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ABSTRACT

Sequential hypothesis testing problem, after firstly being successfully used in

the second world war, has developed its own research field and been applied to many

other fields. How to numerically solve this problem and develop an automatic deci-

sion strategy has become an academic topic since 1950’s. For centralized sequential

hypothesis testing, the threshold-based structure is well developed, and for decen-

tralized sequential hypothesis testing, there has been a lot of recent progress in un-

derstanding the structure of optimal control strategies, but very little is known about

computational methods in both cases. In this work, we looked at different methods to

numerically find the optimal stopping rule for centralized and decentralized sequen-

tial hypothesis testing problem. We first implemented the classic Sondik’s algorithm.

Then, we seek approximation methods to simplify the process and improve the ef-

ficiency. To do this, we first introduced zeroth-order and first-order discretization

methods to discretize the continuous state. After discretizing the state, we propose

two main approaches to find the optimal threshold: one is value iteration, the other

is policy evaluation combined with non-convex optimization function. For policy

evaluation, we tried three approximation methods: Monte Carlo sampling, asymp-

totic expression and absorption probability of Markov chain. The performance of

these methods are compared. Finally, for decentralized hypothesis testing problem,

we choose one approximation method and compare the person-by-person optimal

strategy with the optimal strategy based on global search.
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ABRÉGÉ

Le problème de test d’hypothèse séquentielle, après avoir tout d’abord été utilisé

avec succès dans la seconde guerre mondiale, a développé dans son propre do-

maine de recherche et a été appliquée à de nombreux autres domaines. Com-

ment résoudre numériquement un problème de ce type et élaborer une stratégie

automatique de décision est devenu un sujet académique depuis 1950. Pour les

test d’hypothèse séquentielle centralisées, la structure à seuil est bien développé, et

pour les tests d’hypothèse séquentielle décentralisées, il y a eu beaucoup de progrès

récents dans la compréhension de la structure des stratégies de contrôle optimales,

mais on sait très peu sur les méthodes de calcul dans les deux cas . Dans ce tra-

vail, nous avons examiné de différentes méthodes pour trouver numériquement la

règle d’arrêt optimale pour le problème de test d’hypothèse séquentielle centralisée

et décentralisée. Nous avons d’abord mis en œuvre l’algorithme classique de Sendik.

Ensuite, nous cherchons des méthodes d’approximation pour simplifier le proces-

sus et améliorer l’efficacité. Pour ce faire, nous avons introduit des méthodes de

discrétisation d’ordre zéro et de premier ordre pour discrétiser l’état continu. Après

avoir discrétiser l’état, nous proposons deux approches principales pour trouver le

seuil optimal: l’itération de valeur, et l’évaluation stratégique, combiné à une fonc-

tion d’optimisation non convexe. Pour l’évaluation stratégique, nous avons essayé

trois méthodes d’approximation: l’ échantillonnage Monte Carlo, l’expression asymp-

totique et la probabilité d’absorption de châıne Markov. La performance de ces

méthodes sont comparées. Enfin, pour le problème de test d’hypothèse décentralisée,
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nous choisissons une méthode d’approximation et nous comparons la stratégie op-

timale personne par personne avec la stratégie optimale en fonction de recherche

globale.
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CHAPTER 1
Introduction

In our daily life when humans are decision makers, decisions can be made based

on many factors: knowledge of the immediate circumstances; specialized knowledge;

previous experiences about the effects of various actions. For many situations, this

works well. However, when systems become more complex, the various component

and their interactions become more difficult to reason about.

One aspect where automated decision making is needed is to ease the burden of

human beings by designing models and developing tools to deal with complicated,

uncertain processes or making better decisions than human beings. As an example

consider inventory control in large company like Amazon, where interactions between

customer demand, supply availability and resource limitations are complex. Even the

most dedicated corporate manager will be overwhelmed by these. Operation research

has provided successful tools to businesses for making these kinds of decisions.

Another aspect of automated decision making is motivated by problems where

decisions are made, but it is not feasible or desirable to have a human available.

One particular discipline of artificial intelligence has focused on automated decision

making for problems like this, For example, a rover on the moon has to decide for

itself on navigation problems based on its own observation and analysis. Commu-

nicating with earth-based controllers for instructions is improper for either financial

or scientific reasons.

1



1.1 Sequential Decision Making

Sequential decision making problems are problems in which the decision maker

needs to make a series of decisions in order to achieve the objective. After any

decision he makes, an event will occur and change the current situation. For instance,

a company trying to decide whether or not to market a new product might first decide

to test the acceptance of the product using a consumer panel. Based on the results

of the consumer panel, the company will then decide whether or not to proceed with

further test marketing; after analyzing the results of the test marketing, the company

will decide whether or not to produce the new product. The essence of sequential

decision making is that decisions that are made now can have both immediate and

long-term effects; the best choice to make now depends critically on future situations

and how they will be faced.

To model the process of sequential decision making, several terms are introduced:

The Agent: In the context of this work, an agent is simply the system respon-

sible for interacting with the world and making decisions. i.e. the decision maker.

The agent “lives” in an environment. The state of the environment is a description

of everything that might change from moment to moment.

The Environment: The environment is anything external to the agent. For

the purpose of this thesis, I assume that the environment changes from state to

state in response to the actions of the agent according to a fixed set of rules. The

transition might be stochastic, that is, it is not necessary that the same transition

occurs every time the agent takes a particular action in a particular state. However,
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Figure 1–1: Components of a MDP system [1].

the probabilities that govern these stochastic transitions must remain constant over

time.

Reward: To describe a sequential decision-making problem, it is not enough

to specify the agent and the environment alone. The agent’s actions need to serve

some purpose. For each action the agent takes, there exists an associated reward (or

cost), the final goal is to maximize the reward or minimize the cost.

Policies: A policy is an agent’s prescription for behavior: a function that

specifies the action that the agent will choose when in a given state.

The relationship of the above definition is shown in Figure1–1.

In a real world problem, the environment of a decision making process may not

be deterministic. There are two major forms of uncertainty: the result of our de-

cisions may not always have the same effects; and our perceptions of the systems

being controlled are not always very accurate. We will introduce two useful frame-

works in sequential decision making: Markov decision processes (MDP) and partially

observable Markov decision processes (POMDP).

1.1.1 Markov decision process

Markov decision process, named after Andrey Markov, is a mathematical frame-

work for modeling decision making in situations where outcomes are partly random

3



and partly under the control of a decision maker. In a MDP framework, agents

move stochastically between states by executing actions and then receiving a re-

ward. MDP is an extension of Markov chains, more precisely, it is a discrete time

stochastic control process.

A Markov decision process can be described with a tuple 〈X ,U , P, C〉, where,

• X is a finite set of states of the environment;

• U is a finite set of actions;

• The state transition function is

P (x, u, x′) := P(xt = x′ | xt−1 = x, ut−1 = u),

giving for each environment state and agent action, a probability distribution

over states. This is the probability of ending in state x′, giving that the agent

starts in state x and takes action u;

• C : X ×U → R is the cost function, giving the expected immediate cost spent

(or reward gained) by the agent for taking each action in each state, C(x, u) is

the expected cost for taking action u in state x.

At each time step, the process is in some state x, and the decision maker may

choose any action u that is available in state x, this action will take the process

to a new state x′, and giving the decision maker a corresponding cost C(x, u). The

probability that the process goes into state x′ from state x is determined by the state

transition probability P (x, u, x′). The next state x′ depends on the current state x

and the action u. But given x and u, it is conditionally independent of all previous

4



states and actions. The fact that the next state probabilities only depend upon the

current state and action is the Markov property of the process.

The agent should act in such a way as to minimize some measure of the long-run

costs spent. The most straightforward approach to achieve is to sum costs over the

infinite lifetime of the agent, but discount them geometrically using a discount factor

0 < γ < 1; the goal is to optimize

∞
∑

t=0

γtC(xt, ut).

In here, costs received earlier have more value to the agent. Even though the infinite

lifetime is considered, the discount factor γ ensures that the sum is finite.

A policy is a description of the behavior of an agent. There are two kinds of

policies: stationary and non-stationary. Consider a stationary policy g : X → U .

The choice of action depend only on the state and is independent of the time step.

The value function of a policy g is a map V g : X → C, and V g(x) is the expected

discounted sum of costs for starting in x and executing stationary policy g indefinitely.

It is shown that there exists a stationary policy g∗ [3], that is optimal for every

starting state. The value function for this policy, V g∗ (also written as V ∗) is defined

by

V ∗(x) = min
u∈U

[C(x, u) + γ
∑

x′∈X

P (x, u, x′)V ∗(x′)].

V ∗(x) is known as the Bellman equation and has a unique solution. The solution

g∗(x) is a greedy policy with respect to V ∗(x)

g∗(x) = argmin
u∈U

[C(x, u) + γ
∑

x′∈X

P (x, u, x′)V ∗(x′)].
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For a completely observable Markov decision process, where the decision maker

has access to the current state of the system at each decision point, we can use value

iteration to solve the problem. For details of extensive and mathematically rigorous

studies, see [4], [5]. Good starting references for MDPs are Puterman’s textbook [6]

and Bersekas’ textbook [7].

1.1.2 Partially observable markov decision process

Although we can effectively solve MDP problems, the solutions have limited

use and generally cannot be applied when the system does not permit access to the

state directly. Now, we introduce a more general MDP model: partially observable

Markov decision process. In a POMDP, we still assume that the system behaves in

the same fashion as the MDP discussed previously: there are states, actions, costs

and state transition based upon the current state-action pair. However, a set of

observations is added to the model so that after each state transition of the system,

one of these observations is produced by the system and is accessible to the decision

maker. The observation produced is corrected with the current state, but does not

generally allow us to completely determine the current state.

Formally, a discrete POMDP is specified as a tuple 〈X ,U ,Y , P, F, C〉, where

X ,U , P, C are defined as in MDP. In addition, it includes a finite set of observations

Y , and an observation function F : X × U → Π(Y), where

F (x′, u, y) := P(yt = y | xt = x′, ut = u).

Since the system is partially observable, we maintain a distribution, known as

the belief state to summarize its previous experiences. These distributions encode

6



the agent’s subjective probability about the current state of the world, and provide

a basis for acting with incomplete information. It is proved that the belief state is

a sufficient statistic for the past history, which means that given the agent’s current

belief state, no additional data about its past actions or observations would give any

more information about the current state of the environment.

Let π(x) denote the probability assigned to state x by belief state π:

πt(x) = P(xt = x | Y1:t, U1:t−1).

After the agent takes an action u and receives an observation y, the update of belief

state to πt+1(x
′) is given by

πt+1(x
′) = P(xt+1 = x′ | Y1:t+1 = y1:t+1, U1:t = u1:t)

= P(x′ | y, u, πt)

=
P(y | x′, u, πt) ·P(x

′ | u, πt)

P(y | u, πt)

=
P(y | x′, u) ·

∑

x∈X [P(x
′ | u, πt, x) · P(x | u, πt)]

P(y | u, πt)

=
F (x′, u, y) ·

∑

x∈X [P (x, u, x′) · πt(x)]

P(y | u, πt)

=: φ(πt, u, y)(x).

The denominator P(y | u, πt) can be treated as a normalizing factor, independent of

x, which makes πt sum to 1.
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The optimal policy for a POMDP is one that chooses an action that minimizes

the expected future discounted cumulative cost:

g∗(π) = argmin
u∈U

E[
T
∑

t=0

γtCt(xt, ut) | π].

The value function of a policy is the expected discounted sum of rewards for executing

g starting from belief π0,

V ∗(π) = E[

T
∑

t=0

γtCt | π0],

where Ct is the cost spent at time step t, γ is the discount factor.

Computing the optimal policy is difficult. There are two main obstacles. The

first one is the curse of dimension. In a problem with n states, the corresponding

belief space then has n dimensions. The second obstacle is the curse of history. Many

decision making tasks require the agent to take many actions before it can reaches

its goal, resulting in a long time horizon for planning. The complexity of planning

grows exponentially with the time horizon.

In the infinite-horizon discounted case, for any initial belief π, we want to execute

the policy g that minimizes V ∗, defined by:

V ∗(π) = max
u

[
∑

x∈X

C(x, u) + γ
∑

y∈Y

P(y | π, u)V ∗(φ(π, u, y))],

where φ(π, u, y) is the new belief state found by after taking action u in belief state

π and observing y. And the optimal policy g is a the one that minimize the value

function.

8



1.2 Decentralized Sequential Decision Making

Sequential decision making theory provides analytic and computational tech-

niques for centralized decision making in stochastic systems with noisy observations.

However, this assumption of a centralized decision maker is not true in many modern

control applications such as networked control systems, communication and queuing

networks, sensor networks, and smart grids. In these applications, decisions are made

by multiple decision makers who have access to different information, this kind of

problem is called decentralized sequential decision making.

The technique from centralized sequential decision making cannot be directly

applied to decentralized problems. Two general solution approaches that indirectly

use techniques from centralized sequential decision making have been used to solve

decentralized sequential decision making problems: 1) person-by-person approach

which views the problem from each individual decision maker; and 2) the global

search approach which views the problem as a team collaboration.

The person-by-person approach investigates the decentralized problem from the

viewpoint of one decision maker (DM), for DMi: 1) fix the initial strategy of all

other DMs except DMi; and 2) use centralized sequential decision making to design

best-response strategy of DMi. By iteratively proceed these steps until no DM can

improve performance by changing its strategy, we can identify the person-by-person

strategy for all DMs. In this thesis, we call the procedure that finds a person-by-

person optimal strategy as orthogonal search.

The global search approach investigates the decentralized sequential decision

making problem from the view of a team, where all decision makers collaborate to
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achieve a common goal. Effectively, we are solving a centralized planning problem:

1) model this centralized planning problem as a multi-stage, open-loop stochastic

control problem, at each time, we design the control law for all DMs; and 2) use

centralized sequential decision making to obtain a dynamic programming decom-

position. Each step of the dynamic program is a functional optimization problem,

rather than a parameter optimization problem as in centralized dynamic program-

ming. In this thesis, we call the procedure to find a global optimal strategy as direct

search.

1.3 Sequential Hypothesis Testing

One classic and widely studied problem of sequential decision making is sequen-

tial hypothesis testing. Sequential hypothesis testing was first formulated by Wald

[8] for efficient testing of anti-aircraft guns in World War II. Since then, the theory of

sequential hypothesis testing has been applied to various applications. A sequential

test of a statistical hypothesis means any statistical test procedure which gives a

specific rule, at any stage of the experiment, the decision maker needs to make one

of the following three decisions: 1) to accept the hypothesis being tested (usually

called the null hypothesis), 2) to reject the null hypothesis, 3) to continue the exper-

iment by making an additional observation. Thus, the test procedure is carried out

sequentially and is terminated when either the first or the second decision is made.

In a sequential test, the number of observations is not predetermined but is a random

variable.

In a sequential test, there are two kinds of errors. We may reject the null

hypothesis when it is true (also called missed detection), or we may accept the null
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hypothesis when some alternative hypothesis is true (also called false alarm). There

are cost incurred when we make a wrong decision and cost incurred when we make an

additional observation. The goal is to design an optimal stopping rule that minimize

the total cost.

In a centralized sequential hypothesis testing, there is only one decision maker

while in a decentralized sequential hypothesis testing there are two or more decision

makers.

1.3.1 Application examples

There are many real world problems in which decisions have uncertain outcomes

and uncertain perception of the current state of the system. We list some of the

problems below.

Machine Maintenance: A machine used in certain industry have a myriad of

internal components, each of which must operate on the product before it is finished.

All of the components affect the tolerances and general quality of the parts being

produced. Obviously, the state of internal components is not directly observable, we

can have a general predictability based on the operating hours of the component,

but how much it is worn or when it may stop performing is a very non-deterministic

behavior. We want to replace the worn components before they produce defective

parts, but to access the real state of one component requires the cost of disassembling

the machine and a loss or profit while the whole machine is not working.

The task is to design a maintenance schedule: when to manufacture items, when

to dismantle the machine and inspect the components and (or) replace it when fails.

The quality of the items being produced provide an indirect, probabilistic observation
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about the internal components. There is cost associated with inspecting or replacing

components. Also there is a loss in revenue if the replacement is being delayed and the

machine starts producing defective items. We need to choose the best schedule that

minimize the total cost. This Machine maintenance problem is studied by Richard

D. Smallwood and Edward J. Sondik [3]. This inspection, maintenance and repair

problem has a broader application than just manufacturing machines.

Networking Troubleshooting: There is a computer network consists of

several switching computers and cables connecting computers. At any moment of

time, the switching computer is up or down and lightly or heavily loaded, and the

cables can be transmitting or not transmitting information. An electrical engineer

need to design an equipment that plugs into the network to monitor and correct

faults in a specific section of the network.

It is not possible to know certainly the state of the network at any time, but the

equipment can have access to various signals and alarms emitted by the computers.

It can also send query signals to get feedback on the status of the switching computer.

For example, if a computer fails to respond to a query, it is possible that the computer

is overloaded, or it has gone down, or one of the incoming cables stopped transmitting

data. There are probabilistic distributions on the reasons given a trouble situation.

In spite of the unsure and inaccurate information, the monitoring equipment

must keep the network running because there will be revenue loss if the network is

down. It can send query and reset signals to the computer or call for a technician to

examine or repair the computers or cables. And there are different costs associated

with these actions. To make the optimal decision, the system need to be modeled
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and algorithms need to be designed to find the strategy. Similar supply restoration

in power systems [9] is studied.

Other Applications: Apart from the examples stated above, there are many

other applications to imply sequential decision making in real world situations. In-

cluding medical diagnosis [10]; cost control in accounting [11]; teaching strategy [12];

moving target search [13];and elevator control [14].

1.4 Contributions

The primary contribution of this thesis is in providing numerical methods to

solve sequential hypothesis testing problem. To achieve this, we implemented some

existing algorithms like Sondik’s enumeration method and witness algorithm. Then,

we seek approximation method by discretizing the continuous belief space into equally

distributed discrete states. Based on the discrete model, we also implemented ex-

isting method like value iteration. Then, we propose a new technique using the

absorption probability of Markov chain. In the latter part, we also extend the cen-

tralized sequential hypothesis testing problem to decentralized sequential hypothesis

testing problem. For decentralized sequential hypothesis testing problem, we simu-

lated the orthogonal search method proposed in [15] and compare it to our direct

search method.

Overall, this work not only provides numerical evaluations about existing meth-

ods but also suggests new insights to solve sequential hypothesis testing problem.

The numerical evaluations and discussion of different approaches will be useful to

practitioners developing sequential hypothesis testing systems and the insights may

lead to new theoretical developments as well.
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The content of Chapter 3 has been submitted to the 54th IEEE Conference on

Decision and Control: C.Cui and A. Mahajan, “On computing optimal thresholds

in decentralized sequential hypothesis testing”, submitted to 54th IEEE Conference

on Decision and Control, Osaka, Japan, December 15-18, 2015.

1.5 General Guidelines

We now present the overall organization structure of the thesis. In Chapter 2,

we investigate the centralized sequential hypothesis testing problem. This chapter

has four parts: in the first part, we formally present the centralized model and its

dynamic programming decomposition; in the second part, we try to solve a con-

tinuous state POMDP problem using two methods: Sondik’s enumeration method

(also written as α-vector method) and mathematically asymptotic expressions; in

the third part, we use grid-based discretization to approximate the continuous state

space and then introduce three approximation methods: value iteration, direct search

with absorption probability, direct search with Monte Carlo simulation; in the last

part, we present the numerical results in a cast study and conclude this chapter. In

Chapter 3, we investigate the decentralized sequential hypothesis testing problem.

This chapter also has four parts: in the first part, we present the decentralized model

and its dynamic programming decomposition; in the second part, we use orthogonal

search to identify a person-by-person optimal strategy; in the third part, we use

direct search to identify another strategy; in the last part, we present the numerical

results in a cast study and conclude this chapter. Lastly, we conclude in Chapter 4.
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CHAPTER 2
Centralized Sequential Hypothesis Testing

In this chapter, we will focus on a centralized sequential hypothesis testing prob-

lem, we will formally present the model and problem first, then provide numerical

methods to solve the problem, including the exact algorithm and approximate algo-

rithms. At last, we use a case study to conclude this chapter.

2.1 Model

The problem is stated as below: A decision maker (DM) makes series of i.i.d.

observations which may be distributed according to PMF f0 or f1. Let the random

variable H denote the value of the true hypothesis, let Yt denote the observation at

time t. The DM need to differentiate between two hypothesis:

h0 : Yt ∼ f0 and h1 : Yt ∼ f1.

The a prior probability P(H = h0) = p. At each time t < T , the DM has three

choices: 1) to stop observing and declare h0 is true; 2) to stop observing and declare

h1 is true; 3) to continue the experiment by making another observation. At time T,

option 3 is unavailable. Thus, such procedure is carried out sequentially.

When making decisions, there are two kinds of errors: we may accept h0 when

h1 is true or we may accept h1 when h0 is true. Let u denote the final decision, the

cost of making wrong decision is denoted as ℓ(u,H). There is also cost of taking per
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step observation, denoted by c. The goal of the DM is to find a optimal strategy to

minimize the expected cost.

In order to solve the problem stated above, we can build the model as:

State : Xt = H ∈ {h0, h1};

Observation : Under H = h0, Yt ∼ f0,

Under H = h1, Yt ∼ f1;

Action : For t < T : U ∈ {h0, h1,C},

For t = T : U ∈ {h0, h1};

Cost : ut ∈ {C}, Ct(ut, Xt) = c,

ut ∈ {h0, h1}, Ct(ut, Xt) = ℓ(ut, H);

It can be seen that the sequential hypothesis testing problem is a POMDP

problem since we do not have access to the state. Define a belief state:

πt(i) = P(H = hi | Y1:t).

In this case, pt = P(H = h0 | Y1:t) = πt(0). The update of pt follows Bayes rule:

pt+1 = ϕ(pt, yt) =
ptf0(yt)

ptf0(yt) + (1− pt)f1(yt)
.

The dynamic programming can be developed as:

VT (p) = min{p · ℓ(h0, h0) + (1− p) · ℓ(h1, h0), p · ℓ(h0, h1) + (1− p) · ℓ(h1, h1)};
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and for t = T-1, . . . , 1,

Vt(p) = min{p · ℓ(h0, h0) + (1− p) · ℓ(h1, h0), p · ℓ(h0, h1) + (1− p) · ℓ(h1, h1),

c+ E[Vt+1(ϕ(p, Yt+1)) | pt = p]}.

2.2 Structural Properties

The results presented in this section closely follow the presentation in [16], which

in turn was based on [17].

Definition 2.2.1 Define WT (p) = ∞, Wt(p) = c+ E[Vt+1(ϕ(p, Yt+1)) | pt = p].

Definition 2.2.2 Define Li(p) = pℓ(hi, h0) + (1− p)ℓ(hi, h1), i ∈ {0, 1}.

Theorem 2.2.1 : Vt(p) and Wt(p) are ∀ t, concave in p, ∀ p, increasing in t.

Proof of concavity in p:

It is proved by backward induction.

Basis: VT (p) is minimum of two linear functions, therefore, VT (p) is concave.

WT (p) is a constant, therefore, WT (p) is concave.

Hypothesis: Suppose Vt+1(p) and Wt+1(p) are concave in p.

Induction: From the properties of convex functions, sum of concave functions is

concave.

Wt(p) = c+

∫

y

[pf0(y) + (1− p)f1(y)]Vt+1(
pf0(y)

pf0(y) + (1− p)f1(y)
)dy.

Therefore, Wt(p) is concave in p. Then, Vt(p), which is the minimum of three func-

tions, two linear in p and one concave in p, is also concave in p.

Proof of increasing in t:

It is proved by backward induction.
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Basis: By construction, WT−1(p) ≤ WT (p). Moreover,

VT−1(p) = min{WT−1(p), L0(p), L1(p)} ≤ min{L0(p), L1(p)} = VT (p).

Hypothesis: Suppose Vt+1(p) ≤ Vt+2(p) and Wt+1(p) ≤ Wt+2(p).

Induction:

Wt(p) = c+ E[Vt+1(ϕ(p, Yt)) | pt = p] ≤ c+ E[Vt+2(ϕ(p, Yt)) | pt+1 = p] = Wt+1(p),

and

Vt(p) = min{Wt(p), L0(p), L1(p)} ≤ min{Wt+1(p), L0(p), L1(p)} = Vt+1(p).

Definition 2.2.3 Define the stopping set St(h) = {p ∈ [0, 1] : gt(p) = h}, h ∈

{h0, h1}

Theorem 2.2.2 For all t and h ∈ {h0, h1}, the set St(h) is convex.

Proof: To show that St(h0) is convex, it suffices to show that:

For any p(0), p(1) ∈ St(h0) and λ ∈ [0, 1],

the belief state p(λ) = (1− λ)p(0) + λp(1) is in St(h0).

Since p(i) ∈ St(h0), i=0,1:

L0(p
(i)) ≤ min{L1(p

(1)),Wt(p
(i))}.

Since Li(p) is linear in p, i=0,1:

(1− λ)Li(p
(0)) + λLi(p

(1)) ≤ Li(p
(i)).
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Since Wt(p) is concave in p:

(1− λ)Wt(p
(0)) + λWt(p

(1)) ≤ Wt(p
(λ)).

Combining the above, we have:

L0(p
(λ)) ≤ min{L1(p

(λ)),Wt(p
(λ))}.

Hence, p(λ) ∈ St(h0). Consequently, St(h0) is convex.

Assumption (A1):

ℓ(h0, h0) ≤ c ≤ ℓ(h0, h1) and ℓ(h1, h1) ≤ c ≤ ℓ(h1, h0).

We assume that when the decision maker makes correct decision, there is no pun-

ishment. And the cost of making wrong decisions should be bigger than the cost of

making an additional observation, otherwise the decision makers might just choose

to reach any decision at the first time step.

Theorem 2.2.3 Under (A1): 0 ∈ St(h1) and 1 ∈ St(h0)

Proof: L0(0) = ℓ(h0, h1),L1(0) = ℓ(h1, h1), and Wt(0) ≥ c. Therefore, we have:

L1(0) ≤ min{L0(0),Wt(0)} ⇒ 0 ∈ St(1).

From similar proof, we have 1 ∈ St(0).

Now, define the upper and lower bound:

αt = max{p ∈ [0, 1] : gt(p) = h1},

βt = min{p ∈ [0, 1] : gt(p) = h0}.

19



Then, under (A1), the optimal control law has a threshold property as the

following:

gt(p) =



























h1, if p ≤ αt,

C, if αt < p < βt,

h0, if βt ≤ p.

For a infinite horizon sequential hypothesis testing problem, T → ∞, which means

that the continuation alternative is always available.

Theorem 2.2.4 For the infinite horizon problem, an optimal stopping rule exists,

is time-invariant, and is given by the solution to the following fixed point equation

V (p) = min{L0(p), L1(p),W (p)},

where W (p) = c+
∫

y
[pf0(y) + (1− p)f1(y)]V (ϕ(p, y))dy.

The proof follows from standard results on non-negative dynamic program-

ming [18].

After introducing the model, in the rest of this chapter, we will talk about how

to numerically solve a sequential hypothesis testing problem. The exact solution

using α-vectors is provided first, then we try to reduce the complexity in two ways:

1) use asymptotic expression; 2) discretize the continuous state space.

2.3 Exact Solution: α-vector

After knowing the problem and the threshold property of the solution, the next

step is to find how to solve the problem numerically. In this section, we will review

some of the classic dynamic programming based algorithms. Firstly, Sondik’s algo-

rithm [19, 20] is introduced in detail, then we discuss other algorithms that try to
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Figure 2–1: Belief space for two state POMDP.

improve the efficiency of Sondik’s algorithm. The reader is referred to the survey by

Monahan [21], White [22] and Lovejoy [23].

2.3.1 Sondik/Monahan’s enumeration algorithm

It is proved in the previous section that a POMDP problem can be transformed

to a MDP by defining the belief state as: πt(i) = P(H = hi | y1:t, u1:t−1), i ∈ [0, n].

(Note that in is section, we generalize the problem to multi-dimensional case, we have

more than two hypothesis). It has also been shown that this belief state satisfies the

Markov property: P(πt+1 | π1:t, u1:t) = P(πt+1 | πt, ut). Thus, dynamic programming

can be employed in this problem,

VT (πT ) = min
uT

(E(ℓ(uT , HT ))),

Vt(πt) = min
ut

{
n

∑

i=1

ℓ(ut, hi)πt(i) + E(Vt+1(πt+1) | πt, ut)}.

For every belief state, there is one value function and correspondingly one op-

timal control strategy. Since the belief state is continuous between [0, 1], there is

uncountable infinite number of value functions. For a two state POMDP we can

represent the belief state with a single number. Figure 2–1 shows how we represent

the belief space. Since a belief state is a probability distribution, the sum of all prob-

abilities must sum to 1. With a two state POMDP, if we are given the probability
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Figure 2–2: Illustration of a value function represented by α-vectors.

for being in one of the state as being p, then we know that the probability of being

in the other state must be 1− p.

An important characteristic in here is that the finite horizon value function

is piece-wise linear and concave (PWLC) for every horizon length because we are

minimizing cost [19]. This indicates that for each iteration of value iteration, we

only need to find a finite number of linear segments. From Figure 2–2, we can see

that the value function is the lower surface of finite number of linear segments. These

linear segments will completely specify the value function and we can represent each

hyper-plane with a vector of numbers. These vectors are called α-vectors. Knowing

α-vector will result in knowing the control action which has generated it. To represent
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the value function in the form of α-vector:

VT (πT ) = min
uT

(E(ℓ(uT , H)))

= min
uT

{

n
∑

i=0

ℓ(u1, hi)πT (i),

n
∑

i=0

ℓ(u2, hi)πT (i), . . . ,

n
∑

i=0

ℓ(um, hi)πT (i)}

= min
uT

{α(u1)πT , α(u2)πT , . . . , α(um)πT},

where,

πT =





















πT (1)

πT (2)

...

πT (n)





















⇒ VT (πT ) = min
u

{α(u1)πT , α(u2)πT , . . . , α(um)πT}. (2.1)

It is obvious that the value function at the terminal step is piece-wise linear and

concave. Assume that at step t + 1, the set of all α-vectors, denoted as At+1, are

known, then,

Vt+1(πt+1) = min
ut+1

{αt+1(ut+1) · πt+1}.

Now, the value function at time t should be:

Vt(πt) = min
ut

{
n

∑

i=1

ℓ(ut, hi)πt(i) + E(Vt+1(πt+1) | πt, ut)}, (2.2)

πt+1(ht+1) =
P(yt+1 | ht+1) · P(ht+1 | πt, ut)

P(yt+1 | πt, ut)
. (2.3)
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By substituting (2.3) into (2.2), we get the result:

E(Vt+1(πt+1) | πt, ut) =
∑

yt+1

P(yt+1 | πt, ut) · Vt+1

































P(yt+1 | ht+1 = h1) · P(ht+1 = h1 | πt, ut)

P(yt+1 | πt, ut)

...

P(yt+1 | ht+1 = hn) · P(ht+1 = hs | πt, ut)

P(yt+1 | πt, ut)

































=
∑

yt+1

Vt+1





























P(yt+1 | ht+1 = h1) ·P(ht+1 = h1 | πt, ut)

...

P(yt+1 | ht+1 = hn) · P(ht+1 = hs | πt, ut)





























.

(2.4)

Since Vt+1 is piece-wise linear, P(yt+1 | πt, ut) in 2.4 will cancel out. Also, the

effect of observation is just P(yt+1 | ht+1), which is independent of πt, ut. So, the

summation is a weighted average:

P(ht+1 | πt, ut) =
∑

ht

P(ht+1 | ht, ut) · πt(ht). (2.5)

Substituting equation 2.5 into 2.4:

∑

yt+1

Vt+1





































P(yt+1 | ht+1 = h1) ·
∑

ht

P(ht+1 = 1 | ht, ut) · πt(ht)

...

P(yt+1 | ht+1 = hn) ·
∑

ht

P(ht+1 = s | ht, ut) · πt(ht)





































=
∑

i

α′
i,t(ut) · πi,t = α′

t(ut) · πt.

(2.6)

(2.6) is a piece-wise linear function in πt and the number of α-vectors is finite.

For each α-vector, there is a control action associated with it.
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(2.2) can be rewritten as minimization over m different possible actions. Each

value is associated with one control action:

ℓ(u,H) · πt +
∑

y

Vt+1(φ(πt, u, y)). (2.7)

If we expand the summation over y, then each term is a weighted value of Vt+1(πt+1)

given (πt, u, y). Also, knowing (πt, u, y) is sufficient to indicate index ℓ(πt, u, y) which

specifies in what region the next belief state lies. Summation over y has q terms, each

of them has different observation and for each of them ℓ(πt, u, y) can be different.

Therefore, (2.7) depends on ℓ(πt, u, y). From (2.5), we see that (2.7) is linear in πt

and a function of control action. Therefore, expected for control action u can be

written as:

α
ℓ(π,y,u)
t (u) · πt , ℓ(u,H) · πt +

∑

y

Vt+1(φ(πt, u, y)),

Vt(πt) = min
ut

{α
ℓ(πt,y,ut)
t (u) · πt}.

(2.8)

In the worst case scenario, (2.7) may have N (size of all α-vectors in time t + 1)

different α-vectors. Since minimization is overm actions. N ·m α-vectors is generated

at time t. We know that at t = T , N = m, therefore, for the worst case, there will

be mT−t+1 α-vectors. Size of α-vectors grows exponentially in time and this is why

assumption of finite horizon is needed.

2.3.2 Pruning algorithms

We have discussed how to represent a piece-wise linear and concave function

with a set of α-vectors, A, but there are a number of issues that will arise concerning

this representation in the algorithmic approach to the single step of value iteration.

As shown in Figure 2–2, there are useless and dominant vectors in the representation
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of a value function, i.e. α4,α5 and α6. One can even add an arbitrary number of

vectors without changing the representation. In fact, it is shown [24] that any PWLC

value function does have minimal representation. The term parsimonious set is used

when referring to the unique minimal set of vectors, and we can do a reduction or

pruning procedure to compute this set.

Given a set of vectors, A, representing a value function over information space,

we can define a partition of the information space where the partition has a finite

number of elements, one for each α in A. Additionally, each α ∈ A has a set or

region of belief states, R(α) ⊆ Π(X), where it dominates, which is,

R(α) = {π ∈ Π | π · α < π · α̃, ∀α̃ ∈ A− {α}}. (2.9)

Note that because of the strict inequality in this definition, some belief states can be

in the region of none of the vectors in A, which makes it not quite a true partition

of the information space. The set of points which are not in any region define the

borders of the partition and are points where more than one vector gives the same

minimal value. Figure 2–3 shows a value function over information space with the

partition it imposes on the information space along the horizontal axis.

How to generate a finite set of points so that we can construct all of the vectors

in value function is the heart of the matter. The idea is simply generate all possible

vectors that one can construct, this was proposed by Monahan in 1982 [21], also

mentioned by Sondik in 1971. To construct a vector requires selection an action and

a vector in value function for each observation. Among the large number of vectors,

many are not useful, since they are completely dominated by other vectors over the
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Figure 2–3: An example of the partition.

entire belief space. Although we can eliminate the useless ones at the expense of

some computing time using linear programming, enumerating all the vectors takes a

long time even for some small problems. As a side note, it is possible to construct a

problem where each of those vectors enumerated is useful over some portion of belief

space. The complexity of linear programming is polynomial, however, the number

of linear programs to be solved is exponential in horizon (as shown in the last part

of Section 2.3.1). Thus, in the worst case, the complexity grows exponentially in the

horizon.

If we were able to generate only the necessary vectors, many problems may have

a tractable solution: Cheng proposed the linear support algorithm [25], linear support

comes from the idea that dominate vectors provide support to the value function.

Cheng’s procedure incrementally generates the set of support vectors by searching for
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the vertex that witnesses the missing support vector providing the greatest improve-

ment to the value function, this vertex is called the witness. Although the algorithm

generates only the necessary support vectors, it may take exponential amount of time

to find a vertex that witnesses a missing support vector since a support region may

have an exponential number of vertices and consequently the number of vertices in

the current approximation can be exponential [24].

The next approach, Littman, et al. [24], attacked the problem differently. This

algorithm, called Witness algorithm, uses the same structure as Sondik and Cheng;

Unlike Sondik’s algorithm, it does not worry about all the actions all the time. It

concentrates on finding the best value function for each of the actions separately.

Once a witness is found, the support conditional plan that maximizes the expected

total return for that witness is easily computed by a one-step lookahead.

To avoid generating useless α-vectors, the linear support and witness algorithm

introduced special search procedures to determine belief states that witness the sup-

port vectors. However, compared with Sondik’s and Monahan’s algorithms, they

are conceptually difficult to implement. Zhang and Liu [26] proposed a new algo-

rithm called incremental pruning that achieves both simplicity and computational

efficiency. Later on, Zhang and Zhang [27] improved the running time of incremental

pruning by point-based method. The point-based version provides substantial time

saving in practice, however the number of α-vectors may still grow exponentially.

Apart from the value iteration algorithms mentioned above, Sondik [28], Hansen [29],

and Meuleau et al. [30] also proposed policy iteration algorithms that conduct an it-

erative search directly within the space of polices. In practice, because the running
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time of a policy evaluation step is negligible compared to value iteration, the policy

iteration algorithm usually runs faster.

2.4 Asymptotic Results

By representing the value function using α-vectors, although, we can precisely

represent the value function, however, the number of α-vector grows exponentially

with time. Even though we can use pruning algorithms to get rid of useless α-

vectors, the complexity is still very high. One way to get around is to use some

asymptotic results to directly compute the value function instead of doing dynamic

programming. These results were originally presented in [31], we summarize them

by closely following the presentation of [32].

For a Markov process that starts from an arbitrary belief state p0, then at time

step t,

pt = P(H = h0 | Y1:t) =
P(H = h0, Y1:t)

P(Y1:t)
, (2.10)

then,

(1− pt) = P(H = h1 | Y1:t) =
P(H = h1, Y1:t)

P(Y1:t)
, (2.11)

where,

P(H = h0, Y1:t) = P(H = h0) · P(Y1:t | H = h0) = p0 · f0(y0) · f0(y1) · · · f0(yt).

The same apply for P(H = h1, Y1:t).

Use α to denote the lower threshold and β to denote the upper threshold. When

we choose to continue, pt must satisfy α < pt < β, therefore,

α

1− α
<

pt
1− pt

<
β

1− β
. (2.12)
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As we defined in (2.10) and (2.11), (2.12) can be rewritten as:

α

1− α
·
1− pt
pt

<
f0(y1) · f0(y2) · · ·f0(yt)

f1(y1) · f1(y2) · · ·f1(yt)
<

β

1− β
·
1− pt
pt

.

To simplify the expression, we define

α

1− α
·
1− pt
pt

=
1

B
and

β

1− β
·
1− pt
pt

=
1

A
,

then,

A <
f1(y1) · f1(y2) · · ·f1(yt)

f0(y1) · f0(y2) · · ·f0(yt)
< B. (2.13)

If we stop and declare h0, it satisfies that

f1(y1) · f1(y2) · · ·f1(yt) ≤ A · f0(y1) · f0(y2) · · · f0(yt), (2.14)

which makes

P(U = h0 | H = h1) ≤ A · P(U = h0 | H = h0). (2.15)

If we stop and declare h1, it satisfies that

f1(y1) · f1(y2) · · ·f1(yt) ≥ B · f0(y1) · f0(y2) · · · f0(yt), (2.16)

which makes

P(U = h1 | H = h1) ≥ B · P(U = h1 | H = h0). (2.17)

It is known that P(u = h0 | H) + P(u = h1 | H) = 1. If the final value of

the likelihood ratio in relation (2.13) when decision h0 is chosen is generally close to
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the lower limit A, then the two sides of the inequality (2.14) will be approximately

equal. If the final value of this likelihood ratio when decision h1 is chosen is generally

close to the upper limit A, then the two sides of the inequality (2.16) will also be

approximately equal. Hence, as an approximation, we can regard the relation (2.14)

and (2.16) as equality and can write the following relations:

P(U = h0 | H = h0) ≈
B − 1

B − A
, P(U = h0 | H = h1) ≈

A(B − 1)

B − A
. (2.18)

If we take log of equation (2.13), we get

logA < log

[

f1(y1)

f0(y1)

]

+ log

[

f1(y2)

f0(y2)

]

+ · · ·+ log

[

f1(yn)

f0(yn)

]

< logB.

We define the random variable Zi as follows:

Zi = log
f1(Yi)

f0(Yi)
.

Furthermore, we shall let a = logA < 0 and b = logB > 0. Then the sequential

probability ratio test defined by relation (2.13) specified that sampling should be

continued whenever the following relation is satisfied:

a <
n

∑

i=1

Zi < b.

When either value H = hi, (i = 0, 1) is given, the random variables Y1, Y2, . . . are

independent and identically distributed. Hence the random variable Z1, Z2, . . . also

have the same properties. It is proved by Wald that if Z1, Z2, . . . is a sequence

of independent and identically distributed random variables such that E(Zi) = m.

For any sequential procedure of which E(N) < ∞, the following relations must be
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satisfied:

E(Z1 + · · ·+ ZN) = mE(N).

Let Z denote a random variable having the common distribution of each of the

random variables Z1, Z2, . . . . Then it can be seen from above that the following

relation must be satisfied for i = 0, 1:

E(Z | H = hi) · E(N | H = hi)

= E(Z1 + · · ·+ ZN | H = hi)

=

2
∑

j=1

E(Z1 + · · ·+ ZN | U = hj , H = hi) ·P(U = hj | H = hi).

(2.19)

If we ignore the difference between the value of the terminating sum Z1 + · · ·+ ZN

and either the boundary value a or b, we can approximate the final conditional

expectations in equation (2.19) by the following simple values:

E(Z1 + · · ·+ ZN | U = h0, H = hi) ≈ a,

E(Z1 + · · ·+ ZN | U = h1, H = hi) ≈ b.

(2.20)

Also, we can approximate the probabilities P(U = hj | H = hi) by applying equation

(2.18). Since A = ea and B = eb, the results obtained from equation (2.19) and (2.20)

are

E(N | H = h0) ≈
a(eb − 1) + b(1− ea)

(eb − ea) · E(Z | H = h0)
,

E(N | H = h1) ≈
a(ea+b − ea) + b(eb − ea+b)

(eb − ea) · E(Z | H = h1)
.

(2.21)

The procedure for determining the values of a and b that minimize the value function

is, in general, quite complicated. However, when the sampling cost c is small, we
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can make the following approximations. If the sampling cost is small, the optimal

procedure will typically involve taking many observations. In such a case, the bound

a and b of the optimal procedure will be far apart, which makes −a and b both very

large number. Therefore, we can have the following approximations:

P(U = h1 | H = h0) ≈ e−b, P(U = h0 | H = h1) ≈ ea.

E(N | H = h0) ≈
a

E(Z | H = h0)
, E(N | H = h1) ≈

b

E(Z | H = h1)
.

These approximations are verified in our simulation when sampling cost c is small.

For a special case of Gaussian noise, when the detectors’ observations are de-

scribed by yi(t) = h + wi(t), where wi(t) are zero mean white Gaussian noise se-

quences with variance σ; From statistical sequential analysis [8], it is mentioned that

the average number of observations required to reach a decision is approximately

E(N | h0) = −2σ

[

ǫ1 · log
1− ǫ2
ǫ1

+ (1− ǫ1) · log
ǫ2

1− ǫ1

]

,

E(N | h1) = −2σ

[

(1− ǫ2) · log
1− ǫ2
ǫ1

+ ǫ2 · log
ǫ2

1− ǫ1

]

.

where,

ǫ1 is the probability of error type 1, that is, the probability of deciding H = h1

when H = h0;

ǫ2 is the type 2 error, that is, the probability of deciding H = h0 when H = h1;

σ is the variance for Gaussian noise sequences {w(t)} as defined in y(t) = h +

w(t).
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2.5 Method 1: Grid-based Discretization

Although the asymptotic expression is computationally easy, it’s application

requires special property of the problem, such as c ≪ min{ℓ(u, h) : u, h ∈ {h0, h1}}

or the noise needs to be Gaussian. Since the complexity comes from the fact that

the belief space is a continuous domain, another way to get around the continuous

nature of the belief space is to discretize it, i.e. we select a finite grid points and

store the corresponding values. The value of all other belief states are interpolated

from the values of the grid points.

Generally, grid-based algorithms [23, 33, 34, 35] vary depending on the regularity

of the grid, the resolution of the grid and the interpolation technique. Lovejoy [23]

proposed a fixed-resolution regular grid that selects grid points equally spaced. This

is an efficient interpolation approach based on triangulation concept, however, as the

resolution increases, the number of grid points grows exponentially with the size of

state space. As an improvement, Hauskrecht [34] proposed variable-resolution non-

regular grids which allows to increase resolution in poor accuracy areas by adding

grid points that are not necessarily equally spaced. However, because grid points

are unevenly spaced, interpolation techniques are more computationally intensive.

Recently, Zhou and Hansen [35] proposed a variable-resolution regular grid that

achieves both increasing resolution in only necessary areas and fast interpolation.

In this section, we first introduce two discretization approaches and then imple-

ment Lovejoy’s grid-based algorithm using these discretization methods separately.
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Figure 2–4: Illustration of zeroth-order value function approximation.

2.5.1 Zeroth and first order discretization

In general, orders of approximation refer to formal or informal terms for how

precise an approximation is. A zeroth-order approximation of a function does a piece-

wise constant approximation while the first-order approximation does a piece-wise

linear approximation. An illustration of zeroth-order and first-order approximation

of value function with 5 grids are shown in Figure 2–4 and Figure 2–5. To dis-

cretize the continuous belief space for a POMDP, we follow the method proposed by

Lovejoy [23], which is to divide the belief space into equally spaced grid points set

Sm = {0, 1
m
, . . . , 1}, if one wants to discretize the space [0, 1] into m parts. When the

grids are selected, each point si will be the a prior probability pt as we described ear-

lier in the model, after taking observation yt, the posterior probability is calculated

using Bayes rule:

pt+1 =
ptf0(yt)

ptf0(yt) + (1− pt)f1(yt)
.

pt+1 may fall into some point on the belief space, but not necessarily one of the

selected grid points. In the approximate of value function, we need to calculate the
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Figure 2–5: Illustration of first-order value function approximation.
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Figure 2–6: Illustration of zeroth-order discretization [2].

transition probability Pij = P(p+ = gj | p = gi, y). However, in this case, pt+1 6= p+,

that’s where the zeroth-order hold and first-order hold approximation come in.

Zeroth-order Approximation:

For zeroth-order approximation we do a deterministic transition onto the nearest

vertex, that is, we approximate pt+1 to the nearest grid of it. An illustration of

zeroth-order approximation is shown in Figure 2–6.

In Figure 2–6, {ξ1, · · · , ξ6} are the selected grid points. Action a takes grid ξ1

to points in region of ξ2 and ξ5, therefore, we approximate these points to ξ2 and ξ5
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If stochastic: Repeat procedure to account for all possible transitions and 
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Figure 2–7: Illustration of first-order discretization [2].

using zeroth-order approximation, the transition probability between grids will be:

P(ξ2 | ξ1, a) = 0.1 + 0.3 = 0.4;

P(ξ5 | ξ1, a) = 0.4 + 0.2 = 0.6;

The transition probabilities between all other ξi are defined in the same way.

First-order Approximation:

For first-order approximation, we do a stochastic transition onto neighboring

vertices, that is, we do a linear programming between pt+1 and n nearest neighbors

of it based on the distance between pt+1 and its neighbors. Compared with zeroth-

order approximation, this method gives more precise approximation. An illustration

of first-order approximation is shown in Figure 2–7.

In Figure 2–7, {ξ1, · · · , ξ12} are the selected grid points. Action a takes the grid

ξ1 to s′, which falls in the region of ξ2, ξ3 and ξ6. Interpolation between grids is
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needed to calculate the transition probability.

P(ξ2 | ξ1, a) = pA,

P(ξ3 | ξ1, a) = pB,

P(ξ6 | ξ1, a) = pC ,

such that

s′ = pAξ2 + pBξ3 + pCξ6.

An example: Here, we give an detailed illustration for zeroth-order and first-

order discretization by a numerical example. The parameters are given as,

f0 = [0.25 0.75], f1 = [0.6 0.4].

We discretize the belief space [0, 1] into m = 5 equal space parts.

1. Zeroth-order

Middle point of each section is taken as grid points, therefore, for section i the

grid point will be pi =
2i−1
2N

, then different observation y take pi to different posterior

probability points. If observation yi takes p+ to the interval [ j−1
N

, j

N
], we increase the

probability of transferring to section j by the probability of observing yi. Therefore:

Pij =
∑

y

1 (p+ = j | p = i, y) · P(y | p = i)

=
∑

y

1

(

j − 1

N
≤

2i−1
2N

· P(y | h0)
2i−1
2N

· P(y | h0) + (1− 2i−1
2N

) ·P(y | h1)
≤

j

N

)

·P(y | p = i).

Taking i = 3 for further example, pi = 0.5,
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p1+ =
0.5 · 0.25

0.5 · 0.25 + (1− 0.5) · 0.6
= 0.294, p2+ =

0.5 · 0.75

0.5 · 0.75 + (1− 0.5) · 0.4
= 0.652.

p1+ = 0.294 falls in j = 2 and p2+ = 0.652 falls in j = 4, therefore: P31 = 0,P33 =

0,P35 = 0, as no posterior probability falls in these intervals.

P32 = P(Y = y1 | p = i) = Py1 | h0) · P(h0 | pi) + P(y1 | h1) ·P(h1 | pi) = 0.425,

P34 = P(Y = y2 | p = i) = P(y2 | h0) · P(h0 | pi) + P(y2 | h1) ·P(h1 | pi) = 0.575.

For the reader’s reference, the probability matrix is provided in Table 2–1.

Table 2–1: Zeroth order transition matrix for N = 5.
1.0000 0 0 0 0
0.4950 0 0.5050 0 0

0 0.4250 0 0.5750 0
0 0 0.3550 0 0.6450
0 0 0 0.2850 0.7150

2. First-order

In first-order approximation, if we discretize the belief space into N parts, we

get N + 1 grids, and pi =
i−1
N

for section i. And if the posterior probability p+ falls

into section j, the previous Pij in zeroth-order approximation will be divided by a

parameter λ to Pij and Pi(j+1). λ is obtained by solving an interpolation function,

such that p+ = λ · pj + (1− λ) · pj+1.

Taking i = 3 for further illustration, pi = 0.4 :

p1+ =
0.4 · 0.25

0.4 · 0.25 + (1− 0.4) · 0.6
= 0.217, p2+ =

0.4 · 0.75

0.4 · 0.75 + (1− 0.4) · 0.4
= 0.555.
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p1+ = 0.217 falls between j = 2 and j = 3, p2+ = 0.555 falls between j = 3 and

j = 4.

To solve the interpolation, 0.217 = 0.2 · λ + 0.4 · (1 − λ) ⇒ λ = 0.915, thus

P32 = 0.46 · 0.915 = 0.42. p2+ = 0.555 falls between j = 3 and j = 4. 0.555 =

0.4 · λ + 0.6 · (1 − λ) ⇒ λ = 0.222, thus P34 = 0.54 · (1 − 0.222) = 0.42 and

P33 = 0.46 ·0.085+0.54 ·0.222 = 0.16.The transition probability between other grids

is calculated following the same approach.

For the reader’s reference, the probability matrix is provided in Table 2–2.

Table 2–2: First order transition matrix for N = 5.
1.0000 0 0 0 0 0
0.2800 0.4400 0.2800 0 0 0

0 0.4200 0.1600 0.4200 0 0
0 0.0300 0.3600 0.1900 0.4200 0
0 0 0 0.2800 0.4400 0.2800
0 0 0 0 0 1.0000

2.5.2 Dynamic program based on discretization

As we defined earlier, the dynamic program of value function for POMDP prob-

lem is given as:

Vt(p) = min{L0(p), L1(p),Wt(p)},

where

L0(p) = pℓ(h0, h0) + (1− p)ℓ(h1, h0),

L1(p) = pℓ(h0, h1) + (1− p)ℓ(h1, h1),

Wt(p) = c+

∫

y

[pf0(y) + (1− p)f1(y)]Vt+1(ϕ(p, y))dy.
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In grid based approximation, the latter part of W (p) can be calculated based

on the value function from previous time step Vt+1(j) and the transition probability

Pij, where j = ϕ(i, y). Thus the value function will become:

Vt(p) = min{L0(p), L1(p), c+
∑

j∈Sm

PpjVt+1(j)}, p ∈ Sm.

All we need is to pick select grid points, compute the transition matrix, approximate

the value function and perform value iteration or policy iteration on the approximated

value function.

2.6 Method 2: Absorption Probability of Markov Chain

In each time step of the dynamic programming, the value function is expressed

as the minimum cost with respect to the optimal action among all three alternatives.

However, if we change the view and look at the problem in another perspective,

whenever a decision maker stop and make a decision, the value function is actually

the sum of the expected loss of making wrong decision and the cost of taking all

observations along.

Let N denote the stopping time when the decision maker decides to stop,

N = min{t ∈ Z > 0 : U ∈ {h0, h1}}.

Let ℓ(U,H) denote the loss of deciding U is true when the true hypothesis is H , and

we set ℓ(h0, h0) = ℓ(h1, h1) = 0. Thus, for any strategy g ∈ G, the value function can

be written as

J(g) = E[c ·N + ℓ(U,H)]. (2.22)
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For any belief state p in [0, 1], (2.22) can be expanded as:

J(p, g) =p · [c · E[N | h0, g] + ℓ(h1, h0) ·P(u = h1 | h0, g)]

+ (1− p) · [c · E[N | h1, g] + ℓ(h0, h1) · P(u = h0 | h1, g)].

(2.23)

Define

ξk(u, g) = P(U = u | H = hk, g), u ∈ {h0, h1}. (2.24)

If we could compute for p, ξk(u, g), u ∈ {h0, h1} and E[N | H, g], then the value

function at p given the strategy g is determined.

2.6.1 Preliminaries: absorption probability in Markov chain

Now consider an arbitrary absorbing Markov chain. Re-order the states so that

the transient states come first. If there are r absorbing states and t transient states,

the transition matrix can be written in the following canonical form:

P =







Q R

0 I






.

Where I is an r × r identity matrix, 0 is an r × t zero matrix, R is a nonzero t× r

matrix, and Q is an t× t matrix. The first t states are transient and the last r states

are absorbing both row-wise and column-wise.

It is proved that in an absorbing Markov chain, the probability that the process

will be absorbed at last is 1 [36]. Now, we define the fundamental matrix

F = (I −Q)−1.
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Given that the chain starts in state si, the expected number of steps before the chain

is absorbed is given as

t = F1,

where 1 is the column vector with all entries as 1.

Let bij be the probability that an absorbing chain will be absorbed in the ab-

sorbing state rj if it starts in the transient state ti. Let B be the matrix with entries

bij . Then B is an t× r matrix and

B = FR.

2.6.2 Approximately computing ξk using absorption probability

Recall that after discretization, the space between [0, 1] is discretized to Sm =

{0, 1
m
, . . . , 1}. We can approximate the [0, 1]-valued Markov process {pt}

∞
t=1 by the

Sm-valued Markov chain. The Markov process starts in one state and moves succes-

sively to another. Each move is called a step. If the chain is currently in state si,

then it moves to state sj at the next step with a probability denoted by Pij (called

transition probability), and this probability does not depend upon which states the

chain was in before the current state. An initial probability distribution, defined on

Sm, specifies the starting state. In our case, we assume uniform distribution.

We consider three approximations that make different assumptions on probabil-

ity distribution of observation Y . Denote the corresponding transition probabilities

by P0, P1 and P∗. For Pk, k ∈ {0, 1}, we assume that Y ∼ fk, for P∗ we assume

that Yt+1 ∼ q(· | pt), where q(yt+1 | pt) := pt · f0(yt+1) + (1 − pt) · f1(yt+1). Using
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the first-order discretization method in Section 2.5.1, we can compute the transi-

tion probability matrix Pij. Note that the transition probabilities Pk, k ∈ {0, 1},

approximate the evolution of {pt}
∞
t=1 process when hypothesis H = hk is true.

For H = hk, k ∈ {0, 1}, given any threshold based strategy g = 〈α, β〉 such that

α, β ∈ Sm, define sets A0, A1 ⊂ Sm as:

A0 = {β, β +
1

m
, . . . , 1},

and

A1 = {0,
1

m
, . . . , α}.

Then A0 andA1 are two absorbing states and every state in set {α+ 1
m
, . . . , β− 1

m
}

is a transient state. Note that ξk(h0, g) corresponds to the event that the Markov

process {pt}
∞
t=1 goes above the threshold β before it goes below the threshold α. This

event is approximated by the event that the Markov chain with transition probability

Pk that starts in p (which is assumed to belong to Sm) gets absorbed in the set A0

before it is absorbed in the set A1. A similar interpretation holds for ξk(h1, g).

Re-order Pk to P̂k and follow the computation process described in Section

2.6.1, denote Bk = (I−Qk)
−1Rk and Tk = (I−Qk)

−11. Then, we know that for any

transient state s and b ∈ {0, 1}, [Bk]sb is the probability that the Markov process

starting in state s is absorbed in the set Ab. Use 〈α, β〉 to represent threshold-based
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strategy. Thus,

ξk(hb, 〈α, β〉) ≈ [Bk]s∗b, b ∈ {0, 1}, (2.25)

E(N | hk, 〈α, β〉) ≈ [Tk]s∗b, b ∈ {0, 1}, (2.26)

where s∗ denotes the index of s in transient set {α+ 1
m
, . . . , β − 1

m
}.

2.6.3 Direct search based on discretization

In the previous sections, by computing absorption probability, we can approxi-

mate methods for approximating E(N | H, g) and ξk(U, g) for any discrete state p in

set {α + 1
m
, . . . , β − 1

m
}. The cost at p is given as:

J(p, g) =p · [c · E[N | h0, g] + ℓ(h1, h0) · ξ0(h1, g)]

+ (1− p) · [c · E[N | h1, g] + ℓ(h0, h1) · ξ1(h0, g)].

(2.27)

Thus, we can come up with another approach to find the optimal strategy. The main

idea of the approach is to approximately compute the performance of a strategy

g = 〈α, β〉, and optimize over g. For this reason, we call this approach direct search.

From previous knowledge, we know that the value function is not linear. Then

the problem turns into an non-linear optimization problem. Since the relationship

between value function and threshold cannot be expressed in analytic equations,

we cannot take derivatives. In principle, such non-convex optimization problems

can be solved using derivative-free methods that do not use numerical or analytic

gradients. In this thesis, after reading some documentation, we choose one of the

simplest algorithm: fminsearch in Matlab [37]. This step can be replaced by more
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sophisticated algorithms to obtain better results. However, it is not possible to

guarantee that such algorithm will converge to globally optimal solution.

fminsearch uses the Nelder-Mead simplex algorithm as described in Lagarias

et al [38]. This is a direct search method that does not use numerical or analytic

gradients. If n is the length of x, a simplex in n-dimensional space is characterized by

the n+ 1 distinct vectors that are its vertices. In two-space, a simplex is a triangle;

in three-space, it is a pyramid. At each step of the search, a new point in or near the

current simplex is generated. The function value at the new point is compared with

the function’s values at the vertices of the simplex and, usually, one of the vertices

is replaced by the new point, giving a new simplex. This step is repeated until the

diameter of the simplex is less than the specified tolerance [8].

The form of fminsearch is x = fminsearch(fun,x0,options), the function starts at

the point x0 and returns a value x that is a local minimizer of the function described

in fun. x0 can be a scalar, vector, or matrix. fun is a function handle. Additional

optimization parameters can be specified in options.

To do this, we first write a function with g = 〈α, β〉 as input and J as output

using different approximate methods. J(p, g) is computed following (2.27)). To

reduce the dependence of the numerical results on the choice of a a priori probability

p, we pick multiple values of p in a finite set in [0, 1], here we average over all p to

get a mean value J . If J(p, g) is computed exactly, then such an averaging will not

affect the result of the optimization algorithm because the optimal strategy g does

not depend on the choice of p. Then, this function can be used as fun in fminsearch,
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providing a start point x0 and optimization parameters for fminsearch, the function

will automatically search for optimal threshold that gives minimum value.

In the input of fminsearch, the parameter fun is the function we tell fminsearch

to try a value and optimize on. Since this function cannot be expressed in equations,

we first write the function in a Matlab .m file, then use the Matlab function han-

dler [43] @Fun to pass it in. We need to do this for two separate cases, for each case,

the pseudo code is shown in Algorithm 1.

Algorithm 1 Nonlinear minimum value search function

Require: g = 〈α, β〉
Ensure: value
1: function myfun(g = 〈α, β〉)
2: Specify f0, f1 and ℓ(U,H), c
3: Discretize [0, 1] into Sm = {0, 1

m
, . . . , 1}

4: if α < β then
5: for p ∈ Sm do
6: Compute ξ0(U, g) and ξ1(U, g)
7: Compute E[N | H = h0, g] and E[N | H = h1, g]
8: Compute J(p, g) follows equation (2.27)
9: end for
10: value = 1

m

∑m

i=1 V (p)
11: else
12: value = 106

13: end if
14: end function

2.7 Method 3: Monte Carlo Simulation

An early variant of the Monte Carlo method can be seen in the Buffon’s needle

experiment, in which the circumference ratio π can be estimated by dropping needles

on a floor made of parallel and equidistant strips. In the 1930s, Enrico Fermi first

experimented with the Monte Carlo method while studying neutron diffusion, but did
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not publish anything on it [39]. In the 1950s they were used at Los Alamos for early

work relating to the development of the hydrogen bomb, and became popularized

in the fields of physics, physical chemistry, and operations research. The Rand

Corporation and the U.S. Air Force were two of the major organizations responsible

for funding and disseminating information on Monte Carlo methods during this time,

and they began to find a wide application in many different fields.

The principle behind Monte Carlo simulation is that the behavior of a statistic

in random samples can be assessed by the empirical process of actually drawing lots

of random samples and observing this behavior. The strategy for doing this is to

create an artificial world, or pseudo-population, which resembles the real world in

all relevant respects. This pseudo-population consists of mathematical procedures

for generating sets of numbers that resemble samples of data drawn from the true

population. We then use this pseudo-population to conduct multiple trials of the

statistical procedure of interest to investigate how that procedure behaves across

samples.

The basic Monte Carlo procedure is as follows:

1. Specify the pseudo-population in symbolic terms in such a way that it can be

used to generate samples. This usually means developing a computer algorithm

to generate data in a specified manner.

2. Sample from the pseudo-population in ways reflective of the statistical situation

of interest, for example, with the same sampling strategy, sample size and so

forth.

3. Calculate θ̂ in the pseudo-sample and store it in a vector, θ̂.
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4. Repeat steps 2 and 3 t times, where t is the number of trials or samples.

5. Construct a relative frequency distribution of the resulting θ̂t values, which is

the Monte Carlo estimate of the sampling distribution of θ̂ under the conditions

specified by the pseudo-population and the sampling procedures.

2.7.1 Approximately compute ξk using MC

Clearly, Monte Carlo simulation is a very simple concept as it follows naturally

from the conception of what a sampling distribution is. In our problem, ξk(u, g)

can be viewed as a conditioned distribution of a decision u given the hypothesis

hk and E(N | H, g) is the sampling length of a Monte Carlo simulation until a

decision is made. Therefore, we can us Monte Carlo simulation as an approximation

method. The complicated aspects of the technique are (a) writing the computer code

to simulate the data conditions desired and (b) interpreting the estimated sampling

distribution.

Given g = 〈α, β〉, design the simulation procedure for each sampling process as:

1. Generate sample observation y1 and y2 according to PMF f0 ( or f1).

2. Given an prior belief state (in this case is each grid point p), evolve p using

Bayes rule, if p+ < α, stop and output us = 1 (which means deciding us = h1),

else if p+ > β, stop and output us = 0 (which means deciding us = h0), else

continue.

3. In the mean time, keep track of the number of samples τs needed to reach a

decision.

4. Repeat step 1, 2, and 3 for S times, where S is the sampling size.
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After doing the above procedure,

ξ0(h1, g) =
1

|S|

∑

s

(us | h0),

E(N | h0, g) =
1

|S|

∑

s

(τs | h0).

Note that by evaluating the variance of sampled results, we can have an idea of how

precise the simulation is compared to true value. When we estimate mean µ = E(X)

of a distribution by collecting n i.i.d. samples from the distribution, X1, · · · , Xn and

the sample mean

X̄(n) =
1

n

n
∑

j=1

xj .

Let σ2 = V ar(X) denote the variance of the distribution

V ar(X̄(n)) =
σ2

n
.

However, in practice, we would not know the value of σ2; We instead use an estimate

for it, the sample variance S2(n):

S2(n) =
1

n− 1

n
∑

j=1

(xj − X̄n)
2.

It can be shown that S2(n) → σ2 with probability 1 as n → ∞ and E(S2(n)) = σ2.

So, we use S(n) in place of σ when constructing our confidence intervals.

2.7.2 Direct search based on MC

The idea is the same as Section 2.6.3, only that when we are approximating

ξk(U, g) and E(N | H, g), we use Monte Carlo simulation this time.
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2.8 Case Study

In this section, we present some numerical results of the methods described

above and conclude this chapter.

Consider the following sequential hypothesis testing problem: There are two

hypothesis h0 and h1, and two observations y1 and y2. Given hypothesis hk, obser-

vations Y are distributed according to PMF fk.

f0 = [0.25 0.75], f1 = [0.6 0.4].

The cost are given as:

ℓ(U = h0, H = h1) = ℓ(U = h1, H = h0) = 20,

ℓ(U = h0, H = h0) = ℓ(U = h1, H = h1) = 0.

The cost of making an observation c is specified in different cases.

2.8.1 Evolution of α-vectors

In this part, we will show how to use α-vectors to represent value function and

find the threshold. To reduce the complexity of constructing α-vectors, we set c = 1

in this example.

With the parameters given as above, we implemented the witness algorithm by:

1. Construct a new set of α-vectors At+1 from At computed in the previous step;

2. Find the parsimonious set of α-vectors that represent the value function and

only keep track of those α-vectors;

3. Calculated the upper and lower bound gt = 〈αt, βt〉 of the decision policy;
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4. Keep doing step 1, 2, 3 until the upper and lower bound remain steady.

Evolution of α-vectors until T = 6 is shown in Figure 2–8, where α is the lower bound

and β is the upper bound. As shown in Figure 2–8, in each iteration, the number of

α-vectors increase and the lower and upper bound change accordingly. Eventually,

at some step, the number of α-vector and the threshold will remain the same.

2.8.2 Approximate ξk(u, g) and E(N | H)

In this part, we arbitrarily pick g = 〈α, β〉 = 〈0.003, 0.997〉 and compute ξk(u, g)

and E(N | H) using the asymptotic expression, absorption probability of Markov

chain and Monte Carlo simulation. For the discretization, we choose m = 1000 and

for the Monte Carlo simulation, we set s = 106 samples. These results do not depend

on the choice of c.

Asymptotic Approximation Result:

For the asymptotic approximation, we just need to plug the numbers in the

asymptotic expression,

ξ0(h1, g) ≈
α(1− p)

(1− α)p
=

1

B
= 0.007,

ξ1(h0, g) ≈
(1− β)p

β(1− p)
= A = 0.0013.

For the expected observations needed, we can compute the KL-divergence as:

E[Z | H = h0] = E

[

log
f2(Y )

f1(Y )
| H = h0

]

=
∑

y

[

log
f2(y)

f1(y)

]

· f1(y).
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Figure 2–8: Value function represented by α-vectors over six time steps.
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Thus,

E[Z | H = h0] =

(

log
0.6

0.25

)

· 0.25 +

(

log
0.4

0.75

)

· 0.75 = −0.2526,

E[Z | H = h1] =

(

log
0.6

0.25

)

· 0.6 +

(

log
0.4

0.75

)

· 0.4 = 0.2738.

Since a = logA = −6.6454, b = − logB = 4.9618, then:

E[N | H = h0] ≈
a

E[Z | H = h0]
= 26.308,

E[N | H = h1] ≈
b

E[Z | H = h1]
= 18.122.

Method 2: Absorption of Markov Chain:

Follow Section 2.6, compute the transition matrix Pk using first-order discretiza-

tion, and compute B0, T0 and B1, T1 accordingly, then find the result with the index

of p = 0.3, the results are:

ξ0(h1, g) ≈ 0.0041, E(N | H = h0) ≈ 28.101;

ξ1(h0, g) ≈ 0.0008, E(N | H = h1) ≈ 20.199.

Method 3: Monte Carlo Simulation:

Follow Section 2.7, the approximated value using Monte Carlo simulation are:

ξ0(h1, g) ≈ 0.005, E(N | H = h0) ≈ 27.150;

ξ1(h0, g) ≈ 0.0013, E(N | H = h1) ≈ 19.439.

(2.28)

Also, the variance for simulation result is calculated accordingly, Var1 = 4.888×10−4

for hypothesis H = h0, Var2 = 1.349 × 10−4 for hypothesis H = h1. Therefore,
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Figure 2–9: Comparison of approximated value functions.

combined with (2.28), a more accurate to present the result should be:

ξ0(h1, g) ≈ 0.005± 0.0022, ξ1(h0, g) ≈ 0.0013± 0.0012.

In order to have an idea of which approximation method has better performance

in this case, we can compute ξk(U, g), E(N | H) for each p in set Sm then plug the

approximation result in (2.27). Thus, the value function is constructed, we can

compare approximated value function by three methods to the value function by

grid-based value iteration method in Section 2.5. The result is shown in Figure 2–9.

2.8.3 Finding optimal strategy

In this part, we will show the threshold-based strategy computed by the methods

described in this chapter. For value function represented by α-vectors, the threshold
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is computed by finding the minimum and maximum cross point of every pair of α-

vectors. For grid-based discretization method, the threshold is computed by solving

the dynamic program using value iteration. For approximation method shown in

Section 2.8.2, the threshold is found by the non-linear optimization function fmin-

search.

Now, consider the infinite horizon case of the sequential hypothesis testing for

one decision maker. Method 2 and Method 3 are already in infinite horizon scenario.

For α-vector and grid-based discretization, we can use standard technique in infinite

horizon dynamic programming to discount the problem. Note that, for grid-based

discretization, we only present the results of first-order discretization here.

In case 1, set c = 1, the result is provided in Table 2–3. In case 2, change the

value of c to 0.1. the result is provided in Table 2–4. In case 3, we change the c to

0.01 and show the result in Table 2–5.

Table 2–3: Thresholds obtained by different methods when c = 1.

Method Thresholds min cost run time
α-vector [0.3139 0.7018] 4.5022 5745sec

Asymptotic [0.1544 0.8349] 6.3409 0.2 sec
Method 1 [0.3050 0.7060] 4.4961 0.4 sec
Method 2 [0.3045 0.7046] 4.4961 0.49 sec
Method 3 [0.3089 0.7014] 4.9674 255 sec

2.9 Discussion

In this chapter, we investigated centralized sequential hypothesis testing prob-

lem. On computing the value function, we present mainly three ways, the first

one is to represent the value function on a continuous state MDP using α-vectors;
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Table 2–4: Thresholds obtained by different methods when c = 0.1.

Method Thresholds min cost run time
Asymptotic [0.0180 0.9806] 1.5103 0.03 sec
Method 1 [0.03 0.9710] 1.4578 1.115 sec
Method 2 [0.0304 0.9698] 1.4553 5.0 sec
Method 3 [0.0285 0.9708] 1.4547 298 sec

Table 2–5: Thresholds obtained by different methods when c = 0.01.

Method Thresholds min cost run time
Asymptotic [0.0018 0.9980] 0.2387 0.2 sec
Method 1 [0.003 0.998] 0.2416 1.24 sec
Method 2 [0.0035 0.9965] 0.2389 4.8 sec
Method 3 [0.0024 0.9976] 0.2346 356 sec

the second one is to discretize the continuous space [0, 1] into discrete states and

approximate the value function using different methods. Apart from the standard

value iteration of dynamic program, we propose another three approximate methods:

asymptotic expression, absorption probability of Markov chain and Monte Carlo sim-

ulation. On finding the optimal threshold-based stopping rule of the problem, we

propose two ways, the first way is to use dynamic program and find the lower and

upper bound of each time step until it remains steady; the second way is to evalu-

ate an arbitrary strategy and use non-convex optimization (we call direct search) to

find the strategy that minimize the value function. As shown in the case study, the

discretized value function is a good approximation of the exact one. Among three ap-

proximation methods, asymptotic expression is computationally fast but has limited

applications; Monte Carlo simulation is generally applicable but takes much longer
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time; Absorption probability is fast and can be used in all situation. Thus, we will

focus on Method 1 and Method 2 as the approximation method in the next chapter.
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CHAPTER 3
Decentralized Sequential Hypothesis Testing

In last chapter, we investigated centralized sequential hypothesis testing prob-

lem, however, in many of the modern applications, multiple nodes observe noisy

information about the system state. Communicating all the observations to a single

node is often too expensive and impractical. Thus, decisions need to be made in

a decentralized manner by decision makers that share a common objective. Such

decentralized problem are often investigated using team decision theory.

Decentralized sequential hypothesis testing has received considerable attention

in the literature [15, 40, 41, 42]. The main emphasis is on identifying qualitative

properties of optimal decision strategies. In particular, in identifying belief state (or

sufficient statistics) of the data available at the decision maker and in establishing the

structure of optimal decision rules, e.g., showing that the threshold-based strategies

(similar in spirit to Wald’s sequential likelihood ratio test [1]) are optimal. We

summarize some of these results below.

A model in which multiple sensors make independent decisions that are coupled

through a common loss function was studied in [15, 40]. It was shown that at each

time instant, optimal policies for decision makers are described by two thresholds

requires solution of two coupled sets of dynamic programming equations. A model in

which multiple sensors make individual decisions and a sensor can signal its decision

to others was studied in [42], it is proved that at each time, an optimal strategy
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of the peripheral sensor is characterized by at most four thresholds and an optimal

strategy of the coordinating sensor is characterized by two thresholds. A model

in which multiple sensors communicate their decisions to a fusion center and the

fusion center makes the final stopping decision was studied in [41], where sensors can

only use current observation and all past transmissions of all sensors to decide what

message to send to the fusion center. The optimal decision rules in this case are also

characterized by two thresholds.

3.1 Model

Consider a decentralized version of Wald’s sequential hypothesis problem in-

vestigated in [15][40]. For ease of exposition, we assume that there are two decision

makers, DM1 and DM2; the result generalize to multiple decision makers in a natural

manner.

At time t, the DMi, i ∈ {1, 2}, takes observations Y i
t ∈ Y i. We assume that

given the hypothesis H = hk, k ∈ {1, 2}: (i) the observations {Y 1
t }

∞
t=1 and {Y 2

t }
∞
t=1

are conditionally independent; and (ii) the observations {Y i
t }

∞
t=1 are i.i.d with PMF

f i
k.

Each decision maker has to decide which hypothesis is true based on its own

observations; there is no communication between the two decision makers. That is,

DMi, i ∈ {1, 2}, takes a decision U i
t ∈ {h0, h1,C} at time t according to

U i
t = git(Y

i
1:t),

where Y i
1:t := (Y i

1 · · ·Y
i
t ).
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The decision U i
t = h0 (or U i

t = h1) means that DMi decides to stop and declare

h0 (or h1) as the true hypothesis and makes no further observations. The decision

U i
t = C means that DMi decides to take an additional observation.

Let N i denote the stopping time when DMi decides to stop, i.e.,

N i = min{t ∈ Z > 0 : U i
t ∈ {h0, h1}}. (3.1)

We denote the terminal decision U i
N i by U i.

There are two kinds of costs: (i) cost ci for each observation at DMi, and (ii) a

stopping cost ℓ(U1, U2, H), which satisfies the following assumptions:

(A1) ℓ(U1, U2, H) cannot be decomposed as ℓ(U1, H) + ℓ(U2, H), otherwise, the

problem decomposes into two independent standard Wald problems.

(A2) For any m,n ∈ {h0, h1}, m 6= n,

ℓ(m,m, n) > ℓ(n,m, n) > ci > ℓ(n, n, n);

ℓ(m,m, n) > ℓ(m,n, n) > ci > ℓ(n, n, n);

(3.2)

All inequalities in equation (3.2) imply that at most one mistake is less costly

than at least one mistake.

Let Gi denote the set of all strategies for DMi. Then for any choice (g1, g2) ∈

G1 × G2, the total cost is

J(g1, g2; p) = E[c1N1 + c2N2 + ℓ(U1, U2, H)]. (3.3)

We are interested in the following optimization problem:
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Problem 1 Given the observation PMFs f i
0, f

i
1, the observation cost ci, and the loss

function ℓ, find a strategy (g1, g2) that minimizes J(g1, g2; p) given by (3.3).

Note that in Problem 1, we are seeking globally optimal decision strategies. For

team problems, a weaker solution concept is that of person-by-person optimality

(PBPO), defined below.

Definition 3.1.1 (person-by-person optimality) A strategy (g1, g2) is called person-

by-person optimal (PBPO) if

J(g1, g2; p) ≤ J(g1, g̃2; p), ∀ g̃2 ∈ G2,

and

J(g1, g2; p) ≤ J(g̃1, g2; p), ∀ g̃1 ∈ G1.

This gives rise to the following relaxation of Problem 1.

Problem 2 Given the prior probability p, the observation PMFs f i
0, f

i
1, the observa-

tion cost ci, and the loss function ℓ, find a strategy (g1, g2) that is person-by-person

optimal.

We start by summarizing the results of [15] (which were derived for the finite-

horizon setup) and generalizing them to infinite horizon.

3.2 Structure of Optimal Strategy

For any i ∈ {1, 2}, let −i denote the other decision maker. Define the belief

state

πi
t := P(H = h0 | y

i
1:t).
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And define

qi(yit+1 | π
i
t) := πi

tf
i
0(y

i
t+1) + (1− πi

t)f
i
1(y

i
t+1), (3.4)

φi(πi
t, y

i
t+1) := πi

tf
i
0(y

i
t+1)/q

i(yit+1 | π
i
t). (3.5)

Using Bayes’ rule, the update of the belief state is given by

πi
t+1 = φi(πi

t, y
i
t+1). (3.6)

It was shown in [15] that {πi
t}

∞
t=1 is an belief state process for DMi. In particular:

Proposition 3.2.1 ([15]) For any i ∈ {1, 2} and any choice of strategy g−i of

DM−i, there is no loss of optimality for DMi to restrict attention to strategies of

the form

U i
t = git(π

i
t). (3.7)

To characterize the structure of the optimal strategy, we define the following.

Definition 3.2.1 (Threshold based strategy) A strategy of the form (3.7) is called

threshold based if there exists thresholds αi
t, β

i
t ∈ [0, 1], αi

t ≤ βi
t, such that for any

πi ∈ [0, 1],

git(π
i) =



























h1 if πi < αi
t,

C if αi
t ≤ πi ≤ βi

t ,

h0 if πi > βi
t .

It was shown in [15] that threshold-based strategies are team optimal. In particular:

Proposition 3.2.2 ([15, Theorem 3.1]) For any choice of g−i ∈ G−i of DM−i,

there is no loss of optimality in restricting attention to threshold based strategies at

DMi.
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Definition 3.2.2 (Time invariant strategy) A strategy gi = (gi1, g
i
2, . . . ) is called

time invariant if for any πi ∈ [0, 1], git(π
i) does not depend on t.

For infinite-horizon problems, for a single decision maker, time-invariant strate-

gies are optimal. That is not always the case for multiple decision makers. It was

shown in [15] that threshold-based time-invariant strategies are person-by-person

optimal.

As similarly defined in Section 2.6, for any i ∈ {1, 2}, k ∈ {0, 1}, ui ∈ {h0, h1}

and gi ∈ Gi, define

ξik(u
i, gi) = P (U i = ui | H = hk; g

i). (3.8)

Proposition 3.2.3 For any i ∈ {1, 2} and any time-invariant and threshold-based

strategy g−i ∈ G−i, the best response strategy gi is a time-invariant threshold-based

strategy that is given by the solution of the following DP: for any πi ∈ [0, 1]

V i(πi) = min{W i
0(π

i, g−i),W i
1(π

i, g−i),W i
C
(πi, g−i)}, (3.9)

where

W 1
k (π

1, g2) =
∑

u2∈{h0,h1}

[ξ20(u
2, g2)π1ℓ(hk, u

2, h0) + ξ21(u
2, g2)(1− π1)ℓ(hk, u

2, h1)],

(3.10)

W 2
k is defined similarly, and

W i
C
(πi, g−i) = ci + [BiV i](πi), (3.11)
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where B
i is the Bellman operator given by

[BiV i](πi) =
∑

yi

V i(φ(πi, yi))q(yi | πi),

q(yi | πi) and φ(pii, yi) are given by (3.4) and (3.5).

3.3 Orthogonal search vs direct search

For ease of notation, denote a threshold-based strategy gi by the tuple 〈αi, βi〉.

Note that Proposition 3.2.3 gives two coupled dynamic programs, which we write

succinctly as

〈α1, β1〉 = D1(〈α2, β2〉) and 〈α2, β2〉 = D2(〈α1, β1〉). (3.12)

A solution of these coupled dynamic program determines a PBPO solution for Prob-

lem 2.

As mentioned in Section 2.4, under assumptions that f i
k are Gaussian distribu-

tions [15] and

ci ≪ min{ℓ(h0, h1, h0), ℓ(h1, h0, h1)},

the stopping time N i ≫ 1, and one can use the asymptotic expressions of Type I

and Type II errors [8, 32] that were used in [15], to approximate this discrete-time

Markov process by a continuous-time Markov process, also see Section 2.4 for details.

In this section, we propose two methods to compute PBPO threshold strategies.

In the first method, which we call orthogonal search, we iteratively solve the coupled

dynamic programs (3.12). To solve the dynamic program of Proposition 3.2.3, we

need to compute ξik; which is the probability that a discrete-time Markov process

crosses a threshold. The asymptotic expression of [8, 32] that were used in [15],
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approximate this discrete-time Markov process by a continuous-time Markov process.

In Section 2.6, we propose an alternative method that approximate the discrete-time

Markov process by a discrete-time finite-state Markov chain to approximate ξik.

In the second method, which we call direct search, we approximate the expected

cost J(〈α1, β1〉, 〈α2, β2〉) of a threshold based strategy.

3.3.1 Orthogonal search

The coupled dynamic program of (3.12) may be solved using orthogonal search

procedure described below:

1) Start by an arbitrary threshold-based strategy [〈α1
(1), β

1
(1)〉, 〈α

2
(1), β

2
(1)〉].

2) Construct a sequence of strategies as follows:

For even n:

〈α1
(n), β

1
(n)〉 = D1(〈α2

(n−1), β
2
(n−1)〉),

and

〈α2
(n), β

2
(n)〉 = 〈α2

(n−1), β
2
(n−1)〉.

For odd n:

〈α1
(n), β

1
(n)〉 = 〈α1

(n−1), β
1
(n−1)〉,

and

〈α2
(n), β

2
(n)〉 = D2(〈α1

(n−1), β
1
(n−1)〉).

Theorem 3.3.1 The orthogonal search procedure described above converges to a

time-invariant threshold-based strategy (g1, g2) that is person-by-person optimal.
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Proof 3.3.1 Let (gi(n), g
2
(n)) denote the strategy at step n. By construction,

J(g1(n), g
2
(n)) ≤ J(g1(n−1), g

2
(n−1)).

Thus, the sequence {J(g1(n), g
2
(n))} is a decreasing sequence lower bounded by 0. Hence,

a limit exists and the limiting strategy is PBPO.

There are two main steps in each iteration of orthogonal search. First, at step

n, we need to compute ξik for a threshold-based strategy 〈αi
(n), β

i
(n)〉. Second, the

dynamic program at step n is a POMDP. So, we either need to discretize the state-

space or use the point-based methods [43, 44].

A. Discretization

For any m ∈ N, define Sm = {0, 1
m
, 2
m
, . . . , 1}. For any i ∈ {0, 1}, we consider

three approximations that makes different assumptions on probability distribution

of Y i. We denote the corresponding transition probabilities by P i
0, P

i
1, and P i

∗. For

P i
k, k ∈ {0, 1}, we assume that Y i ∼ f i

k, for P
i
∗, we assume that Y i ∼ qi(· | πi

t), which

is given by (3.4). The discretization procedure follows similar manner as in Section

2.5.1. We only use first-order hold discretization in here.

Note that the transition probabilities P i
k, k ∈ {0, 1}, approximate the evolution

of the {πi
t}

∞
t=1 process when hypothesis H = hk is true. We use these to approximate

probabilities ξik. On the other hand, the transition probability P i
∗ approximates

the uncontrolled evolution of {πi
t}

∞
t=1. This will be used to approximately solve the

dynamic program of Proposition 3.2.3.

B. Approximately computing ξik
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Fix a decision maker i, i ∈ {1, 2}, and the hypothesis H = hk, k ∈ {0, 1}. Given

an arbitrary strategy gi = 〈αi, βi, 〉 such that αi, βi ∈ §m. We can specify set Ai
0,

Ai
1 ⊂ Sm as :

Ai
0 = {βi, βi +

1

m
, . . . , 1},

and

Ai
1 = {0,

1

m
, . . . , αi}.

Consider the Markov chain with transition probability P i
k and absorption sets

Ai
0, A

i
1. Let P̂

i
k be the transition matrix of re-ordered Markov chain that the transient

states comes first:

P̂ i
k =







Q̂i
k R̂i

k

0 I






.

Denote Bi
k = (I − Qi

k)
−1Ri

k. From standard result in Markov chain, we know

that for any transient state s and b ∈ {0, 1}, [Bi
k]sb is the probability that the Markov

process starting in state s is absorbed in the set Ab. Thus,

ξik(hb, 〈α
i, βi〉) ≈ [Bi

k]s∗b, b ∈ {0, 1}. (3.13)

where s∗ denotes the index of s in transient set {α+ 1
m
, . . . , β − 1

m
}.

C. Solving dynamic program

Using the procedure of the previous section, we can approximate ξik(π
i, g−i), and

therefore approximately compute W i
k(π

i, g−i). To approximately solve the dynamic

program of Proposition 3.2.3, we also need to approximate the Bellman operator B
i.
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Define the approximate Bellman operator using the first-order transition matrix P i
∗

as follows:

[B̂iV i](s) ≈ ci +
∑

s′∈Sm

[P i
∗]ss′V (s′). (3.14)

Then B̂
i corresponds to the discretization of B

i on Sm and performing linear inter-

polation on points outside Sm. It is used to approximately compute W i
C
(πi, g−i).

Combining all these, we get an approximate procedure to solve the dynamic

program of Proposition 3.2.3. This will find a PBPO strategy using orthogonal

search.

Generally speaking, the procedure of orthogonal search consists of optimizing

the decision rule of one sensor at a time while keeping the decision rule of the remain-

ing sensors fixed. The overall performance of the decentralized team is guaranteed

to improve with every iteration of the orthogonal search. However, system design

policies resulting from this procedure represents necessary but not, in general, suffi-

cient conditions to determine the globally optimum solution. The Gauss-Seidel cyclic

coordinate descent algorithm has been proposed in literatures [45, 46] to obtain the

PBPO solution satisfying the necessary conditions of optimality in an iterative man-

ner.

Among other optimization methods, the alternating direction method of multi-

pliers (ADMM) is well suited to distributed optimization. The method was developed

in the 1970s, and is equivalent or closely related to many other algorithms, such as

dual decomposition, the method of multipliers and others. The global convergence of

ADMM are shown for convex functions [47]. For non-convex optimization, the con-

vergence should be verified case by case for different applications [48, 49]. For the
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sequential hypothesis testing problem discussed in our work, it may not be convex

in the thresholds.

3.3.2 Direct search

Finding person-by-person optimal decision rules is relatively easy, however, the

thresholds satisfying the above optimal stopping rule guarantee only member by

member optimality. There is no criterion for deciding whether a person-by-person

optimal decision rule is also team optimal. Next, we follow the same idea as in

Section 2.6.3 and generalize it to decentralized case. In this method we approximate

the expected cost J(g1, g2; p) (given by (3.3)) of a threshold based strategy. As in

the orthogonal search, we approximate this by approximating the evolution of πi
t.

Given an arbitrary strategy (g1, g2), for i ∈ {1, 2}, k ∈ {0, 1}, and for an a prior

probability p, define:

θik(p, g
i) = E[N i | H = hk; g

i, p].

We also add the dependence on p in ξik, that is, define: for any ui ∈ {h0, h1},

ξik(u
i, gi, p) = P(U i = ui | H = hk; gi, p).

Write J(g1, g2; p) after adding dependency on p, for each p as:

J(g1, g2; p) =p · [c1 · θ10(p, g
1) + c2 · θ20(p, g

2)] + (1− p) · [c1 · θ11(p, g
1) + c2 · θ21(p, g

2)]

+
∑

u1,u2∈{h0,h1}2

p · ξ10(u
1, g1, p) · ξ20(u

2, g2, p) · ℓ(u1, u2, h0)

+
∑

u1,u2∈{h0,h1}2

(1− p) · ξ11(u
1, g1, p) · ξ21(u

2, g2, p) · ℓ(u1, u2, h1).

(3.15)
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For an arbitrary strategy, ξik can be approximated by the absorption probabilities

of a Markov chain with transition matrix P i
k as shown in (3.13).

To approximate θik, define sets Ai
0, A

i
1 and P̂ i

k as in Part B of Section 3.3.1.B.

Define T i
k = (I −Qi

k)
−11, where 1 is a column vector with all entries as 1. From the

result in Section 2.6.1, for any state s ∈ Sm\(Ai
0∪Ai

1), [T
i
k]s is the expected stopping

time that the Markov chain starting in state s is absorbed in (Ai
0 ∪Ai

1). Thus,

θik(p, 〈α
i, βi〉) ≈ [T i

k]s∗ . (3.16)

where s∗ denotes the index of s in transient set Sm \ (Ai
0 ∪ Ai

1).

By substitute them in (3.15), we can approximately compute J(p, 〈α1, β1〉, 〈α2, β2〉)

for any p, α1, β1, α2, β2 ∈ Sm. To reduce the dependence of the numerical results on

the choice of p, we pick multiple values of p in a finite set P ⊂ [0, 1] and use

Ĵ(α1, β1, α2, β2) =
1

|P|

∑

p∈P

J(p, 〈α1, β1〉, 〈α2, β2〉).

as the objective function for the non-convex derivative-free optimization function

introduced in Section 2.6.3, we are able to achieve the optimal strategy.

3.4 Case Study

Both the approaches presented in this paper only guarantee local optimality.

In this section, we compare their performance on a benchmark system in which
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Y1 = Y2 = {0, 1} and the loss function is of the form

ℓ(u1, u2, h) =































0, if u1 = u2 = h,

1, if u1 6= u2,

L, if u1 = u2 6= h.

(3.17)

For both methods, we use m = 1000 and in direct search, we use P = Sm.

Note that the choice of parameters (c1, c2, L) and observation distributions

(f 1
0 , f

1
1 , f

2
0 , f

2
1 ) completely specifies the model. We first consider an example where

we pick specific values for the parameters and the distributions. Then we compare

the performance of the two methods when all the parameters are chosen at random.

3.4.1 Coupled Loss Case

Let c1 = c2 = 0.05, L = 2.5 and

f 1
0 =

[

0.25 0.75

]

, f 2
0 =

[

0.80 0.20

]

,

f 1
1 =

[

0.60 0.40

]

, f 2
1 =

[

0.30 0.70

]

.

The result of orthogonal search and direct search are shown in Table 3–1. Both

approaches converge to a locally optimal solution. For this particular example, direct

search converges to a slightly better solution that orthogonal search. Although or-

thogonal search converges in significantly fewer number of iterations, each iteration

of orthogonal search involves solving an infinite horizon dynamic program (which was

solved using value iteration with convergence threshold 10−3). The running time of

both the algorithms is reported, but it should be noted that we did not attempt to

optimize the Matlab implementation of the algorithms.
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Table 3–1: Comparison of orthogonal search and direct search for the specific pa-
rameters presented in Section 3.4.1.

g1 = 〈α∗
(1), β

∗
(1)〉 g2 = 〈α∗

(2), β
∗
(2)〉 Ĵ(g1, g2) iters. runtime

OS1 〈0.326, 0.73〉 〈0.07, 0.931〉 0.455 5 1.45s
DS1 〈0.287, 0.726〉 〈0.14, 0.863〉 0.436 45 6.05s

1 OS stands for othogonal search and DS stands for direct search.

3.4.2 Decomposable Case

In the previous parts, we mentioned that both orthogonal search and direct

search converge to a local optimal solution. In general, the globally optimal solution

is not known. In the special case when L = 2, the total stopping cost ℓ(U1, U2, H) is

not coupled because it can be written as ℓ(U1, H)+ℓ(U2, H). Hence the decentralized

sequential hypothesis testing problem decomposes into two independent centralized

sequential hypothesis testing problem. In this case, the solution gi = 〈αi, βi〉 can

be obtained by separately solving the two centralized sequential hypothesis testing

problems. We can use value iteration to find the optimal threshold-based policy for

two centralized sequential hypothesis testing problems and compare the result with

orthogonal search and direct search. We refer to this solution as centralized solution.

Let L = 2 and set c1, c2, f 1
0 , f

1
1 , f

2
0 , f

2
1 to be the same as the values in Section

3.4.1. The result of orthogonal search, direct search, and the centralized solution

is shown in Table 3–2. For this particular example, direct search gives the same

solution as the centralized solution while orthogonal search converges to a solution

with poorer performance.
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Table 3–2: Comparison of decomposable orthogonal search and global search with
centralized solution.

g1 = 〈α1, β1〉 g2 = 〈α2, β2〉 Ĵ(g1, g2)
OS 〈0.318, 0.686〉 〈0.089, 0.913〉 0.428
DS 〈0.3053, 0.7055〉 〈0.1845, 0.8218〉 0.406
CS 1 〈0.305, 0.705〉 〈0.184, 0.822〉 0.406

1 CS stands for centralized solution.

3.4.3 General Performance for Coupled Loss Cases

To compare the performance of the two methods, we test both of them over

500 randomly generated instances of the parameters (c1, c2, L) and (f 1
0 , f

1
1 , f

2
0 , f

2
1 ).

Specifically, we use c1, c2 ∼ unif[0, 0.05], L ∼ unif[1, 4]. We pick f i
k by picking a

random number δik ∼ unif[0,1] and setting f i
k = [δik, 1− δik].

Let JOS and JDS denote the performance of the solution obtained by orthogonal

search and direct search. Define ∆JOS = (JOS − JDS)/JOS and ∆JDS = (JDS −

JOS)/JDS as the relative difference between the performance of orthogonal search

and direct search. The histograms of ∆JOS and ∆JDS are shown in Figure 3–1.

Note that for 488 of the 500 cases, JOS > JDS + 10−4; therefore, for most scenarios,

direct search performs better than orthogonal search.

3.4.4 General Performance for Decomposable Cases

It is also interesting to look at the general performance of two approaches when

the globally optimal solution is known. In this experiment, we set L = 2, c1 = c2 =

0.05 and pick f 1
0 , f

1
1 , f

2
0 , f

2
1 randomly as specified in Section 3.4.3. Let JOS, JDS denote

the performance of the solution obtained by orthogonal search and direct search. Let

J∗ denote the centralized solution. Define the relative errors EOS = (JOS − J∗)/J∗
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Figure 3–1: Histograms of ∆JOS and ∆JDS.

and EDS = (JDS−J∗)/J∗. The histograms of EOS and EDS are shown in Figure 3–2.

From the plot, we can see that the errors of both approaches are within tolerable

range and that the performance of direct search is better than the performance of

orthogonal search in most cases.

The nature of the solution remains the same when ci ≪ L. For example, for

L = 2, c1 = c2 = 5×10−4, and f i
h chosen randomly as in Section 3.4.3, the histograms

of EOS and EDS are shown in Figure 3–3.

3.4.5 Computational Complexity

The proposed search algorithms consist of two parts: computing the transition

matrix (Algorithm 1) and using the transition matrix to compute the thresholds.

The complexity of the first part is linear in |Y|, but the complexity of the second

part does not depend on |Y|. Therefore, one would not expect a significant increase
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Figure 3–2: Histograms of EOS and EDS.
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Figure 3–3: Histograms of EOS and EDS when ci ≪ L.
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in the run-time with an increase in the size of the observations |Y|. This is confirmed

numerically as well.

We consider four cases: |Y| = 2, |Y| = 4, |Y| = 8, |Y| = 16. For each case, we

run 100 simulations where c1, c2, L are chosen randomly as described in Section 3.4.3.

To choose f i
h, for |Y| = m, we pick m random numbers (δik0, . . . , δ

i
km) ∼ unif[0,1] and

set f i
h = [δik0, . . . , δ

i
km]/S

i
k, where S

i
k =

∑m

j=1 δ
i
kj. The average run-time for orthogonal

search and direct search is shown in Table 3–3. As expected, with increasing |Y|, the

run-time does not increase accordingly, it remains at a steady state. This suggests

that the proposed approaches should work well even when Y is continuous valued.

Table 3–3: Running time with respect to number of observations.

|Y| = 2 |Y| = 4 |Y| = 8 |Y| = 16

OS average 5.497s 3.952s 6.692s 5.266s
DS average 3.560s 2.558s 2.380s 2.574s

3.5 Discussion

In this chapter, we delved into two methods to approximately compute the op-

timal threshold-based strategy in decentralized sequential hypothesis testing. Both

methods are based on discretization of the continuous-valued information state pro-

cess by a finite-valued Markov chain. The orthogonal search method computes PBPO

strategies while the direct search methods attempts to compute globally optimal

strategies. Direct search involves solving a non-convex optimization problem, so in

practice, it will also converge to a local optimal. In our numerical investigation of

the two algorithms, direct search performs better than orthogonal search; sometimes,

significantly better.
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CHAPTER 4
Conclusion

4.1 Summary

In this paper, we focus on computing optimal thresholds in sequential hypothesis

testing problem. We implemented existing algorithms and proposed new algorithms.

The results of different methods are presented and discussed.

The theory of sequential hypothesis testing problem has been well developed

and researched since it’s first formulation in 1947. Until now, a lot is known about

the property and structure of the optimal control strategy, but little is known about

computation methods. The contribution of this work is to provide a cookbook for

someone who wants to solve a sequential hypothesis testing problem.

In Chapter 2, we focus on single decision maker sequential hypothesis testing

problem, also some of these discussions is further developed in the decentralized

scenario. Firstly, we introduced the model and problem formulation. Secondly, an

exact solution using α-vectors is presented, we showed that the complexity grows

exponentially with dimension, that’s why approximation methods are considered.

Thirdly, we introduce one approximation computation by discretizing the continuous

state MDP. Based on the discretized MDP, three methods are discussed. For each

method, the basic principle and the detailed computation procedure is provided.

In addition, we also propose a non-convex derivative-free optimization method as an

alternative of finding optimal strategy. At last, we conclude the centralized sequential
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hypothesis testing problem with a case study. It is shown that the discretized model

approximates the value function well and among all approximation methods, one

method using the absorption probabilities of absorbing Markov chain has better

performance in general.

In Chapter 3, we generalize the problem from centralized sequential hypothesis

testing to decentralized case, we focus on the approximation method shown with good

performance in Chapter 2. We showed how to apply this approximation method in

the process of finding person-by-person optimal strategies as well as directly searching

global optimal strategy, and compared the result from orthogonal search and direct

search in a case study. It is shown that, direct search generally performs better than

orthogonal search.

Overall, this work summarizes the topics on numerically solving sequential hy-

pothesis testing problem and also opens up further work on decentralized sequential

hypothesis testing.

4.2 Future Work

For future work, one aspect is to generalize the problem. In this work, we

only consider binary hypothesis testing problem for two decision makers. If the

number of hypothesis increases, it will become a multi-dimensional hypothesis testing

problem. The discretization technique of multi-dimensional model is provided in the

Appendix. It would be better to provide another case study on how the proposed

approaches work in multi-dimensional scenarios. It is interesting to look at how

the computational complexity of different methods scales as the number of decision

makers increases. In our case studies, we used simple examples to illustrate the
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problem and show the result. Next step, we could apply the theory into a real decision

problem (like the machine replacement problem discussed in [23].) and demonstrate

the results. Another direction is to generalize the approximation methods developed

in this work to more general decentralized sequential hypothesis models of [41, 42].

Another aspect is to improve the efficiency of the algorithms. One example

would be the Monte Carlo approximation, to make sure the simulation result is a

good approximation of true value, we should keep the number of sampling a big

number. However, when the number of sampling increases, the running time also

increase, even if we use the high performance computer, since the current Matlab

code is not parallel, the advantage of high performance computation is not used.

Since in each sampling, the computation is independent, we could parallelize the

code and use Matlab parallel toolbox to speed the computation. Another example is

the non-convex optimization function fminsearch that we use. There are many other

(more efficient and accurate) algorithms, we could explore other possible methods and

make improvements in the result. If one is interested to develop a solver targeting

the sequential hypothesis testing problem discussed in this thesis, it would be an

non-convex derivative free optimization algorithm that finds the optimal parameter

for a function without knowing the mathematical expression of the function and the

function may not be convex.

Also, we could look at other mechanisms to solve the sequential hypothesis

testing problem, for example reinforcement learning is also a well known method for

solving POMDP problems. Many researchers have studied this and published their

results [50, 51, 52]. We are interested to look at this further into detail and see
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how to use reinforcement learning in our work and how the result compares with the

results of our current methods.

Lastly, the approximation bounds of discretizing the continuous belief space is

not discussed in this thesis. We could follow [53] and try to give a formal proof about

the lower and upper bound of grid-based discretization.
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Appendix A: Multi-dimensional Discretization

In this appendix, we will introduce a method to discretization in more than two

dimensions. As we all know, in a two dimension case, if we want to discretize a line

we equally divide the line into several pieces by setting many equally placed points

on the line; if we want to discretize a plane, we discretize each side of the plane

and line the points. However, for dimensions more than two, a method named The

Freudenthal Triangulation is one way to discretize. The results presented in this

section closely follow the presentation in [23].

The Freudenthal triangulation is named after the German mathematician who

introduced it in 1942. It is shown in Eaves [54] that a triangulation of Rn can be

constructed with the n-dimensional integer vectors as vertices. Given any x ∈ Rn,

the particular simplex that contains x can be generated as follows. Let the base v

be the largest integer vector less than or equal to x. Define the direction form the

base to x as d = x− v, let p denote a permutation of the integers {1, 2, · · · , n} that

orders the components of d in descending manner, so that dp1 ≥ dp2 ≥ · · · ≥ dpn.

Let ej denote the jth unit vector in Rn, the vertices {vi} of a simplex containing x

can be constructed as
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v1 = v

v2 = v1 + ep1

v3 = v2 + ep2

...

vk+1 = vk + epk k ≤ n.

If we have a function f that is evaluated at each possible vertex, then we can

construct a continuous, piece-wise linear function on all of Rn by defining

f(x) =

n+1
∑

i=1

λif(v
i),

where vi are the vertices of a simplex containing x, and the λi are the barycentric

coordinates of x with respect to those vertices. The solving of λi can be deducted

by back substitution.

λn+1 = dpn

λn = dp(n−1) − λn+1 = dp(n−1) − dpn

λn−1 = dp(n−2) − λn − λn+1 = dp(n−2) − dp(n−1)

...

λ2 = dp1 − dp2

λ1 = 1−

n+1
∑

i=2

λi.
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If we want to triangulate π(S). Let M be any positive integer, and consider the

subset of vertices in Freudenthal triangulation of Rn

G′ = {q ∈ In+ | M = q1 ≥ q2 ≥ q3 ≥ · · · ≥ qn ≥ 0}.

Define the n× n non-singular matrix

B =
1

M
=

























1 -1 0 0 0

0 1 -1 0 0

0 0 1 -1 0

0 0 1 -1

0 0 0 1

























.

Then for q ∈ G′, Bq = (1/M)(M − q2, q2 − q3, q3 − q4, · · · , qn−1 − qn, qn), i.e.,

Bq ∈ G = {π =
1

M
m | m ∈ In+,

n
∑

i=1

mi = M}.

The set G is the set of regular grid points in π(S). Since any 1:1 linear mapping

from Rn onto itself will map one triangulation into another[41], we can use Freuden-

thal triangulation in Rn in induce a triangulation of π(S) via the mapping B. For

example, consider the case with n = 3 and M = 2. Then

π(S) = {π ∈ R3 : πi ≥ 0 for all i,

3
∑

i=1

= πi = 1}.

The grid points q in G′ are (2, 0, 0), (2, 2, 0), (2, 2, 2), (2, 1, 0), (2, 1, 1), (2, 2,

1). B will map these into the grid points in G ⊂ π(S), in accordance, (1, 0, 0),

(0, 1, 0),(0, 0, 1),(0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5). Algebraically, B maps one

(n - 1)-dimensional affine set, M × Rn−1, into another, the affine hull of π(S) and
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establishes an isomorphic relationship between points in G and points in G′.

Say we have a function V defined on the regular grid, G in π(S). V has been

evaluated for {π : π ∈ G} = {Bv : v ∈ G′}, each v in G′ is a vertex in the Freudenthal

triangulation of Rn. Therefore, given any π ∈ π(S), we can calculate x = B−1π,

and find the vertices {vi} and the barycentric coordinated {λi} from the Freudenthal

triangulation on Rn. We have

B−1π = x =
n+1
∑

i=1

λivi,

π =
n+1
∑

i=1

λiBvi,

V (π) =

n+1
∑

i=1

λiV (Bvi).

As it can been seen above, the only work that need to be done in π(S) is setting up

and evaluating the regular grid points G. Other things are done in the Freudenthal

triangulation of π(S) under B.
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