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Abstract

The primary objective of this paper is a [ocused introduction to
the logistic regression model and its use in methods for modeling the
relationship hetween a dichotomous outcome variable and a set of co-
variates. ‘The approach we will take is to develop the model from a
regression analysis point of view. \lso in this paper, an estimator of
the common odds 1atio in one-to-one matched case-control studies is
proposcd. The counection between this estimator and the James-Stein
estimating procedure is highlighted through the arguiment of estimating
functions. C‘omparisons are made between this estimator, the condi-
tional maximum likelihood estimator, and the estimator ignoring the
matching.

Résumé

L/objet principal de cet aiticle est une introduction au modele de
tégression logistique et deson utilisation dans les mévhodes de modélisa-
tion des 1elations entre les conséquences d'une vanable dichotomique
et un ensemble de covariates.  Lapproche que nous utiliserons est
de dévelonper le modele a partiv du point de vue d'une analyse de
régression. Aussi. dans cet article, un estimateur du tapport entre les
probabilités ot le couplage un a un de Pétude du cas de contrdle est pro-
posé. La connexion entre cet estimateur et la procédure destimation de
James-Stein est mise en lumicre au travers de Vargument. des fonctions
d‘estimation. Les comparaisons faites entie cot estimateur, estimateur
du maximum de vraisemblance conditionnel et Festimateur ignorant
Fassortiment.
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Chapter 1

The Logistic Regression Model

1.1 Introduction

Regression methods have become an integral component of anv data analysis concerned
with describing the relationship hetween a response variable and one or more explanatory
variables. It is often the case that the outcome vatiable is diserete, taking on two or more
possible values. Over the last decade the logistic regression model has hecome, in many
fields, the standard method of analysis in this situation.

Whiat distinguishes a logistic vegression model fiom the linear regression model is that
the outcome variable in logistic 1egression is binairyv ot dichotormouns. In this thesis, we
express binary variable as present (y = 1) and absent (y = 0). Phis difference between
logistic and linear regression is reflected both in the choiee of a parametiic model and in the
assumptions. Once this difference is accounted for, the methods emploved in an analysis
using logistic regression follow the same general principles used in linear regression. Thus,
the techniques used in linear 1egression analysis will motivate our approach to logistic

FeRression.

1.2 The Logistic Regression Model

(onsider a collection of p independent variables which will be denoted by the vector

X' = (& orp). For the moment we will assume that cach of these variables is

at least interval scaled. Let the conditional probability that the outcome is present be
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denoted by P(Y = 1|r) = =(x). Then the fogit of the multiple logistic tegression model

is given by the equation

gy = Jo+ fa + o+ 4 Sy, (L)
in which case
(Mx)
() = ————— 9
w(x) = o (12

If some of the independent variables ave discrete. nominal seaded variables such as race,
sex, treatment group, and so forth, then 1t w mappropriate to mdude them n the model
as if they were interval scaled This s hecause the numbers used to vepresent the varions
levels are merely identifiers, and have no numenc signilicance I this situation the method
of choice is to use a collection ol design variables (or dumiy variables). Suppose, tor
example, that one of the independent variables is tace, which las been coded as “white™,

il

“black” or “other.” In this case two design variables are necessarv, One possible coding,
strategy is that when the respondent is =white™, the two desien vanables, Dy and Dy,
would both he set to zero; when the respondent as “black.™ 1) would be set equal 1o 1

while D, would still equal 0. when the tace of the respondent s “other” we would use

Dy =0 and 1, = 1. Table 1.1 illustiates this coding of the desian variables.

Table 1.1 An Example of the Coding of the Desipn Varables for Race, Coded at Thiee

Levels.
Design Variable
RACE Dy D,
White o 0
Black | 0]
Other { |

Most logistic regression soltware will geuctate the design vatiables, aud some programs
have a choice of several different methods.

In general, if a nominal scaled variable has b possible values, then k-1 design vatiables
will be needed. This is true since, unless stated otherwise. all of cur models have a

constant. term. "The notation to indicate design variables to he used in this text follows.
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Suppose that the )™ independent vaviable. o) has b, levels, The k-1 design variables will
be denoted as D, and the cocflicients for these design vanables will be denoted as 3,4,

tvariable being

w=1.2,. k= 1. "Thus. the logit o1 a model with p vanables and the
discrete wonld be

hy—1
(/("') = /-;U -+ ,HI-I'! + ot Z ‘f/ul)/u + o+ /’,-'l'/:

u=1
When discussing the multiple logistic regression model we will, m general, suppress the
sumsnation and double subscripting needed to indicate when design: variables are being

nsed

1.3 Fitting the Logistic Regression Model

Assume that we have a sample of n independent observations of the pair (a,,0), @ =

PP . . . ]
1,2, .00 Fitting the model requires that we obtain estimates of the vector 7 =
B0, B1ve o ot) The method of estimation used is manimum hkelihood. The likelihood
/ !

function is

=1
The log likehhood is defined as
L) = l[l(,3)] = Z{q, fr(e)] + (0 —y)In[l = a(x)]} (1.3)
=1

There will be p+1 likehhood equations which are obtained by differentiating the log
likelthood Tunction with respect to the p+1 coellicients. The likelihood equations that
result mayv be expressed as follows.,

I

Slu - w(xp)] =0

1=

and

n

Z-"u[.‘/: - F(Xi)] =0

=1

for ) =1.2,....p
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The solution of the likelihood equations requires special purpose software wlhich may
be found in many pachaged programs  Let A denote the solution to those equations
Thus. the fitted values for the multple togistic 1egression modet are 7(x3). the value oi
the expression in equation (1.2) computed using, 1oand Xj

Now we will consider the method of estimating, the vatiances and covatances of the
estimated coefhicients follows from well-developed theory of maximum likehihood estima-
tion. This theory states that the estimators are sbtamed from the matin of second paitial
derivatives of the log likelihood function. 'ese partial detivatives lrave the following, gen

cral form

atL(
—(7;2——:—2_‘1 {l — &) (1.1)
and
L
98,043, (H Z S Y (13)

=1

for yj,u=0.1.2,....p where 1, denotes m(x;). Let the (p-+1) by (p F1) maliy containmg,
the negative of the terms given i equations (1 1) and (1.5) he denoted as 1(/3). This
matrix is called the information matrix. 'he vartances and covarrances ol the estimated
coeflicients are obtained from the mverse of this matoy which we will denote as 32(/4) -
I71(/3). Except in very special cases it is not possible to witte down an explicit expression
for the clements in this matrix. Henee, we will use the notation a?(/,) to denote the )™
diagonal clement of this matrix, which is the variance of 3,. aniel rr( ) to denote an
arbitrary ofl-diagonal element. which is the covanance ol S, and 4, The estimators of

~

the variances and covatiances. which will be denoted by 70 1) are obtamed by evaluating
(3) at 4. We will use 64(4,) and a(- ,.J Jogow = 00002, Lopto denote the valucs i
this matrix. For the most part we will have occasion to use only the estimated standard

crrors of the estimated coefficients. which we will denote as

, -

SE(3,) = [654.3,)] (1.0)

for y =0.1.2.. .p
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A formulation of the information matiix which will be useful when discussing model
vyt Cpee ot T ’ . I
fitting and assessment of fit is I{4) = X' VX whete X s an 1 by p+1 matrix containing
the data for cach subject, and V is an n by n diagonal matrix with general element

7,(1 — #,). That is, the matrix X is

| iy
X = Iy Uap
| R Pop
and the matrix Vis
(!~ 7)) 0 0
V- 0 (] — 7)) 0
0 0 . Aol = 7))

Now we present an example that will illustrate the formulation of a multiple logistic
regression model and the estimation of its coeflicients, We use o subset of the variables
from the data for the low birth weight study. The goal of this study was to identify
risk factors associated with giving birth to a low hirth weight baby (weighting less than
2500 grams). In this study data were collected on 189 women, 1, = 59 of which had
low birth weight babies and ng = 130 of which had normal birth weight babies. Four
variables which were thought to be of importance were age. weight of the subject at her
last menstrual period. race, and number of physician visits during the first trimester of
the pregnancy. In this example, the variable race has been recoded using the two design
vatiables shown in Table L1, The results of fitting the logistic regression model to these

data are given in Table 1.2,
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Table 1.2 Fstimated Cocefficients for a Logistic Regression Model Using the Variables
AGE, Weight at last Menstrual Period (W), RACE aud Number of First Trimester
Physician Visits (I'TV) from the Low Bitth Weight Data Set

Estimated Estimated
Variable  Coelficient  Standard Firor  Coell./SE
ACE -0.021 0.031 -0.71
LWT -0.011 0.007 200
RACE(l)  1.001 0.197 2.02
RACE(2) 0.133 0.362 1.20
FTV -0.0H9 0.107 -0.30
Constant 1.295 1.06Y 1.2
Log-likelihood = —111.286

In Table 1.2 the estimated coefficients for the two design variables for race are indicated
in the lines denoted by “(1)” and “(2)." The estimated logit is given by the following

expression:

a

G(x) = 1.295 —0.021 x AGL = 0.011 » LW+ i.008 x Dy,
+0.433 x Dyy — 0.019 x #1V

where Dy, i = 1,2, denotes the two design variables for RACE. Refer Table 1.2 for coding

D3, and D3p. The fitted values are obtained using the estimated logit, g(x).

1.4 Testing for the Significance of the Model

Once we have fit a particular multiple (multivariate) logistic regression model, we begin
the process of assessment of the model, The first step in this process is nsually assessing

the significance of the variables in the model. The test is based on the statistic ¢/

(=-21In

(likelihood without the vuri:ul)lv)] (1.7)

(likelihood with the variable)

Under the null hypothesis that the p “slope™ coeflicients for the covariates in the maodel

are equal to zero. the distiibution of (7 will be chi-square with p degrees of freedom.
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As an example, consider the fitted model whose estimated coefficients are given in
Table 1.2, For that model the value of the log likelihood is L = —~111.286. A second
model, fit with the constant term onlv. yields L = —117.336. Henee G = =2[(—117.336) —
(—111.286)) = —2(=6.05) = 12.1. The p-value for the test is P\3(5) > 12.1] = 0.033
which is signilicant at the o = 0.05 level, Rejection of the null hypothesis in this case has
an interpretation analogous to that in multiple linear regression: vwe may conclude that
at least one, and pethaps all p cocflicients are different from zero.

Before concluding that any or all of the coelficients are nonzero. we may wish to look at
the univariate Wald test statistics, W, = /QJ/S'A[','(BJ). These are given in the last column
in Table 1.2, Uinder the hypothesis that an individual coeflicient is zero, these statistics
may give us an indication of which of the variables in the model may or may not be
significant. Il we use a critical value of 2. which would conclude that the variables TA\VT
and possibly RACE are significant. while AGE and FTV are not significant.

Considering that the overall goal is to obtain the best fitting model while minimizing
the number of parameters, the next logical step is to fit a teduced model containing only
those variables thought to be significant, and compare it to the full model containing all

the variables. The results of fitting the reduced model are given in Table 1.3.

Table 1.3 Estimated Cocefficients for a Logistic Regression Model Using the Variables
LWT and RACE from the Low Birth Weight Data Set.

Fstimated Fstimated
Variable  Coellicient  Standard Error  Coell./SE
LW'T -0.015 0.006 -2.37
RACE(D) 1.081 0.187 2,22
RAC(2) 0. 181 0.356 1.35
('onstant 0.806 0.813 0.96

Log-likelihood = —111.630

The difference between the two models is the exclusion of the variables AGE and FTV
from the full model. The likelihood ratio test comparing these two models is obtained

using the definition of G given in equation (1.7). It will have a distribution that is
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chi-square with 2 degrees of freedom under the hypothesis that the coetlicients for the
variables excluded are equal to zero. The value of the test statistic comparing the models

in Table 1.2 and 1.3 is
(= =2[(-111.630) — (—111.286)] = 0.688

which, with 2 degrees of freedom. has a »-value of P[\#(2) > 0.083] = 0.71. Since the
p-value is large, exceeding 0.05. we conclude that the reduced model is as good as the full
model. Thus there is no advantage to including AGE and IFT'V in the model, However,
we must not base our models entirely on tests of statistical significance, As we will see
later, there are numerous other considerations that will influence our decision to include
or exclude variables from a model.

Whenever a categorical scaled independent variable is included (or excluded) from a
model, all of its design variables should be included (or excluded); to do otherwise implies
that we have recoded the variable. For example, if we only include design variable 1,
as defined in Table 1.1, then race is entered into the model as a dichotomons variable
coded as black or not black. If & is the number of levels of a categorical variable, then
the contribution to the degrees of freedom for the likelihood tatio test Tor the exclusion
of this variable will be A-1. For example, il we exclude race ronm the model, and race is
coded at three levels using the design variables shown in Table L1 then there would he
2 degrees of freedom for the test, one for cach design variable,

Because of the multiple degiees of freedom we must be careful in our nse of the Wald
(W) statistics to assess the significance exceed 2, then we conld conclude that the design
variables are significant. Alternatively, if one cocfficient has a W statistic of 3.0 and the
other a value of 0.1, then we cannot be sure about the contribution of the variable to
the modcl. The estimated cocefficients for the variable RACKE in Table 1.3 provide a good
example. The Wald statistic for the coefficient for the fust design vatiable is 2,22, and 1.35
for the second. The likelihood ratio test comparnng the model containing LW and RACIE,
to the one containing only LW'I' yields (¢ = =2[=111.315 — (--111.630)] = 5.43 whici,
with 2 degrees of freedom, yields a p-value of 0.066. Stiict adherence to the o = 0.05 level

of significance would justify excluding RACE from the model. However, RACE is known
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to he a “biologically important™ variable. In this case the decision to include or exclude
RACE should be made in conjunction with subject matter experts.
The multivariate analog of the Wald test is obtained from the lollowing vector-matrix

calceulation

no= YIS
= F(X'VX)3

which will be distributed as chi-square with p+1 degiees of freedom under the hypothesis
that cach of the p+1 coefficients is equal to zero. Tests for just the p slope coefficients are

obtained by eliminating 4y from o and the relevant row (first) and columa (first) from

(X'VX).

1.5 Interpretation of the Coefficients (3’s and §)

1.5.1 Interpretation of ;i’s

Let’s consider an example of a cohort study (Framingham) of 12-year incidence of coronary
heart discase (CHI)) of 712 men aged 40-19 at start of study.

88 of these men developed CHD within 12 years. Which of the following seven factors
measured at initial visit affect the inddence of CHD.

Ny=age (in years)

Xay=cholesterol level

Xy=systolic blood pressure

Xy=relative weight

Xs=hemoglobin level

Neg=smoking(0=noue, | < lpack. 2= lpack.3 > Ipack per day)

Ne=LECG(0=normal,l=abnormal)
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A logistic regression analysis produced:

parameter estimate SE

5o 13,2573

e} 0.1216 00137
1, 0.0070 0.0025
N 0.0068 (.0060
i, 0 0257 0.0091
I -0.0010 0.0098
3 0. 1223 0.1031
1 0.7200 0. 1009

[ Note that crude 7 = 88/712 = 0.1180)

( —~1'3,257340 1216 VL0 0070\ 54 40 7206\
T =

| +(—|sz'.7s+u|z|n\,+ +0 7200\

estimates the probability of CHD in idence in the nest 12 years for some individual (male)
with characteristics (X, Xo, ... X7)

For example, to estimate the probability of CHD in the next 12 years for a 45 year old
man with cholesternl level = 210, SBP = 130, relative weight = 190, hemoglobin level =

120, nou smoker (Xg = 0) and normal ECQG (X7 = 0), we compnte

o4+ Xy 4 o+ X
= 132753 4 . 1216(15) + 00T0(200) + .. + 122310 + .T206(0)

= 29313

Thercfore # = ¢ 72913 /(1 4+ (7291 = 0183
For a man with the same characteristies as above, but who simokes more than 1 pack

per day,

/90 + /;1 .\,1 + ...+ /Q','.\,';'
= —13.2753 + 12160 15) + .00700210) + ... 4 . 122303) + .72006(0)
= —|.7144

7} — (,-1.7144/(] + C—l.'?lflfl) = .1526
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Therefore, measures of association for smoking > 1 pack versus none are

RD = .1526 -.0133 =.1013 (vrisk difference)
A2 ,
RR = — = 3.16 (risk ratio)
04183
526 —.152 )
OR = 1526711 = 1520) = 3.55 (odds ratio)

.0483/(1 — .0183)
(Note that RR = 3.16 &~ OR = 3.55 since & in the bascline (L0183) is relatively rare)
Notice that

(.H(,(J) — (.uu(s) = (1 27 _ 1.55

= OR ol discase for smokers of > | pack.
Why is OR = ¢fe¥e 29

Recall that

(ot Nt N

| + (110+H1 Ny 49\
!

= l-r= -
| 4+ ¢t h Xt 57 Vs
N T — ()10+lﬂ Vi, +3: V5
| —n

= In _1_73'_ =M+ 45N+ ...+ /‘)’7.\’7

= = logit(r)

Then 33 represents the mean change in logit(7) per unit change in Xg when all other
variables are held fixed.
T'herefore, for non-smokers.
(") = g + ANt + o Hs(0) + I \+
l — 7w,

and for heavy smokers (> 1 pack)

Ths p , . ,
In( : ) =G+ X+ L86(3) + N
1 — Wi
Therefore,
() (=) = 344,
I — The ns
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77/“/(1 - 77-/:-.)
N,,,/(l - 7::\)
7"/;5/(' - 7'-/“)_ = 3,

T ’Tus/(l - T-',,,)
[ SRR

"odds—1atin”

= In( ) = 34,

Note that ¢** is the odds ratio ol discase for heavy smokers to non-simokers irrespective
of the other characteristics, as long as they are the same. Note that this interpretation
assumes no interaction (effect-modification).

In general, the odds-ratio of discase for an individual with characteristies o} %, ., 0g
to an individual with characteristics .2, ...y is given by

o= (.’il(ll’—lll)+11_x(l;—tl_,)+ +r1;‘(12—l:‘)
=

The most common use of this result is when Ay represents a dichotomons "exposure”
(1=yes, 0=nonc) and we are interested in the discase-exposure odds-ratio for two individ-
uals who are differently ”exposed” and equal on the remaining variables. This adjusted
odds-ratio is then

In our example, the odds-ratio (heavy smoket to non-smoker) is then

/11‘(1—-0) — (/f“

U = (

In our example. the odds-1atio (heave smoker to non-smoker) is then

I (8- 31
= (0

1.5.2 Interpretation of /3,

The logistic regression approach was developed for cohort studies (see the example). What
does [, cstimate 7
b = logil(m) where 7 is the probability of discase when all the Xs are ()
Seems unintercsting, but it allows us to estimate probabilities of discase (7's) for
individuals with certain characteristics. IFrom these, we can compute RD, RR, OR.
It has been shown that logistic tegression can he nsed for case control studies with the
only difference that 3y will change; the other gy, 4., ..., 30 will be the same as in a cobort,

study.
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In fact for a case-control studs.

logit(m) = 33+ 3 X1 + 5 XNo+ o+ BN,

where 5 = fly + hl(%f), Ho=/% ol cohort study, #y=sampling [raction for cases and
Oy=sampling fiaction for controls

Therefore, because we do not know 3y exactly (unless we know 0 aud 4,), we cannot
estimate ©'s and hence we cannot estimate RD and KR.

However, we know that we do not need © to compute the OR sinee OR = (L filzr-2)
which does not depend on .

I is principally for this 1cason that we have concentrated our efforts on the odds-ratio
as our measure of the exposure-discase association.

Recall:

The logistic model specifies that the probability of discase depends on a set of variables
X1, Xy, o Xy by

ottt +i

| 4+ (ot iy

e . .
= o+ AN+ N

= In

N’
logit(m)

where ¢ odds-ratio of discase for a unit change in X,
We now examine how the logistic model deals with interaction, how the parameters
are estimated, tests of significance are conducted and conflidence mtervals obtained. We

will also sce how to set-up the computer for logistic regression.

1.6 Interaction

First we must discuss the multiplicative property of the logistic model. Consider the
following model
l()g?t(ﬂ') = »’1() -+ 4’] .\'l + /’2\2 + .. + ,xfk.\.[

1 present . I present

‘here Xy = =
where Ay 0 absent V2 0 absent
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Suppose that X; and X, are two different agents of exposure (N =smoking,
I 8 | 1 &

X,=drinking) and we want to assess the elfects of Xy and Xy separately and jointly for

fixed values of Xs,.... Xy, We know then that the oddsratio tor N70NT to N, XS (other

X’s remaining the same), is
IO VRGN = )

By making A7=0 and X)=0. the refertent category (i.e. unexposed by both Ay and
X3) (non-smoker, non-drinker)

Then

3 . -
" is the odds-ratio for .\ alone

i the odds-1atio for V) alone

4

and

A5 the odds-ratio Ny and X, jointh

Note: (h+m ?L_ e + P

Unlike in lincar regression where the effects are additive, m logistic regression, they

are multiplicative in the odds-ratic. i.c.

TR 3 3 iy
¢ H!z:{ ok

EX(’]]“])](‘ ” ‘/'Slnul.l =:;~ oy o = l- “"‘“ Ogohe dinh = 12
Note: this is true only if no interaction is ptesent.,
) no interaction s |
Interaction terms in logistic regression arve specified in the same wayv as in linear re-
&
gression. Consider the familiar context where Xy represents the hinary exposure (1 or
0) under study and X,. ..., X) ate the potential confounders The model with first-ordes

interactions of X is given by

logit(m) = do+ KX+ 4LX, + .+ /40N,

+(12.\'1.\,2 + 5,\,] \; 4+ ...+ Oy '\,l \’A
A A
= fy+HXi 4 Z a4.X + Z a XX,

=2 =2
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1=

h A
= 'j() + ('jl + Z (lt-\'l) -\.l + Z: '7’1-\’1
¢ 2

il ts nol a constanl
valuc anymorc bul
depends on valucs

of Xoyoonn X

The odds-ratio for exposure (Xy) is then

A
g+ Z a\,

§r = ¢ =1 = Y

Note that the X,’s for which a, is non-zcto are called effect-modiliers of the discase-

exposure relationship.

Ou wodel can now be specified in the following general way
logit(m) = coposurc + confounders + o[ [fecd-modificrs
I'or a continuous .\,
o= e M and Ine =4 a) )\,

i.e., the log ol the odds ratio is a linear function of X,.

1.7 Estimation

The point estimation of the parameters in logistic tegression is achieved by the method of
maximum likelihood (in contrast with the method of least squares in linear regression).
This method is based on the likelihood function of the % for our sample. This function
is the probability of observing the outcome of our sample and this probability (likelihood)
is a function of the /3's,

Recall that Y is our outcome (dependent) variable. In our sample, we observe
Uts U2 Yae -l Where cach g, is cither a L or a 0 with respective probabilities ®1y, 72, -+, 7p

ol being, 1.
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The likelihood of observiug such a sample is

L o= a'(1 =)' 7z () — w70 il ) e

“u ‘o
n
— Y - \l=-y
= Hﬂ'll(l““-,) !
1=1

Example of maximum likelihood estimation

171

L=T1]="(1-=)" »

(=1

Model: 7, = 7 for all subjects i=1.....n.

H
L= J[="(1—=)
=1

— R.Z'h(l _ T")“ E:U.

lnl,::Zl/,ln(n')Jr(n ——}:U,)ln(l T

We wish to find the value of = which masinizes the hkelivood function L. This is
equivalent to maximising In(L). We nse denvatives (calculus) of In(L) which, when set

to 0, produce the maximum likelihood estimetor (MLE) of =,

ol Z,’/,_(“'"Z!/,)_“
or # (I —#)

= Zy,—— FZI/, =nw irxu,
—“l
_ ;:;‘ = *—Z—‘——/-i IS ”I(‘ \“41': ()I s
"

Variance of 7 is obtained lrom sccond derivative,

Pl Z o (0 - Z )

Jn? w? (1 - m)*

We may replace 7 by its MLE 7

Z//, B (N~Zy,)
Z(l/,/n)‘ (I—ZI/,/II)}'

”Z ”2

Sy on=>u
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¢ b

7 | — =
!
= =N
m(l - 7)
_ —
TRl =)

The variance is given from MLE theory by:

\
\ VAR(7) =

which is the well-known variance estimator of a hinomial proportion,
In the regression context, we also have additional data Xy,. ... Xy, for each subject.
We assume the following model between E{Y;) and X,:

(Ij(l+’fl \’l1+ +13 \',\I

{

- l + (J(‘-{-Aﬁ \'],’f‘ +49; \'I.l

lor the X's of the o subject in ont sample \We can notice from tms that L, the likelihood
fanction of our sample is indeed o tunction of the 3%, The maximum likelihood method
produces the i3's (in lact /;’s) which are the most likely to have produced our observed
outcomes gy, ...y, The computations are much more complex than when 7, = 7 all i
and require iterative calculations performed by a computer.

In general, MLEs of % are approximately normal with vanances produced directly
by the iterative procedure [ML estimation is simply a very powerful tool!].

‘Therefore, the mazimum likelhood procedute produces. for o.1 logistic model, A, and
g, for cach pavameter. Because of the approsin' (e normality ol MLE's, a (1-a) 100%

confidence interval for 3, is given by
dl + Zu/la'l

and, therefore, an approximate 100 (1-a)% C1 for the odds-ratio o, is

( 'i:i/../zf’.
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More general formulae which involve several . 3's simultancously are given in Schlessel-
man, page 247. These require not only the variances of cach 4 but also the covariances

between /3’s which are also produced by ML

1.8 Discriminant Analysis

Consider two groups of individuals, cases and controls, on which we mecasure Ny,--- 0 Xy

Suppose we want to distinguish hetween the groups on the basis of one single value 1) =

Y 3: X, a lincar combination of the N's. 1 1) > some 1y then we say that the individual
is discased (a “case™) and if D < Dy is not diseased (Ccontrol™) By minimizing, the
probability of misclassifying an individual, we obtain “optimal™ s and D = Y 4.\, is

calied the linear discriminant function

Under the assumption of multivariate normality for the N0+ 0\ (stimultancously)
with different means for the two groups but cqual covatiance matrices, the coetlicients
f3,’s are equivalent to those obtained via logistic 1egression.

Proof:
Let

P’ = pob of disease = (D)

Let

P(X

D)y = fi(XN)=prob ol N's among the cases (D)
PINIDY = fu(.N) = prob ol X's among the controls (D)

S0, by Bayes theotem we get

o L
PIDIN) = HON)P A+ Jo(N )1 - 1)
|

nlenyre

il X is normal, then
fo( ) (~ bt =2 ki)

/](.\) (_m(’z—zljll+/lf)




L8 DISCRIMINANT ANALYSIS

since X|D ~ N(pg.0?) aud X|D ~ N(j;.0?%) (asstumption of discriminant analysis)

Then

JolN) ot b2t )
Ji(X)
and
|
P(D|X) = o
|+ ({-—(—In'—%1—'-.(_1;’_)_9)+(u|”—nq),}
Let
fl — i —Z/IU
o4
) H 4+
h = I“_I-I—,)_ l[/I 2/0]
T'hen
i ot
P(DIX) =

- | - ¢ otidia

This is the logistic model.
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Chapter 2

Model Selection for Logistic
Regression

Formal model selection methods can be based either on stepwise methods or finding best
subsets of variables based on some criterion (e.g., Akaike’s inforination). Fitting lots of
models can be very expensive hecause cach it requires an iterative procedure. Stepwise
methods are sequential, hence cheaper than best subset methods  Here we only introduce
stepwise method.

Stepwise selection of variables has been widely used in linear regression. Most major
software packages have cither o separate program or an option to perform this type of
analysis. At one time, stepwise regiession was an extiemely popular method for model
building. Methodology for performing stepwise logistic regression has been available for
much less time. Among major software packages only BNIDP offers a program for stepwise
logistic regression. We feel that the mocedure provides a useful and effective data analysis
tool. In particular, there are times when the ontcome heing studied is relatively new (e.g.,
AIDS) and the important covariates may not be known and associations with the outcome
not well understood. In these tnstances most studies will colleet many possible covariates
and screen them for significant associations. Fmploying a stepwise selection procedure
can provide a fast and effective means to sereen a large number of variables, and to
simultancously fit a number of logistic regression equations.

Any stepwise procedure for selection or deletion of varviables from a model is based on

a statistical algorithm which checks for the “importance™ of variables, and either includes
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or excludes them on the basis of a fixed decision rule. The “importance™ of a variable
is defined in terms of a mecasure of the statistical signiticance of the coeflicient for the
variable. The statistic used depends on the wssumptions of the model, In stepwise linear
regression an F-test is used since the errors are assumed to he notmally distributed. ln
logistic regiession the errors are assumed to follow a binomial disteibution, and signficance
is assessed via the likelihood ratio chi-square test Thus, at any step an the procedare the
most important variable, in statistical terms, will be the one that produces the greatest
change in the log-likclihood relative to a model not containing the variable (i.e., the one
that would result in the largest likelihood ratio statistic, (/).

We have pointed out that & polyiomous variable with & levelsis appropriately modeled
through its k-1 design variables.  Since the magnitude of ¢ depends on its degrees of
freedom. any procedure based on the ikelihood ratio test statistic. ¢, must acconnt. for
possible differences in degiees of ficedony hetween variables. This s done by assessing
significance through the p-value for (/.

We will describe and illustrate the algorithm for forward selection followed by back-
ward elimination in stepwise logistic regression. Any variants of this algorithm are simple
modifications of this procedure. T'he method will be deseribed by considering the statis-
tical computations that the computer must petform at cach step of the procedure,

Step (0): Suppose we have available a total of p possible independent variables, all
of which are judged to be of plansible =“biologic™ impoirtance 11 studving, the outcome
variable. Step (0) begins with a fit of the “intercept only model™ and an evaluation of
its log-likelihood. Ly. This is followed b fitting cach of the p possible univariate logistic
regression models and comparing, their respective log-likelihoods.  Let the value of the
log-likelihood for the model containing variable &, at step zero he denoted by I,iu). The
subscript J refers to that variable which has been added to the modeland the superscript
(0) refers to the step. This notation will be ased throughont the discussion of stepwise
logistic regression to keep track of both step numberand variables in the model.

Let the value of the likelihood ratio test for model containing -, versus the intercept
only model be denoted by (‘,50) = Z(I‘(IU) — Ly), and its p-value he denoted by pgu). Henee,

this p-value is determined by the tail probability 2r[\*(v) > (/(,“’] = pf“’, where v = 1if




r, is continuwous and v = A — | if ., is polytomous with & categuiies.

The most important variable is the one with the smallest p-value. If we denote this
variable by a,,, then pf‘l’) = ru/u(/;(/“’). where “mim™ stauds for selecting the minimum of
the quantities enclosed in the brackets. The subscript *¢;™ is used to denote that the
variable is a candidate for entry at step I, For example, il variable @2, had the smallest p-
value, then ”(zo) = nu'u(])gu)), and ¢ =2, Just because &, 1s the most important variable,
there is no guarantee that it will be “statistically significant.” For example, if pg)) = 0.83,
we would probably conclude that there is little point in continuing this analysis because
the “most important” variable is not related to the outcome. On the other hand, if
P = 0.003, we would like to look at the logistic regression containing this variable and

see if there ate other variables which are impottant given that 1, 1s in the model.

1

A crudial aspect of using stepwise logistic regiession is the choice of an *alpha” level to
judge the importanceof variables. Let pp denote our choice where the “T” stands for entry.
The choice for pi; will determine how many vatiables will eventually be included in the
model. Bendel and Afifi(1977) have studied the choice of py; for stepwise linear regression,
and Costanza and Afili(1979) have studied the choice for stepwise discriminant analysis.
The results of this rescarch have shown that the chowce of p;, = 0.05 is too stringent,
often excluding important variables from the model. (‘hoosing a value for pg in the
range 0.15 10 0.20 is more highly recommended. While previous reseatch considered only
normal theoty models (i.e., lincar 1egression or diseriminant analysis). there is reason
to believe that use of pp: in the same range would he a suitable criterion for stepwise
logistic regression sinee logistic regression may be viewed as an offshoot of the normal
theory discriminant function model. Moreover, use of py in this =ange will provide some
assurance that the stepwise procedure will seleet variables whose coefficients are different
from zero.

Sometimes the goal of the analysis may he broader, and models containing more
variables are sought to provide a more complete picture of possible models. In these cases
use of pp; = 0.25 might be a reasonable choice. Whatever the choice for pg, a variable
will be judged important enough to include in the model if the p-value for G is less than

pr. Thus, the program proceeds to step (1) if pf‘[’) < pizyotherwise. it stops.
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Step (1): Step (1) commences with a lit of the logistic regression model containing
ze,. Let L) denote the log-likelihood of this model. To deternnne whether any of the
remaining p-1 variables are impostant once the vatiable o, 15 i the model, we fit p-
1 logistic regression momdels containing &, and «w,. y = 12,3, p and ) # ;. lor
the model containing &, and &, let the log-likelilood be denoted by LY v and et the
likelihood ratio chi-square statistic of this model versus the model containing only @x,, be
denoted by 'Sl) ”(Im LS})). The p-value for this statistic will be denoted by p"”
Let the variable with the smallest p-value at step (1) be w,, whee p((')) = mm(p( )). It
this value is less than py we proceed to step (2); otherwise we stop.

Step (2): Step (2) begins with a fit of the model containing both @, and &, ,. It is
possible that once x., has been added to the model, w15 no longer tmportant. "Thus,
step (2) includes a cheeh for backward elimination. Tu geneeal this is accomplished by
fitting models that delete one of the variables added in the previous steps and assessing
the continued importance of the variable removed, At step (2) et I,_,J denote the log-
likelihood of the model with @ removed. In similar fashion let the likelihood tatio test
of this model versus the full model at step (2) be (:'(_)',)I =214~ Il(f,),) and 7'(-2'); be its
p-value.

To ascertain whether a vatiable should be deleted from the model the program selects

that variable which. when removed. vields the maximum p-value. Denoting this variable as
(2) )

Try, then p“) = ma.x (1)_,‘, p=.,). To decide whether @y, shonld be renoved, the program
compares p(rf) to a second prechosen ~alpha” level, pr, which will indicate some minimal
level of continued contribution to the model where *R™ stands for remove. Whatever
value we choose for pg, it must exceed the value of py; to guard against the possibility of
having the program enter and remove the same variable al sucecssive steps.

If we do not wish to exclude many variables once they have entered, we might nse
pr = 0.9. A mote stringent value wordd be used if @ continned “significant” contiibntion
were required. For example. if we used pp, = 0.15, then we might choose pre = 0.20. 1f
the maximuin p-value to remove, pi, exceeds py then r,, is 1emoved from the model. I
p2) is less than pp then &y, remains in the model Ty either case the program proceeds o

the variable selection phase.
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At the forward selection phase cach of the p-2 logistic 1egression models are fit con-
taining x.,, v, and o, for y = 12,3+ . p.j # 1, ¢, The program evaluates the log-
likelihood for cach model, computes the likelihood ratio test versus the model containing
only z,, and r,, and determines the corresponding p-value. Let x., denote the variable
with the minimum p-value, that is. p{4 = mzn(pgz)). If this p-value is smaller than pg,
pff’ < pg, then the program procecds to step (3); otherwise, it stops.

Step (3): The procedure for step (3) s identical to that of step (2). The program
performs a check for backward elimination followed by forward sclection. This process
continues in this manner until the last step, step (S).

Step (S): This step occurs when: (1) all p variable have entered the model or (2) all
variables in the model have p-value to remove which are less than pr, and the variables
not included in the model have p-values to enter which exceed py;. The model at this step
contains those variables that are important relative to the criteria of pg and pr. These
may or may not be the vartables reported ina final model. For instance, if the chosen
values of pgand pp cortespond to our belief for statistical significance. then the model
at. step S may well contain the significant variables. However, if we have used values for
me: and pre which are less stringent. then we should select the variables for a final model
from a table that simmarizes the results of the stepwise procedure,

There are two methods that may be used to select variables from a summary table;
these are comparable to methods commonly used in stepwise lincar regression. The first
method is based on the p-value for entry at cach step, while the second is based on a
likelihood ratio test of the model at the carrent step versus the model at the last step.

Let »q™ denote an arbitrary step in the procedure. In the first method we compare
pf'(’l"') to a prechosen significance level such as o = 0.15. If the value pf“'l“) is less than
o, then we move to step . We stop at the step when pﬁ‘;'” exceeds a. We consider the
model at. the previous step for further analysis. In this method the criterion for entry is
based on a test of the significance of the coefficient for @, conditional on x¢,, 2¢, + -,
&e,—, being in the model. The degrees of freedom for the test ave | or k-1, depending on
whether ais continuous or polytomous with A categorics.

In the second method, we compare the model at the current step . not to the model
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at the previous step, step ¢-1, but to the model at the last step, step (S). We evaluate
the p-value for the likelihood ratio test of these two models and proceed in this fashion
until this p-value exceeds a. This tests that the coeflicients for the variables added to the
model from step ¢ to step (S) are all equal to zero. At any given step it will have move
degrees of freedom than the test employed in the st method, For this reason the secoud
method may possibly select a larger numberof variables than the lirst method.

It is well known that the p-values calculated in stepwise selection procedumes are not,
p-values in the traditional "ypothesis testing context. Instead, they should be thought of
as indicators of relative importance among variables. We recommend that one error in the
direction of sclecting a rvelatively rich model following stepwise selection. The variables so
identified should then be subjected to the more intensive analysis deseribed previously.

A common modification of the stepwise selection procedure just deseribed is to begin
with a model at step zero which contains known important covariates  Selection is then
performed from among other variables. Oue instance when this approach may be useful
is to select interactions from among those possible from a main elfects model.

Onec considerable disadvantage of the stepwise selection procedures just deseribed is
that the maximum likelihood estimates {or the coefficients of all variables not in the model
must be calculated at each step. For large data files with Targe numbers of variables this
can be quite costly both in terms ol time and money. Two approsvimations to this method
available in, or could he implemented into. existing programs.  One method, available
in BMDP, uses a linear approximation to the likelihood tatio test. The resulting test is
similar to the one used for variable selection in a two group stepwisc discriminant, analysis.
This is termed the “ACE” method in BNIDP. The second procednie seleets new variables
based on the score tests for the variables not included in the model. A variant of this
method using a multivariate Wald statistic has bheen proposed by Peduzzi, Hardy, and
Holford(1980). To date there has been no work published whndh has compared these
different sclection methods although it does seem likely that an important variable would
be identificd, irrespective of method used.

Freediman (1983) urges caution when considering a model with many variables, noting that

significant linear regressions may he obtained from variables completely unrelated to the
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outcome “noise” variable. Flack and Chang (1987) have shown similar results regarding
the frequency of selection of “noise”™ variables. Thus, a thorougt: analysis that examines
statistical and biologic significance is espedially important following any stepwise method.
As an example, we apply the stepwise variable selection procedure to the low birth weight
data. The results of this process are presented in Table 2.1 in terms of the p-values to enter
and remove calculated at cach step. These p-values are those of the relevant likelihood
ratio test described previously. The order of the vatiables given columnwise in the table
is the order in which they were selected. In each row the values 1o the left of the vertical
line are py values and values to the right of the vertical lines are py; values. The program

was run using pp; = 0.15 and pp = 0.20.

Table 2.1 Results of Applying Stepwise Variable Selection Using the Maximum Like-
lihood Method to the Low Birth Weight Data Presented at 1ach Step in Terms of the
p-values to Fater, to the Right of the Vertical Line. and the p-Value Remove, to the Left
ol the Vertical Line in Each Row. The Asterisk Denotes the Maximum p-Value to Remove

al. Kach Step.

Step # | PTL IWT 1T RACTE  SMOKIE Ul AGE  FTV
0 0.009  0.015 0.015 0.082  0.027 0.021 0.097 0.379
1 0.009 0.031 0.038 0.009  0.0738 0.083 0.057 0.441
2 0.022  0.031* 0.006 0.057  0.090 0.139 0.125 0.589
3 0.023* 0.006 0006 0078  0.093 0.086 0.162 0.731
;

0.019  0.005  0.009 0.073"  0.015 0.6°7 0.308 0.873
! 0.067" 0009 0.010 0.016  0.015 _0.083 0374 0.905
6 0.135% 0.013  0.006 0.016  0.017 0.083 0.155 0.927

Step (0): At step (0) the program selects as a candidate for entry at step (1) the
variable with the smallest p-value in the first row of Table 2.1, "his is the variable PTL
with a p-value of 0.009. Since this p-value is less than 0.15, the program proceeds to step
(1).

Step () At step (1) the program will not remove the vanable just entered since
pr > e and the p-value to remove at step (1) is equal to the p-value to enter at step (0).

(This is true for the variable entered at any step-not just the first step.) The variable
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with the smallest p-value to enter at step (1) s LW with a valne of 0.031, which is less
than 0.15 so the program moves to step (2).

Step (2): The p-values to remove appear first in cach tow. Phe largest value is in-
dicated with an =" At step (2) the largest p-value to 1emove js 0.03 1, which does not
exceed 0.20, thus the program moves to the variable selecetion phase. The smallest p-value
to enter among the remaining variables not in the model s for the variable T and s
0.006. This value is less than 0.15 <o the program proceeds to step (3)

.

step (3)-step (5): At steps (3) to (5) the program finds that no variable can be removed

from the model because cach of p-values, indicated with *'™ in1ows three to five in Table
2.1, less than 20. The program determines, in the selection phase, the vanable with the
smallest, p-value to enter and, since it is less than 015, the program proceeds to the next
step.

Step (6): At step (6) the program finds that the maximum p value to remove is 0,135
for PTL. This value is less than 0.20, so PTL is not removed from the model. In the
selection phase the program linds that the minimum p-valne for entry is 0455 for the
variable AGE. Since this value exceeds 0,15, no further variables may be entered into the
model, and the program stops.

Since the program was run with pg = 0.15, a value we helieve will seleet, variables with
significant. cocflicients. it is not strictly necessary to go to the smnmary table to select the
variables to he used in a final model. We will, however. illustiate the caleulations for the
two methods of variable selection from the summary table. These are given in "Fable 2.2,

For methodl we compare the p-value for entiy at cach step to om chosen level of
significance. For purposes of illustration only we will use the value of 0.05, even though
we noted catlier in this chapter that itis too stringent for actual practice. 'The information

for methodl is in the second panel of Table 3.2.
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Table 2.2 Log-Likelihood for the Muodel at Each Step and Likelihood Ratio Test Statistics

(G7), Degrees of Freedom (df), and p-Values for T'wo Methods of Selecting Variables for a

Final Model from a Summary Table.

Method 1

df  p-value

Method 2

G dl p-value

Variable
Step #  Entered  Log-Likelihood (

0 -117.31

1 PTL -113.95 6.78
2 LAY 11170 113
3 imr -107.98 7.1
4 RACE -105.14 210
5 SMOKE -102.15 5.95
6 ] -100.99 291

!
1
1
2

1
|

0.009
0.031
0.0006
0.078
0.015
0.088

32,69 T < 0.001
2591 6 < 0.001
21.12 5 0.001
13.98 0.007
886 2 0.012
291 1 0.088

The value of the likelihood ratio test

containing P'TL at step (1) is

G

= (.78 = 2[- 113916 — (= 117.336))]

for the model at step (0) compared to that

The p-value for G s 0.009 which is less than 0.05 so we conclude that the coeflicient for

PTL is significant and move to step (2).

The p-value for the variable, LWT, entered at

step (2) 15 0.031. This is the p-value for the likelihood ratio test of the significance of the

eflicient for LW'T, given that PTL s in the model. The value of the test statistic is

G =119 =2=111L701 = (=113.916)]

Since the p-value for (7 1s less than 0.05 we move Lo step (3) Caleulations proceed in

a similar fashion and we compare. at cach step. the p-value to 0 05, At step (4) we find

that the value of likelihood ratio test of the model at step (1) versus that at step (3) is

G =5.10 = 2[—105. 13 ~ (—107.98))

resulting in a p-value of 0.078. This value is greater than 0.05 so we conclude that RACE

does not provide a significant addition to the vatiables already selected at step (3). Hence,

the final model would be the one with all variables entered through step (3) even though

the variable entered at step (5). SMOKIS, has a p-value of less than 0.05.
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The information for method 2 is i the last panel of table 3 2. 1o the second method
the model at each step is compared to the model at the Tast step via a likelthood ratio test.
This is a test of the joint significance of variables added at subsequent steps. We again
proceed until the p-value for the test exceeds the chosen siguificance level, For purposes

of illustration only we will use 0.05. The value of (7 at step (0)
G o= 2[=100.993 = (= 117.336)] = 32.09

with a p-value of < 0.001 based on 7 degiees of fteedom., Sinee this p-value is less than
0.05 we proceed to step (1). At step (1) the test of this model versus that at the tast step
15

(= 2[=100.993 — (= 113.916)] = 25.91

with a p-value of j0.001 based on 6 degiees of freedom. Since the p-valne s less than 0.05
we proceed to step (3). We continue in this mamer until step (5) The p-value for the
likelihood ratio test of the model at step (0) versus that at step (0) is 0,088, This value
exceeds 0.05. so we stop and use the variables in the model at step (5).

In this example methods | and 2 have identified different sets of variables. Fadh
method provides a test of a dilferent hypothesis at cacly step. The number of pavasmeters
being tested in method 2 is, except {or the last step, larger than that for method 1. "Thus,
method 2 may seleet, as it does in this example, more variables thian method 1. Tn cases
where this occurs, one should carefully examine the additional viavables and include them
if they scem biologically relevant. In this case we wonld nndoubtably opt for the richer
model selected by method 2.

At the conclusion of the stepwise selection process we have onby identified a collection
of variables which scem to be statistically important. "Phus, any known biologically im-
portant variables. such as AGE in our example. should be added before proceeding with
the steps necessary 1o obtain the final maiu effects model. As noted carlier, this should
include determining the appropriate scale of continons covanates

Once the scale of the continnous covatiates has heen examined. and corrected if neces-
sary, we may consider applying stepwise selection to identily mteractions. The candidate

interaction terms are those that scem biologically reasonable giver the main effects vani-
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ables in the model. We begin at step (0) with the mdin eflects model and sequentially
select from among the possible interactions. We select the significant ones using either
method 1 or method 2. Consequently the final model will contain previously identified
main effects and significant interaction terms,

The variables identified by the stepwise selection process in the low birth weight data
are the same ones identified carly by purposeful selection. Therefore, the work necessary
to chedk the scale of continuous covariates is not 1epeated and we hegin stepwise selection
of interactions using the model given in Table 2.3 and the interactions listed in Table 2.4.

The results of stepwise selection of interactions are given in Table 3.5.

Table 2.3 Estimated Coelficients, Fstimated Standard Errors, and Coeff./SE for the
Multivariate Model Containing LWD and PTD. Dichotomous Variables Created from
LWT and PTL.

Istimated Fstimated
Variable  Coeffidient  Standavd Firor  Coeff. /SIS
AGTE -0.016 0.037 -1.25
LA\VD) 0.812 0. 105 2 08
RACE(T) 1073 0.511 209
RACL(2) 0.815 0.1 .81
SMOKE 0.807 0. 101 2.00
Mrn [.282 0. 161 278
nr 1435 0.617 2,22
Ul 0.6538 0. 166 .11
constant 1207 0.951 -1.28

Log-likelihood = =98.78
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Table 2.4 Log-likelihood, LRT Statistic ((/), Degrees of Freedom(df), and p-Value fn

Possible Interactons of Interest to bhe Ndded to the Mam Flleets Ouly Model.

Interaction Log-Likelihood ¢l p-value
Main Effects Only? -98.78 N
AGEXRACE -08.53 050 2 078
AGEXSMOKE -98.51 0.51 1 0.16
AGEx T -98..39 07 | 0.38
AGEx U SO8 TH ooy | 0.81
AGEXINVD -97.50 206 0.11
AGEXPTD -98 36 (U N 0 306
RACExSMOKE -97.01 240 2 03I
RACExHT 98.63 030 2 086
RACExUI -97.02 2372 03l
RACEXLWD -97.08 J.000 2 0.8
RACExPTD -98.50 056 2 0.76
SMOKExHT -O8.71 01r 1 0.71
SMOKExUI S98.12 P32 0.25
SMOKExIMWD -97.01 2801 0.13
SMOKEXxPTD SUNTRY 091 1 0.33
IAWWDxII'T -9N8.22 A 0.30
AGEXIWD4+SMOKE £ LWD 96 01 aol 2 0006

Table 2.5 Results of Applying Stepwise Variable Selection to Tnietactions from the Main
Effects Model. Using the Maximum Likelihood Method Presented at Fach Stepan Terms
of the p-Values to Enter, to the Right of the Vertical Line, and the p-Valnes to Remove

to tll(‘ ]1(‘“ Ol. ”l(‘ \’(‘l'li(?ll l;ill('. ,l‘|l(‘ .’\hi(‘li%l\ l)('ll()“‘\ l'l(‘ ,\l,l\vlnnm L \',.lu(- O I{('”](;vv

at Each Step.

Step # | AGEXIAVD T RACEXTAVD 1IN D SMORE S LWD
0 0.110 0,183 0291 0T
1 0.110" 0.081 0,252 0.081
2 0.041 0.031° (0.112 0.615
3 0.029 0.053 01 0502 |
Of the 16 possible interactions specified in Table 2.1 only tiree were chosen. T the lagst

column of Table 2.5 we have given the p-value lor enteting the SMOKE 2 LW interaction

term. The results at step (1) indicate that the RACE 2 LWD interaction is negligibly more
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significant than the SMOKE£LWD interaction and. ouce the RACExLWD interaction
is included into the model. there is little additional importauce in the SMOKExLWD
interaction. At step (3) we see that the H'TxLAWD interaction enters the model with
p-value of 0.142,

We now face several decisions involving the interactions. We considered this same
problcm eatlier of completeness, we repeat the analysis in the current context. To fur-
ther explore the tiadeofl between including the SNIOKE LAV or the RACEXLWD in-
teraction. a model that forced the SMOKE <LWD interaction into the model and then
added the RACExIAVD interaction was fit. The results showed. as expected. that the
RACEXLWD interaction was no longer impottant once the SNIOKEXLWID interaction
was included in the model, We must. therelore, decide which of these two interactions to
include. We choose the SMOKExLWD interaction as the more important from the bio-
logic standpoint in view of the known relationship hetween weight and smoking. Potential
racial by weight differences are regarded as being of lesser impottance to document.

We now must decide if the HT < LWD interaction should be added to the model. The
p-value for the indusion of this interaction alter the SMOKEX TWD interaction term is
included i the model is 0,160, again a value dose to the preferied alpha of 0.15. At this
point we must keep in mind that the fundamental reason for developing a model is to
provide as clear a description as is possible with the available lata of the associations
between outcome and covariates, If entering an additional term into the model improves
our estimates of the relevant assodiations then we should put that term into the model
tegardless of s statistical signihcance. Il a term does not contribute to the overall goal
then it may be excluded.  In this case we determine that inctusion of the HTxIAWD
interaction term does not help our understanding of the association between low birth
weight and the variables in the model so we choose to leave it out of the model.

In conclusion. stepwise selection identilies variables as candidates {or a model solely
on statistical grounds. Thus. following stepwise selection of miin effects all variables
should be carefully scrutinized for biologic plausibility. In general. interactions must
attain at least a modetate level of statistical significance to alter the point and interval

estimates from a main effects model. Thus, stepwise selection of mteractions can provide
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. a valuable contribution to model identification. especially when there are large numbers

of biologically plausible interactions generated from the mam elfects.




Chapter 3

Assessing the Fit of the Model

3.1 Introduction

We begin om discussion of methods for assessing the fiv of an estimated logistic regression
model with the assumption that we are at least preliminarily satisfied with our efforts at
the model building stage. By this we mean that. to the best of our knowledge, the model
contains those variables (main effects as well as interactions) that should be in the model
and that variables have been entered in the correet functional form. Now we would like
to know how effective the model we have is in deseribing the outceome variable. This is
referred to as its goodness-of-fit.

IFwe intend to assess the goodness-of-fit of the model. then we should have some spe-
cific ideas about what it means to say that a model fits. Suppose we denote the observed
sample values of the outcome variable in vector form as y where y' = (1. y2, ya, - - . Y Un)-
We denote the values predicted by the model. or fitted vahies, as § where §' = (43, ia,
s oo i) We will conclude that the model fits il (1) summary neasures of the distance
between y and y ate smalt and (2) the contribution of cach pair (4 ,4,). 0 = 1,2,3,...,nto
these summary measures is unsystematic and is small relative to the error structure of the
model. Thus, a complete assessment of the fitted model will involve both the calculation
of summary measures of the distance between y and ¥, and a thorough examination of
the individual components of these measures,

The development of methods for assessment of goodness-of-fit will follow what we feel

are the logical steps upon completion of the model building stage. The components of

37
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the proposed approach are (1) computation and evaluation of overall measures of fit, (2)
examination of the individual components of the summary statistios, and (3) exanmination

of other measures of the difference or distance between the components of y and y.

3.2 The Goodness-of-Fit of the Model

3.2.1 Significance Test

Overall likelihood ratio test (LRT) found in standard printouts verifies null hypothesis:
Hy: 3 =d,=-=3 =0

[Ty means “None of the independent variable is significant as a rish factor thus information
about their values does not improve significantly the prediction of outcome”™.

Thus, Hy tested by overall LRT is equivalent to: *I'he best prediction for all covariate
patterns is based oun the overall proportion™

(o E: U,

Hy:m= ==
v T F 4 % n

Sy, = # subjects with Y, = 1. » = total sample size,
“Technically” it is tested by compating log likelihood n Ly obtained by full model
using (k+1) parameters (k independent vartables) to log likelihood In Ly obtained withi |
1 ] K

parameter /4. Statistic:
(i = —2“]] I.() et Ill IA[,] ~ \,2‘

Note: since the log likelihood is obtained by summing up over all observations the impact,
of the sample size on LRT is very strong,
Example: assume we have 50 data points and for b =5 we obtane
("")U = -—2[“1 I/() - lll l/',]

= =2[=28—(=30)] = 1 ~\i (not sigmlicant)

}

Now assume our sample is in fact the exact "miniature” of a larger sample of H00 patients

(each covariate pattern is repeated 10 times and respective outcomes are the same). Then:

Gsoo = —2[10 x 30 — 10 < 28] = 10 ~ \% (highly significant)
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The LRT is the test of whether the model using these k covariates is able to reliably

differentiate the probability of outcome (Y = 1) for different covatiate patterns.

3.2.2 Observed/Predicted Discrepancies

Cousider the following example:

Covariate | X, | X, [\, observed
propottion of Y =1

1 1 0 1 3/10=0.3

2 T 100 2/10=0.2

3 L 100 9/10=0.9

observed overall proportion 11/30 = 0.7

Let’s assume the logistic model based on Ny to Xy (k=3) produces these estimates.

Pattern Observed po Estimated p

10 101 0.3 0.05
10 100 0.2 0.15
10 110 0.9 0.95

mean = 0.17

Clearly the model provides estimates that are much closer to the observed proportions
than to the mean P = 0.47 (this would be ¢®/(1 4 ¢™)) for model with the intercept
only. Still there are problems with it to individual cases:

In patterns 1 (101) there is a total of 3 observations for which Y = 1 but predicted
probability of obscrved outcome=0.05 only.

The problem of individual values being badly fitted is. hosever, inherent for these
data: whenever lor the same covariate patterns different outcomes are observed, some
observations will be misfitted. And if there are only few discrepant observations, their
prediction will be very poor. The ouly possible solution is to look for additional covariates
which could explain these discrepancies, e.g. for pattern 101 we may hope that there is

X, such that:

Xy, = 0 for the only observation with Y = 0 and

X, = | forY other observation with ¥ =1
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This is rarely the case.
The issue of goodness-of-fit is not related directly to

1. significance

2. individual discrepancies within a given covariate pattern

Goodness-of-fit relates to the discrepancies hetween observed and predicted propor-
tions for “subsets” of observations homogencous with respect to covariate (independent
variables).

These “subsets”™ are called “cells™. 11 all independent varviables arve categorical each
covariate pattern may be a “cell”. Otherwise cells have to be created.

In our example, LRT asks whether predicted proportions (0.05, 0,15, 0.95) are closer
to true obseived proportions (0.3, 0.2, 0.9) than are constant proportions (0.17 = 0.7 =
0.47 = overall propottion) after having adjusted for degrees of freedom. (LRT tests
significance).

Goodness-of-fit tests verifv whethere predicted proportions (0 05, 0.15, 0.95) are close

enough to ohserved proportions (0.3, 0.2, 0.9).

3.3 Summary Measures of Goodness-of-Fit

We begin with the summary measures of goodness-of-fit, as thev are routinely provided
as output with any fitted model and give an overall indication of the it of the model.
Because these are sunmimary statistics. they may not be very specific about, the individual
components. A small value for one of these statisties does not 1ule ont the possibility of
some substautial and thus intetesting deviation from fit for a few subjects. On the other
hand, a large value for one of these statistics is a clear indication of a substantial problem

with the model.

3.3.1 Pearson Chi-Square and Deviance

For a given j-th covariate patterns. the Pearson residual is defined as follows:

Y, — 7,

r(y,7,) = , -
m,x,(1 —7,)
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m, is the number of observations with patterns j; g, is the numper of observations with
Y = 1 among m, observations in pattern j; 7, is predicted probability of 7 = 1; thus,
m, %, is expected number of observation with ¥ = 1. So that,

. (obscrved — capeeted)?
[7'(3/1’ T, )]2 =

variance(crpecled)
By summing Pearson squared residuals [r(y,. 7,)]? over all J covariate patterns, we obtain
the Pearson chi-square goodness-of-fit statistic
J
2 _ ) 112 2
X2 = 3l ) ~ ke
=1

J is total number of different covatiate patterns,

For a given j-th covariate pattern. the deviance residual square is defined as follows:

m, —
+(m,—y,)n ——'-—-‘-]’f—
n,x, m,(l =nr,)

dly,.7%,) =2y, 1n
compares log likelihood for a given model with the log likeliliood for a hypothetical “sat-
urated model™ which would contain as many parameters as there are distincet covariate
patterns (J). Such a “saturated™ model would be able to predict exactly each .

The summary statistic based on the deviance residual squaie is the deviance

J
D=3 dly, 7)) ~\5_k

=1
The problem with (Pearson) X and D is that they work well only if each cell (covariate
pattern) has observations larger than 5. Thus if J & n (which happens with continuous
independent. variables) they mav be quite unreliable! “I'he most natural solution is then

to group the observations!

3.3.2 The Hosmer-Lemeshow Tests

*Goodness-of-lit. chi-square (Hosmer-Lemeshow)™ is based on discrepancy between ob-
served and expected proportions in artificially created cells-obtained by grouping obser-
vations according to estimated probabilities 7.

Usually ¢ = 10 groups are used (in standard packages):
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Ist Group: contains 10% of obscrvations for which the estimated 7, is the lowest (Ist risk
decile)

2und Group: next 10% with 7, higher than in Ist group but lower than for any other
group.

ctc - -

Last Group: 10% with highest 10th estimated tisk decile.

Example: N = 50, then:

Ist Group: 7,: 0.02; 0.03; 0.04; 0.07: 0.11;

2nd Group: 7, 0.13; 0.145 0.18; 0.18: 0.18:

10th Group: 7,2 0.88; 0.92; 0.93: 0.93; 0.97;
Hosmer- Lemeshow statistic:

(‘v — i (Ol - ”'Iﬂ.l)z

=1

TR \z—z
nm(l —n,) v

g = # groups (usually 10)
0, = obscrved # y =1 in 1-th group

1

n, = # dillerent covariate patterns ini-th group

T, = mean (accross n, patterns) estimated probability m the groap

!
".'
R '
= }:m,w,/n1
=1
m, = # observations in cell j
Note: since all Goodness-of-fit X? tests are based on discrepaney measures, large values
of X? and corresponding small p-values indicate poor lit. ie. 1y = “the model fits the

. " . . .
data perfectly”™ and any discrepancies are due to sampling erior only.

3.3.3 The Brown’s statistic

This statistic compares {itted logistic model with a potentially more complex and more
general model thus it is not exactly a test of absolute goodness-of-fit with resocet to the
data, but an assessment of the larger logistic assumption. It is used to inerease confidence
that the logistic model (as a class of models) is teasonable for givem data,

General strategy to use goodness-of-fit:
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‘ I. LR-Based (2 x O < In(Q/ 1)) is appropriate only if ./ < n so that cach covariate

pattern is 1eplicated at least 5 times. I so then it is the best to use.

2. Hosmer-Lemeshow is best with continuous independent variables but in theory
weaker than in LR and there is some arbitrariness, It is recommended to inves-
tigate individual Pearson residuals since grouping may obsure very poor fit to few

cases.

3. Brown may be used as “scecondary”™ statistic to confirm rosults from 1 or 2.
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Chapter 4

Logistic Reg for Matched
Case-Control Studies

4.1 Introduction

We are in the context of a matched case-control study where J cases and N controls have
heen selected. We are interested in the estimation of the relative risk of disease for a
(or some) specilic exposures while controlling for potential confounders and testing for
interaction.

Review of the matched design:

o llach case is matched to M controls based on specific matching variables, c.g. age
categories, gender, ethnicity or residence. The case and its controls form a matched

set.
o The number of cases and controls are fixed by design.

o The cross-tabulation of the matching variables defines a certain nummber of strata.
There will be few cases and their matehed controls in cach stratum. A special case

of this is when cach matched set defines a unique stratum.

For example: lLets say that we are looking at the relationship between death from
asthma and use of beta-agonists (drugs used to treat asthma). The matching variables

could be;

‘ 15
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o age (from 5 to 51): 10 3-year categories
e gender: 2 categories

e residence: 5 categories

e scason ol the event: 4 categories

There arc a total of 10 x 2 x 5 x4 = 100 possible strata

Stratum #  Age  Gender Residencee

1 59 Male Big city
1 10-11 Male Big Aty
1 15-19  Male Big city
| 20-210 Male Big city
l 25-29  Male Big ity
l 30-31 Male Big city
1 35-39  Male Big ity
1 10-11 Male Big ity
1 45-19  Male Big city
1 50-51 Male Big city
1 59 Female  Big ity
| 10-11 Female  Big ity
! 15-20 Female  Big ity

4.2 Several Considerations

4.2.1 Why do we need a regression model with a matched

sample?

As in the context of a cohort study. modeling in a matched case control study is used to

overcome the limitations of a stratified analysis:

o Estimate the effect of a continuous exposure without having to categorise it.
o Some important confounders may not have been considered in the matching,.

o To test for interaction between the exposure of interest and some matching variables.

Scason
Winter
Winter
Winter
Winter
Winter
Winter
Winter
Winter
Winter
Winter
Winter
Winter
Winter
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4.2.2 Why do we have to use conditional logistic regression to
analyse matched studies?

For purposes of validity (to produce an unbiased estimate of the ielative risk), we need
to take the matching into account in the analysis,

You could be tempted to use the logistic regression analysis with a model including a
parameter for cach matched set in order to take into account the design in the analysis
(You kriow that the logistic model can be used with a case-contvol sample). The model
would be:

log(P/(1 = P)) = MSy 4+ aMS, + ...+ a,MS + 4 E+ 3,C+ 5 E+C

where = J= number of matched sets

I if the subject is in the
0 otherwise

Note: MS stands for Matched Set

BUT

The method of estimation used w the unconditional logistic regression, i.e. the maxi-

th
. matched set
A\l,‘ﬂ’ - Al o ¢

mum likelihood,works well when:
. The number of subjects in cach stratum is large.
or
2. The number of parameters stays fixed as the sample size increases

In a matched case-control study where cachi case and its matched controls form a unique
stratum, these assumptions are not respected.
For example: (‘ousider a | to 2 matched case-control design looking at the relation-

ship between lung cancer and cigarette smoking,.

o T'he controls have been matched to the cases by age, gender and environmental

exposure.
e 50 cases of lung cancer have been seleeted.

e We want to estimate the relative risk associated with the number of cigarettes

smoked per day while adjusting for 2 potential confounders.
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o Lets assume that we want to use the unconditional logistic vegiession:

1. To respect the stratified design, we would have to estimate B0 (strata) -+ |

(exposure) + 2 (confounders) = 33 parameters. The model would be

lOg(P/] - 1)) == (\l“l»ql ‘*‘ e + ()',U ‘I.\'r,() + 11 I'A‘ '}‘ ig( '| + )"( '.l

e

The sample size is 30 ~ 3 = 150 subjects, but there e only 3 subjects per

stratum.

3. Since the matching is fine. new cases will probably fall in o new stratuam,

therefore the number of parameters will increase as the sample size wereases

4.2.3 What happens if unconditional analysis is used with a
matched case-control sawnple?

First consideraton: The model includes one parameter for each matched set.

In situations where the number of parameters to estitate has the same order of mag,
nitude as the number of subjects, it is known that the techmgue ol maximum likelihood
can yield seriously biased estimates,

For the special case of 1 to | pair matching with a single hinary exposie vaniable, it

can be shown that:

e Unconditional MLE of OR = (1y/ny)?

where nyg=number of paits where the case is exposed and the control is un-exposed
and ngy=number of pairs where the case is nnexposed and the coutrol is exposed.

o and ngy ave called the discordant pairs.

¢ Conditional MLE of OR=uy/nm (conditional on the number of discordant, patis)

So an odds ratio of 2 will tend to be estimated as 1 using the unconditional analysis.
The bias will persist. to a lesser extent. [or other matched designs. The hias will then

depend slightly on

¢ the proportion of the control population exposed
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‘ o the true odds ratio

o the number of contiols per matched set

For example:

e 1 10 2 matched design. true OR = 2 and prop. ol contiols exposed is 10%; uncon-

ditional OR = 2.9 (bias ol 15%)

-
hy

e | to 10 matched design. true OR = 5 and prop. of controls exposed is 10%; uncon-

ditional OR = (.6 (bias of 32%)

Bias increases with the size of the true odds tatio. hut decreases with the number of
controls per set and the proportion of contiols exposed.

Second consideration: The matching is simply ignored.

If someone ignores the matehing and uses the unconditional logistic regression (without
including in the model a parameter for cach matched set) to analyse a matched case-
control sample, the estimate may be biased.

Under cettain conditions the data across matched sets may he pooled. If the matching

variables arve either:

e conditionally independent of discase status given the risk tactor
or

o conditionally independent of the rish factors given discase status

both pooled and matched analysis provide approximately unbiased estimates of the rela-
tive risk for a dichotomous exposure.

In matched studies. the fnst condition is more 1elevant since the matching variables are
guaranteed to be uncorrelated with discase in the sample as a whole. Of course this does
not enswe that they have the same distributions among cases and controls conditionally
on categories dehined by the risk factors.

When using an unmatched analysis with data collected in a matched design, the

estimates will be biased towards the null.
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We need then, a special method of analysis which will be able to take the
matching into account, but at the same time will only focus on the estimation
of the parameters of interest, i.e., the betas associated with the exposure, the

confounders and the effect modifiers.

4.3 Conditional Logistic Regression

Context of the analysis

We are in the context of a matched case-contiol study where:
o The number of cases and controls ate fixed by design

o Each matched set contains exactly 1 case and M controls and ecach matched set

defines a unique stratum
o We observe a vector of independent variables, for cach subject

The independent variables X = (Xy....,X,) represent the exposure variables, the con-
founders and the effect modifiers: there ate p independent variables of interest. ('This
vector does not include the matching variables).

For example: Consider a 1 to 2 matched case-control study with 10 matched sets,
looking at the effect of drug A in relation to discase 1) while controlling for gender (imale =
1, femalc = 0). The vector of independent variables Xgio where j stands for the matehed
set (j = l.....10). i stands for the patient within the matched set (¢ = 1,2,3 where

1 = case and 2.3 = controls) can be deseribed as {ollow:
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MATCHED SE'T } DRUG GENDER X,

I ("ase 13 I’ (1.3, 0)
Contirol 0.7 M (0.7, 1)
Control 0.9 M (0.9, 1)

2 Case 3.6 M (3. (i 1)
Control 1.1 M (L. 1)
Control 1.9 I (1 ‘) 0)

3 Case 2.9 I (2.9, 0)
Control 1.8 M (18, 1)
Control 2.4 M (23, 1)

q Case 1.0 I (1.0, 0)
C'ontrol 2.1 I (2.1, 0)
Control 3.0 I’ (3.0, 0)

10 Case 2.1 I’ (2.1, 0)
Control 0.9 M (0.9, 1)
Control 1.2 M (r2 1)

o We are interested in the estimation of the odds ratio of discasc.

o We still assume that the probability of being discase follows a logistic model i.e.

where a=intercept (also referred Lo as j4y)

Note: FFor simplicity we assume that cach matched set contains exactly M+1 subjects,
but the theory has been generalized to situations where the number of cases and controls
varies across the stratum.

Conditional Likelihood Function

As in the unconditional logistic regression, the method of maximum likelihood is used
to estimate the regression parameters, It is precisely here, in defining the likelihood of
the data, that the 2 methods (conditional and unconditional) differ.

First, we find the likelihood o observing the data in each matched set separately.

The likelihood of the data in the yth matched set is:

Ly(X1,.. .. XM41) = P(X5)Y = DP(Xj2]) =0)- - FiXjmaa]Y = 0)




ot
v

CHAPTER 1. LOGISTIC' REG FOR MATCHED CASE-CONTROL STUDIES

where:
X1 is the vector of independent variables for the case in the jth matched set.
X2y o X are the vectors of independent variables for the M controls in the yth
matched set.
Note that in a cohort setting, we observe Y given X.
But even if we observe P(X;1]Y7) we are interested in the estimation of the relative
risk (the odds ratio) of discase given the exposure, 1o,
POy = 1IN/ =P = 1]\)
PV = 13/ = PV = 1Y)

By the rule of conditional probability we can express (X511 ) in terms of the desired

probability-: _
POINOPN)
(YY)

I)('\'ul)') =

where »
y ll.i+zl.=l ”k \j,j,

7 ;
| + (Hj+ZL=] ”k\"“

P =1X,)=

the logistic model.

Note that the intercept a depends on j. which stands for the matehed set but the 3°s
do not. This means that thereis a dillerent intercept for cach matehed set, but the /37s
are assumed to be constant across the strata.

By conditioning on the unordered observed values of the Ml vectors Xoin the gt

stratum, we will get the following conditional likelihood:

PIX Y = D)2y =0) PN Y =0)
SMUPIN,LDY = DPX Y =0) - PN arp, )Y =0)
(ZL] Ik Vo

Z;IM;l.lc 2 =y kN

L;(ﬂl, N

Where the summation in the denominator is over all possibilities of selecting | case among
M+1 subjectsie. M+ possibilities.
We see that, after simplificaton. the conditional likelihood depends only on the 3°s

parameters and P, (X), P,(Y') and the o, parameters have heen diminated.
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The conditional likelihood for the sample is the product of the J stratum specific

likelihood:

J
[J-(/j'la ceond [)) = H [‘;(ﬂl"' . 1)“}]))
=1

Example 1: The special case of a1l to 1 matched design

In this sitnation there are 2 subjects within each stratum (1 case anc 1 control). Let
X,) bethe vector of independent viniables for the case and Xy, Tor the control in the jt
matched set and = (fh,..., /) is the vedtor of 1egiession parameters. For this special

design, the conditional lkelihood of the j™ stratum reduces to:

(ZL: PN
r : 7 ;
(Zku TV 4 2=t Vo
( z:.'=| IV ea = Vo)
| 4 ¢ Z:::: SN S N00)

Example 2: The case of a unique dichotomous exposure

Lr(h.. . i) =

Consider the case of a1l to M matched case-control study with only one dichotomous

exposure variable coded X = 1 for exposed and X =0 for unexposed. The model is

s "Hf.\’
¢ )

ur4/3Y

PRy = 1Y) =
L4

T'he conditional ikelihood (in the jth matched set) defined above reduces to:

I‘( ’) ¢ )inl
AN = M1 41X
Zu:ﬁ (l H

OR
ZM+10R‘\,“‘

n=1

"matched set.

where X, is the case exposure in the j*
IFor examiple, lets take a matched set with 1 case and 3 controls, where the case is
exposed (N = 1) and only I of the 3 controls is exposed. The conditional likelihood of

this matched set would be;
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() = OR | OR
TTTI0R 42 20R+ 1

The data can also be presented as a series of 2 x 2 tables, ie. one for each matched

set:

Matched set j

(‘ase Control

Exposed «, b, ny,
Unexposed ¢, d, my,
I A M+t

The fact of conditioning on the exposure history (unordered X vectors of independent,
variables) in this particular situation requires the knowledge of the total number of ex-
posed in the table (my;) and thus knowledge of all the marginal totals in the 2 x 2 table
(since the number of cases and contiols are fixed by design).

If you condition on the number of exposed in a 2 x 2 table like this one, the data i the

table are completely defined by the number of exposed cases. 'The conditional probability

( ' )( V )()n'u
«, My, —d,

[)(AJ=(LJ|AJ+BJ =m”): [ i
(T o
_/’
1

of observing a, exposed cases is:

/l ny, -

This conditional probability is used in the Fisher’s exact test,

lets take the same example as before, where the case is exposed and only 1 of the 3
controls is exposed:

Matched set |

C'ase  Control

Lxposaed | |

— e I

Unexposed 0 2
3
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| (i)(?)on
P(A, = HA, + B, =2) = (:)(]‘)()l{“F((l,)(;)

We can scee that this conditional probability is proportional to the conditional likeli-

hood we just computed.
Interpretation of the beta coefficients
As in the unconditional logistic regression:

PY = 11X)/(1 - P(Y = 1X))

OR = I’(Y — llx')/(] - P(Y = IIX’))

= cop(Ah(Nr — X)) =+ Bp( X, — X))

Special case: OR for a dichotomous exposure, assuming that all other covariates are equal.
POY =X = L. Xooo - LX)/ =PV =1X, =1, X,--+, X))
POY = 11X =0, Xpo - X)) /(1= P(Y = 1|X, = 1, Xgy- -+, X,)))

= crp(fh)

OR

Estimation of the parameters

The betas are estimated by maximization of the conditional tikelihood (CMLE). This
is done generally by an iterative process, using a computer, like Newton-Raphson mehtod.
This method of estimation (MLI) provides an estimate for cach beta, 3, and an estimate
of its variance d;. The MLE of /s are, in general, approxtmately normal.

Inference

e Conlidence intervals for /3,

3 £ L. j25;
o Waldtest: Iy, =0vs Iy : 3, #0
7 = 4/é; ~ N(0, 1)
e Likelihood ratio test (LRT)

Suppose we have the model logit(P) = gy + 31X, + --- + 3,X, and we want to test

the hypothesis Hy @ 3, = gy =--- =13, =0 (a subset of betas are equal to zero).
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The LRT requires the computation of two conditional likelihoods: that of the full

model, L=(8rupr), and that of the reduced one. L7( e peer). The test is given by:
X2 = 2L (o) L Breove)) ~ g
o G statistic to test the significance of the model (Special case of LR'IY)
Hy:h=dy=-=3,=0
X2 =2 {L(fully = L*(all betas = 0)}

For the second model where each beta equals zervo, the conditional likelihood reduces to

LY =1/(04 M) /(0 4+ My) - (1 + My)

1T M, the number of controls, is the same in cach matched set then L* reduces to (1/(1 +
M)

Consequences of the conditioning

o We can not estimate the probability of discase for a given cxposure because their s

no estimate of the intercept (a).

¢ Only the odds ratio of discase for any specified exposuie in the model can be esti-

mated.

o We can not estimate the OR associated with the matehing variables because thewr
parameters have been eliminated by conditioning. This implies that we can not
verily if a matching variable 1s in fact a confounder. However, you can estimate the

interaction between the main exposure and the matehing variables.

o The estimation is only based on discordant matehed sets. Im o matched set all the
subjeets ( the cases and the controls) are cither esposed or un-exposed, then the
conditional likelihood of this matched set is equal to one and does not contribute
any information to the estimation of the parameters. This can lead to a loss of

efficiency.
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4.4 Unconditional logistic regression with 1 to 1
match

As we saw previously, the conditional likelihood of the j'

sttatum for a | to 1 matched
sample is identical to the unconditional likelihood of a logistic regiession model with the
intercept equal to zero and the vector of independent variables « cqual to the value of the

case minus the value of the control. The likelihood is:

¢ S oh=1 Pk Voan=Y00)
l +(zlelfk(\’Jll.“\',«)'.)
(Zi’:l )ikzl"

l + ( z:-’:l dkzl“

I';(ﬂl’ ey ,Hp) =

where Z0 = (XN — X))
This implies that standard logistic regression software can be used to analyse 1 to 1

matched case-control. In order to accomplish this the data must be transformed as follow:

o The sample size is defined as the number of pairs, i.e. cach pair becomes one

observatoin.

o llach observation has a status of case: the outcome variable is set to one for each

observation.

o T'he vector of independent variables, Z, becomes the difference between the case

value and the control value.

If dummy variables have to be used to model a categorical exposure, they have to

he constructed tor each case and control fust and afterwards their differences will

be taken. For example, if the exposure is defined in 1 categoties, 3 dummy variables

will be formed, lets say Ly, F, and Iy where Iy = 1if the subject falls in exposure

category | and 0 otherwise. Three new variables called Zy. 75 and Zs are formed;
£0r) 2

Z0 = Fyuse — Eicontrot- These variables can take 3 possible values (=1, 0, 1). Z;, Z,

and Z3 will be entered in the computer as if they were continuous variables.
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o The intercept is set to zero.




Chapter 5

The Use of Concordant Pairs

5.1 Introduction

One-to-one matched designs remain one of the most popular for case-control studies in
which the possible association hetween a discase and a binary risk factor is of interest.

Data can be simply summarized ina 2 x 2 table

(‘ontrol

+ -
+ a b
Case
- < d

where, for example. b represents the namber among 0 = « 4 b4 ¢ + d paivs for which cases
are exposed and controls are not. The conmmon beliel is that matched designs require
matched analysis.  The preferred estimator of the common odds ratio, ¢, is therefore
= bfe instead of the pooled estimate, )= (a+0)(b+ d)/[(a+ ¢)(e+ d)], which ignores
the matching. A primary reason for not using ¢y is that it is hiased except when 9 = 1
or the matching is indeed unnecessary. Although there is recent research to support the
use of ¢y, it is understandably {rustrating lor epidemiologists to use only the discordant
pairs b and ¢ given the effort made to collect data on all n pairs.

The distinction between a stratified and pooled analysis is nicely itlustrated with data
from a matched study of endometrial cancer and oral conjugated estrogen use reported in

Schlesselman (1982). The 2 x 2 table has entries a = 12, b= 13, « =T, and d = 121. Less
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than one-third of 183 pairs are discordant. The estimates and 3% conlidence intervals
of ¥ for the matched and pooled analysis are o= 611 (2.76 to 13.65) and 44, = 3.71
(2.10 to 6.56). The familiar trade-ofl between bias and preasion is clearly presented in
this case. While 1/:1 may be less subject to bias, it sullers from decreased precision due to
the small number of discordant pairs.

A simulation comparing v and o in this case was conducted and the results are
summarized in Table 5.1, Data were generated from a distribuion with the parameter
values observed for the endometrial data. hiletences are reported for 4 = In(yr). The
simulation shows that both /;, and 4, are subject to serious bias in this case, /?2 s
more precise with variance about one-third that of di. The negative bias and inereased
precision, however, result in poor coverage probabilities lor 4,. The nominal 2.5% lower
and upper mtervals for ,’?2 have actual error rates of QA and 19 The conlidence intervals

for B have error rates of 4% and 0.5%.

Table 5.1 Simulation results for comparing the conditional MIE, /3, pooled estimator,
2, and James-Stein estimator, /3, for a population like that of the endometrial cancer

example where g = 1.81, ¢* = 1.57. 4 = 0.90, and the sample size is 1= 183,

3y /., Sy
) 2,00 1.h9 187
Var(j3) 429 0017103
Bias(%) 13 -2 3
MSE 82093 07
Ertor rate (%) of nominal
2.5% lower (1. 1.3 0 1.0
Firor rate (%) of nominal
2.5% upper €1 D192 30

We will discusses an alternative to /9, and 74, that is a compromise hetween complete
stratification and complete pooling. The idea is to use inlormation in the 2 £2 table about
the heterogeneity among matched pairs to determine the extent to which matehing should
he retained in the analysis. Recently. Liang (1987a) detived alocally most powerful test, for
the hypothesis that matching can be ignored. It rejects the null Ly pothesis if the statistic

S = ad = be, after standardization. is sufficiently large. In Section 2, a new estimator, /34,
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which incorporates the score statistic, S, is proposed. It uses S to compromise smoothly
between 3y and /;2. When there is little evidence of heterogeneity. 32 is preferved; when
the probability of exposure varies substantially across pairs, 4 is preferred. The last
column of Table 5.1 shows that for the endometrial cancer example, /5'; is ncarly unbiased
and the performance on coverage probability improves upon both A and /32. In Section 3,
the connection of Ay with the well-known Ja..s-Stein estimating procedure is discussed.

More simulation results are presented in Section 1. followed by discussion.

5.2 Proposesd Estimator
5.2.1 The Mixed Model

Let (XN, X,2) be the binary outcomes for exposure of the th case and the matched

control, t = 1,... . n. Consider the model
logit[Pr(X,, = 1o =a, +8(2-)) (f=1,....00) =12)

where {a,} is assumed to be a sequence of unobserved indeperaent and identically dis-
tributed random variables which tollow an unspecified distiibution. £, with mean a abd
variance 0. Thus, /4 is the common log-odds ratio and 0 characterizes the variation among
strata in probabilities of exposure. When 0 = 0, the matching is unnecessary and Bg in
Section | is the efficient estimate of 3.

The score statistic, S = ad — be, for testing the hypothesis ¥ = 0. One justification
of this statistic which reflects the fact that 132 is consistent only when ¢ = 1 or 0 = 0.
Another justihcation, which will be useful for later development. is that S is proportional
to ad/(be) — 1, which consistently estimates

/)l | I)(l()

Pyl

—l=¢—1
where

Po = Pr(Ni=0Xo=h)  (Lk=0.1)
— /(n,(/-}-l\)-hil(l +(‘L"+J)_l(l +‘n,)-—l’il;1(0’)
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Note that ¢ =1 when 0 = 0 and o > I when > 00 a simple consequence of Holder's
incquality. We also note that hecause I is not spedified, T = («.b, e d) are the minimum

sufficient statistics, which have a multinomial distiibution of size i and cell probabilities
P= (Pn, Py, Por. Poo)-
5.2.2 Estimating Functions for .5, and 3,

This section develops a common link hetween Jp and 3y that can be exploited to obtain

the compromise estimator, ;. Mirst. 4 is the solution of the equation

n . ,11,] . RANY) H
Z(J'zl e + a0 ) :Z/'u(/“:“ (5.1)

S RN
= Tt

=1

This is simply the scote equation based on the conditional likehbood detived by Brestow

et al.(1978) and can be expressed in terms of T as

b ¢

- — = ()
A BT

The pooled estimator, f3,, can be denved as the solution ol the lollowing estimating,

equation

n n .3, s gy N
ZE(-I'H Lt I SR “> _ ZZ/':L(/”

=1 L=

= Y _hi(#)
t=1

(0 +0)b+dy  (u+e)etd)y

o o] ]

= 0 (5.2)

To obtain this equation, the conditional probability argument adopted in Breslow et
al.(1978) is applied to all possible n? casce-contiol combimations regardless of whether
they are from the same pair or not. T'his is consistent with the notion that f, is derived

by ignoring the matching.
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5.2.3 The Proposed Estimator

To obtain Ay, let

+ {1 = w(T)) [h,‘(,’i) - M} (5.3)

n

be the comtribution from the ith pair to a new estimating function for 8. Here w(T)
is a function of T that converges to w(lPyy. Pio. Py . ) as n — oo in such a way that
(i) 0 < w < I; (it) w =1 when 0 = 0. and (iii) «w — 0 as ¢ — oo. Equation (3) is
introduced to compronnse between 3, and 4, The use of estunating functions instead
of estimators is crucial here because the estimator of 4 from cach pair is undefined for
one-to-one matching: no such problem exists when estimating functions are adopted. An

estimating function () of 4 is arrived at by summing U, over pairs, i.c.,
U(d) =Y U19)
=1

The weight function w(T) we consider is

e

(I(l

w(l) =

It possesses properties (i) (1) desaribed above  For this choice of w, the solution, B3, of

'(3) =01

17’; =

| be(a + b)(b+ d)/n + (ad = be)b]
" he(a + )¢+ d)/n + (ad = be )('J

5.2.4 The Asymptotic Distribution of 3

It can be seen easily that Sy comerges as 1 — o0 to

Jo=1n {/)m/’m(/)n + Pio) (P + Poo + (P Poo = P10 P A
=

= |n— 5.4
PooPor (P 4+ Po))(Poy + Poo + (P Poo — PHOT ) Py B (5-4)

which is identical to ,3 when either 3 .- 0, in which case Py = Py, or when 0 = 0, in
which case PPy = Pl .

Because of the multinomial stineture of T, 45 has an asymptotically normal distribu-
tion with mean 45 and variance given in Appendix 1. The same argument ena be applied

to 4y and 3, as special cases when w =0 or {.
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5.3 Connection Between 3; and James-Stein Proce-
dures

It is of theoretical interest to relate .;, to the well-known James-Stein (J-S) estimating
procedure (James and Stein, 1961). For this reason. we brielly review the J-S procedure
for the Gaussian location problem and as a by-product provide a new justification for its
use.
Let x = (@rq,...,.0,) be nindependent normal variates with means

(ft1y+ « s ftn ), and common known variance, o4, The J-S estimatovof g, (1= 1,...,n) s

(n = 2)a?
Lzl — )¢

One justification for the use of /i, is given by Efron and Moris (1972), who show that i, s
LN ) I

fo=w+ |1 - (0, =y =2+ [ = w(a)](a, = r)

approximately the Bayes estimator of ji, when {jr, } s assumed 1o follow a Gaussian prior
distribution. We now offer an alternative justification with the normality assumption on
{11,} relaxed. We first assume that {4} is generated from an unspecilied distribution with

mean g and variance 0. Following Liang (1987a). the score statistic for testing 0 = 0 is

I [ (1, =) n
AR e — . ! nor
,s__z Z. por | =58 (5.5)
=
Note that
S, n |
— = wir) —= ————— as n — x 0.0
ol S A S T (5.6)

This ratio is equal to 1 when 0 = 0 and converges to zero as § — >. Fither | = 5,/5) or
1 —w(x) zan then be considered as a smooth weight attached to ., when both a, and . are
combined to estimate y,. More detailed derivations of {3) and {4} are given in Appendix

2. The J-S estimate, ji,. can now he wiitten as the solution of the estimating equation
F—yp 4+ =w(e))e, =g, = (40 =) =0
which is in direct analogy to the estimating equation for 4.
There is, however, an intrinsic difference hetween the J-S and our estimating proce-

dures. While the focus of J-S procedure is ou the estimation of {p,}, our focus is on the

estimating fuction of A as {a,} are nuisance pmaineters,
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Table 5.2 Cascs for simulation study. The parameters 3 = n(o/ Po)s
o = [P\ Poo/(ProPar)] and 5 = Py + Py determine the multinomial probabilities.

I)lla I)l(h I)Ula l)()()

Rve
i)
]

v Py P e D
A0 .00 .09 .09 .81
00 3 09 210 21 19
3
l
3

0

0

0 .00 25025 25 25
0 .25 00 .09 .09 .81
0 .25 3 .10 .20 .20 .50
0 .25 5h 2v 23 .23 27
0 1.0 .1 .02 .08 .08 .82
0 1.0 3 a1 6 .16 .5l
0 1.0 5 31 .49 .19 3l
P00 1 02 20 08 L6Y
I .00 3 16 38 b 2
.00 5 37 37 43 13
.25 .1 .03 .20 07 .70
25 3 7 35 13 35
I .25 5 37 45 13 .15
o .1 01t a7 06 .73
1 1.0 .3 20 .28 .10 .12
1 1.0 5 49 29 01 .21
2 .00 .1 .05 o 05 1Y
2 .00 3 23 .53 07 07
2 .00 .5 b b 060 .06
2 .25 1 05 38 .0h 52
20025 3 23 50 07 1Y
2 .25 5 1 8 060 .07
2 1.0 .1 .06 31 .0F .59
2 10 3 20 13 060 .27
2 1.0 5 5 a8 05 12

5.4 Simulation Results

The finite-sample properties of 4, and 4, and the James-Stein estimator, B3, have been
compared in a simulation study. For given values of P = (Pyy. o, Poi,y Poo), 1,000 in-

dependent realizations of T = (a. b.e.d) were generated from a inultinomial distribution
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with probabilities P and sample size no= 60,100, 01 200 For cacli realization, the three
estimators of 3 = In(#") and their asviaptotic varances were cal-ulated and stored. The
finite-sample expected value and variance of cach estimator were estimated by the sample
mean and variance of the 1.000 realizations. The coverage probabilities of asymptotic
confidence intervals and their mean lengths were also determined.

There are a number of ways to parameterize the true probabilities, P, We have chosen
the following parameters: 3 = In( P/ Po). the log-odds ratio: o = I[Py Poo/(Proln)],
a measure of heterogeneity across paits, and 4 = [y + . the probability ol exposure
for a control. The simulation includes the cases 3 = 0,1.2; o° = 0..25,1.0; and 5 =
A, .3 and 5. Table 5.2 lists the multinomial parameters, Pofor the cases seadied.

Table 5.3 present the bias for thiee estimators, The conditional likeliliood estimator,
Ay, is the least biased hut the James-Stein alternative performs nearly as well. The bias in
A2 is much greater and incereases with o and 4. Table 5.1 displays the mean squared errors
(MSE). The pooled estimator, Ay, is clearly best as bias contributes less than variance at
the sample sizes studied except at the largest values of f when no= 200, Note, however,
that ;;;, has simaller MSF than 3, in most configuiations when ¢ > 0 and 4 >0,

Table 5.5 presents coverage probabilities for the nominal 95% interval. Fach entry is
the difference between the observed and expected coverage (2.5'2.) in integral standard
deviation units., The standard deviation is 5% for this simulation with 1,000 replications.
Upper and lower coverages are reported separately. All three estunators perform similarly
for the lower limit, tending to be slightly conservative. ‘The probability of failing to cover
decreases as 3 and ¢™ increase. For the upper fimit, 3 is approsimately unbiased for all
cases. The pooled estimator, /91, has grosshv inconect coverage when there is substantial
heterogeneity among pairs (e.g.. 07 = 1.0). This 1esalts iom the negative bias evident in

Table H.3.
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Table 5.3 Bias(x10) i A1, conditional ML A, pooled estimator: and f35, James-Stein

estimator. A blank entry represents 0.
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— e e — —
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— |
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€
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.25 ] -1 i
1.0 -2 -2 =2 -1 -1
00 1 | | 1 1
.25 | I -1 -1 1

o

200 0 .00

.00 1 I
25 I -1 -1 -l
1.0 ! -3 -1 = -1 =2 -]
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The James-Stein estimator, 3. is nearly as good as JFp in upper-limit coverage except
e A L barpe — = is case. the led esti 3 for .
when ¢ s large and 4 = 5. In this case. the pooled estimator, /32, performs very
poorly and the weighting function, w(T), used in f3 assigns some positive weight to the
pooled estimating equation (2). Fxcept in this instance, however, g3 maintains reasonable

coverage.
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Table 5.4 Mean squared errors for 3y, conditional MLE; 4, pooled estimator; and g,

James-Stein estimator
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Table 5.5a Actual a level of nominal 2.5% lower confidence limit for 8. Entries are the
estimated rate at which the lower limit failed to cover the tiue 3 divided by 0.5%, the
standard deviation of the estimator based on 1.000 replications. Entries are rounded to

the nearest integer. Blanks represent 0.

i 132 33
n f ¢ y=. 3 S5 1 3 5 i d 5
60 0 .00 -1 -2 -1 =1 =2
25 =2 -2 S -2
1.0 -3 -1 =1 1 —3 -1
1 00 -5 =2 =3 =2 —f -1 —i{ -1 =1
25 —d -1 =3 =2 -1 =2 -1 =2 =2
1.0 =5 =3 —1 =1 =3 —{ —1 —4 =5
2 .00 =5 =5 =5 —I -1 -3 -3 -3
25 =5 =5 =5 =2 =3 —1 —1 -1 —4
0 =5 =5 =5 —1 =5 —1 =3 -5 =5
100 0 .00
25 I
1.0 1
1 .00 -1 -1 -1 1 1
25 =2 -3 =2 -1 -3 =1 =1
1.0 =5 =1 =3 =5 —4 —d1 = =2 —4
2 .00 -5 -3 -1 -—I -3 -1 =3
2y =h = =1 =2 =3 =2 -1 =1 -4
10 -5 -1 =3 —1 =5 —=H —=H =5 =5H
200 0 .00 [ - I =1
25 2 ) 2
1.0 2 =1 3 =1 2 -1
1 .00 -1 -l —1
25 -1 =1 =1 =2 =2 -2 =2
10 -1 =2 -1 =5 =4 =1 =3 =3 =3
2 .00 -1 -1 =2 —I ~1
25 =3 =2 -3 =1 =3 =1 -1 =2
1.0 =2 =2 =2 =5 =5 =5 —{ =5 —4




70

CHAPTER 5.

THIEUSE OF CONCORDANT PAIRS

Table 5.5b Actual a level of nominal 2.5% upper confidence limit for 4. Entries are the

estimated rate at which the upper limit failed to cover the true 3 divided by 0.5%, the

standard deviation of the estimate based ou 1,000 replications. Blanks represents. Blanks

represent 0.

3, 3, 3
n g ¢ =, I S N N ] 5} | 3 H
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25 1 | l 0 2 | |
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25 1 ] 6 S D ! 3 |
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Table 5.6 lists the ratio of the average conlidence interval lengths for Ay and fy. The

James-Stein estimator is more efficient except when 4
gain is appreciable. For example, when 3 = 2 and ¢°

interval lengths for A5 range from 0% to 50% less thau

= 0. In many situations the
= .25 the average confidence

those for ;. This substantial




5.5. DISCUSSION 71

gain in efficiency is achieved without serious degradation of the coverage probabilities.
In summary, the simulation indicates that gains in cfficieney can be achieved by using
A4 without substantial crrots in coverage rates. This is because By takes advantage of
information in concordant pairs in estimating the log-odds ratio when the data indicate

there is little heterogeneity across pairs.

5.5 Discussion

The conditional maximum likelihood estimator, A, has long been used to estimate the
common odds ratio in case-contiol studies. Its potential problem *s the risk of 1educing ef-
fective sample size by ignoring concordant pairs. On the other hand. the pooled estimator,
fa, is subject (o severe bias though its variance is much lower. The new proposed estima-
tor, /},, seves as a compromise between bias and precision. T'he connection between this
estimator and the James-Stein estimating procedure is emphasized. The 1epresentation
of (2) for /;,, through the conditional score argument is new. It serves to link ,él and [}2
together so that the James-Stein procedure can be adopted in this one-to-one matched
setting.

We expeet the new estimator, 4. to be most useful in studies with fewer discordant
pairs. When the number of discordant pairs is very large. investigators are unlikely to
accept even small amounts of bias to decrease variance. It is in situations where the
evidence about 3 is borderline that trade-off is desivable. Au example is in occupational
epidemiology. where large, expensive cohort studies are necessary to obtain even 50 or
100 case-control pairs for less prevalemt discases. Here large odds ratio estimates, say
between 5 and 10, may have standard etrors of the same magnitude when concordant
pairs arc ignored. The introduction of a small bias is justifiable it a substantial reduction
in vartance is achieved. Table 5.3 and 5.6 demonstrate that in studies with less than 200
case-control pairs. the bias introduced by using 4y is small relative to the large reductions

in variance.
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Table 5.6 Ratio of average confidence interval length for conditional estimator, 3, to

the James-Stein estimator,

60 0 .00 100 100 Lov

2592 Loy 1L.O0

L0 TV OO O T O
.00 Loy 1]
25 107 L.

1.0 116 132 1.29
2 .00 121 |
25 125 L

O 129 153 1L

100 0 .00 91 100 1.00

25 L0010y 1

1O 100 1O0Y 105

.00 108 109  1.09

25 L0S 108 LT

LO IS 129 131

2 .00 133 136 1.29

25 139 LY L

O 130 LIS 15

200 0 .00 100 100 1.00

25 1,000 110 1.00

Lo 109 1OS .27

.00 LOO 110 110
25 10 LIS 109
LO L 127 127
2 .00 LT L2Yo127
20 123 L3013
OO 127 b 1t

The focus has been on one-to-one matching for a single binary exposure variable, The
extension of /33 to more general sparse data is straightforward, Let X, oo, Xy Zuy vy

Zy, be the sets of multiple risk outcomes for the me, cases and b, controls in the ath

stratum, ¢+ = 1,....n. If the pairwise argument described in Section 2 for the logistic
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regression model is adopted, the estimating funetion for stratified estimator is

" my A, i1 BE
; R I ATt
z@+gzz(—(mww) (5.7

The pooled estimator is the solusion of

m, n J,l,(zh,]_*_;l,l(/f:‘:l
355353 (v - o) =0 )

i3 IEEN]
1=17=1 /= I=1 e

A James-Stein estimating function can be detived by combining equations (7) and (8)
following the procedures described in Section 2.3.

Note that for a single binary exposure variable, (7), (8) and the weight function, w,
g M) I s

mola k= 2) (my = e)ze?
- I“l '
;[ I+ ¢’ I+ [k )

- z,) B (=), =,
= l 4 (" | 4 ¢

et s = A ) k) = (2 (S m))?
(e )Tk =T e )(Zhk)+ (=T m = Ez)/ (X my)

where v, = ¥, w0y, and 2, = 3,200 The corresponding James-Stein estimator for e? is

reduce to

w =

then
w(E e (k= 2z 4 (1 w) Tk, = =)/ (k4 m))]
W(Tm, =T e )X =)/ n+ (L4 w)S[(m, =)z [k 4+ my)

Finally, further work is needed 10 answer two questions: (') Can some criteria be

established to lead us to an “optimal” choice of «(T) and (it) Does the idea of shrinking

estimating function rather than estimators have application in other contexts.
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Chapter 6

Appendix

APPENDIX I

The Asymptotic Vatiances of the #'s

Note that 3y, 32, and A3 are functions of T = (a, b.c, d) and that /n(a = P, — P, c—
Por d— Poo) converges as n — oo to a multivariate normal distribution with mean 0 and
covariance
PaQu —=PulPw =Pl —Paly
J J
Z _ Moo =Pl —Pwle
- ) P
PoQu =l
PooQov
where Q = | =P. The delta method can he applied to obtain the asymptotic distributions
of the three estimators. Since both 3) and 4, can be regarded as special cases of g3 with

w(T) = 0 and 1. 1espectively, only the variance of 3y is presented here. Define

didy Pilor( P+ Po) 4+ Proloy _ Py Poi(Por + Poo) + Poi Poo

(Y = =
: (')I)“ A 3
. = Ofs Py Poo(Por + 1) + 20 P Por + Poyr Poo — Por) Pro + 3P P
2 = - =
()I)m A
PP+ Po)(Por + Pw) = Py
I3
(1. - aﬁ) _ ])IO(I)II + I)l())(l)w + ,)00) — I)(fl
P OPor A
- 21 Poo(Pro+ 1) +2(P0 Py + Proloo — Pro) Por + 3Pl
I3

7

b5}
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C = 013y _ Poo Por( Py 4+ Pa) + PP ) Pl () ‘f__l’m) + Pyl
' ) Pso \ 13

where A and B are given in (1). The asvmptotic vatiance of 4y is
" !
var(3) = C ¥ C

with C = (C1.C,. 5. Cy)'




17

APPENDIX II

Dervations of () and (6)

For given g, the a, is normally distiibuted with density denotea as f, (5 g,). The score

statistic S for testing the variance of {yi,}, 0, being zeto is

R T R A
SN = = {[_ln./:(-l';lll.:-l')] +(')2/l, In I,(.r,:/l,:.r)}

24| Lo
P& e, — )2 N .
] =

Finally. . , , ,

- — = =
Sy (e =) car(ry)  of+0

by noting,
var(ay) = var(F (o)) + Elear(e )] =0+ ot
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APPENDIX 111

Fxplanation of the Attached Data Set

The attached data set is collected by Tuyns et al. (1977) in the French department of
Ille-et-Vilaine (Brittany). Cases in this study were 200 males diagnosed with oesophageal
cancer in one of the regional hospitals hetween January 1972 and April 1971, Controls
were a sample of 778 adult males diawn from clectoral lists in cach commune, of whom 775
provided sufficient data for analysis. Both tvpes of subject were administered a detailed
dictary interview which contained guestions about their consunption of tobaceo and of
various alcoholic beverages in addition to those about foods.

Tuse SAS and BMDP LR to run this data set inorder to demonstrate the application of
logistic regression. First. Fuse SAS to apply classic Mantel-Haens, ol methodology to study
the joint effects of two risk factors, alcohol and tobacco, on the relative rish of oesophageal
cancer in llle-et-Vilaine. Both factors were partitioned into fomr levels, actually T transfor
alcohol into two levels, yielding 8 tisk categoties in all. The (st approach is to compute
separate estimates of the age-adjusted relative tisk {or cach coegory. Later 1 estimate
relative tisks for cach alcohol level. simultanconshy adjusting for aleohol and age. ‘This
procedure requires to construct and sunnmarize several dilferent seties of 2 < 2 tables.
The relative risks obtained for cach alcohol anel tobacco level were multiplied together to
estimate the joint effect of these two variables. Second, Tuse BMDP LR to demonstrate
unconditional logistic regression analysis with model selection and model assessment. The
starting point is the giouping of the cases and 775 contiols into 12 4 » 6 = 96 cells, cach
of which represents a combination ol the categones ol alcohol, tobacco and age. Each ecll
are treated in the statistical analysis as independent hinomial observations, which cases
representing the numerator and cases4controls the denomimator The attached computen

printouts to this paper give the analysis 1esults of several diflerent models.
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SAS

TABLE OF DAL

DAL GROUP
Frequency |
Col Pct Icas |
--------- b mm—————¢
hig | 96 |

| 48,00 1|
————————— o memm——t
low | 104

! 52.00 |
---------- R
Total 200

11:02

BY GROUP

| Total

| 205

| 110

974

STATISTICS FOR TABLL OF DAL BY GROUP

Statistlic

Value

Thursday, Septembeoer

Chi-Square

Likelihood Ratio Chi-Square

Continuity Adj. Chi~Square

Mantel-Haenszel Chi-Square

Fisher’s Exact Test (Left)
(Right)
(2-Tail)

Phi Coefficient

Contingency Coefficient

Cramer’s V

Statistic

Gamma
Kendall’s Tau-b
Stuart’s Tau-c

Somers’ D CIR
Somers’ D R|C

Pearson Correlation
Spearman Correlation

Lambda Asymmetric CIR
Lambda Asymmetric RIC
Lambda Symmetric

Uncertainty Coefficient CIR
Uncertainty Coefficient RIC

Uncertainty Coefficient Symmetric

110.255

96.433
108.221
110.142

0. 336
0,119
0,336

0.699
0.336
0.221

0.333
0.13%9

0.136
0.1336

0.000
0.000
0.000

0,09/
0.096
0.091/

Estimates of the Relat ive Risk (Rowl/Fow

Type of Study Valu
Case-Control 5.61
Cohort (Coll Risk) 3.46
Cohort (Col2 Risk) 0.61

Sample Size = 975

9

9%
Conf idence

1.000
1.04R-22
1.08K-22

0.02/

0,037/
0.037

0.0%6
0.036

0.000
0.000
0.000
0.020

0.020
0.020

2)

Hounde

sQ,

1993




SAS 11:02 Thursday, Septerber 30,

SUMMARY STATISTICS FOR DAL BY GROUP

Cochran-Mantel~Haenssel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Cortelation 1 110.142 0.000
Row Mean Scores Differ 1 110,142 0.000

! General Association 1 110.142 0.000

Estimates of the Common Relative Risk (Rowl/Row2)

95%
Type of Study Met hod Value Confidence Bounds
Case~Cont.rol Mantel-Haensscel 5,640 4,083 7.791
{Odds Ratio) Logit 5,640 4,001 7.951
Cohort Mantel-Haens/el 3.467 2,149 4.373
(Coll Risk) Logit 3.467 2.753 4.367
Cohort Mantel-Haenszel 0.615 0.561 0.673
(Col? Risk) Loqgit 0.615 0.539 0./7¢C1

The confidence bounds for the M-H estimates are test—based.,

Total Sample Si/se = 975

1993




SAS 11:02 Thursday,
TABLE 1 OF DAL RY GROUP
CONTROL.LING [ OR TORB-0
DAL GROUP
Frequency|
Col Pct |{cas lcon | Total
————————— e e e }
hig | 3H 1 50 |
| 44.8/7 1 11.19 |
————————— B T P
low } 43 | 397 440
| 55.13 1 88.81 |
————————— o e e |
Total 78 44 HeH

STATISTICS FOR TABLF 1 OF DAL BY GROUP

CONTROLLING FOR

Statistic

ToB 0

Valne

Soptembor 30,

Gamma
Kendall? s Tau-b
Stuart’s Tau-c

Somers’ D CIR
Somers’ D RIC

Pearson Correlation
Spearman Correlation

Lambda Asymmetric CIR
Lambda Asymmetric RIC
Lambda Symmetric

Uncertainty Coefficient C|R

Uncertainty Coefficient RI|C
Uncertainty Coef ficlent Symmetra

Estimates of the Relative

Type of Study Value
Case-Control 6,463
Cohort (Coll Risk) 4,213
Cohort (Col? Risk) 0.652

Sample Size = 525

0.101
0.096
[o4 0.0u8

Risk (Rowl/Row?)

0.05%5
0.048

0.04%4
0,054

0,000
0.000
0,000

0.0
0,030
0.013]

Conf idoence Bounde

3,181
2.81/8
0.544

11.028
6,161
Q.81

19493




SAS 11:02 Thursday, September
TABLE 2 OF DAL BY GROUP
CONTROLLING FOR TOB=1
DAL GROUP
Frequency|
Col Pct |[cas lcon | Total
--------- T ek
hig | 311 36 | 67
| 33.45 | 20,22 |
————————— e
low | 27 | 142 | 169
| 46.55 | 79,78 |
————————— LT LT
Total 58 178 236
STATISTICS FOR TABLF 2 OF DAL BY GROUP
CONTROLLING FOR TOB=1
Statistic Value ASE
Gamma 0.638 0.096
Kendall’s Tau-b 0,317 0,068
Stuart’s Tau-c 0.246 0.057
Somers’ D CIR 0.303 0.067
Somers’ D RIC 0,332 0.072
Pearson Correlation 0.3117 0.068
Spearman Correlation 0,317 0.068
Lambda Asymmetric CJR 0.000 0.000
Lambda Asymmetric RIC 0.060 0.110
Lambda Symmetric 0.032 0.060
Uncertainty Coefficient CIR 0.084 0.036
Uncertainty Coefficient RIC 0.079 0.034
Uncertainty Coefticient Symmetric 0.082 0.015
Estimates of the Relative Risk (Rowl/Row?)
95%
Type of Study Value Confidence Bounds
Case-Control 4,529 2.406 8.524
Cohort (Coll Risk) 2.896 1.881 1,458
Cohort (Col2 Risk) 0.639 0.507 0.806

Sample Size = 236

10,

1993




SAS

11:02 Thursday, September 30,

TABLE 3 OF DAl BY GROUP
CONTROLLING FOR TOB=2

DAL GROUP

Frequency|

Col Pct |cas lcon

_________ I e il

hig | 13 | 15
| 39.392 | 15.15

_________ o mmm——— o ———— —

low | 20 | 84
| 60,61 | 84.85

_________ e} g ——

Total 33 a9

STATISTICS FOR TABLE 3 OF DAL BY GROUP
CONTROLLING FOR TOB=2

Statistic

Gamma
Kendall’s Tau-b
Stuart’s Tau-c

Somers’
Somers’

D CIR
D RIC

Pearson Correlation
Spearman Correlation

Lambda Asymmetric CIR
Lambda Asymmetric RIC
Lambda Symmetric

Uncertainty Coefficlient C{R
Uncertainty Coefficlent RI|C
Uncertainty Coefficient Symmetric

Value ASE

0.569 0.153
0.257 0.095
0.182 0.072
0.272 0.102
0.242 0.092
0.257 0.095
0,257 0.095
0,000 0.000
0.000 0.000
0.000 0.000
0.054 0.039
0.058 0.042
0.0586 0.040

Estimates of the Relative Risk (Rowl/Row?)

Case-Control
Cohort (Coll Risk)
Cohort (Col2 Risk)

Sample Size = 132

95%
Confidence Bounds
1.497 8.850
1.379 4,226
0.464 0.948

1993




SAS 11 :02 Thursday, Septembe:

TABLE 4 OF DAL BY GROUP
CONTROLLING FOR TOB=3

DAL GROUEB

Frequency |

Col Pct jcas lcen | Total

--------- D A e

hig | 17 | 8 | 25
] 54.84 | 15.69 |

---------- rmmmmmm e hmm— e}

low i 14 i 43 | S
| 45.16 ) 84,31 |

————————— e tat

Total 31 51 82

STATISTICS FOR TABLE 4 OF DAL BY GROUP
CONTROLLING FOR TOB=3

Statistic Value ASE
Gamma 0.734 0.122
Kendall’ s Tau-b 0.412 0.105%
Stuart’s Tau-c 0.368 0.099
Somers’ D CIR 0.424 0.109
Somers’ D RIC 0.392 0.103
Pearson Correlation 0,412 0.105
Spearman Correlation 0.412 0.105
Lambda Asymmetric CIR 0.290 0.136
Lambda Asymmetric R|C 0.120 0.209
Lambda Symmetric 0,214 0.154
Uncertainty Coefficlent CIR 0.127 0.066
Uncertainty Coefficlient RIC 0,137 0.0
Uncertainty Coefficient Symmetric 0132 0.068

Fstimates of the Rolative Risk (Rowl/Row?)

9h%
Type of Study Value Confidence Bounds
Case-Control 6,527 2,320 18.362
Cohort (Coll Risk) 2,769 1.632 1,697
Cohort (Col2 Risk) 0.424 0.235 0.765

Sample Size = 82

30,

1993




SAS 11:02 Thursday, Septembe- 30,

SUMMARY STATISTICS FOR DAL BY GROUP
CONTROLLING FOR TOB

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 96.9722 0.000
2 Row Mean Scores Differ 1 96.922 0.000
3 General Association 1 96.922 0.000

Fstimates of the Common Relative Risk (Rowl/Row2)

95%
Type of Study Method Value Confidence Bounds
Case—Control Mantel-Haenszel 5.257 3.778 7.315
(Odds Ratio) Logit 5.313 3.747 7.533
Cohort Mantel-Haenszel 3.181 2.526 4,004
{(Coll Risk) Logit 3.190 2.5317 4,012
Cohort Mantel-Haenszel 0.628 0.572 0.689
{Col2 Risk) Logit 0.636 0.559 0.724

The confidence bounds for the M~H estimates are test-based.

Breslow-Day Test for Homogeneity of the Odds Ratios

Chi-Square = 1,617 DF = Prob = 0.65%0

)

Total Sample 3ize = 975

1993




SAS 11:02 Thursday,

TABLE 1 OF DAL BY GROUP
CONTROLLING FOR AGE=1

DAL GROUP

Frequency |

Col Pct jcas jcon | Total

————————— b m— e}

hig | 1| 9 10
} 100.00 i 7.83 1|

————————— fmme e e }

low | 01 106 | 106
| 0.00 | 92,17 |

--------- b . ——

Total 1 115 116

TABLE 2 OF DAI. BY GROUP
CONTROLLING FOR AGE=2

DAL GROUP

Frequency |

Col Pct |cas jcon | Total

--------- pommm e e

hig | 4 | 26 | 30
| 44,44 13.68 |

————————— fmm e b e

low ! 5 | 164 | 169
| 55,56 | 86,32 |

————————— e e} e e e

Total 9 190 199

TABLE 3 OF DAL BY GROUP
CONTROLLING FOR AGE=3

DAL GROUP

Frequency|

Col Pct |cas lcon | Total

- tm—— L +

hig | 25 | 29 | 54
| 54,35 | 17.37 |

--------- b ———— -

low | 21 | 138 i 159
| 45,65 | 82,63 |

---------- B T it 1

September

10,

1993




3A8 11:02 Thursday, September 30, 1993

TABLE 4 OF DAL BY GROUP
CONTROLLING FOR AGE=4

DAL GROUP

Frequency|

Col Pct lcas lcon ] Total

--------- R e et S

hig | 42 | 27 | 69
i 55.26 | 16.27 |

————————— tm e ——————

low [ 34 | 139 | 173
| 44.74 | 83,73 |

————————— e e R T S

Total 76 166 242

TABLE 5 OF DAL RY GROUP
CONTROLLING FOR AGE=5

DAL GROUP

Frequency !

Col Pet |cas jcon | Total

--------- bememm e b 4

hig | 19 | 18 | 37
[ 34.55 | 16.98 |

————————— e e 4

low | 36 | 88 | 124
| 65,45 | 83,02 |

————————— B

Total 55 106 161

TABLE 6 OF DAl BY GROUP
CONTROLLING FOR AGE=6

DAL GROUP

Frequency |

Col Pct f{cas jvon |  Total

————————— o e

hig | 5 | 0 | 5
| 38.46 | 0.00 |

--------- ey

low f 8 | 31 i 39
} 61.54 | 100.00 |

--------- dmm e e — ¢




SAS 11:02 Thursday, Septembe-
SUHIARY STATISTICE FOR DAL BY GRGUP
CONFROL.,ING FOR AGE

Cochrar-sanic»=F. nszel Btatlstics (Based on Table Scores)
Statisti #L ry rrive Hypothesis DF Value Prob
e e o S e o w0 T o o ® p At e o o P A e b s N s iy - 0 = — o T o -
e 22 ¢ ‘orrelation 1 85,009 0.000
2 Kow Megs, . ores Differ 1 85,009 0,000
3 General .~ociation 1 85,000 0.000

Estimates of * ; t.7-0on Relative hisk (Rowl/Row2)
i 95%

Type of Liudy Worv Value Confidenge Bounds
b —— - . . e o e e A o e e
Case«Control vty e . 5.158 3.639 1.310
(Odds Rat o, {fuagte » 5.100 3.512 7.407
Cohort g o p i e .te 2.888 2.30% 31.618
{Coll Risk) vy vt 2.947 .31 3.663
Cohort Mo peol-"lgen | vel 0.644 0.586 0,707
(Col2 Risk) LOWLE 0.780 0./08 0.859

The confidence bounds for the M-H estimates are tost-based,

* denotes thal the logit estimators use a correction
of 0.5 in every cell of those tables that conlain a secru.

Breslow-Day Test for Homogencity of the Odds Rat ios

Chi~Square = 9.323 DF =

o

Prob = 0,097

Total Sample Size = 975

30,

1903




SAS

TABLE OF GROUP BY ALC

GROUP ALC
Frequency| 0| 1] 21 31
--------- T e T
cas | 29 | 75 | 51 | 45 |
--------- L S e L )
con | 386 | 280 | 87 | 22 )
————————— i Rttt A atat
Total 415 355 138 67
TABLE OF GROUP BY TOB
GROUP TOB
Frequency| [0} 1] 2] 3
————————— pormmmm e mmt ————————— e e f e e =
cas | 78 | 58 | 33 | 1
————————— po e ——————t — e m e e
con | 447 | 178 | 99 | 51 |
--------- L e T
Total 525 236 132 82
TABLE OF GROUP BY AGE
GROUP AGE
Frequency| 11 2] 3 4 Ol
- —————— pmmm———— pm—————— it o e e Frmem e ——— b
cas | 11 9 | 46 | 76 | 55 |
———————— o e fmmm e pmmm———— tm—————— +—
con | 115 | 190 | 167 | 166 | 106 |
———————— b ———— pmm————— e trmm———— tmm————— 4 -
Total 116 199 213 242 161

11:0? Thursday,

September 47,

Total
200
775

975

Total
200
775

975

1993



BMDPLR - STEPWISE LOGISTIC REGRESSION

Copyright 1977, 1979, 1981, 1982, 1983, 1985, 1987, 1988
BMDP Statistical Software, Inc.

BMDP Statistical Software, Inc.

| BMDP Statistical Software
1440 Sepulveda Blvd | Cork Technology Park, Model Farm Rd
Los Angeles, CA 90025 USA | Cork, Ireland
Phone (213) 479-7799 | Phone +353 21 542722
{
|

Fax (213) 312-01e61 Fax +353 21 542822
Telex 4972934 BMDP UI Telex 75659 SSWIL EI

Version: 1988 (IEM PC/DOS) No Math Coprocessor Required.
Manual : BMDP Manual Vol. 1 and Vol. 2 .
Digest : BMDP User’s Digest .
Updates: State NEWS., in the PRINT paragraph for summaty of new features,
09/20/93 AT 13:36:03
PROGRAM INSTRUCTIONS
/problem title is ’alcohol-vesophageal cancer: logistic regression’,
/input variables = 6.
format = free.
file = ‘’scc.dat’.
/variable names = age, alcohol, dalcohol, tobacco, cases, controls,
/reqress scount=cases.
fcount=controls.
model=dalcohol.
dvar=part.
start=out,
move=1,
method=mlr,
/end

PROBLEM TITLE IS
alcohol-oesophageal cancer: logistic regression

NUMBFR OF VARIABLES TO READ IN. ., . . 6
NUMBER OF VARIABLES ADDED BY TRANSFORMATIONS 0
TOTAL NUMBER OF VARIABLES . . . . . « ¢« . + . . 6
CASE FREQUENCY VARIABLE . . . . . . . . .

CASE LABELING VARIABLES . . . . +« ¢« v « v « +

NUMBER OF CASYS TO READ IN., . . . . . TO END
MISSING VALUES CHECKED BEFORE OR AFTER 1RANS . NEITHFR
BLANKS ARE. . . . . e s b e e e s 4 4 4 e« . MISSING
INPUT FILE. . .scc.dat

REWIND INPUT UNIT PRIOR TO RFEADING. . DATA., . . YRS
NUMBER OF WORDS OF DYNAMIC STORAGE. . . . . . . 16248

VARIARLES TO BE USED

1 age 2 alcohol 3 dalcohol 4 tobacco 5 casoes
6 controls

INPUT FORMAT IS
FREE

MAXTMUM LENGTH DATA RECORD IS 80 CHARACTERS,

DFPENDENT VARIABLE. . . . . . . ¢« ¢ o v o v o . O
COUNT VARIABLE. . . . . e 0
SCOUNT VARTABLE, . . + . . « . « ¢« v . . . . b4 cases

FCOUNT VARIABLE, . . . . 6 controls
METHOD TO SELECT NEXT TERM TO REMOVE OR ENTER . mlr
HIERARCHICAL TERM INCLUSION RULE USED , ., . . . SING
REMOVE LIMIT (P-VALUE MUST BE GREATER). . . . . 0.1500 0.1500




1000

INTER LIMIT (P-VALUE MUST BE LESS). . . . . . . 0,1000 O.
TULERANCE , . . C e e e e 4 e e e o . . . 0.000100cC
COMVERGENCE CRITERION PR « « « 4« + « . . 0.00O0001C
MAXTMUM NUMBER OF I'IFRATION‘; e e e e e e e 10
STEP HALVINGS . . . . . . . . 5
NUMBFR OF CASES TO BE PRINTED . . . . . 10
CASF 1 2 3 4 5 6
NO. aqge alcohol dalcohel tobacco cases controls
1 1 0 0 0 90 40
? 1 0 0 1 0 10
3 1 0 0 2 0 6
4 ] 0 0 3 0 5
9 1 1 0 0 0 27
6 1 1 0 1 0 7
1 1 1 0 2 0 4
8 1 1 0 3 0 7
9 1 2 1 0 0 2
10 1 2 1 1 0 1
¥4 DATA FRROR *** CASE NO, 97 WILL BE DELETED.
WHILE READING VARIABLE 1, 2 RECORD({S) WOULD BE READ.
AS DEFINFD BY CASE ONE, THERE MUST BE 1 RECORD (S) PER CASE.
NUMBER OF CASES READ. . . . N 97
CASES WITH USE SFET TO NEGATIVF VALUE voe e ]
REMAINTNG NUMBER OF CASES . . . . . . . . 96
TOTAL NUMBER OF RESPONSES USED IN THE ANALYSIS 975.
cases R . o ~00,
controls . . . . . . Y,
NUMBER OF DISTINCT COVARIATE PATTERNS . . . . . 2

DFSCRIPTIVE STATISTICS OF INDEPENDENT VARIABLES

VARIARBLFE GROUP DESIGN VARIABLES
NO. NA M E INDEX FREQ {( 1)
3 dalcohol 0 770 0
1 205 1

STEP NUMBFR 0

LOG LIKELIHOOD = -494.744
GOODNESS OF FIT CHI-8Q  (2*O*LN(O/E))
GOODNESS OF FIT ClI-5Q ( C.C.BROWN )

1

96.433 D.F.= 1 P-VALUE= 0,000
0.00C D.F.= 0 P-VALUE= 1,000

STANDARD
TERM COEFFICIENT ERROR COEFF/S.E. EXP(COEFFTCIENT)
CONSTANT -1,3h45 0.7931E-01 -17.08 0,2581

STATISTICS TO ENTER OR REMOVE TERMS

APPROX . APPROX,
TERM CHi-8Q. D.F. CHI-SQ. D.F. 1LOG

ENTER REMOVE P-VALUE LI KEL1HOOD
daleohol 96,43 1 0.0000 ~446.5278
CONSTANT 362,15 1 0.0000 ~6175,8185
CONSTANT IS IN MAY NOT BE REMOVED.
STEFP NUMBER 1 dalcohol IS ENTFERED

LOG LIKELTHOOD = =-446,528

IMPROVEMENT CHI-SQUARE  ( 2* (LN(MLR) ) = 96.433 D.F.=

1 P-VALUE= 0,000




STANDARD

TERM COEFFICIENT ERROR CCFFF/S, L, PAPA(COFFF ICTEND)
dalcohol 1.7299 0.1752 9.812 ©.640
CONSTANT -1.8569 0.1054 -17.61 0.1%62

CORRELATION MATRIX OF COEFFICLENTS

dalcohol CONSTANT
dalcohol 1.000
CONSTANT ~-0.602 1.000

STATISTICS TO ENTER OR REMOVE TERMS

APPROX. APPROX.
TERM CHI-SQ. D.F. CHI-SQ. D.r. 1OG
ENTER REMOVE P-VALUK L ITRFLIHOOD
dalcohol 96.43 1 0.0000 ~494, 71442
dalcohol IS IN MAY NOT' BE RFMOVED.
CONSTANT 457.76 1 0.0000 -6/5.4060
CONSTANT IS8 IN MAY NOT' 8 REMOVED,

NO TERM PASSES THE REMOVE AND ENTER LIMITS ( 0.1500 0.1000)

SUMMARY OF STFPWISE RESULTS

STFP TERM LOG IMPROVEMENT GOOBNESS OF 111

NO. ENTERED RFMOVED DF LIKELTHOOD CHI-SQUARE P-VAL CH1-50UARE P-VAL
0 -494,744 96.413 0.000
1 dalcohol 1 -446.528 96.4133 0.000 0.000 1.000

NUMBFR OF INTEGER WORDS OF STORAGE USFD 1N PRECEDING PROBIEM 6916

/reqress scount=cases,
fcount=controls.
model=dalcohol, age.
dvar=part,
start=in,in.
move=0,0,
method=mlr,

TOTAL NUMBER OF RESPCNSES USED IN THE ANALYSIO 91,
cases e e e e 200.
controls . . . . . . 1%,
NUMBER OF DISTINCT COVARIATE PATTERNS . . . . . 17

DFSCRIPTIVE STATISTICS OF INDEPENDENT VARIARLES

VARTABLE GROUP DESIGN VARIABLES
NO. NAME INDEX FREQ ( 1) ( 2) ( 3) { 1) ( 5)
3 dalcohol 0 770 0
1 205 1
1 age 1 116 0 0 0 0] 0
2 199 1 6 0 o] 0
3 213 0 1 0 o} 0
4 242 0 0 1 c 0
5 161 0 0 0 1 0
6 44 o} 0 0 0 1

STEP NUMBER 0




LGG LIKELIHOOD = ~394.46]

GOODNEGS OF FIT CHI-S5Q (2*0*LN(O/E)) - 11.041 D.F.= 5 P-VALUE- 0.051
GOODNESS OF FIT CHI-5Q (HOSMFR-LEMESHOW) 3.650 D.F.- 7 P-VALU- 0.819
GOODNESS OF FIT CHI~S5Q { C.C.BROWN )} - 0.697 D.F. 2 P-VAIUrS 0.706
STANDARD
TEKM COEFFICIENT ERROR COEFF/S.E. EXP{COIFFICIFNT)
alcohol 1.6699 0.1896 8,807 5.312
age (1) 1.%4213 1.066 1.447 4.615
(2) 3.1088 1.023 3.126 24.50
(3) 3./1135 1.019 3.646 41.00
(1)  3.9669 1.023 3.8117 52.82
{(5)  3.9622 1.065 3.720 52.57
CONSTANT ~5.0%43 1.009 -5,007 0.6382F-02

CORRELATION MATRIX OF COEFFICIENTS

dalcohol age (1) age (?) age (3) age (4) aqge (5) CONSTANI

dalcohol 1.000

age (1)  -0.019 1,000

age  (2) -0,018 0,931 1.000

age  (3) -0.009 0,935 0.974 1,000

age  (4) 0.010 0.9% 0.970 0.974 1,000

age (5) 0.033 0.894 0.931 0.936 0.932 1.000
CONSTANT  -0.060 -0.942 -0.,982 -0.987 -0.984 -0.946 1.000

STATISTICS TO FENTER OR REMOVE TERMS

APPROX, APPROX.
THRM CHI-SQ. D.F. CHI-SQ. D.F. LOG

ENTER REMOVE P-VALUE  LIKKILT HOOD
dalcohol 79,52 1 0.,0000 ~434,2220
dalcohol I8 IN MAY NOT BF REFMOVED.
aqgoe 104.13 5 0.0000 -446. 5278
Aacge IS IN MAY NOT BF R¥MOVED,
CONSTANT 169.44 1 0.0000 -419,1807
CONSTANT IS IN MAY MOT BE RFMOVED.

NO TERM PASSES THE REMOVE AND ENTER LIMITS ( 0,1500 0.1000 )

/rogress scount=cases.
fcount=controls,
model=dalcohol,age,dalcohol*age.
dvar-part.
start=in,in,in,
move-=0,0,0.
method=mir,

TOTAL NUMBER OF RESPONSES USED IN THE ANALYSIS 975,
cases e e e e 200,
contrels . . . . . ., 775,
NUMBER OF DISTINCT COVARIATE PATTERNS . . . . . 12

DFSCRIPTIVE STATISTICS OF INDEPENDENT VARIABLES

VARIARLE GROUP DESIGN VARIABLES
NO. N AME INDFX FREQ 1) ( 2) (3 t M { 5)




d*a (2) dra ()

1.000
0.9
0.01 ¢
0. 3%

3 dalcohol o] 770 0
1 205 1
1 age 1 116 0 0 0 0 0
2 199 1 ) o] 0 0
3 213 0 1 4 0 0
4 242 0 0 1 0 0
5 161 0 0 0 1 0
6 44 0 0 0 0 1
DESTGN VARIABLES FOR INTERACTION TERMS ARE GENFRATED
FROM THE DESTGN VARIABLES OF MAIN EFFECTS,
FOR EXAMPLE WITH TWO VARIABLES, VARTIABLF U HAVING 3 DFSIGN
VARTABLES (NAMED U(1), U(2) AND U(3)) AND VARIABLF V HAVING
2 DESIGN VARIABLES (NAMED V(1) AND V(2)), THEIR INTLRACTION
U*V WILL HAVE 6 DESIGN VARIABLES U*v (1) = U *v(Q) ,
UrV (2) = U(2) * V(1) ,
U*Vv (3) = U3 * v(1) ,
Usv (4) = U(1) * v(2) ,
U*v (5) = U(2) *» v({2) ,
U*v (6) = U(3) *» V(2) .
AFTER 10 ITERATIONS CONVERGENCE CRITERION-= 0.1098+-05 .
YOU MAY NEED TO INCREASE THE NUMBER OF ITERATIONS OR INCRLASEK
THF CONVERGENCE CRITERION IN THE REGRFSSTON PARAGRAPH.
STEP NUMBER 0
LOG LIKELIHOOD - -388.951
GOODNESS OF FIT CHI-SQ (2*O*LN({Q/E)} - 0,022 DI, P-VALUE
GOODNESS OF FIT CHI-SQ (HOSMER-LEMESHOW) - 0.011 DK, 8 P=-VALUI
GOODNESS OF FIT CHI-SQ ( C.C.BROWN ) 0.000 D.E. 0 P=VALUL
STANDARD
TERM COEFFICIENT ERROR  COEFF/5.E.  EXP(COEFPICIENT)
dalcohol 7.0107 1.131 6.200 1108,
age (1) 5,7270 0.6029 9,199 307.0
(?) 7.3369 0.4603 15,94 1536.
(3) 7.8115 0.4400 17,75 2469,
(1) 8.3258 0.4429 18.80 4129,
(5) 1.8650 0.0000 0.0000 2605,
THE ARBOVE TERM DID NOT PASS THE TOLERANCE 'ThST.
d*a (1) -5.3869 1.331 -1,046 0.4 161-02
(2) -5,2764 1.187 -4.44) 0.5111E-02
(3) -5.1608 1.173 -4,400 0.5131E-02
(" -6,0678 1.194 =5,017 0.2328k-07
(5) 4.5467 73.47 0.6189E-01 94.732
CONSTANT ~-9,2196 0.3962 =231.21 0,9908k-04
CORRFLATION MATRIX OF COEFFICIENTS
dalcohol age (1) age(2) age(3) aqge(4) age(h) d*ra(ly
dalcohol 1.000
age (1) 0.230 1.000
age (2) 0,302 0.566 1.000
age {(3) 0,316 0.592 0.775 1.000
age (4) 0,314 0.588 0.770 0,806 1.000
age (5) 0.000 0.000 0,000 0.000 0,000 0.000
d*a (1) -0.849 -0.453 -0.256 -0.268 -0.766 0.000 1.000
d*a (2) -0.953 -0.219 -0.388 -0,301 -0,799 0.000 0.809 1,000
d*a (3) -0.964 -0.222 -0.,291 -0.375 -0.302 0,000 0.819 0.919
d*a (4) -0.947 -0.218 -0.286 -0,299 -0.3/1 0,000 0.804 0.902
d*a (5) -0.014 -0.00C ~-0,000 -0.000 -0,000 0,000 0.011 0.013
CONSTANT -0.,35%0 -0.657 -0.861 -0,901 -0,895 0.000 0.298 0.334
CONSTANT
CONSTANT 1.000

0,883
1.000
1.000

d*a(4) dradlh)

1.000
0.013
0.332

1.000
0,000




STATISTICS TO ENTER OR

APPROX.
TERM CHI-5Q.

ENTER

dalcohol

ane

d*a

d*a

CONSTANT

CONSTANT

REMOVE TERMS

APPROX.
D.F CHI-SQ. D.F.
REMOVE P-VALUE
IS IN MAY NOT
IS IN MAY NOT
11.02 5 0.0510
IS IN MAY NOT
146.93 1 0,0000
IS IN MAY NOT
( 0.1500

NO TERM PASSES THE REMOVE AND ENTER LIMITS

AFTER

LOG

LIKFLTHOOD

RE REMOVED.
Bk REMOVED.
-194.4609
Rt REMOVED.
-462.4142
BE RFMOVED.

0.1000 )

10 ITERATIONS CONVERGENCE CRITERION= 0.109BE-05 .

YOU MAY NEED TO INCREASE THE NUMBER OF ITERATIONS OR INCREASL
THE CONVERGENCE CRITERION IN THE REGRESSICN PARAGRAPH.

/reqgress scount=cases,
fcount=contro
interval=aqge,

ls.

model=dalcohol,age,dalcohol *age,

dvar=part.

start=in, in,in.

move=1,1,1.
method=mlr.

TOTAL NUMBFR OF RESPONSES USED IN THE ANALYSIS

cases
controls

NUMBER OF DISTINCT COVARIATE PATTERNS .

L

DESCRIPTIVE STATISTICS OF INDEPENDENT VARIABLES

VARTABLE
NO. N AME MINIMUM

1 age 1.0000

VARTABLE
NO. NAME

GROUP
INDEX
3 dalcohol 0
1

MAX IMUM MEAN

6.0000 3.2718

STANDARD

DK

VIATION

1.3867 0.

DESIGN VARIABLES

FREQ { 1)
170 0
205 1

DFSIGN VARIAHLES FOR INTERACTION TERMS ARE GENERATED
FROM THE DESIGN VARIABLES OF MAIN EFFECTS.
FOR FXAMPLE WITH TWO VARIABLES, VARIABLE U HAVING 3 DESIGN

VARIABLES
2 DESIGN VARIABLES (NA
U*V WILL HAVE 6 DESIGN

STFP NUMBER

GOODNESS OF FIT CHI-SQ

GOODNESS OF FIT CHI-SQ (HOSMER-LEMESHOW)= 19.558

MED V(1) AND V(2
VARIABLES Urv
urv
Urv
urv
u*v
u*v

LOG LIKELIHOOD
(2*O*LN(O/E))

)),
(1
(2)
(3)
{4)
(5)
(6}

koW

975,
200,
775,

12

SKEWNFSS KURTOSTS

0170 -0.9050

(NAMED U{1), U(2) AND U(3)) AND VARTABLE V HAVING

THETR INTERACTION
= U *»va) ,
= U(2) »v(Q1) ,
= U(3) * v(l) ,
= U(l) * V(2) ,
= U(2) * vy ,
= U(3) * v(?2)
-404.905
31.929 D.F.= 8 P-VALUE= (.000
D.F.= 8 P-VALUE= 0,012




GOODNESS OF FIT CHI-SQ ( C.T.BROWN)

STANDARD

TERM COEFFICIENT FRROR COEFF/S
dalcohol 1.7510 0.6384 2,743
age 0.61368 0.8531E~01 7.193
d*a 0.77896E-02 0.1642 0.474
CONSTANT =4.0913 0.3611 -11.3
CORRELATION MATRIX OF COEFFICIENTS

dalcohol age d*a CONSTANT

dalcohol 1.000
age 0.539 1.000
dtga -0.956 -0.519 1.000
CONSTANT -0.566 =-0.952 0.495 1,000

STATISTICS TO ENTER OR REMOVE TERMS

498 T i s ot e e ot o o

APPROX. APPROX.
TERM CHI-S5Q. D.F. CHI-SQ. D.F,

ENTER REMOVE
dalcohol IS IN
age IS IN
d*a 0.00 1
CONSTANT 219.51 1
CONS TANT IS IN

¥

STEP NUMBER 1 d*a IS REMOVED

———— = =

LOG LIKELIHOOD
( 2* (LN{MLR) )
{2*O*LN(O/E) )
(HOSMER-LEMESHOW)
{ C.C.BROWN )

IMPROVEMENT CHI-SQUARE
GOODNESS OF FIT CHI-SQ
GOODNESS OF FIT CHI-SQ
GOODNESS OF FIT CHI-SQ

oo on

STANDARD
TERM COEFFICIENT ERROR COEFF/S.
dalcohol 1.7800 0.1871 9.514
age 0.61579 0.7291E-01 8.446
CONSTANT -4,0998 0.3141 ~-13.05

CORRELATION MATRIX OF COEFFICIENTS

- —— o e o T e S e B o o Sk T S A At T o e

dalcohol age CONSTANT
dalcohol 1.000
age 0.170 1.000
CONSTANT -0.365 -0.936 1.000

STATISTICS TO ENTER OR REMOVE TERMS

-———— - = " —— — > > — - -

APPROX, APPROX.
TERM CHI-SQ. D.F. CHI-SQ. D.F.
ENTER REMOVE
dalcohol 92.38 1
age 83,24 1
d*a 0.00 1

17.856 D.F.= 2 P-VALUF= 0,000

LEL. EXP(CORFFICIENT)
5.761
1.847
1.008
0.1672F-01

3E-01
3

L.OG
P-VALUE LIKELINOOD
MAY NOT BE REMOVED.
MAY NOT BF RFMOVED.
0.9626 ~404.9061
0.0000 ~514.6605
MAY NOT BE RFMQVED.

-404.906
0,002
31.931
19.620

7.072

D.F.
D.F,
D.F.
D.F.

P-VALUF- 0.963
P-VALUE- 0.000
P-VALUE= 0.012
P-VALUK= 0.029

N O

Ho# ol

E. EXP(COEFFICIENT)
5,930
1.851
0.1658E-01

LOG
P-VALUE LTKELIHOOD
0.0000
0.0000
0.9626

-451.0978
-446,5278
-404.9050



d*a 18 OUT MAY NOT BE ENTERED,

CONSTANT 283,55 1 0.0000 -546.6801

CONSTANT IS IN MAY NOT BE REMOVFED.

NO TFERM PASSES THE REMOVE AND ENTER LIMITS ( 0.1500 0.1000 ) .

SUMMARY OF STEPWISE RESULTS

STEP TERM LOG IMPROVEMENT  GOODNESS OF FIT

NO. ENTERED REMOVE® DF LIKELIHOOD CHI-SQUARE P-VAL CHI-SQUARE P-VAL
Y ~-404,905 31.929 0.000
1 d4a 1 ~404.906 0.002 0.963 31.931 0.000

NUMBER OF INTEGER WORDS OF STORAGE USED IN PRECEDING PROBI.EM 6976

/regress scount=cases.
feount=controls.
interval=age,tobaccc.
model=dalcohol, age,tobacco,dalcohol *age,dalcohol *tobacco.
dvar=part.
start=in,in,in,in, in.
move=0,0,0,1,1,
method=mlr,

TOTAL NUMBER OF RESPONSES USED IN THE ANALYSIS 975.
cases .« e e 200,
controls . . . . . REN

NUMBER OF DISTINCT COVARIATE PATTERNS . . . . . 18

DESCRIPTIVE STATISTICS OF INDEPENDENT VARIABLES

-~ 1y g 4 s o i A o e Bt A T o o o e e B e

VARIABLE STANDARD
NO. NAME MINIMUM MAXIMUM MEAN DEVIATION SKEWNESS KURTOSIS
1 aqge 1.0000 6.0000 3.2718 1.3867 0.0170 -0,9050
4 tobacco 0.0000 3.0000 0.7651 0.9778 1.0223 -0.1876
VARIABLE GRoOuUP DESIGN VARIABLES
NO, NA ME TINDEX FREQ (1

3 daleohol 0 770 0

1 205 1

DESIGN VARIABLES FOR INTERACTION TERMS ARE GENERATED

FROM THE DESIGN VARIABLES OF MAIN EFFECTS.

FOR EXAMPLE WITH TWO VARIABLES, VARIABLE U HAVING 3 DESIGN
VARTABLES (NAMED U(1), U(2) AND U(3)) AND VARIABLF V HAVING
2 DESIGN VARIABLES (NAMED V(1) AND V(2)), THEIR INTERACTION
UsV WILL HAVE 6 DESIGN VARIABLES Usv (1) u) v,

UrV (2) = U(2) ~ V(1) ,

U*vV (3) = U(3) * V(1) ,

UsV (4) = U(1) * v(2) ,

U*v (5) = U(2) * V{2} ,

U*V (6) = U(3) *» V(2) .
STEP NUMBER 0

LOG LIKELIHOOD = -391.123
GOODNESS OF FIT CHI-SQ (2*O*LN(O/E)) = 69,442 D.F.= 40 P-VALUE= 0.003
GOODNESS OF FIT CHI-5Q (HOSMER-LEMESHOW)= 12,592 D.F.= 8 P-VALUE= 0,127
GOODNESS OF FIT CHI-SQ ( C.C.BROWN ) = 9.596 D.F.= 2 P-VALUE= 0.008
STANDARD
TERM COEFFICIENT ERROR COLFF/S.E. EXP(COEFFICIENT)




dalcohol 1.7331

age 0.66621
tobacco 0.49397

d*a 0.17661E-01
d*t -0.73182E-01

CONSTANT -4,7075

0.7230
0.B964E-01
0.1101
n.1704
0.1889
0.4120

2.337
7.432
4,485
0.1036
-0.3874
~11.43

CORRELATION MATRIX OF COEFFICIENTS

dalcohol age tobacco d*a

5.658
1.947
1.639
1.018
0.9294
0.9027F-02

d*t CONSTANT

dalcohol 1.000
age 0.530 1.000
tobacco 0.252 0.215 1.000
d*a -0,933 -0.526 -0.113 1.000
d*t -0.443 ~-0,125 -0.583 0.217 1,000
CONSTANT -0.570 -=0.930 <-0.,443 0.489 0.258 1.000
STATISTICS TO ENTER OR REMOVE TERMS

APPROX. APPROX.

TERM CHI-SQ. D.F. CHI-SQ. D.F, 1.0G

ENTER REMOVE P-VALUE LIKEL!HOOD
dalcohol IS IN MAY NOT BE RFMOVED,
age IS IN MAY NOT BE REMOVED.,
tobacco IS IN MAY NOT BE RKMOVED.
d*a 0.01 1 0,9177 -=391.1219
d*t 0.15 1 0.6991 -391.19/3
CONSTANT 237.63 1 0.0000 =509.9365
CONSTANT IS IN MAY NOT BE RFMOVED.
STEP NUMBER 1 d*a 1S REMOVED

LOG LIKELIHOOR - -391.128
IMPROVEMENT CHI-SQUARE { 2* (LN(MLR) ) =~ 0.011 D.F.:- 1 P=VALUF- 0,918
GOODNESS OF FIT CHI-SQ (2*O*LN{(O/E)) = 69,453 D.F, 41 P-VAIUE 0.004
GOODNESS OF FIT CHI-SQ (HOSMER-LEMESHOW)- 12.484 D.F.- 8 D=VALUE- 0.13]
GOOINESS OF FIT CHI-SQ ( C.C.BROWN) = 5.851 D.F,= 2 P=VALUK= 0.054
STANDARD
TERM COEFFICIENT ERROR COEFF/S.E. EXP(COEFFICIENT)
dalcohol 1,8030 0.2609 6.911 6.068
age 0.67113 0.7627E-01 8.800 1,956
tobacco 0.49527 0.1095 4,521 1.641
d*t -0,77418E-01 0.1842 -0.4203 0.9255
CONSTANT ~4,7285 0.3599 -13.14 0.6840E-02
CORRELATION MATRIX OF COEFFICIENTS
dalcohol age tobacco d*t CONSTANT
dalcohol 1,000
age 0.130 1.000
tobacco 0.411 0.184 1.000
d*t -0.684 -0,014 -0.577 1,000
CONSTANT -0,364 ~0,906 ~-0.448 0.180 1.000
STATISTICS TO ENTER OR REMOVE TERMS
APPROX. APPROX.
TERM CHI-SQ., D.F. CHI-SQ. D.F. LOG
ENTER REMOVE P-VALUE LIKELIHOOD




dalcohol IS IN MAY NOT BE REMOVED.
age 92.77 1 0.0000 ~437.5125
age IS IN MAY NOT BE REMOVED.
tobacco IS IN MAY NOT BE REMOVED.
d*a 0.01 1 0.9177 =391.1276
d*a 1s ouT MAY NOT BE ENTERED.
dart 0.18 1 0.6748 -391.2159
CONSTANT 302.43 1 0.0000 -542.3448
CONSTANT IS IN MAY NOT BE REMOVED.
STEP NUMBER ? d*t IS REMOVED
LOG LIKELIHOOD = -391,216
IMPROVEMENT CHI-SQUARE ( 2*(LN(MLR) ) = 0.176 D.F.= 1 P-VALUE= 0,675
GOODNESS OF FIT CHI-SQ (2*O*LN(O/E)) = 69,629 D.F.= 42 P-VALUE= 0,005
GOODNESS OF FIT CHI-SQ (HOSMER-LEMESHOW)= 11,717 D.¥F.= 8 P=VALUE= 0.164
GOODNF.SS OF FIT CH1-5Q ( C.C.BROWN ) = 6.627 D.¥F.= 2 P-VALUE= 0,036
STANDARD

TERM  COEFFICIENT ERROR COEFF/S.E. EXP(COEFFICIENT)
dalcohol 1.7283 0.1907 9,061 $.631
aqo 0.67085 0.7619E-01 8.805 1.9%6
tobacco 0.46882 0.8980E-01 5.220 1.598
CONSTANT -4.77024 0.3536 -13.30 0.9074E-07

CORRELATION MATRIX OF COEFFICIENTS

e - A e =t i - - e ) e o e A

dalcohol age tobacco CONSTANT

dalcohol 1.000

age 0.165 1.000
tobacco 0.022 0.214 1.000
CONSTANT -0.33% -0.920 -0,425 1,000

STATISTICS TO ENTER OR REMOVE TERMS

e o s e o e e i o o o S P e A e e e 2

APPROX. APPROX.
TERM CHi-S8Q. D.F. CHI-SQ. D.F. LOG

ENTER REMOVE P-VALUE LIKELTHOOD
dalcohol 83.76 1 0.0000 -433.0976
dalcohol IS IN MAY NOT BE REMOVED,
age 92.84 1 0.0000 -437.6751
age IS IN MAY NOT BE RFMOVED,
tobacco 27.38 1 0.0000 -404.9061
t obacco IS IN MAY NOT BE REMOVED.
d*a 0.04 1 0.8467 -391,19/3
d*a Is ouT MAY NOT Bk ENTERED,
d*t 0.18 1 0.6748 =-391.1279
d*t 18 oUT MAY NOT BE ENTERED,
CONSTANT 309,85 1 0.0000 -546.14129
CONSTANT IS IN MAY NOT BE REMOVID,

NO TERM PASSES THE REMOVE AND ENTER LIMITS ( 0.1500 0.1000 ) .
SUMMARY OF STEPWISE RESULTS

STEP TERM LOG IMPROVEMENT GOODNESS OF FIT
NO. ENTERED REMOVED DF  LIKELIHOOD CHI-SQUARF P~VAL CHI1-SQUARE P-VAL
0 -391.123 69.442 0.003
1 d*a 1 -391.128 0.011 0.418 69.453 0.004
2 d*t 1 -391.216 0.176 0.675 69.629 0.005

NUMBER OF INTEGER WORDS OF STORAGE USED IN PRECEDING PROBIFM 7016

/regress scount=cases.




fcount=controls,.
model=alcohol.
dvar=part.
rtart=in,
move=0,
method=mlr,

TOTAL NUMBER OF RESPONSES USED IN THE ANALYSIS 975,
cases s e e e e s 200,

controls , . . . . . T,

NUMBER OF DISTINCT COVARIATE PATTERNS ., ., . . . 4

DESCRIPTIVE STATISTICS OF INDEPENDENT VARTABLES

VARIABLE GROUP DESIGN VARIABLES
NO. NAME INDEX FREQ (1) { 2) ( 3
2 alcohol 0 415 0 0 0
1 355 1 0 0
2 138 0 1 0
3 67 0 0 1
STEP NUMBER 0
LOG LIKELTHOOD = -421.495
STANDARD
TERM COEFFICIENT ERROR COEFF/S.E. EXP(COEFFICIENT)
alcohol (1) 1.2712 0.2323 5.472 3.565
{2) 2.0545 0.2611 7.868 7.803
(3) 3.3042 0.3237 10,21 27.23
CONSTANT -2.5885 0.1925 -13.44 0.7513E-01

CORRELATION MATRIX OF CORFFICIENTS

- ————— et s e o e o s et o e T e i o W o e o

alcoh{l) alcoh(2) alcoh(3) CONSTANT

aleoh(1) 1.000

alcoh{2) 0,611 1.000

alcoh(3) 0.493 0.439 1.000

CONSTANT ~0.829 -0.737 -0.595 1.000

STATISTICS TO ENTER OR REMOVE TERMS

APPROX. APPROX.
TERM CHI-SQ. D.F. CHI-SQ. D.F. LOG
ENTER REMOVE P-VALUE LIKELIHOOD
alcohol 146.50 3 0.0000 -494.7442
alcohol IS IN MAY NOT BE REMOVED.
CONSTANT 365.05 1 0.0000 =-604,0208
CONSTANT Is IN MAY NOT BE REMOVED,

NO TERM PASSES THE REMOVE AND ENTER LIMITS ( 0.1500 0.1000 )
NUMBER OF INTEGER WORDS OF STORAGE USED IN PRECEDING PROBLEM

/regress scount=cases.
fcount=controls,
model=tobacco.
dvar=part,
start=in,
move=0,
method=mlr,

.

6976




TOTAL NUMBER OF RESPONSES USED IN THE ANALYSIS 975.
cases e e e e e 200,

controls . . . . . . 775.

NUMBER OF DISTINCT COVARIATE PATTERNS . . . . . 4

DESCRIPTIVE STATISTICS OF INDEPENDENT VARIABLES

VARTABLE GROUP DESIGN VARTABLES
NO. NAME INDEX FREQ ( 1) { 2) { 3)
4 tobacco 0 525 0 0 0
1 236 1 0 0
2 132 0 1 0
3 82 0 0 1
STEP NUMBER 0
LOG LIKELIHOOD = -480.821
STANDARD
TERM COEFFICIENT ERROR COEFF/S.FE. EXP(COEFFICIENT)
tobacco(l) 0.62451 0.1947 3.207 1.867
(2) 0.64724 0.2355 2.748 1.910
{(3) 1.2480 0.2587 4,824 3.483
CONSTANT -1.7458 0.1227 -14,23 0.1745

CORRELATION MATRTX OF COEFFICIENTS

tobac(l) tobac(2) tLobac(3) CONSTANT

tobac(l) 1.000

tobac(2) 0.328 1.000

tobac(3) 0,299 0.247 1.000

CONSTANT ~0,630 ~-0.521 -0.474 1.000

STATISTICS TO ENTER OR REMOVE TERMS

- o i ot i A o i s e o ik B B bt o o e

APPROX. APPROX.
TERM CHI-8Q. D.F. CHI-SQ. D.F. LOG
ENTER REMOVE P-VALUE LIKELIHOOD
tobacco 27,85 3 0.0000 -494.7442
tobacco IS IN MAY NOT BE REMOVED.
CONSTANT 286,57 1 0.0000 -624.1059
CONSTANT IS IN MAY NOT BE REMOVED.

NO TERM PASSES THE REMOVE AND ENTER LIMITS ( 0,1500 0,1000 ) .
NUMBFR OF INTEGER WORDS OF STORAGE USED IN PRECEDING PROBLEM 6976

/reqress scount=cases,
fcount=controls,

model=age,

dvar=part,

start=inp,

move=0,

method=mlr.

TOTAL NUMBER OF RESPONSES USED IN THE ANALYSIS 975,

cases c e e e e e 200,
controls . . « « . . 175,

NUMBER OF DISTINCT COVARIATE PATTERNS . . . . . 6

- - - . " 4 0 W Dl k. i o b B T e e S e Y o A o T e o - o 2 i

‘ DESCRTPTIVE STATISTICS OF INDEPENDENT VARTABLES




VARTABLE GROUP DESIGN VARIABLES
NO. NAME INDEX FREQ ( 1) { 2) { 3) { 4) { 5
’ 1 age 1 116 0 0 0 0 0
2 199 1 0 0 0 0
3 213 0 1 0 0 0
4 242 0 0 1 0 0
5 161 0 0 0 1 0
6 44 0 0 0 0 1
STEP NUMBER 0
LOG LIKELIHOOD = -434,222
STANDARD
TERM COEFFICIENT ERROR  COEFF/S.E. EXP(COEFFICIENT)
age (1) 1.6951 1.061 1.598 5,447
(2) 3.4556 1.018 3.391 31.68
(3) 3.9637 1.014 3.910 52,65
(4) 4,0888 1.018 4,017 59,67
{5) 3.8759 1.057 3.666 48,23
CONSTANT -4.,7449 1.004 -4.724 0.86961-02
CORRELATTON MATRIX OF COEFFICIENTS
age(l) age(2) age(3) age(d4) agel(5) CONSTANT
age ) 1.000
age (2) 0.934 1.000
age (3) 0.938 0.977 1.000
age (4) 0.934 0.973 0.977 1,000
age (5) 0.899 0.937 0.941 0.937 1.000
CONSTANT =~=0.947 -0.987 -0.991 -C,987 -0.950 1.000
STATISTICS TO ENTER OR REMOVE TERMS
APPROX . APPROX.
TERM CHI-SQ. D.F. CHI-SQ. D.F. L.OG
ENTER REMOVE P-VALUE LIKFI,THOOD
age 121.04 3] 0.0000 -494.7442
age IS IN MAY NOT BF REMOVED.
CONSTANT 149,31 1 0.0000 -4%08.8/77
CONSTANT IS IN MAY NOT RE REMOVED.

NO TERM PASSES THE REMOVE AND ENTER LIMITS ( 0.1500 0.1000 ) ,

NUMBER OF INTEGER WORDS OF STORAGE USED IN PRECEDING PROBLEM 69176
/reqgress scount=cases.
fcount=controls,
interval=alcohol, tobacco, age.
model=alcohol,tobacco, age, alcohol *tobacco, alcohol *age.
dvar=part.
start=in,in,in,in,in.
move=0,0,0,0,0.
method=mlr.
TOTAL NUMBER OF RESPONSES USED IN THE ANALYSIS 974,
cases e e e e 200,
controls . . . ., . 115,
NUMBER OF DISTINCT COVARIATE PATTERNS . . . . . 96
DESCRIPTIVE STATISTICS OF INDEPENDENT VARIABLES
VARIABLE STANDARD
NO., NA ME MINIMUM MAXIMUM MEAN DEVIATION SKEWNESS KURTOSIS




3.0000
3.0000
6.0000

0.8533
0.7651
3.2718

0.9063
0.9778
1.3867

0.8461
1.0223
0.0170

2 alcohol
4 tobacco
1 age

0.,0000
0.0000
1.0000

STNCE THFE FIRST CHARACTERS OF VARIABLES NAMES ARE NOT
UNIQUE THE CHARACTERS A,B,... WILL BE USED TO INDICATE
ELEMENTS OF AN INTERACTION TERM.

A INDICATES VARIABLE ? alcohol

B INDICATES VARIABLE 4 tobacco

C INDICATES VARTABLE 1 age

DESIGN VARIABLES FOR INTERACTION TERMS ARE GENERATED

FROM THE DESIGN VARIABLES OF MAIN EFFECTS.

FOR EXAMPLIE WITH TWO VARIABLES, VARIABLE U H#VING 3 DESI

VARIABLES (NAMED U(1l), U(2) AND U(3)) AND VARIABLE V HAV

2 DESIGN VARIABLES (NAMED V(1) AND V(2)), THEIR INTERACT

U*v WILI, HAVE 6 DESIGN VARITABLES U*v (1) = U{1) * V(1)
U*v (2) u{2) * v()
U*v (3) U{3) V(1)
U*v (4) U(1) Vi(2)
Urv (5) u(2) VAV
U*v (6) U3 v(2)

(LA I

* X * W

STEP NUMBER

LOG LIKELIHOOD
GOODNESS OF FIT CHI-SQ (2*O0*LN(O/E})
GOODNESS OF FIT CHI-SQ (HOSMER-LEMESHOW)
GOODNESS OF FIT CHI-SQ ( C.C.BROWN )

-364.321
107.107
12.426
9,677

Bonopon

STANDARD

TERM  COEFFICTENT ERROR COEFF/S.E. FEXP(COEF

-0.1396
-0.1576
-0.9050

GN
ING
10N

P-VALUE=
P-VALUE=
P-VALUE=

FICTFNT)

alcohol
tobacco
age

A*RB

A*C
CONSTANT

1.2674

0,58056

0.755%95
-0.12321
-0.11182F-01
-5,8243

0.3638
0.1490
0.1246
0.9520E-01
0.8333E-01
0.5866

3.484

3.896

6.065
-1.294
-0.1342
-9.929

CORRELATION MATR1X OF COEFFICIENTS

alcohol
tobacco
aqe

A*R

ArC
CONSTANT

alcohol tobacc
1,000
0.359
0.746
~0.463
~-0,922
-0.789

1.000
0.218
~-0.783
-0.165
-0.441

[o]

1,000
-0.179 1.000
-0.753 0.223
-0.933 0.353

1.
0.

STATISTICS TO ENTER OR REMOVE TERMS

TERM

alcohol
tobacco
aqge

A*B

A*R

A*C

A*C
CONSTANT
CONSTANT

NO TERM PASSES THE REMOVE AND ENTER LIMITS (

NUMBER OF INTEGER WORDS OF STORAGE USED IN PRECEDING PROBLEM

APPROX.
CHI-8Q.
ENTER

D.F,

APPROX.
CHI~-SQ. D.F.
REMOVE

IN
IN
IN

IN
0.02 1 0.8
IN
11 1 0.0
IN

AxC

P-VALUE

3.552
1.787
2.130
0.8841
0.9889
0.2955K-02

CONSTANT

000

685 1.000

LOG
LIKELTHOOD

NOT BE REMOVED,

NOT BE RFMOVED.

NOT BE RFMOVED,
-365.1428

NOT BF REMOVED.
-364.3300

NOT BF. REMOVED.
~451,7037

NOT BE REMOVED.

0.

1500 0.1000 ) .

7016

0.033
v.133
0.008




/regress scount=cases.
fcount=controls.
interval=alcohol,tobacco, age.
model=alcohol, tobacco, age.
dvar=part.
start=in,in,in.
move=0,1,1.
method=mlr,
TOTAL NUMBER OF RESPONSES USED IN THF ANALYSIS 975,
cases v e e e 200.
controls . . . . . 115,
NUMBER OF DISTINCT COVARIATE PATTERNS . . . . 96
DESCRIPTIVE STATISTICS OF INDEPENDENT VARIABLES
VARIABLE STANDARD
NO, NAME MINIMUM MAXIMUM MEAN DEVIATION SKEWNESS KURTOSIS
2 alcohol 0.0000 3.0000 0.8533 0.9063 0.8461 -0.11%9%6
4 tobacco 0.0000 3.0000 0.7651 0.9778 1.0223 -0.1576
1 age 1.0000 6.0000 3.2718 1.3867 0.0170 =0.904%0
STEP NUMBEP o]
1LOG LIKELIHOOD = -365.157
GOODNESS OF FIT CHI-SQ (2*O*LN(O/E)) - 108.779 D.FM.:- 84 P-VALUK 0,036
GOODNESS OF FIT CHI-SQ (HOSMER-LEMESHOW) = 15.358 D.F.- 8 P-VALUE 0.063
GOODNESS OF FIT CHI-SQ ( C.C.BROWN ) - 8.462 D.F.- 2 P-VALUE 0.01%
STANDARD
TERM  COEFFICIENT ERROR ,’ COEFF/S,E, EXP{CORFFICIENT)
alcohol 1.1026 0.1032 10.69 3.012
tobacco 0.43085 0.9394E-01 4,587 1.539
age 0.74375 0.8179E-01 9.094 2.104
CONSTANT -5.6305 0.4083 -13.1/9 0.3%8/K-02
CORRELATION MATRIX OF COEFFICIENTS
alcohol tobacco age CONSTANT
alcohol 1.000
tobacco 0.011 1.000
age 0.264 0.210 1.000
CONSTANT -0.517 -0.384 ~0.905 1.000
STATISTICS TO ENTER OR REMOVE TERMS
APPROX. APPROX.
TERM CHI-SQ. D.F. CHI-SQ. D.F. LOG
ENTER REMOVE P-VALUE LIKELLHOOD
alcohol 135.88 1 0.0000 -433,0976
alcohol IS IN MAY NOT BFE REMOVED,
tobacco 21.04 1 0.0000 ~1375,6745
age 102.39 1 0.0000 -~416,3496
CONSTANT 374.60 1 0.0000 -552,45%68
CONSTANT IS IN MAY NOT BE REMOVED.

NO TERM PASSES THE REMOVE AND ENTER LIMITS ( 0.1%00 0,1000)

NUMBER OF INTEGER WORDS OF STORAGE USED 1IN PRECEDING PROBLEM 6998

/variable names = age,
freg=count.

alcohol, dalcohel, tobacco, status, count,

/transform
alcogm=20+alcohol*40,



tobagm=5+tobacco*10,
agey=20+age*10,
agey2=agey**2,

/reqress dependent=status,
interval=alcogm, tobagm, agey, agey2.
mode l=a lcogm, t obagm, agey, agey?2.

dvar=part.

start={n,in,in, in.

move=0,0,0,1.

remove=,000002,

enter=, 000001,

method=mlr.,
TOTAL NUMBER OF RESPONSES USED IN THE ANALYSIS 975,
SUCCESS . . « « .« . 200,
FAILURE ., ., . . . . 175.
NUMAER OF DISTINCT COVARIATE PATTERNS . . . . . 88
DESCRIPTIVE STATISTICS OF INDEPENDENT VARIABLES
VARTABLE STANDARD
NO. NAME MINIMUM MAXIMUM MEAN DEVIATION SKEWNFESS
7 alcogm 20,0000 140.,0000 54,1333 36,2521 0.8461
8 tobagm 5.0000 35,0000 12.6513 89,7779 1.0223
9 aqgey 30,0000 80,0000 52.7179 13.8671 0.0170
10 agey2 900.0000 6400.0000 2971.2820 1479.1560 0.4509
STEP NUMBER 0
LOG LIKELIHOOD = -357,353
GOODNFESS OF FIT CHI-SQ ({2*0*LN{O/E)) = 93.172 D.F.= 83
GOODNESS OF FIT CHI~-SQ (HOSMER-LEMESHOW) = 11,749 D.F.= 8
GOODNESS OF FIT CHI-SQ ( C.C,BROWN ) = 4,753 D.,F.= 2
STANDARD
TERM COEFFICIENT ERROR COEFF/S.E. EXP(COEFFICIENT)
alcogm 0.26628E~01 0.2614E-02 10.18 1.027
tobagm 0.43951E-01 0,9559E~02 4,598 1.045
agey 0.34424 0.7551E-01 4,559 1.411
aqoey?2 ~-0.23417E~02 0,6402E-03 -3,658 0.9977
CONSTANT -15.298 2,219 -6.895 0.2270E-06

CORRELATION MATRIX OF COEFFICIENTS

alcogm tobagm agey agey2 CONSTANT
alcogm 1.000
t.obagm 0.027 1.000
agey -0.003 0.059 1,000
agey2 0.032 -0.037 -0.,993 1.000
CONSTANT -0,110 -~0.145 -0,982 0.955 1.000
STATISTICS TO ENTER OR REMOVE TERMS

APPROX. APPROX,

TERM CHI-SQ. D.F. CHI-SQ. D.F. LOG

ENTER REMOVE P-VALUE LIKELIHOOD
alcogm 122,79 1 0.0000 ~-418,7488
alcogm IS IN MAY NOT BE REMOVED,
t obagm 21.17 1 0.0000 ~367.9383
t.obagm IS IN MAY NOT BE REMOVED,
aqgey 26,22 1 0.0000 ~-370.4630
agey IS IN MAY NOT BE REMOVED,
agey?2 15.61 1 0.0001 -365.1567
CONSTANT 75.62 1 0.0000 -395,1629

KURTOSIS

-0.,1396
-0.1576
-0.,9050
-0.6011

~VALUE= 0,209
-VALUE- 0,163
-VALUE= 0.093

el Bige]



CONSTANT IS IN MAY NOT BE REMOVID.

STEP NUMBER 1 agey?2 1S REMOVED
LOG LIKELIHOOD = -365.157
IMPROVEMENT CHI-SQUARE ( 2* (LN{MLR) ) = 15,607 D,F. I P=VALUL 0,000
GOODNESS OF FIT CHI-SQ (2*O*LN{O/E)) = 108,779 D.¥F, B4 P-VALUL- 0.036
GOODNESS OF FIT CHI-SQ (HOSMER-LEMESHOW)- 15.358 DLV, 8 P-VALUL 0.053
GOODNESS OF FIT CHI-SQ ( C.C.BROWN ) - 8.462 D.F. 2  P-VALUE C.015
STANDARD
TERM COEFFICIENT ERROR COEFF/S.E. EXP(COEFIICIFNT)

alcogm 0.27564F~01 0.2579E-02 10.69 1.028
tobagm 0,43085E-01 0.9394E-02 4,587 1.044
agey 0,74375E-01 0,8179E-02 9,094 1.077
CONSTANT -7.,8848 0.6029 -13.08 0.3764K-03
CORRELATION MATRIX OF COEFFICIENTS

alcogm tobagm agey CONSTANT
alcogm 1.000
tobagm 0.011 1,000
agey 0.264 0.210 1.000
CONSTANT -0.508 -~0.396 -0.923 1.000
STATISTICS TO ENTER OR REMOVE TERMS

APPROX. APPROX,

TERM CHI-SQ. D.,F. CHI-SQ. D.F. LOG

ENTER REMOVE P-VALUE LIKELIHOOD
alcogm 135.88 1 0.0000 ~4133.0976
alcogm IS IN MAY NOT BE REMOVED.
tobagm 21.04 1 0.0000 =-375.6/4%
tobagm IS IN MAY NOT BE REMOVED.
agey 102.39 1 0.0000 =-416.34%6
agey I8 IN MAY NOT BE REMOVED.
agey?2 15.61 1 0.0001 =~357.3533
agey2 18 oUT MAY NOT BE ENTERED.
CONSTANT 305,63 1 0.0000 -517.9704
CONSTANT IS IN MAY NOT BE REMOVED.

NO TERM PASSES THE REMOVE AND ENTER LIMITS ( 0.0000 0.0000 ) .
SUMMARY OF STEPWISE RESULTS

STEP TERM LOG 1 MPROVEMENT GOODNESS OF FIT

NO. ENTERED REMOVED DF LIKELIHOOD CH1~SQUARE P-VAl, CHI-SQUARK P-VAL
0 -357.353 91,1/2 0.209
1 agey?2 1 -365.157 15,607 0,000 108,179 0,036

NUMBER OF INTEGER WORDS OF STORAGE USED IN PRECEDING PROBLEM 7140




