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ABSTRACT

A total colouring is the assignment of a colour to each vertex and edge

of a graph such that no adjacent vertices or incident edges receive the same

colour and no edge receives the same colour as one of its endpoints. If we

formulate the problem of finding the total chromatic number as an integer

program, we can consider the fractional relaxation known as fractional

total colouring. In this thesis we present an algorithm for computing the

fractional total chromatic number of a graph, which runs in polynomial time

on average. We also present an algorithm that asymptotically almost surely

computes the fractional total chromatic number of Gn,p for all values of p.
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ABRÉGÉ

Une coloration totale d’un graphe est le coloration des arêtes et des

sommets telle que deux sommets adjacents ont des couleurs différentes, deux

arêtes incidentes ont des couleurs différentes, et une arête a une couleur

différente de celles des ses extrémités. Si nous formulons le problème de

trouver le nombre chromatique total comme un programme linéaire entier,

nous pouvons considérer la relaxation connue comme la coloration totale

fractionnaire. Dans cette thèse nous présentons un algorithme pour calculer

le nombre chromatique total d’un graphe en temps polynomial en moyenne.

Nous présentons aussi un algorithme qui calcule asymptotiquement presque

sûrement le nombre chromatique total de Gn,p pour toute valeur de p.
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ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Point of View . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Colouring . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Polyhedral Optimization . . . . . . . . . . . . . . . . . . . 5
1.5 Ellipsoid Method and Complexity . . . . . . . . . . . . . . 6

2 Relaxing Colouring IPs . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Vertex Colouring . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Fractional Chromatic Number in Polynomial Time . 12

2.2 Edge Colouring . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Total Colouring . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Matching and Fractional Edge Colouring . . . . . . . . . . . . . . 19

3.1 The Matching Polytope . . . . . . . . . . . . . . . . . . . . 19
3.2 A Fractional Edge Colouring Algorithm . . . . . . . . . . . 25
3.3 Fractional Matching . . . . . . . . . . . . . . . . . . . . . . 27

4 Fractional Total Colouring . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Some Fractional Total Colouring Algorithms . . . . . . . . 30
4.2 Fractional Total Chromatic Number in O(2nn9) . . . . . . 33
4.3 ∆ + 1 Fractionally Total Colouring Most Graphs . . . . . . 34
4.4 Polynomial Average Time Fractional Total Colouring . . . 36
4.5 A Deterministic Result on X T

f (G) for Sparse Graphs . . . . 37
4.6 Deterministic Results on X T

f (G) for Dense Graphs . . . . . 38

5 Colouring Random Graphs . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Some Previous Results on Colouring Gn,p . . . . . . . . . . 49
5.3 Structural Properties of Gn,p . . . . . . . . . . . . . . . . . 50

v



5.4 Computing X T
f (Gn,p) . . . . . . . . . . . . . . . . . . . . . 60

5.5 Finding a Fractional Total Colouring of Gn,p . . . . . . . . 63

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



CHAPTER 1
Introduction

1.1 Introduction

Solving a combinatorial optimization problem involves finding an

optimal solution to the problem amongst the set of possible candidates.

Often the number of possible solutions is exponential in the size of the

problem or even infinite, and hence running through all the solutions to

find an optimal one is prohibitively expensive. Finding an optimal solution

efficiently is the main focus of study in this area.

Determining the minimum number of colours needed to colour a

graph is the main area of study in graph colouring. This is a combinatorial

optimization problem. Graph colouring has applications to many real

world problems, eg. telecommunications, scheduling, bioinformatics, and

the internet. We will mainly focus on algorithms for computing optimal

colourings.

Graph colouring dates back to at least 1852, when Francis Guthrie

came up with the four colour conjecture. ‘Every map can be coloured with

four colours so that neighbouring countries that shared a common border

receive a different colours’. Since then graph colouring has been one of the

most studied areas of graph theory.

Vertex and edge colouring are two of the most popular areas of study in

graph theory. They have been shown to be computationally difficult and at

the same time practically important. While total colouring doesn’t enjoy the

long history or theory of the others, it too seems to be inherently difficult

and interesting.
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From the several different ways to approach graph colouring we choose

to focus on the integer programming formulations of graph colouring and

their LP relaxations. We present more formal definitions in section 1.4.

1.2 Point of View

Viewing fractional colouring as a linear program has many advantages.

In particular, this approach allows the use of the dual of the LP formulation

to aid in developing efficient algorithms. We will see how the algorithmic

equivalence between optimal weighted fractional colouring and strong

separation algorithms for the polytope of the dual LP can be useful, both

combinatorially and with the help of the ellipsoid method.

When considering fractional total colouring, we exploit the fact that we

have a polynomial time algorithm for fractional edge colouring. To do so, we

fix a vertex colouring (not necessarily optimal) and combine it with optimal

fractional edge colourings of subgraphs in an intelligent manner. Variants

of this approach provide algorithms that will compute the fractional total

chromatic number of a graph with certain structural properties. We will

also see techniques that construct an auxiliary graph whose fractional edge

colourings correspond to the fractional total colourings of the original graph.

The algorithms we present for colouring random graphs rely heavily

on properties of their degree distributions. We combine probabilistic

results on structural properties of random graphs with deterministic results

on fractional total colouring graphs with these properties. We obtain

polynomial time algorithms that asymptotically almost surely give an

optimal fractional total colouring of Gn,p for all values of p. Using these

techniques we will also give an algorithm that computes the fractional total

chromatic number in polynomial time on average.
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1.3 Colouring

Before we discuss the different types of graph colourings, we need some

formal definitions. A graph G = (V, E) consists of a set V (G) of vertices

and a set E(G) of edges. The edge (v1, v2) joins vertices v1 and v2. We will

only consider loopless graphs, ie. ∀v ∈ V (G), (v, v) /∈ E(G). For the most

part we will only be considering graphs with one edge between any pair of

vertices, but on occasion we will have multiple edges between vertices, ie.

we sometime consider multi-graphs. Unless otherwise instructed you must

assume that every graph is a simple graph, no loops or multi-edges. The

complement Ḡ of a graph G = (V, E), is a graph on the vertices V (G) with

the edge set E ′ = {e = (u, v) : e /∈ E(G), u, v ∈ V (G)}. We will consider

three main types of graph colouring in this thesis.

Vertex colouring is the assignment of a colour to each vertex of a graph

so that no vertices joined by an edge receive the same colour. Two vertices

joined by an edge are called adjacent. The minimum number of colours

needed to vertex colour a graph G is known as the chromatic number, X (G).

Unfortunately, vertex colouring for general graphs has been shown to be

NP-complete. In fact, it was proven in [12] that approximating X (G) to

within |V (G)|1−ε is hard, unless P = NP .

The second type of graph colouring that we are going to consider is edge

colouring. A proper edge colouring is an assignment of colours to the edges

of a graph so that no edges sharing an endpoint receive the same colour.

Two edges that share an endpoint are called incident. The neighbourhood,

N(v), of a vertex v is the set of adjacent vertices to v. The degree of a

vertex is the size of its neighbourhood, or equivalently the number of edges

that have v as an endpoint. The maximum vertex degree in a graph G, is

denoted ∆(G) or just ∆. The minimum number of colours needed to edge
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colour a graph G is known as the chromatic index, and denoted X e(G).

Clearly we need at least ∆(G) colours to edge colour G, since if v has

degree ∆(G) the edges around v will need ∆(G) distinct colours. In fact,

Vizing [40] proved that you can always edge colour a simple graph using

at most ∆ + 1 colours. Graphs with chromatic index of ∆ are known as

Class 1 graphs and those with chromatic index of ∆ + 1 are known as Class

2 graphs. So approximating the chromatic index within 1 is trivial. But

Holyer [17] showed that determining whether a graph’s chromatic index is ∆

or ∆ + 1 is NP-complete. Nevertheless, certain structural properties allow us

to find a ∆(G) edge colouring of G in polynomial time. Fournier [13] proved

the following lemma on edge colouring.

Lemma 1 A simple graph G whose vertices of maximum degree induce a

stable set is ∆(G) edge colourable. Furthermore, such a colouring can be

found in O(n4) time.

We focus mainly on a third type of graph colouring, total colouring. A

total colouring is an assignment of colours to the edges and the vertices of

a graph so that no two adjacent vertices or incident edges are assigned the

same colour, and no edge has the same colour as one of its endpoints. The

minimum number of colours needed to total colour a graph G is known as

the graph’s total chromatic number, X T (G). A total colouring of a graph G

will require at least ∆(G) + 1 colours, ∆(G) colours for the edges out of a

vertex of maximum degree and one more colour for the vertex itself. Behzad

[3] and Vizing [41] independently conjectured that X T (G) ≤ ∆(G)+2. While

this has been shown to be true for many classes of graphs (see [42]), it is

still open in general. Molloy and Reed [35] proved that X T (G) ≤ ∆(G) + C

where C is a large constant. Unfortunately, it was shown in [33] that
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determining the total chromatic number is NP-complete, even for bipartite

3-regular graphs.

Since this thesis focuses on polyhedral algorithms for computing

optimal colourings, some background on the area is needed before we can

proceed. We present an overview of some of the concepts needed in the

following two sections.

1.4 Polyhedral Optimization

Many combinatorial optimization problems can be formulated as

optimization problems over a polyhedron. Formally, a subset P ⊆ Rn is

called a polyhedron if it can be defined by P = {x|Ax ≤ b}, where A is

a m × n matrix and b ∈ Rm is a vector. Often the added constraint that

x ≥ 0 will also be present. If the polyhedron is bounded we refer to it as a

polytope. A linear program or LP is the maximization or minimization of a

linear function over a polyhedron. We will typically represent them in the

following form:

max{cT x : Ax ≤ b, x ≥ 0}

We refer to cT x as the objective function, it is the linear equation we

are trying to maximize or minimize. The rest of the inequalities are the

constraints of the linear program. The following pivotal theorem is known as

the duality theorem of linear programming.

Theorem 2 If A is a m× n matrix, b is a vector in Rm and c is a vector in

Rn, then

max{cT x : Ax ≤ b, x ≥ 0} = min{yT b : yT A ≤ cT , y ≥ 0}

if the optimums are finite.

We refer to these LPs as duals.
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If we add the constraint that the solution is an integral vector (ie. has

integer entries) we call the linear program an integer program. It’s common

to refer to the process of removing the constraint that the solution take

integral values as “relaxing” the integer program to a linear program, its

fractional relaxation.

We will abbreviate integer program as IP. The solution to the relaxation

of an IP can often give useful bounds on the optimal value of the IP. If we

are really lucky, the relaxation’s solution can be proved to be the same as

the IP solution. The value of the IP may also be equal to the value of the

LP rounded up (or rounded down in a maximization problem).

1.5 Ellipsoid Method and Complexity

In 1979 Khachiyan [20] used the Ellipsoid Method, an algorithmic proce-

dure, to show that solving LPs is in P. In contrast solving integer programs

is NP-complete. Sometimes LPs are given in a compact representation.

Then it isn’t always clear if the ellipsoid method can solve the LP in polyno-

mial time in terms of its input size. Every IP is a compact representation of

an LP. The solutions of an IP lie on the convex hull of integral vectors that

are feasible solutions to the IPs fractional relaxation LP. Thus, the IP is an

LP whose feasible region is this convex hull. This LPs constraints may be

difficult to find, given the IP, and there may be exponentially (in terms of

the input LPs size) many of them.

The ellipsoid method also provided the means to show algorithmic

equivalence of complexity for many problems. The following is known as

strong separation,

Given a polytope P and a vector x. If x is in P output ‘YES’.

Otherwise, give a constraint that x violates but all points in P satisfy.

Similarly, strong optimization is,
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For a given polytope P and objective function c. Determine x ∈ P

such that cT x is maximized.

It was shown in [28] and [18] by the use of the ellipsoid method that,

Theorem 3 Strong separation over a polytope P is polynomial time solvable

if and only if the problem of strong optimization over P is polynomial time

solvable.

The following lemma gives a bound on the runtime for the ellipsoid

method to do strong optimization when given an algorithm for strong

separation. This runtime analysis is from [4].

Lemma 4 Suppose we are given a strong separation oracle that takes time

T over polytope P ∈ Rd. Suppose further that polytope P is contained in

a sphere of radius R, and if P is non-empty it contains a sphere of radius

r. Then the ellipsoid method can optimize a linear function over P in time

O(d2 log(R
r
)T + d4 log(R

r
)).

If we have an LP where the polytope defined by the dual is P ′, and an

algorithm for strong separation exists over P ′. Then Theorem 3 implies we

can optimize over the dual and hence determine the optimal objective value

of our original LP in polynomial time.

Theorem 3 also implies that if a violated constraint (separating hy-

perplane) can’t be found efficiently over a polytope P , then the ellipsoid

method won’t be able to do strong optimization over P efficiently.

An LP given in a compact representation may have an exponential

number of constraints in terms of its input size. However, this does not

imply that the LP is solvable in polynomial time nor does it imply that it is

NP-hard to solve. For example, the IP for maximum weight stable set can

be given in a compact representation and it is NP-hard to solve in general.

On the other hand, fractional edge colouring may also be given in a compact
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representation but even though its polytope is defined by an exponential

number of constraints, it can be solved in polynomial time. This is in part

due to a polynomial time strong separation algorithm for its dual’s polytope

(we will discus this further in chapter 3). Thus, it doesn’t always matter

how many constraints define the polytope of an LP, what’s more important

is how quickly a violated one (separation) can be found over the polytope or

the polytope of the dual. For a more thorough understanding of the ellipsoid

method and complexity results related to it see [30].

The relation between an optimization problem and separation over the

polytope of the dual problem is pivotal in understanding the complexity

of graph colouring. In the next section we describe colouring as an integer

program and show how we can apply these results.
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CHAPTER 2
Relaxing Colouring IPs

2.1 Vertex Colouring

No edges exist between a set of vertices coloured the same colour in

a proper colouring, such a set of vertices is called a stable set. Thus, the

chromatic number of a graph G is the minimum number of stable sets whose

union is V (G). If we let S(G) be the family of all stable sets of a graph G,

we can formulate vertex colouring as the following IP.

min{
∑

S∈S(G)

wS : ∀S ∈ S(G), wS ∈ {0, 1};∀v ∈ V (G),
∑

{S∈S(G):S3v}

wS ≥ 1}

So vertex colouring is just a special case of integer programming. As is

often the case when an IP is known to be NP-hard, it’s worthwhile looking

at the fractional relaxation of the problem. If we relax the constraint that

wS ∈ {0, 1} we get the following LP that defines fractional vertex colouring,

Xf (G).

min{
∑

S∈S(G)

wS : ∀S ∈ S(G), wS ≥ 0;∀u ∈ V (G),
∑

{S∈S(G):S3u}

wS ≥ 1}

Unfortunately, it was shown in [24] that an optimal fractional vertex colour-

ing approximates the chromatic number of a graph G within log(|V (G)|).

Since approximating X (G) to within |V (G)|1−ε is NP-hard, it follows that it

is NP-hard to compute the fractional chromatic number in general [26].
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The dual of fractional vertex colouring is known as the fractional clique

number, ωf (G), and is given by the following LP:

max{
∑

v∈V (G)

xv : ∀v ∈ V (G), xv ≥ 0;∀S ∈ S(G),
∑
v∈S

xv ≤ 1} LP (1)

This LP is the relaxation of an IP that finds the maximum size clique ω(G)

in a graph. By the duality theorem for linear program wf (G) is NP-hard to

compute.

Getting back to the theme of optimization and separation, we now

consider the “harder” problem of weighted fractional vertex colouring. In

this generalization of fractional vertex colouring, each vertex v has a specific

weight bv such that the sum of weights on stable sets containing v is at

least bv (instead of 1). This gives the following LP for weighted fractional

chromatic number.

min{
∑

S∈S(G)

wS : ∀S ∈ S(G), wS ≥ 0;∀u ∈ V (G),
∑

{S∈S(G):S3u}

wS ≥ yv}

Computing the weighted fractional chromatic number for general graphs is

clearly NP-hard. If we set ∀ v ∈ V (G), bv = 1 this problem is fractional

vertex colouring.

If we consider the dual of the weighted fractional chromatic number

LP , we get

max{
∑

v∈V (G)

xvyv : ∀v ∈ V (G), xv ≥ 0;∀S ∈ S(G),
∑

{v∈V (G):v∈S}

xv ≤ 1} LP (2)

The stable set polytope, STAB(G) ⊆ R|V (G)|, is the convex hull of

the incidence vectors of all stable sets of G. Clearly, strong optimization

over STAB(G) is maximum weight stable set. In fact, an algorithm for

maximum weight stable set is a separation algorithm over the polytope of

LP (2). This implies that a polynomial time strong optimization algorithm
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over STAB(G) (maximum weight stable set) gives a polynomial time

algorithm for solving LP (2) via the ellipsoid method. Hence, it solves

weighted fractional chromatic number in polynomial time, this problem is

NP-hard for graphs in general. These results follow from Theorem 3 and

duality.

The following lemma, a corollary of the duality theorem, also relates

fractional vertex colouring to the stable set problem. It will be used in

chapter 5. A graph automorphism is a one-to-one mapping of the vertices

of the given graph G back to the vertices of G. A graph is vertex transitive

if for every choice of v1 ∈ V (G) and v2 ∈ V (G) there exists a valid

automorphism mapping v1 to v2.

Lemma 5 For any simple graph G, Xf (G) ≥ min{ |V (G)|
|S| : S ∈ S(G)} which

holds with equality if G is vertex transitive.

Proof. By the duality theorem of linear programming, we know that

Xf (G) = ωf (G). Assume S ⊆ V (G) is the largest stable set in G. Consider

the LP (1) defining ωf (G). Define xv ∈ R|V (G)| as the all 1
|S| vector (ie.

∀ v ∈ V (G), xv = 1
|S|). Looking at the constraints of LP (1), we see that x is

a feasible solution, since no stable set can have a total weight of more than

1. The objective value of x is |V (G)|
|S| , this proves Xf (G) ≥ min{ |V (G)|

|S| : S ∈

S(G)}.

If G is vertex transitive, let A be the set of all automorphisms of G.

Let x ∈ R|V (G)| be an optimal solution to LP (1). Since every convex

combination of optimal solutions of LP (1) is an optimal solution, it follows

that y = 1
|A|

∑
π∈A π(x) is an optimal solution to LP (1). Since G is vertex

transitive, it follows that each entry of y must have the same value (ie.

∀v, u ∈ V (G), yv = yu). If yv > 1
|S| stable set S will have too much weight
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on it, it follows that Xf (G) = min{ |V (G)|
|S| : S ∈ S(G)} when G is vertex

transitive.

In the next section we present some classes of graphs for which maxi-

mum weight stable set can be solved in polynomial time. For these classes

of graphs we therefore have polynomial time algorithms for separation on

the polytope of the dual of weighted fractional colouring. Thus, we can solve

weighted fractional chromatic number on these graphs in polynomial time.

2.1.1 Fractional Chromatic Number in Polynomial Time

While fractional vertex colouring in general is NP-hard, there do exists

classes of graphs for which polynomial algorithms exists to compute the

fractional chromatic number.

For any graph G,

ω(G) ≤ ωf (G) = Xf (G) ≤ X (G)

where the equality is by LP duality. A graph is called perfect if ω(G′) =

X (G′) for all G′ ⊆ G, and all four of these numbers are equal. If C(G) is the

set of all cliques of a graph G, the polytope defined by

{∀v ∈ V (G), xv ≥ 0;∀C ∈ C(G),
∑

{v∈V (G):v∈C}

xv ≤ 1}

is a well studied polytope called the fractional stable set polytope or

QSTAB(G). A graph being perfect is equivalent to requiring that

the max of
∑

v∈V (G) cvxv is integral for all objective functions c and

x ∈ QSTAB(G) where ∀v ∈ V (G), cv ∈ {0, 1}. Chvátal [9] proved,

using results of Lovász [23], that in fact the max of
∑

v∈V (G) cvxv is the

same over QSTAB(G) and STAB(G) for any objective function c. Equiv-

alently, he proved that QSTAB(G) = STAB(G). While it’s hard to

optimize over these polytopes in general, a convex body known as the theta
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body TH(G) has been shown to always lie between the two polytopes, ie.

STAB ⊆ TH(G) ⊆ QSTAB(G). This body has the nice property that we

can optimize any linear function over it in polynomial time [25]. Hence, we

can solve IPs and LPs in polynomial time over STAB(G) and QSTAB(G)

for perfect graphs. Lovász [23] proved that a graph is perfect if and only if

its complement is perfect. It was then shown in [29] that the weighted ver-

sions of optimal stable set, clique, chromatic number, and clique cover have

polynomial algorithms if the graph is perfect. These algorithms motivated

the use the ellipsoid method as a polynomial time separation algorithm.

Although interesting from a mathematical programming viewpoint, the

study of perfect graphs was actually motivated by a question of Shannon’s

on information theory. In 1960 Claude Berge conjectured that a graph is

perfect if and only if the graph and its complement do not contain an odd

induced hole of length at least 5. In 2002, Chudnovsky, Robertson, Seymour,

and Thomas [27] proved Berge’s conjecture to be true, and it’s now known

as the Strong Perfect Graph Theorem.

The line graph L(G) of a graph G has vertex set E(G) in which two

vertices are adjacent if the edges they correspond to in G are incident.

Given a graph G, we can check whether or not it is a line graph in polyno-

mial time [22], ie. check if there is a graph G′ such that L(G′) = G. Since

maximum weight stable set for a line graph L(G) is equivalent to maximum

weight matching for the graph G, we have a separation algorithm for the

dual of fractional chromatic number. We will discuss maximum weight

matching and a polynomial time combinatorial algorithm for fractional

chromatic number further in chapter 3.

A graph is called claw-free if it does not contain an induced K1,3

(the complete bipartite graph with one vertex in one partition and three
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in the other). Minty [34] gave a polynomial time algorithm to compute

the maximum weight stable set for a claw-free graph. However, in 2001

Nakamura and Tamura [36] showed this algorithm fails on certain cases and

gave a revised algorithm for computing the maximum weight stable set in

polynomial time. With this algorithm we can do strong separation over

the polytope of the dual of fractional vertex colouring. Therefore, we can

compute the fractional chromatic number of a claw-free graph in polynomial

time, this follows by duality. This is a generalization of the results on line

graphs.

2.2 Edge Colouring

Consider a set M ⊂ E(G) of edges with a given colour in a proper

edge colouring of G. Note that no two edges in M are incident, we call a

set of edges with this property a matching. If we let M be the family of all

matchings of a graph G, we can formulate the chromatic index of a graph as

the following IP:

min{
∑

M∈M(G)

wM : ∀M ∈M(G), wM ∈ {0, 1};∀e ∈ E(G),
∑

{M∈M(G):M3e}

wM ≥ 1}

If we consider the fractional relaxation of the IP formulation of the

chromatic index we get the fractional chromatic index. The following linear

program defines the fractional chromatic index,

min{
∑

M∈M(G)

wM : ∀M ∈M(G), wM ≥ 0;∀e ∈ E(G),
∑

{M∈M(G):M3e}

wM ≥ 1}

We denote the fractional chromatic index as X e
f . We can define

weighted fractional edge colouring in a similar fashion as we defined

weighted fractional vertex colouring. The following LP is the dual of

14



weighted fractional edge colouring.

max{
∑

e∈E(G)

xeye : ∀e ∈ E(G), xe ≥ 0;∀M ∈M(G),
∑

e∈E(G):e∈M

xe ≤ 1} LP (3)

The incidence vector IM of a matching M is the vector x in R|E(G)|

such that xe = 1 if e ∈ M and xe = 0 otherwise. Here and elsewhere we

index R|E(G)| by the elements of E(G). The matching polytope M(G) of a

graph G is the convex hull of incidence vectors of all matchings of G. Strong

optimization over the matching polytope is known as maximum weight

matching.

An algorithm for maximum weight matching is actually a strong

separation algorithm over the polytope of the dual of weighted fractional

edge colouring (LP (3)). This implies that a polynomial time algorithm for

maximum weight matching gives a polynomial time algorithm for computing

the weighted fractional chromatic index via the ellipsoid method and duality.

We will discus a combinatorial algorithm in chapter 3. The special case

of maximum weight matching where all the weights are 1 is maximum

matching. If the maximum matching covers all the vertices of the graph we

call the matching, perfect. So a maximum weight matching algorithm not

only solves fractional edge colouring, it also allows us to check if a graph has

a perfect matching.

In some graphs finding a perfect matching is easier.

Definition 1 We use ∆min(G) to denote the minimum vertex degree in G.

Lemma 6 Every graph G with n = |V (G)| even and ∆min(G) ≥ n
2

has a

perfect matching. Furthermore one can be found in O(n3) time.

Proof. Let M be a maximum matching of G and suppose there exists u and

v unmatched by M . Then N(v) and N(u) are contained in V (M) by the

maximality of M . Furthermore, for each edge e of M , |N(v)∩e|+|N(u)∩e| ≤
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2 by the maximality of M . So |N(v)| + |N(u)| ≤ 2|M | < n, a contradiction.

Hence, since |V (G)| is even M is perfect.

2.3 Total Colouring

The total graph T (G) of a graph G has vertex set V (G) ∪ E(G) and two

elements are adjacent if they are either adjacent vertices of G, incident edges

of G or one element is an edge of G and the other is one of its endpoints.

One can easily see that the fractional total chromatic number is equal to the

fractional chromatic number of T (G), ie. X T
f (G) = Xf (T (G)). This relation

between total colouring and vertex colouring makes natural an analogous

definition of the total colouring IP from the vertex colouring IP.

Consider a set T ⊂ E(G) ∪ V (G) of edges and vertices assigned the

same colour in a proper total colouring of a graph G. No two vertices of T

have an edge between them, no two edges of T share an endpoint, and no

edge has an endpoint in T (ie. a matching plus a disjoint stable set). We call

a set of edges and vertices with this property a total stable set. Thus, the

total chromatic number of a graph is the minimum number of total stable

sets whose union is V (G) ∪ E(G). If we let T (G) be the family of all total

stable sets of a graph G, we can formulate the total chromatic number as an

optimal solution to the following IP.

min{
∑

T∈T (G)

wT : ∀T ∈ T (G), wT ∈ {0, 1};∀u ∈ E(G)∪V (G),
∑

{T∈T (G):T3u}

wT ≥ 1}

The fractional relaxation of this IP, obtained by modifying the con-

straint wT ∈ {0, 1} to be wT ≥ 0 is the following LP:

min{
∑

T∈T (G)

wT : ∀T ∈ T (G), wT ≥ 0;∀u ∈ E(G) ∪ V (G),
∑

{T∈T (G):T3u}

wT ≥ 1}

We refer to the optimal objective value of this LP as the graphs

fractional total chromatic number, X T
f . It’s easy to see that X T

f (G) ≥
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∆(G)+1. It was shown in [21] by Kilakos and Reed that X T
f (G) ≤ ∆(G)+2,

and this upper bound is the best possible. It is currently unknown if

determining the fractional total chromatic number is NP-hard. By assigning

a weight of 0 to the edges of the graph and a weight of 1 to the vertices we

reduce fractional vertex colouring to fractional weight total colouring. Since

the former problem is NP-hard, so is the latter.

An edge dominating set is a subset of edges M ⊂ E(G) such that the

removal of M and the vertices that are endpoints of edges in M leaves a

stable set. Yannakakis and Gavril [14] show that computing a minimum

edge dominating set is NP-hard. They also showed G has a total stable set

of size n − k if and only if it has an edge dominating set of size k. This

implies that maximum total stable set is NP-hard.

Fractional total colouring is similar to fractional vertex colouring

in the sense that the weighted versions are NP-hard. But in other ways

fractional total colouring can be viewed as being “easier” than fractional

vertex colouring since approximating the value within a constant value of

1 is trivial (by Kilakos and Reed’s [21] result). In this way it is similar to

fractional edge colouring.

The complexity equivalence between maximum weight total stable set

and fractional total colouring implies that we can get a separation algorithm

for the polytope of the dual of fractional total colouring from an algorithm

for maximum weight total stable set. In section 4.2 we will see that this

approach yields an O(2nn9) algorithm for computing the fractional total

chromatic number.

We will also be exploiting fractional total colouring’s kinship with

fractional edge colouring to get algorithms which work quickly on almost

every graph. They also work in polynomial average time. We discuss the
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theory of fractional edge colouring in the next chapter. We show how we

can exploit it to obtain algorithms and prove theorems on fractional total

colouring in chapter 4. We apply these results to the study of random

graphs in chapter 5.
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CHAPTER 3
Matching and Fractional Edge Colouring

Edmond’s characterization of the matching polytope provided the

means for a polynomial time algorithm to find a maximum weight matching

of a graph. This implies that strong separation is polynomial time solvable

over the polytope of the dual of weighted fractional edge colouring. Hence,

we have a polynomial time algorithm for solving weighted fractional

chromatic index. We discuss this characterization in the following section.

In section 3.2 we describe how these results can be used to compute the

fractional chromatic index of a graph combinatorially. In section 3.3 we

present some results on fractional matching.

3.1 The Matching Polytope

To simplify notation, for a subset of vertices H, we denote the set of

edges leaving H going to vertices in V (G) \ H as δ(H) and E(H) denotes

the induced edges of H. Edmond’s [10] gave the following characterization

for a vector x ∈ R|E(G)| to be in the matching polytope.

(i) ∀ v ∈ V (G),
∑
e3v

xe ≤ 1.

(ii) ∀ H ⊆ V (G), where |H| ≥ 3 and odd,
∑

e∈E(H)

xe ≤
1

2
(|H| − 1).

(iii) ∀ e ∈ E(G), xe ≥ 0.

If we let P(G) be the polytope defined by inequalities (i),(ii), and (iii) we

get the following theorem.
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Theorem 7 Inequalities (i),(ii), and (iii) define the matching polytope, ie.

P(G) = M(G).

To prove that this theorem is correct we will first give a characteriza-

tion of the perfect matching polytope, and then use it to prove Theorem 7.

The perfect matching polytope Mp(G) is the convex hull of incidence vectors

of all perfect matchings of G. To characterize it, we need the following

variant of (i):

(i′) ∀ v ∈ V (G),
∑

e3v xe = 1.

We let P ′(G) be the polytope characterized by (i′),(ii), and (iii).

Theorem 8 Inequalities (i′),(ii), and (iii) define the perfect matching

polytope, ie. Mp(G) = P ′(G).

Proof. Let Mp(G) be the perfect matching polytope, and let P ′(G) be the

polytope defined by (i′), (ii), and (iii). We claim that P ′(G) = Mp(G).

Because P ′(G) is convex, to show that Mp(G) ⊆ P ′(G), we need only show

that the vertices of Mp(G) are in P ′(G). That is, that inequalities (i′),

(ii), and (iii) hold for every incidence vector of a matching. Assume that

x ∈ R|E(G)| is the incidence vector of a matching M , clearly x ≥ 0 so (iii) is

satisfied. Also (i′) is satisfied since there is exactly one edge of M incident

to each vertex. Now for any odd subset H of vertices,
∑

e∈E(H) xe is the

number of edges of M contained within H which is at most 1/2(|H| − 1)

since these edges are disjoint. So, (ii) holds.

To prove P ′(G) ⊆ Mp(G) assume for a contradiction that P ′(G) *

Mp(G) and G is a minimal counter example in terms of |E(G)| + |V (G)|.

Consider a vertex z of P ′(G) which is not in Mp(G). Then ∀ e ∈ E(G),

ze > 0, since if ze = 0 we could remove edge e and G− e is a smaller counter

example.
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Suppose ze = 1 for some edge e = (u, v), then ze′ = 0,∀ e′ 6= e incident

to u or v. So (i′), (ii), and (iii) hold for the restriction y of z to the edges

of G − u − v. Thus, y can be expressed as a convex combination of perfect

matchings of G − u − v (by the minimality of G). That is, y =
∑j

i=1 αiIM ′
i
,

where ∀i, M ′
i is a perfect matching of G− u− v and the αi’s are nonnegative

reals summing to one. Now setting Mi = M ′
i∪(u, v) we have z =

∑j
i=1 αiIMi

.

This contradicts the fact that z /∈Mp(G). So, ∀ e ∈ E(G), ze < 1.

Every vertex of G must have degree at least 2, since (i′) holds but

∀e ∈ E(G), ze 6= 1. If every vertex of G had degree 2 then P ′(G) = Mp(G)

trivially, so it follows that ∆(G) ≥ 3 which, along with the fact that every

vertex has degree at least two, implies |E(G)| > |V (G)|. Now since z is a

vertex of P ′(G) it follows that at least |E(G)| constraints of (i′),(ii), and (iii)

hold with equality. This implies that there exists at least one odd subset of

vertices H with |H| ≥ 3 and
∑

e∈E(H) ze = 1
2
(|H| − 1) (since none of the

constraints in (iii) are tight).

Now let G1 be obtained from the subgraph of G induced by H by

adding a new vertex v2 with edges {(v, v2) : (u, v) ∈ δ(H), u ∈ V (G) \ H}.

Similarly define G2 to be the vertex induced graph of V (G) \ H, plus a

new vertex v1 and edges {(v, v1) : (v, u) ∈ δ(H), u ∈ H}. This may make

G1 and G2 multi-graphs, in fact this characterization is valid for multi-

graphs as well. By the minimality of G we know that the perfect matching

polytopes for G1 and G2 are characterized by Edmond’s constraints. Let z1

and z2 be the vectors indexed by the edges of G1 and G2 respectively, with

z1
e1 = ze, where ∀e1 ∈ E(G1), e is the corresponding edge in G. Similarly

let z2
e2 = ze, where ∀e2 ∈ E(G2), e is the corresponding edge in G. We

can express z1 and z2 as convex combinations of perfect matchings of G1

and G2 (by the minimality of G). Let M1,1, ...,M1,j be the matchings of G1
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such that z1 =
∑j

i=1 αM1,i
IM1,i

, similarly let z2 =
∑k

i=1 αM2,i
IM2,i

. Where∑j
i=1 αM1,i

= 1 and
∑k

i=1 αM2,i
= 1.

For each edge e ∈ δ(H), the sum of
∑

M1,i3e1 αM1,i
= ze. Similarly∑

M2,i3e2 αM2,i
= ze. Let N1,e be the set of matchings of G1 that contain

edge e1 having an associated non-zero α. Similarly, let N2,e be the set

of matchings containing e2 of G2 with a non-zero associated α. Define,

∀N1 ∈ N1,e, ∀N2 ∈ N2,e a perfect matching N = (N1− e1)∪ (N2− e2)∪{e} of

G and assign it a weight of αN =
αN1

αN2

ze
. It’s an easy matter to verify that

we have expressed z as a convex combination of these perfect matchings of

G. This is a contradiction to z /∈Mp(G), so P ′(G) = Mp(G).

We will now show how we can use the characterization of the perfect

matching polytope to characterize the matching polytope.

Proof of Theorem 7. To show that M(G) ⊆ P(G) we mimic the

proof that Mp(G) ⊆ P ′(G) above. To prove that P(G) ⊆ M(G), we

will construct an auxiliary graph G∗. Take a copy of G, call it G′ with

V (G′) = {v′|v ∈ V (G)} and E(G′) = {e′ = (u′, v′)|e = (u, v) ∈ E(G)}. Define

V (G∗) = V (G) ∪ V (G′), and E(G∗) = E(G) ∪ E(G′) ∪ {(v, v′) : ∀v ∈ V (G)}.

Suppose there is a vector z ∈ P(G) −M(G). Let y ∈ R|E(G∗)| be the

vector indexed by the edges of G∗ defined as follows:

• ∀e ∈ E(G), ye = ze and ye′ = ze.

• ∀(v, v′) ∈ E(G∗), y(v,v′) = 1−
∑

e∈E(G),e3v ze.

We claim that z ∈ P(G)−M(G) if and only if y ∈ P ′(G∗)−Mp(G
∗).

If z satisfies (i) and (iii), then clearly y satisfies (i′) and (iii). Similarly

if y satisfies (i′) and (iii) then z satisfies (i) and (iii). If z doesn’t satisfy (ii)

for some subgraph H ⊂ G, then y doesn’t satisfy (ii) either. Since by the
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definition of y,

∑
e∈E(H)

ye =
∑

e∈E(H)

ze. (3.1)

Using equation (3.1), we find that if (ii) isn’t satisfied by y for some odd

subgraph completely contained in V (G) or V (G′) then (ii) isn’t satisfied by

z.

It only remains to consider the case where (ii) isn’t satisfied by y

when the odd subgraph H has vertices from G and G′. Let H1 = {v|v ∈

V (H), v′ /∈ V (H)} and H2 = {v′|v /∈ V (H), v′ ∈ V (H)}. Now let

S = V (H) − H1 − H2. S has an even number of vertices, since for every

vertex v ∈ S, S also contains v′ by the definition of H2. Similarly, for every

v′ ∈ S, v ∈ S by the definition of H1. This means that either H1 or H2 is

odd, without loss of generality assume it’s H1. Any edge going from a vertex

v ∈ H1 to V (H) must go to a vertex u ∈ S, since there are no edges between

H1 and H2 in H. The corresponding edge (u′, v′) must be in δ(V (H))\ δ(H1)

and y(u′,v′) = y(u,v). It now follows that,

∑
e∈δ(H1)

ye ≤
∑

e∈δ(H)

ye.

Now, since
∑

e∈δ(G) ye + 2
∑

e ∈ E(G)ye = |V (H)| and y violates (ii) for H,

it follows that, ∑
e∈δ(H1)

ye ≤
∑

e∈δ(G)

ye < 1.

Since
∑

e∈δ(H1) ye < 1, we have
∑

e∈E(H1) ye > 1
2
(|V (H1)| − 1). Thus, (ii) is

violated by a set of vertices completely contained in V (G) so by equation

(3.1) z violates (ii).

The following lemma is a consequence of this characterization of the

matching polytope,
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Lemma 9 For a simple graph G, the fractional chromatic index of G is

given by the following formula,

X e
f (G) = max{∆(G), max{ 2|E(H)|

|V (H)| − 1
: H ⊆ G, |V (H)| is odd, |V (H)| ≥ 3}}

Proof. Clearly (1/β, 1/β, ..., 1/β) is in the matching polytope precisely

if (1, 1, ..., 1) is a convex combination of β matchings. So, the fractional

chromatic index is the minimum β s.t. (1/β, 1/β, ..., 1/β) is in M(G). The

constraints of (i) are satisfied for (1/β, 1/β, ..., 1/β) if and only if β ≥ ∆.

The constraints of (ii), for a specific H, are satisfied for (1/β, 1/β, ..., 1/β) if

and only if β ≥ 2|E(H)|
|V (H)|−1

.

This lemma implies that a graph G with a subgraph H such that

|V (H)| is odd, |V (H)| ≥ 3, and 2|E(H)|
|V (H)|−1

> ∆(G) has X e
f > ∆. Hence

X e(G) = ∆ + 1 for such graphs. We refer to H as an overfull subgraph if

2|E(H)|
|V (H)|−1

> ∆(G).

Since we can compute X e
f (G) in polynomial time, the following con-

jecture of Chetwynd and Hilton[8] implies that we can compute X e for any

graph with ∆(G) > |V (G)|
3

in polynomial time.

Conjecture 10 (The Overfull Conjecture) A graph G with n vertices

and ∆(G) > |V (G)|
3

is Class 1 if and only if G has no odd overfull subgraph.

There is a similar conjecture by Chetwynd, Hilton, and Hind [15]

on total colouring. The deficiency of a vertex v, def(v) or defG(v), is

the difference between the maximum degree of G and the degree of v, so

def(v) = ∆ − deg(v). The deficiency of a graph, def(G), is the sum of

the deficiencies of each vertex, def(G) =
∑

v∈V (G)(∆ − deg(v)). A graph

G is conformable if it has a vertex colouring with ∆(G) + 1 colours such

that number of classes of parity different from that of |V (G)| is at most the

deficiency of G.
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Conjecture 11 (The Conformability Conjecture) For a graph G with

∆(G) ≥ 1
2
(|V (G)| + 1). Then X T (G) ≥ ∆ + 2 if and only if G contains a

subgraph H with ∆(G) = ∆(H) which either isn’t conformable or when ∆(G)

is even, consists of K∆(G)+1 with one edge subdivided.

3.2 A Fractional Edge Colouring Algorithm

Lemma 9 implies that to determine X e
f (G), we just need to check

whether or not G contains an odd overfull subgraph, and find the “most”

overfull one.

If G is ∆-regular (every vertex has degree ∆) and H ⊆ V (G) with

|H| odd, then less than ∆ edges leave H precisely if |E(H)| > ∆ (|V (H)|−1)
2

.

So, for regular graphs, finding an overfull odd subgraph is equivalent to

finding an odd cut (V1, V2) (a partition of the vertices such that at least one

partition contains an odd number of vertices) such that |δ(V1)| < ∆.

In the case of general graphs we will construct an auxiliary graph G′

from G with the property that the vertices of G′ that correspond to vertices

in G all have degree ∆. We do this by adding a new vertex v∗ to G and

adding edges between v∗ and V (G) until all the vertices in V (G) have

degree ∆. Note, this may make G′ a multi-graph. Label all the vertices of

V (G′) ‘odd’ if |V (G′)| is even. If |V (G′)| is odd we label v∗ ‘even’ and the

remaining vertices ‘odd’.

We now define an odd cut in this auxiliary graph to be a partition of

V (G′) into (V1, V2) such that both V1 and V2 contain an odd number of

vertices labelled ‘odd’. A minimum odd cut in G′ has either V1 or V2 having

an odd number of vertices of V (G). It is easy to see that finding the “most”

overfull odd subgraph is equivalent to finding the minimum odd cut in G′.

In [37] Padberg and Rao present an algorithm for finding minimum odd

cuts, and hence overfull odd subgraphs of regular graphs in O(n4) time. We
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fix some ‘odd’ vertex s and for each other ‘odd’ vertex t, run a max-flow

min-cut algorithm to find the minimum s-t cut of G.

Let (V1, V2) be the minimum cut found. If (V1, V2) is an odd cut we are

done. If not consider two new auxiliary graphs G1 and G2, defined in the

same manner as in the proof of Theorem 8. So, G1 is the induced graph V1

plus a new vertex v2 with edges between V1 and v2 so that the degrees of

the vertices V1 in G1 are preserved. Similarly we define G2 to be the graph

induced by the vertices of V2 and a new vertex v1 and edges between v1 and

V2 in G2 to preserve the degrees of the vertices. Label v1 and v2 as ‘even’.

We claim that a minimum odd cut (V ∗
1 , V ∗

2 ) of G′ exists such that either

V ∗
1 ⊂ V1 or V ∗

1 ⊂ V2, so we only have to consider the problem of finding the

minimum odd cuts in G1 and G2. We can continue recursively splitting our

graphs into smaller and smaller graphs. We don’t recurse on a problem if

the minimum cut found is an odd cut or the graph has 2 vertices.

It only remains to prove that there is a minimum odd cut lying in one

of the two auxiliary graphs. Let (S, T ) is a minimum odd cut in G′. We can

assume that both S and T intersect both V1 and V2 otherwise the odd cut

would lie in one of our subgraphs. Also note that each of V1, V2, T, and S

have at least one vertex labelled ‘odd’. Consider V1∩T and V2∩S, the edges

of cuts (V1 ∩ T, V2 ∪S) and (V2 ∩S, V1 ∪ T ) clearly lie in the union of our two

original cuts. Also any edge that lies in both our new cuts must lie in both

our original cuts, so

|δ(V1 ∩ T )|+ |δ(V2 ∩ S)| ≤ |δ(V1)|+ |δ(S)|. (3.2)

Also one of our new cuts must be odd, since if V1 ∩ T had an even number

of ‘odd’ labelled vertices then V2 ∩ T would have to have an odd number

of ‘odd’ labelled vertices, which means that V2 ∩ S would also need an odd
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number of ‘odd’ labelled vertices. Suppose by symmetry that (V1 ∩ T, V2 ∪S)

is an odd cut, then if |δ(V1 ∩ T )| > |δ(S)| by (3.2) this would mean that

|δ(V2∩S)| < |δ(V1)|, but this is a contradiction since (V1, V2) was a minimum

cut in all of G′. So |δ(V1 ∩ T )| ≤ |δ(S)|, and we now have a minimum odd

cut completely contained in one of our two subproblems.

We can find a max-flow min-cut in O(n3) [19] and the maximum level

of the recursive tree of splitting up G′ is n − 1 so we get a total run-time of

O(n4).

The above procedure can be modified to provide an algorithm for

computing an actual optimal fractional edge colouring combinatorially in

polynomial time (as opposed to just the optimal objective value). Due to

the complexity of the changes, we’ve omitted this algorithm.

The ellipsoid method can also be used to compute an optimal fractional

edge colouring. However, due to the complexity in presenting all the details

involved we don’t include it here either. Lemma 4 can’t be applied to the

variant of the ellipsoid method needed, since the polytope we are optimizing

over is in R|M(G)| where M(G) is the set of all matchings of G and usually

exponentially large. Instead we will refer to the runtime of a polynomial

time implementation of an algorithm giving an optimal fractional edge

colouring as O(FEC). See [30] section (6.6.5) for the details of a polynomial

time algorithm based on the ellipsoid method.

3.3 Fractional Matching

While we are on the subject of matchings we present some results on

fractional matchings of graphs that we will use in section 4.5. These results

will help us characterize the fractional total chromatic number of graphs

with high degree.
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The maximum fractional matching of a graph G is defined to be an

optimal solution to the following linear program:

max{
∑

e∈E(G)

we : ∀e ∈ E(G), we ≥ 0;∀v ∈ V (G),
∑
e3v

we ≤ 1}

Balinski [2] proved that there always exists an optimal fractional

matching where the weights on the edges are either 0, 1
2
, or 1 (this is known

as half integral). He also showed that a maximum fractional matching can

be partitioned into a matching M with weight 1 on the edges and a set of

odd cycles, vertex disjoint and disjoint from M , with weight we = 1/2 for

each edge e in any of the odd cycles.

An optimal fractional matching can be computed in polynomial time

by the ellipsoid method, since the fractional matching polyhedron is defined

by a polynomial number of constraints and we can check to see if any are

violated in polynomial time. But as is often the case when a problem has a

polynomial time algorithm using the ellipsoid method, faster combinatorial

algorithms can be found. Bourjolly and Pulleyblank [7] present an algorithm

for computing an optimal fractional matching where the edges of weight 1

form a matching M and the edges of weight 1/2 form disjoint odd cycles,

disjoint from M .

The basic idea is to construct an auxiliary bipartite graph B(G).

Label the vertices of G as v1, ..., vn, and define the vertices of B(G) to be

{y1, ..., yn, z1, ..., zn}. Make (yi, zj) an edge of B(G) precisely if (vi, vj) is an

edge of G. Take a maximum matching M of B(G). Construct a fractional

matching vector x ∈ R|E(G)| of G by assigning x(vi,vj) a value of 1 if both

(yi, zj) and (yj, zi) are in M , a value of 1/2 if only one of (yi, zj) or (yj, zi)

are in M and the value 0 otherwise. If we consider the edges of G that

correspond to non-zero entries in x, they form disjoint paths or cycles (since
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each vertex has degree at most 2). If we have an even cycle or even path

with edges e1, e2, ..., e2k, for i = 1...k we can set the value of xe2i
to zero

and xe2i−1
to one. We still have a fractional matching and now we no longer

have any even cycles, or even paths. We can’t have an odd path of length at

least three or we could have found a larger matching in B(G). Now we have

a fractional matching consisting of a matching of weight one edges along

with a set of disjoint odd cycles of weight 1/2 edges. This algorithm runs in

O(n3) time. For a proof that the size of a maximum matching of B(G) is

twice the size of a maximum fractional matching of G see [39]. (It relies on

the fact that for bipartite graphs the maximum size of a matching is equal

to the maximum size of a fractional matching.)
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CHAPTER 4
Fractional Total Colouring

In this chapter we discuss some algorithms for determining the total

chromatic number and fractionally total chromatic number of graphs.

As discussed in section 2.3, we will use our polynomial time algorithm

for determining the fractional chromatic index to obtain algorithms that

determine X T
f for certain types of graphs. We also use the fact that an

algorithm for maximum weight total stable set immediately gives an

algorithm for fractional total chromatic number via the ellipsoid method

and duality. We also show how to compute the fractional total chromatic

number of a graph in polynomial time on average by combining two of these

algorithms.

We then give some deterministic results on sparse and dense graphs

that will be needed in chapter 5.

4.1 Some Fractional Total Colouring Algorithms

One of the main techniques we use to determine the fractional total

chromatic number has three steps. We first fix a vertex colouring. Then we

use our polynomial time algorithm for determining the fractional chromatic

index. Lastly, we combine the colourings to get a fractional total colouring.

We will give a few examples of algorithms that use this approach.

In [21], Kilakos and Reed give an algorithm that fractionally ∆ + 2

total colours all simple graphs. This once again uses the technique of

fixing a vertex colouring then exploiting our knowledge of fractional edge

colouring to get the desired colouring. We present a simplified version of this

algorithm that shows that all graphs have a ∆ + 3 fractional total colouring.
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Lemma 12 For any simple graph G, X T
f (G) ≤ ∆ + 3.

Proof. Vertex colour G using colours {1, ..., ∆ + 3} greedily. This is

always possible since any uncoloured vertex v has at most ∆ neighbours

and hence at least three free colours will be available to be used on v. For

i = 1, ..., ∆ + 3 let Si be the set of vertices coloured i. Now consider the

vertex induced subgraphs Gi = G \ Si. We know that Gi is ∆ + 1 edge

colourable; let Mi,1, ...,Mi,∆+1 be the matchings of a ∆ + 1 edge colouring of

Gi. For i = 1, ..., ∆ + 3 and j = 1, .., ∆ + 1 let Ti,j be the total stable set

Si ∪Mi,j. Assign each such total stable set a weight of 1
∆+1

and every other

total stable set a weight of 0.

We claim this yields a ∆ + 3 fractional total colouring. One can easily

see that the sum of the weights assigned to all the total stable sets is ∆ + 3.

To verify our claim we need only ensure that the constraints of the LP are

satisfied.

For every vertex v ∈ V (G), v is in exactly ∆ + 1 total stable sets which

have weight 1
∆+1

so the constraints for each vertex are satisfied.

For every edge e ∈ E(G), let e = (u, v) and let u ∈ Si′ and v ∈ Sj′ ,

then e is in exactly one Mi,j for all j 6= j′, i′. So the sum of the weights of all

total stable sets containing e is
∑

l=1..∆+3:l /∈{i′,j′}
1

∆+1
= 1.

If the graph has the property that vertices of maximum degree ∆ and

vertices of degree ∆ − 1 are far apart, the above approach can be modified

to efficiently find a fractional ∆ + 1 total colouring. The length of a path

between two vertices in G is the minimum number of edges in E(G) needed

to keep them connected.

Lemma 13 If a graph G contains neither a path of length at most 3

between two vertices of degree ∆(G), nor an edge between two vertices of
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degree at least ∆(G) − 1, then G has a ∆(G) + 1 fractional total colouring.

This colouring can be found in O(n5) time.

Proof. We construct a special vertex colouring of G using colours {1, ..., ∆+

1}. We then use this vertex colouring to get a fractional total colouring of

G. For each vertex v of degree ∆(G) colour v and N(v) using all ∆(G) + 1

colours (ie. each neighbour of v gets a different colour). Since every two

vertices of degree ∆ are at distance at least four, no edge has two endpoints

with the same colour. We can greedily extend this partial vertex colouring

of G to a complete ∆(G) + 1 vertex colouring C of G. We use Si to denote

the set of vertices of V (G) assigned colour i by C . It takes O(|E(G)|) time

to get our ∆ + 1 vertex colouring.

For all i = 1, ..., ∆(G) + 1, define Gi to be the vertex induced subgraph

of V (G) \ Si. We will bound the chromatic index of Gi,∀i using Lemma 1.

For all v with degG(v) = ∆(G) and all i if v /∈ Si then it has a neighbour

in Si so ∀i, ∆(Gi) ≤ ∆(G) − 1. If ∆(Gi) < ∆(G) − 1 then Gi has a

∆(G) − 1 edge colouring by the fact that X e(G) ≤ ∆(G) + 1. Otherwise

∆(Gi) = ∆(G) − 1, and so by the hypothesis, the vertices of ∆(G) − 1

in Gi are a stable set. By Lemma 1, Gi has a ∆(G) − 1 edge colouring

in this case as well. So ∀i,X e(Gi) ≤ ∆(G) − 1. We can use Fournier’s

algorithm to get the edge colouring of each subgraph in O(n4) time, so it

takes O((∆ + 1)(n4)) = O(n5) time to edge colour all the subgraphs.

We are going to combine the ∆(G) − 1 edge colourings of the Gi’s with

the vertex colouring C to get a total fractional colouring of G, using the

approach of [21].

Let Mi = {Mi,1, ...,Mi,∆(G)−1} be the set of matchings in a ∆(G) − 1

edge colouring of Gi. For 1 ≤ i ≤ ∆(G) + 1 and j between 1 and

∆(G) − 1, we let Ti,j be the total stable set Si ∪ Mi,j We assign weights
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of wTi,j
= 1/(∆(G) − 1) to each Ti,j and a weight of zero to all the other

total stable sets of G (this takes O((∆ + 1)(∆ − 1)) time). We now claim

that w is a feasible solution to the fractional total colouring of G and∑
T∈T (G) wT = ∆(G) + 1.

To prove that the inequalities of the fractional total LP are satisfied,

we need to show that every element of V (G) ∪ E(G) is in ∆(G) − 1 of the

Ti,j’s. This is clear for v ∈ V (G) as v is in some Si and hence in Ti,j for

1 ≤ j ≤ ∆(G) − 1. For each e ∈ E(G) with one end in Sk and the other in

Sl, for all 1 ≤ i ≤ ∆ + 1 with i /∈ Sk ∪ Sl, there is some j such that e ∈ Mi,j

and hence in Ti,j so e is in at least ∆− 1 of the Ti,j’s.

The second part of the claim obviously holds, as our objective function

has the following value,

∑
T∈T (G)

wT =

∆(G)+1∑
i=1

∑
Mi,j∈Mi

(1/(∆(G)− 1))

=

∆(G)+1∑
i=1

1 = ∆(G) + 1

We’ve shown that we have a ∆(G) + 1 fractional total colouring of G as

required. The algorithm runs in O(n5) time.

4.2 Fractional Total Chromatic Number in O(2nn9)

To develop our algorithm for fractional total chromatic number, we

will need an algorithm for maximum weight total stable set. Given a graph

G with weights wl,∀l ∈ E(G) ∪ V (G), consider all possible 2n subsets of

V (G), and label them Vi ⊆ V (G) for 1 ≤ i ≤ 2n. If Vi is a stable set then

let Gi be the induced graph on V (G) \ Vi. We can then use a maximum

weight matching algorithm to compute a maximum matching Mi of Gi in

O(n3) time. Let Ti be the total stable set Vi ∪Mi. The sum of the weights

associated with the elements of Ti is wTi
=

∑
l∈Ti

wl. Now the Ti with
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that largest wTi
is clearly a maximum weight total stable set of G. We can

therefore solve maximum weight total stable set in O(2nn3) time.

Let T (G) be the set of all total stable sets of G and let Q be the

polytope defined by:

xu ≥ 0 ,∀ u ∈ E(G) ∪ V (G)∑
u∈Ti

xu ≤ 1 ,∀ Ti ∈ T (G)

Then Q is the polytope of the dual of fractional total chromatic number.

A strong optimization algorithm over the total stable set polytope (ie.

maximum weight total stable set) is in fact a strong separation algorithm

over Q. This implies that we have a O(2nn3) time algorithm for strong

separation over Q. We can therefore optimize the dual of fractional total

colouring via ellipsoid method, hence compute the fractional total chromatic

number.

Polytope Q can be bounded by a sphere of radius
√
|E(G)|+ |V (G)|

and must contain a sphere of radius 1√
2|E(G)|+|V (G)| . By Lemma 4, the ellipsoid

method takes O(|E(G) ∪ V (G)|22nn3 log(
√

2|E(G)|+|V (G)|(|E(G)|+ |V (G)|)) =

O(2nn9) time to optimize over Q. We can therefore compute the fractional

total chromatic number of any graph in O(2nn9) time.

4.3 ∆ + 1 Fractionally Total Colouring Most Graphs

McDiarmid and Reed in [32] gave an algorithm that ∆ + 1 total

colours almost all graphs. We give an outline of a simplified version of this

algorithm that gives a fractional ∆ + 1 total colouring of almost all graphs.

Assume ∆(G) ≥ 49n
100

.

d n
100
e vertex colour G using colour classes S1, ..., Sd n

100
e of size at most

200.

Set G1 = G.
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For i = {1, ..., d n
100
e} do:

• Choose a special vertex vi of Gi − Si of degree between 47n
100

and ∆(G) − 2 in G which was not special in any previous

iteration.

• Find a matching Mi ∈ Gi − Si hitting every vertex of degree

at least 47n
100

in G except possibly vi.

• Set Ti = Mi ∪ Si and Gi+1 = Gi −Mi.

Fractionally ∆(G)− dn/100e+ 1 edge colour Gdn/100e+1.

Combining this fractional edge colouring with T1, ..., Tdn/100e yields the

desired colouring.

If each step of this algorithm is successful, it’s not difficult to see

we end up with a valid fractional total colouring. Note, Gdn/100e+1 has

maximum degree ∆(G) − dn/100e + 1 because each vertex v of degree ∆ or

∆− 1 in G is hit by all of the Mi except for the i with v ∈ Si. Similarly if v

has degree between ∆−2 and ∆(G)−dn/100e−1 it is hit by every Mi except

the i such that v ∈ Si and possibly the i where vi = v (ie. v was chosen as

the special vertex). Thus ∆(Gdn/100e + 1) is at most ∆(G) − dn/100e + 1

and its maximal degree vertices had degree ∆(G) or ∆(G) − 1 in G. So in

the last step we are looking for a ∆(Gdn/100e+1) fractional edge colouring of

Gdn/100e+1.

We don’t show it here, but this is approach will work on almost all

graphs. In fact, in [32] it is shown that the proportion of graphs for which

any of the following properties fail is at most n−( 1
8
+o(1))n.

(A) The graph has ∆ ≥ 49n
100

.

(B) The desired vertex colouring of G exists.
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(C) The number of vertices of degree between ∆− 2 and 49n
100

is at least 2n
100

.

So, regardless of our choices so far at each iteration there is a valid

choice of special vertex.

(D) For every valid colouring and choice of special vertices and choice of

matchings M1, ...,Mi, the desired Mi+1 exists.

(E) For every valid colouring, choice of special vertices, and matchings

M1, ...,Mi, Gdn/100e+1 has the desired fractional edge colouring.

It also not too hard to show by analyzing a greedy colouring algorithm that

the following property:

(B’) A O(|E(G)|) greedy colouring algorithm gives us our desired vertex

colouring of G.

fails on at most n−( 1
8
+o(1))n proportion of graphs. We can check for property

(A) in O(|E(G)|) time. We can select our special vertex vi assuming (C)

holds in O(n) time by choosing any element of the set. We can also get our

desired matchings (D) covering vertices of large degree in polynomial time

by finding a maximum matching in the graph obtained from Gi by adding a

clique of |V (Gi)| vertices each of which is adjacent to all the vertices of Gi

which do not need to be covered (this takes O(n3) time). We can check that

Gdn/100e+1 has a ∆(Gdn/100e+1) fractional total colouring in O(n4) time (by

the algorithm of section 3.3). We can therefore check if a graph can be ∆+1

fractional total coloured by this algorithm in O(n4) time.

4.4 Polynomial Average Time Fractional Total Colouring

A direct result of combining McDiarmid and Reed’s algorithm with

our O(2nn9) algorithm for computing the fractional total chromatic number

on the at most n−( 1
8
+o(1))n proportion of graphs for which McDiarmid and

Reed’s algorithm fails is a polynomial average time algorithm for computing

the fractional total chromatic number.

36



4.5 A Deterministic Result on X T
f (G) for Sparse Graphs

By sparse we mean a forest plus an edge.

Lemma 14 A connected graph G which contains at most one cycle has a

∆(G) + 1 total colouring, unless

(a) it is a single edge, in which case X T (G) = X T
f (G) = ∆ + 2

(b) it is a cycle of length 3k + 1, then X T
f (G) = ∆ + 1 + 1

k
.

(c) it is a cycle of length 3k + 2, then X T
f (G) = ∆ + 1 + 1

2k+1
.

Proof. If G is a single edge then trivially we need 3 colours, one for

each vertex and a third for the edge. Since each element of V (G) ∪ E(G) is

only in one total stable set, we get X T (G) = X T
f (G) = ∆ + 2 = 3. We can

get this colouring in O(n) time.

To prove the result for trees, we proceed by induction on the number

of vertices. For a tree of 3 vertices it’s easy to see that X T (G) = ∆ + 1.

Assume it’s true for trees with k vertices. Given a tree G with k + 1 vertices

remove a leaf v ∈ V (G) where u ∈ V (G) is adjacent to v. Let e ∈ E(G)

be the edge incident to v. If ∆(G − v) < ∆(G) we can ∆(G) total colour

G − v. Since we want to ∆(G) + 1 total colour G and we have a ∆(G) total

colouring of G − v we have a free colour to use on e. Now we just have to

colour v, its colour can’t be the same as e or u but this leaves ∆(G) − 1

colours available, so G has a ∆(G) + 1 total colouring. If ∆(G − v) = ∆(G)

then edge e only has at most ∆(G)− 1 incident edges and one vertex u that

it can’t conflict with, so there is a free colour to give to e. Similarly we can

colour v since it only need not conflict with e and u. This proof gives an

algorithmic procedure to ∆ + 1 total colour trees in O(n2) time.

The total graph of a cycle is vertex transitive, it follows that the

inequality of Lemma 5 holds with equality. Therefore, if n = 3k then

X T
f (G) = ∆ + 1. This follows from the fact that T (G) has a maximum stable
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set of size 2k. If n = 3k + 1 then T (G) has a maximum stable set of size

2k and it follows that X T
f (G) = 2(3k+1)

2k
= 3 + 1/k. Similarly if n = 3k + 2,

then the maximum stable set of T (G) has size 2k + 1, and it follows that

X T
f (G) = 2(3k+2)

2k+1
= 3 + 1

2k+1
.

If G is unicyclic but isn’t a cycle, then it must have ∆(G) ≥ 3. We can

trivially get a total 4-colouring of the cycle. Then the induction argument

from the proof of the case where G is a tree can be applied to show that

unicyclic G has a ∆ + 1 total colouring since ∆(G) ≥ 3. Once again, this

proof produces an optimal total colouring in O(n2) time.

4.6 Deterministic Results on X T
f (G) for Dense Graphs

Hilton [16] proved the following theorem,

Theorem 15 Let J be a subgraph of the complete graph K2k, let e′ =

|E(J)|, and let j be the size of a maximum matching of J , then X T (K2k \

E(J)) ≤ 2k if and only if e′ + j > k − 1

We now treat the fractional total chromatic number of such even cliques.

Lemma 16 If Kn is the complete graph with n vertices where n is even,

then X T
f (Kn) = ∆(Kn) + 2 = n + 1.

Proof. We show that X e
f (Kn+1) = X T

f (Kn). To this end we define ei to

be the edge of Kn+1 between vn+1 and vi. For each matching M of Kn+1 if

M contains some ei we let TM be the total stable set of G consisting of vi

and M − ei. Otherwise we set TM = M . This defines a bijection between

the family T (Kn) of total stable sets of Kn, and the family M(Kn+1) of

matchings of Kn+1. There is a corresponding bijection between fractional

edge colourings of Kn+1 and fractional total colourings of Kn. So we

can conclude that X T
f (Kn) = X e

f (Kn+1). Now for n even we know from

Lemma 9 that X e
f (Kn+1) = max{∆(Kn+1), maxH⊆Kn+1

2|E(H)|
|V (H)|−1

} where

|V (H)| is odd. If we take H = Kn+1 we have |V (H)| odd and we get that
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X e
f (Kn+1) ≥ 2|E(H)|

|V (H)|−1
= 2(n+1)n

2n
= n + 1. By Vizing’s theorem for edge

colouring we know X e
f (Kn+1) ≤ ∆(Kn+1) + 1 = n + 1. So we can conclude

that, for n even, X T
f (Kn) = ∆(Kn) + 2 = n + 1.

Lemma 17 Let J be a subgraph of K2n with e′ edges whose maximum

fractional matching has value j. Then X T
f (K2n \ E(J)) = 2n + 1− e′+j

n
when

e′+j
n
≤ 1.

Proof. Let ε = 1− e′+j
n

.

Proof of necessity (ie. if X T
f (K2n \ E(J)) ≥ 2n + ε then ε ≥ 1− e′+j

n
).

This part of the proof follows Hilton’s [16] proof of Theorem 15, with

necessary modifications because we are treating fractional total colouring,

not total colouring.

Suppose G = K2n \ E(J) has a fractional 2n + ε total colouring. We can

assume that ∀v ∈ V (G)
∑

T3v wT = 1. This follows since if
∑

T3v wT = b > 1

for some v ∈ V (G), we can assume removing v from some non-zero weight

total stable set will drop
∑

T3v wT below 1 otherwise we would do so, we

could now split a total stable set Ti of weight wi > 0 into two total stable

sets T ′
i = Ti and T ′′

i = Ti − {v} of weights w′
i = wi − (b− 1) and w′′

i = b− 1

respectively, by repeating this process for each vertex we get a 2n + ε

fractional total colouring where ∀v ∈ V (G),
∑

T3v wT = 1. Let T1, ..., Tl be

those total stable sets with non-zero weights w1, ..., wl in the 2n+ε fractional

total colouring which contain at least one vertex. Let Si be Ti ∩ V (G) and

Mi be Ti ∩ E(G). Let xi = |Si| then,

w1x1 + w2x2 + ... + wlxl = 2n
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There is a matching of J , whose vertices are in Si, of size bxi

2
c. Since j is the

size of a largest fractional matching of J we see:

w1b
x1

2
c+ w2b

x2

2
c+ ... + wlb

xl

2
c ≤ j (4.1)

Let z =
∑

{i:xi is odd} wi. Then it follows that,

w1x1 + w2x2 + ... + wlxl ≤ 2j + z

Therefore,

z ≥ 2n− 2j. (4.2)

Call a pair (Ti, v) a vertex total stable set pair if either v ∈ Si or v is an

endpoint of an edge of Mi. We associate the weight wi of total stable set Si

with each (Si, v) pair. We will consider the sum of the weights of all vertex

total stable set pairs.

A total stable set with an odd number of vertices is in at most 2n − 1

vertex total stable set pairs. A total stable set with an even number of

vertices is in at most 2n vertex total stable set pairs. It follows from (4.2)

that the sum of the weights of all vertex total stable set pairs is at most,

(2n− 1)z + (2n)(2n + ε− z) = 4n2 + 2nε− z

≤ 4n2 − 2n + 2j + 2nε (4.3)

Since the sum of the weights of all vertex total stable sets containing a

vertex v is 1 + deg(v), it follows that the sum of the weights of all vertex

total stable sets is,

2n +
∑

v∈V (G)

deg(v) = 2n + 2|E(G)|

= (2n)2 − 2e′ (4.4)
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Combining equation (4.3) with equation (4.4) we get that,

4n2 − 2e′ ≤ 4n2 − 2n + 2j + 2nε (4.5)

Rearranging gives us our desired result that ε ≥ 1− e′+j
n

.

Proof of sufficiency (ie. if ε = 1− e′+j
n

then X T
f (K2n \ E(J)) ≤ 2n + ε).

Let G = K2n \ E(J) and let R be the set of edges in a maximal

fractional matching of J which is half integral and let r = |R|. Clearly

e′ ≥ r and j ≥ r
2
, so r ≤ 2

3
(n − nε). More strongly, for every vertex v

letting rv = |{e ∈ R : v ∈ e}| we have e′ ≥ r + (defG(v) − rv), so r ≤
2
3
(n− nε− defG(v) + rv). We enumerate R as {e1 = (x1, y1), ..., er = (xr, yr)}

and let wi ∈ {0, 1
2
, 1} be the weight of ei in our optimal fractional matching.

We find disjoint matchings M1, ...,Mr in G such that Mi is a perfect

matching in Gi = G − xi − yi −
⋃

j<i Mj. By Lemma 6, to prove we can do

so it is enough to show that every vertex v of Gi, defGi
(v) ≤ |V (Gi)|

2
= n− 1.

Now,

defGi
(v) ≤ defG(v) + |{j : j < i,∃e ∈ Mj s.t. v ∈ e}|

≤ defG(v) + r − rv

≤ defG(v) +
2

3
(n− nε− defG(v) + rv)− rv

≤ 1

3
defG(v) +

2

3
n− 2

3
nε− 1

3
rv

Since defG(v) ≤ n− 1 we get defGi
(v) < n as required.

Having constructed M1, ...,Mr we define total stable sets T1, ..., Tr where

Ti = Mi∪{xi, yi}. We give Ti the same weight, wi, that ei has in our optimal

fractional matching of J . Since our fractional matching was half-integral and

every edge with weight 1/2 was in an odd cycle, it follows that for any

vertex v ∈ V (G),
∑

Ti3v wi ∈ {0, 1}. So every vertex is either completely

covered or not covered yet at all.
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We construct an auxiliary graph G′ from G by adding a vertex v∗

adjacent to all of V (G)− ∪ei∈R{xi, yi}. We weight the edges of G′ as follows:

∀ x = v∗v ∈ E(G′) f(x) = 1.

∀ x ∈ E(G)− ∪r
i=1Mi f(x) = 1.

∀ x ∈ Mi f(x) = 1− wi.

We claim that we can find matchings {N1, ..., Nl} of G′ and weights

{z1, ..., zl} s.t.
∑

zi = 2n− j + ε and ∀x ∈ G′,
∑

{i:x∈Ni} zi = f(x).

Having done so, for 1 ≤ i ≤ l we define a total stable set N ′
i of G as

follows:

• If v∗ /∈ V (Ni) then N ′
i = Ni.

• If ∃ u s.t. v∗u ∈ Ni then N ′
i = Ni − v∗u + u.

It is an easy matter to verify that giving Ti weight wi and N ′
i weight

zi and all other total stable sets weight 0 yields a fractional 2n + ε total

colouring of G. So it remains only to prove our claim.

By the characterization of the matching polytope, we know that if the

claim does not hold then either:

(i) ∃ v ∈ V (G′) s.t.
∑

v∈x f(x) > 2n− j + ε, or

(ii) ∃ H ⊆ G′, |V (H)| odd s.t.
∑

x∈E(H) f(x) > (2n − j +

ε)(|V (H)| − 1)/2.

Because, each Mi is a perfect matching of G − xi − yi, ∀ v ∈ V (G),∑
{x∈E(G′),x3v}f(x) = degG(v)+1− j ≤ 2n− j. Clearly

∑
x3v∗ f(x) = 2n−2j.

So (i) doesn’t hold.

It remains to show that ∀ H ⊆ G, where |V (H)| ≥ 3 and |V (H)| is odd

the following inequality holds
∑

x∈E(H) f(x) ≤ (2n− j + ε)(|V (H)| − 1)/2.

Assume that H = G′, then we get,

∑
x∈E(H)

f(x) = |E(G)| − (n− 1)j + (2n− 2j)

= (2n(2n− 1)/2− e′)− (n− 1)j + (2n− 2j)
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= 2n2 − (e′ + j)− jn + n

But, the right hand side of (ii) is, (2n− j + ε)(|V (H)| − 1)/2 = 2n2− jn + nε

and since (e′ + j) ≥ n− nε it follows that (ii) doesn’t hold for H = G′.

Now consider H ( G′ and assume property (ii) holds. A simple

property of a subgraph satisfying (ii) is that the sum of the weights on edges

leaving H is at most (2n− j + ε)− 2. We are going to abuse notation a little

and let deg′(v) =
∑

x3v f(x) and ∆′
min(G′) = min{deg′(v) : ∀ v ∈ V (G′)}.

For v∗, each x around it has f(x) = 1, so deg′(v∗) = deg(v∗) = 2n − 2j.

For v ∈ V (G), deg′(v) =
∑

x3v f(x) = degG(v)− j + 1.

So ∆′
min(G′) = min{2n − 2j, ∆min(G) − j + 1}. Since j ≤ e′ and

∆min(G) ≥ 2n− 1− e′ it follows that ∆′
min(G′) ≥ 2n− e′ − j.

Let B be the of vertices in G′ not in H and let b = |B|, (ie. b =

|V (G′) \ V (H)|). Then for H to satisfy (ii) the sum of the weights on edges

leaving H going to B must be at most (2n − j + ε) − 2. This implies that

the sum on edges leaving B is at most (2n − j + ε) − 2. Assume that the

vertices of B form a clique, and each edge x in this clique has f(x) = 1

(this minimizes the possible sum of weights on edges H). The sum on edges

leaving B must be at least bδ′(G′)− b(b− 1). But since 2 ≤ b ≤ j ≤ n
2

it easy

to verify that,

bδ′(G′)− b(b− 1) > (2n− j + ε)− 2. (4.6)

This implies that no such H exists such that (ii) holds. This implies we have

our matchings {N1, ..., Nl} with weights {z1, ..., zl} as required.

Since we can find a fractional matching in O(n3) time, it follows that

we can compute X T
f (K2n \ E(J)) in O(n3). The second part of this proof

is also algorithmic and finds an actual optimal fractional total colouring. It

takes O(n4) time to find all the Mi matchings, we can find our matchings
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{N1, ..., Nl} using a modified fractional edge colouring algorithm in O(FEC)

time (we don’t discuss the details here, but we can construct a multi-graph

so that a fractional edge colouring algorithm gives us our desired matchings

and weights). So the whole procedure takes O(n4 + FEC) time.

Lemma 18 For any real c > 1, there is an nc such that for all odd n bigger

than nc the following holds: Suppose G is a graph which has n vertices and

n − ∆(G) disjoint stable sets of size 3. If ∆min(G) ≥ n
2

+ n − ∆(G) + 2,

∆(G) ≥ n− (c− 1) log(n), |E(G)| ≤
(

n
2

)
− (n−1)(c+o(1)) log(n)

2
+ n, then G has a

fractional ∆(G) + 1 total colouring.

Proof. Consider the a = n −∆(G) vertex disjoint stable sets of size 3,

call them S1, ..., Sa and Si ∩ Sj = ∅ for i 6= j.

Consider a perfect matching, M1 of G \ S1. Since ∆min(G) ≥ n/2 + 3

we know that G \ S1 has a perfect matching by Lemma 6. Define Mi to

be a perfect matching of Gi where V (Gi) = (V (G) \ Si) and E(Gi) =

E(G\Si)\(M1∪M2∪ ...∪Mi−1). Gi has a perfect matching Mi by Lemma 6,

the fact that |V (Gi)| is even and ∆min(Gi) ≥ ∆min(G)− 3− (i− 1) > |V (Gi)|
2

.

Let Ti be the total stable set Si ∪Mi.

Let V ′ = S1 ∪ S2 ∪ ... ∪ Sa and E ′ = M1 ∪ M2 ∪ ... ∪ Ma. Consider

the auxiliary graph H where V (H) = V (G) plus a new vertex v∗ and

E(H) = E(G) \ E ′ plus edges {(u, v∗) : ∀u ∈ V (G) \ V ′}.

Now, ∆(H) = ∆(G)−a+1 since ∀v ∈ V ′, degH(v) = degG(v)−a+1 this

follows since we’ve removed one edge adjacent to v in each Mj except one.

For all v ∈ V (G)\V ′, degH(v) = degG(v)−a+1 since we’ve removed a edges

incident to v and added one adjacent to v∗. Finally deg(v∗) < ∆(G)− 2a + 1

since deg(v∗) = n − 3a. So ∆(H) = ∆(G) − a + 1 = n − 2a + 1. Also,

∆min(H) = min{degH(v∗), ∆min(G) − a + 1} ≥ n/2 + 1. We want to show
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that H has a ∆(H) fractional edge colouring. By Lemma 9 it suffices to

show H doesn’t contain an odd overfull subgraph.

To get a contradiction assume H ′ ⊂ H is an odd overfull subgraph. By

definition this means,

|E(H ′)| > ∆(H)
(|V (H ′)| − 1)

2

= (n− 2a + 1)
(|V (H ′)| − 1)

2

This implies that |V (H ′)| > ∆(H) = n − 2a + 1. Let B = V (H) \ V (H ′),

then |B| = n + 1− |V (H ′)| < 2a. Therefore,

|E(H ′)| > (n− 2a + 1)(n− |B|)/2 (4.7)

Since, |E(H)| = |E(G)| − (n− 3)a/2 + n− 3a, we get

|E(H ′)| ≤ |E(G)| − (n− 3)a/2 + n− 3a

−|B|∆min(H) + |B|(|B| − 1)/2 (4.8)

Combining inequalities (4.7) and (4.8) we find that if

|E(G)| ≤
(

n

2

)
− nB/2− an/2 + aB + 3a/2 + B∆min(H)−B2/2(4.9)

no overfull subgraph can exists. Substituting in the bound on ∆min(H) we

get that no overfull subgraph exists if

|E(G)| ≤
(

n

2

)
− an/2 + aB + 3a/2 + B −B2/2 (4.10)

Since |B| < 2a it follows that if

|E(G)| ≤
(

n

2

)
− an/2 + 3a/2 (4.11)

no overfull subgraph exists. Since |E(G)| ≤
(

n
2

)
− (n−1)(c+o(1)) log(n)

2
+ n and

a ≤ (c − 1) log(n) it follows that inequality (4.11) holds for all n at least as
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large as some nc and no overfull subgraph H ′ exists. This means that H has

a ∆(H) fractional edge colouring.

We can now show we have a fractional ∆(G) + 1 total colouring of G

in a similar fashion as we did in the proof of Lemma 17. Give each total

stable set Ti a weight of 1. Now every edge and vertex in Ti is covered. For

all matchings Mj of H where Mj has weight wj in our ∆(H) fractional edge

colouring, if (v∗, u) ∈ Mj for some vertex u then set total stable set M ′
j of G

to be Mj − (v∗, u) ∪ {u}. Otherwise set M ′
j = Mj. Assign M ′

j the weight wj.

Now, the total stable sets ∀i Ti and ∀j M ′
j together with their weights form

a ∆ + 1 fractional total colouring of G.

If we are given our n − ∆ vertex disjoint stable sets of size 3, then we

can construct this ∆ + 1 fractional total colouring in polynomial time. This

follows since it takes at most O(n4) time to compute our perfect matchings

M1, ...,Ma, then we just need to compute our fractional edge colouring of

H which we can do in polynomial time. Then combine the two sets of total

stable sets. This whole procedure takes O(n4 + FEC) where FEC is the

time needed to compute an optimal fractional edge colouring (discussed in

section 3.3).

Lemma 19 For any real c > 1, there is an nc such that for all even n

bigger than nc the following holds: Suppose G is a graph which has n vertices

and n−∆(G) disjoint stable sets of size 2. If ∆min(G) ≥ n
2
+(n−∆(G))+1,

∆(G) ≥ n− (c− 1) log(n), |E(G)| ≤
(

n
2

)
− (n−1)(c+o(1)) log(n)

2
+ n. Then G has

a fractional ∆(G) + 1 total colouring.

Proof. The proof is the same as that of Lemma 18, except we combine

n − ∆(G) stable sets of size 2 with perfect matchings of the rest of the

graph. Then we create the auxiliary graph H in the same fashion, and we

can show it has a ∆(H) fractional edge colouring. Finally we can use the
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total stable sets and the fractional edge colouring of H to show we have

a fractional ∆(G) + 1 total colouring of G as before. Once again we can

compute this total colouring in polynomial time. In fact we can find the

maximum number of vertex disjoint stable sets of size 2 by running a perfect

matching algorithm on the complement of G, this takes O(n3) time. So this

algorithm runs again in O(n4 + FEC).

Lemma 20 If G has n > 50 vertices, ∆(G) = n − 2, ∆min(G) ≥ n/2 + 2

and |E(G)| ≤
(

n
2

)
− 9n, then X T

f (G) = ∆ + 1.

Proof. Assume that edges (v1, v2) and (v3, v4) are in E(Ḡ). Let v5 and

v6 be two vertices of degree less than n − 2. Create two total stable sets

T1 = {v1, v2} ∪ M1, where M1 is a matching hitting every vertex of

G − v1 − v2 except possibly v5. Similarly, let T2 be the total stable set

{v3, v4} ∪ M2 where M2 is a matching hitting every vertex of G − v3 − v4

except possibly v6. By Lemma 6 it’s not difficult to see that matchings M1

and M2 exist.

Construct an auxiliary graph H from G with a new vertex v∗ adjacent

to all vertices in G except for v1, v2, v3, and v4. It’s not difficult to check

that ∆(H) = n − 4 and H can’t contain an odd overfull subgraph. This

implies we have a ∆(H) fractional edge colouring of H. We can convert

the matchings of the fractional edge colouring to total stable sets of G and

combine them with T1 and T2 to get a ∆ + 1 fractional total colouring of G

in the usual manner.

This proof is algorithmic and would take O(n3) time to find the

matchings and O(FEC) for the fractional edge colouring, so O(n3 + FEC)

in total.
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CHAPTER 5
Colouring Random Graphs

While in many cases finding optimal colourings of simple graphs may be

computationally difficult, a typical graph may be easy to colour. Indeed for

many standard probability distributions, we can find efficient algorithms to

fractionally total colour which asymptotically almost surely work.

An analysis of the structural properties of random graphs allows us to

show that using the algorithms of the last chapter we can asymptotically

almost surely compute the fractional total chromatic number of the random

graph Gn,p for all values of 0 ≤ p ≤ 1 in polynomial time.

5.1 Probability

Before we can give our algorithm that computes the fractional total

chromatic number of a random graph, we need to give a brief introduction

to some basic probability.

We consider the Gn,p model of random graphs. A graph from the Gn,p

model is a graph with n vertices in which each of the
(

n
2

)
possible edges is

independently present with probability p.

It follows that the degree of a vertex in a random graph has a binomial

distribution. So the probability that a vertex v has degree k is the probabil-

ity that of the n− 1 possible edges incident to v, k are present, and n− 1− k

are missing. Now, b(k; n − 1, p) =
(

n−1
k

)
pk(1 − p)n−1−k is the probability

of this event. We will let Xk(n, p) or simply Xk be the random variable

counting the number of vertices of degree k in Gn,p. For a property A of a

graph, we denote the probability that property A holds for Gn,p as Pr(A).

We will use Exp[A] to denote the expected value of the random variable A.
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We will use Var[X] to denote the variance of the random variable X. If the

possible values of random variable X are {x1, ..., xl}, then the expectation of

X is defined as:

Exp[X] =
l∑

i=1

xiPr(X = xi)

Similarly, the variance of X is:

Var[X] =
l∑

i=1

(xi − Exp[X])2Pr(X = xi).

So Exp[Xk] is just nb(k; n − 1, p) we will also use αk(n) to represent this

expectation since we will use if often. We say that an property A occurs

asymptotically almost surely (a.a.s.) for a random graph Gn,p if Pr(A) → 1

as n →∞.

We will need to use some basic probabilistic tools to prove that

properties of Gn,p a.a.s. hold. Two useful tools will be Markov’s and

Chebychev’s inequalities

Lemma 21 (Markov’s Inequality) For a non negative random variable

X and positive constant a,

Pr(X ≥ a) ≤ Exp[x]

a

Lemma 22 (Chebychev’s Inequality) For a random variable X,

Pr(|X − Exp[X]| ≥ ε) ≤ Var[X]

ε2
.

5.2 Some Previous Results on Colouring Gn,p

It is known that Gn,1/2 a.a.s. has a maximum stable set of size

≤ 2 log(n) (see ??). So by Lemma 5 it follows that a.a.s. X (Gn,1/2) ≥

Xf (Gn,1/2) ≥ n
2 log(n)

. Bollobás [5], building on work of Matula [31], proved

that in fact a.a.s. X (Gn,1/2) = n(1+o(1))
2 log(n)

. However, there currently are

no known algorithms that will a.a.s. colour (or fractionally colour) Gn,p
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with n(1+o(1))
2 log(n)

in polynomial time. This stems from the fact that there

are currently no known algorithms that will a.a.s. find a stable set of size

(1 + ε) log(n) in polynomial time.

We turn to edge colouring random graphs. We denote by p′n the

proportion of graphs on n vertices with X e(G) = ∆ + 1. In the Gn,p model

with p = 1/2, Erdös and Wilson [11] showed that p′n → 0 as n → ∞. Frieze,

Jackson, McDiarmid, and Reed [1] strengthened these results to show that

n−(1/2+o(1))n ≤ p′n ≤ n−(1/8+o(1))n as n →∞.

To develop algorithms for fractionally total colouring Gn,p we need to

combine some deterministic results on fractional total colouring with some

probabilistic results on the structure of Gn,p. The latter are found in section

5.3, the former in chapter 4. We combine them in section 5.4.

5.3 Structural Properties of Gn,p

We now analyze the degree sequence of Gn,p and other structural

properties of it. The following three theorems of Bollobás [6] will be useful:

Theorem 23 Let ε > 0 be fixed, εn−3/2 ≤ p(n) ≤ 1− εn−3/2, let k = k(n) be

a natural number and set αk = αk(n) = nb(k; n−1, p). Let Xk be the random

variable representing the number of vertices of degree k. Then the following

assertions hold,

(i) If lim αk(n) = 0, then a.a.s. Pr(Xk = 0) = 1.

(ii) If lim αk(n) = ∞, then a.a.s. Pr(Xk ≥ t) = 1 for every fixed t.

(iii) If 0 < limαk(n) ≤ limαk(n) < ∞ then Xk has asymptotically

Poisson distribution with mean αk:

Pr(Xk = r) ≈ e−αkαr
k/r!

for every fixed r.
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Here limαk(n) = h exists if |αk(n) − h| < ε| for all ε > 0 for infinitely many

values of n and no number less than h has this property (limαk(n) = h is

defined similarly where no number larger than h has the property). Note, we

will also use an analogous result that a.a.s. ∆min(Gn,p) ≤ k, if

lim 1
nk−1

∑
l≤k αk(n) →∞.

Theorem 24 If pn
log(n)

→ ∞ and (1−p)n
log(n)

→ ∞ then a.a.s. Gn,p has a unique

vertex of maximum degree and a unique vertex of minimum degree.

Remark: Bollobás proved this for p ≤ 1/2 and pn
log(n)

→ ∞ but this version

follows by symmetry.

Theorem 25 Given a labelling of vertices x1, x2, ...xn ∈ V (Gn,p) and

respectively corresponding degrees d1, d2, ..., dn, such that d1 ≥ d2 ≥ ... ≥ dn.

If m = o(p(1−p)n
logn

)
1
4 , m →∞, and α(n) → 0 then a.a.s.

di − di+1 ≥ α(n)

m2

(
p(1− p)n

log n

) 1
2

∀i < m

Corollary 26 If pn
log(n)

→ ∞ and (1−p)n
log(n)

→ ∞ then a.a.s. Gn,p has a unique

vertex of degree ∆ and all other vertices have degree ≤ ∆− 2.

Proof. This is a direct result of Theorem 24 and Theorem 25. Let m =

(p(1−p)n
log(n)

)
1
8 , since p satisfies both np/ log(n) → ∞ and (1 − p)n/ log(n) → ∞

it follows that m → ∞. Let α(n) = 2m2( log(n)
p(1−p)n

)
1
2 , then it’s easy to see that

α(n) → 0. We can now use the Theorem 25 to show that asymptotically

almost surely,

di − di+1 ≥
2m2( log(n)

p(1−p)n
)

1
2

m2

(
p(1− p)n

log(n)

) 1
2

∀i < m

Simplifying we get that,

di ≥ di+1 + 2 ∀i < m
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In particular this gives us our desired result that d1 ≥ d2 + 2. Therefore

if v∗ ∈ V (Gn,p) has degree ∆(Gn,p) then ∀u ∈ V (Gn,p) − v∗, a.a.s.

deg(u) ≤ ∆(Gn,p)− 2.

Lemma 27 If p = o(n−2) then a.a.s. Gn,p has no edges.

Proof. The expected number of edges is pn2 which is o(1) in this range.

Simple calculations also yield:

Lemma 28 If p = (c + o(1))n−2 for some constant c then a.a.s. every

component of Gn,p contains at most one edge, and the probability Gn,p has an

edge is bounded away from both 0 and 1.

Lemma 29 If p = ω(n−2) and p = o(n−3/2) then a.a.s. |E(Gn,p)| ≥ 1 and

a.a.s. every component of Gn,p contains at most one edge.

Lemma 30 If p = (c + o(1))n−3/2 then a.a.s. every component of Gn,p

has at most two edges and the probability Gn,p has a two edge component is

bounded away from both 0 and 1.

Proof. Let C be the random variable for the number of components with

more than 2 edges. We can bound the expectation of C as,

Exp[C] ≤
(

n

3

)
p3 + 16

(
n

4

)
p3

= o(1)

So a.a.s. every component of Gn,p has at most 2 edges. The expected

number of vertices of degree 2 is given by,

Exp[X2] = n(n− 1)(n− 2)p2(1− p)n−3

≈ (c + o(1))2

By Theorem 23 property (iii) this implies the probability we have a compo-

nent with two edges is bounded away from zero and one.
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Lemma 31 If p = Ω(n−3/2) and p = o(n−1) then a.a.s. ∆(Gn,p) ≥ 2 and

every component of Gn,p is a tree.

Proof. By Theorem 23 we know that Pr(X2 ≥ 1) → 1 when limExp[X2] →

∞. For our possible values of p, limExp[X2] = lim n
(

n−1
2

)
p2(1− p)n−3 →∞.

This implies that a.a.s. ∆(Gn,p) ≥ 2. The expected number of cycles is,

Exp[# of cycles] =
n∑

k=3

(
n

k

)
(k − 1)!

2
pk

<

n∑
k=3

(np)k

2k

So Pr(# cycles ≥ 1) ≤ Exp[# of cycles] = o(1) when p = o(n−1), and

a.a.s. only trees occur.

Lemma 32 If p = Ω(n−1) and p < 1−ε
n

for some ε > 0 then a.a.s.

∆(Gn,p) ≥ 3 and every component of Gn,p is unicyclic.

Proof. Simple calculations show limExp[X3] = lim
(

n−1
3

)
p3(1− p)n−4 → ∞

in our range of p. If follows from Theorem 23 that a.a.s. ∆(Gn,p) ≥ 3.

For the proof that every component of Gn,p is unicyclic see either [6] or

[38].

Lemma 33 If p = o(log(n)/n) then a.a.s ∆(Gn,p) ≤ log(n).

Proof. Let p = d(n)
n

where d(n) = o(log(n)). Let Y be number of log(n) sets

of edges around a fixed vertex v. Then Exp[Y ] =
(

n−1
log(n)

)
plog(n). If we let Z

be the number of vertices of degree at least log(n) we get,

Exp[Z] ≤ nExp[Y ]

= n

(
n− 1

log(n)

)
(
d(n)

n
)log(n)

≤ n(
e(n− 1)

log(n)
)log(n)(

d(n)

n
)log(n)

= o(1)
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Since Z is integer valued, it follows that

Pr(Z > 0) ≤ Exp[Z]

= o(1).

So a.a.s. ∆(Gn,p) ≤ log(n).

Lemma 34 For p = (c+o(1)) log(n)/n for some constant c with 0 < c < ∞,

Gn,p a.a.s. has c
5
log(n) ≤ ∆(Gn,p) ≤ 3ec log(n).

Proof. Standard concentration bounds on the binomial distribution

(Bin(
(

n
2

)
, p)) tell us that a.a.s. Gn,p has (c + o(1))n log(n)(1 − o(1)) edges

which yields our lower bound.

The upper bound can be proved by following same procedure as the

proof of Lemma 33. We let Y be the number of d3ec log(n)e sets of edges

around a fixed vertex v. If Z is the number of vertices of degree at least

d3ec log(n)e, we can easily show that Exp[Z] ≤ nExp[Y ] = o(1).

Since Z is integer valued, it follows that

Pr(Z > 0) ≤ Exp[Z]

= o(1).

So a.a.s. ∆(Gn,p) ≤ 3ec log(n).

Lemma 35 If p = 1− (c+o(1)) log(n)
n

for some constant c with 1 ≤ c < ∞ then

a.a.s. ∆(Gn,p) ≥ n− (c− 1) log(n).

Proof. For Ḡn,p, lim 1
nk−1

∑
l≤k Exp[Xk] →∞ when k = b(c− 1) log(n)c − 1.

By the analogous result of Theorem 23 it follows that a.a.s. ∆min(Ḡn,p) ≤

(c− 1) log(n) + 1. So a.a.s. ∆(Gn,p) ≥ n− (c− 1) log(n).

Let A be the random variable counting the number of pairs of vertices

such that either both have maximum degree and have a path of length ≤ 3
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between them, or an edge exists between the pair and both have degree

≥ ∆(Gn,p)− 1. Our interest in A is explained by Lemma 13.

Lemma 36 If 1
n
≤ p = o(log(n))

n
then Pr(A 6= 0) = o(1).

Proof. In [6] Bollobás proved that if 1
n
≤ p = o(log(n)/n) then there

is some k = k(n) which is between log(n)
log log(n)

and log(n) such that a.a.s.

∆(Gn,p) = k and furthermore Exp[Xk+1] = o(1). Now,

Exp[Xk+1] = n

(
n− 1

k + 1

)
pk+1(1− p)n−2−k

and,

Exp[Xk] = n

(
n− 1

k

)
pk(1− p)n−1−k

So, Exp[Xk] = (k+1)p−1(1−p)
n−k−2

Exp[Xk+1]. Thus since Exp[Xk+1] = o(1) and

k = O(log(n)) we know Exp[Xk] = O(log(n)).

Since Exp[Xk] = n
(

n−1
k

)
pk(1− p)n−1−k = O(log(n)) it follows that(

n− 1

k

)
pk(1− p)n−1−k = O(

log(n)

n
) (5.1)

The probability Gn,p has two vertices of degree ∆ with an edge between

them is given by,(
n

2

)
Pr(deg(u) = deg(v) = ∆ and (u, v) ∈ E(Gn,p))

=

(
n

2

)
(

(
n− 2

k − 1

)
pk−1(1− p)n−1−k)2p

=

(
n

2

)
O(log2(n)/n)2p (5.2)

= o(1) (5.3)

equation (5.2) follows from (5.1), since
(

n−2
k−1

)
= k

n−1

(
n−1

k

)
.

Similarly we can bound the probability we that a vertex of degree ∆ is

adjacent to a vertex of degree ∆ − 1 or a vertex of degree ∆ − 1 is adjacent
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to a vertex of degree ∆− 1 by,(
n

2

)
p((

(
n− 2

k − 1

)
pk−1(1− p)n−1−k)(

(
n− 2

k − 2

)
pk−2(1− p)n−k)

+(

(
n− 2

k − 2

)
pk−2(1− p)n−k)2)

=

(
n

2

)
p(O(log5(n)/n2) + O(log6(n)/n2)) (5.4)

= o(1) (5.5)

The probability that we have a path of length two between vertices of degree

∆ can be bounded by,(
n

3

)
p2(

(
n− 3

k − 1

)
pk−1(1− p)n−2−k)2 =

(
n

3

)
p2(O(log2 /n)2) (5.6)

= o(1) (5.7)

The probability that we have a path of length three between vertices of

degree ∆ can be bounded by,(
n

4

)
p3(

(
n− 4

k − 1

)
pk−1(1− p)n−3−k)2 =

(
n

4

)
p3(O(log2 /n)2) (5.8)

= o(1) (5.9)

Combining equations (5.3), (5.5), (5.7) and (5.9) we get Pr(A 6= 0) =

o(1).

Lemma 37 If p = (c+o(1)) log(n)
n

for fixed c and 0 < c < ∞ then Pr(A 6= 0) =

o(1).

Proof. Bollobás proved in [6] that for p = (c + o(1)) log(n)/n, where c

is a constant, a.a.s. ∆(Gn,p) can’t be confined to a finite set of values. By

Lemma 34 we know a.a.s. c
5
log(n) ≤ ∆(Gn,p) ≤ 3ec log(n). Let j be the

largest value such that limExp[Xj] = ∞, we know from Lemma 34 that

j ≥ c
5
log(n). By Theorem 23 we know that for k > j, limExp[Ek] = C

where 0 ≤ C < ∞. Now, Exp[Xj] = Exp[Xj+1]
(j+1)p−1(1−p)

n−1−j
since
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limExp[Xj+1] = C and j = O(log(n)) it follows that Exp[Xj] = O(log(n)).

So for k ≥ j we have,(
n− 1

k

)
pk(1− p)n−1−k = O(log(n)/n)

Now we can bound the probability that two vertices have degree ∆ and are

adjacent by equation (5.2) summed over O(log(n)) possible values of k.

O(log(n))

(
n

2

)
O(log2(n)/n)2p = o(1)

Similarly we can sum equations (5.4), (5.6) and (5.8) over the O(log(n))

possible values of ∆ to get, Pr(A 6= 0) = o(1).

Lemma 38 For pn
log(n)

→∞ and (1−p)n
log(n)

→∞ a.a.s. Pr(A 6= 0) = o(1).

Proof. By Corollary 26 we know that a.a.s. Gn,p has a unique vertex of

degree ∆(Gn,p) and all other vertices have degree ≤ ∆(Gn,p) − 2, it follows

that Pr(A 6= 0) = o(1).

For large values of p we will need the following lemma,

Lemma 39 If p = 1 − (c+o(1)) log(n)
n

for some constant c with c ≥ 1 a.a.s.

Gn,p has at least c log2(n) vertex disjoint stable sets of size 3.

Proof. Consider Gn,q with q = 1 − p = (c + o(1)) log(n)/n we wish to

show that a.a.s. there exists c log(n) vertex disjoint triangles in Gn,q. Label

all possible triples of vertices in Gn,q from t1 to t(n
3)

. Let Zi be an indicator

random variable such that Zi = 1 if all three edges appear between the triple

ti, and 0 otherwise. Let Z be the random variable counting the total number

of triangles in Gn,q, ie. Z =
∑(n

3)
i=1 Zi. We get that,

Exp[Z] =

(
n

3

)
q3 ≥ (c + o(1))3 log3(n)

6

Similarly, let Yi be an indicator random variable such that if there exists

j 6= i whose ti ∩ tj 6= ∅, such that Zi = 1 and Zj = 1 then Yi = 1, and
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Yi = 0 otherwise. Also let Y =
∑(n

3)
i=1 Yi be the random variable counting the

number of triangles in Gn,q that intersect at least one other triangle.

Exp[Y ] =

(
n

3

)
q3(

(
n− 3

2

)
3q3 + (n− 3)3q2) (5.10)

= o(1) (5.11)

If Z ′ is the number of triangles that aren’t intersected by any other triangles

in Gn,q, we get that Z ′ = Z − Y and by linearity of expectation that

Exp[Z ′] = Exp[Z]− Exp[Y ], so

Exp[Z ′] =

(
n

3

)
q3(1− (

(
n− 3

2

)
3q3 + (n− 3)3q2)) (5.12)

= Ω(log2 n) (5.13)

Now we just have to show that with high probability Z ′ is concentrated

about its mean.

First we will show that Z is concentrated around its mean. By Cheby-

chev’s inequality we have that,

Pr(|Z − Exp[Z]| ≥ log2(n)) ≤ 1

log4(n)
Exp[(Z − Exp[Z])2]

=
1

log4(n)
(Exp[Z2]− Exp2[Z]) (5.14)

Let A be the set of all pairs of 3-tuples of vertices such that the pairs don’t

share any vertices. Let B be the set of all pairs of 3-tuples of vertices such

that the two 3-tuples share exactly one vertex. Let C be the set of all pairs

of 3-tuples such that the 3-tuples share exactly two vertices. Let D be the

pair of 3-tuples such that the 3-tuples are identical.

Exp[Z2] =
∑

{Zi,Zi}∈D

Exp[ZiZi] +
∑

{Zi,Zj}∈A

Exp[ZiZj]

+
∑

{Zi,Zj}∈B

Exp[ZiZj] +
∑

{Zi,Zj}∈C

Exp[ZiZj]
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=

(
n

3

)
q3 +

(
n

3

)(
n− 3

3

)
q6 + 3

(
n

3

)(
n− 3

2

)
q6

+3

(
n

3

)
(n− 3)q5 (5.15)

Substituting (5.15) into (5.14) and using Exp2[Z] = (
(

n
3

)
q3)2 we get that,

Pr(|Z − Exp[Z]| ≥ log2(n)) ≤ 1

log4(n)

(
n

3

)
q3(1 + (

(
n− 3

3

)
−

(
n

3

)
)q3

+3

(
n− 3

2

)
q3 + 3(n− 3)q2)

= o(1) (5.16)

Since Y is integer valued,

Pr(Y > 0) ≤ Exp[Y ]

= o(1) (5.17)

By equation (5.16) we know that a.a.s. Z ≥ (c+o(1))3 log3(n)
6

− log2(n), and by

(5.17) a.a.s. Y = 0. Since Z ′ = Z − Y , it follows that Pr(Z ′ < c log2(n)) =

o(1). This implies that a.a.s. Gn,p has at least c log2(n) vertex independent

stable sets of size three if p = 1− (c+o(1)) log(n)
n

.

Lemma 40 If p = 1− (c+o(1)) log(n)
n

where c is a constant then a.a.s.

|E(Gn,p)| ≤
(

n
2

)
− (n−1)(c+o(1)) log(n)

2
+ n.

Proof. We know Exp[|E(G)|] =
(

n
2

)
p =

(
n
2

)
− (n−1)(c+o(1)) log(n)

2
. Using

Chebychev’s inequality we get,

Pr(||E(G)| − Exp[|E(G)|]| ≥ ε) ≤ 1

ε2
(Exp[|E(G)|2]− Exp2[|E(G)|])

=
1

ε2
(

(
n

2

)
p +

(
n

2

)
(

(
n

2

)
− 1)p2 − p2

(
n

2

)2

)

=

(
n
2

)
p(1− p)

ε2

If we take ε to be n we get that a.a.s. |E(G)| ≤
(

n
2

)
− (n−1)(c+o(1)) log(n)

2
+n.
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5.4 Computing X T
f (Gn,p)

Theorem 41 We can a.a.s. compute X T
f (Gn,p) in O(n3) time.

The following lemmas deal with small values of p and go towards proving

Theorem 41.

Lemma 42 If p = o(n−2) a.a.s. X T
f (Gn,p) = ∆(Gn,p) + 1.

Proof. By Lemma 27 we know that a.a.s. Gn,p doesn’t have any edges,

∆(Gn,p) = 0 and all the vertices of Gn,p form a stable set. We can check if

Gn,p is in fact a stable set in O(n2) time.

Lemma 43 If p = (c + o(1))n−2 then the probability that Gn,p has a

∆(Gn,p) + 1 fractional total colouring is bounded away from 0 and 1. But we

can a.a.s. compute X T
f (Gn,p) in polynomial time.

Proof. By Lemma 28 we know that a.a.s. every component of Gn,p contains

at most one edge. If an edge exists then X T
f (Gn,p) = ∆(Gn,p) + 2 and if no

edge exists X T
f (Gn,p) = ∆(Gn,p) + 1. But, the probability that at least one

edge exists is bounded away from 0 and 1. We can check if an edge exists in

O(n2) time.

Lemma 44 If p = ω(n−2) and p = o(n−3/2) then a.a.s. X T
f (Gn,p) =

∆(Gn,p) + 2.

Proof. By Lemma 29 we know that a.a.s. ∆(Gn,p) = 1. This implies that

a.a.s. X T (Gn,p) = X T
f (Gn,p) = 3 by Lemma 14. Checking that one edge

exists and ∆(Gn,p) = 1 takes O(n2) time.

Lemma 45 If p = (c + o(1))n−3/2 then the probability X T
f (Gn,p) =

∆(Gn,p) + 1 is bounded away from 0 and 1. However we can a.a.s. compute

X T
f (Gn,p) in polynomial time.

Proof. By Lemmas 29 and 30 we know that a.a.s. each component has

at most two edges, and at least one edge exists, so it follows that a.a.s.

X T
f (Gn,p) = 3 by Lemma 14. But, Lemma 30 implies that the probability
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∆(Gn,p) = 2 is bounded away from 0 and 1. Again, it’s trivial to get a total

three colouring of Gn,p is this case. Checking if ∆(G) ≥ 2 takes O(n2) time.

Lemma 46 If p = Ω(n−3/2) and p = o(n−1) then a.a.s. Gn,p has a fractional

∆ + 1 total colouring.

Proof. By Lemma 31 we know that a.a.s. every component of Gn,p is a tree

and ∆(Gn,p) ≥ 2. So by Lemma 14 a.a.s. Gn,p has a fractional ∆ + 1 total

colouring. We can check that Gn,p is a tree with a depth first search in O(n)

time.

Lemma 47 If p = Ω(n−1) and p < (1 − ε)/n for some ε > 0 then a.a.s.

X T
f (Gn,p) = ∆ + 1.

Proof. By Lemma 32 we know that a.a.s. only unicyclic components occur,

and ∆(Gn,p) ≥ 3. By Lemma 14 it follows that a.a.s. X T
f (Gn,p) = ∆ + 1. We

can check if Gn,p is in fact unicyclic with a depth first search in O(n) time.

The following lemma deals with p not too close to zero or one.

Lemma 48 If 1/n ≤ p ≤ (1 − d(n)/n) where d(n)
log(n)

= ∞ then a.a.s.

X T
f (Gn,p) = ∆ + 1.

Proof. By Lemma 36, Lemma 37, and Lemma 38 we know that Pr(A 6=

0) = o(1) it follows from Lemma 13 that a.a.s. X T
f (Gn,p) = ∆ + 1. We can

easily check for paths of length at most three between vertices of maximum

degree and edges between vertices of degree at least ∆− 1 in O(n3) time.

What follows deals with p close to one.

Lemma 49 If p = 1− (c+o(1)) log(n)
n

for constant c and 1 < c < ∞ then a.a.s.

X T
f (Gn,p) = ∆ + 1.

Proof. If p = 1− (c+o(1)) log(n)
n

and c > 1 then the requirements of Lemma 18

or Lemma 19 are a.a.s. satisfied. Since, if we let a = n−∆(Gn,p) we know by
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Lemma 35 that a.a.s. ∆(Gn,p) ≥ n− (c− 1) log(n) and a ≤ (c− 1) log(n). It

now follows by Lemma 39 that a.a.s. Gn,p has at least a vertex independent

stable sets of size 3 (clearly then it a.a.s. has a vertex independent stable

sets of size 2 if n is even). Lemma 34 states that a.a.s. ∆(Ḡn,p) ≤ 3ec log(n)

this implies that a.a.s. ∆min(Gn,p) ≥ n−1−3ec log(n). Finally by Lemma 40,

a.a.s. |E(Gn,p)| ≤
(

n
2

)
− (n−1)(c+o(1)) log(n)

2
+n. So if n is even, the requirements

of Lemma 18 are a.a.s. satisfied and if n is odd the requirements of Lemma

19 are a.a.s. satisfied. We can conclude that a.a.s. X T
f (Gn,p) = ∆(Gn,p) + 1.

Lemma 50 If p = 1 − (c+o(1)) log(n)
n

for constant c and 1
3
≤ c ≤ 1 then a.a.s.

X T
f (Gn,p) = ∆ + 1.

Proof. If p = 1 − (c+o(1)) log(n)
n

and 1
3
≤ c ≤ 1 then a.a.s. |E(Gn,p)| ≤

(
n
2

)
−

(n−1)(c+o(1)) log(n)
2

+n by Lemma 40. We also know that a.a.s. ∆(Gn,p) ≥ n− 2

since limExp[Xn−2] →∞.

If ∆ = n − 1 and n is even it follows by Lemma 17 that a.a.s.

X T
f (Gn,p) = ∆ + 1, since a.a.s. Ḡn,p has more than n/2 edges. If ∆ = n − 1

and n is odd, then a.a.s. X T
f (Gn,p) = ∆ + 1 trivially, since X T

f (Kn) = ∆ + 1

when n is odd.

If ∆(Gn,p) = n − 2 the conditions of Lemma 20 are a.a.s. satisfied,

since a.a.s. ∆min(Gn,p) ≥ n − 1 − 3ec log(n) by Lemma 34. Therefore, a.a.s.

X (Gn,p) = ∆ + 1.

Lemma 51 If 1 − log(n)
3n

≤ p < 1 then we can a.a.s. compute X T
f (Gn,p) in

O(n3) time.

Proof. If p ≥ 1− log(n)/3n then for k = n− 1,

limExp[Xn−1] = lim npn−1

→ ∞
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By Theorem 23 we know that Gn,p a.a.s. has a vertex of degree n− 1.

If n is odd Kn has a total colouring of size n, it follows that a.a.s. Gn,p

has a ∆ + 1 total colouring.

If n is even let n′ = n/2 and consider G2n′,p (to be consistent with

the notation of Lemma 17). To compute X T
f (G2n′,p), we just need to

compute an optimal fractional matching of the complement of G2n′,p. Let

e be the number of edges missing in G2n′,p and j be size of a maximum

fractional matching of the complement. By Lemma 17 if e + j ≥ n, a.a.s.

X T
f (G2n′,p) = ∆ + 1, otherwise a.a.s. X T

f (G2n′,p) = 2n′ + ε, where ε = 1− e+j
n′ .

Lemma 17 also states that we can compute j in O(n3) time.

Lemma 52 For p = 1− o(n−2) if n is odd then a.a.s. X T
f = ∆(G) + 1, if n

is even then a.a.s. X T
f = ∆(G) + 2.

Proof. By symmetry and Lemma 27 we know that a.a.s. Gn,p contains

all possible
(

n
2

)
edges. If n is even, by Lemma 16 we know that a.a.s.

X T
f (Gn,p) = ∆(Gn,p)+2. If n is odd it’s well known that Kn has a ∆(Kn)+1

total colouring. So a.a.s. X T
f (Gn,p) = ∆(Gn,p) + 1. We can trivially check if

all possible edges are present in O(n2) time.

Proof of Theorem 41. This follows from Lemmas 42 through 52.

5.5 Finding a Fractional Total Colouring of Gn,p

In the previous section we showed how we could a.a.s. determine

X T
f (Gn,p) in O(n3) time. We can actually a.a.s. determine an optimal

fractional total colouring of Gn,p in polynomial time as opposed to just the

value of X T
f (Gn,p).

For p ≤ (1−ε)
n

a.s.s. Gn,p is unicyclic and by the algorithmic proof of

Lemma 14 we can a.a.s. compute a fractional total colouring in O(n2) time.
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For 1/n ≤ p ≤ (1 − d(n))/n where d(n)
log(n)

= ∞ we know that

Pr(A 6= 0) = o(1). So the algorithmic proof of Lemma 13 a.a.s. gives us our

optimal fractional total colouring in O(n5) time.

For p = 1 − (c+o(1)) log(n)
n

where c is a constant greater and c > 1, we

know the conditions of Lemma 18 or 19 are a.a.s. satisfied. Moreover, since

we a.a.s. have at least c log2(n) vertex independent stable sets of size 3 (by

Lemma 39), and we want n − ∆ ≤ (c − 1) log(n) of them, we can do this

in a greedy manner. Choosing our sets in this fashion is guaranteed to be

within 1/3 of optimal. Since each independent set of size 3 eliminates at

most 3 other possible better choices. We can always a.a.s. get enough stable

sets of size 3 because c
3
log2(n) > (c − 1) log(n) ≥ n − ∆ and this greedy

approach takes O(n2) time. Therefore, we can a.a.s. compute a fractional

total colouring in O(n4 + FEC) by Lemmas 18 and 19.

For p = 1 − c+o(1)) log(n)
n

where c is a constant and 1
3
≤ c ≤ 1, we know

from Lemma 50 that a.a.s. ∆(Gn,p) ≥ n−2. If ∆ = n−1 we can use Lemma

17 to a.a.s. get a ∆ + 1 fractional total colouring in O(n4 + FEC) time.

If ∆ = n − 2 we can use Lemma 20 to a.a.s. get a ∆ + 1 fractional total

colouring in O(n3 + FEC) time.

For 1 − log(n)
3n

≤ p ≤ 1, we know a.a.s. that ∆(Gn,p) = n − 1. Then if n

is odd Gn,p has a trivial ∆ + 1 total colouring that is well known. For n even

we can use the second part of the proof of Lemma 17 to compute an optimal

fractional total colouring in O(n4 + FEC) time.
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CHAPTER 6
Conclusion

It is still unknown whether the problem of fractional total colouring is

polynomial time solvable. It shares many properties with fractional edge

colouring and fractional vertex colouring. It’s easy to approximate within 1,

like fractional edge colouring. But finding a maximum size total stable set

is NP-hard, in that way it’s similar to fractional vertex colouring (finding

a maximum size stable set is NP-hard). While no attempt was made to

optimize the algorithms presented, with a minimal amount of effort one

could implement them to run quickly in practise. It is the authour’s belief

that fractional total colouring is probably NP-hard, but as we have seen

efficient algorithms exists for most graphs.

We also would like to present a fractional version of the conformability

conjecture (Conjecture 11).

Definition 2 A graph G is fractionally conformable if it has a ∆(G) + 1

fractional vertex colouring, such that the sum of weights of stable sets having

parity different from |V (G)| is at most the deficiency of G.

Conjecture 53 (Fractional Conformability Conjecture) A simple

graph G has X T
f (G) > ∆ + 1 if and only if G contains a subgraph H with

∆(G) = ∆(H) which is not fractionally conformable.

Note, Lemma 17 proves this conjecture to be true for G with ∆(G) =

|V (G)| − 1.
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