AN EVALUATION OF METHODS TO STUDY INTERSPECIFIC COMPETITION IN HAY AND PASTURE MIXTURES

by

Heinz Gasser

A THESIS

submitted to the Faculty of Graduate Studies and Research of McGill University in partial fulfilment of the requirements for the degree of Master of Science.

Department of Agronomy Macdonald College of McGill University, Montreal

April 1962

INTERSPECIFIC COMPETITION IN HAY

AND PASTURE MIXTURES

(Suggested short title)

" To him who is a discoverer in this field the products of his imagination appear so necessary and natural that he would like to have them regarded by others, not as creations of thoughts but as given realities." Einstein (1934). On the Method of Theoretical Physics. Essays in Science Philosophical Library New York.

ACKNOWLEDGEMENTS

The author wishes to extend his sincere thanks to the Quebec Agricultural Research Council for providing the scholarship without which this study could not have been undertaken, the Department of Agronomy for providing all the facilities to carry out the work, the Department of Agricultural Engineering for the assistance in the improvement of the point quadrat apparatus, and the Department of Horticulture for the use of their cold storage rooms.

Most of all he wishes to acknowledge the kind assistance and helpful criticism from Professor H.A.Steppler under whose guidance this project was carried out.

In addition, he is indebted to the field staff and the graduate students in the Department for their readiness to aid when requested.

Finally, he wishes to extend his genuine appreciation for the invaluable work done by those people responsible for the typing of this thesis.

TABLE OF CONTENTS

.

 \checkmark

111
b) Mixtures
II. Experiment II. Pasture mixtures and their pure
stands. 1960-196180
l. Yields of dry matter of the pure stands and
three mixtures
2. Yields of dry matter of the pasture mixture
trial 1960-196183
æ) Yields of DM 196083
b) Yields of DM 196183
3. Percentage composition and point quadrat
analysis. 1960-1961
a) Pure stands
b) Percentage composition of mixtures90
c) Point quadrat analysis of mixtures
4. Yieled per unit area of ground cover. Pasture
mixtures and pure stands. 1960-1961
a) Individual cuts
b) Seasonal averages, cuts 1, 2, 3
III. Hay mixtures and their pure stands
l. Yields of dry matter122
a) Pure stands122
b) Hay mixtures124
2. Percentage composition and point quadrat
analysis126
a) Pure stands126
b) Hay mixtures128

	iv 3. Yield per unit area of ground cover (Y./U.A. of G.C.)
	in hay mixtures and pure stands
IV.	A study of relationships existing in ground cover,
	density, Y./U.A. of G.C. in different cuts and
	at different angles of PQ inclinations.
	Pasture mixtures and pure stands142
	1. Between cuts. a) Ground cover142
	b) Density144
	c) Yield per unit area of ground cover144
	d) Competition index of mixtures145
	2. Between blocksl46
	3. Between angles146
V.	Relationships existing between grasses and
	legumes in ground cover, density and Y/U.A. of
	G.C. Hay and pasture mixtures148
VI.	Relationships existing between the number of
	components in a mixture and the respective compe-
	tition index. Hay and pasture mixtures150
VII.	Results on photosynthetic area index and net
	assimilation rate151
	A. Pasture mixtures. Point quadrat method151
	B. Pasture mixtures. Disc method155
	C. Hay mixtures. Disc. method
DISCU	JSSION AND CONCLUSIONS170
	A. Experiment II. DM. Botanical composition
	and PQ analysis171

a) Pa	asture mixtures	and pure	stands.	•••••	171
b) Ha	ay mixtures and	pure stan	ds	• • • • • • • • • •	175
B. Yield	d per unit area	of ground	cover	study	178
C. PAI	AND NAR	• • • • • • • • • • •	• • • • • • •	• • • • • • • • • •	187
SUMMARY				• • • • • • • • • •	193
BIBLIOGRAPHY	•••••			• • • • • • • • • •	196
ABREVIATIONS					

APPENDIX

ABBREVIATIONS

Af:	Alfalfa
As	Alsike
в.Т;	Birdsfoot trefoil
Br:	Bromegrass
Comp	Composition
Compon:	Components
D. or Dens	Density
DM	Dry matter
D.Wt:	Dry weight
G.C	Ground cover
G. Wt	Green weight
K.B. or K. Blue:	Kentucky bluegrass
L. or Lad	Ladino white clover
LA:	Leaf area
LAI:	Leef area index
Mixt. No	Mixture number
NAR	Net assimilation rate
0.G:	Orchardgrass
PA:	Photosynthetic area
PAI:	Photosynthetic area index
PQ:	Point quadrat
R.C	Red clover
R.can:	Reed canarygrass
T. or Tim:	Timothy
T.Fe:	Tall fescue grass
Y./U.A. of G.C:	Yield per unit area of ground cover

TABLE OF FIGURES

1.	Plan.	Pasture mixture trial 1960
2.	Field	layout. Pasture mixture trial 196143
3.	Plan.	Pasture mixture trial 196144
4.	Plan.	Pure stands. Pasture mixture trial 196145
5.	Field	layout. Hay mixture trial 1961
6.	Plan.	Hay mixture trial 196149
7.	Point	quadrat apparatus
8.	Layou	t explaining subplots in pasture mixtures57
Phot	tograpi	ns of point quadrat, pasture mixture trial 1961,
vol	inteer	Ladino problem
Phot	tograph	as of mixtures in pasture mixture trial 1961108

INTRODUCTION

Competition in plant communities is one of these concepts that has been investigated and discussed extensively and yet very few people if any have a thorough understanding of all its intricacies and complexities.

Any study that did or will reveal some of the unknowns of this phenomenon in grassland will be a step in the direction that will ultimately permit the attainment of the ideal pasture plant community. However, presently, until more is known, especially on the value of competition as it occurs in hay and pasture swards, any attempt to come forth with recommendations on the compounding of forage mixtures may be rather vain, because these will be only temporary.

Probably the earliest record of people being aware of competition dates back to the lith century when Peter de Crescentiis understood that competition existed between trees. Malthus expressed competition upon mankind in terms of population and food supply. De Condolle in the early 19th century gave probably the first definite characterization of plant competition when he stated that all the species of a region, all the plants of a given place are in a state of war with respect to each other. Darwin called this "the struggle for existence" and Spencer "the survival of the fittest". (Clements et al. 1929). Clements et al. (1929) did probably the most extensive study ever done on plant competition. It is doubtful that anything comparable has been produced since by any group of workers.

Currently, competition studies in grassland are done to any large extent, mainly in Australia, New Zealand and England. Some aspects of it are studied at Wageningen in Holland, various other places in Europe and also in Japan.

Competition has been defined in many ways; Clements et al. (1929) considered it a purely physical process, one that begins only when the immediate supply of a single necessary factor falls below the combined demand of the The factors in question are of course the water plant. supply, the nutrient material, the light and the micro-A definition of competition which was found to climate. be as good as any so far existing, was given by Yamada and Horinchi (1960). These workers defined competition "as interplant action and reaction as plants compete for water nutrients and light. But such reaction cannot itself be directly observed and consequently can only be recognized indirectly by its visible effect, phenotypic bias". It was however stressed that competition must be clearly distinguished from an internecine reaction, since the latter shows a bias in one direction only.

Very little work if any has been done to develop techniques which will give measurable value to competition. In the review following, the work of Caputs (1948) is considered and was found to be the only one to have had as an objective to give, if not an absolute value, at least a relative one, to competition as it occurred in simple forage mixtures.

The broad objective of this study was to establish a technique which could be applied to assess competition as it occurs in the forage plant communities. More precisely this investigation, was concerned with obtaining a method that would permit the measuring of competition in hay and pasture mixtures, on the basis of quantitative characters which determine the competitive ability of a plant.

The first method to be used, is the yield per unit area of ground cover as obtained from both the dry matter yield and the point quadrat. The measure was based "on the mathematical concept of homogeneity of a unit area as represented by a pinpoint". This concept was introduced by Levy and Madden (1933), and limited in this study to a unit area of ground cover. On this basis, it was assumed that a unit area of ground will produce the same yield of dry matter, irrespective of whether the ground was covered by a species in pure stand and the same species in a mixed stand, and therefore there is no competition. The direct objective was then to prove or disprove this hypothesis with the measure "yield per unit area of ground

cover", the "total photosynthetic" area and hence the net assimilation rate.

If these studies should prove to be conclusive enough, then it may be envisaged that future research programs should be set up with the objective to study competition, based on the measurement of competition, in hay and pasture mixtures.

This could encompass a more direct study towards the understanding of the effects of water, nutrients, light and the micro-climate on plants when they compete for these factors.

LITERATURE REVIEW

I The Point Quadrat

(i) <u>Ground Cover</u> In past work the term 'cover' has been used to measure a) the relative importance of the species in the plant community, b) to express the area of ground, covered by one species in relation to total ground surface.

Knutti (1961) defined 'cover' as the "vertical projection of the above ground parts onto the ground". For the study he had undertaken he expressed the area covered, in relation to the total ground cover, and the relative importance of the species was expressed in terms of the relationship existing between 'cover' and the total area covered by the investigation.

According to this author, there are 3 main methods of estimating ground cover:

- a) Visually (which is used currently by European ecologists).
- b) The percentage area estimation, which involves the use of quadrats or grids to give estimates of ground cover.

c) The point quadrat method (abreviated as PQ from here on). from Levy and Madden (1933)

The first two of these are more or less subjective methods and are dependent to a large extent on personal factors.

The third method which will be the only one this literature review will be concerned with, is the most objective of them all. The only sources of subjectivity that could be introduced, would be incomplete knowledge of the species under consideration, meteorological, and others of such character but which are not likely to be met with frequently.

According to Brown (1954), the opinion of most of the investigators that have worked with the point quadrat method is that it "has every prospect of becoming the accepted one, for large scale survey as well as for exact analysis".

Wagner (1952) suggested that in actual practice, one of the more appropriate ways of using the PQ is to measure ground cover of a species. This is done by recording the first hit on each species on any one needle. That this could give an estimate of the area of ground covered by any one species, is readily acceptable, if it is assumed that a point represents, in this method, a quadrat which was smaller and smaller until it became infinite.

Thus up to the present time many workers have used this method.

In a study of herbaceous vegetation Heady (1957) measured and determined the value of height of plants. He suggested that height as he measured it, gave a vertical dimension to the concept of foliage cover.

Jones and Evans (1959) used the averaged speciesheight, multiplied by the percentage ground cover of the species obtained by PQ analysis to give a H x G value. This was then compared with the dry matter yield obtained from one or 3 one square foot quadrats in 8 comparisons. They obtained highly significant correlations between observed and calculated yields but in general low r^2 values. The H x G factors for each species showed more significant differences between treatments and lower C.V. then the observed yield from that species. These workers concluded that the H x G factor was faster and more precise.

(ii) <u>Density</u>. This has been defined by Goodall (1952) as the number of individuals or shoots per unit area and restricted by Brown (1954) to the number of individuals of a species per unit area. Cottam, et al. (1953) used the same definition for what they termed 'area density'. Furthermore, they defined 'relative density' as a percentage of the total number of individuals present in a plant community. In the first instance the term was applied to the relationship existing, between the number of individuals present and a unit area (quadrat, 100 square metres, acre). In the second instance, density was expressed as the ratio:total number of individuals of one species/total number of individuals of all species multiplied by 100, which appears to be simply the percentage composition of a species in a sward.

Whitman and Siggeirsson (1954) indicated that the point contact method gave them an overall higher density evaluation for most species and groups than the line interception method. In the study they undertook they recorded a) all the hits on a species, b) only the hit when the pin made contact with the base of the plant. They found that the first of these gave a variation that was equal to that obtained with the line interception method, in indicating the presence of a species on a study area, whereas the basal contact method The intensity of sampling used by these workers was poorer. was 120 line transects and 3000 points for the PQ method. The density of the 'all-contact! method was calculated by "expressing the number of hits on any one species per 100 points and multiplying this by 100 minus the percentage bare ground". It may be in order here, to point out that this calculation appe ars to be no different from what Levy (1933) used to obtain what he termed "Percentage cover each species is contributing to the total area".

Cottem and Curtis (1956) did not find 'area density' as defined by Cottem et al. 1953 (see above) a satisfactory measure to study 3 forest communities. Instead they used the amount of area per plant, which according to these authors is related to a mean area (M) which is equal to ¹/density. Density was then determined per unit area, and obtained from the distance between plants measurement which is equal to the . square root of M.

Spedding and Large (1957) measured density with the PQ on the assumption that for a given species, density is directly proportional to the number of hits recorded. This callows them to express density by the mean number of hits (per 100 points) per inch since they also measured height. This same definition or use of density has been used in the present study.

Warren Wilson (1959a) in a paper in which he reports an analysis of the spatial distribution of foliage by a two dimensional PQ method, describes 'foliage denseness' (F). He defines this function as the total area of foliage per unit volume of space. By measuring this F with a PQ on a horizontal and vertical plane, he obtained projections of F_{90} and F_0 which he called 'contact frequency'. This was defined as the number of contacts with foliage per unit length of point quadrat.

(iii) <u>Number of Points</u> The work done on the number of points required in PQ sampling of vegetation was very ably reviewed by Dorothy Brown (1954). However it was found worthwhile to mention some of these studies with little more detail. Clark et al. (1942) found that the number of samples required to determine botanical composition is apparently a function of the grass cover. They did not specify, however, the number of points used in their study. Yet, their results indicated that a satisfactory sampling is obtained when the standard error is less than 5%. In most cases this would require 2000-4000 points or 200-400 stations of a 10 point PQ.

To reduce the error to 1% would require a sampling of 80000 points (approx.). Further, they go on to say that with a ground cover (basal hits only) of 5%, 3600 points are necessary and when this goes up to 18%, 2400 points are sufficient. This of course applies to open rangeland.

Crocker and Tiver 1948 studied cover on grassland in Southeastern Australia. They came to the conclusion that 300-500 point samples per unit area (paddock, field) were a satisfactory number.

Whitman and Siggeirsson (1954) found that on a mixedgrass prairie in North Dakota, 1400 all-contact or 3600 basalcontact points were required to give a sampling error of 10% or less for the major components and one of 10-20% for all the other sepcies or groups except plains grass (Calamagrostis mantanensis). Heady (1957) in measuring height of plants in a 200 acre pasture, in 3 successive samplings used a total of No mention was made, in what proportion these 1890 points. Spedding and Large (1957) in an experiment on were used. height and density in pastures, sampled 10 PQ frames (100 points) 5 times in succession on a 1 acre plot. Johnston (1957) in evaluating methods of measuring grassland vegetation, determined that 10 transects, each 50 feet long will sample vegetation in Southern Alberts with the PQ to 10% of the basal area.

Van Keuren and Ahlgren (1957a) used 20 locations to evakuate the botanical composition of a sward by different methods. Within each location a vertical and inclined PQ (45°)

was used in 4 different positions. Thus 40 points per location and 800 points per method were analyzed. The species in the various pastures studied varied in actual percentage composition from 9.0% to 13.5%. The same authors (1957b) in a study of the same nature, but on several forage mixtures and one pasture did their sampling on 13 feet 2 inches by 30 feet strips. In the mixtures they used 6 positions or 60 points and in the pasture 12 positions or 120 points.

(iv) <u>Botanical Composition</u> In reviewing past studies, 4 main methods to evaluate botanical composition in a sward are encountered: a) visual estimation, b) count list, c) hand separation or weight list, d) PQ method. All of these are also found as various modifications.

Within the PQ method modifications as to angles of inclinations, position of point quadrat with respect to the points of the compass, kinds of hits recorded are frequently used.

Drew (1944) compared the count list, the vertical PQ, the inclined PQ and the weight list, to obtain percentage composition. Ten half-square metre areas of a grass-lespedeza mixture were selected at random, and in each area the stems of individual plants were counted. Following this PQ readings were obtained at 90° and 45° angles at 3 different positions of the PQ. The first hits on a species at one instance and all hits at another were recorded. After these operations each half-square metre area was clipped and the material

was hand separated. The results obtained by this worker indicated that the PQ method yielded more satisfactory percentages composition than the count-list method and that the evaluation of correction factors was not necessary. He also found that the inclined PQ, and recording all hits gave better estimations than the other techniques used. But that the stages of development of the species under study determined the type of analysis to be used and "that this method should be evaluated on the basis of repeated trials".

Arny (1948) did a PQ enalysis study on alfalfa and grass mixtures at different stages of development. After each reading was completed the area under the PQ (10 x 19 inches) was cut and hand separated. He came to the conclusion that correction factors were necessary for this specific type of sward.

Sprague and Myers (1945) performed a similar experiment on Kentucky bluegrass and white clover. However, they used orly the inclined PQ and 2 ways of sampling in view of hand separations. They concluded that samples one-fourth the size (of the large samples used) could be used for hand separations and that correcting data with a constant would provide inaccurate results.

Crocker and Tiver (1948) state that the PQ technique is especially useful in assessing botanical composition changes associated with the improvement of pastures. Leasure (1949)

used a) the PQ technique, b) hand separations, c) visual estimations of standing forage by 3 different observers, to determine the botanical composition of miscellaneous grasses. He obtained a bias of \pm 10% from the true botanical composition of a simple sampling area and a bias not much different from that for visual estimations.

Van Keuren and Ahlgren (1957a and 1957b) estimated visually the percentage composition of standing forage and cut forage, as well as by PQ. They found that the PQ technique gave reliable results for botanical composition of a sward, and that the visual estimation of standing forage had greater variations than the PQ method. However, in their second study, these authors concluded that both PQ and visual estimation of standing forage provide satisfactory botanical composition estimations. Furthermore, they suggested that correction factors based on yields per hit were better than the regression coefficient based on yield of forage. The regression coefficient according to these authors, did not provide good estimates of yield of forage by the inclined PQ technique.

II Leaf Area Index and Net Assimilation Rate

The subject of leaf area index and net assimilation rate was reviewed quite t horoughly by Watson (1952) under the heading: "The Physiological Basis of Variation in Yield".

Thus, according to Watson, Blackman was the first to develop a technique of growth analysis involving the change

However, Gregory was the first to use the in dry weight. function $^{\perp}/L$ $^{dw}/dt$ and called it net assimilation rate (NAR). (L was the total leaf area and dw, the dry weight of a plant at any time.) From this Watson suggests that the rate of increase in dry weight per unit leaf area is obviously a measure of what the plant produces in excess by photosynthesis over the loss by respiration. Furthermore, he explains that the relative growth rate (RGR) is the product of NAR and the ratio of leaf area to total dry weight (L/w). This ratio, Watson states, "may be regarded as the amount of growing material per unit dry weight of the plant". Both of these functions RGR and L/w are complex functions and difficult to interpret and Watson suggests that a form of enelysis which does not involve their use is readily obtained. This wasarrived at on the basis that the product of NAR and total leaf area give the absolute growth rate in dry weight Taking the integral of this, the accumulation of (dW/dt). total dry matter during any time interval is obtained. Fisher, as mentioned by the author, showed that if W1 and W2 are the total dry weights at time interval t1 and t2 respectively, the mean value of RGR during this time interval is given $\log_{\Theta} W_2 - \log_{\Theta} W_1$ whatever the growth form. Then following bγ Gregory, Watson says, "it has been usual to calculate NAR as $\frac{(W_2 - W_1) (\log_e L_2 - \log_e L_1)}{(t_2 - t_1) (L_2 - L_1)}$ However, one objection to the

overall use of this formula was that only a linear relationship was assumed to exist between L and W. But as Watson points out, if the time interval chosen to measure NAR is sufficiently short, i.e., 1-2 weeks, such an assumption is justified.

Following this, the techniques to measure leaf area were reviewed someof which are: the photometer, tracing, photographing, the estimation of total leaf area from the proportion L/w of a subsemple to the total leaf weight.

Watson was then concerned with, the analysis of yield with the function NAR, which he considered a measure of efficiency and LA, the capacity of the photosynthetic system. He also reviewed the limitations of the concept of NAR, pointing out that the adjective 'net' implies that NAR is not a pure measure of photosynthesis, but depends on the excess of dry matter gain by photosynthesis over the loss by respire-

tion. Watson suggested that the ideal basis on which to express NAR would be one that gives a precise measure of the dry matter accumulation, that is, the 'internal factor' or 'growing material' of the plant. It follows then, that if NAR is expressed on such a basis, it would vary only with external factors and "would be independent of age, nutritional state and species". In this respect photosynthesis would be an appropriate criterion and could be expressed on the basis of leaf area.

Other people have expressed NAR on the basis of leaf dry weight, total protein-nitrogen in the leaf and Williams even used the cytoplasmic protein of the leaf.

The fact that the roots are not considered is another shortcoming to the use of NAR, however, these are only important in the early stages of growth. Similarly, the fact that only the leaf material of the plant is used in the analysis of NAR, may be a drawback, depending on the stages of development and species.

The last 2 parts of Watson's review was concerned with experimental results and the discussion of these, as obtained by many workers in the years prior to 1952. These experiments were categorized under 3 headings: a) Variation of NAR, b) Variation of LAI, c) Importance of these variations in determining yield.

On the variations of NAR Watson concluded that these exist between and within species, with mineral nutrition and water supply, and vary widely with seasonal climatic conditions. However, this is in opposition to Gregory who, as suggested by Watson, considers that NAR in nature is not a very variable quantity.

Furthermore, Watson (1952) reconsidered studies done on the variation of LA with time, by Watson and Boonstra, the causes of the variation with time by Russell and Watson; on intraspecific differences by Boonstra, Watson and Baptiste; the effects of climatic factors by Gregory, Blackman, Rutter,

Wilson, Monelise, Milthorpe; the effects of variations due to mineral nutrient supply and water by Watson, Morton, Petrie, Ward, Arthur, Milthorpe, Wadleigh and Gauch. In summarizing the relative importance of these variations in leaf area on yield determinations, Watson suggested that later work has confirmed, in general, that dry matter yield is more dependent on LA than it is on NAR. He considered that there appears to be little opportunity for increasing yield through an increase in NAR and found that there is a need for more work on the physiology of leaf growth and the causes of variation in yield such as leaf production and leaf expansion.

Since 1952 a considerable smount of work on LA and NAR was done throughout the world, especially in Australia and New Zealand.

Thus enother review on the significance of LA in pasture growth by Donald and Black (1958), is considered here. These workers considered the inter-relationship of light and LA. They stressed the importance of the significance of the leaf surface-soil surface relation of the pasture crop as formulated and called LAI by Watson. They suggested that this gives a measure which allows the close comparison of weight yields of different crops per unit area of land with respect to the leaf area per unit area of land. They also noted that such a measure appears to be very satisfactory in agriculture.

In considering the LAI values obtained by different workers on different crops, Donald and Black found that pasture crops have probably higher indices than any other field crop. Brougham obtained a leaf area index of 8.9 for a perennial ryegrass-white clover mixture. A leaf area index of subterranean clover was estimated at 8.9 by Davidson and 6.2 by Black. On the other hand, Watsom obtained LAI's between 2.4 and 5.0 for wheat, barley, potatoes, mangolds, kale and sugar beets.

On the effects of light these authors stressed that a leaf system capable of intercepting a maximum of light is of primary importance, but that at too high leaf area index values mutual shading occurs. They also pointed out that Brougham's work confirmed the hypothesis, that maximum rate of growth is dependent on a high rate of interception of light energy.

Furthermore, Davidson and Donald (1958) in a density and defoliation study with particular reference to LAI found that swards of subterranean clover established with 1, 4, 14 and 50 plants per square link, tended all to give a common LAI (about 8.0) at the end of the season.

Similarly, Black (1958) using the leaf area and the light micro-climate to study competition in subterranean clover, found that swards from different initial seed size, reach a point when the growth rate was reduced towards a common ceiling LAI value, and therefore all gave the same final yield.

Finally, Stern and Donald (1961) studied and discussed

the relationship of radiation, LAI and crop-growth rate. They indicated that previous evidence showed that for every level of radiation, there appears to exist an optimum LAI with maximum crop-growth rate and that this optimum leaf area index increased with an increase in radiation. With the results they have secured, they have attempted to show such a relationship, but insufficient data did not allow them to reach a conclusion.

Methods to determine LAI A good review of the methods to measure leaf area was presented by Winter et al. (1956) at the Third Easter School of the University of Nottingham, England. Also new techniques to measure leaf growth and leaf area were proposed by Langer; Freeman and Bolas; Maggs; Aspinal, Dorer and Milthorpe; Idle. (Milthorpe 1956).

Warren Wilson (1959b) suggested the PQ to determine leaf area. This was based on the assumption that numbers of contacts per quadrat will give an estimate of the quantity of the foliage. "Theoretically it measures the area of the foliage in vertical projection, expressed as a fraction of the area of ground." Taking into consideration that errors such as needle thickness, variations in foliage angles are easily introduced, Warren Wilson determined the best angles of inclinations that would give an estimate to reasonable degrees of accuracy. His studies indicated that an angle of 29° would give an error of $\pm 15\%$. An inclination of 32.5° corrected by multiplying the number

of contacts with the factor 1.1 would give an error of \pm 10%. and the combination of angles 13 ° and 52 ° would give an error of \pm 2% when the number of contacts at each angle were corrected with appropriate factors. He even suggested that a combination of 3 angles would give an estimate with an error of \pm 1%. Another technique was proposed by Donald at the Proceedings of the 6th Easter School of the University of Nottingham. This method measures LA, using the principle of interrupting an air flow. It was claimed that this technique was ten times as fast as the pre-existing blue-print method and even more accurate since it gave more uniform observations. (Ivins 1959).

It may be appropriate to conclude this part on LAI and NAR by citing a statement made by Donald at this 6th Easter School just mentioned. He claimed that "as empirical methods had not achieved a great deal in the past, the new approach to pasture evaluation must be in terms of leaf area measurements, for light, temperature and leaf area determine productivity, and leaf area is important in relation to defoliation". (Ivins 1959.)

III Competition in Forage Crops

This part of the literature review may appear rather disjointed and resembles a pile of research papers stacked in chronological order, in some remote part of a library. Yet, the nature of the title and the exclus vness of the study undertaken prevented any other treatment of the subject since only

a few studies were directly and solely concerned with competition and only one, to this author's knowledge ever attempted to measure competition, namely Caputa (1948).

Other workers have studied the nature of competition, the factors governing it, or have only stated that it was occurring and may have evaluated it indirectly. However, it must be noted that in recent years, many great contributions were made by scientists of England, New Zealand, Australia, Japan, and others.

This review of literature will then briefly take into consideration, in a chronological order, research work relating directly or indirectly to the study, in whatever form conceivable, of competition in forage crops.

Probably the most extensive study of competition in the plant community ever undertaken was done by Clements et al. (1929) According to Donald (1956) this was "the first substantial contribution to our understanding of competition in pastures". The concepts established by these authors may be used as satisfactory criteria and are still valid. The only change that has been made to Clements' concepts according to Donald (1956) was that "sertain plants are able to gain a competitive advantage by the excretion from their roots or leaves of substances which supress neighbouring plant growth. How important this new concept is in competition occurring in pasture plants has yet to be determined. There does not appear to be any substantial proof towards that direction.

Chippindale (1931) in a study not directly concerned with competition, found that upon seeding, Festuca pratensis and Phleum pratense into a Lolium italicum sward, that these two grasses were set back to a rather unusual degree, in their When they were transferred to a more favorable growth. environment they were capable of a better development. This capacity of recovery was thought to be a major attribute of these grasses in competing under "feral" conditions. This led to another study by Chippindale (1932), when the effects of the Lolium spp.upon the growth of grasses during and following germination were examined. The author evaluated these effects mainly on the basis of seedling counts. Effects of various other factors of competition acting on germination than those due to Lolium spp. were discussed.

Varma (1938) in a series of experiments attempted to study the nature of competition between plants in the early phases of development. In one experiment the death rate was used to evaluate competition. It was found that"the intensity of competition is usually greater in mixed cultures than in cultures of individuals of a single species". Yet the author brings forth evidence that competition as severe may be found between individuals of the same species. The depressing effect of one species upon another was also studied and found to be in fact due to toxic soluble substances. However, none of these so-called toxic substances were isolated.

Donald (1946) tested the validity of some of the conclusions

reached by American workers, on harmful root interactions which were the cause of additional competition effects. He obtained evidence that the hypothesis of toxic excretions by roots may be disregarded when compounding seed mixtures. Keller (1946) proposed a method for forage crops plant breeders, which would by means of systematic arrangement of species simulate competition "as it is found in the field". Rummell (1946) carried out an experiment in which he attempted to determine competition effects of Bromus tectorum on Agropyron cristetum and Ag. smithii. For this he collected data on the number of seedlings, DM of tops and roots, average height of tops to leaf tips, average lenght of the root system, number of tillers, of rhizomes, and lenght of the rhizomes as well as the number of shoots from the rhizome of bluestem (Ag. smithii). He found that cheatgrass (B. tectorum) affected all of these factors measured from bluestem and crested wheat-grass. However, no evaluation of the degree of competition was obtained.

Capute (1948) as mentioned previously was the only one, to my knowledge, who reported on measurements of a "competition force" of foliage species. However, as stated by the author no absolute estimations were obtained but merely measures that should be relative to one another. He studied 9 grasses and 4 legumes, almost in all the combinations of two, and in pure stands and obtained seven degrees "competition" on the basis of green weight yields collected during 2 years. A "competition force" was then calculated for each species in each mixture.

Competition indices were given to each species according to a "productivity factor" which was also obtained on a weight basis but of the pure stands, however. This was done by equating all the species in pure stands with the yield of red clover in pure stands. Thus red clover in pure stand obtained a "productivity factor" of 1.0.

Thus to obtain the "competitive force" the author calculated all possible ratios of every species when it was associated with another, on a 2 year average basis. These ratios were then grouped into seven classes of ascending order from -3 to +3; -3 meaning "completely suppressed to invaded" and +3 meaning "completely suppressing to invading". On this basis then every species was grouped with its associated species, and a "competition force" value was assigned to these. Thus for example Lolium italicum headed ome group; its green weight in proportion to the 12 species it was associated with, gave 12 ratios, and according to the class these ratios fitted, the species were given the corresponding "competition force"value".

With the competition index, obtained as mentioned above, Caputa calculated a "competition force" of any species X with respect to a species Y. This was done simply by substracting from the competition index of species X, that of species Y. This then may have been an "expected competition force" although this was not stated. Upon comparing this "expected" with the actual values obtained, the author found that they did not always agree, but concluded that this was of little significance. It should be noted that despite the complexity of this experiment and even though 9 replications were used (these appear nonorthogonal) no statistical analysis whatsoever was performed on the results.

Donald (1951) studied the influence of plant density, of the stage of growth, and of the nutrient supply on intraspecific competition of 3 pasture species. Competition according to the author became operative in dense swards shortly after seeding. Final yield was constant from moderate to high yields, but there was no reduction in the yields of dense swards.

McCloud and Mott (1953) used pure stands of grasses and of legumes, and each species of the pure stands was associated with each other species. They evaluated the interactions of species on a DM yield basis, as a percentage of the yield of the species in pure stands. Among other results, the authors report that "Ladino clover was benefitted by association with all species except bromegrass, and the extremely large benefit from association with birdsfoot trefoil is noteworthy" !

Knapp and Linskens (1952) studied, in Germany, the effects upon one another of grasses and clovers in rye-grass/white clover swards which they called "Lolieto-Cynosuretum typicum". Kubler (1954) made a contribution to the understanding of competition among meadow species. Willougby (1954) studied some of the factors which are operative within a grass-clover relationship. Shallow cultivation, removal of clover from
mixed swards, nitrogen and phosphorus during two seasons of the year and continuous phosphorus over the years were The only data collected was yield of dry matter investigated. and the interrelationships of the results were discussed on Yawalkar and Schmid (1954) evaluated the perthat basis. formance of birdsfoot trefoil alone and in competition with other species in pastures. They collected data on hand separations, visual estimations, and yield. Highest yields were obtained from mixtures with alfalfa and the contribution made by B.T. was found to be small. Tuska and others (1955) conducted an experiment on the Merion bluegrass in the greenhouse. They studied the effects of competition on this grass when seeded in mixtures, as well as heights of cutting and levels of nitrogen. The data collected were, the dry matter of the tops and the roots.

In Spain, Alfonso and Gonzales (1956 and 1958) conducted a series of competition studies with tall catgrass and lucerne. In their first study the raw protein content of catgrass was lower when it was sown alone. However, lucerne appeared to yield less raw protein when in mixture than when alone. In the second study the total green weight yields of the mixtures were significantly higher than those of the pure stands.

Blaser et al. (1956a and 1956b) strove to obtain basic information on seeding behaviour of perennial grasses and legumes on the basis of the compatibility of the species involved and their respective botanical composition. In the

first study they classified species or varieties into: nonagressive, agressive and very agressive. In the second study they considered alfalfa when grown alone and in mixture with red clover and orchard-grass. They made stand counts, and obtained weights on the above-ground portions of the seedlings. Hay yield and root weights were also reported.

Wilson and Peake (1956) compared total production and seasonal growth trends of 3 grass species grown singly and in mixtures with white clover. Botanical analysis and N determinations were made (crude protein). On this basis they evaluated the effects of competition of one species upon another. According to these workers the growth of each species in a mixture depended on the importance of the factor for which it was unable to compete. They claim that the attitude taken by many workers, namely, that the more diverse the characteristic of the component species, the better they will grow in association with each other is not justified on the basis of their findings. They concluded that "the influence of one species on another was such that none could fully express its individual characteristic."

Donald (1956) in an address given to the 7th International Grassland Congress at Palmerston. North, New Zealand, reviewed the work done on competition among pasture plants. He discussed the importance of the work done on the light penetration in pasture swards by Black, Brougham, Davidson and himself,

the studies of the supply of nutrients by Anderson, Willougby and others, his own work on the interaction of competition for several factors (published since), plant density and "the effect of the grazing animal and plant competition". He suggested that if nutrients are found in sufficient quantity, so as not to be limiting, and if the same applies for the water supply, then the rate of growth of a sward (of particular genetic composition) will depend on light and temperature only. He went on to say that "if growth is dependent on radiation and temperature and since temperature is not limiting in quantity", light becomes the sole factor for which there is competition among plants. However, it could be assumed with reasonable assurance that a micro-climate in pure stands is not similar to that of another species in pure stand. And since such an environment can be thought of, as being inherent to that species, therefore the species may have developed a requirement for a certain micro-climate that is optimum for its maximum growth. It is then questionable that an optimum temperature for this species, is also available in a mixture; probably to the contrary, it may be a limiting factor.

Further, Donald thinks it is possible that certain species such as the grasses may have an advantage in the use of the incident light since their foliage is displayed at random angles but not so for the clovers which have a horizontal canopy. This appeared to be in opposition to what other people have surmised. On density this worker related the difference

in optimum density of annuals versus perennials. He pointed out that the annuals give higher yields and early production, when sown at high rates, whereas the perennials are too often sown at rates that are well above the optimum.

Further, Donald (1956) finds that there is little known on the relationship, grazing animal/pasture, and that more work should be done on the multiple effects of grazing on the factors of competition.

Johnson (1956) studied competition between legume and grass varieties in perennial forage mixtures. Scholl and Staniforth (1957) showed that birdsfoot trefoil was a poor competitor and that upon applying herbicides or by removing the weeds by hand both the yields per plant and the dry matter yield per unit area of birdsfoot increased manifold. Baylor (1958) considered the manner in which several factors of competition affected the establishment and early development of birdsfoot trefoil. They found that the presence of lucerne or timothy had no effect on trefoil in the year of seeding. Competition from lucerne on trefoil was said to have started in the spring of the first year of crop. This worker also found that the top weight and root diameter were good indicators of root development.

Black (1958) investigated the problem of seed size and its relationship with competition in subterreanean clover. He corroborated the evidence brought forth by Davidson and Donald, (1952)³, that small seeded plants disappeared from a sward before

the large seeded ones.

Chamblee (1958), in an experiment to determine the relationships existing between the above and below ground parts of an alfalfa-orchard-grass mixture, found that both species gave higher yield in mixed stands, whether they were partitioned with a metal sheet to a depth of 30 inches in the ground or not. Alfalfa rows gave higher yields when grown between orchardgrass rows, than when grown between other rows of alfalfa.

Donald (1958) set up an experiment using Lolium perenne and Phalaris tuberosa in such a manner that he obtained treatments where no competition, competition for light and competition for both light and nutrients occurred. The nutrient in this experiment was in the form of N. Competition was estimated on the basis of yield of dry matter of the species, per cent nitrogen in the tops and tiller counts at the final harvest. The results obtained by this worker indicated that rye-grass suffered only slightly from competition for either light or nutrients alone, but when the competition was operating for both of these it did not yield significantly different from the pure stand. Phalaris was supressed when competing for either light or nutrients, and when both factors were operative it suffered to such a degree, exceeding the separate effects of both factors. For Lolium the interaction was said to have been negative and for Phalaris positive. This experiment appeared to have been ideally conducted and well planned.

Yet it is to be deplored that the author did not try to measure competition per se. This would have given real value to the findings obtained, more so than qualitative conclusions.

Krilcher and Heinrichs (1958) studied competition occurring in swards of 3 grasses grown alone and in mixture with The grasses used were Agropyron spp. seeded pure alfalfa. in alternate rows with alfalfa, as mixed rows with alfalfa, and in rows only of pure stands. Dry matter yields and hand separation data were collected. At the end of the experiment ground cover was determined for each plot. The authors reported that the 3 groups displayed "changing degrees of response" whem seeded in different ways with alfalfa. They also suggested "that grasses should be tested under conditions in which they are most likely to be used". Yet, these workers implied that crested wheat-grass was the most competitive.of the grasses, on the basis that its ground cover in mixture with alfalfs was nearly as great as when seeded alone.

Krenzin (1958), Leith and Ellenberg (1958) in Germany, Mouat and Walker (1959) and Tawsii (1959) all investigated the relationship existing between species or within species whem sown alone and in mixtures, with or without superimposed treatments.

Gardner (1960) at the 8th International Grassland Congress at Reading, England introduced a method by which he evaluated intercultivar competition in grass species, with relative ease. This technique allowed him to identify positively grasses of

similar appearance when growing in an artificial sward in which competition was present. A preconstructed wire mesh allowed the reconstitution of a sward with each gress in a predetermined square of the wire mesh. This latter was placed permanently at ground level. In this manner every plant, in every square could be cut individually and the dry matter per plant recorded. It is obvious that such a technique is of great interest and could be used with even more ease in evaluating competition in swards of various complexity.

Norman (1960) in a series of experiments studied the relationship between competition and defoliation in a permanent pasture. Under different grazing treatments, units (6" diameter) of "no competition" were compared with units of "competition". Further research, according to the author, was done "due to unusual results from competition tests in swards under periodic defoliation" (he referred to his first experiment), "two special effects upon species due to presence of surrounding herbage were investigated." One of these experiments consisted in replacing grazing by cutting treatments, of the "competition" and "no competition units", the other consisted of allowing a "competition period" and a "recovery period" according to species in the two type of units described above. A fourth experiment was set up with two "no competition" and one "competition" treatments. Norman, then superimposed treatments, consisting of cutting all the plants of one series of "no competition" units at the same height and the other, of

removing the same proportion of above-ground parts as in the "competition" units. A fifth experiment consisted of cutting test species at 1 inch and 3 inch, in the "no competition" units competing with surrounding herbage cut at 1 inch only and at 3 inches. This would then simulate the effects of selective grazing. The author concluded that factors of competition and defoliation which exerted "maximum influence" upon a species sensitive to all the factors investigated would be (i) normal interactions of competition and defoliation, (ii) the effects of shading causing an erect habit, (iii) the effects of shading causing an increased top:root ratio (no mention was made of this measurement, (iv) the effects of preferential grazing.

Yamada and Horinchi (1960) at the 8th International Grassland Congress of Reading, England, summarized a series of experiments performed by the authors, in past years. They were concerned in studying intraspecific competition in barley, soybean, red clover and wheat and between white clover and orchard-grass. They measured such quantitative characters as height of plant or culm, number of tillers, shoot weight, number of stolons, number of leaves, petiole length, length of stolon and internodes, length of longest stolon. They found that the number of tillers and shoot weight was affected by competition, whereas the height of plants and leaf length were not. In general, the authors suggested that characters of a

"quantitative nature" were affected by competition, while characters associated with elongation of tissue remained unaffected. Furthermore, they stated that "the main characters which govern the competitive ability of plants, such as plant height or root length are associated with tissue elongation and are therefore unaffected by competition" and also that such external quantitative characters as those concerned with water, nutrient and light are measures of competitive ability. Should this last statement be reasonably accurate, then it is conceivable that date which are in direct relation with water, light and nutrients should be collected to measure competition.

De Witt end others (1960), also at the International Congress, proposed a theory on competition between plants within mixed crops and swards. As part of this theory they distinguished between five models of competition, based on the concepts which assume that plants within a community are crowding for space. However, the fifth model included detrimental effects of one species on another due to toxic substances. Even though De Witt et al. consider mainly the concept of crowding for space to be operative when competition occurs, they fully recognize, as they state for model (iv) that competition may occur "if some requisite obtained from the soil limits growth and ome species can explore the soil to a greater depth then the other". Thus accepting in this instance, that space is not limiting.

Domald (1956) stated quite clearly the role of space in competition work, and deplored the fact that this term is loosely

referred to in the literature (this author can only agree e.g. McCloud and Mott (1953) stated that "forage yield of each component of the mixture for the first season seemed to be largely governed by space competition" p. 62, and many others). Donald went on to say that so far there appears to be no evidence that this is a factor of competition as it occurs in pasture swards. No new evidence of this, that seems to be conclusive has been advanced to this date.

MATERIALS AND METHODS

I. EXPERIMENT I

Pasture Mixtures Trial 1960

A. Materials

The research concerned with the data collected for this experiment was carried out during the summer of 1960. This research was purely of an exploratory nature and for this reason was conducted on an early established pasture mixture trial, which was seeded in the spring of 1958.

The soil of the experimental area was of 2 types, differing mainly by the amount of clay present in their composition. They were Chateauguay clay loam and shallow clay loam and St. Bernard loam. Oats had been seeded as a companion crop at the rate of one and a half bushels peracre, and was clipped regularly during the summer of the seeding year.

An application of 0-16-8 fertilizer was done at seeding time at the rate of 300 lb. to the acre and another in the spring of 1959.

The experiment was laid down as complete randomized blocks in 4 replications. The treatments were 17 mixtures of grasses and legumes, in various combinations and complexity (see fig. 1). The species seeded were as follows:

Climax timothy Certified Lasalle red clover California Certified Ladino clover Empire birdsfoot trefoil Vernal alfalfa Avon orchard grass Reed camary grass Alsike clover Kentucky 31 Tall fescue Lincoln bromegrass

Together with this pasture mixture trial, pure stand cuts were obtained from a timothy (heights of cutting) trial, and from filler plots of each a brome grass variety trial and alfalfa variety trial.

The size of each plot was 51×8 links, of which a strip of 40 x 5 links was harvested or approximately 8 square metres. The harvesting was done with a self-propelled "Gravely" clipper, having a 5-link cutting-bar and pan attachment, at a height of approximately $l\frac{1}{2}$ inches.

A point quadrat apparatus with a frame containing ten finely pointed needles or pins was used at an inclination of approximately 45° , to collect data on ground cover.

B. Methods

a) Cutting

The pasture mixture was cut 5 times in 1960 at approximately monthly intervals. However, the 4th cut of timothy had to be discarded due to droughty conditions and consequently gave insignificant yield. Cut 2 and 3 of alfalfa and brome were mot available due to an error in procedure.

b) Point Quadrat Analysis

Before every cut (2-3 weeks) a point quadrat analysis

PASTURE MIXTURE TRIAL EXPERIMENT I

Seeded May 6th, 1958

Mixtures (Rates of seeding in 1h. /ecre)		Blocks			
mixtures (mates of securing in its) acres	A	В	C	D	
Timothy (8), Red Clover (6)	1	11	2	9	
Timothy (8), Red Clover (4), Alsike (3)	2	15	1	8	
Timothy (8), Red Clover (4), Ladino (2)	3	12	7	5	
Timothy (8), Red Clover (4), Alfelfs (6)	4	5	4	17	
Timothy (8), Red Clover (4), Birdsfoot(5)	5	7	14	10	
Timothy (8), Red Clover (4), Alfalfa (3)	6	8	11	15	
Ladino (1)					
Timothy (8), Alfalfa (8)	7	3	15	16	
Timothy (8), Alfalfa (6), Birdsfoot (5)	8	14	16	2	
Timothy (8), Alfalfa (6), Alsike (3)	9	2	8	6	
Timothy (8), Alfalfa (6), Ladino (2)	10	9	3	11	
Timothy (8), Ladino (2)	11	17	10	3	
Timothy (8), Birdsfoot Trefoil (6)	12	4	17	7	
Bromegrass (12), Birdsfoot Trefoil (6)	13	6	9_	4	
Reed Canary (8), Birdsfoot (6)	14	1	6	13	
Orchard Grass (6), Ladino (6)	15	16	5	14	
Fescue (8), Birdsfoot (6)	16	10	13	1	
Bromegrass (12), Alfalfa (8)	17	13	12	12_	

Fig. 1. Plan showing location of mixtures in blocks

was performed on each plot of the mixtures and pure stands, except for cut 1, for which mo such data was made available. The point quadrat readings were taken at the rate of 4 stations or 40 needles per plot for cut 2 and subsequently 5 stations per plot. For cut 5 the analysis was done on blocks A and C only of the pasture mixtures, but after cut 5, an additional analysis was obtained on all plots of all blocks to give results 5'(see calculations).

c) Harvesting and Hand Separations

After each cutting of a plot, throughout the season, 2 samples were collected for dry matter evaluation and hand separations. Of cut 4 only blocks A and C were hand separated, and cut 2 of the pure stands was not hand separated either.

The samples for dry matter evaluation were collected in drying trays and brought in to be weighed and dried. The samples for hand separation, obtained by picking 2-3 handfuls of material just cut, were collected into small cotton bags. They were then stored in a refrigerated room in which the temperature was kept approximately at 35°F. When time permitted these samples were separated into their respective components and "others". These components were then ovendried to a constant moisture and weighed to the nearest gram .

The weighing of the plot material, at cutting, was done on a 50 kg. dairy spring type scale, to the nearest.50 gm. The samples and hand separated material were weighed on a "Mettler"

electric scale in grammes.

d) Calculations

Dry matter was obtained in the usual manner, i.e., from computation of the green and dry weights. Percentage composition of the mixtures and pure stands was determined from the dry weights of the separated material.

This percentage composition was then used in the determinations of the contribution of each species to the total yield. From the point quadrat analysis, the ground cover was calculated, as well as the yield per unit area of ground cover. (For more details see experiment II.) Also from the point quadrat analysis, when the percentage composition was not available, it was calculated directly from the hits recorded for the species and others.

With the percentage composition values of cut 5 and the ground cover calculated from the point quadrat analysis obtained after cutting, a yield per unit area of ground cover for a cut named 5' was calculated. (The cut 5' was so named, because the same dry matter yields were used as in cut 5.)

EXPERIMENT II

A. Materials

a) Pasture Mixtures and Pure Stands

Experiment II was conducted in 1961, it was the main project for this thesis. It was carried out on 2 forage mixture trials, i.e., a hay and a pasture mixture trial, established for mixture studies by the Agronomy department of Macdonald College, on their experimental land.

1. Design

The pasture mixture trial was set up in randomized blocks of 4 replications and of plot size 51×10 links. The harvested area was 40 x 5 links or approximately 8 square metres.

In addition to the mixture trial, pure stands of each of the sepcies, except alsike, were established in randomized blocks of 2 replications only, but of same plot size and seeding rates. These and 3 complementary mixtures to the mixture trial were established next to the latter in the same field. (See field plan fig. 2.) Limitations of the space available did not permit the replication of reed canary grass and Kentucky blue grass, neither did it permit the establishment of a pure alsike stand. The two grasses mentioned were seeded as fillers on the West side of the experimental area; no fillers were seeded on the East side.

Random tables were used to randomize the mixtures and pure stands of blocks B, C, D and F. (See fig. 3 and 4.)

2. Soil Characteristics

Three soil types were represented in the experimental area. A small patch of St. Bernard sandy loam was found on the West side of the area; Chicot light sandy loam made up all of the blocks A, C and E, as well as a small area of block B, and St. Benoit light sandy loam made up the remainder of the area, namely blocks B, D and F. (See fig. 2.)

Two soils differed very little from each other they are of the Chicot and St. Benoit types. Both of these have developed from sandy alluvial material. Their differences in the drainage was not apparent. Rather, blocks C and D were more droughty than A and B. St. Bernard was developed directly from the calcareous till underlying the whole area.

3. Seeding and Management

Oats was used as nurse crop and was seeded at the rate of $l\frac{1}{2}$ bushels to the acre over the whole experimental area before the treatments were put in. These were seeded on the 2nd and 3rd day of May under windy conditions, at the rates outlined on fig. 3 and 4. The treatments were 15 different mixtures of various complexity for the mixture trial plus 3 complementary mixtures in blocks E and F. Four grass species and six legume species were used. The names of the varieties are outlined in fig. 4.

A mixed fertilizer 2-12-10 was applied at the time of seeding at the rate of 300 lb./A. over the whole area. In the spring of 1961 a top-dressing 0-20-20 at the rate of 300 lb./A. was applied to all plots. This was supplemented with 40 lb./A. of N, of the form of 33.3% ammonium nitrate, in all pure stands of the species.

Fig. 2. Field Layout. Pasture Mixture Trial • ·

•

ŧЗ

PASTURE MIXTURE TRIAL EXPERIMENT II

Seeded May 3, 1960

Wentumen (Deter of reading in 12 /rema)		Blocks		
Mixtures (Rates of seeding in 10./scre)	A	В	C	D
Timethy (8), Red Clover (5)	1	10	10	1
Timothy (8), Red Clover (5), Alfelfa (5) 2	12	1	13
Timothy (8), Red Clover (5), Alsike (5)	3	3	1 4	7
Timothy (8), Red Clover (5), Ladino (1)	4	1	13	4
Timothy (8), Red Clover (5), Alfelfa (5)),5	8	5	10
Timothy (8), Red Clover (5), Birdsfoot Trefoil (5)	6	15	9	11
Timothy (8), Alfalfa (5)	7	6	8	5
Timothy (8), Alfalfa (5), Ladino (1)	8	4	4	6
Timothy (8), Alfalfa (5), Birdsfoot	9	13	12	12
Timothy (8), Alsike (5)	10	11	2	15
Timothy (8), Birdsfoot Trefoil (5)	11	9	15	9
Timothy (8), Ladino (1)	12	2	6	3
Bromegrass (15), Birdsfoot Trefoil (5)	13	5	11	14
Reed Canary grass (15), Birdsfoot Trefoil (5)	14	14	3	8
Kentucky bluegrass (8), Birdsfoot	15	7	7	2
Trefoil (5)				

Fig. 3. Plan showing location of mixtures in blocks (Plot size 51 x 10 links)

PASTURE MIXTURE TRIAL (Cont.)

	Blocks	Blocks E F				
Treatments (Rates of seeding in 1b./a	Plot No. 1	Plot No.				
Timothy (8)	1	5				
Red Clover (5)	2	9				
Alfelfa (5)	3	7				
Bromegrass (15)	4	4				
Ladino (1)	5	3				
Birdsfoot Trefoil (5)	6	6				
Timothy (8), Birdsfoot Trefoil (5), Ladino (1)	7	8				
Timothy (8), Bromegrass (15), Birdsfo Trefoil (5), Ladino (1)	oot 8	1				
Timothy (8), Bromegrass (15), Alfalfa	(5) 9	2				
Filler on West end of Block A Reed	Canary grass (19	5)				
Filler on West end of Block B Kent	ucky Bluegrass (6	3)				
Timothy Clim	ax timothy					
Red Clover Regi	stered Lasalle re	d clover				
Alfalfa Vern	al					
Bromegrass Linc	oln bromegrass					
Ladino Clover Pilg	rim Ladino clover	•				
Birdsfoot Trefoil Empi	Empire Birdsfoot Trefoil					
Reed Canary grass Comm	non					
Kentucky Bluegrass Comm	ion					
Alsike Clover Comm	ion					

Fig. 4. Plan showing location of pure stands and mixtures in blocks

In 1960, the oats and weeds were controlled by clipping the whole area regularly. The weed problem became serious in the form of voluntary Ladino clover, which infested blocks A and B quite heavily, as well as parts of C and D. The latter two blocks were weeded by hand in the spring of 1961, as much as was safely feasible. Also blocks E and F were cleaned of all their weeds. After the 3rd cut in August, lamb's quarters (<u>Chenopodium album</u>)was a problem in some of the pure stands, especially so in the grasses. This was remedied by pulling a "Weed-bar" over the plots. The rate of application amounted to approximately 4 ounces per acre of liquid 2,4-D-ester.

The harvesting was done with a "Gravely" tractor as described previously and the weighing was done with the same scales as mentioned before. The green material was dried by forced air ovens which bring the moisture down to a constant level in 4-6 hours depending on the compactness of the material.

b) Hay Mixtures and Pure Stands

1. Establishment

The experiment was set up in the same manner as the pasture mixture trial. The mixtures were laid down as randomized blocks in replications of 4 and the pure stands in replications of 2 only and plot size 51×8 links. A timothy, red clover mixture was added in these two blocks, to complement the mixture trial. The timothy pure stands were obtained of 2 Climax

timothy filler plots, on the East of blocks E and F. (See Fig.5.)

The species that went into the mixtures were mostly hay species as can be seen in fig. 6. The rate of seeding was common for the mixtures and pure stands or nearly so. (See fig.6).

The soil type of the pure stands was St. Zotique silt loam accumulated by erosion or by other means. This soil is very poorly-drained and belongs to the ground water podzol great soil group. The mixtures were on Chateauguay shallow clay loam, a soil type already described under the pasture mixtures.

2. Seeding and Management

Both the pure stands and the mixtures were seeded May 5th, 1960 on a calm, sunny day. As for the pasture mixtures, oats were used as a nurse crop and seeded at a rate of $1\frac{1}{2}$ bushels per acre. At seeding time a mixed fertilizer of formula, 0-20-20, was applied at the rate of 200 lb./A. The following spring the whole area was given a top-dressing of 8-16-16 at the rate of 300 lb./A.

During the seeding year, the weeds and the companion crop were cut regularly at 6-8" in height. During 1961 no specific weed control was carried out. Dandelions (<u>Teraxacum</u> <u>officinale</u>) and black medic (<u>Medicago lupulina</u>) were removed, as much as possible, by hand, in the early spring. Also in the fall of 1960 the whole experimental area was cut to $1\frac{1}{2}$ inches so as to remove the stubble left by the companion crop. No data was gathered from the cut.

Plot size : 8 x 51 links (not to scale)

Soil types -

Blocks E and F : St. Zotique silt loam accumulated by erosion " A,B,C,D, : Chateauguay shallow clay loam

Fig. 5. Field Layout. Hay Mixture Trial

HAY MIXTURE TRIAL

Seeded May 5th, 1960

	Blocks			
Mixtures (Rates of seeding in 1b./acre)	A	В	С	D
A Tim. 8, Red Cl. 3, Alf. 5	1	9	8	4
Al Time 8, Red Cl. 3, Alf. 5, Lad. 1	2	6	6	2
B Tim. 8, Red Cl. 5, Alsike 3	3	8	5	9_
<u>C Tim. 10, Red Cl. 5, Led. 1</u>	4	5	4	_7_
Ev Tim. 8, Red Cl. 4, Viking Bft. 5	5	7	9	1
Ee Tim. 8, Red Cl. 4, Empire Bft. 5	6	1	7	8
Em Tim. 8, Red Cl. 4, Morshank Bft. 5	7		1	6
G Brome 15, Alf. 8	8	2	3	5
Jv Tim. 8, Viking Bft. 5	9	4	2	3
	Bloc	ka		
	E	F		
Timothy 8, Red Clover 5	1	1		
Red Clover 5	2	4		
Alsike 3	3	3		
Alfalfa 8	4	2		
Lædino l	5	5		
Birdsfoot Trefoil 5 (Viking)	6	7		
Bromegrass 15	7	6		
Timothy 8	8	8		

Fig. 6. Plan showing location of mixtures and pure stands in blocks

B. Methods

a) Pasture Mixtures and Pure Stands

1. Harvesting

In the fall of 1960, after the rest period of September and October, a late cut was obtained, for both the removal of the stubble of the companion crop and for data purposes. All the harvesting was done at approximately one and one half inches.

In 1961 the plots were cut at intervals of 4-5 weeks, thus giving 5 cuts for the whole season. Samples for dry matter evaluations and for hand separations were collected at each cutting in the manner already described.

2. Point Quadrat Analysis

Point quadrat readings were obtained for cuts 1, 2, 3 and 5 of 1961 previous to cutting. For the fall cut of 1960, the analysis had to be performed after the cut was taken, and therefore with practically no re-growth. The readings for cut 4 were taken at the time of cutting, as well as some extraordinary readings on cut 3.

The time of recording had been determined by the stage of growth of the material. The stage of growth chosen, was that stage when the material had recovered reasonably well, but so that it was not too high for the point quadrat apparatus used. This required that the plants had to be no higher than the lower transverse bar of the frame holding the pins of the instrument. However, for May, June and July unfavorable

meteorological conditions, rain and wind, did not permit a rigid comformation to such a schedule.

The point quadrat analysis of 1960, was performed at an angle arbitrarily set at 45° . Otherwise; for the part concerned with the determinations of yield per unit area of ground cover, i.e., cuts 1, 2 and 3 the angle was chosen according to Warren Wilson (1959). This work, which was done for the purpose of obtaining more reliable results in determining leaf area index by point quadrat, was assumed to be equally applicable for ground cover.measurements. In it, Wilson found that an angle of 29° inclination with a plane gave an error of $\pm 15\%$. An angle of 32.5° with which a factor of 1.1 was used was found to give an accuracy to $\pm 10\%$. Nevertheless, the 29° angle was chosen, since no corrections were necessary and it was considered to be sufficiently accurate. The angle of 32.5° was, however, used without correction factor, for some special point quadrat analysis at the cutting of the 3rd harvest.

The first point quadrat analysis on the pasture mixtures and pure stands was done after the fall cut of 1960, as stated previously. An angle of inclination of 45° was used and the number of points amounted to 50 or 5 stations per plot. Only the first hit on a species was recorded, the first hit on "others" and bare ground. There was no re-growth whatsoever.

Readings of all plots of blocks E and F, as well as of the reed canary and Kentucky bluegrass pure stands, were obtained previous to the first cut of 1961. However, only blocks C

and D of the mixture trial were analyzed. The inclination of the quadrat frame was at a set angle of 29°.

While for block C only the first hit of a species and "others" was recorded in this first analysis, for blocks D, and F all the other hits on every species seeded in the respective mixtures were recorded. "Others" were considered as one species.

The second point quadrat analysis was performed 15 days after the first cut or 20 days previous to the second cut. The first hit on the seeded species and "others" was recorded on blocks A, B and C, and all the hits on every species and "others" on blocks D, E and F. The same inclination of angle was used.

The third analysis was obtained after 13 days of re-growth or 16 days before cutting. Every hit on every seaded species and "others" was recorded on all plots of blocks C, D, E and F and on the plots in A and B that were not too dense with volunteer Ladino clover. The angles of inclination used were 29°, for blocks C. D. E. F and 45° for blocks A and B, as well as for a second analysis of blocks E and F. The reason for the use of a different angle on blocks A and B was that the material was too high for the 29° angle of inclination.

For the analysis, as well as for the hand separations of cut 3, 4 and 5 of mixtures(ix) of blocks E and F, bromegrass and timothy were not distinguished from each other. A third

set of point quadrat readings was obtained for this cut 3, and that just before cutting. The pure stands of block F, mixtures 1 of block C, 6 of B, and 1, 6, 13 of D were analyzed. The recording was done with an improved point quadrat (see fig. 7) at an angle of 32.5° and with 30 points or 3 stations per plot. The point quadrat frame was improved by increasing its overall height, which made it more readily usable in material of 1.5-2.0 feet tall. This additional height was obtained by fitting the frame with longer legs and needles. The improvement also consisted in calibrating it with angles of 52° , 45° , 32.5° and 29° .

The plots were then cut, but after cutting, to complement the readings mlready obtained, as just mentioned, 10 stations of 1 needle were recorded on the remaining borders of the plots. (5 on each border.) The plots analyzed were 1 to 8 of block E, 7 and 8 of block F and 1, 4, 6, 8, 9, 11, 12, 13 of blocks C and D. The mixtures chosen were those that were considered to be more of the pasture type. Mixture 10 was not analyzed since there was no pure stands available and mixtures 14 and 15 were left out because their respective grass pure stands had been cut and discarded by error.

A new line of work was introduced slightly before the 4th cut. This new approach was in conjunction with the work of measuring leaf area index and net assimilation rate as will be described later. It was found necessary to bring in this work at this moment to clarify the manner in which point quadrat

Original apparatus. Note 2" markers on rod

Improved apparatus. Note 2" markers on rod

Fig. 7 Point Quadrat Apparatus

analysis was obtained in cuts 4 and 5.

A sub-plot of one square metre was located at the end of the plot adjacent to the inner pathway. This was done for the following mixtures: 1, 4, 6, 8, 9, 11, 12, 13, 14, 15 of blocks C and D and of all pure stands and mixtures of blocks E and F.

Measurement was done with a square metre quadrat, made of stiff welding rods and strengthened by two rods across the centre. The location of the sub-plots was made permanent by driving in two stakes at each inside corner of the sub-plots. (See fig. 8). A point quadrat analysis was obtained at cutting time of the 4th harvest of each of these sub-plots. This analysis was done with an inclination of 45° , at one station or 10 points per sub-plot. Since it was considered that sufficient data had been gathered for yield per unit area of ground cover studies, no analysis was performed on the remainder of each Twenty days after the 4th cut, i.e., around the 20th plot. of September, half of each sub-plot, the western half, was cut for leafares index studies. At the same time the point quadrat analysis was performed before cutting on this sub-plot. Again the inclination was 45° and 10 points per sub-plot. Four additional stations were recorded through the remainder of each plot thus giving 50 points or 5 stations per plot as in cuts 1. 2 and 3. These then were the last point quadrat readings recorded for the pasture mixtures and pure stands.

b) Hay Mixtures and Pure Stands

1. Harvesting

This experiment was treated as hay and was therefore only cut when the legume species were about one quarter in bloom. This permitted the collecting of 3 cuts during the season of 1961. The methods used in harvesting the hay mixtures and the pure stands were the same as for the pasture mixtures. Samples for dry matter determinations and percentage composition were collected and processed similarly.

The re-growth of alsike clover in the 3rd cut was so insignificant that it was not collected for data, when it was in pure stand. However, the mixture containing alsike was cut for data purposes.

2. Point Quadrat Analysis

Again the methods employed in this case were very similar to those of the pasture mixtures, although no extraordinary analysis was done, neither was the improved point quadrat used.

For cut 1, weather conditions and circumstances did not allow the analysis of all the blocks. The first hit on every species and "others" were recorded at an angle of 29° for blocks A, D, E and F. For cut 2, all blocks were analyzed for every hit on each seeded species and "others". The inclination of the frame was at 45° , because the material was too high for a lesser angle and according to Warren Wilson (1959) larger angles increase the error.

c). Methods for the Study of Photosynthetic Area and Net Assimilation Rates

The materials used for this study were the same as those used for yield per unit area of ground cover studies in hay and pasture mixtures. However, not all the mixtures were used. In the pasture mixtures those that were more of the pasture type and in the hay mixtures those that were more of the hay type were selected. Thus in pastures, mixtures 1, 4, 6, 8, 9, 11, 12, 13, 14 and 15 of blocks C and D and(vii),(viii) of blocks E and F. All the pure stands were included. In hay, mixtures 1, 2, 4, 5, 8, 9 and(i) of blocks A, B, C, D, E and F as well as all the respective pure stands except alsike clover, for the reason mentioned above. Sub-plots were established on all of these.

For harvesting the sub-plots, as described previously, the square metre quadrat was laid down over the 2 pegs and all the area inside the quadrat was cut with a sickle. Thus for cut 4 the entire square metre sub-plot was harvested. After 20 days of recovery the western half of the sub-plot was clipped and gave data for 5a. Thirty-three days later or at the end of the complete re-growth period (53 days) cut 5c was obtained from the eastern half of the sub-plot. Thus cut 4, 5a and 5c were collected for the pasture mixtures and pure stands. Also sub-plots of cut 3 in the hay mixtures and pure stands were harvested. As soon as the material was cut, it was

stored in a refrigerated room until it could be hand separated. When this was done, discs were punched out from the leaves of each species in the mixtures but not from "others". The components were then oven dried and weighed, including "others". The discs were punched out in view of the evaluation of the photosynthetic area index by the disc method as used by other workers. These discs were cut out with cork-borers ranging in size from 3.9 mm. in inside diameter to 11.9 mm., there were six different bores.

The number of discs punched out were determined quite arbitrarily, depending on the leaf size. For example on all clovers 50 discs of the largest bore were used. For the other species the numbers ranged from 100 to 300 depending on the size of the leaf and the amount of material available. One exception in this procedure had to be made for the leaves of Kentucky bluegrass. Due to the narrowness of that species' leaf, discs could not be obtained and therefore about 50 5 cm. segments were cut out.

The discs that were so obtained were recovered in small pill-tins in which they were oven dried. An ordinary thermostat controlled laboratory oven was used for this purpose. A number of consecutive weighings indicated that the time required to obtain a constant moisture content was approximately 12 hours. On this basis, all the discs were weighed on a micro-balance to the closest milligram after 12 hours of drying.

d) Definitions and Calculations

1. Ground Cover

This value refers to the portion of ground covered by a seeded species. If a point could be so enlarged as to give area, the ground covered by a species would be a proportion of the total area, covered by the sum of the area of each seeded species, "others" and bare ground. The following formula was used according to Levy and Madden (1933):

Ground cover = $\frac{\text{Number of first hits recorded of species}}{\text{Total number of points analyzed}} \times 100$ For this value only the first hit on each species, as one needle went through the sward, was recorded. Thus, e.g. if, as in cut 2, the number of first hits on reed canary grass in the pure stand were 36, then the ground cover was $\frac{36}{50} \times 100 = 72.$

2. Yield per Unit Area of Ground Cover

If the assumption (for this work) that a point can be enlarged to give area, is accepted, then it can also be said that a certain yield can be obtained from such an area, if it is covered by plants. Thus the yield per unit area of ground cover was defined as the amount of dry matter a unit area of ground cover may yield in grams. For this study a plot of size 400 square links, or 1/250 of an acre or approximately 8 square metre was used. The formula developed was therefore: Yield per unit area of ground cover =

<u>Dry matter per plot of seeded species</u> Ground cover of this seeded species

The dry matter of a seeded species referred to in the text and in the tables as "DM of component" was obtained by multiplying the hand separation percentage composition of a seeded species by the total yield of the mixture or pure stand in which the species was found. Thus, e.g. if reed canery grass in cut 2 (1961) made up to 65.2% of the pure stand sward and its DM was 2347 gm./plot, then the Y./U.A. of G.C.= $\frac{2347}{72}$ 32.6 gm. on a plot 1/250 of an acre.

3. Density

Density in past work has been defined in various terms. Here it is simply referred to as a function of all hits on a species and the total number of points recorded. This was referred to as the relative frequency of each species by Levy and Madden (1933).

Thus: Density= All hits recorded of one species x 100 Total number of points used

4. Yield per Point "Density"

This could be defined as the amount of dry matter obtained for one point from a species of known "density". The calculations followed to give this value were of the same pattern as those of yield per unit area of ground cover. Thus: Yield per point density = <u>Dry matter per plot of a species</u> Density
5. Averages

The averages of the percent composition values for cuts have been calculated by taking the mean of the percent composition of each block.

The averages of the yield per unit area of ground cover have been calculated in the same manner in all cases. That is the dry matter contributed by a component of a mixture or pure stand, to the total yield was summed up, and the sum of the ground cover of this component was also obtained. The average yield per unit area of ground cover was calculated by the formula described above, namely $\frac{\text{Total DM of component}}{\text{Total ground cover of component}}$. The averages of 2 blocks, or a complete cut, or of a series of cuts, e.g. the "seasonal average" of cuts 1, 2, 3, of the pasture mixtures, were obtained in this manner. However, the analysis of variance of the latter average as found in the appendix tables was based on the means of the yield per unit area of ground cover.

6. The Competition Index

This was defined as a measure of the ability of a species to express its production potential of dry matter in terms of grams per unit area of ground cover when in association with one or more forage species and in relation to its production in pure stand. The index was obtained from a ratio of an observed yield and an expected yield. The obseved was the average yield per unit area of ground cover of a species when found in a mixture and the expected, its average yield per unit area when this species was seeded as a pure stand.

Thus: Competition Index = $\frac{Observed Y_{\bullet}/U_{\bullet}A_{\bullet} \text{ of } G_{\bullet}C_{\bullet}}{Expected Y_{\bullet}/U_{\bullet}A_{\bullet} \text{ of } G_{\bullet}C_{\bullet}}$

e.g. Competition Index of reed canary grass in cut $2=\frac{7\cdot8}{32\cdot6}=0.24$. The competition index was also applied to mixtures in which case it simply measured the average competitiveness of species in a certain mixture. The calculations were: the ratio of the sum of the Y./U.A. of G.C. of the species in a mixture and the sum of the Y./U.A. of G.C. of these same species in individual pure stands; e.g. the competition index for the pasture mixture 2 (from table 17) was the sum of the Y./U.A. of G.C. of timothy 9.9, of red clover 20.4, of alfalfe 24.3 divided by the sum of the Y./U.A. of G.C. when these species were in pure stand, i.e., 33.3 for timothy, 23.2 for red clover and 32.9 for alfalfa.

Thus: Competition Index of mixture $2 = \frac{9 \cdot 9 + 20 \cdot 4 + 24 \cdot 3}{33 \cdot 3 + 23 \cdot 2 + 32 \cdot 9} = 0.61$.

7. Methods of Calculating PA, PAI, and NAR

Photosynthetic area (PA) and photosynthetic area index (PAI) were used in the part of the project pertinent to them, instead of leaf area, and leaf area index. This was so, because the values for these expressions had been obtained, by the method of proportions, in which the weights of the discs punched from each species, the total area of these discs and the total dry matter of the species per m^2 sub-plot were the known variables. In cut 5a, 5b and 5c of the pasture mixtures the DM yield per half sub-plot was adjusted to a yield per m² sub-plot.

The formula for PA was then:

$$\frac{\text{Weight discs (gm.)}}{\text{Area of discs(dm^2)}} = \frac{\text{Weight species (gm./m^2)}}{\text{PA}}$$

$$\frac{\text{transposing, PA} = \frac{\text{Weight of species (gm./m^2) x Area of discs(dm^2)}}{\text{Weight of discs (gm.)}}$$

$$\text{e.g. the pure stand of timothy gave 0.133 gm. of disc weight}$$

$$\text{whose area were 0.3495 dm^2 and a yield of DM of 28 gm./m^2.}$$

Then
$$PA = \frac{28 \times 0.3495}{0.133} = \frac{73.49 \text{ dm}^2}{.}$$

The photosynthetic area index (PAI) is the index obtained when the photosynthetic area is expressed in the same unit of measurement as the area of ground from which it has been obtained. For example in cut 5a, table A107, the timothy pure stand of block E had a PA of 73.49 dm² per square metre subplot and a photosynthetic area index of $\frac{73.49 \text{ dm}^2}{100 \text{ dm}^2}$ or 0.7349.

The net assimilation rate (NAR) which has been frequently referred to, in the past by other workers as the efficiency (E) of a plant has been calculated according to the formula from Watson (1952):

NAR = $\frac{W_2 - W_1}{t_2 - t_1} \times \frac{Log_{\theta} L_2}{L_2} - \log_{\theta} L_1}{L_2 - L_1}$

where: $W_1 = DM$ (gm) at time t_1 (weeks) $W_2 = DM$ (gm) at time t_2 (weeks) $L_1 = PA$ (dm²) at time t_1 (weeks) $L_2 = PA$ (dm²) at time t_2 (weeks)

Thus for timothy (table A107):

NAR =
$$\frac{28 - 0}{3.0} \times \frac{\log_{e} 73.49 - \log_{e} 0}{73.49 - 0}$$

= $\frac{28}{3} \times \frac{4.2971}{73.49} = 0.546 \text{ gm} \cdot / \text{ dm}^2/\text{week}$
3 73.49

Following this NAR was then defined as the net amount of dry matter (in grams per square metre plot) produced by the total photosynthetic area (in dm^2) per unit time (in weeks) once respiration has taken place from the entire plant.

It is obvious that for cuts of the hay mixtures, cut 4, 5a and 5c of the pasture mixtures, the formula above was greatly simplified since W₁, L₁ and t₁ were non-existent and therefore equal to zero. Thus NAR = $\frac{W^2}{t_2} \times \frac{\log_e L_2}{L_2}$.

8. <u>Analysis</u>

The analysis of variance for a complete randomized block design has been used and the means were compared with Duncan's Multiple Range Test according to Robinson (1959).

Small point quadrat apparatus July 21.1960

Pasture mixture trial. July 25. 1961 Note the inner pathway

Brome-trefoil and reed canarytrefoil mixtures. Note volunteer Ladino in the latter mixture. July 25.1961

METEOROLOGICAL CONDITIONS

All the meteorological data in the dissertation were obtained from the "Annual Summary for Dorval Weather Report" published every year by the Federal Department of Transport, Canada. In 1959 according to this Report, the annual mean meteorological conditions were approximately normal and that, all in all, 1959 could be considered a normal year.

Meteorological Conditions for the Growing Seasons of 1960-1961

Growing Season 1960

<u>April</u>. Temperature wise, April averaged close to the expected values. The rainfall was heavier, i.e., 3.45" as compared to the normal of 3.04". (The normal is taken as the means of the periods 1942-1960.) The last freezing temperature occurred on the 26th. And only 0.4" of snow fell as compared to the normal of 4.6".

<u>May</u>. The month of May was the warmest on record, with a mean of $61.5^{\circ}F_{\bullet}$ as compared to the average of $55.1^{\circ}F_{\bullet}$ for the period of 1942-1960. The temperature never fell below $36.1^{\circ}F_{\bullet}$ and the total rainfall for the month was above normal with 3.45" as compared with 3.04".

June. June was also above normal in temperature, with 66.1°F. as compared to 55.1°F. for the normal. However, the warmest day experienced was only 86.4°F. Only 2.58" of rainfall were recorded as compared to the normal of 3.18".

Table 1

Summary of the Meteorological Conditions in 1960. Dorval, Que. 1960.

	<u> </u>	Tempera	ture C	F.			ipitation	tion			
Month	Mean Max. Min.	Mean (24 hourly values)	Extr Max.	•eme Min.	Mean 1942-1960	Total Monthly	No. (Trace	Days or more)	Mean 1942 -1 960		
Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.	$\begin{array}{c} 21 \cdot 9 & 7 \cdot 5 \\ 28 \cdot 3 & 14 \cdot 6 \\ 30 \cdot 3 & 15 \cdot 8 \\ 50 \cdot 4 & 34 \cdot 0 \\ 71 \cdot 5 & 51 \cdot 1 \\ 75 \cdot 6 & 56 \cdot 0 \\ 78 \cdot 3 & 58 \cdot 5 \\ 80 \cdot 1 & 55 \cdot 8 \\ 69 \cdot 7 & 49 \cdot 8 \\ 55 \cdot 2 & 38 \cdot 5 \\ 46 \cdot 1 & 34 \cdot 5 \\ 27 \cdot 6 & 10 \cdot 5 \end{array}$	14.8 22.2 23.5 42.2 61.5 66.1 63.5 68.9 60.2 47.5 40.4 20.2	37.2 42.7 42.7 76.6 85.4 88.9 89.7 89.8 89.7 89.8 59.8 59.6	-17.4 -8.2 23.5 36.1 40.9 50.2 45.1 33.4 29.7 25.3 -9.0	15.1 15.5 28.1 41.2 55.1 64.7 70.1 67.8 59.7 47.7 34.7 19.4	2.48 6.90 2.37 3.45 1.88 2.58 3.48 1.19 2.27 4.34 2.61		21 24 24 21 16 17 16 11 18 15 19 23	3.31 2.83 3.21 3.04 2.98 3.18 3.56 2.77 3.23 2.99 3.76 3.55		
Year	52.9 35.6	44.7	89.9	-17•4	43•3	37.01		225	38.41		

July. This was a rather cool month, therefore breaking the trend taken by the 3 previous months. The mean tempersture was $62.5^{\circ}F_{\bullet}$ as compared to the normal of $70.1^{\circ}F_{\bullet}$ No temperature above $88.9^{\circ}F_{\bullet}$ was recorded. Rainfall was close to normal with 3.56" as compared to 3.48". On the 22nd a record of one hour rainfall of 1.07" was established.

<u>August</u>. During this month dry seasonable temperatures were prevailing. The mean was slightly above normal, but none reached the 90°F. level. There were only 8 days of measurable precipitation giving a low total of 1.19" as compared to the normal of 2.77".

<u>September</u>. The temperatures were normal with a mean of $60 \cdot 2^{\circ}F$. as compared to the normal of $59 \cdot 7^{\circ}F$. However, the highest temperature of the year was recorded on the 8th, $89 \cdot 9^{\circ}F$. The total rainfall was 2.27" well below the normal of 3.23", making this the 5th consecutive month with a rainfall below the expected. It can be easily deduced then, that the conditions for establishing forage mixtures were most unfavorable.

<u>October</u>. Seasonable temperatures prevailed with a mean of $47.5^{\circ}F$. as compared to the 1942-1960 average of $47.7^{\circ}F$. However, the highest maximum temperature of $64.8^{\circ}F$. was well below the normal maximum of $75.3^{\circ}F$. The first freezing temperature occurred on the 19th, a low of $29.7^{\circ}F$. on the 21st. The total rainfall of 4.34° was much above the normal of 2.99° , thus giving the new seedings a chance to recover from the shortage of water during the previous 5 months.

Growing Season 1961

The forage mixtures recovered fairly well from a winter that seemed to be not too rigorous. November 1960 was a mild month with maximum daily temperatures of 45°F. or above for 20 days, and minimum daily temperatures of 35°F. or less for 22 days. This seemed to be quite favourable for translocation of sugars. December 1960 had a good snow cover especially on the coldest days. Cold weather and below normal snowfall during the months of January and February and March, did not adversely affect the forage mixtures, although above freezing day temperatures and below freezing night temperatures were experienced quite frequently.

<u>April</u>. Cool, cloudy and wet weather prevailed with a mean of 41.2°F., and yet close to the normal of 42.7°F. Also 6 days of below freezing temperature were recorded. Precipitations of 4.21" were well above the normal of 2.92" and only 4 days were recorded as being partly cloudy or clear for the larger part of the day.

<u>May</u>. This was the third consecutive month with mean temperatures below the normal. Record low temperatures were experienced on 5 days of which 3 were the last days of the month. A killing frost in many areas, with 29.8°F. occurred on the 31st of the month. The precipitations were close to normal with 24.6" vs 2.86". Only 3 days were clear and sunny. Table 2

Summary of the Meteorological Conditions in 1961. Dorval, Que., 1961

			Tempera	ture o	F			Preci	lpitation	
Month	Me	an	Mean (21 hourly)	Ext	reme	Mean	Total	No.	Davs	Mean
	Max.	Min.	values)	Max.	Min.	1942-1960	Monthly	(Trace	or more)	1942 -1 960
Jan.(1)	16.0	-1.1	8.0	40.7	-17.1	15.1	1,32		12	3.31
Feb.	27.6	11.4	20.3	44.7	-14.2	15.5	2.81		9	2.83
March	35+3	17.9	27.2	58.2	- 0.7	28.1	2.71		10	3.21
April	48.5	34.1	41.2	66*8	27.2	42•7	2.94		17	2.67
May	65.0	42.2	53.6	86.8	29.8	56.0	2.46		12	2.86
June	(2.8	52.0	64.0	82.4	40.3	65•1	2• <u>1</u>		16	3.00
July	70.0	61•H	02•2	07.42	20.4	10+5	$2 \cdot 0$ (11)		10	シーンス
Aug.	75 0	<u> うりょう</u>	00.0 45 4		4(•2	6(•9	5.41		10	2 •(7 22
	$(2 \cdot)$	22.6	5)+0 51 1	75 7	27 1	1.8 7			12	2.86
Nov	1.2.2	41 • U 31 . 1	37.2		18.7	40•{ 35 7	2.16		16	2.31
Dec.	30.2	18.6		16.9	1.6	20-0	3.47		15	3.17
+				+/			<u>∠ • + −</u>			2=41

(i) The last 13 days in January averaged just below zero temperatures, the longest cold spell of any month on 20 yr. record.
(ii) Record at Dorval.

<u>June.</u> The 4th consecutive month with temperatures below normal. The mean was $64.0^{\circ}F$ vs $65.1^{\circ}F$. for the normal. It was a cool and wet month with 2.17° above the normal of 3.0° . The 29th and the 30th were probably the only days that could have been called normal and sunny.

<u>July</u> The 5th consecutive month of below normal temperatures, i.e., $69.5^{\circ}F$. vs $70.5^{\circ}F$. Rainfall was a little below normal too, with 3.07° vs 3.59° . The amount of sunshine increased considerably, but nevertheless was still below normal for this month.

<u>August</u>. This is the first month since April to have a temperature that was about normal. Nevertheless, the mercury failed to reach 90°F. Precipitations were much above normal with a record high of 5.41" as compared to the normal of 2.73", and the previous record in 1959 of 5.22". There were 12 days of sunny and clear weather.

<u>September</u>. The mean temperature of this month, of 65.6° F. was above the normal of 60.2° F. Also the average minimum was above normal. The rainfall of 0.83° was only 25% of the normal for the month.

<u>October</u>. October was mild with a mean temperature slightly above normal. The rainfall of 2.55" was 0.31" below normal.

EXPERIMENTAL RESULTS

I Experiment I. Pasture Mixtures Trial 1960

1. Hand Separations and Point Quadrat Analysis

The results obtained throughout the year or season 1960 are quite characteristic of the exploratory nature of this work. Also for this reason the yields of dry matter of the mixtures are not reported anywhere, but the yields of individual components are found in the appendix.

a) Pure Stands

Of the pure stands timothy was rather low yielding. Table Al (the letter A in this case refers to the appendix tables) gives the yields of dry matter of all the pure stands in their respective available cuts. These exceptionally low yields of timothy were attributed to: a) a large amount of dendelions, which contributed a high percentage of the yield as seen in table Ala, and b) drought conditions prevailed throughout the summer.

Similarly, the drought affected adversely the yields of brome and alfalfs pure stands.

Table Ala indicates the percentage composition and point quadrat analysis of the pure stands. In this table, the low percentage of pure timothy and brome, seem to indicate a direct relationship, in all cuts with the high bare ground values. Cut 2 of alfalfa had a high amount of weeds other than dandelions, which resulted in a low bare ground. However, at cut 5, drought and frost had killed most of these weeds, leaving a large amount of bare ground.

The percentage composition of timothy dropped from 42.3% at the beginning of the season to 23.2% at the 5th cut. That of pure brome increased from 70.6% to 91.4% and alfalfa also increased from 33.3% to 96.0%.

b) Pasture Mixtures

In tables A2 to A7 of the appendix appear the percentage composition of the mixtures, as obtained from hand separations, and their respective ground cover values.

In all the mixtures where red clover or alsike had been one of the components, the percentage timothy was relatively high for all cuts. The reason for this was that these two legumes had disappeared from the sward due to winter killing or other reasons, leaving only the grasses with or without other legumes and "others".

Mixtures with alfalfs or birdsfoot alone showed almost the opposite trend, i.e., these two legumes outyielded the various grasses with which they were associated. The exception to this was found in the first cut where timothy, brome and tall fescue contributed a higher percentage to the mixture yield than birdsfoot. These same tables mentioned above show the ground cover obtained for cut 2, 3, 4 and 5, as well as the ground cover obtained from the analysis done after cut 5 was harvested. Ground cover was low in the mixtures in which red clover had disappeared and also in a few of the simple mixtures. It was found to be as low as 28% in mixture 3 at cut 5.

In general it appeared, that the mixtures of this trial had stabilized in favor of the more long-lived species. The net result, in terms of ground cover, was that the mixtures which originally had red clover, Ladino or alsike, gave much higher bare ground readings.

2. Yield Per Unit of Ground Cover

a) Pure Stands

Table A8 shows the yield per unit area of timothy in cuts 2, 3 and 5' and of brome, alfalfa in cuts 2, 5 and 5'. It is to be noted here that the yieldsper unit area of ground cover of timothy were extremely low in cuts 3 and 5'. This was attributed to heavy weed infestation in this pure stand. In cut 3 the yield per unit area of timothy was only close to 1.0 gram. In cut 5 the yield was even lower; namely 0.10 gram per unit area of ground cover or 10 grams for 100% ground cover. Both brome and alfalfs had relatively similar high yields to timothy Cut 5 and 5' for which the same yield but different in cut 2. ground cover were used, show a marked decline in yield per unit Brome went from 58.5 gm. per unit area of ground cover area. down to 3.2 gm./unit area of ground cover. Alfalfa went from 26.4 gm. to 6.0 gm. per unit area of ground cover. These

yields, however, were still markedly larger than those of timothy.

b) Mixtures

In tables A9 to A14 appear the yield per unit area of ground cover, of timothy, alfalfs and brome when found in mixtures of various complexities.

The highest yield per unit area, in cut 2, of timothy was obtained in mixture 11 where it was associated with Ladino. The lowest of timothy in this same cut, was when it was associsted with red clover, alfalfs and Ladino in mixture 6. In cut -3 this order was changed to some extent. The mixture in which timothy yielded most was number 12, where it was associated with birdsfoot trefoil. This however was followed closely by The lowest yield per unit area of ground cover mixture 11. of timothy in this cut 3, was found in mixture 7 when it was associated with alfalfa. In cut 5 the highest yielding timothy was in mixture 5, when it was in mixture with red clover and birdsfoot trefoil, (practically only the latter was present). The lowest yields of timothy in this cut were obtained when it was associated (theoretically) with red clover, red clover and alsike, or alsike alone. Since this was indicated previously, these legume species had almost completely disappeared from the stand, it may be presumed that timothy was lacking their beneficial effect.

The two mixtures which contained brome, namely mixture 13,

where it was associated with trefoil and 17 with alfalfa, showed that the yield per unit area of brome stayed relatively constant throughout the season. Brome with trefoil gave the higher value, in both cut 20 and 00 t.5.

The yields per unit area of ground cover of alfalfs in cut 2 were all relatively high. In this cut the highest yield per unitarea was obtained when it was in association with timothy and birdsfoot in mixture 8. In cut 5 the highest yield obtained was when alfalfs had been associated with red clover and timothy. Alfalfs yielded least in both cuts when associated with brome alone.

Table 3 is a summary of the yields per unit area of ground cover of timothy, alfalfa and brome in the mixtures as compared to their behaviour in pure stands.

Since none of the results of experiment I were statistically analyzed the extent of the differences occurring cannot be judged, except in cases where these differences were large. Thus from table 3 without calculating competition indices, it was observed that the grasses in cut 2 had an index of competition of less than 1.0, whereas the only legume, alfalfa, had competition indices above 1.0 in all cases except for mixture 17. In cut 3 only timothy in mixture 7 yielded lass than the pure stand . In cut 5' every competition index of timothy was above 1.0. However, brome in the mixtures of cut 5', yielded less than the pure stand. In cut 5 alfalfa was showing good competitive ability too.

Table	3	Average	Yield per U	Init Area	of Ground	Cover of	a Species	in
	-	Pure	and Mixed S	stands (ir	n gm.) 1960	Pasture	Mixtures.	
			Experimen	nt I. (2r	nd year of	productic	on)	

				Sp	eci	8 8					
		Tim	othy			Alfalf	8		Brome		Mixtures
Mixt. No.	Cut 2	Cut 3	Cut 5	Cut 5	Cut 2	Cut 5	Cut 5	Cut 2	Cut 5	Cut 5	
1 2 3 4 5 6 7 8 9 10 11 12 13 17	12.7 12.7 13.2 09.4 5.6 14.6 14.6 2 14.6 2 14.6 2 14.6 2 0 14.6 2	2.0 2.2 1.9 1.7 3.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	1.03 1.07 2.94 1.62 8.50 1.31 1.75 1.94 1.92 1.83 4.33	0.50 0.62 0.59 0.57 1.34 0.85 0.50 1.03 0.84 1.15 0.79 2.17	31.1 32.7 32.1 42.6 28.4 29.8 29.8	18.8 12.4 12.7 16.1 18.1 13.6 9.3	9.1 16.0 9.2 13.4 13.6 19.5	<u>5.3</u> 3.9	<u>5•3</u> 5•2	2•9 2•1	Timothy, Red Clover Timothy, Red Clover, Alsike Timothy, Red Clover, Ladino Timothy, Red Clover, Alfalfa Timo, Red. Cl., B.T. Tim., Red. Cl., Alfalfa, Lad. Timothy, Alfalfa Timothy, Alfalfa, B.T. Timothy, Alfalfa, Alsike Timothy, Alfalfa, Ladino Timothy, Ladino Timothy, B.T. Brome, B.T. Brome, Alfalfa
Pure Stands	37.1	0.96		•09	26.4	12.9	6.0	58 •5	4.5	3.2	

Underscored values indicate a competition index of less than 1.0.

What was called cut 5; had been calculated to find whether there existed a relationship between it and cut 5. No such tendency was readily observed in timothy. However, upon calculating the coefficient of correlation in timothy, it was found that "r" gave a value of .58, just significant at the 5% It should be noted that a value of r = .58 accounts level. only for 33.2% of the variability existing between these two ways of measuring yield per unit area of ground cover. (See materials and methods.) This was not considered sufficient, to say that one method is as good as the other, for timothy. For alfalfa on the other hand a correlation factor r = .07 was obtained, which was obviously not significant. Therefore, in this case the two methods are definitely not the same.

EXPERIMENT II

Pasture Mixtures and their Pure Stands 1960-1961

1. <u>Yields of DM of the Pure Stands and 3 Mixtures</u> 1960-61

Tables A15 to A20 show the green and dry weights of the pure stands and 3 mixtures. The analysis of variance of the fall cut of 1960 gave no significant differences between treatment⁽¹⁾ means, which included the 6 pure stands and 3 mixtures. All other cuts, i.e., cuts taken in 1961, gave high significance for these same treatments except cut 5 in which they were only significant to the 5% level. In table 4 appear differences between treatment means in pounds per acre of the pure stands and 3 mixtures, but excluding the reed canary and Kentucky blue grasses. According to Duncan's multiple range test all treatment means with the same lower case letter do not differ significantly from each other.

The mean yields of cut 1 show no significance between the yields of the pure stands of red clover, brome and Ladino. Timothy gave the highest yield in this cut and was significantly different from all pure stands and the 3 mixtures except brome. Alfalfs yielded significantly less than any of the pure stands in both cuts 1 and 2.

(i) Treatment refers to such variables as mixtures, species etc.

	1960	Cut 2	Cut 2	Cut 3	Cut 4	Cut 5	Total
<pre>(i) Tim. (ii) R.C. (iii) Af. (iv) Br. (v) Lad. (vi) B.T. (vi) T., Lad., B.T. (vii) T., Br., Lad., B.T. (ix) T., Br., Af.</pre>	331 a 5510 a 3994 a 3794 a 438 a 4364 a 477 a 249 a	1623 a 1273 b 493 c 1401 ab 1253 b 726 c 1172 b 1303 b 631 c	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	770 c 1464 ab 1118 bc 1285 ab 1487 ab 1097 bc 1412 ab 1591 a 775 c	259 c 820 b 1247 a 280 c 933 b 940 b 856 b 997 b 1028 c	335 c 659 ab 768 ab 313 c 853 ab 501 bc 766 ab 860 a 684 ab	6823 ab 6106 ab 4375 c 5686 b 6716 ab 5837 b 6796 ab 7206 a 3949 c
S.D. C.V. F. treat.	67.63 13.51 2.6	115.99 11.66 18.19**	253.57 12.87 22.38**	158.57 14.31 6.034**	90.48 12.21 22.39**	117.58 20.35 5.15*	438•70 8•14 10•71**
Date	Nov. 2	may 23	June 26	Jury 26	Sept. 1	UCT. 25	

Yields as Pounds of Dry Matter per Acre. Pure stands 1960-1961. Pasture Mixtures. Experiment II

Total does not include the 1960 cut S.D. in gm./plot x 1.1034 for 1b./A.

Table 4

Means followed by the same lower case letters are not significantly different from each other at the 5% level. Duncan's Multiple Range Test.

Considering the mixtures, in this comparison, it is noted that(vii) and(viii), which differed only in the presence or absence of brome, were not significantly different from each other throughout the testing season. Mixture (ix) together with the pure stand of alfalfs, was the lowest yielder in cuts 1, 2, 3. In cut 4 and 5 both of these improved, so that mixture (ix) was not significantly different from mixtures (vii) and (viii) nor was it different from red clover, Ladino and birdsfoot trefoil. However, alfalfs was the best yielder in cut 4 and significantly different from all other treatments. In the seasonal means, both of these treatments took the last rank, significantly different from all others.

Timothy and brome behaved similarly throughout the season. They were only significantly different from each other in cut 2 where brome yielded less than timothy and in cut 3 when the roles were just the reverse, timothy being among the lowest yielding of all treatments. In cuts 4 and 5 they were both the lowest yielders, significantly so, except from trefoil in cut 5.

Red clover and Ladino never differed significantly from each other throughout the season. They ranked among the highest yielders towards the end of the season. Birdsfoot trefoil was quite average, at times, yielding significantly less tham the lowest yielding treatment.

From the season's total it is observed that the highest yields, but not significantly different, were obtained from

timothy, red clover, Ladino and mixtures (vii) and (viii). Only mixture (viii) however differed significantly from alfalfs, brome, trefoil and mixture (ix).

2. Yields of DM of the Pasture Mixtures Trial 1960-61

a) <u>Yields of DM 1960</u>. In table A21 the yields of the cut taken in the fall of 1960 are shown together with differences that appeared between their means. Mixtures 1, 2, 3, 4, 5, 6, 7, 8, 9 and 12 all gave means that were not significantly different from each other. Mixtures 2, 5 and 8 were significantly different from all others. Mixtures 1, 3, 4, 6 and 9 were not significantly different from the lowest yielders, which were the simple mixtures.

b) <u>Yields of DM 1961</u>. The green weights, percentage dry matter and the dry weights are found in tables A22 to A26 for all 5 cuts of 1961. An analysis of variance was done on every cut, but since we were mot directly concerned with the yields per acre, only a summary of Duncan's Multiple range test is reported for all cuts and the seasonal average. This summary, showing the behaviour of mixture means throughout the season is seen in table 5.

From cut 1 it can be seen that the highest yielding mixtures which were not significantly different from each other, were mixtures 2, 3, 4, 5, 6, 8, 10 and 12. Of these only mixtures 5 and 8 were significantly different from the 7 remaining mixtures. The 4 lowest mixtures in this cut, which were mot significantly different from each other were the simple mixtures 11, 13, 14 and 15. Mixtures 14 and 15 yielded significantly less then any of the 11 remaining mixtures. From cut 2 it is seen that mixtures 2, 4, 5, 6, 8, 9, 11, 12, 13 and 14 were all the highest yielding. But of these only mixture 14 was significantly higher yielding than the 5 remaining mixtures. Mixtures 1, 3, 10 yielded least with no significant differences between them. Mixture 10, in which alsike was associated with timothy, and which has very little ability to recover, yielded significantly less in this cut 2, than any other mixtures, excluding 1 and 3. This was also true in cuts 3 and 4, although the mixtures that were not significantly different from it, veried.

In cut 3, the highest yielding mixtures were 2, 4, 5, 7, 8, 9. Mixture 8 was the only mixture to be significantly different from all other 9 mixtures. The lowest yielders were 1, 10 and 11. Mixtures 10 and 11 were significantly different from all others except from 1.

In cut 4, mixtures 2, 4, 5, 7, 8, 9 were the highest yielding, with 7 and 9 being significantly different from all others. There were llimixtures in this cut that ranked 2nd and no one mixture that yielded significantly less than all others. In cut 5 there was no significant difference within mixtures at the 5% level.

Thus to summarize these 5 cuts, there did not appear to be

any definite tremds in the yields of these 15 mixtures. The whole picture appeared to be rather confusing. As the season advanced the differences became less apparent, to finally not give any difference in the fall cut. This latter in this sense was very different from the fall cut of 1960.

A trend that seemed to be of some significance, was that mixtures 2, 4, 5 and 8 appeared in all cuts as the highest yielders, and that mixtures 1, and 15 never appeared among the highest yielders, and that the simple mixtures, except mixture 7, only yielded well in cuts 1 and 3.

The season's total showed just as little difference as cuts 2, 3, 4 and 5. There were 9 mixtures not significantly different from each other in rank one. Of these mixtures, 2, 5, 8, 9 were significantly different from the other 6 mixtures. Ranking third and last were 10 mixtures which were not significantly different from each other and all of which had the same rank as in cut 4. Of these mixtures, 10 yielded significantly less than the remaining 5.

If mixtures 2, 4, 5 and 8 were the most persistent yielders, mixtures 2, 5, 8 and 9 were the top yielders in this mixture trial. All of those were complex mixtures, all had alfalfs in them except 4, and all had timothy.

Among the lowest yielding mixtures, i.e., consistently so, mixtures 1, 10 were found in cuts 2, 3, 4 and mixture 11 in cuts 1, 3, 4. All 3 of these were simple mixtures. Standard deviations from the error mean have been calculated for all cuts

					Cu	ts					
Mixture No.	Cut	1	Cut	2	Cu	t 3	Cut	4	Cut 5	Tota	1
1. T.R.C.	1533	bcd	1937	cd	1216	def	1266	bcd	716 a	6668	bc
2. T. R.C. Af.	2142	ab	2270	abc	1619	abc	1591	ab	1017 a	8638	a
3. T. R.C. As.	2066	ab	1938	cd	1385	bcde	1295	bcd	565 a	7249	abc
4. T. R.C. L.	1995	ab	2190	abc	1607	abcd	1337	abcd	602 a	7731	abc
5. T. R.C. Af. L.	2324	a	2276	abc	1665	ab	1460	abc	941 a	8666	a
6. T. R.C. B.T.	2010	ab	2265	abc	1417	bcde	1229	bcd	18 2 a	7704	abc
7. T. Af.	1633	bc	2094	bc	1760	ab	1675	a	948 a	8111	ab
8. T. Af. L.	2328	a	2326	abc	1817	a	1510	abc	717 a	8698	a
9. T. Af. B.T.	1590	bcd	2500	ab	1665	ab	1689	a	964 a	8408	a
10. T. As.	2128	ab	1554	d	1008	f	1021	đ	616 a	6327	c
11. T. B.T.	961	de	2608	ab	1190	f	1238	bcd	663 a	6660	bc
12. T. L.	1865	ab	2254	abc	1524	abcde	1309	bcd	6 3 3 a	7585	abc
13. Br. B.T.	1158	cde	2332	abc	1537	abcde	1159	cd	605 a	6791	bc
14. R.can. B.T.	834	e	2719	a	1235	cde	1305	bcd	608 a	6701	bc
15. K.B. B.T.	784	e	2162	Ъс	1464	abcde	1283	bcd	956 a	6649	bc
	x_{l=}1690		₹ <mark>2=</mark> 2228		x3=1474		x ₄₌ 1358		x ₅₌ 756	x =7506	
S.D.	375.	.06	292	•69	214	.87	196	.19	213.59	886	.92
C.V. %	22.	19	13	.13	14	. 58	14	•45	28.25	11	.15
F. treat.	6.	.64 Sign 0.1%	. at 3	.10 [°] .5ign 1%	1. at 3	.82 [*] Šign. 0.1%	, at 3	.08 [*] Šie 1%	m. at 1.93	3 Sig 1%	.38 n. at
Date Cut	May 2	23	June	26	July	26	Sept	. 1	0ct. 25		

Yields as Pounds of Dry Matter per Acre. Pasture Mixtures 1961. Experiment II

Table 5

Means followed by the same lower case letter are not significantly different from each other at the 5% level Duncan's Multiple Range Test.

and the seasonal average, as well as the coefficient of variability. From the latter it can be observed that except in cuts 1 and 5, the CV's were all less than 15%. A high CV of 28.2% was obtained in cut 5.

3. Percentage Composition and Point Quadrat Analysis 1960-61

a) <u>Pure Stands</u>. In tables A27 to A32 appear both the percentage composition by weight as obtained from hand separations and the point quadrat analysis, of all cuts harvested on the pure stands. Averages were calculated of each of these, of each table, and the results are seen in table 6. A point to note here is that whenever two ground cover values were averaged, the result is simply the total of all the number of hits entering in these two figures. This is quite clear when it is considered that the maximum number of hits on a species in two analyses is equal to 100 points, as only one hit on each of the 100 needles analyzed was recorded.

From table 6 it is seen that the cut of the fall of 1960 gave a high percentage for "others". This was due to the fact that the stubble of the companion crop was incorporated into the cut material. These then, had to be accounted for as "others" in order to obtain the actual weight of each component. The effects of the stubble was also reflected in the bare ground values, which were high throughout this cut, because dead material was not recorded at all.

							(- /						
			Cut 1	960	Cut	1	Cı	at 2	Cut	3	Cut	4		Cut	5
Comp	onents	%	Comp.	G.C.	% Comp.	G.C.	% Comp	G.C.	% Comp.	G.C.	% Comp.	G.C.	%	Comp.	G.C.
i	Tim. Others B.G.		10.8 89.2	17 3 80	100 tr	59 2 42	99.2 0.7	3 67 7 - 33	64.6 35.4	36 10 57	80.8 19.2	55 15 60		89 .1 10 . 9	53 12 42
ii	R.C. Others B.G.		55.9 44.1	42 2 56	100	75 25	99•2 0•8	2 60 3 - 40	92.9 7.1	41 19 47	74.2 25.8	75 30 20		74 .1 25 . 9	71 14 21
1 11	Af. Others B.G.		24.4 75.6	15 5 80	99•3 0•7	19 - 81	98.0 2.0) 12) - 88	84.8 15.2	29 44 39	67.6 32.4	65 95 -		75.9 24.1	40 45 31
iv	Br. Others B.G.		5.6 94.4	16 3 81	100	47 53	92.7 7.3	7 56 3 12 37	48.0 52.0	33 22 52	54.2 45.8	80 40 15		68.2 31.8	39 21 46
v	Lad. Others B.G.		30.0 70.0	37 64	98.3 0.7	69 31	100	86 	100	71 29	92.3 7.7	90 		99.4 0.6	95 - 5
vi	B.T. Others B.G.		35.7 64.3	35 4 61	98.9 1.1	53 3 44	97.2 2.1	3 73 7 1 27	88.3 11.7	65 9 31	69.2 30.8	90 35 10		80.2 19.8	74 24 14
vii	Tim. Lad. B.T. Others B.G.		2.9 21.4 15.9 58.8	7 30 13 52	11.9 54.3 31.4 2.4	25 54 21 25	20.1 71.9 7.2 0.9	25 9 62 2 29 5 - 19	1.7 97.2 1.1	9 64 18 - 27	0.7 97.5 1.7 0.1	(2) 100 11 -		3.0 75.4 0.6 21.0	4 93 (.2) 5

Average Percentage Composition and Ground Cover Pasture Mixtures and Pure Stands 1960-1961 (Experiment II)

Table 6

-

	Cut 1	.960	Cut	1	Cut	2	Cut	3	Cut	4	Cut	5
Components	% Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.
viii Tim. Br. Lad. B.T. Others B.G.	3.1 5.2 19.5 17.6 54.6	5 10 14 13 62	16.6 1.7 51.2 29.1 1.4	24 10 49 42 17	12.4 0.6 77.1 9.5 0.4	15 9 68 35 -	1.7 0.1 96.4 1.8	4 58 10 - 32	1.8 0.6 95.7 1.9	6 6 95 6 - 5	1.5 2.0 95.5 1.0	5 5 92 3 7
ix Tim. Br. Af. Others B.G.	8.1 3.1 19.2 69.6	13 8 5 4 70	23.1 7.1 68.7 1.1	33 16 10 - 58	39.1 1.8 58.1 1.0	45 9 3 - 43	12.0 82.0 6.0	23 16 4 10 57	6.5 69.8 23.7		9.8 75.4 14.8	
R.can. Others B.G.	3.7 96.3	8 34 60	100 0	24 76	85.2 14.0	72 28	(66) (34)	66 34 22	93.2 6.8	70 20 10	91.7 8.3	68 18 28
K.Blue Others B.G.	2.6 97.4	16 38 48	98.3 1.7	52 - 48	99.0 1.0	92 - 8	(91.7) (8.3)	66 6 32	82.4 17.6	70 30	98.5 1.5	68 30

Table 6 continued.

Averages of Blocks E and F except for K.Blue and R.can. Ave. G.C. = Total hits of E & F.

However, according to the ground cover values, "other" species seemed to be rather prominent in the alfalfa pure stands. But when the percent composition of these is considered it is noted, that their contribution to the sward by weight was relatively small. Towards the end of the season, in cuts 3, 4, 5, weeds made up almost half of the total yield.

The smount of bare ground at the beginning of the season was relatively high for timothy, alfalfs, brome and trefoil, none of which showed a very regular stand. As the season progressed the bare ground decreased in the alfalfs and trefoil stands but did not change in the timothy and brome stands. Red clover and Ladino had fairly uniform stands, but red clover probably less than Ladino, because it was thinned by disease. Ladino maintained a high ground cover throughout the season, approaching 100 in cuts 4 and 5.

b)Percentage Composition of the Pasture Mixtures

The details of the percentage composition and of the point quadrat analysis of every species, in every mixture, in every cut are found in tables A33 to A40. A summary of these tables, in the form of averages per cut is found in table 7 of the text.

A general observation may be made at first, namely that the grasses as expected, contributed very little to the total yield in the first year of production. Also that the high percentages of "others" in some of the mixtures, may be due solely to the invading Ladino clover in blocks A and B.

		Cut 19	60	Cu	tl	Cut	2	Cut	3	Cu	t 4	Cut	5
Mi	xture	% Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.	% Comp	. G.C.	% Comp.	G.C.
1	Tim. R.C. Others B.G.	5.4 46.5 48.1	8.5 40.5 6.5 53	10 90 tr	22 75 18	29 68 3	28.5 52 9.5 26	13 79 8	16 32 25 39•5	9 60 31	40 80 55	20 63 17	16 58 29 15
2	Tim. R.C. Af. Others B.G.	4.8 34.1 18.0 43.1	8 20.5 7 4.5 64	7 59 29 5	16 79 13 13	16 52 23 9	19.5 42 19 10.5 29.5	4 45 36 15	12 40.5 12 29 27.5	4 27 43 26	-	8 24 48 20	
3	Tim. R.C. As Others B.G.	3.8 25.0 31.0 40.0	4.5 25.5 13.5 5 50.5	9 36 44 11	22 44 63 7	14 48 13 25	17 41 30 19 19.5	7 49 2 42	9 27 11 37.5 33	6 49 tr 45		11 52 18 19	
4	Tim. R.C. Lad. Others B.G.	5.7 28.6 26.9 38.8	8 24 27 1.5 42.5	16 49 35 tr	32 59 54 12	12 28 60 tr	19.5 39 68 0.5 10	5 14 81 tr	7 53.5 30 2 2 3. 5	1 15 81 3	(2) 40 75 10	4 7 88 1	6 18 80 1 13
5	Tim. R.C. Af. Lad. Others B.G.	4.2 27.4 26.5 17.3 33.2	4.5 28.5 4.5 15.5 0.5 76	8 36 32 23 1	25 52 11 43 2 9	11 28 15 46 tr	16 43.5 10.5 51.5 - 17.5	2 14 22 61 1	8 18 13 51.5 2 22.5	2 11 26 60 1	·	4 5 35 56 tr	

Average	Percentage	Composition	and	Ground	Cover
	Pasture	Mixtures 190	50-19	961	
	1	Exneriment II	r -		

Table 7

			Cut 1	960	Cut	1	Cut	2	Cut	3	Cut	4	Cut	5
Mi	xture	%	Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.
6	Tim. R.C. B.T. Others B.G.		4.8 33.8 7.6 53.8	5.5 23.5 11.5 5.0 52	10 75 10 5	32 73 22 5	15 67 8 10	24 54.5 15.5 12 20	7 64 7 22	13 48 18 22 25	7 54 7 32	45 65 45 30	16 54 6 24	24 60 28 6 17
7	Tim. Af. Others B.G.		9.1 33.5 57.4	11.5 6.5 16 71.5	16 80 4	46 21 35	29 60 11	39 33 17 37	6 80 14	23 22.5 36.5 34	5 64 31		7 67 26	
8	Tim. Alf. Lad. Others B.G.		9.9 23.9 29.7 36.4	12 3 31.5 59.5	13 41 44 2	30 12 70 18	13 21 65 1	23 21 73.5 2 13.5	2 21 77 tr	9 12 64 0.5 26.5	1 38 60 1	6 35 95 - 5	2 41 57 tr	4 9 84 12
9	Tim. Af. B.T. Others B.G.		7.9 23.7 19.0 49.5	7 7 11 2 72	14 55 30 1	49 14 43 3 24	18 43 34 5	40 23 37 6 21	9 54 30 7	13.5 22 35 17 31	9 63 13 15	65 50 95 10	16 62 12 10	32 14 59 15 11
10	Tim. Als. Others B.G.		5.4 40.6 54.0	4.5 31.5 5.5 64.5	10 82 8	26 88 3 9	32 34 34	23 47.5 25 25.5	23 18 59	14 30 38 28	24 19 57		35 3 62	

Table 7 continued.

		Cut]	.960	Cut	1	Cut	2	Cut	3	Cut	4	Cut	5
Mi	xture	% Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.	% Comp.	G.C.
11	Tim. B.T. Others B.G.	7.8 28.1 64.1	7 18 6 70	24 63 13	38 49 33	22 58 20	24.5 55 21 17.5	17 49 34	15 31.5 34 31.5	16 25 59	80 90 30 10	35 43 22	33 65 8 19
12	Tim. Lad. Others B.G.	8.0 47.6 44.4	9 27 7.5 57.5	20 79 1	32 76 - 13	20 80 tr	23 77.5 12	5 94 1	8 66 0.5 29	4 95 1	6 95 -	5 93 2	8 90 - 10
13	Br. B.T. Others B.G.	4.2 23.6 72.2	9 15 14 62	29 52 19	29 47 36	9 60 31	16.5 56.5 23 21	9 72 19	12 64 27 22	15 35 50	40 75 45 15	30 22 48	42 62 20 12
14	R.C. B.T. Others B.G.	2.0 32.0 66.0	2.5 21 14.5 63.5	4 75 21	4 56 - 44	1 65 34	4 55 34 23	2 69 29	4 55 23 35	3 31 66	6 100 75 -	13 24 63	4 48 38 24
15	K.B. B.T. Others B.G.	2.0 25.4 72.6	5 23.5 11 62.5	18 58 24	26 43 46	5 49 46	29 61.5 18 14.5	16 69 15	23 57 16 27	28 32 40	80 65 35 10	40 15 45	36 51 26 16

Table 7 continued.

Each cut is the average of the 4 blocks A, B, C and D for % composition Mixt. 14 and 15 cut 1 are a 3 block average. """"" Mixt. 13, 14, 15 cut 3 """"""""""""

In the fall cut of 1960 the contribution to the sward by the seeded species was relatively small, as compared to 1961. This was due to both the high amount of invading Ladino clover and the stubble of the companion crop as mentioned above. The largest contribution to this cut was made by the clovers and alfalfa. Birdsfoot trefoil yielded well only in mixture 9 and in the simple mixtures 11, 13, 14 and 15, <u>1961</u>. In mixture 1 timothy did not contribute uniformly throughout the season. As expected red clover gave a high percentage at the beginning, and then declined as the season progressed.

In mixture 2 timothy behaved as above, red clover decreased from cut to cut and alfalfa increased.

Timothy behaved similarly again in mixture 3, red clover increased after each cut, which was in direct relationship with the decrease of alsike encountered after each cut. The contribution of the latter was very high in the first cut, but insignificant in cuts 3 and 4.

The sward of mixture 4, which was dominated by Ladino clover, showed a marked decrease of timothy as well as of red clover. In mixture 5, which was a complex mixture of 3 legume and one grass species, timothy contributed less to the sward than in any other mixture. Red clover contributed well at the beginning, but decreased to 5% only in cut 5. Ladino gave the highest percentage of the total yield in this mixture. Mixture 6 was very similar to mixture 1, in that the largest contribution was done by red clover. Timothy and birdsfoot

trefoil were of little importance.

Mixture 7 was a simple mixture of timothy, and alfalfa was similar to mixture 1 in percent composition of the components. Alfalfa contributed to most of the yield.

In mixture 8 in which alfalfs was in mixture with Ladino, the latter made up most of the yield especially in cuts 2, 3, 4. Timothy decreased rapidly towards the end of the season. The contribution of alfalfs was more uniform.

The association of trefoil, with timothy and alfalfa as in mixture 9, had the effect of increasing the contributions of both timothy and alfalfa. Trefoil gave a good 36% of the yield in cuts 1, 2, and 3.

Mixtures 10 to 15 were simple mixtures in which timothy was seeded with alsike, Ladino and birdsfoot, and in which trefoil was seeded with brome, reed canary and Kentucky blue grass. As in mixture 3, alsike in mixture 10 only contributed well to the first 2 cuts. Although timothy increased from cut to cut, it was not the major yielder, due to the high amount of voluntary Ladino in blocks A and B.

Trefoil was the biggest contributor in mixture 11, and the timothy percentage was higher than in any other mixture.

In mixture 12 Ladino was the major contributor throughout the season. The timothy percentage was 20% in cuts 1, 2, but only 5% in 3, 4 and 5.

Mixture 13 was similar to mixture 11. Trefoil was most prevelent by yield, and brome gave 29% and 30% in cuts 1 and 5 respectively.

Mixture 14 was somewhat disappointing, in that a poor establishment of reed canary did not result in as uniform æ stand as could have been expected. Trefoil behaved similarly as in the other simple trefoil mixtures. Reed canary contributed an average of 2.5% of the composition in cuts 1 to 4. It was better in the 5th cut with 13%.

Mixture 15 was a very uniform mixture more so as the season progressed. This feature was characteristic in blocks C and D, which were relatively free from the voluntary Ladino clover. The percent of trefoil was somewhat less than in mixture 11, 13, 14 and that of Kentucky blue grass as good or better than that of timothy in 11, and brome in 13. The high values of "others" were Ladino clover.

Table 6 referred to previously regarding the pure stands, also contains the 3 mixtures that complemented the mixtures trial.

Mixture (vii) and (viii) were very much alike since their only difference was the addition of brome in mixture (viii). The largest contribution to both of these swards was made by Ladino clover. The percentage of Ladino had increased from 20% to 95% from the fall 1960 to fall 1961. Trefoil yielded close to 30% in the lst cut of 1961 but fell to barely 1% in the fall of 1961. Timothy appeared to be somewhat better in its yielding ability than brome, but both made very little contribution to the sward.

Mixture (ix) had a very clumpy stand throughout the season,

especially due to alfalfa. The contributions of timothy and brome were relatively small.

c) Point Quadrat Analysis of the Mixtures

Tables A33 to A38 also contain the point quadrat analysis of every mixture in every cut, which includes the number of hits recorded on a component and its respective calculated ground cover. In table 6 also appears a summary of the average ground cover values for each cut of the 1960-61 season. In the case where only 2 blocks (C and D) were analyzed with 5 stations per plot or 50 points, the average ground cover for the cut was the total number of hits for the cut. Where all 4 blocks were analyzed, the average ground cover was half the total number of hits. Ground cover of cut 4 was not considered in the same light as all other cuts, since the analysis was obtained in a manner that was very different from the normal. Also in cut 5 some of the mixtures had no analysis done on them for reasons (Materials and Methods.) stated previously.

Considering the results of cut 1, 2, 3 and 5 it was observed that the values of ground cover were related to some extent to the values of percent composition. This appeared to be true of the grasses, and clovers at any rate. It is not true for alfalfa in cuts 2 and 3 especially, for which correlations were calculated. In cut 2 a correlation coefficient of r -.17was obtained and in cut 3 of r .32, both of which were not significant. This tends to show that there is no relationship
between percent composition and ground cover in alfalfa. However it was striking to find that the ground cover for this species was consistently lower than the percent composition. Another observation from table 7 is that the ground cover of alfalfa when it was associated with trefoil, was consistently lower than the latter, yet alfalfa contributed more to the sward than trefoil.

Again in table 6 appear the ground cover values of mixtures (vii), (viii) and (ix). With respect to ground cover the mixtures (vii) and (viii) were much alike, as was found for percentage composition. The ground cover of Ladino increased as the season progressed and that of trefoil, which was low, decreased to insignificance. The grasses had very little ground cover too. In mixture (ix) alfalfa had very low ground cover.

Table A39 contains all observations taken for density studies during the season of 1961. It is probably sufficient to say, for the moment, that relatively higher densities were obtained for the clovers and trefoil than for either alfalfa or the grasses. Further results related to density will be reported on later in the text.

In table A40 appears the point quadrat analysis performed with the improved point quadrat. From this table it is observed that a greater number of hits were obtained than in previous analyses, a characteristic which was not due directly to the point quadrat, but rather to the fact that the readings were

obtained at cutting time, when both ground cover and density were greater.

4. <u>Yield per Unit Area of Ground Cover.</u> Pasture Mixtures and Pure Stands. 1960-61

a) Individual Cuts

For this part of the dissertation, it was considered more appropriate, for reasons that will be obvious, that the pure stands and the mixtures be reported simultaneously.

Tables Aul to Au8 show the detailed calculations and results of the yields per unit area of ground cover, of all cuts of the pure stands. Tables Au9 to A65 show the detailed calculations and results of the mixture components, in all cuts. Also included were results of densities and point density yields, but none of these were averaged or included in a final summary.

In most of these tables each block contains data under seven different headings. No new headings were added but in some instances, a few are absent. Thus column 1, headed "Mixt. No.", should be understood as denoting all species entered into the results, with the corresponding mixture number preceeded by the species name. The heading 2, "Total DM", should be understood as the total dry matter obtained from the specific mixture. Column 3, "% comp." was meant to be the proportion in percentages of a specific species contributed to the mixture. "DM of component" or DMof species in pure stands, should be read as the amount of dry matter in grammes per plot a species in mixtures or pure stand contributed to the sward as in column 4. Density and ground cover, columns #5 and #6 respectively, are the same as explained in the materials and methods. Column #7, which is only found in D of cut 2, in C and D of cuts, 3, 4 and 5 headed "Y./Point density" should be read as the yield per point of density in grams per plot. The last column, that is 8, which was considered the ultimate end of this study, and which is headed as "Y./Unit area" should be understood as the yield per unit area of ground cover as explained and defined in the materials and methods.

To avoid a long report on all individual tables of every cut the data is presented in a form of a summary for all cuts in tables 8 to 13. In these tables appear the average yields per unit area of ground cover obtained of blocks C,D for the species in the mixtures and of blocks E,F for their respective pure stands. (Reed canary and Kentucky blue pure stands were not replicated.) Blocks A and B were not included due to the volunteer Ladino problem.

In these tables, down the most left hand column, the mixtures with their respective numbers were reported. Along the top are found all species that entered into the various mixtures. And along the bottom appear the values of the respective pure stands.

In table 8 the underscored results represent all these

Table &	3		Average Yield per Unit Area of Ground Cover of the Grass and Legume Components (gm.) Pasture Mixtures and Pure Stands Nov. 2nd, 1960.										
				Com	ıponent	t s		<u> </u>					
No.	Timothy	Brome	R.canary	Kent.Blue	Red Clover	Alfalfa	Ladino	Bf.trefoil	Alsike				
1 2 3 4 5 6 7 8 9 10 11 12 13	3415308324911 3.13243243	2,2			6.3 9.6 <u>5.4</u> 6.8 7.8 <u>5.4</u>	<u>5.2</u> 10.1 33.8 46.9 12.8	5•4 5•9 5•0 7•7	<u>3.1</u> 7.0 10.8 7.1	6•6 5•6				
14 15 vii viii ix	1.4 2.7 1.4	2.4	<u>,</u>	1.8		8.5	2.3 5.2	7•0 5•0 4•2 6•4					
Stands	1.9	1.2	1.3	1.0	6.2	6.0	3.6	4.0					

Ave. of blocks C, D and E,F. Underscored values indicate a competition index of less than 1.0.

species that gave a $Y_{\cdot/U.A.}$ smaller than their respective pure stands. A ratio of 1.0 between the $Y_{\cdot/U.A.}$ of the species in the mixture and the $Y_{\cdot/U.A.}$ when in pure stand, indicated that the mixture did not suffer from competition, nor did it benefit from the associated species. Competition indices (see materials and methods) were calculated for all species (except alsike clover) in all cuts. The results appear in table A66 to A71.

Then from table 8 it can be noted that most species yielded appreciably more in mixed stands than in pure stands, and therefore all these for which this is true the competition index was more than 1.0. However, alfalfs in mixture with timothy and red clover, red clover in association with alsike clover and timothy, red clover and trefoil in association with timothy, timothy and Ladino mixed with trefoil and finally timothy, brome in association with alfalfs, were the exceptions, and gave competition indices of less than 1.0.

In table 9, which is the summary of the first cut of 1961, the underscored values represent those species, in mixtures, that yielded more than their respective pure stands. It is quite apparent from this table that the yield trends were just reversed in cut 1. Few of the species when found in mixtures, yielded more than their respective pure stands, and therefore most gave æ competition index of less than 1.0. In this cætegory, were found all the græsses, all of which appeared to be much suppressed by their associated legumes.

In this first cut red clover in mixtures 1, 2, 5 and 6,

	Components												
Mixt. No.	Timothy	Brome	R.canary	Kent.Blue	Red Clover	Alfalfa	Ladino	Bf.trefoil	Alsike				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vii viii	4.8 7.9 8.5 5.8 7.4 4.0 8.0 2.9 5.1 4.0 8.9 5.1 4.0 5.5 5.2	6.9	15.8	4. 6	18.3 16.8 13.1 15.2 17.0 16.1	14.7 23.5 45.4 41.8 16.9	7.6 9.1 13.4 <u>16.6</u> 10.8 11.9	8.6 11.3 10.8 11.7 <u>15.2</u> 9.7 <u>14.9</u> 8.6	16 . 8 17 . 2				
<u>ix</u> Pure Stands	<u> </u>	2•4 26•4	36.6	15.5	15.4	<u>40.1</u> 23.4	16.2	12.3					

Table 9Average Yield per Unit Area of Ground Cover of the
Grass and Legume Components (gm.)Pasture Mixtures and Pure Stands, Cut 1, 1961.

Ave. of Blocks C, D, and E, F.

Underscored values in this and the following four tables indicate a competition index greater than 1.0.

alfalfa in mixtures 5, 7, 8 and (ix), Ladino in mixture 12, trefoil in mixture 14 and (vii) competed favorably with their associated species.

In cut 2, table 10, the competition pressure that the species were exerting on each other was even more apparent. Only 3 species in 5 different mixtures were able to assert themselves and produce more per unit area of ground cover than their respective pure stands. Of these, again, there were none of the grass species. Red clover in mixture 1 only, alfalfa in mixtures 9 and (ix) and Ladino in mixtures (vii) and (viii), were able to attain a competition index of more than 1.0.

However, it is of some interest to note that grasses in the mixtures, with some exception, doubled or tripled their yields per unit area. At the same time though some of their respective pure stands also increased their $Y_{\cdot/U_{\cdot}A_{\cdot}}$. Reed canary and timothy actually decreased in $Y_{\cdot/U_{\cdot}A_{\cdot}}$.

Table 11 relates the average $Y_{\cdot/U_{\cdot}A_{\cdot}}$ of cut 3, obtained by 2 slightly different methods. The values under (b) represent these obtained from a point quadrat analysis taken at cutting time. Then, if the yields of (a) were representative of a unit area of ground cover after a week or two of regrowth, those under (b) represented yields per unit area of a ground cover, which at the time of cutting appeared to be near a maximum, for certain species. Then, in other words, whereas in the first instance, the results indicated, to some extent, the ability of a species to yield, when having a certain ground

Table .	10	Av	und Cover cs (gm.) Cut 2, 1	of the .961.								
Mixta	Components											
No.	Timothy	Brome	R.canary	Kent.Blue	Red Clover	Alfalfa	Ladino	Bf.trefoil	Alsike			
1 2 3 4	12.2 8.4 14.4 9.4				30.5 26.0 25.5 15.3	28.0	16.1		9.1			
56780	9.5 18.9 10.8 9.9				14•2 27•1	4.2 35.8 22.8	19•5 18•9	14.2				
7 LO L1 L2 L3	16.9 14.9 18.0	9.3				<u>90.0</u>	20•5	23•5 22-0	11.7			
Ú4 L5 VII VIII IX	19•3 18•5	1.4	7.8	2.9		162.3	27.2 25.2	29.6 21.8 5.8 6.0				
Pure Stands	51.7	36.4	32.6	<u>і</u> ці8	28.3	55.6	23.1	31.5				

Ave. of Blocks C, D, and E, F.

Table 1	.1		Ave:	eage Pastu	Yield Grass re Mix	per and ture	Unit A Legum s and	rea o: le Comj Pure i	f Ground ponents Stands,	Cover (gm.) Cut 3,	of th 1961.	.0			
Mixt. No.	Tim a	• b	Bi a	°. b	R.can.	K.B	• R. a	C. b	A a	.f. b	La a	d. b	B.I a	r. b	As.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vii viii	5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	1.9 1.0 2.4 0.7 2.6 2.0 1.3	6.9	3.4	7.1	8.0	29.3 20.0 24.2 9.7 17.0 18.8	12.5 4.8 9.3	51.4 24.0 69.0 58.9 59.6	7•4 19•9	20.4 19.5 21.6 23.2 19.5 24.0	12.7 11.9 13.7 12.4 13.9	7.3 12.4 <u>17.6</u> <u>15.5</u> <u>15.8</u> <u>15.3</u> 0.8 2.4	2.8 6.1 6.7 <u>9.9</u> 0.4	2•3 4•3
1x Pure Stands	12.6	5•6	2•2 16•7	6.6			30.1	14.3	29.6	13.6	18•7	14•0	13.6	8.8	

Ave. of blocks C, D and E, F except for R. canary which is from B and D. a represent ave. from the standard method. b represent ave. when point quadrat analysis was done at the time of cutting.

cover, in the 2nd instance the yield of a species is related to a maximum ground cover.

On observing the yield per unit area of ground cover under (a) of the results of table 11, it is noted that, alfalfa, Ladino clover and trefoil in certain mixtures were less subject to adverse effects of the associated species, then in previous cuts. Thus alfalfa in mixture 2, Ladino in mixtures 4 and 5, alfalfa in mixture 7, alfalfa and Ladino in mixture 8, alfalfa in mixtures 9 and (ix), trefoil in mixture 11, Ladino in 12, trefoil in 13, 14, and ladino in (vii) and (viii), all of these gave a competition index greater than 1.0. Red clover in mixture 1, had an index just slightly less than 1.0 and therefore was not much different than in the previous cuts.

The grasses, contrary to their behaviour in cut 2 showed an overall decrease in both the mixtures and the pure stands, therefore showing little change in their competition index. An exception to this was timothy in mixture 10, which despite a decrease, gave an index greater than 1.0

In table 12 appear only a fraction of the mixtures of the experiment (see materials and methods), with the average yields per unit area of ground cover. This table was obtained from tables A62 and A63. In these, the unseparated part of the sub-plot was recorded as grams per square metre, and left as such. Since the entire sub-plot was separated, there were no percent composition to be entered. The contribution to the mixtures by the individual species, however, was recorded in

Brome-trefoil and timothy-alfalfatrefoil mixtures. Block C July 25.1961

Kentucky bluegrass-trefoil mixture. Block C. July 25.1961

Timothy-red clover-trefoil mixture Block C. Note improved PQ. July 25.1961 grams per plot, which was obtained in multiplying by the figure 8. (1 sub-plot = 1/8 of a plot approx.). This was done to bring the yields per unit area to gm/point/plot, as in previous cuts.

The results of table 12, of the 4th cut were obtained in the same manner as the (b) values of cut 3, i.e., the ground cover data were obtained from an analysis done at cutting time.

In this cut timothy gave competition indices greater than 1.0 in three instances, i.e., in mixture 4, 6 and (viii). Fewer of the legumes were able to yield more in mixtures than in pure stands. Of these, red clover in mixture 9, Ladino in mixture 4 and 12 gave a competition index greater than 1.0. However red clover in mixture 1, alfalfa in mixture 9 and Ladino clover in mixture (viii), were very close for an index of 1.0. Trefoil in all mixtures appeared to have been set back by the associated species, (or itself).

The results of table 13, cut 5, were obtained in the regular manner. It is worthwhile to note from this table that the grasses improved in their ability to yield. So much so that timothy in 5 different mixtures, as well as reed canary and Kentucky blue grass were able to give competition indices greater than 1.0. This was the timothy in mixtures, 1, 6, 9, 11 and (vii).

Also red clover in mixture 6 and alfalfs in mixtures 8 and 9 competed favorably with their associated species, ladino in mixture 4 was the only one to give am index of 1.0, but ladino in mixture 12 and (viii), was not very much below 1.0.

Table .	12	Ave	rage 11e1d p Grass Pastu	er Unit Area and Legume (re Mixtures,	Components (gr Cut 4, 1961	over of the m.) •	•	
		·····		Compo	nents	<u> </u>		<u> </u>
No.	Timothy	Brome	R.canary	Kent.Blue	Red Clover	Alfalfa	Ladino	Bf.trefoil
1 4 6 8 9 11 12 13 14	2.2 7.8 4.4 1.7 3.2 2.6 2.9	3•4	4•5	4. 7	7•7 3•0 <u>9•2</u>	4•7 6•0	<u>11.5</u> 9.6 <u>11.3</u>	3.8 6.7 8.1 9.8 7.7
vii viii	3.2 4.6	2.4		4•(_	8.9 10.7	1.9
Pure Stands	4.0	3.6	9.0	8.3	7•9	6.2	10.8	11.0

Ave. of blocks c, D and E, F. (obtained at cutting time)

Table 13 Average Yield per Unit Area of Ground Cover of the Grass and Legume Components (gm.) Pasture Mixtures, Cut 5, 1961.												
Mixt. No.	Timothy	Brome	R.canary	Compo Kent.Blue	nents Red Clover	Alfalfa	Ladino	Bf.trefoil				
1 4 6 8 9 11 12 13 14 15 vii viii	5.5 2.5 7.0 4.9 6.2 7.1 2.9 5.8 2.3	4•3 3•9	<u>9.1</u>	<u>11.6</u>	7•3 4•8 9•1	<u>33•7</u> 20•4	8.8 6.4 8.0 7.2 8.0	2.5 2.8 2.8 3.2 2.7 2.9 2.5 1.9				
Pure Stands	5.1	5•5	8.4	7•5	8.1	15.5	8.1	4.9				

Ave. of blocks C, D and E, F.

None of the trefoils yielded well.

b) Seasonal Averages, cuts 1, 2, 3

In Table A72 appears the analysis of variance of the pure stands, in A73 of grasses, including the pure stands of timothy and brome, and in A74 the analysis of variance of the legumes also including their respective pure stands except alsike. These analyses of variance were performed on the data of tables 14, 15 and 16.

No significant F value was obtained for species in the pure stands, and a high coefficient of variability. An F significant to the 1% level was obtained for grasses and a CV of 46.6% which is rather high. Significance for both legume species and replications was obtained in the analysis of the yield per unit area of the legumes, and the CV (21.8%) was less than half of the one of the grasses.

Following the analysis of variance "Duncan's Multiple Range" test was applied on both the grasses and legumes with their respective pure stands.

The results are reported in table 17. As expected the pure stands showed relatively high values in the grasses and were significantly different than all the grasses in mixtures. There were little significant differences between the grasses in mixtures. Brome in mixture (viii) and (ix) was much suppressed but was significantly different from timothy in mixture 12.

To	h1.	a 7	1.
10	DT	с т	4

Seasonal Average Yield per Unit Area of Ground Cover of the Pure Stands (gm) Pasture Mixture Cut 1, 2, 3 1961

					Blocks	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>				
			E	}				F		
Species	Total DM	Ave. % Comp.	Total DM of Species	Total Ground Cover	Ave. Yield per Unit Area	Total DM	Ave. % Comp.	Total DM of Species	Total Ground Cover	Ave. Yield per Unit Area
Tim.	5475	95.0	5203	164	31.7	5815	95.8	5572	160	34.8
R.C.	4325	97.0	419 7	164	25.6	4063	98.0	3980	188	21.2
Af	1803	91.3	1646	46	35.8	2475	92.8	2 298	74	31.1
Br.	4358	18.8	3435	174	19.7	4872	87.9	4281	100	42.8
Lad.	4640	99•7	4628	2 26	20.5	42 97	99.3	4266	226	18.9
B.T.	4215	96.0	4046	222	18.2	3753	96.3	3614	160	22.6
R.can	3633	88.9	3225	96	33.6					
K.Blue	4981	98.9	4925	144	34.2					

R.can & K.Blue ave. of cut 1 & 2 only

					Blo	ocks				
		- 180	C					D		
Mixture No.	Total. DM	Ave. % Comp.	Total DM of Com- ponent	Total Ground Cover	Ave. Yield per Unit Area	Total DM	Ave. % Comp.	Total DM of Com- ponent	Total Ground Cover	Ave. Yield per Unit Area
Tim. 1 2 3 4 5 6 7 8 9 10 11 12 vii 12 vii viii ix	4588 5010 4449 4869 5135 4700 2614 5112 4540 3927 4641 4675 4632 2600	8.6 10.9 11.5 8.8 7.0 11.7 28.0 10.3 18.5 9.2 15.8 14.4 14.9 11.7 21.0	394 544 512 427 362 548 732 529 773 417 620 667 695 546	46 52 476 56 74 120 46 88 876 44 94 44 110	8.6 10.5 11.6 5.6 6.5 7.4 6.1 11.5 8.8 8.7 8.2 7.1 10.9 12.6 5.0	4534 4462 5036 5009 4591 5635 5596 4139 3482 3582 5267 4702 4963 1543	12.3 11.3 12.5 9.1 8.5 13.7 9.1 7.0 16.5 20.2 22.9 14.0 12.4 9.8 24.8	559 505 569 424 627 513 391 681 702 821 740 585 487 382	62 54 46 472 102 62 112 88 86 54 42 92	9.0 9.4 8.9 9.9 9.6 8.7 5.0 6.3 6.1 12.1 9.3 20.6 10.8 11.6 4.2
Br. 13 viii ix R.can 14 K.Bl 15	4117 4675 2600 B4306 4084	11.0 0.3 3.1 1.8 11.8	453 15 80 78 482	54 16 38 14 86	8.4 0.9 2.1 5.6 5.6	3616 4963 1543 3972 2332	13.6 1.1 5.9 4.5 16.0	493 53 91 179 373	70 30 44 14 80	7.0 1.8 2.1 12.8 4.7

Table 15Seasonal Average Yield per Unit Area of Ground Cover of the Grass Components (gm)Pasture MixturesCut 1, 2, 3 1961

	_					Blc	ocks			·	
				C					D		
Mixtu No.	ire	Total DM	Ave. % Comp.	Total DM of Com- ponent	Total Ground Cover	Ave. Yield per Unit Area	Total DM	Ave. % Comp.	Total DM of Com- ponent	Total Ground Cover	Ave. Yield per Unit Area
R.C.	123456	4588 5010 4449 4869 5135 4700	91.2 71.3 52.6 39.8 35.8 74.6	4185 3570 2342 1936 1839 3505	162 192 126 144 102 176	25.8 18.6 13.4 18.0 19.9	4534 4462 4550 5036 5009 4591	85.1 80.1 51.5 37.9 39.5 74.7	3860 3575 2343 1910 1978 3428	164 158 104 142 140 178	23.5 22.6 22.5 13.5 14.1 19.3
Af.	2 5 7 8 9 1x	5010 5135 2614 5112 4181 2600	14.1 9.8 57.3 18.4 14.7 74.4	705 501 1497 942 615 1934	22 16 22 30 14 22	32.0 31.3 68.0 31.4 43.9 87.9	4462 5009 5635 5596 4139 1543	8.2 6.1 88.2 27.9 27.8 64.9	366 306 4970 1560 1149 1001	22 28 110 44 36 12	16.6 10.9 45.2 35.5 31.9 83.4
Lad.	4 5 12 vii riii	4869 5135 5112 4641 4675 4732	51.5 47.1 69.0 85.2 76.0 74.8	2507 2420 3529 3955 3554 3540	138 134 196 194 182 166	18.2 18.1 18.0 20.4 19.5 21.3	5036 5009 5596 5267 4702 4963	51.7 45.2 64.5 85.9 73.9 77.4	2603 2265 3609 4526 3477 3839	182 152 206 234 178 184	14.3 14.9 17.5 19.3 19.5 20.9
B.T.	6 9 11	4700 4181 3927	12.6 64.6 82.4	593 2701 3236	62 158 144	9.6 17.1 22.5	4591 4139 3582	11.3 53.6 73.7	519 2220 2639	50 146 152	10.4 15.2 17.4

Table 16Seasonal Average Yield per Unit Area of Ground Cover of the Legume Components (gm)Pasture MixturesCut 1, 2, 3 1961

Table	16	continued.	

						Blo	ocks				
				C					D		
Mixt No	ure	Total DM	Ave. % Comp.	Total DM of Com- ponent	Total Ground Cover	Ave. Yield per Unit Area	Total DM	Ave. % Comp.	Total DM of Com- ponent	Total Ground Cover	Ave. Yield per Unit Area
B .T.	13 14 15 vii viii	4117 B4306 4084 4675 4732	81.5 85.0 84.3 8.1 11.7	3355 3662 3443 380 555	160 198 166 82 106	21.0 18.5 20.7 4.6 5.2	3616 39 7 2 2332 4702 4963	81.0 71.0 74.9 13.0 11.8	2930 2821 1746 610 586	208 148 148 54 68	14.1 19.1 11.8 11.3 8.6
As	3 10	4449 4540	34.1 37.6	1520 1705	154 156	9.9 10.9	4550 3482	33.2 77.7	1509 2706	104 196	14.5 13.8

In the legumes more striking differences were obtained. The pure stand of alfalfs was significantly different from both the trefoil and Ladino pure stand, but not so from the red clover. This difference however did not show in the analysis of variance of the pure stands alone. The mean yields per unit area of ground cover of alfalfs in mixtures 7 and (ix) were significantly different from each other. Also both of these yielded significantly more than the respective pure stand. Furthermore alfalfs in mixtures 7, 8, 9, (ix) yielded significantly more than any other pure stand except red clover, and more than any other species in mixtures except alfalfs in mixture 2 and red clover in mixture 1.

Red clovers in mixtures were not significantly different from the pure stands, neither were they different between each other.

Similarly there was no significant difference between Ladino in pure stands and Ladino in mixtures, neither was there a significant difference between the Ladino in mixtures. The yield per unit area of trefoil pure stand was significantly different only from the least yielding trefoils in mixtures (vii) and (viii).

Since alsike did not have a pure stand, it was not compared in that manner. Yet it is worth noting that its yield per unit area in mixture 3 and 10 was only significantly different from red clover in mixture 1 and was not significantly different from alfalfs in mixture 5. Also alsike in mixture 3 did not

Table 17.	<u>Seasonal Mean Yield per Unit Area of Ground</u>
	Cover of Grasses and Legumes in Mixtures and
	in Pure Stands. Cut 1, 2, 3 1961.
	Duncan's Multiple Range Test at the 5% Level.

Grasses

Legumes

Pure Tim.	33.25	a					
Pure Br.	31.25	а		R.C.	1	24.65	de
Tim. 1	8.8	bc			2	20.60	efø
2	0 05	20			ຈັ	20 55	ef a
~ ~ ~	10 25				í.	12 15	ofabi
	10.2)				4	16 05	erghi
4	(•1)				2	10.05	ergur
2	0.05			D A	0	19.00	eign
0	8.05		rure	R.C.		23.40	der
7	5.55		Pure	Ar	•	33.45	cd
8	8.90			Af	2	24.30	def
9	7.45				5	21.10	efg
10	10.40				7	56.60	Ъ
11	8.75				8	33.45	cd
12	13.85	Ъ			9	37.90	с
vii	10.85	bc			ix	85.65	a
viii	12.10		Pure	Lad.		19.70	efgh
ix	<u> </u>			Lad.	L.	16.25	efghi
Br. 13	7.70				5	16.50	efghi
viii	1 35	C			á	17.75	efghi
iv	2 10				12	10 85	ofch
Peopl	0 20)	n n t			1 1	10 50	ergn
	9.20)	100		v	77	19.50	ergn
V.DT.T.)	2.121	lested	Desma	D UL	11	21.10	erg
			rure	D •1•	6	20.40	eig
				B.T.	0	10.00	gni
					_9	10.15	eighi
					11	19.95	efgh
					13	17.55	efghi
					14	18.80	efghi
					15	16.25	efghi
				v	ii	7.95	hi
				vi	ii	6.85	i
				As.	3	12.20	fghi
					1Ó	12.35	ghi
							0

Means with the same lower case letter(s) are not significantly different at the F .05 level.

yield significantly less than alfalfa in mixture 2.

In table 18 appears the seasonal average of the yields per unit area of ground cover, of all the species obtained from cuts 1, 2, 3, and as calculated in tables 14, 15, 16. Table 19 shows the average competition indices of each species as well as those of each mixture.

From table 18 it can be observed that none of the grass species gave a mean yield for cuts 1, 2 and 3 that was greater than the mean $Y_{\bullet}/U_{\bullet A}$. of their respective stands. Of the red clover only the one in mixture 1 yielded more than the pure stand. This was apparent from all cuts; however the difference was not significant. Alfalfa in 4 of the mixtures had a competition index greater than 1.0. But only alfalfa in 7 and (ix) was significantly greater than the pure stand. Ladino in mixtures 12 and (viii) gave an index greater than 1.0, Ladino in (vii) came close to one. Birdsfoot trefoil did not have any competition index equal to 1.0. But trefoil in mixture 11 gave am index of .98 and in mixture 14 of .93.

The competition indices of table 19 show that mixture (ix) gave the highest compatability between species with an index of .98. This mixture was followed by (vii) with .82 and by #8, 9 with indices of .70 and .68 respectively. However, the significances of the differences were not established.

Table 18Seasonal Average Yield per Unit Area of Ground Cover of the Grass and Legume Components (gm.)Pasture Mixtures and Pure Stands, Cuts 1, 2, 3. 1961.										
Components										
NO.	Timothy	Brome	R.canary	Kent.Blue	Red Clover	Alfalfa	Ladino	Bf.trefoil	Alsike	
1	8.8-	<u> </u>		/	24.7	2). z				
3	9•9- 10•0- 7-2-				20.4	2409	16.0		11.7	
1 56	7-9-				15.8 19.6	18.3	16.4	9.9		
78	5.6- 8.5-					<u>49.0+</u> 33.8	17.8			
9 10	7•3- 10•6-					35.3		16.2	12.5	
11 12	8.9 [°] 10.1-						19.8	19.8		
13 14		7.6-	9.2					17.1 18.7		
15 vii	10.8-			5.2			19.5	16.5 7.3-		
viii ix	12.1 <u>4.6-</u>	1.5- 2.1-	·			86.3+	21.1	6.6-		
Pure Stand	33•3	28.2	33.6	34.2	23.2	32.9	19•7	20.1		

Underscored values indicate a competition index greater than 1.0.

+ indicates values significantly greater than those of the respective pure stands. Duncan's test at the 5% level.

- indicates values significantly smaller than those of the respective pure stands. Duncan's test at the 5% level.

Mixt. No.	Tim.	Br.	R.Can.	K.Blue	R.C.	\underline{Af}	Lad.	B.T.	<u>Mixtures</u>
1	.26				1.06	-			• 59
2	•39				.88	•74			.61
3	•30				•88		da		(.70)
4	•22				• 58	- (-81		• • 48
5	•24				•68	•56	•83		•54
0	•24				•84	1 10		•49	•49
7	•17					1.49	~~		.82
8	•25					1.03	•90	d a	.70
.9	.22					1.07		•8T	.08
10	• 32							00	(.50)
11	•27						1 00	•98	• 54
12	• 30	~ 7					T.00	de	• 50
13		•27						.85	• 51
14			•27					•93	•52
15	.			.15			00	.82	.40
vii	•33	0.5					. • 99	.30	•51
viii	.36	.05				o (o	1.07	•33	•41 od
ix	•14	•07				2.63			•98

Table 19.Average Competition IndicesPasture Mixtures. Cut 1, 2, 3.

Indices of mixtures 3 and 10 were obtained by giving alsike a competition index of 1.0 $\,$

III. Hey Mixtures and their Pure Stands

1. Yields of Dry Matter

a) Pure Stands

Table A75 shows the yields of DM of each individual species in every block of each 3 cuts obtained. An analysis of variance has been performed on each cut and on the season's total. Differences existing between species have been analyzed with Duncan's multiple range test, and the summary of these is presented in table 20 of the text.

For all cuts, as well as the season's total a highly significant F value for treatments was obtained. Cuts 2 and 3 gave standard errors of their respective means that were twice as great as these of cut 1 and the season's total. Yet cuts 2 and 3 had the lowest coefficient of variability.

The pure stand of alfalfa, which was the highest yielding species in every cut, ranked first and was significantly different from all other species on a seasonal average, which was based on the average of 3 cuts obtained during the season. However it was not significantly different from mixture (i), which was included in blocks E and F, nor from the red clover and alsike pure stands in cut 1. It was significantly different from all in cut 2, but not from mixture (i), red clover and trefoil in cut 3.

Ladino was the lowest yielding species almost throughout

Treatment	<u>t</u>	<u>Cut 1</u>		Cut 2		<u>Cut 3</u>		Total	
i iii iv v vi vii vii	Tim.R.C. R.C. As. Af. Lad. B.T. Brome Tim.	5730 5459 5622 6423 3315 4204 4453 4392	a abc a d d bcd cd	1748 1845 890 2651 1576 2025 1103 1163	b b a bc b cd cd	1820 1702 1942 214 1727 1385 1059	ab ab - a ab bc c	9298 9006 6512 11016 5105 7956 6941 6614	b b cd a b c cd
SEX (] CV Treat. F	Lb/A.)	339.49 9.7% 9.02*	*	148.50 12.9% 14.54*	*	140.8 14.2 18.4	0 % 2**	467.0 8.5 16.4	8 % 6**

Table 20. <u>Yields as Pounds of Dry Matter per Acre. Pure Stands 1961</u> <u>Hay Mixtures. Experiment II</u>

Means followed by the same lower case letter are not significantly different from each other at the 5% level. Duncan's Multiple Range Test.

the season. It was not, however, significantly different in yield from trefoil, brome and timothy in the first cut. Its performance was better in the 2nd cut, when no significant difference was obtained between it and mixture (i), red clover, trefoil, brome and timothy. In the 3rd cut it yielded significantly less than any other species except alsike, which had so little regrowth that it was not cut. On a seasonal basis ladino gave the least amount of dry matter per acre, yet this was not significantly different from alsike and timothy.

The timothy, red clover mixture and the red clover pure stand yielded similarly throughout the season. Both of these, and birdsfoot trefoil were not significantly different and came second in rank. Also, brome and timothy gave a pattern of dry matter production that was similar. Throughout the season they were never significantly different. Alsike yielded only well in the first cut, when it was among the top producers.

b) <u>Hey Mixtures</u>

In tables A76 to A78 appear the DM yields of the hay mixtures, obtained for each block in every cut. Analysis of variances were done on each cut and the total yields of the season. Duncan's test was also used to compare differences existing between means, and the summary appears in table 21. The variance for treatment was significant at the 5% level in cut 1, at the 1% level in cut 2 and not significant in cut 3. The season's totals gave an F value for treatments that was highly

<u> Mixtures </u>	Cut 1	Cut 2	Cut 3	Total
1. Tim.,R.C.,Af.	6238 b	3277 a	2156 a	11947 ab
2. Tim., R.C., Af., Lad.	6282 b	3166 a	2145 a	11593 abc
3. Tim., R.C., As.	6162 b	2062 ъ	2319 a	10544 de
4. Tim., R.C., Lad.	5928 b	2214 b	2030 a	10172 e
5. Tim., R.C., B.T.v.	6457 ab	2445 Ъ	2392 a	11294 bcd
6. Tim.,R.C.,B.T.e.	6046 ъ	2185 b	2327 a	10559 de
7. Tim., R.C., B.T.m.	6302 ъ	2346 ъ	2277 a	10925 cde
8. Brome, Af.	7103 a	3072 a	2233 a	12408 a
9. Tim., B.T.v.	5965 b	2439 Ъ	2289 a	10693 cde
SEX (1b/A.) CV	206.79	157.35 12.2%	73.90 6.6%	315.44
Treat.F.	3.07*	8.70**	2.31(F.0	5:2.36) 5.48

Table 21. Yields as Pounds of Dry Matter per Acre. Hay Mixture 1961.

Experiment II

Means followed by the same lower case letters are not significantly different from each other at the 5% level. Duncan's Multiple Range Test.

significant.

From table 21 it can be noted that the alfalfs-brome mixture in cut 1 gave the highest yield, but this was not significantly different from mixture 5. In cut 2 this was also the case, but the difference between its yields and those of mixture 1 and 2 was not significant.

On a seasonal basis the performance of mixture 8, was outstanding and the dry matter yield obtained for the 3 cuts were significantly higher than those of all other mixtures, except mixtures 1 and 2. Mixture 1, 2 and 5 did not give differences among each other that were statistically significant, and neither did mixtures 2, 5, 7 and 9, although mixture 2 was yielding significantly more than mixtures 3, 4, and 6. Mixture 4 was the lowest yielding, but was not significantly different from 3, 6, 7 and 9.

2. Percentage Composition and Point Quadrat Analysis

a) Pure Stands

Tables A79 to A81 relate the results obtained from hand separations and point quadrat analysis of the pure stands and one supplemental mixture. The same data as for pasture mixtures is presented, i.e., percentage composition, hits, ground cover and density for the seeded species and "others". A summary of these data is presented in table 22, in which the results appear in the form of averages of each cut.

The percentage contribution to the total yield, of these

Table 22. <u>Percentage Composition and Point Quadrat</u> <u>Analysis. Pure Stands 1961. Hay Mixtures.</u>

		Cuts					
			1		2		3
		%	Ground	%	Ground		%
Spe	ecies	Comp.	Cover	Comp.	Cover	Density	Comp.
i	Tim. R.C. Others B.G.	21.8 77.8 0.4	16 64 tr. 28	23.6 73.9 2.5	12 25 1 43	16 40 1 43	22.4 71.4 6.2
ii	R.C. Others B.G.	92.8 7.2	74 tr. 26	95.4 4.6	33 5 63	54 5 63	87.8 12.2
iii	As Others B.G.	98.6 1.4	79 tr. 21	12.0 88.0	14 2 84	18 2 84	
iv	Af. Others B.G.	99.5 0.5	59 tr. 41	98.1 1.9	36 4 61	46 4 61	98.7 1.3
v	Lad. Others B.G.	94.8 5.2	77 tr. 23	97.3 2.7	87 1 13	142 1 13	84.0 16.0
vi	B.T. Others B.G.	87.2 12.8	47 tr. 53	88.2 11.8	33 9 60	41 9 60	83.6 16.4
vii	Br. Others B.G.	92.8 7.2	50 tr. 50	86.4 13.6	24 21 59	31 21 59	88.2 11.8
viii	Tim. Others B.G.	84.1 15.9	48 tr. 52	92.8 7.2	21 14 65	29 14 65	77.7 22.3

Experiment II

pure stands treated as hay remained high throughout the season. The percentage composition of alsike, which was as low as 12% in the 2nd cut and insignificant in the 3rd cut, was the only exception to this generality. It is obvious then that "others" did not add much to the sward, and the weeds were therefore no problem.

The ground cover of the pure stands in proportion to that of"others"was smaller than would be indicated by the percentage composition. This was a direct consequence of the large amount of bare ground obtained for certain species. In the first cut the number of hits on bare ground in alfalfs, trefoil, brome and timothy stands amounted to about the same number as the hits on these species themselves. In no case, in this cut was there any ground cover recorded for "others".

In the 2nd cut the bare ground increased considerably in the red clover and alsike stands which was probably the direct result of disease in red clover and poor recovery of alsike. Also the ground cover of alfalfa, brome, trefoil and timothy decreased to some extent. This was accompanied by an increase in "others" in the stand of both of these species.

Data on density was obtained only in cut 2. It can be seen that the magnitude of the density values was dependent on the type of species involved, i.e., relatively high for the legumes and low for the grasses. Ladino gave a density of 142, timothy one of 29. Alsike with a density of 18 was the exception. No point quadrat analysis was performed on cut 3.

b) The Hay Mixtures

The detailed results from the hand separations and point quadrat analysis of the mixtures are presented for every cut in tables A82 to A85. A summary of these results appears in table 23 in the form of averages.

The percentage contributed by each species to the total yield of the mixture was relatively constant throughout the season, except the contribution made by alsike to mixture 3, which decreased from 37% to 1% in cut 2 and only a trace in cut 3.

The grasses contributed relatively little in the complex mixtures, but were yielding better in the cuts 1 and 2 of the simple mixtures 1, 7 and 8. Timothy in all cuts of mixture (i) made up a little over 20% of the stand. In mixture 9 it contributed 35% in the first cut, 25% in the 2nd and 14% in the 3rd cut. It averaged approximately 13% of the total yield in mixture 7, 14% in mixture 6 and close to or more tham 8% in mixtures 5, 4 and 3. It was insignificant in mixtures 1 and 2. Brome in mixture 8 had a percentage of 39, 18 and 38 in cuts 1, 2 and 3 respectively.

When red clover was not in association with alfalfs, i.e., in mixtures 3, 4, 5, 6 and 7 it contributed, on an average, close to 80% of the yield. In mixtures 1 and 2 this decreased to less than 10% on an average basis. Alfalfa supplied 80% or more of the yield in its respective mixtures. Birdsfoot trefoil yielded well, only in the simple mixture 9, in which its mean percentage was close to 68%, for the season. Of the

Table 23. Percentage Composition and Point Quadrat Analysis. Hay Mixtures 1961.

Experiment II

		_		Cuts			_
		-	L		2		3
		%	Ground	%	Ground		%
Mi	xtures	Comp.	Cover	Comp.	Cover	Density	Comp.
1.	Tim. R.C. Af. Others B.G.	3 25 71 1	6 57 61 7 7	4 11 82 3	4 18 30 3 52	4 22 36 3 52	0.22 1 97 2
2.	Tim. R.C. Af. Lad. Others B.G.	6 23 66 5 tr.	12 44 63 34 3	3 12 80 4 1	6 12 20 12 5 56	6 18 24 14 56	1.82 0.5 96 2 tr.
3.	Tim. R.C. As Others B.G.	5 55 37 3	3 75 58 5 7	12 82 2 4	3 32 6 2 61	3 43 6 2 61	7 84 tr. 9
4.	Tim. R.C. Lad. Others B.G.	5 82 11 2	8 69 51 21 7	10 71 17 2	4 38 20 1 34	4 54 32 1 34	8 73 16 3
5.	Tim. R.C. B.T.v. Others B.G.	6 86 6 2	16 82 42 18 3	11 84 3 2	5 50 3 1 44	7 88 4 1 44	6 83 8 3
6.	Tim. R.C. B.T.e. Others B.G.	14 79 3 4	13 84 31 7 8	13 81 3 3	4 39 2 2 55	6 60 3 2 55	14 80 1 5

continued/

Table 23. continued

Mixtures		% Comp.	Ground Cover	% Comp.	2 Ground Cover	Density	3 % Comp.			
7.	Tim. R.C. B.T.m. Others B.G.	12 77 7 4	14 73 47 10 3	13 78 5 4	12 40 6 tr. 46	13 62 6 1 46	15 79 3 3			
8.	Br. Af. Others B.G.	39 61 tr.	44 69 6 15	18 82 tr.	33 28 2 42	38 32 2 42	2 98 tr.			
9.	Tim. B.T.v. Others B.G.	35 50 15	39 55 32 20	25 73 2	22 42 3 40	27 56 4 40	14 83 3			

B.T.v.: Variety Viking; B.T.e.: Variety Empire; B.T.m.: Selection of Morshansk. three varieties used in mixture with red clover and timothy, Viking produced most with approximately 8% of the total yield.

In the first cut, averages obtained from the point quadrat analysis, of blocks only, indicated a relatively low bare ground.

It appears that in general the ground cover of the species in the various mixtures followed a distribution which was similar to that of the percentage composition. An exception to this, was trefoil which had ground cover of 42, 31, 47 in mixtures 5, 6, and 7, whereas its contribution to the dry matter of the sward was less than 8% in all 3 cases.

In cut 2 a general decrease in ground cover was experienced. This drop may have been due, either to disease in certain species or due to the fact that not much regrowth had taken place at the time of analysis.

In mixture (i) of the 1st cut red clover covered 4 times as much ground as timothy, in cut 2 this was changed to half as much. In mixture 1 red clover covered nearly as much ground as alfalfa, in cut 2 it was little more than half of that of alfalfa. In mixture 2 the ground cover of red clover, alfalfa and Ladino was approximately in the proportion 1: 1.5: 0.75 in the 2nd this changed to 1: 2: 1 approximately. In cut 3 red clover decreased from 75% to 32% ground cover, but alsike experienced an even worse decline, i.e., from 58% to 6%.

In mixture 4 the proportion of red clover:Ladino was in the order of 1.3: 1 approximately in the first cut and 1.9 : 1 in the 2nd cut. In mixtures 5, 6 and 7 as already reported

the ground cover of trefoil was relatively high in the first cut only. The proportion of red clover - trefoil was on the average 2 : 1 in the first cut and 11 : 1 in the second cut.

In mixture 8 alfalfs decreased considerably in ground cover after the first cut when it was 69%, as to 44% for brome. In the second cut this had changed to 28% for alfalfs and 33% for brome.

Also mixture 9 decreased in ground cover yet the proportion of the 2 species, i.e., timothy, trefoil stayed very much the same, 1 : 1.4, from the first cut to the 2nd cut.

3. <u>Yield per Unit Area of Ground Cover in Hay Mixtures</u> and Pure Stands

It should be noted once more that yields under this heading refer to yields per unit area of ground cover.

In table A86 appear the calculations and results of the pure stands in cut 1 and 2. In tables A87 to A92 appear those of the grasses and legumes, when in mixture, of cuts 1 and 2, and table A93 shows a summary of the average yields of the grasses and legumes in cut 2. The calculations of the seasonal averages of the pure stands, grasses and legumes are presented in table A96.

A summary of the average yields of both cut 1 and 2, of the grasses, legumes and pure stands appears in table 24.

This table, which was organized in the same manner as these of the pasture mixtures, shows in one column the $Y_{\bullet}/_{\Pi_{\bullet}}$ of
						Co	mpone	ent s						
					Red						Birds	sfoot		
Mixt.	Timo	othy_	Bro	ome	<u>Clove</u>	er	Alfa	alfa	Lad:	ino	trefo	o il	Alsi	.ke
No.	Cutl	<u>Cut2</u>	Cutl	<u>Cut2</u>	<u>Cutl</u>	<u>Cut2</u>	<u>Cutl</u>	Cut2	Cutl	Cut2	<u>Cutl</u>	Cut 2	Cutl	<u>Cut2</u>
(i)	75.8	31.4			64.1	46.7								
`´	50.9	23.9			21.0	11.5	70.1	53.2						
2	31.1	11.0			33.1	19.3	45.3	70.9	14.8	6.3				
3	115.7	85.0			38.2	55.0			•	-			34.8	6.1
4	40.2	47.0			62.7	34.6			10.6	14.8				
5	38.3	46.0			58.9	36.2					9.2	21.0		
6	33.5	59.9			66.5	44.1					4.9	21.2		
7	41.3	22.5			60.5	40.7					9.7	17.9		
8			60.5	10.8			58.3	59.4						
9	41.1	24.2			_						45.0	36.2		
Pure								1		_ /				
Stands	68.7	46.5	74.9	35.8	65.1	37.4	97.3	65.4	37.0	16.0	71.9	49.0	63.7	6.9

Table 24. Average Yield per Unit Area of Ground Cover of Hay Mixtures and Pure Stands 1961. (Cut 1 and 2) (gm)

Cut 1 is average of blocks A and D only. No significant differences in the grasses of both cuts. cut 1 and in the other $Y_{\bullet}/U_{\bullet}A_{\bullet}$ of cut 2. The competition indices appear in tables A94 and A95; for cuts 1 and 2 respectively.

From table 24, it can be observed that timothy in the first cut of mixtures (i) and 3 yielded more than the pure stand. In mixture 3 this was 115.7 gm. per unit area of ground cover, which gave an index of 1.87. In cut 2 of mixture (i) it yielded less than the pure stand, but it yielded close to or more than the pure stand in mixture 3, 4, 5, 6 and 7. Brome in both cuts produced less dry matter per unit area of ground cover than the pure stand.

It should be noted here that an analysis of variance on the grasses, tables A99 and A100, did not show any significance for treatments in either cut . A high error variance and therefore high coefficients of variability, 84.8% and 94.3% respectively were obtained in cut 1 and 2. This may be attributed to large variabilities in both hand separations and point quadrat analysis where extremely low populations are encountered, which was the case for the grasses in these hay mixtures.

Red clover, in mixture 6, was the only legume species to yield more than the pure stand in cut 1. However in cut 2, when it was found in mixtures (i), 3, 6 and 7, it was superior to the pure stands, and in mixtures 4 and 5 came close to it.

Alfalfa in mixture 1 of cut 1, gave a relatively high yield, in mixture 2 of cut 2 it produced more than the pure stand.

In no case did Ladino, trefoil and alsike yield more than

their respective pure stands. Trefoil in mixtures 5, 6 and 7 appears to have suffered heavily from competition of the associated species. The composition indices were .13, .07 and .14 respectively for Viking, Empire and Morshansk, in cut 1. In cut 2 they were .43, .54 and .28 respectively.

Alsike in cut 2 gave an index close to 1.0, which was not quite as expected.

A summary of the average performance, for the season, of the pure stands, grasses and legumes obtained from table A96 is shown in table 25. The respective competition indices appear in table 26.

That only timothy in mixture 3 and red clover in mixture (i) yielded more than their respective pure stands is outstanding from this table. However, the analysis of variance, table A98, performed on the grasses, shows once more no significance between treatments. A high error variance and high cV of 70.4% were obtained.

Timothy in mixture (i) produced approximately the same amount of dry matter per unit area of ground cover, as the pure stand. Very little difference can be observed when it was in mixtures 4, 5 and 6. It gave the lowest index when it was in association with red clover and Morshansk trefoil in mixture 7. Brome was very similar to the latter in mixture 8.

The highest yielding red clover was obtained when it was associated with timothy alone. In mixtures 3, 4, 5, 6 and 7 the competition indices that were calculated were much the same.

Table	25. <u>Sea</u> <u>Cov</u>	asonal A ver. (gm	verage) Hay M <u>Cu</u>	Yield p lixtures t 1, 2,	er Unit and Pu 1961.	t Area o are Stan	<u>f Ground</u> ds.
Mixt. No.	<u>Tim.</u>	Brome	R.C.	Af.	Lad.	B.T.	As.
(i) 123456789	56.8 33.2 21.7 <u>95.4</u> 43.6 41.2 44.3 29.4	29.2	59.2 17.3- 28.1- 45.9 48.0 46.4 52.6 50.1	61.7- 55.8 58.8 -	11.3 12.5	10.7 - 7.2 - 11.2 -	30.2
Pure Stands	61.9	62.2	57.0	85.2	25.9	62.4	54.7
Unders than 1 (-]Indi the re level.	cored v .0 cates v spectiv	values i values s ve Pure	ndicate ignific Stands.	a comp antly s Dunca	etition maller n's Tes	n index than th st at th	greater ese of e 5%
Table	26. <u>Ave</u>	erage Co	mpetiti <u>Cu</u>	on Indi t 1, 2,	<u>ces of</u> 1961.	Hay Mix	tures.
Mixt. No.	Tim.	Brome	R.C.	Af.	Lad.	<u>B.T.</u> <u>A</u>	<u>s.Mixture</u>
(i) 23456789	.92 .54 .35 1.54 .70 .67 .72 .47	•47	1.04 .30 .49 .80 .84 .81 .92 .88	.72 .65	.44 .48	.17 .12 .18 .64	.98 .55 .51 55 .99 .72 .54 .57 .50 .60 .58

The lowest yielding red clover was recorded when it was found with timothy and alfalfs.

In mixture 2 the addition of Ledino seems to have boosted red clover to some extent, i.e., from a yield of 17.3 gm. in mixture 1, it increased to 28.1 gm. in mixture 2.

Although the alfalfa was found to achieve the highest yields per unit area under a hay management, it did not in any mixture outyield its pure stand. It gave the highest amount of dry matter per unit area of ground cover in mixture 1, which would probably explain the lowest yield of red clover recorded in the mixture.

Ladino yielded very poorly as a result of its association in mixtures 2 and 4. Its competition indices were even lower than that of alsike, which was .55.

As in each individual cut the poor ability of trefoil to compete was also reflected in the average of the 2 cuts. The highest production of trefoil per unit area of ground cover was attained when it was seeded with timothy. The lowest yield was experienced when Empire trefoil was in mixture 6, thus giving an index of competition of .12. Viking and Morshansk had an index of .17 and .18 respectively.

The competition index of a mixture as a whole is also shown on table 26. It can be noted from these indices that mixtures (i) and 3 were highest with .98 and .99 respectively. It may therefore be assumed that the compatibility between the species involved, in these 2 mixtures was nearest to the ideal for hay mixtures. This however may not necessarily indicate that such mixtures will be the highest yielding, since mixture 4 which had an index of .71, gave the lowest yield per acre. All other mixture indices ranged between a low of .50 and .60.

Table A97 and A101 show the analysis of variance performed on the total yield per unit area of ground for the season, of the pure stands and legumes respectively. For both, significance between treatments was obtained. The CV's were 13.2% and 21.3% respectively. From these, it appears that the variation due to error in the legumes, was about of the same magnitude as in the pasture mixtures.

Duncan's test which is found in table 27 shows, differences existing between species. From the pure stands alone it is noted that the significant differences existing between the legumes were of the same order as when these pure stands were incorporated among the "legumes" in mixtures. On table 26 under "Pure Stands" it is seen that alfalfa yielded significantly more then red clover, alsike and Ledino, but was not significantly different from trefoil. Red clover was not significantly different from trefoil and alsike, but produced significantly more than Ledino. The latter two were not significantly different from each other.

Brome and timothy in pure stands yielded significantly less than alfalfa, but not less than red clover or trefoil. They yielded significantly more than alsike or Ladino.

Of the legumes in pure stands and in mixtures, alfalfa seeded alone gave an outstandingly high yield. It produced

	<u>oi rure</u>	Stands	Cut_1	and 2,	<u>ay Mixture</u> 1961.	·S •
Pure Stand		Mixtı	re No.	Legumes	Y./Unit. Ar	1
Timothy	115.25 b	Pure	Red Clo	ver	103.15	cde
Red Clover	103.15 bc	- 41 0	11	i	112.50	hcde
Alfalfa	162.80 a		11	ī	38.05	oh
Brome	112.05 b		11	2	45.80	føh
Ladino	52.95 d		TT	ĩ	102.75	cde
Birdsfoot trefoil	132.25 ab		11	Ĺ	103.55	bcde
Alsike	70.50 cd		11	5	103.05	cde
			11	6	105.55	bcde
Means followed by	the same		17	7	106.00	bcde
lower case letter	are not	Pure	Alfalfa	ι [,]	162.80	a
significantly diff	erent from		tt	1	114.10	bcd
each other at the	5% level.		11	2	146.10	ab
Duncan's Multiple	Range Test.		11	8	115.85	bcd
bundan b marorpro	10000	Pure	Ladino		52.95	fgh
			11	2	26.20	h
			tt	4	28.40	h
		Pure	в.Т.		132.25	abc
			tt	5	32.40	gh
			11	6	14.75	h
			11	7	37.90	gh
			17	9	84.55	def
		Pure	Alsike	-	70.50	efg
			**	3	39.65	fgh

Table 27. <u>Mean Seasonal Yield per Unit Area of Ground Cover</u> of Pure Stands and Legumes. Hay Mixtures.

Mean total for this analysis was obtained of blocks A and D only.

significantly more dry matter per unit area of ground cover than any legume species in pure or mixture form, other than the alfalfs in mixture 2, and trefoil alone.

The following were not significantly different in their yields: pure trefoil, pure red clover, red clover in mixtures (i), 3, 4, 5, 6, 7, alfalfe in mixtures 1 and 8. Birdsfoot trefoil in mixture 9, was significantly different from any of the above, except from its pure stand. It was not significantly different either from red clover in mixture 2, pure Ladino, pure alsike and alsike in mixture 3. However red clover in mixture 1, Ladino in 2 and 4, trefoil in 5, 6 and 7 yielded significantly less than all other species in the various mixtures, but not less than pure Ladino, pure alsike, alsike in mixture 3 and red clover in mixture 2.

If the comparison is made within a species only it was found that red clover in pure stand yielded significantly more than red clover in mixture 1 and 2 only, that alfalfa yielded significantly more, when in pure stand than alfalfa in mixture 1 and 8, that pure Ladino did not yield significantly more than Ladino in mixtures, neither did alsike, and that the yields per unit area of ground cover of the pure trefoil was significantly greater than any of the yields of trefoil in mixtures.

IV A Study of Relationships Existing in Ground Cover Density $Y_{\bullet}/_{U \bullet A_{\bullet}}$ in Different Cuts and at Different Angles of

P. Q. Inclinations. Pasture Mixtures and Pure Stands

Correlation coefficients were calculated for ground cover, density and $Y_{\bullet}/_{U_{\bullet}A_{\bullet}}$ between cuts, blocks (i) and angles of inclination of the point quadrat. This was done for the pasture mixtures and their pure stands only. The objective was to evaluate the relationships that could exist among these variables, between cuts, blocks and angles of inclination. All correlation coefficients obtained are reported in table 28.

1) Between Cuts. a) Ground Cover. In this study pure stands, grasses and legumes were compared individually. Significant correlations were obtained in all three cases when comparing the⁽¹⁾ fail cut of 1960 and the first cut of 1961. When this fall cut was correlated with the fall cut of 1961 no real correlation was obtained. Cuts 1 and 2 and cuts 1 and 3 gave significant correlations for grasses and legumes, Only legumes showed significance between cut 1 and cut 5. The relationship of cut 2 and cut 3 was significant for grasses and legumes. A significant coefficient was obtained for pure stands, grasses and legumes whem cut 3 and cut 5 and cut

The inferences that could be made from these correlation (i) differences in soil types existed between blocks.

Table 28. <u>Correlations in Pasture Mixtures.</u> (Reps. E. F. C and D)

1. Between Cuts

(i) Ground Cover P.S. Gr. Leg. Fall 1960 vs Spring 1961 n:8 .79*n:20 .56* n:26 .50** Fall 1960 vs Fall 1961 " .64 n:13 .03 n:16 .47 tt .56 n:20 .65**n:26 .81** Cut 1 vs Cut 2 ".54 n:18 .53* n:26 .72** Cut 1 vs Cut 3

 Cut 1 vs Cut 5
 ".56 n:13 .50 n:16 .67**

 Cut 2 vs Cut 3
 ".45 n:18 .70** n:26 .90**

 Cut 2 vs Cut 5
 ".72*n:13 .49 n:16 .65**

 Cut 3 (45°) vs Cut 5 45°
 ".94**n:13 .84** n:16 .88**

 (ii) Density Cut 2 vs Cut 3n:8.70 n:18.45n:26.72*Cut 2 vs Cut 5".75*n:13.47n:16.52*Cut 3 (45°) vs Cut 5(45°)n:6.71n:13.80*n:16.82* (iii) <u>Yield per Unit</u> Area of Ground Cover Fall 1960 vs Spring 1961 n:8-.44 n:20 .53* n:26 .79** Fall 1960 vs Fall 1961 " .55 n:13 .16 n:16 .87** Ħ .23 n:20 .24 n:26 .42* Cut 1 vs Cut 2 Cut 1 vs Cut 3 .07 n:18-.08 n:26 .72** 11 ** n:16 .87** Cut 1 vs Cut 5 .16 n:13 .10

 Cut 2 vs Cut 3
 ".07 n:18 .28 n:26 .84**

 Cut 2 vs Cut 5
 ".40 n:13 .31 n:16 .38

 Cut 3(45°) vs Cut 5(45°) n:6 .97*n:13 .26 n:16 .87**

 (iv) Competition Index of Mixtures .72 * * Fall 1960 vs Spring 1961 Fall 1960 vs Cut 2 1961 n:16 11 -.19 .35 11 Fall 1960 vs Cut 3 1961 ** Cut 1 vs Cut 2 .004 Cut 1 vs Cut 3 11 .07 .68 * * 11 Cut 2 vs Cut 3

One and 2 asterisks mean significant at the 5% and 1% level.

continued/

coefficients obtained are, that recording the first hit on each species to obtain a ground cover value by the point quadrat method was fairly reliable, for legumes especially since a large amount of variability was accounted for in many instances, that ground cover from cut to cut was very consistent for legumes and less so for grasses and therefore that other factors such as soil differences, differences in establishment, changes in, and low populations etc. played a more important role in grasses than in legumes.

b) <u>Density</u>. As mentioned some time prior to this density was not recorded in all cuts and of every block. For this reason correlation coefficients were only obtained in cuts 2, 3, . and 5. Significant correlations were obtained in all 3 cases. of the legumes. The pure stands gave a statistically real correlation in comparing cuts 2 and 5 and also the grasses, (as for ground cover, in cut 3, 5 at 45° .) This latter correlation may imply that a 45° angle is much more appropriate for grasses since significant correlations that account for more than 64%of the variability can be obtained. Since good correlations were again obtained for legumes, density may be considered a reliable measurement for legumes.

c) <u>Yield per Unit Area of Ground Cover</u>. In the 3rd part of this first study the relationship that existed between cuts in $Y_{-/U-A_{-}}$ was determined. All legume cuts gave significant correlations except the comparison cut 2 and 5.

Only the fall 1960 cut related to the spring cut of 1961 was significant in grasses, and cut 3 and 5 at 45° for pure stands.

Since there exists a good relationship in the $Y_{\bullet}/_{U \cdot A_{\bullet}}$ between cuts in legumes, the implication would be that the $Y_{\bullet}/_{U \cdot A_{\bullet}}$ method may be used with a certain amount of confidence for the legume species. As for the grasses the same inference cannot be made, but it could be that the variability observed may be due to other factors, than the inadequacy of the methods used to evaluate the grass species.

The basis for this statement being that significant correlations were obtained in some instances.

d) <u>Competition index of mixtures</u>. The relationship existing between mixture competition indices of different cuts was tested with 16 mixtures. Significant correlations were obtained between fall '60 cut and the spring '61 cut, and cut 2 vs cut 3.

These results exclude variabilities due to soil, environment, establishment etc. since they existed in both pure stands and mixtures and both of these gave the competition indices (see materials and methods). On this basis then, no correlations between cuts may imply that different trends of competition acted in different cuts, that inherent variability existed either for mixtures or pure stands alone and did not appear in all cuts.

A significant relationship may indicate that the competition varied in the same manner in every mixture from cut to cut.

2. Between Blocks

<u>Cut 1</u>. A significant correlation was obtained in comparing the ground cover of legumes in blocks C vs D. The dry matter the grasses contributed to the sward was also significant, which seems to exclude variation due to soil, microclimate etc. as being the reason of not obtaining a significant correlation of ground cover in block C vs D, in grasses. However the variability accounted for by this correlation is too small to be really confident in this statement.

<u>Cut 2.</u> In this cut the same results as above were obtained, which may confirm the suspicions that were proused previously, namely about the adequacy of the ground cover measurement obtained for grasses.

3. Between Angles

This study was mostly done in pure stands and from the correlation coefficients that have been obtained, table 28, it appears that in taking ground cover measurements the angles 29° , 32.5° and 45° are all equally satisfactory. That for density and yield per unit area the inclinations of 29° and 32.5° were especially suitable, for legumes. It seems that these results can be considered with confidence since in most cases 64% of the variability was accounted for.

This study indicated that grasses gave the least consistent measurements of ground cover, density and yield per unit area, that density and ground cover were more instrumental in showing

2. Between Blocks

(i) <u>Cut 1</u>

Ground Cover DM of Components	Cut]	L C vs	D	n:14	.15 n:21	.80**
Total DM	11	77		n:14	.42	
(ii) <u>Cut 2</u>						

Ground Cover	Cut	2 11	n:14 .30 n:21 .86**
DM of Components	11	11	n:14 .55*
Total DM	11	11	n:14 .17

3. Between Angles

(i) Ground Cover	29° vs 29° vs 32.5°vs	450 32.50 450	n:6 .85* n:6 .88* n:6 .84*	n:ll	.55 n:16	•94*
(ii) Density	29° vs 29° vs 32 .5°vs	450 32.50 450	n:6 .44 n:6 .82* n:6 .64	n:ll	.51 n:16	•94**
(iii) Y./U.A.	29 ⁰ vs 29 ⁰ vs 32.5 ⁰ vs	450 32•50 450	n:6 .73 n:6 .85* n:6 .49	n:ll	.58 n:16	•69**

The correlations 29° vs 32.5° could also read: "point quadrat readings taken between 2 cuts vs at cutting time". (in Cut 3)

"n" refers to the number of pairs used in calculating the coefficient of correlation.

One and 2 asterisks mean significant at the 5% and 1% level respectively.

this inconsistency, but that significant correlations can be obtained with ease in legumes for all 3 types of evaluations of the swards (stands) and also in the grasses, in some instances.

V. <u>Relationships Existing Between Grasses and Legumes in</u> Ground Cover, Density and Y./U.A. GGround Cover

Hay and Pasture Mixtures

The correlation coefficient obtained from the relationships existing in density, ground cover and $Y_{\bullet}/_{U_{\bullet}A_{\bullet}}$ between grasses and legumes are shown in table 29.

Only one significant correlation was obtained under the hay management, and that was in comparing the ground cover of the grasses versus the legumes in cut 1.

In the pasture mixtures significant correlations were obtained in density and ground cover of cut 1, in ground cover of cut 3, in density of cut 5 and in ground cover of the fall 1960 cut.

It is apparent from these correlations that there exists a negative relationship between the grasses and legumes, under both hay and pasture management, in density and ground cover. This would indicate then that a dense stand of legume resulted into a thin stand of grass and that a dense grass stand may be due only to a poor establishment of the legume species.

No definite trend was apparent from the correlations obtained of the $Y_{\bullet}/U_{\bullet A_{\bullet}}$. A negative correlation may suggest that as the yield of the legume species goes up that of the grasses

Table 29. <u>Correlations of Timothy and Other Grasses</u> (C and D Ave.) in Hay and Pasture Mixtures.

	Ave.	Ave.	Ave.	No. of
	Density	Ground Cover	Y./V.A. of G.C.	Pairs in
Hay Cut 1	430	80 *	10(A83,A84)	10
Cut 2		30	.02(A85-A88)	10
Pasture Cut l Cut 2 Cut 3	843** 312 525	75 * * 50 60 *	.31(A51,A52) 38(A54,56) 51(A58,A60)	12 12 12
(Grasses) Cut 4 "Cut 5 Fall 1960	321 777**	22 30 58*	19(A62,A63) .02(A64,A65) .28(A49,A50)	11 13 13

Figures in brackets refer to the appendix table from which the correlation coefficients were calculated.

One and 2 asterisks mean significant at the 5% and 1% level respectively.

Table	30.	Correlati	Lons	of	Number	of	Compo	nent	<u>s ir</u>	<u>the</u>
		Mixtures	vs	Comp	petition	ı Ir	dices	of	the	Hay
				and	Pastur	re M	lixtur	es.		

		<u>"r"</u>	No. of pairs in "r"
Hay	Cut 1	51	10
	Cut 2	•12	10
Pacture	C+++ 1		16
rascure	Cut 1	- 06	16
	Cut 3	12	16
	Cut 4	10	12
	Cut 5	.01	12
Fa	ali 1960	22	12

goes down, the reverse being not necessarily true. Also that an increase in the yield per unit area of ground cover in the legumes, may result in an increase of the competition effects on the grasses.

Whether a positive correlation wassa result of a beneficial effect of the legumes on the grasses cannot be implied. However it may indicate that the ability to compete of the grasses was enhanced by some factors not related to their inherent competitiveness.

VI. <u>Relationships Existing Between the Number of Components</u> in a Mixture and the Respective Competition Index. Hay and Pasture Mixtures

The object of this study was to determine whether the number of components in a mixture had any effect on the competition index of that mixture. Table 30 shows the correlation coefficients that were obtained.

There were no significant correlations in either the hay or the pasture mixtures. This would indicate that the number of components in a mixture did not affect the competition index to any great extent. However there appeared to be a trend, suggesting that an increase in the number of components would have the effect of decreasing the compatibility of the species involved, since the competition indices of the mixtures would decrease. This trend was indicated by the fact that most coefficients were negative.

VII. <u>Results on Photosynthetic Area Index and Net</u> Assimilation Rate

A. Pasture Mixtures. Point Quadrat Method

a) <u>Cut 3</u>. Just before the 3rd cut was hervested some point quadrat readings were obtained on certain pasture mixtures with the improved PQ apparatus. This analysis was done at an angle of inclination of 32.5° and every hit was recorded. This permitted the calculation of a photosynthetic area index, which is similar to the leaf area index obtained by Warren Wilson (1959). However the correction factor 1.1 proposed by Warren Wilson was not applied. (Table A102).

It should be mentioned that the PA in this instance was equal to the density as used previously and that the PAI was equal to the density/ 100°

From the PA thus calculated and the yield of a species in pure stand or in mixture, a value for NAR was evaluated. The data and results are reported in table Al 0.2 In table 31 appears the summary of the PAI and NAR values, together with the respective $Y_{\cdot/U_{\cdot}A_{\cdot}}$ of G.C. values obtained in cut 3, table 11. Although a restricted number of results were secured for this little study, table 31 shows certain trends in the different ways of measuring competition. It may be noted that in the three methods the grasses in the mixtures gave relatively low values as compared to their respective pure stands. Also the red clover in mixture 1 had competition indices that were

Mixt.	ixt. Yield/Unit Area G.C.					PAI	(ii)		NAR (ii)			
No.	Tim.	Br.	R.C.	B.T.	Tim.	Br.	R.C.	B.T.	Tim.	Br.	R.C.	в.Т.
l	1.9		12.5		0.41		2.14		.143		• 550	
6	2.4		9.3	2.8	0.40		2.34	0,68	.230		.478	.178
13		3.4		<u>9.9</u>		0.55		3.28		.176		<u>.415</u>
Pure Stands	5.6	6.6	14.3	8,8	2.30	2.24	2.61	3.50	.255	.304	.616	•344
Competi	tion In	dices										
1	• 34		.87		.18		.82		.56		.89	
6	.43		.65	•32	.17		.90	.19	, 90		.78	.52
13		.52		1,12		.25		•94		•58		1.21

(i) Average Values. Y/U.A., PAI, NAR. Pasture Mixtures Cut 3 Table 31

(i) Averages of blocks C and D.(ii) Values obtained from table A LO2

much alike and that trefoil in mixture 13 had a competition index of close to or more than 1.0 in the methods used.

b) <u>Cut 3</u>. A similar but more extensive study was done on the regrowth of the 3rd cut. Photosynthetic area values were obtained from PQ readings taken on the uncut borders of the plots; The net assimilation rates were calculated for each species in the mixtures. (Table A103.)

In table 32 appear the averages of two blocks of the PAI and NAR values. It will be noted that of the two methods used, in none of the mixtures did the grasses reach a competition index of 1.0, neither did red clover or alfalfa. Ladino in mixtures 8, 12, (vii) and (viii) had a PAI greater than the pure stands, whereas the NAR in mixtures 4, 3, 12 and (viii) was greater than the NAR of the pure stand. The PAI of trefoil in mixture 9 was greater than that of the pure stand, but this was not so for the NAR. The NAR of trefoil in mixture 13 was greater than that of the pure stand.

When, as for study (a) the PAI and NAR methods of studying competition are compared to the values of $Y_{./U.A.}$ of G.C. of cut 3, table 11, then it is seen that there exist consistent trends. Thus in all three methods none of the grass species under study produced a competition of 1.0 or greater, neither did the red clover. Also that timothy in mixtures 6, 9, and 11 and red clover in mixture 1, gave the highest competition indices in all three methods.

			P	AI						NAR		
Mixture	Tim.	Brome	R.C.	Af.	Lad.	B.T.	Tim.	Brome	R.C.	Af.	Lad.	B .T.
1	0.50		2.35				.130		.508			
4	0.35		0.95		2.45		.074		.279		.584	_
6	0.50		2.25			0.80	.208		.496			.190
8	.40			0.55	3.25		.068			.506	.500	_
9	.65			0 .4 0(i)		3.55	.228			.676(i)		•283
11	1.00					3.20	.172					.274
12	.40				3.30		.082				.534	_
13		.40				3.15		.229				<u>.426</u>
vii	.30				3.60	0.30	.068				.480	.037
viii	• 55	.25			3.30	0.50	.039	.015			.584	.072
Pure				(++)								
Stands	2.30	2.24	2.61	1.20(11)	3.10	3.50	.255	• 304	.616	•845()	•492	•344
Competit	ion In	dices										
1	.22		. 90				.51		.82			
ĥ	.15		.36		.79		.29		.45		1.19	
6	.21		.86		• • • •	.23	.82		.81		-•-•	.55
Ř	.17			.46	1.05		.27		•	.60	1.02	•
9	.28			.33		1.01	.89			.80		.82
ní	.43			••••		.91	.67			•		.80
12	.17				1.06	• / -	.32				1.09	• - •
13	* - 1	.18				.90	• 2 **	.75				1.24
vii	.13				1.16	.09	.27				.98	.11
					1 04	71	75	05			1 10	21

Table 32	Average PAI and NAR of Species in Mixtures and Pure Stands and thei:
	Respective Competition Indices. Pasture Mixtures Cut 3 1961
	(Obtained by PQ Method)

(i) Not averages. Obtained from D only.
(ii) " " " F only.

Alfalfa in mixtures 8 and 9 did not follow such a consistent trend since it had obtained a competition index greater than 1.0 when measuring $Y_{\cdot/U_{\cdot}A_{\cdot}}$ of G.C. and not so when measuring PAI or NAR by PQ. Ladino except in mixture 4 and (vii) obtained competition indices greater than 1.0 by all three methods. The competition indices for birdsfoot were much the same when obtained by all three methods.

B. Pasture Mixtures. Disc Method

The "disc method" as used in the heading, refers to the way which was used to obtain the PAI in this study, so as to differentiate from the PQ method used above.

The results obtained for the 4th cut are shown in tables AlO4 - AlO6. A summary of these, is presented in the same manner as for $Y_{\bullet}/U_{\bullet}A_{\bullet}$ of G.C. in table 33. However in this series the competition indices are shown in the same table, which permits a better interpretation of the PAI and NAR values as obtained for the species in the mixtures in comparison to the values of the pure stands.

Analyses of variance of the grasses and legumes allowed the use of Duncan's multiple range test, (Robinson 1959), to compare the means. The results of these are found in tables All3 - All6, Al21 and Al23.

It might be stated here that this form of analysis was done on all data concerning PAI and NAR of hay and pasture mixtures as obtained by the "disc method". It permitted a direct statistical comparison of the values secured for the species

]	PAI							NAI	R.			
Mixt.	Tim.	Brome	R.can.	K.Blue	R.C.	Af.	Lad.	B.T.	Tim.	Brome	R.can.	K.Blue	R.C.	Af.	Lad.	B.T.
1 4 6 8 9 11 12 13	•34 •62 •50 •52 •80 •57 •08	.42	14		2.46 0.50 2.36	.60 1.01	3.47 <u>4.61</u> <u>5.14</u> +	.62 ⁻ 2.20 2.84 2.38	.283 .142 .302 .098 .354 .468 .132	.378	120		.428 .298 .437	•350	.454 .378 .408	•354 •490 •452 •526
15 vii viii	.03 .10	•06	•10	2.08			3.52 <u>4.22</u>	2.04 2.04 0.66 0.22	.068- .133-	.090-	•190	.324			.466 .453	.479 .402- .154- .165-
Pure Stands	.68	.89	2.7	1.8	2.17	1.22	3.61	3 .3 4	•390	.447	.408	•526	.456	•494	.498	•538
Compet	ition	Indice	98													
1 4 6 8 9 11 12 13 14	.50 .91 .74 .76 1.18 .84 .12	.47			1.13 .23 1.09	0.49 0.83	0.96 1.28 1.42	.19 .66 .85 .71	0.73 .36 .77 .25 .91 1.20 .34	.85	32		.94 .65 .96	.71 .87	.91 .76 .82	.66 .92 .84 .98
15 vii viii	.04 .14	.07	.00	1.16			0.98 1.17	.61 .20 .07	•17 •34	.20	•)*	.62			•94 •91	•07 •75 •29 •31

Average PAI and NAR of Species in Mixtures and Pure Stands, and their Respective Competition Indices. Pasture Mixtures Cut 4 1961

Table 33

+ indicates values significantly greater than those of the respective pure stands, Duncan's Test at the 5% level.

- indicates values significantly smaller than those of the respective pure stands, Duncan's Test at the 5% level.

in mixtures with their respective pure stands. Thus photosynthetic area and net assimilation rate indices of species in mixtures followed by a (+) or (-) were significantly different from their pure stands and did not, therefore, occur in the same grouping. They were either significantly greater or smaller than their respective pure stands.

In table 33 it can be observed that the PAI of red clover in mixture 4, of trefoil in mixtures 6, 15, (vii) and (viii) were significantly smaller than PAI of their pure stands. Ledino in mixture 12 gave a PAI that was significantly greater than its pure stand which was not shown by the corresponding NAR. This would suggest that Ladino, in its association with timothy is favored in the production of photosynthetic area, but suppressed in its rate to produce dry matter, i.e., depressed in its efficiency.

None of the PAI's obtained for grasses differed significantly from their pure stands, but the net assimilation rates of timothy in mixtures 4, 8, 12, (vii) and (viii) were significantly smaller than the NAR of the pure stand. It is of interest to note that in all five cases, timothy was associated with Ladino alone or Ladino plus another species, and that this legume had a depressing effect on timothy in this experiment. It is probable that the high CV (72.3%) obtained in the analysis of variance of the PAI values for grasses, explains the absence of significance between the pure stands and the species in the mixture. The CV of the NAR values for grasses was only 23.5%.

Similarly the NAR of red clover in mixture 4, alfalfa in mixture 8, trefoil in (vii) and (viii) appears to have been suppressed by ladino, since it was significantly smaller than the NAR of the respective pure stands. However, trefoil in mixtures 6 and 15 had also an NAR that was significantly smaller than that of the pure stand. Red clover and Kentucky blue grass may have a similar depressing effect on the efficiency of trefoil.

The underscored values indicate competition indices greater than 1.0. Thus, by measuring the PA, timothy in mixture 9 had a competition index of 1.18, Kentucky blue grass in 15 of 1.16, red clover in 1 and 6 of 1.13 and 1.09 respectively, ladino in 8, 12 and (viii) of 1.28, 1.42, and 1.17 respectively. By measuring NAR, only timothy associated with trefoil gave a competition index greater than 1.0, namely 1.20.

<u>Cut 5a</u>. The data to obtain the PAI's and NAR's and the results of these for cut 5a are found in the appendix tables Al03 to Al05. The analyses of variance reported are in tables All3 to All6 and Duncan's test, as applied to the means of the PAI and NAR values of this cut are found in tables Al21 for the grasses and Al19 for the legumes.

The summary of these results is presented in table 34. A first glance on this table gives the impression that competition in this cut was quite severe for the grasses. Thus both PAI and NAR for timothy in mixtures, 1, 4, 6, 8, 12, (vii) and (viii) and brome in (viii) were significantly smaller than the

				PAI					_		-	NAR				
Mixt.	Tim.	Brome	R.can.	K.Blue	R.C.	Af.	Lad.	B.T.	Tim.	Brome	R.can.	K.Blue	R.C.	Af.	Lad.	B.T.
1 4 6 8 9	.22 .08 .40 .04 .57				1.50 .32 1.60	- .30 .58	<u>3.14</u> 2.92	.25 .54	.374 ⁻ .184 ⁻ .410 ⁻ .128 ⁻ .472 ⁻				.489 .298 .530	.296- .447-	•530 •528	.341 ⁻ .447 .534
12 13 14 15	.06-	.51	• O4	.67			<u>4.12</u> +	<u>•96</u> <u>•40</u> <u>•48</u>	.121-	.514	.135	•454			.541	<u>•572</u> •504 •550
vii viii	.03 .06	.02	-				2.75 2.93	.03	.072- .260	.180	-				<u>•570</u> •526	.072-
Pure Stands	•69	.68	1.30	1,11	1.53	0 .68	3.06	0.34	.600	.642	.498	.551	.500	.642	•558	.510
Compet	ition	Indice	8													
1 6 8 9 11 12 13 14 15	.32 .12 .58 .06 .83 .75 .09	•75	.03	.60	.98 .21 1.05	•44 •85	1.03 .95 1.35	.74 1.59 1.53 2.82 1.18 1.41	.62 .31 .68 .21 .79 .98 .20	.80	.27	.82	.98 .60 1.06	.46 .70	•95 •95 •97	.67 .88 1.05 1.12 .99 1.08
vii viii	0.04	.03					•90 •96	.09	.12 .43	.280		• • • •			1.02 .94	.14

Average PAI and NAR of Species in Mixtures and Pure Stands and their Respective Competition Indices. Pasture Mixtures Cut 5a 1961

+ Refer to table 33 for explanation.

Table 34

PAI and NAR of the timothy and brome in pure stand.

Also red clover in mixture 4 had a PAI and a NAR that was significantly smaller than that of the pure stand. The efficiency of alfalfa in mixture 8 and 9 and of trefoil in mixture (viii) was significantly less than that of the respective pure stands.

Measuring competition with the PAI, red clover in mixture 6 had a competition index of 1.05, Ladino in 4 of 1.03 and in 12 of 1.35. In the latter the PAI was significantly greater than the PAI of the Ladino pure stand. Also trefoil in 9, 11, 13, 14, 15 gave indices that were greater than 1.0, when the PAI was used to measure competition.

When the NAR was used, red clover in mixture 6 gave an index of 1.06, ladino in 7 of 1.02, trefoil in 11, 13, and 15 of 1.05, 1.12, 1.08 respectively. Thus of the species mentioned, red clover in mixture 6, trefoil in mixture 11, 13 and 15 showed no competition effects of the associated species, by either method.

<u>Cut 5b</u>. In tables AllO to All2 appear the data and results of PAI's and NAR's of cut 5 (b and c).

As mentioned previously cut 5b represented the regrowth that had taken place from the 20th day to the 53rd day of the recovery period which gave cut 5 in the pasture mixtures. It was obtained by calculating the difference between the regrowth of the entire 53 day period and that of the first 20 days, which gave cut 5a. The 53 day recovery period was called cut 5c, and therefore represents the same type of study as cut 4.

The analyses of variance for grasses and legumes of 5b appear in tables All3 to All6. As regards the procedure used in computing negative values it should be mentioned that when these occurred rarely in any one table, they were considered as zero (0). However, in the PAI's of the legumes of cut 5b many negative values were obtained. These were made positive by increasing them and all the other PAI's of this cut by 0.5. This however did not change the results of the analysis of variance.

It should be explained that a negative PAI in this cut can be accounted for by the fact that there may have existed large variations between the halves of the sub-plots. And also that due to frost, a loss of green material, such as leaves, had occurred, towards the end of the season.

From what has been said, Duncan's test was only applied to the PAI means of the grasses in cut 5b. These and the other means from this cut appear in tables Al21 and Al23. The summary is shown in table 35. From this table it is seen that all the PAI means of the grasses in mixtures were significantly smaller than the pure stand PAI of timothy and brome.

Considering competition in this cut, it is observed that when measured by both PAI and NAR, red clover in mixture 6, Ladino in mixture 8 and (viii) gave an index greater than 1.0.

				F	AI							N	AR			
Mixt.	Tim.	Brome	R.can.	K.Blue	R.C.	Af.	Lad.	B.T.	Tim.	Brome	R.can.	K.Blue	R.C.	Af.	Lad.	B.T.
1 4 6	.15 .04 .15	-			.80 0 1.08	00	.40	.10	.047 .066 .045				.032 .003 .047	050	.021	.026
9 11	.56 ⁻	-				.08	<u>• 70</u>	•30 •42	.073 .046					.048	.009	.047 .066
12 13 14 15	.07	•06	. 13	. 48			• 50	.12 .34 .06	•054	.038	<u>.116</u>	.050			.001	.025 .032 0
vii viii	.05 .04	- • .11	-	•••			•47 <u>•70</u>	.02 .01	<u>.126</u> .030	.058		<u></u>			.042 .033	.046 .030
Pure Stands	1.17	0.92	•53	•52	•92	.28	• 52	•92	.108	.042	.057	.044	.042	.052	.022	.128
Compet:	ition	Indic	es													
1 4 6 9 11 12 13	.13 .03 .13 .09 .48 .14 .06	.07			.87 0 1.17	.29 .79	.77 1.85 .96		.44 .61 .42 .48 .68 .43 .50	.90			.76 .07 1.12	.96 .92	•95 2•95 •05	.20 .37 .52 .20
14 15 vii viii	.04 .03	.12	.25	.92			.90 1.35		1 .17 .28	1.38	2.04	1.14			1.91	.25 0 .36 .23

Average PAI and NAR of Species in Mixtures and Pure Stands, and their Respective Competition Indices. Pasture Mixtures Cut 5b 1961

_ refer to table 33 for explanation.

Table 35

i.e., red clover and Ladino in these mixtures behaved similarly to their pure stands.

Another observation that can be made from table 35 is that according to the PAI's obtained, there was very little growth in the last 33 days of this recovery period. Also that the efficiency of the plants had decreased considerably, with respect to dry matter production in the above-ground parts of the plants.

<u>Cut 5c</u>. The PAI means and the NAR means of 5c were compared with Duncan's test. This is shown in tables Al23 and Al24. A summary is presented in table 36. From it, it is noted that both the PAI and NAR of timothy in mixtures 1, 4, 8, 12, (vii) and (viii) and of brome in (viii) were significantly smaller than the PAI and NAR of the pure stand. This was so too of the PAI of timothy in mixtures 6, 9 and 11 and of brome in 13. Similarly red clover in mixture 4, trefoil in (vii) and (viii) gave PAI and NAR values that were significantly less than those of the pure stands. Also the NAR of trefoil in mixtures 6, 14, 15 were significantly smaller.

Looking at the competition indices, it is found that both methods the PAI and the NAR, showed an index greater than 1.0. for red clover in mixture 6, Ladino in 8, 12 and (viii). However by using the NAR, an index greater than 1.0 was also obtained for brome in 13, red clover in 1, alfalfa in 9, Ladino in 4, and (vii).

In comparing cut 4 and 5c, which are both representing a

				PAI								NAR			te a si a si a	
Mixt.	Tim.	Brome	R.can.	K.Blue	R.C.	Af.	Lad.	B.T.	Tim.	Brome	R.can.	K.Blue	R.C.	Af.	Lad.	B.T.
1 6 8 9 11 12 13 14 15 Vii	0.38 .08 .54 .14 1.08 .68 .11	.56	.17	1.14	2.23 .26 <u>2.66</u>	.30 .72	3.31 <u>3.88</u> <u>3.72</u> 3.22	.30 .84 .95 1.08 .74 .39 .04	.183 .098 .226 .100 .280 .292 .094	<u>.280</u>	.122	.220	.246 .142 .262	.21/ .270	<u>•272</u> • <u>271</u> •271 •272	.177 .234 .250 .278 .193 .181 +.072
viii	.11	.14-					<u>3.64</u>	.04-	.104-	.101	-				.280	.058
Pure Stands	1.86	1.60	1.84	1.63	2.44	0.95	3.57	1.26	.323	.238	.302	.275	.238	.240	.216	.284
Compet:	ition	Indic	es										÷			
1 4 6 8 9 11 12 13 14 15 vii viii	.20 .04 .29 .08 .58 .37 .06	•35	.09	.70	.91 .11 1.09	.32 .76	.93 1.09 1.04	.24 .67 .75 .86 .59 .31 .03 .03	.57 .30 .70 .31 .87 .90 .29 .36 .32	1 .18 .42	.40	.80	1.03 .60 1.10	.89 1.12	1.26 1.25 1.26 1.46 1.89	.62 .82 .88 .68 .64 .25 .20

Average PAI and NAR of Species in Mixtures and Pure Stands and their Respective Competition Indices. Pasture Mixtures Cut 5c 1961

+ refer to table 33 for explanation.

Table 36

complete regrowth period, it is seen that in cut 5c there were more PAI's and NAR values that were significantly smaller than the values of the pure stand. It is also seen that if the PAI of the species in pure stands had not changed very much between the two harvests, the NAR of cut 5c had decreased to nearly half of those of cut 4. This would explain the greater number of competition indices greater than 1.0 in cut 5c.

Totals of cut 4 and 5c. Following the analyses of each individual cut, the total of each species in mixture and pure stand for cut 4 and 5c was considered. The analyses of variance of this appear in table All7, and the means of the totals were compared with Duncan's test. The results of this test are shown in table Al22 and Al24. The summary of the mean is presented in table 37.

From this summary it is seen that as in cut 4, 5a and 5c, the PAI and the NAR of timothy in mixtures 4, 8, 12 and (vii) were significantly smaller than the PAI and NAR of the timothy pure stands. Also that red clover in mixture 4, trefoil in 6, 15, (vii) and (viii) gave PAI and NAR values that were significantly smaller than those of the respective pure stands.

From the competition indices it is noted that red clover in mixture 6, on an average of these 2 cuts was the only one to give an index greater than 1.0 by both methods. However red clover in mixture 1 had an index of 1.02 by the PAI method and 0.97 by the NAR method. Ladino in 4 had an index of 0.94 by the PAI and 0.95 by the NAR method. In mixture 8 this was

				PA	I							NAR				
Mixt.	Tim.	Brome	R.can.	K.Blue	R.C.	Af.	Lad.	B.T.	Tim.	Brome	R.can.	K.Blue	R.C.	Af.	Lad.	B.T.
1 6 8 9 11 12 13 14 15 vii viii	0.72 ⁻ 0.70 ⁻ 1.04 ⁻ 0.66 ⁻ 1.88 1.24 ⁻ 0.20 ⁻ 0.10 ⁻ 0.22 ⁻	0.98	.32	3.22	<u>4.70</u> 0.76- 5.02	0.90 1.74	6.78 <u>8.48</u> <u>8.85</u> 6.73 7.86	0.92 ⁻ 3.03 3.79 3.46 3.58 2.43 ⁻ 0.69 ⁻ 0.26 ⁻	.237 .128 .287 .110 .352 .423 .082	•329 •174	.162	.291	.673 .439 .699	- .564 .698	.726 .648 .680 <u>.783</u>	.532 .724 .702 .804 .672 .582 .226
Pure Stands	2.51	2.52	(4.55)	(3.43 ⁽ⁱ	94.62	2.16	7.18	4.60	.373	.348	(.710)	(.801)	.694	•734	•765	.822
Compet	ition	Indic	85													
1 4 8 9 11 12 13 14 15 vii viii	.29 .28 .41 .26 .75 .49 .08	•39 •08	.07	•94	1.02 .16 1.09	.42 .81	.94 1.18 1.23 .94 1.09	.20 .66 .82 .75 .78 .53 .15 .06	.64 .34 .77 .29 .94 1.13 .22 .27 .55	•95 •50	.23	•36	.97 .63 1.01	•77 •95	.95 .85 .89 1.02 .96	.65 .88 .85 .98 .82 .71 .27 .27

Table 37Average PAI and NAR of Species in Mixtures and Pure Stands and their
Respective Competition Indices. Pasture Mixtures Cut 4 and 5c 1961

(i) Figures in () are totals, since these grasses were not replicated.

_ Refer to table 33 for explanation.

for Ladino, 1.18 and 0.85 respectively; in mixture 12, 1.23 and 0.89, in (vii) 0.94 and 1.02 and in (viii) 1.09 and 0.96.

C. Hay Mixtures. Disc Method

The same procedure to evaluate competition by the PAI and NAR methods was used in cut 3 of the hay mixtures as in the pasture mixtures just reported.

The data for this study appear in the table All8. Analyses of variance of each of the grasses, legumes and pure stands were obtained and also with the pure stands incorporated into the grasses and legumes. It may be noted here that the analyses of variance of the grasses and legumes without the pure stands was done on the basis of four replications and that when these pure stands were incorporated into the grasses and legumes two replications only could be used for the analyses of variance since the pure stands were seeded in two blocks. Blocks A and D were picked randomly for these latter analyses of variance.

From the various analyses of variance, tables All9 and Al20, the NAR values of the grasses and legumes alone were significant at the 5 and 1% level respectively. The PAI values of the pure stands and legumes were also significant at the 5 and 1% level respectively. Duncan's test was not applied to the means of these. When the pure stands were analyzed together with the grasses and legumes, the PAI's and the NAR values of the grasses were both significant at the 5% level. The PAI's of the legumes were significant at 1% and the NAR values showed no significance.

The comparisons of the various means are shown in table Al25. A summary of this cut 3 is presented in table 38.

At first glance on this table it is striking to note the high PAI's of the legumes and their respective low NAR. The PAI of brome and red clover was the only one to be significantly smaller than the PAI of the pure stands, and that when they were in mixtures 8 and 1 respectively. Timothy in mixtures 1, 4, 5, and brome in 8 gave an NAR value that was significantly smaller than that of the timothy and brome pure stand.

Looking at the competition indices it is seen that red clover in mixture 5, alfalfs in mixture 8 and trefoil in mixture 9 gave an index of, 1.14, 1.10 and 1.40 respectively by the PAI method and 1.05, 1.05 and 1.27 respectively by the NAR method. Red clover in 4 and alfalfs in 1 also gave an index greater than 1.0 by the PAI method, and close to 1.0 by the NAR method.

			PAI	[NAF	2		
Mixt.	Tim.	Brome	R.C.	Af.	Lad.	B.T.	Tim.	Brome	R.C.	Af.	Lad.	в.Т.
i 1 4 5 8 9	1.64 0.29 0.72 0.96 1.12	1.00-	3.33 0.16- <u>5.17</u> <u>5.18</u>	<u>6.40</u> <u>5.04</u>	1,16	0.50 <u>3.16</u>	.176 .088- .147- .124- .170	.096-	.152 .063- .174 .184	.176 .219	.131	.160 .235
Pure Stands	2,28	3.91	4.54	4.59	1.38	2.26	•239	.220	.176	,208	.141	.185
Competit	ion Ind	ices										
i 1 4 5 8 9	.72 .13 .32 .42 .49	•26	.73 .04 1.14 1.14	1.39 1.10	.84	.22 1.40	.74 .37 .62 .52 .71	•44	.86 .36 .99 1.05	.85 1.05	.93	.86 1.27

Table 38	(i)Average PAI and NAR of Species in Mixtures and Pure Stands
	and their Respective Competition Indices
	Hay Mixtures Cut 3 1961

(i) Averages have been obtained of the 2 blocks, A, D for mixtures and E,F for pure stands.

_ Refer to table 33 for explanation.
DISCUSSION AND CONCLUSIONS

The results obtained for experiment I during the year of 1960 reflected the unfavorable, dry conditions that prevailed during the summer, the weed problem encountered in certain pure stands, and the lack of relation between the pure stands selected and the pasture mixtures studied.

In the second cut which were the first data available, for 1960, the yieldsper unit area of ground cover of timothy, brome and alfalfa pure stands were relatively large. Under competition conditions, the yields of brome and timothy, when associated with other species, were considerably lower than the yields of the pure stands. This was especially the case in the mixture in which the legume species were still present, as for example, alfalfa, trefoil and Ladino. However birdsfoot trefoil in some mixtures appeared to have had a beneficial effect on timothy and brome.

It was rather difficult from table 3 to find any trends from the yields per unit area obtained during this first year of work. Whether certain species in certain mixtures yielded least or most, none did consistently so in the various cuts obtained. Except brome, which however occurred in only 2 mixtures. When it was associated with trefoil it consistently produced a larger amount of dry matter per unit area, than when it was associated with alfalfa.

The results of the small study pertaining to the time

of doing the point quadrat analysis, in cut 5, were not sufficiently conclusive. Although the correlation coefficient obtained for timothy was significant at the 5% level, the coefficient was not large enough to formulate recommendations in the sense that PQ readings taken before cutting were no different from PQ readings taken after cutting. The variability accounted for was only 33%. Alfalfa gave a correlation coefficient which suggested that there was no relation between the two times of taking PQ readings.

Thus in 1961 the time of performing the analysis of the sward by PQ was chosen on the basis of the stage of growth that would give the best estimate of ground cover, which ground cover would then give the best estimate of the yield per unit area. Thus for 1961 it was decided that the PQ readings taken after a week or ten days of regrowth would give the best estimate of ground cover for the cut following the analysis.

A. Experiment II. Pasture Mixtures and Pure Stands

a) <u>DM. Botanical Composition and PQ Analysis</u>. In this experiment the pure stands of timothy and brome gave the largest yields (table 4). For the second half of the season, that is in cuts 3, 4, 5 for timothy and 4, 5 for brome, these 2 grasses were the lowest in yields. The explanation of such a behaviour, may be sought in the combined adverse effects of the weather and the weedicide used on these plots. Among the legume pure stands the largest amount of dry matter was produced by Ladino clover, however red clover was not very different in its dry matter production. A poor establishment of the alfalfa stand was the reason for the low yields of this species at the beginning of the season. An improved stand, i.e., greater ground cover due to further germination during this season, permitted the alfalfa to yield as much as red clover, Ladino or birdsfoot trefoil in cuts 4 and 5.

Of the mixtures that occurred in blocks E and F, number (vii) and (viii) were yielding very much alike throughout the season. The only difference existing in these mixtures was the presence or absence of brome, which contributed very little to the sward.

Among the pasture mixtures, table 5, mixture 2, 4, 5 and 8 consistently produced some of the highest yields. Of these number 2, 4, 8 plus 9 produced the highest total yield of DM for the entire season. It may be of interest to note that all of these were made up of at least three species, i.e., one grass (timothy) and two legumes.

On a statistical basis, however, they were not significantly different from mixtures 3, 6, 7 and 12. The last two, being simple mixtures, were the only simple mixtures, out of 8 which were as productive per plot as the more complex associations.

The large apparent differences that existed between blocks

were attributed to unfavorable soil moisture conditions in the year of establishment, differences in soil types and the volunteer Ladino clover problem.

The data obtained from hand separations and PQ analyses, which in turn gave the results of botanical composition and ground cover of each species were merely a means to an end in view of studying methods to measure competition. For this reason the results were presented in the form of a summary in tables 6 and 7. It was considered that a detailed discussion on these was unnecessary and it was judged to be sufficient to elaborate only on the more salient points of these data.

In the first cut the species in pure stands contributed the major portion of the stand, but as the season progressed, the weeds took relatively more importance in most swards except in trefoil and Ladino. However this never became a problem since the undesirable species were controlled rather effectively.

Timothy, alfalfa, brome and trefoil had a relatively high bare ground at the first cut, which however decreased considerably in following cuts of the trefoil and alfalfa stands. Red clover had a uniform stand during the season, but increased its bare ground in the second and third cut. During the end of the first growing period and through the recovery period of the first aftermath, the red clover stand was greatly thinned by disease which explains this increase in bare ground. Ladino had a very uniform stand with little bare ground and low population of undesirable species at all times of the 1961 season. The non-replicated Kentucky blue and reed canary grass behaved quite similar, except that the former had a more uniform stand and obtained a higher yield.

In the mixtures, the grasses made only a small contribution to the final yield, especially timothy in the more complex From table 7 it may be noted that timothy made its mixtures. largest contribution, when it was associated with alfalfa and trefoil, with either of these two species alone or with Ladino However in mixture 10, in association with alsike, alone. timothy produced in cut 2 and 5, 32 and 35% of the dry matter respectively, but from table 15 it can be seen that the total production was much less than when it was found in other mixtures. On a dry matter basis timothy produced least when it was associated with red clover alone, red clover and Ladino, alfalfa and It was surprising to find that it produced close to Ladino. one seventh of the total drymatter of mixtures (vii) and (viii).

Brome did not establish well in the complex mixtures, (viii) and (ix) which is reflected in both the ground cover and botanical composition. In association with trefoil, it behaved much better, but did not reach as high dry matter yields as when timothy was in mixture with thisspecies. Reed canary grass contributed very little to the total sward, on a percentage composition basis. Kentucky blue gave a low botanical composition too, but was distributed very uniformly throughout

the stand.

Among the legumes, the highest botanical composition was obtained from red clover when it was associated with timothy alone. The next highest percentage of red clover was achieved when it was in mixture with alsike and timothy. It yielded least, like alfalfa and Ladino, in the complex mixture 5. In cut 1 and 3 alfalfa contributed 80% to the total DM of mixture 7, when its only associated species was timothy. Ladino made its greatest contribution when it was with timothy alone, and trefoil when it was in mixture with reed cenary only.

The highest total ground cover values for timothy were obtained when this species was associated with alfalfa in mixtures 7, (ix) and 9 and with Ladino in mixture 12. Red clover achieved its greatest ground cover when it was with timothy either alone or plus alfalfa or trefoil. Alfalfa had most ground cover when it was with timothy alone and so did Ladino. However Ladino had also a large ground cover when it was associated with both timothy and alfalfa. Trefoil had most ground cover when it was associated with any of the grasses alone and also in mixture 9.

b) <u>Hay Mixtures and Pure Stands</u>. The ranks achieved by the pure stands under a hay management were relatively consistent throughout the season. As would be expected alfalfs yielded most. Birdsfoot trefoil which produced little in the first cut gave a similar total yield as red clover. Ladino and alsike were the same. Timothy and brome were average in their

dry matter production.

The dry matter per plot of the mixtures did not vary greatly from stand to stand or from cut to cut. However from table 21 it is seen that existing differences were shown in the season's total. Thus the highest yield was obtained from the simple mixture timothy-alfalfa, which was outstanding. This was followed by other mixtures containing alfalfa. The association of timothy with red clover and Ladino cannot be recommended, on the basis that it gave the lowest yield of dry matter per plot.

A conclusion that may be drawn from the dry matter yields per plot of mixtures and pure stands, under both hay and pasture management is that the hay management gives the highest yields and that alfalfs appears to be the deciding component to achieve this.

The botanical composition of the hay species in pure stand was high throughout the season, as there was little or no weed problem. The one exception to this was alsike which after the first cut contributed only 12% to the sward in the second cut and practically nothing in the third cut.

The ground cover of the pure stands was relatively high in the first cut, but less so in the second. No data were obtained on the regrowth of the third cut.

The percentage composition of the legumes in the mixtures was greatest, with grasses producing only little except in mixture 8 and 9. It should also be outlined that the trefoil varieties used in mixtures 5, 6 and 7 contributed so little that the differences were insignificant.

There was no consistent trend in ground cover in cut 1 and 2 of the hay mixtures. The values of cut 2 were smaller than these of cut 1 which would be mainly due to the fact that the PQ analysis was obtained at an earlier stage of growth of the aftermath. Also disease, slower recovery for certain species could have been other factors for this.

In conclusion to this part of the discussion, some considerations on botanical composition, and PQ use are in order. Thus hand separations are only of value if the sampling in the field is done with great care, and with a sufficient number of pickings from the cut material, so as to have a representative sample of the whole plot.

It is realized that this cannot always be achieved, and is often neglected. Thus it is proposed that hand separations be replaced by a botanical analysis obtained by PQ. It has been shown by workers in the past (see literature review) and by this author in a study not reported, that good estimates can be obtained by the PQ method, and this with greater ease and less time. However it appears that one of the main requirements is that a sufficient number of points be analyzed, especially in stands where one of the species occurs only in small proportions.

During the 1961 season, large variations were observed in ground cover values obtained from the PQ analysis. As was

shown in the results, some of these were due to variations that were inherent to the mixtures in individual plots. However it is suspected that the number of points analyzed and the stages of growth at which the analyses were obtained were also factors contributing to these variations.

Thus it is proposed that for those species occurring in small proportions, the number of points analyzed should be increased to such an extent to obtain at least 5 hits. The 5 here is just an arbitrary number, which would exclude personnal and chance factors.

Also that the PQ readings should be obtained either immediately after cutting in which case it would apply to the cut just obtained, or not more than 3-5 days after cutting in which case it would apply to the cut following the analysis. The second method is favored by this author in view of the fact, that in May and June regrowth is so fast, that the new shoots will bias the analysis as applied to the cut just obtained.

B. Yield per Unit Area of Ground Cover Study

Before proceeding with the discussion it was judged appropriate to re-state briefly the hypothesis used in this study and theory supporting the hypothesis. From the mathematical concept of the homogeneity of a unit area as represented by a point, it was assumed that a unit area of ground covered by a species in pure stands would produce the same amount of dry matter as a unit area of ground covered by the same species

in mixtures. Therefore the hypothesis, that if this were true there would be no competition.

In table 8, it can be seen that the yield per unit area of the pure stands, "unit area" referring at all times in the discussion to follow, to "unit area of ground cover", were considerably smaller than these of the species in the mixtures. Thus of the 45 values obtained, 8 only were smaller yields per unit area than those of the pure stands. This may suggest that either the competition from the nurse crop or the weeds is greater in pure stands than in mixtures or that these have a beneficial effect on the mixtures. It may also be thought that intraspecific competition in pure stands was greater than interspecific competition in mixtures.

In table 9, representing the first cut of 1961, the situation was almost completely reversed with respect to the 1960 Especially so for grasses which appeared to have been cut. In 11 mixtures, the legumes greatly affected by competition. had yields that were greater than those of the respective pure The yields per unit area of alfalfa were especially stands. large, as for example when it was associated with timothy alone. There it produced 45.4 gm. of dry matter per unit area as compared to 23.4 gm. in pure stand. The competition index obtained was 1.94 or just about 2.0. This would certainly suggest that in this instance that intraspecific competition was actively operating in the pure stand and even that alfalfa must have benefitted from its association with timothy. The other

legume species yielded very much alike, and most were evolving around a competition index of 1.0.

In this cut 1, then, the grasses appeared to have greatly suffered from interspecific competition and the legumes except in a few instances, less so.

In cut 2, table 10, interspecific competition was even more apparent than in cut 1. Yet the yields per unit area of both, species in mixtures and in pure stands were greater and at a few occasions had more than doubled from the previous cut. Only in 5 mixtures did legume species reach a competition index of It is of interest to note that 1.0 and the grasses in none. each time a legume species gave a yield per unit area that was greater when it was in mixture than as a pure stand, it was associated with a species that did not offer any competition. Thus it was for Ladino in mixtures (vii) and (viii) and alfalfa in mixture (ix). For example, alfalfa in the latter mixture produced a yield per unit area of 162.3 gm. or almost three times that of the pure stand. It is suspected due to the nature of the stand throughout the season, that alfalfa behaved as a single sufficiently spaced plant. Under such condition it has the ability to produce a large amount of dry matter per unit area.

In cut 3, table 11, only the values under (a) were an integral part of this study. The values under (b) were merely of a passing interest, to determine if the yields per unit area obtained from the PQ analysis taken at cutting time compared

favorably with the yields per unit area.

In this cut 3 more species in mixtures yielded more than the pure stands, than in the previous 2 cuts. However there was an overall decrease in yield per unit area. This may be explained on the general observation, that the yields per plot, therefore the yields per plant decrease as the season progresses, due to a number of factors. Although, as mentioned previously, the stage of growth at which ground cover was obtained has also its effects on the yields per unit area.

In this cut the competition on the grasses appeared to be less severe for certain mixtures in which timothy occurred. Thus in association with alsike this species had a competition index greater than 1.0, and with trefoil it came close to 1.0.

In 15 different associations the legume species yielded more than their pure stands and among these was Ladino, which did so in every mixture in which it occurred. Red clover achieved this characteristic in none, but came close to an index of 1.0 in mixture 1. It should also be noted that trefoil gave a competition index greater than 1.0 in every simple mixture.

Thus in the second aftermath, a decline in interspecific competition was observed or conversely an increase in intra specific competition. However it should be remembered that the adverse effect of the weedicide on the timothy and brome grass could have been the cause of a low production in these pure stands.

The discussion on the 4th cut, table 12, will only be brief, since this cut is not comparable to the previous cuts.

Yet it is of interest to note, as under (b) in cut 3, that in most instances the same species yielded more per unit area than the respective pure stands or yielded close to the values obtained in pure stands, as in previous cuts. Due to the fact that the PQ readings were taken at cutting time, the yields perunit area were considerably smaller; this was also shown in cut Also unlike in cut 1, 2, 3, timothy in mixtures 4, 6 and 3. Upon looking at (viii) yielded more than the pure stand. table 13, it is seen that this also happened in cut 5. Therefore this may indicate that towards the end of the season there is a declining competitive effect among the grasses in mixtures. Had this only occurred in cut 4, it may have been attributed simply to the method or manner by which ground cover was obtained. In cut 5 also Kentucky blue grass and reed canary yielded more than their pure stands.

Among the legumes of cut 5, there was no great change from the trend obtained in previous cuts, i.e., red clover in mixture 1 and 6, alfalfa in 8 and 9, Ladino in 4, 12 and (viii), trefoil in 13 still revolved around a competition index of 1.0. The amount of dry matter per unit area had decreased again, which may be attributed to the slow growth which took place after the 20th September, as shown by the PAI and NAR values obtained in another part of this dissertation. This slow growth was not necessarily accompanied by a decrease in ground cover, since the plants, especially the legume species have a tendency to form a rosette in the late season.

In conclusion, a comparison of cuts 1, 2, 3 permitted, the evaluation of the method used to measure yield per unit area and therefore competition. The means of cuts 1, 2 and 3 subjected to Duncan's test, allow one to assess to what extent the yield per unit area of a species in a mixture differed from that of the same species in pure stand. Consequently the extent of competition as measured by the index could be judged.

Looking at tables 9, 10, 11, it is seen that the grasses behaved in a like menner, i.e., none could produce as much as the pure stands. The exception occurred only in cut 4 and 5. Yet the order of importance of the yields per unit area, judged quantitatively, did not follow a definite trend from cut to cut. This characteristic was most likely governed by the variations due to the point quadrat and probably also by the associated species. Thus, e.g., timothy with alsike increased its yield per unit area from cut to cut, whereas timothy with alfalfa increased, then decreased it. The only consistent trend was shown by the small yields per unit area of brome in mixtures (viii) and (ix).

The legume species permitted a more favorable evaluation of the method. Alfalfa in mixture (ix) gave consistently a high competition index, in mixture 5 it never gave a high yield per unit area, i.e., it was never able to achieve the productivity level of the pure stand. Ladino in mixture 12, yielded more than its pure stand in all 3 cuts. Trefoil was

again more like the grasses, in that it did not show any clear trend, except that in mixtures 6, and (viii) it was consistently low yielding.

From this, it is this worker's conviction, that this method has merit, and can be used with some confidence to evaluate the productivity of pasture species both in mixtures and pure stands.

The average of the species at cuts 1, 2, 3 in table 18, or the means of these in table 17, permitted one to test the validity of the hypothesis put forth.

It was shown that none of the grasses in mixtures were able to yield as much per unit area as the pure stands, on an average of three cuts. More outstanding yet, was the fact that all the grasses in mixtures yielded significantly less than the grasses in pure stands, thus showing that there was an adverse effect on the grasses in mixture which was not found when these were in pure stand. In the legumes the evaluation of competition was not as clear as in grasses. Eight mixtures had legume species that yielded more than the pure stands, but of these only alfalfa in mixture 7 and (ix) were significantly greater than the pure stand. Trefoil in mixture 7 and 8 yielded significantly less than the pure stand, which tends to invalidate the original assumption in four instances. However all other results do not necessarily credit the hypothesis with truth.

It is this author's conviction that the differences in

yield per unit area between a pure stand and mixture are real, that a more sensitive experiment may prove this.

The yields per unit area of the hay mixtures were considerably greater than those of the pasture mixtures. This follows from the fact that the yields per plot and therefore the ability of the species to produce dry matter is greater under a hay management than a pasture management.

It is also of interest to note that the ground cover appears to change little whether a hay or a pasture management is used. From table 23, it is seen that timothy performs much better in hay mixtures than in pasture mixtures. Thus in 2 mixtures out of 8 it yielded more than the pure stand in the first cut, and in the second cut this occurred in 3 mixtures. In a fourth mixture, i.e., number 5, its yield per unit area was only a little less than that of the pure stands.

Among the legumes only red clover in mixture 6 yielded more than the pure, in cut 1. However in cut 2, its yield per unit area was greater than that of the pure stand in mixtures 1, 3, 6 and 7. For alfalfs this happened when it was in mixture 2. It should be noted that the discrepancy between cut 1 and cut 2 is not as great as it appears. For example the competition index of red clover in mixture 1 cut 1 was only 0.97 and that in cut 2 was slightly more than 1.0. The same relation can also be shown for red clover in mixture 7.

The magnitude of the differences and the extent of competition, that existed between species in mixtures and pure

stands, are shown in tables 25 and 26 respectively. Thus the grass species have not shown any real differences between mixtures and pure stands. Therefore in the light of what has been said above for pasture mixtures, the hypothesis under test has not been disproven statistically. In legumes.competi-tion between species in mixtures that appears to be real has occurred in some instances, but also instances have been shown where this was not so. Thus red clover yielded significantly less than the pure stand in mixtures 1 and 2, alfalfa in mixtures 1 and 8, and trefoil in all mixtures in which it occurred. It is of interest to note that alfalfa and trefoil yielded significantly less than the pure stand when they were associated with a grass alone and yet mixture 8 was the highest yielding mixture on a per plot basis for the entire season. This would suggest that the ability to compete of these two legumes is no greater than that of the grasses with which they were associated.

a) Would part of the variations obtained, be eliminated, if a yield per point were measured on the basis of obtaining the PQ analysis by the second alternative suggested earlier and record only these hits that promise to be contributing to the yield of the point, no matter how much or how little?

From this whole study the following considerations are

worth investigating:

b) On the basis of the high yields obtained by alfalfa in mixture (ix) under a pasture management, use a method of planting that would either eliminate or permit the estimation

of intraspecific competition. If alfalfa as in this mixture (ix) is capable of obtaining such high yields per unit area, then it is reasonable to suspect that considerable intraspecific competition occured in the pure stand used in this study. c) The competition indices obtained for certain species have indicated that very unfavorable conditions for the production of dry matter per unit area prevailed for these species. In the light of this it is suspected that optimum rates of seeding were not employed, resulting in ill-balanced forage mixturess

C. PAI and NAR Studies

The objective of this part of the dissertation was to evaluate the feasibility of measuring competition by other means than the yield per unit area of ground cover. If the point quadrat is used to obtain the PA, as in cut 3 of the pasture mixtures, then the assumption that a point hit in pure stand represents a point hit in mixture is valid on the basis that, mathematically, a unit area as represented by a point is homogeneous. Thus the assumption that the PAI of a species in mixture is the same as that of the same species in pure stand is the hypothesis to be tested.

Justification in the use of the total photosynthetic area to measure NAR, might be obtained in view of the fact that if NAR measures the net amount of dry matter accumulated per unit area of photosynthesizing material per unit time once respiration has taken place then the total PA should be used

to measure this NAR since respiration takes place throughout the plant at any time.

Comparing the results of the third cut of the pasture mixtures as obtained by PQ, the $Y/_{U_{\bullet}A_{\bullet}}$ of G.C., the PAI and the NAR gave competition indices which evaluated the ability of the species to compete, with relatively good consistency. That is, high as well as low indices were obtained for the same species, in the same mixtures. However since the PQ was used to obtain the three measurements, this could have been expected.

In the following study of cut 4, 5a, 5b, and 5c, the "disc method" was used to obtain the total PA, and therefore the NAR of each species, in every mixture considered. For this reason it is suspected that the hypothesis to be tested, i.e., the one used in every previous investigation, is not directly applicable to the discussion following. However, if an assumption is made, stating that whatever factor governing the growth and development of a plant in pure stand is also governing that of a plant in mixtures, then it could be hypothesized that a species in mixture can reach the same PAI as in a pure stand and similarly for the NAR.

<u>Pasture Mixtures</u>. In cut 4 the range of PAI values obtained in mixtures, was from a low of 0.03 for timothy when it was associated with ladino and trefoil to a high of 5.14 for Ladino in mixture 12. (Table 33). The net assimilation rates ranged from 0.068 grams per dm² per week for this same timothy to 0.526 gm/dm²/week for trefoil in mixture 13. In this cut

red clover in mixture 1 and 6, Ladino in 8, 12 and (viii) appeared to be unaffected by interspecific competition as measured by the PAI method and only relatively little as measured by the NAR method.

In cut 5a, table 34, the differences that existed between the species in the mixtures and those in pure stands were much more apparent, since many more of the former were significantly different from the latter in both PAI and NAR. The values obtained for PAI in mixtures ranged from 0.02 for brome in mixture (viii) to 4.12 for Ladino in 12. The range of the NAR values was from $0.072 \text{ gm/dm}^2/\text{week}$ for both timothy in mixture (vii) and trefoil in mixture (viii) to $0.572 \text{ gm/dm}^2/\text{week}$ for trefoil in mixture 13. In this cut the grasses continued to show little ability to compete. This was obtained through both the PAI and NAR measurements. Likewise red clover in mixture 1 and 4, Ladino in 4, 8, 12, (vii) and (viii) and trefoil in 9, 11, 13, 14 and 15, follow the trend taken in cut 4, i.e., the competition indices obtained from the PAI and NAR measurements show the ability these species have to compete for water, nutrient and light when found in the mixtures mentioned. The results of cut 4 and 5a also show that red clover and alfalfa tend to be suppressed when they are associated with Ladino.

The results of cut 5b, table 35, indicate that the growth of plants decreased conspicuously after the 20th of September. The analyses of variance performed on this cut showed only significance for the PAI values of the grasses. This indicated that the grasses were also suppressed in this part of the recovery period.

The range of the PAI's was from 0.01 for trafoil in mixture (viii) to 1.08 for red clover in mixture 6, i.e., a drop of approximately 3.0 from the previous cuts. The range of NAR was from 0 gm of $DM/dm^2/week$ in trafoil in mixture 15 to 0.126 $gm/dm^2/week$ for timothy in mixture (vii). This was completely the reverse situation to cut 5a where trafoil had the highest NAR and timothy the lowest, however trafoil was not in the same mixture. This may indicate that timothy in mixture (vii) accumulated its dry matter only towards the end of the 4th aftermath regrowth.

The trend taken by the competition indices reappeared in this cut 5b, even though the NAR method gave greater competition indices for grasses, than the PAI. For example brome in mixture 13 had an index of 0.07 as measured by the PAI and 0.90 as obtained by the NAR. Explanations for such discrepancies might be sought on a physiological basis, but also from the variations that existed in the plant population between half sub-plots. Thus no increment may be shown in PA, yet the net assimilation rate may still be measured.

The results obtained from cut 5c, table 36, show the PAI and the NAR values obtained from the entire regrowth period. Thus cut 5c represents the trends taken by the different species in each mixture, during the 53 day recovery period.

As shown in cut 5a, the results of the entire period were mostly governed by the first 20 days of recovery. Most of the PAI's and NAR's of species in mixtures that were significantly different from the pure stands in cut 5a, were also significantly different in cut 5c. Thus most of the highest competition indices of cut 5a were also recurring in cut 5c. This would indicate that to measure competition one set of measurements, obtained at the end of the recovery period, are sufficient.

The averages of the results of cut 4, and 5c indicated the trend competition has taken in pasture mixtures, for the species evaluated. Thus from an average of the last three months of the growing season, it is observed that by measuring both the PA and NAR the same extent of competition was measured for species in certain mixtures. Thus timothy in mixtures 4, 8, 12 and (vii), red clover in mixture 4, trefoil in mixtures 6, 15, (vii) and (viii) had PAI's and NAR's that were significantly smaller than these of their respective pure stands.

Upon comparing the yields per unit area of ground cover of cut 5, the PAI's and the NAR's of cut 5c, it was found that common high and low competition indices were found with the three methods. For example, common high competition indices were obtained for timothy in mixtures 6, 9, 11, for red clover in mixtures 1 and 6, alfalfa in 9, for Ladino in all mixtures analyzed, and for trefoil in mixture 13. Common low competition indices were obtained for timothy in mixtures 4, 12 and

(viii), for brome in mixture (viii), for red clover in 4 and for trefoil in mixtures 6, (vii) and (viii).

These results then indicate that competition can be measured, and that similar effects of competition may be obtained by three methods used in this study, of species under a pasture management. However it may be pointed out that the extent of competition was not evaluated by the three methods and compared. This could be the objective of a future investigation. Also the magnitude of the competition index was not absolute for the three methods. Yet relative to each other, within a method, the competition indices showed the same trend for species in different mixtures, from cut to cut, and from one method to another, under a pasture management practice.

<u>Hay Mixtures</u>. Table 36 shows the results of PAI's and NAR's of the third cut obtained from the hay mixtures. Very high PAI's and low NAR's were obtained. The PAI's ranged from 0.16 for red clover in mixture 1 to 6.40 for alfalfa in the same mixture. The range of the NAR's was from 0.063 gm. of DM/dm²/week, for red clover in mixture 1 to 0.235 gm/dm²/week, for trefoil in mixture 9, and 0.235 gm/dm²/week for timothy in pure stand.

According to the measurments of PAI and NAR obtained in this cut, competition was severe for timothy, brome and red clover when these were associated with alfalfa. It was not present for red clover, alfalfa, and trefoil, when these were in mixtures 4 and 5, 1 and 8, and 9 respectively.

In conclusion to the PAI and NAR study, it may be indicated that these methods have merit insofar as giving a measure of competition in forage mixtures. They appear to give the same sort of results as the yield per unit area. However the latter is easily applicable, more so than the other two methods when these are based on the disc method. Yet if a study is undertaken to measure competition, and has also as objective to investigate the recovery pattern of every species in different mixtures, than the PAI and the NAR is most likely to be of more value.

This whole study has made an attempt to show the feasibility of measuring competition. Trends of a competition pattern, have been demonstrated for various forage species as they exist in hay and pasture mixtures. The reliability of the point quadrat, to give a yield per unit area of ground cover, and a total photosynthetic area index which measures competition satisfactorily, has been shown. Total photosynthetic area index and net assimilation rate as obtained by the "disc method" was found to be equally satisfactory, but more time consuming, to give a measure of competition.

It is realized that either of these methods, have yet to be proven thoroughly by sensitive statistical means. But it is my firm conviction that future assessment of forage mixtures may only be reliable if a well established measure of competition is used.

192 a

SUMMARY

A study undertaken at Macdonald College in 1960 and 1961 on hay and pasture mixtures and the respective species in pure stands gave the following findings:

1) There appeared to be little or no relationship in the measurements of yield per unit area of ground cover, when the PQ analyses were taken either before or immediately after a harvest had been obtained, in pasture mixtures.

2) PQ recordings obtained 10 to 15 days after cutting of the plots proved to be satisfactory, but not ideal, for the measurement of yield per unit area of ground cover.

3) The PQ appears to be a reliable method to measure ground cover, but more so for legumes than for grasses.

4) The 3 angles of inclination of the PQ, i.e., 29°, 32.5° and 45° appear to be equally satisfactory to give estimations of ground cover, density, and indirectly yield per unit area of ground cover, in legumes.

5) The angle of inclination of 45° appears to be more appropriate to study grasses, as shown by the high correlation coefficients obtained between cut 3 and cut 5 for ground cover and density. 6) In mixtures with low population of certain species such as the grasses, large variations were obtained for yield per unit area, PAI and NAR. CV's in the order of 70-80% were obtained.

7) Competition indices for mixtures did not appear to be related between cuts.

8) The legumes had a depressing effect on the grasses, as measured by ground cover, density and yield per unit area of ground cover.

9) A trend was obtained, indicating an inverse relation between the number of components in a mixture and the competition index of these mixtures.

10) There was relatively good consistency in the competition indices obtained by $Y_{\bullet}/_{U \bullet A_{\bullet}}$ of G.C., PAI and NAR in pasture mixtures.

11) In both hay and pasture mixtures, the grasses in general and trefoil in some instances obtained very low competition indices. These species have been considered as having little ability to compete under the conditions of this study.

12) Ladino and alfalfa in general obtained high competition indices, red clover in some instances too, and trefoil was only average.

13) Good evidence was obtained that the hypothesis formulated may not be true for forage species in hay and pasture mixtures, and their respective pure stands.

BIBLIOGRAPHY

Alfonzo, E. and G. Gonzalez. 1958 Studies on competition. 2. Effect of the tall oatgress and lucerne association on forage yield and encroachment by weeds. An. Edafol. Fisiol. veg. <u>15</u>: 422-42 (From Herb. Abst. <u>28</u>: 33)

Arny, A.C.

1944 Alfalfa and grass percentage determinations with the inclined point quadrat apparatus at different stages of development of the mixtures. J. Amer. Soc. Agron. 36: 996-8

Baylor, J.E.

1958 Establishment and early plant development of birdsfoot trefoil (Lotus corniculatus L.) as affected by several factors of competition. Diss. Abstr. <u>19</u>: 10-11. (From Herb. Abstr. 29: 490).

Black, J.N.

1958 Competition between plants of different initial seed sizes in swards of subterranean clover (<u>T. subterraneum</u>) with particular reference to leaf area and the light microclimate. Aust. J. Agric. Res. <u>9</u>: 299-318.

Blaser, R.E., T. Taylor, W. Griffeth, and W. Skrdla. 1956(a) Seedling competition in establishing forage plants. Agron. J. 48: 1-6.

, W. Griffeth and T. Taylor. 1956(b) Seedling competition in compounding forage seed mixtures. Agron. J. 48: 118-23

Brown, D.

1954 Methods of surveying and measuring vegetation. Com. Bur. Past. and Fld. Crops Bull. 42 pp.223

Caputa, J.

1948 Untersuchung uber die Entwicklung einiger Gräser und Kleearten in Reinsaat und Mischung. Ein Beitrag zur Konkurrenzund Saatmengenfrage. (Development of some grass and legume species in pure stands and in mixtures. A contribution to the study of competition and rates of seeding). Landw. Jb. Schweiz. 62: 853-975. Chamblee, D.S. Some above- and below-ground relationships of 1958 an alfalfa-orchardgrass mixture. Agron. J. 50: 434-7. Chippindale, H.G. 1931 Latency of seedlings in some grasses. Nature 128: 1075-6. The operation of interspecific competition in 1932 causing delayed growth of grasses. Ann. Appl. Biol. 19: 221-42 Clarke, S.E., J.A. Campbell and J.B. Campbell. An ecological and grazing capacity study of 1942 the native grass pastures in S. Alberta, Saskatchewan and Manitoba. Dom. Dept. Agric. Pub. No. 738. Clements, F.E., J.E. Weaver and H.C. Hanson. 1929 Plant Competition. An analysis of community functions. Carn. Inst. of Wash. Publ. 398 pp.340. Cottam, G., J.T. Curtis and B.W. Hale. Some sampling characteristics of a population 1953 of randomly dispersed individuals. Ecol. 34: 741-57. and J.T. Curtis. 1956 The use of distance measures in phytosociological sampling. Ecol. 37: 451-60. Crocker, R.L. and N.S. Tiver. 1948 Survey methods in grassland ecology. J. Brit. Grassl. Soc. 3: 1-26. Davidson, J.L. and C.M. Donald. The growth of swards of subterranean clover with 1958 particular reference to leaf area. Austr. J. Agric. Res. 9: 53-72. deWitt, C.T., G.C. Ennik, J.P. v.d.Bergh and A. Sonneveld. 1961 Competition and non-persistency as factors affecting the composition of mixed crops and swards. Proc. 8th. Internat. Grassl. Cong. Reading Engl. 736-41.

Donald, C.M. 1946 Competition between pasture species, with reference to the hypothesis of harmful root interactions. J. Coun. sci. industr. Res. Austr. <u>19</u>: 32-7. (From Herb. Abstr. 17: 491)

- 1951 Competition among pasture plants. <u>l</u>.Intraspecific competition among annual pasture plants. Austr. J. Agric. Res. <u>2</u>: 355-76.
- 1956 Competition among pasture plants. Proc. 7th. Internat. Grassl. Cong. Palmerston, North N.Z. 80-91.
- 1958 The interaction of competition for light and for nutrients. Austr. J. Agric. Res. 9: 421-35.
 - and J.N. Black.
- 1958 The significance of leaf area in pasture growth. Herb. Abstr. 28: 1-6.
- Drew, W.B.
 - 1944 Studies on the use of the point-quadrat method of botanical analysis of mixed pasture vegetation. J. Agric. Res. <u>69</u>: 289-297.
- Gardner, A.L.

1960 A technique for the investigation of intercultivar competition in grass species. Proc. 8th. Internat. Grassl. Cong. Reading Eng. p. 322-24.

Gonzalez, G. and Alfonso, E.

1956 Studies on competition. <u>1</u>. Variations in the protein content of tall oatgrass and lucerne sown together.
An. Edafol. Fisiol. veg. <u>14</u>: 577-600. (From Herb. Abstr. 26: 1187).

Goodall, D.W.

Hanson, H.G.

¹⁹⁵² Quantitative aspects of plant distribution. Biol. Rev. <u>27</u>: 194-245.

¹⁹⁵⁰ Ecology of the grassland. II. Bot. Rev. 16: 283-360.

199 Heady, H.F. The measurement and value of plant height in 1957 the study of herbaceous vegetation. Ecol. 38: 313-20. Ivins, J.D. (Ed.) The measurement of grassland productivity. 1959 Proc. 6th. Easter School Agric. Sci. Un. Nottingham Eng. pp. 217. Johnson, W.C. Jr. 1956 Competition between legume and grass varieties in perennial forage mixtures. Diss. Abstr. 16: 1551-2. (From Herb. Abstr.27: 830). Johnston, A. A comparison of the line intercept, vertical 1957 point quadrat and loop methods as used in measuring basal area of grassland vegetation. Can. Journ. Plant Sci. 37: 34-42. Jones, M.B. and R.A. Evans. 1959 A modification of the step-point method for evaluating species yield changes in fertilizer trials on annual grasslands. Agron. J. 51: 467-70. Juska, F.V., J. Tyson and C.M. Harrison. The competitive relationship of Merion bluegrass 1959 as influenced by various mixtures, cutting heights and levels of nitrogen. Agron. J. 47: 513-18. Keller, W. Designs and technic for the adaptation of con-1946 trolled competition to forage breeding. J. Amer. Soc. Agron. <u>38</u>: 580-8. Knapp, R. and Linskens, H.I. 1952 Experiments to determine the effect upon one another of grasses and clovers in rye-grass/white

Biol. Zbl. 71: 561-85. (From Herb. Abstr.23:608).

pasture swards. Unpublished Ph.D. Thesis. McGill

Climatic, edaphic and biotic influences on

clover sward.

University.

Knutti, H.J. 1961

Krenzin, R.E. Effects of competition from companion crop and 1958 from inter-species associations on forage stand establishment and yield. Diss. Abstr. 19: 13. (From Herb. Abstr.29:467). Krilcher, M.R. and D.H. Heinrichs. 1958 Performance of three grasses when grown alone, in mixture with alfalfa, and in alternate rows with alfalfa. Can. J. Plant Sci. 38: 252-9. Kübler, M. 1954 A contribution to the study of competition among meadow species. Z. Acker-u. Pflbau 97: 399-422. (From Herb. Abstr. 24: 651). Leasure, J.K. Determining the species composition of swards. 1949 J. Amer. Soc. Agron. 41: 204-206. Levy, E.B. and Madden, E.A. 1933 The point method of pasture analysis. N.Z.J. Agric. 46: 267-279. Lieth, H and Ellenberg, H. Competition and invasion of meadow plants. A 1958 contribution to the problem of the development of newly sown grasslands. Z. Acker-u. Pflbau 106: 205-23. (From Herb. Abstr. 29: 382). McCloud, D.E. and G.O. Mott. Influence of association upon forage yield of 1953 legume-grass mixtures. Agron. J. 45: 61-5. Milthorpe, F.L. (Ed.) 1956 The growth of leaves. Proc. 3rd. Easter School in Agric. Sci. Un. Nottingham Engl. pp. 223. Mouat, M.G.H. and T.W. Walker. Competition for nutrients between grasses and 1959 white clover. 1. Effect of grass species and nitrogen supply. Plant and Soil 11: 30-40. Norman, M.J.T. 1960 The relationship between competition and defoliation in pasture. J. Brit. Grassl. Soc. 15: 145-49.

Robertson, J.H. Responses of range grasses to different inten-1947 sities of competition with sagebrush (Artemisia tridentata Nutt.). Ecol. 28: 1-16. Robinson, P. Tests of significance, for use in comparisons 1959 of several means, with particular reference to Duncan's Multiple Range Test. Can. Dept. Agric. Stat. Res. Serv. Publ. No. 4. pp. 13. Rumell, R.S. Some effects of competition from cheatgrass 1946 brome on crested wheatgrass and bluestem wheatgrass. Ecol. 27: 159-67. Scholl, J.M. and D.W. Staniforth. Establishment of birdsfoot trefoil as influenced 1957 by competition from weeds and companion crops. Agron. J. 49: 432-5. Spedding, C.R.W. and R.V. Large. A point quadrat method for the description of 1957 pasture in terms of height and density. J. Brit. Grassl. Soc. 12: 229-34. Sprague, V.G. and W.M. Myers. 1945 A comparative study of methods for determining yields of Kentucky bluegrass and white clover when grown in association. J. Amer. Soc. Agron. 37: 370-77. Stern, W.R. and C.M. Donald. 1961 Relationships of radiation, leaf area index and crop growth-rate. Nature 189: 597-98. Tawari, G.P. 1959 The production and botanical composition of legume-grass combinations and the influence of

Van Keuren, R.W. and H.L. Ahlgren.

1957(a) A statistical study of several methods used in determining the botanical composition of a sward. <u>1</u>. A study of established pastures. Agron. J. <u>49</u>: 532-36.

Diss. Abstr. 19: 2426 (From Herb. Abstr. 29:1411).

the legume on the associated grass.

Van Keuren, R.W. and H.L. Ahlgren. 1957(b) A statistical study of several methods used in determining the botanical composition of a sward. II. A study of several forage mixtures. Agron. J. 49: 581-85. Varma, S.C. 1938 On the nature of composition between plants in the early phases of their development. Ann. Bot. Lond. 2: 203-25. Wagner, R.E. 1952 Weight estimation and other procedures for measuring the botanical composition of pastures. Proc. of the 6th. Int. Grassl. Cong. U.S.A. 1315-20. Warren Wilson, J. 1959(a) Analysis of the distribution of foliage area in grassland. Proc. 6th. Easter School in Agric. Sci. Un. Nottingham Eng. p.51-61. (Ivins Ed.) 1959(b) Analysis of the spatial distribution of foliage by two-dimensional point quadrats. New Phytol. <u>58</u>: 92-101. Watson, D.J. 1952 The physiological basis of variation in yield. Adv. Agron. Vol. IV: 101-145. Acad. Press Inc. New York. Whitman, W.C. and E.I. Siggeirsson. Comparison of line interception and point quadrat 1954 methods in the analysis of mixed grass vegetation. Ecol. <u>35</u>: 431-36. Willoughby, W.M. Some factors affecting grass-clover relation-1954 ships.

Austr. J. Agric. Res. <u>157</u>: 80. (From Herb. Abstr. 24: 674.)

Wilson, D.B. and R.W. Peake.

1956 Seasonal yield and nitrogen content of three grasses grown singly and in mixtures. Can. J. Agric. Sci. <u>36</u>: 221-32. Winter, E.J., P.J. Salter and J.K.A. Bleasdale.

1956 Some methods of measuring leaf area. Proc. 3rd. Easter School in Agric. Sci. Un. Nottingham Eng. p. 195-7. (Milthorpe Ed.)

Yamada, T. and S. Horinchi.

1960 On the bias of quantitative characters and the change of their distribution in a population due to interplant competition. Proc. 8th. Internat. Grassl. Cong. Reading Eng. p. 297-301.

Yawalkar, K.S. and A.R. Schmid.

1954 Performance of birdsfoot trefoil alone and in competition with other species in pastures. Agron. J. <u>46</u>: 407-11.

APPENDIX	

Table A 1	Yields of I	Dry <u>Matter</u> per Experime	Plot of Pure and I 1960	Stands (gm/plot)	
Species	Cut 1	Cut 2	Cut 3	Cut 4	Cut 5
Timothy Brome Alfalfa	1967 2487 1982	238	146	216 424	3 69 188

Percentage Composition and Point Quadrat Analysis of the Pure Stands Table Alg Experiment I 1960

														Cuts	
	Cut 2			Cut 3		Cut 4		Cut 5			(after cutting)				
Spec-	%	% Hits % Hits				% Hits			% Hits			Hits			
<u>ies</u>	Comp.		<u>G.C.</u>	Comp.		<u>G.C.</u>	Comp.		G.C.	Comp.		G.C.		G.C.	
Tim.	42.81	12	24	15.6	12	24	25.0 ¹	6	12	23.2	-		4	8	
Oth.	57.2 ¹	16	32	84.4	17	34	75.0 ¹	18	36	76.8			17	34	
B.G.		25	50		26	52		27	54	1000			30	60	
Br. Oth. B.G.	70.6 ¹ 29.4 ¹	12 5 24	30.0 12.5 60.0				60.0 40.0			91.4 8.6	7 2 41	14 4 82	10 13 27	20 26 54	
Af. Oth. B.G.	33.3 ⁱ 66.7 ⁱ	10 20 11	25.0 50.0 27.5				94.9 5.1			96.0 4.0	7 12 31	14 24 62	5 15 38	10 30 76	
<u>Only</u>	4 statio 5 " % Comp. Ground C Bare Gro i) These	ns per Percover = ound, a value	r plot " centage G.C. abbrev es have	were " = by h = as iated e been	taken " and s descr as B. obta	of th at al eparat ibed i G. ined f	e Alfal 1 other 10n. 1 mater 2 rom the	fa a tim ials poi	nd Bro es. and m nt qua	me pure methods. drat re	e sta eadin	nds of	Cut	1. t 1 & :	- 2
	were not hand separated.														

Н
Table	A_2	Per (centag Experi	e Comp ment I B <u>locks</u>	osi)	tion	Cut 1	Мау	26, 19	960.
	A	В	C	D			A	В	C	D
Mix- tures					M: ti	ix- ares				
l Tim. R.C. Oth.	85.7 3.4 10.9	81.8 0.8 17.4	71.0 2.4 26.6	88.1 2.9 9.0	9	Tim. Af. As. Oth.	27.7 70.9 0.7 0.7	21.7 75.5 -tr 2.8	13.8 85.4 tr 0.8	18.3 81.7 tr tf
2 Tim. R.C. As. Oth.	89.1 2.0 - 8.9	79.7 5.9 14.4	82.1 1.1 0.6 16.2	86.8 4.4 3.8	10	Tim. Af. Lad. Oth.	39.2 56.8 2.0 2.0	29.8 64.5 1.4 4.3	26.4 72.9 0.7 4.	22.8 74.3 2.9
3 Tim. R.C. Lad. Oth.	92.6 0.6 2.5 4.3	76.4 0.8 10.2 12.6	83.1 1.1 1.8 14.0	84.5 tr 4.3 11.2	11	Tim. Lad. Oth.	90.3 6.4 2.8	84.4 8.2 7.4	68.4 9.4 22.2	84.8 1.9 13.3
4 Tim. R.C.	31.5 - tr 65.4	15.0 tr 82.7	18.3 tr 80.2	25.8 tr 73.4	12	Tim. B.T. Oth.	50.0 37.7 12.3	49.0 44.8 6.2	47.3 42.8 9.9	44.8 55.2
Oth. 5 Tim.	3.1 63.3	2.3 52.8	1.5 55.0	0.8 48.4	13	Br. B.T. Oth.	78.6 20.3 1.1	82.8 15.8 1.4	64.3 30.4 5.3	67.3 29.9 2.8
R.C. B.T. Oth.	1.7 31.7 3.3	6.6 34.9 5.7	0.8 36.6 7.6	1.6 46.3 3.2	14	R.Can B.T.	30.7 47.4	50.4 32.2	31.6 46.9	47.6 42.9
6 Tim. R.C. Af. Lad.	47.2 0.8 47.2 3.2	27.2 tr 71.4 0,7	29.2 tr 67.4 1.1 2 3	27.1 tr 72.0	15	O.G. Lad. Oth.	97.0 0.5 2.5	97.3 1.5 1.2	98.4 0.8 0.8	98.1 tr 1.9
7 Tim. Af. Oth.	19.9 78.8 1.3	17.4 81.7 0.9	8.8 89.5 1.7	20.0 78.7 1.3	16	T.Fe. B.T. Oth.	46.9 26.2 26.9	64.8 22.9 12 .3	47.8 34.5 17.7	65.1 27.1 7.8
8 Tim. Af. B.T. Oth.	15.2 81.3 2.8 0.7	14.2 84.9 0.9 tr	17.4 78.0 2.3 2.3	16.4 81.0 2.6 tr	17	Br. Af. Oth.	19.6 79.7 0.7	36.1 63.1 0.8	19.7 79.6 0.7	29.7 69.7 0.6
-			-		No be	point efore (quadr Cut 1	at ana	alysis	was taken

II

Tabl	е А З		(т. г.	ooka	,,					-,-,-
Reps.		A			B	<u>T</u>	OCKS	C			D		
Mix- tures	% Comp.	Hits	G. <u>C</u> .	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	
l Tim. R.C. Oth. B.G.	94.4 1.4 4.2	21 - 8 18	52.5 20.0 45.0	94.4 0.9 4.7	15 - 7 18	37.5 17.5 45.0	88.9 2.6 8.5	15 2 9 16	37.5 5.0 22.5 40.0	94.2 2.9 2.9	21 - 6 16	52.5 15.0 40.0	
2 Tim. R.C. As Oth. B.G.	84.6 ¹ - 15.4 ¹	22 - - - - - - - - - - -	55.0 10.0 35.0	89.4 6.5 0.8 3.3	18 5 2 18	45.0 12.5 5.0 45.0	38.2 3.4 8.4	15 1 - 9 16	37.5 2.5 22.5 40.0	93.3 2.5 tr 4.2	28 1 4 10	70.5 2.5 10.0 25.0	
3 Tim. R.C. Lad. Oth. B.G.	96.2 0.8 1.5 1.5	16 4 1 19	40.0 10.00 2.5 47.5	79.2 tr 16.6 4.2	22 1 12 1 10	55.0 2.5 30.0 2.5 25.0	93.7 0.8 5.5 -	23 1 11 7 6	57.5 2.5 27.5 17.5 15.0	85.5 4.0 6.5 4.0	21 11 2 11	52.5 - 27.5 5.0 27.5	
4 Tim. R.C. Af. Oth. B.G.	15.1 tr 82.6 2.3	9 3 11 5 8	22.5 7.5 27.5 12.5 20.0	11.9 0.8 87.3	12 13 17	30.0 32.5 42.5	11.1 tr 88.9 -	13 1 20 - 13	32.5 2.5 50.0 32.5	10.4 0.4 88.4 0.8	10 14 4 18	25.0 35.0 10.0 45.0	
5 Tim. R.C. B.T. Oth. B.G.	52.9 2.4 42.3 2.4	14 - 9 2 14	35.0 22.5 5.0 35.0	47.3 6.4 44.5 1.8	25 2 11 8	62.5 5.0 27.5 - 20.0	41.7 tr 56.9 0.4	19 3 16 9	47.5 7.5 40.0 22.5	52.1 1.4 45.1 1.4	17 21. 7 7	42.5 52.5 17.5 17.5	

Percentage Composition and Point Quadrat Analysis (P.Q. Analysis taken June 4,1960) (Experiment I) Cut 2 June 22,1960

Percentage Composition and Point Quadrat Analysis (P.Q. Analysis taken June 4,1960) (Experiment I)

Table A 3

]	Blocks						
Reps.		A			В			C			D		
Mix- tures	% Comp.	Hits	G.C.	Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	
6 Tim. R.C. Af. Lad. Oth. B.G.	17.2 1.0 76.8 4.0 1.0	22 6 8 13	55.0 15.0 20.0 32.5	21.2 tr 76.3 0.8 1.7	17 1 14 1 10	42.5 2.5 35.0 2.5 25.0	15.2 tr 83.9 0.9 tr	12 13 3 16	30.0 32.5 7.5 40.0	13.8 tr 85.4 tr 0.8	18 - 8 7 2 9	45.0 20.0 17.5 5.0 22.5	
7 Tim. Af. Oth. B.G.	5.6 94.4 tr	9 14 1 18	22.5 35.0 2.5 45.0	11.0 89.0 tr	10 15 4 12	25.0 37.5 10.0 30.0	8.7 89.6 1.7	15 16 3 11	37.5 40.0 7.5 27.5	9.4 90.6 tr	5 23 2 12	12.5 57.5 5.0 30.0	
8 Tim. Af. B.T. Oth. B.G.	10.6 82.3 6.2 0.9	16 7 2 4 16	40.0 17.5 5.0 10.0 40.0	9.3 86.7 3.3 0.7	12 13 6 16	30.0 32.5 15.0 40.0	11.5 85.4 3.1 tr	19 17 2 2 10	47.5 42.5 5.0 25.0	13.5 81.2 4.5 0.8	15 10 7 4 11	37.5 25.0 17.5 10.0 12.5	
9 Tim. Af. As. Oth. B.G.	12.9 87.1 tr	17 11 2 13	42.5 27.5 5.0 32.5	8.9 89.3 1.8	10 14 1 1 17	25.0 35.0 2.5 42.5	15.8 83.3 0.9	11 22 - 13 16	27.5 55.0 32.5 40.0	11.8 89.0 _	14 18 1 7 8	35.0 45.0 2.5 17.5 20.0	
10 Tim Af. Lad. Oth. B.G.	22.4 74.8 2.8 tr	11 7 5 5 17	27.5 17.5 12.5 12.5 42.5	4.7 94.0 tr 1.3	11 16 1 -	27.5 40.0 2.5 - 27.5	11.9 85.7 1.6 0.8	8 2 10 3 15	20.0 52.5 25.0 7.5 37.5	6.0 94.0 tr tr	10 19 9 1 8	25.0 47.5 22.5 2.5 20.0	

ΛT

Cut 2 June 22,1960

Cut 2 June 22,1960 Percentage Composition and Point Quadrat Analysis (P.Q. Analysis taken June 4,1960) (Experiment I)

Table A 3

						В.	Locks					
Reps.		A			В			C			D	
Mix- tures	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.
ll Tim. Lad. Oth. B.G.	82.0 13.5 4.5	18 11. 12	45.0 27.5 30.0	82.7 12.2 5.1	19 17 1 6	47.5 42.5 2.5 15.0	79.3 14.9 5.8	15 21. 18	37.5 52.5 45.0	93.0 2.6 4.4	17 10 6 7	42.5 25.0 15.0 17.5
12 Tim. B.T. Oth. B.G.	36.2 63.8 tr	10 23 5 6	25.0 57.5 12.5 15.0	42.7 56.4 0.9	15 17 3 13	37.5 42.5 7.5 32.5	32.1 63.1 4.8	17 23 2 7	42.5 57.5 5.0 17.5	60.81 29.21 tr	25 16 - 6	62.5 40.0 15.0
13 Br. B.T. Oth. B.G.	40.0 56.0 4	9 7 4 18	22.5 17.5 10.0 45.0	38.5 58.9 2.6	23 23 4 10	57.5 57.5 10.0 25.0	27.3 67.5 5.2	13 25 4 8	32.5 62.5 10.0 20.0	32.3 ¹ 54.8 ¹ 12.9 ¹	10 17 4 15	25.0 42.5 10.0 37.5
14 R.Can. B.T. Oth. B.G.	25.0 69.3 5.7	14 10 5 17	35.0 25.0 12.5 42.5	23.7 69.5 6.8	15 14 4 10	37.5 35.0 10.0 25.0	20.6 72.9 6.5	22 15 8 7	55.0 37.5 20.0 17.5	31.8 66.7 1.5	17 22 3 10	42.5 55.0 7.5 25.0
15 O.Gr. Lad. Oth. B.G.	92.5 3.3 4.2	21 2 1 16	52.5 5.0 2.5 40.0	90.2 8.1 1.7	24 2 15	60.0 5.0 37.5	92.6 6.2 1.2	20 12 -	50.0 30.0	96.4 1.2 2.4	29 2 2 2	72.5 5.0 5.0 5.0

4

		Per (P	Q. An	<u>e Compos</u> alysis t	aken	June ¹	+,1960)	<u>aara</u> (Exp	erimen	<u>ysis</u> t I)	Cut 2 June	22,196	0
Table A	3		-			Blo	cks						
Reps.		A			В			С			D		
Mix- tures	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	
16 T.Fe. B.T. Oth. B.G.	47.0 47.9 5.1	27 14 2 4	67.5 35.0 5.0 10.0	54.4 43.0 2.6	24 11 3 7	60.0 27.5 7.5 17.5	45.1 48.0 6.9	22 17 5 3	55.0 42.5 12.5 7.5	45.3 47.2 7.5	26 15 3	65.0 37.5 7.5 20.0	
17 Br. Af. Oth. B.G.	3.2 96.8	8 16 1 17	20.0 40.0 2.5 42.5	4.3 94.0 1.7	8 16 1 11	20.0 40.0 2.5 27.5	3.8 95.4 0.8	9 21 3 12	22.5 52.5 7.5 30.0	11.7 86.4 1.9	4 26 6 9	10.0 65.0 15.0 22.5	

(1) Obtained from point quadrat analysis

ΔI

Percentage	Composition	and Poi	int Quadrat	Analysis	Cut 3
(P.Q. Anal	lysis taken	July 7,	1960) (Expe	eriment I)	July 22,1960.

777 - -1-

Table A 4

							JCKS					
Reps.		A			В			C			D	
Mix- tures	Comp.	Hits	G.C.	Comp.	Hits	G.C.	Comp.	Hits	G.C.	Comp.	Hits	G.C.
1 Tim. R.C. Oth. B.G.	55.8 1.9 42.3	11 11 29	22 22 58	25.9 3.7 70.4	10 15 25	20 30 50	22.0 1.7 76.3	18 1 13 23	36 2 26 46	15.6 4.4 80.0	14 3 14 24	28 6 28 48
2 Tim. R.C. As. Oth. B.G.	76.6 4.4 20.0	13 2 8 27	26 4 16 54	29.0 35.5 37.1	11 6 8 25	22 12 16 50	37.8 4.4 57.8	19 1 - 19 18	38 2 38 36	28.2 10.3 61.5	16 1 11 24	32 2 22 48
3 Tim. R.C. Lad. Oth. B.G.	85.0 tr 5.0 10.0	16 1 13 6 20	32 26 12 40	33.3 3.3 45.0 18.3	21 6 3 20	42 12 6 40	21.7 2.2 13.0 63.1	19 4 12 10	38 8 24 20	41.2 23.5 35.3	15 1 14 8 16	30 28 16 32
4 Tim. R.C. Af. Oth. B.G.	3.7 1.2 95.1 tr	7 2 24 4 16	14 48 8 32	3.0 0.9 95.0 1.1	12 1 19 1 19	24 2 38 2 38	2.9 1.0 94.2 1.9	7 25 11 15	14 50 22 30	5.4 tr 92.4 2.2	12 1 21 10 19	24 2 42 20 38
5 Tim. R.C. B.T. Oth. B.G.	9.9 4.2 80.3 5.6	13 5 30 3 9	26 10 60 18	15.1 8.6 73.1 3.2	10 1 31 7 8	20 2 62 14 16	15.1 0.9 77.8 6.2	17 32 5 7	34 64 10 14	11.5 3.3 80.3 4.9	6 1 34 5 9	12 2 68 10 18

TIA

	A Table 4		P	ercen (P.Q.	tage Com Analysi	posit s tak	ion a en Ju Bl	nd Point ly 7,196	<u>Quad</u> 0) (E	rat A xperi	nalysis ment I)	Cut Jul	3 y 22,1960.
	Reps.		A			В			с –			D	
_	Mix- tures	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.
6	Tim. R.C. Af. Lad. Oth. B.G.	5.2 tr 89.6 3.9 1.3	$13 \\ 11 \\ 7 \\ 4 \\ 21$	26 22 14 8 42	6.6 1.6 89.0 0.6 2.2	10 13 8 23	20 26 16 46	12.3 85.2 tr 1.5	16 14 3 8 16	32 28 6 16 32	5.8 tr 89.6 2.3 2.3	$11 \\ 1 \\ 24 \\ 2 \\ 5 \\ 13$	22 2 48 4 10 26
7	Tim. Af. Oth. B.G.	2.7 97.3 -	11 33 4 8	22 66 8 16	1.1 98.6 .2	9 30 5 11	18 60 10 22	1.1 77.8 21.1	16 29 7 9	32 58 14 18	2.0 98.0 tr	10 26 3 15	20 52 6 30
8	Tim. Af. B.T. Oth. B.G.	3.7 90.4 4.8 1.6	2 17 17 8 13	4 34 16 26	2.0 93.9 3.1 1.0	6 26 6 3 17	12 52 12 6 34	4.1 93.1 2.4 0.4	9 21 2 7 16	18 42 4 14 32	1.9 93.3 2.9 1.9	7 28 13 4 9	14 56 26 8 18
9	Tim. Af. As. Oth. B.G.	1.7 98.3 tr tr	9 23 1 17	18 46 2 34	3.3 96.1 .6	7 17 9 20	14 34 18 40	3.1 96.3 .6	14 27 tr 5 10	28 54 10 20	1.1 97.8 1.1	8 28 - 6 12	16 56 12 24
10	Tim. Af. Lad. Oth. B.G.	3.6 91.7 4.7 tr	9 10 8 25	18 20 16 10 50	3.9 93.8 1.9 .4	7 21 1 6 12	14 42 2 12 24	6.5 88.0 3.3 2.2	4 25 6 13	8 50 16 12 26	2.5 95.0 1.3 1.2	8 24 8 14 10	16 48 16 28 20

TIIA

Percentage Composition and Point Quadrat Analysis Cut 3 (P.Q. Analysis taken July 7, 1960) (Experiment I) July 22,1960.

Table A 4

							Blocks						
Reps.		A			В			C			D		
Mix- tures	% Comp.	Hits	G .đ.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	
ll Tim. Lad. Oth. B.G.	31.9 38.3 29.8	6 14 5 25	12 28 10 50	67.9 23.2 8.9	12 15 3 23	24 30 6 46	20.3 48.4 31.3	15 19 9 16	30 38 18 32	36.1 13.9 50.0	10 8 13 20	20 16 26 40	
12 Tim. B.T. Oth. B.G.	12.2 81.7 6.1	13 29 11 9	26 58 22 18	17.2 75.9 6.9	8 28 5 15	16 56 10 30	16.1 77.4 6.5	12 31 6 10	24 62 12 20	11.1 82.2 6.7	9 39 5 5	18 78 10 10	
13 Br. B.T. Oth. B.G.	23.5 58.8 17.7	15 21 16 12	30 42 32 24	23.4 71.9 4.7	13 33 4 10	26 66 8 20	14.3 81.6 4.1	10 42 8 3	20 84 16 6	20.6 63.2 16.2	12 43 10 3	24 86 20 6	
14 R.Can B.T. Oth. B.G.	15.7 78.6 5.7	12 31 9 10	24 62 18 20	14.0 76.7 9.3	13 34 7 7	26 68 14 14	14.3 71.4 14.3	22 44 12 1	44 88 24 2	15.8 72.4 11.8	21 39 4 5	42 78 8 10	
15 O.G. Lad. Oth. B.G.	75.0 1.8 23.2	20 4 2 31	40 8 4 62	90.6 8.2 1.2	25 6 20	50 12 40	80.7 7.9 11.4	21 5 4 21	22 10 8 22	73.5 2.0 24.5	18 7 8 20	36 14 16 40	

X

Percentage Composition and Point Quadrat Analysis (P.Q. Analysis taken July 7, 1960) (Experiment I) July 22, 1960.

Table A 4

					<u> </u>	locks							
Reps.		A			В			C			D		
Mix- tures	Comp.	Hits	G.C.	Comp.	Hits	G.C.	Comp.	Hits	G.C.	Comp.	Hits	G.C.	
16 T.Fe. B.T. Oth. B.G.	38.2 54.6 7.2	18 17 4 15	36 34 8 30	36.6 54.9 8.5	18 15 6 13	36 30 12 26	30.5 63.0 6.5	22 34 3 6	44 68 6 12	27.6 65.8 6.6	33 25 7 5	66 50 14 10	
17 Br. Af. Oth. B.G.	3.3 95.6 1.1	7 29 4 14	14 58 8 28	7.4 92.6	12 21 7 14	14 22 14 28	8.7 89.4 1.9	10 29 11 6	20 58 22 12	5.6 92.2 2.2	10 25 19 6	20 50 38 12	

M

Percent	tage Comp	osition	and	Po:	int Q	uadrat	Analys:	is	Cut 4		
(P.Q.	Analysis	taken	Aug.	5,	1960) (Expe	riment	I)	August	25,	1960.

Table A 5

_								Blocks					
	Reps.		A			В			C		D		
	Mix- tures	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Hit Comp.	G.C.	
1	Tim. R.C. Oth. B.G.	57.1 8.6 34.2	18 1 12 33	36 2 24 66		11 12 29	22 24 58	22.2 5.6 72.2	13 - 13 25	26 26 50	12 1 21 18	24 2 42 36	
2	Tim. R.C. As. Oth. B.G.	65.7 3.0 1.5 29.8	13 2 1 14 20	26 2 28 40		11 1 18 22	22 2 36 24	26.3 10.5 10.5 52.6	11 1 16 25	22 2 32 50	11 - 1 21 18	22 2 42 36	
3	Tim. R.C. Lad. Oth. B.G.	70.0 5.0 10.0 15.0	$13 \\ 1 \\ 13 \\ 7 \\ 18$	26 26 14 36		6 13 11 23	12 26 22 46	13.8 3.4 20.7 62.1	10 2 1 19 18	20 4 23 38 36	7 - 17 8 20	14 34 16 40	
4	Tim. R.C. Af. Oth. B.G.	2.5 95.0 2.5	$10 \\ 2 \\ 18 \\ 6 \\ 21$	20 4 36 12 42		6 1 12 15 24	12 2 24 30 48	2.7 tr 97.3 tr	4 - 19 11 20	8 - 38 22 40	5 - 19 8 22	10 38 16 44	
5	Tim. R.C. B.T. Oth. B.G.	9.4 3.9 77.2 9.4	7 tr 40 4 8	14 80 8 16		8 32 4 9	16 64 8 18	10.8 10.8 62.2 16.2	7 tr 36 7 9	14 - 72 14 18	4 30 7 13	8 60 14 26	

	Percentage Composition and Point Quadrat Analysis Cut 4													
_	Table A	5	(P.Q.	Anal	ysis tal	ken A	ug. 5, <u>Bloc</u>	1960) (<u>ks</u>	Expe	riment	I) Au	igust	25, 1	960.
	Reps.		A			В			C			D		
	Mix- tures	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G <u>.C</u> .	
6	Tim. R.C. Af. Lad. Oth. B.G.	6.8 tr 86.4 3.8 3.0	9 1 11 12 6 19	18 22 24 12 38		5 2 13 3 12 19	10 26 24 38	2.6 tr 92.3 5.1	6 17 1 11 17	12 34 22 34		3 1 11 6 7 24	6 22 12 14 48	
7	Tim. Af. Oth. B.G.	3.2 95.2 1.6	10 22 8 16	20 44 16 32		8 24 7 14	16 48 14 28	0.8 95.9 3.2	4 27 11 14	8 54 22 28		2 23 10 16	4 46 20 32	
8	Tim. Af. B.T. Oth. B.G.	3.2 87.0 1.1 8.7	5 17 15 8 13	10 34 30 16 26		6 18 12 3 14	12 36 24 6 28	3.0 90.9 3.0 3.0	7 17 5 10 21	14 34 10 20 42		4 21 13 15	8 42 26 10 30	
9	Tim. Af. As. Oth. B.G.	2.6 96.1 tr 1.3	11 19 1 6 17	22 38 2 12 34		8 20 - 9 15	16 40 18 30	3.2 92.5 4.3	26 26 8 17	4 52 16 34		4 25 8 17	8 50 16 34	
10	Tim. Af. Lad. Oth. B.G.	3.1 92.3 1.5 3.1	12 5 8 18	18 24 10 16 36		8 10 4 8 23	16 20 8 16 46	1.9 88.3 4.9 4.9	2 22 2 8 18	4 44 16 36		9 14 9 6 18	18 28 18 12 36	

XII

	Table	A 5		Percer (P.Q.	ntage Cor Analysis	nposi s tak	t <u>ion a</u> en Aug	nd Point	; Qua 50) (<u>drat A</u> Experi	nalysis ment I)	Cu Au	t 4 gust	25,1960.
	Reps.		A			В		DIUCKS	C			D		
	Mix- tures	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	
11	Tim. Lad. Oth. B.G.	21.0 63.2 15.8	13 14 25	26 28 4 50		8 14 8 22	16 28 16 44	5.3 52.6 42.1	10 25 2 15	20 50 4 30		13 7 13 21	26 14 26 42	
12	Tim. B.T. Oth. B.G.	10.7 85.7 3.6	8 40 4	16 80 16 8		6 36 6 6	12 72 12 12	7.8 80.4 11.8	5 36 12 7	10 72 24 14		19 40 1 5	18 80 2 10	
13	Br. B.T. Oth. B.G.	27.3 63.6 9.0	6 20 8 17	12 40 16 34		7 18 3 25	14 36 6 50	14.7 61.8 23.5	1 28 11 7	2 56 22 14		27 27 9 11	10 54 18 22	
14	R.Can. B.T. Oth. B.G.	23.9 71.6 4.5	7 33 7 9	14 66 14 18		7 32 8 10	14 64 16 20	23.5 64.2 11.8	11 35 12 12	22 70 24 24		4 33 3 6	8 66 6 12	
15	O.G. Lad. Oth. B.G.	78.6 3.5 17.9	20 3 5 24	40 6 10 48		24 10 1 17	48 20 2 34	79.0 10.5 10.5	16 6 5 26	32 12 10 52		19 2 6 27	38 4 12 54	

XIII

	Table	A 5		(R.Q.	Analys	is ta	<u>ition</u> ken Au	g. 5, 19	960)	(Exper	iment 1)	Cut 4 August	25, 1960.
	Reps.		A			 B		Blocks	с С			 D	
	Mix- tures	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% H Comp.	its G.C.	
16	T.F. B.T. Oth. B.G.	37.9 51.7 10.4	17 23 7 10	34 46 14 20		15 26 2 13	30 52 26	53.8 38.5 7.7	13 24 3 15	26 48 6 30		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
17	Br. Af. Oth. B.G.	3.0 94.0 3.0	5 20 14 16	10 40 28 32		3 24 8 18	6 48 16 36	13.2 83.5 3.3	3 2 6 7 19	6 52 14 28		6 12 25 50 13 26 11 22	

Blocks B and D were not hand separated.

XIV

		P	ercen	tage Comp	position and	<u>Point</u>	Quad	lrat Ana	alysis	Cut 5
Table A	6	()	P.Q.	Analysis	taken Sept. Blo	3, 19 cks	60) ((Experin	ment I)	Oct. 1960
Reps.		A			В		C			D
Mix- tures	% Comp.	Hits	G.C.	% Comp.	Hits G.C.	% Comp.	Hits	s G.C.	% Comp.	Hits G.C.
l Tim. R.C. Oth. B.G.	68.5 31.5	10 3 11 26	20 6 22 52	75.0 7.7 17.3		36.0 64.0	6 tr 11 33	12 tr 22 66	57.6 42.4	
2 Tim. R.C. As. Oth. B.G.	75.6 _ 24.4	7 1 tr 16 27	14 2 tr 36 54	30.1 _ 69.9		24.4 - 75.6	8 - 17 25	16 - 14 50	30.8 69.2	
3 Tim. R.C. Lad. Oth. B.G.	42.0 1.0 56.0 1.0	10 tr 5 31	20 tr 10 12 62	25.0 75.0		32.2 67.8	4 3 7 36	8 - 14 72	18.7 81.3	
4 Tim. R.C. Af. Oth. B.G.	5.0 0.5 93.8 0.7	6 tr 8 7 30	12 tr 16 14 60	2.6 96.8 0.6		2.6 96.8 0.6	2 1 8 31	4 2 16 16 62	3.7 95.8 0.5	
5 Tim. R.C. B.T. Oth. B.G.	42.9 3.9 39.1 14.1	2 1 24 tr 24	4 28 48 t 8	32.1 3.6 41.4 22.9		29.4 70.6	tr 27 3 21	tr 54 62	25.0 57.6 17.4	

XX

Table A	6	、 -		BLOCKS								
Reps.	<u> </u>	A		-	B	C			D			
Mix- tures	% Comp.	Hits	G.C.	% Comp.	Hits G.C.	% Comp.	Hits	G.C.	% H Comp.	its G.C.		
6 Tim. R.C. Af. Lad. Oth. B.G.	7.0 3.5 73.9 14.8 0.8	8 tr 562 29	16 tr 10 12 58	4.0 95.5 0.5		5.5 93.4 1.1	5 13 8 28	10 26 16 56	2.3 96.0 1.7			
7 Tim. Af. Oth. B.G.	3.1 96.9 -	2 13 4 31	4 26 8 62	4.3 95.7 -		3.6 96.4 -	4 11 2 33	8 22 4 66	3.5 96.5			
8 Tim. Af. B.T. Oth. B.G.	5.9 91.1 3.0	5 7 2 29	10 14 16 58	3.3 94.2 2.5		7.7 91.6 0.7	48 5	8 16 10	2.1 97.9 tr tr			
9 Tim. Af. As. Oth. B.G.	5.2 94.8 -	8 5 1 36	16 10 2 72	2.4 96.9 0.7		4.3 94.5 1.2	5 10 8 27	10 20 16 54	2.4 97.6 _			
10 Tim. Af. Lad. Oth. B.G.	9.3 74.8 14.8 1.1	4 11 3 6 30	8 22 6 12 60	2.7 90.3 6.7 0.3		4.6 93.7 1.8	8 9 1 4 29	16 18 2 8 58	2.4 95.7 1.9			

Percentage Composition and Point Quadrat Analysis Cut 5 (P.Q. Analysis taken Sept. 8, 1960) (Experiment I) Oct. 1960.

IAX

Percentage Composit	ion and Point	Quadrat Analysis	Cut 5
(P.Q. Analysis take	n Sept. 8, 196	0) (Experiment I)	Oct. 1960.

Table A 6

						<u>B</u>	locks				
1	Reps.		A			В		C			D
1	Mix- % Hits			% Hits		% Hits			% Hits		
1	tures	Comp.		G.C.	Comp.	G.C.	Comp.	<u> </u>	G.C.	Comp.	G.C.
11	Tim. Lad. Oth. B.G.	15.1 81.0 3.9	9 7 28	18 14 12 56	35.0 61.5 3.5		8.7 91.3	3 11 5 33	6 22) 10) 66	2 3. 1 76.9	
12	Tim. B.T. Oth. B.G.	29.1 60.6 10.3	4 23 1 24	8 46 48	42.0 52.3 5.7		44.4 55.6	2 22 1 25	4 44) 2) 50	38.3 61.7	
13	Br. B.T. Oth. B.G.	59.6 29.8 10.8	8 18 6 18	16 36 12 36	71.6 22.9 5.5		52.7 47.3	3 28 2 18	6 56) 4) 36	56.7 43.3	
14	R.Can. B.T. Oth. B.G.		1 24 4 23	2 48 8 46				6 23 3 20	12 46 6 40		
15	O.G. Lad. Oth. B.G.		11 1 4 34	22 2 8 68				10 7 2 33	20 14 4 66		

Table A	6	Perce (P.Q.	Analy	<u>Compositi</u> sis taken	on and Po Sept. 8,	<u>int Qua</u> 1960)	adrat (Exp	<u>Analys</u> eriment	<u>is</u> Cut I) Oct	5 . 1960.
					Blo	cks				
Reps.		A]	3		C		1)
Mix- tures	% Comp.	Hits	G.C.	% H Comp.	its G.C.	% Comp.	Hit	s G.C.	% H: Comp.	its G.C.
16 T.F. B.T. Oth. B.G.		6 13 4 30	12 26 8 60				8 14 1 27	16 28 2 54		
17 Br. Af. Oth. B.G	8.2 91.1 0.7	3 11 5 32	6 22 10 64	9.8 90.2 -		9.7 90.3 -	1 12 6 31	2 24 12 62	6.7 93.3	

No point quadrat analysis of B or D

		្តទ						
5 1960.		station	s G.C.	26.7 33.3 40.0	40.0 6.7 33.3	30.0 6.7 56.7	20.0 16.7 53.3 53.3	
cut.		Ω	Hit	1018 1018	1071 21	9100F	0 t 2 1 0 1	0 4 0 H 4
$\frac{vsis}{t}$			°comp.	57.6 42.4	30.8 69.2	18.7 81.3	95.8 0.5	25.0 57.6 17.4
it Anal Serimen			G. C.	54 10 10 10 10	50808 41 108	50 41 3 4513	40041 B	38884 855 19
uadra (Exp		υ	Hits	302 H 20	50475	16 21 21	208119	0440 664
<u>point Qr</u>	LS.	S	Comp.	36 . 0 64.0	24.4 75.6	32.2 67.8	2.6 96.8 0.6	29.4 70.6
0ct.22	Block	station	ບ ບ	26.7 33.3.3 1.3.3	30.0 3.3 50.0	40.0 26.7 36.7 36.7	30.0 23.3 16.7	60.0 10.0 30.00
sitic aken		ф	Hits	8-19-8	н - г Р Ч - г Г Г Г	110 01	4-1-2-1-9 1-	31126
e Compo lysis t			°Comp.	75.0 7.7 17.3	30.1 - 69.9	25.0 7 :5.0	2.6 96.8 0.6	32.9 22.9 22.9 22.9
<u>centag</u>			с. С	0 84 0 th 4 t	250124 250125	04040 45 44	28 35 35 35 35 35 35 35 35 35 35 35 35 35	0+800 4000
Per (P.		A	Hits	8 9 tr 1	12 10 27	50 714 4	14 16 18	5074-10 507-1-10
	<u>A</u> 7		% Comp.	68.5 - 31.5	75.6 24.4	42.0 56.0 1.0	0.000 0.000 0.000	40.0 170.0 170.1 1
	Table	Reps.	Mi x- tures	Ніш. R.C. B.G.	Tim. R.C. As. Oth. B.G.	нів. К.С. В.С.	Tim. R.C. Af. Oth. B.G.	н м с с с н с с с с с с с с с с
				~-1	2	Ϋ́	_+	ЪЛ

XIX

Percentage	Composition	and Point	Quadrat Analysis	Cut 5
(P.Q. Anal	vsis taken O	ct. 22, 19	60) (Experiment I)	Oct. 1960.

Table A 7

							BLOCKS						
	Reps.		A			В	station	S	С			D	3 stations
	Mix- tures	% Comp.	Hits	G.C.	% Comp.	Hit	s G.C.	% Comp.	Hits	G.C.	% Comp.	Hit	s G.C.
6	Tim. R.C. Af. Lad. Oth. B.G.	7.0 3.5 73.9 14.8 0.8	10 tr 9 4 7 23	20 tr 18 18 14 46	4.0 95.5 0.5	8 1 4 - 1 16	26.7 3.3 13.3 -) 3.3) 53.3	5.5 93.4 1.1	10 5 3 27	20 - 10 6) 16) 54	2.3 96.0 1.7	5 - 3 - 4 2 16	16.7 10.0 13.3 6.7 53.3
7	Tim. Af. Oth. B.G.	3.1 96.9 -	13 16 10 23	26 32 20 46	4.3 95.7 -	4 9 1 17	13.3 30.0 3.3 56.7	3.6 96.4 -	8 17 3 22	16 34 6 44	3.5 96.5 -	4 10 1 16	13.3 33.3 3.3 53.3
8	Tim. Af. B.T. Oth. B.G.	5.9 91.1 3.0	9 8 11 9 14	18 16 22 18 28	3.3 94.2 2.5 -	2 4 6 3 17	6.7 13.3 20.0 10.0 56.7	7.7 91.6 0.7	9 10 7 4 24	16 20 14 8 48	2.1 97.9 tr	5 9 2 2 15	16.7 30.0 6.7 6.7 50.0
9	Tim. Af. As. Oth. B.G.	5.2 94.8 -	12 10 6 25	24 20 12 50	2.4 96.9 - 0.7	7 8 - 2 14	23.3 26.7 6.7 46.7	4.3 94.5 1.2	9 10 <u>1</u> 27	18 20 8 54	2.4 97.6 -	4 11 10 8	13.3 36.7 33.3 26.7
10	Tim. Af. Lad. Oth. B.G.	9.3 74.8 14.8 1.1	12 6 8 3 24.	24 12 16 48	2.7 90.3 6.7 0.3	6 4 9 10	20.0 13.3 13.3 30.0 33.3	4.6 93.7 1.8	8 1 7 29	16 16 2 14 58	2.4 95.7 1.9	4 2 4 3 18	13.3 6.7 13.3 10.0 60.0

X

Percentage Compositio	n and Point	Quadrat Analysis	Cut 5
(P.Q. Analysis taken	Oct. 22, 196	0) (Experiment I)	Oct. 1960.

Table A 7

							B	locks					
]	Reps.		A			В	station	IS	C			D	stations
]	Mix-		Hits			Hit	S		Hit	S		Hits	
	tures	Comp.		G.C.	Comp.		G.C.	Comp.		G.C.	Comp.		G.C.
11	Tim. Lad. Oth. B.G.	15.1 81.0 3.9	17 9 8 20	34 18 16 40	35.0 61.5 3.5	13 4 2 14	43.3 13.3 6.7 46.7	8.7 91.3 -	11 17 6. 20	22 34 12 40	23.1 76.9	10 4 17	33•3 13•3 56•7
12	Tim. B.T. Oth. B.G.	29.1 60.6 10.3	5 18 12 17	10 36 24 34	42.0 52.3 5.7	9 15 9	30.0 50.0 30.0	44.4 55.6	7 13 9 23	14 26 18 46	38.3 61.7	10 8 9	20.0 33.0 26.7 30.0
13	Br. B.T. Oth. B.G.	59.6 29.8 10.3	11 15 13 16	22 30 26 32	71.6 22.9 5.5	6 13 3 10	20.0 43.3 10.0 33.3	52.7 47.3	9 15 11 22	18 30 22 44	56.7	2 9 7 13	6.7 30.0 23.3 43.3
14	R.Can. B.T. Oth. B.G.		No		Record								
15	O.G. Lad. Oth. B.G.						Керt	of		This.			

		_	<u>Pe</u> (1	P.Q. A	age Comp nalysis	tak	tion and en Oct.	<u>l Point</u> 22, 190	<u>Qua</u> 60)	drat Ana (Experim	<u>alysis</u> ment I)	Cut Oct	; 5 . 1960.
	l'able A	7					Blo	ocks					
	Reps.		A			В	statio	ns	C			Ds	stations
	Mix-		Hits			Hit	s		Hit	S		Hits	3
	tures _	Comp.		G.C.	Comp.		G.C.	Comp.		G.C.	Comp.		G.C.
16	T.Fes. B.T. Oth. B.G.		No	R	ecord		Kept	of		This			
17	Br. Af. Oth. B.G.	8.2 91.1 0.7	9 8 13 21	18 16 26 42	9.8 90.2	4 10 2 17	13.3 33.3 6.7 56.7	9.7 90.3	10 4 7 28	20 8 14 58	6.7 93.3	7 959	23.3 30.0 16.7 30.0

Only 30 points recorded on B or D

IIXX

Yield	per	Unit	Area	of	Ground	Cover	of	the	Pure	Stands	<u>1960</u>
(]	Pasti	ure M	ixture	es -	- Exper:	iment 1	I)			(in	gms)

Table A 8

	Cut 2		Cu	at 3		Cu	t 4		C	ut	5	Cu	ut 5	r
Spec- ies	D.M. G.Y: per C. j Plot Un Al	ield p er nit rea	D.M. per Plot	G. C.	Yield per Unit Area									
Tim.	842 ⁱ 24 3	37.1	23	24	0.96	-	12	-	0.7	-	-	0.7	8	0.09
Br.	1755 ⁱ 30 !	58.5	-	-	-	130	-	-	63	14	4.5	63	20	3.2
Af.	661 ⁱ 25 2	26.4	-	-	-	402	-	-	180	14	12.9	180	30	6.0

(i)- represents yields of Cut I and the percentage composition as determined from Point quadrat analysis of Cut 2.

- D.M./Plot is the total plot yield minus the others. Cut 3 & 4 Brome and Alfalfa were discarded by error Cut 4 discarded due to drought conditions.
- Cut 5 ' Yield per Unit Area obtained with Ground Cover being calculated from a point quadrat analysis taken after cutting.

<u>Yields of Timothy per Unit Area of Ground Cover in a Mixture Stand</u> (in gms)

Table	Α	9
-------	---	---

						B1	ocks						
		A			B			C			D		
Mixt. No.	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	Yield / Unit <u>Area</u>
1 2 3 4 5 6 7 8 9 0 11 2	608 5721 710 243 503 182 84 181 181 253 657 368	52.5 55.0 225.0 552.0 552.0 552.0 552.0 552.0 552.0 552.0 552.0 552.0 552.0 552.0 555.0 55	11.6 10.4 17.8 10.8 14.4 3.7 4.3 9.2 14.6 14.7	672 795 168 422 180 158 146 87 616	37.5 500550005550 3250005550 3250005555 3250005555 32500055555 32500055555 32500055555 32500055555 325000555555 3250005555555555	17.9 17.7 13.4 5.6 6.8 5.7 7.2 5.3 5.8 3.2 13.0	536 535 621 136 151 157 203 576	37.5 37.5 57.5	14.3 14.3 10.8 7.0 5.2 5.2 5.2 5.2 10.2 10.2 15.4 2	477 734 639 122 504 156 134 182 130 71 668 17	52.5 70.5 25.2 45.0 50 52 45.0 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 55 50 50	9.1 10.4 12.2 4.9 11.9 3.5 10.7 4.9 3.7 2.8 15.7 8.3	12.7 12.7 13.2 9.4 4.3 5.6 4.5 5.2 6.1 14.6 9.3

Cut 2 June 22, 1960 (Experiment I)

i Values obtained by using % composition with point quadrat.

XXIV

		<u>Yie</u>	lds of	Timoth	y per	<u>Unit A</u>	<u>rea-of</u>	Grou	nd Cover	<u>in a</u>	<u>Mixtu</u>	re Sta	nd	
			<u>c</u>	nt 3	July	22, 19	<u>60</u> (Exper	iment I)			(in gm	s)	
T	able_	<u>A 10</u>					Block	.s						
		A			В			C			D		Ave.	
Mixt. No.	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Y ield / Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	Yield / Unit <u>Area</u>	
1234567890112	$ \begin{array}{r} 118 \\ 111 \\ 92 \\ 28 \\ 33 \\ 27 \\ 28 \\ 16 \\ 27 \\ 48 \\ 72 \end{array} $	22.0 26 32 14 26 26 22 4 18 18 18 18 26	5.4 2.9 2.5 1.5 2.0 9.5 1.2 0.9 5.0 8	33 54 26 99 51 19 33 219 107	20.0 22 42 24 20 20 18 12 14 14 24 16	1.65 1.1 5.66 1.66 1.64 2.1	38 50 45 102 91 41 36 36 31 318	36.0 38 34 32 32 32 32 32 30 32	1.3 1.2 1.8 3.1 0.3 1.2 2.3 1.2 8.2 1.2 8.2 1.2 8.2 4.9	23 71 47 52 20 25 21 20 25 6 78	28.0 32 30 24 12 22 20 14 16 16 20 18	0.8 1.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2	2.0 2.2 1.7 2.3 2.3 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	

		<u> </u>			11y - pc.		<u>hica</u> o	- (110			<u>a nan</u>	(in (ms)
ч	oble A	11		Cut 5	Oct	ober, 1	960	(Ex	perimen	t I)			
ـــــــــــــــــــــــــــــــــــــ	able A						Bloc	ks					
		А			В			C			D		Ave.
Mixt. No.	D.M. / Plot	G.C. %	Yield ¥ Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	Yield / Unit Area
1 2 3 4 5 6 7 8 90 12 12	24 22 19 29 29 18 16 30 28	20 14 20 12 4 16 4 10 16 8 18 8	1.2 1.6 1.26 7.2 1.32 1.0 1.0 1.7 3.5	32 10 20 8 22 14 22 14 22 11 9 7 37 37			9 24 7 22 13 12 17 14 14 24	12 16 4 10 8 10 16 6 4	0.8 0.6 3.0 1.8 1.0 1.3 1.5 2.1 1.9 2.3 6.0	16 14 17 19 13 56 15 10 54			1.03 1.07 2.942 1.620 1.35 1.944 1.923 1.933

Yields of Timothy per Unit Area of Ground Cover in a Mixture Stand

(i) Assumed 1 hit in the place of o per plot as recorded

	Table A	12		Cut	t 5'	October	, 1960	(Ex	pe ri men	t I)		(1	.n gms)
							Blo	cks					
		A			В			C			D		Ave
Mixt. No.	D.M. / Plot	G.C %	•Yield / Unit <u>Area</u>	D.M. / Plot	G.C. %	Y ield / Unit Area	D.M. / Plot	G.C. %	Yield Y Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	Yield Y Unit Area
1 2 3 4 5 6 7 8 9 0 11 12	24 22 23 19 29 21 9 18 16 30 28	42. 24. 20. 20. 20. 26. 24. 24. 24. 20. 26. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24	0.6 0.9 0.5 0.7 1.4 1.0 0.3 1.0 0.7 1.3 0.9 2.8	32 10 20 8 22 14 22 11 9 7 37 37	26.7 30.0 30.0 60.0 26.7 13.3 6.7 23.3 20.0 43.3 30.0	1.2 0.3 0.5 0.4 0.5 1.7 0.4 0.9 1.2	9 10 24 7 22 13 12 12 17 11 14 14 24	24. 28. 32. 18 18 20 16 16 16 18 16 22 14	0.4 0.4 0.8 0.4 1.2 0.6 0.8 1.1 0.6 0.9 0.6 1.7	16 14 17 12 13 56 105 24	26.7 40.0 30.0 20.0 13.3 16.7 13.3 16.7 13.3 13.3 33.3 20.0	0.4 0.4 0.6 0.7 0.3 58 52 0.1	0.50 0.62 0.59 0.57 1.34 0.85 0.50 1.03 0.84 1.15 0.79 2.17

Yields of Timothy per Unit Area of Ground Cover in a Mixture Stand

Cut 5' obtained with ground cover being calculated of point quadrat analysis taken after cutting. Rep. B & D Ground cover obtained from 30 point only per plot

		A			В			C			D		Arro
Mixt. No.	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	Yield / Unit Area
CUT 2 13 17	222 47	22.5 20.0	9.9 2.4	204 51	57.5 20.0	3.5 2.6	141 51	32.	5 4.3 5 2.3	162 135	25. 10.	6.5 13.5	5 .3 3.9
CUT 5 13 17	72 21	16. 6.	4.5 3.5	57 25			44 21	6. 2.	7.4 10.5	40 17			5.3 5.2
CUT 5' 13 17	72 21	22 18	3.3 1.2	57 25	20. 13.3	28.5 1.9	44 21	18. 20.	2.4 1.0	40 17	6.7 26.7	6.0 0.6	2.9 1.1

analysis taken after cutting. Cut 5 Rep. B & D Ground Cover obtained from 30 points only per plot.

Шo	hla A	٦).		190	0	(1)	per rme	110 1)			(.	u gma)	
18	IDIE A	14					Blocks						
		A			В			C			D		ATO
Mixt. No.	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Yield y Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Yield y Unit Area	Yield / Unit Area
<u>CUT 2</u> 6 7 8 9 10 17	11517661412129412258441413	27.5 15.0 35.0 17.5 27.5 17.5 40.0	41.9 51.1 40.3 73.9 44.5 48.2 35.3	1229 807 1457 1366 1220 1362 1120	32.5 35.0 37.5 32.5 35.0 40.0	37.8 23.1 38.9 42.0 34.9 34.0 28.0	1166 863 1299 1313 1122 1368 1278	50.05 320.5 425.5 52.5 52.5	23.3 26.6 32.5 30.9 20.4 26.1 24.3	959 914 1287 1034 1053 1117 998	35.0 20.0 57.0 45.0 47.5 65.0	27.4 45.7 22.4 41.4 23.4 23.5 15.4	31.1 32.7 32.1 42.6 28.4 29.8 24.3
CUT 5 4 6 7 8 9 10 17	353 221 296 276 298 255 238	16.0 10. 26. 14. 10. 22. 22.	22.1 22.1 11.4 19.7 29.8 11.6 10.8	298 338 476 314 386 251 234			248 226 314 206 245 290 192	16.0 26. 22. 16. 20. 18. 24.	15.5 8.7 14.3 12.9 12.2 16.1 8.0	282 496 360 225 385 238			18.8 12.4 12.7 16.1 18.1 13.6 9.3

Yield of Alfalfa per Unit Area of Ground Cover in a Mixture Stand 1960 (Experiment I) (in gms)

Tab	le A 1	4	Yield	<u>of Alf</u>	<u>alfa p</u> 1960	<u>ber Uni</u>	<u>t Area</u> (Exper Blo	<u>of Gr</u> iment cks	<u>round C</u> I)	over i	<u>n a Mi</u>	<u>xture</u> (i	<u>Stand</u> n gms)
		A			В			С			D		
Mixt. No.	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C. %	Yield / Unit Area	D.M. / Plot	G.C.	Yield / Unit Area	Yield / Unit Area
CUT 5' 4 6 7 8 9 10 17	353 221 296 276 298 255 238	32.0 18. 32. 16. 20. 12. 16.	11.0 12.2 9.2 17.2 14.9 21.2 14.9	298 338 476 314 386 251 234	23.3 13.3 30.0 13.3 26.7 13.3 33.3	12.8 25.4 15.9 23.6 14.5 18.9 7.0	248 226 314 206 245 290 192	34.0 10. 34. 20. 20. 16. 28.	7.3 22.6 9.2 10.3 12.2 18.1 6.9	282 496 360 225 255 385 238	16.7 10.0 33.3 30.0 36.7 6.7 30.0	16.9 49.6 10.8 7.5 6.9 57.5 7.9	9.1 16.0 9.2 13.4 13.6 19.6 9.8

Cut 5' obtained with Ground Cover being calculated of point quadrat analysis taken after cutting. Rep. B & D Ground Cover obtained with 30 points only per plot.

XXX

	<u>Yield of</u> Past	D.M./ ure Mi	<u>Plot of</u> xtures	<u>Pure Sta</u> 1960-61	nds an	d <u>3 Mixt</u> (gm/	ures plot)
Table	A 15 C	ut 19	60 B1	ocks			
		E			F		Ave.
Mixt.	Green	%	Dry	Green	%	Dry	
No.	Weight	<u>D.M.</u>	Weight	Weight	<u>D.M.</u>	Weight	<u>D.Wt.</u>
1	500	62.8	314	450	63.6	286	300
11	1500	37.7	566	950	37.8	359	462
±++ iv	550 60 0	64.8	330	400	71.1	284	377
v	1100	39.6	436	1150	40.0	460	448
vi	850	49.6	422	750	49.6	372	397
vii	850	45.0	382	650	42.7	278	330
Viii	900	42.4	382	1300	37.0	481	432
K B	1100	38 0	203 418	490	22.0	240	220 Li 8
R.Can.	1000	40.1	401				401
Table	A 16 C	ut 1	1961				
	04.50	15 0	1502	9500	15 2	1440	14.77
ii	8800	14.3	1258	6400	16.4	1050	1154
iii	1700	18.4	313	3300	17.6	581	47
iv	7500	16.6	1245	7700	16.8	1294	1270
v	9000	12.0	1080	10650	11.2	1193	1136
Vi	4000	15.0	600	5000	14.3	715	658
V11 viii	8200	13.6	1115	9400	13 7	1030 12位7	1062
ix	3700	18.5	684	2400	19.2	461	572
K.B.	3900	21.0	820		-/•-		21-
R.Can.	5600	15.7	879				
Table_	A 17 C	<u>ut 2</u>					
i	17800	19.1	3400	18500	19.2	3552	3476
ii	13700	13.1	1795	10800	15.1	1631	1713
iii	2750	19.8	544	4500	18.1	814	679
iv	11800	15.6	1841	17500	14.4	2520	2180
V 771	18000	12.3	2091	18400	12.1	1076 1076	1984
vi vii	18800	12.0	2719	17500	13 7	2247	2346
viii	16600	13.5	2241	17800	12.4	2207	2224
ix	5400	20.3	1096	2400	20.8	499	798
K.B.	20600	20.2	4161				
R.Can.	18000	15.3	2754				

IIXXX

Table	A18		E	locks			
		E			F		
Mixt.	Green	%	Dry	Green	<i>%</i>	Dry	
<u>NO.</u>	Weight	<u>D.M.</u>	Weight	Weight	<u>D.M.</u>	weight	D.WC.
Table	<u>A 18</u> C	ut 3				200	(
1 11	2800	20.5	573 1272	4100 8700	20.1	823	698 1327
iii	4750	19.9	946	5300	20.4	1080	1013
iv	7650	16.6	1272	5900	17.9	1058	1165
V vi	9200 7900	16.0 15 1	1469 1196	6400 5300	19.2	1228 793	1348 994
vii	7100	18.2	1293	7500	16.9	1268	1280
viii	7800	17.6	1376	8700	17.3	1509	1442
lX	4000	20.5	820	2800	20.8	203	702
Table	A 19 0	ut 4					
i	750	25.4	219	900	24.3	251	235
ii	3950	19.3	871	3600	17.4	615	743
iii iw	4700	21.8	1159	4600	21.9	1102 205	1130 25년
V	5000	16.0	940	4000	16.2	751	846
Vi	3800	17.6	835	4100	17.4	869	852
V11 viii	4300	15.2	778 847	4250	15.8	962	776 904
ix	4650	21.6	1004	4000	21.5	860	<u>932</u>
К.В.	3300	23.8	867				867
R.Can.	3100	20.6	724				724
Table	A 20 0	Cut 5					
i	550	32.5	266	725	34.0	341	304
11 111	1625 2525	26.4	513 713	2350	24.4	681 678	597 696
iv	725	31.5	325	400	34.0	244	284
V	2700	24.3	786	2600	24.9	760	773
V1 vii	2425	24.6	470	2100	24.7	439 639	474 694
viii	2900	24.1	85ĭ	2300	25.0	707	779
ix	2600	25.8	671	2100	27.1	569	620
K.B. R Can	500 2000	32.2	504				
n. vail	2000	2001	002				
In cut	4 and	the s	ub-plot	dry weig	hts ha	ve been	added!

Yield of D.M./Plot of Pure Stands and 3 Mixtures (gm/plot) Pasture Mixtures

T	able A 21			Blocks			
Mixtu No.	re	A	B	C	D	Mean	
1. 2. 3. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	T. R.C. T. R.C. Af. T. R.C. As. T. R.C. L. T. R.C. Af. L. T. R.C. B.T. T. Af. T. Af. L. T. Af. B.T. T. As. T. B.T. T. L. Br. B.T. R.Can. B.T. K.B. B.T.	719778688885554444 88885554459813	699 950 6247 9632 9632 90326 56458 7858 7858 631	451 663. 395 652 413 453 4253 4253 4388 4398 3994 350 350	739 549 609 704 524 753 363 5031 3503 500	651 abc 790 a 611 abc 654 abc 777 a 555 bc 710 ab 773 a 644 abc 479 c 512 c 619 abc 502 c 467 c 486 c	
					- x	= 615	
	gm of D.M./plot	x fact.	1.1034 -	16/acre.	S.D. C.V. F Treat.	= 113.3 = 18.41 = 3.98 ^{±±}	

Yields as Grammes of D.M./Plot Pasture Mixtures 1960 (Experiment II) Cut Nov. 2, 1960

IIIXXX

Yield of D.M./Plot of Pasture Mixtures Cut I 1961 (in gms)

May 23, 1961.

Table A 22

							Blocks_						
		A			B			C			D		
Mixt. No.	G.Wt.	D. M.	D. M.	G.Wt.	% D.M.	D .M.	G.Wt.	% D.M.	D. M.	G.Wt.	% D.M.	D .M.	Total D.M.
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 8 9 1 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 1 2 3 4 5 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 2 3 1 2 3 1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 1 2 3 1 2 3 1 1 2 3 1 2 3 1 2 3 1 1 1 2 3 1 2 3 1 2 3 1 1 2 3 1 2 3 1 2 3 1 1 2 3 1 1 1 2 3 1 1 2 3 1 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 1	$\begin{array}{r} 8600\\ 20200\\ 18400\\ 17200\\ 20800\\ 19050\\ 7600\\ 20500\\ 12400\\ 19100\\ 19100\\ 19100\\ 19100\\ 19100\\ 12200\\ 12200\\ 1300\end{array}$	13.3 12.3 11.5 11.6 15.6 14.5 $14.2.4$ 16.0 11.3 15.8	114424852079197824132210118623581798213917446401379205	$10700 \\ 14800 \\ 14600 \\ 17850 \\ 20400 \\ 14800 \\ 18200 \\ 21500 \\ 14850 \\ 15650 \\ 14850 \\ 15650 \\ 18550 \\ 16550 \\ 3800 \\ 12900 \\ 12900 \\ 12900 \\ 1000$	$13.3 \\ 13.4 \\ 11.8 \\ 11.6 \\ 12.5 \\ 14.9 \\ 13.7 \\ 14.9 \\ 15.1 \\ 15.1 \\ 12.4 \\ 12.0 \\ 12.4 \\ 12.0 \\ 12.0 \\ 12.1 \\ 12.0 \\ $	$1423 \\ 1983 \\ 1723 \\ 2071 \\ 2550 \\ 2072 \\ 2493 \\ 2602 \\ 2032 \\ 2034 \\ 672 \\ 2059 \\ 2052 \\ 548 \\ 1548 \\ 1548 \\ 1548 \\ 158 \\ 1$	$\begin{array}{c} 10700\\ 12500\\ 11100\\ 10800\\ 12100\\ 9950\\ 2350\\ 12550\\ 4650\\ 12600\\ 3400\\ 9700\\ 4850\\ 2100\\ 4150\end{array}$	14.0 13.59 14.99 13.56 13.96 14.97 16.97 16.97 16.97 16.97 16.97 16.96 15.96	$1498 \\ 1638 \\ 1658 \\ 1458 \\ 1525 \\ 13837 \\ 1657 \\ 1764 \\ 1236 \\ 7764 \\ 1236 \\ 7764 \\ 311 \\ 647 \\ 647 \\ $	$10150 \\ 11250 \\ 15650 \\ 13700 \\ 15500 \\ 11600 \\ 11650 \\ 14700 \\ 6450 \\ 12600 \\ 5350 \\ 14400 \\ 4600 \\ 5500 \\ 2900 $	14.7 14.3 13.0 12.6 $14.5.1$ 15.4 15.2 15.2 15.3	$1492 \\ 1609 \\ 2034 \\ 1726 \\ 1938 \\ 1624 \\ 1806 \\ 1823 \\ 1000 \\ 1777 \\ 813 \\ 1728 \\ 731 \\ 786 \\ 444 $	5557 77493 724282 7242822 7594464 5774863 5774863 5774863 41923 41923 2844
1. 2. 3. 4. 5.	T. R.C. T. R.C. T. R.C. T. R.C. T. R.C. T. R.C.	Af. As. L. Af. I	6 7 8 9	5. T. F. 7. T. A 8. T. A 9. T. A	.C. B. f. f. L. f. B.T s.	т.	1 1 1 1	1. T. 2. T. 3. Br 4. R. 5. K.	B.T. L. Can. B Blue	•T. •T. B.T.			

XXXIV

Yield of D.M./Plot of Pasture Mixtures Cut 2 1961 (in gms)

Table A 23

June	27,	1961.
------	-----	-------

						BLOC	KS						
		A			В			C			D		
Mixt. No.	G.Wt.	% D.M.	D. M.	G.Wt.	% D.M.	D. M.	G.Wt.	% D.M.	D.M.	G.Wt.	% <u>D.M.</u>	D.M.	Total D.M.
1234567890112345	6500 15600 15900 15900 16100 12300 17400 16000 9700 20400 16500 17000 17500 18700	15.9 14.3 13.7 13.50 12.09 16.62 15.19 14.00 125.19 14.00 125.98 14.8 13.8	1033 2231 1822 2025 2067 2067 2042 2123 2416 14452 2062 2533 2065 2581	$12900 \\ 14800 \\ 14600 \\ 15700 \\ 15700 \\ 14800 \\ 15800 \\ 14800 \\ 14900 \\ 8000 \\ 14900 \\ 14900 \\ 17900 \\ 22400 \\ 17350 \\ 17350 \\ 17350 \\ 12800 \\ 1000$	15.2 14.0 13.0 13.4.4 14.5.1 15.19 14.5.5 112.0 12.0 12.0 12.0 12.0	$1961 \\ 2190 \\ 1898 \\ 2088 \\ 2131 \\ 2275 \\ 2250 \\ 1272 \\ 2382 \\ 1825 \\ 2112 \\ 2688 \\ 2142 \\ $	13300 14500 12400 16000 17400 14700 6400 15300 16500 16300 16100 15900 21600 16300	14.8 14.3 14.3 13.3 14.3 14.3 14.3 14.3 14.3	2042 2074 1773 2096 2314 2087 1267 2367 2360 1756 2347 2366 2347 2366 2394 2152	$13300 \\ 11800 \\ 10300 \\ 14500 \\ 12700 \\ 12400 \\ 16900 \\ 14350 \\ 7300 \\ 15100 \\ 16500 \\ 13000 \\ 17700 \\ 7300 \\ 7300 \\ 17700 \\ 7300 \\ 17700 \\ 7300 \\ 17700 \\ 7300 \\ 17700 \\ 7300 \\ 10000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000$	14.7904 13.11 15.24297 132.12 132.12 132.2 13.2 13.2	1987 1735 1535 1782 1918 2009 2096 2038 1161 2069 2079 1742 2212 963	70230 8230 70241 8253 82593 82593 8063 963572 84552 84552 84552 84552 84552 84552 84552 84552 84552 84552 84552 8538

XXXV

Yield of D.M./Plot of Pasture Mixtures Cut 3 1961 (in gms)

July 26, 1961.

1		

						B	locks			·······			
		А			В			С	`		D		
Mixt. No.	G.Wt.	% D.M.	D.M.	G.Wt.	% D.M.	D.M.	G.Wt.	% D.M.	D.M.	G.Wt.	D. M.	D.M.	Total D.M.
1 2 3 4 5 6 7 8 90 11 2 3 4 5 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 3 4 5 6 7 8 90 11 2 5 4 5 6 7 8 90 11 2 5 4 5 5 6 7 8 90 11 2 5 4 5 5 8 90 11 2 5 5 5 5 15 15 15 15 15 15 15 15 15 15 1	$\begin{array}{c} 6800\\ 12900\\ 10500\\ 10500\\ 11950\\ 11500\\ 10600\\ 12600\\ 12600\\ 12600\\ 9350\\ 9400\\ 9200\\ 8000\\ 7700\end{array}$	16.58 13.8 14.2 14.1 14.1 16.7 16.7 16.7 16.5.9 17.9 16.0	1123 1784 1505 1486 1679 1618 1767 1739 1269 1495 1495 1371 1229	6800 10200 10800 10750 12000 7500 11750 12750 12750 12750 1200 4300 7000 9200 12500 7300 11700	17.4914.0914.0914.0914.0914.0914.0914.0914	11841722151516011774124118861828193782110981409178610711870	5900 7700 5700 7800 7350 4650 6000 5500 6200 6750 8000 6900	17.8 16.2 17.9 17.3 16.6 16.7 19.6 17.8 17.8 16.4 17.8 16.4 17.8 15.9 15.2 18.6	1048 1248 1022 1315 1296 1296 1290 1344 1068 1020 1019 1203 1274 1000 1285	6300 6200 5700 8900 5900 10000 10000 2600 3900 9450 6800 5800 5650	16.7 18.0 17.2 16.0 16.3 17.2 16.3 17.2 16.3 17.2 16.2 17.2 16.2 17.2 16.3 17.4 16.3 17.4 16.3 17.4 16.4 16.4 16.4	$1055 \\1118 \\981 \\1425 \\1289 \\1049 \\1820 \\1677 \\1101 \\544 \\700 \\1460 \\1143 \\925$	4410 5872 5827 6038 51388 65388 65388 65388 6536 4313 55777 55777 5309

Table A 24

XXXVI

Yield	of	D.M./	Plot	of	Pasture	Mixtures	<u>Cut 4</u>	<u>1961</u>
							(in	gms)

Table A 25

Sept.	1,	1961.
ים		

A B C Mixt. G.Wt. % D.M. G.Wt. % D.M. G.Wt.	D <u>D.M.</u> <u>D.M.</u> Tota
Mixt. G.Wt. % D.M. G.Wt. % D.M. G.Wt. % D.M. G.Wt.	<u>D.M.</u> <u>D.M.</u> Tot:
<u>No.</u> <u>D.M.</u> <u>D.M.</u> <u>I</u>	10 1 1159 45
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Yield of D.M./Plot of Pasture Mixtures Cut 5 1961 (in gms)

Table A 26

						B	locks						
_	А				В			C			D		
Mixt. No.	G.Wt.	% D.M.	D. M.	G.Wt.	% D.M.	D.M.	G.Wt.	% D.M.	D.M.	G.Wt.	% D.M.	D.M.	Total D.M.
1234567890 112345 112345	3000 3400 2100 1300 1850 2000 3650 1800 3900 2900 2500 2500 3600 2500 3600 3500 3500	25.9 25.2 26.2 27.2 27.2 27.2 27.2 27.2 27.2 27	885 870 550 550 595 595 595 595 595 595 595 59	2250 4150 750 3950 2775 2505 1350 2675 4850 2675 950 2775	26.57 28.568679868246 2222222987853	$596 \\ 1025 \\ 282 \\ 972 \\ 680 \\ 380 \\ 108 \\ 253 \\ 758 \\ 188 \\ 269 \\ 932$	2150 4300 2350 3900 2850 2700 3250 3250 3550 1850 2450 1600 3000 2500	26.2 24.1 26.3 23.1 25.3 25.2 25.2 25.1 25.1 25.1 25.1 25.1 25.1	629 1036 611 940 753 8674 5829 780 780	$ \begin{array}{r} 1700 \\ 2950 \\ 2550 \\ 3250 \\ 4200 \\ 3000 \\ 4650 \\ 3625 \\ 2600 \\ 1000 \\ 1600 \\ 3000 \\ 1900 \\ 1500 \\ 3200 \\ \end{array} $	25.67 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.	487 7555 8127 8102 98132 901 7312 7925 3901 7925 3901	2597 3686 2048 2183 3413 2837 3437 2598 3497 2295 2295 2295 2296 3466

Oct. 25, 1961.

Percentage Composition and Point Quadrat Analysis Pasture Pure Stands and Mixtures 1960 (Experiment II)

Date Recorded Nov. 4 Angle 45° Cut Nov. 2, 1960 Table A 27

		E			F					
Coi ne	npo- nts_	% Comp.	Hits	<u>G.C.</u>	% Comp.	Hits	<u>G.C.</u>			
i	Tim. Oth. B.G.	10. 5 89.5	10 3 37	20 6 74	11.1 88.9	7 43	14 86			
ii	R.C. Oth. B.G.	57.8 42.2	17 1 32	34 1 64	54.0 46.0	25 1 24	50 2 48			
iii	Af. Oth. B.G.	11.4 88.6	6 3 41	12 6 82	37.5 62.5	9 2 39	18 4 78			
iv	Br. Oth. B.G.	6.2 93.8	6 2 42	12 4 84	5.1 94.9	10 1 39	20 2 78			
v	Lad. Oth. B.G.	37.5 62.5	19 31	38 62	22.6 77.4	18 	3 <u>6</u> 66			
vi	B.T. Oth. B.G.	34.7 65.3	18 3 29	38 6 58	36.7 63.3	17 1 32	34 2 64			
vii	Tim. Lad. B.T. Oth. B.G.	3.3 16.7 20.0 60.0	3 12 4 32	6 24 8 64	2.4 26.2 11.9 59.5	4 18 9 20	8 36 18 40			

۰.

Percentage Co	omposi	tion and	d Po:	int	Quadra	at Ana	alysis
Pasture	e Pure	Stands	and	Mix	tures	1960	
		(Experi	ment	II)			

Date Recorded Nov. 4 Angle 45° Cut Now. 2,1960 Table A 27

			E			F		
Compon- ents		% Comp.	Hits	<u>G.C.</u>	% Comp.	<u>Hits</u>	<u>G.C.</u>	
Viii	Tim. Br. Lad. B.T. Oth. B.G.	3.3 3.3 20.0 23.4 50.0	1 5 8 4 3 4	2 10 16 8 - 64	2.8 7.1 19.0 11.8 59.2	4 569 28	8 10 12 18 56	
ix	Tim. Br. Af. Oth. B.G.	8.2 3.4 24.9 63.5	8 4 2 4 32	16 8 4 8 64	8.1 2.7 13.5 75.7	5 4 3 38	10 8 6 76	
	R.Can Oth. B.G.	2.6 97.4	4 17 30	8 34 60				
	K.Bl. Oth. B.G.	3.7 96.3	8 19 24	16 38 48				

XL

Percentage Composition and Point Quadrat Analysis Pasture Pure Stands and Mixtures 1961 (Experiment II)

Date	Red	orded	May	9	Angle	29 ⁰	Cut	1	1041
Table	A é	28					мау	23 ,	1901

			Blocks				
		E			F		
Compon- ents	% Comp.	Hits	<u>G.C.</u>	% Comp.	<u>Hits</u>	<u>G.C.</u>	Dens- ity
i Tim. Oth. B.G.	100.0	35 15	70 30	100.0 0.	24 2 27	48 4 54	68 4 54
ii R.C. Oth. B.G.	100.0	35 15	70 30	100.0	40 10	80 20	162 20
iii Zf. Oth. B.G.	99.0 1.0	6 44	12 88	100.0	13 37	26 74	36 74
iv Br. Oth. B.G.	100.0 0	32 18	64 36	100.0	15 35	30 70	46 - 70
♥ Lad. Oth. B.G.	98.9 1.1	34 16	68 32	97.4 2.6	35 15	70 30	124 34
vi B.T. Oth. B.G.	100.0	34 3 13	68 6 26	98.7 1.3	19 31	38 62	52 62
vii Tim. Lad. B.T. Oth. B.G.	17.0 57.4 21.3 4.3	17 27 9 14	34 54 18 28	8.5 52.3 38.1 1.1	8 27 12 - 11	16 54 24 - 22	20 92 28 - 22

Percenta	ige	Con	posi	tion	and	Poi	int	Quad	rat	t Ana	alysis
Pa	stu	re	Pure	Sta	nds_	and	Mix	ture	<u>s</u>]	<u>1961</u>	
		_				_		0		_	

	Recording	Date:	May	9	Angle	29 ⁰	Cut Mav	I 23.	1961
Table	A 28	(E	xper	ime	nt II)		пау	ور _	1701

Reps.		E			F		
Compo- nents	% Comp.	Hits	<u>G.C.</u>	% Comp.	Hits	G.C.	Den- sity
viii Tim. Br. Lad. B.T. Oth. B.G.	25.9 0.9 43.1 25.8 4.3	13 25 26 - 4	26 10 50 52 - 8	12.2 2.1 55.1 30.6	11 24 16 13	22 10 48 32 - 26	30 12 74 40 4 26
ix Tim. Br. Af. Oth. B.G.	20.0 5.7 72.9 1.4	18 9 6 - 27	36 18 12 54	25.3 8.1 65.8 0.8	15 7 4 - 31	30 14 - 62	36 14 10 - 62
R:Can. Oth. B.G.	100.0	12 38	24 76	-	-	-	-
K.Bl. Oth. B.G.	98.3 1.7	26 - 24	52 48				

Percentage	Con	posi	tion	and	Po	int	Quadra	at .	Analy	sis
Pasti	ire	Pure	Star	nds a	and	Mix	tures	19	61.	

Recording Date:	June 7 Angle 29 ⁰	Cut 2
Table A 29	(Experiment II)	June 27,91901

				E	LOCKS					
Rej	ps.		E			F				
Comj nen	po ← ts	% Comp. Hits G.C.		<u>G.C.</u>	Dens- ity	% Comp. Hits		<u>G.C.</u>	Dens- ity	
i	Tim. Oth. B.G.	99•3 0•7	28 - 22	56 44	94 - 44	100.0	39 11	78 - 22	136 22	
ii	R.C. Oth. B.G.	99.1 0.9	29 - 21	58 - 42	92 44	99.4 0.6	31 19	62 - 38	90 38	
iii	Af. Oth. B.G.	97.5 2.5	6 44	12 - 88	22 - 88	98.8 1.2	6 44	12 - 88	े4 - 88	
iv	Br. Oth. B.G.	90.3 9.7	31 12 12	62 24 24	84 30 24	95.8 4.2	25 25	50 50	72 50	
v	Lad. Oth. B.G.	100.0 0	44 - 6	88 - 12	164 12	100.0 0	42 8	84 - 16	156 16	
Vi	B.T. Oth. B.G.	97.9 2.1	40 1 10	80 2 20	158 2 20	99.1 0.9	33 17	66 - 34	102 34	
vii	Tim. Lad. B.T. Oth. B.G.	21.7 72.6 5.7	9 38 15 - 8	18 76 30 16	34 126 46 - 16	19.4 71.3 8.5 0.8	16 24 14 - 11	32 48 28 - 22	44 64 36 - 22	

Percentage Composition and Point Quadrat Analysis <u>Pasture Pure Stands and Mixtures 1961.</u>

Recording Date: June 7 Angle 29° Cut 2 June 27, 1961

Table A 29

Reps.

(Expe	riment	II)								
Blocks										
	E		F							
<u>Hits</u>	G.C.	Dens- ity	% Comp.	<u>Hits</u>	<u>G.C.</u>	Dens- ity				
8 23 23 - 8	16 46 46 16	18 102 62 - 16	14.4 1.0 76.3 8.3	7 7 35 12 - 9	14 14 70 24 - 18	18 14 98 34 -				

Compo- nents	% Comp.	<u>Hits</u>	G.C.	Dens- ity	% Comp.	<u>Hits</u>	<u>G.C.</u>	Dens- ity
viii Tim. Br. Lad. B.T. Oth. B.G.	10.6 0.2 77.7 10.6 0.9	8 23 23 - 8	16 66 46 16	18 102 62 16	14.4 1.0 76.3 8.3 -	7 35 12 - 9	14 14 70 24 - 18	18 14 98 34 - 18
ix Tim. Br. Af. Oth. B.G.	32.1 1.5 65.6 0.8	23 2 2 25	46 8 - 50	60 14 - 50	45.1 12.0 51.6 1.3	22 5 1 18	44 10 2 - 36	46 14 2 - 36
R.Can. Oth. B.G.	85.2 14.8	36 14	72 - 28	110 28				
K.Bl. Oth. B.G.	99.0 1.0	46 - 4	72 - 8					

Percentage	Composition	and	Point	Quadrat	Analysis	Pasture	Pure	Stands	and		
Mixtures 1961											
(Experiment II)											

Date Recorded July 10 Angle 45° Cut 3 July 26, 1961.

Table A 30

						В1	ocks						•
			E				F			G.C.July 14		Angle 45°	
Comp ent i	Tim. Oth. B.G.	% <u>Comp.</u> 56.7 43.3	Hits 19 4 28	<u>G.C.</u> 38 8 56	Den- sity 46 8 56	% <u>Comp.</u> 70.5 29.5	Hits 17 6 29	<u>G.C.</u> 34 12 58	Den- sity 44 12 58	<u>G.C.</u> 28 20 58	Den- sity 46 20 58	<u>G.C.</u> 44 26 52	Den- <u>sity</u> 54 8 52
11	R.C. Oth. B.G.	91.2 8.8	18 10 25	36 20 50	42 20 50	94.7 5.3	23 9 22	46 18 44	64 22 44	74 4 26	122 6 26	76 16 14	124 18 14
iii	Af. Oth. B.G.	85.2 14.8	11 21 23	22 42 46	30 56 46	84.5 15.5	18 23 16	36 46 32	58 58 32	22 42 46	22 52 46	22 48 40	26 5 8 40
iv	Br. Oth. B.G.	41.5 58.5	24 17 16	48 34 32	62 42 32	54.2 45.8	9 5 36	18 10 72	24 12 72	34 36 42	44 54 42	36 12 54	46 12 54
v	Lad. Oth. B.G.	100.0	35 15	70 - 30	102 	100.0	36 14	72 - 28	118 	88 - 12	141 12	78 1 22	158
vi	B.T. Oth. B.G.	90.1 9.9	37 2 12	74 4 24	168 4 24	86.1 13.9	28 7 19	56 14 380	84 16 38	76 10 20	154 10 20	68 4 32	114 4 32

		Perce	Percentage Composition and Point Quadrat Analysis Pasture Pure Stands and Mixtures 1961										
		Date	Recorded	July	10	Angle 4	•5°	Cut	3 July	26,	1961.	(Experiment	11)
Table	e A	30					B	locks					
				E					F				
Compo ents	on- s		% Comp.	Hits	<u>G.C.</u>	Den- sity		% Comp.	<u>Hits</u>	G.C.	Den- sity		
vii	Tim Lad B.T Oth	l.	0.9 97.8 1.3	6 26 17	12 52 34	14 76 34		2.5 96.6 0.9	38 1 -	6 76 2	112		
viii	B.G Tim Br. Lad B.T Oth B.G	* • • • •	2.1 0.1 95.8 2.0	18 (1) 25 4 - 21	36 (2) 2 50 8 42	36 (2) 2 86 10 42		1.1 0.3 97.3 1.4	9 3 33 6 -	18 6 66 12 - 22	18 6 90 16 - 22		
ix	Tim Br. Af. Oth B.G	l. l.) 9.9) 87.3 2.8	14 6 3 4 28	28 12 6 56	36 16 8 56))	14.4 76.0 9.6	9 10 1 6 29	18 20 2 12 58	26 24 24 14 58		
	R.C Oth B.G	••) ••)	Dis- carded	33 17 11	66 34 22	146 42 22							
	K.B Oth B.G	31.)))	Dis- carded	33 3 16	66 6 32	126 6 32							

XLVI

Percentage Composition and Point Quadrat Analysis <u>Pasture Pure Stands and Mixtures 1961</u> (Experiment II)

Date Recorded Aug. 30 Angle 45⁰ (Improved) Cut 4 Sept. 1, 1961

Table A 31

Blocks	
--------	--

			E				F		
Com en	pon- ts	% Comp.	Hits	G.C.	Den- sity	% Gomp.	Hits	<u>G.C.</u>	Den- sity
i	Tim. Oth. B.G.	77.3 22.7	6 - 4	60 40	80 - 40	83.6 16.4	5 3 3	50 30 30	90 30 30
ii	R.C. Oth. B.G.	66.9 33.1	8 6 1	80 60 10	160 60 10	87.3 12.7	$\frac{7}{3}$	70 30	210 - 20
iii	Af. Oth. B.G.	61.0 39.0	6 10 -	60 100	140 100 -	71.4 28.6	7 9 -	70 90 -	130 90 -
iv	Br. Oth. B.G.	23.1 76.9	9 6 1	90 60 10	120 60 10	77•3 22 •7	7 2 2	70 20 20	130 20 20
v	Lad. Oth. B.G.	100.0	9	90 10	320 10	92.3 7.7	9 1	90 - 10	170 10
vi	B.T. Oth. B.G.	57 .1 42.9	10 2 -	100 20 -	350 20 -	64.9 31.1	8 5 1	80 50 10	180 50 19
vii	Tim. Lad. B.T. Oth. B.G.	1.0 97.9 1.1	(.2) 10 2 -	(2) 100 (2) -	(2) 280 20 -	0.6 97.3 1.9 0.2	(.2) 10 (.2) -	(2) 100 (2) -	(2) 270 (2)

XLVIII

Percentage Composition and Point Quadrat Analysis <u>Pasture Pure Stands and Mixtures 1961</u> (Experiment II)

Date Recorded Aug. 30 Angle 45[°] (Improved) Cut 4 Sept. 1, 1961

Table A 31

				Blo	cks				
			E				F		
Comp ent	on- s	% Comp.	Hits	G.C.	Den- sity	% Comp.	Hits	G.C.	Den- sity
viii	Tim. Br. Lad. B.T. Oth. B.G.	4.3 0.9 87.2 7.7	(.2) (.2) 9 (.2) -	(2) (2) 90 (2)	(2) (2) 330 (2) 10	1.4 0.6 97.1 0.9	1 10 1 -	10 10 100 10	10 10 250 10 -
ix	Tim. Br. Af. Oth. B.G.	5.6 84.9 9.5	_	-	_	7.9 48.3 43.8	_	_	
	R.Can. Oth. B.G.	.93.2 6.8	7 2 1	70 20 10	180 20 10				
	K.Bl. Oth. B.G.	82.4 17.6	$\frac{7}{3}$	70 30	120 				

Percentage Composition and Point Quadrat Analysis <u>Pasture Pure Stands and Mixtures 1961</u> (Experiment II)

777 - 1---

Date Recorded Sept. 20 Angle 45⁰ Table A 32

Cut 5 Oct. 25,1961

			L. L.	LOCKS				
		E				F		
Compon- ents	% Comp.	Hits	G.C.	Den- sity	% Comp.	Hits	<u>G.C.</u>	Den- sity
i Tim. Oth. B.G.	84.4 15.6	23 6 24	46 12 48	52 12 48	94.1 5.9	30 6 18	60 12 36	90 12 36
ii R.C. Oth. B.G.	90.9 9.1	31 14 11	62 28 22	104 28 22	99.5 0.5	40 - 10	80 - 20	160 20
iii Af. Oth. B.G.	88.9 11.1	16 26 16	32 52 32	46 66 32	89.1 10.9	24 19 15	48 38 30	76 42 30
iv Br. Oth. B.G.	61.1 38.9	23 11 19	46 22 38	62 32 38	79.4 20.6	16 10 27	32 20 54	40 20 54
v Lad. Oth. B.G.	99.0 1.0	50 - -	100 _ _	250 	99•7 0•3	45 - 5	90 10	190 10
vi B.T. Oth. B.G.	77.4 22.6	35 15 7	70 30 14	140 38 14	82.1 17.9	39 9 7	78 18 14	150 22 14
vii Tim. Lad. B.T. Oth. B.G.	2.0 97.5 0.5	2 44 (•2) - 4	4 88 (•4) - 8	4 160 (.4) - 8	4.9 93.7 0.9 0.4	2 49 (.2) -	4 98 (.4) - 2	6 170 (.4) - 2

Percentage Composition and Point Quadrat Analysis Pasture Pure Stands and Mixtures 1961 (Experiment II)

Date Recorded Sept. 20 Angle 45° Cut 5 Oct. 25, 1961

Table	A	32
-------	---	----

	0			Bloc	ks				
			E				F		
Comp ent	Compon- ents		Hits	G.C.	Den- sity	% Comp.	Hits	<u>G.C.</u>	Den- sity
viii	Tim. Br. Lad. B.T. Oth. B.G.	0.9 2.1 96.0 1.0	3 2 48 3 - 1	64 96 - 2	8 230 6 -	2.1 1.9 95.2 0.8	2 3 44 (.2) - 6	4 6 88 (•+) - 12	4 6 150 (.4) - 12
ix	Tim.) Br.) Af. Oth. B.G.	8.3 80.3 11.4		_	_	12.6 65.9 21.6	_	_	-
. R.	Can. Oth. B.G.	91.7 8.3	34 9 14	68 18 28	96 18 28				
	K.Bl. Oth. B.G.	98.5 1.5	34 15	68 30	110 30				

L

<u>I</u> Table	Percentage Composition and Point Quadrat Analysis Pasture Mixture 1960Recorded: Nov. 4Angle 45° Cut Nov. 2, 1960.Table A 33(Experiment II)Block												
Reps.		Α		В			C			D			
Mix- tures 1 Tim. R.C. Oth. B.G.	% <u>Comp</u> . 6.8 45.5 47.7	Hits 22 9 25	a) 13 37 15 42	% <u>Comp.</u> 5.9 52.9 41.2	Hits 2 18 1 30	G.C. 4 36 2 60	% <u>Comp</u> 4.5 45.5 50.0	Hits 4 21 26	G.C. 8 42 52	% <u>Comp.</u> 4.6 41.9 53.5	Hits 3 20 3 25	G.C. 6 40 6 50	_
2 Tim. R.C. Af. Oth. B.G.	3.5 24.6 29.8 42.1	3 9 3 6 31	6 18 6 12 62	5.9 29.4 35.3 29.4	6 7 1 31	12 12 14 2 62	4.6 41.9 4.6 48.8	3 13 2 3 9	6 26 6 4 60	5.1 40.5 2.2 52.3	4 13 1 - 33	8 26 2 66	
3 Tim. R.C. As. Oth. B.G.	2.4 24.4 34.2 39. 0	2 16 6 8 21	4 32 12 16 42	7.1 31.0 28.6 33.3	3 12 6 2 27	6 24 12 4 54	2.8 11.1 44.4 41.7	3 10 12 26	6 20 24 52	2.8 33.3 16.7 47.2	$13 \\ 9 \\ -27$	2 26 18 54	
4 Tim. R.C. Lad. Oth. B.G.	6.0 30.0 32.0 32.0	4 6 20 1 19	8 12 40 2 38	8.3 20.8 41.7 29.2	4 13 14 2 19	8 26 28 4 38	3.8 30.8 15.4 50.0	5 17 7 22	10 34 14 - 44	4.6 32.6 18.6 44.2	3 12 13 -25	6 24 26 - 50	
5 Tim. R.C. Af. Lad. Oth. B.G.	5.7 22.9 17.1 25.7 28.6	3 10 2 1 25	6 20 4 4 2 50	3.0 24.2 42.4 15.2 15.2	1 10 3 6 - 31	2 20 6 12 - 62	4.3 27.7 8.5 12.8 46.8	3 14 3 7 - 26	6 14 3 7 - 52	3.8 34.6 3.8 15.4 42.3	b) 2 23 1 16 - 50	2 26 1 18 - 56	

	Pe	rcentag	e Comp	ositio	n and P	oint Q	uadrat	Analys	is Pas	ture M	lixture	<u>1960</u>		
		R	ecorde	d: Nov	• 4	Angle	45	Cut	Nov.	2, 19	60.			
	Table	e A 33				(EX	Bloc	ks						
R	eps.		A			B			C			D		
Mi	Mix- % Witz C.C. Comp. Hitz C.C. Comp. Hitz C.C. Comp. Hitz C.C.													
tu	res	Comp.	Hits	G.C.	Comp.	Hits	G.C.	Comp.	Hits	G.C.	Comp.	Hits	<u>G.C.</u>	
6.	Tim. R.C. B.T. Oth. B.G.	7.5 37.5 5.0 50.0	3 15 7 6 23	6 30 14 12 46	4.5 31.8 9.1 54.6	3 15 4 26	6 30 8 52	3.8 32.1 7.6 56.6	3 13 8 27	6 26 16 - 54	3.4 33.9 8.5 54.2	2 16 4 28	4 32 8 56	
7.	Tim. Af. Oth. B.G.	9.6 34.6 55.8	5 3 18 34	10 6 36 68	9.0 39.3 51.7	6 4 7 33	12 8 14 66	11.1 11.1 77.8	7 1 7 36	14 2 14 72	6.7 48.9 44.4	5 5 40	10 10 	
8.	Tim. Af. Lad. Oth. B.G.	13.8 24.1 34.5 27.6	9 2 14 - 25	18 28 - 50	10.0 27.5 35.0 27.5	4 20 26	8 2 40 - 52	8.0 16.0 26.0 50.0	4 2 17 28	8 4 34 - 56	7.8 28.1 23.4 40.6	7 1 12 - 30	14 2 24 - 60	
9.	Tim. Af. B.T. Oth. B.G.	13.3 26.7 16.7 43.3	5 54 32 32	10 10 8 6 64	4.4 51.1 8.9 35.6	1 6 3 1 39	2 12 6 2 78	8.1 2.7 21.6 67.6	5 2 7 38	10 14 76	5.7 14.3 28.6 51.4	3 1 8 - 35	6 2 16 70	
10.	Tim. As. Oth. B.G.	8.0 40.2 51.7	3 12 6 31	6 24 12 62	6.8 36.4 56.8	17 31	2 34 62	2.3 46.5 51.2	1 17 5 28	2 34 10 56	4.4 39.1 56.5	4 17 39	8 34 78	

-

Pe	ercenta	ge Com	positi	on and	Point_	Quadra	t Analy	sis Pa	sture	Mixture	<u> 1960</u>				
Table .	Recorded: Nov. 4 Angle 45° Cut Nov. 2, 1960. Table A 33 (Experiment II) Blocks Reps. A B C D														
Reps.		A			В			C			D				
Mix- tures	% Comp.	Hits	<u>G.C.</u>	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	<u>G.C.</u>			
11.Tim. B.T. Oth. B.G.	10.0 17.5 72.5	2 13 5 32	4 26 10 64	8.3 29.2 72.5	4 9 3 34	8 18 64	8.2 24.5 67.3	5 9 1 36	10 18 2 72	4.7 41.1 54.2	3 5 38 38	6 10 6 76			
l2.Tim. Lad. Oth. B.G.	10.3 35.9 53.8	4 14 - 31	8 28 - 62	10.3 65.5 24.1	4 6 15 26	8 12 30 52	7.1 38.1 54.8	6 13 - 33	12 26 - 66	4.1 51.0 44.9	4 21 25	8 42 - 50			
13.Br. B.T. Oth. B.G.	3.7 14.8 81.5	4 8 11 27	8 16 22 54	6.9 17.2 75.9	4 6 15 26	8 12 30 52	2.6 29.0 68.4	7 9 1 34	14 18 2 68	3.5 33.3 63.2	3 7 1 37	6 14 2 74			
14.R.Can B.T. Oth. B.G.	1.2 20.0 78.8	2 6 19 24	4 12 38 48	1.6 39.1 59.4	1 13 1 36	2 26 2 72	3.3 26.7 70.0	1 6 7 36	2 12 14 72	2.0 42.0 56.0	1 17 2 31	2 34 4 62			
15.K.Bl. B.T. Oth. B.G.	1.8 21.8 76.4	1 9 10 31	2 18 20 62	2.0 21.6 76.5	4 13 5 29	8 26 10 58	2.4 26.2 71.4	3 9 1 37	6 18 2 74	2.0 32.0 66.0	2 16 6 28	4 32 12 56			
a) 6 s ⁻ b) 9	tations	/plot "													

Others in this fall cut include all stubles of the companion crop.

LIII

1

	<u>Percenta</u>	ge Com	positi	on and	Point	Quadra	t Analy	sis Pa	stures	Mixtur	e <mark>s 1</mark> 96	1			
Table	Recorded: May 8Angle 29°Cut 1May 23, 1961.Table A 34(Experiment II) BlocksBlocksD														
Reps.		Ā			В			C			D				
Mix- tures	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.			
l Tim. R.C. Oth. B.G.	16.3 83.7 tr			10.3 89.7 tr			7.1 92.9 -	10 37 10	20 74 - 20	7.1 91.1 1.8	12 38 - 8	24 76 - 16			
2 Tim. R.C. Af. Oth. B.G.	3.5 22.8 54.3 19.3			8.8 52.9 38.3 tr			6.2 77.1 16.7 -	11 37 - 7	22 74 8 - 14	9.2 84.6 6.2 9	5 42 9 - 6	10 84 18 - 12			
3 Tim. R.C. As. Oth. B.G.	8.6 46.6 24.1 20.7			9.3 37.0 35.2 18.5			8.9 28.6 62.5 0	6 26 35 - 3	12 32 70 - 6	11.1 33.3 53.3 2.3	16 18 28 - 4	32 36 56 - 8			
4 Tim. R.C. Lad. Oth. B.G.	21.3 42.6 36.1 tr			17.8 40.0 42.2 tr			11.3 53.0 35.7 tr	24 21 25 - 9	48 42 50 18	11.9 59.3 27.1 1.7	8 38 29 - 3	16 76 58 - 6			
5 Tim. R.C. Af. Lad. Oth. B.G.	9.0 21.0 37.6 31.6 0.8			3.1 23.2 57.4 15.5 0.8			10.3 41.4 20.7 27.6 tr	13 20 25 - 4	26 40 10 50 - 8	10.3 58.6 10.3 19.0 1.8	12 32 18 2 5	24 64 12 36 4 10			

LIV

		Percent	<u>age Co</u> Record	mposit ed: M	<u>ion and</u> ay 8	Point Angle	Quadr 29	Cut I	<u>ysis F</u> May	<u>asture</u> 23, 19	Mixtur 61.	<u>es 196</u>	<u>1</u>
]	able	A 34				(Exp	erimer <u>Blocks</u>	it II)					
F	Reps.	· · ·	A			В			C			D	
<u>Mi</u> <u>tı</u> 6	ix- ires Tim. R.C. B.T.	% <u>Comp.</u> 9.1 65.9 2.3	Hits	<u>G.C.</u>	% <u>Comp.</u> 11.9 78.0 10.1	<u>Hits</u>	<u>G.C.</u>	% <u>Comp.</u> 10.5 73.7 15.8	Hits 19 34 12	<u>G.C.</u> 38 68 24	% <u>Comp.</u> 8.3 81.7 10.0	Hits 13 39 10	<u>G.C.</u> 26 78 20
	B.G.	22.1			τr			τr	-4	-8	τr	2	-4
7	Tim. Af. Oth. B.G.	13.6 85.7 0.7			11.0 73.0 16.0			27.6 71.7 0.7	20 2 - 20	40 4 40	10.0 88.3 1.7	26 19 15	52 38 30
8	Tim. Af. Lad. Oth. B.G.	15.6 53.1 31.3			10.3 53.8 35.9			15.2 19.6 58.7 6.5	15 3 33 12	30 66 - 24	12.4 37.2 49.6 0.8	15 9 37 - 6	30 18 74 12
9	Tim. Af. B.T. Oth. B.G.	10.3 84.6 5.1			10.7 85.7 1.8 1.8		,	19.6 23.5 56.9 tr	23 3 21 16	46 6 42 - 32	13.6 29.5 54.5 2.4	26 11 22 3 8	52 22 44 6 16
10	Tim. As. Oth. B.G.	13.5 78.4 8.1			10.3 84.6 5.1			9.1 70.9 20.0	13 42 3 6	26 84 6 12	5.9 94.1))	13 46 - 3	26 92 - 6

ΓV

Tat	<u>P</u> ble A	<u>ercenta</u> R 34	ge Com ecorde	n <u>positi</u> d: Ma	on and y 8	<u>Point</u> Angle (Expe E	Quadra 290 riment locks	<u>t Analy</u> Cut I II)	<u>sis Pa</u> May 2	<u>sture</u> 3, 196	<u>Mixture</u> 1.	<u>s 1961</u>	
Rep	ps.		A			В			C			D	
Mi) tur	x- res	% Comp.	Hits	<u>G.C.</u>	% Comp.	Hits	<u>G.C.</u>	% Comp.	Hits	<u>G.C.</u>	% Comp.	Hits	<u>G.C.</u>
	Fim. B.T. Oth. B.G.	25.0 22.9 52.1			25.3 74.7 -			28.6 71.4 0	18 23 - 19	36 46 - 38	17.7 81.4 0.9	20 26 - 14	40 52 - 28
12 1 I C E	Fim. Lad. Oth. 3.G.	22.9 75.0 2.1			25.3 73.4 1.7			20.4 79.6 tr	24 34 - 7	48 68 - 14	11.1 88.9 0	8 42 - 6	16 84 - 12
13 H H C H	3r. 3.T. Oth. 3.G.	37.7 50.9 11.4			23.7 13.2 63.1			25.0 75.0 0	10 20 - 21	20 40 - 42	28.6 70.5 0.9	19 27 - 15	38 54 - 30
14 H H C H	R.C. 3.T. Oth. 3.G.	0 4.0 6.0			1.7 96.6 1.7				1 17 - 33	2 34 - 66	10.9 87.3 1.8	2 23 - 26	4 46 - 52
15 K E C E	K.B1. 3.T. Oth. 3.G.				6.9 24.1 69.0			14.8 85.2 tr	16 26 16	32 52 - 32	32.4 64.7 2.9	10 17 	20 34 - 60

LVI

	Percent	age Co	mp osi t	tion and	Point	Quadr	at Anal	ysis P	asture	<u>Mixtur</u>	es 196	1
Table	A 35	Record	ed: J	June 7	Angle (Exp	29 erimen Blocks	Cut I t II)	I Jun	e 27,	1961		
Reps.		A			В			C			D	
Mix- tures 1 Tim. R.C. Oth.	<u>Comp.</u> 58.0 37.0 5.0	Hits 12 22 10	<u>G.C</u> . 24 44 20	<u>Comp.</u> 29.0 66.7 4.3	Hits 19 26 6	<u>G.C</u> . 38 52 12	% <u>Comp.</u> 11.6 88.4	Hits 11 28	<u>G.C</u> . 22 56	% <u>Comp</u> . 18.8 81.2	Hits 15 28 3	<u>G.C.</u> 30 56 6
B.G. 2 Tim. R.C. Af. Oth. B.G.	11.5 27.1 31.2 30.2	15 4 10 19 20 20	30 20 38 40 40	15.6 33.8 48.0 2.6	8 14 21 14 - 10	16 28 42 28 - 20	18.8 69.3 7.9 4.0	19 11 34 4 1 9	38 22 68 8 2 18	17.1 76.2 6.7	10 10 19 1 20	20 20 38 2 40
3 Tim. R.C. As. Oth. B.G.	9.8 35.9 2.2 52.1	6 25 8 20 6	12 50 16 40 12	12.5 41.3 1.2 45.0	9 20 7 18 9	18 40 14 26 18	16.0 55.6 25.7 2.7	11 18 29 7	22 36 58 14	17.2 58.6 23.4 0.8	8 19 16 17	16 38 32 34
4 Tim. R.C. Lad. Oth. B.C.	17.4 14.7 67.9 0	8 12 36 - 6	16 24 72 12	9.4 18.7 71.9	15 39 5	14 30 78 - 10	11.3 38.7 50.0	11 29 30 - 2	22 58 60 -4	11.4 40.0 48.6 -	13 22 31 1	26 44 62 2 2
5.Tim. R.C. Af. Lad. Oth. B.G.	17.3 18.3 13.5 50.9 0	6 14 5 24 11	12 28 10 48 	7.2 21.7 43.4 27.7 0	6 21 10 23 10	12 42 20 46 - 20	7.6 37.1 1.9 53.3	13 22 1 27 8	26 44 2 54 - 16	11.5 34.5 0.4 53.6	7 30 5 29 - 6	14 60 10 58 12

LVII

	<u>P</u>	ercenta	ge Com	positi	on and	Point	Quadra	t Analy	<u>sis Pa</u>	sture	Mixture	<u>s 1961</u>	:
Tab:	le A	. 35	ecorde	d: Ju	ine 7	Angle (Expe E	290 riment Slocks	Cut II II)	June	27, 1	.961		
Rep	s.		A			В			C			D	
Mix- ture	es	% Comp.	Hits	G.đ.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.
6 T R B O B	im. .C. .T. th. .G.	14.4 49.5 2.1 34.0	6 24 20 9	12 48 40 18	12.1 77.3 9.1 1.5	11 28 12 2 11	22 56 24 22	15.4 71.4 12.1 1.1	11 31 10 2 9	22 62 20 4 18	18.7 69.2 12.1	15 26 7 - 11	30 52 14 22
7 T A 0 B	im. f. th. .G.	32.9 59.1 8.0	20 15 8 14	40 30 16 28	25.0 66.7 8.3	19 24 23 12	38 48 46 24	44.3 32.1 23.6	23 6 2 25	46 12 4 50	14.0 83.0 3.0	16 21 1 23	32 42 2 46
8 T A L O B	im. f. ad. th. .G.	14.3 18.7 67.0	14 11 38 - 5	28 22 76 10	19.8 22.8 57.4 -	12 11 33 2 7	24 22 66 14	11.5 18.0 70.5	7 10 42 2 7	14 20 84 4 14	7.3 25.4 66.4 0.9	13 10 34 - 8	26 20 68 16
9 T A B O B	im. f. .T. th. .G.	16.3 70.7 5.4 7.6	23 17 6 7 12	46 34 12 14 24	15.7 67.5 8.4 8.4	21 23 8 1 11	42 46 16 22	21.6 6.7 70.2 1.5	18 3 31 8	36 62 2 16	19.4 26.4 52.8 1.4	18 3 29 3 11	36 58 6 22
10 T A 0 B	im s. th. .G.	33.8 7.0 59.2	14 17 14 15	28 34 28 30	46.2 43.1 10.7	14 29 4 13	28 58 8 26	12.1 24.1 63.8	7 24 25 7	14 48 50 14	34.3 62.7 3.0	11 25 7 16	22 50 14 32

ſ	D - h 7 -	Percent	<u>age Co</u> Record	mposit ed: J	<u>ion and</u> une 7	Point Angl	Quadr e 29	at Anal Cut 1	ysis P I Ju	ne 27,	<u>Mixtur</u> 1961	es 196	1
		A 37				(EX	_ <u>Bloc</u> k	nt 11) S					<u> </u>
Re	eps.		A			B			C			D	
Mi: tu:	x- res	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	<u>G.C.</u>
11	Tim. B.T. Oth. B.G.	25.0 10.5 64.5	14 11 34 5	28 22 68 10	22.2 64.5 13.3	16 25 8 11	32 50 16 22	16.1 83.9 -	12 38 10	24 76 - 20	23.4 72.7 3.9	17 36 - 9	34 72 18
12	Tim. Lad. Oth. B.G.	23.3 76.7	16 34 - 5	32 68 - 10	13.9 86.1 -	5 39 10	10 78 - 20	17.2 82.0 0.8	17 39 - 3	34 78 - 6	25.0 75.0	8 43 - 6	16 86 - 12
13	Br. B.T. Oth. B.G.	17.4 57.4 25.2	14 34 12 14	28 68 24 28	1.6 6.5 91.9	1 6 38 8	2 12 76 16	7.4 88.2 4.4	7 32 3 13	14 64 26	10.5 86.0 3.5	11 41 3 7	22 82 6 14
14	R.C. B.T. Oth. B.G.	0.2 9.4 90.4	(1) 17 33 11	(2) 34 66 22	1.4 90.4 8.2	3 37 9 10	6 74 18 20	0.3 92.0 7.7	Not	record	ed 2.4 67.0 30.6	2 29 9 14	4 58 18 28
15	K.Bl. B.T. Oth. B.G.	3.3 90.2 6.5	10 35 2 9	20 70 4 18	6.9 13.8 79.3	19 22 30 4	38 44 60 8	5.0 93.3 1.7	12 31 2 9	24 62 4 18	6.2 90.7 3.1	17 35 2 7	34 70 4 14

Table	A 36	ecorae (E	a: A & Xperim	: B July lent II) B	locks	Cut 3	, July	& D Ju 26, 1	19 11, 961.	Angle	290	
Reps.		A			B			C			D	
Mix- tures 1 Tim. R.C. Oth. B.G.	% <u>Comp.</u> 26.9 56.4 16.7	Hits 21 14 21 8	G.C. 42 28 42 16	% <u>Comp.</u> 13.0 81.3 5.7	Hits 6 18 16 18	G.C. 12 36 32 36	% <u>Comp.</u> 4.9 94.4 0.7	Hits 2 16 4 29	G.C. 4 32 8 58	% <u>Comp.</u> 7.5 84.2 8.3	Hits 4 16 9 24	G.C. 8 32 19 48
2 Tim. R.C. Af. Bth. B.G.	4.1 8.2 45.4 42.3	2 13 7 35 8	4 26 14 70 16	3.6 24.7 65.1 6.7	6 25 13 6 14	12 50 26 12 28	3.9 66.7 20.9 8.5	4 25 3 9 13	8 50 18 26	5.4 79.8 13.4 1.4	12 18 (1) 8 20	24 36 16 40
3 Tim. R.C. As. Oth. B.G.	7.4 14.8 77.8	2 14 - 37 11	4 28 - 74 22	6.1 15.8 78.1	3 6 (1) 33 13	6 12 66 26	7.9 86.4 2.9 2.9	5 19 13 1 18	10 38 26 2 36	8.1 78.1 6.7 7.1	8 15 4 24	16 30 16 48
4 Tim. R.C. Lad. Oth. B.G.	5.6 6.7 87.8 -	2 41 7 1 9	4 82 14 2 18	8.7 12.7 77.8 0.8	7 33 8 3 7	14 66 16 6 14	1.9 26.8 71.3	3 22 14 - 17	6 44 28 	2.5 9.3 85.6 2.5	2 11 31 14	4 22 62 - 28
5 Tim. R.C. Af. Lad. Oth. B.G.	3.0 6.4 18.1 72.4 0.1	6 34 - 8	12 16 12 68 - 16	1.5 5.9 52.6 39.2 0.8	5 11 25 4 8	10 22 30 50 8 16	2.2 27.0 10.9 59.9	2 9 15 - 26	4 18 30 - 52	1.5 17.7 7.7 73.1	3 8 29 - 13	6 16 58 - 26

Percentage Composition and Point Quadrat Analysis Pasture Mixtures 1961

ΓX

	Date R	ecorde	d: A &	B July	14, A	ngle 4	5°.C&D	- July	11, A	ngle 2 9	0	_
Table	A 36		(Expe	riment	II) Blo	cut	3, Ju	1y 26,	1961.			
Reps.		A			В			C			D	
Mix- tures 6 Tim. R.C. B.T. Oth. B.G.	% Comp. 20.6 0.8 76.6	Hits 4 15 3 28 11	G.C. 8 30 6 56 22	% <u>Comp.</u> 4.6 82.7 6.0 6.7	Hits 7 24 16 12 9	G.C. 14 48 32 24 18	<u>Comp.</u> 6.7 81.0 10.0 2.3	Hits 7 23 9 2 15	G.C. 14 46 18 4 30	% <u>Comp.</u> 12.7 74.0 11.8 1.5	Hits 8 24 8 2 15	G.C. 16 48 16 4 30
7 Tim. Af. Oth. B.G.	10.1 72.7 17.3	14 13 23 11	28 26 46 22	4.6 68.7 26.7	6 14 25 16	12 28 50 32	5.5 85.4 9.1	17 3 15 19	34 6 30 38	2.8 93.8 3.4	9 15 10 22	18 30 20 44
8 Tim. Af. Lad. Oth. B.G.	2.0 16.8 81.2	10 6 38 - 8	20 12 76 16	2.0 28.8 68.9 0.3	4 13 35 1 6	8 26 70 2 12	2.5 17.8 79.5 0;2	1 23 25	2 46 - 50	0.7 20.9 78.3	3 32 14	6 64 28
9 Tim. Af. B.T. Oth. B.G.	4.4 79.4 4.1 12.0	4 14 9 14 18	8 28 18 28 36	5.6 79.9 3.5 11.1	8 25 12 13 7	16 50 24 26 14	10.8 26.2 57.6 5.4	3 (1) 27 5 20	6 (2) 54 10 40	13.6 28.7 54.3 3.4	12 4 22 2 17	24 8 44 34
lo Tim. As. Oth. B.G.	18.7 2.0 79.3	6 11 27 14	12 22 54 28	32.1 12.5 55.4	13 20 9 13	26 40 18 26	4.4 3.0 92.6	4 12 33 9	8 24 66 18	36.6 56.3 7.1	5 27 7 20	10 54 14 40

Percentage Composition and Point Quadrat Analysis Pasture Mixtures 1961 Date Recorded: A & B July 14, Angle 45 .C&D - July 11, Angle 29

ΓXΙ

	_	Date	Record	ed: A	& B Jul	y 14,	Angle	450. 0	& D J	uly 11	, Angle	29	
	<u> </u>	<u>A 36</u>	(Exper	iment II) Blc	ocks	Cut 3,	July	26, 1	961.		
R	eps.		A			В			C			D	
Mi: tu	x- res	% Comp.	Hits	<u>G.C.</u>	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.
11	Tim. B.T. Oth. B.G.	4.2 1.3 94.5	5 2 42 5	10 4 84 10	22.5 41.6 35.9	10 23 13 13	20 46 26 26	12.2 85.0 2.8	8 24 4 18	16 48 8 36	27.6 67.6 4.8	7 14 27	14 28 18 54
12	Tim. Lad. Oth. B.G.	6.0 91.8 2.2	5 40 1 1	10 80 2 2	8.1 90.7 1.3	3 36 - 13	6 72 - 26	3.1 96.8 0.1	6 24 - 23	12 48 - 46	1.9 98.0 0.1	2 32 15	4 64 - 30
13	Br. B.T. Oth. B.G.	11.1 53.1 35.8	32 18 10	64 36 20	No data	a obta	ined	8.3 83.3 8.3	10 28 14 12	20 56 28 24	8.9 80.2 10.9	36 8 11	10 72 16 22
14	R.C. B.T. Oth. B.G.	No da	ta obt	ained	2.9 65.7 31.4	2 29 7 19	4 58 14 3 8	0.2 73.2 26.6	(1) 27 17 13	(2) 54 34 26	4.1 67.0 28.9	3 22 10 20	6 44 20 40
15	K.Bl. B.T. Oth. B.G.	9.1 75.0 15.9	7 38 7 10	14 76 14 20	No data	obtai	ned	21.6 68.8 9.6	15 26 9 15	30 52 18 30	18.3 63.4 18.3	13 22 8 16	26 44 16 32

Percentage Composition and Point Quadrat Analysis Pasture Mixtures 1961

LXII

	Percent	age Co	mposit	ion and	Point	Quadr	at Anal	<u>ysis P</u>	asture	Mixtur	<u>es 196</u>	1
	Date	Record	lea: Au	ig. 30	Angie (E	45°(1 Experim	mproved lent II)	P.Q.)	Cut 4	Sept.	1, 19	61.
Tabl	e <u>A 37</u>					Bloc	ks					
Reps.		A			В			C			D	
Mix- tures 1 Tim. R.C. Oth. B.G.	% Comp. 17.1 43.9 39.0	<u>Hits</u>	G.C.	% Comp. 6.1 73.0 20.9	Hits	G.C.	% Comp. 8.3 63.9 27.8	Hits 3 10 2	G.C. 30 100 20	% Comp. 6.1 58.5 35.5	Hits 5 6 9 -	G.C. 50 60 90
2 Tim. R.C. Af. Oth. B.G.	1.0 8.5 49.5 41.0			1.1 12.8 75.5 10.6			3.2 39.9 31.9 25.0			10.0 46.7 16.7 26.6		
3 Tim. R.C. As. Oth. B.G.	2.0 28.6 69.4			4.9 30.9 64.2			5.9 75.4 0.3 18.4			9.3 59.1 0.8 30.8		
4 Tim. R.C. Lad. Oth. B.G.	0.4 8.1 91.5 -			1.7 9.5 86.0 2.8			0.3 32.6 66.8 0.3	(.2) 5 7 -	(2) 50 70 -	2.0 11.7 80.1 6.2	(_2) 3 2 -	(2) 30 80 20
5 Tim. R.C. Af. Lad. Oth. B.G.	0.1 13.6 15.9 70.0 0.4			0.1 9.3 46.5 42.6 1.5			2.4 11.9 29.8 54.8 1.2			3.5 10.7 12.0 72.6 1.2		

-	Percent Date Re	age Co corded	aposit : Aug.	ion and 30 An	Point gle 45	Quadr (Im	at Anal proved	<u>ysis</u> P P.Q.)	asture Cut 4	Mixtur Sept.	<u>es 196</u> 1, 19	<u>1</u> 61	
Table	e A 37				(E	xperim Blo	ent II) cks						
Reps.		A			В			C			D		
Mix- tures 6 Tim. R.C. B.T. Oth. B.G.	% ©.3 27.0 1.3 71.4	Hits	<u>G.C.</u>	% <u>Comp.</u> 6.6 50.3 12.0 31.1	<u>Hits</u>	<u>G.C.</u>	% <u>Comp.</u> 4.3 76.1 4.3 15.2	Hits 4 5 4 3	G.C. 40 50 40 30	% <u>Comp.</u> 13.1 61.7 11.5 8.8	Hits 5 8 5 3	G.C. 50 80 50 30	
7 Tim. Af. Oth. B.G.	9.0 65.7 25.3			1.2 69.0 29.8			8.3 46.7 45.0			0.9 95.4 3.7			
8 Tim. Af. Lad. Oth. B.G.	0.1 37.5 59.6 2.8			0.1 36.5 62.5 0.9			1.7 31.7 66.2 0.4	(.2) 2 9 - 1	(2) 20 90 - 10	0.3 45.9 53.6 0.3	1 5 10 -	10 50 100	
9 Tim. Af. B.T. Oth. B.G.	1.4 68.7 1.9 28.0			4.0 88.9 4.9 2.2	·		14.9 37.6 21.8 25.7	3 7 10 -	30 70 100 -	14.8 57.2 21.7 6.3	10 3 9 2	100 30 90 20	
10 Tim. As. Oth. B.G.	11.9 88.1			21.2 0.1 78.7			20.9 63.8 15.3			40.0 12.7 47.3			

- --

	<u>F</u> Da	Percentage Composition and Point Quadrat Analysis Pasture Mixtures 1961 Date Recorded: Aug. 30 Angle 45 (Improved P.Q.) Cut 4 Sept. 1, 1961 (Experiment II)											
	Table	A 37				(Blo	cks	,				
]	Reps.		A			B			C			D	
M: ti	ix- ures	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	<u>G.C.</u>
11	Tim. B.T. Oth. B.G.	3.1 1.8 95.1			29.5 45.9 24.6			10.2 89.8	8 9 3 1	80 90 30 10	26.1 52.2 21.6	8 9 3 1	80 90 30 10
12	Tim. Lad. Oth. B.G.	7.9 87.9 4.2			3.1 96.3 0.6			2.5 97.5 -	1 10 -	10 100 -	1.6 97.6 0.8	(.2) 9 -	(2) 90 - -
13	Br. B.T. Oth. B.G.	22.7 36.1 41.2			0.1 0.2 99.7			13.3 51.7 34.5	58 32	50 80 30 20	22.4 53.5 24.1	3 7 5 1	30 70 50 10
14	R.Can. B.T. Oth. B.G.	0.3 99.7			1.9 45.2 53.0	(.2) 10 8 -	(2) 100 80	0.9 42.3 56.8	10 7 -	10 100 70	8.7 35.1 56.2	-	-
15	K.Bl. B.T. Oth. B.G.	11.4 57.0 31.6			10.2 0.4 89.4			49.1 32.2 18.6	7 6 32	70 60 30 20	41.5 36.9 21.6	9 7 4	90 70 40

TXA

	Record	ed: Se	pt. 20	Angle	450	Cut	5 Oc	t. 25,	1961.			•
Table	A 38_				(Exper Bl	ocks	11)					
Reps.		A			В			C			D	
Mix- tures 1 Tim. R.C. Oth. B.G.	% 17.5 41.3 41.2	<u>Hits</u>	<u>G.C.</u>	% 29.3 61.9 8.8	<u>Hits</u>	<u>G.C.</u>	% <u>Comp.</u> 15.7 81.2 3.0	Hits 11 31 10 7	<u>G.C.</u> 22 62 20 14	<u>Comp.</u> 16.0 68.2 15.8	Hits 5 27 19 8	<u>G.C.</u> 10 54 38 16
2 Tim. R.C. Af. Oth. B.G.	1.6 5.8 55.6 37.0			5.0 11.5 72.7 10.8			8.0 32.9 45.1 14.0			17.1 44.3 2010 18.6		
3.Tim. R.C. As. Oth. B.G.	3.9 24.9 71.2		×	10.8 18.4 70.8			13.8 78.2 1.1 6.9			14.1 84.7 1.0 0.2		
4 Tim. R.C. Lad. Oth. B.G.	1.7 5.3 93.0			12.2 1.6 82.2 3.9			1.9 18.4 73.8 1.0	4 11 37 1 8	8 22 74 2 16	2.1 3.1 94.8 -	2 7 43 5	4 14 86 10
5 Tim. R.C. Af. Lad. Oth. B.G.	2.1 2.5 41.5 53.9			0.5 3.4 64.1 32.0			7.1 9.1 15.9 65.9 2.0			5.7 4.0 19.2 71.0		

Percentage Composition and Point Quadrat Analysis Pasture Mixtures 1961 Recorded: Sent 20 Angle 45° Cut 5 Oct 25, 1961

LXVI

	Percent	age Co	mposit	ion and	Point	Quadr	at Anal	ysis P	asture	Mixtur 61	es 196	1
	Recor	aea: S	ept. 2	O Ang	10 49 (Ex	perime	nt II)	006.	2), 19	01.		
Tab	le <u>A</u> 38					Block	S					
Reps.		A			В			C			D	
Mix- tures	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	% Comp.	Hits	G.C.	Comp.	Hits	G.C.
6 Tim. R.C. B.T. Oth. B.G.	4.5 14.6 80.9			17.0 65.9 6.3 10.7			11.3 80.5 5.1 3.1	8 33 15 - 8	16 66 30 16	30.6 55.9 12.4 1.1	16 27 13 6 9	32 54 12 18
7 Tim. Af. Oth. B.G.	6.7 67.5 25.8			2.4 68.3 29.3			14.4 48.0 37.6			3.3 85.1 11.6		
8 Tim. Af. Lad. Oth. B.G.	1.1 37.8 61.1 -			0.8 56.2 42.2 0.8			3.1 31.7 65.2	2 42 - 7	4 84 - 14	1.4 38.2 60.4 -	2 7 42 - 5	4 14 84 - 10
9 Tim. Af. B.T. Oth. B.G.	3.7 84.3 0.1 11.9			4.3 82.6 0.1 13.1			32.4 29.7 29.7 8.1	14 4 31 7 6	28 8 62 14 12	24.4 50.9 18.5 6.1	18 10 28 8 5	36 20 56 16 10
10 Tim. As. Oth. B.G.	34.8 65.2			42.9 57.1			6.8 93.2			54.7 12.4 32.9		

1

TXAII

		Recor	ded: S	ept. 2	0 Ang	le 45°	'Cu	t 5 (nt TT)	Oct. 2	5, 196	1.		
	Table	e A 38					Bloc	ks					
R	eps.		A			В			C			D	
<u>M:</u> <u>t</u> 1 11	ix- ures Tim. B.T. Oth. B.G.	% Comp. 8.7 87.5 3.8	Hits	<u>G.C.</u>	% <u>Comp.</u> 38.0 12.5 49.5	Hits	<u>G.C.</u>	% <u>Comp.</u> 36.4 50.0 13.6	Hits 11 37 3	<u>G.C.</u> 22 74 6 16	% <u>Comp.</u> 58.5 22.4 19.1	Hits 22 28 5 11	<u>G.C.</u> 44 56 10 22
12	Tim. Lad. Oth. B.G.	4.1 95.5 0.4			10.0 90.0 -			4.7 94.0 1.3	7 45 - 5	14 90 - 10	1.7 98.3 -	1 45 - 5	2 90 - 10
13	Br. B.T. Oth. B.G.	39.1 7.8 52.1			5.7 0.6 93.7			33.7 46.6 19.7	20 31 9 8	40 62 18 16	40.0 34.3 25.7	22 31 11 4	44 62 22 8
14	R.Can. B.T. Oth. B.G.	2.1 0.4 97.5			15.9 19.2 64.9	3 21 13 16	6 42 52 64	2.7 25.0 72.3	1 27 25 8	2 54 50 16	29.7 49.5 20.8		
15	K.Bl. B.T. Oth. B.G.	38.2 26.5 35.3			21.0 0.8 78.2			57.5 24.9 17.6	20 29 7 8	40 58 14 16	43.2 10.8 45.9	16 22 19 8	32 44 38 16

Percentage Composition and Point Quadrat Analysis Pasture Mixtures 1961

LXVIII

LXIX

Ta	ble A	39			(Expei	iment Cuts	t II)				
Bl	ocks	1	2		3				4	5	
Mi <u>tu</u> 1	res Tim. R.C. Oth. B.G.	D 30 172 16	D 32 96 20	A 52 38 48 16	B 16 46 42 36	C 42 58	D -8 34 20 48	C 50 260 20	D 70 90 90	C 24 92 20 14	D 12 76 44 16
2	Tim. R.C. Af. Oth. B.G.	10 158 22 12	28 56 - 40		12 58 32 12 28	8 66 18 26	32 46 (2) 18 40				
3	Tim. R.C. As. Oth. B.G.	38 52 100 - 8	20 54 50 -34		6 18 (2) 90 26	12 46 28 2 36	20 38 20 48				
4	Tim. R.C. Lad. Oth. B.G.	20 156 94 - 6	26 60 84 2 14			6 54 36 - 34	4 24 76 28	(2) 110 120 -	(2) 30 210 20	8 26 128 2 16	4 18 164 10
5	Tim. R.C. Af. Lad. Oth. B.G.	32 126 12 54 4 10	14 110 12 84 -		12 30 42 74 8 16	4 24 38 - 32	6 18 6 84 - 26				
6	Tim. R.C. B.T. Oth. B.G.	34 162 24 - 4	36 84 20 - 22		16 74 44 26 13	16 64 24 4 30	22 62 18 4 30	40 100 80 4 -	80 170 70 30	16 104 32 16	40 80 36 12 18
7	Tim. Af. Oth. B.G.	68 52 - 30	40 60 2 46	36 34 60 22	12 30 62 32	54 6 38 38	22 44 22 44				

Density from Point Quadrat Analysis Pasture Mixtures 1961 (Experiment II)

Τ.	YY
L,	\mathbf{n}

De	ensity	from	Point	Quad	<u>rat A</u> Exper	iment	is Pa	isture	Mixt	ures	1961
Ta	ble A	39	39 Cuts								
B1	ocks	l	2		3			4		5	5
Mi tu	ires	D	D	A	В	C	D	C	D	C	D
8	Tim. Af. Lad.	<u>32</u> 20 134	32 30 108			2 4 54	6 84	(2) 20 230	10 30 230	<u>4</u> 4 164	
	B.G.	1 2	16			- 50	28	10	-	- 14	- 10
9	Tim. Af. B.T. Oth. B.G.	74 22 58 16	48 8 108 22	8 30 24 32 36	18 62 28 40 14	6 (2) 102 10 40	32 8 66 34	50 100 240 -	230 90 260 20 -	40 88 18 12	52 28 98 18 10
10	Tim. As. Oth. B.G.	30 220 - 6	24 92 14 32	16 30 74 28	30 64 18 26	10 32 84 18	10 78 20 40				
11	Tim. B.T. Oth. B.G.	56 74 - 28	50 142 18		22 58 28 26	22 74 8 36	14 36 26 54	120 210 30 10	90 190 40 10	28 108 6 16	56 76 12 22
12	Tim. Lad. Oth. B.G .	24 152 12	18 180 12			12 70 46	4 92 - 30	10 260 - -	(2) 200 - -	14 150 10	2 166 10
13	Br. B.T. Oth. B.G.	48 68 - 30	24 196 6 14	6 102 38 20		24 80 34 24	10 118 20 22	120 250 30 20	30 130 50 10	48 92 18 16	58 116 30 8
14	R.Can. B.T. Oth. B.G.	4 74 - 52	4 100 18 28		4 58 14 38	(2) 76 38 26	6 58 22 40	10 290 70	(2) 360 80 -	2 84 78 16	6 74 28 32
15	K.Bl. B.T. Oth. B.G.	28 50 - 60	40 122 4 14	14 136 16 20		34 82 22 30	34 60 18 32	80 100 30 20	120 150 40	44 72 16 16	36 60 44 16

Donaity from Doint Androt Analyzia Doatuno Mixturoa 1041

|--|

Point Quadrat Analysis with Improved P.Q. at 32.5° Angle Pasture Mixture and Pure Stands. July 27, 1961.

$\underline{\mathrm{T}}$	able_	A 40				<u>Blo</u>	cks						
				(3					I)		
M <u>t</u> 1	ix- ures Tim. R.C. Oth. B.G.	Hits 10 27 9	<u>G.C.</u> 33 90 30	D. 50 240 33	Hits 2 8 2 1	G.C. 20 80 20 10	D. 30 260 20 10	Hits 8 24 7 4	<u>G.C.</u> 27 80 23 13	D. 33 187 30 13	Hits 5 7 5	<u>G.C.</u> 50 70 50	D. 60 210 70
4	Tim. R.C. Lad. Oth. B.G.				3 7 7 -	30 70 70 -	40 150 170 -				3 3 10 1	30 30 100 10	30 40 320 10
6	Tim. R.C. B.T. Oth. B.G.	10 27 16 5	33 90 53 17	40 217 70 17	3 10 3 2	30 100 30 20	40 230 40 20	9 28 14 12 -	30 93 47 40	40 250 77 60 -	6 9 6 3	60 90 60 30	60 220 120 40
8	Tim. Af. Lad. Oth. B.G.				2 4 10 1 -	20 40 100 10	20 60 360 10				5 4 10 1	50 40 100 10	60 50 290 10
9	Tim. Af. B.T. Oth. B.G.				(.1) 10 1 -	30 1 100 10 -	40 8 1 310 10 -				7 10 -	70 40 100 -	70 50 340
11	Tim. B.T. Oth. B.G.				6 10 1	60 100 10 -	70 390 20				9 10 1	90 100 10 -	130 250 10
12	Tim. Lad. Oth. B.G.				2 9 -	20 90 -	20 270 -				3 10 -	30 100 -	60 390 -
13	Br. B.T. Oth. B.G.				2 10 3	20 100 30	50 280 30	10 28 10	33 93 33	60 380 40	3 10 4	30 100 40	30 350 90
		30 poi 3 stat	nts v ions	vith	10 pc 1 st	oints atio	with	1 <u>30</u> p 3 st	ation	s wit ns	h 10 1	point stat:	ts with ion

Analysis performed at cutting time.

Ta	bl <u>e A 40</u>) ^a		Blo	ocks			
			Е			F		
Con	mpo- nts	Hits	G.C.	<u>D.</u>	Hits	<u>G.C.</u>	_D.	
i	Tim. Oth. B.G.	8 3 1	80 30 10	250 40 10	25 12 3	83 40 10	210 57 10	
ii	R.C. Oth. B.G.	8 9 -	80 90 -	220 140 -	28 20 1	93 67 3	303 100 3	
iii	Af. Oth. B.G.				20 27 2	67 90 7	120 90 7	
iv	Br. Oth. B.G.	8 7 -	80 70 -	230 170	29 17 2	87 57 7	227 127 7	
v	Lad. Oth. B.G.	10 - -	100 _	350 _	28 - 2	93 - 7	270 - 7	
vi	B.T. Oth. B.G.	10 2 -	100 20 -	370 20	30 7 -	100 23 -	330 33 -	
vii	Tim. Lad. B.T. Oth. B.G.	4 10 3 -	40 100 30 -	40 310 30 -	1 10 3 -	10 100 30 -	20 410 30	
viii	Tim. Br. Lad. B.T. Oth. B.G.	4 3 10 5 -	40 30 100 50	60 40 300 90	4 1 10 1 1	40 10 100 10 10	50 10 360 10 10	
		10 point 1 stati	s with on		Pure Sta with 3 s Mixtures with 1	ands: 3 station s: 10 p statio	0 points ns points on	

Point Quadrat Analysis with improved P.Q. at 32.5° Angle Pure Stands July 27, 1961.

Pasture Mixtures 1960 - 61Table A41 Cut 1960Blocks													
Block	.ock E						F						
Spec- Tot ies D.M	al % . <u>Comp</u> .	D.M. of Species	Den- sity	<u>G.C.</u>	Y/Unit Area	Total D.M.	D.M. Comp.	D.M.of Species	Den- sity	G.C.	Y/Unit Area		
1 2	3	<u> 4 </u>	_5	_6	8	_2	_3	4	5	6	8		
Tim. 31 R.C. 56 Af. 33 Brome 38 Lad. 43 B.T. 42 R.Can. 40 K.Blue 41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33.0 327.2 38.3 24.1 163.5 146.4 10.4 15.5		20 34 12 38 36 8 16	1.6 9.2 2.0 4.3 1.3 1.0	286 359 378 284 460 372	11.1 54.0 37.5 5.1 22.6 36.7	31.8 193.1 141.8 14.5 104.0 136.5		17 42 15 16 37 35	2.2 3.9 7.8 0.7 2.9 4.0		
Table A42 Cut 1961													
Tim. 150 R.C. 125 Af. 31 Br. 124 Lad. 103 B.T. 60 R.Can. 87 K.Blue 82	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1502 1258 310 1245 1068 600 879 806	30 68	70 70 12 64 68 68 24 52	21.5 18.0 25.8 19.4 15.7 8.8 36.6 15.5	1440 1050 581 1294 1193 715	100 100 100 97.4 98.7	1440 1050 581 1294 1162 706	68 162 36 46 124 52	48 80 26 32 70 38	30.0 13.1 22.4 40.4 16.6 18.6		

Yield per Unit Area of Ground Cover of Pure Stands (gm/plot)
Table A 43

Yield per Unit Area of Ground Cover and per Point Density of the Pure Stands 1961 (gm/plot) Pasture Mixtures

CUT	UT 2 1961Blocks													
					E						F			
Spec- ies 1 Tim. R.C. Af. Br. Lad. B.T. R.Can. K.Blue	Total D.M. 2 3400 1795 544 1841 2091 2419 2754 4161	% <u>Comp.</u> 99.3 99.1 97.5 90.3 100.0 97.9 85.2 99.0	D.M. of <u>Species</u> <u>4</u> 3376 1779 530 1662 2091 2368 2346 4119	Den- sity 5 94 92 22 84 164 158 110 92	G.C. 6 56 58 12 62 88 80 72 92	Y/Point Density 7 35.9 19.3 24.1 19.8 12.8 15.0 21.3 44.8	Y/Unit Area 8 60.3 30.7 44.2 26.8 23.8 29.6 32.6 44.8	Total D.M. 2 3552 1631 814 2520 1876 2245	% <u>Comp.</u> <u>3</u> 100.0 99.4 98.8 95.8 100.0 99.1	D.M. of <u>Species</u> 4 3552 1621 804 2414 1876 2225	Den- sity 5 136 90 14 72 156 102	G.C. 6 78 62 12 50 84 66	Y/Point Density 26.1 18.0 57.4 33.5 12.0 21.8	Y/Unit Area 8 44.5 26.1 67.0 48.3 22.3 33.7
Tim. R.C. Af. Br. Lad. B.T. R.Can. K.Blue	Table 573 1272 946 1272 1469 1196	A 44 56.7 91.2 85.2 41.5 100.0 90.1	Cut 3 325 1160 806 528 1469 1078	46 42 30 62 102 168 63 63	38 36 22 70 74 33 33	7.1 27.6 26.9 8.5 14.4 6.4	8.6 32.2 36.6 11.0 21.0 14.6	823 1382 1080 1058 1228 793	70.5 94.7 84.5 54.2 100.0 86.1	580 1309 913 573 1228 683	44 64 58 24 118 84	34 46 38 72 56	13.2 20.5 15.7 23.9 10.4 8.1	17.1 28.4 25.4 31.9 17.1 12.2

LXXIV

Yield	per	Unit	Area	of	Ground	l Co	ver	and	per	Point	Density	of	Pure	Stands
					W:	Lth :	Poir	nt Qi	ladra	at			(gi	n/plot)
			Re	eadi	ings Ta	iken	\mathtt{at}	Diff	ferer	nt Angl	les C	ut	3 19	96Ī

<u>Table</u>	<u>A 45</u>	P.Q.	inclined	<u>at 4</u>	<u>5°</u>		Blocks							
					E						F			
Spec- ies	Total D.M.	% Comp.	D.M. of Species	Den- sity	G.C.	Y/Point Density	Y/Unit Area	Total D.M.	% Comp.	D.M. of Species	Den- sity	G.C.	Y/Point Density	Y/Unit <u>Area</u>
1	_2	3	4	_5	_6	7	8	2	3	4	_5	_6	_ 7	8
Tim. R.C. Af. Br. Lad. B.T.	573 1272 946 1272 1469 1196	56.7 91.2 85.2 41.5 100. 90.1	325 1160 806 528 1469 1078	46 122 22 44 144 154	28 74 22 34 88 76	7.1 9.5 36.6 12.0 10.2 7.0	11.6 15.7 36.6 15.5 16.7 14.2	823 1382 1080 1058 1228 793	70.5 94.7 84.5 54.2 100. 86.1	580 1309 913 573 1228 683	54 134 26 46 158 114	44 76 22 36 78 68	10.7 9.8 35.1 12.5 7.8 6.0	13.2 17.2 41.5 15.9 15.7 10.0
<u>Table</u>	A 46	P.Q.	inclined a	at <u>3</u> 2	•5° a	t cutting	g_time							
Tim. R.C. Af. Br. Lad. B.T.	573 1272 946 1272 1469 1196	56.7 91.2 85.2 41.5 100. 90.1	325 1160 806 528 1469 1078	250 220 230 350 370	80 80 80 100 100	1.3 5.3 2.3 4.2 2.9	3.1 14.5 6.6 14.7 10.8	823 1382 1080 1058 1228 793	70.4 94.7 84.5 54.2 100. 86.1	580 1309 913 573 1228 683	210 303 120 227 270 330	83 93 67 87 93 100	2.8 4.3 7.6 2.5 4.5 2.1	7.0 14.1 13.6 6.6 13.2 6.8

Yield per Unit Area of Ground Cover and per Point Density of Pure Stands (
--

Pasture	Mixtures	1961
---------	----------	------

Table	A 47_	Cut L	+ 1961					B10	ocks					
					E						F			
Spec- ies	Total D.M.	% Comp.	D.M. of Species	Den- sity	G.C.	Y/Point Density	Y/Unit Area	Total D.M.	% Comp.	D.M. of Species	Den- sity	G.C.	Y/Point Density	Y/Unit Area
1		3	4	_5	6	7	8	2	3	4	_5	6	7	8
Tim. R.C. Af. Br. Lad. B.T. R.Can. K.Bl.	29 109 134 92 140 166 85 82		184 472 528 320 1120 1040 632 584	80 140 120 320 350 180 120	60 80 90 90 100 70 70	2.3 3.0 3.8 2.5 3.0 3.5 4.9	3.1 5.9 8.8 3.6 12.4 10.4 9.0 8.3	33 89 95 103 156		216 712 280 248 824 944	90 210 130 130 170 180	50 70 70 90 80	2.4 3.4 2.2 1.9 4.8 5.2	4.3 10.2 4.0 3.5 9.2 11.8
T able Tim. R.C. Af. Br. Lad. B.T. R.Can. K.Bl.	A 48 266 513 713 325 786 470 662 504	Cut 84.4 90.9 88.9 61.1 99.0 77.4 91.7 98.5	5 <u>1961</u> 225 466 634 199 778 364 570 496	58 104 62 250 140 94 110	46 62 326 100 70 68 66	3.9 4.5 13.8 3.1 2.6 4.5	4.9 7.5 19.8 7.9 5.4 7.9 5.4 7.5	341 681 678 244 760 439	94.1 99.5 89.1 79.4 99.7 82.1	321 678 604 194 758 360	90 160 76 40 190 150	60 80 48 30 78	3.6 4.2 7.9 4.8 2.4	5.4 8.5 12.6 6.1 8.4 4.6

TXXAI

Table	<u>A 49</u>					Bloc	ks					
		A			B			C			D	
Mixt.	D.M. of	G.C.	Y/Unit	D.M. of	G.C.	Y/Unit	D.M. of	G.C.	Y/Unit	D.M. of	G.C.	Y/Unit
<u>No.</u>	Component		<u>Area</u>	Componen	<u>t</u>	Area	<u>Componen</u>	<u>t</u>	<u>Area</u>	Componen	<u>t</u>	Area
$\frac{1}{1}$	4	6	8	4	6	8	_4_	6	8	4	6	8
Tim.1	49	13.0	3.8	41	4.0	10.2	20	8.0	2.5	34	6.0	5.7
2	35	6.0	و،ځ	56	12.0	4.7	30	6.0	5.0	27	8.0	3.5
1	18	4.0	4.5	49	6.0	8.2	11	6.0	1.8	17	2.0	8.5
4	45	8.0	2.6	52	8.0	6.5	21	10.0	2.1	32	6.0	5.3
2	47	6.0	7.8	28	2.0	14.0	30	6.0	5.0	26	2.0	13.0
0	40	6.0		29	3.0	2.7	20	_6.0	3.3	18	4.0	4.5
á á	104		10.7	04	12.0	7.0	28	14.0	2.0	52	10.0	5.2
0			0.7	103	0.0	12.9	34	8.0	4.2	59	14.0	4.2
20	111 117	10.0	7.8	+⊥ 24	2.0	20.7	20	10.0	2.0	27	6.0	4.5
10	51	4.0	12.8	<u> </u>	2.0	10.0	10	10.0	2.0		7.0	2.3
12	50	8.0	7 4	73	8.0	0.0	941 215	10.0	4.L	24	6.0	4.0
	13	6.0	21	70	8.0	9.0	32	12.0	2.9	27	0.0	3.4
VTTT	13	2 0	63	14	8.0	1 7						
TX	17	16.0	1.0	20	10.0	2 0						
Br.13	18	8.0	2.2	54	8.0	6.8	10	14 0		10	6 0	20
VIII	13	10.0	1.3	34	10.0	34	10	1+.0		14	0.0	2.0
ĪX	-5	8.0	0.9	7	8.0							
R.Can. 14	6	4.0	1.5	7	2.0	3.5	13	2.0	65	10	20	50
K.B1.15	ě	2.0	4.ó	13	8.0	1.6	<u>6</u>	6.0	1 3	10	<u> </u>	25
				-5			Ũ	0.0	ر • ــ	10	+ •0	2.9

Yield per Unit Area of Ground Cover of the Grass Components (in gm/plot) Pasture Mixture 1960 (Experiment II)

LXXVII

Table	<u>A 50</u>					Block	s					
		A			B			C			5	
Mixt.	D.M. of	G.C.	Y/Unit	D.M. of	G.C.	Y/Unit	D.M. of	G.C.	Y/Unit	D.M. of	G.C.	Y/Unit
NO.	Component		<u>Area</u>	Component		<u>Area</u>	<u>Component</u>		<u>Area</u>	Component		Area
<u></u> _	4	6	8	4	6	8	4	6		<u> </u>	6	8
R.C.1	325	37.0	8.7	370	36.0	10.3	205	42.0	4.9	310	40.0	7.8
2	244	10.0	±₹•6	280	12.0	23.3	278	26.0	10.7	222	26.0	8.5
3	T03	32.0	- 2.47	214	24.0	8.9	44	20.0	2.2	203	26.0	7.8
4 5	223	12.0	10.0	131	26.0	5.0	167	34.0	4.9	230	24.0	9.6
2	100	20.0	8.4	229	20.0	11.4	181	28.0	6.5	238	26.0	9.2
1 F 2	241	30.0		204	30.0	6.8	T33	26.0	5.1	178	32.0	5.6
A1. 2	290	0.0	49.3	337	14.0	24.1	30	6.0	5.0	12	2.0	6.0
2	203	4. 0	39.0	402	0.0	07.0	22	6.0	9.2	26		23.6
á	202	4.0	52 8	284	2.0	40.1	20	2.0	14.0	378	10.0	37.8
å	223		22.0	20 1	12.0	20 1	60	4.0	17.0	213	2.3	106.5
τx	51	10.0	12^{2}	-77 - 77	4 0	5704	9	4.0	2.2	60	2.0	34.0
Lad 4	238	40.0	6.0	262	28 0	9.7	82	14.0	50	101	26.0	F 0
5	210	20.0	10.5	202 1上上	12 0	12 0	25	14.0	2.9	131	20.0	2.0
á	302	28.0	10.8	361	40 0	12.0	111	24.0	0.0	100	10.0	2.9
12	204	28.0	7.3	495	12 0	<u>у.</u> 0	100	24 0	2.2	170	24.0	7.4
VII	64	24.0	2.7	77 73	36 0	2 0	190	20.0	(•5	332	42.0	7.9
VIII	89	16.0	5.6	7 J 57	12.0	47						
B.T.6	32	14.0	2.3	58	8.0	7.2	21	16 0	10	ليل	8 0	
9	139	8.0	17.4	82	6.0	13.7	り1 7日	14 0	5 3	125	16.0	2.7
1Í	- 9 0	26.0	3.5	187	18.0	10.4	95	18 0	2.2	206	10.0	20.4
13	<u>72</u>	16.0	4.5	135	12.0	11.2	114	18 0	J•J	200	14.0	20.0
14	92	12.0	7.7	179	26.0	6.9	109	12.0	9.1	215	34 0	6.2
15	101	18.0	5.6	136	26.0	5.2	92	18.0	5.1	160	32 0	0.J
VII	76	8.0	9.5	33	18.0	1.8	/-	1 0.0	/•±	1 00	J2•0	2.0
VIII	76	8.0	9.5		18.0	5.1						
As. 3	256	12.0	21.3	197	12.0	16.4	145	24.0	7.3	102	18.0	5 7
10	237	24.0	10.0	191	34.0	5.6	204	34.0	6.0	142	28.0	5.1

Yield per Unit Area of Ground Cover of the Legume Components (gm/plot) Pasture Mixture 1960 (Experiment II)

LXXVIII

Table A5	<u></u>					Blo	ocks					
			C						D			
Mixt. No. 2	Total D.M. 2	% <u>Comp</u> . <u>3</u>	D.M. of Component	Density	G.C. 6	Y/Unit Area 8	Total D.M. 2	<u>Comp.</u>	D.M. of Component	Density	G.C. 6	Y/Unit Area 8
Tim. 1 2 3 4 5 6 7 8 9 10 11 12 VII VII VII VII VII Sr. 13 VIII IX R.Can.14 K.B1.15	$1498 \\ 1688 \\ 1658 \\ 1525 \\ 13837 \\ 1657 \\ 1764 \\ 1238 \\ 10815 \\ 6847 \\ 1115 \\ 6847 \\ 64$	7.1 6.2 8.9 10.35 10.56 19.64 0.9 250.0 51.7 14.8	$ \begin{array}{r} 106 \\ 105 \\ 147 \\ 165 \\ 157 \\ 145 \\ 121 \\ 252 \\ 148 \\ 160 \\ 251 \\ 185 \\ 289 \\ 137 \\ 194 \\ 10 \\ 39 \\ 9 \\ 96 \\ \end{array} $		222286800666846600842 322286800666846600842	5.42.40804225241870220 1.36.3.83.6455241870220 1.391223	$1492 \\ 1609 \\ 2034 \\ 1726 \\ 1938 \\ 1624 \\ 1806 \\ 1823 \\ 1000 \\ 1777 \\ 813 \\ 1036 \\ 1247 \\ 1247 \\ 1247 \\ 1247 \\ 786 \\ 444 \\ 786 \\ 446 \\ 786 \\ 446 \\ 786 \\ 446 \\ 786 \\ 446 \\ 786 \\ 446 \\ 786 \\ 446 \\ 786 \\ 446 \\ 786 \\ 446 \\ 786 \\ 7$	7.1 9.2 11.1 10.3 10.3 10.4 13.6 9.7 11.5 25.36 10.9 10.9 32.4	$ \begin{array}{r} 106 \\ 148 \\ 226 \\ 205 \\ 200 \\ 135 \\ 181 \\ 226 \\ 135 \\ 181 \\ 226 \\ 135 \\ 141 \\ 192 \\ 88 \\ 152 \\ 192 \\ 88 \\ 152 \\ 192 \\ 209 \\ 26 \\ 37 \\ 86 \\ 144 \\ \end{array} $	30 30 30 32 32 34 35 20 36 82 40 36 82 40 36 82 40 36 82 40 36 82 40 36 82 40 36 82 40 36 82 40 36 80 24 80 80 24 80 80 24 80 80 24 80 80 24 80 80 24 80 80 24 80 80 80 80 80 80 80 80 80 80 80 80 80	240264620260662080420 3524162080420 20	4.81 1728516060599566607 128537243256352237 17243256352237

Yield per Unit Area of Ground Cover of the Grass Components (gm/plot) Pasture Mixture 1961 Cut I

TXXIX

<u>Ta ble</u>	<u>A</u> 52					B	locks					
Mixt. No.			C	and states and a set of set	- و م و د				1	D		
Mixt. No.	D.M.	Comp.	D.M. of Component	Density	G.C.	Y/Unit Area	Total D.M.	% Comp.	D.M. of Component	Density	G.C.	Y/Unit Area
1	2	3	_4_	_5	6	8	2	3	<u> </u>	5	6	8
R.C. 1	1498 1688	92.9	1 391		74 74	18.8	1492.	91.1 84 6	1359	176	76 84	17.9
3	1654	28.6	473		52	9.1	2034	33.3	677	52	36	18.8
4	1458	53.0	773		42	18.4	1726	59.3	1023	156	76	13.5
5	1525	41.4	631		40	15.8	1938	58.6	1135	126	64	17.7
6	1688	73.7	1019		68	15.0	1624	81.7	1326	162	78	17.0
#⊥• < 5	1525	20.7	202		10	37.4	1038	10.2	200	12	12	5.6 16 7
7	437	71.7	· 313		-4	78.2	1306	88.3	1595	52	38	42.0
8	1657	19.6	325		6	54.2	1823	37.2	678	20	ĭ8	37.7
_9	753	23.5	177		6	29.4	1000	29.5	295	22	22	13.4
IX	- 684 - 1459	72.9	499		12	41.6	461	65.8	303	10	_8	37.9
цаа. 4 5	1525	32.7	52L		50		1723	27.1	467	94	58	8.0
8	1657	58.7	y 973		66	14 7	1823	19.0	300	24 124	30	10.2
12	1232	79.6	981 ·		68	14.4	1728	6 8.9	1536	152	84	18.3
VII	1088	57.4	624		54	11.6	1036	52.3	- <u>542</u>	- <u>92</u>	54	10.0
VIII	1115	43.1	481		50	9.6	1247	55.I	687	74	48	14.3
B.T. 6	1383	15.8			24	9.1	1624	10.0	162	24	20	8.1
11	723 561	20.9 71 4	420		42 46	87	1000	54.5	545	58	44	12.4
13	776	75.0	582		40	14.6	731	70.5	002 515	68	フ2 54	12.7
14	B 547	96.6	528		66	8.0	786	87.3	686	74	46	14.9
15	647	85.2	551		52	10.6	444	64.7	287	50	34	8.4
	1088	21.3	232		18	12.9	1036	38.1	395	28	24	16.4
VG 3 ATTT	145年 165年	47.9 62 5	209		46	6.3	1247	30.6	382	40	32	11.9
H3.)	1074	04.7	1034		70	14. 8	2034	53.3	1084	100	56	19.4
10	1764	70.9	1251		84	14 0	1777	94.1	1672	220	92	18.2

Yield per Unit Area of Ground Cover of the Legume Components (gm/plot) Pasture Mixture 1961 Cut I

LXXX

	Table	A53		<u> </u>		Bloc	ks					
Mixt.	Total	%	D.M. of	A G.C. Y/U.A. Total					D.M. of	B	G.C.	Y/U.A.
No. 1	<u>D.M.</u>	$\frac{\text{Comp}}{3}$	Component 4	Density	6	<u>of G.C</u> . _ <u>8</u>	<u>D.M.</u>	$\frac{\text{Comp}}{3}$	Component 4	Density	6	$\frac{\text{of G.C}}{8}$
Tim 1 2 3 4 5 6 7 8 9 10 11 12 Brome13 R.Can.1 K.Bluel	$ \begin{array}{r} 1033 \\ 2231 \\ 1822 \\ 2025 \\ 2067 \\ 2077 \\ 2042 \\ 2123 \\ 2416 \\ 1445 \\ 2652 \\ 2533 \\ 2581 \\ \end{array} $	58.0 11.5 9.4 17.3 14.9 14.3 314.3 25.0 25.0 23.4 0.2 3.3	599 257 179 358 299 672 398 398 674 398 680 484 4 4 4 5		24 8 12 16 12 24 8 28 28 28 28 28 28 28 28 20	25.0 32.1 14.9 22.0 29.8 24.9 16.8 10.8 8.6 17.4 23.6 15.0 15.7 4.2	$1961 \\ 2190 \\ 1898 \\ 1935 \\ 2088 \\ 2131 \\ 2275 \\ 2104 \\ 2250 \\ 1272 \\ 2388 \\ 1825 \\ 2112 \\ 2688 \\ 2142 \\ $	29.0 15.6 12.5 9.4 7.2 12.1 25.0 19.8 15.7 22.2 13.9 1.6 1.4 6.9	569 342 237 182 150 258 569 417 358 569 417 358 530 418 254 388 148		38 28 122842820268 38 122842820268 38	$15.0 \\ 12.2 \\ 13.0 \\ 12.5 \\ 12.7 \\ 15.0 \\ 17.4 \\ 21.0 \\ 16.6 \\ 25.0 \\ 17.0 \\ 3.9 \\ 3.9 \\ 15.0 \\ 17.4 \\ 17.0 \\ 3.9 \\ 1000 \\ 100$

YIELD per Unit Area of Ground Cover of the Grass Component Pasture Mixture 1961 Cut 2

T	able A 5	4					Block	S					
			C							D			
Mixt. No.	Total D.M.	Comp.	D.M. of Component	Den- sity	G.C.	Y/Unit Area	Total D.M.	% Comp.	D.M. of Component	Den- sity	G.C.	Y/Point Density	Y/Unit Area
1	2	3	4	5	6	8	2	3	4	5	6		8
Tim. 1 Tim. 1 2 3 4 5 6 7 8 9 10 11 12 vii viii ix Br. 13 viii ix	2042 2074 1773 2096 2313 2087 1267 2111 2360 1756 2347 2206 2294 2294 1096 2067 2241 1096 2067 2241	11.6 18.8 16.0 11.3 16.0 11.3 7.6 15.4 11.5 15.4 11.5 12.1 16.1 17.2 10.6 32.1 7.6 32.1 7.6 15.1 17.2	$ \begin{array}{c} 237 \\ 390 \\ 284 \\ 237 \\ 176 \\ 321 \\ 561 \\ 243 \\ 510 \\ 212 \\ 378 \\ 379 \\ 498 \\ 352 \\ 153 \\ 153 \\ 16 \\ 20 \\ \end{array} $	34 18 60 4 14	02222222413123124148	$ \begin{array}{c} 10.8 \\ 17.7 \\ 12.9 \\ 10.8 \\ 14.6 \\ 12.2 \\ 17.3 \\ 14.1 \\ 15.7 \\ 15.7 \\ 15.7 \\ 14.8 \\ 7.6 \\ 10.9 \\ 1.0 \\ 2.0 \\ 1.0 \\ 2.0 \\ 1.0 \\ 0.0$	1987 1735 1535 1885 1782 1918 2009 2096 2038 1161 2069 2079 2398 2207 499 1742 2207 2398	5 18.1 17.4 17.4 17.1 1.1 18.0 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4	374 297 264 215 2059 281 153 3984 520 3984 5465 318 225 3283 200 100	3222114342514864444	28 28 20 16645266246244240	11.7 10.6 13.2 8.3 14.6 19.9 7.0 4.8 16.7 28.9 10.7 4.6 17.7 4.6 17.7 4.6 17.7 1.6 1.7	13.4 14.8 16.5 14.9 8.9 5.0 18.2 3.4 18.2 5.9 11.0 18.2 5.7 1.3 60 10
R.Can. 14 K.Bl. 15	^B)2688 2152	1.4 5.0	38 108	<u> </u>	6 24	6.3	2212 963	2.4	53	-4 40	-4 34	1.3	13.2 1.8

Yield per Unit Area of Ground Cover of the Grass Components Cut 2 (gm/plot) Pasture Mixtures 1961

	Table A	55					Blocks					
			A						В			
Mixt.	Total	%	D.M. of	Den-		Y/U.A.	Total	%	D.M. of	Den-		Y/UnA.
No.	D. M.	Comp.	Component	<u>sity</u>	<u>G.C.</u>	of G.C.	D. M.	Comp.	Component	<u>sity</u>	<u>G.C.</u>	of G.C.
1	2	_3_	4	_5	_6	8	2	3	4	_5	_6	8
R.C. 1	1033	37.0	382		44	8.7	1961	66.7	1307		52	25.1
2	2231	27.1	605		20	30.2	2190	33.8	740		42	17.6
3	1822	35.9	654		50	13.1	1898	41.3	784		40	19.6
4	2025	14.7	298		24	12.4	1935	18.7	362		30	12.1
>	2067	18.3	378		28	13.5	2088	21.7	453		42	10.8
0 ۸۴ ۵	2077	49.2	1020		40	21.4	2131	77.3	1647		56	29.4
A1. 2	2067	12 K	070		30	27 0	2088	40.0	1051		20	37.5
7	2007		1207		30	27.9	2000	43.4	900		20	42.3
8	2123	18.7	397		22	18 0	2104	22 8	480		22	21 8
9	2416	70.7	1708		34	50.2	2250	67.5	1519		46	33.0
Lad. 4	2025	67.9	1375		72	19 . 1	1935	71.9	1391		60	23.2
5	2067	50.9	1052		48	21.9	2088	27.7	578		46	12.6
8	2123	67.0	1422		76	18.7	2104	57.4	1208		66	18.3
12	2062	76.7	1582		68	23.3	1825	86.1	1571		78	20.1
B.T. 6	2077	2.1	44		4	11.0	2131	9.1	194		24	8.1
. 9	2416	5.4	130		12	10.9	2250	8.4	189		16	11.8
11	2652	10.5	278		22	12.7	2388	64.5	1540		50	30.8
<u>ز 1</u>	2533	57.4	1454		68	21.4	2112	6.4	135		12	11.3
14	2007	9.4	194		34	2.7	2600	90.4	2430		74	32.8
17 10 17	1800	90.2	2320		16	33.5	1808	13.0	270		44 1),	0.7
AS. 3 10	1445	7.0	101		34	3.0	1272	43.1	548		58	9.4

Yield per Unit Area of Ground Cover of the Legume Components Cut 2 Pasture Mixtures 1961

TXXXIII

	Table A	56					Block	S						
			C							D				_
Mixt.	Total	%	D.M. of	Den-		Y/Unit	Total	%	D.M. of	Den-		Y/Point	Y/Unit	_
No.	<u>D.</u> M.	Comp.	<u>Component</u>	<u>sity</u>	<u>G.C.</u>	Area	D. M.	Comp.	Component	<u>sity</u>	G.C.	Density	Area	_
1	2	3	<u> </u>	_5	_6	8	2	3	4	5	6	7	8	
R.C.1	2042	88.4	1805		56	32.2	1987	81.2	1613	96	56	16.8	28.8	
2	2074	69.3	1437		68	21.1	1735	76.2	1322	56	38	23.6	34.8	
3	1773	55.6	986		36	27.4	1535	58.6	900	54	38	16.7	23.7	
4	2096	38.7	811		58	14.0	1885	40.0	754	60	44	12.6	17.1	
5	2314	37.1	858		44	19.5	1782	34.5	615	110	60	5.6	10.2	
6	2087	71.4	1490		62	24.0	1918	69.2	1327	84	42	15.8	31.6	
AI. 2	2074	7.9	164		8	20.5	1735	6.7	116	2	2	58.0	58.0	
2	1047	22 1	44		12	22.0	2000	82.0	7/19	12	10	0.6	0.7	
á	2111	18 0	380		20	33.9	2009	25 1	1000	20	42	27.0	39.7	
ġ	2360	6.7	158		- 6	26.3	2030	29.4 26 L	528	30	20	47 2	20.0	
ix	1096	65.6	719	6	4	179.7	499	51.6	255	2	2	127 5	127 5	
Lad.4	2096	50.0	1048	U	60	17.5	1885	48.6	916	84	62	10.9	14.8	
5	2314	53.3	1233		54	22.8	1782	53.6	955	84	58	11.4	16.5	
8	2111	70.5	1488		84	17.7	2092	66.4	1392	108	68	12.9	20.5	
12	2206	82.0	1809		78	23.2	2079	75.0	1559	180	86	-8.7	ī8.í	
vii	2294	72.6	1665	126	76	21.9	2398	71.3	1710	64	48	26.7	35.6	
viii	2241	77•7	1741	102	66	26.4	2207	76.3	1684	98	70	17.2	24.1	
B.T.6	2087	12.1	252		20	12.6	1918	12.1	232	20	14	11.6	16.6	
.9	2360	70.2	1657		62	26.7	2038	52.8	1076	108	58	10.0	18.6	
	2344	83.9	1969		76	25.9	2069	72.7	1504	142	72	10.6	20.9	
14	2067	00.2	1712		64	26.7	1742	86.0	1498	196	82	.7.6	18.3	
15	2152	92.0	2002		7 4 62	30.0	2212	67.0	1482	100	58	14.8	25.6	ы
vii	2294	5 7	131	46	30		2208	90.7	201	755	70	-7-Z	12.5	X
viii	2241	10.6	238	62	46	52	2207	8 2	182	20 20	20	2.1	7.3	R
As. 3	1773	25.0		02	رن د م				105	57	<u> - 7</u>	9.4	7.0	V
10	-(/)	29.7	496 1 496		50	7.9	1735	23.4	359	50	32	7.2	11.2	
T0	1756	24.	1 423		4ð	0.0	TTOT	04.1	720	92	20	1.7	T4•0	

Yield per Unit Area of Ground Cover of the Legume Components Cut 2 (gm/plot) Pasture Mixtures 1961

	Table	<u>A 57</u>				Blo	cks	-					
			A						В				
Mixt. No. 1	Total D.M. 2	% <u>Comp</u> . 3	D.M. of Component 4	Den- sity 5	<u>G.C.</u> 6	Y/U.A. of G.C. 8	Total D.M. 2	Comp. 3	D.M. of Component 4	Den- sity 5	<u>G.C.</u> 6	Y/U.A. of G.C. 8	
Tim 1 2 3 4 5 6 7 8 9 10 11 12 Br.13 R.Can.14 K.Bl. 15	$1123 \\ 1784 \\ 1505 \\ 1486 \\ 1679 \\ 1618 \\ 1767 \\ 1739 \\ 1930 \\ 1269 \\ 1496 \\ 1455 \\ 1371 \\ 1432 \\ 1229 \\ $	26.9 4.1 7.6 3.00 10.1 2.0 4.7 6.0 11.1 9.1	302 73 111 83 50 32 178 35 237 63 87 152 112	52 36 16 6 14	42 44 12 88 20 82 10 10 6 14	7.2 18.3 27.8 20.8 4.0 6.4 1.7 10.6 19.8 8.7 25.4 8.0	1184 1722 1515 1601 1774 1241 1886 1828 1937 821 1098 1409 1786 1071 1870	13.0 3.6 8.2 4.6 52.5 322 8.1 2.9	154 62 92 139 39 57 87 37 108 263 247 114 31	16 12 6 12 16 12 18 30 22	12 12 14 10 12 10 12 12 10 12 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12	12.8 5.2 15.4 10.0 3.9 4.1 7.2 3.0 6.8 10.1 12.4 19.0 7.8	

Yield per Unit Area of Ground Cover of the Grass Components Cut 3 Pasture Mixtures 1961.

	Table	A 58					Bloc	ks						
				C						D				
Mixt.	Total	%	D.M. of	Den-		Y/Point	Y/Unit	Total	%	D.M. of	Den-		Y/Point	Y/Unit
No.	D. M.	Comp.	C <u>omponent</u>	<u>sity</u>	<u>G.C.</u>	<u>Density</u>	<u>Area</u>	D.N.	Comp.	Component	<u>sity</u>	<u>G.C.</u>	Density	<u>Area</u>
1	2	3	4	5	_6	7	8	2		<u> </u>	5	_6	7	8
Tim 1	1048	4.9	51	-4	-4	12.8	12.8	1055	7.5	79	8	8	9.9	9.9
2	1248	3.9	49	8	8	6.1	6.1	1118	5.4	60	32	24	1.9	2.5
3	1022	7.9	81	12	10	6.7	8.1	981	8.1	79	20	16	4.0	5.0
4	1315	1.9	25	6	6	4.2	4.2	1925	4. 2	36	4	4	0.9	0.9
2	1220	2.2 6 7	29 82	16	- т Ц	7•1 5 2	7.1 5 0	1040	12 7	133	22	16	5.2	J•2
0 7	910	5.5	50	54	34	0.9	1.5	1820	2.8		22	18	2.3	2.8
8	1344	2.5	άŭ	2	2	16.8	16.8	1677	0.7	12	6	-6	2.0	2.0
9	1068	10.8	115	6	6	19.2	19.2	iioi	13.6	150	32	24	4.7	6.2
10	1020	4.4	45	10	8	4.5	5.6	544	36.6	199	10	10	19.9	19.9
11	1019	12.2	124	22	16	5.7	7.8	700	27.6	193	14	14	13.8	13.8
12	1203	3.1	37	12	12	3.1	3.1	1460	1.9	28	4	4	6.9	6.9
vii	1293	0.9	12	14	$\frac{12}{2}$	0.9	1.0	1268	2.5	32	6	6	2.3	2.3
V111	1376	2.1	29	(2)	$\left(2\right)$	14.7	14.7	1209	1.1 6 8	17	26	18	2.0	2.0
Br 13	1274	2.1	106	20	20	12.9	<u>9</u> .0	1143	8.9	101	10	10	10.2	10.2
viii	1376	0.1	1.4	2	20	0.7	0.7	1509	0.3	±~5	-6	-6	0.8	0.8
ix.	· 820	3.0	25	16	12	1.6	2.1	583	7.6	կե	24	20	1.8	2.2
R.Can. 14	³⁾ 1071	2.9	21	4	4	0.1	7.8	974	4.1	40	6	6	6.7	6.7
K.Bl. 15	1285	21.6	278	34	30	8.2	8.2	925	18.3	169	34	26	5.0	6.5

Yield per Unit Area of Ground Cover of the Grass Components Cut 3 (gm/plot) Pasture Mixtures 1961

LXXXVI

Ta	IDIE A 5	<u>9</u>				Block	(S					
			A						В			
Mixt.	Total	%	D.M. of	Den-		Y/U.A.	Total	% D	.M. of	Den-		Y/U.A.
No.	<u>D.M.</u>	Comp.	<u>Components</u>	<u>sity</u>	<u>G.C.</u>	of G.C.	<u>D.M.</u>	<u>Comp.Co</u>	mponents	<u>sity</u>	<u>G.C.</u>	of G.C.
_1	2	3	<u> </u>	_5	_6	8	2	_3	4	_5	_6	8
R.C. 1	1123	56.4	633	38	28	22.6	1184	81.3	1531	23	18	85.1
2	1784	8.2	146		26	5.6	1722	24.7	425	58	50	_8.5
3 L	1505	14.0	223		28 14	0.0 7 1	1601	127	239	19	12	19.9
5	1679	6.4	107		16	6.7	1774	5.9	105	30	22	4.8
6	1618	20.6	333		<u>3</u> õ	11 . 1	1241	82 . 7	1026	74	48	21.4
Af. 2	1784	45.4	810		14	57.9	1722	65.1	1121	32	26	43.1
2	1679	$\frac{18.1}{72.7}$	304	2h	12	25.3	1774	52.6	933	42	30	31.1
8	1739	16.8	292	74	12	24.3	1828	28.8	526	20	26	20.2
9	193ó	79.4	1532	30	28	54.7	1937	79.9	1548	62	50	31.0
Lad. 4	1486	87.8	1305		82	15.9	1601	77.8	1246		66	18.9
5	1679	72.4	1216		68	17.9	1774	39.2	695	74	50	13.9
12	1455	01.2 01 8	1336		76	10.0	1620	60.9 00.7	1279		70 72	10.9
B.T. 6	1618	0.8	13		6	2.2	1241	6.0	74	երեր	32	2.3
9	1930	4.1	79	24	18	4.4	1937	3.5	68	28	24	2.8
11	1496	1.3	_19		4	4.9	1098	41.6	457	58	46	9.9
13	1371	53.1	728	102	64	11.4	1786	(5 0	TO	90	r 1.	10.0
15	1229	75.0	922	136	76	12.1	1870	07.7	704	0i)	54	13.0
As. $\overline{3}$	1505	(1.9)) <u>19</u>	(Ž)	(ź)	9.5	1515	(2,3)	39		(2)	19.5
10	1269	2.0	25	30	22	1.1	821	12.5	133	64	40	3.3

Yield per Unit Area of Ground Cover of the Legume Components Cut 3 Pasture Mixtures 1961

	Table	A 60					Blocks	5						
			C							1	D			
Mixt.	Total	%	D.M. of	Den-		Y/Point	Y/Unit	Total	%	D.M. of	Den-		Y/Point	Y/Unit
No.	D. M.	Comp.	<u>Component</u>	<u>sity</u>	<u>G.C.</u>	Density	Area	D.M.	Comp.	Component	<u>sity</u>	G.C.	Density	Area
1	_2	3	<u> </u>	_5	6	7	8	2	3	4	5	6	7	8
R.C.1	1048	94.4	989	42	32	23.6	30.9	1055	84.2	2 888	34	32	26.1	27.8
2	1248	66.7	832	66	50	12.6	16.6	1118	79.8	8 892	46	36	19.4	24.8
3	1022	86.4	883	46	38	19.2	23.2	981	78.1	. 766	38	30	20.2	25.5
4	1315	26.8	352	36	28	9.8	12.6	1425	. 2•3	133	24	22	5.5	6.0
2	1296	27.0	350	24	18	14.6	19.4	1289	17.7	228	18	16	12.7	14.3
AF 2	1248	20 0	y 990 y 261	64	40	エフ・D 山口 5	21.7	1049	73.	1 150	$\frac{62}{(2)}$	40	12.5	16.2
n	1296	10.9	141	4	4	35.3	35.3	1289		7 99	(2)	(2)	16 5	16 5
7	910	85.4	. 777	6		129.5	129.5	1820	93.8	3 1707	44	30	56.9	38.8
8	1344	17.8	239	ų,	4	59.8	59.8	1677	20.9	350	6	Ĩ	58.4	58.4
9	1068	26.2	280	2	2	140.0	140.0	1101	28.7	7 316	8	8	39.5	39.5
ix	820	87.3	716	_6	6	119.3	119.3	583	76.0) 443	2	2	221.5	221.5
Lad.4	1315	71.3	938	54	44	17.4	21.3	1425	85.6	5 1220	76	62	16.0	19.7
2	1296	59.9	776	30	30	20.4	25.9	1289	73.1	942	84	58	11.2	16.2
12	1202	79.7	1060	24 70	40	19.0	23.2	1040	70.3		84	64	15.6	20.5
vii	1203	97.8	1265	76	52	16.6	24.3	1268	90.0	1225	92 112	04 76	17.6	22.4
viii	1376	95.8	1318	86	50	15.3	26.4	1509	97.3	1468	90	66	16.3	22.2
B.T.6	1230	10.0	123	24	íð	 5.1	6.8	1049	íi.9	125	íð	16	6.9	7.8
9	1068	57.7	' 616	102	54	6.0	11.4	1101	54.4	• 599	66	44	9.1	13.6
11	1019	85.0	866	74	48	11.7	18.0	700	67.6	5 473	36	28	13.1	16.9
13	B)1274	83•3	1061	80	56	13.3	19.0	1143	86.2	917	108	72	8.5	12.7
14	1285	65.7	704	80	54	13.0	8.8	974	67.0	653	58	444	11.3	14.8
エクマゴゴ	1203	00.0	004 17	о0 00	フ <u>ィ</u>	10.0	17.0	1268	63.4		60	44	9.8	T3·3
viii	1376	2.0	28	10	8	2.8	3 L	1500	1 4	7 <u>11</u> 1 21	16	12	2.0	2.2
As. 3	1022	2.0	3 30	28	26	1 1	1 2	- 709 081		7 66	20	16	33	1.0 1
10	1020	3.0) 31	32	24	1.0	1.3	544	56-	3 306	78	54	3.9	5.7

Yield per Unit Area of Ground Cover of the Legume Components Cut 3 (gm/plot) Pasture Mixtures 1961

Blocke

LXXXVIII

Yield per Point and per Unit Area of Ground Cover of Mixture Components with P.Q. taken at Cutting (gm/plot) Pasture Mixtures Cut 3 1961

	<u>Table A</u>	61]	Blocks							
				C						I)				
Mixt.	Total	%	D.Mt.of	Den-		Yield/	Y/U.A.	Total	%	D.Wt. of	Den-		Yield/	Y/U.A.	
No.	D.Mt	Comp.	<u>Component</u>	<u>sity</u>	<u>G.C.</u>	Point	G.C.	D.Wt.	Comp.	Component	<u>sity</u>	G.C.	Point	G.C.	
1		<u>_3</u> _	4	_5	_6		8	2	3	4	_5	6		8	,
Tim 1	1048	4.9	9 51	30	20	1.7	2.5	1055	7.5	79	60	50	1.3	1.6	
4	_B 1315	1.9	25	40	30	0.6	0.8	1425	2.5	36	30	30	1.2	1.2	
6	- 1230	6.7	82	60	60	1.4	1.4	1049	12.7	133	40	30	3.3	4.4	
8	1344	2.5	34	20	20	1.7	1.7	167	0.7	12	60	50	0.2	0.24	
	1068	10.0		40	30	2.9	3.8	1101	13.6	150	70	70	2.1	2.1	
17	1019	12.2	2 124	70	60	1.7	2.1	700	27.6	193	130	100	1.5	1.9	
∠⊥ vii	1203	2.1	$\frac{37}{12}$	20	20	1.0	1.0	1460	1.2	28	60	30	0.5	0.9	
viii	1376	21	20	40	40	0.5	0.3	1200	2.7	32	20	10	1.6	3.2	
Br. 13	1274	8.3	106	50	30	21	35	1142	8 0	101	20	40	0.3	0.4	
viii	1376	0.1	1.4	40	30	0.04	0.05	1509	0.3	5	10	10	3. 1 0.5). 4 0 5	
R.C.1	1048	94.4	989	260	80	3.8	12.4	1055	84.2	888	210	70	4.2	12.7	
4	p1315	26.8	352	150	70	2.3	5.0	1425	9.3	133	- <u>4</u> 0	ίŏ	3.3	-4.4	
6	B 1230	81.0	996	220	90	4.5	11.1	1049	73.9	775	230	100	3.4	7.8	
Af. 8	1344	17.8	3 239	60	40	4.0	6.0	1677	20.9	350	50	40	7.0	8.8	
9	1068	26.2	2 280	2	2	140.0	140.0	1101	28.7	316	<u>40</u>	30	7.9	10.5	
Lad.4	1315	71.3	938	170	70	5.5	13.4	1425	85.6	1220	320	100	3.8	12.2	
8	1344	79.5	1068	360	100	3.0	10.7	1677	78.3	1313	290	100	4.5	13.1	
12	1203	96.8	1165	270	90	4.3	12.9	1460	98.0	1431	390	100	3.7	14.3	
vii	1293	97.8	1265	310	100	4.1	12.6	1268	96.6	1225	410	100	3.0	12.2	
	B1220	95.8	3 1318	300	100	4.4	13.2	1509	97.3	1468	360	100	4.1	14.7	
B.T.0	1068	10.0	123	270	60	1.8	2.0	1049	11.9	125	40	_30	3.1	4.2	
11	1010	27.7	844	370	100	1.7	0.4	1101	54.4	599	340	100	1.8	6.0	ţ
12	1274	83 2	1061	280	100	2.2	10.4	700	80.0	473	250	100	1.9	4.7	1
vii	1292	ر•ر د ۱	17	200	700	J•0 0 K7	10.0	1268	00.2	917	370	100	2.6	9.2	
viii	1376	2.0	28	90	50	0.07	0.57	1500	1 1.	27	30	30	0.4	0.4	
	-570		20	20		0.31	9.90	1709	1.4	21	TO	T0	2.1	2.1	

10 stations with 1 point at 32.50

XXXIX

	Table	A 62					Bloc	<u>ks</u>		·····				
			C							D				
Spe- cies	Total DM/m ²	% Comp.	D.M. of Component	Den- sity	G.C.	Y/Point Density	Y/Unit Area	Total DM/m ²	% Comp.	D.M. of Component	Den- sity	G.C.	Y/Point Density	Y/Unit Area
1	2			5	6	7	8	2	3	<u> </u>	5	6	_7	8
Tim.1 4 6 8 9 11 12 VII	114 117 119 139 155 136 136		96 16 196 8 152 168 24 4.0	50 (2) 40 (2) 50 120 10 (2)	30 (2) 30 (2) 30 80 10 (2)	1.9 8.90 4.00 1.40 1.20	3.0 8.0 5.0 1.1 2.2 2.0 2.0	145 125 132 134 167 162 106		80 152 12 264 256 11 9	70 (2) 80 10 230 90 (2) (2)	50 (2) 50 10 100 80 (2) (2)	1.1 7.59 1.92 1.8 5.5 4.	1.65026255
VIII Br.13 VIII R.Canl K.B.15	139 132 139 14 189 5 141		2.9 120 0.6 6.7 464	(2) 30 (2) 10 80	(2) 30 (2) 10 70	1.4 4.0 0.3 0.7 5.8	1.4 4.0 0.3 0.7 6.6	139 131 139 197 168		52 152 28 48 288	10 120 10 (2) 120	10 50 10 (2) 90	5.2 1.3 2.8 24.0 2.4	5.2 3.0 2.8 24.0

Yield per Unit Area of Ground Cover of the Grass Component (gm/plot) Pasture Mixtures 1961 Cut 4

P.Q. taken at cutting time as 1 point at 10 stations at a 45° angle

Yields/m² were cornected to yield per plots for the D.M. of the components (i.e. 8x)

XC

T	able A 6	3			iu	Bloc	KS		T / UT					
				C					_	D				
Mixt. No.	Total D.M./m ²	% Comp	D.M. of Component	Den- sity	G.C. 100p	Y/Point Density	Y/U.A. of G.C.	Total D.M/m ²	Comp	D.M. of Component	Den- sity	G.C. 100p	Y/Point Density	Y/U.A. G.C.
<u> </u>	_2	3	4	5	6	7	8	2	3	4	_5	6	7	8
R.C.1 4 Af. 8 9 Lad.4 8 12 vii viii B.T.6 9 11 13 14 15 vii viii	$114 \\ 117 \\ 119 \\ 139 \\ 155 \\ 117 \\ 139 \\ 129 \\ 139 \\ 129 \\ 139 \\ 139 \\ 141 \\ 129 \\ 141 \\ 129 \\ 141 \\ 139 \\ 141 \\ 141 \\ 139 \\ 141 \\ 141 \\ 139 \\ 141 \\ 141 \\ 139 \\ 141 \\ 141 \\ 139 \\ 141 \\ 141 \\ 139 \\ 141 $		664 120 632 144 312 792 960 1064 976 104 120 600 864 800 640 416 8 3.2	$\begin{array}{c} 260\\ 110\\ 100\\ 20\\ 100\\ 120\\ 230\\ 260\\ 280\\ 330\\ 80\\ 240\\ 210\\ 130\\ 290\\ 100\\ 20\\ 2\end{array}$	$ \begin{array}{r} 100 \\ 50 \\ 20 \\ 70 \\ 70 \\ 90 \\ 100 \\ 90 \\ 100 \\ 90 \\ 100 \\ 90 \\ 100 \\ 20 \\ 2 \end{array} $	2.6 1.3 7.162153551222246 1.6 2.4 01.6	$\begin{array}{c} 6.6 \\ 2.6 \\ 12.6 \\ 7.25 \\ 11.37 \\ 10.6 \\ 9.30 \\ 6.6 \\ 11.4 \\ 6.94 \\ 6.94 \\ 1.6 \end{array}$	145 125 132 134 167 125 134 167 132 167 132 167 131 168 106 139		568 120 568 184 288 936 856 1080 808 920 224 672 600 664 896 560 30 112	90 30 17 80 210 230 250 250 260 190 250 150 20 150 20 10	60 30 50 30 100 100 100 50 90 80 100 70 2 10	64 32 34 35 33 32 27 57 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.5 7.1 9.6 9.6 9.6 9.6 12.5 5 7.3 9.0 15.1

Yield per Unit Area of Ground Cover and per Point of Density of the Legume Components (gm/plot)

Pasture Mixtures Cut 4 1961

D.M. of the components was obtained from the hand separations of a square metre quadrat, and the values thereof obtained were multiplied by 8

XCI

Yield per Unit Area of Ground Cover and per Point Density of the Grass Components (gm/plot)

2.7 57.5

Comp Mixt

R.Can.14

K.B1. 15

Br. 13

Tabl	le <u>A 6</u> 4]	Blocks							
			C							D				
npon. Lxt.No. 1	Total <u>D.M.</u> 2	<u>Comp</u> . 3	D.M. of Component 4	Den- sity 5	<u>G.C</u> 6	Y/Point Density 7	Y/Unit Area 8	Total D.M. 2	% <u>Comp</u> . <u>3</u>	D.M. of Component 4	Den- sity 5	<u>G.C</u> 6	Y/Point Density 7	Y/U Are 8
Tim.1 4 6 9 11 12 vii viii *. 13	629 801 792 667 521 689 750 851 859	15.7 1.9 11.3 32.4 36.4 4.7 2.0 0.9 33.7	99 15 89 216 190 32 15 8 155	24 8 16 40 28 14 8 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	22 8 16 4 28 21 4 6 0 2	4.1 1.9 5.6 5.4 2.3 2.3 1.0 3.0	4.5 1.9 5.5 7.6 3.8 2.3 1.3 9	487 818 901 735 474 799 639 707 525	$ \begin{array}{c} 16.0 \\ 2.1 \\ 30.6 \\ 1.4 \\ 58.5 \\ 1.7 \\ 4.9 \\ 2.1 \\ 40.0 \\ \end{array} $	78 17 249 13 179 278 14 31 15 210	12 4 0 4 26 2 6 4 8 4 55 2 6 4 8 4	10 4 2 4 6 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.522224802862 3.4.7.5332	7.82 7.42 7.32 7.35 67 7.88 82 7.34 2
Can.14 B1. 15	781 780	2.7 57.5	21 448	2 44	2 40	10.5	10.5	B 329 901	15.9 43.2	52 389	6 36	6 32	8.7 10.8	8.7 12.2

Pasture Mixtures Cut 5 1961

XCII

Y/Unit

Area 8

Yield per Unit Area of Ground Cover and per Point Density of the Legume Components (gm/plot)

Pasture	Mixtures	\mathtt{Cut}	5	1961
---------	----------	----------------	---	------

T	able A	65					Blocks	5						
			C							D				
Compon. Mixt.No. 1	Total <u>D.M.</u> 2	<u>Comp</u> .	D.M. of Component 4	Den- sity 5	<u>G.C</u> .	Y/Unit Area 7	Y/Point Density 8	Total D.M. 2	% Comp 3	D.M. of Component 4	Den- sity 5	<u>G.C</u> . 6	Y/Unit Area 7	Y/Point Density 8
R.C. 1 4 Af. 8 9 Lad. 4 8 12 vii viii B.T. 6 9 11 13 14 15 vii viii	629 8012 8667 8661 8289 7551 8662 7661 7850 7662 7851 7800 851	81.24 18.57 19.82 19.85 19.55 19	511 147 632 198 631 5348 731 643 731 198 260 2195 194 4 9	92 104 128 164 150 168 230 888 1082 42 (2) 6	62264844086024248)6 789893676552	8.69548678813333321 628678813333321	5.671189334632433705 671189334632433705	487 818 901 731 8 9099 7319 7319 7319 7319 7315 745291 8309 707 83745 9397 707	68.219298437245432898 538040835245432898 999128249000	332 254 3754 3754 592 136 108 108 108 37 6 6	76 18 18 16 16 16 16 16 16 16 16 16 16 16 16 16	51512889999255644 2) ((6.1 1.84 24.8.05 9.6.7 1.594 9.9.5200 1.212 3.3	4477147586484468600 134342110133

XCIII

Table	A 66	- rai.	T TAPO						
Mixt. No.	Tim.	Br.	R.Can.	K.Blue	R.C.	Af.	Lad.	B.T.	Mixt- ures
1 2 4 5 6 7 8 9 1 2 3 4 5 1 2 3 4 5 1 2 5 6 7 8 9 1 2 3 4 5 5 6 7 8 9 1 2 3 5 4 5 6 7 8 9 1 2 5 5 6 7 8 9 1 2 5 5 6 7 8 9 1 2 5 5 6 7 8 9 1 2 5 8 9 1 1 2 5 8 9 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 5 8 9 1 1 2 3 1 2 5 8 9 1 1 2 3 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 5 5 7 8 9 1 1 2 3 5 1 2 5 5 1 2 5 5 1 2 5 5 1 2 5 5 5 5 1 2 5 5 1 2 5 5 5 5	2.00 2.16 1.74 3.68 2.00 1.74 2.21 1.79 2.16 1.63	1.83	4.46	1.80	1.02 1.58 1.10 1.26 .87	0.87 1.68 5.63 7.80 2.13	1.50 1.64 1.39 2.14	.78 1.75 2.70 2.78 1.78 1.20	1.25 1.34 1.32 1.74 4.70 4.87 1.95 2.52 1.96 1.79 2.43 1.24
vii viii ix	•74 1•42 •74	2.00 •75					.64 1.44	1.05 1.60	0.83 1.59 1.21
Table	A 67	Cut	т						
1 2 4 5 6	.19 .32 .23 .28 .18		=		1.19 1.11 .99 1.10 1.04	•63 1.00	•47 •56	•70	•57 •62 •33 •59

Competition Indices of Forage Species in Pasture Mixtures.

Mdart	<u> </u>	<u> </u>	-					March
MIXU.	m t m	Dm	D Con	V Dluc	Ъđ	AP Tod	m cr	MIXC-
<u>NU.</u>	<u>1 1m</u>	<u>Br.</u>	R. Can.	<u>N.DIUe</u>	$\frac{\pi \cdot C}{1 \cdot O^2}$	AI. Lad.	$\underline{\mathbf{D}_{\bullet}\mathbf{T}_{\bullet}}$	ures 52
2	16				1.00	50		•25
4	.19				54	• /0		40
5	.18				50	.08 .84		.30
6	37				.96	••••	.45	54
7	21				• / 0	. 64	• • • •	43
8	.19					.41 .82		.40
9	•24					1.04	•72	.67
11	.29						•75	.46
12	•35					• 89		.52
13		•26					•70	•46
14			•24				•94	• 58
15	277			.07		7 70	•69	• 32
VII wiii	• 37	Ol					•10	•49
ir	• 30	.04				2 02	•19	• 37
		•••				-•/-		T • T 0
Table 1 2 4 5 6 7 8 9 11 12 13 14 15	▲ 69 .47 .27 .48 .38 .57 .15 .46 .70 .84 .32	<u>Cut 3</u>	(.50)	(1.10)	•97 •66 •32 •56 •62	1.74 1.09 .81 1.04 2.33 1.99 1.16 2.01 1.24	.54 .91 1.29 1.14 1.00	.82 1.27 .59 .72 .59 1.68 1.42 1.28 1.08 .87 .74 .81
vii viii ix	.19 .61 .13	.05 .13				1.04 1.28 4.90	.06 .18	.51 .57 2.50

Competition Indices of Forage Species in Pasture Mixtures.

Table	A 70	Cut	4						-
Mixt. No.	Tim.	Br.	<u>R.Can.</u>	K.Blue	R.C.	Af.	Lad.	B.T.	Mixt- ures
1 6 9 11 12 13 14 15 vii viii	.55 1.95 1.10 .42 .80 .65 .72 0.80 1.15	•94 •67	.50	• 57	.98 .38 1.16	•76 •97	1.06 .89 1.05 .82 .99	• 3 ⁴ • 61 • 74 • 89 • 70 • 68 • 17 • 11	.83 .72 .76 .78 .75 .71 .99 .90 .66 .63 .47 .69
Table 1 4 6 9 11 12 13 14 15 vii viii	A 71 1.08 .49 1.37 .96 1.22 1.39 .57 1.14 .45	Cut .78 .71	_ <u>5</u> 1.08	1.56	.90 .59 1.12	2.17 1.32	1.09 .79 .99 .89 .99	.51 .57 .51 .65 .55 .59 .51 .39	.95 .79 1.03 1.57 1.15 .99 .83 .72 .89 1.17 .99 .71

Competition Indices of Forage Species in Pasture Mixtures.

	Analysis	of Variance	of the	Pure Sta	nds	
Source	D.F.	<u>s.s.</u>	<u>M.S.</u>	<u>F.</u>	<u>F.05</u>	<u>F.Ol</u>
Reps. Treat Error	1 5 5	33.00 416.98 270.29	33.00 83.40 54.06	0.61 1.54 -	5.05	s = 7.35
	Total 11 x = 26.91	720.27	-	-	C S	V = 27.3% $SE_{-} = 5.199$

Table A 73

Analysis of Variance of the Grasses

Source	\underline{D} .F.	<u>S.S.</u>	<u>M.S.</u>	<u>F.</u>	F.05	<u>F.01</u>
Reps Treat Error	1 21 21	44.730 2500.043 478.920	44.730 119.050 22.806	1.96 5.22	4.32 2.09 s = 4.	2.88 776
Total x =	43 10.24	3023.693	-	-	CV = 46 SE_ = 3 x	•64% •376

Ta ble A 74

Analysis of Variance of the Legumes

Source	D.F.	<u>s.s.</u>	<u>M.S.</u>	F.	<u>F.05</u>	<u>F.01</u>
Reps. Treat Error	1 31 31	124.044 13703.164 743.431	124.044 442.038 24.111	5.14 18.33 -	4.17 1.84	7.56 2.38
Total x =	63 22.49	14574.639 95	-	-	s = 4 cv = 2 se _x = 3	.190 L.83% 3.5434

Yield	of	D.M./Plot	of	Pure	Stands	and	0ne	Mixture	1961
				Hav	Mixture	25			

Table A 75

P1.

	Cut	I (Jun	ie 27,	<u>1961)</u>		<u>B1</u>	ocks	Cut 2	(Aug.	3,1961)	
		Е			F			E			F	
Mixt. No.	G.W.	% <u>D.M.</u>	D.W.	G.W.	% D.M.	D.W.	G.W.	% D.M.	D.W.	G.W.	Д. М.	D.W.
i iii iv v vi vii vii	25600 30700 32350 29600 23350 30200 13450 13400	20.2 15.8 17.1 20.8 13.2 14.5 30.7 26.9	5171 4851 5532 6157 3082 4379 4129 3605	31800 29500 34000 25400 24600 22200 13500 18300	16.4 17.1 13.7 21.6 11.9 14.6 29.2 23.8	5215 5044 54658 5486 29242 3942 3955	7400 8000 4700 10900 7000 10150 3800 5000	19.9 20.6 17.3 22.7 20.7 20.0 22.6 21.6	1473 1648 813 2474 1449 2030 859 1080	8000 8000 4000 7900 9 2 00 10000 6000 4300	21.2 20.0 29.5 15.3 16.4 19.0 23.9	1696 1696 2331 1408 1640 1140 1028

<u>M</u>	ixt.No.		E			F	
Cut 3 (Oct. 25,1961)	i iii iv v vi vii viii	5600 5250 4350 425 6350 3250 1900	28.3 26.9 32.8 30.0 25.2 30.8 38.7	1776 1598 1602 188 1772 1191 874	5050 5150 4800 600 4800 3900 2630	26.6 25.8 35.7 26.3 25.4 28.9 35.1	1523 1487 1918 200 1358 1320 1046

XCVIII

	Table	A 76 C	ut 1 (June 27	,1961)	В	locks						
		A			В			C			D		
Mixt. No.	G.W.	% D.M.	D.W.	G.W.	% D.M.	D.W.	G.W.	% D.M.	D.W.	G.W.	% D.M.	D.W.	Total D.W.
123456789	25600 24600 27650 26700 30200 31700 28400 27800 28500	23.0 20.2 17.8 19.6 20.0 18.1 20.6 23.1 18.6	5888 4969 5233 6040 5738 5850 6422 5301	28800 29100 29450 27900 30900 20000 26400 25400 29300	22.1 19.8 19.7 18.6 19.4 23.3 20.2 24.5 19.5	6365 5762 5809 5995 4660 5323 5714	26500 29300 30250 30650 31250 29250 31000 23950 27300	20.9 19.9 18.8 18.8 18.0 19.4 19.7 28.0 19.0	5539 5831 5687 5762 5625 5625 6107 6706 5187	30500 29600 30900 28100 29500 30000 30550 29100 27400	19.1 21.0 19.2 18.9 19.5 19.5 18.2 22.0 19.8	5826 5933 5311 5753 5850 5560 5402 5402 5402	23618 22778 22344 21495 23413 21923 22850 25753 21627
	Table	A 77	ut 2	(Aug. 3	, 1961)							
123456789	10700 11800 8400 9500 9400 8100 12500 10100	26.7 23.4 22.6 23.5 22.4 21.4 25.6 21.1	2857 2761 1898 1880 2128 2106 1733 3200 2131	$12700 \\ 12600 \\ 8700 \\ 9900 \\ 11300 \\ 5600 \\ 10300 \\ 9650 \\ 10900 \\$	24.5 23.0 20.2 20.9 19.8 24.1 20.9 27.0 21.7	3112 2898 1757 2069 2237 1350 2153 2606 2365	11800 12000 7900 8600 11000 10400 10000 7700 9300	23.9 24.6 21.9 22.5 20.9 21.9 25.1 23.4	2820 2952 1651 1935 2264 2174 2190 1933 2176	14800 13150 10900 10200 11300 12200 11800 14850 10200	20.9 21.8 19.9 21.0 19.8 18.8 20.6 22.9 21.3	3093 2867 2169 2142 2237 2294 2431 3401 2173	11882 11478 7475 8026 8866 7924 8507 11140 8845

Yield of D.M./Plot of Hay Mixtures 1961

Yield of D.M./Plot of Hay Mixtures 1961

Table A 78

Cut 3 (Oct. 25, 1961)						B	locks					
	A				В			C		D		
Mixt. No.	G.W.	% D.M.	D.W.	G.W.	% D.M.	D.W.	G.W.	% D.W. D.M.	G.W.	% D.M.	D.W.	Total D.W.
123456789	5400 6150 7550 6100 6850 8100 7200 5350 6850	34.9 32.6 28.6 27.2 26.9 33.8 26.9	2105 2005 1978 1985 2093 2171 1937 2068 2056	5200 5950 7750 7250 7250 7250 73550 75550	33.5 32.6 26.7 29.2 26.3 28.0 27.7 33.0 25.7	1942 1940 2069 1471 2187 1939 2036 2062 2160	5100 5850 7500 6550 7400 7200 7850 5000 6850	32.3 1877 33.1 1936 27.2 2040 24.6 1891 27.6 2352 29.2 2102 26.4 2072 33.9 193 27.0 2110	4850 5650 8800 6500 7000 8500 8100 5 5350 6650	34.3 33.6 26.4 27.1 26.0 26.2 27.3 34.5	1894 1898 2323 2012 2040 2227 2211 2030 1972	7818 7779 8410 7359 8672 8439 8256 8095 8298

Analysis of Variance for Season's Total

Source	D.F.	<u>M.S.</u>	F	<u>F.05</u>	<u>F.01</u>
Reps.	3	451910	1.38	3.01	
Var.or Mi	xt. 8	1,792594	5.48	2.36	3.36
Error	24	326930			
Total	35				

Q

Percentage Composition and Point Quadrat Analysis Cut 1 One Hay Mixture and Pure Stands

P.Q. readings taken May 11. Angle 29° Cut: June 27, 1961.

	[able A	79		Blocks			
		E				F	
Spee	cies	% Composition	Hits	G.C.	% Composition	Hits	G.C.
i	Tim R.C. Oth. B.G.	28.0 71.6 0.4	5 26 tr 21	10 52 tr 42	15.7 83.9 0.3	11 38 tr 7	22 76 tr 14
ii	R.C. Oth. B.G.	99•3 0•7	36 tr 14	72 tr 28	92.7 7.3	38 tr 12	76 tr 24
iii	As. Oth. B.G.	100.0	41 tr 9	82 tr 18	97.2 2.8	38 tr 12	76 tr 24
iv	Af. Oth. B.G.	98.0 2.0	31 tr 19	62 tr 38	99.2 0.8	28 tr 22	56 tr 44
v	Lad. Oth. B.G.	99.0 1.0	40 tr 10	80 tr 20	90.5 9.5	37 tr 13	74 tr 26
vi	B.T.v Oth. B.G.	96.6 3.4	35 tr 15	70 30	77.9 22.1	12 tr 38	24 tr 76
vii	Br. Oth. B.G.	89.1 10.9	22 tr 28	44 tr 56	96.6 3.4	28 tr 22	56 tr 44
viii	Tim. Oth. B.G.	97.8 2.2	25 tr 25	50 tr 50	70.4 29.6	23 tr 27	46 tr 54

Percentage Composition and Point Quadrat Analysis Cut 2 One Hay Mixture and Pure Stands

P.Q. readings taken July 13. Angle 45° Cut: Aug. 3, 1961.

fable	A	80

Blocks	
--------	--

		E					F		
Species	% Comp.	Hits	G.C.	Den- sity	% Comp.	Hits	G.C.	Den- sity	
i Tim. R.C. Oth. B.G.	22.1 76.3 1.7	6 13 1 30	12 26 2 60	12 56 2 60	25.2 71.5 3.3	6 12 tr 13	12 24 tr 26	20 24 tr 26	
ii R.C. Oth. B.G.	93.6 6.4	17 1 32	34 2 64	58 2 64	97.1 2.9	16 4 31	32 8 62	50 8 62	
iii As. Oth. B.G.	12.0 88.0	7 2 41	14 4 82	18 4 82	12.0 88.0	7 tr 43	14 tr 86	18 tr 86	
iv Af. Oth. B.G.	96.7 3.3	19 3 29	38 6 58	46 6 58	99.5 0.5	17 1 32	34 2 24	46 2 48	
v Lad. Oth. B.G.	98.1 1.9	45 1 5	90 2 10	148 2 10	96.5 3.5	42 tr 8	84 tr 16	136 tr 16	
vi B.T.v Oth. B.G.	87.0 13.0	19 3 30	38 6 60	44 6 60	89.5 10.5	14 6 30	28 12 60	38 12 60	
vii Br. Oth. B.G.	90.6 9.4	13 6 31	26 12 62	34 12 62	82.3 17.7	11 15 28	22 30 56	28 30 56	
viii Tim. Oth. B.G.	87.8 12.2	11 10 29	22 20 58	26 20 58	97.8 2.2	10 4 36	20 8 72	32 8 72	

Table A 8	1	Cut: C	oct. 25, Blocks	1961	Cut 3
			E	F	
i	Tim. R.C. Others		27.3 64.6 8.1	17.5 78.1 4.4	
ii	R.C. Others		82.7 17.3	92.8 7.2	
111	As. Others		- - Not	- harvested -	
iv	Af. Others		97.4 2.6	100	
v	Lad. Others		72.3 27.7	95.8 4.2	
Vi	B.T.v Others		85.3 14.7	83.8 16.2	
vii	Brome Others		90.5 9.5	85.9 14.1	
viii	Tim. Others		77.5 22.5	77.9 22 .1	

Percentage Composition and Point Quadrat Analysis Hay Mixtures (P.Q. readings Date: May 11 Angle 29° Cut: June 27, 1961

\mathbf{T}	able A &	82			Blocks			Cu	t 1
			A		В	C		D	
M C I	ixt. ompon. Tim. R.C. Af. Oth. B.G.	% <u>Comp.</u> 8.9 18.7 70.0 2.3	Hits 2 25 25 2 5	<u>G.C.</u> 50 50 4 10	% 0.7 23.5 75.3 0.5	% 0.3 35.3 62.8 1.7	% <u>Comp.</u> 1.5 22.2 76.0 0.3	Hits 4 32 36 5 2	G.C. 8 64 72 10 4
2	Tim. R.C. Af. Lad. Oth. B.G.	11.3 22.7 58.7 6.9 0.4	9 19 22 6 2 7	18 38 44 12 4 14	8.3 21.8 68.0 1.1 0.7	0.2 17.7 80.3 1.4 0.3	3.0 28.5 57.8 10.7	3 25 41 28 1	6 50 82 56 2
3	Tim. R.C. As. Oth. B.G.	8.8 54.2 29.3 7.7	2 40 17 5	4 80 34 10 10	0.6 55.5 42.9 1.0	4.2 59.9 32.0 3.9	4.4 51.6 43.7 0.3	1 35 41 - 2	2 70 82 -
4	Tim. R.C. Lad. Oth. B.G.	4.8 84.0 10.6 0.6	7 24 18 7 6	14 48 36 14 12	7.0 82.5 9.7 0.9	1.0 80.9 14.4 3.8	7.4 80.2 9.9 2.5	1 45 33 14 1	2 90 66 26 2
5	Tim. R.C. B.T.V Oth. B.G.	9.8 86.8 1.5 1.9	7 40 19 5 2	14 80 38 10 4	5.5 86.9 4.7 2.9	1.9 93.0 3.8 1.3	11.0 76.8 11.9 0.3	9 42 23 13 1	18 84 46 26 2
6	Tim. R.C. B.T.e Oth. B.G.	6.8 91.4 0.9 0.9	11 41 13 1 4	22 82 26 2 8	33.0 53.4 8.2 5.4	6.0 86.8 1.1 6.0	8.2 84.2 4.3 3.3	2 43 18 6 4	4 86 36 12 8
7	Tim. R.C. B.T.m Oth. B.G.	14.8 72.3 10.7 2.2	4 28 15 10 3	8 56 30 20 6	24.0 60.3 10.5 5.2	3.6 92.8 2.9 0.7	5.2 82.8 5.2 6.7	10 45 32 tr	20 90 64 tr
8	Br. Af. Oth. B.G.	40.9 58.4 0.7	15 30 3 11	30 60 6 22	41.9 57.5 0.6	38.6 59.9 1.4	32.7 67.0 0.3	29 39 3	58 78 6 8
9	Tim. B.T.V Oth. B.G.	28.4 59.4 12.2	20 32 11 10	40 64 22 20	37.5 56.4 6.1	34.8 51.4 13.9	38.9 33.2 27.9	19 23 21 10	38 46 42 20

Table A	83					Bloc	ks					
		A			B			C			D	
Mixt. Compon. 1 Tim. R.C. Af. Oth. B.G.	<u>Comp.</u> 11.7 6.4 80.1 1.9	Hits 3 16 1 29	G.C. 6 6 32 2 58	<u>Comp.</u> 0.4 10.9 88.6 0.2	Hits (1) 12 8 29	<u>G.C.</u> (2) 24 16 4 58	% Comp. 0.4 8.5 91.1 tr	Hits (1) 7 16 (1) 30	G.C. (2) 14 32 (2) 60	<u>%</u> 3.8 16.8 66.7 12.7	Hits 2 14 20 2 16	G.C. 4 28 40 4 32
2 Tim. R.C. Af. Lad. Oth. B.G.	10.1 10.1 75.4 4.4 tr	8 8 5 tr 27	16 16 12 10 tr 54	1.5 10.7 80.3 6.8 0.7	(1) 3 10 7 28	(2) 6 20 14 14 56	0.6 18.9 78.5 2.0 tr	(1) 7 14 5 1 28	(2) 14 28 10 2 56	0.5 9.9 86.8 2.3 0.6	(1) 7 11 7 2 28	(2) 14 22 14 4 56
3 Tim. R.C. As. Oth. B.G.	25.6 68.4 1.1 4.9	1 11 3 tr 36	2 22 6 tr 72	5.8 87.0 2.9 4.3	1 16 3 2 30	2 32 6 4 60	8.7 87.0 1.9 2.4	1 21 1 tr 27	2 42 2 tr 54	9.5 86.3 0.6 3.7	3 15 4 1 29	6 30 8 2 58
4 Tim. R.C. Lad. Oth. B.G.	19.9 61.2 16.7 2.2	5 14 15 tr 20	10 28 30 tr 40	11.1 63.5 23.1 2.3	1 11 12 1 7	2 22 24 2 14	0.9 82.7 14.9 1.5	(1) 20 7 tr 25	(2) 40 14 tr 50	8.8 76.5 13.1 1.6	1 31 6 tr 16	2 62 12 tr 32
5 Tim. R.C. B.T.V Oth. B.G.	14.1 81.0 3.8 1.0	3 14 1 33	6 28 2 2 66	10.7 84.8 2.4 2.1	2 22 1 1 24	4 44 2 2 48	3.8 90.1 3.2 2.9	3 35 (1) tr 13	6 70 2 tr 26	14.8 81.0 2.2 2.1	2 30 3 tr 17	4 60 6 tr 34

Percentage Composition and Point Quadrat Analysis Hay Mixtures Cut 2 (P.Q. readings Date: July 13,1961. Angle 45° Cut: Aug.3, 1961)

CV

	(P.Q.readings D	ate: July 13,1961.	Angle 45 Cut:	Aug. 3, 1961)	
Table	A 83		Blocks		
	A	В	C	D	
Mixt.	%	%	%	%	

Percentage Composition and Point Quadrat Analysis Hay Mixtures Cut 2 (P.Q.readings Date: July 13, 1961. Angle 45° Cut: Aug. 3, 1961)

			A			В			C			D		
	ixt. ompon. Tim. R.C. B.T.e Oth. B.G.9	% <u>Comp.</u> 6.1 93.5 0.2 0.2	Hits 4 26 (1) tr 20	G.C. 8 52 (2) tr 40	% <u>Comp.</u> 32.7 48.4 8.9 10.1	Hits 3 11 2 tr 34	<u>G.C.</u> 6 22 4 tr 68	% Comp. 8.8 89.8 0.1 1.3	Hits (1) 21 (1) 2 29	G.C. (2) 42 (2) 4 58	% <u>Comp.</u> 5.7 91.2 1.5 1.7	Hits 1 20 1 1 27	<u>G.C.</u> 2 40 2 54	_
7	Tim. R.C. B.T.m Oth. B.G.	6.6 74.4 8.5 10.5	10 17 2 tr 22	20 34 4 tr 44	36.1 56.3 4.2 3.4	6 16 4 tr 25	12 32 8 tr 50	3.2 93.8 2.5 0.5	1 24 2 tr 25	2 48 4 tr 50	6.9 89.3 2.5 1.4	7 23 3 tr 21	14 46 6 tr 42	
8	Br. Af. Oth. B.G.	11.9 88.1 tr	14 15 1 23	28 30 2 46	21.7 78.2 0.1	17 11 tr 26	34 22 tr 52	13.7 85.6 0.7	18 14 3 18	36 28 6 36	22.9 77.1 tr	17 16 1 18	34 32 2 36	
9	Tim. B.T.V Oth. B.G.	20.3 79.2 0.5	7 24 1 21	14 48 2 42	26.9 72.5 0.6	9 19 4 21	18 38 8 42	24.0 75.0 1.0	12 27 tr 14	24 54 tr 28	29.4 66.4 4.3	15 14 1 23	30 28 2 46	
_	B, T, v =	Variet	v Viki	ng E	T.e =	Variet	y Empi	re B	.T.m =	Selec	tion of	Morsha	usk	_

CVI

			•••	-
ut_	3			
	_			

Percentage	Composit	ion	Hay	Mixtures	Cut	3
	(Cut: C)ct.	25.	1961)		

Table A 84

		1	LOCKS		
Mi: Cor	xt. npon.	A	В	C	D
1	Tim.	0.8	0.01	0.03	0.03
	R.C.	0.8	0.8	0.6	2.0
	Af.	95.5	98.1	99.1	97.9
	Oth.	3.0	1.1	tr	tr
2	Tim.	3.6	0.05	0.03	tr
	R.C.	0.1	0.4	0.6	1.0
	Af.	91.4	98.5	98.4	96.8
	Lad.	4.8	1.1	1.0	1.2
	Oth.	tr	tr	tr	tr
3	Tim. R.C. As. Oth,	14.0 78.8 0.2 7.0	2.9 92.3 4.8	1.2 97.8 0.02 0.9	10.5 67.3 tr 22.2
4	Tim.	14.4	12.6	1.8	4.7
	R.C.	68.5	55.1	73.3	94.0
	Lad.	16.4	26.0	23.3	1.3
	Oth.	0.7	6.3	1.6	tr
5	Tim.	3.4	9.2	2.8	10.4
	R.C.	85.0	80.6	91.7	76.2
	B.T.V	8.7	6.9	5.5	10.4
	Oth.	2.8	3.3	tr	2.9
6	Tim.	6.9	39.7	5.6	5.7
	R.C.	89.6	50.4	92.5	88.9
	B.T.e	0.4	1.3	0.08	0.2
	Oth.	3.1	8.6	1.8	5.3
7	Tim.	14.8	30.4	3.6	9.8
	R.C.	81.2	57.0	93.6	85.2
	B.T.m	3.1	6.8	1.3	0.8
	Oth.	0.9	5.7	1.5	4.1
8	Br.	0.7	3.9	1.7	1.9
	Af.	99.3	96.1	98.3	97.2
	Oth.	tr	tr	tr	tr
9	Tim.	14.5	10.5	5.7	26.6
	B.T.V	84.0	85.0	93.6	70.9
	Oth.	1.5	4.5	0.7	2.5

B,T.v = Variety Viking B.T.e = Variety Empire B.T.m - Selection of Morshansk No point quadrat analysis taken before the 3rd cut

|--|

Ta	ble A 85		Block	S	
Mi	xt.	A	В	C	D
1	Tim. R.C. Af. Oth. B.G.	6 6 34 2 58	(2) 30 18 4 58	(2) 18 42 tr 60	34 48 4 32
2	Tim. R.C. Af. Lad. Oth. B.G.	20 20 12 12 tr	(2) 10 24 16 14 56	(2) 20 34 12 56	(2) 24 24 16 4 56
3	Tim. R.C. As. Oth. B.G.	2 38 6 tr 72	2 42 6 4	2 48 2 tr 54	6 44 10 2 58
L _F	Tim. R.C. Lad. Oth. B.G.	10 38 50 tr 40	2 32 38 2 14	tr 62 20 tr 50	2 82 22 tr 32
5	Tim. R.C. B.T.V Oth. B.G.	10 44 2 66	4 82 2 43	8 114 (2) tr 26	6 110 8 tr 34
6	Tim. R.C. B.T.e Oth. B.G.	8 92 (2) tr 40	14 28 6 tr 68	(2) 58 (2) 4 58	2 60 2 54
7	Tim. R.C. B.T.m Oth. B.G.	24 62 4 tr 44	12 40 12 2 50	2 80 2 tr 50	14 64 8 tr 42
8	Br. Af. Oth. B.G.	32 36 46	42 28 tr 52	44 34 6 36	34 32 2 36
9	Tim. B.T.V Oth. B.G.	20 68 2 42	26 54 8 42	24 68 tr 28	38 32 6 46

Density by Point Quadrat Analysis Hay Mixtures Cut 2 1961

	Table A 86	Yield per	• Unit	Area	of	Ground	Cover	of	\mathtt{the}	Pure	Stands	1961	(in	gm)
--	------------	-----------	--------	------	----	--------	-------	----	----------------	------	--------	------	-----	----	---

Cut	1						B	locks						
			E]	 			
Pure Stand 1	Total D.M. 2	% <u>Comp.</u> <u>3</u>	D.M. of Species 4	Den- sity 5	<u>G.C.</u> 6	Y/ P.D. 7	Y/Unit Area 8	Total D.M. 2	% <u>Comp.</u> 3	D.M.of I Species 4	Den- sity 5	<u>G.C.</u>	Y/ P.D. 7	Y/Unit Area 8
Tim. R.C. Af. Br. Lad. B.T. As.	3605 4851 6157 4129 3082 4379 5532	97.8 99.3 98.0 89.1 99.0 96.6 100.0	3526 4817 6034 3679 3051 4230 5532		50 72 62 44 80 70 82		70.5 66.9 97.3 83.6 38.1 60.4 67.5	4355 5044 5486 3942 2927 3241 4658	70.4 92.7 99.2 96.6 90.5 77.9 97.2	3066 4903 5442 3808 2649 2525 4528		46 766 564 726		66.7 64.5 97.2 68.0 35.8 105.2 59.6
<u>Cut 2</u>														
Tim. R.C. Af. Br. Lad. B.T. As.	1080 1648 2474 859 1449 2030 813	87.8 76.3 96.7 90.6 98.1 87.0 12.0	948 1257 2392 778 1421 1766 98	26 58 46 34 148 44 18	22 34 38 26 90 38 14	36.5 27.1 52.0 22.9 9.6 40.1 5.4	43.1 37.0 62.9 29.9 15.8 46.5 7.0	1028 1696 2331 1140 1408 1640 800	97.8 71.5 99.5 82.3 96.5 89.5 12.0	1005 1213 2319 938 1359 1468 96	32 50 46 28 136 38 18	20 32 34 22 84 28 14	31.4 24.3 50.4 33.5 10.0 38.6 5.3	50.2 37.9 68.2 42.6 16.2 52.4 6.9

nay MIXCures	Hay	Mixtures
--------------	-----	----------

CIX
	Table A	87		4	Jay MIXU	ures 19				
		07			B1	ocks				
			A					D		
Mixt. No. 1	Total <u>D.M.</u> 2	% <u>Comp.</u> 3	D.M. of Component 4	<u>G.C.</u> 6	Y/Unit Area 8	Total D.M. 2	% <u>Comp.</u> 3	D.M. of Component 4	<u>G.C.</u>	Y/Unit Area 8
Tim.i 1 2 3 4 5 6 7 Br. 8 Tim.9	E 5353 5888 4969 4922 5233 6040 5738 5850 6422 5301	28.0 8.9 11.3 8.8 4.8 9.8 6.8 14.8 40.9 28.4	1499 524 561 433 251 592 390 866 2627 1505	10 4 18 14 14 22 8 40 30	149.9 131.0 31.2 108.2 17.9 42.3 17.7 108.2 65.7 50.2	F 5215 5826 6216 5933 5311 5753 5850 5560 6402 5425	17.8 1.5 3.0 4.4 7.4 11.0 8.2 32.7 38.9	928 87 186 261 393 633 480 289 2093 2110	22 8 6 2 18 4 28 58	42.2 10.9 31.0 130.5 196.5 35.2 120.0 14.4 55.1 36.4

Yield per Unit Area of Ground Cover of the Grass Components Cut 1 (in gm) Hay Mixtures 1961

CX

						<u>Hay Mixt</u>	ures 1	<u>961</u>			
	Table	88 A				B1	ocks				
			A						D		
Mixt. No. 1	Total D.M. 2	<u>Comp.</u> 3	D.M. of Component 4	Den- sity 5	<u>G.C.</u> 6	Y/Unit Area 8	Total <u>D.M.</u> <u>2</u>	<u>Comp.</u> 3_	D.M. of I Component 4	Den- sity <u>G.C.</u> <u>5</u> 6	Y/Unit Area 8
R.C. 1 2 3 4 5 6 7 Af. 1 2 8 Lad. 2 4 B.T.5v 6 7 m 9v As. 3	 ■ 5353 5888 4969 4923 6040 5736 5858 4962 5730 58889 64963 69240 58889 64963 58501 58012 	71.6 18.7 254.08 91.30 708.8 91.30 100.59 100.59 100.59 29.3	3832 1101 1128 2668 4396 5245 4122 3750 3435 5217 3750 3435 526 31492 1442		5 5 3 8 4 8 8 5 5 4 6 1 3 3 2 3 6 4 4 5 3 8 4 8 8 5 5 4 6 1 3 3 2 3 6 3	73.7 22.7 33.0 73.0 73.0 73.0 73.0 73.0 73.0 73	f 5215 5826 5931 57350 57850 55826 64216 577550 64216 577550 55826 64211 57850 575550 575550 575550 575550 575550 575550 5755500 5755500 5755500 5755500000000	83.9 228.7 51.6282 76.2876 84.8767 57.07 919.9 14.32 33.7 53.7	$\begin{array}{r} 4375\\ 1293\\ 1781\\ 3061\\ 4259\\ 44926\\ 4608\\ 4608\\ 35289\\ 6626\\ 5289\\ 6852\\ 2891\\ 2593\end{array}$	76 60 570 98 80 78 75 66 66 46 80 78 75 66 66 46 80 78 75 66 66 46 80 78 75 66 46 80 78 75 66 46 80 78 75 76 80 70 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 70 80 70 70 80 70 70 70 80 70 70 80 70 70 80 70 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 70 80 70 70 80 70 80 70 70 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70	57.6 20;7 47.3 57.7 57.3 57.3 57.2

Yield per Unit Area of Ground Cover of the Legume Components Cut 1 (in gm)

CXI

Yield per Unit Area of Ground Cover of the Grass Components Cut 2 (in gm) Hay Mixtures 1961

Table	A	89
Table	-	09

							Block	3			_			
				A						В				
Mixt.	Total	%	D.M. of		Den-	Y/Unit	Y/Point	Total	%	D.M. of		Den-	Y/Unit	Y/Point
No.	<u>D.M.</u>	Comp.	Component	<u>G.C.</u>	<u>sity</u>	Area	<u>Density</u>	<u>D.M.</u>	Comp.	Component	<u>G.C.</u>	<u>sity</u>	Area	Density
1	2	3	4	_5	_6	8	7	2	3	<u> </u>	_5	6	8	
Tim.i 2 3 4 5 6 7 Br. 8	^E 1473 2105 2005 1978 1985 2093 2171 1937 2068	22.1 11.7 10.1 25.6 19.9 14.1 6.1 6.6 11.9	326 246 203 506 395 132 128 246	12 6 16 2 10 6 8 20 28	12 6 20 10 10 8 24 32	27.2 41.0 12.7 203.0 39.5 49.2 16.5 6.4 8.8	27.2 41.0 10.2 203.0 39.5 29.5 16.5 5.3 7.7	1696 1942 1940 2069 1471 2187 1939 2036 2062	25.2 0.4 1.5 5.8 11.1 10.7 32.7 36.1 21.7	427 8 29 120 163 234 634 735 447	12 (2) (2) 2 2 4 6 12 3 4	$\begin{array}{c} 20\\(2)\\(2)\\2\\2\\4\\1\\2\\1\\2\\4\\1\\2\\4\\2\\4\\2\\4\\2\\4\\2\\4\\2$	35.6 4.0 14.5 60.0 81.5 58.5 105.7 61.3 13.1	21.3 4.0 14.5 60.0 81.5 58.5 45.3 61.3 10.6

		Table	A 90			Hay	Mixture	<u>s 1961</u>						
							Block	s					_	
				C					1	D			•	
Mixt. No. 1	Total D.M. 2	% <u>Comp</u> . <u>3</u>	D.M. of Component 4	<u>G.C.</u> 5	Den- sity 6	Y/Unit Area 8	Y/Point Density 7	Total D.M. 2	% <u>Comp</u> . <u>3</u>	D.M. of Component 4	<u>G.C</u> .	Den- sity 6	Y/Unit Area 8	Y/Point Density 7
Tim.1 2 3 4 5 6 7 Br. 8 Tim.9	1877 1936 2040 1891 2352 2102 2072 1935 2110	0.4 0.6 8.7 3.8 3.2 13.0 13.0	8 12 177 17 89 185 66 265 506	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	4.0 6.0 88.5 14.8 92.0 7.4 21.0	4.0 6.0 88.5 11.1 92.5 33.0 6.0 21.0	1894 1898 2323 2012 2040 2227 2211 2030 1972	3.3 9.5 8.8 5.7 22.9 29.4	72 9 221 177 302 127 153 465 580	4 (2) 624 24 14 30	4 (2) 6 2 6 2 4 3 8 3 8	18.0 4.5 36.8 88.5 75.5 63.5 10.9 13.7 19.3	18.0 4.5 36.8 88.5 50.3 63.5 10.9 13.7 12.6

Yield	per	Unit	Area	of	Ground	Cover	of	the	Grass	Components	Cut	2 (in_gm)
					I	lay Miz	ctu	res]	1961	R			

		<u>Yleld</u>	per Unit	Area	of Gre	ound Cov	<u>ver of th</u>	ne Legu	ame Col	mponents (Cut 2	(in g	zm)	
		Teble	1 01			Hay	Mixture	1961						
		Tapte	A 91				Blocks							
							DICCAS							
				A							B			
Mixt.	Total	%	D.M. of		Den-	Y/Unit	Y/Point	Total	%	D.M. of		Den-	Y/Unit	Y/Point
No.	D. M.	<u>Comp.</u>	Component	<u>G.C.</u>	sity	Area	Density	D .M.	Comp.	Component	G.C.	sity	Area	Density
_1	2	3	4	_5	6	8		2	3	4	5	6	8	7
R.C.1	¹ 1473	76.3	1124	26	56	43.2	20.1	F 1696	71.5	1213	24	24	50.5	50.5
1	2105	6.4	135	6	6	22.5	22.5	1942	10.9	212	24	30	8.8	7.1
2	2005		203	16	20	12.7	10.2	1940	10.7	208	6	10	35.0	20.8
5	1970	60.4	1373	22	10	61.5	32.6	2069	87.0	1800	32	42	56.2	42.9
ר ג	2003	81 0	1605	20	70 70	43.4	32.0	21 87	63.2	934	22	32	42.5	29.2
í	2171	93.5	2030	52	49 62	39.0	$32 \cdot 3$	1020	ս 4. 0	1077	44	20	42.2	22.0
7	1937	74.4	1441	24	62	42.4	23.2	2036	56 3	1146	22	20	25 8	33.2
Af. i	2105	80.1	1686	32	34	52.7	49.6	1942	88.6	1721	16	18	107 6	20.0 95 6
2	2005	75.4	1512	12	12	126.0	126.0	1940	80.3	1558	20	24	77.9	64.9
8	2068	88.1	1822	30	36	60.7	50.6	2062	78.2	1612	22	28	73.3	57.6
Lad.2	2005	4.4	88	10	12	8.8	7.3	1940	6.8	132	14	16	9.4	8.2
4	1985	16.7	331	30	50	11.0	6.6	1471	23.1	340	26	38	13.1	8.9
B.T.5	2093	3.8	80	2	4	40.0	20.0	2187	2.4	52	2	2	26.0	26.0
6	2171	0.2	4	(2)	(2)	4.0	4.0	1939	8.9	173	4	6	43.2	28.8
	1937	0.5	165	4	4	41.2	41.2	2036	4.2	86	8	12	10.8	7.2
Xa b	2076	79.2	1020	40	60	33.5	23.9	2160	72.5	1566	38	54	41.2	29.0
AS. J	1970	1.1	22	6	6	3.2	3.5	2069	2.9	60	6	6	10.0	10.0

CXIV

<u>Yield</u>	per	Unit	Area	of	Ground	Cover	of	the	Legume	Components	Cut	2	(in	gm)
					I	Hay Miz	xtur	es	1961					

Blocks

			(3							D			
Mist. No. 1	Total D.M. 2	% 1 <u>Comp</u> .Co	D.M. of omponent	<u>G.C</u> .	Den- sity 6	Y/Unit Area 8	Y/Boint Density 7	Total D.M. 2	<u>Comp</u> . 3	D.M. of Component 4	<u>G.C.</u>	Den- sity 6	Y/Unit Area 8	Y/Point Density 7
R.C.1 2 3 4 5 6 7 Af. 1 2 8 Lad.2 4 B.T.5 6 7 7 4 8.3	1877 1936 2040 1891 2352 2072 1877 1936 1935 1936 1891 2352 2102 2072 2102 2072 2102 2072 2102	8.5 18.9 87.0 90.1 89.8 93.8 93.8 93.8 93.8 93.8 93.8 93.8	$ 160 \\ 366 \\ 1775 \\ 1564 \\ 2119 \\ 1888 \\ 1944 \\ 1710 \\ 1520 \\ 1656 \\ 39 \\ 282 \\ 75 \\ 52 \\ 1582 \\ 39 $	1442002828804) 244328804) 242 122 242	18 20 48 118 64 580 24 4 580 23 120 (2) (2) (2) 28 2 (2) (2) 28 2 (2) 28 2 (2) 28 2 (2) 28 2 (2) 28 2 (2) 28 2 (2) 20 20 20 20 20 20 20 20 20 20 20 20 20	11.4 26.1 39.30 54 55 57 30.5 20 31.5 20 31.5 20 31.5 20 31.5 20 31.5 20 31.5 20 31.5 20 31.5 20 31.5 20 31.5 20 31.5 20 31.5 20 31.5 30 30 31.5 30 30 30 30 30 30 30 30 30 30 30 30 30	8.9 18.3 37.2 18.6 325.6 324.3 14.5 14.5 14.5 1.0 23.5 1.0 23.5	1894 1898 2323 2012 2040 2227 2211 1894 1898 2030 1898 2012 2040 2227 2211 1972 2323	16.8 9.9 86.3 76.5 81.0 91.2 89.3 66.7 13.1 2.5 4 66.6	$\begin{array}{c} 318\\ 189\\ 2005\\ 1539\\ 1652\\ 2031\\ 1974\\ 1263\\ 1647\\ 1565\\ 44\\ 264\\ 45\\ 33\\ 55\\ 1309\\ 14\end{array}$	24020060224262688 21020060224262688	34442 100484226282820 310	$11.4 \\ 13.5 \\ 664.8 \\ 27.8 \\ 927.8 \\ 94.9 \\ 327.6 \\ 94.8 \\ 327.6 \\ 94.8 \\ 1.$	9.4 75.8 15306.8 225669.9 1. 1601

Average	Yield	per	Unit	Area	of_	Ground	and	per	Point	Density	for	both	Grasses	and	Legumes
					Ha	ay Mixtu	ire 1	1961	Cut	2					(in gm)

		G	rasses						Legu	nes		
Mixt. No. 1	Total D.M. of Compon. 4	Total G.C. 5	Total Density 6	Ave. <u>Y/U.A.</u> 8	$\frac{Ave}{Y/P.D.}$	Mixt. No. 1		Total D.M. of Compon. 4	Total G.C. 5	Total Density 6	Ave. Y/UçA. 8	$\frac{\underline{\text{Ave.}}}{\underline{\text{Y/P.D.}}}$
Tim.(i) 1 2 3 4 5 6 7 Br. 8 Tim. 9	753 334 253 1024 752 920 1078 1082 1423 2084	24 14 22 16 20 18 48 132 86	32 14 26 12 16 28 26 52 152 108	31.4 23.9 11.0 85.4 47.0 46.0 59.9 22.5 10.8 24.2	23.5 23.9 9.7 85.4 47.0 32.9 41.5 20.8 9.3 19.3	R.C.(Af. Lad. B.T. As.	1) 12345671282456793	$\begin{array}{c} 2337\\ 825\\ 966\\ 6933\\ 5252\\ 7321\\ 6887\\ 6505\\ 6380\\ 6237\\ 6655\\ 303\\ 1217\\ 252\\ 212\\ 358\\ 6085\\ 135\end{array}$	50 72 50 126 152 202 156 120 160 120 82 10 208 22 100 168 22	$\begin{array}{c} 80\\ 80\\ 74\\ 162\\ 194\\ 358\\ 2462\\ 930\\ 130\\ 130\\ 126\\ 222\\ 24\\ 222\\ 24\end{array}$	46.7 11.5 19.3 55.0 36.2 40.7 53.9 53.0 59.4 21.2 21.2 36.1 17.9 36.1	29.2 10.3 13.18 27.7 20.9 24.4 20.9 26.4 26.1 20.9 26.4 26.1 20.9 26.4 26.5 5 9.5 8 8 8 4 6 5 17.8 27.6 13.2 27.6 5 15.8 12 27.5 15.8 27.5 15.8 26.5 26.5 15.8 27.5 26.5 26.5 26.5 27.5 27.5 26.5 27.5 26.5 27.5 26.5 27.5 26.5 27.5 26.5 27.5 26.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27

Table	A	94	Cut	t 1					
Mixt. No.		Tim.	Br.	<u>R.C.</u>	Af.	Lad.	B.T.	As.	Mixtures
i123456789		1.10 .74 .45 1.68 .58 .56 .49 .61 .600	.81	.98 .32 .50 .58 .95 .90 1.12 .92	•72 •47	.400 .29	.13 .07 .14	• 55	1.04 .61 .46 .95 .66 .52 .51 .54 .69 .61

Competition Indices of Forage Species in Hay Mixtures

Table A 95 Cut 2

Mixt. No.	Tim.	Br.	<u>R.C.</u>	<u>Af.</u> 8	Lad.	<u>B.T.</u>	As.	Mixtures
123456789	.67 .72 .34 1.83 1.16 .99 1.45 .48 .52	•30	.78 .28 .35 1.14 .72 .55 .77 .71	•37 1•02	•34 •59	•43 •54 •28	.81	.72 .47 .61 1.47 .90 .66 .92 .47 .61 .54

Seasonal Average Yield per Unit Area of Ground Cover (in gm)

Table A 96

Grasses, Legumes and Pure Stands. Hay Mixtures 1961

		Grasses			Le	gumes	
Mixt. No.	Total D.M. of Compon. 4	Total Ground Cover 5	Ave. Yield/ Unit Area 8	Mixt. No.	Total D.M. of Compon. 4	Total Ground Cover 5	Ave. Yield / Unit Area 8
Tim.i 1 2 3 4 5 6	3180 864 1000 1718 1396 2145 1948	56 26 46 18 32 52 44	56.8 33.2 21.7 95.4 43.6 41.2 44.3	R.C.1 2 3 4 5 6	10544 3219 3878 12662 13907 16982 17058	178 186 138 276 290 366 324	59.2 17.3 28.1 45.9 48.0 46.4 52.6
7 Br. 8 Tim.9	2237 6133 5699	76 210 174	29.4 29.2 32.8	Af. 1 2 8	15339 14930 11947 14694	306 242 214 250	50.1 61.7 55.8 58.8
Species Tim	8545	138	61.9	Lad.2	2298	184	12.5
R.C. Af. Br. Lad. B.T. As.	12190 16187 9203 8480 9989 10176	214 190 148 328 160 186	57.0 85.2 62.2 25.9 62.4 54.7	B.T.5 6 7 9 As. 3	1028 516 1273 11035 4170	96 72 114 278 138	10.7 7.2 11.2 39.7 30.2

Sources	D.F.	s.s.		M.S.	F	F.05	F.01_
Table A Reps. Treat Error	97 Pure 1 6 6	e Stands 144.0 16,226.1 1,199.3	0 48 35	144.0 2,704.41 199.89	0.72 13.53	4.28	8.47
Total	13	17,569.8	83		SE , = CV =	9.997 13.21%	
Table A Reps. Treat Error	98 Gra 1 11 11	asses (C) 575.2 61,501. 66,521.	ut 1 26 12 51	and 2) 575.26 5,591.01 6,047.41	0.10 0.93	2.82	4.46
Total	23 :	128,597.8	89		S = CV =	77.765 70.44%	
<u>Table A</u> Reps. Treat Error	99 Gra 1 11 11	asses (0 201.2 15,811.9 38,945.4	<u>Cut 1</u> 26 95 +1) 201.26 1,437.45 3,540.49	0.06 0.41		
Total	23	54, 958.6	62		S = CV =	59.502 84.83%	
Table A Reps. Treat Error	100 G 1 11 11	rasses 96.0 21,470.9 16,882.9	<u>(Cut</u>) 55 57	2) 96.0 1,951.87 1,534.78	0.06 1.27		
Total	23	38,449.3	12		S = CV =	39.176 97.3%	
Table A Reps. Treat Error	101 Le 1 22 22	egumes (1,634.4 81,303.3 6,686.9	(<u>Cut</u> +7 38 99	1 & 2) 1,634.47 3,695.61 303.95	5.38 12.16	4.30 2.07	7.94 2.83
Total	45	89,624.8	84		SE i = CV =	12.328 21.34%	

Analysis of Variance of Yield per Unit Area of Ground Cover 1961. Hay Mixtures

							Block	s							
Pure Star	e nds				E					F	?				
		D. C	M. of omp.		PA	1	NAR	Ī	Comp.	of 		PAI		NAR	
Tim. R.C. Af. Br. Lad. B.T.	•		325 160 528 469 078		2. 2. 3. 3.	50 20 30 50 70	.167 .660 .290 .570 .400		580 1309 913 573 1228 683		2 3 1 2 2 3	.10 .03 .20 .27 .70 .30		• 343 • 573 • 844 • 318 • 413 • 288	
Mixt	tures				<u>B or</u>	· C				I	<u>)</u>				
Tim. Br. R.C. B.T.	C1 B6 C13 C2 B6 B6 C	1	51 82 106 989 996 123 061		0. 0. 2. 2. 2.	50000000000000000000000000000000000000	.093 .175 .192 .524 .510 .180 .495		79 133 101 888 775 125 917		0 0 1 2 0 3	•33 •40 •60 •87 •17 •70 •77		.193 .285 .160 .577 .446 .176 .335	3507
PAI NAR	LAI F va F	obt lue "	ained for "	by spe	imp cies "	orov in	ved PG pure "	at st	32. and v 5%	5 ⁰ was lev was lev	prio sig vel. sig vel.	r to nif: C nif: C	o c ica V= ica V=	utt: nt a 15.9 nt a 17.7	ing at 5% at 7%
PAI NAR	F F	13 14	11 11		11 11	11 11	mixtu "	res	was 1% was 1%	sig lev sig lev	gnif vel. gnif vel.	ican C' ican C'	nt V= nt V=	at 24.2 at 22.(2% 0%

Table A 102 PAI and NAR Pasture Mixtures Cut 3

NAR Calculations of Grass and Legume Components Cut 3 Aug. 4, 1961. Pasture Mixtures

PAI Obtained with Improved P.Q.

		G	rasses								egumes		
		C			E)			C			D	
Species	D.M. of <u>Comp.</u>	PAI	NAR	D.Wt. of <u>Compon</u>	PAI	NAR	Species	D.M. of Comp.	PAI	NAR	D.Wt. of <u>Compon.</u>	LAI	NAR
Tim. 1 4 6 8 9 11 12 vii Br. 13 viii Br. 13 viii PAI F no NAR F s PQ read	51 25 B82 34 115 124 37 12 29 106 1. ot sign sign. a ings ta	0.30 .40 .20 .40 .70 .20 .40 .60 .50 .40 .50 .40 .50 .40 .50 .40 .50 .40 .50 .40 .50 .40 .50 .40 .50 .40 .20 .40 .40 .40 .40 .40 .40 .40 .40 .40 .4	0.134 .053 .130 .118 .246 .175 .129 .026 .047 .192 .003 = 23.5% Level s 1 poi	79 36 133 12 150 93 28 32 17 101 5 % CV = 4 nt at 1	0.60 .30 .40 .60 .70 1.30 0.60 .20 .30 .10	0.125 .095 .285 .019 .211 .168 .044 .111 .031 .266 .027	R.C. 1 4 6 Af. 8 9 Lad. 4 12 vii viii B.T. 6 9 11 13 vii viii	989 352 B996 239 280 938 1068 1165 1265 1318 B 123 616 866 1061 17 28	$\begin{array}{c} 2.60\\ 1.50\\ 2.20\\ 0.60\\ 1.70\\ 3.60\\ 2.70\\ 3.10\\ 3.00\\ 1.20\\ 3.70\\ 3.90\\ 2.80\\ 0.30\\ 0.90\\ \end{array}$	0.491 .273 .567 .378 .657 .405 .560 .543 .581 .114 .228 .307 .495 .032	888 133 775 350 1220 1313 1431 1225 1463 125 1463 125 599 473 917 11 21	$\begin{array}{c} 2 & 10 \\ 0 & 40 \\ 2 & 30 \\ 0 & 50 \\ 0 & 40 \\ 3 & 90 \\ 3 & 90 \\ 4 & 10 \\ 3 & 60 \\ 3 & 50 \\ 3 & 50 \\ 0 & 30 \\ 0 & 10 \\ 0 & 10 \\ \end{array}$	0.525 .285 .426 .635 .676 .596 .598 .417 .557 .267 .238 .245 .238 .245 .238 .245 .238 .245 .238 .245 .238 .245 .238 .246 .238 .246 .237 .238 .246 .596 .596 .596 .596 .596 .596 .596 .59
at 32.5	' angle	on th	ne uncu	t borde	rs.		PAI F NAR F	sign.	at 1%	CV=	28.3%		

CXXI

PAI and NAR of the Pure Stands Cut 4

Pasture Mixtures 1961

			Dis	sc Me Block	thod				<u>P</u>	oint (Blo	<u>Juadra</u> cks	<u>t</u>
		E				F				E]	F
Species	DW/2/m2	Lwt/ /Ldm ²	PAI a)	NAR	DW/2/m2	Lwt/ _/Ldm ²	PAI	NAR	PAI	NAR	PAI	NAR
Tim. R.C. Af. Brome Lad. B.T. R.Can. K.Blue	23 59 66 140 130 79 73	•340 •333 •413 •423 •321 •374 •291 •405	0.6765 1.7717 1.5981 0.9456 4.3613 3.4759 2.7148 1.8025	.358 .431 .524 .481 .488 .547 .408 .526	27 89 35 31 103 118	.401 .348 .420 .374 .360 .367	0.6733 2.5575 0.8333 0.8289 2.8611 3.2153	.422 .482 .464 .413 .509 .530	.8 1.6 1.4 1.2 3.2 3.5 1.8 1.2	.315 .468 .582 .399 .631 .544 .570 .728	.9 2.1 1.3 1.3 1.7 1.8	•337 •567 •328 •290 •778 •851
Point Q	adrat	s taken:	Aug. 30) and	31		E		,			

m² sample cut " 31 and Sept. 1 Plots cut : Sept. 1

(a) To read total photosynthetic area shift decimal two places to the left.

PAI and NAR of the Grass Components Cut 4

Table A 105

<u>Pasture Mixtures 1961</u>

			1	Disc Blo	Method cks				1	Point Bl	Quadr ocks	<u>at</u>
			C				D		(;		D
Mixt.No. Species	DW/_L	wt/ /Ldm ²	PAI	NAR	DW/L	wt/ /Ldm ²	PAI	NAR	PAI	NAR	PAI	NAR
Tim. 1 4 6 8 9 11 12 vii Br. 13 viii Br. 13 viii (a) K.Bl. 15	$ \begin{array}{c} 12 \\ 2.0 \\ 12 \\ 1.0 \\ 19 \\ 21 \\ 3.0 \\ 0.5 \\ .36 \\ 19 \\ .07 \\ .84 \\ 58 \\ \end{array} $.298 .326 .295 .258 .343 .392 .255 .292 .257 .381 .181 .233 .192(b	0.4027 0.0613 0.4068 0.0388 0.5539 0.5357 0.1176 0.0171 0.0140 0.4987 0.0039 0.0361)3.0208	.275 .148 .273 .087 .344 .390 .157 .039 .022 .372 .075 .274	10 1.85 19 1.5 33 32 1.32 1.12 6.5 15 3.5 B6 36	•345 292 325 •232 •311 •535 •260 •275 •326 •432 •292 •223 •317	0.2890 0.0634 0.5846 0.0647 1.0611 0.5981 0.0508 0.0407 0.1994 0.3472 0.1199 0.2691 1.1356	.291 .135 .331 .108 .363 .547 .106 .097 .244 .383 .181 .184 .375	·5 (.2) ·3 (.2) ·5 1.2 (.2) (.2) 1.2 (.2) 1.2 (.2) .1 .8	.235 .075 .340 .038 .372 .209 .173 .019 .014 .189 .003 .048 .794	·7 (.2) .8 .1 2.3 .9 (.2) (.2) (.2) .1 .3 .1 (.2) 1.2	152 069 260 086 195 400 050 042 374 425 201 225 359
(a) Evalua Nos. v (b) To rea point	ated by vii and ad total two pla	cutting viii be photos ces to	out .5 long to yntheti the lef	dm se rep. c area t.	egments Or Bloc shift	of the k E an decima	leaf. d F l	P	Point as on 10 ne	Quadr e stat edles	at was ion or per m ²	taken

CXXIII

PAI and NAR of the Legume Components Cut 4

Pasture Mixtures 1961

			<u>1</u>	Disc M Bloc	ethod ks					Point BI	Quad: Locks	rat
	n	(c				D		C]	D
Species Mixt.No.	DW/2/m ²	Lwt/ /Ldm ²	PAI	NAR	DW/ /m ²	Lwt/ /Ldm ²	PAI	NAR	PAI	NAR	PAI	NAR
R.C. 1 4 Af. 8 9 Lad. 4 8 12 vii viii B.T. 6 9 11 13 14 15 vii viii viii	83 15 79 18 39 920 1322 132 132 135 708 80 5 10 83 0.4	•305 •335 •310 •365 •377 •326 •245 •3297 •386 •387 •386 •3386 •329 •386 •329 •316	2.7213 0.4478 2.5484 0.4932 1.0345 3.1935 4.6875 5.4286 4.6464 0.4373 1.9430 3.2047 2.1503 2.2727 1.5805 0.0316 0.0140	427 343 435 435 435 435 435 435 435	71 15 71 23 36 117 107 135 107 135 105 28 4 75 100 112 70 3.7 14	.321 .278 .327 .322 .365 .312 .236 .279 .333 .303 .352 .343 .303 .352 .343 .303 .329 .383 .329 .378 .326	$\begin{array}{c} 2.2118\\ 0.5396\\ 2.1713\\ 0.7143\\ 0.9863\\ 3.7536\\ 4.5338\\ 4.8387\\ 3.0330\\ 3.7953\\ 0.7955\\ 2.4490\\ 2.4752\\ 2.6109\\ 3.4042\\ 2.5000\\ 0.9992\\ 0.4294 \end{array}$	433 277 444 3419 462 361 4750 5487 417 5487 5487 306 3217 306	2.6 1.1 1.0 2.0 2.3 2.8 3.8 4.1 5.9 0.2 2.0 2.2 1.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	.444 .160 .910 .674 .987 .709 .711 .616 .2028 .62058 .64590 .5937 .037 .015	·9 ·3 ·78 ·9 ·2·3 ·2·2 ·2·7 ·76 ·9 ·3·5 ·2·3 ·2·3 ·2·3 ·2·5 ·76 ·9·3 ·5·2 ·1·3·6 ·2·1·3 ·2·3 ·2·5 ·7·6 ·9·1·3·6 ·2·1·3·6 ·1·1·3·6 ·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·	8875 15315 1544392 1544392 1545

PAI and NAR of the Pure Stands Cut 5a

Pasture Mixture 1961

Disc Method

Point Quadrat

			ЕЕ			·	F			E		 F
Species	DW/ /m ²	Lwt/ /Ldm ²	PAI	NAR	DW/ /m ²	Lwt/ /Ldm ²	PAI	NAR	PAI	NAR	PAI	NAR
Tim. R.C. Af. Brome Lad. B.T. R.Can. K. Blue	28 30 32 28 92 10 40 39	.381 .337 .338 .471 .296 .423 .307 .351	0.7349 0.8902 0.9467 0.5945 3.1081 0.2364 1.3029 1.1111	.546 .504 .513 .641 .566 .448 .498 .551	30 60 12 34 86 20	.472 .276 .301 .444 .289 .455	0.6356 2.1739 0.3987 0.7658 2.9758 0.4396	•653 •495 •367 •642 •549 •574	1.0 .9 1.0 2.8 1.3 0.9 .8	.430 .400 .500 .430 .617 .125 .667 .731	1.0 1.5 2.2 1.3	.415 .667 .366 .887 .703 .250

Point Quadrat taken: Sept. 20th

1/2 m² sample cut: " 21st

A	108	PAI	and	NAR	of	the	Grass	Components	Cut	5a
				Pa	isti	ire l	Aixture	s 1961		

			Di	sc Met Blocks	hod				<u>Pc</u>	bint Qu Bloc	ladrat ks	2
		(C			D				C		D
Species Mixt.No.	DW/ /m ²	Lwt/ _/Ldm ²	PAI	NAR	DW/ /m ²	Lwt/ _/Ldm ²	PAI	NAR	PAI	NAR	PAI	NAR
Tim. 1 4 6 8 9 11 12 vii Br. 13 viii R.Can.14 K.Bl. 15	$ \begin{array}{c} 10 \\ 4.23 \\ 11 \\ .82 \\ 18 \\ 20 \\ 1.11 \\ .38 \\ .028 \\ 20 \\ .54 \\ 31 \\ \end{array} $	• 369 • 335 • 326 • 264 • 315 • 415 • 215 • 172 • 240 • 401 • 178 • 300 • 344	0.2710 0.1262 0.3374 0.0311 0.5714 0.4819 0.0516 0.0221 0.0012 0.4988 0.0011 0.0180 0.9012	.406 .283 .382 .100 .425 .536 .086 .045 .272 .523 .219 .059 .505	6 16 1.59 22 26 1.54 .82 3.8 20 1.31 B2.04 14	• 369 • 252 • 343 • 257 • 386 • 475 • 266 • 258 • 286 • 286 • 383 • 269 • 373 • 319	9.1626 0.0278 0.4665 0.0619 0.5699 0.5474 0.0579 0.0318 0.1329 0.5222 0.0487 0.0547 0.4389	• 343 • 086 • 439 • 156 • 520 • 634 • 156 • 099 • 247 • 505 • 142 • 211 • 402	•3 •2 •1 (•2) •2 •2 •1 (•2) (•2) •7 (•2) (•2) •3	•378 211 •844 •040 •899 •999 •256 •018 •001 •405 •000 •037 1.172	(.2) (.2) (.2) .4 .1 .7 .2 .5 1 .2 .2	• 300 • 034 • 492 • 122 • 831 • 536 • 119 • 041 • 190 • 522 • 101 • 102 • 699

(a) Same method as for K.B.

Table

Tabl	e A	109	

PAI and NAR of the Legume Components Cut 5a Pasture Mixtures 1961

			Point Bl	Quadrat ocks						
		C					D		С	D
Species Mixt.No.	$\frac{DW}{m^2}$	Lwt/ /Ldm ²	PAL	NAR	DW/2/m ²	Lwt/ 2	PAI	NAR	PAI NAR	PAI NAR
R.C. 1 4 Af. 8 9 Lad. 4 8 12 vii viii B.T. 6	50 9.9 56 9.4 20 74 96 108 94 92 4.60	.301 .260 .305 .264 .370 .276 .294 .269 .285 .262 .321	1.6611 0.3807 1.8361 0.3561 0.5405 2.6812 3.2653 4.0149 3.2982 3.5114 0.1433	.513 .315 .530 .314 .492 .514 .508 .538 .5512 .512 .285	38 6.5 44 6.0 18 100 76 114 72 70 12	.285 .263 .324 .267 .293 .278 .296 .296 .269 .328 .296	1.3333 0.2471 1.3580 0.2247 0.6143 3.5971 2.5676 4.2379 2.1951 2.3649 0.3614	.465 .281 .530 .277 .402 .5447 .5449 .5397	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3 .474 (.2) .326 .7 .890 (.2) .300 .7 .364 1.6 1.057 1.8 .731 1.8 1.100 1.8 .692 1.8 .673 .7 .243
9 11 13 14 15 vii vii	18 28 32 18 20 -004	.298 .378 .329 .398 .478 .122	0.6040 0.7407 0.9726 0.4523 0.4184	.407 .542 .502 .506 .605	18 14 40 B15 20 1.36 1.45	•378 •464 •423 •423 •372 •372 •258 •238	0.4762 0.3017 0.9456 0.3546 0.5376 0.0527 0.0609	.487 .527 .641 .503 .494 .137 .143	.9 .300 1.5 .312 .8 .584 .8 .329 .6 .463 (.2) .001	.7 .364 .8 .256 .9 .667 .6 .342 .6 .455 (.2) .068 (.2) .072

Table A 110PAI and NAR of the Pure Stands Cut 5 (b&c)

<u>Pasture Mixture 1961</u> (Oct. 23,1961)

					B1	ocks								
	_	_		E	-						F			
Spec- ies	W ₂ gms/ _/m ²	1) W2-W1 gms/ /m ²	Lwt/ /Ldm ²	L ₂	ii) L ₂ -L ₁	NAR _b	NARc	₩ ₂	W2-W1	Lwt/ /Ldm ²	^L 2	^L 2 ^{-L} 1	NAR _b	NAR _c
Tim. R.C. Af. Brome Lad. B.T. R.Can. K.Bl.	84 56 44 90 130 66 80 66	56 26 12 62 38 56 40 27	•449 •287 •360 •575 •331 •418 •435 •405	1.8708 1.9512 1.2222 1.5652 3.9275 1.5789 1.8391 1.6296	1.1359 1.0610 0.2755 0.9707 0.8194 1.3425 0.5362 0.5185	.102 .043 .025 .137 .024 .176 .057 .044	.313 .202 .231 .387 .264 .282 .302 .275	88 106 30 86 112 44	58 46 18 52 26 24	•479 •360 •443 •526 •349 •471	1.8371 2.9444 0.6772 1.6350 3.2092 0.9342	1.2015 0.7705 0.2785 0.8692 0.2334 0.4946	.114 .041 .080 .101 .020 .081	•333 •273 •249 •357 •269 •285
(i) W ₂ W ₁	= Yiel	Ld of c	ut 5 _b " 5 _a	(ii) L ₂ L ₁	= PAI fi = PAI '	rom cu	t 5 _b 1 5 _a 1	NAR _b NAR _c	= NAR = "	of PAI	L ₂ - L _{1,} 2- L ₀	(in gm/	dm ² /w	eek)

PAI and NAR of the Grass Components Cut 5 (b&c)

Pasture Mixture 1961 (Oct. 23,1961)

B]	0	c]	κs

				C							D			
Spec- ies	W ₂	W2-W1	Lwt/ /Ldm ²	ь ₂	^L 2 ^{-L} 1	NARb	NARc	W2	w ₂ -w ₁	Lwt/ /Ldm ²	² ^د 2	ь _{2-р} 1	NARb	NARc
Tim.1 4 6 8 9 11 12 vii Br.13 viii R.C14 K.B15	$ \begin{array}{r} 18 \\ 1.71 \\ 2.33 \\ 46 \\ 32 \\ 6.24 \\ 3.97 \\ 0.818 \\ 32 \\ 0.718 \\ 4.12 \\ 52 \\ \end{array} $	8 -2.52 13 1.51 28 12 5.13 3.59 .790 12 .698 3.58 21	•349 •355 •379 •365 •336 •519 •325 •451 •325 •325 •325 •325 •325 •325 •347	0.5158 0.0482 0.6332 0.0638 1.3690 0.6166 0.1920 0.0880 0.0251 0.6214 0.0210 0.1406 1.4986	0.2448 0780 0.2958 0.0327 0.7976 0.1347 0.1404 0.0659 0.0239 0.1226 0.0199 0.1226 0.5974	.047 003 .061 .074 .068 .049 .107 .167 191 .049 223 .133 .048	.183 .074 .210 .090 .220 .285 .128 .131 •040 .284 .034 .103 .232	10 40 46 38 1.52 26.7 28.2 9.8 28.2 9.8 28.2 28.2 28.2 29.3 28.2 28.2 29.3 28.2 28.2 28.2 29.3 28.2 28.2 29.3 28.2 28.2 29.3 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 29.3 28.2 28.2 28.2 28.2 29.5 28.2 28.2 29.5 28.2 28.2 29.5 28.2 28.2 29.5 28.2 28.2 29.5 29.5	$ \begin{array}{r} $.441 .376 .474 .267 .583 .523 .366 .423 .531 .392 .356 .355	0.2268 0.1133 0.4641 0.2255 0.7890 0.7266 0.0336 0.0604 0.1941 0.4896 0.2487 0.1935 0.7887	0.0642 0.0855 -0.0024 0.1636 0.2191 0.1792 -0.0243 0.0286 0.0620 -0.0326 0.2000 0.1388 0.3498	.046 .130 .029 .029 .079 .042 .015 .086 .060 .027 .117 .098 .052	.183 .122 .243 .111 .340 .299 .059 .059 .101 .167 .275 .168 .141 .207

Refer to Table A for explanation of table

PAI and NAR of the Legume Components Cut 5 (b&c)

Pasture Mixture 1961 (Oct. 23, 1961)

B1	.oc!	κs
----	------	----

				C							D			
Spec- ies	W ₂	W2-W1	Lwt/ /Ldm	² ^L 2	^L 2 ^{-L} 1	NARb	NARc	W2	W ₂ -W ₁	Lwt/ /Ldm	2 ^L 2	^L 2 ^{-L} 1	NARb	NARc
R.C.1 4 Af. 8 9 Lad.4 8 12	$ \begin{array}{r} 108 \\ 10.4 \\ 102 \\ 11.4 \\ 44 \\ 122 \\ 140 \\ 142 \\ 142 \end{array} $	58 0.5 46 2.4 2.4 48 44 34	• 330 • 314 • 355 • 409 • 444 • 351 • 340 • 346	3.2727 0.3312 2.8732 0.2326 0.9910 3.4758 4.1176 4.1040	1.6116 -0.0495 1.0371 -0.1235 0.4505 0.7946 0.8523 0.0891	.054 .003 .044 .015 .072 .035 .095 .002	.255 .147 .268 .206 .272 .274 .273 .278	44 7 86 17.2 24 110 124 114	6 ·282 42 11.2 6 10 48 ·082	•371 •342 •349 •456 •526 •351 •342 •342	1.1860 0.1983 2.4642 0.3772 0.4563 3.1339 3.6257 3.3333	-0.1473 -0.0488 1.1062 0.1525 1580 4632 1.0581 9046 4	.011 .033 .050 .085 .025 .025 .035 .035	•236 •136 •256 •221 •268 •269 •269 •269
vii viii B.T.6 9 11 13 14 15 vii viii	148 150 12 38 56 52 30 20 1 .08	54 58 20 28 20 12 054 1.204 .076	• 399 • 367 • 338 • 380 • 441 • 425 • 338 • 379 • 310 • (• 204)	3.7092 4.0872 0.3550 1.0000 1.2698 1.2235 0.8876 0.5277 10.0388 0.0039	0.4111 0.5758 0.2117 0.4060 0.5291 0.2509 0.4353 0.1093 0.0388 .0036-	.045 .034 .051 .055 .063 .041 .041 .093 .093	.315 .294 .208 .233 .289 .272 .202 .203 .093 .064	116 110 28 23 8 23 B 20 9 1 3	44 40 -3.83 10 14 4 5 -11 326 1.904	426 345 447 471 3368 403 412	2.7230 3.1792 0.2368 0.6667 0.6264 0.9342 0.5917 0.2537 0.0257 0.0814	0.5279 0.8143 1246 1904 0.3247 0114 0.2371 2839 0270 0.0205	.040 .032 .029 .039 .070 .009 .024 064 019 .061	.318 .266 .146 .235 .211 .285 .184 .159 .051 .115

(i) estimated from Cut 4 and 5a (ii) L_1 was O

CXXXI

Table A 113		<u>Analysis</u>	of Varia Area	nce of Index	the Pho (PAI)	tosyntl	netic
		G	rasses -	Pastu	r <u>e Mixt</u>	ures 19	961
Cut 4							
Source Rep. Species Error Total $\bar{\mathbf{x}}$ =	<u>D.F.</u> 1 14 14 29 0.	<u>s.s.</u> .0191 7.3492 2.0073 9.3756 52	<u>M.S.</u> .0191 0.5249 0.1434	F. 0.13 3.66	F.05 4.60 2.84	$\frac{F.01}{3.70}$ $\frac{S=0}{CV}$ $SE_{\bar{X}} =$	0.3787 72.3% 0.268
Cut 5 a Rep. Species Error Total x =	1 14 14 29 0.	.0003 2.1235 .1597 2.2835 15	.0003 .1517 .0114	.03 13.31	4.60 2.84	3.70 S= CV= SE _x =	.1068 70.6% .076
$\frac{\text{Cut } 5(b)}{\text{Rep.}} = 0$ Rep. Species Error Total $\overline{x} =$	(5a - 1 14 14 29 0.	5c) (i) .0433 3.3711 0.2729 3.6873 28	.0433 .2408 .0195	2.22 12.35	4.60 2.84	3.70 S= CV= SE _x =	.1396 50.71% .099
Cut 5c Rep. Species Error Total $\bar{x} =$	1 14 14 29 0.	.0521 9.6091 .5120 10.1732 58	.0521 .6864 .0366	1.42 18.75	4.60 2.84	3.70 S= CV= SE _x =	.1913 33.2% .135
	reren		obsyllere c	TC area	THUGY	any	SLass

(i) The difference in Photosynthetic area index of any grass between Cut 5a and 5c gave the PAI of 5b. Also any negative values in this cut were analyzed as zero, i.e., no change in photosynthetic area.

Analysis of Variance of NAR Grasses

Pasture Mixtures 1961

Cut 4

Source	$\frac{D.F.}{1}$	<u>S.S.</u>	M.S.	$\frac{F}{7.62}$	F.05	F.01 Statistics
Species Error	14 14	•556593	•039757	11.60	2.84	$3.70 \bar{x} = .249$
Total	20	630680	.003427			S = .0585 CV = 23.5%
IUUAI	27	.05000				$SE_{\overline{x}} = .0414$
<u>Cut 5a</u>	-	0014:20	001420	0.22	L (0	
Rep. Species	14	1.095862	.001429	17.56	4.60 2.84	3.70 = = .342
Error	14	.062396	.004457			S - 0668
Total	29					CV = 19.5%
						$SE_{\overline{x}} = .0472$
(i) <u>Cut 5b</u>		-9				
Rep.	1	3x10	0	0	4.60	2.50
Error	14 14	.024006	.002019	0.00	2.04	3.70 = .063
Total	29	.053067				CV = 70.8%
						SE _x = .0316
Cut 5c						
Rep.	1	.008102	.008102	4.58	4.60	
Error	14	.024781	.001720	0.04	2.04	$3 \cdot 70 = .105$ S = .0421
Total	29	.232145				CV = 22.8%
(i) These compl	NAR v ete fo	alues have rmula, i.e	been obt	ained b	y usin	g Watson's
<u>(W2-W</u>	<u>1) x (</u>	Loge L2- 1	oge L _l) =	NAR (g	m/dm ² /	week)
(t ₂ -	t _l) x	(L_2-L_1)				

Table A 115Analysis of Variance of PAI Legumes

<u>Cut 4</u>		<u></u>					
Source Rep. Species Error Total	D.F. 1 21 21 21 43	<u>s.s.</u> .0096 84.4026 5.0821 89.4943	<u>M.S.</u> .0096 4.0192 0.2420	F 0.04 16.61	F.05 4.32 2.09	F.01 Statistic 2.88 $\bar{x} = 2.36$ S = .4919 CV = 20.89 $SE_{\bar{x}} = .348$	<u>25</u>
<u>Cut 5a</u> Rep. Species Error Total	1 20 20 41	.1216 62.4366 3.1676 65.7254	.1216 3.1218 .1584	0.77 19.71	4.35 2.12	2.94 $\bar{x} = 1.38$ S = .3980 CV = 28.99 SE $\bar{x} = .035$	2 Z
<u>Cut 5b</u> (i Rep. Species Error Total	.) 21 21 43	.4028 4.9407 2.4079 7.7514	.4028 .2353 .1147	3.51 2.05	4.32 2.09	2.88 $\frac{1}{x} = 0.42$ S = .338 CV = 81.09 SE _x = .240	7%
<u>Cut 5b (</u> Rep. Species Error Total	correc 1 21 21 43	ted(ii) .6384 5.5252 3.1109 9.2745	.6384 .2631 .1481	4.31 1.78	4.32 2.09	2.88 $\bar{x} = 0.89$ S = .384 CV = 43.45 SE _x = .272	8%
<u>Cut 5c</u> Rep. Species Error Total	1 21 21 43	1.9741 80.4178 3.3153 85.7072	1.9741 3.8294 0.1579	12.50 24.25	4.32 2.09	8.02 2.88 $\bar{x} = 1.66$ $S = .397^{4}$ $CV = 23.99^{4}$ $SE_{\bar{x}} = .281$	4%
(ii) Cor eli	rected minate	by incre the nega	asing ea tive val	ich valu ues.	ie by O).5 so as to	

Pasture Mixtures 1961

(i) Refer to table A 108

Table A 116Analysis of Variance of NAR Legumes

Cut 4							
Source Rep. Species Error Total	<u>D.F.</u> 1 21 21 43	<u>s.s.</u> .002520 .427678 .057091 .437289	M.S. .002520 .020366 .002719	F 0.93 7.49	<u>F.05</u> 4.32 2.09	<u>F.01</u> 2.88 S	<u>Statistics</u> $\frac{1}{x} = .414$ S = .0521 CV = 12.6% $E_{x} = .0369$
<u>Cut 5a</u> Rep. Species Error Total	1 20 20 41	.003439 .652779 .049383 .705601	.003439 .032639 .002469	1.39 13.22	4.35 2.09	2.88 S	$\frac{1}{x} = .475$ s = .0497 cv = 10.5% $E_{x} = .0351$
<u>Cut 5b (i</u> Rep. Species Error Total	1) 21 21 43	.005331 .030972 .015704 .052007	.005331 .001475 .000748	7.13 1.97	4.32 2.09	8.02 S	$\bar{x} = .039$ S = .0273 CV = 69.6% $SE_{\bar{x}} = .0193$
<u>Cut 5c</u> Rep. Species Error Total	1 21 21 43	.000201 .188881 .017096 .206178	.000201 .008994 .000814	0.25	4.32 2.09	2.88 s	$\bar{x} = .228$ S = .0285 CV = 12.5% $SE_{\bar{x}} = .0202$

rasture mixtures 190	1	
----------------------	---	--

(i) Refer to Table A 109

Table A	117	Analysis of Variance of PAI and NAR Total of Cut 4 and 5	
		Pasture Mixtures 1961	
PA1 Gras	ses		-
Source	<u>D.F.</u>	S.S. M.S. F F.05 F.01 Statistics	-
Kep. Species	14	27.3491 1.9535 7.51 2.84 3.70 = 1.101	
Error	14	3.6425 .2602 $\hat{S} = .5101$	
Total	29	31.1263 $CV = 46.3\%$ SE _x = .3607	
NAR Gras	ses		
Rep.	1	.063296 .063296 8.14 4.60 8.86	
Species Error	14 յև	$1.398699 \cdot 099907 12.85 2.84 3.70 = .4342$	
101 101	ΤŦ	CV = 20.3%	
Total	29	1.570807 $SE_{\bar{x}} = .0623$	
PAI Legu	mes		
Rep.	1	2.2591 2.2591 3.53 4.35	
Species Error	21 21	306.0996 14.5762 22.76 2.09 2.88 = 4.0243 13.4490 .6404	
Total	43	321.8077 $SE_{\overline{X}} = .5659$	
NAR Legu	mes		
Rep.	1	.003844 $.003844$ 0.76 4.35	
Error	21	$\begin{array}{c} 1.107704 & 0.92009 & 10.46 & 2.09 & 2.08 & x = 0.0419 \\ 0.105563 & 0.005027 & S = 0.0709 \\ 0.105563 & 0.0057 & S = 0.0709 \\ 0.105663 & 0.0057 & S = 0.0709 \\ 0.10563 & 0.0057 & S = 0.0709 \\ 0.00563 & 0.0057 & S = 0.0709 \\ 0.00563 & 0.0057 & S = 0.0057 \\$	
Total	43	1.214111 $SE_{\overline{x}} = .0501$	

(i) Represents the total of Cut 4 and 5c, i.e., complete recovery in each cut.

PAI and NAR of Hay Mixtures and Pure Stands Cut 3 1961

Grass	Compor	nents						Bloc	ks	-						
		A				В				(C			I)	
Comp- onent Tim.1	DW m2 47 13	Lwt / Ldm ² .310 .366	PAI 1.5161 .3552	<u>_NAR</u> .130 .109	DW /2 90 No	Lwt / _Ldm ² .513 Tim.	PAI 1.7544 present	<u>NAR</u> .221	DW / m2 No	Lwt Ldm ² Tim.	PAI present	<u>NAR</u>	DW / 5.594	Lwt / Ldm ² .255	<u>PAI</u> .2194	<u>NAR</u> .066
5 9 Br. 8	40 57 53 6.043	•400 •354 •406 •369	1.2000 1.6102 1.3054 .1638	.160 .148 .165 .086	40 14 37 24	.492 .430 .258	.2846 .8605 .9302	.192 .137 .160 .097	15 70 10		.3417 1.4768 .3040	.129 .197 .094	11 43 13	•349 •460 •356	.2302 .3152 .9348 .3652	.100 .174 .107
Legume R.C.i 4 5 Lad.4 Af. 1 8 B.T.5 9	E Comp E 126 3.057 142 169 43 191 249 43 154	onent: 290 284 360 331 331 256 401 587 472	<u>s</u> .1076 3.9444 5.1057 1.2991 7.4609 6.2095 .7325 3.2627	.147 .056 .179 .172 .134 .141 .215 .210 .228	F81 4.44 120 244 62 200 202 13 185	•348 •315 •387 •314 •296 •383 •511 •415	2.3276 .1410 3.1008 7.7707 2.0946 5.2219 3.9530 .2851 4.4578	.158 .069 .185 .174 .132 .200 .255 .127 .211	6.63^{1} 219 275 51 223 5.15 181	+ .240 .330 .296 .353 .381 .425 .369 .528	.2764 6.6364 9.2905 1.4448 5.8530 5.5294 .1396 3.4280	.066 .179 .169 .146 .202 .224 .081 .257	6.076 201 198 34 214 174 11 155	.272 .314 .378 .330 .401 .450 .393 .508	.2234 6.4013 5.2381 1.0303 5.3366 3.8667 .2799 3.0512	.070 .169 .197 .128 .210 .223 .109 .242
			Pure S R.C. Af. Lad. B.T. Br. Tim.	tands 2 4 5 6 7 8	170 171 56 146 158 125	E • 367 • 409 • 328 • 422 • 479 • 580	4.6322 4.1809 1.7073 3.4597 3.2985 2.1552	.188 .206 .140 .206 .231 .260	143 203 38 45 183 114	• 322 • 406 • 367 • 422 • 406 • 477	E 4.4410 5.0000 1.0354 1.0664 4.5174 2.3899	.164 .210 .142 .164 .210 .218				(7777 T

Table A 119Analysis of Variance Cut 3CXXXVIIHay Mixtures 1961											
PAI Pure Stands & 1 Mixt. (i)											
Source	<u>D.F.</u>	<u>s.s.</u>	<u>M.S.</u>	F	<u>F.05</u>	<u>F.01</u>	Statistics				
Rep. Species Error	1 7 2 7	.4761 22.7871 5.7758	.4761 3.2553 0.8251	0.58 3.95	5.59 3.79	7.00	x = 2.99 S = 0.91				
Total	15 2	29.039				SE	$\bar{x} = 0.6423$				
PAI Gras	sses				_						
Rep. Species	3	.8354 1.0949	0.2785	1.40 1.84	3.86	6.99 -	- 0 71				
Error	9	1.7898	0.1987		J	S	= 0.446				
Total	15	3.7201				CV SE _X	= 62.5% = 0.223				
PAI Legu	imes										
Rep. Species	3 7 18	3.5497 86.1424	1.1832	0.90	3.07	3.65 =	- 3,54				
Error	21 Z	27.5202	1.3105		_	S	= 1.145				
Total	31 23	17.2123				CV SE _X	= 32.4% = 0.572				
NAR Pure	e Stand	ds & 1 M	ixt.								
Rep. Species	1 7	.00002	7.00002	7 0.03	5.59	7.00 =	- 0.4030				
Error	7	.00645	6 .00092	2	5•77	S	= 0.03				
Total	15	.02214	+			CV SE x	= 16.0% = 0.0215				
NAR Gras	sses										
Rep. Species	3	0.00134	8 0.0004 + 0.0041	49 0.46	5 3.86	6.99 =	- 0 1345				
Error	9	0.00871	2 0.0009	68	J•00	S S	= 0.0311				
Total	15	0.02247	+			CV SE _X	= 23.1% = 0.0156				
NAR Legu	imes										
Rep.	3	0.00006	+ 0.0000	21 0.01	- 3.07	3.65 -	- 0 1675				
Error	21	0.01522	6 0.0021	75		S S S	= 0.0470				
Total	31	0.10226	0			CV SE _⊽	= 28.1% = 0.0233				

(i) In pure stands, mixture (i) containing Tim. and R.C. was included.

CXXXVIII

Table A 120	(i) Analysis of Variance	Cut 3
	Hay Mixtures 1961	

PAI Grass	ses			_		
Source Rep. Species Error Total	D.F. 1 7 7 15	<u>S.S.</u> .3452 18.3412 2.6295 21.3159	M.S. -3452 2.6202 -3756	F 0.92 6.98	<u>F.05</u> 5.59 3.79	<u>F.01</u> Statistics 7.00 $\bar{x} = 1.491$ S = .6129 CV = 41.1% $SE_{\bar{x}} = .554$
<u>PAI Legur</u> Rep. Species9 Error Total	mes 12 12 25	1.9553 99.6740 11.6845 113.3138	1.9553 8.3062 0.9737	2.01 8.53	4.75 2.69	4.16 $\bar{x} = 3.298$ s = .9868 cv = 29.9% $sE_{\bar{x}} = .698$
<u>NAR Grass</u> Rep. Species Error Total	<u>ses</u> 7 7 15	.00021 .04186 .00770 .04978	8 .000218 6 .005981 0 .001100	0.20 5.44	5.59 3.79	7.00 $\bar{x} = .1574$ S = .0033 CV = 14.93% SE_{\bar{x}} = .0235
<u>NAR Legur</u> Rep. Species Error Total	nes 1 12 12 25	.000044 .045624 .02618 .02618	9 .000049 + .003802 1 .002182 +	0.02 1.74	4.75 2.69	4.16 $\bar{x} = .1695$ S = .0467 CV = 27.6% $SE_{\bar{x}} = .0330$

(i) An. of Var. of Blocks A, D and E, F only.

		Pasture	Mixtures C	ut 4, 5a and 5b	1961	
	CUT	4	CUT	5 a	CUT 5	b
Pure Tim. Pure Br. Tim. 1 4 6 8 9 11 12 vii viii Br. 13 viii R.Can.14 K.Bluel5	$\begin{array}{c cccc} PAI \\ \hline 0.68 & b \\ .89 & b \\ .34 & b \\ .62 & b \\ .50 & b \\ .52 & b \\ .52 & b \\ .57 & b \\ .08 & b \\ .03 & b \\ .03 & b \\ .10 & b \\ .42 & b \\ .16 & b \\ .16 & b \\ 2.08 & a \end{array}$	$\begin{array}{c} \text{NAR} \\ \hline 390 \text{ abc} \\ \hline 447 \text{ ab} \\ 283 \text{ c} \\ 142 \text{ d} \\ 302 \text{ c} \\ 098 \text{ d} \\ 354 \text{ abc} \\ 468 \text{ a} \\ 132 \text{ d} \\ 068 \text{ d} \\ 133 \text{ d} \\ 378 \text{ abc} \\ 090 \text{ d} \\ 130 \text{ d} \\ 324 \text{ bc} \end{array}$	$\begin{array}{c} PAI \\ \hline 0.69 a \\ .68 a \\ .22 cd \\ .08 d \\ .40 bc \\ .04 d \\ .57 ab \\ .52 ab \\ .06 d \\ .03 d \\ .06 d \\ .51 ab \\ .02 d \\ .04 d \\ .04 d \\ .67 a \end{array}$	NAR .600 a .642 ab .374 cd .184 ef .410 cd .128 ef .472 bc .585 ab .121 ef .072 f .260 de .514 abc .180 ef .135 ef .454 bc	$\begin{array}{c} PAI \\ \hline 1.17 a \\ .92 a \\ .15 d \\ .04 cd \\ .15 cd \\ .10 d \\ .10 d \\ .56 b \\ .16 cd \\ .07 d \\ .07 d \\ .07 d \\ .05 d \\ .04 d \\ .06 d \\ .11 d \\ .13 cd \\ .48 bc \end{array}$	NAR .108 a .042 a .047 a .066 a .045 a .052 a .073 a .073 a .074 a .054 a .030 a .038 a .038 a .058 a .058 a .058 a

Average PAI and NAR of Grasses in Mixtures and Pure Stands

Means followed by the same lower case letter are not significantly different at the 5% level. (Duncan's Multiple Range Test)

Table A 122	Average	PAI	and	NAR	of	Grasse	es_in	Mixture	s_and	Pure	Stands
	· P	astu	re M	ixtur	res	Cut '	5c an	d Total	(4 &	5c) 1	961

	CUT 5 c		TOTAL (4 and 5 c)			
Pure Tim. "Br. Tim. 1 4 6 8 9 11 12 vii viii Br. 13 viii R.Can.14	CUT 5 c PAI 1.86 a 1.60 ab 0.38 def 0.08 f 0.54 def 0.14 ef 1.08 c 0.68 cd .11 ef .08 f .11 ef .12 ef .14 ef .17 ef	$\begin{array}{c} \text{NAR} \\ \textbf{.323 a} \\ \textbf{.238 ab} \\ \textbf{.183 bcd} \\ \textbf{.098 d} \\ \textbf{.226 ab} \\ \textbf{.100 d} \\ \textbf{.226 ab} \\ \textbf{.100 d} \\ \textbf{.280 ab} \\ \textbf{.292 a} \\ \textbf{.094 d} \\ \textbf{.116 d} \\ \textbf{.104 d} \\ \textbf{.104 d} \\ \textbf{.280 ab} \\ \textbf{.101 d} \\ \textbf{.122 cd} \end{array}$	$\begin{array}{c c} TOTAL (4 a) \\ \hline PAI \\ \hline 2.51 ab \\ 2.52 ab \\ 0.72 cd \\ .70 cd \\ 1.04 cd \\ 0.66 cd \\ 1.88 bc \\ 1.24 cd \\ 0.20 d \\ .10 d \\ .22 d \\ .98 cd \\ .20 d \\ .32 d \end{array}$	nd 5 c) NAR .373 ab .348 ab .237 abcd .128 cd .287 abcd .110 d .352 ab .423 a .082 d .099 d .206 abcd .329 abc .174 bcd .162 bcd		
R.Can.14 K.Blue15	.17 ef 1.14 bc	.122 cd .220 abc	.32 d 3.22 a	.162 bcd .291 abcd		

Means followed by the same lower case letter are not significantly different at the 5% level. (Duncan's test)

Table A 123 Average PAI and NAR of Legumes in Mixtures and Pure Stands

Pasture Mixtures Cut 4, 5a, and 5b 1961

			CUT 4			<u>CUT 5 a</u>				C	<u>CUT 5</u> b		
			PAI	NAR		PA	I	NA	R	PA	I	NAR	
Pure	R.C.	2.17	fghi	.456 at	ocde	1.53	cd	.500	bc	0.9	2 a	.042 a	
11	Af.	1.22	hij	.494 al	oc	0.68	cdef	.642	a	.2	:8 a	.052 a	
11	Lad.	3.61	bcd	.498 al	oc	3.06	Ъ	•558	abc	• 5	2 a	.022 a	
	в.Т.	3.34	cdef	.538 a		0.34	f	.510	bc	•9	2 a	.128 a	
R.C.	1	2.46	defg	.428 at	ocde	1.50	cde	.489	bc	.8	0 a	.032 a	
	4	0.50	j	.298	f	0.32	f	•298	е	0.0	a	.003 a	
	6	2.36	efgh	.437 at	ocde	1.60	С	•530	abc	1.0	8 a	.047 a	
Af.	8	0.60	j	·350	ef	0.30	f	.296	е	0.0	8 a	.050 a	
	9	1.01	ij	.428 at	ocde	0.58	def	.447	cd	0.2	2 a	.048 a	
Lad.	4	3.47	bcde	.454 at	ocde	3.14	ab	.530	abc	0.4	0 a	.021 a	
	8	4.61	ab	•378	cdef	2.92	b	• 528	abc	0.9	6 a	.065 a	
	12	5.14	a	.408 t	ocdef	4.12	a	.541	abc	0.5	0 a	.001 a	
	vii	3.52	bcde	.466 at	ocde	2.75	b	• 570	ab	0.4	7 a	.042 a	
	viii	4.22	abc	.453 at	ocde	2.93	b	• 526	abc	0.7	0 a	.033 a	
$B_{\bullet}T_{\bullet}$	6	0.62	j	•354	def	0.25	f	.341	de	0.1	.0 a	.026 a	
	9	2.20	fghi	.490 at	oc	0.54	ef	•447	cd	0.3	0 a	.047 a	
	11	2.84	defg	.452 at	ocde	0.52	f	• 534	abc	0.4	-2 a	.066 a	
	13	2.38	efgh	.526 at		0.96	cdef	• 572	ab	0.1	.2 a	.025 a	
	14	2.84	defg	.479 at	ocd	0.40	f	• 504	bc	0.3	4 a	.032 a	
	15	2.04	ghi	.402 t	ocdef	0.48	f	• 550	abc	0.0	16 a	.0. a	
	vii	0.66	j	.154	g	-	-	-		0.0	2 a	.046 a	
	viii	0.22	j	.165	g	0.03	f	.072		f 0.0	la	.036 a	
Moon	g foll	loved by	the same lo	107 00 00	letter	a n a na	teigni	Fi annti	v dif	forent	at i	the	

Means followed by the same lower case letter are not significantly different at the 5% level. (Duncan's Test)

	CUT 5	c	TOTAL (4	and 5 c)		
	PAI	NAR	PAI	NAR		
Pure R.C. " Af. " Lad. " B.T. R.C. 1 4 6 Af. 8 9 Lad. 4 12 vii vii B.T. 6 9 11	PAI 2.44 cd 0.95 fgh 3.57 ab 1.26 ef 2.23 de 0.26 gh 2.66 bcd 0.30 fgh 0.72 fgh 3.31 abc 3.88 a 3.72 a 3.22 abc 3.64 ab 0.30 fgh 0.84 fgh 0.95 fgh	NAR .238 bcde .240 bcde .216 bcde .284ab .246abcde .142 f .262abc .214 bcde .270ab .272ab .271ab .272ab .271ab .272ab .316a .280ab .177 ef .234 bcde .250abcd	PAI 4.62 de 2.16 fgh 7.18 ab 4.60 de 4.70 de 0.76 hi 5.02 cd 0.90 hi 1.74 ghi 6.78 bc 8.48 ab 8.85 a 6.73 bc 7.86 ab 0.92 hi 3.03 efg 3.79 def	NAR .694 abc .734 ab .765 a .822 a .673 abc .439 d .699 abc .564 bcd .698 abc .726 ab .648 abc .680 abc .783 a .733 ab .532 cd .724 ab .702 abc		
13 14 15 vii vii	1.08 fg 0.74 fgh 0.39 fgh 0.04 h 0.04 h	.278ab .193 cdef .181 def .072 g .058 g	3.46 defg 3.58 defg 2.53 fgh 0.69 hi 0.26 i	.804 a .672 abc .582 bcd .226 e .222 e		

Table A 124Average PAI and NAR of Legumes in Mixtures and Pure StandsPasture MixturesCut 5c and Total (4 and 5c) 1961

CXLII

Table	A	125	Average PAI and NAR of Species i	n
			Mixture and Pure Stands	
			Hay Mixtures Cut 3 1961	_

			Gr	a <u>sses</u>		
		P	AI	NAF	3	
Pure " Tim. Br.	Tim. Br. 1 4 5 8	2.28 3.91 1.64 0.29 0.72 0.96 1.12 1.00	ab a b b b b b	.239 .220 .176 .088 .147 .124 .170 .096	a abc d bcd cd abcd cd	

		P.	A <u>I</u>	NAF	3	NAR ⁽¹⁾	
Pure " " R.C.	R.C. Af. Lad. B.T. i 1	4.54 4.59 1.38 2.26 3.33 0.16	abc abc de cde bcd e	.176 .208 .141 .185 .152 .063	a a a a a	.065 c	
Lad. Af. B.T.	+541859	5.17 5.18 1.16 6.40 5.04 0.50 3.16	ab ab a ab bcd	.174 .184 .131 .176 .219 .160 .235	a . a . a . a . a . a .	170 ab 178 ab 135 bc 188 ab 229 a 132 bc 234 a	
				$SE_{\overline{x}} = \cdot$.032 S	$E_{\bar{\mathbf{x}}} = .02$	3

(i) Duncan's Test applied to legumes in mixtures of blocks
 A, B, C, D only. All others are species in pure stands
 and mixtures of blocks A, D, E, F.

(ii) Means followed by the same lower case letter are not significantly different at the 5% level. (Duncan's Test)

5