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ON THE NIP MECHANICS OF ROLLING PROCESSES 

S.K. SINHA 

ABSTRACT 

A theory has been proposed to predict the behaviour 

of a viscoelastic sheet in rolling contact with smooth, 

rigid cylinders at slow speed. 

A contact length is first assumed which is then di­

vided into a number of elements. The force on any element 

is taken as a line load of unknown magnitude. Influence 

functions are obtained by first obtaining the elastic 

solutions and then applying the correspondence principle. 

Constitutive equations are represented by a generalized 

mechanical model. Simultaneous equations for the unknown 

quantities are obtained by matching the normal displacement 

at the ends of the elements to the geometry of the cylinder. 

The contact length is later corrected so as to satisfy the 

total load condition. Solutions for some simple cases have 

been obtained numerically. 

Rolling of an elastic sheet has also been treated. 

Solutions have been obtained for the extreme cases of Tlin­

finite friction ll and lino friction ll
• 
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DEPARTEMENT DE GENIE MECANIQUE 

QUELQUES ASPECTS DE LA MECANIQUE DU LAMINAGE 

S.K. SINHA 

RESUME 

Ph.D. 

Cette thèse élabore une méthode de calcul permettant 

de prédire le comportement d'une lame viscoélastique su­

bissant un laminage entre des cylindres rigides et lisses 

a des petits vitesses. 

On assume une valeur pour le longeur de contact et on 

la subdivise ensuite en plusieurs segments. La force, de 

grandeur inconnue, distribuée sur chaque segment, est ap-

pliquée a son centre. On obtient les fonctions d'influence 

par calcul des solutions du système considéré comme élas­

tique et par application subséquente du principe de corre­

spondance. Les équations des contraintes et de formations 

sont représentées par un modèle mécanique generalisé. On 

détermine les paramètres des équations simultanées perme·c­

tant d'évaluer les inconnues par comparaison des déplace­

ments normaux des extrémités des segments avec la configura­

tion du cylindre. On effectue ensuite une correction de la 

valeur supposée pour le longeur de contact de facon a satis­

faire les conditions de charge totale. Cette thèse comprend 

aussi le solution numérique de cas simples. 
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Le problème du laminage d'une lame élastique a égale­

ment été abordé; on a -calculé les deux cas extrêmes supposant 

d'une part un frottement infine et de l'autre un frottement 

nul. 
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ABSTRACT 

A theory has been proposed to predict the behaviour 

of a viscoelastic sheet in rolling contact with smooth, 

rigid cylinders at slow speed. 

A contact length is first assumed which is then di­

vided into a number of elements. The force on any element 

is taken as a line load of u~known magnitude. Influence 

functions are obtained by first obtaining the elastic 

solutions and then applying the correspondence principle. 

Constitutive equations are represented by a generalized 

mechanical model. Simultaneous equations for the unknown 

quantities are obtained by matching the normal displacement 

at the ends of the elements to the geometry of the cylinder. 

The contact length is later corrected so as to satisfy the 

total load condition. Solutions for some simple cases have 

been obtained numerically. 

Rolling of an elastic sheet has also been treated. 

Solutions have been obtained for the extreme cases of lIin­

finite friction" and lino friction". 
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CHAPTER I 

1. INTRODUCTION 

During the rol1ing process, two bodies are pressed 

together by sorne ex~ernal force and then one body is made 

to roll on the other. Due to the app1ied force, the two 

bodies come closer, within a certain distance (which is 

commonly known as the amount of relative approach), and 

make contact over a finite area. The applied force is 

distributed over this contact area in the forro of sorne 

unknown distribution. 

If the two bodies are identical (in size and in pro­

perties), they will deform equally. But if they are not 

identical, they will deform unequally and the contacting 

points tend to move relative to each other. This tendency 

is opposed by the presence of friction and gives rise to 

shearing forces. If the shearing force at any point in 

the con~act zone is less than the limiting frictional force 

at that point, then there will be no slip. On the other 

hand, if the shearing force at ~ny point is equal to the 

available limiting frictional force, then slip will occur. 

Problems involving the rolling of two bodies are mainly 

concerned with the deterrrtination of the area of contact, the 

- - 1 
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forces on the contacting surface and the amount of rela­

tive approach of the two bodies. In this case, neither 

the boundary nor the conditions on the boundary are known. 

Hence, in this respect, the problem of rolli~g of two 

bodies is radically different from the general stress 

analysis problems where the boundary as weIl as the con­

ditions on the boundary are prescribed. The only helpful 

information is the fact that, in the contact region, the 

two bodies have a common surface. Outside the contact 

zone, the external forces are zero. But this information 

does not help in determining the unknown forces on the 

contact surface. If the area of contact is small compared 

to the size of the two bodies, the bodies may be treated 

as half spaces. In that case, there is one boundary at 

infinity. The condition that the stresses and displacements 

must be bounded at infinity becomes helpful information in 

determining the right stress function or the displacement 

potential, as the case may be, for the particular problem. 

If the two bodies are elastic, there is a line of symmetry 

and therefore the problem becomes less difficult. But if 

one of the bodies (or both) is viscoelastic then, due to 

the dissipative nature of viscoelastic materials, there will 

be no symmetry and the problem becomes more complicated. 

As an introduction to the formulation of the problem 
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treated in this thesis~ a brief review of sorne earlier 

works, in which at least one of the bodies is a cylinder, 

is presented in the next two articles. 

1.1 Rolling of Two Bodies 

Table l gives an outline of the problems involving 

the rolling of two bodies. Hertz[l] solved the problem 

of contact of two perfectly elastic bodies having smooth 

surfaces. Carter12J and PoritskyI3] have treated tractive 

rolling (where a net tractive force is transmitted from 

one body to the other). Hertz's analysis ignored the 

presence of any shear force on the contact surface. This 

implies complete slip, but in practice, it is impossible 

to get completely smooth surfaces. Bufler I4J solved the 

same problem assuming no-slip anywhere (which represents 

another extreme case). Johnson[5] and later Bentall and 

Johnson I6J relaxed the assumption of "no-slip anywhere" 

and allowed for partial slip. Since the regions of ad-

hesion and slip are not known in the beginning, the problem 

cannot be solved analytically. They used numerical methods 

and solved the problem by an iteration process. 

Note: Numbers in braekets after a name indieate referenees 
given at the end of this thesis. 

\ 
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Examples of rolling between" elastic-viscoelastic 

bodies are the rolling of an elastic cylinder (or sphere) 

over a viscoelastic half space. For further simplicity, 

the cylinder (or the sphere) is assumed to be rigid as 

compared to the half space. 

Hunter[7] and Morland[8] have treated the rolling of 

a rigid cylinder over a viscoelastic half space. They 

considered slow rolling (neglecting inertial effects), 

constant velocity, steady conditions with respect to the 

cylinder position, plane deformation, and smooth surfaces. 

Hunter[7] expressed the surface displacement as an integral 

of the moving line-load solution. This resulted in a 

singular integral ~quation for the pressure distribution. 

He a"ssumed the material to behave like a standard linear 

solid in shear and having a fixed poisson's ratio. The 

resulting integral equation is transformed into a standard 

logarithmic kernel of a differential operator in terms of 

the pressure. He obtained a closed form solution for a 

material characterized by one viscoelastic creep function 

having a single retardation time. But for materials having 

more than one characteristic retardation time, including 

the case of two or more creep functions, the integrals di­

verge. Morland[8] obtained two pairs of coupled integral 

equations for the unknown displacements and stresses. 
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Representing the unknown functions by a series of Bessel's 

functions, an infinite set of sirnultaneous algebraic equa-

tions were obtained for the coefficients of the Bessel's 

functions. The truncation of the infinite matrix depended 

on a small pararneter, the loss tangent of the material in 

the non-diagonal terrns. The final solution again was a 

numerical one. 

The rolling of two identical viscoelastic cylinders has 

also been investigated by Morland[9]. This problern differs 

from the previous one in that the cylinders are subjected to 

the nip forces periodically, varying at a frequency of ~/2n . 

He also considered slow rolling at constant speed, smooth 

surfaces, plane deforrnation, and steady-state conditions for 

this problem. He solved Navier's equations by separating 

the variables and obtained expressions for stresses and dis­

placements in terrns of Fourier series of unknown coefficients. 

The analysis is rigorous and applies to materials having any 

number of retardation tirnes, including rnaterials having a 

continuous spectrurn of retardation times. Subsequently, this 

analysis was extended to treat the rolling of dissirnilar vis­

ccelastic cylinders[lO]. 
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1.2 Rolling of a Sheet 

The rolling of a sheet is more complex than the roll-

ing of two bodies due to the presence of an additional 

boundary at the central line of the sheet. Sneddon[ll] 

suggested the use of Fourier transforms for the solution of 

such problems when the boundary forces are prescribed. But 

for the rolling problems, the boundary forces are not known. 

Table II gives a brief indication of the work done in this 

context. 

Wang[12] tried to determine the contact forces for an 

elastic strip pressed between identical cylinders. He 

assumed smooth surfaces and plane deformation. Following 

Sneddon's method, he obtained an integral equation for the 

unknown pressure distribution as follows: 

(1.1) 

where 

= the unknown pressure distribution in the nip 

= semi-contact length 



· *.' 

The function G(b,~ in the integrand has the form: 

Si" ... 2bç + 2h~ 

and the materia1 property is given by: 

ec: 4 (1- v?J i = l, 2 
n E'~ 

1 for cy1inder 

2 for strip 

The function f(y) is a function of the maximum indentation 

of the strip as we11 as the geometry of the surface of the 

cy1inder. 

".' 

In order to simp1ify the integra1 equation, Wang approxi-

mated the kerne1, considering two separate cases, viz.: (a) 

thick strip, and (b) thin strip. For thin strip, he argues 

since 

G(x) 
x. 

f 
"2 , 
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fa:> J.i."., [GSr(l) ] c.as rt. . Cos y[ c(r 
o ~ .... o ~ 

00 

~ fo c.os rt . Cos rC dy 

A = a .... b 
= semi-strip thickness 

semi-contact length 

It is true ihat for a very thin strip, the parameter ~~O. 

But even for very small (3 , the product of rand (3 will 

still not tend to zero since the upper limit of integra-

tion is infinite. Thus, the above approximation appears 

to be invalid. After approximating the kernel, Wang then 

solved the integral equation by expressing the unknown 

pressure distribution in the form of Chebyshev's polynomials. 

Renee, it appears that" Wang's solution is only valid 

for thick strips. 

Bentall and Johnson[13] applied Sneddon's method for 

solving the contact forces produced in the rolling of an 

elastic strip. Unlike others, they did not ignore the 

presence of shearing forces. They divided the contact 

length into a selected number of elements and represented 

the forces on each element by triangular forces of unknown 

magnitudes. They presented a set of simultaneous equations 

for the unknowns by matching the displacement boundary con-

-\ 
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ditions at a number of discrete points. In this work, 

an assumption was made in the beginning for the condi­

tions of slip or no-~lip at different points and these 

conditions were imposed on the equations. By solving 

the simultaneous equations, the unknowns were then de­

termined. Whenever necessary, a correction had to be 

made in the assumptions for slip or 'no-slip'. The final 

solution of the problem is essentially a numerical one. 

Details of that treatment are given in reference [14]. 

Alblas and Kuipers[15] have also investigated the 

rolling of a viscoelastic sheet. They assumed rigid 

cylinders, smooth surfaces, plane deformation, and in­

compressible material of the sheet. They obtained a 

Wiener-Hopf type equation by using Sneddon's method. 

The solution is approximate and needs a further extension. 

1.3 Outline of the Present Investigation 

The aim of the present investigation is the determina­

tion of the stress and deformation fields in the nip during 

the rolling of a thin viscoelastic sheet. This problem is 

of great importance, for example, in the paper industry. 

On reviewing the literature, it was realized that 

- -\ 
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Bentall's approaCh[14], although it provides a very good 

insight into the problem of rolling, cannot be extended 

to the rolling process of a viscoelastic sheet. 

For the solution of a viscoelastic problem, it is, 

in general, necessary to look for an associated elastic 

problem in order to solve the viscoelastic problem. How­

ever, in the present case, there is no associated elastic 

problem (since the contact loundaries for the elastic and 

the viscoelastic rolling case are different). 

But, a line load (normal or shear) or any precisely 

defined loading acting on a viscoelastic sheet, has an 

associated elastic problem. Therefore, the influenoe 

funotions for a viscoelastic sheet may be obtained from 

the corresponding elastic solutions by applying the oor­

respondenoe prinoiple[16] , provided it is possible to 

carry out the required mathematical operations. A tech­

nique is proposed in this thesis to determine the necessary 

visooelastio influenoe funotions. It is then possible to 

formulate the complete problem of the rolling of a visco­

elastic sheetin a manner similar to thatof Bentall. It 

is apparent that the elastic case must be considered first. 

Since the problem formulated here is rather complicated, 

it is necessary to make sorne simplifying assumptions. Hence, 
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the following assumptions are made for the subsequent 

analysis: 

(i) The cylinders are ~ssumed to be rigid as compared 

to the sheet. AIso, they are supposed to be 

(ii) 

identical. Thus, the stresses and displacements 

will be symmetrical with respect to the centre 

line of the sheet. 

The sheet is supposed to be sufficiently wide and, 

therefore, the deformation of the sheet is assumed 

to take place essentially in the plane perpendicular 

to the axis of the cylinder. 

(iii) The cylinders are assumed to be rotating slowly, but 

at constant speed. Therefore, aIl inertia terms are 

disregarded. 

(iv) The deformations are assumed to be small so that the 

solutions can be superposed linearly. 

(v) It is assumed that the material properties of the 

sheet do not change during its passage through the nip. 

Since it is very likely that the coefficient of friction 

between the contact surfaces varies along the length of con­

tact, therefore, even though the problem is solved for the 
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case of partial slip for some given values of the coeffi­

cient of friction, the solutions may be far from the true 

solutions. In view of this fact, it is decided to solve 

the two extreme cases of the problem, viz.: 

CASE A: J.A-' -::. 00 , when there will be complete "no slip" 

and no bound on the shear forces, 

and 

CASE B: p.. ':. 0 , when there will be complete slip and 

the shear forces will be zero. 

The true solution of the problem is considered to 

lie somewhere within the range of the above limiting so-

lutions. It will be seen later that this range is small, 

and, therefore, it is possible to make an estimate of the 

true solution for any particular case. 

The present work is divided into eight chapters. 

Chapter II contains the basic theory, the specified boundary 

conditions, and the formulation of the problem. Equations 

of the theory of elasticity related to the problem are re­

viewed in Chapter III. The infZuence functions for eZastic 

sheet are obtained in Chapter IV by using a Fourier transform 
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technique. The integrals involved in these expressions 

have been evaluated analytically by using the calculus 

of residues, as shown in Appendix I. Chapter V deals with 

the rolling of an elastic sheet. The infZue~ce functions 

for a visooeZastic sheet are obtained in 'Chapter VI, using 

the principZe of correspondence and the convolution theo­

rem. The integrals occurring in these expressions are 

evaluated in Appendix II. Chapter VII finally deals with 

the rolling of a viscoelastic sheet and in Chapter VIII, 

the discussions of the elastic and the viscoelastic solu­

tions are presented. 

',' 
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CHAPTER II 

2. BASIC THEORY 

The rolling of a viscoelastic sheet in contact with 

two rigid and identicalcylinders is indicated in Figure 1. 

The cylinders are assumed to be rotating at some small 

speed Cù. Since the cylinders are identical, there is a 

line of symmetry with respect to the centre line of the 

sheet. Therefore, only one half of the sheet needs to be 

considered in the following analysis. 

The nip-conditions are illustrated in an exaggerated 

form by Figure 2. The cylinder makes contact with the 

sheet over so'me unknown length L The total normal load 

lN , exer-ced by the cylinder, is distributed over the con-

tact length in some unknown fashion. Because of the dis-

sipative nature of the sheet material, the pressure distri­

bution is skewed towards the leading side and the lengths 

of contact on the leading and trailing edges are different. 

Owing to the presence of friction between the contacting 

surfaces, some shearing forces with an unknown distribution 

will be generated. Under the applied load, the cylinder 

will come closer to (or approaches) the sheet by some dis­

tance do. 
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A theory required for the determination of the 

unknown pressure and shear distributions, the lengths 

of contact on the leading and the trailing sides of 

the sheet, as weIl as the amount of relative.approach, 

will be proposed in the following paragraphs. The co­

ordinate system used in the analysis is shown in Figure 2. 

2.1 Boundary Conditions 

The boundary conditions of the problem are of the 

mixed type. In other words, sorne of the conditions are 

prescribed in terms of forces whilst others are pre­

scribed in terms of displacements. These conditions can 

be grouped into the following four classes. 

(i) THE NORMAL FORCE CONDITIONS 

The conditions for the normal forces are the follow-

ing: 

~(y) ~O within the nip 

pey) =0 outside the nip 

and 

S p(y). dy lI\l 

(2.1) 
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where the integration is carried out over the whole 

contact area. 

The conditions in (2.1) imply that no tensile force 

is permitted within the nip and that the normal forces 

must be zero outside the nip. 

(iiJ THE NORMAL DISPLACEMENT CONDITION 

Physically, it is required that the two bodies have 

a common surface within the nip. Since the cylinder is 

rigid, the surface of the sheet must follow the circular 

profile of the cylinder within the nip. Assuming small 

deformation, this condition can be written as: 

within the nip 

unknown outside the nip 

where f(~) represents the geometry of the surface of the 

cylinder. 

(iiiJ THE SHEAR FORCE CONDITIONS 

Before analysing the conditions for the shear forces, 

it is necessary to study how they are generated. If the 

... ' 

(2.2) 
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sheet is thin, the cylinders have a s~ueezing action on 

the sheet. The latter, therefore, tries to move away 

from the centre. This action is illustrated in Figure 

3(a). On the other hand, if the sheet is thick, the 

latter behaves like a string. In this case, the sheet 

tries to move in. This action is illustrated in Figure 

3(b). 

If the contact surfaces are smooth, the sheet can 

move freely. If not, then the frictional force will 

oppose the motion of the sheet. This generates the shear 

forces which act against the direction of movement of 

the sheet. 

The conditions for the shear forces may then be 

expressed as follows: 

FOR CASE A: 

FOR CASE B: 

to be act~ng either 

inwards or outwards 

within the nip 

o outside the nip 

q,(y) = 0 for aIl y . 

The former condition of Case A implies that there can 

be only one reversaI in the direction of the shear forces 

.,' 

(2.3) 
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and that it reaches zero somewhere in the middle of the 
contact. Since the tendency of the sheet to move occurs 
mostly at the ends and least near the centre, the 
magnitude of the shear forces should reach maximum value 
near the end and should decrease monotonically to zero 
somewhere in the middle. Bufler[4] mentions that for 

the case of infinite friction, the ratio of the shear 
force to the normal force rises to infinity at the ends. 
This suggests that: 

FOR CASE A: 

should be maximum at the 

ends and should decrease 
(2.4) 

monotonically to zero 

somèwhere in the middle. 

(iv) THE SHEAR DISPLACEMENT CONDITIONS 

When the coefficient of friction is zero, there is 
no limitation on the movement of the sheet in the y-
direction. The amount of shear displacement will depend 
upon the normal forces. But when the coefficient of 
friction is infinite, the sheet is not permitted to move 
relative to the cylinder. Bence, it is essential that the 
contact points move at equal speeds. Then, let: 
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F = Nominal velocity of the cylinder, 

Fo = Nominal velocity of the sheet, 

f'( = Velocity of any point in the sheet 

within the nip. 

Then, neglecting second order terms, one can write: 

f y = Fo (1 -1- ~~) 

Since the cylinder is assumed to be rigid, it is not de-

formed and the velocity of any point on the cylinder 

remains the same. Hence, in order that the two points 

have the same velocity, it is required that: 

or, 

or, 

F- Fo - r=;- (2.5) 

Since ~ depends upon the nominal velocities of the two 

bodies, it must remain a constant for all points in the 

nip. Renee, differentiating a second time with respect 

to y 

The conditions for the shear displacements become then, 

as follows: 
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CASE A: =0 everywhere within 

the nip 
(2.6) 

CASE B: unprescribed 

Equations (2.1) to (2.6) constitute the complete 

boundary conditions of the present problem. But it will 

be difficult to satisfy them until the contact lengths 

(on the leading and the trailing edges) are determined. 

For this purpose, a semi-inverse method is being proposed 

here. The solution must be considered as an approximate 

one, but by making the elements sufficiently small, a 

high degree of accuracy can be achieved. 

2.2 Representation of the Nip Forces 

Let the contact length be divi"ded into a number of 

small elements of equal widths such that there are mi 
elements on the leading side and rYl2. elements on the trail-

ing side. (The choice and the determination of m1 and ~2 

will be discussed later.) As an approximation, let it be 

assumed that the total force on any element acts as concen-

trated forces (one normal and one shear) at the centre 

.... 

point of the element. Let th~ magnitudes of these concentrated 

'1 
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forces on the jth element be PJ and Gt,. (normal and 

shear respectively). 

Since the thickness of the sheet is very small com-

pared to the radius of the cylinder, the angle of contact 

will be very small. And with little loss of accuracy, 

the normal forces may be considered to be acting verti-

cally and the shearing forces as acting horizontally and 

aIl moving horizontally with the surface velocity of the 

cylinder. The problem then reduces to the determination 

of the contact length L , the amount of relative approach 

n' , do and of 'J' 5 and ~j S such that they satisfy the con-

ditions expressed by equations (2.1) to (2.6) on the whole 

sheet. A schematic representation of these forces acting 

on the viscoelastic sheet is indicated in Figure 4. 

2.3 Derivation of the Matching Equations 

Let the boundary conditions be satisfied at sorne dis-

crete points called matching points. Then, by choosing 

a large number of evenly spread matching .points, it may 

be safely assumed that these conditions are satisfied every-

where on the boundary. For convenience, the matching points 

will be taken as the points midway between the loads to-

gether with the end points of contact. Let 
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t'l LIU = the normal displacement of the surface of the 

sheet at the Lth point due to a unit normal 

line load a t the j th point; 

s Uu = the normal displacement of the surface of the 

n 
"fi = 

)ft· = 

U~ = 

sheet at the ~th point due to a unit shear line 

load at the jth point; 

the tangential displacement of the surface of 

the sheet at the ~th P?int due to a unit normal 

line load at the jth point; 

the tangential displacement of the surface of 

the sheet at the ith point due to a unit shear 

line load at the jt~ point; 

the total normal displacement of the surface of 

the sheet at the iih point; and 

\JL = the total tangential displacement of the surface 

of the sheet at the iih point. 

Then, using superposition, the displacements of the (th 

point can be expressed as follows: 

n'lt.+rY)2 

Ll~ .2. .s u.~ .. ~. 
J= 1 l 
Mt of- VV12 

}Je: = ~ 5 \tH. F} 
J=-1 1 

+ ,t-~. Q. } 
V!J' 'J 

" 

(2 .7) 
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But the displacements of the Lth point are also governed 

by relations (2.2) and (2.6). To obtain the second de-

rivatives, it is only necessary to differentiate the 

influence functions twice (assuming that the superposition 

also holds for second derivatives). Hence, 

(2.8) 

where, 

= the second derivative obtained at the 

ith point with respect to y of the 

shear displacement due to a unit normal 

load si tuated at the j th point. 

Using equations (2.2), (2.6), (2.7), and (2.8), a set of 

matching equations can be derived for the two cases as 

follows: 

CASE A: 

(2.9) 
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CASE B: 

(2.10) 

Mii"~2. 

~ ("il r:,.) - unprescribed 

J=1 

Equations (2.9) and (2,.10) give a set of simu1taneous 

equations for the unknown quantities. By choosing a suf-

ficient number of matching points, these equations can be 

solved for the unknown quantities, provided that the re-

strictions imposed by equations (2.1), (2.3), and (2.4) 

are not vio1ated. Unfortunately, these equations cannot 

be handled further unti1 the 1engths of contact on the 

1eading and the trailing edges are known. ,The latter, 

however, are related to the unknown forces and, therefore, 

cannot be determined direct1y. A semi-inverse method 

is being proposed here to solve these complexities. 

Ei ther mi or rYl2 may be chosen from the consideration 

of the required accuracy. But their ratio depends upon the 

speed of ro1ling, the rate of relaxation 6f the material 

and, perhaps, on the geometry and the loading conditions. 

The determination of this ratio will be discussed in section 

2.5 and, for the purpose of theanalysis given in section 2.4, 

it will be assumed that this is known. 

, \ 
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2.4 Determination of the Contact Length 

Let 

2 a = width of each element 

2. b = thickness of the sheet 

a 
b 

Also, let (30 be an assumed value of the parameter (3. 

Then, rearranging equation (2.9), and solving the set of 

simultaneous equations, it is possible to determine the 

unknowns corresponding to the above assumed value of ~ . 

It is necessary, however, to make proper corrections on 

this assumption.of fo • 

If ct ' and f..,0 denote the 
o 

approximate values as obtained according to the above 

assumption, and p. 
J ct· , L , , and ~ denote values 

corresponding to the correct solutions, then the loads 

in either case can be written as follows: 

/IV: 

where VV is the specified normal load peI' unit length of 

the cylinder. 

(2.11) 

(2.12) 
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It is assumed that the normal load is mainly utilized 

in producing elastic deformation. The normal load W will 

then be proportional to the area of deformation of the 

sheet. But the latter is roughly proportional to (L X~D ) • 

From geometrical considerations, it can be seen that L~~ 

and do oc ~'1.. Renee, the deformed area wi thin the nip will 

be proportional to 133 Thus, a better approximation, in 

this case, will be by taking -the parameter ~ 

With the new value of ~ ,the whole process 

repeated until à desired accuracy is obtained. 

as follows: 

(2.13) 

should be 

Raving determineda proper value of the parameter ~ 

the contact length can be obtained easily by using the re-

lation: 

(2.14) 

2.5 Determination of the Ratio ml:m2 

It was mentioned earlier that ei ther Mi. or M2. may be 

chosen depending upon the accuracy that is desired. But the 

ratio of m1. and M2, depends upon many parameters and cannot 

be determined directly. For an elastic sheet there is a 

-\ 
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symmetry and therefore tvl1. -::. M
2 

. It is only for a visco-

elastic sheet that this ratio needs to be determined. A 

semi-inverse method is being proposed here for this pur-

pose. 

A value of m2. should be assumed first and then the 

solutions for the unknowns should be obtained. It should 

then be checked if the boundary conditions are completely 

satisfied. It will be shown in the following paragraphs 

that if the value of W'l2. is underestimated, then the boun­

dary conditions can be completely satisfied. On the other 

hand, if this value is overestimated, then the normal force 

condition, as expressed by equation (2.1), will be violated 

and therefore the boundary conditions in this case cannot 

be satisfied completely. 

Since 1'Vl2 cannot be grea ter than l'Y\ 1 ' for the first 

approximation ~2 should be given a value equal to that of 

...• ' 

mi' The solutions should be obtained and the boundary 

conditions should be checked. If they are completely satis­

fied, the choice of rYl2. was a right one. If not, then the 

value of ~2 should be decreased by one and the process should 

be repeated until the boundary conditions are completely satis­

fied. The greatest value of Wl2. which does satisfy the boun­

dary conditions completely, is the right one. 

First, consider the case of underestimation and, for 
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simplicity, assume that the value of h'l2. is underestimated 
by one. Figure 5(a) represents this situation in an 
exaggerated form. Curve l represents the deformed shape 
of the surface of the sheet. The sheet loses contact with 
the cylinder a t the point D By underestimating the 
value of mZ ,it is implied that there is no force on the 
last element and that the sheet apparently loses contact 
with the cylinder at the point n' As such, the displace-
ment boundary conditions are to be matched only up to the 
point D

f 

and not up to D Curve II represents the dis-
placement profile of the surface when the forces on the 
last element have been removed and when aIl other forces 
remain unchanged. It is seen that it is possible to satisfy 
the displacement conditions up to the point n' by adjusting 
the values of the remaining forces, and especially that of 

This proves that when the value of Wl2, is under-
estimated, the boundary conditions can be completely satisfied. 

Now, consider the case of overestimation and, again for 
simplici ty, assume that the value of tYJ2 is overestimated by 
one. Figure 5(b) represents this situation in an exaggerated 
form. Because of the overestimation in the value of M2 

one extra element is introduced in the nip and the displacement 
boundary conditions are now required to be satisfied up to the 

. f, pOlnt D Since the displacement at any point is mostly 
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influenced by the forces closest to that point, it is 

evident that the normal force on the last element must 

be tensile. This violates the condition expressed by 

equation (2.1). This proves that when the value of m~ 

is overestimated, the boundary conditions cannot be com­

pletely satisfied. 
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CHAPTER III 

3. 80ME EQUATIONS OF ELA8TICITY 

It is wel1 known that in the absence of body forces, 

the plane elastostatic problem reduces to the determina­

tion of a biharmonic function ~ which satisfies the given 

boundary conditions of the particular problem. In rec-

tangularcoordinates, this is expressed by: 

2 2-
"V . 'V. tp(x,y) = 0 

where 

The stresses in the body are rela~ed to this function by 

the fo1lowing relations: 

Ôx. 
~~ - d~'.L 

, (a) 

6"~ 
c?-~ - d x.'l 

(b) 

(c) 

When the boundary conditions are prescribed in terms of 

"known forces" and when one of the axes extends from -co 

(3.1) 

(3 .2) 

to 00 , the Fourier transform makes it very easy to deter-

mine the particu1ar biharmonic function. This method is 
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described be1ow. 

Let the ~-axis extend from -00 to 00. Then, by 

taking the Fourier transform of both sides of equation 

(3.1), 

or, 

Seo 'i74~(x.y) ei>;!J cl~ _ 0 

-co 

( dl _ 'l.)'l. 
dx'l. ~ 

which can a1so be written as: 

where 

=.0 

and where ) is the Fourier transform parame ter . Equation 

(3.3) is an ordinary second order differentia1 equation 

whose genera1 solution is given by: 

Or J 

(3.3) 

(3.4) 
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in which AD, BD, Co and Do are sorne functions of, In 

order to determine these functions, it is necessary to 

express the given boundary conditions in terms of the 

function GO or its derivatives. 

Taking the Fourier transforms of both sides of equa-

tion (3.2) yields: 

co . J a'x.. e~~ ct ~ - - ~.?"Gt 
-co 

(a) 

CO • 

".' 

d2.G;° J ~ e..'~~ d~ - cl x.'l-
(b) (3 .5) 

-co 

SOO iç'J =- ; ~ c;fCi
o 

Z;X'ye dy 
-co c::(x. 

(c) 

or, 

GO(X, ~) --' 6'::.:, 
~'l. 

(a) 

dGtx:,~) (. 

C:x.~ ot:x... - -~ 
(b) 

(3 .6) 

d 2G,0( X, t) 
~~ d x..'- -

(c) 

By substituting the given boundary conditions into equation 

(3.6), sufficient conditions may be obtained for the func­

tion 1':..0 or i ts derivatives to obtain the constants A, B , C 
~ ° 0 0 

and Do' Having determined GD(X,~), the stresses and dis­

placements in the body can be established as follows: 

'\ 
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Taking the inverse Fourier transforms of equation (3.5) 

gives: 

(a) 

Ôy (X, 'J) - (b) 
(3.7) 

(c) 

In the case of plane deformation, the strains are given by: 

in which ~,V are the displacement components in the ~ 

and ~ directions, respectively. Substi tuting for Ô.x.. and 

o~ from equation (3.7a,b) gives: 

(+-V 
:2.nE (b) 

(3.8) 

" "\ 
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A partial integrating of (3.8a,b) with respect to ~ and 

~ respectively, yields: 

The functions {(x.) and ~ÜJ) on the right-hand side of the 

above relations are interrelated as follows: 

o~ 
'du. 

+ d'\J- ~(H-Vd 
-c.~~ - ~::J "dx.. - E:. 

Substi tuting for Ll and \J- from equation (3.9) and for "C.)(,.~ 

from equation (3.7c) and simplifying, yields: 

=-[~ + ~ ] q";t. d~ 

Taking any one expression of the forms GtX/~ given in 

equation (3.4), it is seen that: 

(3 .9) 

(3.10) 

(3.11) 
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From equations (3.10) and (3.11), therefore, 

=0 

Let 

-c and c 

in which C is some constant. Then, 

f eX) =. - C x + C z 

$}(~) = c '1 +- Ci. 

(3.12) 

Substituting for {(X) and ~C';j) in equation (3.9), yie1ds: 

;- C~ + Ci 

t+-y i. f eX) Cc 1-\1) o{2.G
o 

+ \J J:.:l.t"::0J ë i ~ 't1 J 
2nE -c:c qx'1-' ~ ~ 

ç 

The constants C ,C1. and C'2, may be determined from the 

specified constraints on the disp1acements of ·the body. 

When the externa1 forces are either symmetrica1 or 

antisymmetrica1 with respect to ~ , the above equations 

can be further simp1ified. There are, therefore, two cases 

(3.13) 
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of particular interest, viz.: 

(i) when ~(x,'à') is an even function of and 

(ii) when ~(x.,~) is an odd function of ~ 

The equations for these cases will be developed subsequently. 

CASE (iJ : when <l?(x,y) is an even function of y 

It should be noted that if ~(X,:) is an even function 

of ~ , 
d~4? 

6"x t?~ and ~ --
d~'l. ~.xJ-

will be even functions of '2t ' whilst 

will be an odd function of ~. Now, 

(3.11+) 

where 

(3.15) 
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From equations (3.5) and (3.14), 

(3.16) 

But 

(3.17) 

From equations (3.16) and (3.17), 

(3.18) 

Equation (3.18) gives the necessary conditions for the 
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determination of G,(!J(X,~) In the case of q? (:x, ~) 

being an even function of 'il ' 

and 

will be even functions of ~. Therefore, equations (3.7) 

and (3.l3) become: 

and. 

)1(;(, ~) = 2 Cr+\)) r CO[(I-V) d2.~CU + y]: l.r-fll J' 
nE Jo clx.'l." ".::lf 

.. ~' 

(3.l9) 

(3.20) 
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CASE (ii): when ~(x,y) is an odd function of y 

As earlier, when Cf> (x,'j) is an odd function 

of '(j , 6'x.. and 6'~ will be odd functions of ~ and Cx.~ 

will be an even function of ~. Therefore, the function 
o 

G will be as follows: 

2 . G(2) =. l.. (;(,~) 

where, 

Hence, it follows from equations (3.5) and (3.21) that: 

(3.21) 

(3.22) 

(3.23) 
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But, L: ô"- e!~11 d~ -: 2': S:::06i. si'J(lt d» 

and from equations (3.23) and (3.24), therefore, 

Equation (3.25) gives thus the necèssary conditions for 

the determination of C;;(2.)(:(/~), 

Now, if CÏ!(~I~) is an odd 

<v -' r=(3.) 
G (X,e.) , ~ ~ ()(,~) 

ax 

function of ~ , 

and d2.~('2.)(.:(,~) 
cf x..'l-

are a11 odd functions of ~ . Therefore, equations (3.7) 

and (3.13) become: 

.. ~' 

, \ 

(3.24) 

(3.25) 
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• sin t;;>} clç ...,... C «;J -+ :t. 

\J(x,';J) = - 2(1+''17) (00[(1_\)) d
2
c;,('2,) + V Ç)..4(2)]. 

nE )0 clx.). 

• c.osç~ if - ex +_c.'2, e 

It is seen from the above review of the plane case of 

elastic deformation that in accordance with specified 

force boundary conditions, the corresponding stress 

and deformation fields can be readily determined. 

" 

(3.26) 

(3.27) 
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CHAPTER IV 

4. SURFACE DISPLACEMENTS OF AN ELASTIC SHEET 

DUE TO MOVING LOADS 

As pointed out in the introduction to this thesis 

and in Chapter II, it is necessary, for the formulation 

of the given elastic problem, to establish expressions 

for surface displacements. This is done by using the 

concept of infZuenae funations. For this purpose, the 

loading on the sheet in motion is indicated in Figure 6(a) 

and (b). The case of the normal loading of the sheet will 

be considered first and then the effect of shear forces on 

the moving sheet will be treated. 

4.1 Influence Functions for Normal Line Load 

Figure 6(a) shows an elastic sheet under a pair of 

concentrated normal line loads of unit magnitude (per unit 

width of the sheet) representing the pressure of the 

cylinder over one surface element of the sheet. The sheet 

is assumed to move with a small velocity Fo, or equiva­

lently, the sheet may be considered as stationary and the 

line load moving with the same velocity. 

-\ 
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Consider now, a coordina te system 'X.- y (Figure 6 (a) ) 

moving with the load. The boundary conditions can be 

expressed as: 

a;. (:!: b/~) = - 1 SC~) } 

-Cx.~ (± b,~) = 0 

where S(~) is the Dirac delta function and 1 represents 

a unit step load. It can be seen from relation (4.1 ) 

that êx. is an even function of ::J and ~(~,~) will also 

be an even function of ~ Therefore, from equations 

(3.18) and (4.1)., it follows that: 

(1) (00 
G (:!:'b,~) = ~~ Jo bOl) c.ose!1 ~~ 

:. ~ Jco S(~)c.ose9dy :. 
&.~ -CIO (a) } 

(b) 

r(J) •• Taking the following form of the function ~ 

li) 

G (X.~) = (A,;-8,x~)c.os"'x~ + (C1+J),X{)sjr'\J,x~ 

<!J 
~~ (X/~) =Ç[(A,+D,)sj..,hX~ +(B,+Cf)C.Qshx~ + B,x.~ sinh:c:~ 
c; . 

., 

(4.1) 

(4.2) 
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yields, upon substituting the conditions of equation (4.2), 

the relations: 

(A,-TB,b~)c.oshb~ + (C1-t-D,bç)sinhb~= ;e1.. 
(.Al - Blb~)C.DShbç - (C1,- Di.bE:) s.inhb ç = d~l. 

(A, + 0:1.) .sinh b~ ;- (BiT c.i. ) c::.oshb~ 

+Bi, b~ sinh b~ + Oi.b~ c.os~b~ ::. 0 

- 61. b~ sinn bç + 01. bç c.osh bç = 0 

By solving these simultaneous equations, the coefficients 

are obtained as follows: 

= sil1h b~+ bç c.osh b~ 
~'l. (sin'" '2.b~ + 2 he) 

Di -::..-

.Ca) 

(b) 

Cc) 

(4.3) 

Integrating and differentiating G(I) ('X, ~ ) with respect to 

x, substituting into equation (3.20) and simplifying, yields 

the surface displacements due to the normal loads: 

\ 
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U~(x.,~) -= - 2.(~+~J SD
OD 

[(A,.-D1 + 2 \) Di) sinh 'X.~ 1'" D1 x,'Ç c:.OShx.~l 
CI> (.) .e; c.os~~ c:(~ -t- C J ... C.1 

(4.4) 

)1":(X,~1) = 2~;") Lao[(Al+2l:>i-2I1Di)c:.OShx.e+t>1X~Sil'\hx..e} 
J CC') ec.t) · ç si...,~j ~{ - ~ + 2 

where the superscript ..., refers to normal loading and the 

subscript e to the elastic case. Due to the symmetry 

condition along the ~ axis, 

u~ (0, '.:1) = 0 

so that 

(4.5) 

To find 
(1) 

C 2 ,it is necessary to "impose sorne displacement 

constraint on the sheet. Thus, assuming that the point 

(O,l ) is pinned, (see Figure 6(a)) the displacement con-

straint becomes: 

u.~ (O,~) =0 

,,;, (O,l) = 0 

The latter condition gives: 
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It should be noted that by choosing the pinned point (~e) 

(see Figure 6(a» arbitrarily, the coefficient function 
(I) 

C2, will depend on that length e. . Substi tuting 

conditions (4.5) and (4.6) into relation (4.4) yields the 

displacements on the surface at the fixed value of ;(= -b , 

and in terms of Ci>(l) as follows: 

U~~b/.!l) = 2(~+:) {CO[CA,-Dt ;- 2 \1 Di ),sinh be 
+ Di b~ cosh b~ J. ç c.o.s ~':J cie, 

\7~(-b,~) = 2~f;Y) ,(CO[CA1 +2D1 - 2\1 01) Goshbç 

TDi.b~ si,,~ bç J~ sir)ç~aI~ 

+ 2.(~~) ta> Ai ~ S\t'lçt ofç - 4(~-~'}.) L ooD1~ siV)ç~ q~ 

Substi tuting for the coefficients Ai.(~) and Di(~) from 

equation (4.3b,c) after sorne simplification, yields: 

"'~' . 

(4.6) 

(4.7) 
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u.i (0<) =. 2c:,-~~) Il (01.) 

~t')I'ci.) = _ (It-IJ)(t-'J.'I7) l (c() ... 2(1-""') l (0(.) 
e\: nE: '1 nE ~ (4.8) 

- 1+\1 [I (Il) + Is ('1) ] + '2.(1-\)'2 .. ) l (,,) 
E 4 nE: 4 .. 1 

where 

.r (oC) = raJ 
Sil'l~b5)cJ(bJ;) 

2 Jo b~ " 

ra! 2. be .si., (0< b~) 
I 3 (o<) = Jo o~ (S,'.,h('lbE)+'2..be) cI(b~) (4. g) 

l ('2):. (OO2sit'l~(b~).sj.,(l'),bë) Q(b~) 
4 Jo b~ (s",," (2.b~)+ 2,be) . 

In which the parameters 0<.. and "2 are given by 
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It is to be noted that for the elastic case, the 

displacements are dependent on instantaneous positions 

only. Therefore, equation (4.8) has been expressed as 

functions of 0( and t1 

4.2 Influence Functions for Shear Line Load 

In addition to the normal line load acting on the 

surface of the sheet, a shear line load as indicated in 

Figure 6(b) will also be occurring. The latter is re­

presented by a pair of concentrated shear line loads of 

unit magnitude (per unit width of the sheet). (Either 

the shear load is moving and the sheet is stationary, or 

the load is stationary and the sheet is moving.) 

Again, considering a coordina te system X,- ~ moving 

with the load, the boundary conditions become: 

Cl'x, ( !: b 1 ~) = 0 

r::l(.~(b/!:J) = Lo(~) 
t: x.~ <. - b 1 ~) = - 1. cS ( y) 

(a) 

(b) 

(c) 

It is seen that t:x.~ is an even function of ~ ,but an 

odd function wi th respect to X. • The stress function 

~ (x,~) for this case will be an odd function of ~ , and 

an even function of X. (see also equation 3. 2c) . Hence, 

-, 

(4.10) 
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frorn equations (3.25) and (4.10), the function G(~) and 

its derivatives becorne: 

(~) 1 (00 
~ (! b, 'J) = - ~ '). Jo o. s,.., t:. ~ c.( ~ -:: 0 

cl 
/:(2) \ 

"'"' ( 1 (00 
cbe. b,~)::. - ~ Jo 5(Y)c:..os~!1 Q'::j 

dG/2
) 

- (-b ~) = 1-
cl x. 1 2~ 

Ca) 

Cb) 

(c) 

where, for relation C4.11b), the equations (3.25b) and 

(4.10b) have been used, whilst equations (3.25b) and 

(4.10c) were used for relation (4.11c). As before, ta king 

the function ~(a) of the following forrn: 

gives 

(2) 

~: (x.,~) = ç [( A2.T D2 ) sinh 'X~ + (B2 T C'2,)c..oshx~ 

+ 82. x.~ si n h x.~ T D2 x.~ c.osh x.~ J (b) 

(4.11) 

(4.12) 
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Using the forms of (4.11a-c) and relations (4.12a,b) 

yields, upon rearranging, the following expressions: 

(A2, + 62, be) c.osh bE; 1- (C2, + D2. b~ ) sinh bç -= 0 

(A2,- B2..b~) c.oshbç -(C'l.- D2.b~) sihhb~ :. 0 

(A?. + Dz) .sinh b ~ of- (82 + C~) c.osh b f + B2. bç sir.h bf 

... 

D
· 1 (4.13) 

+ 2.b ~ cash be = - 2.el. 

(A~+D'l.)sir\~b~ -(8'l.-t-C'l.)c.osh b~ - B'l.b~ si"hb~ 

+ t>l.b~ c.oshbç =--2' f.'" 

Upon solving these simultaneous equations, the coefficients 

will be: 

B~ -= C~ -= 0 (a) 

(b) 

(4.14) 

Integrating arid differentiating G<~(X,C) with respect to 

X and substituting in equation (3.27) gives, upon simpli-

fying, the following values of the surface displacements due 
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to shear: 

in which, as before, the superscript s refers now to 

shear loading. Due to syrnmetry a10ng the ~ -axis, 

Renee, the coefficients: 

(2) (2.) 
C = C, -= 0 

C~2) 
In order to determine ~ , it is again necessary to 

impose the same disp1acement constraint on the sheet as 

before. This imp1ies that 

lte (O,t) ': 0 

lfe (O,t) ': 0 

(a)} 
(b) 

(4.15) 

(4.16) 

(4.17) 

~:..'--
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o c.~').) The condition (4.17b) determines the value of , as: 

C(1) =. I+V LOO 2. bf: si .... ~ b~ . GOS ~ t d 
2. nE 0 ~(si",h2b~+2.b~) e 

_2.(I-\1")L
oo 

2. GOshbe c.osSe. c::{ 

n E 0 cÇ (si" ~ 2. b~ -r 2. b~) e 
. f A D c.(2) C(2.) d C(2.) Substi tutJ..ng the value 0 2.' 2' 'i' an '1 

from equations (4.14), (4.16), and (4.18) into (4.15) 

yields, finally, the displacement components as follows: 

U~(o<.)= (/+v)(I-2.V) l (cI.)_ 2(1--J1..) l (d.) 
fiE 2 nE ~ 

V-~(c(,~)= 2(~~1.) T(:.Col,'l) -r f;~ !7(~) 

(a) } 

(b) 

where, as before, the integrals I~, 17 , by using again 

the parameters ~,~ , will be as follows: 

2. sinh (b~) c.os('2bS) d (b~) 
si"h(2btD +2.b~ 

It should be noted that the above formulations (4.8) and 

(4.19) contain integrals of a particular form which, for 

0(4.18) 

(4.19) 

(4.20) 

the subsequent analysis, must be evaluated. The evaluation 

of these integrals is treated in Appendix 1. 
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4.3 Simplified Forms of the Influence Functions 

Using the relati9ns (AI.9) for Ii, (AI. ID) for in­

tegral l';l.. , and (AI.12) for the integrals 'r30 ta I.7 and 

substituting them into equations (4.9) and (4.19) yields 

a simplified form of the influence functions in the follow-

ing manner: 

(4) (JJ -1<., Ittl CS) 
61"1 c.osmn/'l.1 )+2. e (A", si., m"I~1 

":.1 

(5) ] 
+ 6" cosml'll~l ) 

-, 

(4.21) 
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-k (ICl\-\'l\)] 

Introducing now two material functions of the following 

type: 

e - , 
\--

2~ 

e - 2, 
2. - 6K+2.~ 

} 
it can be seen that the relations (4.21) and (4.22) con-

taining material parameters in terms of Poisson's ratio ~ 

(4.22) 

(4.23) 

and the modulus of elasticity E can be simplified further. 

Moreover, a grouping of the terms depending on ~ can be 

done by using the following forms: 
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(4.24) 

This permits, finally, writing of the displacements for 

the normal and shear loading in a shorter form as func-

'tions of the parameters 0... and '1 as follows: 

(b) 

(4.25) 

(3) J 
+ B", C.OSM", Ic:I.\ ) - 4= SIGN C«) (6,- 9'1.) 

(c) 
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(d) (4.25) 

The constants 
A (IC) (k) 

... ,Br. with corresponding superscripts 

are defined in Appendix I. 

4.4 Numerical Results 

°Numerical results of the above functions were obtained 

using an IBM 360/75 computer of McGi11 University. For 

this purpose, the elastic properties of the material were 

assumed to be as follows: 

Young's Modulus 

Poisson 1 S Ratio l \) = '3 

The above values are regarded as representatives of mechani-

cal properties of a paper web in the idealized case. 

The results of the computation are shown in Figures 7 

to 13. 

It may be noticed that the normal displacements 

" ~' 



· ',' 

- 57 -

(F igure s 7,8) are independent of '1. Whereas, the shear 

displacements are composed of two terms, one dependent 

upon 01. and another dependent upon '1. only, according to 

the dependence of the functions 1=1, F2. (equation 4.24). 

The corresponding graphs of these functions are shown in 

Figure 9. 

Figures 10 and Il indicate the plots of the ~ 

dependent terms occurring in the shear displacement equa­

tions due to normal and shear load respectively. Figures 

12 and 13 indicate total shear displacements (due to normal 

and shear load respectively) for sorne selected values of 

Q. It should be noted that the basic pattern of the shear 

displacement is not changed by the parame ter ~. Its effect 

is in the shift of the origin only. It may be seen that the 

normal displacement caused by normal load decays exponentially 

(Figure 7). However, the normal displacement due to the 

shear load and the shear displacement due to the normal load 

reach a certain value a t approximately \0( 1= 2..5 and maintains 

this value for the higher values of ct (Figures 8 and 10). 

It is of interest to note that the shear displacement due to 

shear load shows a peculiar behaviour (Figure 13). Thus, in 

the vicinity of the load, the shear displacement decays ex­

ponentially, but beyond an approximate value of 1~1=1, it 

diverges linearly. This appears to be in direct violation 
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to the equilibrium of the sheet. But this type of be-

haviour is very common for the idealized concept of 

concentrated load. It is a general feature of the 

steady state solutions of two dimensional problems in 

an unbounded region (see Fung[17], page 264). 
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CHAPTER V 

5. SOLUTION OF THE ELASTIC PROBLEM 

With the presentation of the" elastic influence func­

tions in the foregoing chapters of this thesis and the 

evaluation of the important integrals given in Appendix I~ 

it is now possible to formulate the required matching 

equations to satisfy the specified boundary conditions. 

Thus~ the analysis of the rolling of an elastic sheet can 

now be completed. For this purpose~ one half of an elastic 

sheet in contact with a rigid cylinder is indicated in 

Figure 14. As pointed out earlier~ in the elastic case the 

lengths of contact on the leading and the trailing sides 

are equal. Therefore mi. = vYl2,": ty'). 

To simplify the formulation of the problem, aIl shear 

forces will be assumed at first to be acting in the direction 

of y only. Their actual direction will be determined sub­

sequently by the sign associated with their magnitudes. 

The equations will be derived for a certain assumed 

".' 

value of the parameter p-> (see equation (2".11)) which will 

later be corrected according to relation (2.13) to satisfy the 

total load condition. AlI distances will be measured from 

point 0 which lies on the intersection of the central line 

-, 
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of the sheet and the line joining the centres of the 

cylinders. 

5.1 The Choice of the pinned Point (O,~) 

In the derivation of the influence functions, it was 

assurned that a certain point on the central line of the 

sheet is pinned and, hence, has no displacement. It is 

now necessary to specify thls point. 

Within the nip, the central line of the sheet is 

stretched or compressed, as indicated earlier in Figure 3(a), 

(b) • Because of symmetry with respect to the line joining 

the centres of the cylinders, it is evident that point 0 

rernains undisplaced. Bence, this point is taken as the 

pinned point for the following analysis. 

5.2 Relations Con~on to Both Cases 

Some important relations, common to both these cases, 

will be derived here. Let 

y. distance of the .th load, = J ~ 

Yi = distance of the .th matching point, J.. 

Z~.i = distance of the .th matching point from the .th 
J.. J 

load, 

", 

;"-- . ~ 
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From Figure 14, it may be noticed that: 

"J': (2j-2.m-i)a 

and hence 

z '.J' ::. '( L - '<,j :. ( 2l- 2j - 1) a 

otu =. c." i -2.j -1) 13 

} 
i = 1, ..... 2.m+l } 

j -:. J., ..... ~W) 

where the quantity (3 is defined by equation (2.11). 

For an elastic material, the displacement of any 

point on the surface of the sheet due to a moving load 

is dependent upon the instantaneous distance of the load 

from that particular point. Hence, using the definition 

of the displacements as given in section 2.3 of Chapter II 

and using equation (4.25): 

u;· = U~ (oI.ij) 

"Û -= \f; (~~hrtj) 
ut· :. U~ (o(V) 

,".S: _ \,,5 (-' .. n ) 
V!J - v~ ""'J n.j 

(5.1) 

(5.2) 
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Further, by considering the geometry, as shown in Figure 14, 

the variable distance of a contact point from the point A 

can be written as: 

(

0 'l.:l 
2 c.-YYl-1) a 

R 

(5.3) 

in which Cr represents 

Diameter of the cylinder 
Thickness of the sheet 

_ 2R 
2.b = Cr 

5.3 Matching Equations for the Case (A): 

The matching equations for the Case (A) can be formu-

(5.4) 

lated by using equations (2.9), (5.2) and (5.3). The first 

part of equation (2.9) has been derived from equation (2.6) 

which states that 

everywhere within the nip. 

However, this condition cannot be rigorously satisfied since, , 
in the present analysis, a continuously acting pressure dis-

tribution on the sheet during rolling has been replaced by a 

discrete arrangement of line loads. The difficulty in the 

analysis arising from this line-load concept can be overcome 
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by employing a semi-inverse method of analysis as presented 
below. 

For this purpose, integrating both sides of equation 
(2.S) gives: 

\1(Y) = '$. y ... constant 

Due to symmetry with respect to the line joining the 
centres of the cylinders, the constant in (S.S) will be 
equal to zero. From equations (2.7), (2.9), (S.2), (S.3), 
and (S.S), it follows that: 

By rearrangement of the above relation, the following set 
of equations is obtained: 

1. do 
b 

i = i, ...... 2.M+ i 

(S . S) 

(S. 6 ) 

(S.7) 
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Relation (5.7) represents a set of simultaneous equations 

in which the total number of unknowns is: 

p. 
J 2m 

Q. 
J 2Wl 

do 1 
4m+2. 

1- 1 

and the total number of available equations is seen to be: 

Normal displacement equations 

Shear displacement equations 

2m+1 
2.m+ 1 }4"'~2 

Although the number of unknowns is equal to the number of 

available equations, it is not possible to solve this set 

since the resulting coefficient matrix becomes singular. 

The reason for this occurrence is that one of the equations 

is, in fact, redundant. This suggests that the parameter ~ 

should be determined in sorne other ·way. For this purpose, 

a semi-inverse method is proposed in section 5.5. For the 

present moment, i twill be assumed that the value of ~ is 

a known quantity. 

In order to make the set of equations balanced, it will 

be necessary ta discard one of the equations since the num-

ber of unknowns is reduced by one. It was realized that the 

shear displacement equation for the point A (Figure 14) wa·s 
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a redundant equation. Hence, this equation will be dis-

carded in the following analysis. 

Now, defining a coefficient matrix [Al, vectors ex] 

and [El1 as follows: 

1 t 1 
1 
\ ., -U~(~;j) ! \- Ue(o{,,J) 2m+1 
1 
\ -t [A]= 
1 (a) --1----- --1-------

1 
1 1 
1 n 1 0: - "e(oI.u,r~.;): - ,,"~(otu,Q,j) 2m 

(b) 

(c) 

the following matrix equation for the assumed value of t 

can be written: 

[A][Xl:. [S] 

-\ 

(5.8) 

(5.9) 
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The unknown vector [X Jean easily be determined by the 

matrix inversion: 

-1 
[X] = [A] . [e,) 

The solution obtained by equation (5.10) represents a 

solution corresponding to the assumed value of ~ This 

value should now be corrected according to equation (2.13) 

and the process should be repeated until the total load 

requirement is satisfied. 

5.4 Matching Equation for the Case (B): 

Equations for Case (B) can be obtained from those of 

"'~' 

(5.10) 

Case (A) when aIl shear forces tend to zero. Defining, for 

. [A'], thls case, a coefficient matrix vectors [B'] and 

[X'] as follows: 

[A] = i [x']= 

(5.11) 

~1L2m-1 
{B 1" { 2(0- "::~1)~(3~ } 
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the equation for Case (B) may be written in matrix form as: 

[A' l [X'] = (B] (5.12) 

The unknowns here can be determined from 

-1 
[i] -::. [A'] .[S'] (5.13) 

As in the previous case, the parameter f.> may be cor-

rected according to equation (2.13) to satisfy the boundary 

conditions. 

5.5 Creep Ratio for the Case (A) 

The parameter j introduced earlier has been referred 

to by some authors (see, for instance, Johnson[S]) as the 

creep ratio. It represents the overall differential velo-

city between the rotating bodies (s'ee equation (2.5)). It 

is also a measure of the amount of stretch (or compression) 

of the sheet surface in the nip. Since, by nature, friction 

opposes the tendency of relative motion of the contacting 

bodies, it follows that: 

(5.14) 

in which the subscripts correspond to the value of the co-

efficient of friction for each case. 

- '\ 
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It is to be noted that for Case (B) (complete slip), 

the matching equations are independent of ~ (see equa­

tions (5.11) and (5.12)). j:.o can be determined from the 

knowledge of the actual shear displacement of the sheet 

surface and by using equation (2.5). Further details are 

given in the next section. 

Equation (5.14) gives a guide line for the value of 

~oo when the value of 'j:.o is known. Wi th this in mind, the 

proper value of 2Cœwas determined by trial in the follow-

ing manner. 

As o. first approximation, jC«J was assumed to be zero. 

The unknown quantities were then determined by using equa­

tion (5.10). Later, it was checked if the conditions of 

equations (2.1) to (2.3), (specifi~ally that of equation 

(2.1) were satisfied. If any of the conditions were 

violated, then it was evident that the previous value of 

jC~ was not a good approximation and, therefore, sorne cor­

rection was needed. The value of ~~ was then altered (in­

creased or decreased by trial) by sorne small amount within 

the range of equation (5.14) and the procedure was repeated 

until aIl the conditions of equations (2.1) to (2.3) were 

satisfied. 

Realizing that ~ is a function of (rnxf3) , a plot of . 

't:. versus (m~p,) was obtained. It was found that for every 
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selected value of CM x (3) , there VIas a certain J'ange of 

the value of j:.CXJ which could satisfy the above stated 

conditions. The upper and lower limits of the possible 

range of 2C~ are shown in Figure 15. The graph represents 

the case of e = o. 00 5" , only. Other values of B are 

considered in the discussion on the numerical results 

(section 5.7). It was further noted that within the range, 

as the magnitude of 1C~ was decreased, the ratio 'Q' 
p at 

the edges increased. Hence, in view of relation (2.4), 

the curve corresponding to the least magnitudes of '/-00 ' 
within the permissible range, was accepted as the proper 

curve of JCoo versus (m X (!I) . 

5.6 Creep Ratio for the Case (B) 

To determine the creep ratio for Case (B), it is only 

necessary to determine the shear displacements of the end 

points due to the total nip force. Furthermore, because of 

symmetry, it is sufficient to consider only one end-point. 

The shear displacement of the end point can be written 

as: 

2m ,., 

"'~' 

~ \J:( . !=J' j=1 'l.JY)+l)j 
(5 ,15 ) 



· "'.' 

- 70 -

The shear displacement distribution on the surface of 

the sheet within the nip is schematically illustrated 

in Figure lS. It can be seen from Figure lS that the 

value of the creep ratio ~o is given by: 

2.1'Yl 
- R 2 V:V'I P. 

L J=1 (2rrH-i}j J 
(5.1S) 

5.7 Numerical Results 

In order to illustrate the foregoing analysis of the 

rolling of an elastic sheet, numerical solutions for the 

pressure distribution, the shear distribution, the length 

of contact, the depth of indentation, the normal displace-

ment at the end of the nip, the creep ratio as well as 

their corresponding interrelations were obtained for both 

Cases (A) and (B) with the aid of an IB11 3S0/75 computer 

of 11cGill University. ,For this purpose, the following geo­

metrical and mechanical properties were considered. 

Young's modulus 

Poisson's ratio 

Radius of the 
cylinder 

Total normal load 

E=1.45xl0 5 p.s.i. 

\)=1/3 

R=S inches 

W=25, 50, 75, 100, 125, 150, 
175 and 200 P.L.I. 

-\. 



Thickness of the 
sheet 
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B=l.O, 0.25, 0.0625, and 
0.005 inch 

The relevant results for the two cases and for the 

above variations in normal load and the thickness of the 

sheet are tabulated in Tables III to X. 

From the wide choice of the results, the peak pressure 

PmQ~ , the ratio of the contact length to the thickness of 

the sheet L/a , the ratio of the depth of indentation to 

the thickness of the sheet do /e and the creep ratio j:. , 

were picked up as the typical results and have been plotted 

against normal load in Figures 17 to 20 for Case (A), and 

in Figures 21 to 24 for Case '(B). 

To illustrate the influence of friction on the contact 

surfaces, plots of the contact length L and the depth of 

indentation qo for B=0.005 in. have been obtained against 

normal load for the limiting Cases (A) and (B) as shown in 

Figure 25. For the same purpose, the distribution of nip 

pressure for the limiting cases and for B=0.005 in. and W= 

-100 P.L.I., is shown in Figure 26. The variation in the 

distribution of nip shear with normal load, for the case of 

no-slip and f?r B=0.005 in., is shown in Figure 27. Surface 

displacements (normal and shear) within and outside the nip 

" 

:\ 
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for the two limiting cases are shown in Figure 28 (re­

presenting a thick sheet) and Figure 29 (representing 

a th in sheet). It is considered that the actual results 

will be within the bounds of these limiting pases. 
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CHAPTER VI 

6. SURFACE DISPLACEMENTS FOR A VISCOELASTIC SHEET 

DUE TO MOVING LOADS 

In order to obtain a solution of the viscoelastic 

problem, it is necessary to assess the surface displace­

ments of the viscoelastic sheet caused by moving loads. 

The results of the elastic case show that the con­

tribution of the shear forces is rather small. This is 

evident from Figures 25 and 26 which show that the change 

in the pressure distribution and the contact length with 

friction is within about 10% and that in the depth of 

indentation is within 20%. In view of this, and in order 

to simplify the presentation, only normal forces are 

considered in the formulation of the viscoelastic problem. 

It should be noted that a line load moving on a visco­

elastic sheet and a line load moving on an elastic sheet 

.. ~. 

will have identical boundary conditions. Moreover, with 

respect to a coordinate system moving with the load, the 

regions of the boundary over which the stresses and the 

displacements are prescribed remains the same in both problems. 

Hence, the solution for the viscoelastic case may be obtained 

from that of the elastic case by using the principle of cor­

respondence (see, for example, Bland[16]). 
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6.1 Elastic Solution for Pixed Coordinates 

The influence functions for the elastic case, with 

respect to a coordinate system that moves with the load, 

were obtained in Chapter IV. In order to apply the cor-

respondence principle, it is necessary to express these 

functions with respect to a coordinate system fixed in 

space (see Lee[18]). This will be done in the following 

paragraphs. 

. 
Let 'X.-~ be the coordina te system moving wi th the 

load and X- y be the coordinate system fixed in space 

(see Figure 30). Let the starting position of the loads 

be (:t b, '(o) and let i t be required to determine the dis­

placements of the surface of the sheet at sorne arbitrary 

point ~. The two coordinate systems are related as 

follows: 

X-=X 
y = y- Yo - Fat } 
Q.. = - ( '(0 1- I="ot) 

where t. represents the distance of the pinned point 

(6.1) 

(Figure 30) to the origin of the moving coordinate system, 

and Fo is the velocity of the loads. Hence, the parameters 

~ and ~ used in Chapter IV (Section 4.1) become now: 
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• ",.f 

Suppose that the loads arrive at a point right over 

the pinned point in a certain time to and that they reach 

the point M in sorne other time T Then, 

T= y- '(e. 

Fa 

to= Yo ---
1=0 

Wi th this defini tion, the parameters cJ.. and .~ become: 

c(.. = F="o (T-t) 
b 

"2 = Fo(to-t) 
b 

Introducing now a Heavyside unit step function such that 

H (.) = l if the argu~ent is positive, 

= 0 is the argument is negative, 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

it can be seen that the forms contained in relations (4.24 

and 4.25) of èhapter IV can be expressed as follows: 

, .[ 
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SltiN (0(.) - H(T-t) - H (t-ï) 

SI6N('!) - H(to-t)-H(t-to} 

'cll = [H(T-t) - H(t-T)] fi, <T-t) 
b 

l'l"' = [H(to-t.)-H(t-to») F~ (to-t') 

.. ,' 

- k'" IcC 1 (.I(). (k) 

SIG fl/Cot). e. (A", SIt'\ Will rel 1 .,. 8... c.osm"Ia(I) 

~ ~( (~ . C~ 
-= H (T-t) e. '" An.sm WJ"e( + 81'1 cos Wlnct..) 

1<., c:( ( CliCJ • (1<) 
+ H (t-I) e An,sm W'I.,o<. - en co~ Mlle() 

- f<" 1-21 {kJ. (/() 

SI~N("2).e (A ... 's,"1'V)"'l21 ..... S ... c.o.sm"lfll) 

-1(,,'2 ( (1() • (kJ 

=. H ("to-t) e A" .sU'l 1\1" '2 + e" co~ fY)" ~ ) 

( 1<,,'2 ( (1iC) • (1<) 

+ H t-to) e An Sin m,,'l- an cos f'YlAIl) 

", 

(6.6) 

(6.7) 

(6.8) 
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where the coefficients A (K) B <'''') 
" ' ,., have the same meaning 

as in relations (4.24, 4.25) except that they are expressed 

in a more general way. Defining two generalized functions 

9('9 and h<.l<) as: 
1'\ n 

9, (/()( - an (T-t) { (1<) . b < (le) ) 
,.. t,T):' H (T-t) e A", Slrl " T-t) + 6" c.osb" (T-t) J 

in which 

a" :: 1<" I=a 
b 

, b - rt1", F'o 
,..- b 

the normal and shear displacements due to the moving line 

(6.9) 

(6.10) 

load (described earlier in Chapter IV, equations 4.24, 4.25) 

can now be expressed by: 

u~ (t,T):' (9, .... S'l.) I [ g~')(t/T) - he.:! (t,TJ J 
n=1 

+ k (e. -92) [H (T-t) - H (t-T)] 

-* (e, - 92) [H (to-t) - H (t-to)] 

(6.11) 
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6.2 Material Function 

The quantities e, and 9'2, occurring in equation (6.11) 

are material-dependent functions (see equation (4.23» which, 

for a viscoelastic material, will be time-dependent. In order 

to perform the operations of the correspondence principle on 

equation (6.11), it is necessary to specify the nature of 

these functions. 

The constitutive equations of a linear viscoelastic ma­

terial can be written (see Bland[16] or Fung[17]), in general, 

as: 

P (0) Sij (1:) = Q C 1» eU Ct) 

p' (0) <Skw. (t) -::. Q' (D) E:I</( Ct) } (6.12) 

in which Sy Cr) and eU (t) are the deviatoric components of 

the stress and strain tensors respectively and the indices ~/J 

and K vary from 1 to 3. The quanti ties ô'w.1( Ct) and E:kK (t) 

are the dilatational components of the stress and strain ten-

sors respectively. P(O) , Q(O) , P'(D) 

polynomials of the operator 0 where 

and q'(O) 

d D=-
dt 

are sorne 

Taking the Laplace tranforms of both sides of equation 

(6.12) and assuming that the material was completely stress-

free before t = 0 , 
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pep) Su (p) = Q (1)) ëiJ' (p) 

ptc") 6-I<K(I» -= Q'C") É.",,(p) } 

· ".' 

in which p is the Laplace transform parameter and a bar 

sign over a quantity designates the Laplace transform of 

that quantity. 

The viscoelastic moduli can be obtained from equation 

(6.13) as follows: 

G(p) = 

K (~) 

Q(p) 
pel» 

Q'(~) 
p'(p) 

Using equations (4.23) and (6.14) yields: 

ë (p) = pep) } 
1 2 Q(P) 

ë <,,) = 3 P (1)). p/(p) 

2 6 pep) G.:(p) + 2 P/(p) Q(p) 

(6.13) 

(6.14) 

(6.15) 

The right-hand side of equation (6.15) represents the ratios 

of two polynomials. In each case, the order of the poly~ 

nomial of the numerator is either smaller by one or equal to 

the order of the polynomial of the corresponding denominator. 

Rence, using partial fractions, equation (6.15) may be written 

as: 
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1 

92 (1=») = o-~ + ~ :§-. 
r=1 p ..... A,. 

(6.16) 

, 
where 

1 

, ~o and <s'... are the coefficients of partial 

fractions and À... and .>:, are the root s of the polynomials 
1 

of the respective denominators. N and N represent the 

degree of the po1ynomials in the two cases. In general, the 

roots and the coefficients will be complex. 

Inversion of equation (6.16) yields: 

(6.17) 

It is seen that equation (6.17) represents two material 

functions in a general form which can be specified by adopt-

Oing a particular mechanical model for the material properties. 

The influence functions for a viscoelastic sheet will be for-

mulated in the next section by employing these general forms. 

Subsequently, for the purpose of illustration of the proposed 

method, numerical results will be given for an idea1 material 

which behaves as a standard Zinear soZid in both shear and 

dilatation. 
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6.3 Solution for the Viscoe1astic Sheet 

By app1ying the princip1e of correspondence and the 

convolution theorem on equation (6.11), the fo11owing ex-

pressions for the àisp1acements are obtained: 

~ ~ J.t [ ] [ (3) (~)] \tv(-r,T,to )= L- (9,(t-c.)-6:l(t-'t.) . 9" (c;r) + ijrt (t:,T) cie. 
1)=1 D 

+ ~ Iat [9, (t-c.) - a~ (t-t:.)].[ \; (T- c) - fi (C:-T) ] cl t. 

1 (t 
- ~ Jo [e.(i-c) - a~(t-c)][H(tot.) - H(c-to)]aL. 

(6.18) 

~ f.'t [ (5) (5) 
- L 0 9, (t-t:) 9., (c, to) + h~ (c, to) J cl C. 

"'=1 

Substituting the expressions of ê 1 and 9 2 from equation 

(6.17) and of 9 ('<.) d .... an h~) from equation (6.9) into 

equation (6.18) yie1ds: 
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11) 1 co - K" ft( 1 ( (1) • (.) 
lAv(t,T :; <.. <S'o+ ~o) 2.. e A" su, m..,l'" , + 8,.. c.os. Wl~It(I) 

1"\=1 

lty"Ct:,T,to)= ~ [ J's('T) - JG(T) 1- *' [::15 (to ) - J",(to)] 

1 c:o -K 1c(1( (3) • (l) ) 
~SIGtN(c() (~oi-è(o) Le" A., SII'\I't\"loel +B., c.oHI}I\Ic<.l 

n=1 

(6.19b) 
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in which .:ri. to :Tb are integrals of the following forms: 

ft -,,\ (t-t:.) -Cf., (T-t:) 
32. (A,T) :: J. H (7- t:.) e. "e Coas b",(T-~) de 

o 

rt -A (t-C) a" (T-"(.) 
J"~(",T) = Jo H(c.-T) e . e SI"'" b,,(T-t:) aCe. 

ft -A (t-t.) GI (T- C) 
.J4(A,T) -= Jo I-I(~-T)e . e " c.os b..,(T-C.)dc. 

(6.20) 

t 
JS(T) -::. Jo S. (t-t:.) [H(T-t:.)- H(C-T)] d-c 

t 
J, (T) = 1;, e~ (t-~) (H (T-l:) - H (~-T) ] ~ t:. 

It should be noted that the arguments of these have been 

denoted for simplicity by (A,T) ,whereas, in a more de-

tailed form, they should be denoted by (Àr,T) , <";\~/T) 

(Âi", ta) and (À; 1 ta) It will be seen subsequently that 

these forms are only intermediate ones and are not employed 

in the final representation. 

It is of further interest to note that the integrals 

in equation (6.20) involve the Heavyside's function in their 

integrands and are, therefore, discrete functions. Since 

T and ta are both fixed time values. that can be either 
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positive or negative (depending upon the starting position 

of the load and the location of the pinned point), the 

value of the integrals in (6.20) will be affected accordingly. 

There are four cases to be distinguished as shown in Figure 

31. Taking into account these four possibilities, the inte-

grals have been evaluated in Appendix II. 

Substituting the values of the different integrals from 

Appendix II into equation (6.19), four different expressions 

(for the four distinct cases) for the displacements are ob-

tained which are given below. It has been found to be con-

venient to introduce the following coefficient functions 

()<) AS le) ~ A -t- Q~) _ 8~K)';" g? (A,T) 
c(. ~ '2. 1'\ (A+ ",) + b h 

~(~) (À,T) ::. 
A~K) b

n 
+ 8~1C}(A+a;') ., 

(A+a~)l. + b':-

<p~~)(A) =-
(1<) <1<) 

A", (À+an) - B", b ... 

(A+an)2.+ b~ 

(6.21) 

~(IC)CA) ::. 
ASI()(A-a.,) + 6~J()bt1 

" ( A - a,,) l. of" b;-

(I<) (le) 

'l'~tt.) (A) = A., b ... of- 8 ... CA.,.. a.,) 
( li of-a,,):l. + b,.'l-

(/<') (KI 

'Ï'.,c.KJ (A) = Ar, b., - 6 ... CA-a.,) 
CA- Qh)~+ b;-
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in which again, the arguments A,T and the superscript (K) 

stand for the general case, and where 

, 
Q,.. :. SI<;N(T-t) a., 

b" ::::. SIGN (T-t) b" 

b" = 

1<.", 1='0 
b. 

The symbol SIGN Ca) has the same meaning as explained in 

(AI 0 ll) . 

CASE I: T>O, to>O 

, ('J N <lI N' , (II 1 l ,1 -1< .. 11(1 
+ ~ (ro-t-2ro) 6~ + E rI' ~" (At,T) . .,.l r'r 'i'h {Ar,T J J cos mn IcllJ e 

r=1 r=( 
, 

cc N At N 1 cu lt 
_~ [{~dtCP~(ArJe f + i:.tr t(A~)e- ( }sinb"T ,,=, r"::.1 r':1 

N cu -Ait N', li' -A;t ) ] -an' 
of- ~.I .Y't 'l'" (A,) e + ~ ~( 'P .... (A,)e J '0.$ &"T e 

r"=1 r=, 

(6.22) 

<'6.23) 
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(6.25) 
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CASE III: T>02 to<O 

ll~(t,T)= sarne as equation (6.23) 

(6.27) 
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CASE IV: T<O, to<O 

1A~(t,T)= same as equation (6.25) 

(6.28) 

6.4 Numerieal Results 

As an illustration of the method outlined in the pre-

ceding sections, numerical results were obtained for a 

specifie material which behaves as a standard linear solid 

in both shear and dilatation. The material functions 9 i (t) 

and e2 (t) for such a material will be of the following form 

(see Appendix III for detail): 
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e ( 4 4- - 2t/7" 
1 t) = q,{o Ô (t) 1- - e ~ 

q I<ot.. 

= ~I{ 0 (t) + ...1:- e-t/C. 
.;J 0 3 1{01:.· 

} (6.29) 

where Ko is the instantaneous bulk modulus and r: is the 

relaxation time of the material in both shear and dilata-

tion. 

In the derivation of relation (6.29), it is assumed 

that the ultimate displacement of the solid in shear or 

dilatation is twice the corresponding instantaneous dis­

placement and tha t /: -= ~ K where ~o is the instantaneous 
"'0 B 0 

shear modulus. 

It was found that the results were dependent upon the 

parameter Fo~' As such, numerical results were obtained 

for 

B =0.005 in. 

Ko =1.45 x l0 5 p.s.i. 

FOL = 10 2 to 10- 5 in. 

and for the four distinct cases as explained earlier. These 

results for the normal displacements are shown in Figures 33 

and 34, and .those for the shear displacements are shown in 

Figures 35 to 38. 

-"-1 
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CHAPTER VII 

7. SOLUTION OF THE VISCOELASTIC PROBLEM 

After the influence functions for a viscoelastic sheet 

have been determined, it is now possible to formulate the 

viscoelastic rolling problem. 

Although the theory presented in Chapter II is applic­

able to the rolling process in the presence of friction, it 

is not possible to satisfy the shear displacement condition 

(as given by equation (2.6)) in a continuous manner due to 

the line-load representation of the nip forces. (In such a 

case, the displacements and their derivatives diverge at 

the point of application of the load.) This difficulty has 

already been mentioned in Chapter ~ while dealing with the 

rolling of the elastic sheet. A semi-inverse method was 

then proposed which proved to be successful in solving for 

the creep ratio and the elastic problem at large. 

In the rolling of a viscoelastic sheet, sorne additional 

unknowns appear due to the asymmetry of the problem. The 

determination of the creep ratio for this case, using the 

semi-inverse l)1ethod, becomes much more complicated. 

In view of these difficulties, the viscoelastic problem 

.\ 
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will be solved for Case B only (i.e., for complete slip). 

If the loads were represented by some finite func­

tions (like triangular loads or rectangular loads or para­

bolic loads, etc.) this difficulty would not have arisen. 

The motivation for picking up dirac delta functions was 

that the resulting integrals were obtained in their simplest 

form and could, therefore, be evaluated analytically. The 

latter was an essential requirement to apply the mathematical 

operations of the correspondence principle for obtaining the 

viscoelastic influence functions. 

7.1 The Choice of the Pinned Point (o,~) 

In the case of complete slip, there are no shear forces 

and the number of unknowns is therefore reduced considerably. 

Hence, it is not required to satisfy the shear displacement 

conditions. Further, since the normal displacements are not 

dependent upon the location of the pinned point, the position 

of the latter is not important. However, to determine the 

shear displacement, it is necessary to choose a pinned point. 

Thus, for convenience, the point lying on the central line 

of the sheet and on the line joining the centres of the two 

cylinders will be taken as the pinned point. 
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7.2 Matching Equation for the Case (B) 

Since the influence functions, in this case, are de-

pendent on time, it is necessary to specify the duration 

for which any particular load has been acting. This can 

be done in the following manner. 

Thus, consider some arbitrary point M (Figure 39) 

situated at (-b,YM) which is not yet deformed but is just 

on the verge of getting deformed. Also, consider a unit 

load situated at the fictitious point (-b/~j), at the time 

t:. 0 , which starts moving wi th a veloci ty Fa towards M 

For convenience, it may be assumed that the load stays 

stationary while the sheet moves towards the load with the 

velocity of the load. 

By using equation (6.23) the normal displacement of ~ 

a t a certain time t::. t~ can be wri tten as: 

.. ~' 

(7.1 ) 

where 

n 
and LljM 

(7.2) 

represents the normal displacement at point ~ due 

to a unit normal load which, at the present instant, is situ-

ated at the jth point. Therefore, the normal displacement 

of N\ at a certain time t =t~ due to the combined effect of 
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all loads will be 

YYI i:" "'1. ml'" W) 2-

~ ~. U~M = 2. ~. U~ (t~, 1j) 
J~i ~ j:1 

But since point M is moving, it will travel a distance 

equal to Fot, in the time t, and will be located at 

the point (-b, y,) where i ts normal displacement must be 

equal to u.~ as shown in Figure 39. Therefore, 

VY\lTWl 2-

U, :. ~ ~. u.~ (ti)Tj) 
J=1 

Further, from the geometry, the normal displacement at 

(- b, '(..:) can be wri tten as: 

From equations (7.4) and (7.5), it followsthat 

m1+YV\2. 

2 I} u~ (t L" lj') -= d o -

~.i= 1. 

2. (rIlt+ 1-(lp'l.b 

Cr 

Rearranging the above equation gives 

(7 .3) 

(7.4) 

(7.5) 

C7 .6) 
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Defining a coefficient matrix [A] , unknown vector (X] 

and the known vector ta1 as: 

[A] = 1 

{Xl = {qo : 
b 1 

~. 

b 

l 

equation (7.7) can be written as follows: 

[A] [X1 = LB] 

... 

(7.7) 

(7.8) 

By matrix inversion, the unknown vector [~1 can be obtained 

as: 

-1 
[X]=[A] .LB] (7.9) 

The value of ~ should be corrected in a manner similar 

to that of the elastic case. 

-, 
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However, YM still remains to be fixed. For convenience, 

let 

(7.10) 

where CL is sorne constant. It is to be noted that no 

error will be introduced if the arbitrary point ~ is 

chosen to be located sufficiently away from the nip. Thus, 

an overestimation in the value of the constant CL is per­

missible. The value. of CI- was, therefore, chosen in such 

a way that the point ~ was located at a distance equal to 

approximately five times the contact length for the particu-

lar case. It was found that a higher value of CL did not 

yield any significant change in the results. 

From the geometry of Figure 39, and by using equation 

(7.2), it follows that 

'< .. = 2(YY\i+l-i..)~b 
'<,t = (20"11+ 1.-2j) f.>b 

t~ -= [2 ( L -1) ~ + CL ] ~ 
Fo 

lj' -= [('lj-i) ~ + CL ] É... 
Fe 

(7.11) 

Thus, for sorne selected values of CL ' the coefficient matrix 

may be determined corresponding to ~' and tL as given by 

equation (7.11). The unknowns may then be determined by using 

equation (7.9). 
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7.3 Coefficient of Rolling Resistance 

In the case of elastic rolling, the pressure distri­

bution is symmetric with respect to the line joining the 

centres of the cylinders. Hence, there is no net torque 

on the cylinder and, therefore, there is no resistance to 

rolling. 

In the case of viscoelastic rolling, however, the 

symmetry in the pressure distribution is lost due to the 

dissipative nature of the sheet material. The forces 

acting on the trailing side will be smaller in magnitude 

to those on the leading side. Figure 40 illustrates the 

force equilibrium diagram of the upper half of the visco­

elastic sheet. 

Because of the asymmetric distribution of the pressure, 

there is now a net moment acting on the cylinder which is 

balanced by exerting sorne torque in the direction of the 

rotation of the cylinder. For the rolling to continue, the 

cylinder must exert this torque. This is equivalent to 

applying a force in the direction of rolling of the cylinder 

and, therefore, this force is known as the resistance to 

rolling and, more commonly, as the friction of rolling. The 

coefficient of rolling resistance'}{R ' is given by the 

ratio of the rolling resistance to the total normal load, and 

.... 
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it turns out to be 

where 

Let 

Then, 

S = Eccentricity of the resultant load, 

R = Radius of the cylinder. 

M t = Total moment (at the centre of the cylinder) 

of the forces acting on the leading side; and 

~2= Total moment (at the centre of the cylinder) 

of the forces on the trailing side. 

rt'l!.+'~h rt'lti-"'a 

M~:: ,2. 13' '(.t 
J=ty)i+1 

~ '3' (2\'V)1.+ i - 2j)f3 b 
J=yy)ti-t 

., 

(7.12) 

(7 .13 ) 

The eccentricity of the resultant load will, therefore, be 

given by 

(7.14) 

and thence, the coefficient of rolling resistance will be 

(7.15) 
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7.4 Creep Ratio for Complete Slip 

The creep ratio for the viscoelastic case may be 

determined in a manner similar,to that of the elastic 

case. However, because of asymmetry, it is necessary 

to consider the shear displacements due to the normal 

force at both the end points. 

The shear displacements at the end points can be 

written as: 

From which the creep ratio can be obtained as 

or, 

1-0 = "(~t.+"'~+1.) - 'Ji 
L 

(7.16) 

(7.17) 
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7.5 Numerical Results 

Numerical results for the same variables as those 

in the elastic case, were obtained for the case of com-

plete slip in the rolling of a viscoelastic sheet with 

the aid of an IBM 360/75 computer of McGill University. 

As stated earlier, it was found that the results were 

dependent upon the parameter Fo"C. Therefore, for this 

case, the following geometrical and mechanical properties 

were considered. 

Instantaneous bulk 
modulus 

Instantaneous shear 
modulus 

The product of relaxa-

G o=3/8 Ko 

tion time to speed FOT= 10 3 to 10- 5 in. 

rolling 

Radius of the 
cylinder 

Total normal load 

Thickness of the 
sheet 

R=6 inches 

W=50, 100, 150, and 
200 P.L.I. 

B=l.O, 0.25, 0.0625, 
and 0.005 in. 

The relevant results for the above variations in 

normal load, sheet thickness, and the ratio of relaxation 

time to speed of rolling, are tabulated in Tables XI to 

XXVI. 

".' 
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As a comparison to the elastic case, plots of peak 

pressure ~~a~ , the ratio of the qontact length to the 

thickness of the sheet Lie , the ratio of the depth of 

indentation to the thickness of.the sheet dola, and the 

creep ratio against normal load and for the above variations 

in the parameter ~c~ ,were obtained as shown in Fig­

ures 41 to 44. To illustrate the influence of the ratio 

of the relaxation time to the speed of rolling, the same 

plots were obtained against this ratio and are shown in 

Figures 45 to 48. 

The variations in pressure distribution and in normal 

and shear displacements of the surface of the sheet with the 

parameter Fo~ for B=0.005 in. and W=lOO P.L.I. are shown 

in Figures 49, 52 and 53 respectively. 

The results show that for very low, or very high values 

of this ratio, the material shows elastic behaviour. This 

is in full agreement with the particular model chosen for 

the purpose of numerical illustration. 

The variations in the coefficient of rolling resistance 

with the parameter Fo~ for different loads and for different 

thicknesses of the sheet are shown in Figures 50 and 51 re­

spectively. 
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CHAPTER VIII 

8. DISCUSSION AND CONCLUSION 

In order to give an assessment of the proposed theory, 

a discussion of the results and the conclusion that may be 

drawn from ~hem, will be presented in the following para­

graphs. 

8.1 Elastic Case 

For the analysis of the results, it is necessary to 

categorize them into two distinct cases, viz.: (i) the 

case of thick sheet and, (ii) the,case of thin sheet. These 

cases are identified by the ratio of the contact length to 

the thickness of the. sheet. If this ratio is small compared 

to unit y, it is a case of thick sheet. On the other hand, 

if this ratio is large compared to unit y, it is a case of 

thin sheet. 

Within the nip, a thick sheet has a tendency to move in 

(or contract, (Fig.28)) whereas, a thin sheet tries to move 

out (or elongate, (Fig.29)). These tendencies are opposed 

by the presence of friction on the contact surfaces which 

generate the shear forces. Consequently, the magnitudes of 
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the shear forces become larger and larger as the sheet 

becomes very thick or very thin. For an intermediate case, 

the shear forces are very small in magnitude. In both 

cases, the distribution of the shear forces is antisymmetric 

with zero value at the centre of the nip and at the ends. 

It has been found that the maximum value of the shear forces 

occurs at a distance of approximately ~ from the ends of the 

nip (Figure 27). For a thin sheet, the shear forces act 

in~apds, whereas for a thick sheet, they act out~apds. 

., 

The creep ratio is negative,for a thick sheet and posi­

tive for a thin sheet and increases in magnitude as the normal 

load is increased. For an intermediate case, this ratio may 

change sign as the normal load is changed. Further, as the 

sheet becomes thinner and thinner, the rate of increase of 

this ratio with normal load decreases (Figure 20).' This is 

due to the fact that although the shear displacements of the 

end points increase with load, ,there is a greater increase in 

the contact length. This situation is not present in the case 

of complete slip where the sheet is completely free to move. 

The results have been found to be quite sensitive to the 

thickness of the sheet (Figures 17-19 and 21-23). 

As the friction on the contact surfaces reduces, the con­

tact length increases and the peak pressure decreases. This 

results in a fZattening of the pressure-distribution curve. 
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802 Viscoelastic Case 

It has been found that, in the case of a viscoelastic 

sheet, aIl formulated functions are dependent upon the para-

meter Fo"C.. where t:.. is the relaxation time of the sheet 

material, and Fo is the overall speed of the sheet. For 

very small and very large values of this parameter, the sheèt 

shows elastic behaviour. The results for the latter case 

(F;,L,:lo
3

in. ) are shown by solid line (--) and those for the 
-6 

former (Fo t:.:: 10 in.) are shown by a solid line and two broken 

lines (-- -). It is to be noticed that there is a 

difference in magnitude of the results for the two extreme 

"" .. 

cases (Figures 45-49). This is due to the particular material 

chosen for the purpose of numerical illustration (see Figure 

32 for the model). For a value of FoL between 10° to 10-1+ in., 

the material shows a marked viscoelastic effect. 

The pressure distribution is symmetric for the extreme 

values of the parameter Fo L.. but leans forward for i ts inter-

mediate values. This leaning effect first increases, reaches 

a certain maximum value, and then decreases with the increase 

in the value of Fe '- (Figure 49). Consequently, the coeffi-

cient of rolling resistance first increases, attains a certain 

. . ( -1 -2. ) maXlmum value for Fe 1:. ~ 10 -10 li). and then decreases monotoni-

cally (Figures 50 and 51). The point where the cylinder loses 

contact with the sheet has almost the same behaviour as that 
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of the pressure distribution or the coefficient of rolling 

resistance (Figure 52). These observations are in full 

agreement with previously published reports (see, for example, 

Hunter[7]). 

The comments made above regarding the behaviour of 

thin and thick sheets hold good for viscoelastic sheet as 

weIl. 

8.3 Conclusion 

In conclusion, it may be stated that by the method of 

infZuence functions, and by using the proposed semi-inverse 

methods, the rolling of an elastic sheet has been treated 

successfully for the extreme cases of no slip and complete 

slip. This method permits the treatment of the rolling of a 

viscoelastic sheet which, until now, has not been solved. 

It is the author's belief that his contribution to 

knowledge lies in the following: 

(i) Influence functions for the surface displacements of 

an elastic sheet, due to normal and shear line loads, 

have been determined in a closed form using contour in­

tegratioh; 

(ii) For the first time, influence functions for surface 

displacements of any general viscoelastic sheet,due 

1\ 
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to moving loads, have been obtained in a closed 

form. This is a very valuable tool in the formu­

lation of the viscoelastic rolling problems. 

(iii) The physical behaviour of elastic, as weIl as 

(iv) 

viscoelastic sheet in rolling contact with rigid 

cylinders, has been discussed in great detail and 

the related boundary conditions of the sheet have 

been described for the extreme cases of complete 

slip and no slip. The theory proposed by Bentall[14] 

has been considerably improved and the modified 

theory is time-saving, more accurate, and applicable 

to viscoelastic rolling as weIl. 

Direct solutions (in contrast to the previous theories 

which treat the problem for certain assumed ratios 

of the contact length to the thickness of the sheet) 

have been obtained for the cases of both elastic and 

viscoelastic rolling. Thus, given the mechanical 

properties of the sheet material and the dynamics of 

loading, this theory can predict the entire state of 

the nip. 
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APPENDIX l 

AI EVALUATION OF THE INTEGRALS I 1 -I 7 FOR THE ELASTIC 

CASE 

AI.l The Integral I1(a) 

Putting b, = x. ,Ii. (0<) becomes: 

_ r 00 2 s;~J(x COS~l:. clx 
Jo x. (sl"h 2'X.-r2X.) . 

Because of symmetry with respect to ~ , 

AIso, because of antisymmetry wi th respect to X , 

fa) 
-ClQ 

Bence, 

JCXO 
-00 

I1.(o<.) 

or, 
co J Hi.(oI.,X) clx.. =2I1 (ol..) 

-00 
(AI.I) 
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where, 

:l. id.. X. 

(
0{ ) 2sit'\h x. e. 

Hi. ,x.::' x.(sil'\J,~x.-t-2X.) 

Consider the contour integration 1lc. Hi (o<,z) cf:z:. a10ng the 

contour C as shown in Figure 54. It can be seen that for 

0<. ~O , 

~irYI. Hi(O{,Z) = 0 
Z~oo 

and hence tha t for o(» 0 , the integrand will vanish along 

the semicircu1ar path so that: 

CO 

~Hi(o{,z)d:z. ::: f H~(ol,~)d::c.. =2Ii(ot) 
c -c:o 

However, from the ca1culus of residues, 

-, 

(AI.2) 

~Hi.Co{/;;;:)dZ = ~nL X sum of the residues of H1 (ol,z) 
C 

in c 

-t- rte: l\ sum of the residues of H1.(or.,z) on C. 

Therefore, 

I 1 (ot.) = ni ')( sum of the residues of H1.(C<,z) in :} +~L x sum of the residues of H1.(ol,z) on 

It is required now to determine the residues of Hi (o{,Z) 

wi thin and on the contour C . 

(AI. 3 ) 

., 
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J-ti (c{,z.) does not have any pole on contour c.. Wi th-

in the contour, it has single poles at the points where 

sin h.2 2: t- 2:Z ': 0 . Let:z. ': Z.... be one of such point s in the 

first quadrant and let R. n be the residue of Hi. (cl,Z) 

at that point. Then, from the definition of residues, 

Substituting for Hi(~,Z) from·equation (AI.2), taking the 

limit and simplifying gives: 

'l. id..::l'~ 
tanh Z" e :.------

221'\ 

Substi tuting 2,,::. t"fI., +t 1<.1"\ and simplifying yields: 

where, 

2 tQl'\hMn tCfrt 1<", (l-tal'lh'l.m.,ta"'l.I<,,, -ta"'~rn., + tCf"l.l<l'\) 

( 1 + tanh'l.m" ' 'tar?'I< ... ) 2 

".' 

CAl.4) 

(Al.S) 
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If (mn -t-l 1(,..) is a root of sinh2.Z + 22= 0 ,(-Wlr,-t-( kt'\) is also 

a root of this equation (see Appendix IV) . Let the resi-

due of H i(o{,Z) at the point (- 1'Vl" + i 1<,,) be R' .... Then, 

by replacing ffl" by -m~ in equation (AI.4) and noting 

that 9", and h", are even and odd functions of mn respec­

tively, one obtains: 

Adding equations CAI.4) and CAI.6), 

From equations (AI.3) and CAI.7), 

or, 

00 _ K",~ Q) • Il} 
11.(cl.) = n ~ e (A", sm rYl,,~ + Bn ,"os rYtf\o.) 

Y'\:l 

(AI. 6 ) 



where, 

A.CJ~ ::. _ (9n mn + h" 1(,,) 
M~+ K,,'l. 

UJ 
6", -

· "'.' 

- 111 -

in which ~",:'~n+' K" are the roots of si,,~ 2.2.+2.z -=0 in the 

first quadrant only and where 0\. >0 

can be seen that 1:1.(-0(.) = I,(cl) 

~ the integral 

AI.2 The Integral I 2 (œ) 

By inspection, it 

Thus, for any value of 

From the properties of sine integrals, 

if c( ~O 

o if 

= -.!l if 
2. 

0(. =0 

(AI.8 ) 

(AI.9) 

Then, for any value of 0{ , this integral can be wri tten as: 

I2.(~) :. SIC;N(of) . .Il (AI.ID) 
2. 

-\ 
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where, 

S'GN(o<.)= i if 0{ '70 } 

if 0{ < 0 
(AI. Il) 

=-1 

AI.3 The Forms of the Remaining IntegraIs: 

Following the same procedure as used during the evalu-

ation of Il(~) ,the remaining integrals of the elastic 

case can be expressed as follows: 

( 
~ -1(., loet CG) C&' n ) 

lb c(,Q) = n. L e CA ... .sin m" Ic;i(J + 8., cos IY\ ... I"<I) - 4 (IC(I-l~' 
0=' 

(AI. 12 ) 
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in which the various coefficients are given by the following 

relations: 

A~") -_ 1 -, "2 sin h (21Ylt\) . sil') (2 K,,) / 6,2-

6~~) __ ( L'l. l. . ~ . ~ ) / 2-
-, C.OS'l M" C.OS K" - SI" h 1\11" SI n 1<... t:::;. 

8 (4) - ( 1 l '1. 2-
'" - m", 9" - K", Il,,, ) / ( m" + K ... ) 

A (5) . L • 1< " = S .... "1 m., . sin .., / A 

B~5) = h ., cos m.,. cos k.., / A 

A(G) _ / (2 ~ 
l'\ - - YYI.., t"V\ .. + K .... ) 

(AI.13) 

8~6) = '1. ~ ., 1< .... / (Nl.., + K" ) 

1 

- 9" 



and 
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9' = sinn m .... c.os K., (c.osh~., + si,,'J.I< ... ) / &­
" 

9" - h k " - co.s Wl,.," c.as .., 1 A 

I-'~ ': 'L. si t1h l'VI,., " .s i 1'\ 1<., 1 f),. 

and Z.,-=rvJ",+iK ... are the roots of .si"h22.+-2-Z=O in the first 

quadrant on1y. 

(AI.14) 
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APPENDIX II 

AlI. EVALUATION OF THE INTEGRALS Jl-J6 FOR THE 

VISCOELASTIC CASE 

AlI. 1 Integrals J] (À,T) to J 4 (À,T) for the Case T>O: 

For the evaluation of integrals :Ji (A,T) to J"4 (A,T) 

first consider the following integrals: 

t 
Il f 2 t("t:,. J::. e c.OS [3 (4)- c:..) q 'C. 

i, 

Integrating by parts gives: 

J , 1 [eKt
2. (ri> t) Kt. ( J k: :r'l = f3 <-oS (3 -r - 2. - e c.os J3 q> -t.) - ji' 

. ,.' .,.11. Solvlng for ~ and ~ ylelds: 

.. ~' 

(AII.l) 
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-r' = k [r<t2,. Kt, . 1 
V K'2.+(3~ e S'''~(<P-t~) -e smp(tP-t,) 

(AII.2) 

"Til K [f(.t~ Kt, ] 
.J = k,)..+/l).. e c.OS~<'<P-t2) -e C.O.s ~ (/f'-t,) 

Since the integrands of Ji (A,T) and .T2. (A,T) invo1ve Heavy-

side's function, it is convenient to break the integra1s into 

two parts as fo11ows: 

T r (À -+- a" ) 'C. • ] 
+ H (t-T) Jo e Sir') bn (T-t:.) cl t: 

(AII.3) 

-,\t-q"T [ l t (A+a.,)t. 
J""2 (A,T) =- e H(T-t) 0 e c.os b"CT-t:.)d'C. 

T /. )i (A+Q.,)'Ç ] 
or H ,t-T 0 e c.os bW\ (T- 'C.) ch::. 

Letting k=)+Q." t,-=Q ,t2,-::::t '{l:b,..' and 4>-=T into equation 

(AII.2) and, after simp1ifying, 
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~).+a,,)t { (J\+ct,,) S;t'1 br') CT-t.);- b", CoaS br) (T-t) f 
<. À+Q., )2+ b'; 

<-" + Qn) sin br) T .,.. b", c.os b", T 
(A+a,,)2. + b~ 

t 

l (.A+a,,)~ 
e C.OSb",(T-C.)dt. 

o 

(A+a,,)cos b"T - b.., si.,b"IT 

(A+a"l.,.. b: 

Further, 1etting t.-::.T in equation (AII.4) gives: 

foT e(A-t-a,,)~ sin b" (T- c) a"C. 

(A+a,,)T . 
_ b",e. -(A+a",)sI.,b"T -b",c.osb.,T 

( A .,.. an) 2 + b.,2. 

r T (.,.! +a,,) Co 
Jo e c.os b,,(T-'C.) dt. 

(À+Q,,)T 
("+a,,) e - (À+- a,,) cos b" T of- b" s .. ~ b", T 

(À+Qn)).+ br?-

(AII.4) 

(AII.S) 
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Using equations (AII.3), (AII.4), and (AII.S) and simplify-

ing, yields: 

Ji (A, T) = H (T-t) { (ÀTQ~) si..., b ... (T-t) +0.., ,"os bl'l(T-t) ) e-a ", (T-t) 
l ( J\ +a",)'l.+ b ... 2. J 

-At _QI'\T 
·e 

Ji (A,T) = H (T-t) {(A+a,,) cos b ... (T-t) -0", sir) b ... (T-t) ~.e-a"(T-t) 
(A +al'\)l.-t- b~ J 

+ H(t-T) (A+Q",) e -A (t-T) 

(A+a,,)l.+ b.,2-

_ 1 (Aof-a...)c.os.b"T-b..., sil')bl'lT ) .e.-At -anT 
l (A+Q .. )a + b~ J 

In a similar manner: 

"'~' 

(AIl. 6) 

(AII.7) 

Again,letting k-=À-q", t,=T, t~-=-1: , (3-=b.." andcp-=T, in equa­

tion (AII.2) gives, upon simplifying: 
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t 

l (A-a ... ) c , e s'., b .... (T- t:.) cl!: T . 

-= e(A-aPl)t{ (A-a,,)sir> b.., (T-t) + 1>", '"0$ b .... (T-t) 1 
(;'\_a,,)l + btt'J. . 

t 

i (A-a ... )t: e cos b .... (T- t.) cf C 
T 

=. e(A-o.n)t{(;,\_an) C.OSb ... (T-t)-b ... s,'nb..,(T-'t) 2 
(A _Q,,)l. + b: J 

(A -a .. ) e.(A-q .... )T 

CA-a,,)l.+ b~ 

Using equations (AIl. 7) and (AIl. 8), the integra1s J 3 and 

J+ are obtained as fo11ows: 

-A (t-T) 
b .... e ] 

(AII.8) 

(AII.9) 

J'4(A,T) :: H(t-T) [ é a .... Ct-T ){(A-a")c.05b,, (T-t)- b .... sit1 br, CT-t"J) 
. (A_Q ... )1. + b~ 

(A-a .. ) e -A (t-T) ] 
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AII.2 Integrals J 1 (À,T) to J4 (À,T) for the Case T<O 

When T<.O, the Heavyside function 

H (T-t:.) = 0 t 
H (L-T) = 1. f 

for all values of ~ within the limits of integration. 

Hence, 

Ji (A,T) = 0 

.T2 (A,T) = 0 

-.At + a"T ft (A-a) ~ 
:r~(A,T) = e e" .sil")b"CT-C.)dC 

o 

-At ..... ct .... T r t (A-a,.,)c. 
.J4-(À,T) = e Jo e c..os b.,(T-"C..) ch: 

Letting I(-::Â-o., , t,=o , t2,.=t , ~":.b ..... , and cf>=T , in equa­

tion CAII.2) yields: 

t r (A-On)-c , t e SIl') b~(T- t:.) ch:::. 
o 

= e(A-On)t t (A-an) sir') bn(T-t) + bl'\c.os b,.,(T-t.)1 

(A-Qn)'l.+ b;-

(A- an) sin b., T -t- b ... c.os b", T 
(A _a ... )2. + bn'l. 

t l e<t\-an)t:. c..os bn (T- c.) cl c 
o 

_ ~A-a")t -t (A-a")c.osbn(T-t)_ b.,sinb.,CT-t.)} 

(t\ - a .. )'1..... b .. 'l. 

(A-a.,) cos bPI T - b ... sir') b.,T 
(..-\-On)'J.+ b,;-

CAII.10) 

CAII.ll) 

(AII.12) 
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Hence, from equations (AII.11) and (AII.12), 

(AII.13) 

(A-ah) cos b" T - b., si" b" T - At + Q.., T 
(A_'1")2. ... b"'l. e 

AII.3 IntegraIs Js(T) and J6(T) for the Case T>O 

Substituting for 91.(1:.) from equation (6.17) yie1ds: 

(AII.14) 

But, 
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t i H(T-t:.) è Ar' Ct-"1:..) of t. 

and, 

r t - Ar (t-'C.) = H (T-t) Jo e ch:.. 
(T -A, (t-z.) 

+ H (t.-T) Jo e cie. 

H(T-t) fl_ë"tt} + H(t-T) {e-Ar(t-T)_e-Art t 
AI' 

-Ar (t-T) -.Art H (i'-t) + H Ct-T) e - e 
A .. 

(t ft (t c) ft -Ar(t-t:) Jo H(-C-T) e- r - d"C. = H(t-T) T e de.. 

- Ar (t-T) t _ H(t-T) {I- e. J 
Àr 

Therefore, from equations (AII.IS) and (AII.16), it is 
that: 

Using equations CAII.14) and CAII.17) yields: 

., 

CAII.IS) 

(AII.16) 

seen 

(AII.17) 
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N 
"" «, [ -Att -At (t-T) ] 

+ L ...!. H(T-t) - H(t-T) - e + 2 H(t-T)e 
~r~ . 

In a similar way, 

N' , , 1 

'" ~r [ ( -A,t -A, (t-"T)] 
+ L-, H T-t.) - H(t-T) -e -t 2H(t-T)e 

y=, .Ar 

Now, recalling from relation (6.6) that: 

[H(T-t)-H(t-T)] = SIGN(QC.) 

N' 1 ' 

, " ~ [ -A,t 
J6(T)=~oS'GN(d.) + L -+ SIGN(cJ.)-e +2H(t-T). 

Y=I Àr 

-A~(t-T) J .e 

It is to be noted that when T is to be replaced by ta , 

the parameter d.. must be replaced by t2. 

\ 

(AII.18) 

(AII.19) 

(AII.20) 
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AII.4 IntegraIs Js(T) and J 6 (T) for the Case T<O 

Using relation (AII.lD), integrals ~5 and J6 become: 

t 
.JS (T) = - Io e, (t- t:.) dt: 

N «. -lIrt 
: - ~o - f: 1 A~ (f - e ) 

It should be noticed that in this case, the integrals J S 

and .Tb become independent of their argument. 

" 

• 1 

(AII.21) 
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APPENDIX III 

AllI. 0 1 (t) AND 0 z {t) FOR A STANDARD LINEAR SOL ID 

The differential equation for the stress and strain 

of a standard linear solid is given by (see Figure 32(a)): 

[!!.. + 1<. 1 + l<.'l..] 6" 1 t) dt 1}." \,. = [ cf KI -
dt 

K, I<."l.] €. (t) 
~" 

(AIII.I) 

The time-dependent moduli (in shear and dilatation) of such 

a material can be written as: 

G(r:»: ~t(1p+ (i2) 

'1P+~1+~1 

K (f:»)::. K 1. (Q" P + K 'l.) 

rJ.' P + 1(, + Ka 

where p is the Laplace transform parameter. 

(AIII.2) 

The material functions e1 and 92, (as given by equation 

(4.23)), can be expressed in terms of the transform parameter 

as follows: 
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_ "l..' P T ~ 1 + ~'2. 
2. Cli ('2'1> -t- 4"'l) 

3 
a'l.(~} = -----

6 l«p) + 2~(p) 

. ".' 

By using partial fractions, these can be rewritten as: 

9,(p) = Co + 

B'l. (t~) = (r~ + 

in which 

and 

A 

~o -= {Gj1 ; 

1 ct 
~=­o cl 

cs'1 
P+Ai 

, 
«1-

P+À: 
+ 

; 

?5~ 
p+~~ 

).. -= q'J. 
1 ?,' 

\ 

(AIII.3) 

(AIII.6) 

(AIII.7) 
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where 

a -= 3 ~'f!" 

(AIII.8) 

Inverting equation (AIII.S), the time-dependent material 

function will be of the form: 

} CAIII.9) 

For a constant load, the equation for the displacement 

of a standard linear solid can be expressed as: 

[ 
1 1 - G2, t/, , 

E:(-t}=Ôc, ~1 + ~2. (I-e '2») 

Figure 32(b) shows the variation of the displacement with 

time. For convenience, choosing the utlimate displacements 

to be twice the instantaneous displacement in shear and 
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dilatations, respectively, yields: 

~1= Gt'l.= ~o 

Ki. -::. K'l. ': Ka } 

· ~.' 

Similarly, assuming only one relaxation time for the 

material in shear and dilatation, yields: 

... 

(AIII.lD) 

(AIII.ll) 

Since for the elastic material the Poisson' s ratio \J was 

taken as 1/3, for which the bulk modulus is related to the 

shear modulus as 

it may be assumed that 

Thus, substituting (AIII.lO-12) into (AIII.8) gives: 

b :: ! k2. 7" 2 0 '-

C. :: q 1<0'2. 
"2 

e.: 

) 

(AIII.12) 

(AIII.13) 
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Substituting equation (AIII.13) into equation (AIII.6) and 

(AIII.7) yields: 

4- , 
'00 = 

3\(0 
) ~ =0 

Cf. 
4 (f.'- 4 

::. -:3 KI) t: ) 2 - q "0 t. 
(AIII.14) 

Ài = 
1 , 1 
t:. 

., "1 = t:. 

• 4 ,,~ 2 ~ ': ; :. 
0 'II<Q Co 

Taking the above material constants into consideration yields 

the two material functions 9 1 ' e~ as follows: 

(AIII.15) 

It is to be noted that equation (AIII.15) represents specifie 

functions that are based on the above assumptions. These 

assumptions were necessary for an illustration of the analyti-

cal method presented in this thesis. For an actual material, 

accurate values of these constants will have to be found ex-

perimentally. 
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APPENDIX IV 

AIV. ROOTS OF SINH(Z)+Z=O 

It is realised that the entire analysis of the 

present problem is dependent upon the roots of the ex­

pression SI~"'::2:+2.=-O. For a meaningful convergence of 

the expressions of the various influence functions, it 

is essential that these roots be determined in their 

proper order. It is therefore considered to be necessary 

to discuss the location and the evaluation of the roots 

of this equation. 

Substituting :2:= x.-i"i~ , the equation s;nhz+-2. =0 

becomes: 

which, on expansion, becomes: 

Separating real and imaginary parts 

Let 

si., h Xe ',c.o s ~ -+- X = 0 

eoshx... sin~ -+- ':J = 0 

(AlV.l) 
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Then, the roots of siV\hz+~=o are the points where F(~,~) 

and ~ (~.~) simul taneously become equal to zero. Let 

(:(". !lf\) be one of the root s. It can be easily verified 

that the points (+x. -f- u ) are also the root;s of this - ",_;:ln 
equation. Therefore, the roots in the first quadrant only 

will be discussed here. 

Let (~o, ~o) be a point close to (Xn, ~t"I) such that 

Then, using a Taylor series expansion at the root, 

J='(::tn , ~,,) = FO + S'X. F:' + o~ ç:; 
Gex.") ~,..) = ~o + 6)(.4: + s~ Ci; 

where, 

, 

hO _ ~r= 

~ - ~~ 1 x,= ':t.o 
~= '.:10 

and 

since (x". ':In) is a common root 

, 

(AIV.2) 

'\ 



•• ,#;' 

- 132 -

Therefore, 

Sx.. F:" .,.. .sy. r=':J0 :. _ Ft) 

~ X . ~~ ;- 0 y . ~; = - 6,0 

Solving for S'X. and SJ gives: 

CAIV.3) 

Thus, if ("O/~O) bé a point close to (X","!Jn ) then 

()(.0.,.5:<., 'Jo +S~) will be a point closer to < .:en, ~,.,) and 
will therefore be a better approximation. Proceeding 

in this manner, the actual root (X"'~~) can be determined. 

Nm4, i t is necessary to make a guess for ()!.'" ~,,) • 

It is noticed that I=(x,~) will be zero only when 

Similarly, ~ (x,~) will be zero only when 

(2"+1)n (2.\1-1- 2) n 11:0,1,2, ..... . 

Thus, F (x, ~O and G (x,~) will be simul taneously zero only 
if 

(21'\+!)n 1):. 0 , 2 ...... .cAIV . 4 ) 1 , 1 
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This gives a range of the locations of the roots. However, 
it is also required to find out if there is more than one 
root in each cycle. 

Let < Xn, ~ ... ) be a root and let (X.o l ':Jo) be a neigh­
bouring point related by equation.(AIV.2). Assume that 
(X.c, ~o) is also a root. 

From the previo.us argument, ox. and S!I will be given 
by equation (AIV. 3) . Since (X.o, !lo) is also a root, 

FO = ~o =0 

This gives: 

This means that eX"" ~ ... ) and (Xo, '::10 ) are the same points 
and therefore there is only one root in each cycle. 

The locations of the first two roots were guessed by 
using equation (AIV.4) and putting X~O and then the actual 
roots were obtained by extrapolation. Y was increased by 
2. n every time and X. was given the increment equal to the 

difference in % between the last two roots. 
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FIGURE 1 

A SHEET ROLLING BETWEEN A PAIR OF RIGID CYLINDERS 
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FIGURE 5 

CONSEQUENCES OF UNDERESTIMATION OR OVERESTIMATION 

IN THE VALUE OF m2 ON LOAD DISTRIBUTION 
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FIGURE 6 

REPRESENTATION OF LINE LOADS (NORMAL & SHEAR) 
MOVING ON ELASTIC SHEET 
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VARIATION OF THE FUNCTIONS OF F1 AND F2 WITH n 



J1 
~----J?/-:f -

x u 

1 

n' n 
V (CI.) = V (CI., n)-sign(n) -GF l (n) 

CI. = 1.. n _ 9-
b' - b 

-4 -3 -2 -1 

n' 
V 

e 
8 

-0.12 

FIGURE 10 

1 

VARIATION OF Vn ' WITH CI. 

2 3 

CI. ------

4 l-' 
-1:" 
01 

\ 



1 

s' 11\0.4 -+-l~--F~~V t-V 
e 

8 --1 

.2 s' s 
V (0:)::: V (0:,n)-GF2(n) 

a:::~,n:::~ 

1--

-3 -2 -1 / t \ .1 
2 3 

0: ---
1-' 
-1= 

-0.2 \. 
(j) 

-0.4 

-0.6 

-0.8 

FIGURE Il 
, 

VARIATION OF VS WITH 0: \ ~, 

~ 



1 

--:1-Y t1-:V
--

1 

~ 
ex = t ' n = b 

-3 -2 
n=-0.3----

-0.2-----

-0.1-·----

o 

0.1----

0.2----

0.3----~ 

2 3 

ex--... 

FIGURE 12 

n=-0.3 

-0.2 

-0.1 

o 
0.1 

0.2 

0.3 

SHEAR DISPLACEMENT OF THE SURFACE (x=-b) OF AN ELASTIC SHEET DUE TO NORMAL LINE LOAD 

1-' 
.r= 
-...J 

" 



-3 

n=l or -1 

o 

-2 

VS 
e 

e 

0.6 

o 

-0.2 

-0.4 

FIGURE 13 

1 -
f=l~_~~ i~VJ-

CI,. 

2 

CI,.--

1 

1- n = ! 
b ' b 

3 

n=l or -1 

o 

SHEAR DISPLACEMENT OF THE SURFACE (x=-b) OF AN ELASTIC SHEET DUE TO. SHEAR LINE LOAD 

1-' 
~ 
0:> 

~: 



/ .Pm .Pm+1 

.11 
~ 

Fi 
1 

~ j 1.-/4 1 Yi 

,:, laJ lai UJ ! ! J J~: __ .....,....--boo. __ --JiII:8_..a-_ 

lUlU,. 1 1 l 'Um (-,-Ui ,---"\-, 

L = 4ma ' 1 

FIGURE 14 

THE GEOMETRY OF THE NIP (ELASTIC SHEET) 

1-' 
+" 
tD 

.' 

.: 



35 

30 

25 

x 

~ 20 

t 
15 

10 

5 

o 

.... ' 

- 150 -

1 2 3 4 
-t.P (mxB) 

FIGURE 15 

POSSIBLE RANGE OF THE CREEP RATIO SATISFYING 
EQUATIONS (2.2) AND (2.4) 'OR NO-SLIP CONDITION 

(Elasticcase; D-12in., B=0.005 in.) 

-\ 



· '.f 

- 151 -

B C 

L­ L 
..... -- 2 ---rr-O+---- 2 -----1 

Contact Zone 

FIGURE 16 

SCHEMATIC REPRESENTATION OF THE SHEAR 

DISPLACEMENTS OF THE SREET SURFACE 

(ELASTIC) WITHIN THE CONTACT ZONE 

... ~' 

V 2m+1 



7 

6 

5 

4 

3 

2 
H 

CI) . 
~ 
'-' 

M 
CIl 
l'! 

Po 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

- 152 -

o 100 150 

W CP. L. 1.) 

FIGURE 17 

. "'.' 

--x-

B=0.005 in. 

0.0625 in. 

0.25 in. 

1.0 in. 

200 

VARIATION OF PEAK PRESSURE WITH LOAD AND SHEET THICKNESS FOR 

NO-SLIP CONDITION (ELASTIC CASE) 

.-.~, 



L 
B 

· ",' 

- 153 -
10r---------__________________________________________ -, 

5 

2 

l 

0.5 

0.2 

0.1 

0.05 

o 50 

Legend 

-.-
-x-

100 150 

W (P.L.I.) 

FIGURE 18 

B=O.005 in. 

o . 0625 in. 

0.25 in. 

1.0 in. 

200 

VARIATION OF THE RATIO ~ WITH LOAD AND SHEET THICKNESS FOR 

NO-SLIP CONDITION (ELASTIC CASE) 

···1 

.. \ 



10 

5 

2 

1 

0.5 

0.2 

o 50 

VARIATION OF 

THICKNESS FOR 

- .. ' 

- 154 -

Legend 

B=0.005 in. 

0.0625 in. 

0.25 in. 

--x- 1. 0 in. 

100 150 200 
W CP. L . l . ) 

FIGURE 19 

THE RATIO ~o WITH LOAD AND SHEET 

NO-SLIP CONDITION (ELASTIC CASE) 

... ' 



4 

3 

2 

1 

xX10 3 

0 

-1 

-2 

-3 

- 155 -

-".' 

Legend 

-0-
-,,-

B=0.005 in . 

. 0.0625 in. 

0.25 in. 

1.0 in. 

_---0----
_---0-
~~ ------If_ 

------~._-------.~-------)1 

50 100 150 200 

w (p • L • l • ) 

FIGURE 20 

VARIATION OF CREEP RATIO WITH LOAD AND SHEET THICKNESS 

FOR NO-SLIP CONDITION (ELASTIC CASE) 

" 



6 

5 

4 

3 

2 
r-. 

H 

[f.) . 
~ 1.5 
'-' 

:< 
CIl 
s 

p.. 

1 

0.7 

0.5 

0.4 

• t'.f 

- 156 -

50 100 150 

H (P. L. 1. ) 

FIGURE 21 

Legend 

B=0.005 in. 

0.0625 in. 

0.25 in. 

--x- 1.0 in. 

200 

VARIATION OF PEAK PRESSURE WITH LOAD AND 

SHEET THICKNESS FOR COMPLETE SLIP (ELASTIC CASE) 



L 
B 

10 

5 

3 

2 

0.5 

0.2 

0.1 

0.05 

/ 
./ 

50 

. '.' 

- 157 -

.----- .---­.----
.~ 

100 150 
W (P. L. 1. ) 

FIGURE 22 

Legend 

---B=0.005 in. 

. --0-
0.0625 in. 

0.25 in . 

-l(- 1.0 in. 

200 

VARIATION OF THE RATIO ~ WITH LOAD AND SHEET 

THICKNESS FOR COMPLETE SLIP (ELASTIC CASE) 

., 

., 



10 

5 

3 

co 2 
0 
.-1 
x 

;lfXl 

1 

0.5 

0.3 

o 

• t'.f 

- 158 -

----' -"..--' 
"..,..,..-

/' 
/' .----/' 

/' o~ /' 
.~ / 

/ / / 
/ . -;.~ / / 

+~ • 

/ +/ 
/ Legend 

B=0.005 in. 

--- 0.0625 in. /+ 
__ e_ 

0.25 in. 

--)C- l. 0 in. 

50 100 150 200 

W (P.L.I.) 

FIGURE 23 

VARIATION OF ~o WITH LOAD AND SHEET THICKNESS 

FOR COMPLETE SLIP (ELASTIC CASE) 



'" Cl 
..-i 

X 

:< 

.".' 

- 159 -

13r-----------------------------------------------______ _ 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

-1 

-2 

-3 

---- --------

~~-----
>(-

50 100 150 

,-1 (P. L. 1 . ) 

FIGURE 24 

Legend 

------B=0.005 in. 

_e_ 
-lC-

200 

0.0625 in. 

0.25 in. 

1. 0 in. 

VARIATION OF CREEP RATIO WITH LOAD AND SHEET 

THICKNESS FOR COMPLETE SLIP (ELASTIC CASE) 

",' 

\ 



do X 10 6 

(in.) 

-".' 

- 160 -

60 

50 

40 

30 

20 

10 Legend 

---- 0 

o L-----~----~--~----r_--~--~~--_r--~~------------
50 100 150 200 

W (P. L • 1. ) 

FIGURE 25 

LIMITING VALUES OF CONTACT LENGTH AND INDENTATION 
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TABLES 



~/ 

ROLLING OF TWO BODIES 

1 , , ~ 
ELASTIC-ELASTIC ELASTIC-VISCOELASTIC VISCOELASTIC-VISCOELASTIC 

~. ! +-~ ,Il 
SMOOTH ROUGH SMOOTH ROUGH SMOOTH ROUGH 

t ! J l ~ . l 
Hertz Carter Hunter None Morland None 

[1) [2) [7] [9] [10] 
1-' 
CD 

Poritsky Morland 0 

[3] [8 ] 

Bufler 
[4] 

Johnson 
[ 5 ] 

Bentall 
[6] 

TABLE l 

A BRIEF REVIEW OF THE LITERATURE INVOLVING THE ROLLING OF TWO BODIES .: 



ROLLING OF A SHEET 

1 r - ~ 

;r; v~c 
SMOOTH ROUGH SMOOTH ROUGH 

~ l ~ J 
Uang Benta11 A1b1as None 

[12 ] & & 
1-' 
te 

Johnson Kuipers 1-' 

[13] [15] 

Benta11 
[14] 

TABLE II 

A BRIEF REVIEW OF THE LITERATURE.INVOLVING THE ROLLING OF A SHEET 

.: 



i'l Lx103 

PLI inch 

25 56.9616 

50 80.4768 

75 98.3676 

100 113.352 

125 126.492 

150 138.297 

175 149.076 

200 159.10 

6 d1 x106 xx104 Pmax dox10 d1/Bx1000 L/B do/Bx100 dl/dO 

inch inch psi 

341. 415 273.818 -10.613 488.802 0.27382 0.05696 0.03414 0.80201 

613.446 478.519 -14.132 692.287 0.47852 0.08048 0.06134 0.78005 

859.651 658.064 -16.501 844.185 0.65806 0.09837 0.08597 0.76550 

1089.29 821. 608 -18.280 979.664 0.82161 0.11335 0.10893 0.75426 

1306.86 973.526 -19.686 1095.74 0.97353 0.12649 0.13069 0.74493 

1514.42 1115.96 -20.827 1200.74 1.11596 0.1383 0.15144 0.73689 

1713.289 1250.30 -21.767 1297.25 1. 2503 0.14908 0.17133 0.72977 

1905.813 1378.45 ':'22.554 1387.61 1.3784 0.15910 0.19058 0.72329 
-- -- - - -- - --- - - - - - - -- - - -- - - --- -- - - -- ----- -~- ----------- ----------

TABLE III 

SOME RESULTS OF ELASTIC ROLLING FOR NO-SLIP CONDITION (B= 1 inch) 

~ qmax 

psi 

39.924 

56.183 

69.730 

81.730 

92.648 

102.684 

111. 936 

120.522 
-- -

1-' 
<.0 
1\) 

.: 



w LX103 

PLI inch 

25 58.908 

50 81. 98 

75 99.036 

100 112.963 

125 124.648 

150 134.123 

175 142.204 

i 200 149.238 

d xlé d
1

xl06 · 4 . Pmax dl(Bx1000 L/B d
O

/Bxl0b dl/do 
a xxl0 
inch inch psi 

208.07 135.777 -5.41 490.38 0.54311 0.23563 0.08323 0.65255 

351.544 211. 528 -4.813 704.22 0.84611 0.32792 0.14062 0.60171 

473.563 269.228 -3.521 875.331 1. 0769 0.39614 0.18943 0.56852 

582.278 316.433 -1. 930 1023.74 1. 2657 0.45185 0.23291 0.54344 

682.476 358.785 -0.5070 1163.27 1.4351 0.49859 0.27299 0.52571 

774.970 400.200 0.2751 1301. 606 1. 6008 0.53649 0.30999 0.51641 

862.112 440.823 0.7164 1438.297 1. 7633 0.56881 0.34485 . 0.51133 

944.591 480.590 0.9314 1572.63 1. 9224 0.59695 0:37784 0.50878 
- -- - - -- -- - - - - -

TABLE IV 

SOME RESULTS OF ELASTIC ROLLING FOR NO-SLIP CONDITION (B=O.25 inch) 

::: 'Imax 
psi 

46.217 

63.469 

74.809 

83.414 

84.954 

73.626 

55.029 

31.673 

1-' 
tD 
W 



W Lxl03 d Xl0 6 d l
xl06 

xxl04 Pmax dl /Bxl000 L/B. do/Bx100 dl/do a 
PLI inch inch inch psi 

25 53.8016 96.8023 36.498 4.278 577.358 0.58397 0.86083. 0.15488 0.37704 
50 70.4337 152.541 49.189 9.987 885.508 0.78702 1.12694 0.24407 0.32246 
75 81. 8464 197.584 58.025 14.756 1149.199 0.9284 1.30954 0.3l613 0.29367 

100 90.7925 236.848 65.113 18.98 1389.173 1.0418 1. 45268 0.37896 0.27491 
125 98.4228 271. 294 69.480 21.782 1625.531 1.11169 1.57477 0.43407 0.25611 
150 104.845 303.481 74.472 25.121 1839.299 1.19156 1. 67751 0.48557 0.24539 
175 110.536 333.255 78.709 28.081 2045.275 1. 25935 1. 76858 0.53321· 0.23618 
200 115.664 361. 096 82.383 30.747 2244.799 1.31814 1.85063 0.57775 0.22815 

---- --

* Yery close to zero 

TABLE V 

SOME RESULTS OF ELASTIC ROLLING FOR NO-SLIP CONDITION (B=O.0625 inch) 

::: cr 
-max 
psi 

* 
* 

34.148 

55.651 

85.388 

107.628 

130.433 

153.413 
--

1-' 
(!) 

+" 

-'-



W 'LX103 

PLI inch 

25 25.18 
50 30.72 
75 34.36 

100 37.13 

125 39.36 

150 41. 27 

175 42.91 

200 44.34 
-- --------

d X10 6 d1
x106 5 Pmax d1/Bx1000 L/B do/Bx100 dl/do o. xx10 

inch inch psi 

14.41 1.2201 119.32 1451 0.2440 5.0314 0.2881 0.0847 

21.14 1.4826 159.22 2409 0.2965 6.1438 0.4228 0.0701 

26.27 1.6678 188.60 3246 0.3336 6.8724 0.5253 0.0635 

30.53 1.8159 213.03 4017 0.3632 7.4252 0.6106 0.0595 

34.22 1. 9405 234.32 4744 0.3881 7.8728 0.6844 0.0567 

37.53 2.0495 253.66 5447 0.4099 8.254'2 0.7507 0.0546 

40.51 2.1454 271.13 6122 0.4291 8.5828 0.8102 0.0530 

43.20 2.2299 287.32 6788 0.4460 8.8686 0.8639 0.0516 
-- --------~------ ---------- -- -----

TABLE VI 

SOME RESULTS OF ELASTIC ROLLING FOR NO-SLIP CONDITION (B=O.005 inch) 

~~ax 
psi 

143 

222 

284 

338 

385 

429 

470 

509 
-------

1 

f-' 
c.o 
<n 

.' 



W LX103 

PLI inch 

25 57.9 
50 81.8 
75 100 

100 115.4 

125 128.8 

150 140.9 

175 152.0 

200 162.3 

d x10 6 d1
x106 4 Pmax d1

/Bx1OOO L/B d /Bx100 
0 xx10 
inch inch psi 

0 

342 272.11 -12.112 479 0.2721 0.0579 0.0342 

614.4 475.04 -16.261 679 0.4750 0.0818 0.0614 

861.2 652.63 -19.108 832 0.6526 0.1000 0.0861 

1091 813.42 -21.279 962 0.8134 0.1154 0.1091 

1308 962.51 -23.031 1077 0.9625 0.1288 0.1308 

1515 1101.4 . -24.476 1181 1.1014 ·0.1409 0.1515 

1715 1233.1 -25.703 1277 1. 2331 0.1520 0.1715 

1907 1358.3 -26.754 1367 1.3583 0.1624 0.1907 
-- ---~.

_---
-

TABLE VII 

SOME RESULTS OF ELASTIC ROLLING FOR COMPLETE SLIP (B=! inch) 

dl/do 

0.7958 

0.7733 

0.7579 

0.7458 

0.7357 

0.7269 

0.7191 

0.7121 
- ----- -

1-' 
CD 
cr> 

.' 
\ 



W LX103 

PLI inch 

25 62.5 

50 86.9 

75 104.8 

100 119.4 

125 131. 9 

150 142.9 

175 152.7 

200 161. 7 
- ---

d x106 d1
x106 4 Pmax d1/SX1000 L/B d

O
/Bx100 0 xx10 

inch inch psi 

211.4 130.13 -6.658 478 0.5205 0.2498 0.0846 

357.9 200.72 -6.508 687 0.8029 0.3474 0.1431 

482.6 253.68 -5.494 855 1. 0147 0.4193 0.1930 

594.1 296.85 -4.126 1002 1.1874 0.4777 0.2376 

696.5 333.85 -2.576 1136 1. 3354 0.5277 0.2786 

791.8 366.36 -0.933 1200 1.4654 ·0.5716 0.3167 

881.5 395.50 0.7592 1377 1.5820 0.6109 0.3526 

966.8 422.17 2.486 1489 1.6887 0.6468 0.3868 
-- --- ----- - - - - - -- ---- ----- - --

TABIJE VIII 

SOME RESULTS OF ELASTIC ROLLING FOR COMPLETE SLIP (B=0.25 inch) 

dl/do 

0.6156 

0.5609 

0.5257 

0.4998 

0.4794 

0.4627 

0.4487 

0.4366 

! 

1-' 
(!) 

-...J 



W LXl03 

PLI inch 

25 . 55.4 

50 72.7 

75 84.7 

100 94.2 

125 102.1 

150 109 

175 115.2 

200 120.7 

d xl06 d1
xl0 6 4 Pmax d1/Bx1000 L/B d /Bx100 

0 xx10 
inch inch psi 

0 

98.6 34.62 4.3 560 0.5539 0.8869 0.1578 

156.8 46.63 10.59 870 0.7461 1.1635 0.2509 

204.8 55.29 16.19 1134 0.8846 1. 3554 0.3277 

247.1 62.35 21.31 1373 0.9976 1.5069 0.3954 

285.7 68.42 26.08 15.94 1. 0947 1.6339 0.4571 

321.4 73.81 30.59 1802 1.1809 1. 7443 0.5143 

345.9 78.68 . 34.87 2000 1.2589 .1. 8424 0.5679 

386.7 83.17 38.98 2189 1.3308 1. 9314 0.6188 
- ---- -----

TABLE IX 

SOME RESULTS OF ELASTIC ROLLING FOR COMPLETE SLIP (B=O.0625 inch) 

dl/do 

0.3510 

0.2974 

0.2700 1 

0.2523 j 

0.2394 

0.2296 

0.2217 

0.2151 

1-' 
<.D 
co 

~I 

~~ 



W Lxl03 

PLI inch 

25 26.4 
50 32.6 
75 36.8 

100 40 
125 42.7 
150 44.9 
175 46.8 
200 48.6 

-- --- ---

d xl0 6 "6 
xXl04 0 

d1
xl0 Pmax dl/Bx1000 L/B d /Bxl00 inch inch psi 0 

16.3 1. 77 28.48 1339 0.3539 5.2778 0.3255 
24.6 2.38 46.75 2179 0.4758 6.5286 0.4917 
31.1 2.83 62.56 2906 0.5676 7.3635 0.6216 
36.6 3.22 77.03 3571 0.6447 8.0042 0.7318 
41.5 3.56 90.66 4197 0.7127 8.5302 0.8292 
45.8 3.87 103.59 4791 0.7741 8.9762 0.9167 
49.8 4.15 116.03 5362 0.8307 9.3658 0.9968 
53.5 4.41 127.93 5908 0.8829 9.7084 1. 070 

TABLE X 

SOME RESULTS OF ELASTIC ROLLING FOR COMPLETE SLIP" (B=0.005 inch) 

-

dl/dO 

0.1087 

0.0968 

0.0913 

0.0881 

0.0859 

0.0844 

0.0833 

0.0825 

1-' 
tO 
tO 

...:.-" 



Fot LIX103 
inch inch 

103 41.055 

102 41.055 

101 41.051 

10 0 041.336 

10-1 52.4% 

10-2 bO,54!J 

10-3 56,197 

10-'+ 5b.\j86 

10-5 50,Oll, 

10- 6 5b.085 

LzX103 Lx103 d oX106 . d 1 x106 6 L do /tIOl d 2 xlO . 

inch inch inch inch inch B B 

'41.055 ~2.110 61S. e ll. ',78,354 478,354 o.n.8? O.06? 

41.055 82.110 619.!i31 479.070 479.070 l'.bEl2 0.1'62 

4l.nSl ~2.101 626.424 465.9:}S 4e5.~95 ",08t: 0,063 

41.330 ~\2.n72 fl90.630 546.241 548.241 n.of;3 0.0(,0 

26.21B 78./-54 949,i2f, 720.·:100 891.045 fI.07Q o.nQ~ 

6C.0'i1.6 121.t1c)1 1050.325 744.1.144 744.844 (' .121 0,10'; 

56.1')7 112.394 1041.393 77B.z17 776.217 " ,112 ('). 10'. 

:56.056 HZ.ln 1041.209 779.131 779,131 0,112 0.104 

5~.O85 112.170 .1041.270 179.141 7;«).141 0"0.112 0,104 

5!l.C'85 112. 17:) 1041.270 179ol.41 779.141 Il.112 0.104 

TABLE XI 

!!J.. 2- dz XI02. ~KI! 1110 
B B do 

0.046 CI."4R 77.31'12 

n.04A o.04R 77,328 

(),O49 n.04Q 77.5a2 

O.t,55 n.I)!i5 N.383 

0.O7? o,OS«) 1S,PS:) 

(l, (174 o.n74 °f!,,91b 

0,078 0.071\ 76 ,728 

0,n78 o,n7A 7/,. R2!i 

o ,'(')71J n,n7R 74,R2n 

0.073 n.O?R 74.820 

-,.,.,-" , 

d2'AII'Pmax 
do psi XX103 li 'x106 . R . 

77.302 681 -1.632 O,6n 

77.'26 683 .-1.631 06.08 

77.582 6.94 -1.624 60.04 

79 •. 183 .191 . -1.589 °527.8i 

93.965 704 

70.916 550 

74.728 510 

74.025· 500 

74,R26 499 

74.626 499 

-1.711 . 2224.08 

-2 • .'165 .795.91 

-3.32.0 83.67 

.3.328 8.3:\ 

.. 3.328 . 0.83 

.. 3.328 D.Oa· 

1'.) 

o 
o 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP CB=! inch, W=50 P.L •. I,) 

.' 
\ 



Fo't L1 X103 
;: . 

inch inch 

10 3 57.S00 

101 57.800 

'10 1 57.778 

10 0 '5S,4e~ 

10-1 77.402 

10-2 83.528 

10- 3 79,i)'J\) 

10-" 78.8\10 

10- 5 78.dOO 

10-6 711 ,'SùO 

L2 x103 Lx103 d ox106 d 1 X1a6 d 2 x106 L ~XI~ ~Xlt ~XI~ d 2 ~ICI02Pmax xxlOJ ~x,o inch inch inch inch inch B B B do psi· 

57.ôoo 115.600 1()94.~79 816.175 816. no; 1.'.116 O.HI9 ').:"182 0.082 74.5~5 7ft.565 964 -2,131 

~7,3~O 115.60,1 1(\96.004 317 .60C 817 .60l1 r,.llll 0.110 0.082 0,1')82 74.S?!'! 74.59A 966 -2,130 

57.770 115.555 1109. ïSo; 830.998 830.990 r,. ilb 0.111 ·0.1l81 n.M3 74,<)7.'> 7/ •• 92(') 986 .. 2.115 

58.489 116 •. r)78 1~3f\.694 953,615 953.615 (·.U'1 0.124 0.095 n.095 7I' ... 9a6 76.986 1149 .. 2,040 

38·"101 116.104 172?.66t; 1l23,40S 15n.8~4 0.111l 0.17? 0.122 n.160 71.018 9?.755 9'14, .. 2,033 

83,;~8 167.(.57 1819.550 1236.U? 1238 ol~~ 0.167 O.1fl? 0.124 0.124 6i1.0t,fJ 68.1141, 772 -3.977 

7'j.orO 151:l.tOO 1132Z'.319 1302.236 1:302.236 0.15e 0.182 0.13,1 0.1~1) 71.460 7i.4M no -4'.391 

78.arO 157.600 1017.628 130:'1.175 1300.175 0.15/1 . 1).182 0.13(') 0.1)0 71.5~1 7i .531' 708 -4.392 

7a'.seo 157."00 1/117.656 1300.'-o~ 1300.203 " .lS8 (1,182 0.130 0.130 71.532 7ï.o;32 707 .. 4.392 

78.8~O 157.600 1817.65b 1300.203 1300.7.03 (' .1513 0.182 o .1'3(l 0.130. 71,53? 71.532 7Cl7 -4.392 

TABLE XII 

SOMf. RESULTS OF VISCOELASTIC ROLLING FOR'COMPLETE SLIP (B=l inch, W=100 P.L.I.) 

PRxio6 

1.07 

10.7" 

105.Sa 

919.08 

324b.21 

8~C;.S3 

e3.S8 

8.34 

0.6:1 

0.,08 

1\) 

o 
1-'. 

... ~ 



FOT LI x103 L2 x103 Lx103 d ox106 d 1 x106 d 2X106 L il.!.Xlt ~x102 d 2 x/rf g.;IC.I0
2 d2Xlfrnax X)(103 inch inch inch' inch inch ' inch inch B B B B 00 psi 

la' 70.253 70.258 140.517 '1503.251.\ 1096,905 lO9~.90; 0,141 0.151 0.110 ('\.110 7:'..727 7?'.72 7 \178 .. 2,443 

102 7Ci,25S 70.2,8 140.517 1510.:H6 1099.021 1(19.9.021 d.141 O.l!il 0.110 n.ll0 77..765 77..765 1101 .. 2,441 

101 70.263 70.263 14().5~6 1531.o7i 1119,667 111'1.667' 0.141 O.1~3 l'ol12 n.112 73.130 7'.t:~1'1 17.n8 .. 2.421 

10° 71.270 71.270 142.539 171fl. iO Q l294.S29 1294.IJZCl 0,1 43 0.172 0.129 n.129 75.364 ".364 1422 -2,2!}7 

10-1 95.9135 47.992 !43.977 2393,749 1625.99'3 2201.811'1 0.144 O.23 Cl \1.163 0.220 67.927 91o Cl 8Z 1160 -2.155 
-2 la 100.961 lOO.~61 201.922 251(l.34t 1660.911 166(1,911 6.202 0.251 ù.166 0.166 6!l o1~3 66.lb:! 9/.8 -4.691 

10.3 95.717 95.717 191.1t35 2,+oi •• 91l6 1721.500 1721.SV" D.l'il! 0.248 11.172 0.172 69.27" f,Cl.?76 S7B .. 5,0'10 

10·" 95,6'i4 9.5.6"4 191.21\8 24B4.t,6Q 1722 tl55 17220155 0.191 0.248. 0.172 n.t72 69.317 69.317 8t-7 .. 5.085 

10·s 95.643 95.643 191.287 24 84.407 1722.i6;\ 1722.163 d.191 0.248 ".172 n.172 69·:317 ô9.~17 066 -51'0115 

10.6 95,ô'43 95.6·.3 111.237 2404.46.7 1722.163 1722.163 ' 0,191 0.24!1 1).172 n.17Z 69.317 M.317 666 .. StOeS 

TABLE XIII 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=! inch, W=!50 P.L.I.) 

li Rx1 0'6 

1'.48 

14.82 

145.74 

1250.15 

393f.22 

860'.35 

83'.0'2 

Il.35' 

0.84 

0.08, 

~ 
Q, 
~ 

.!. 

.' 
\ 

"': 



, FoT 
L1 X103 L2 X103 ix103 d oXl06 d 1 )(10 6 d 2 )(1a6 L dOX,i dl f 2 ~2 xl0

2 ~ld! d 2 ~I02Pmax xx103 
J.l Rxl06 

inch inch inch inch inch inch inch B B i3XO do psi 

10 3 80,c43 ,BC 0'343 161,1,65 11394.95q 1350,332 ' 1350,332 0.162 O.l!'!!') 0.135 1'1.135 ." .251) "ti.?!'l'I 13"2 -2,!J69 1.95 

10 2 60.843 aC,(i43 1(j1.685 1997,777 13530147 1353.147 0.162 0,190 0.135 1'1,135 71..3e? 7i.:lo? 1365 -2."66 18.61 

10 1 8U,852 BC.t\r,2 161.704 lQ25.361 DSO.bOB 136('.60-'3 0.162 0.193 '!'i .13!~ 1'1.13" ' 1\.70~ 7;,70(:, ;4(\0 .. 2.6~9 182.81 

10 0 82,2613 t2.2f·B 164.537 21 73,nbl Ibo9,n53 1609.05'3 0.165 0.217 0.161 1'1.1"1 74,1'14') 74.('1/.51660 -2.467 1556.71'1 

10-1 111,9 137 55,993 167,9dC 307.r.,067. l'Hl:! ,979 2766.791 0.168 . 0.303 O,lC)!3 0,7.17 M.4A7 tll, ~7? ];\'17 .. 2,184 4479,99 

10-2 115,142 1\5',1 /,2 230.~85 3132.806 2n27.993 2027.Q93 O.;:~O 0.313 0.203 1'1.203 fi' .. 734 bl,.734 10Q5 .. 5,228 870.94 

10-3 109,932 109.932 219.~65 31Cn .397 2094.302 2094.302 0.<:20 n.31n ". 20~ O,?oq 67.52A (,7.52" 1015 -5.606 63.69 

10-~ 1 Ci 9 , a 67 10 Il , E 6 " 219,734 3100.822 2094,ClZ8 2094.92!l 0.220 0.310 0.20<> O.?oq 67,5"0 67,'l!in 1004 .. 5,~10 8..36 

10-5 109,ô66 1~9.f.(,6 21Q.733 3100..811! 2094.936 2094.931, (\.220 0.311'1 O.~Oq O.zoQ f:-7,5~1 67.561 ion3' ~S,~10 0.84 

10- 6 67.561 10~3 : .. 5,~10 
.:. 

109.866 11)9, 6~J) 219.733 3100,1l1~ 2094.937 2094.9!i7 Il,220 (l.3lo 0.209 o. zo'q 67.%1 0.08 

, 1 

1'\) 

a 
w 

TABLE XIV 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=l inch, W=200 P,L.r.) 



Fo-r L1 X103 L2x103 ~X103 d ox106 d 1X106 d 2 x106 L ~X102 ~y.102. 2.!.1( 102- ~ICI02 2.!.KIc1 Pmax XX103 
inch inch inch inch inch inch inch B B B B, do psi 

10 3 43.518 43,5~8 87.n36 359.1 0 7 ;':01.289 201.281 0.348 0.144 O.~81 n.nBi Ij~ ... 1'153 56.n53 6~9 -0.6;0 

10 2 43.'18 43.,),8 87. ·')36 3.59.?RI':: ZQ1.'107 ZOl.'t67 0.348 0.144 0.(181 0.1'181 5/).074 56.1'114 690 -0.649 

101 43.522 43.57.2 87.(J44 36 1,o9'i 203.?;;n ZO::l.25('1 0.349 0.144 (j. 08 1 n,nAt 56.257 ;I,.2A7 nl, -0.!l42 

10 0 43 • [) 7 8 '4:3. /) ., b (l.7.355 :376.512 219.534 21.9.534 0.349 0.151 1'1.089 n.n88 57 t qr:lI~ 57.QQI) 1')7 .. 0,511 

10-1 54,664 43.1?ol 98.39S 490.535 ?41.526 331.16~ 0.394 0.196 0.097 0.132 4".237 f,7.512 1Po7 -0,219 

10-2 00.5(\5 60.58S 1210171 575.042 269.160 269.160 O. '1 liS 0.230 l' .109 0.109 4tH B07 4t..A07 521 -1,436 

10-3 58.603 59.M3 117.207 568.1'43 2C2.f-46 Zfz.646 O. 'tb9 0.?2~ l'. 113 n.1l3 4,9.6110 49.b110 521 -1.609 

10-~ 5B.Og4 58.r,r;4 116tlé7 560.26q 7.1!7.125 2R7012, 0.465 0.227 o. U; 1'1,115 50.526 5n.526 518 -1.61,2 

10-5 58,078 5r..C73 1160156 566.266 21\70179 2870179 0.465 0.227 0.115 CI. 115 So.53f1 51'.~3'" 517 -1,64Z 

10-6 S8,073 5'i.C·fe ll6.1;;6 566.266 287.180 267.180 0.405 0,?27 0.115 0.115 SO,53f1 50.536 516 -1,042 

TABLE XV 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=O',25 inch, W=50 P;L.I.)' 

llRx106 

0.33 

3~28 

32.09 

306'.6'1 

i050',6b 

102',36 

00.79 

7.93 

0.79 

0'.08 

/'V 
a 
+" 

1. 

.: 



FOT LI X1 03 
inch inch 

103 51.750 

102 59,75J 

101 59.!!75 

10 0 600197 

10-1 
75. C"O 

10-2 
92.125 

10-3 7B.7!)) 

10-~ 7d.750 

10-5 78.750 

10- 6 78,750 

L2 X103 Lx~03 dox1a6 . d 1x10 6 d2 X1 06 L ~x,J 
. 2 

d2 ""02 dl~102 ~.;.d02 Pmax XX103 5!J.. x1o 
inch inch inch inch inch B B B B 00" o . psi 

59.75C llC).'O() 594.618 297.113 297.113 0.478 0.?3!l ('l.119 1'1. Ut) 49.967 4Cl .t)67 1003 -0.412 . 

59.7'i0 119.500 594.97, 297.468 297.460 O.4?e ('I.?3A 0.119 n. uq 49.997 41).997 10115 -0.410 

~q.8;5 119.750 (,OiJ.471 301.71 CI 301.719 0.479 0.240 (l.l21 ('1.121 51'1,247 50.247 10lb .. 0.393 

6~.1('\7 1Z0. ::\CJ4 634.93q 332. 968 337..1)f.1:l ().4~2 0.254 ''),133 0.13~ 5?, "4 \ 57..'+41 111\5 -0.260 

60.000 135.000 OZI\.8),6 360.066 5ZB.81t> 0.540 0.332 0'., .144 1).212 43.443 6~.fl04 1027 0.425 

S2.1~5 164.250 936.75CJ 374,715 374.715 0.65-' C.375 0.150 n.1S,., 40,OOt 40,(0). 765 -1.334 

78.7t'O 157.500 919.197 407..400 402.400 :).6:0 O.3M 0.161. ('1.161 43.777 41.777 775 --1.574 

71i.750 157.500 92('1.399 409.603 409,603 ~. 63(. 0.371 0.164 0.164 4".214 .44.214 768 .. ~ .597 

78.750 157.500 t)26.47~ 409.692 409.682 1'),630 0.371 n.164 1'1.164 4/ •• 21~ 44.219 766 .. li597 

78.75û 157.!lOO 926.480 4(19.692 409.683 r .• 630 0.371 0.164 0.16/. 44.219 4/ .. 21tl 766 .. 1.597 

TABLE XVI 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=O.25 inch,W=100 P.L.I.) 

lJRx1a6 

O~54 

5.39 

53.73 

498.01 

2249.45 

731.04 

80.75 

7',99 

0.80 

0'.08 

'" o 
U1 . 

'.-



FOT L1 X103 

inch inch 

10 3 71.1(19 

102 
71 oli!9 

101 71.5 91 

10 0 
72.071 

10.1 
39.753 

10.2 
97.326 

10. 3 
93.4 /.13 

10·~ 93.071 

10.5 
~3.i)o7 

10-6 93.067 

L2 X103 Lx103 d oX106 . dl X106 d 2x10 6 L ~X\02. ~l(ll d 21o \0
2 d 2 d 2P xx10~ ...l-lI.IO ~xlO max 

inch inch inch inch inch B B B B . do do psi 

71 ~ P? 142.':177 7870113; 364.866 364.1366 0.570 0.315 n.14" ('\.14" 46.351 4".351 i2~4 -0.101 

71.1rg 142.377 787.71;1 365.:H4 365.3~4 n.S70 a.315 O.14~ 0.146 46.3~7 4(..'387 1257 -0.099 

71.591 143.1~2 1100.135 373.("129 37J.02" \'.573 o.no 6.149 0.149 't6.62\ 4(,.621 1291 .. 0,0,,5 

72.071 144.141 '!51.201'l 4111.353 418.351 (\.577 a.340 0.167 0.lb7 '.C}, \49 4Q .14<l 15113 0.137 

71.6:;3 161.556 1117.152 445.114't 6a7.51~ ('1.64(, 0.447 0.178 0.275 3'l,90'l 61.54? lzi9 1 .• 1 '3B 

<17.37. 6 194.652 17.37.657 4'18.291 4411.291. r,.779 0.495 ('.179 0.179 3".221 3ft.221 970 .. 1el15 

93.448 l!36.1196 Il1A.i18 490. I ,a3 490.40!l '1.748 a.487 ('1.1% '0.196 40.25C) 4(').259 9118 -1.'393 

93.071 186.141 121b.980 1.1)!i.13J 495.133 '1.745 0.467 0.19'3 0.19n 4n.6p.5 40.68'i 972 .. 1.415 

<;3.0(,7 186.133 1210.969 495. 18!i 495.105 ,~, 745 0.487 Oi 19:) 0.t9A 41).69n 40.69~ 970 -1.416 

Cl'J. 0(,7 1360133 121(..969 495.18:5 495.1f3.; n.745 0.487 O.19i;\ 0.1911 40.69('\ 40.690 970 .. 1.4\6 

TABLE XVII 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=o.25inch, W=150 P.L.I.) 

J.l Rxl06 

0~7i 

7.11 

71.17 

653.66 

262~~4'3 ' 

746.51 

BO.99 

8.04 

I) •. SO 

O.OA 

'" a 
en 

.: 



Fa. L1X103 L2 X103 'Lxl03 doXlé d1Xlé d 2 xlé L !!.9..x10
2 !h.x10

2 
d 2 Je 10

2 d 2 d 2 P x~103 1)(10 2 ~IO max 

inch inch inch inch inch inch inch B B B B Ou Go psi 
...• 

10 3 aO.7.~tl !lC.7?-6 161.473 9b4.77 i 421.574 421.574 !'.646 0.386 ., (\.169 0.169 4:1.697 4~.697 i4B6 0.24.4 
1 

102 BC.736 ~C.7'l,6 161.473 0.65.47q 422.231 422.2tll Il.646 0.3116 .'0.169 o.lbl) 4:;.7~A 43.7311 1489 0.247 

101 aO.743 1\0,743 161.4A7 977..534 429.241 429.241 1'.646 0.3Rt.) .; '>.172 0.172 4/,,'136 44.136 1521 O,27S 

10 0 81.3ô8 81.3(- e 162,.737 103~.387 487.653 467.653 r'.65t 0.41 b ,;. (1. 195 0.\95 46.917 46.1)17 17tlO 0.543 

10-1 101.715 81.372 183.c37 1?76.9RS 514.323 [125. 2CI~ r,,73, 0,551 r').~06 0.330 37.338 59.928 131)1 1.6b1 

10-2 109,469 lrÇ.4~9 21H.937 1505,950 507.341 507.341 '1,676 0.602 ".203 0.?03 ;1'1,(,69 33.(,119 il156 .. 0',8('1 

10- 3 105,010 1nS.ClO ?lo.n20 1471}.41t 560.487 560.467 1".941) 0.592 0.224 0.224 37 .886 37 .AA6 1176 .. 1,166 

10-4 l04.66~ lr.4.6~9 7.09.337 147R.23B 565.276 565.276 n.lI:;? 0.591 0.226 Cl.22b 38.7.40 3A.?4n 11~9 .. 1.1116 

10-5 104~665 1"4.6~5 209.:-\30 147 8.22:1 565.326 565.32(, 1'\,837 0.591 0.226 n,?Z" 38.21tl1 38.7.44 1157 .. l,lOb 

10-6 104~~65 lO4.6~5 209.330 1478.224 565.327 ,65.327 1'.837 0.591 0.226 ('1.226 38 ;2 /.4 36.7.44 1157 .. ldeb 

TABLE XVIII 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=O.25 inch,' W=200 P.L~I.) 

PRdé 

0.81, 

B.69 

86.22 

, 7116;IR 

290~'.B2 

761.92 

81. ,2A 

3.01\ 

0.81 

. C'.oa 

'" o 
.....:J 

.~ 

-" 



· FaT L1Xl03 L2 X103 'Lxl03 d oxl06 d 1X106 d zX106 
L ~X102 ~xro2 ~ 10

2 ~Xlt d 2P 
xX103 

llRX106 .2.1(/0 max 
inch inch inch inch inch inch inch B B B B x do psi 

10 3 35.312 35.312 70.625 153.59~ 49.679 49.67<) 1.13~ 0.246 o,n7q o.n1Q 32.31,4 32.341, lIR4 1.049 0',14 

10z 35.312 '35.312 70.625 153.6311 49.723 4Q .72; i.130 0.246 ".080 n.080 32.364 32..164 BR5 1,050 1.40. 

101 35.312 35.:312 70.625 154,051 50.167 50.16', 1.130 0.7.47 a.Cld" o.nRn ::12.55'1 3Z.55tl Ben 1.057 13".97 

10 0 35.275 "~5.275 7().SSO 157.1:113 54.120 54012:) t.129 !).2S3 0.097 O.M7 34.7.1)1. 34.2'11. 91,S 1.120 134.ql 

10-1 40.294 )2.2::5 72.529 19n.954 55.653 104.361 1.16(:1 0.10b ".03q c" 167 ?~.14? 5'10 fi?) B77 1,672 901.74 

10-z 40.543 46.'43 93.1)67 2;7.331, 5(.. !lll 56.!l 11 t,469 0.3111). 0.091 0.n91 ' 23.937 23.937 77.2 2,6'3b 686.8:: 

10-3 450131 45.131 90.263 230.97!'l 61.239 61.2J9 1.44 ft 0.37f' 0.09'1 n,09'1 26.513 26.'H; 722 0,481 87.55 

10-~ 44.483 44.4P3 SB.CJ66 229.B7":\ 64.970 64.n~ ] .423 0.36R 0.101, 00104 28.26'1 ·28.2bj 717 0'.447 S.4n 

10-5 44,475 44.475 BIl.CJ51 22C).p.6CJ 65.031 65.031 1.423 0.368 il. 104 0.104 zn.?!)/) 28.290 714 0.447 0.84 

10-6 44,475 44.475 06.95l 22Q.e6q 65.032 65.032 ].423 O.36R 1) .104 0.104 Z8.291 28.29 \ 713 0,447 O.OS· 

TABLE XIX 1'-) 

0' 
co 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=O.0625 inch,W=50 P.L.r.) . 



· Fot' LIX103 L2 xl03 L·xl03 d oxl06 d 1 xlé d 2 Xlé L ~x/02 d 2 d 2 1./0
2 

dl 'loft ~XI02Pma~ xxlO3 
-1.'1./0 

inch inch inch inch inch inch inch . B B B B do do pS1 

10 3 45,4'J7 '.5.4'17 90.99'. 239. ::11'1 66.!l2~ ~(,.!l21 1.45t- O.~A3 1).107 0.107 27.92] 27.:JZl 1395 2.133 

102 45.497 45.4'17 91). rl''1'' 239. 1.07 66.969 66.CJCQ 1.4!:ïb 0.383 ~. 1117 0.107 7.7.94fl 27.C)4P. 13~6 Z •. 135 

101 45.51Z 45.517. 91. (\2:; 2 4 11.1.31 67.1317 67.1'17 1.456 O. ,HI 5 ·0.1 QI) 0.10'7 Z8.7.Qfl Z8.2!)fl ]41)8 2·0151 

10 0 4;) • ô '11 45.6.1 91. 201 249.nflo 75.796 75.796 , .459 O.39Q Il.121 0.121 30.'t.~~ ?lo.'d'') i510 Z,ZClZ 

10-1 5l.ilP,2 42.305 95.187 306.98.5 73."45 l5ï.f!?9 1.523 0.491 1).119 1'10253 24. i1n 51.41fl 13 tl 7 3,331 

10-2 59.il05 5<;.305 119.610 371.0Ro 73.026 73.02(, 1.914 0.594 (J.1l7 0.117 19.67Q lt'l.fl7Cl 1l~5 4,648 

10-3 57.5,);, 57.5(l(l 115.nOn 35~.q13 83.392 83.'3'jZ 1.940 0.574 0.133 0.133 7.3.23~ 23.23c; i1bO 1.315 

10-~ 56.80') 56.800 113.600 35ti.207 !l7.354 87.35(t 1.'310 0.5"0 0.140 1'1.140 7.' •• ~ 23 24.;7,':\ 11'.4 1.302 

10-5 5{).801) 56.6"'0 113. 6·:)(~ 35".27~ D7.41C) !l7.'+1'1 1. t1111 O.57() fI.14" 1".!4n 2 ft·537 24.5;\7 1141 1.302 

10-& ·50,eO:l 56. 6~.O 113."'00 3%.27 :-\ 137.420 87. L.:!,) l.!lle n. !ï/o (). lit!) l' .14'1 2' .. 537 24.537 11,.i 1.302 

TABLE XX 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=O.0625 inch, W=100·P.L.I.) 

llRx106 

: 

0.22 

Z.23 

2Z~Z3 

212.32 

12C5.n 

734.59 

6·9.13 

8.66 

0.67 

O.oq 

'" o 
lO 



. Fo't 
LI X103 L2 X1 03 Lx103 dox106 dl X106 d 2x10 6 L d°t.I02 !!.Lit 10? ~2XJ02 ~lt102 d2lC.I02Pmax xxl03 

inch inch inch inch inch inch inch B B B do psi 

10' 52.500 52. 5·~O 105.000 ~Oq.n81 79,":193 79.:.q~ 1.6e(' (\.'.'10; 0.127 n.127 75.f.87 2'i,"87 ï033 3,OrO 

102 !j2.500 52.5:~O 105.000 ;\09.21":1 79.526 7s.526 l,MiO 0,495 0.127 0.t?7 25.711:1 ?'i.71~ '1l7l5 3.0112 

101 52,50Q 52,5'JO 105.001' 31n.!i7.7 (10.1340' 80.040 '1. .bRO 0,497 0.129 1'.129 26.r.3:~ <'6.03:\ lflr,l 3,1(\4 

10 0 52,5."0 52.5(10 105.000 nl.913 92.7.26 92.22~ 1.690 O.5J.'i () .149 n.1411 ?,1i.(>49 28./)4:) l QD 2 3.292 

10-1 
61.S53 49.4.-12 111.335 401i.97? 880156 202.930 ,,781 0.b51 ('. lit 1 n.3?~ ;.\.661 49.n{,":\ 1R;l5 4,847 

10-2 
690112 690112 l.3R.?24 l,ll2.747 1!4.706 84.706 7.21;:0 ('1.777. . 0.136 n.136 17,547 17.547 14C)3 6,622 

10-' 65,753 65.753 131.506 45Q,725 99.435 99.4:5 70104 o.73ô 0.159 n.1511 21. 629 Z1.b?,Q 157b 2.073 

10-" 650173 650173 130.346 457,690; 103.733 103.73;1 ï..o8b· 0.732 0.166 n,lM 2.Z. fl fJ4 22.-,M. 15r·Q z,05i 

10-5 
6.50167 ~5 .H.7 13

'
),334 457.1.79 103.785 103.7135 (,0&5 0.732 1l.16b n .161'. ??.h.,n 2.2.676 !!'n6 2.051· 

10-6 
65'.167 6501l-7 130.:;34 457.67') 103.785 103,755 2."&5 0.732 r, .1bl; n.l66 7.?.67" ?i!.1,7~ 15('\5 2;051 

TABLE XXI 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=O.0625 inch, W=150·P.L.I.) 

li xlO6 
R 

0.29 

2.9] 

29.21 

2'/6.04 

1576.21 

76b.45 

91.3] 

a,S6 

0.119 

O~O!) 

. 1 

l'V .' 
1-1 
o 

.' 

~~ 



FOT 
L1X103 L2 X103 Lx103 d ox106 d1x106 d 2x1a6 d2-.lo2Pmax inch L do r?- dl ",102 d2 02 dl x.rl xx103 

inch inch inch inch inch inch B Bill B B"" do do psi 
10' 5ô.125 5;;.125 l1A.2~r :;71.510 89.967 89.967 l.RbO O.~94 0.1 44 0.\44 '.' .. 217 24.217 7.2'+0 3.965 

102 513.125 5n,125 116.25(. '371.6foR 9C.145 9:'.145 1.0{-O 0.595 \'.144 0.14 /t 24.25:\ 2/,.? 5~ 2242 3.968 

101 5B.156 5801,6 IH).312 373./117. 91.966 91.9b6 ~" .Ilbl o.~9R .).147 n.147 24.602 2' .. 602- 22nS 4.0n1 

10 0 53019.) =8.1~O 11n. ::!8C 3BI).?4~ 107.076 107.076 ).8b2 1).02" n.17\ 0.171 27.5oR 27.5na 7.4"4 4.256 

10-1 09.(117 55.214 124.2"3C 4970197 lOf'l.252 24J.152 J .968 0.79n 0.1(1) 0.3/lQ 20.16~ 411.905 227.6 6,267 

10-z 7b.339 76.3,9 152.678 579.1'.-44 94.010 94.010 2.443 0.9Z7 ('.150 0.15\1 1".219 1~.21? 18!4 8.473 " 

10-3 72.296 12.296 144.591 540.40 Q 112.854 112.1l!i 1t 2.313 (J.H17 1).181 n.181 2').571'1 lO.5"fQ U\n1 2.759 

10-" 71.875 71.8"15 143.750 !i4!i. (146 117.545 117.545 Z.300 n.A77 ~.lO8 0.1811 21.448" 2i.44~ 1/l49 "'2.756 

10- 5 71.875 71.~75 143.75(1 54P..1lC' 117.609 \l7.bCi9 2.300 t'. !l77 n.18R 0.18R 21..457 21.'.5"7181,4 2,75b 

10- 6 71,875 71.875 143.750 5411.111 1l7.610 117.610 2,301) 0,077 0.189 o.tSn 21.457 2i .457 18',8 2.750 

TABLE XXII 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B~O.0625 inch, W=200 P.L.I.) 

llRx106 

0.35 

3.S!! 

35.7i 

335.a!) 

1814",79 

7~1.44 

92.76 

9~OI\ 

0.90 

O~O9 

1\) 

1-' 
~ 

.' 

.~ 



, FoT L1 x10 3 L2 x103 Lx103 d ox10 6 d 1X106 d 2 X10 6 L 'd 2 5!J.. Irf ~Xlcr, ~ltlcf d 2 IIfPmax xd03 
B -l!..lliO d'Q1e psi" 

inch inch inch, inch inch inch inch B B )( 

10 3 16.313 16.3t 3 37..627 24.55'i 2. :=170 Z.~171J 6.525 fJ.4Cll 0.:),+8 0.0411 ".6~3 1).6A3 7.177 4.67Q 

102 16 .313 16.3t 3 32.627 24,55() 2,381 2.~al (,,525 0. 491 0.048 0.048 9,6'16 Q,6% 2177;' 4.671 

101 10,313 16.313 32,62; 2'10 ~94 2.416 ?.416 6.525 0.492 ,0,0'16 n.04A Il,RZ5 ",1\25 21110 4.678' 

10 0 16,313 16.313 32,627 iUI,933 2,756 2.756 6.525 0.499 0.055 n.05!i 11.053 11.0,';3 2214 4.745 

10-1 17.800 14.240 32,(14r) 27.60 ft 1.2'J1 10.706 6.403 O.5n '1.024 0.214 4.35:1 36. 7114 ?376 5.459 

10-2 20.622 16. I,Q8 37,]19 38.45, '3,Olb 15.774 7.424 O.7bCJ 0.1'60 0.315 7.114':\ 41.020 lel,7 60148 

10-3 21.100 t'l.lnO 42.?00 39.330 2.238 2.23A I~. 440 0.7R7 0.04 5' 0.045 !i.690 5.('.90 177.1 8,729 

10-'+ 19.716 1 q. 776 3q ,557 35.576 2.978 2.979 7,911 0.117. o.ObO 'l.Obn 8.3(,9 8.36~ 1830 3.841 

10- 5 19.685 19. (:~. 5 31).371 35.433 3.140 3.140 7.974 o.70Cl o.ob3 o.Ob':\ e.A61 P.1\61 187.9 3.852, 

10-6 19.664 19 .6,,4 39.3~8 3'i.'13i 3.]42 3.142 7,i!74 O.70Q 0,"03 n.n6~ n.Rb~ n.6b9 1828 ,3,S5Z 

TABLE XXIII 

SOME RESULTSOF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=Q.QOS inch, W=50 P:L.I.) 

llRX106 

0',03 

0;27 

2',74 

27.07 

Z3b~44 

51'6.78 

99.90 

11.1 B 

1.09 

o.ti 

"., 

1-' 
"., 

".~ 



FOT 
L1X103 L2X103 Lx103 d oxl06 d 1 XI06 d 2x106 L !!!.ltlt ~x102 d 2 ~. 2- d2xlcrPmax inch inch inch inch inch inch inch B ~"'o do xlO xx103 

B B do psi 

10 3 
20.000 20,000 40.r!Q(! 31'..55:; 3.221 3.221 8.000 0.731 fl.1')64 0.064 S.R13 8.1\13 '3566 7.693 

102 
20.00i) lO.O"O 40.ljor, 31'..562 3.228 3.22R 8.000 0.7:11 (;. nb5 n.Ob!) 8.A3n 8.R'3n 3567 7.695 

101 ,20.000 20,0\,0 40.~OO 36,(:)2 3.299 3.2;09 8.0CO 0.731 r.,r.66 O.06f> !hO~S 9.t')O!i 3574 7.7"9 

10 0 
20.001 ~C."f)l 40."03 37.3:>1' 3.910 3.97') 8.001 0.74" 0'.079 (\,079 10,641 10.f>41 36"8 7.843 

10-1 
21,560 17.4f8 39.348 47..421 2.599 H:,935 7.1i70 n.041! ~.052 0.339 fo.127 39.922 3104 9.247 

10-2 
25.760 2~.6r,d 46.3613 59.400 4.102 24.009 ~.274 l.l!!!) 0.082 0.4An Et. 9r~5 40.419 2924 13.578 

10- 3 
2/).000 2/).000 52.00CJ 59.244 2.911 2.911 10.400 1.185 0.Cl5!J 0.058 4.914 4.914 21136 10.587 

10-4 
23.%9 23.9(,9 47.938 51.9!i'1 4.1)!l4 4.0U4 9.5/lfl 1.n3 Cl 0.082 n.062 7.RS9 7.!J5C) 3017 6.398 

10-5 
23.905 23.905 47.~lO 51.91Q 4.298 4.299 9.51)2 1.OJEl O.o6f> 0.n8h B.27Q 8.279 ?'O:!5. 6.437 

10-6 
23,905 23.905 47.e1C 51.922 4.3a2 4.302 9.567. 1.1J31l o.fJ86 n.086 Il.2115 Il.?.R5 3024 b.438 

TABLE XXIV 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=O.005 inch, W=100 P.L.I.) 

IJ'RX106 

'0'.04 

0.44 

'4.49 

,; 44.19 
" 

:370.09 

629.28 

116.01 

li~53 

1.2~ 

0.12 

'" f-J 
CAl 



FOT LI X103 L2 X103 L~103 d oX106 d 1 x1a6 d 2)(10 6 L ~Jtlo'- ~XI; d
2XI0

2. ~XI02. d2 I02Pmax X)(103 
inch inch inch inch inch inch B B B dol( psi 

inch 

10' 22.416 22.4to 44.831 45.731. ~.a55 3.~6~ S.966 0.915 fl.077 0.(')77 8. 450 8. 1150 4777 10.329 

102 22. 4 t6 22.41~ 44.831 45.747 3,675 3.875 8.<)66 0,91.5 (').076 0.078 8.471 8.471 1.778 ,10.331 

101 22.416 2~.4t6 44. 'Bl 4;.052 3.960 3.99') 8.966 O.IH7 l'l.I'}SI) 0.013" R.681 8.fl81 47'18 10.352 

10 0 22.47.5 22.4]5 44.1150 46.1l1l!1 4.9!H 4.9F11 8.970 o.93A O.lO~ O. HIC'I 10.1.>2" 10.624 4887 10.556 

10-1 24.645 ! 9. 716 44.,61 54.679 4.(103 22.2RS a.B7;. 1.0q~, 0.n81 (\.1.46 7.431 40. 7 56 f,639 12.734 

10-2 29.21~ 2;1.375 52.<,94 7(,.011' 4.(167 3n. '.~<) 10.519 1.52i) 0.097 0.610 ' (,.403 4o.1'}99 3837 18.269 

10-3 29.136 29.136 58.273 7'1.123 3.376 ::l.37':1 \1.655 1.4112 1).068 f\.066 ' •• 5 SR 4.,558 3773 140167, 

10-10 ,26, ?lB 26.71 8 53.4;\5 64.430 4.944 ' •• 944 10.687 1.l89 0.099 .0.099 7.674 '7.67ft 4055 8,702 

10- 5 20,619 7.6.61 9 53.239 64.7.3/\ 5.1B8 ;.lbil 10.6413 1.2R5 0.104 0,.104 8.076 8.(\76 408(\ 8.123 

10-6 26,618 26.6t B 53.1'37 b l+.237 50191 ;, .1')1 10.647 1.2il5 0.104 0.1 Ci4 8.08? M.082 4079 8.723 

TABLE XXV 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=O.005 inch, W=150 P.L'.I.) 

lI
R

'X106 

O.Ob 

0.60 

6.01 

59.10 

4B6.05 

701.60 

128.93 

13 .. 63 

1.34 

O~ 1,3 

I\J 
1--' 
,+:"' 

i, 

':, 

-" 



FOT 
L1x103 

inch inch 

10' 24.235 

102 24.2:~5 

101 24.235 

10 0 24.235 

10-1 26,706 

10-2 31.913 

10~' ::11.393 

10-4 28.652 

10- 5 2d.550 

10- 6 2!3.,:549 

L2 x103 LX103 do X106 d1 X106 d 2x10 6 L ~)t,I02. dl· d 2 ~)(/I! d 2 I02Pmax xx103 -1..)(/0 ~)(IO 
inch inch inch inch inch Ir B B B do . do" psi 

24.215 48.46" 53.343 4.405 4. '.0' 9.694 1.067 ,). ')SA O.08fJ 8.257. ".257·58~4 12.741 

24.235 41l.46S 53.:-H>2 4. l'19 4.4L9 9.694 1.067 O.~8S t'.Oila 8.281 8.281 ;es" 12.744 

24. ;::,.5 48.46 Q 53.502 .4.559 4.55Cl 9.694 1.070 ·0.091 0.091 8.521 8.5?1 590() 12,772 

24.235 48.469 54.818 5. fi 75 5.El75 9.694 1. ecu, 0.117 1'\.117 10.7}7 10.717 6023 13.026 

21.3"5 48.071 ·64.847 5 ./t 12 26,80IJ 9.614 1.7.97 o .1OR t'I.536 8.3'.0 41.341 59q7 15.854. 

25.531 57.44't 9".317 5 ./'44 35.9C)9 11.489 . 1. B06 1),109 n.72r, 6.020 39.1l58 4671 22.574 

31.3"3 62.787 115.B54 3.725 3.725 12.557 1.717 0.074 ·0.074 4,3Z Cl 4.339 46~1 17.3)1 

7.6.652 57.305 71t ,03r; 5.622 5.622 Il.461 1.4Rl \1,117. 0,112 7.5114 7.~9(. !i017 10.715 

28.5';0 57.1 GO 73.1321; 5.999 5.89') 11.420 1.476 (J,1lS 0.110 7.991 7.C)9t 5010 10.738 

28.5'.9 57,Q9!! 73.1123 5,903 5."nJ 11.420 1.476 0.118 n.llA 7.99~ 7.C)96 50nS 10.738 

TABLE XXVI 

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=O.OOS inch, W=200 P.L.l.) 

~RXI06 

0·.07 

0.73 

7.41 

• 72.·5B 

586·.87 

757.91 

139.72 

J4~53 

1.43 

O~ 14· 

N 
1-' 
(}1 

.: 


