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Axi-Symmetric Turbulent
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The incompressible wall jet over the surface of a sphere
has been investigated both experimentally and theoretically.

The experimental part consists of setting up a universal
flow independent of inlet conditions. The velocity profiles,
for that universal flow, measured using both pitot tube and
hot wire are found to be in good agreement with Glauert's pre-
diction. The growth is nearly the same as the two-dimensional
wall jet over a circular cylinder, implying that lateral stretch-
ing of the turbulent eddies increases the entrainment., The flow
breaks away from the sphere close to the rear and hence an axi-
symmetric jet forms downstream. Hot wire measurements indicate
that the mean velocity profile becomes similar to a conventional
axi-symmetric jet about three sphere diameters downstream of the
nozzle exit. The longitudinal turbulence, however, does not
attain similarity up to seven sphere diameters which was the
range of investigation.

The aim of the theoretical part is to identify the contribu-
tion of the various terms in the momentum equations. This is
achieved by applying Newman's first order analysis and a higher
order one, both of which assume a 'top hat' profile for the mean
velocity, and the measured rate of growth. Reasonable predictions
are obtained by the first analysis for surface pressure and maxi-
mum velocity. Better predictions are obtained by the higher order

analysis; the latter also predicts the existing two-dimensional

measurements fairly accurately.
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Summary

The incompressible wall jet over the surface of a sphere

has been investigated both experimentally and theoretically.

The experimental part consists of setting up a universal
flow independent of inlet conditions. The velocity profiles,
for that universal flow, measured using both pitot tube and
hot wire are found to be in good agreement with Glauert's pre-
diction. The growth is nearly the same as the two-dimensional
wall jet over a circular cylinder, implying that lateral stretch-
ing of the turbulent eddies increases the entrainment. The
flow breaks away from the sphere close to the rear and hence
an axi-symmetric jet forms downstream. Hot wire measurements
indicate that the mean velocity profile becomes similar to a
conventional axi-symmetric jet about three sphere diameters
downstream of the nozzle exit. The longitudinal turbulence,
however, does not attain similarity up to seven sphere diameters

which was the range of investigation.

The aim of the theoretical part is to identify the contribu-
tion of the various terms in the momentum equations. This is
achieved by applying Newman's first order analysis and a higher
order one, both of which assume a 'top hat' profile for the mean
velocity, and the measured rate of growth. Reasonable predictions
are obtained by the first analysis for surface pressure and maxi-
mum velocity. Better predictions are obtained by the higher order

analysis; the latter also predicts the existing two-dimensional

measurements fairly accurately.



SOMMAIRE

Cette thése contient un ensemble de résultats expérimentaux et

une analyse théorique concernant un jet pariétal incompressible évoluant sur
une sphere.

La partie expérimentale consiste & établir un écoulement universel
indépendant des conditions d'admission. Les profils de vitesse moyenne, mesurés
grgce 3 un tube de pitot et 3 un anémometre 3 fil chaud confirment les resultats
prédits par Glauert. L'évolution linéaire de la largeur du jet est presque
identique 2 celle d'un jet pariétal sur un cylindre, ceci implique une accélé-

ration de l'entrainement due 2 un étirage latéral des tourbillons turbulents.
Le décollement s'effectue & un angle preés de 1550, et par suite, un jet de

révolution se forme en aval. Quelques mesures & 1l'anémomdtre ont permis de
constater que 1'écoulement moyen atteint un état d'équilibre aprés une distance
a4 la buse de trois diametres de sphere; par contre 1l'écoulement turbulent en

requiert plus de sept diametres, ce qui dépasse la zone étudiée.

Le but de la partie théorique est d'évaluer la contribution des

différents termes de l'équation de quantités de mouvement. Ceci est obtenu

par l'analyse au premier ordre de Newman, ainsi qu'une autre d'ordre supérieur.
Toutes deux supposent des profils de vitesse moyenne de forme rectangulaire et
1'évolution mesurée de la largeur du jet. L'analyse au premier ordre prédit,

la pression sur la surface et la vitesse maximale, d'une manidre satisfaisante.
L'analyse d'ordre supérieur, outre des resultats plus précis, prédit les mesures

bi-dimensionnelles, qui existaient, quasiment exactes.
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Notation

Roman Alphabet

radius of sphere
radius of Fekete's cylinder
gap width

slot width in Fekete's cylinder
T

skin friction coefficient = 1 g
2PV
shear stress coefficient = Té
PU

nozzle diameter

nozzle diameter in Bradshaw's experiment
force exerted by the sphere

scaling factor of the orthogonal co-ordinates
jet momentum out of the nozzle

jet momentum far downstream of the sphere

constant in equations (2-16) and (2-17) _—

exponent for inner boundary-layer profile

static pressure

static pressure at the edge of the wall jet
stagnation pressure in plenum chamber

static pressure at surface of sphere or cylinder
static pressure of surrounding fluid

radius from centre of flat surface in Bradshaw's
experiment l/2

(po - p_) bd

Reynolds number = 5
p v
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turbulent velocity component in the U direction

mean velocity component in the streamwise direction
tangential to the sphere or in the wake

square profile velocity

maximum jet velocity

turbulent velocity component in the Vv direction
radial mean velocity component

radial mean velocity component at the edge of the
wall jet

turbulent wvelocity component in the W direction

mean velocity component in the transverse direction
tangential to the sphere

distance along the surface = af

distance from the plane of the nozzle measured
along the centre line of flow

position of hypothetical origin from the plane of
the nozzle measured along the centre line of flow

distance measured from and perpendicular to sphere
width of square velocity profile

distance from surface where U = U

m
distance from surface or flow centre line where
_ 1
U= 2 YUn

Greek Alphabet

ro-ordinate of a point
_ Im/f2

perturbation parameter = 2

angular distance measured from the centre line of
flow

angular position of separation
kinematic viscosity of the fluid

density of the fluid
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T - shear stress = =-p uv

T - shearing stress where U = Um

T - surface skin friction

o) - meridional angle measured from the horizontal plane

(iii) Subscripts

1l, 2 and 3 in section 2.2 refer to the three axes in the

curvilinear orthogonal system used.



1. Introduction

The numerous practical applications, hydraulic and
aeronautic, which involve the flowing of a jet over a solid
surface, to which Glauert ascribed the name ‘'wWall Jet', have

led many researchers to investigate this type of flow.

A theory was developed by Glauert (1956) for both radial
and two-dimensional, laminar and turbulent, plane wall jets
using a similarity-type solution. In order to determine a
suitable variation of eddy viscosity across the flow for the
turbulent wall jet, he considered a hybrid structure in which
the eddy viscosity distribution near the wall is taken from
the empirical formula due to Blasius (1912) for flow in a pipe
and the eddy viscosity in the outer layer is considered to be
constant over the cross-section, following Prandtl's hypothesis.
By 'matching' the two parts at the peak velocity, he obtained
a solution for the velocity profile. This theory was followed
by a number of others, most of which use integral techniques.
These integral methods for calculating the growth of a plane
wall jet in still surroundings have been developed by Myers
et al. (1963), by Gartshore and Hawaleshka (1964) and others.
Gartshore and Newman (1969) gave a good review of the existing
integral techniques and developed a more sophisticated one for
calculating the growth of a turbulent wall jet in streaming
flow. This method incorporates four integral-momentum equations

taken from the wall to various points in the flow. By including



some empiricism, based on the large-eddy equilibrium hypothesis
to calculate the shear stress at the limits of the integrals
and by assuming a four-parameter velocity profile, they obtained

satisfactory predictions.

Previous experimental investigations dealt exclusively
with the turbulent case as it is the most frequently encountered
in practice. These investigations considered three types of
wall jets: the plane, the cylindrical and the radial one. The
Plane wall jet was originally explored experimentally, well
before Glauert's analysis, by Férthmann (1936). More recently,
experimental studies were performed by Sigalla (1958), Bradshaw
and Gee (1960), Schwarz and Cosart (1961), Myers et al (1961),
Eskinazi and Kruka (1962), Patel (1962), Gartshore and Haweleshka
(1964) and Mathieu et al. (1967). The cylindrical wall jet was
examined by Lawrence (1964) and Starr and Sparrow (1967).
Experiments on the radial wall jet were carried out by Bakke
(1957), Bradshaw and Love (1961) and Tsuei (1962). The latter
experiments, being pertinent to the present work, will be

discussed in more detail.

Bakke studied a radial wall jet of air emanating from a
pipe, 28.4 mm. in diameter, placed at right angles to a smooth
pPlate. The exit of the pipe was at one half of its diameter
above the plate., He found the velocity profiles to confirm
Glauert's prediction satisfactorily. The growth (ggslg) of
the wall jet was 0.069. Bradshaw and Love looked at the same

configuration but with a nozzle having a diameter, D = 1 in.,
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placed at '18D' above the plate. The growth of the developed

radial wall jet was 0.0885 which is surprisingly high when com-

pared with Bakke's value. The discrepancy between the two

values for the growth may be explained as follows:

l.

The effective origin of the wall jet in Bradshaw's
experiment is at '0.6D' from the stagnation point,
which represents the fifth of the radius of the
impinging jet. This may result in a growth different
from that of a jet having its origin at the stagna-
tion point, as was the case in Bakke's experiment.

It is to be noted also that the dynamic pressure
contours in the stagnation region, for Bradshaw's

exhibited a certain deviation from axial symmetry.

Bradshaw stated that "slight changes in the shape

of profiles are detectable out to the maximum radius,
r = 20D, at which measurements were made, but for
practical purposes the wall jet is fully developed
at g = 8"; this conclusion is of doubtful validity
even for the mean velocity. Rather interestingly,

if the point for '% = 8' is neglected, it would be
possible to draw a straight line with Bakke's slope

through Bradshaw's three remaining points (see Fig.

7, page 8, Bradshaw et al., (1961)).

Tsuei carried out a complete experimental investigation

including measurements of the turbulence intensities which
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were not considered by Bakke or Bradshaw. He obtained a growth

for his jet close to Bakke's value.

In conjunction with the aforementioned wall jets, the
tendency of a jet to adhere to and follow the curvature of a
solid surface should be pointed out. This phenomenon, which
is accompanied by a significant pressure difference across the
jet, is often referred to in the literature as the 'Coanda
effect'. A review of its various applications, configurations
and investigators is well summarized by Wille and Fernholz
(1965). Newman (1961), Nakaguchi (1961) and Fekete (1963)
investigated the turbulent flow around a circular cylinder,
while Sawyer (1962), Guitton (1965) and Giles et al. (1966)
examined the turbulent flow around a logarithmic spiral as

well,

Laminar solutions for such flows were subsedquently
obtained by Wygnanski and Champagne (1968), while the turbulent
cases were first considered by Newman (1961), Nakaguchi (1961),
Sawyer (1962) and Guitton (1964). The configuration which is
most related to the present investigation is the flow over a
circular cylinder. A theoretical approach for that flow was
suggested by Newman (1961) which predicts the surface pressure
distribution and the maximum velocity decay over the cylinder.

He made the following assumptions:

1. The mean velocity profiles are similar over the

cylinder, at least for a considerable distance, and
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can be replaced by a uniform velocity profile having

the same mass flow and the same momentum.

2. The effect of skin friction on the change of jet

momentum is negligible.

3. The radial mean velocity "V" is small compared to
the circumferential mean velocity "U", and the
width of the jet "*m/2" is much less than the

radius of the cylinder.

Using the above assumptions and the experimental growth
of the wall jet, Newman predicted the maximum velocity decay
and the surface pressure distribution. The former quantity

agreed well with experiments while the latter was higher than

the experimental one,

Nakaguchi (1961), independently, tried another approach

which can be summarized as follows:

1, He assumed similarity of mean velocity profiles so
that the non-dimensional velocity profile can be
represented by a half free jet on the basis that

the boundary layer is negligible,

2. The shear stress can be related to an eddy viscosity
which is constant across the flow, as was done by

Gdrtler (1942) for a free jet.

3. He assumed that the wall jet is self preserving and



thus has a turbulence eddy structure which is related
non-dimensionally to local parameters which do not change
significantly with "x", as stipulated by Townsend

(1956) for self-preserving flows.

4, He formulated a relation for the growth of the jet
assuming that it is proportional to the radial turbu-
lent velocity component "v", which in turn is propor-
tional to the centrifugal pressure change across the
flow. The constants of proportionality were established

experimentally,

Fekete (1963) compared both approaches and found that
Newman's proved to be more useful in the light of its simplicity.
Newman (1969) also made a comparison between the existing
theories for the flow over a circular cylinder and showed that
his approach is the most successful to predict that flow. It
is to be remembered, however, that these theories are applicable
if the slot width "b'" is small (but not too small for then the
surface friction would become important) compared to the radius

'

"a'" of the cylinder. The case where §T is not small has been

discussed by Newman (1969).

The initial purpose of the present work was to investigate
both theoretically and experimentally, the axi-symmetric flow
of a turbulent wall jet around a sphere. Possible practical

applications of such a flow are:

i) The stabilization of flames in burners
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ii) The development of axi-symmetric or near-axi-

symmetric fluidic devices

iii) The attenuation of jet velocities during the

ground testing of aircraft and other machines.

The experimental investigation involved blowing a 2 in.
round jet over an 8.5 in. plastic sphere. As the object was
to set up a universal flow independent, as far as possible,
of inlet conditions, the gap between the jet nozzle and the
ball was adjusted so that the wall jet width was zero when
extrapolated to 8 = 0°, at the front of the ball, where the
growth was expected to conform to the radial plane wall jet

value at a sufficiently high Reynolds number (Townsend, 1956).

The surface pressure, when referenced to atmospheric, has
a negative value near the nozzle due to the flow curvature and
exhibits a gradual rise up to 8 = 90°, followed by a sudden
rise which leads to separation at 6 = 155° when the surface
Pressure becomes positive at the back of the sphere, due to
the curvature of the flow there. This behaviour suggested the
possibility of a resultant force on the ball towards the nozzle,
which would result in thrust augmentation of the jet. This
suggestion was also supported by a simple demonstration in

which a sphere was supported underneath a circular jet (Fig. 1).

The tests were therefore extended for different values of
the gap width to investigate the momentum balance and the

possibility of thrust augmentation. Results are presented for
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four gap widths ranging from 0.048 in. to 0.5 in. and for
Reynolds numbers based on jet momentum varying between 1.26

X 104 and 6.4 x 104.

The theoretical investigation consisted of three dif-

ferent approaches:

1. Modification of Newman's first order, two-dimen-

sional theory for the axi-symmetrical case.

2. Use of an improved version of Newman's theory in
which his assumptions of a 'top-hat' velocity
profile and an experimental growth are retained,
but in which the two-integral momentum equations
are not simplified to first order and are solved
numerically. The shear stress and turbulence
intensities are assumed to have self-similar

profiles.

3. Application of a three-parameter velocity profile

together with three integral-momentum equations.

It will be seen that the theoretical approach (2) gives
reasonably accurate predictions. But its usefulness is not
to be judged solely on its ability to predict the flow., Of
more importance for future developments is the identification
of the contribution of the various terms in the x-momentum and
y-momentum equations; the important terms indicate where more

detailed work is required.



The theoretical results are presented for both the two-
dimensional and axi-symmetric cases and are compared with the

experimental results.
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2. Theoretical Analysis

Dimensional Analysis and the Choice of Parameters

"

"
Ad
C
Fig. (2.a)

Following Newman (1961) for (po-pm) << p, the flow can be

treated as being effectively incompressible, therefore the

following parameters are sufficient to define it:

-P

PP,

the Plenum chamber static pressure relative
to that of the surroundings

the radius of the sphere

the internal diameter of the nozzle

the angular distance measured from the front

of the sphere

the distance between the sphere and the plane

of the nozzle

the density of the fluid

the kinematic viscosity of the fluid

the flow may be described by four non-dimensional

parameters namely:
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. 1
(po—pw)(length)2 /2

3
P v

v |5
) o)

The dominant parameter for turbulent jets and wall jets
is the jet momentum (Newman, 1961 and 1969), which in most
cases tends to remain constant., However, the streamwise co-
ordinate has to be measured from a certain hypothetical origin,
so that the same flow would come from an infinitesimally thin
slot situated there, and consequently the flow will not depend
on the slot width and the jet velocity as individual parameters,
but would depend on the jet momentum as in the two-dimensional
case. In the present configuration, due to the symmetry of
the flow, the streamwise coordinate is measured from the axis
of the flow. However, in order to obtain the source effect of
a hypothetical origin, the gap width must be adjusted so that

the flow appears to originate from a source at the front of the

sphere,

Consider a slice of the sphere subtending an angle A¢, as
shown in Fig. (2.a). The angular momentum flux from the nozzle
for this slice may be expressed as (po-pm) bdaprgp, while the
momentum flux would be (po-pw) bdA¢*. This angular momentum
flux, at any angular position "@", will have approximately
the value (pw—ps) a3sineA¢ or pUema36sin6A¢. It is interesting

to note that the last two groups include a 'sin@', which in

It is to be noted that this is an idealized value which agrees
also with the actual momentum as measured experimentally at
the station 6 = 15° (for details see section 4.2).
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fact takes into account the geometry of the sphere and renders

the comparison with the case of a cylinder possible.

Therefore, the surface pressure "ps" at an angular posi-
tion "@" may be expressed as follows:
2 . /o
(p-Pg) a“sinbA¢ (p,-P,) bd

= £n o , (1)
(p,-P,) bd A¢ p v2

For large values of the Reynolds number,

S|
(p-p_) ba | 72

’
0 v2 :

Re

the viscosity may probably be excluded (Newman, 1961) and

Eq. (1) reduces to:

2
(p,-Pg) @
(po-pw) bd

- £n (o) (2)

However, on physical grounds and in order to compare the
results with those of a circular cylinder, Eq. (2) will be

written as:

2 .
(pm-ps) a“ siné

(p,-p,) bd

= fn (9) (3)

Similarly the maximum jet velocity coefficient is given by:

o} U2m a29 sin@

(p,-p,) bd

= f£fn (6) (%)
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and the position of separation may be expressed by

esep = constant (5)

again as in the two-dimensional case.
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2,2 Equations of Motion

The equations of motion and continuity for steady, in-
compressible, turbulent mean flow in a system of orthogonal
coordinates in which the coordinates of a point are Qs Qns

and the corresponding scaling factors are hl’ h2, h3 in

Q
3
the directions 1, 2, 3 respectively, are:*
2. 2 2 2
U, ahlul U2 ahlUl U3 oh 1Y1 Ul +ua, ahl ) U, +u,
hle aal hlh2 Ba hh 5 h12 aal hlh2
2 2
dh U,“+u dh
2 3 3 3 1
- + (h u ) + (h u.u,)
da; hlh3 da; 'y 2 p a a 3 1 a ag Y13
- 1 23
d 2 1 d
e h == e —— 2-1
+aa2(1 312)] phlgsl (2-1)
Foi | Sa(hehg¥y) * 3az (RghUp) + 5oz (mhgU) | = 0
17273 | °* %3
(2-2)

Where in Eq. (2-1), the viscous terms have been neglected

in comparison to the inertia terms (Goldstein, 1938) and this

equation is in the direction "1", the two others are obtained

by cyclic change of the suffices.

* The only source of literature for the above equations is

Townsend (1956). Townsend's equations contain a printing

error, however, as was revealed when these were checked
by converting the laminar equations given in Goldstein
(1938) and Rouse (1959).
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Choosing the coordinates as shown in Yy

the opposite figure we have:

a =X U =Y a3 = ¢
= aty = = 8V inX - 3t¥;
h, ==+ h, = h3 = =“*sin7 = —ElenG 6 .
U; =U Uy =V Uy =W
u; =u Uy =V Uz =W ;
radius=:
Fig. 2-b
Substituting in Egs. (2-1) and (2-2) we get
UQQ+MVB—U+U—V+"—2'W_2cote+3E—‘7—-Q—(P-+—2)
ox a oy a a a  9x ‘p v
d_ ;.2 2 a+y o
- S5 (uE-v = 5y (2-3)
2 — 2 2 3 =
v oV _ US |, duv , 2vi-u®- uv cotf
U " ng v oy a T ox T a * 3
_ _a+y d 2
= - aa—i(%"'v) (2-)"’)
2
%; [(a+y)Usin6] + %;[T(E§X1 v sine] =0 (2-5)

' The usual assumption for free shear flows of neglecting

the term %; (u2 - v2) will be used here,

Making use of the continuity equation (2-5), Eq. (2-3) may
be rewritten in a form suitable for integration as follows:

3 2
[ a2 o?| gl e gy | (2002 2 corg -

—_ 3
& (e P % el e
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Yn/2
X

It should be noted that in flows over curved surfaces

Y
is of the same order of magnitude as —%{g and will be denoted by

e", (except, of course, close to the origin),
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2.3 Newman's or First Order Analysis

Using the same assumptions as Newman (1961), Egs. (2-6)

and (2-4) are reduced to:

3 2
& [emad] « 5] o], @i, - -3

ox
and [(a+y)2 (% + ;5)] (2-7)
2 3 —_—
TS B+ (2-8)

Denoting the velocity and the width of the 'top hat'
velocity profile by U; = % U, and y; = % Yn/2 respectively,

and integrating (2-8) from 0 to y we get

Po - (B4 v3) = vl 27+
PR = (2-9)

Substitution of (2-9) in (2-7) and then integration from

0 to » yields

2

Uy

y; @ sin = constant (2-10)

The last equation has been written to 0(e) i.e. all terms,
y, 2
as well as the logarithmic series in (2-9), involving (2%) or

higher order have been neglected.

Interestingly enough, Eq. (2-10) expresses but the
constancy of the angular momentum at any angular position "6",
which would be derived directly by considering a slice of the

sphere.
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Using the experimental growth relation given by (see

section 4.2.1)

y y
—ggg = 0.068 + 0.32 —%{g (2-11)

equation (2-10) reduces to

pUm2 a%9 sing

o —p.) Ba constant (é% - 9=3g)e (2-12)
O T

a

The surface pressure distribution is then given by Egs.

(2-9), (2-10) and (2-11)

(p,-pP,) b4 3 @
=1

a

2. .
(p_-p_)a“sing

The 'constant' in the above equations will be evaluated

in section 4.5,

ag
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2.4 Improved Newman's or Higher Order Analysis

Newman (1961) suggested that the inertia terms in the
y-momentum equation should be retained, in order to get a
better prediction of the surface pressure, on the ground that
they are the only two terms responsible for the discrepancy
in surface pressure. Therefore, it has been decided to keep
the analytically convenient assumption of a 'top hat' vélocity
profile and deal with the complete momentum equations.
Assumptions have to be made, however, for the skin friction
and normal stresses. As the main aim for this analysis was
to identify the contribution of the various terms in the
y-momentum equation, a simple assumption was adopted, namely
that the shear stress and turbulence intensities have univer-

sal profiles and scale with ‘m/2 and U -

As the first order analysis proved to be reasonably
accurate in predicting the maximum velocity decay and as the
incorporation of the full y-momentum equation for the pressure
term in the x-momentum equation proved to be analytically
tedious, Edq. (2-9) was used to estimate the pressure terms,
The pressure on the surface was, however, subsequently worked
out using the full y-momentum equations (unknown turbulence

terms disappear).

Therefore Eq. (2-10) now reads

2
c; 1 +c,u® = 0 (2-14)
dax
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where

Y ¥1.2 ¥7.3 Y
Cy 2—L+2(—al-) +g(—l) + 1n (1+—al)

dy Y Y, 2 v,.3
c - Hifers B 2 ] T+ 3 Bk ]e%}

and C in the last equation is the skin friction coefficient

(if—zy—-), taken to be 0.005 (Guitton, 1969).

Equation (2-14) was solved numerically using a U4th order

Runge-Kutta technique.

Now, the surface pressure over the sphere is obtained by
integrating the y-momentum equation (2-4). Measurement in a
radial plane wall jet (Tsuei, 1963) indicates that the term

(V2- w2) is negligible compared to u?.

Using this result Eq.

(2-4) becomes

a_ WV , WV -U2_ _ _ D (B, 2\ .a_d t uly?
aty ox T 0y ary 9 (p +vE) o+ a+y ox (p) t Sy

T
+ ;f% coté (2-15)

Integration of Eq. (245) from 0 to » yields

OIIOJ

\ ;o2
a_ Uov e _ U _ _g _§ (5)d
aty ox dy + 3 Jf a+y dy = p p _{ p dy
o o

(o]

+ f 2o (cote-K) dy (2-16)

a+y
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where

Vé and p, are the radial outflow velocity (physically
negative) and static pressure at the edge of the wall jet,

related through Bernoulli's equation by

- Y 2
P, = Pet3P Ve
W - 2
and K = ——% =~1 (Guitton, 1970)
uv

In order to evaluate the first integral in Eq. (2-16) the

continuity equation (2-5) is integrated from O to y, yielding

a3 _a dUl U,
v = 2(a+y)2 2 _a'*' ";‘ coté

Therefore
V' a3 a] a®y; , 199 U 2
S<v = -5 + = 3= cotf - —5 cosec 0
ox [:22a+y$2 2_ P a dx a2
Hence Eq. (2-16) gives
2 2 2
P_-P a+y U 2 au du
© s _ 1 2 _ 1 2 a” 1 a_"1
5 = 1ln 3 U, —5— cosec 6 + 5 Ul dx2 + T Tax coté
dv, 5
- a ¢' —g7— - (cote-K) c' Uy
a? v, av,? u,® 2 1,7
- U, —dx—2 + 53 cotb ax 32 cosec G:Hrl-(lT)
where
. _ uv
c = 5.2 " 0.0268 (Tsuei, 1963)
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2. 2
and d Uy~ is found by differentiating Eq. (2-14) w.r.t. "x"
ax<

as follows

c, a%y.2 4+C 9~ ,C3 y?2 - 9 (2-18)
1 1 3 1
2 a a2
dx
where
4 y, 2 Y, 3 Yy
_ At 1 2 %1 1

C, =27 + 2(37) + 3 (55 + In (1+57)

dy,
C, = [2+4—— + 2(——) +a+Y1J [3——+3( ) +(——) Jcote
+ 0. 0025 X %?—
21 dy, 2 ¥, 7 4%y,
Cq [&+4—— - (a+yl) ] (—a;) + [2+42r ( ) a+le a —;;5

4 dy Y Y, .2
+ [3+6?% + 3(;%)%Fote a;l -'[3?% + 3(2%) +(:% ] cosec?p

It is worth noting that if we wanted to evaluate gﬁ in
3
Eq. (2-T7) from (2-15) we would get terms in Uy . This com-

dx3
plication tends to justify the use of Eq. (2-9) to estimate

that term., Its size is, however, the main consideration as

will be shown later (section 4.5).

This analysis has been applied for the case of a cylinder
in order to give another comparison. The integrals of the
momentum equations are given below:

- py.2

2
d Y Yy.2 ' Y dy
1 (Y2 1 Y1 1 1 1 1, 16 _
dx (:a +2(a)+1n (lla)J [(l'a Ia+y ax t 9% 005] =0
- a+y o o 970 . 90 Do 2
PPy _ 1, Y1 [Ul +ay—L - ac' —g-+KC' U 11 (2-20)
P a dx
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2.5 Full Integral Technidque

It is obvious that the improvement which can be brought
to the 'Higher Order' analysis, is to consider the momentum
equations but with a more realistic velocity profile to enable
the prediction of separation. Hence a four-parameter velocity

profile was used:

1
€ - (x—)n from O to
= Y
U, Y m
Y=Y
%— = sech?®| 0.88 —&_— | from Y, to «
m Ym/2 Y

In this case we have U_, ym/2, Y,» Pg and n as unknowns,
implying the need for five equations. As a first step, it was
decided to freeze the exponent "n" and assign to it the value
11, and to use the experimental growth relation given by Eq.
(2-11). Therefore, we are left with 3 unknowns for which three

equations were formed as follows:

1. The integral of the y-momentum equation (2-4) from 0 to «
2. The integral of the x-momentum equation (2-3) from O to Y
3. The integral of the x-momentum equation from Yo to o

Empirical formulae were used for the shear stress variation
across the flow as well as the skin friction. The three

equations are given in Appendix II.

This method, however, did not seem to be promising as the

equations were very complicated and the numerical solution
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proved to be unstable. The reason for this instability was

dp
that the value of Ef- was calculated through an iteration

procedure which does not match with the sensitivity of the

surface pressure.

A modification of this procedure, would be the evaluation
dp
of E}—{S- by differentiating the full radial y-momentum equation.

This would result in six ordinary differential equations to be
solved simultaneously. This work was abandoned as it was

analytically very tedious.
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3. Details of the Experimental Investigation

The experimental apparatus is shown both schematically
and photographically in Figures 2, 3 and 4, and is described

in Appendix I.

3.1 calibrating and Proving the Apparatus

3.1.1 Checks with Sphere removed : Steadiness, Metering
of the Flow and Axial Symmetry

In order to meter the flow emanating from the nozzle, the
pressure drop across one of the perforated plates (1) or (2)
was used., When the sphere was removed, the supporting pipe
was replaced by an identical one plugged at the end. Before
metering the flow, it was necessafy to check for steadiness
and axial symmetry. The steadiness of the flow was checked
by viewing the signal from a hot wire placed at the exit of
the nozzle. With the perforated plate (3) at the mid span
of the expansion, the honeycomb (2) and a constant bleed at
the outlet of the centrifugal blower, a reasonably steady flow
was achieved (indicated by the disappearance of previously
observed bursts of turbulence). The axial symmetry of the
cylindrical wall jet was checked by measuring velocity profiles
at four meridional planes around the pipe and the results are

shown in Fig. 5.

The mass flow was obtained from the measured pressure
drop across the perforated plate (1) by relating this to the

integrated velocity profile at the outlet of the nozzle as
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0 shown in Fig. 6. The downstream perforated plate (1) was
chosen because the upstream (2), once the sphere is installed,
was in the wake of slight disturbances caused by the pressure

leads.

3.1.2 Checks with Sphere installed : Axial Symmetry

The sphere was installed, and geometrical axial symmetry
was achieved by the fine adjustment of the screws on the

supporting perforated plates (1) and (2) (see Appendix I).

Aerodynamic axial symmetry was then checked by three

different sets of measurements:

a) Surface pressure distributions, taken at four
meridional planes, These were found to vary by no

more than 1% of the mean value as shown in Fig. 7.

b) Total pressure profiles, measured at four
meridional planes. There was no detectable

asymmetry as shown in Fig. 8.

c) Skin friction on the sphere, measured by a
0.020 in. Preston tube at every 10° interval along
the diameter 8 = 90°. This was found to vary by

less than 3% of the mean value (Fig. 9).

It is to be mentioned that the first check was quite
reliable as the surface pressuares proved to be extremely

sensitive to any asymmetry and they were easily displayed
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on a multitube monometer, of 1:2 inclination, fitted with a
freezing device. The third check was the decisive one as it
constitutes the most severe test for the symmetry of a flow

(Patel, 1964).

3.1.3 Setting the Universal Flow

After axial symmetry was verified, the growth of the
wall jet was measured using a 0.022 in. diameter pitot tube.
The static pressure was assumed to vary linearly from the
value at the surface to that of the atmosphere at the point
where the total pressure falls to zero with reference to

atmospheric (Fekete, 1963).

This was repeated for different gap widths until the
wall jet width extrapolated backwards to zero at the front
of the sphere 8 = 0°, as shown in Fig. 10-1. Further the
setting was strongly confirmed by the fact that the growth
at 8 = 0° conformed with Bakke's measurements on a plane

radial wall jet (Fig. 10-2) at a sufficiently high Reynolds
Um(¥m/2"¥m)
v

number ( > 5000).

This case, §-= 0.046, was then intensively studied. This

work is described in the following section.
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3.2 Experiments

The surface pressure was measured using a pressure trans-
ducer together with a "Scanivalve", the results of which were
displayed on a strip chart recorder. The estimated overall
accuracy, by which the surface gauge pressure was measured, is
better than + 0.5% of the reading. The results were plotted
for different Reynolds numbers, Re =I:LEQ:E;ZEE:11/2, ranging
from 1.26 x lO4 to 6.4 x 104. The limitgn; value, beyond
which the flow appeared to be independent of Re, was chosen
to be 4 x 104, at which all subsequent measurements were
performed. Presumably, Reynolds number independence is not

attained if g-is too small for then the surface friction would

become important (Newman, 1969).

Mean velocity profiles on the sphere were measured with
both a normal hot wire using a DISA linearized, constant-
temperature anemometer, and a 0.010 in. flat pitot tube
assuming a linear variation of static pressure across the
flow, at 8 = 50°, 70°, 100°, 120° and 140°. The displacement
for the flat pitot tube was found to be 0.001l5 in. by éomparing
its readings with those of a normal hot wire taken in a plane
wall jet and, as its lip was sharpened, the estimated sensi-
tivity for pitch was less then 0.15% per degree at one inch
from the wall, where the angle of attack was estimated to be

three degrees,

Special care was taken to determine when the hot wire

was at the surface of the sphere. A 0.001 in. feeler gauge
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was held against the sphere and attached to one terminal of
an oscilloscope, the second terminal being connected to the
probe (the sphere, being made of plastic, is electrically
insulating). Therefore, when the electrical pick-up on the
screen disappeared, the probe was known to be at 0.001 in.
from the surface. This adjustment had to be done very care-

fully to avoid breaking the wire.

The position of separation was determined by using a
very light tuft mounted at the end of a fine wire. For high
Re, the accuracy was + 3° while for low Re (Re < 3 x 104),
the velocities were so small that the point of separation could
not be determined with reasonable accuracy. Another technique
(Begg, 1967) was tried, using a fine needle with a transverse
hole through which a short cotton thread was inserted, but
similar difficulties were experienced. It was therefore
decided to abandon any measurements for separation at low

Re.

Mean velocity profiles were taken behind the sphere using
pitot tube and normal hot wire at nine stations ranging from

1.3 to 7.3 sphere diameters from the nozzle exit.

Longitudinal turbulence intensities were measured by inte-
grating a linearized signal for 50 sec. at the aforementioned

. (w2
stations., The results were analysed to first order in T and
no corrections for high intensity turbulence, usually of the

order of 5% at ;—i— = 1.5 (Guitton, 1968), were applied.
m/2
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In order to check for the momentum balance three quantities
had to be estimated. The force on the sphere was obtained by
integrating the surface pressure, the momentum out of the nozzle
was based on the stagnation pressure in the plenum chamber, and
the momentum in the wake was calculated by integrating the mean

velocity profile there.

The momentum balance was also checked for two other gap

b

widths, = = 0.0116 and 0.1175.

The growth of the free jet was obtained and the variation
of its hypothetical origin with the gap width was also determined

for these cases,
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4y, piscussion of Results

4.1 Qualitative Description of the Flow

Figure (11) indicatesthe behaviour of the flow around
the sphere. The jet emanating from the nozzle is thin and
forms a vena contracta* close to the edge of the nozzle. As
it proceeds around the sphere, the width decreases, up to
@ = 90°, due to lateral spreading, but it also increases as
a result of air being entrained from the surroundings. Thus,
the mean velocity on the sphere, having a profile typical of
a wall jet, decreases and the surface pressure, which was
negative at the beginning due to the curvature of the flow,
starts to rise as the velocities fall causing separation at

an angular position esep = 155°,

Due to the geometry of the sphere, namely the reduction
in surface area beyond the diameter 6 = 90°, the separated
flow tends to meet again at the back of the sphere after
forming a cavity of recirculating flow which we will call a
bubble. The average length of that bubble is about one fifth

of the sphere diameter,

The flow expands again in a round jet with a mean velocity
profile containing initially a wake due to the flow over the
sphere -~ a wake which subsequently disappears far downstream

leaving only turbulence as an indicator that the flow has been

Where flow is developed such that it is plausible to assume
that the pressure varies linearly across the flow, but a
significant core still exists.
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. disturbed. The round jet is also a great deal wider with lower
velocities than it would be if the flow from the nozzle were

not disturbed by the sphere.



_33_

4,2 choice of Parameters used in forming the Non-Dimensional
Pressure and Velocity Coefficients

In section (2.1) it was shown that the non-dimensional

pressure and velocity coefficients can be conveniently stated

as (P,~Ps) a2 ging and U 220 sing
(P,-P,) Pd (P,~P,,) bd

factor 'sinB' was included to account for the geometry of the

respectively. The

sphere and makes a comparison with the case of a circular
cylinder possible. It was also mentioned that (po-pw) bd A¢
represents the momentum flux from the nozzle for a slice of
the sphere subtending an angle 'A¢'. This quantity is esti-
mated by the following interpretation of the experiment;
(po-pw) is taken to be the gauge stagnation pressure in the
Plenum chamber, "b" is the distance between the plane of the
nozzle and the plane of intersection of thesphere with the
supporting pipe, and "d" is the diameter of the nozzle. This
(po—pm) bd A¢ is an idealized value for the actual momen-
tum at the vena contracta. Both quantities, however, were
found to be equal within 1%. This is not too surprising when
it is realized that (p_-p ) is an over-estimation for % pU2
due to the curvature of the flow at the exit of the nozzle,
while the value of "d" is an under-estimation fqr the average
diameter of the vena contracta at which the vena contracta

forms, and "b" is not too far from the actual thickness of

the vena contracta.
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4.3 Dpescription of Experimental Results

4.3.1 gphere Measurements

Figures (12) show mean velocity profiles, for §-= 0.046
)

and Re = 4 x 10", measured by pitot tube and interpreted as
velocity using a linear variation of static pressure across
the flow, and normal hot wire at 8 = 50°, 70°, 100°, 120°

and 140°.

These figures also show the r.m.s. longitudinal turbu-

lence component as a percentage of the locali mean velocity,
e
U *

i.e,

The outer part of the velocity profile measured by the
pitot tube exhibits the error commonly found in curved flow
measurements due to the probe misalignment. This is again
shown in Fig. 13 where the non-dimensional velocity éL is
plotted versus L and compared with the theoreticaT curve

/2
of Glauert for —. = 0.12. 1In the inner part of the

Y
m/2
profile, there is a slight difference between the experimental
results and the theoretical curve which is due in part to the

neglect of turbulence intensities in estimating the mean

velocity from the measured total pressure.

The normal hot wire results are more accurate in the inner
part, while in the outer part there is a slight discrepancy

due to the high intensity turbulence which was not taken into
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account; the error is not large for Guitton (1968) found that

the correction does not exceed 5% for a plane wall jet at §X_
m/2

= 1,6. PFigures 14 show the non-dimensional velocity o for
m
the whole profile and the outer part alone and compare these

with Glauert's. The agreement is quite satisfactory.

V u

Comparison of turbulence intensities o is made in

n

Fig. 15 between the present results and those of Fekete (1963)
on a circular cylinder (two-dimensional case) and those of

Tsuei (1962) on a plane radial wall jet for the same range of
Uy,
m*m

, and at approximately the same downstream station.

It is seen from the figure that the three curves are in
.2
qualitative agreement and the turbulence intensities, —%— R

in the axi-symmetric wall jet are higher than those in the
Plane radial wall jet, the latter being higher than those in
the two-dimensional wall jet over a circular cylinder. The
explanation for this probably lies in the more rapid decay of
the velocity "U" in the axi-symmetric case and perhaps in the

likely increase of "u" due to the lateral stretching of the

eddies.

Growth of wall Jet

The growth law for the universal flow was obtained by
numerically fitting a straight line to the experimental
results. This relation and the growth law obtained by Fekete

are shown in Fig. 16; they read:
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b4

_gég = 0.068 + 0.32 ym/2 Axi~-Symmetric
Y

—gég = 0.067 + 0.3 ym/2 Two-Dimensional

‘It is interesting to note that the two relations are nearly
the same, implying that the stretching of the eddies increases
the entrainment sufficiently to compensate for the lateral
expansion at least up to 6 = 90°. This is consistent with

the analogy in the behaviour of a plane wall jet and plane

radial one for which the growth is 0.067 and 0.068 respectively,

pUemaeesinG

The maximum velocity coefficient (5_-p_) ©d as estimated
O “oo

from the pitot tube and hot wire measurements, is shown in

Fig. 17, and is compared with the two-dimensional case. The
lateral spreading in the axi-symmetric case up to 8 = 90° is
obviously the direct cause of the more rapid decay in velocity;
beyond that point the slope of the curve starts to be qualita-

tively comparable to the two-dimensional case.

Fig. 18 shows the decay for a measure of the momentum,
namely pU2m Ym/2 a sing. It is seen that this quantity decays
only slowly in the range 0° < 6 < 90° and more rapidly beyond

this range,

surface Pressure Distribution

Figures 19 and 20 show the surface pressure distribution

plotted non-dimensionally in two different ways, one as
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(p_-p )a"sing 4 the oth (p,p.) a° . g
(Po-pm) ¥ - an e other as (po-Pw) 53 or six Reynolds
numbers and 3= 0.046.

It is obvious that the first non-dimensional group which
includes the factor 'sinf' accounts for the lateral spreading
geometrically, thus making a comparison with the two-dimensional
case possible, The distribution has a plateau region where the
momentum is conserved approximately as shown earlier in Fig. 18.
At about 90° the pressure rises and the adverse pressure
gradient is maximum at 120°. This causes the flow to separate
at about 155° where the pressure is higher than atmospheric
due to the enclosed recirculating region at the back of the
sphere. 1In this way the flow differs from the two-dimensional
case, where the pressure at separation is sensibly that of the

surroundings.

In these two figures it can be seen that the surface
pressure is a function of Reynolds number in addition to being
a function of "@" as was predicted by dimensional analysis.
However, beyond a certain limiting value of Re, the data

collapse on a single line, thus exhibiting the independence
*

n

of that number. This limiting value is about 4 x 10" and

thus similar to the two-dimensional case (Newman, 1961).

Other measurements (e.g. velocity) were performed at this

Re. No doubt this value depends slightly on boundary layer
development within the slot, but because of the large contrac-

tion ratio this thickness was very small at the exit (see Fig. 5).

*
This value may slightly change for other nozzle configurations.
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The angular position of separation, esep, is shown as a
function of Reynolds number in Fig. 21. As mentioned earlier,
for low Re the velocity at the back of the sphere is very
small, so that all the techniques which were used to detect
separation, failed to respond within an acceptable accuracy.
Therefore the results are shown only for high Re ( > 3 x 104).
It is seen that the separation point is at about 155° + 3°,
the accuracy and the independence with Re being in qualitative

agreement with the corresponding observation for the two-

dimensional case.

4,3.,2 wake Measurements

Fig. 22 shows the non-dimensional mean velocity g— for
m

various §3L— , where Um is the mean velocity at the centre-

line of tﬁézjet. It is obvious that the mean velocity attains
similarity beyond three sphere diameters as if the jet emanating
from the orifice has not been disturbed by the presence of the
sphere. Also shown in this figure is the non-dimensional

velocity profile obtained by Johannesen (1962) for a free

round jet; the agreement is fairly good.

The longitudinal turbulence intensities - are shown in

—
=I5l

Fig. 23 and are compared with the results obtained by Corrsin

(1949) for a free round jet. Two interesting aspects may be
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noted in this figure; the first is that the turbulence is an
indicator of the upstream history associated with the presence
of the sphere; this did not disappear even after seven sphere
diameters which was the range of investigation. The second
feature is that the percentage turbulence in the present case
is less than that in a free round jet. The explanation for
this probably lies in the suppression of the turbulence within

the wall jet of the sphere,

Growth of the Free Jet

The growth of the free jet was found to be 0.0825 compared
to the value 0.082 - 0.092 for that of a free round jet obtained
by Hinze et al. (1949) and Wygnanski (1968). This is shown in
Fig. 24, where the growth is plotted for different gap widths.
It is interesting to note in that figure the location of the
hypothetical origin and its change with the gap width for which

a cross-plot is shown in Fig. 25.

This implies that the jet is much wider than a free round
jet indicating that flows of this sort can be used in practice

to reduce both the mean and the fluctuating energy in jets.

4.4 comparison with Theory for the Two-dimensional Case

Figures 26 and 27 show the results obtained from the
'"Higher Order' analysis (Egs. 2-19 and 2-20), as compared with
the experimental results of Fekete (1963) and the other theories.

The constants in Egs. 2-19 and 2-20 wereevaluated from the
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, .
experimental results of Fekete at 6 = 40° and 27 = 0.0229. It
is seen that the prediction of the velocity decay is fairly
good except for the downstream part. Note that there is con-
siderable scatter in the experimental results, although this

is mainly for moderate values of "8",

The surface pressure distribution is in a very good
agreement except again for the downstream part, being consistent

with the velocity decay.

This shows that despite the assumption of a top hat
profile, the inclusion of the inertia terms has been mainly

responsible for the improved prediction (Newman, 1961).

4,5 comparison with theory for the Ax’-Symmetric Case

The experimental results for the maximum velocity decay
and the surface pressure are now compared with the prediction
obtained by applying 'Newman's First-Order' analysis (Egs.
2-10 and 2-13) and the 'Higher Order' analysis (Egs. 2-14 and
2-17). The necessary initial conditions for the Runge-Kutta
technique and the constants in both analyses were evaluated
at the station 6 = 40°. The latter was chosen on the basis
that the flow was not developed before this position, as
judged from the scatter in the surface pressure distribution
and the growth of the jet. The comparison is made only for
the case of the universal flow, g = 0.046.

Fig. 28 shows the decay of the maximum velocity coefficient
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as predicted by the two analyses. It should be remembered that
the difference between the two equations (2-10) and (2-14) is
that the former is written to the first order in z%%g , While
the latter has no approximation in it, except that inherent in

the linear assumption for the pressure change across the flow.

Obviously, Eq. (2-14) is an improvement over Eq. (2-10)
and it predicts the experimental results fairly well with an

accuracy better than 10%.

Surface Pressure Distribution

As the main aim of the present theoretical work was to
identify the contribution of the various terms in the y-momentum
equation, the integral of this equation, Eq. (2-17), was

computed for each term separately.

In Fig. 29, curve (l) represents the first order analysis,
Eq. (2-13), which does not include any inertia or stress terms.
curve (2) is obtained when the inertia terms are included in
the equation., This exhibits a more realistic trend than the
previous one, although the predicted pressure is still larger
than the actual surface pressure. The contribution of the
shear stress and normal stresses is small, as can be seen from
curves (3) and (4) which are slightly higher than curve (2).
In order to demonstrate that the 'top-hat' profile is not the
cause of the discrepancy between the aforementioned curves and
the actual one, values of lp g%; dy, for various angular
positions, have been computed numerically for the measured

profiles and the results, curve (5), are found to lie close
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to the 'First Order' theory. This was also found by Newman

(1961) for the two-dimensional case.

It may first appear that the prediction of the surface
pressure by the 'Higher Order' analysis in the axi-symmetric
case 1is inconsistent with that in the two-dimensional case
(see Fig. 27) where the theoretical curve is closer to the

experimental one; however, this is not the case.

Let us reconsider the integrated momentum equations.
In both the two-dimensional and axi-symmetric cases the

surface pressure is predicted by means of the integrgted Y-

du d<u,
momentum equation which involves terms in 1 and .
dx dx2

These inertia terms are quite dominant as has been shown.
Therefore, in order to evaluate them accurately, the velocity
must be predicted with a very high degree of accuracy, for the

accuracy of igs derivatives to be acceptable, although
d=u
ax2
unless the x-momentum equation is computed using a more

accuracy in is less important. This cannot be achieved
accurate assumption for the pressure variation across the

flow than has been used, It was seen in Fig. (26), however,
that in the two-dimensional case the actual slope of the
velocity curve is nearly constant (theory also gives that

slope accurately); hence the second derivative of the velocity
is negligible and the approximation for the pressure variation
écross the flow is quite valid, Consequently, tye predicted

surface pressure is expected to be in good agreement (Fig. 27).
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For the axi-symmetric case, however, it is obvious from Fig. 28
that, although the velocity is predicted more or less accurately,
the slope at the starting point is in tremendous error. In order
to be sure that this is in fact the reason for the failure of

Eq. (2-17) to predict the surface pressure, the value of %;} at
the starting point, estimated from the measured velocities, was
inserted in the equation and, surprisingly enough, the resulting
surface pressure was higher than the experimental one by only 3%,

du
i,e. the value of Edg. (2-17) with the correct value of af’is 0.59

at 8 = 40°.

To summarize the problem, if an accurate prediction of the
surface pressure is sought, the term %5 in the streamwise momen-
tum equation should probably be evaluated by means of the com-
plete radial momentum equation, so that the velocity and its
derivatives are estimated accurately and consequently the surface

pressure is well predicted.
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4.6 Momentum Balance

In order to check the momentum === —
| | /Entrain
balance, two control volumes were | m
’ | \ / en
chosen as shown in the opposite ; |
figure. }
JO 1
For the control volume 1 , I
I
neglecting the skin friction over I
the sphere and the entrainment, we |
|
have !
) Control J/ F \_.Control
= F=J,-J; (i) volume 2 Volume 1
where
F is the force exerted by the sphere, calculated by

integrating the surface pressure (neglecting skin

friction)

JO is the momentum in the fully developed wake,
estimated by integrating the mean velocity profile
there at different stations. It was found to be
nearly conserved downstream within the accuracy
of the measurements for éér >3

Ji is the momentum out of the nozzle and equals the

following surface integral.

1
J; = f(p+pU2) da = fpo-i-%p(Uz—Ve) da = p A +f§p(U2-V2) da
A A A
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where

po is the stagnation pressure in the plenum chamber
(neglecting slot boundary layers which were thin,
Fig. 5)

A is the area of the nozzle exit

P is the local static pressure at the nozzle exit

U is the component of the mean velocity at the
nozzle exit and is parallel to the axis of the
nozzle

\'/ is the component of the mean velocity at the

nozzle exit and is perpendicular to the axis of

the nozzle

The integral, J'%p(UE—Ve) dA, was assumed to be small and

A
was neglected. It was impossible to check this, however, with

the experimental techniques used.

Equation (i) was checked for three different gap widths and
the unbalance, [(J0+F) - J; ], was found not to exceed 10% of
Jo as shown in the following table. This unbalance is due in
part to the neglect of the aforementioned integral which would
increase the value of J, (UMV over most of the nozzle exit).
Neglecting the skin friction over the sphere would increase

the value of the force "F", but this increase would be very
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small (see section 4.5).

o Jo'

Re M/, | 3 /3 | F/3; Er (T -F )] 3,

y
y

0.331 0.322 0.707 9.75%
0.046 5.8x10 0.763 0.55 0.50 9.02%
0.117 | s5.9x10% | 1.178 | 0.916 | 0.165 8.64%

0.0116 5.6x10

In order to check the momentum 'Jo' in the wake, another
control volume (2) was chosen. The momentum through its up-
stream face was computed from the measured velocity profile
there, and the surface pressure at the back of the sphere,
This momentum was found to be 1.42 at §'= 0.046, that is, the
unbalance does not exceed 6.8% of J_ (if skin friction is

neglected).

The existence of any thrust augmentation was checked by
comparing "Jo“ with the momentum "M" coming out of the nozzle
with the sphere removed, for the same energy input to blower.
This momentum "M" is included in the above table. It is seen
that no thrust augmentation can be obtained with the present
configuration, even though the pressure over much of the sphere
is below atmospheric. With another nozzle configuration the
force on the sphere may be towards the nozzle as shown by the

simple demonstration in Fig. 1.
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5. CcConclusions

A universal flow, independent of inlet conditions, was
set up. The ratio of the gap width to the sphere radius for
this flow was found to be 0.046 and the associated growth of
jet thickness at the front of the sphere agreed with that of

the plane radial wall jet.

It was confirmed that the velocity profiles are similar
over a large portion of the sphere as is usual for such
flows. They show good agreement with Glauert's theoretical

chosen to be 0.12, for plane wall jets,.

prediction, with ym/2
The growth is found to be nearly the same as that of the
two-dimensional wall jet over a circular cylinder implying
that the stretching of the eddies increases the entrainment
sufficiently to compensate for the lateral expansion at

least up to 8 = 90°. The longitudinal turbulence intensities
are in qualitative agreement with those for the two-dimensional
and for plane radial wall jets. The flow separates at 6 = 155°
forming a bubble at the back of the sphere and an axi-symmetric
jet forms downstream. Hot wire measurements in the wake showed
that the mean velocity profile becomes similar after three
sphere diameters downstream of the nozzle exit, whereas the
longitudinal turbulence does not attain similarity up to seven
sphere diameters, which was the range of investigation. The
theoretical analyses, namely the 'First Order' and the 'Higher

Order' have brought out the following points which relate to

both the two-dimensional and axi-symmetric cases:
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The 'top-hat' profile, suggested by Newman (1961), is
very adequate for an integral technique and is not
responsible for any gross discrepancy in predicting

the velocity and surface pressure,

The most important second order terms in the radial
momentum equation are the inertia terms as was
presumed by Newman; while the turbulence terms

account for very little.

In order to obtain a reasonable prediction for the
surface pressure distribution, the inertia terms
must be estimated fairly accurately. This cannot
be achieved unless the pressure term in the x-
momentum equation is calculated using the full
y-momentum equation which is analytically rather
tedious. However, if the slope of the velocity
decay is nearly constant, as in the two-dimensional
case, a simple approximation may be made for this

term and reasonable prediction is obtained.
The investigation could be usefully extended by:

Performing comprehensive measurements of turbulence
intensities over the sphere, to get more insight in
the stretching of the eddies. This would be also
valuable for estimating more accurately the con-
tribution of the stress terms in the momentum

equations.
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Reapplying the higher order analysis with the correct

value of gs in the streamwise momentum equation.

Replacing the term %E by its exact value in the full
integral technique, thus eliminating the instability

(section 2.5) of the numerical solution.

In the other direction, by studying axi-symmetric
flows over other shapes of practical as well as

theoretical interest.

Making a more detailed investigation of the flow
associated with the demonstration in Fig. 1, to
determine if this could produce any thrust augmen-

tation.
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Appendix I

Description of Apparatus

The experimental arrangement, shown schematically in
Fig. 2-1, consists of an 8.5 in. diameter bowling ball
supported on the end of a'% in, diameter steel pipe, which
was held in bearings on perforated plates in the air settling

chamber.

The air was supplied from a centrifugal blower powered
by a 10 H.P., constant speed, 3 phase induction motor. The
flow rate was varied by a throttle valve installed at the
outlet of the blower. Four streamlined wooden spacers were
later inserted between the valve and the blower outlet for
bleeding off excess air, thus eliminating any surge problem.
This arrangement permitted variable jet speed control from

0 to 320 fps.

The perforated plate (3) was placed at the central section
of the expansion in order to reduce the adverse pressure
gradient and prevent separation of the flow. The 16:1 contrac-
tion chamber was made from a 10 in. length of 8 in. diameter
Plexiglas round bar and it was based on the theoretical
analysis developed by Jordinson (1961) for large contraction
ratios. The outside of this contraction chamber was shaped

so as not to inhibit entrainment and it was terminated by a



2 in. diameter nozzle.

The positions of the perforated plate (1) and (2), of f% in.

thickness and 33% open area, could be adjusted to compensate for
slight bending of the pipe due to the weight of the sphere (see
Fig. 2-2). The pipe could thereby be located accurately in the
centre of the nozzle and when this was done axial symmetry of

the flow was obtained (see section 3.1.2). A locking nut was
provided at the upstream perforated plate to prevent longitudinal

motion of the pipe.

Two deep-cell honeycombs, of 0.5 in. thickness and % in.
cell size, were installed one at the outlet of the expansion
to remove swirl in the air flow originating from the blower,
and the second at the inlet of the contraction chamber to mini-
mize divergence of the flow after passing through the perforated

plates.

The forty surface pressure tappings, of 0.015 in. diameter,
on the sphere whose angular positions are shown in Fig. 2-3,
were connected to four rows of pressure tappings on the surface
of the plexiglas tube, through tygon tubings threaded carefully
inside the central pipe. The whole apparatus was fixed to a

rigid table.

The traversing gear was mounted on a 2.5 in, diameter
steel pipe welded to a square steel plate 24 x 24 x 0.5 in.

In order to eliminate any vibrations in the pipe, its top



was tied to the plate with four guy-wires adjusted with turn
buckles. The steel plate had three wooden pads, resting on
smooth sheets of plywood screwed to the floor of the laboratory,
to ensure the stability of the traversing gear. The latter,
incorporating a slider and double ended dial gauge, permitted

accurate radial location of the measuring probe to 0.001 in.

(see Fig. 4).

The static pressure in the plenum chamber was measured
downstream of the perforated plate(l).This pPressure was close
to the total pressure of the core flow emerging from the nozzle
(within 0.4% of the dynamic pressure). The stagnation tempera-
ture was measured by means of the sensing element of a tele-
thermometer inserted through the nozzle., Pitot pressure,
referenced to the surrounding atmosphere, was measured to an

estimated accuracy of 1% by vertical and inclined manometers.

The hot wire measurements were made using a DISA (55A01)
constant temperature anemometer, a DISA (55D10) linearizer,
two RMS-Meter (DISA 55D35 and Hewlett-Packard 3400A), a Hewlett-
Packard (2212a) voltage to frequency converter, a Hewlett-Packard
(5216A) digital counter, a Hewlett-Packard Oscillator for long
time integration and a Hewlett-Packard (562A) printer. This

electonic circuit is shown in Fig. 3.



Appendix ITI

Formulation of the Equations used in the
Full Integral Technidue

a) Velocity Profiles Assumed

2
Quter Layer: U = Sech 71

---------- m
where 7(-_—, 0.88 Y-Ym
L

L= Ym -Ym

Inner Layer: (Ym)

where N =11

b) Equations

The first equation is obtained by integrating the xX-momentum

equatlon (2-6) from O to y_ as follows:

f (a9 2 (v s.ne)dy+[<°+v) uvsme] [ <°*>f>5m9 p )

3 Ym
+ [ (Q-fy} _E Slne] (II-l)

a 0
Assuming a linear variation for the static pressure plus

normal turbulence intensity across the flow, i.e.

57 3 (-4



II-2

where "E“ is considered to be proportional to ym/2 with a
constant of proportionality of 2, representing approximately
the average point of the boundary of vortical flow (Guitton,

1964). The total pressure at this distance "E" from the surface

is close to that of the surroundings.

After substitution of the velocity profile (inner layer),

(II-1) becomes

oF %_l;lm + Co2 % = C3 (11-2)

where

Cy
Ca
Cs

121 UmYm
13%12

3 Ug , Ym %s
12 2E(L+ym>
M Up m Cote,,(y_ y,,,)d(&[ D)_Yn de’IFn - Tw

12x13  a 2E(L+Ymy dx P

Following Gartshore and Newman (1969), the surface skin friction

is represented by

E%UE - 0.0257 (ygpyg)’é

The value of Th is obtained from the measurements of shear
stress by Guitton (1970) in wall jets over logarithmic spirals.
He found that T varies from " - Tw“ to " - 4Tw" in the region
where the pressure coefficient is constant (plateau region).

As a preliminary attempt a constant value of " - 2Tw" was

chosen. (Tm is the shear stress at the maximum velocity point.)

Similarly, the second equation is obtained by performing

the integration in Eq. (II-1) from ¥m to =, and substituting
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the velocity profile (outer layer). This equation reads

4 C“Jm m
C = 4 CS ____dy = C6 (11_3)
where

C4 = 2Uma j(uy Sech?) dy + 1 (CHYm) Um Y
- 3.52
Cs 222 Uma. f(u )L) Sechntanhn dy _ 120(0+ym)
4 Ps [(a+E) E_ (a4¥n)y, _ (a+£)*, (a+ym)“]
12

p ECLom | 3 3 12
2 2
Ce= _Uaa cot@jym(ng) Sech“n dy _ 4 aU.?. Qa gl_l-

X
_ M (@¥m)’ Ul cotg (a+ym)377n 1 dgb,zg) (a+E)>- (asn
12 g2 P "3 Tdx

d(ps/P) _bs 1 (Q+EPE _ (a+¥m)} (a+e)4 q+ym)
[E dx ,D EZL+Vm)dx][ ; 3 Y 12 12

The above integrals and those following are computed numerically

using Simpson's Rule.

Now, the two equations (II-2) and (II-3) have two unknowns
namely "Um" and "ym" and are solved simultaneously using a 4th
order Runge-Kutta technique. "L" and %ﬁ in those equations are
evaluated from a polynomial which expresses the rate of growth
as found experimentally, Pg is obtaé;ed from the third equation

which will be formulated later and —ai is found by an iteration

procedure, at each step of the numerical technique, once Py is

known.

The third equation, form which Pg is evaluated is obtained

by integrating the y-momentum equation (2-4) from O to «» in two
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steps: from O to Yo then from Y, to », as follows

sz o 2
a_ UV d UaVdy_[ Y dy_ [ LZ d
!my Y dy 4 j;m y - y

o a+y

3] [ g+ a0

+(cot9-t)fIZP dy

a+)

(TI-4)

where the term (u2ﬁv2) to be equal to uv (Guitton, 1970).

‘The value of each integral in Eq. (II-}) is calculated

separately as follows
Ym

H Q aV = { ym Cot dUm 121 Um ym Cose
lJawU dy _séU 093— 288 a osc@

Ril Ua Yn Cot@ d¥m
+'2855 " a 0 dx

noting that the velocity "V" is obtained by integrating the

continuity equation (2-5).

v - a_é T d =Umdu'l' UdUm_ Ur Um d.an
V- e dlh) &y =Un gy Urgin - B ir o
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Q/

T fel¢)
where o is assumed to be equal to Vip S5y

and Vo is the eddy viscosity which is a function of "x"
U L
only and equals ?ﬁé(Newman, 1967). One could change vp to
allow for curvature, but this has not been adopted in the

present analysis.

V- I&_ ) (%) dy = _1~76(V_Ef%li_m+ Un dV7_ mu dLU’ Sechzntanhn‘

176 Uml/ °38dLI“ .
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+ .76 Lm T ( L)I(Sechn 3tanhn5ech7z 5
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(Coth - 1)[{%’ dy = (Cotf- 1) Yrln

il - (Cotd - 1)fr//3 dy = - 1.76 (Cotf-1) L'J__'"U.rfSeqfn tanh?) dy

a+y
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