other business costs (Times, 2016). Profitability 

permits company growth. Hafid (2016) demonstrated a strong correlation between growth and 

profitability. From the perspective of company shareholders, profitability is a measure of how 

effectively resources are deployed and turned into economic value. A financial return is measured 

as a ratio of outputs (revenues) to inputs (costs). To increase returns, companies can take on more 

risk—variously defined as the combination of threat and opportunity spread around expected 

negative or positive returns (Ulrich Hommel, 2012) or the effect of uncertainty on a desired or 

expected result (Luko, 2013). It is therefore a fundamental premise of good corporate management 

to understand how to effectively manage risk.  

 

2.3 Risk management 

Mining corporation portfolio management involves several quantitative and qualitative attributes 

associated with the project, the business unit (originators of the project), and the country where 

the project will be implemented. These attributes are assigned numerical values so that they can 

be incorporated into a unified risk management framework. Risk models are developed using 

various methods: 

 variance, 

 semi-variance,  

 mean absolute deviation,  

 variance with skewness,  

 microeconomic risk analysis,  

 probabilistic absolute deviation, and  
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 probabilistic mean-variance.  

In all portfolio management activities, it is critical to know how objectives can best be met with a 

certain degree of confidence (Iverson, 2013). ISO 31000 (2009) defines risk management as “the 

systematic application of management policies, procedures and practices to the tasks of 

establishing the context, identifying, analyzing, assessing, treating, monitoring and 

communicating.” Portfolio risk management requires identifying key risks faced by the portfolio 

and how best the identified risks can be analyzed, evaluated, treated, monitored, and reviewed 

(Purdy, 2010). For any portfolio risk management, Iverson (2013) considered fund, strategy, 

implementation, and review as the four key decision levels associated with multiple decision types, 

which are aggregated into key areas of risk:  

 Governance risk is associated with the lack of effective oversight and decision-making 

processes (Tarantino, 2008).  

 Asset allocation risk is associated with the choice of asset class mix (Gibson, 1996).  

 Timing risk is associated with deviation from a future prediction relative to the strategic 

asset allocation (Frenkel, et al., 2004). 

 Structural risk is associated with interrelations of portfolio elements that may not function 

as initially envisaged (Fight, 2005).  

 Manager risk is related to the implementation of asset allocations and classifications.  

 Implementation risk is associated with implementation of the investment decisions.  

 Monitoring risk is associated with the performance review system.  

Given that these key risk categories are interrelated, the difficulty is to continuously make the right 

decisions for a diversified project portfolio.  
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The risk categories defined by Iverson (2103) are valid for portfolio management within the same 

country or political, social, and economic environment. For global mining companies, decision-

making related to a dynamic optimization problem must account for additional risks – country, 

sovereign, political, social and environmental risks. Wagner (2012) categorized firm-specific and 

country-specific political risks. These two categories are also included in the transactional risk, 

defined as the combination of country, sovereign, political, economic, financial, environmental, 

and social risks that need to be considered when engaging in an international investment. The 

combination of risks associated with payment and investment in a foreign country is also referred 

to as the country risk denotes any changes in a business environment that can adversely harm the 

financial value of assets in a foreign country (Herring & School, 1986). For international 

transactions, Wagner (2012) also defines three main categories of the risk of investing in a country:  

1. Basic country risk is the likelihood that a foreign country may not fulfill its obligation and 

liabilities towards the lender. This risk is associated with specific characteristics of a 

country including money and fiscal polies of its central bank. 

2. Sovereign risk is the likelihood that a foreign central bank of the host country will amend 

its regulations in order to reduce or invalidate the value of foreign exchange policies in 

relation to its contracts. It is a risk for a country to default on its commercial debts’ 

obligation and liabilities.  

3. Political risk is a likelihood that  a country will assert control for natural resources 

management, policies or ownership for strategic reasons. It is mainly associated with 

resource nationalism issues. It is encountered when political and social development in the 

host country impacts the value of foreign investment or the repayment of cross border 

lending (Campisi & Caprioni, 2016).  
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In addition to these three international risks, community, indigenous groups as well as 

international Non-Governmental Organization can create other risks, such as social and 

environmental risks.   

 Social risk is the likelihood that the community relations affect, disrupt or even stop 

mining operation. Social risk is seen as one of the top risk types in the mining industry. 

This special risk needs specific expertise, which is highly demanded in the industry.  

 Environmental risk is the likelihood that business activities will adversely affect the 

environment and the living organisms.  

Country risk, social risk and environmental risk play a prominent role in mining investments.  The 

country stability and location where the investment will made determines these risks. As well as 

occurrences in global financial markets, country stability could also be correlated with the number 

of unexpected events (e.g., earthquake, flood etc.) associated with the country. These extreme 

cases may also have serious impacts on the mining portfolio management.  

 

2.4 Extreme value theory (EVT) 

In the financial engineering context, an extreme event refers to sudden and large turmoil in the 

financial markets and characterized generally by extreme or abnormal price fluctuation. In this 

research, the extreme events associated with financial market extremes are considered. These 

extreme events could also be associated with natural disasters, which is beyond this research. With 

the significant market instability, multiple studies using extreme value theory model the extreme 

events. Gilli and Këllezi (2006) applied the extreme value theory to assess the probability of 

extreme events and, therefore, the impact in the financial risk portfolio. The estimation of extreme 
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quantile measurement of the financial risk corresponds to the measure of the value-at-risk, the 

expected shortfall and the Return level.  

 

2.4.1 Value at Risk (VaR) 

The VaR can be used to measure the maximum potential loss in a specific period due to the market 

risk. It is defined as the necessary amount to offset the corporate portfolio’s loss over a specific 

period (Gilli & Këllezi, 2006).  

𝑉𝑎𝑅 = 𝐹−1(1 − 𝑝), 

Where 𝐹−1 denotes the quantile function characterizing the inverse of the distribution function F 

at the 𝑝𝑡ℎquantile of F. 

 

2.4.2 Expected Shortfall (ES) 

An expected shortfall is utilized as a risk measurement tool. In EVT, it is the expected loss quantity 

surpassing VaR. In other words, it represents the value of an investment positioned in the worst-

case scenario, which is a 100% loss of the investment. It is the average of losses greater or equal 

than Value at Risk (Rocco, 2014). 

ES estimates the size of the corporate portfolio’s loss exceeding the VaR. 

𝐸𝑆 = 𝐸(𝑋|𝑋 > 𝑉𝑎𝑅) 

Where X represents the random variable. 

 

2.4.3 Return Level (RL) 

RL is the measure of the maximum corporate portfolio’s loss.  

𝑅𝑙 
𝑡 = 𝐻−1(1 −

1

𝑡
) 
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Where 𝑅𝑙 
𝑡  denotes the return level value expected to be exceeded in one out of 𝑡 period of length 𝑙. 

H is the distribution function of the observed maxima in a consecutive non-overlapping period. 

 The investment banks use the extreme value theory to evaluate: (a) the expected loss defined as 

the known loss that can arise when undertaking a specific business. (b) the unexpected loss, which 

is the uncommon and predictable loss the investment bankers can absorb in the normal 

circumstances. (c) the stress loss, or the loss associated with improbable and possible extreme 

scenarios, in which the investment bankers could still afford (Embrechts, et al., 1999).  To offset 

the credit risk, the investors usually transferred the credit exposure between the two parties (Lender 

and borrower or buyer and seller); this type of contract or financial derivative is called credit 

default swap (CDS).   

Longin (2016) defines an extreme event as an extreme abnormal statistical market behavior of a 

commodity price due to either:  

1. an unpredicted change in government policy within the world’s five largest economies (the 

United States of America, China, Japan, Germany, and the United Kingdom) or  

2. a catastrophic failure within one of the world’s five largest mining organizations by 

revenue (Glencore, Rio Tinto, BHP, Vale S.A., and Jiangxi Copper Corporation Limited). 

Some technical unexpected events lead to financial unexpected events. An example of the latter is 

the catastrophic Vale tailings dam failure in Brazil in 2019, which initiated a disequilibrium in the 

iron ore/ pellet supply versus demand, thus, the sudden increase of iron ore price. As a result, the 

iron ore price during the first half of 2019 increased by 60% (TradingEconomics, 2019). Modern 

techniques consider these extreme unexpected events in portfolio optimization models.  
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2.5 Modeling a mining corporate portfolio 

As noted above, a global mining company holds a portfolio containing projects in various stages 

(see Figure 1.1). This portfolio has the following dynamic characteristics:  

 new licenses can be obtained,  

 new projects can be added through mergers and acquisitions,  

 projects move among stages,  

 existing mines can have expansion, replacement, or new technology projects, and  

 projects are removed from the portfolio through sells, abandonment, or closure.  

All these characteristics affect the decision-making approval process, which must proceed such 

that the solution of the company’s objective function will ensure a positive financial threshold 

related to sustainable healthy returns. A corporate portfolio management model is considered to 

be successful when it routinely picks the best projects and abandons inappropriate projects (Rad 

& Levin, 2006). 

Xue et al. (2014) proposed a portfolio management model that can achieve both the trade-offs 

between returns and risk tolerance through the NPV and the operational premium of the underlying 

oil and gas projects. Although the performance of the project is included in the model proposed by 

Zhen et al. (2014), a limitation resides in the use of deterministic indicators such as NPV, which 

do not illustrate the practical relevance of dynamic operations management. Lopes and Almeida 

(2013) proposed a multi-attribute decision model to aid selecting mineral resources projects, 

including the stochastic and multi-objective nature of the decision context, an assessment of 

project synergies, and the influence of synergies on decision-makers’ preferences. Quantification 

of project performance is not included in the Lopes and Almeida model. The present research will 

propose a new approach to aid selecting mining projects that will include not only quantification 



25 
 

of project performance, but also the performance of current assets/resources in combination with 

project risk.  

A literature review and critical analysis by Choi, et al. (2016) looked at enterprise risk management 

models given certain critical risk factors. Model misspecification occurs when the investor has a 

specific model in mind that might be mis-specified. Hence, the true model (which the investor 

cannot detect) lies in a set of alternative models (obtained by perturbing the reference model), 

which are statically close to the reference model. Olson and Wu (2017) used a set of stochastic 

functions (Corless, et al., 1993) to represent and model optimization processes. A similar approach 

was developed by Fouque, et al. (2017) using perturbation methods to drive volatility with two 

factors, one on a fast timescale (singular perturbation problem) and one on a slow timescale 

(regular perturbation problem). These studies did not embed the previous, current, and future state 

of the variables related to the approval decision-making process of portfolio optimization. 

Behboodi, et al. (2016) looked at portfolio optimization from the power system perspective of 

optimal renewable energy asset integration given demand response resources. Using numerical 

methods, they obtained the optimal mixtures of renewable generation and demand response 

resources given a fixed portfolio of conventional generation assets, wind patterns, and energy use. 

Their model incorporated production, uncertainty, and emission costs, as well as capacity 

expansion and mothballing costs and considers wind variability and demand response impacts to 

determine the hourly price of electricity delivery. This study focused on supply versus demand 

with no consideration of the performance of the project initiator (i.e., the business unit initiating 

the project). 
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Solares, et al. (2019) provided a portfolio optimization method to handle uncertainty with 

confidence intervals. They represented uncertainty surrounding a portfolio with its volatility, 

modeling the risk and subjectivity of the decision-maker in terms of significant, probabilistic 

confidence intervals. They performed optimization using a decomposition algorithm, which deals 

with the second stage of portfolio optimization that begins with beliefs about future outcomes and 

ends with the choice of objects and the proportion of resources allocated to each of them. Although 

this study embedded future uncertainty in the optimization model, evaluation of extreme events in 

terms of the performance of the project initiator was not considered.  

Saglam and Benson (2019) used the Markowitz (1952) mean-variance model for a single- and 

multi-period portfolio optimization with cone constraints and discrete decisions to provide 

investors with a balance between risk and ROI to solve the single period and multi-period portfolio. 

Their model incorporated transaction costs, conditional value-at-risk (VaR) constraints, 

diversification-by-sector constraints, and buy-in thresholds. They focused on maximizing the ROI 

for an accepted risk. The single and multi-period portfolio optimization is classified as a mixed-

integer nonlinear programming problem solved as mixed-integer second-order cone programming. 

Although the objective function of their model is similar to what is being studied in this thesis 

research, the previous state variable combined with the extreme events was not considered. 

Lejeune and Shen (2016) proposed models from a derived new mixed-integer linear program that 

were either equivalent reformulations or inner approximations of multi-objective probabilistically 

constrained programs. A balanced weighting objective between reliability, cost, or revenue was 

demonstrated. A downsize risk measurement was conducted for the optimal investment decision. 

Integrating specific risk such as country risk in their optimization model could have provided a 

more practical view of the decision-making process. 
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Kaplan, et al. (2018) solved a stochastic model for portfolio loss over a given time period by 

estimating the economic capital using Monte Carlo simulation (MCS) methods. The economic 

capital was characterized by the mean-adjusted VaR to evaluate the level of capital needed to 

protect against unexpected losses. Samples were analyzed separately using cumulative 

distributions and quantile deviations from the mean to estimate the economic capital, which can 

lead to much smaller variance. Nevertheless, no particular optimization of a portfolio was 

demonstrated. 

Forsyth, et al. (2019) also use MCS methods for optimal controls to evaluate performance metrics. 

They compared portfolios with high and low risk of depleting savings that should be gained from 

the portfolio and analyzed management of this risk through life cycle optimal dynamic asset 

allocation—including the accumulation and dissimulation phases—by formulating the asset 

allocation strategy as an optimal stochastic control problem. Several objective functions were 

tested and compared. They focused on the risk of portfolio depletion at the terminal date using 

such measures as conditional VaR and the probability of ruin and secondarily through the 

formulation of Hamilton-Jacobi-Bellman.  

Kleinknecht and Ng (2016) also used MCS methods in their analysis of the efficiency of empirical, 

parametric, and simulation-based and conditional VaR optimized portfolios on the regulatory 

capital requirements. They observed that the parametric and empirical distribution assumptions 

generated similar results: neither clearly outperformed the other. Their research recognized an 

alternative assumption, that is, to generate future ROIs with MCS. They used dynamic conditional 

correlation forecasting and MCS to reduce the risk for a financial institution by creating more 

robust market portfolios. Their results indicated that portfolios optimized with a multivariate 

dynamic conditional correlation simulation approach reduce the capital requirements by 
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approximately 11%. Furthermore, they showed how the population-based incremental-learning 

algorithm can be used to solve constraint optimization problems. Simply stated, learning by the 

population can be similar to learning by the population of the PG or business units requesting 

approval for each project from the portfolio. This learning, characterized by the operational 

performance of the project initiator, is included in the current research and affects the approval 

decision-making process in the mining corporation portfolio.  

The multi-objectives optimization model follows standard steps to solve an optimization problem 

(Figure 2.1). These are often used to solve the corporate mining portfolio optimization problem.  

 

Figure 2.1: Steps to formulate the multi-objectives optimization problem using the proposed 

model 

 

For the analysis of a wide variety of portfolio optimization problems, linear and nonlinear 

programming models are used. Although, the linear programming is very powerful for the analysis 

of more linear phenomena with the first-order approximation, there are some limitation when the 

phenomena are not linear. After the first-order approximation, the next level of complexity is 

mainly, the second-order approximation, where the selection of optimal corporate portfolio is 
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illustrated by the mean-variance portfolio models of uncertainty including the maximization of the 

returns and the minimization of the risk. This type of nonlinear programming is the so-called 

quadratic programming. 

2.6 Quadratic programming 

A corporate portfolio quadratic programming is defined as a corporate portfolio optimization 

problem where the quadratic objective function is to minimize the risk and maximize the returns. 

The quadratic objective function are quadratic in a finite number of decision variable subject to a 

finite number of linear inequality or equality constraints. Mathematically, the quadratic function 

is defined as follows (Chang, et al., 2000): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  
1

2
𝑥𝑇𝑉𝑥 + 𝑅𝑇𝑥 + 𝑆 =  

1

2
∑ ∑𝑣𝑘𝑗𝑥𝑘𝑥𝑗

𝑛
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𝑛
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𝑛
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𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:        𝐴𝑥 ≤ 𝑏     𝑎𝑛𝑑   𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞  

Where: 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇, is the vector of the decision variables 

𝑅 =
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],  𝑉 𝜖 ℝ𝑛×𝑛 is an 𝑛𝑥𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑎𝑙 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥. 
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𝑆 𝜖 ℝ, 𝐴 𝜖 ℝ𝑚×𝑛,   𝐴𝑒𝑞 𝜖 ℝ
𝑙×𝑛 , 𝑏 𝜖 ℝ𝑚, 𝑏𝑒𝑞 𝜖 ℝ

𝑙, 𝑛 is the number of decision variables, 𝑚 𝑎𝑛𝑑 𝑙 

are respectively the number of inequality and equality constraints. 

A review of the multi-criteria used in this decision-making process in the quadratic function is 

required, especially the integration of the criteria weights in the decision making. 

 

2.7 Multi-criteria decision making  

In their overview of multi-criteria decision-making (MCDM) methods, Pavan and Todeschini 

(2009) illustrated that the optimal solution only exists for one criterion. The solution is optimal 

when it balances the positive outcome between gains and losses of all criteria. Alali and Tolga 

(2019) aimed to adapt a well-known MCDM method, TODIM, to the portfolio allocation process. 

TODIM relies on prospect theory, which explains the asymmetrical response of individuals during 

decision-making in the face of risk associated with losses on the same level as gains at a higher 

absolute value. This difference in perception of gains and losses by the decision maker can be 

factored in TODIM using an attenuation factor. Alali and Tolga (2019) first created a criteria 

matrix for specific periods in historical data. Criteria include short-, mid-, and long-term standard 

deviation, returns, and correlations. The matrix was then transformed and normalized and 

compared to alternatives before weighted portfolio allocation was carried out. Saaty (2008) 

developed a structured technique for analyzing and organizing decisions. This technique was 

called the analytic hierarchy process (AHP). Another multi-criteria decision analysis method 

called ELECTRE was proposed by Roy (1968). He suggested two main stages to apply ELECTRE. 

The first is to build outranking relations to compare each pair of actions in a comprehensive way. 

The second is the elaborations of ranking or sorting recommendations from the first stage. 
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Tavana, et al. (2015) studied a fuzzy hybrid project portfolio selection method using data 

envelopment analysis, the technique for order of preference by similarity to ideal solution 

(TOPSIS), and integer programming to solve the issue of project selection and resource allocation. 

Their proposed model comprises three stages: preparatory, project evaluation, and portfolio 

selection. Each stage is composed of several steps and procedures. Data envelopment analysis is 

used for initial screening, TOPSIS is used to rank projects, and linear integer programming is used 

to select the most suitable project portfolio according to organizational objectives in a fuzzy 

environment. The distinguishing feature of this study is that they incorporated the coordination of 

portfolio optimization with organizational objectives and missions. Linear integer programming is 

a maximization objective for the attribute scores from TOPSIS. An additional MCDM 

methodology the Preference Ranking Organization Method for Enrichment Evaluations 

(PROMETHEE) is used to compare the results with the TOPSIS. The PROMETHEE method was 

first proposed by Brans and Mareschal (2005) 

In addition to variables associated with these multi-criteria in the portfolio optimization structure 

(defined in Figure 2.2), understanding the impact of uncertainty and risk associated with the 

investment that needs to be made is required using techniques such as MCS (Dhaundiyal, et al., 

2019). 
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Figure 2.2: MCDM process combined with the portfolio optimization structure 

 

 

2.8 Monte Carlo simulation 

MCS is a computerized mathematical technique that accounts for country, project implementation, 

and business unit risk in quantitative analysis and decision-making (Boyle, 1977). It quantifies risk 

related to a project. The value of the risk associated with each investment is factored into the 

quadratic portfolio management model. With the assessment of the impact of the risk, MCS shows 

extreme events possibilities with all possible outcomes of the decision to be made under 

uncertainty. Specifically, Markov Chain MC sampling with Bayesian inference facilitates 

developing effective sampling algorithms and diagnosing convergence in mining portfolio 

management (Greenland, 2001). With a solid understanding of the uncertainty and risk impact in 

the corporate portfolio, project approval requests usually come from different business units 

located in the same or different countries, the business unit or country where the project will be 

implemented remain the key variables with a direct impact on the approval decision-making 
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process. In MCS, fitting distribution to an uncertain data and reproduction between uncertain 

variables are two main aspects to be dealt with. There are many software offering MCS 

implementation (e.g., @Risk, CrystalBall and ModelRisk). Regarding the distribution fitting, 

Akaike Information, Chi Square, Kolmogorov-Smirnov, Andersen-Darling, Bayesian Information 

Criteria can be used. Regarding the reproduction of correlations, if the correlations are linear, 

Kendall’s tau and if the correlations are non-linear, copulas can be utilized.    

 

2.9 Correlation 

A correlation is a statistic that measures the degree to which two random variables move in relation 

to each other. The correlation coefficient has a value between -1 and 1; both represent perfectly 

negative correlation (perfectly moving in the opposite direction) and perfectly positive correlation 

(perfectly moving in the same direction) (Embrechts, 2002). A value of zero implies there is no 

relationship at all between the two variables. Correlations may be non-linear. For example, the 

correlation between high gold and high copper prices may be different from the correlation 

between low gold and low copper prices. In this case, the Pearson or Spearman correlation 

coefficient cannot be used. If the variables are dependent, they are also correlated. However, if 

they are correlated, they are not necessarily dependent. Dependence is generally defined as any 

statistical relationship between two variables (Mari, 2001). However, the term correlation is a more 

general term used for any type of statistical relationship including dependence (Embrechts at. al., 

2002 and Mari, & Kotz, 2001). Correlations between variables may change over time during the 

implementation of a project. 
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2.10 Variables related to project implementation 

The variables related to the project implementation phase are linked to four key project attributes 

(cost, duration, scope, and quality) developed through three steps: conceptual level for 

authorization, semi-detailed level for continuation, and detailed level for re-evaluation (PMI, 

2013). The level of detail associated with each attribute affects the accuracy of the optimal decision 

related to project approval. The essential question for project implementation is: does the 

operational performance of the project initiator have weight that is more positive on the approval 

decision-making process? This operational performance variable also affects the business unit 

variable. 

 

2.11 Variables related to the business unit 

Rad and Levin (2006) defined three variables related to the business unit that guide project 

prioritization according to three attributes.  

1. Financial attributes determine the financial attractiveness of the investment and are defined 

by the ROI and payback period. They include: 

 internal rate of return, 

 NPV of earnings, 

 benefit/cost ratio, 

 expected commercialization value, 

 time to break even, 

 the discounted cash flow of the income from deliverables, 

 total cost as percentage of the total available funds, and 

 relationship to the total expected value of the portfolio. 
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2. Strategic attributes determine the strategic attractiveness of the deliverable and are defined 

by the competitive edge, time to market, and the utility. They include:  

 morale, prestige, reputation, customer relations, and productivity benefits of the 

deliverable to the company, and 

 strategic importance, utility of the deliverable, and probability of success of the 

business venture using the deliverable. 

3. Funding category constraints are defined by the proportion of funding, project population 

distribution, and continuous pipeline to deliver within the portfolio. They include: 

 The limited number of projects in each business unit,  

 percentage limit of project funds in relation to total corporate funds,  

 continuous delivery of projects in each business unit,  

 pipeline population issues, and  

 staggered delivery dates.  

 

2.12 New variables introduced in this research 

This research will develop two additional sets of variables. The first set is related to operational 

performance and quantifies the achievement of the business unit’s full potential of the project 

originator objectives. A project approval request from a low-performance business unit will have 

less chance to be approved compared to a high-performance business unit. The second set of 

variables are the international-related variables: the country risk index subject to the location where 

the project will be implemented. Country risk classifications from several organizations, including 

the Organization for Economic Co-operation and Development (OECD) (2016) are developed 

from a qualitative and quantitative risk assessment model. The relationship between qualitative 
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and quantitative country risk is elaborated in Chapter 5. These improved business unit-related 

variables have four attributes: financial, strategic, funding category constraints, and full potential 

level. They are mainly manifested by multi-national mining companies as they deal with a broadly 

diversified type of commodity from different countries. While they endeavor to limit their risk 

exposure by only doing business in countries with stable political, social, and economic 

environments, there is no assurance that the environments will remain stable. The inclusion of 

country-related variables in this new corporate portfolio management model will help to obtain an 

optimal and realistic capital investment decision for multi-national mining companies.  

The following chapter illustrates the application of the operational performance and international 

risk variables in the mining corporate portfolio optimization model.  
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Chapter 3: Mining corporate portfolio optimization model 

incorporating operational performance and country risk 
 

3.1 Introduction 

In the last decade, mineral resource companies have focused on investing in the development of 

mines and rushing to take advantage of high commodity prices, beginning production early while 

permanent field development is being planned and full facilities are being built (Rahmanpour & 

Osanloo, 2015). This early production helps companies benefit from early cash flow, uninflated 

construction costs, and high profit margins (Rahmanpour & Osanloo, 2016). Minsky (2008) also 

developed a financial instability hypothesis where in good times, companies undertake high risk 

through new projects. Too many new projects associated with profit greed trigger the next crises. 

The current top mining companies have multiple product groups (PGs) with different Chief 

Executive Officers, all competing for the same global capital expenditure (CAPEX) funds. For 

example, a top mining corporation has several groups with annual CAPEX of multi-billion dollars 

distributed among PGs. A large amount of this investment is allocated to sustaining capital, which 

highlights the fact that it is mainly for existing mines or assets. New projects can be construction 

or purchase of a new mine/facility, capacity expansion of an existing mine, or replacement 

equipment to adopt new technologies.  

From 2011 to 2016, the commodity price index dropped by 41% (Canada, 2016) and for a specific 

mineral commodity such as iron ore, the market price dropped by 68% (IndexMundi, 2019). 

Mineral resources companies are no longer achieving high profit margins because of the 

combination of high operating costs and low commodity prices (Raffaini, 2016). This leads to 

reluctance to quickly move from development to early production. Also, mining investments are 
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irreversible and incur a significant amount of risk associated with fluctuations in global mineral 

markets. Collan, et al. (2017) illustrate the effect of the market price on the metal mining asset 

portfolio valuation in terms of net present value (NPV) and real option valuation of the assets.  

Considering the internal competition of project approval between different business units/PGs 

within the same mining corporation, this chapter demonstrates that, on top of the market price 

impact on the asset valuation, the criteria of operational performance of business unit/PG–project 

initiator in the initial investment decision are necessary and also impact the decision to invest or 

not. Studies related to approval for internal sustaining capital projects have not yet been done with 

additional criteria of project initiator performance in previous corporate mining project portfolio 

valuations. 

Commodity prices are low compared to 2012. There are a large number of projects and the supply 

exceeds the demand (Ives, 2016). High-cost producers are faced with cash problems and they must 

suspend or cease their operations whereas low-cost producers can overcome these challenges. As 

with many other business, the minerals industry is cyclical. It is very difficult task to quantify the 

magnitude of a cycle. Humphreys (2018) illustrates the impact of the evolution of the cycle on 

companies’ investment strategies. The drop in commodity prices increases competition among 

low-cost producers. Furthermore, the complexity of international economics and globalization has 

led to additional challenges to the investment strategy of mining companies (Wirth, et al., 2013). 

For mining company decision-makers, the challenge is how to improve the effectiveness of their 

current assets/resources/projects and better manage the risk to allocate capital investments to the 

most valuable initiatives (Bowman & Ambrosini, 2000).  
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This challenge can be formulated as a decision-making problem, which translates into an 

intertemporal optimization problem (Chang, et al., 2000), namely, a quadratic portfolio 

management model. This model refers to a constrained nonlinear program with a quadratic 

objective function where all constraints are linear. The decision variables for the defined problem 

are the fractions of the fund invested in each project. Decisions made in any period affect future 

possibilities. Therefore, there is a need to take into account this effect when a decision is made.  

The quadratic optimization model developed in this chapter will contain operational performance 

and country risk (Herring & School, 1986). A PG is defined as a combination of multiple business 

units associated with mining and processing operations. To obtain approval for a new project, the 

PG’s previous performance will be a criterion. Performance attributes include for example, an 

excellent safety record, whether production quality and quantity targets were met, the budget was 

properly managed, and resources were effectively utilized. 

Considering these key economic drivers, a sequence of effective decisions needs to be made to 

maximize utility expressed in the objective function. This approach will give decision-makers the 

right fraction of available CAPEX to invest in each PG in order to minimize the risk subject to a 

specified minimum expected rate of return defined by the corporate group as the economic 

threshold profitability limit of the corporate group (Xue, et al., 2014). Corporate groups are very 

often divided into multiple PGs with respect to commodities such as gold, oil sands, nickel, 

diamond, coal, aluminum, iron ore, industrial minerals, and copper.  

Many mining organizations use the NPV as the critical criterion to evaluate the project from 

exploration to production stages (see Figure 1.1). However, for capital allocation at the corporate 

level, there are also risks associated with the operational performance of the PG and the location 
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of the business unit initiating the project (project initiator). (Xu, et al., 2014) developed an 

improved portfolio model for project selection where an applicable technique beyond the NPV is 

presented for capital budgeting. Nevertheless, the current operational performance of the project 

initiator was not considered.  

In the mining industry, the additional capital expense has always been considered as a critical 

element of operational performance (Xue, et al., 2014). Before buying a new asset, it is critical to 

optimize the asset in possession, therefore consideration of current operational performance in the 

approval of a new project proposed by the PG is required.  

This chapter considers a single corporate office managing a portfolio of programs/projects from 

different PGs, defined as a set of companies producing a group of products in a specific geographic 

location. All projects submitted to the corporate office for approval will be considered to already 

meet the NPV criterion within the PG. The additional corporate criteria will be the operational 

performance and the country risk associated with the project initiator. Figure 3.1 illustrates the 

stages of project approval.  

 

 
Figure 3.1: Approval stages from product group to corporate level 

Approved project at corporate level

Future State: with both operational performance and international risk at corporate level

Projects with better operation performance submitted for approval at corporate level 

With international constraint at corporate level

Approved project at product group level and submitted for corporate approval  

With operational performance constraint at corporate level

Projects submitted for approval at product group level

Current State: With net present value criterion at product group level 
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Bhappu and Guzman (1995) illustrated the fact that discounted cash flow techniques do not allow 

for consideration of premium values on project valuations. Typically mining and processing 

operations throughput/effectiveness are assumed to be constant in the evaluation of mining 

projects. However, this throughput/ effectiveness is correlated to the operational performance of 

the business unit requesting project approval. The originality of this chapter rests on proposing an 

optimization model for project portfolio management in the mining industry with operational 

performance as one of the key criteria for project approval. 

The ultimate goal of corporate portfolio management office is to maximize returns on investments 

(ROIs) and minimize risk at the corporate level. There is a need to understand how to split the 

available fund among different projects from different business units. The difficult decision to split 

the available fund among projects from a different country and different commodity illustrates a 

class of constrained nonlinear programs. This represents a double-objectives optimization model. 

The quadratic programming technique is used to obtain an efficient solution to this nonlinear 

problem. 

 

3.2. Formulation of the quadratic portfolio model 

A quadratic portfolio management model refers to a constrained nonlinear program, which 

includes a quadratic objective function and all linear constraints. The decision variables for the 

defined problem are the fractions of the fund invested in each project. The project approval 

condition is “Yes or No”, and these responses are associated with capital investment available or 

not available for the project. 
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Considering (𝑝) projects are submitted for approval, (𝑥𝑖) is the fraction of the portfolio invested 

in project 𝑖. 

The main constraint forces the allocation of all of the fund:  

∑𝑥𝑖

𝑝

𝑖=1

= 1                                                                                                                                                    (3.1) 

The achievement of full business potential is assumed independent of the overall risk associated 

with the investment. Applying the probability definition to achieve two independent events 

together, the overall probability will be the product of the current operational performance ratio of 

success related to the investment on each project (Xie, 2017). Assuming that the project risk (𝛽𝑖) 

and the performance of the PG (𝛼𝑖) are independent; the specified minimum expected rate of 

return 𝑅𝑒 can be expressed as: 

∑𝛼𝑖 (1 − 𝛽𝑖)

𝑝

𝑖=1

𝑥𝑖 ≥ 𝑅𝑒                                                                                                                            (3.2) 

Where: 

𝛼𝑖 represents the current operational performance ratio of the PG requesting the project approval. 

This ratio illustrates the current operational performance of the PG where the project will be 

implemented (Taylor, 1986). 

𝛽𝑖 represents the risk of investing in project 𝑃𝑖 associated with 𝑥𝑖, the fraction of the corporate 

portfolio invested in the business unit 𝑖; initiator of project 𝑖. 
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(1 − 𝛽𝑖) represents the probability of success without the PG’s operational performance being 

associated with the investment in specific project 𝑖. 

Combining this with the project initiator performance will reinforce the decision-making to 

approve reject a project; 

𝛼𝑖(1 − 𝛽𝑖) represents the overall probability of success associated with the investment on specific 

project 𝑖. 

Equation 3.2 illustrates the consideration of operational performance as a criterion in the approval 

process. In most cases, project approval does not depend on PG performance. In this research, we 

add a criterion related to PG performance to reduce the overall risk for investment in a project. 

Thus, more accurate decisions related to project investment can be made. The additional 

consideration of PG performance will affect the approval level. What is proposed in this study is 

project approval, not project implementation. Nevertheless, in the most practical case of the project 

approval committee, the implementation phase is treated separately, and the performance of the 

implementer is not part of the approval equation. In most cases, by removing the current 

performance of the project initiator in the approval process, companies face the risk of choosing 

the wrong projects. 

If there is a high performing group inside a company, there is less risk in project implementation; 

nevertheless, this is not considered at the approval stage. This new approach includes the 

operational performance criteria at the early stage of approval. Then, resolving the risk at the time 

of the initial investment decision is more realistic and help companies with billions of dollars in 

annual sustaining capital investment in their approval process. The approval of sustaining capital 

expenditures of each PG is fulfilled on an annual basis. 
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The difficulty is to model the variability of the ROI. The variance is the average squared deviation 

from the mean of multiple independent variables. In this case, the variance of the return will be 

used to measure the variability of return. Assuming all projects are uncorrelated (i.e., they vary 

independently), the variance of the overall corporate return would be the sum of the variances of 

each project. However, for a more workable/realistic model, it is more likely that these projects 

will interact. Thus, there are covariances relating movement in the different types of project 

(Rardin, 2016). These covariances are estimated as:  

𝜈𝑖,𝑗 ≜ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝑖 𝑎𝑛𝑑 𝑗 

The variance of the overall portfolio return = ∑ 𝑉𝑎𝑟(𝑥𝑖
𝑝
𝑖=1 ) where 𝑉𝑎𝑟(𝑥𝑖) is the variance of the 

return of project 𝑖. 

In this chapter, we consider that mining projects are highly correlated through commodity type or 

operation location (Clemen, 2000). This portfolio model clearly represents a quadratic program 

with a quadratic objective function. The optimization model thus includes the covariance relating 

movement in each of the projects to be financed. Given a series of p returns for p projects, the 

covariance between projects i and j can be calculated as follows (Rardin, 2016): 

𝜈𝑖,𝑗 =
1

𝑛
∑ 𝑑𝑡𝑖𝑑𝑡𝑗 −

1

𝑛2
𝑛
𝑡=1 [∑ 𝑑𝑡𝑖

𝑛
𝑡=1 ][∑ 𝑑𝑡𝑗

𝑛
𝑡=1 ]                                                                                    (3.3)    

Where: dti is the value of the project i in period t. In this chapter, using the future cash flows for 5 

years for each project, the covariance among the projects is calculated. Likewise, the past 

performance of the PG could have been used to calculate covariance. 

The variance of the overall portfolio return = ∑ ∑ 𝜈𝑖,𝑗𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1                                                    (3.4)     

The matrix V of 𝜈𝑖,𝑗 is given by:  
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𝐕 = [

𝑣1,1

𝑣2,1 
…

𝑣𝑛,1

 

 𝑣1,2

𝑣2,2 

…
𝑣𝑛,2

 

…
…
…
…

 𝑣1,𝑛

 𝑣2,𝑛

… 
   𝑣𝑛,𝑛

]                                                                                                                          (3.5) 

Markowitz (1952) developed a quantitative framework for the selection of a portfolio. Using the 

standard Markowitz mean-variance approach (Markowitz, 1959), the unconstrained portfolio 

optimization problem is to minimize the variance 𝑥. 𝑽. 𝑥: 

Minimize 𝑥. 𝑽. 𝑥 = ∑ ∑ 𝑣𝑖,𝑗  𝑥𝑖 𝑥𝑗
𝑝
𝑗=1

𝑝
𝑖=1                                                                                                (3.6) 

Subject to all funds allocated for investment will be spent. 

∑𝑥𝑖

𝑝

𝑖=1

= 1                                                                                                                                                    (3.7) 

𝑥𝑖 ≥ 0      ∀𝑥𝑖, 𝑖 = 1,… , 𝑛                                                                                                                        (3.8) 

To ensure that the fraction of the corporate portfolio allocated to a specific project will be sufficient 

to implement the project, an additional constraint of the objective function needs to be included 

for project approval.  

𝑥𝑖 . 𝐶𝑝𝑜 ≥ 𝑃𝑖       ∀𝑖                                                                                                                                      (3.9)  

Where: 

xi represents the value of the fraction of the corporate portfolio function for project 𝑖. 

𝑃𝑖 represents the requested approval amount for project 𝑖. 

𝐶𝑝𝑜 represents the overall available fund for the corporate portfolio. 
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If this project approval condition is not met, the project will not be approved, thus no capital 

investment will be made related to the specific project. This portfolio model represents a quadratic 

program with a quadratic objective function 𝑓(𝑥)  

∑ 𝑐𝑗𝑗 𝑥𝑗 + ∑ ∑ 𝑣𝑖,𝑗𝑗𝑖 𝑥𝑖𝑥𝑗                                                                                                                        (3.10)    

Where: 

𝑐 is a real-valued, n-dimensional vector of coefficient 𝑐𝑗 = 0 for the quadratic portfolio model in 

this chapter. 

v is the 𝑛 × 𝑛 dimensional real matrix of covariance 𝜈𝑖,𝑗 between project 𝑖 and 𝑗. 

 

3.3. Application 

In this section, a typical international mining corporate portfolio is considered containing five PGs, 

each with 45 projects in different geographical locations requesting approval from the corporate 

office. This means a total number of 225 projects around the world seeking approval during the 

same period. The rate of project return is a random variable with an expected value of (1 − 𝛽𝑖 ). 

The problem is to find what fraction 𝑥𝑖 to invest in each project to minimize the risk subjected to 

a predefined minimum expected rate of return. The matrix that defines these optimization problems 

is dense. In this practical case, we are solving a portfolio optimization problem using an interior-

point quadratic programming algorithm.  

Let us denote 𝑣𝑖,𝑗 the covariance matrix of rates of project returns. This classical mean-variance 

model consists of minimizing the portfolio risk associated with each of the 225 projects by 



47 
 

maximizing the expected portfolio return with the PG performance of the project originator. The 

portfolio risk is measured by: 

𝑣1,1. (𝑥1)
2 + 𝑣1,2. 𝑥1. 𝑥2 + ⋯+ 𝑣1,225. 𝑥1. 𝑥225 + ⋯ + 𝑣2,2. (𝑥2)

2 + ⋯

+ 𝑣225,225. (𝑥225)
2 

(3.11) 

Equation 3.11 minimizes the total variance (risk) associated with the portfolio, subject to the 

following two constraints. 

1. The sum of the expected project return 𝛼𝑖 . (1 − 𝛽𝑖). 𝑥𝑖   should be larger than a minimal rate 

of portfolio return 𝑅𝑒 that the shareholder's desire. This is measured by:  

  𝛼1. (1 − 𝛽1). 𝑥1 + 𝛼2. (1 − 𝛽2). 𝑥2 + ⋯+ 𝛼225. (1 − 𝛽225). 𝑥225 ≥ 𝑅𝑒 = 0.2%                  (3.12) 

Equation 3.12 ensures that the portfolio has an expected return of Re. 

 (𝛼𝑖) represents the current operational performance ratio of the PG requesting the project 

approval. This chapter considers an equal operational performance level for the five PGs. Thus, 

for equal weight distribution, the result gives 20% of the corporate current operational 

performance. 

(𝛽𝑖) represents the risk of investing in project 𝑃𝑖 associated with (𝑥𝑖) the fraction of the corporate 

portfolio. 

(1 − 𝛽𝑖) represents the probability of success associated with the investment on a specific project.  

2. The sum of investment fractions (percentages) should add up to unity.  

  𝑥1 + 𝑥2 + ⋯+ 𝑥225 = 1                  (3.13) 
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Equation 3.14 ensures that the proportions add to one. These fractions should be positive and less 

than 1. 

        𝑥1, 𝑥2, … 𝑥225 ≥ 0                  (3.14) 

Since the objective to minimize portfolio risk is quadratic and the constraints are linear, the 

resulting optimization problem is a quadratic optimization problem. This formulation is a simple 

quadratic nonlinear programming problem for which computationally effective algorithms exist. 

In practice, there is less difficulty in calculating the optimal solution for any particular dataset. 

Using the standard Markowitz mean-variance approach (Markowitz, 2008), the portfolio 

optimization problem is: 

  min  𝑣1,1 . (𝑥1)
2 + 𝑣1,2. 𝑥1. 𝑥2 + ⋯+ 𝑣1,225. 𝑥1. 𝑥225 + ⋯+ 𝑣2,2. (𝑥2)

2 + ⋯

+ 𝑣225,225. (𝑥225)
2 

(3.15) 

The above formulation can also be expressed in terms of the correlation 𝜌𝑖𝑗 between projects 𝑖 and 

𝑗 with −1 ≤ 𝜌𝑖𝑗 ≤ +1 standard deviations 𝜎𝑖, 𝜎𝑗  of returns for these projects. 

  𝑣𝑖𝑗 = 𝜌𝑖𝑗 · 𝜎𝑖, 𝜎𝑗               (3.16) 

Assuming a rate of return range between –0.008 and 0.004 with a desired return, 𝑅𝑒 = 0.2%, 

 𝑟𝑟𝑚𝑖𝑛 = −0.008 ≤ 𝑟𝑎𝑡𝑒𝑠 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛 ≤ +0.004 = 𝑟𝑟𝑚𝑎𝑥        (3.17) 

MATLAB software was used to solve this portfolio optimization model for an elapsed time of 

0.0347 seconds to run the quadratic program.  

Three scenarios were considered:  

1. allocation of the project with no constraint,  
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2. allocation of projects with one constraint (operational performance level), and 

3. allocation of projects with two constraints (operational performance level and country 

risk). 

 

3.3.1 Unconstrained allocation 

Figure 3.2 illustrates the minimum number of approved projects (11 out of 225). PG 2 received 

38% of the available CAPEX with only two projects; 24% of the investment was allocated to PG 

1 and 19% to PG 5, each with three projects; 13% was allocated to PG 3; and 6% was allocated to 

PG 4. The solution of the objective function of this unconstrained portfolio optimization provides 

a minimum risk of 0.019%. 

 

 

Figure 3.2: Standard unconstrained portfolio optimization 
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Table 3.1 illustrates that by assuming that the same operational performance is not affecting the 

decision for project approval, for standard unconstrained portfolio optimization, PGs 1 and 3 get 

one more approved project than PGs 2 and 3 and two more approved projects than PG 4.  

 

Table 3.1: Unconstrained allocation with minimum risk 

Product group # Fraction of CAPEX 

(%) 

Approved project 

(#) 

1 24 3 

2 38 2 

3 13 2 

4 06 1 

5 19 3 

 

3.3.2 Allocation of projects based on operational performance constraint 

By using the same dataset with the corporate constraint associated with the operational 

performance level of each of the five PGs and assuming each PG has an equal level of operational 

performance level weighted at 20% of overall performance, the corporate office will impose an 

equally available CAPEX (20%) to be invested in each PG. Figure 3.3 illustrates a higher number 

of approved projects (13 out of 225) than the unconstrained allocation. 
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Figure 3.3: Constraint allocation based on operational performance level 

 

By considering the operational performance constraint, two more projects received approval with 

a small increase in acceptable of 0.02% associated with the new constraint allocation (Table 3.2). 

PG 4 has two more approved projects than in the unconstrained allocation model. The portfolio is 

more evenly distributed across the five PGs; this illustrates the diversification and the potential 

increase of the corporate portfolio return. 
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Table 3.2: Project allocation based on operational performance constraint 

 No constraint  With operational 

performance constraint 

 

Product 

group # 

CAPEX (%) No. approved 

projects 

 CAPEX (%) No. 

approved 

projects 

Project 

variance 

(#) 

1 24 3  20 3 0 

2 38 2  20 2 0 

3 13 2  20 3 +1 

4 06 1  20 3 +2 

5 19 3  20 2 –1 

 

3.3.3 Allocation of projects with operational performance level and country risk constraints 

The request associated with the project approval will randomly change over time due to changes 

in a business environment that can adversely erode the financial value of the business unit in the 

country of the project initiator; this is also called country risk (Rahmanpour & Osanloo, 2015). 

Assuming that this risk will automatically impact the request for project approval, let us consider 

a randomly generated dataset for a project that required corporate approval. The solution to the 

objective function is illustrated in Figure 3.4 with the same constraint of proportional distribution 

of CAPEX across the five PGs. The reshuffle of CAPEX allocation and the number of the project 

approved per PG is evident. Four projects from PGs 1, 3, 4, and 5 receive 62% of the CAPEX, 

while the remaining seven approved projects receive 38% of the CAPEX. PG 2 is the only group 

with three approved projects while the other PG receives only two approved projects at an optimal 

solution equal to an acceptable minimum risk of 0.3%. Two projects are at the maximum return in 

PG 3 and 4. 
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Figure 3.4: Project allocation with operational performance level and country risk constraints 

 

We consider the same 45×5 desired number of project approvals, with the means and standard 

deviations of returns of –0.1–0.4 and 0.08–0.6, respectively. 

𝑚𝑟𝑚𝑖𝑛 = −0.1 ≤ 𝑚𝑒𝑎𝑛_𝑟𝑒𝑡𝑢𝑟𝑛 ≤ 0.4 = 𝑚𝑟𝑚𝑎𝑥; 

𝑚𝑒𝑎𝑛_𝑟𝑒𝑡𝑢𝑟𝑛 = 𝑚𝑟𝑚𝑖𝑛 + (𝑚𝑟𝑚𝑎𝑥 − 𝑚𝑟𝑚𝑖𝑛) × 𝑟𝑎𝑛𝑑(225,1); 

𝑠𝑑𝑚𝑖𝑛 = 0.1 ≤ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑡𝑢𝑟𝑛 ≤ 0.6 = 𝑠𝑑𝑚𝑎𝑥; 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑡𝑢𝑟𝑛 = 𝑠𝑑𝑚𝑖𝑛 + (𝑠𝑑𝑚𝑎𝑥 − 𝑠𝑑𝑚𝑖𝑛) × 𝑟𝑎𝑛𝑑(225,1); 

 

Additional constraints increase the risk at the accepted level. Nevertheless, a more evenly 

distributed CAPEX allocation results than was seen in the single constraint allocation of projects 

(Table 3.3). This imposed more diversification and then a potential increase of the corporate 
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portfolio return toward the optimal value at an acceptable minimum risk. These results clearly 

show that combining the operational performance of PG with country risk could significantly 

affect the approval of any requested project at the corporate level. This will provide more realistic 

decision-making that will help to minimize the risk associated with capital allocation. 

 

Table 3.3. Allocation based on operational performance and country risk constraints 

 With operational performance 

constraint 

 With operational 

performance and country 

risk constraints 

 

Product 

group # 

CAPEX (%) No. approved 

projects 

 Approved project (#) 

 

Project 

variance 

(#) 

1 20 3  2 –1 

2 20 2  3 +1 

3 20 3  2 –1 

4 20 3  2 –1 

5 20 2  2 –1 

 

3.4. Conclusion 

In this chapter, we considered a typical (but hypothetical) international mining company with five 

PGs located in multiple geographical locations, with a problem to allocate the right capital 

investment to the right project for the optimal return at the minimum risk. This research 

incorporates the current operational performance of the PG and random risk associated with the 

country where the project will be implemented, as well as the standard risk minimization that is 

traditionally used. Beyond the traditional NPV or discounted cash flow project/asset valuation, the 
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criteria of operational performance of business unit/PG/project initiator in the initial investment 

decision are necessary and also impact the decision to invest or not.  

The new study provides a new mining projects portfolio valuation approach with an additional 

criterion of a project initiator performance for internal sustaining capital projects within the multi-

national mining corporation. Adding country risk and operational performance constraints show 

that the more you impose a diversified portfolio with correlated projects, the more you potentially 

increase the corporate portfolio return with a slight increase of the minimum acceptable risk. As 

the performance of a PG increases, the chance of approval of the proposed projects also increases. 

The objective function is formulated as the minimization of the risk of the desired return with 

correlated projects. Although this problem was solved with two additional constraints, further 

studies will be done to simultaneously obtain the optimal portfolio return at the minimum risk 

including the quantification of correlations between projects. Also, we intend to extend the 

research if there is need for two separate portfolio optimization strategies for good (boom) and bad 

times (bust).  
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Chapter 4: Mining portfolio optimization under extreme events – 

Investment/divestment decisions with commodity market behavior 
 

4.1 Introduction 

In today’s globalized mining industry, economic uncertainties and risks associated with tariffs and 

technical aspects of operations/assets render investment and divestment decisions more difficult. 

Risks associated with the instability in global mineral markets are very high due to the significant 

and irreversible capital investment needed up front (Collan, et al., 2017). Investment and 

divestment decisions become more difficult in the face of extreme events such as drastic variability 

in commodity market behavior in very short periods, environmental disasters such as catastrophic 

failure of Vale tailings dam in Brazil January 2019, and tariffs imposed by countries. A term 

usually used to describe natural disasters (e.g., earthquakes, flood, droughts, and hurricanes) that 

influence social, environmental, urban, and technical systems, extreme events in the mining 

corporation context can be defined as sudden financial or natural events that prevent sustainable 

healthy returns. Minerals investments are negatively impacted by the escalation in sudden changes 

on taxation rules, legislation, permitting, and regulations by governments (Baker, et al., 2016), 

which also induces variability and unpredictability in the commodity market. In particular, 

international companies are sensitive to changes in taxation and mining legislation from host 

governments.  

Corporations are often divided into multiple product groups (PGs). For illustration purposes in this 

chapter, a hypothetical mining corporation is divided into five PGs categorized by commodity: 

iron ore (PG 1), copper (PG 2), gold (PG 3), aluminum (PG 4), and lithium (PG 5). A strong price 

fluctuation is imposed for different periods, reflecting real-world data. For example, iron ore with 
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62% Fe content reached an all-time high of US$188.9/tonne in 2011 and a low of US$38.54/t in 

2015 (TradingEconomics, 2019). The iron ore market price dropped 80% between 2011 and 2015 

and then increased 155% in 2019 compared to 2015 (IndexMundi, 2019). The copper price 

decreased 56% between 2011 and 2016, from an all-time record high of US$10.09/kg to 

US$4.27/kg in 2016 (TradingEconomics, 2019). The aluminum price was US$2774/t in 2011 

versus US$1,450/t in 2016 (InfoMine, 2019). Gold prices have ranged from a low of US$1,058/oz 

in 2015 to US$1,354/oz in 2016 (Goldprice, 2019). Lithium was US$1,460/tonne in 2005 and 

US$16,500/t in 2018 (Metalary, 2019). The price trends above illustrate a clear disparity in the 

price behavior of these five commodities.  

The sharp declines in commodity prices above took 4–5 years, which might suggest that these are 

not extreme events. However, the development of a greenfield mining project typically takes 5–

10 years. Expansion, technology, or replacement projects take 1–3 years. Should these projects 

take place during a market decline, the company will be heavily impacted because high sink costs, 

labor relations, and local community concerns limit their flexibility to adapt to the changes.  

The price volatility of mineral commodity markets tends to follow a cyclical pattern; investment 

strategies of companies are based on their perception of the evolution of cycle (Humphreys, 2018). 

Mining corporations with multiple commodities need to make the right decisions regarding their 

investment or divestment of each of their PGs during specific market conditions characterized by 

extreme events. Gkillas (2018) investigated the impact of restricting transactions due to capital 

control under extreme events within a new framework of intervention policy. Njike and Kumral 

(2019) highlighted the fact that the decision to invest or divest in a PG primarily depends on the 

operational performance and country risk of the PG requesting the capital expenses.  
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This chapter includes the concept of extreme events in the investment/divestment decision-making 

process of the commodity associated with the PG. The ongoing challenge is to decide where/when 

to invest or divest with a sudden change in the commodity market behavior. The decision-making 

will not be based only on the operational performance and country risk, but also on the capability 

to cease the opportunity on a certain PG from the market condition characterized as an extreme 

event related to a specific commodity.  

This challenge can be formulated as a decision-making problem during constrained portfolio 

optimization. In other words, extreme events can be incorporated into portfolio optimization using 

an “efficient frontier” with a standard mean-variance portfolio optimization model (Chang, Meade, 

Beasley, & Sharaiha, 2000). Bielstein (2019) defined a mean-variance portfolio optimization 

model using forward-looking return estimates. Several portfolio optimization models for mineral 

investment have been developed without an extreme event criterion. For example, Njike and 

Kumral (2019) developed a corporate portfolio optimization model based on country risk and the 

current operational performance of the PG that lacked consideration of extreme events associated 

with market downturns. 

This chapter describes the development of a mean-variance optimization model under extreme 

events characterized by a sudden change in commodity market behavior. Commodity behavior and 

the market price are considered the key economic drivers for investment decisions. The model will 

assist decision-makers to allocate the fraction of the capital fund to each PG that minimizes the 

risk subject to a specified minimum expected rate of return defined by the corporate group as the 

economic threshold of profitability (Xue, et al., 2014). This additional criterion will also help 

corporate groups take advantage of market opportunities, for example, high product demand 
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because the top producer is unable to supply the expected production volume due to a catastrophic 

failure (e.g., Vale dam failure).  

 

4.2 Problem definition 

A typical international mining corporate portfolio is considered with five PGs spread across 

different geographical locations. Each PG is defined as a commodity class denoted by n. The 

corporate group will generally benefit from an increase in commodity prices; this is also defined 

as a long only fund (Mateus, 2019). Given that the long only strategy is predicated on the positive 

performance of the commodity price, the PG allocation fund is assumed to be long only with no 

borrowing or leverage. Njike and Kumral (2019) defined an optimization model incorporating the 

current operational performance of the PG and random country risk associated with the country 

where the project will be implemented as well as standard risk minimization. In addition to this 

corporate portfolio optimization model, the current chapter adds the impact of extreme events 

characterized by a commodity market downturn in the decision-making process to invest or divest 

a PG. Based on the price performance of each commodity, the following constraints are set. 

Let us consider the cost to trade (𝑐𝑡𝑖) as the transactional cost to invest or divest PG 𝑖. The 𝑐𝑡𝑖 

could vary by PG or by geographical location. PGs rarely perform at the same level due to the 

behavior of their commodity and different demands from different governments. Hence, in the 

application of five PGs/commodity classes, it is assumed that in this corporate portfolio model, the 

transactional cost for the top three performing PGs is lower than the transactional cost for the 

bottom two performing PGs.  

𝑐𝑡𝑖, 𝑐𝑡𝑖+1, 𝑐𝑡𝑖+2  < 𝑐𝑡𝑖+3, 𝑐𝑡𝑖+4 (4.1) 
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For each PG evaluated for investment/divestment, ±𝑥𝑖 is the portfolio weight in PG 𝑖. 

+𝑥𝑖 represents the value of the total investment share of the corporate portfolio fund for PG 𝑖.  

−𝑥𝑖 represents the value of the total divestment share of the corporate portfolio fund for PG 𝑖.  

The investment/divestment value share (±𝑥𝑖) of the portfolio associated with each PG will not be 

greater than the associated 𝐶𝑚𝑣𝑖 representing the commodity price performance of PG 𝑖. 

𝑥𝑖 ≤ 𝐶𝑚𝑣𝑖   (4.2) 

The main constraint forces the portfolio absolute weight of each PG to be non-negative with the 

sum equal 1: 

0≤ |𝑥𝑖| ≤ 1 (4.3) 

∑ |𝑥𝑖
𝑛
1 | = 1   (4.4) 

In a practical way, the key problem in this portfolio optimization model is to know the required 

investment/divestment value share opportunity related to each commodity class during extreme 

events. From the commodity market analysis, either the commodity class receives full 

investment/divestment, or it receives a partial investment/divestment due to its geographical 

location or maturity level (Greenfield or Brownfield). 

The ultimate goal of corporate portfolio management office is to maximize returns and minimize 

risk at the corporate level as well as satisfying shareholders’ expectations. It is necessary to 

understand the right amount to invest or divest among different PG under country risk, past 

performance, and extreme events. The decision to sell (divest) or buy (invest) shares associated 

with each PG from different geographical locations and different commodities represents a multi-
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objective optimization model during extreme events. The main contribution of this chapter is the 

incorporation of divestment decision and extreme events into the portfolio optimization. The 

improved optimization model builds upon the mining corporate portfolio optimization developed 

for a normal market condition by Njike and Kumral (2019). The solution of the optimization model 

will reinforce the investment decision at the optimum level (Fathi, 1989).  

 

4.3 Application 

The five PGs representing five commodities are in different geographical locations and are 

exposed to different types of risks, including extreme events. The PG allocation fund is assumed 

to be long as described above, with no investment strategy of using borrowed capital as a funding 

source. Optimal portfolios are those with the highest expected return for an accepted risk level, 

based on operational performance of each of the commodity class. To explore these portfolios, the 

constraints related to Equations 4.1–4.4 are used with the following specifications: 

 100% of the portfolio can be allocated to the iron ore PG due to its very high return on 

investment (ROI) with superior operational performance. 

 As much as 85% of the portfolio can be allocated to copper and gold PGs due to high ROI 

with high operational performance. 

 No more than 35% of the portfolio can be allocated to aluminum and lithium PGs due to 

low ROI and poor operational performance. 

 The transactional cost to trade the top three commodity classes (iron ore, copper, and gold) 

is assumed to be 0.1% of the difference in their value. 
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 Due to the new sustainability strategy, the transactional cost to trade aluminum and lithium 

is two times higher than the cost to trade other commodities; this means a 0.2% difference 

in value.  

 A typical average percentage of the portfolio of each PG conduct its operations (collect 

cash or sell inventory) in a specific time period can be more than 14%.  

To solve this problem, a basic mean-variance portfolio optimization problem is set and gradually 

the constraints on the problem are initiated to reach a solution. Each PG is assumed to have a 

tradable PG with a real-time price. The initial portfolio with holdings in each PG has a total of 

US$4900 MM, along with an additional cash position of US$11 MM. These basic quantities and 

costs to trade are set up in the following variables: 

 PG represents the product group names in cell array PG, 

 Price represents current prices in the vector Price,  

 Holdings represent current portfolio holdings in the vector Holding, and 

 UnitCost represents the transaction costs in the vector UnitCost. 

A blotter is set to track prices, holdings, portfolio weights in dataset object.  

 InitPort is the new blotter results from computing the initial portfolio weights.  

 InitHolding represents the new portfolio holdings in the vector InitHolding. 

 Capital represents the maximum capital allocation fund: 

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 = 𝑈𝑆𝐷 4900 𝑀𝑀 

 LB represents the lower boundary of each product group: 

𝐿𝐵 = [50,50,50,50,50] 

 UP represents the upper boundary of each product group: 
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𝑈𝐵 = [𝐶𝑎𝑝𝑖𝑡𝑎𝑙, 𝐶𝑎𝑝𝑖𝑡𝑎𝑙, 𝐶𝑎𝑝𝑖𝑡𝑎𝑙, 𝐶𝑎𝑝𝑖𝑡𝑎𝑙, 𝐶𝑎𝑝𝑖𝑡𝑎𝑙] 

 TimeEnd represents the time range of the optimization model: 

𝑇𝑖𝑚𝑒𝐸𝑛𝑑 =  600 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 

 Length of extreme event is assumed to be 30 time periods. 

 Prob_Of_Event_Per_Day represents the probability of extreme events per day, assuming 

this value is related to the historical market behavior of each of the commodity classes: 

𝑃𝑟𝑜𝑏_𝑂𝑓_𝐸𝑣𝑒𝑛𝑡_𝑃𝑒𝑟_𝐷𝑎𝑦 = [0,0.001,0.002,0.005,0.01] 

To solve this portfolio optimization problem, two options were considered: 1) no divestment 

possibility with only capital allocation for potential investment and 2) both investment and 

divestment possibilities. 

 

4.3.1 Product group investment with no divestment possibility 

This problem was solved by MATLAB using codes developed by the author (Appendix 1). More 

than 600 time periods were simulated for the five PGs. PGs 1–3 remain profitable at extreme 

events. The variability of profitability is lower for PGs 1 and 2 (US$0.95–1.10/unit) than PG 3 

(US$1.05–1.25 USD/unit) (Figure 4.1). The low operational performance of PGs 4 and 5 adds 

volatility and instability to the profitability during extreme events (US$0.14–1.2/unit and 

US$0.45–1.60/unit, respectively) (Figure 4.2). 
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    a)         b)                c) 

Figure 4.1: Profitability of product groups a) 1, b) 2, and c) 3 during the 600 days optimization 

during extreme events 

 

 
a)  b) 

 

Figure 4.2: Profitability of product groups a) 4 and b) 5 during the 600-time period optimization 

model during extreme events 

 

Figure 4.2 illustrates the fact that the probability of extreme events to occur is higher for PGs 4 

and 5 than PGs 1, 2 and 3. This is also linked with the input data used in the MCS. Using the 

probability of extreme events based on the past data and future prediction reinforces the real-life 

extreme events in the MCS. PGs 4 and 5 can only receive the capital allocation at the lowest 

boundary due to this lack of profitability at extreme events (Table 4.1). The highest capital 
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allocation is to PG 1 mainly due to the stable operating performance and very high ROI. Due to 

the high profitability of PG 3 (Figure 4.1c), 6.6% of the capital fund is allocated to it. Only 1.7% 

on the capital fund is allocated to PG 2. Hence, during extreme events, 98.0% of the capital fund 

is distributed between PGs 1, 2, and 3. Given that iron ore industry experienced the highest level 

of price reductions, a PG managing to survive can be seen as highly resilient.  

 

Table 4.1: Capital fund allocated to each product group (commodity class) 

Product Group Capital Allocation US$ 

MM 

Capital Allocation (%) 

1 (iron ore) 4,393.708 89.7 

2 (copper) 84.632 1.7 

3 (gold) 321.660 6.6 

4 (aluminum) 50.000 1.0 

5 (lithium) 50.000 1.0 

Total 4,900.000 100.0 

 

4.3.2 Product group investment with potential divestment  

Considering both investment and divestment, the cost to trade needs to be included in the overall 

portfolio, along with the weight of each commodity class. Assuming the same constraints as above, 

Table 4.2 illustrates the assumed commodity price, portfolio holding, weight, and additional cost 

to trade for investment or divestment. 
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Table 4.2. Commodity price, portfolio holding, weight, and cost to trade for five product groups 

Product 

Group 

Price (US$/share) InitHolding 

(Portfolio 

holding) 

InitPort 

(Weight) 

Cost to Trade 

(UnitCost_% 

US$/share) 

1 82 32,078,000 0.54 1/10 

2 2,000 127,870 0.05 1/10 

3 56 23,283,000 0.27 1/10 

4 1,800 81,680 0.03 1/5 

5 31.1 18,212,000 0.12 1/5 

 

𝑃𝐺𝑀𝑒𝑎𝑛 represents the mean of the total annual returns of the PGs, based on five years of data on 

each commodity class:  

𝑃𝐺𝑗𝑀𝑒𝑎𝑛 =
1

𝑛
(∑ 𝑃𝐺𝑗𝑅𝑒𝑡𝑢𝑟𝑛𝑖

𝑛
𝑖=1 )  

Where 𝑃𝐺𝑗𝑅𝑒𝑡𝑢𝑟𝑛𝑖 is the return of PG 𝑗, 𝑖 is the sample number, and 𝑛 the total number of 

samples. 

𝑃𝐺𝑀𝑒𝑎𝑛 =

[
 
 
 
 
0.05
0.1
0.12
0.18
0.15]

 
 
 
 

 

 

The optimization model will include the covariance relating the movement in each of the 

projects to be financed. 𝑃𝐺𝐶𝑜𝑣𝑎𝑟 represents the covariance of the total annual returns of the 

PG. Given a series of p returns for p projects, the covariance between projects i and j can be 

calculated as follows (Rardin, 2016): 

𝑃𝐺𝐶𝑜𝑣𝑎𝑟𝑖,𝑗 =
1

𝑛
∑ 𝑃𝐺𝑅𝑒𝑡𝑢𝑟𝑛𝑡𝑖𝑃𝐺𝑅𝑒𝑡𝑢𝑟𝑛𝑡𝑗 −

1

𝑛2
𝑛
𝑡=1 [∑ 𝑃𝐺𝑅𝑒𝑡𝑢𝑟𝑛𝑡𝑖

𝑛
𝑡=1 ][∑ 𝑃𝐺𝑅𝑒𝑡𝑢𝑟𝑛𝑡𝑗

𝑛
𝑡=1 ]          
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Where PGReturnti is the value of the return of PG i in period t. In this application, using the returns 

for five years for each PG, the covariance among the PG returns is as follows:  

𝑃𝐺𝐶𝑜𝑣𝑎𝑟 =

[
 
 
 
 
0.0064 0.00408 0.00192 0 0.00164
0.00408 0.0289 0.0204 0.0119 0.0125
0.00192 0.0204 0.0576 0.0336 0.0478

0 0.0119 0.0336 0.1225 0.0895
0.00164 0.0125 0.0478 0.0895 0.1154 ]

 
 
 
 

 

 

Without the cost to trade, the portfolio object defined by 𝑝 is called the gross portfolio return. The 

plot with 600 points (i.e., 600 days of the optimization model as defined above) to obtain the 

efficient frontier (Kim, et al., 2015) illustrates the (gross) efficient portfolio returns (Figure 4.3). 

With no consideration for cost to trade in the optimization, the efficient portfolio returns fall 

between approximately 6 and 13% per year, which is within the positive expected return target. 

 

 
Figure 4.3. Product group allocation portfolio at the efficient frontier 
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4.3.3 Impact of the cost to trade on the portfolio return 

Adding the additional cost to trade into the portfolio optimization model, a new variable 𝑞 is 

defined, representing the net portfolio return. Using the method to calculate annualized portfolio 

returns outlined by Kim, et al. (2015) in MATLAB, it is evident that there is no impact of the cost 

to trade on the initial portfolio return, but the minimum and maximum efficient portfolio returns 

are lower (Table 4.3). The cost to trade (i.e., the difference between gross and net portfolio returns) 

ranges from 0.08 to 0.15%. These values represent the probability to get from the current portfolio 

to the efficient portfolio at the endpoints of the efficient frontier. The maximum PG return (18%, 

maximum value of PGMean) is greater than the maximum efficient portfolio return (13%, Figure 

4.3) due to the multiple constraints on the operational performance of each commodity class, thus 

on the allocation of capital among the five PGs.  

 

Table 4.3: Annualized gross versus net portfolio returns 

 Gross(%) Net (%) 

Initial Portfolio Return 8.67 8.67 

Minimum Efficient Portfolio Return 5.90 5.82 

Maximum Efficient Portfolio Return 13.05 12.90 

 

 

4.3.4 Portfolio on the efficient frontier at a specified return level of 0.4 

Let us define two scenarios with specified return and risk levels. Assuming an average return of 

0.4, a new portfolio object 𝑞∗ is defined to obtain the portfolio on the efficient frontier that is at 
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40% of the minimum (5.82%) and maximum (12.90%) net returns. The target portfolio has a new 

net return of 8.65% and a risk of 10.15%. 

 

𝑞 ∗ =

[
 
 
 
 
0.5364
0.2235
0.0839
0.1562

0 ]
 
 
 
 

 

 

4.3.5 Portfolio on the efficient frontier at risk levels of 10, 14, and 18% 

Let us move from an initial target risk (TR) of 10% to a moderate (14%) and aggressive (18%) 

target risk to obtain a new efficient frontier, 𝑞∗∗: 

𝑇𝑅 = [ 0.10;  0.14;  0.18 ] 

𝑞 ∗∗ =  

[
 
 
 
 
0.5476 0.2699 0.1500
0.2191 0.3607 0.2209
0.0823 0.1172 0.2791
0.1510 0.2522 0.3500
0.0000 0.0000 0.0000]

 
 
 
 

 

 

The investment and divestment to shift from the initial to the moderate portfolio is obtained by 

averaging the investment and divestment for portfolio i in the same time period: 

 ∑(𝐼𝑖 + 𝐷𝑖)/2 =53.07% 

Where  

Ii represents the investment in PG 𝑖. 

𝐷𝑖 represents the divesment in PG 𝑖. 
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This result is greater than the moderate target risk of 14%. Thus, using this constrained value in 

the new estimated efficient portfolio with investment and divestment, the optimal results are 

displayed in Table 4.4. 

 

Table 4.4: Commodity price, initial portfolio holding and weight, cost to trade, and portfolio, 

investment, and divestment weight 

PG Price 

(US$/Share) 

InitHolding 

(Portfolio 

holding) 

InitPort 

(Initial 

Weight) 

Cost to Trade 

(UnitCost 

_%US$/share) 

Port 

(Weight) 

Invest 

(Weight) 

Divest 

(Weight) 

1 82 32,077,591 0.53644 1/10 0.41999 0 0.11645 

2 2,000 127,871 0.05216 1/10 0.052156 0 0 

3 56 23,283,308 0.26591 1/10 0.26591 0 0 

4 1,800 81,680 0.02998 1/5 0.16998 0.14 0 

5 31 18,212,353 0.11551 1/5 0.091958 0 0.023554 

 

The investment and divestment values in Table 4.4 represent the changes in portfolio weights that 

are converted into changes in portfolio holdings to determine transactional decisions regarding the 

investment in or divestment of a specific PG.  

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑡𝑜 𝑡𝑟𝑎𝑑𝑒 =  ∑(𝑃𝑟𝑖𝑐𝑒𝑖 ∗ 𝐼𝑛𝑖𝑡𝐻𝑜𝑙𝑑𝑖𝑛𝑔𝑖)

5

𝑖=1

∗  ∑(𝑈𝑛𝑖𝑡𝐶𝑜𝑠𝑡𝑖 ∗ (𝐼𝑛𝑣𝑒𝑠𝑡𝑖  +  𝐷𝑖𝑣𝑒𝑠𝑡𝑖))

5

𝑖=1

 

 

With the cost to trade evaluated from MATLAB (Appendix 2) at US$2.175 M, there is sufficient 

cash (US$11 M) set aside to pay the cost to trade. 

By computing the portfolio holdings and fraction of the fund to invest and divest, the final 

optimization results are calculated. Table 4.5 contains proposed transactions to move from the 
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initial portfolio of 10% to a moderate-risk portfolio of 14%. To achieve the suggested optimal 

transactions, there is a need to divest 13.6 M shares of PG 1 and 7.3 M shares of PG 5, and to 

invest an equivalent of 747 K shares value of PG 4. 

 

Table 4.5: Commodity price, initial portfolio holding and weight, portfolio weight, and 

investment and divestment share 

PG Price 

(US$/Share) 

InitHolding 

(Portfolio 

holding) 

InitPort 

(Initial 

Weight) 

Port 

(Weight) 

Final 

Holding 

(Portfolio 

holding) 

Invest 

(# of 

Share) 

Divest 

 ( # of 

Share) 

1 82 32,077,591 0.53644 0.41999 25,114,000 0 6,963,200 

2 2,000 127,871 0.05216 0.052156  127,870 0 0 

3 56 23,283,308 0.26591 0.26591 23,283,000 0 0 

4 1,800 81,680 0.02998 0.16998 463,060 381,380 0 

5 31.1 18,212,353 0.11551 0.091958    14,499,000 0 3,713,700 

 

Figure 4.4 illustrates the proposed trade to move from the initial to moderate risk portfolio. It set 

the highest expected return for the moderate risk. To the efficient portfolio and initial portfolio 

optimization problem, it adds the location of the moderate-risk (14%) to the efficient frontier for 

the highest efficient portfolio return of 10.21% per year. This return is an increase compared to the 

initial sub-optimal return of 8.7% at 11.6% risk. The final efficient portfolio return risk reinforces 

the fact that higher risk yields higher total returns. 
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Figure 4.4: Moderate-risk (14%) product group allocation portfolio at the efficient frontier  

 

With investment in PG 4 and divestment in PGs 1 and 5, the new capital allocation is represented 

by the value of new holdings described in Table 4.5. Table 4.6 compares this result with capital 

allocation with no option of divestment. When investment and divestment possibilities are 

considered, PG 1 (iron ore) retains the highest capital allocation. Nevertheless, the divestment fund 

of one portion of PG 1 has been re-allocated to PGs 2–5, which have seen an increase in their 

capital allocation fund. PG 3 (gold) retains the second largest capital fund. This methodology also 

allows positioning PG 4 (aluminum) and 5 (lithium) as the third and fourth largest capital fund; 

PG 2 (copper) became the PG with the smallest capital fund.  
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Table 4.6: Comparison of capital allocation without and with divestment option 

Product 

Group 

Capital Allocation - No 

divestment possibility 

(US$ MM) 

Capital Allocation - With investment and 

divestment possibilities 

(US$ MM) 

1 4393.708 2059.380 

2 84.632 255.742 

3 321.660 1303.865 

4 50.000 833.508 

5 50.000 450.908 

 

These results show that in a portfolio optimization model, PGs with superior operational 

performance do not always yield the efficient portfolio return at an extreme event. Including 

commodity market behavior with investment and divestment possibilities would produce a more 

realistic, balanced portfolio for a better return at a moderate risk. 

 

4.4  Conclusion 

In this chapter, we considered a typical mining corporation with five PGs located in multiple 

geographical locations. The problem was to invest or divest capital funds from one or more PGs 

in extreme events conditions at the efficient portfolio return with acceptable risk. A portfolio 

optimization model was proposed, with commodity market behavior at the efficient frontier: the 

higher the probability of extreme events, the more the profitability fluctuates. Model outcomes 

highlight the impact of commodity market behavior in the decision-making process to invest or 

divest a fraction of a portfolio.  
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Including the PG total return prices behavior in the mineral portfolio optimization model will help 

corporate groups to seize more market opportunity in their investment strategy. This chapter 

highlights the fact that at the extreme turnover level, there is no need to rush to divest a PG and it 

does not necessarily provide the highest return at the lowest risk; knowledge of the commodity 

market behavior at an efficient frontier provides a more efficient portfolio return at moderate risk. 

It also highlights the fact that a portfolio optimization model with operational performance criteria 

at an extreme turnover level without commodity market behavior criteria is less efficient than the 

same model with commodity market behavior criteria. Although this chapter provides a more 

practical portfolio optimization model with knowledge of the PG total return price behavior, it 

assumes a constant extreme turnover level that could be defined in future research as a random 

variable, similar to the simulated PG total return price characterizing commodity market behavior.  
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Chapter 5: Mining portfolio optimization including country 

stability, operational performance, and commodity market behavior  
 

5.1 Introduction 

In this chapter, we consider the same corporate portfolio as Chapters 3 and 4 with the same 

available capital fund. The key criteria of the optimization problem (operational performance, 

country risk, and commodity market behavior at extreme events) and investment/divestment 

decisions are combined in this new portfolio optimization model. Maximizing the return on 

investment (ROI) and minimizing the risk remain the main objective function of the new model. 

Chapter 5 also considers the relationship between country stability and probability of unexpected 

events. Country risk is characterized by a percentage of the number of extreme events within a 

period. Monte Carlo simulation (MCS) is used to measure the impact of the uncertainty of the risk 

on the portfolio. In addition, the results of the simulated future commodity behavior are 

characterized by a non-parametric distribution of a probability density function: the kernel 

distribution function. Due to the asymmetry of the density function, a skewed normal distribution 

is used to characterize the cost function between periods. The combined impact of operational 

performance, country stability, and commodity market behavior provides a different distribution 

of capital allocation within the portfolio. The decision-making process is heavily affected by the 

local community relations and the country in which the mine operates. 

 

5.2 Communities and the country stability 

The investment risks due to tensions and challenges between mining companies and indigenous 

communities are likely to intensify in frequency as we head into the 2020s. As life-of-mine is set 
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to expire at any number of large existing assets, mining companies are investing by expanding 

exploration in search of alternative new volume and/or seeking approval to expand the boundaries 

of existing mines into nearby, previously undeveloped, tracts. Technological progress and 

enhanced mining techniques mean that areas that were once considered too difficult or dangerous 

to develop are now viable. In the case of the quest for new deposits – the mining industry is, of 

necessity, extending exploration into more and more remote geographies. These areas are often 

characterized by remote locations such as: Amazon, Arctic, Mongolia, Western Australian,  and 

Canadian Northern Territories. These isolated and extreme geographies frequently coincide with 

the remaining traditional lands of indigenous peoples. As mining pushes exploration to the 

geographic margins there is more and more marginalized and isolated populations. This means 

that from the earliest stages of exploration, communication and negotiation with local indigenous 

communities is necessary and critical.  It also means that for indigenous populations already often 

forced off vast tracts of traditional lands by a wide range of historical forces – both manmade and 

natural - a great deal is at stake in their quest to protect their land, culture and environment. Hence, 

a high social risk in future investment for mining companies. 

When a mining company is looking to invest into new deposits in close proximity, a number of 

challenges can emerge.  Community generational differences are common. When the history of 

relationships with the company and its benefits to  the community are strong and positive, the 

indigenous elders are more likely to be open to extending existing current agreements to new land 

access. Even with the old conflicts underlying the current effective agreements, the elders will 

often feel a sense of pride in what has been achieved for the community and look for opportunities 

to build on that foundation.  However, younger generations may see this as their opportunity to 

“sit at the table” and redefine the terms and conditions for greater advantage. In some cases this 
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can also lead to attempts to reopen historical contracts covering the current operation. An added 

complexity can be the divide between resident community members and those who have migrated 

to urban centers. Urban migration from traditional lands generally increases with the development 

of a successful mining operation as younger people seek higher education and employment 

opportunities off-land. Economic benefits from mine-related income for the community also serve 

to promote this mobility trend. The disruptive impact of tensions and differences around priorities 

and goals between stakeholders within the indigenous community adds another layer of 

complexity to achieving extended land access for a second life of mine.  These inter-generational 

and resident and off-land distinctions are equally relevant to new mine deals. The traditional 

resident community members and the mining company will each face their own distinct problems 

when “off-land” members seek a voice in negotiations and access to community benefits from the 

mine development. The resident  community population  can swell once a mine development is 

announced. This creates a range of socio-political issues for the community and families. 

Simultaneously, it adds complexity to finding solutions addressing  the widely varying agendas 

within the community.  

No matter how far into the future, when there is a possible desire to invest by expanding a mining 

operation, the negotiations should always be key  to the current mine operations and the community 

relationships as these will set the context for success or failure of any future investment associated 

with  the expansion. Considering the high level of turn over and rotation rates of mining senior 

leaders common at remote mine sites, there is always a risk of losing sight of the long-term strategy 

for maximizing productivity and general the integrity of the mine while avoiding or minimizing 

conflict with community. It is a given that the community will bring a far deeper historical 

perspective to the conversations than the company representatives. Out of this evolves the common 
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occurrence of demands for retroactive accountability and compensation for past and  unresolved 

grievances as pre-condition to any new agreement. The history,  the notion of time – past, present 

and future are understood and valued quite differently across indigenous cultures and this will 

impact what is valued, and how it is valued by a community.  

It would be naïve and foolish to suggest that economic opportunity is not a critical consideration 

for indigenous communities in brokering a deal with a mining company but it is also true that in 

indigenous communities there is generally an essential intangible economy that operates at the 

level of symbolic value. Corporations often don’t understand that this alterative economy is a 

powerful basis in  community decision-making. While it can be a barrier it can also provide 

unexpected opportunities for collaboration. When serious conflict arises between the community 

and company, in the majority of cases  this alternative intangible economy  can provide insight on 

the root cause and the way forward. Misunderstandings and missed opportunities of this kind 

abound today and continue to lead to strikes and blockades. In extreme cases these failed moments 

can lead to a mine closure, or abandonment of a development project effecting losses in high 

capital investment for the mining corporation.  

Country stability denotes the investment risk of a country. It is the likelihood to have to loss the 

investment made in a particular country due to political, economic or technological instabilities. 

With the globalization and expansion of financial market internationalization, there is a growing 

interest in assessing investment risk associated to country. Multiple organizations have developed 

rating tools quantifying the country risk in a single rating score that could facilitate the comparison 

of all countries in the world. Although the assignment of this rating score is different between 

agencies, Alexe, et al. (2003) demonstrated that in spite of the different analysis approaches, there 

is a strong correlation between the country rating score within the main financial services agencies 
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such as Euromoney, Standard & Poor’s and Moody’s. Two approaches are developed to measure 

the country risk: the country rating scores and the CDS spread. 

 

5.3 Country risk rating  

Euromoney (2019) developed a methodology to assess the country risk value for 186 countries, by 

combining the scores from consensus experts, the scores on the accessibility of sovereign 

borrowers to the capital market, and the debt indicators from World Bank and International 

Monetary Fund (IMF). This assessment provides a 90% weight for a qualitative model from expert 

opinion, which is based on the current position of the country and a 10% weight for the basic 

quantitative value, which is based on the sovereign debt indicator. The 90% weight for the 

qualitative model is then split into four categories with 35% weight allocation to political risk 

rating, 35% weight for economic risk rating, 10% weight for structural risk rating and 10% weight 

for the international market. The assessment methodology developed by Euromoney (2019) is 

presented as follows: 

5.3.1 Political risk rating  

The assessment of political risk has six categories with a measure ranging from 10 to 0: (1) The 

Corruption score, where the highest value means the country as the lowest corruption. (2) The 

Government’s non-payments score has the lowest number for an extremely high risk of 

interference from the government. (3) The Government stability score has the highest value for 

extremely high  government stability and the lowest, the nonfunctioning government. (4) The 

Information access score has the highest value for completely unrestricted and reliable data and 

the lowest value for the totally restricted and unreliable data. (5) The Institutional risk score has 
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the highest value for the extremely efficient and totally independent institution. (6) The Regulatory 

and policy environment score represents how well a government consistently implements its 

regulations and policies.    

5.3.2 Economic risk rating related to a specific country 

The rating of economic risk has five categories with a score ranging from 10 to 0: (1) The 

Employment score means that the highest refers to no risk to employment, the lowest is the risk to 

the economy. (2) The Economic outlook score denotes the likelihood of a catastrophic recession - 

The higher the number is the highest is the likelihood to have unprecedented growth. (3) The 

Monetary policy score denotes the credibility and effective implementation of the monetary policy. 

(4) The Government finances score denotes the robustness of a country’s fiscal strength. (5) Bank 

stability score denotes a perfectly functioning banking system.   

5.3.3 Structural risk rating 

The rating of the structural risk has four categories with a score ranging from 10 to 0. 

(1) The demographics score denotes the demographic balances on economic and political stability. 

(2) The labor market score denotes a good functioning labor environment. (3) The hard 

infrastructure score denotes the well-maintained country’s physical infrastructure. (4) The soft 

infrastructure score denotes the balanced capacity of skilled labor force with good functioning 

social institutions. 

In this study, country stability is the combination of the country risk, political risk and sovereign 

risk into a single country rating score.  Other financial and economic services such as Euler 

Hermes, Economist Intelligence Unit and GCR Country Risk Scores have developed a similar 
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calculation of the country rating. The main issue with these scoring schemes is how these scores 

will be translated into the project evaluation. The scoring based approaches are useful for a general 

overview; however, for a micro level specific project evaluation, it may not be really useful 

because it is very difficult to link the discount rate, specifically risk premium. In addition to the 

Country’s rating methodology discussed above, the approach based on the Credit Default Swap 

(CDS) spreads is illustrated in the following section. 

 

5.4 Credit Default Swap 

The CDS spread can be used to represent a country’s default risk that helps the investors to 

speculate on the likelihood of a country to default to repay its debt obligations. This usually take 

places when, in normal circumstances, a country borrows more than the capacity of its earning 

power.  Multiple factors are considered in the calculation of the country’s default risk (Damodaran, 

2019a): 

5.4.1 Degree of indebtedness factor 

This is characterized by how much the country owes to investors and to its citizens. The country’s 

Gross Domestic Product (GDP) is used to scale the debt of the country. This is  represented as the 

percentage of GDP. Due to the additional commitment to citizens, the degree of indebtedness  

provides does not coverer the full default’s risk as it only considered the debt level. 

5.4.2 Social service commitments factor 

The social service commitment represents the obligations of the country to its citizens with regard 

to pension’s payment of health care coverage. Depending on the level of commitments, this factor 

could heavily affect the default risk. 
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5.4.3 Revenues to government’s factor 

The amount of tax that a government can collect from its citizens or from the companies operating 

in the country helps to increase the capacity of the country to meet its debt obligation. 

5.4.4 Stability of revenue factor 

The stability of revenue factor is characterized by diversified economies with more consumption 

and taxing income in the country’s economy. The taxes are generated by  income tax, sales and 

value-added tax. 

5.4.5 Political decision factor 

The default likelihood for a country can be associated with the political decisions that reflect the 

pressure on political leaders. 

5.4.6 Other entity factors  

This factor characterizes default risk of a country in relation to default of its main political and 

economic continental partners. For example, being a member of a union such as the European 

Union, African Union, North American Union and Union of South American Nations adds the 

default risk of its members as well as the benefits. 

Damodaran (2019a) demonstrates that default spreads measurement is related to country rating 

and the country’s default risk. Investors can buy protection against default through the payment of 

the spread specified as a percentage of notional value. The measure of the country default risk is 

represented by the value of the credit default swaps. For both debt and bond investment, country 

default risk is the most suitable measurement. Nevertheless, for those investing in equity, the 

notion of country equity risk premium is more suitable.  

Damodaran (2019a) defines three approaches to evaluate country risk premium: 
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(1) Default spread: It represents the charge that investors paid for buying bonds. It is evaluated in 

three different ways. (a) The current default spread on the CDS market: It also represents the yields 

on bonds from the reference country with the default-free bond. (b) The average spread on bond: 

It is estimated by using the spreads from CDS categorized by Country rating/score defined in this 

section, and then average the spreads rating in the same class. (c) The imputed spread: It is 

considered for emerging market countries where the bonds are not denominated in US dollars or 

in a default-free rate currency. 

𝐷𝑆𝑐𝑜𝑢𝑛𝑡𝑟𝑦 = 𝑆𝐵𝑌𝑐𝑜𝑢𝑛𝑡𝑟𝑦 − 𝑅𝐹𝑅𝑐𝑜𝑢𝑛𝑡𝑟𝑦 

Where 𝐷𝑆 denotes the default spread. 𝑆𝐵𝑌 denotes the sovereign bond yield, and  𝑅𝐹𝑅 denotes 

the risk free rate of the country. 

(2) Relative equity market standard deviations: This is the measure of the volatility of the market, 

it represents the variation in stock prices. The relative risk is obtained by scaling the standard 

deviation between two markets/countries. Then, the relative standard deviation for a country is 

provided by the following formula (Damodaran, 2019a): 

𝑅𝑆𝐷𝑐𝑜𝑢𝑛𝑡𝑟𝑦1 =
𝑆𝐷𝑐𝑜𝑢𝑛𝑡𝑟𝑦1

𝑆𝐷𝑐𝑜𝑢𝑛𝑡𝑟𝑦2
 

Where RSD denotes the relative standard deviation, and SD is the standard deviation for a specific 

country.  

Assuming that the risk premium for Country 2 is available through historical data, and there is a 

linear relationship between equity market standard deviation and equity risk premium, the equity 

risk premium for Country 1 is provided by the formula below (Damodaran, 2019a). 
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𝐸𝑅𝑃𝑐𝑜𝑢𝑛𝑡𝑟𝑦1 = 𝑅𝑃𝑐𝑜𝑢𝑛𝑡𝑟𝑦2 × 𝑅𝑆𝐷𝑐𝑜𝑢𝑛𝑡𝑟𝑦1 

Where ERP is the equity risk premium for a specific country. 

Assuming that the equity risk premium of Country 2 is the reference market point, the country risk 

premium for Country 1 isolated from the risk premium for Country 2 is provided by the following 

formula: 

𝑅𝑃𝑐𝑜𝑢𝑛𝑡𝑟𝑦1 = 𝐸𝑅𝑃𝑐𝑜𝑢𝑛𝑡𝑟𝑦1 − 𝐸𝑅𝑃𝑐𝑜𝑢𝑛𝑡𝑟𝑦2  

(3) Default spreads are combined with relative standard deviations: This approach considers both 

the volatility of the equity market and the volatility of the bond market that has been used for the 

spread’s estimation. The country risk premium is then calculated as follows (Damodaran, 2019a): 

𝑅𝑃𝑐𝑜𝑢𝑛𝑡𝑟𝑦 = 𝐷𝑆𝑐𝑜𝑢𝑛𝑡𝑟𝑦 ∙ (
𝑆𝐷𝑒𝑞𝑢𝑖𝑡𝑦

𝑆𝐷𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑏𝑜𝑛𝑑
)   

Where 𝑅𝑃𝑐𝑜𝑢𝑛𝑡𝑟𝑦 denotes the country risk premium, 𝐷𝑆𝑐𝑜𝑢𝑛𝑡𝑟𝑦  is the country default spread, 

𝑆𝐷𝑒𝑞𝑢𝑖𝑡𝑦 is the volatility/standard deviation in the country equity, and 𝑆𝐷𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑏𝑜𝑛𝑑 is the 

volatility/standard deviation in the country bond.  

The total equity risk premium of a country is then formulated by: 

𝐸𝑅𝑃𝑐𝑜𝑢𝑛𝑡𝑟𝑦 = 𝐷𝑆𝑐𝑜𝑢𝑛𝑡𝑟𝑦 ∙ (
𝑆𝐷𝑒𝑞𝑢𝑖𝑡𝑦

𝑆𝐷𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑏𝑜𝑛𝑑
) + 𝐸𝑅𝑃𝑚𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑟𝑘𝑒𝑡/𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑝𝑟𝑒𝑚𝑖𝑢𝑚) 
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5.5 Application of the country risk premium valuation 

For the case study developed in this research, five mining countries are considered: the United 

States of America (USA), Canada, Australia, Mongolia and South Africa. Similar to the 

methodology provided by Damodaran (2019a), the calculation of each of the country risk premium 

is described in four steps: 

 

Step 1: Estimate the mature market risk premium 

The rating agencies announced the equity risk premium in annual basis. From the  Standard & 

Poor’s 500 index data (Standard&Poor's, 2019), the implied equity risk premium for the current 

year is evaluated at 5.96%. Assuming the USA is the mature market premium, 𝐸𝑅𝑃𝑈𝑆𝐴 denotes 

the USA equity risk: 

𝐸𝑅𝑃𝑈𝑆𝐴 = 5.96%  

 

Step 2: Estimate the default spread for each country 

To convert the country rating into to default spread, a rating equivalent in basis points needs to be 

considered. The equivalent rating in updated default spread in basis points is then provided in table 

5.1 (Damodaran, 2019b). 
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Table 5.1: Equivalent default spread in basis points 

S&P Rating Default spread in basis points 

A+ 79 

A 96 

A- 135 

AA+ 45 

AA 56 

AA- 68 

AAA 0 

B+ 508 

B 621 

B- 734 

BB+ 282 

BB 339 

BB- 406 

BBB+ 180 

BBB 215 

BBB- 248 

C 1800 

CCC+ 846 

CCC 1016 

CCC- 1128 

NR NA 

 

Based on the sovereign rating from S&P 500 (Standard&Poor's, 2019), using the average of CDS 

spreads and USA bond spreads by rating class, the rating-based default spread by country is 

illustrated in Table 5.2. 
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Table 5.2: Default spread for the each country 

Country S&P's rating Rating-based Default Spread 

Australia AAA 0.00% 

Canada AAA 0.00% 

Mongolia B- 7.34% 

South Africa BBB- 2.48% 

United States AAA 0.00% 

 

Step 3: Estimate the country risk premium from the default spread 

To estimate the country risk premium, the calculation of the volatility/standard deviation of the 

equity market relative to  the volatility of the bond market has been calculated. Using the S&P 

data, the standard deviation for the bond market bond is given by 13.68% and the standard 

deviation for the equity market is 11.12%; hence, the conversion of the default spread into a risk 

premium is calculated and illustrated in table 5.3.           

𝑅𝑃𝑐𝑜𝑢𝑛𝑡𝑟𝑦 = 𝐷𝑆𝑐𝑜𝑢𝑛𝑡𝑟𝑦 ∙ (
13.68%

11.12%
) 
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Table 5.3: Country risk premium 

Country S&P's rating Rating-based Default Spread Country Risk Premium 

Australia AAA 0.00% 0.00% 

Canada AAA 0.00% 0.00% 

Mongolia B- 7.34% 9.03% 

South Africa BBB- 2.48% 3.06% 

United States AAA 0.00% 0.00% 

 

Step 4: Estimate the total equity risk premium 

Considering the initial maturity market premium of 5.96%, the total equity risk premium can be 

calculated as  

𝐸𝑅𝑃𝑐𝑜𝑢𝑛𝑡𝑟𝑦 = 𝑅𝑃𝑐𝑜𝑢𝑛𝑡𝑟𝑦 + 𝐸𝑅𝑃𝑚𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑟𝑘𝑒𝑡/𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑝𝑟𝑒𝑚𝑖𝑢𝑚), 

Where the values are given in Table 5.4. 

Table 5.4: Total equity risk premium for each country 

Country S&P's 

rating 

Rating-based 

Default Spread 

Country Risk 

Premium 

Total Equity Risk 

Premium 

Australia AAA 0.00% 0.00% 5.96% 

Canada AAA 0.00% 0.00% 5.96% 

Mongolia B- 7.34% 9.03% 14.99% 

South Africa BBB- 2.48% 3.06% 9.02% 

United States AAA 0.00% 0.00% 5.96% 
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The evaluation of country risk premium represents the characterization of the country stability. In 

addition to country stability’s variable, previous operational performance and commodity market 

behaviors discussed in Chapters 3 and 4 are considered in the proposed model with the following 

methodology. 

In portfolio management, the country risk can be incorporated through the discount rate into the 

project evaluation. Damodaran (2013) proposed an approach how to incorporate the county risk in 

the discount rate. Risk premium portrays the request of the investors undertaking average risk for 

their investment. This premium reflects the level of risk aversion of an investor or riskiness level 

of the average risk of an investment. As known, the discount rate has two components as risk-free 

rate and risk premium. Regarding country risk premium, there are three ways to quantify this risk: 

government bond spread issued in the US dollar, the CDS spread and the spread based on the value 

announced by the credit rating agencies.  

 

5.6 Methodology 

The modeling involves optimization with a loop across combinations of state variables through 

time. This is surrounded by a second optimization loop, which improves the long-term action of 

the first optimizer by changing the cost function weighting. The assumed pricing simulations are 

run first and the results are binned. The binned results give us the kernel distribution of expected 

future prices. (Bowman & Azzalini, 1997) define a kernel distribution 𝐾(∙) as a characteristic of a 

smoothness of a density curve, where 𝑓ℎ(𝑥) is the kernel density estimator defined in Equation 

5.1, 𝑥𝑖  is the random sample, 𝑥 is the real value, h is the bandwidth, and 𝑠 is the sample size. 
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𝑓ℎ(𝑥) =
1

𝑠ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑠

𝑖=1   (5.1) 

The MATLAB optimizer function (described in Appendix 2) keeps certain paths over time by 

binning capital results and recording the combination of investments that reach that location. These 

bins and distributions are used in the next time stage to generate a new set of correlated data for 

the simulation to run. The final distribution of capital is then used as the cost function for a second 

optimizer, which adjusts the first optimizer’s weighting function.  

Assuming that the probability of extreme events per time-period is associated with each country, 

the simulation of extreme events is considered to highly negatively deviate from the normal 

condition. This is then characterized as a skewed normal distribution, defined as a shape parameter 

characterizing the deviation from a non-normal to a normal distribution (Gupta, et al., 2004). 

 

5.7 Application 

Consider a mining corporation with five product groups (PGs) related to five commodities where 

the operational performance combines the production efficiency and operating cost. PGs 1–5 are 

iron ore, copper, gold, aluminum, and lithium. The more productive an operation, the better 

managed are operating costs and the more capital is available to invest (Njike & Kumral, 2019): 

the capital invested is a function of the production efficiency and operating cost of each PG. The 

proposed optimization model takes into account the stochastic nature of production efficiency, 

commodity price, operating costs, and stability of the country where the project is implemented.  

Knowing that mining industry also faces difficulty retaining employees, particularly in remote 

locations, the following assumptions are used: 
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 Production efficiency and operating cost are correlated with the capital invested and some 

random variation due to employee turnover. The production efficiency value is defined 

from the overall operations value stream not just for a single production line embedded in 

the operations. The overall operations value stream mapping allows identifying the value- 

added and non-value-added activities. To be efficient, the overall production needs to have 

the least non-value-added activities with more efficiency in the planning and execution of 

value-added activities.   

 The operating cost function is a skewed normal distribution and correlated to the 

commodity price. 

 The number of extreme events per time period is associated with each country. 

The main objective is to define the right amount of capital to be allocated from the available capital 

(US$4,900 MM) to invest in all PGs with an accepted corporate risk tolerance of 0.05. 

 

5.7.1 Capital allocation: two countries with stability correlated to number of extreme events 

The five PGs are distributed in two countries, with 20 simulations per capital, PG, and country. 

𝑁𝑝 =  5 represents the number of PGs 

𝑁𝑐 =  2 represents the number of countries 

𝑁 =  20 represents the number of simulations per capital, PG, and country 

𝐼𝑀  =  𝑧𝑒𝑟𝑜𝑠(𝑁𝑝 ∗ 𝑁𝑐, 1) represents the investment product “matrix”, the current capital 

invested in PG and country 

𝑃𝐺𝑛𝑢𝑚 =  𝑟𝑒𝑝𝑚𝑎𝑡([1: 𝑁𝑝],1, 𝑁𝑐) represents the PG number 

 

The country stability is characterized by the country risk array (𝐶𝑅𝐴). 
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𝐶𝑅𝐴 =  [1: 𝑁𝑐]/100. This will be the percent of extreme events per regulated period. 

After scaling the five commodity prices, a total of 22,800 simulations were run with the MATLAB 

function (Appendix 2). Results of the MCS with commodity price per unit show that the lowest 

selling price per unit is allocated to PG 1, while the highest price per unit is allocated to PG 5 

(Figure 5.1). PGs 3 and 4 have similar commodity price ranges.  

 

Figure 5.1: Commodity price per unit from Monte Carlo simulation 

 

Commodity prices overlap among the PGs: the top commodity price per unit of PG 1 is the lowest 

price for PG 2. The top commodity price per unit of PG 2 is the lowest price for PGs 3 and 4, and 

the top commodity prices per unit for PGs 3 and 4 overlap with the low price range of PG 5.  
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The selling price of the same commodity in country 1 can be different than the selling price in 

country 2. Table 5.5 illustrates a reduction of weight for PG 5 in country 2, with the highest selling 

price per unit allocated to PG 5. 

Table 5.5: Optimized weighting by product group and by country 

Product Group Country 1 Country 2 

1 (iron ore) 1 1 

2 (copper) 0.9525             1 

3 (gold) 1 1 

4 (aluminum) 0.73875             1 

5 (lithium) 1 0.99406 

The optimized investment in each country by PG during a time period is obtained with MATLAB 

code. The MATLAB optimizer function includes the weighting of the cost and the distribution of 

capital investment funds for the five PGs in country 1 and 2. Country 1 is less risky for investment, 

mainly for PGs 1 and 2 (Figure 5.2). PG 4 received the least amount of capital. 

 
Figure 5.2: Allocation of country investment by product group 
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As stated earlier, the higher the operational performance, the higher the capital investment. PGs 1 

and 2 are the most affected by the high investment of capital due to their high operating 

performance. This result reinforces the initial hypothesis of better operational performance 

positively affecting the investment weight in the portfolio. It also reinforces the result obtained in 

Chapter 3 regarding the impact of operational performance on capital investment and is reflected 

in Table 5.6 where 56% of the allocated capital fund is allocated to PGs 1 and 2. The better the 

operational performance, the easier the capital fund approval. In the capital portfolio market, more 

capital funding is always available for a portfolio achieving the best financial performance.  

 

Table 5.6: Capital allocation distribution by product group and country 

Product Group Country 1 

(US$ MM) 

Country 2 

(US$ MM) 

1 360.21 187.31 

2 299.81 168.39 

3 195.39 101.66 

4 144.27 82.983 

5 163.97 93.99 

Total 1,163.65 634.333 

 

The highest selling price per unit is associated with PG 5 (Figure 5.1), yet the most capital is 

allocated to PG 1 (Table 5.6). The total capital fund allocated is US$1,798 MM, which is less that 

the available fund of US$4,900 MM. Hence, there is no need to invest all available capital; there 

is an optimal level at which investing should stop. The remaining capital can be used for future 

investments in the corporate portfolio. 
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5.7.2 Capital allocation: five countries with their respective country risk 

Currently, investments of the top two mining companies (BHP and Rio Tinto) are distributed 

among five countries: the USA, Australia, Canada, South Africa, and Mongolia. Applying the 

methodology above (Appendix 3) to these countries while maintaining the same objective 

function—minimize the risk and maximize the ROI—yields a different pattern of optimal return 

and risk for each of the PGs within each country (Figure 5.3). Mongolia has the lowest risks and 

returns, due to ongoing project implementation phase there. The USA, Canada, and South Africa 

show similar returns, with the lowest risks in Canada and highest in South Africa. PG 5 has the 

highest risk commodity (2.86%) with the maximum return (9.58%). Although the risk in South 

Africa is 2.15%, investment in PG 4 will provide a good return (8.36%). The USA and Canada 

also have good returns of 8.36 and 8.48%, respectively, for risks of 1.93 and 2.03%, respectively. 

PGs 2 and 3 are more profitable in Australia, with respective risks of 1.05 and 1.51% and respective 

returns of 6.71 and 8.36%. PG 1 has the least return and risk at 5.97% and 0.08%, respectively, 

with no optimum level of investment for the five countries. 
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Figure 5.3: Optimal return and risk for five products groups (PGs) and countries 

 

PG 3 will receive capital funds in four of five countries (Table 5.3). Australia will welcome 

investment for PGs 2 and 3, and the USA will receive investment for PGs 2, 3, and 4. No capital 

investment will go to PG 1 or to Mongolia.  

Table 5.7: Result of the capital allocation distribution by product group and by country 

Product Group USA Australia Canada SA Mongolia 

1 0 0 0 0 0 

2 539.00 539.00 0 0 0 

3 543.21 541.11 539.53 539.00 0 

4 581.11 0 0 0 0 

5 0 0 0 0 0 

 

The overall expected return is US$301.5 MM and the overall expected risk of losing money for 

the corporate portfolio investment during the time period is US$61.3 MM. The total capital 
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allocated is US$3,822 MM, which is less that the available capital fund of US$4,900 MM. Similar 

to the two-country scenario, there is no need to invest the full amount of capital. Instead, there is 

an optimal level above which investing more funds is wasteful. The remaining capital funds could 

be used for future investments in one or more countries with more profitable commodity and low 

risk. 

 

5.8 Conclusion 

This chapter illustrates more realistic capital allocation in a corporate portfolio, including in the 

same optimization model the production efficiency, commodity behavior, and country stability. 

Stochastic simulation of commodity price behavior combined with country risk yields more 

practical information in the resolution of the portfolio optimization model.  

The optimization model embeds the future state of the commodity with the known parameters 

regarding the current performance of the company and the country risk correlated to the extreme 

events occurring in the geographical location. These criteria affect the distribution of the capital 

fund in the country of investment, contrary to traditional capital investment based on capital 

budgeting decisions methods such as net present value, payback period, internal rate of return, 

ROI, or profitability index. Although the results of the portfolio optimization problem include 

criteria such as profitability, operational performance, extreme events, country risks, and 

sustainable return, the prioritization and evaluation of their weight in the decision-making for 

capital allocation still needs to be done.  
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Chapter 6: Project selection: Decision-making and prioritization 

through AHP, TOPSIS and PROMETHEE 
 

6.1 Introduction 

In the previous chapters, we approached the project selection problem through portfolio 

optimization models. The problem was formulated with the dual objective of minimizing risk and 

maximizing returns under the constraints of operational performance, country risk, and unexpected 

events. In this chapter, the same problem will be addressed from a different perspective using 

multi-criteria decision-making (MCDM). 

The portfolio selection and evaluation problem has been reviewed in multiple studies. 

Traditionally, the primary goal of portfolio management has been to maintain a sustainable healthy 

return. Past performance is a typical criterion for many decision-makers in the minerals industry. 

Nevertheless, with the competitive global market, making the right investment decision at the right 

time with the right weighted criteria go hand in hand. The MCDM evaluates the performance of 

alternatives based on the distance from the ideal solution: the preferred alternative has the shortest 

distance from the ideal solution. Among the many methods of MCDM, this thesis investigates the 

analytic hierarchy process (AHP), technique for order of preference by similarity to ideal solution 

(TOPSIS), and preference ranking organization method for enrichment of evaluations 

(PROMETHEE). AHP uses the hierarchical principle while TOPSIS uses the distance principle 

and PROMETHEE uses the outranking principle. In AHP method, the criteria weights are 

determined, and then the alternatives are ranked. In TOPSIS method, the criteria weights are set 

and then the rating of the alternatives are determined. In PROMETHEE method, a partial preorder 

is set up and a complete order is made. In AHP method the criteria value are not necessary, while 
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with TOPSIS method a min max optimization is set for each of the criteria. This reduces the 

subjectivity of the decision making using TOPSIS method. In addition, in PROMETHEE method, 

the positive and negative outranking flow are calculated for each alternative, and the alternative 

with higher flow is preferred. 

 

6.2 Analytic Hierarchy Process 

The AHP is a systematic process to incorporate factors such as logic, experience, knowledge, 

expertise, and optimization into decision-making. Originally designed by Saaty (1990), it 

simplifies the multi-criteria problem into a three-tiered hierarchical structure (Figure 6.1) with four 

process stages (Figure 6.2). 

 

Figure 6.1: The three levels of the analytic hierarchy process 

 

Level 1:
• Goals or objectives

Level 2:
• Sub-levels, criteria, and sub-criteria

Level 3:
• Alternatives
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Figure 6.2: The four process stages of the analytic hierarchy process 

 

The following criteria were ordered using AHP to obtain their respective weights to incorporate 

into mining portfolio management. 

Sustainable healthy return: During the life of the operations, a consistent positive trend is 

observed in benefits for the corporate business, the employees working in the product group (PG), 

and the community/country where the PG is operating. This includes, social, country and 

environmental risks described in the following sections.  

Social risk: This is the risk that a mining company will cause social disruption to local and 

indigenous communities.   

Country risk: This is the risk to assets and investments that an international mining corporation 

operating in a country assumes stemming from political, legal, and taxation instabilities. In other 

words, it is the risk associated with effects of policies of the different countries with respect to 

corporate taxes, appropriation, and royalties. 

Stage1 
• Structure the model into a hierarchy

Stage 2

• Conduct pairwise comparisons of the criteria, sub-criteria, 
and alternatives with respect to their importance

Stage 3

• Summarize results of the pairwise comparisons in a 
normalized evaluation matrix

Stage 4

• Synthesize the order of preferences of the alternatives that 
are obtained from the normalized evaluation matrix
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Environmental risk: This is the risk that a mining operation will cause environmental damage, 

including risks to human health, land, soil, water, and air. The environmental effects can cause 

fatalities and health problems of living organisms at local, regional, or global levels.  

Risk of unexpected event: The probability of an unexpected event is extremely low, but the 

effects can be dramatic. For example, a very sharp price decline in a short time or a natural disaster 

such a flood or earthquake will greatly affecting a mining operation.  

Operational performance: This criterion is derived from the production efficiency of the PG in 

the country of operation. The past performance of the PG is also associated with the workforce.  

Profitability: This criterion is defined as the net present value and the return on investment related 

to the investment that needs to be made at the PG level. 

 

6.2.1 Stage 1: Develop hierarchical structure 

Level 1: The main goal is to minimize risk and maximize the corporate portfolio return. 

Level 2: The criteria are social risk, country risk, environmental risk, risk of unexpected event, 

operational performance, and profitability. 

Level 3: The alternatives are PGs for iron ore, copper, gold, aluminum, and lithium. 

6.2.2 Stage 2: Conduct pairwise comparison of the criteria, sub-criteria, and alternatives  

The scale of relative importance is shown in Table 6.1. The following examples illustrate 

application pairwise comparison (row element/column element) defined by (Saaty, 1990).  
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 Social risk is extremely important with respect to country risk, unexpected event and 

profitability - hence the number 9 

 Social risk has a very strong importance with respect to operations performance - hence 

the number 7 

 Social risk is of moderate to strong importance with respect to environmental risk -hence 

the number in-between 3 and 5 is 4 

 Country risk is 2 with respect to unexpected event: it is of equal (1) to moderate importance 

(3). 

 Environmental risk is 8 with respect to unexpected event: it is of very strong (7) to extreme 

importance (9). 

 Environmental risk is of very strong importance (7) with respect to country risk. 

 

Table 6.1: Scale of the relative importance 

1 Equal importance 
 

3 Moderate importance 
 

5 Strong importance 
 

7 Very strong importance 
 

9 Extreme importance 
 

2, 4, 6, 8 Intermediate values between the above 

1/3, 1/5, 1/7, 1/9 Values for inverse comparison 

 

6.2.3 Stage 3: Create evaluation matrix 

Based on the mining expert judgement with multiple surveys performed in different geographical 

mining operations from Australia, Canada, United States, Mongolia and South Africa, Table 6.2 

provides the outcome of the pairwise comparison of all criteria and alternatives. Results from the 
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pairwise comparison matrix are then normalized, such that the sum of each row or column is 1 

(Table 6.3). The weighted sum of the criteria weights is then calculated (Table 6.4). 

Table 6.2: Pairwise comparison matrix 

 
Unexpected  

event 
Country 

risk 
Environ. 

risk 
Social 
Risk 

Operation 
perf. 

Profitability 

 Unexpected event 1 1/2 1/8 1/9 1/5 1/4 

Country risk 2 1 1/7 1/9 ½ 1/3 

Environ. risk 8 7 1 ¼ 3 7 

Social risk 9 9 4 1 7 9 

Operation perf. 5 2 1/3 1/7 1 1/2 

Profitability 4 3 1/7 1/9 2 1 
 

29.0 22.5 5.7 1.7 13.7 18.1 

 

Table 6.3: Normalized pairwise comparison matrix 

 
Unexpected  

event 
Country 

risk 
Environ. 

risk 
Social 
Risk 

Operation 
perf. 

Profitability Criteria 
weights 

Unexpected event 0.034 0.022 0.022 0.064 0.015 0.014 0.029 

Country risk 0.069 0.044 0.025 0.064 0.036 0.018 0.043 

Environ. risk 0.276 0.311 0.174 0.145 0.219 0.387 0.252 

Social risk 0.310 0.400 0.696 0.579 0.511 0.498 0.499 

Operation perf. 0.172 0.089 0.058 0.083 0.073 0.028 0.084 

Profitability 0.138 0.133 0.025 0.064 0.146 0.055 0.094 

Total 1 1 1 1 1 1 1 

 

Table 6.4: Weighted sum value matrix  

 
Unexpected 

event 
Country 

risk 
Environ. 

risk 
Social  

risk 
Operation 

perf. 
Profitability Weighted 

sum 

Unexpected event 0.028 0.021 0.031 0.055 0.017 0.023 0.177 

Country risk 0.057 0.043 0.036 0.055 0.042 0.031 0.265 

Environmental risk 0.228 0.300 0.252 0.125 0.251 0.655 1.812 

Social risk 0.257 0.386 1.008 0.499 0.586 0.843 3.580 

Operation perf. 0.143 0.086 0.084 0.071 0.084 0.047 0.514 

Profitability 0.114 0.129 0.036 0.055 0.168 0.094 0.596 

 

 



104 
 

Table 6.5: Weighted sum value matrix as a fraction of criteria weights - Lambda  

 
Unexpe

cted  
Event 

Country 
risk 

Environ
. risk 

Social 
risk 

Operati
on perf. 

Profitab
ility 

Weight
ed sum 

Lambda 

Unexpe
cted 

event 0.029 0.021 0.031 0.055 0.017 0.023 0.177 6.206 

Country 
risk 0.057 0.043 0.036 0.055 0.042 0.031 0.265 6.163 

Environ
. risk 0.228 0.301 0.252 0.125 0.251 0.655 1.812 7.192 

Social 
risk 0.257 0.386 1.008 0.499 0.587 0.843 3.580 7.172 

Operati
on perf. 0.143 0.086 0.084 0.071 0.084 0.047 0.514 6.140 

Profitab
ility 0.114 0.129 0.036 0.055 0.168 0.094 0.596 6.361 

 

6.2.4 Stage 4: Order alternatives relative to evaluation matrix 

The consistency index (C.I.) is calculated from the lambda max—defined as the priority vector or 

the Eigen vector of the matrix—and the number of attributes being evaluated (n = 6). The lambda 

max is 6.439. 

C.I. = (6.439 – 6)/(6 – 1) = 0.088 

Then, the consistency ratio is calculated as the C.I. divided by 1.24, which is the random index 

(RI) of the randomly generated pairwise matrix for six attributes (Table 6.6) (Laeven & Stadje, 

2014). Thus, the consistency ratio is 0.088/1.24 = 0.071. Since this value is less than the 

consistency standard of 0.10 (Saaty, 2008), the matrix is reasonably consistent (i.e., it meets the 

standard criteria for consistency). It is then possible to proceed with the process of decision-making 

using the criteria weight matrix in Table 6.7. These weights from the AHP methodology are then 

used to inform the TOPSIS.  
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Table 6.6: Random index table 

n 1 2 3 4 5 6 7 8 9 10 

RI 0.00 0.00 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

 

Table 6.7: Criteria weight matrix 

Attributes Criteria weight Ranking 

Unexpected event 0.029 6 
Country risk 0.043 5 

Environmental risk 0.252 2 
Social risk 0.499 1 

Operation performance 0.084 4 
Profitability 0.094 3 

 

6.3 Technique for Order of Preference by Similarity to Ideal Solution 

The TOPSIS was developed by Hwang and Yoon (1981), who proposed six main stages to 

implement the methodology (Figure 6.3): 

 

Figure 6.3: Description of six stages related to TOPSIS 

Stage 1
• Develop and normalize the decision matrix

Stage 2
• Construct a weighted normalized decision matrix

Stage 3
• Determine positive and negative ideal solutions

Stage 4
• Calculate the separation method for each alternative

Stage 5
• Calculate the relative closeness to the ideal solution

Stage 6
• Rank alternatives from best to worst according to the ideal solution
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6.3.1 Stage 1: Create the decision matrix 

Table 6.8 provides a decision matrix of the five commodity classes against the six criteria. 

 

Table 6.8: Decision matrix 

 
Unexpected 

event 
Country 

risk 
Environ. 

risk 
Social 

risk 
Operation 

perf. 
Profitability 

Iron 8 5 3 6 7 9 

Copper 7 4 8 8 8 8 

Gold 5 2 4 2 4 6 

Aluminum 3 6 1 5 5 4 

Lithium 9 1 2 1 6 7 

 

15.1 9.1 9.7 11.4 13.8 15.7 

 

6.3.2 Stage 2: Calculate the normalized decision matrix 

To easily express the decision, the decision matrix is normalized (Table 6.9). The normalization 

formula of (Behzadian, et al., 2012) was chosen for this study. The criteria weight from the AHP 

analysis in Table 6.5 is then applied. 

𝑛𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 

 

Table 6.9: Normalized decision matrix 

 
Unexpected 

event 
Country 

risk 
Environ. 

risk 
Social  

risk 
Operation 

perf. 
Profitability 

Iron 0.530 0.552 0.309 0.526 0.508 0.574 

Copper 0.464 0.442 0.825 0.702 0.580 0.510 

Gold 0.199 0.663 0.103 0.439 0.363 0.255 

Aluminum 0.331 0.221 0.413 0.175 0.290 0.383 
Lithium 0.596 0.110 0.206 0.088 0.435 0.446 
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6.3.3 Stage 3: Calculate weighted normalized decision matrix 

The weighted normalized decision matrix (Table 6.10) consists of the weighted normalized values 

illustrated in the following formula (Velasquez & Hester, 2013):  

𝑣𝑖𝑗 = 𝑤𝑗𝑛𝑖𝑗 

Table 6.10: Weighted normalized decision matrix 

 
Unexpected  

event 
Country risk Environ. risk Social 

risk 
Operation perf. Profitability 

Iron 0.0151 0.0237 0.0780 0.2627 0.0426 0.0537 

Copper 0.0132 0.0190 0.2079 0.3502 0.0486 0.0478 

Gold 0.0057 0.0284 0.0260 0.2189 0.0304 0.0239 

Aluminum 0.0095 0.0095 0.1040 0.0876 0.0243 0.0358 

Lithium 0.0170 0.0047 0.0520 0.0438 0.0365 0.0418 

 

6.3.4 Stage 4: determining the positive and negative ideal solutions 

The ideal positive solution (A+) maximizes the benefit criteria and minimizes the cost criteria, 

whereas the opposite is true for the negative ideal solution (A–), calculated using the following 

formulae (Tavana, et al., 2015): 

𝐴+ = (𝑣1
+, 𝑣2

+ , … , 𝑣𝑛
+) = ((𝑚𝑎𝑥𝑣𝑖𝑗|𝑗 ∈ 𝐼), (𝑚𝑖𝑛𝑣𝑖𝑗|𝑗 ∈ 𝐼)) 

𝐴− = (𝑣1
−, 𝑣2

− , … , 𝑣𝑛
−) = ((𝑚𝑖𝑛𝑣𝑖𝑗|𝑗 ∈ 𝐼), (𝑚𝑎𝑥𝑣𝑖𝑗|𝑗 ∈ 𝐼)) 

 

Where i is associated with the benefit criteria and j with the cost criteria. The ideal positive ideal 

solution is the lowest value in the j–th column and vice versa for the negative ideal solution. The 

results of these negative and positive ideal solutions are illustrated in Table 6.11. 
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Table 6.11: Positive and negative ideal solutions 

 
Unexpected 

event 
Country 

risk 
Environ. 

Risk 
Social 

risk 
Operation

perf. 
Profitability 

Iron 0.0151 0.0237 0.0780 0.2627 0.0426 0.0537 

Copper 0.0132 0.0190 0.2079 0.3502 0.0486 0.0478 

Gold 0.0057 0.0284 0.0260 0.2189 0.0304 0.0239 

Aluminum 0.0095 0.0095 0.1040 0.0876 0.0243 0.0358 

Lithium  0.0170 0.0047 0.0520 0.0438 0.0365 0.0418 
A+ 0.0057 0.0047 0.0260 0.0438 0.0486 0.0537 

A– 0.0170 0.0284 0.2079 0.3502 0.0243 0.0239 

 

6.3.5 Stage 5: Calculate the separation measures from the positive and negative ideal solutions 

To calculate the distance between the best and worst conditions and the target alternative, the 

formula of the n-dimensional Euclidean metric (Aruldoss, et al., 2013) is applied (Table 6.12): 

𝑑𝑖
+ = √∑(𝑣𝑖𝑗 − 𝑣𝑗

+)
2

𝑛

𝑗=1

 

𝑑𝑖
− = √∑(𝑣𝑖𝑗 − 𝑣𝑗

−)
2

𝑛

𝑗=1

 

 

Table 6.12: Separation measures from the positive and negative ideal solutions 

 
Unexpe

cted  
event 

Country 
risk 

Environ
. risk 

Social 
risk 

Operati
on perf. 

Profita
bility 

𝑑𝑖
+ 

 

𝑑𝑖
− 

 

Iron 0.0151 0.0237 0.0780 0.2627 0.0426 0.0537 0.2260 0.1606 

Copper 0.0132 0.0190 0.2079 0.3502 0.0486 0.0478 0.3568 0.0356 

Gold 0.0057 0.0284 0.0260 0.2189 0.0304 0.0239 0.1801 0.2248 

Alumin
um 0.0095 0.0095 0.1040 0.0876 0.0243 0.0358 0.0946 0.2835 

Lithium  0.0170 0.0047 0.0520 0.0438 0.0365 0.0418 0.0331 0.3453 

A+ 0.0057 0.0047 0.0260 0.0438 0.0486 0.0537 
  

A– 0.0170 0.0284 0.2079 0.3502 0.0243 0.0239 
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6.3.6 Stage 6: Calculate the relative closeness to the ideal solution 

The relative closeness (Ri) of the alternatives is calculated using the following formula. It is always 

between zero and one (Table 6.13). 𝑅𝑖 =
𝑑𝑖

−

𝑑𝑖
−+𝑑𝑖

+ 

Table 6.13. Relative closeness to ideal solutions 

 
Ri Rank % of total portfolio capital 

fund  
Capital allocation fund per 

commodity 
 

Iron 0.3890 4 0.153 0.747 
 

Copper 0.1262 5 0.033 0.163 
 

Gold 0.5086 3 0.204 0.999 
 

Aluminum 0.7657 2 0.275 1.349 
 

Lithium 0.9150 1 0.335 1.642 
 

   
1 4.9 

 

 

The results in Table 6.13 shows that lithium and aluminum are the more prominent PGs, with 61% 

of the capital fund allocated to their growth. Although iron and copper were the most profitable 

financially, the weighted criteria drastically influenced the corporate decision to invest in these 

two PGs: they became the least desired commodity class in which to invest.  

6.4 Sensitivity Analysis 

To ensure the consistency of this final TOPSIS decision, let’s apply a sensitivity analysis to the 

TOPSIS decision making process. The impact of the any change on the criteria weight to the final 

decision ranking can be visualized in table 6.4.1, 6.4.2 and figure 6.4.    

Table 6.4.1 Weightage criteria scenarios 

 
Extreme 

event 
Country 

risk 
Environmental 

risk 
Social 

risk 
Operation 

performance 
Profitability  

Scenario 1 0.029 0.043 0.252 0.499 0.084 0.094  
Scenario 2 0.043 0.252 0.499 0.084 0.094 0.029  
Scenario 3 0.094 0.029 0.043 0.252 0.499 0.084  
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Table 6.4.2 PG Weight scenarios 

 
Iron Copper Gold Aluminum Lithium 

Scenario 1 0.144 0.046 0.189 0.284 0.337 

Scenario 2 0.212 0.049 0.243 0.204 0.292 

Scenario 3 0.199 0.190 0.152 0.190 0.269 

Consistency 
Ratio 

0.036 0.082 0.046 0.051 0.035 

 

Table 6.4.1 illustrates the weight criteria changes scenarios. The impact of changing on criteria to 

final alternative rank is illustrated in figure 6.4. 

 

 Figure 6.4: Impact of criteria change on PG weight and rank 

 

By making a gradual change/permutation on values of each criterion, PG1(Lithium) still stay to 

the first rank. The rank reversal occurs to the second, third and fourth ranks. A change is also 

observed on PG3 (Gold) moving from third to fifth rank.  

As illustrated in table 6.4.2, an estimated consistency ratio (CR) of different PG weights vary 

within a range from 0.03 to 0.08. With a CR of less than 10%, it can be concluded that the overall 

final decision from TOPSIS is consistent and reliable. 
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In addition to the sensitivity analysis, to validate the result of the alternatives ranking obtained 

from TOPSIS method, an additional analysis is done with PROMETHEE method.  

 

6.5 Preference Ranking Organization METHod for Enrichment Evaluations 

(PROMETHEE) 

The PROMETHEE method was introduced by Brans and Mareschal (2005). This method allows 

the ranking of a finite number of alternatives based on a finite number of criteria. Multiple version 

of PROMETHEE method have been developed so far. This study considers the two of them: The 

PROMETHEE I for a partial ranking and PROMETHEE II for a complete ranking of alternatives 

It reviews the PROMETHEE I method and uses the PROMETHEE II  to obtain a complete ranking 

from the best to the worst alternatives. Similar to TOPSIS, a pair-wise comparison of alternatives 

for each criteria occurs. From AHP’s result, the criteria weighting through aggregation will provide 

a complete ranking of alternatives from the net outranking flow. The PROMETHEE method 

simplifies the multi criteria decision making problem into  six main stage (Figure 6.5): 
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Figure 6.5: The six process stage of PROMETHEE 

 

6.4.1 Stage 1: Determine deviations based on pair-wise comparisons 

𝑑𝑗(𝑎, 𝑏) = 𝑔𝑗(𝑎) − 𝑔𝑗(𝑏)  

Where 𝑑𝑗(𝑎, 𝑏) represents the difference between the evaluation of alternatives a and b on each 

criterion. 

For similar reference point when  comparing PROMETHEE with TOPSIS method, the normalized 

decision table defined in section 6.3.2 has been considered (Table 6.14 is identical to Table 6.9) 

Table 6.14: Normalized decision matrix 

 
Unexpected 

event 
Country 

risk 
Environ. 

Risk 
Social  
Risk 

Operation 
perf. 

Profitability 

Iron 0.530 0.552 0.309 0.526 0.508 0.574 

Copper 0.464 0.442 0.825 0.702 0.580 0.510 

Gold 0.331 0.221 0.413 0.175 0.290 0.383 

Aluminum 0.199 0.663 0.103 0.439 0.363 0.255 

Lithium 0.596 0.110 0.206 0.088 0.435 0.446 

 

Stage 1 
•Determine the deviations based on pair-wise comparisons

Stage 2
•Apply the preference function

Stage 3
•Calculate an overall preference index

Stage 4

•Calculate the outranking flows and Determine the partial ranking for 
PROMETHEE I

Stage 5
•Calculate the net outranking flows

Stage 6
•Determine the complete ranking for PROMETHEE II 
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The difference between the evaluation of alternatives 𝑎 and 𝑏 on each criterion is provided in table 

6.15. 

Table 6.15: Deviations based on pair-comparison 

 
Unexpected 

event 

Country 

risk 

Environ. 

Risk 

Social 

risk 

Operation 

perf. 

Profitability 

D(PG1-PG2) 0.066 0.110 -0.516 -0.175 -0.073 0.064 

D(PG1-PG3) 0.331 -0.110 0.206 0.088 0.145 0.319 

D(PG1-PG4) 0.199 0.331 -0.103 0.351 0.218 0.191 

D(PG1-PG5) -0.066 0.442 0.103 0.439 0.073 0.128 

D(PG2-PG1) -0.066 -0.110 0.516 0.175 0.073 -0.064 

D(PG2-PG3) 0.265 -0.221 0.722 0.263 0.218 0.255 

D(PG2-PG4) 0.132 0.221 0.413 0.526 0.290 0.128 

D(PG2-PG5) -0.132 0.331 0.619 0.614 0.145 0.064 

D(PG3-PG1) -0.331 0.110 -0.206 -0.088 -0.145 -0.319 

D(PG3-PG2) -0.265 0.221 -0.722 -0.263 -0.218 -0.255 

D(PG3-PG4) -0.132 0.442 -0.309 0.263 0.073 -0.128 

D(PG3-PG5) -0.397 0.552 -0.103 0.351 -0.073 -0.191 

D(PG4-PG1) -0.199 -0.331 0.103 -0.351 -0.218 -0.191 

D(PG4-PG2) -0.132 -0.221 -0.413 -0.526 -0.290 -0.128 

D(PG4-PG3) 0.132 -0.442 0.309 -0.263 -0.073 0.128 

D(PG4-PG5) -0.265 0.110 0.206 0.088 -0.145 -0.064 

D(PG5-PG1) 0.066 -0.442 -0.103 -0.439 -0.073 -0.128 

D(PG5-PG2) 0.132 -0.331 -0.619 -0.614 -0.145 -0.064 

D(PG5-PG3) 0.397 -0.552 0.103 -0.351 0.073 0.191 

D(PG5-PG4) 0.265 -0.110 -0.206 -0.088 0.145 0.064 

 

 

6.5.2 Stage 2: Apply the preference function 

Each criterion ranking the alternatives has an assigned preference function; which translates the 

positive or negative difference value of the criterion between two alternatives, hence a preference 

degree ranging from 0 to 1.  

𝑃𝑗(𝑎, 𝑏) = 𝐹𝑗[𝑑𝑗(𝑎, 𝑏)] 𝑗 = 1, . . . , 𝑘.  
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Where 𝑃𝑗(𝑎, 𝑏) represents the preference for alternative “a”  to “b “ in each criterion, as a function 

of 𝑑𝑗(𝑎, 𝑏) and 𝐹𝑗[ ] denotes the preference function, typically using 6 classes of preference 

functions: 

6.5.2.1 Class 1: Usual criterion 

Alternatives “a” and “b” are viewed as indifferent when they are equal. Then, the preference degree 

is zero. When they are not equal, a strict preference represents the smallest difference in value and 

the preference degree is one. 

6.5.2.2 Class 2: Quasi criterion 

When alternatives “a” and “b” are indifferent within the defined range, a preference degree is zero. 

Beyond the defined range, the preference degree of one. 

6.5.2.3 Class 3: Criterion with linear preference 

This is an extension to the usual criterion. When alternative “a” and “b” are indifferent, a 

preference degree is zero. Beyond a defined threshold, when the intensity of the preference 

increases linearly, the preference is strict and the reference degree is one. 

6.5.2.4 Class 4: Level criterion 

This is an similar to the quasi criterion. When alternatives “a” and “b” are indifferent within the 

specified range, a preference degree is zero. Beyond the first range,  a  second range is defined; 

then, a weak preference is provided and the preference degree is 0.5. Over the second range, there 

is a stringent preference and the preference degree is one. 

6.5.2.5 Class 5: Criterion with linear preference and indifference area 

This is a combination of criterion with linear preference (class 3) and Quasi criterion (class 2).  

When alternatives “a “ and “b” are indifferent, the preference degree is zero . Beyond a defined 
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range, the preference increases progressively or linearly to the defined threshold and the preference 

degree is one. 

6.5.2.6 Class 6: Gaussian criteria 

This is similar to the criterion with linear preference (class 3). When one of the criterion is of the 

Gaussian class and there is an increase deviation between alternatives 𝑎 and 𝑏 with a nonlinear 

relationship, a value of sigma represents a distance between the origin and the inflection point. 

Then the preference degree will vary between zero and one. When there is indifference between 

alternatives "𝑎" and "𝑏", the preference degree is zero, and when the difference between 

alternatives "𝑎" and "𝑏" is very large, the preference degree is one.  

With this defined class of preference function, the preference degree ranges from zero to one. This 

is illustrated in the table 6.16. 

 

6.5.3 Stage 3: Calculate the overall preference index.  

𝜋(𝑎, 𝑏) = ∑ 𝑃𝑗
𝑘
𝑗=1 (𝑎, 𝑏)𝑤𝑗  

Where 𝜋(𝑎, 𝑏) of alternatives “a” over “b” is defined as the weighted sum 𝑝(𝑎, 𝑏) of each criterion, 

and 𝑤𝑗 is the weight associated with criterion 𝑗. Its value varies from 0 to 1. 

Table 6.17 provides the results of the overall preference index between two alternatives. 
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Table 6.16: Difference value of the criterion between alternatives 

 
Unexpected  

Event 

Country 

risk 

Environ. 

Risk 

Social 

risk 

Operation 

perf. 

Profitability 

P(PG1-PG2) 0.066 0.110 0.000 0.000 0.000 0.064 

P(PG1-PG3) 0.331 0.000 0.206 0.088 0.145 0.319 

P(PG1-PG4) 0.199 0.331 0.000 0.351 0.218 0.191 

P(PG1-PG5) 0.000 0.442 0.103 0.439 0.073 0.128 

P(PG2-PG1) 0.000 0.000 0.516 0.175 0.073 0.000 

P(PG2-PG3) 0.265 0.000 0.722 0.263 0.218 0.255 

P(PG2-PG4) 0.132 0.221 0.413 0.526 0.290 0.128 

P(PG2-PG5) 0.000 0.331 0.619 0.614 0.145 0.064 

P(PG3-PG1) 0.000 0.110 0.000 0.000 0.000 0.000 

P(PG3-PG2) 0.000 0.221 0.000 0.000 0.000 0.000 

P(PG3-PG4) 0.000 0.442 0.000 0.263 0.073 0.000 

P(PG3-PG5) 0.000 0.552 0.000 0.351 0.000 0.000 

P(PG4-PG1) 0.000 0.000 0.103 0.000 0.000 0.000 

P(PG4-PG2) 0.000 0.000 0.000 0.000 0.000 0.000 

P(PG4-PG3) 0.132 0.000 0.309 0.000 0.000 0.128 

P(PG4-PG5) 0.000 0.110 0.206 0.088 0.000 0.000 

P(PG5-PG1) 0.066 0.000 0.000 0.000 0.000 0.000 

P(PG5-PG2) 0.132 0.000 0.000 0.000 0.000 0.000 

P(PG5-PG3) 0.397 0.000 0.103 0.000 0.073 0.191 

P(PG5-PG4) 0.265 0.000 0.000 0.000 0.145 0.064 
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Table 6.17: Overall preference index evaluation 

 
Unexpected  

event 
Country 

risk 
Environ. 

 risk 
Social 

risk 
Operation 

perf. 
Profitability 

 

Weights 

0.030 0.040 0.190 0.496 0.097 0.147 

𝜋(𝑎, 𝑏)

= ∑𝑃𝑗

𝑘

𝑗=1

(𝑎, 𝑏)𝑤𝑗 

Wj*P(PG1-PG2) 0.002 0.004 0.000 0.000 0.000 0.009 0.016 

Wj*P(PG1-PG3) 0.010 0.000 0.039 0.044 0.014 0.047 0.153 

Wj*P(PG1-PG4) 0.006 0.013 0.000 0.174 0.021 0.028 0.242 

Wj*P(PG1-PG5) 0.000 0.018 0.020 0.218 0.007 0.019 0.281 

Wj*P(PG2-PG1) 0.000 0.000 0.098 0.087 0.007 0.000 0.192 

Wj*P(PG2-PG3) 0.008 0.000 0.137 0.131 0.021 0.037 0.334 

Wj*P(PG2-PG4) 0.004 0.009 0.078 0.261 0.028 0.019 0.399 

Wj*P(PG2-PG5) 0.000 0.013 0.118 0.305 0.014 0.009 0.459 

Wj*P(PG3-PG1) 0.000 0.004 0.000 0.000 0.000 0.000 0.004 

Wj*P(PG3-PG2) 0.000 0.009 0.000 0.000 0.000 0.000 0.009 

Wj*P(PG3-PG4) 0.000 0.018 0.000 0.131 0.007 0.000 0.155 

Wj*P(PG3-PG5) 0.000 0.022 0.000 0.174 0.000 0.000 0.196 

Wj*P(PG4-PG1) 0.000 0.000 0.020 0.000 0.000 0.000 0.020 

Wj*P(PG4-PG2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Wj*P(PG4-PG3) 0.004 0.000 0.059 0.000 0.000 0.019 0.082 

Wj*P(PG4-PG5) 0.000 0.004 0.039 0.044 0.000 0.000 0.087 

Wj*P(PG5-PG1) 0.002 0.000 0.000 0.000 0.000 0.000 0.002 

Wj*P(PG5-PG2) 0.004 0.000 0.000 0.000 0.000 0.000 0.004 

Wj*P(PG5-PG3) 0.012 0.000 0.020 0.000 0.007 0.028 0.067 

Wj*P(PG5-PG4) 0.008 0.000 0.000 0.000 0.014 0.009 0.031 

 

6.5.4 Stage 4: Calculate outranking flows  

For PROMETHEE I  

∅1
+(𝑎) = ∑ 𝜋(𝑎, 𝑥)𝑥  and ∅1

−(𝑎) = ∑ 𝜋(𝑥, 𝑎)𝑥   

Where ∅1
+(𝑎) and ∅1

−(𝑎) respectively, represent the leaving/positive outranking flow and the 

entering/negative outranking flow for each alternative. 

Table 6.18 provides the leaving and entering outranking flows for PROMETHEE I 
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Table 6.18: Outranking flows for PROMETHEE I 

Aggregated 
Preference Function 

Iron Copper Aluminum Gold Lithium   ∅1
+Leaving flow  

Iron(PG1)   0.016 0.153 0.242 0.281 0.69237 

Copper(PG2) 0.192   0.334 0.399 0.459 1.38460 

Gold(PG3) 0.0044 0.009   0.155 0.196 0.36491 

Aluminum(PG4) 0.020 0.0000 0.082   0.087 0.18835 

Lithium(PG5) 0.002 0.0039 0.067 0.031   0.10378 

∅1
−Entering flow  0.21818 0.02862 0.63585 0.82824 1.02312  

 

A comparison of alternatives and elimination of incomparable situation is done to obtain the partial 

ranking for PROMETHEE I. three possible options are denoted. 

 Alternative a is preferred over or outranks alternative b, 𝑎𝑷𝑏. 

𝑎𝑷𝑏 𝑖𝑓:  ∅1
+(𝑎) > ∅1

+(𝑏) 𝑎𝑛𝑑 ∅1
−(𝑎) < ∅1

−(𝑏);  𝑜𝑟 

           ∅1
+(𝑎) > ∅1

+(𝑏) 𝑎𝑛𝑑 ∅1
−(𝑎) = ∅1

−(𝑏);  

                                                    ∅1
+(𝑎) = ∅1

+(𝑏) 𝑎𝑛𝑑 ∅1
−(𝑎) < ∅1

−(𝑏). 

 Indifference situation, 𝑎𝑰𝑏 

𝑎𝐼𝑏 𝑖𝑓: ∅1
+(𝑎) = ∅1

+(𝑏) 𝑎𝑛𝑑 ∅1
−(𝑎) = ∅1

−(𝑏) 

 Incomparable situation, 𝑎𝑹𝑏 

𝑎𝑅𝑏 𝑖𝑓:  ∅1
+(𝑎) > ∅1

+(𝑏) 𝑎𝑛𝑑 ∅1
−(𝑎) > ∅1

−(𝑏);  𝑜𝑟 

                                                          ∅1
+(𝑎) < ∅1

+(𝑏) 𝑎𝑛𝑑 ∅1
−(𝑎) < ∅1

−(𝑏).         
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The alternatives are compared (Table 6.19) to eliminate incomparable situation (Table 6.20) and 

define the partial ranking (Figure 6.5) 

Table 6.19: Comparison of alternatives 

 
 ∅1

+Leaving flow ∅1
−Entering flow 

Iron(PG1) 0.69237 0.2182 

Copper(PG2) 1.38460 0.0286 

Gold(PG3) 0.36491 0.6358 

Aluminum(PG4) 0.18835 0.8282 

Lithium(PG5) 0.10378 1.0231 

 

Based on the possible options defined in the comparison of alternatives equations, the solution of 

the condition equations are provided in table 6.20. 

Table 6.20: Elimination of incomparable situation 

Copper(PG2) P Iron(PG1) 

Copper(PG2) P Gold(PG3) 

Gold(PG3) P Aluminum(PG4) 

Aluminum(PG4) P Lithium(PG5) 

Iron(PG1) P Lithium(PG5) 

Iron(PG1) P Gold(PG3) 

Copper(PG2) P Aluminum(PG4) 

Gold(PG3) P Lithium(PG5) 

Iron(PG1) P Aluminum(PG4) 

Copper(PG2) P Lithium(PG5) 

 

Figure 6.6 illustrates the comparable situation between all PGs, and provides the ranking between 

alternatives. The arrows between PGs illustrate the comparable situation. If there is no arrow 

between two alternatives, this means there is no information allowing the ranking to be done; 

nevertheless, in this case there is information allowing the ranking between alternatives (Figure 

6.6). 
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Figure 6.6: Ranking between alternatives 

 

Assuming a partial ranking of alternatives, Section 5.2 provides a full complete ranking with 

PROMETHEE II methodology 

For PROMETHEE II  

∅2
+(𝑎) =

1

𝑛−1
∑ 𝜋(𝑎, 𝑥)𝑥  and  ∅𝟐

−(𝑎) =
1

𝑛−1
∑ 𝜋(𝑥, 𝑎)𝑥   

Where ∅𝟐
+(𝑎) and ∅𝟐

−(𝑎) respectively, denote the leaving/positive outranking flow and the 

entering/negative outranking flow for each alternative. 

Table 6.21 provides the leaving and entering outranking flows for PROMETHEE II 

Table 6.21: Outranking flows for PROMETHEE II 

Aggregated 
Preference Function 

Iron Copper Gold Aluminum Lithium   ∅2
+Leaving flow  

Iron(PG1)   0.016 0.153 0.242 0.281 0.17309 

Copper(PG2) 0.192   0.334 0.399 0.459 0.34615 

Gold(PG3) 0.0044 0.009   0.155 0.196 0.09123 

Aluminum(PG4) 0.020 0.0000 0.082   0.087 0.04709 

Lithium(PG5) 0.002 0.0039 0.067 0.031   0.02595 

∅2
−Entering flow  0.0545 0.0072 0.1590 0.2071 0.2558 
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6.5.5 Stage 5: Calculate the net outranking flows for PROMETHEE II  

The difference between the entering and leaving outranking flows determines the net outranking 

flows.  

 ∅2(𝑎) =  ∅2
+(𝑎) − ∅2

−(𝑎),  

Where  ∅2(𝑎) denotes the net outranking flow for each alternative. The value of net outranking 

flow for each alternative is illustrated in table 6.22. 

Table 6.22: Net outranking flows  

 
∅2

−Entering flow  ∅2
+Leaving flow Net Outranking flow value ∅(𝑎) 

Iron(PG1) 0.05454 0.17309 -0.11855 

Copper(PG2) 0.00715 0.34615 -0.33900 

GoldPG3) 0.15896 0.09123 0.06774 

Aluminum(PG4) 0.20706 0.04709 0.15997 

Lithium(PG5) 0.25578 0.02595 0.22983 

 

6.5.6 Stage 6: Determine the complete ranking for PROMETHEE II  

From table 6.22, the complete ranking (table 6.23) of all considered alternatives depends on the 

value of net outranking flow. 

Table 6.23: Complete ranking for PROMETHEE II 

 
∅2

−Entering flow  ∅2
+Leaving flow Net 

Outranking 
flow value 

∅(𝑎) 

Complete 
Ranking for 

PROMETHEE 
II  

Iron(PG1) 0.00523 0.01474 -0.00951 4 

Copper(PG2) 0.00062 0.03143 -0.03081 5 

Gold(PG3) 0.01380 0.00828 0.00552 3 

Aluminum(PG4) 0.01799 0.00448 0.01352 2 

Lithium(PG5) 0.02320 0.00191 0.02129 1 
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6.6 Comparison of complete ranking from PROMETHEE and TOPSIS  

Table 6.24 provides the comparison of the ranking obtained from PROMETHEE II with the one 

from TOPSIS. 

Table 6.24: Comparison between TOPSIS and PROMETHEE II ranking 

 
Complete Ranking for PROMETHEE II  Previous Ranking from TOPSIS 

Iron(PG1) 4 4 

Copper(PG2) 5 5 

Gold(PG3) 3 3 

Aluminum(PG4) 2 2 

Lithium(PG5) 1 1 

 

TOPSIS and PROMETHEE II methods provide the same alternatives ranking results. This allows    

to validate the results obtained in section 6.3.  Hence, the validation of our decision making process 

regarding the five alternatives (PG1, PG2, PG3, PG4 and PG5). 

 

6.7 Conclusion 

This chapter illustrates four complementary methods: AHP, TOPSIS and PROMETHEE I and II. 

Using the AHP as an input to the TOPSIS analysis reinforces the practicality and facilitates 

realistic analysis of corporate capital allocation. The PROMETHEE II method validates the results 

of TOPSIS. The TOPSIS ranking of all alternatives is very similar to the one from PROMETHEE 

II. The weightage of key criteria is fundamental in the decision-making process. Comparing the 

results in this chapter with those in Chapters 3–5 highlights the importance of characterizing 

criteria and their respective weights as an initial step in decision-making related to corporate 

portfolio management.  



123 
 

Although the results in this chapter can help improve the capital allocation decision, the overall 

available capital fund needs to be fully allocated, which could lead to inefficient capital fund use. 

This could be mitigated by combining the weightage criteria from the AHP methodology with the 

portfolio optimization model defined in Chapter 5. Then the remaining available fund can be 

allocated to future and more effective initiatives in the corporation. 
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Chapter 7: Conclusions and future work 
 

This research aimed to develop a new portfolio management strategy for mining corporations such 

that—in addition to traditional financial criteria—the operational performance, country risk, 

extreme events, unexpected events, country stability, and commodity market behavior are all 

considered in the investment or divestment decision-making process. For a multinational mining 

company, this research proposes two resource allocation management approaches in tandem with 

the growth strategy. The first approach is based on the portfolio optimization model and the second 

approach is based on MCDM models. All data and assumptions in this thesis are hypothetical. 

The thesis first presented a new portfolio management strategy to allocate the right capital 

investment to the right project for maximum returns at minimum risk. This new model helps to 

improve decision-making processes associated with capital allocation in a corporate portfolio 

where operational performance and country risks are included among the decision-making criteria. 

The proposed approach improves the prioritization of capital expenditure projects. The portfolio 

optimization was formulated under the constraints of country risk and operational performance 

requirements of the project initiator product group (PG). Results showed that approval process is 

easier for the project initiator with good operational performance. They also showed that 

diversification of the portfolio is a better way to increase the portfolio return with a slight risk 

increase for the projects in the portfolio. The results of combined country risk and operational 

performance criteria show that a more diversified portfolio with similar projects potentially 

increases the corporate portfolio return with a slight increase in the minimum acceptable risk. As 

the performance of a PG increases, the chance of approval of the proposed projects also increases. 
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The second section of this research solved a portfolio optimization problem under extreme events 

for investment or divestment decision-making. In addition to operational performance and country 

risk, commodity market behavior at the extreme events was considered. Results showed that the 

commodity market behavior affects the investment or divestment decision. The PG total return 

price behavior in the mineral portfolio optimization model provides an opportunity to seize more 

market opportunity in the investment strategy of the corporation. This model clearly illustrates that 

rushing to divest a PG at the extreme turnover level does not necessarily provide the highest return 

at the lowest risk. A more efficient portfolio return at moderate risk is obtained with knowledge of 

the commodity market behavior at an efficient frontier. A portfolio optimization model with 

operational performance criteria at extreme events without the consideration of the commodity 

market behavior criteria is less efficient than a portfolio optimization model with operational 

performance and commodity market behavior criteria.  

This research also highlights the impact of the combined country stability and commodity market 

behavior and operational performance on distribution of the capital fund in the country of 

investment. The utilization of the country risk values combined with previous operational 

performance—including production efficiency and commodity price—affects the distribution of 

the capital fund to allocate to each commodity class in the multiple countries of investment. 

The final chapter reinforces the importance of criteria weights and characteristics in the decision-

making process related to the capital allocation fund. It also illustrates the complementarity of two 

multi-criteria decision making methodologies: AHP and TOPSIS. The outcome of AHP is the 

input to the TOPSIS analysis. The outcome of this TOPSIS analysis provides a more realistic 

capital allocation, and the PROMETHEE validates the alternatives ranking results from TOPSIS.  
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Three future research directions have been identified. (1) The development of simultaneous Capital 

allocation strategy in two separate mode: Good and bad period. (2) The quantification of 

correlation between projects and extreme turnover level. (3) The effect of criteria weight at the 

initial phase of suggested portfolio optimization model. The inclusion of criteria weights from the 

MCDM methodology with operational performance, country risk, unexpected events, and 

commodity market behavior. This could improve the overall portfolio optimization models, the 

efficiency of capital allocation through the right criteria weight, and the effective utilization of the 

available capital fund.   
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Appendices 

Appendix 1: MATLAB Program1 

clc; clear; close all; 

 %We need to define a total amount of capital that need to be allocated 

global Capital 

Capital=4900; %$MM 

%Now we need to define the product groups that we are working with and their boundaries. 

LB=[50,50,50,50,50]; 

UB=[Capital,Capital,Capital,Capital,Capital]; 

%Now lets determine a time range for this optimization 

global TimeEnd 

TimeEnd=600;%time period 

  %From here we are missing the optimization equation/function and the market data for the 

optimization 

%Lets assume we have some financial model which predicts future prices of the commodities for 

the time range given  

global Cost 

Cost=GenerateNewCostFunc(); 

%And we can begin the optimization function 

InitialGuess=[1000,1000,1000,1000,1000]; 

A=[1,1,1,1,1]; 

B=Capital; 

Aeq=[]; 

Beq=[]; 

 res=fmincon(@ObjFunc,InitialGuess,A,B,Aeq,Beq,LB,UB); 

  

%results 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(1) 

title('Product Groups 1 - 5') 

for i=1:5 

subplot(2,3,i) 

plot([1:TimeEnd],Cost(i,:)) 

xlabel('Time in the period') 

ylabel('Profitability in $/unit') 

end 

fprintf('The optimization resulted in') 
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for i=1:5 

fprintf('\n%.3f $MM in product group %i',res(i),i) 

end 

 

%functions 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function X=PerfOps(Y) 

    %Gives some arbitrary operations efficiency (non linear) in units/dollard/time period 

    X = [1/365,0.85/365,0.85/365,0.35/365,0.35/368].*(Y./1000).^-0.1; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function Value=ObjFunc(Y) 

    global Capital 

    global Cost 

    Value = -(Capital-sum(Y)+sum(Y.*PerfOps(Y).*sum(Cost,2)')); 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function Limit=CapitalConstraint(Y) 

    global Capital 

    Limit = -sum(Y)+Capital; %>=0 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function C=GenerateNewCostFunc() 

    global TimeEnd 

    %This creates a random variable for selling price from 0.9 to 1.1 $/unit 

    C=zeros(5,TimeEnd); 

    for i=1:5 

        C(i,:)=0.9+rand(TimeEnd,1)*0.2; 

    end 

   %Now we can define in our model some extreme event or probability of some extreme events 

occuring 

    Length_of_event=30;%time period    

    Prob_Of_Event_Per_Day=[0,0.001,0.002,0.005,0.01]; 

  

%Goes through and applies the extreme events 

    for i=1:5 

        EE=rand(TimeEnd,1)>(1-Prob_Of_Event_Per_Day(i)); 
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        EEDays=EE; 

        for j=1:Length_of_event 

            rolled=circshift(EE,j); 

            EEDays(j:end)=EEDays(j:end)+rolled(j:end); 

        end 

        C(i,:)=((EEDays==0)+rand(1)/2)'.*C(i,:); 

    end 

end 
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Appendix 2: MATLAB Program2  

clc; clear; 

warning('off','all') 

 % Profitability will be tracked according to the following assumptions. Each country and product 

has a capital to be invested, production volume is a function of capital invested and operating cost 

is also based on the total capital invested. This optimization will take into account stochastic 

nature of products, prices, costs, and country stability. It is initially assumed that operational 

performance follow an equation of capital invested plus some random normal error variation.  

 %Costs will be a function of previous time prices and will be adjusted time period by time period 

based on a skewed normal distribution. 

 %Countries will be given a probability of extreme event/ per time period. It is assumed all invested 

capital in an extreme event is lost (for cost function). 

 %We need to define a total amount of capital that will be allocated 

Capital=4900; %$MM 

RiskCI = 0.95; %and our tolerance 

%Now we need to define the product groups that we are working with 

Nc = 2;% Number of Countries 

Np = 5; % Number of products 

N = 20; %Number of simulations per Capital, Product Group, and Country 

IM  = zeros(Np*Nc,1); %Investment Product "Matrix" the current capital invested in product and 

country 

PGnum = repmat((1:Np),1,Nc); %Product Group Number 

CRA = (1:Nc)/100; %Country Risk Array This will be the percent of extreme event per time 

period 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 %Now lets determine a time range for this optimization 

TimeEnd=3;%time period 

CostHist = zeros(Np,1,TimeEnd+2); 

CostHist(:,1,1)=[11 12 13 13.5 14]; %two time period ago prices 

CostHist(:,1,2)=[10.9 12.2 13 13 14.1]; %one time period ago prices 

CostHist = repmat(CostHist,1,10000,1); 

  

for t = 1:TimeEnd 

    for P = 1:Np 

        for Nsim = 1:10000 

            CostHist(P,Nsim,t+2)=ProductMarket([CostHist(P,Nsim,t+1),CostHist(P,Nsim,t+0)],P); 

        end 

        priceKernel{P,t}=fitdist(CostHist(P,:,t+2)',"kernel"); 

        priceHist(P,:,t)=random(priceKernel{P,t},1000,1); 

    end 
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end 

 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Modeling will involve running monte-carlo simulation of an optimization loop accross 

combinations of state variables through time. This will be surrounded by a second optimization 

loop which improves the long term action of the first optimizer by changing the cost function 

weighting 

% First we run the assumed pricing simulations and bin the results. The binnned results will give 

us a kernal distribution of expected future prices 

 %Starting the optimizer 

load('OptPreRun.mat') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% To increase simulations speed  

%[Weights,profitDistribution,iter]=SecondOptimization(priceHist,CRA,PGnum,Capital,RiskCI,

Nc,Np,N,TimeEnd);% 

%[investment,Profit]=FinalInvest(priceHist,PGnum,t,Weights,Capital,Np,Nc); 

%save('OptPreRun.mat') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 %The stochastic optimizer keeps correlations of the dependencies of certain paths over time by 

binning capital results and recording what combination of investments reach that location. These 

bins and distributions can be used in the next time stage to generate a new set of correlated data 

for the simulation to run. The final distribution of capital is then used as the cost function for a 

second optimizer which adjusts the first optimizers' weighting function. This optimization follows 

loosely the idea of ergodic descent.  

 %Plotting the results and doing analysis 

for i = 1:Nc 

Cname{i}=['Country_',int2str(i)]; 

end 

for i = 1:Np 

PGname{i}=['PG_',int2str(i)]; 

end 

disp("The optimized weighting for the optimizer function is below") 

array2table(reshape(Weights,[Np,Nc]),'VariableNames',Cname,'RowNames',PGname) 

profitDistribution=profitDistribution*-1;%Corrects for the negative in the objective 

%Profit= Profit*-1;%corrects for the negative in the objective 

Eall=mean(profitDistribution); EallCI=mean(profitDistribution(N*N*(1-RiskCI):end)); 

EposCI=mean(profitDistribution(profitDistribution(N*N*(1-RiskCI):end)>0)); 

EnegCI=mean(profitDistribution(profitDistribution(N*N*(1-RiskCI):end)<0)); 

CI=RiskCI; Nsimall=iter*N*N*TimeEnd; 
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disp("The optimized investment for the current time periodis below") 

array2table(reshape(investment,[Np,Nc]),'VariableNames',Cname,'RowNames',PGname) 

 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(1) 

area(reshape(investment,Np,Nc)) 

xlabel('Product Groups') 

ylabel('$MM') 

title('Stacked Area for PGs and Country Investment') 

legend(Cname) 

xticks([1:5]) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(2) 

hold on 

for i = 1:5 

histogram(priceHist(i,:,1)) 

end 

xlabel("Commodity Price per unit") 

ylabel("Simulated Occurances") 

title('Commodity Price') 

legend(PGname) 

 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(3) 

hold on 

clear CostEX 

for j = [20:20:800] 

    for i = 1:5 

        CostEX(j/20,i)=CostOfProduction(j,i)*ProductionQuantity(j,i); 

    end 

end 

    for i = 1:5 

    plot([20:20:800],CostEX(:,i),'Linewidth',4); 

    end 

xlabel("Invested Amount") 

ylabel("$MM/mo") 

title('Operational Performance') 

legend(PGname) 

sprintf(['The overall expected value of distribution is: %.3f$MM \n' ... 
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             'The expected overall value of distribution with CI of %.2f is: %.1d$MM \n' ... 

             'The expected positive return value of distribution with CI of %.2f is: %.2d$MM \n' ... 

             'The expected negative return value of distribution with CI of %.2f is: %.2d$MM \n' ... 

             'A total of %i simulations were run 

overall'],Eall,CI,EallCI,CI,EposCI,CI,EnegCI,Nsimall) 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function 

[investment,FinalProfitBreakDown]=FinalInvest(priceHist,PGnum,t,Weights,Capital,Np,Nc) 

UB = ones(1,Np*Nc)*Capital; 

A=ones(1,Np*Nc); 

B=Capital; 

Aeq=[]; 

Beq=[]; 

options = optimoptions("patternsearch","InitialMeshSize",896,"MeshTolerance",1E-

2,"Display","off");%,"Display","iter","PlotFcn",@psplotbestf); 

LB = zeros(1,Np*Nc);%its assumed once capital is invested in country and product it is "stuck" 

InitialGuess=UB;       

for i = 1:100 

[investment(i,:),~,profit(i,:)]=NestedObjFunc(zeros(1,Np*Nc),InitialGuess,A,B,Aeq,Beq,LB,UB

,options,priceHist,PGnum,t,Weights,Capital,Np,Nc); 

end 

investment=mean(investment); 

FinalProfitBreakDown=mean(profit); 

 end          

function ValueDistribution = 

FirstOptimizer(CRA,PGnum,Capital,Nc,Np,N,TimeEnd,Weights,priceHist) 

%For time = 0 we start with a stagnant amount of money, with "invested prior" = 0 as well 

NewCapitalList=ones(N*N,1)*Capital; 

tempres = ones(Np*Nc,N*N); 

 %We will define the edges of the binned capital 

[~,CAPedges] = histcounts(NewCapitalList); 

%and then generate new investment profiles for each boundary 

for j = 1:length(CAPedges) 

res{j} = ones(N,Np*Nc)/10; 

end 

  

%We can then begin the simulations 

for t = 1:TimeEnd     

    [~,CAPedges] = histcounts(NewCapitalList);%note edges are k+1 
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    %First we make the kernel distributions of the capital distributions 

    curCapitalDist{t} = fitdist(NewCapitalList,"kernel"); 

 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Now we generate N random starting capital positions based on the previous time distribution 

    curCapitalList=random(curCapitalDist{t},N,1); 

        for i = 1:N 

        curCapital=curCapitalList(i); 

        [~,bin_Index]=min(abs(CAPedges-curCapital)); 

        %Determine which bin the starting capital belongs to and generate new portfolio profiles 

based on that bin's correlations. 

        if isempty(res{bin_Index})==1 

            IM=zeros(N,Np*Nc); 

        elseif length(res{bin_Index})==1 || length(res{bin_Index})==1 

            IM = Repmat(res{bin_Index},N/length(res{bin_Index}),1); 

        else 

            %This generates a correlation matrix and applies a guassian guess structure for the 

profiles. Originally, a multivariable kernel was going to be used, however, MATLAB does not have 

a good way of getting random guesses for those distributions. 

            Rho = corr(res{bin_Index},'rows','complete'); 

            Rho(isnan(Rho)) = 0; 

            Rho(Rho>1)=1; 

            Rho(Rho<-1)=-1; 

            if sum(sum(Rho))==0 

                Rho = diag(ones(1,Np*Nc)); 

            end 

               try 

                u = copularnd('Gaussian',Rho,N); 

                [~,ndim]=size(u); 

                for k = 1:ndim 

                    IM(:,k)=max(ksdensity(res{bin_Index}(:,k),u(:,k),'function','icdf'),0); 

                end 

            catch 

                disp("Had to reset correlation matrix"); 

                IM=zeros(N,ndim); 

            end 

         end 

 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %Now we define the starting position of the optimizer 
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        UB = ones(1,Np*Nc)*curCapital; 

        A=ones(1,Np*Nc); 

        B=curCapital; 

        Aeq=[]; 

        Beq=[]; 

        %we are using a large patternsearch to account for randominity 

        options = optimoptions("patternsearch","InitialMeshSize",1000,"MeshTolerance",1E-

2,"Display","off");%,"Display","iter","PlotFcn",@psplotbestf); 

 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %parallel for loop 

        parfor j = ((i-1)*N+1):((i-1)*N+N) 

        pos = j-(i-1)*N; 

        LB = IM(pos,:);%its assumed once capital is invested in country and product it is "stuck" 

        InitialGuess=UB; 

        %parallel computing requires strange nested objects, once we get an answer we can organize 

the data 

[tempres(:,j),NewCapitalList(j),~]=NestedObjFunc(CRA,InitialGuess,A,B,Aeq,Beq,LB,UB,opti

ons,priceHist,PGnum,t,Weights,curCapital,Np,Nc); 

        end 

    end 

    disp(t) 

    [~,CAPedges] = histcounts(NewCapitalList);%note edges are k+1 

    res=cell(length(CAPedges),1);%reset our portfolio distributions 

    for i = 1:N*N 

    [~,bin_Index]=min(abs(CAPedges-NewCapitalList(i))); 

    %reorganize the portfolios based on thier performance bin 

    res{bin_Index}=[res{bin_Index};tempres(:,i)']; 

    end 

end 

%returns the final distribution of capital profiles 

ValueDistribution = NewCapitalList; 

end 

  

%functions 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Weights, 

profitDist,iter]=SecondOptimization(priceHist,CRA,PGnum,Capital,RiskCI,Nc,Np,N,TimeEnd) 

profitDist=zeros(1,N*N); 

%this optimization loop adjusts the weighting of the firsts 
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Weights = ones(1,Np*Nc); 

LB = zeros(1,Np*Nc); 

UB = ones(1,Np*Nc); 

InitialGuess=UB; 

options = optimoptions("patternsearch","InitialMeshSize",0.38,"MeshTolerance",1E-

3,"Display","iter");%,"Display","iter","PlotFcn",@psplotbestf); 

[Weights,~,~,Output] = patternsearch(@OuterObjFunc,InitialGuess,[],[],[],[],LB,UB,[],options); 

iter=Output.iterations; 

 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%This function is the obj function for adjusting weighting 

function Value=OuterObjFunc(Y) 

    Weights = Y; 

    valDist = FirstOptimizer(CRA,PGnum,Capital,Nc,Np,N,TimeEnd,Weights,priceHist); 

    %sorting the profit after n time period 

    profitDist=sort(valDist-Capital); 

    %removing the bottom x% of results to redefine risk confidence interval 

    profit=profitDist(N*N*(1-RiskCI):end); 

   %the very last distributions optimized for max epected value for profit and losses. THESE CAN 

ABSOLUTELY BE WEIGHTED IF WE CONSIDER THAT 1$ MADE =/= 1S LOST. 

    Value =sum(sum(abs(profit(profit<0))))-sum(sum(abs(profit(profit>=0)))); %minimum of the 

negative 

  end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function 

[res,NewCap,profit]=NestedObjFunc(CRA,InitialGuess,A,B,Aeq,Beq,LB,UB,options,priceHist,

PGnum,t,Weights,curCapital,Np,Nc) 

%runs the patternsearch on the expected returns based on the portfolio profiles. Extreme events 

are not considered in the first optimizer. 

res=patternsearch(@ObjFunc,InitialGuess,A,B,Aeq,Beq,LB,UB,[],options); 

  

%This checks if an extreme event did in fact occur and adjusts the portfolio to account for those 

losses 

for i= 1:Nc 

    if rand(1)<CRA(i) 

        res((i-1)*Np+1:i*Np)=0; 

    end 

end 
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%we now actually, evaluate a random outcome based on the optimizers best guess. 

profit = EvalFunc(res); 

NewCap=sum(profit)+curCapital; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    function Value=ObjFunc(Y) 

        %this loop optimizes for weighted return 

        Units=ProductionQuantity(Y); 

        valDist = Weights.*(mean(Units.*priceHist(PGnum,:,t)')-CostOfProduction(Y,Units)); 

        Value =-sum(valDist); %minimum of the negative 

    end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    function Value=EvalFunc(Y) 

        %does a simple single evaluation of profit. 

        Units=ProductionQuantity(Y); 

        valDist = Units.*priceHist(PGnum,randi(1000),t)'-CostOfProduction(Y,Units); 

        Value = valDist; %actual value 

    end 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   function Costs = CostOfProduction(Invested,Units) 

    %Lets design an x^2 function with the minimums to be at 300+30*PG# in $MM plus a random 

variability 

    costperunit = 10 + ((Invested-300-30*PGnum)/100).^2; 

    RandomFactor =normrnd(1,0.2,1,Np*Nc); 

    Costs = costperunit.*RandomFactor.*Units; 

    %Costs is in MM$/time period 

    end 

 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    function Units = ProductionQuantity(Invested) 

    %We will design production in (MM)units to be a S shape curve. We will assume that rising 

product number gives less units per MM$ invested. 

    Units =(smf(Invested,[0 50])/10 + smf(Invested,[50 

2000])*5).*(normrnd(1,0.1./(max(Invested.*PGnum/500,ones(1,Np*Nc)))))-0.2*PGnum; 

    Units =max(Units,Units.*0); 

    %The units are (MM)units/time period 

    end 

end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function ProductPrice = ProductMarket(priceHist,PGnum) 

    %Here we assume that the larger the product group number the larger the selling price and 

we will also assume more negative skew to simulate more "extreme" events 

    ProductPrice = (0.25*priceHist(2)+0.75*priceHist(1))+pearsrnd(0,0.3,-PGnum/10,3); 

end 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    function CostsPerUnit = CostOfProduction(Invested,PGnum) 

    %%This only exist for the graph 

    CostsPerUnit = (10 + ((Invested-300-30*PGnum)/100).^2)*normrnd(1,0.2); 

    End 

 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    function Units = ProductionQuantity(Invested,PGnum) 

    %This only exists for the graph 

    Units =(smf(Invested,[0 50])/10 + smf(Invested,[50 

2000])*5).*(normrnd(1,0.1./(max(Invested.*PGnum/500))))-0.2*PGnum; 

    Units =max(Units,Units.*0); 

    %The units are (MM)units/time period 

    End 
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Appendix 3: MATLAB program3 

clc; clear;close all 

 % Profitability will be tracked according to the following assumptions. Each country and 

product has a capital to be invested, production is a function of capital invested and operating 

cost is also based on the total capital invested. 

%Once capital is invested it stays there. 

 %This optimization will take into account stochastic nature of products, prices, costs adjusts 

risk based on country 

%Its assumed that production efficiency and operating costs follow an equation of capital invested 

plus some random normal error variation while selling price for products follow a heavy tail 

function based on last price. 

 %We need to define a total amount of capital that be allocated 

Capital=4900; %$MM 

%Now we need to define the product groups that we are working with 

Nc = 5;% Number of Countries 

Np = 5; % Number of products 

 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Now lets determine a time range for this optimization 

TimeEnd=3;%time periods 

riskTol=0.05; 

  

%First we run the assumed pricing simulations and bin the results. The binnned results will give 

us a kernal distribution of expected future prices 

CostHist = zeros(Np,1,TimeEnd+2); 

CostHist(:,1,1)=[11 12 13 13.5 14]; %two time period ago prices 

CostHist(:,1,2)=[10.9 12.2 13 13 14.1]; %one time period ago prices 

CostHist = repmat(CostHist,1,10000,1); 

for t = 1:TimeEnd 

    for P = 1:Np 

        for Nsim = 1:10000 

            CostHist(P,Nsim,t+2)=ProductMarket([CostHist(P,Nsim,t+1),CostHist(P,Nsim,t+0)],P); 

        end 

        priceKernel{P,t}=fitdist(CostHist(P,:,t+2)',"kernel"); 

    end 

end 

close all; 

for t=1:TimeEnd 

     for j=1:Np 

    j; 
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    E=zeros(100,1); 

    R=zeros(100,1); 

    tempKernel=priceKernel{j,t}; 

        parfor i=1:100 

            inv=i*10; 

            [E(i),R(i)]=ExpRetRisk(inv,1000,j,tempKernel); 

        end 

    x=10:10:1000; 

    Efit{j,t}=fit(x',E,'smooth'); 

    Rfit{j,t}=fit(x',R,'smooth'); 

     

    if t==1 

    figure(4) 

    hold on 

    plot(Rfit{j,t}(x)'./x,Efit{j,t}(x)'./x,'LineWidth',2) 

    ylim([0,.2]) 

    xlim([0,0.05]) 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%defining the countries and running the optimizer 

CountryNames=["US","Australia","Canada","SA","Mongolia"]; 

CountryRisk=[0.00,0.00,5.00,7.63,9.0]/100/12; 

[weight,value,riskval]=optloop(TimeEnd,Capital,Nc*Np+1,Efit,Rfit,riskTol); 

for j=1:Nc 

     PGCweight(j,:)=weight(1,2+(j-1)*5:1+j*5); 

end 

PGCweight=sort(PGCweight,'descend'); 

PGCweight(PGCweight<0.001)=0; 

for j = 1:Nc 

    for i =1:Np 

            if PGCweight(j,i)<0.001 

                Return(j,i)=0; 

                Risk(j,i)=0; 

            else 

                valRe(j,i)=Efit{i,1}(PGCweight(j,i)*Capital); 

                valRi(j,i)=Rfit{i,1}(PGCweight(j,i)*Capital); 

        Return(j,i) =max(0,valRe(j,i)/(PGCweight(j,i)*Capital)); 

        Risk(j,i) =max(0,valRi(j,i)/(PGCweight(j,i)*Capital)+CountryRisk(j)); 
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            end 

    end 

end 

figure(4) 

xlabel('Risk %') 

ylabel('Return %') 

plot(Risk',Return','*','linewidth',4) 

legend('PG1','PG2','PG3','PG4','PG5','US','Australia','Canada','SA','Mongolia') 

title('Risk vs Return Graph (Note these are a function of investment)') 

 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Plotting the results and doing analysis 

for i = 1:Np 

CNames{i}=char(CountryNames(i)); 

end 

for i = 1:Np 

PGname{i}=['Product_Group_',int2str(i)]; 

end 

disp("The amount invested in each product  and country is below") 

array2table(PGCweight'*Capital,'VariableNames',CNames,'RowNames',PGname) 

 Eall=sum(sum(Return(:).*PGCweight(:)*Capital));  

Rall=sum(sum(Risk(:).*PGCweight(:)*Capital)); 

 disp(sprintf("The overall expected return this time period is: %.1f $MM\nThe overall expected 

VaR this time period is: %.1f $MM\n",Eall,Rall)) 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [weight,Capital,riskval]=optloop(timeEnd,CapitalStart,nvars,Efit,Rfit,riskTol) 

Capital(1)=CapitalStart; 

Aeq=ones(1,nvars); 

beq=1; 

A=[]; 

b=[]; 

lb(1,:)=zeros(1,nvars); 

for t=1:timeEnd 

ub=ones(1,nvars)*1000/Capital(t); 

ub(1)=1; 

 options=optimoptions('patternsearch','UseCompletePoll',true,'InitialMeshSize',0.055) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

weight(t,:)=patternsearch(@fun,ones(1,nvars)/nvars,A,b,Aeq,beq,lb(t,:),ub,@nonlcon,options); 
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Capital(t+1)=Capital(t)-fun(weight(t,:)); 

lb(t+1,:)=zeros(1,nvars)+weight(t,:)*Capital(t)/Capital(t+1); 

lb(t+1,1)=0; 

riskval(t)=nonlcon(weight(t,:))+riskTol; 

end 

 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function value=fun(x) 

value=0; 

for i=2:length(x) 

value = value + Efit{mod(i-1,5)+1,t}(x(i)*Capital(t)); 

end 

value=-value; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [C,Ceq] = nonlcon(x) 

risk=0; 

for i=2:length(x) 

risk = risk + Rfit{mod(i-1,5)+1,t}(x(i)*Capital(t))/Capital(t); 

end 

C=risk-riskTol; 

Ceq=0; 

end 

 end 

  

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [E,R] = ExpRetRisk(invested,trials,PGroup,kernel) 

%simulate a return based on an investment in a product group 

    for i=1:trials 

        Ret(i)=SimReturn(invested,PGroup,kernel); 

    end 

    E = mean(Ret); 

    R =std(Ret); 

end 

 

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function Return = SimReturn(invested,PGroup,kernel) 

%does a single simulation of a stochastic production process and product group selling price 

    Units =max(0,((smf(invested,[0 50]) + smf(invested,[50 1000])*7).* ... 



151 
 

           (normrnd(1,0.1./(max(invested.*PGroup/500,1))))... 

           -0.2*PGroup)); 

     

    costperunit = 2 +((invested-300-80*PGroup)/60)^2; 

    RandomFactor =normrnd(1,0.05); 

    Costs = costperunit*RandomFactor*Units; 

    Price= random(kernel,1,1); 

    Return = Units*Price-Costs; 

end 

  

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function ProductPrice = ProductMarket(priceHist,PGroup) 

    %Here we assume that the larger the product group number the larger the selling price and we 

will also assume more negative skew to simulate more "extreme" events 

    ProductPrice = (0.25*priceHist(2)+0.75*priceHist(1))*pearsrnd(1,0.05*PGroup,-PGroup/4,3); 

end 

  


