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A theory has been proposed to predict the behaviour
of a viscoelastic sheet in rolling contact with smooth,

rigid cylinders at slow speed.

A contact length is first assumed which is then di-
vided into a number of elements. The force on any element
is taken as a line load of unknown magnitude. Influence
functions are obtained by first obtaining the elastic
solutions and then applying the correspondence principle.
Constitutive equations are represented by a generalized
mechanical model. Simultaneous equations for the unknown
quantities are obtained by matching the normal displacement
at the ends of the elements to the geometry of the cylinder.
The contact length is later corrected so as to éatisfy the

total load condition. Solutions for some simple cases have

been obtained numerically.

Rolling of an elastic sheet has also been treated.
Solutions have been obtained for the extréme cases of "in-

finite friection" and "no friction'".
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RESUME

Cette thise &labore une méthode de calcul permettant
de prédire le comportement d'une lame viscoélastique su-
bissant un laminage entre des cylindres rigides et lisses

a des petits vitesses.

On assume une valeur pour le longeur ae contact et on
la subdivise ensuite en plusieurs segments. La force, de
grandeur inconnue, distribuée sur chaque segment, est ap-
pliquée a son centre. On obtient les fonctions d'influence
par calcul des solutions du systéme considéré comme &élas-
tique et par application subséquente du principe de corre-
spondance. Les équations des contraintes et de formations
sont représentées par un modéle mécanique generalisé. On
détermine les param@tres des équations simultanées permet-
tant d'évaluer les inconnues par comparaison des déplace-
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tion du cylindre. On effectue ensuite une correction de la
valeur supposée pour le longeur de contact de facon a satis-
faire les conditions de charge totale. Cette thé&se comprend

aussi le solution numérique de cas simples.



Le probléme du laminage d'une lame élastique a égale-
ment été abordé; on a -calculé les deux cas extrémes supposant

d'une part un frottement infine et de l'autre un frottement

nul.
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CHAPTER T

1. INTRODUCTION

During the rolling process, two bodies are pressed
together by some external force and then one body is made
to roll on the other. Due to the applied force, the two
bodies come closer, within a certain distance (which is
commonly known as the amount of relative approach), and
make contact over a finite area. The applied force is

distributed over this contact area in the form of some

unknown distribution.

If the two bodies are identical (in size and in pro-
perties), they will deform equally. But if they are not
identical, they will deform unequally and the contacting
points tend to move relative to each other. This tendency
is opposed by the presence of friction and gives rise to
shearing forces. If the shearing force at any point in
the contact zone is less than the limiting frictional force
at that point, then there will be no slip. On the other
hand, if the shearing force at =2ny point is equal to the

available limiting frictional force, then slip will occur.

Problems involving the rolling of two bodies are mainly

concerned with the determination of the area of contact, the



forces on the contacting surface and the amount of rela-
tive approach of the two bodies. In this case, neither
the boundary nor the conditions on the boundary are known.
Hence, in this respect, the problem of rolling of two
bodies is radically different from the general stress
analysis problems where the boundary as well as the con-
ditions on the boundary are prescribed. The only helpful
information is the fact that, in the contact region, the
two bodies have a common surface. Outside the contact
zone, the external forces are zero. But this information
does not help in determining the unknown forces on the
contact surface. If the area of contact is small compared
to the size of the two bodies, the bodies may be treated
as half spaces. 1In that case, there is one boundary at
infinity. The condition that the stresses and displacements
must be bounded at infinity becomes helpful informaticn in
determining the right stress function or the displacement
potential, as the case may be, for the particular problem.
If the two bodies are elastic, there is a line of symmetry
and therefore the problem becomes less difficult. But if
one of the bodies (or both) is viscoelastic then, due to
the dissipative nature of visccelastic materials, there will

be no symmetry and the problem becomes more complicated.

As an introduction to the formulation of the problem



treated in this thesis, a brief review of some earlier
works, in which at least one of the bodies is a cylinder,

is presented in the next two articles.

1.1 Rolling of Two Bodies

Table I gives an outline of the problems involving
the rolling of two bodies. Hertz[l]‘solved the problem
of contact of two perfectly elastic bodies having smooth
surfaces. CarterIzJ and Poritskyls] have treated tractive
rolling (where a net tractive force is transmitted from
one body to the other). Hertz's analysis ignored the
presence of any shear force on the contact surface. This
implies complete slip, but in practice, it is impossible
to get completely smooth surfaces. Bufler[4J solved the
same problem assuming no-slip anywhere (which represents
another extreme case). Johnson[5] and later Bentall and
Ie]

Johnson relaxed the assumption of "no-slip anywhere"

and allowed for partial slip. Since the regions of ad-
hesion and slip are not known in the beginning, the problem
cannot be solved analytically. They used numerical methods

and solved the problem by an iteration process.

Note: Numbers in brackets after a name indicate references
given at the end of this thesis.



Examples of rolling between elastic-viscoelastic
bodies are the rolling of an elastic cylinder (or sphere)
over a viscoelastic half space. For further simplicity,
the cylinder (or the sphere) is assumed to be rigid as

compared to the half space.

Hunter[7] and Morlandls] have treated the rolling of

a rigid cylinder over a viscoelastic half space. They
considered slow rolling (neglecting inertial effects),
constant velocity, steady conditions with respect to the
cylinder position, plane deformation, and smooth surfaces.
{71

Hunter expressed the surface displacement as an integral

of the moving line-load solution. This resulted in a
singular integral equation for the pressure distribution.
He assumed the material to behave like a standard linear
solid in shear and having a fixed Poisson's ratio. The
resulting integral equation is transformed into a standard
Alogarithmicvkernel of a differential operator in terms of
the pressure. He obtained a closed form solution for a
material characterized by one viscoelastic creep function
having a single retardation time. But for materials having
more than one characteristic retardation time, including
the case of two or more creep functions, the integrals di-
verge. Morland[gl obtained two pairs of coupled integral

equations for the unknown displacements and stresses.



Representing the unknown functions by a series of Bessel's
functions, an infinite set of simultaneous algebraic equa-
tions were obtained for the coefficients of the Bessel's
functions. The truncation of the infinite matrix depended
on a small parameter, the loss tangent of the material in
the non-diagonal terms. The final solution again was a

numerical one.

The rolling of two identiéal viscoelastic cylinders has
also been investigated by Morland[gl. This problem differs
from the previous one in that the cylinders are subjected to
the nip forces periodically, varying at a frequency of «w/a4 .
He also considered slow rolling at constant speed, smooth
surfaces, plane deformation, and steady-state conditions for
this problem. He solved Navier's equations by separating
the variables and obtained expressions for stresses and dis-
placements in terms of Fourier series of unknown coefficients.
The analysis is rigorous and applies to materials having any
number of retardation times, including materials having a
continuous spectrum of retardation times. Subsequently, this
analysis was extended to treat the rolling of dissimilar vis-

ccelastic cylinders[lol.



1.2 Rolling of a Sheet

The rolling of a sheet is more complex than the roll-
ing of two bodies due to the presence of an additional
boundary at the central line of the sheet. Sneddon[lll
suggested the use of Fourier transforms for the solution of
such problems when the boundary forces are prescribed. But
for the rolling problems, the boundary forces are not known.

Table II gives a brief indication of the work done in this

context.
Wang[lz] tried to determine the contact forces for an
elastic strip pressed between identical cylinders. He

assumed smooth surfaces and plane deformation. Following
Sneddon's method, he obtained an integral equation for the

‘unknown pressure distribution as follows:

o
LQOZ) K(yn)dn = f(y o< Y ca (1.1)

where

q(n)

the unknown pressure distribution in the nip

«

semi-contact length

K (H,Q) = ei.Ki(H,Q) + 92- Kg(y,'l)
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K
Ki (3,’)_) - L (o XS <y§- (oS EN d§

©
K?_(H,'Z) - L G(bf)- cos E\J’.{wst'z dg

The function (5(b§) in the integrand has the form:

_ 2 sinh®he
G(b3) = Sinh 2b% + 2b¢

and the material property is given by:

6, = 4 (1-v2) -

i=1, 2
nE;

1 for cylinder

2 for strip

The function {(3) is a function of the maximum indentation

of the strip as well as the geometry of the surface of the

cylinder.

In order to simplify the integral equation, Wang approxi-

mated the kernel, considering two separate cases, viz.: (a)

thick strip, and (b) thin strip. For thin strip., he argues
that:

since

Lim. G _ 1
x>0 X 7 2
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gomog-':o [ Gg'g) Jcosrt .cos ¥l dr

. [
T3 '(o cosrt. cosrl dy

where g = a_ _ semi-strip thickness
T b semi-contact length

It is true that for a very thin strip, the parameter -+0.
But even for very small 3 , the product of r and I3 will
still not tend to zero since the upper limit of integra-
tion is infinite. Thus, the above approximation appears
to be invalid. After approximating the kernel, Wang then
solved the integral equation by expressing the unknown

pressure distribution in the form of Chebyshev's polynomials.

Hence, it appears that Wang's solution is only valid

for thick strips.

Bentall and Johnson[13] applied Sneddon's method for
solving the contact forces produced in the rolling of an
elastic strip. Unlike others, they did not ignore the
presence of shearing forces. They divided the contact
length into a selected number of elements énd represented
the forces on each element by triangular forces of unknown
magnitudes. They presented a set of simultaneous equations

for the unknowns by matching the displacement boundary con-



ditions at a number of discrete points. In this work,

an assumption was made in the beginning for the condi-
tions of slip or no—Slip at different points and these
conditions were imposed on the equations. By solving

the simulfaneous equations, the unknowns were then de-
termined. Whenever necessary, a correction had to be
made in the assumptions for slip or 'no-slip'. The final
solution of the problem is essentially a numerical one.

Details of that treatment are given in reference [14].

Alblas and Kuipers[15] have also investigated the
rolling of a viscoelastic sheet. They assumed rigid
cylinders, smooth surfaces, plane deformation, and in-~
compressible material of the sheet. They obtained a
Wiener-Hopf type equation by using Sneddon's method.

The solution is approximate and needs a further extension.

1.3 Outline of the Present Investigation

The aim of the present investigation is the determina-
tion of the stress and deformation fields in the nip during
the rolling of a thin viscoelastic sheet. This problem is

of great importance, for example, in the paper industry.

On reviewing the literature, it was realized that



Bentall's approach[lal, although it provides a very good
insight into the problem of rolling, cannot be extended

to the rolling process of a viscoelastic sheet.

For the solution of a viscoeiastic problem, it is,
in general, necessary to look for an associated elastic
problem in order to solve the viscoelastic problem. How-
ever, in the present case, there is no associated elastic
problem (since the contact Loundaries for the elastic and

the viscoelastic rolling case are different).

But, a line load (normal or shear) or any precisely
defined loading acting on a viscoelastic sheet, has an
associated elastic problem. Therefore, the influence
funetions for a viscoelastic sheet may be obtained from
the corresponding elastic solutions by applying the cor-
respondence principle[16], provided it is possible to
carry out the required mathematical operations. A tech-
nique is proposed in this thesis to determine the necessary
viscoelastic influence functions. It is then possible to
formulate the complete problem of the rolling of a visco-

elastic sheet ‘in a manner similar to that of Bentall. It

is apparent that the elastic case must be considered first.

Since the problem formulated here is rather complicated,

it is necessary to make some simplifying assumptions. Hence,
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the following assumptions are made for the subsequent

analysis:

(i The cylinders are assumed to be rigid as compared
to the sheet. Also, they are supposed to be
identical. Thus, the stresses and displacements

will be symmetrical with respect to the centre

line of the sheet.

(ii) The sheet is supposed to be sufficiently wide and,
therefore, the deformation of the sheet is assumed

to take place essentially in the plane perpendicular

to the axis of the cylinder.

(iii) The cylinders are assumed to be rotating slowly, but

at constant speed. Therefore, all inertia terms are

disregarded.

(iv) The deformations are assumed to be small so that the

solutions can be superposed linearly.

(v) It is assumed that the material properties of the

sheet do not change during its passage through the nip.

Since it is very likely that the coefficient of friction
between the contact surfaces varies along the length of con-

tact, therefore, even though the problem is solved for the



case of partial slip for some given values of the coeffi-
cient of friction, the solutions may be far from the true
solutions. In view of this fact, it is decided to solve

the two extreme cases of the problem, viz.:

CASE A: pu= o0 > When there will be complete "no slip"

and no bound on the shear forces,
and

CASE B: M =0 > when there will be complete slip and

the shear forces will be zero.

The true solution of the problem is considered to
lie somewhere within the range of the above limiting so-
lutions. It will be seen later that this range is small,
and, therefore, it is possible to make an estimate of the

true solution for any particular case.

The present work is divided into eight chapters.
Chapter II contains the basic theory, the specified boundary
conditions, and the formulation of the problem. Equations
of the theory of elasticity related to the problem are re-
viewed in Chapter III. The <influence functions for elastic

sheet are obtained in Chapter IV by using a Fourier transform



technique. The integrals involved in these expressions
have been evaluated analytically by using the calculus

of residues, as shown in Appendix I. Chapter V deals with
the rolling of an elastic sheet. The influence functions
for a viscoelastic sheet are obtained in Chapter VI, using
the principle of correspondence and the convolution theo-
rem. The integrals occurring in these expressions are
evaluated in Appendix II. Chapter VII finally deals with
the rolling of a viscoelastic sheet and in Chapter VIII,

t+he discussions of the elastic and the viscoelastic solu-

tions are presented.



CHAPTER IT

2. BASIC THEORY

The rolling of a viscoelastic sheet in contact with
two rigid and identical‘cylihders is indicated in Figure 1.
The cylinders are assumed tb be rotating at some small
speed @. Since the cylinders are identical, there is a
line of symmetry with respect to the centre line of the
sheet. Therefore, only one half of the sheet needs to be

considered in the following analysis.

The nip-conditions are illustrated in an exaggerated
form by Figure 2. The cylinder makes contact with the
sheet over some unknown length L . The total normal load
W , exercted by the cylinder, is distributed over the con-
tact length in some unknown fashion. Because of the dis-
sipative nature of the sheet material, the pressure distri-
bution is skewed towards the leading side and the lengths
of contact on the leading and trailing edges are different.
Owing to the presence of friction between the contacting
surfaces, some shearing forces with an unknown distribution
will be generated. Under the applied load, the cylinder

will come closer to (or approaches) the sheet by some dis-

tance do'
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A theory required for the determination of the
unknown pressure and shear distributions, the lengths
of contact on the leading and the trailing sides of
the sheet, as well as the amount of relative approach,
will be proposed in the following paragraphs. The co-

ordinate system used in the analysis is shown in Figure 2.

2.1 Boundary Conditions

The boundary conditions of the problem are of the
mixed type. In other words, some of the conditions are
prescribed in terms of forces whilst others are pre-
scribed in terms of displacements. These conditions can

be grouped into the following four classes.

(i) THE NORMAL FORCE CONDITIONS

The conditions for the normal forces are the follow-

ing:
P(Y) - 0 within the nip W
b(vy) =0 outside the nip L
and
fpep.dy = w

(2.1



- 16 -

where the integration is carried out over the whole

contact area.

The conditions in (2.1) imply that no tensile force
is permitted within the nip and that the normal forces

must be zero outside the nip.

(i) THE NORMAL DISPLACEMENT CONDITION

Physically, it is required that the two bodies have
a common surface within the nip. Since the cylinder is
rigid, the surface of fhe sheet must follow the circular
profile of the cylinder wifhin the nip. Assuming small

deformation, this condition can be written as:

w(y)= d, - F(Y) within the nip

(2.2)
= unknown outside the nip

where f(Y) represents the geometry of the surface of the

cylinder.

(ii1) THE SHEAR FORCE CONDITIONS

Before analysing the conditions for the shear forces,

it is necessary to study how they are generated. If the
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sheet is thin, the cylinders have a squeezing action on
the sheet. The latter, therefore, tries to move away
from the centre. This action is illustrated in Figure
3(a). On the other hand, if the sheet is thick, the
latter behaves like a string. In this case, the sheét

tries to move in. This action is illustrated in Figure

3(b).

If the contact surfaces are smooth, the sheet can
move freely. If not, then the frictional force will
oppose the motion of the sheet. This generates the shear

forces which act against the direction of movement of

the sheet.

The conditions for the shear forces may then be

expressed as follows:

FOR CASE A: q(Y) to be acting either )
inwards or outwards

within the nip

- 2.9

= O outside the nip

FOR CASE B: q(y) =0 for all Y

The former condition of Case A implies that there can

be only one reversal in the direction of the shear forces
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and that it reaches zero somewhere in the middle of the
contact. Since the tendency of the sheet to move occurs
mostly at the ends and least near the centre, the
magnitude of the shear forces should reach maximum value
near the end and should decrease monotonically to zero
somewhere in the middle. Bufler[4] mentions that for
the case of infinite friction, the ratio of the shear
force to the normal force rises to infinity at the ends.

This suggests that:

FOR CASE A:

should be maximum at the

ends and should decrease
' (2.4)
monotonically to zero

soméwhere in the middle.

(Zv) THE SHEAR DISPLACEMENT CONDITIONS

When the coefficient of friction is zero, there is
no limitation on the movement of the sheet in the vYv-
direction. The amount of shear displacement will depend
upon the normal forces. But when the coefficient of
friction is infinite, the sheet is not permitted to move
relative to the cylinder. Hence, it is essential that the

contact points move at equal speeds. Then, let:



F
Fo
Ty

Nominal velocity of the cylinder,

Nominal velocity of the sheet,

Velocity of any point in the sheet

within the nip.

Then, neglecting second order terms, one can write:

AV

Since the cylinder is assumed to be rigid, it is not de-
formed and the velocity of any point on the cylinder
remains the same. Hence, in order that the two points

have the same velocity, it is required that:

fY =F
or,

Fb('*'%g}):: F

or,

QY _ F-Fo _
2 T F = %

Since ¥ depends upon the nominal velocities of the two
bodies, it must remain a constant for all points in the
nip. Hence, differentiating a second time with fespect
to v »

v _ g

ay* ~

The conditions for the shear displacements become then,

as follows:

(2.5)



3V
CASE A: — =0 everywhere within
—_— -2 Sl
the nip
(2.86)
CASE B: Viy) = unprescribed
Equations (2.1) to (2.6) constitute the complete
boundary conditions of the present problem. But it will

be difficult to satisfy them until the contact lengths
(on the leading and the trailing edges) are determined.
For this purpose, a semi-inverse method is being proposed
here. The solution must be considered as an approximate
one, but by making the elements sufficiently small, a

high degree of accuracy can be achieved.

2.2 Representation of the Nip Forces

Let the contact length be divided into a number of
small elements of equal widths such that there are My
elements on the leading side and M, elements on the trail-
ing side. (The choice and the determination of my and m2
will be discussed later.) As an approximation, let it be
assumed that the total force on any element acts as concen-
trated forces‘(one normal and one shear) af the centre

point of the element. Let the magnitudes of these concentrated



forces on the 4th element be P; and Gy (normal and

shear respectively).

Since the thickness of the sheet is very small com-
pared to the radius of the cylinder, the angle of contact
will be very small. And with little loss of accuracy,
the normal forces may be considered to be acting verti-
cally and the shearing forces as acting horizontally and
all moving horizontally with the surface velocity of the
cylinder. The problem then reduces to the determination
of tﬁe contact length L. , the amount of relative approach
do and of F}ls and Qj)s such that they satisfy the con-
ditions expressed by equations (2.1) to (2.6) on the whole
sheet. A schematic representation of these forces acting |

on the viscoelastic sheet is indicated in Figure 4.

2.3 Derivation of the Matching Equations

Let the boundary conditions be satisfied at some dis-
crete points called matching points. Then, by choosing
a large number of evenly spread matching points, it may
be safely assumed that these conditions are satisfied every-
where on the boundary. For convenience, the matching points
will be taken as the points midway between the loads to-

gether with the end points of contact. Let



S
Wy

i

W

Vi

= the normal displacement of the surface of the

sheet at the C(th point due to a unit normal

line load at the jth point;

the normal displacement‘of the surface of the
sheet at the (th point due to a unit shear line

load at the‘jth point;

the tangential displacement of the surface of
the sheet at the ith point due to a unit normal

line load at the‘jth point;

the tangential displacement of the surface of
the sheet at the (th point due to a unit shear

line load at the‘jth point;

the total normal displacement of the surface of

the sheet at the t¢ih point; and

the total tangential displacement of the surface

of the sheet at the tth point.

Then, using superposition, the displacements of the <(th

point can be expressed as follows:

W

Vi

ML+ 'Y)2

=2 19O g

= 2 {VBR - via )

=1 J

(2.7)
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But the displacements of the Lth point are also governed
by relations (2.2) and (2.6). To obtain the second de-
rivatives, it is only necessary to differentiate the

influence functions twice (assuming that the superposition

also holds for second derivatives). Hence,
M]_+M2
2
??'v) (a‘w’ +<av$) Q (2.8)
aY2/i 3Y1 J J dY2 U y
where,
AV ' s .
S;i U = the second derivative obtained at the

tth point with respect to y of the
shear displacement due to a unit normal

load situated at the\jth point.

Using equations (2.2), (2.6), (2.7), and (2.8), a set of
matching equations can be derived for the two cases as

follows:

CASE A:

& (2.9)




CASE B:

Qj =0 h
My+ty

E-_ (L(r.i, Pi) = do - £0v:)

— _ (2.

M4+Mo n
Z (\}‘J pJ ) — unprescribed
=

J
Equations (2.9) and (2.10) give a set of.simultaneous
equations for the unknown quantities. By choosing a suf-
ficient number of matching points, these equations can be
solved for the unknown quantities, provided that the re-
strictions imposed by equations (2.1), (2.3), and (2.4)
are not violated. Unfortunately, these equations cannot
be handled further until the lengths of contact on the
leading and the trailing edges are known. The latter,

however, are related to the unknown forces and, therefore,

cannot be determined directly. A semi-inverse method

is being proposed here to solve these complexities.

Either My or My may be chosen from the consideration
of the required accuracy. But their ratio depends upon the
speed of rolling, the rate of relaxation of the material
and, perhaps, on the geometry and the loading conditions.

The determination of this ratio will be discussed in section

10)

2.5 and, for the purpose of the analysis given in section 2.4,

it will be assumed that this is known.



2.4 Determination of the Contact Length

Let
20 = width of each element
2b = thickness of the sheet
B = a
b
Also, let 3o be an assumed value of the parameter .

Then, rearranging equation (2.9), and solving the set of
simultaneous equations, it is possible to determine the
unknowns corresponding to the above assumed value of f3 .
It is necessary, however, to make Proper corrections on

this assumption.of B

o

If 6 , QJ? s 0, d; , and £’ denote the
approximate values as obtained according to the above
assumption, and % , QJ- . L, do , and % denote values
corresponding to the correct solutions, then the loads

in either case can be written as follows:

o My+my ° A
W =8
J=1
M.L"’Mz g
w="S"p
J=1 J

where W is the specified normal load per unit length of

the cylinder.

(2.11)

(2.12)



It is assumed that the normal load is mainly utilized
in producing elastic deformation. The normal load W will
then be proportional to the area of déformation of the
sheet. But the latter is roughly proportional to (l.th).
From geometrical considerations, it can be seen that LXP

and d,«:ﬂ?. Hence, the deformed area within the nip will

be proportional to ﬁ3 . Thus, a better approximation, in

this case, will be by taking the parameter p as follows:
Vs '
Bn = 3,(_"_“_‘) (2.13)
Wo
With the new value of B , the whole process should be

repeated until a desired accuracy is obtained.

Having determined a proper value of the parameter p s

the contact length can be obtained easily by using the re-

lation:

L= 2(mga+mp)p b (2.14)

2.5 Determination of the Ratio m,;:m,

I+ was mentioned earlier that either m, or M, may be
chosen depending upon the accuracy that is desired. But the
ratio of my and ™M, depends upon many parameters and cannot

be determined directly. Tor an elastic sheet there is a



symmetry and therefore my=m, . It is only for a visco-
elastic sheet that this ratio needs to be determined. A
semi-inverse method is being proposed here for this pur-

pose.

A value of My, should be assumed first and then the
solutions for the unknowns should be obtained. It should
then be checked if the boundary conditions are completely
satisfied. It will be shown in the following paragraphs
that if the value of M, is underestimated, then the boun-
dary conditions can be completely satisfied. On the other
hand, if this value is overestimated, then the normal force
condition, as expreésed by equation (2.1), will be violated
and therefore the boundary conditions in this case cannot

be satisfied completely.

Since m, cannot be greater than m, , for the first
approximation M, should be given a value equal to that of
m, . The solutions should be obtained and the boundary
conditions should be checked. If they are completely satis-
fied, the choice of My, was a right one. If not, then the
value of Mo should be decreased by one and the process should
be repeated until the boundary conditions are completely satis-
fied. The greatest value of m, which does satisfy the boun-

dary conditions completely, is the right one.

First, consider the case of underestimation and, for



simplicity, assume that the value of m, is underestimated
by one. Figure 5(a) represents this situation in an
exaggerated form. Curve I represents the deformed shape

of the surface of the sheet. The sheet loses contact with
the cylinder at the point D . By underestimating the

value of M, , it is implied that there is no force on the
last element and that the sheet apparently loses contact
with the cylinder at the point D' . As such, the displace-
ment boundary conditions are to be matched only up to the
point D' and not up to D . Curve II represents the dis-
pPlacement profile of the surface when the forces on the

last element have been removed and when all other forces
remain unchanged. It is seen that it is possible to satisfy
the displacement conditions up to the point D by adjusting
the values of the remaining forces, and especially that of
Rnp%hfi - This proves that when the value of m, is under-

estimated, the boundary conditions can be completely satisfied.

Now, consider the case of overestimation and, again for
simplicity, assume that the value of m, is overestimated by
one. Figure 5(b) represents this situation in an exaggerated
form. Because of the overestimation in the value of My
one extra element is introduced in the nip and the displacement

boundary conditions are now required to be satisfied up to the

point D' . Since the displacement at any point is mostly



influenced by the forces closest to that point, it is
evident that the normai force on the last element must
be tensile. This violates the condition expressed by
equation (2.1). This proves that when the value of m,
is overestimated, the boundary conditions cannot be com-

pletely satisfied.



CHAPTER IIT

3. SOME EQUATIONS OF ELASTICITY

It is well known that in the absence of body forces,
the plane elastostatic problem reduces to the determina-
tion of a biharmonic function $ which satisfies the given
boundary conditions of the particular problem.

tangular coordinates, this is expressed by:

2 V.2 P(x,¥) = 0O

where

2 ra
vy = —
- 2x? +

The stresses in the body are related to this function by

the following relations:

3

Cx =
x 30
33
&
J x>
] X
Cxy =~ 5 >y

When the boundary conditions are prescribed in terms of
"known forces" and when one of the axes extends from -co

to oo » the Fourier transform makes it very easy to deter-

2y2

(a)

(b)

(c)

mine the particular biharmonic function.

This method is

(3.1)

(3.2)
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described below.

Let the Y-axis extend from -eco to @@ . Then, by
taking the Fourier transform of both sides of equation

(3.1),

(=) .
4
g Vdx,u e dy =0
Zeo
or.,

o .
o g‘l)q‘ j FeTay =o
- 00

dx*
which can also be written as:
2 2
a _E'a.) G"cz,§) =0 (3.3)
dx*
where

o @ ity
Glx.g) = | Bye dy

-0

and where § is the Fourier transform parameter. Equation
(3.3) is an ordinary second order differential equation

whose general solution is given by:

G(x,%)= (ArBxe) et . (c+Dbx E)é.ex

Or (3.4)

J

G(x,e) = (ArBxeg)coshxt + (G Dxg) sinhxg



in which A,, B,, C, and D, are some functions of & . In

order to determine these functions, it

is necessary to

express the given boundary conditions in terms of the

. ° . . .
function & or its derivatives.

Taking the Fourier transforms of both sides of equa-

tion (3.2) yields:

w -
J o eddy = -grE (a)
~-co
© i€y 2.0
[Toyetdy = 9 (b)
—o
=) iey 0
J Z:xg 6’5 dy =1E d_G;L ()

or,

E'i
dGO(x/E) ¢ > (b)
T -% Txy
d’6a=x® (c)

W
L (3.5)

. (3.6

~

By substituting the given boundary conditions into equation

(3.6), sufficient conditions may be obtairied for the func-

tion GD or its derivatives to obtain the constants Aa, 50, C,

and D,. Having determined GOCI,‘{) , the stresses and dis-

placements in the body can be established as follows:
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Taking the inverse Fourier transforms of equation (3.5)

gives:

o .
63 Ge¥) = - 4y ,(oo g alxr) € '“dg (a) ]

_ { QQ 2.0 -
6y (x9) = o, Lo da———-ffx've'w A S I

e ey
Txy (XY= L ng di((:,t)e_ Yie @

In the case of plane deformation, the strains are given by:

a4 1+Y
€x=%5 = = LGws-vey ]
- oV _ a+y

in which W,V are the displacement components in the 2

and Y directions, respectively. Substituting for 6x and

6y from equation (3.7a,b) gives:

@© 2.0 2 -0 -1
= - 15*'71‘15 ‘[m [(v)eE+ v %ﬁcm]e_‘ﬁgdg (a)

(3.8)
(+V

@© o ° —l.
= ZnE f..oo [CH’) %‘1‘6{; +VTG ]e_ ¢ dg

Q
Yz U=

(b)
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A partial integrating of (3.8a,b) with respect to X and

Y respectively, yields:

aD o .
UCx,y) = - U G-v) 2> (Gdx + v 46" 89y
+ gy)  (a) T

V(x.4)= '2;‘)5 f [("\’)Z‘ﬁg "'Vf"G"]e—"w de (399
N
+ fGy )

The functions (%) and 9(Y) on the right-hand side of the
above relations are interrelated as follows:
AU + DV - Q(HE-V) Ty

By = Sy * Sk

Substituting for W and V' from equation (3.9) and for Ty

from equation (3.7c¢c) and simplifying, yields:
'—— f [t‘""fadx, + %_Ci - 2¢ d& ]

2n0E
:-[d

Taking any one expression of the forms GZX,‘E) given in

Q.
e~
+

_& ] (3.10)
dy

equation (3.%#), it is seen that:

< J'Gd* L 49 28 %—g_ =0 (3.11)

d=>>



From equations (3.10) and (3.11), therefore,

a4 d9
=T dy =©
Let
6('? _ and 0(9__ C
ax = ¢ a3
in which € 1is some constant. Then,
f)=—-cx+ C

(3.12)

3(4) = cy + &

Substituting for -f(z) and gcg) in equation (3.9), yields:

Jg o =i
weey) =- = [w [C-we> fadxe + v .dd;_g ]e de

+cg+ci
o .
= 1Y, 2° o] - (3.13)
§
“CZ""CZ

The constants C ,Cq and Cy may be determined from the

specified constraints on the displacements of -the body.

When the external forces are either symmetrical or

antisymmetrical with respect to Y » the above equations

can be further simplified. There are, therefore, two cases
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of particular interest, viz.:

(i) when @(x,&) is an even function of y and

(ii) when é@(},g)is an odd function of y ..

The equations for these cases will be developed subsequently.

CASE (Z): when &(x,y) is an even function of y

It should be noted that if éﬁ(i,&)is an even function
of ¥, '

3 >
S = ‘ngi and 63 = ?Sg%

will be even functions of g > whilst

2
C = - Eiﬁg_
*4 CEAY
will be an odd function of g - Now,

o _ (eo] fﬁy a0
G(x,€)= Lo Plre™dy = [m@@,x) cosgy dy

= 2 g%, g) (3.11)

where

w ©
QG (x,E) = L @(X,H)wsgz dy (3.15)
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From equations (3.5) and (3.14),

(© e sy = s
) b
w 2
1gY
:{w Eye " dy = 2 S'_% .
@ iy v
jﬂ 'Cdy e dg = fZL§ %g%; )

But

Joee®ay = 2( 6 corgy dy
(=] ff» _ . a .
J T @y = 20 cay siney dy

From equations (3.16) and (2.17),

w @ -
G (z,&)= - '? §o 6x coszy dy
@
dG (x,¢) w :
T = g o Ty sneydy -
dQC-.“'(x,g) @
dz? = j; 6§ °°S§3 dﬁ J

(3.16)
)
L (3.17)
/
(3.18)

Equation (3.18) gives the necessary conditions for the
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determination of G@)CX.§) . In the case of & <, %)

being an even function of Y% ,

@ [0)
¢ 2
G(Z'g) 3 dG(X,ﬁ) and d“G(E)
dx , o 2>
will be even functions of ¢ . Therefore, equations (3.7) ‘

and (3.13) become:

Sx(x,9)= -% f &= GOx8) cos gy de )

42
63(".3) = %j olG(’*-C ) cos gy c(§ . (3.19)

=2 (% 4g”
Ty (LY) = "J z deix,E)

o

singy df

and
Wy) = — 2<|+\J)f [(l v) g J’ +\)%§_f],

-cosgyde +cy+ & I

V(%) = 2(r+0)f [( 1-v) de + VErG ] | (3.20)

csingy & _ex v ¢y

S
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CASE (Zi): when ®(x,y) is an odd function of y

As earlier, when @(x,‘j) is an odd function
of Yy, 6x and 6y will be odd functions of Y and Taxy

will be an even function of Y - Therefore, the function

Go will be as follows:
° N e Ty
GCae) = [7 3o < oy

= 2¢ Gw(x,ﬁ) (3.21)

where,
[~e]
GPxe) = fo P(x,y) singy dy (3.22)

Hence, it follows from equations (3.5) and (3.21) that:
[0 o) .
J s e™May = 20 6Pcxgy ]
—-QO

O . 2.2,
,( %elsx dy = 2¢ d°G " (x.%) (3.23)

P-
d x>

o ey dG('z)
e d = =2 ol CX,E)
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But,
© . ey (.
£w€x€ dy = 2¢ L 8% singy dy 2
o0 | N o0
J—'m 6,3 elﬁ}dg = 2¢ S‘o 69 sin gy dg L (3.24)
:(w sze. db,l = ZL Cx_z cos &y dy )

and from equations (3.23) and (3.24), t+herefore,

¢)) oo
G (=t) = —'E'—,_ L 6y singy dy -}

&)
dG (x,%) @©
__——dx = —-—é- L ny cos g‘é dé : L

dQG(w(x,ﬁ)
d=x*

(3.25)

w .
= [, & singy 4 ,

Equation (3.25) gives thus the necéssary conditions for

2
the determination of G( )(x,g) .

Now, if @(X, j) is an odd function of Y ,

&
xey 5 dG GO 6 ¥exg)
dx dx*

are all odd functions of g - Therefore, equations (3.7)

and (3.13) become:
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6x (%) = -2 f g G, (xlgj Singy dg | 1
)
%Cx’ 4) = ?1 ———,g——-s-)singg- dg L (3.26)

@

ng(X,y):—%L g G( x,%) C05§3d§

\

and
UCx9)= - 20;") fo w[(f V) g*fGdx w%%(i”].
-sfnqydg +CY+ 4 A
V(% 9§) = - 20*9)[ CC -v) & —;;_— + \JE’-GC’)} . (3.27)
ccosgy 6 _cxre,

It is seen from the above review of the plane case of
elastic deformation that in accordance with specified
forece boundary conditions, the corresponding stress

and deformation fields can be readily determined. !



CHAPTER IV

4. SURFACE DISPLACEMENTS OF AN ELASTIC SHEET
DUE TO MOVING LOADS

As pointed out in the introduction to this thesis
and in Chapter II, it is necessary, for the formulation
of the given elastic problem, to establish expressions
for surface displacements. This is done by using the
concept of influence functions. For this purpose, the
loading on the sheet in motion is indicated in Figure 6(a)
and (b). The case of the normal loading of the sheet will

be considered first and then the effect of shear forces on

the moving sheet will be treated.

4.1 Influence Functions for Normal Line Load

Figure 6(a) shows an elastic sheet under a pair of
concentrated normal line loads of unit magnitude (per unit
width of the sheet) representing the pressure of the
cylinder over one surface element of the sheet. The sheet
is assumed to move with a small velocity 'Fo, or equiva-
lently, the sheet may be considered as stationary and the

line load moving with the same velocity.
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Consider now, a coordinate system A-Y (Figure 6(a))

" moving with the load. The boundary conditions can be

expressed as:

Ox (tb,Y) = -1 8WY)
(4.1)
'ng(i‘b,g) =0
where &(¥Y) is the Dirac delta function and 1 represents
a unit step load. It can be seen from relation (4.1 )
that 6x is an even function of Yy and @(x,y) will also
be an even function of Y Therefore, from equations
(3.18) and (4.1), it follows that:
wm,, L
G (tb,®) = 3 L 6(y) cosgy dy
_ 1 (= i
—2_6_5'4{00 S(eoseydy = f3 (a)
Y o (4.2)
d 4 - 1 : - b
a-;(-b,f) =% fo 0.singy dy =0 (b)

Taking the following form of the function GY:

)
G (X&) = (A,+8,%§) coshxg + CCL+Dxg) sinhxg

0
dG(x e) =&[[CA+D)sinhxg + (B,+Cy)cos hxg + B xg sinhxg

0
<

+ Dyxg coshxg |
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yields, upon substituting the conditions of equation (4.2),
the relations:

(A, +Bbg)coshbg + C(Cy+Dibg) sinhbg = —2!— .

——

(A‘—B'bf)coshbi — (Cy-Dybg) sinhbg = 2‘{,_

(A +D1) sinhbg + (By+Cy) cashbg

+B, bg sinhbe +l55_b§ coshbg = O
CA1+Dg)sinh bg - (Ba+C4)cosh bg

- Bybg sinhbg + Dy bg coshbg= O

By solving these simultaneous equations, the coefficients

are obtained as follows:

By =Cy =0 (a) W

A, = _Sinhbg+be cosh bg
1 €*(sinh2bE + 2b¢)

)L (4.3)

Di - - si.hh bE
g-(sinh2bg + 2b¢)

(c)

J

) O]
Integrating and differentiating G (%,¢&) with respect to

% , substituting into equation (3.20) and simplifying, yields

the surface displacements due to the normal loads:
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Y
llg_(x,s) =- 20+ )_( [(A,_ Dy +29D) sinhxg +D1x§coshx§] )
-€cosgy dE +c“ 3 +C1
L(u.u)
Vé’(x,.\l) = 20“’) f [(A1+2D1 29D1)<.ashxg=+b,_x§smhxg]

'€ sfnfydg-c ;c-a-C,_ )
where the superscript n refers to normal loading and the
subscript € to the elastic case. Due to the symmetry
condition along the y axis,

Ue (0,9) =0
so that
c-c =0 (4.5)

< co s ‘. .
To find Cz , 1t is necessary to impose some displacement

constraint on the sheet. Thus, assuming that the point

(0, ) is pinned, (see Figure 6(a)) the displacement con-

straint becomes:

Ue (o ¢)=0
Vo (0,¢) =0

The latter condition gives:



- L4p =

20+9) ali-vy (®

() .
C2 =" ne o Ai§ Slh§€d§ - nE o

Dy § singl d¢ (4.86)

It should be noted that by choosing the pinned point (o,t)
(see Figure 6(a)) arbitrarily, the coefficient function
C;? will depend on that length € . Substituting
conditions (4.5) and (4.6) into relation (4.4) yields the
displacements on the surface at the fixed value of x=-b,

; "
and in terms of C; (¢) as follows:

[» o]
UL Gb,Y) = %‘%L [(A~Dy +29Dy)sinh b )

+ Dy bg cosh'bg 1€ coseyde

©
Vé’(—b,ﬂ:f‘.’.%gﬁfo [CA;+2Dy-29D,) coshbe L (4.7)
+ Dy bg sinh bg ]ﬁ_s""é.‘ld§

+ 2(::) LmAie singlde - 4—("1“—?) waig sn‘ngedf )

Substituting for the coefficients A,;(&) and Di(&) from

equation (4.3b,c) after some simplification, yields:
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2(|V)

e@) = I, (&)

V) = - S 1 () 4 20 1

I+V [‘I (Q)+I (Q)J"‘ 2(! \J)I ( )

where

[~ o] 2
_ 2 Sinh'bg) cosELbE)
L "/o b (sinh(2 bgl+ 2b¢) dCet)

(o=}

L= ﬁﬂ"iﬁ’f’ o (bE)

@ .
_ 2 b§ SinCbE)
I =) —L bE (S’Inh(2bg)+2bE) d4(b8)

® 2sinh(bE) sin(nbE)
Tal2)= fo b& (Sinh(2bg)+ 2b€) aCee)

[4 0]
- 2 cosh(bg) sin{NbE)
Is(n) _fo cinh(abe) T2be d (b€)

7

P

" In which the parameters & and n are given by

Q: Q/b

(4.8)

(4+.9)
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It is to be noted that for the elastic case, the
displacements are dependent on instantaneous positions
only. Therefore, equation (4.8) has been expressed as

functions of « and n

4.2 Influence Functions for Shear Line Load

In addition to the normal'line load acting on the
surface of the sheet, a shear line load as indicated in
Figure 6(b) will also be occurring. The latter is re-
presented by a pair of éoncentrated shear line loads of
unit magnitude (per unit width of the sheet). (Either
the shear load is moving and the sheet is stationary, or

the load is stationary and the sheet is moving.)

Again, considering a coordinate system Xx-y moving

with the load, the boundary conditions become:

Gk (tb,y)=0 (a)

— (b)
Tuy(b, ¥) = 1.8 (4.10)

Cx.y(*b,ﬁ) =-1.8(Y) (c)

It is seen that txg is an even function of Yy , but an
odd function with respect to 2 . The stress function
@(x,y) for this case will be an odd function of y , and

an even function of X (see also equation 3.2c). Hence,



from equations (3.25) and (4.10), the function (3(2) and
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its derivatives become:

GP(Eb ) = - 4

dg

@ |

ax (b,9) =

s’

)

b,Y) =

§‘3-

€

2€

2%

O
L 0.singy dy =0 (a)

(o]
L §(YWcosgydy

5(9)(05 eydy =-1 (L)

(e)

where, for relation (4.11b), the equations (3.25b) and

(4.10b) have been used, whilst equations (3.25b) and
(4.10c) were used for relation (4.llc).

the function

2
Gc ) of the following form:

Gw(x,() = (Ay+ Byx§)coshag + (Co+ D.,_X§)sn‘r,h>(§

gives

G (x €)= f[(A + Dy )sinhatg + (By+ Cq)coshxg

+ B, X€ sinhxg + D, xg coshxg |

As before,

(a) o

(b)

(4+.11)

taking

- (4.12)
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Using the forms of (4.lla-c) and relations (4.12a,b)

yields, upon rearranging, the following expressions:

(Agp+B,bg)coshbg + (Co+ Dybe) sinhbg =0
(A2~ Baby) coshbg —(Ca-Dybg) sinhby = O
CAyt Dy) sinhbg + (By+Ca)coshby + B,y be sinhbg
| : +Dib§ coshbg = -iL
CAx¥Dy) sinhbe - (B, +Cy)cosh bg ~ Bybg sinhbg

+Dybg coshb§ :_21-

el

E‘)-

- (4.13)

Upon solving these simultaneous equations, the coefficients

will be:
BQ_ = CQ_ =0 . (a)1
A, (e)= be sinhbg (b)
E*(sinh2bg +2bE) L
Dy (&) = — cosh be (c)
E*(sinh2bg+2bF)

(4.18)

. . ) .
Integrating and differentiating <3( (X,€) with respect to

X and substituting in equation (3.27) gives, upon simpli-

fying, the following values of the surface displacements due
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to shear:

o0
TACH)ES —2(::) L [(Az' D, +2VD, ) sinh x¢ + D,x¢ coshxg )

)
g singy de + <Py v CF

@
V2 (,9) =~2("'2V)f [(A2+2D,_-19D,_)c.oshx§+D2x§s€nhxg]' (4. 15)
(+} .

@ 1€))
«Ecosgyde-C 'y +Cy

in which, as before, the superscript s refers now to

shear loading. Due to symmetry along the y-axis,
S
UWe (0,9)=0
Hence, the coefficients:

2 2)
C():: C,( =0 (4.16)

.(2)
In order to determine Cg , it is again necessary to

impose the same displacement constraint on the sheet as

before. This implies that

We(oe)=0 (a)

(4.17)
V5 (0,e)=0  (b)



. (2)
The condition (4.17b) determines the value of Cq  as:

ao .
C(z)_ 1+V f 2bg sinhbe . cos gl de
o

2 7 ne & (sinh 2b¢ +2bE)

_20-v") ® 2coshbe cos{@
NE Jo &(sinh2bg+2bt)

4¢

2
Substituting the value of A2 > Dy s C_(z), C,i ) , and ng)
from equations (4.14%), (4.16), and (4.18) into (4.15)

yields, finally, the displacement components as follows:

Ue () = ____<'+°>§;-2°> To () - __2<n'_-a_v’“) I @
2(1-v%)
nE

VE@n)= L0 + 221, (n) ()

where, as before, the integrals I, I7 , by using again

the parameters «,n will be as follows:

(4.18)

(4.19)

[#0]
2 coshlpg)1coshbg)cos(4bt) —cos{nb
IG (d.').):'f E){ €) (Abt) (nbg) }d(bf) (aJ
. 7o bE (sinh(2bE) + 2.b§)
oo L'(H.ZO)
) 0
T, (2) =f 2..Smh(b‘E)C. S(nbE) d(bE) b)
o sinh (2bg) +256¢ ,
It should be noted that the above formulations (4.8) and
(4.19) contain integrals of a particular form which, for
the subsequent analysis, must be evaluated. The evaluation

of these integrals is treated in Appendix T.
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4.3 sgimplified Forms of the Influence Functions

Using the relations (AI.9) for I4, (AI.10) for in-

tegral T, , and (AIL.12) for the integrals T3 to XLqg and

substituting them into equations (4.9) and (4.19) yields

a simplified form of the influence functions in the follow-

ing manner:

XL _Kalkl, (» (3)
2e " (An sinmpjdl + B, cos m,14 )]
nz=}

(+V S -kal2l , 4) |
- sian() [+ Y e (A sin wroln [ +
n=i

4) L —Kalnl
Bf, oS mnln| )+Z e ~n (A‘,,s)sin Mn |0}
n={

+ Bc,\s)cosm.,lql ) ]

2(: V)

Be,‘ucos Mal2f ) ]

w 1
(An sinmpld| +Bf,)c.osmnld)) W

SlGN(Q) [-—- + g K“"“( A smm,,|ru+

-y

.21)



u’z("():gﬂi%'_m’lS(GN(&) —Qile:_l’l-). S\GNCC")-["Z‘. + w

o

- 3) .
Z e Khld' (Af‘ )SIthMl -+ BE?)COS m'\\ql)]
=1

Vé(ﬂ n)= 2“ V) [ -K" al ( sinm.,\d] + B,‘,‘f’cos Mnid])

>~ (4.22)
@ _Knlnl , (D .
t2 e nit (A.\ sinmga|n} + Bg)c.osm..m\)
=\
-1 Qai-in1) ]
©  _Kaini 9)
"E\l Z_ n1? (A,‘ Snmnln|+ B.., cosmaln) ) )
Introducing now two material functions of the following
type:
|\
& =33
3 (4.23)
® = <%+ 2G

it can be seen that the relations (4.21) and (4.22) con-
taining material parameters in terms of Poisson's ratio v
and the modulus of elasticity E can be simplified further.
Moreover, a grouping of the terms depending on h can be

done by using the following forms:
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Fa,('l) =

(0] -K,
[Ze ‘Q‘(A.\ smrm\'l\—&—B cosm.,\q\) 1

o, + 09 et

= —Knlol s)
_z (A? smmnlrzHB cosMalny)

o,
T a(6+6.) .

XD -K | 7 i
F(R)=2¢€ ~i2 (AL sinmaln] + Bs)cosm..\'zl ) "';'1 ini
nz\

(4.2u)

el —Kn"zl
* 56, ,‘Z:‘e (AW sin maln] + B cos mmint)

This permits, finally, writing of the displacements for
the normal and shear loading in a shorter form as func-

tions of the parameters &R and n as follows:

- Knldl

(@ <]
We (&) = (8+62) Z e (A sinmald] + By, cosm.,lcu) (a)

o

"Kn «l 3
$(&) = - SIGN() (8, +62) 2 € ‘ (A(n)sm“”n'“' (b)
n=|

+Bf,3)cosm-s ol ) - 12 SIGN () (8,-6,)

Ve (&,0) = - US (&) +s16N(n). Fi(n) ()

Lcu.zS)
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s @© _Kl«l, . €6)
Ve (t,n) = (83« 8,)z e (A“ sinm, |d} + B.(f)cos mMaldl)
Nn=\

I
- 2(81+0,) || + (01+8,) Fy () (d) (&.25)
(K) x) . . .
The constants Ah ’ B, with corresponding superscripts

are defined in Appendix I.

4,4 Numerical Results

"Numerical results of the above functions were obtained
using an IBM 360/75 computer of McGill University. For

this purpose, the elastic properties of the material were

assumed to be as follows:

Young's Modulus E = 45x10°%p.s.i.

1.
Poisson's Ratio v = %

The above values are regarded as representatives of mechani-

cal properties of a paper web in the idealized case.

The results of the computation are shown in Figures 7

to 13.

It may be noticed that the normal displacements



(Figures 7,8) are independent of n - Whereas, the shear
displacements are composed of two terms, one dependent
upon o\ and another dependent upon n only, according to
the dependence of the functions Fp , F, (equation 4.2u4).

The corresponding graphs of these functions are shown in

Figuré 9.

Figures 10 and 11 indicate the plots of the o -
dependent terms occurring in the shear displacement equa-
tions due to normal and shear load respectively. Figures
12 and 13 indicate total shear displacements (due to normal
and shear load respectively) for some selected values of
n - It should be noted that the basic pattern of the shear
displacement is not changed by the parameter n . Its effect
is in the shift of the origin only. It may be seen that the
normal displacement caused by normal load decays exponentially
(Figure 7). However, the normal displacement due to the
éhear load and the shear displacement due to the normal load
reach a certain value at approximately |[o}=2.5 and maintains
this value for the higher values of & (Figures 8 and 10).
It is of interest to note that the shear displacement due to
shear load shows a peculiar behaviour (Figure 13). Thus, in
the vicinity of the load, the shear displacement decays ex—
ponentiélly, but beyond an approximate value of |«|=41, it

diverges linearly. This appears to be in direct violation



to the equilibrium of the sheet. But this type of be-
haviour is very common for the idealized concept of
concentrated load. It is a general feature of the
steady state solutions of two dimensional problems in

an unbounded region (see Fung[l7], page 264).



CHAPTER V

5. SOLUTION OF THE ELASTIC PROBLEM

With the presentation of the elastic influence func-
tions in the foregoing chapters of this thesis and the
evaluation of the important integrals given in Appendix I,
it is now possible to formulate the required matching
equations to satisfy the specified boundary conditions.

Thus, the analysis of the rolling of an elastic sheet can

now be completed. For this purpose, one half of an elastic
sheet in contact with a rigid cylinder is indicated in
Figure 14. As pointed out earlier, in the elastic case the
lengths of contact on the leading and the trailing sides

are equal. Therefore wmy = mz-.: m-.

To simplify the formulation of the problem, all shear
forces will be assumed at first to be acting in the direction
of Yy only. Their actual direction will be determined sub-

sequently by the sign associated with their magnitudes.

The equations will be derived for a certain assumed
value of the parameter (3 (see equation (2.11)) which will
later be corrected according to relation (2.13) to satisfy the
total load condition. All distances will be measured from

point 0 which lies on the intersection of the central line



of the sheet and the line joining the centres of the

cylinders.

5.1 The Choice of the Pinned Point (0,2%)

Tn the derivation of the influence functions, it was
assumed that a certain point on the central line of the
sheet is pinned and, hence, has no displacement. It is

now necessary to specify this point.

Within the nip, the central line of the sheet is
stretched or compressed, as indicated earlier in Figure 3(a)d,
(b). Because of symmetry with respect to the line joining
the cent?es of the cylinders, it is evident that point O
remains undisplaced. Hence, this point is taken as the

pinned point for the following analysis.

5.2 Relations Common to Both Cases

Some important relations, common to both these cases,

will be derived here. Let
distance of the jth load,

distance of the ;th matching point,

=< X

ZU = distance of the ith matching point from the jth
load,
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A = 215/5
i= X /b

From Figure 14, it may be noticed that:

A
Y

2(t-m-1)an

(25-2m-4)a

and hence

Ziy=Ye=Y; =(2(~-25-1)a
Ay = L-2{-4
Y C2t-24-1) B t=1,.....2m+1
) _ (5.1)
;= (23-2m-1) B i=4, . 2m
where the quantity 3 is defined by equation (2.11).
For an elastic material, the displacement of any
point on the surface of the sheet due to a moving load
is dependent upon the instantaneous distance of the load
from that particular point. Hence, using the definition
of the displacements as given in section 2.3 of Chapter II
and using equation (4.25):
Wy = US (=ij) )
y - HYe Y
Vi = V8 (e
iy = Ve isn;)
s s g (5.2)
Wij = Ug (otij)
S S .




Further, by considering the geometry, as shown in Figure 14,
the variable distance of a contact point from the point A
can be written as:
' . 2
£0Y:) = > 2 ({-m-1)a?
Yl)— -
2R R

2((-m-1Yp*p
Cr

1]

(5.3)

in which €, represents

Diameter of the cylinder _ 2R _ c (5.14)
Thickness of the sheet T2 - °F )

5.3 Matching Equations for the Case (A):

The matching equations for the Case (A) can be formu-
lated by using equations (2.9), (5.2) and (5.3). The first

part of equation (2.9) has been derived from equation (2.6)

which states that

Vv s :

W =0 everywhere within the nip.
However, this condition canno? be rigorously satisfied since,
in the present analysis, a continuously acting pressure dis-
tribution on the sheet during rolling has been replaced by a
discrete arrangement of line loads. The difficulty in the.

analysis arising from this line-load concept can be overcome



by employing a semi-inverse method of analysis as presented

below.

For this purpose, integrating both sides of equation

(2.5) gives:

V(Y)= XY+ constant (5.5)

Due to symmetry with respect to the line joining the
centres of the cylinders, the éonstant in (5.5) will be
equal to zero. From equations (2.7), (2.9), (5.2), (5.3),
and (5.5), it follows that:

: 2

Z fUe &ij) Py + ue(ec._,)q }=d,- 2(c-mc-1)p"5 ]
r

am o (5.6)
E' {V;cdu)'lj)e' + Ve (o{ij,qj)qd.} = 24 Ci-m-1)pb

By rearrangement of the above relation, the following set

of equations is obtained:

{Ueets) B + Ul ) @ 3 =2LEmet)'

r

2m

5 2
' Ztﬂ Vg (ks V(i N
T b4 { Ve< DY+ Ve®ig)Q b =22 (m+1-i)p

C=4,......2m«1
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Relation (5.7) represents a set of simultaneous equations

in which the total number of unknowns is:

Pj 2m )
QJ- 2w
& 4+ 2
d, 1
X 1

and the total number of available equations is seen to be:

Normal displacement equations 2m+4

Am+2

Shear displacement equations 2m+14

Although the number of unknowns is equal to the number of
available equations, it is not possible to solve this set
since the resulting coefficient matrix becomes singular.
The reason for this occurrence is that one of the equations
is, in faét, redundant. This suggests that the parameter 7L
should be determined in some other way. For this purpose,

a semi~inverse method is proposed in section 5.5. For the

present moment, it will be assumed that the value of Y is

a known quantity.

In order to make the set of equations balanced, it will
be necessary to discard one of the equations since the num-
ber of unknowns is reduced by one. It was realized that the

shear displacement equation for the point A (Figure 14) was
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a redundant equation. Hence, this equation will be dis-

carded in the following analysis.

Now, defining a coefficient matrix CAl, vectors [X]

and [Blas follows:

A

[

e

]
'
un . i S /g..
-Ue (i) l ~Ue (&) 2med
]
]

_

—
>
—
|
1

i \ )
i\._zm_&‘__m 1 (5.8)
d°: ) || Q;
§X}= {_\;: % | "G’» } (b)
(B}= {zg-_v_n;z_)_ﬁ_,z,qm,_q,s} o
|

i

the following_matrix equation for the assumed value of X

can be written:

[AIlx1=1L[g]

(5.9)
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The unknown vector [ X] can easily be determined by the

matrix inversion:

[X1=[AT [a)

(5.10)

The solution obtained by equation (5.10) represents a
solution corresponding to the assumed value of ﬁ . This
value should now be corrected according to equation (2.13)

and the process should be repeated until the total load

requirement is satisfied.

5.4 Matching Equation for the Case (B) :

Equations for Case (B) can be obtained from those of

Case (A) when all shear forces tend to zero. Defining, for

this case, a coefficient matrix EA'], vectors [B'] and

[X'] as follows:

&

[4]= | L

- Ue (oty) [x]=

o] <0

L

\ (5.11)

-o-i-.—!_,—__zm——b-

{B’}:{ 2(c-m-1)*p }

Cr




the equation for Case (B) may be written in matrix form as:

[A1LX]=[e] (5.12)

The unknowns here can be determined from
] "l )
[X1=TA].[B'] (5.13)

As in the previous case, the parameter 3 may be cor-

rected according to equation (2.13) to satisfy the boundary

conditions.

5.5 Creep Ratio for the Case (A)

The parameter X introduced earlier has been referred
to by some authors (see, for instance, Johnson[S]) as the
creep ratio. It represents the overall differential velo-
city between the rotating bodies (see equation (2.5)). It
is also a measure of the amount of stretch (or compression)
of the sheet surface in the nip. Since, by nature, friction
opposes the tendency of relative motion of the contacting

bodies, it follows that:
(Xl Z 1 Xal 20 (5.14)

in which the subscripts correspond to the value of the co-

efficient of friction for each case.



It is to be noted that for Case (B) (complete slip),
the matching equations are independent of 2 (see equa-
tions (5.11) and (5.12)). QCO can be determined from the
knowledge of the actual shear displacement of the sheet
surface and by using equation (2.5). Further details are

given in the next section.

Equation (5.14) gives a guide line for the value of
X when the value of X, is known. With this in mind, the

proper value of jgbvms determined by trial in the follow-

ing manner.

As @ first approximation, jqn was assumed to be zero.

The unknown gquantities were then determined by using equa-
tion (5.10). Later, it was checked if the conditions of
equations (2.1) to (2.3), (specifically that of equation
(2.1)) were satisfied. If any of the conditions were
violated, then it was evident that the previous value of
ZQD was not a good approximation and, therefore, some cor-
rection was needed. The value of g was then altered (in-
creased or decreased by trial) by some small amount within
the range of equation (5.14) and the procedure was repeated

until all the conditions of equations (2.1) to (2.3) were

satisfied.

Realizing that X is a function of CMXP) , a plot of

X versus CMx[}) was obtained. It was found that for every



selected value of (mxf3) , there was a certain range of
the value of g which could satisfy the above stated
conditions. The upper and lower limits of the possible
range of 2L, are shown in Figure 15. The graph represents
the case of B=O-005" , only. Other values of B are

considered in the discussion on the numerical results

(section 5.7). It was further noted that within the range,
. . . 1Ql
as the magnitude of xw was decreased, the ratio — at

the edges increased. Hence, in view of relation (2.4),
the curve corresponding to the least magnitudes of 2500 )
within the permissible range, was accepted as the proper

curve of 2, versus (mxp) .

5.6 Creep Ratio for the Case (B)

To determine the creep ratio for Case (B), it is only
necessary to determine the shear displacements of the end
points due to the total nip force. Furthermore, because of

symmetry, it is sufficient to consider only one end-point.

The shear displacement of the end point can be written

as:

2m

n
VO_M*_’_) = J%L \sz_u)j PJ (5.15)
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The shear displacement distribution on the surface of
the sheet within the nip is schematically illustrated
in Figure 16. It can be seen from Figure 16 that the

value of the creep ratio X, is given by:

am

= 2 n (5.16)
xo L JZL \’&QWH—L)J. P

5.7 Numerical Results

In order to illustrate the foregoing analysis of the
rolling of an elastic sheet, numerical solutions for the
pressure distribution, the shear distribution, the length
of contact, the depth of indentation, the normal displace-~
ment at the end of the nip, the creep ratio as well as
their corresponding interrelations were obtained for both
Cases (A) and (B) with the aid of an IBM 360/75 computer
of McGill University. For this purpose, the following geo-

metrical and mechanical properties were considered.

Young's modulus E=1.45x105p.s.i.

Poisson's ratio v=1/3

Radius of the R=6 inchesb

cylinder

Total normal load w=25, 50, 75, 100, 125, 150,

175 and 200 P.L.T.
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Thickness of the B=1.0, 0.25, 0.0625, and
sheet 0.005 inch

The relevant results for the two cases and for the
above variations in normal load and the thickness of the

sheet are tabulated in Tables III to X.

From the wide choice of the results, the peak pressure
Pmax , the ratio of the contact length to the thickness of
the sheet L/B , the ratio of the depth of indentation to
‘the thickness of the sheet ‘%/B and the creep ratio X ,
were picked up as the typical results and have been plotted
against normal load in Figures 17 to 20 for Case (A), and

in Figures 21 to 24 for Case (B).

To illustrate the influence of friction on the contact
surfaces, plots of the contact length L and the depth of
indentation d, for B=0.005 in. have been obtained against
normal load for the limiting Cases (A) and (B) as shown in
Figure 25. For the same purpose, the distribution of nip
pressure for the limiting cases and for B=0.005 in. and W=
100 P.L.I., is shown in Figure 26. The variation in the
distribution of nip shear with normal load, for the case of
no-slip and for B=0.005 in., is shown in Figure 27. Surface

displacements (normal and shear) within and outside the nip
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for the two limiting cases are shown in Figure 28 (re-
presenting a thick sheet) and Figure 29 (representing
a thin sheet). It is considered that the actual results

will be within the bounds of these limiting cases.



CHAPTER VI

6. SURFACE DISPLACEMENTS FOR A VISCOELASTIC SHEET
DUE TO MOVING LOADS

In order to obtain a solution of the viscoelastic
problem, it is necessary to assess the surface displace-

ments of the viscoelastic sheet caused by moving loads.

The results of the elastic case show that the con-
tribution of the shear forces is rather small. This is
evident from Figures 25 and 26 which show that the change
in the pressure distribution and the contact length with
friction is within about 10% and that in the depth of
indentation is within 20%. In view of this, and in order
to simplify the presentation, oniy normal forces are

considered in the formulation of the viscoelastic problem.

It should be noted that a line'load moving on a visco-
elastic sheet and a line load moving on an elastic sheet
will have identical boundary conditions. Moreover, with
respect to a coordinate system moving with the load, the
regions of the boundary over which the stresses and the
displacements are prescribed remains the same in both problems.
Hence, the solution for the viscoelastic case may be obtained
from that of the elastic case by using the principle of cor-

respondence (see, for example, Bland[16]).
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6.1 Elastic Solution for Fixed Coordinates

The influence functions for the elastic case, with
respect to a coordinate system that moves with the load,
were obtained in Chapter IV. In order to apply the cor-
respondence principle,‘it is necessary to express these
functions with respect to a coordinate system fixed in

space (see Lee[lsl). This will be done in the following

paragraphs.

Let -y be the coordinate system moving with the
load and X~Y be the coordinate system fixed in space
(see Figure 30). Let the starting position of the loads
be (X b,Y) and let it be required to determine the dis-
placements of the surface of the sheet at some arbitrary

point M . The two coordinate systems are related as

follows:

A= X
Yy= Y- Yo - Fot (6.

¢

1}

-—(Yo'f'FOt)

where & represents the distance of the pinned point
(Figure 30) to the origin of the moving coordinate system,
and Fo is the velocity of the loads. Hence, the parameters

K and R used in Chapter IV (Section 4.1) become now:



A = —_-—___Y—Y"—Fot
b

(6.2)
'2_:__ - Yo+ Fot

b

Suppose that the loads arrive at a point right over
the pinned point in a certain time t, and that they reach

the point M in some other time T . Then,

(6.3)

With this definition, the parameters ol and h become:

oL = Fo (T-t)
b

Fo(to-t) (6.4
n=Fetbect

Introducing now a Heavyside unit step function such that

HC)

1 if the argument is positive,
i (6.5)

0 is the argument is negative,

it can be seen that the forms contained in relations (4.24

and 4.25) of Chapter IV can be expressed as follows:
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SIGN(K) = H(T-t) - H(t~T) 7
SIGN(NY) = H(to—-t) — H(t-~to)

v

&l = [H(Tt) —Ht-T) ] fg. (T-t)

Int= CHCtt)-H(t-ta) 1 Fe (tot)

~K.[dl K)
e nl (Af. snm, &} + Bff)cosm..lou)

= H(T-t)& " (AT sin mpat + BScos M)

Kn* (k) Y
-H-T)\e (An sinm, -~ B,‘;K)c_os mn"()

-K ), K
e ~lel CA, 'sinmajpi+ B.(. )cos Mnln|)

= H(t.-t)e "Q(A SN man + B,, cosm,,q)
- H(t-t)e "Q(Ah SN m,p - B:k)cos map )
and
Knl | C k)
SIGNCL). e (A.‘ smm,,leu-f-B cosmulaf)
= H(T-t) k"&(A,‘ sinmpet +85% cosm,,et)

+H@E@-T) e smm.,on 8L~ %cos m,x)

- K
SIGN(n).e nlel (Ah sinm,in| + Bh 'cos Malnl )
—Kn (€3 K
= H(to-t) e (A, sin Mn 1) +BE‘Jcasm,.q)

+ H(t-t,) e "'2(A sinm,n - fcasmnq)

J

.

~

(6.6)

(6.7)

(6.8)
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- (%) ) .
where the coefficients AL , B, have the same meaning
as in relations (4.24, 4.25) except that they are expressed

in a more general way. Defining two generalized functions

gsq and Qf) as:

g m)= n(r @ T (A sinbo(rt) + B cosb, (-t) }

(6.9)
K a (T"t) ¢ L),
K9y = e €Y (AW bty -8 cosbn o) }
in which
n Fo . = Mn F

the normal and shear displacements due to the moving line
1oad (described earlier in Chapter IV, equations .24, 4.25)

can now be expressed by:

Wt = (oo S [ 9¢n-h@n] |

n=t
(o,

VE(t,T) = (8+82) S [ 9n (£,T) + Ky (t,T)]
n=i

+£(6-82) [H(T-t) - H (z-T)] L
(6.11)

-1 (8- 83) [H{to~t)- H(t-to)]
<«
613 [ 959t t0) + h(t,t0)]

o ()
-0.5 [oeman )]
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6.2 Material Function

The quantities ©; and ©,2 occurring in equation (6.11)
are material-dependent functions (see equation (4.23)) which,
for a viscoelastic material, will be time-dependent. In order
to perform the operations of the correspondence principle on

equation (6.11), it is necessary to specify the nature of

these functions.

The constitutive equations of a linear viscoelastic ma-
terial can be written (see Bland“‘él or Fung“‘”), in general,

as:

P(D) Sij (t) = QCD) €;(t)
(6.12)

P'(D) 63 (t) = Q'(D) €xi(t)
in which Sy (t) and €y (t) are the deviatoric components of
the stress and strain tensors respectively and the indices C,J'
and K vary from 1 to 3. The quantities 6wk (t) and i (t)
are the dilatational components of the stress and strain ten—
sors respectively. P(D) , Q(D) , P'(D) and Q’'(D) are some

polynomials of the operator D where D = d .
dt

Taking the Laplace tranforms of both sides of equation

(6.12) and assuming that the material was completely stress-

free before <t=0

2
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P(b) Sy (k) = Q(p) By (b)

(6.13)
- I} -
P'(b) 6k (P) = Q(P) €y (P)
in which p is the Laplace transform parameter and a bar
sign over a quantity designates the Laplace transform of
that quantity.
The viscoelastic moduli can be obtained from equation
(6.13) as follows:
Gy =38
)
’ (6.14)
0 =S
Using equations (4.23) and (6.14) yields:
P(p)
6.(k) =
'( 2Q(R
= 3P (k). P'(P) ’ (6.15)
0,(k) =

& P(RYA(P) +2P(rP) Q(P)

The right-hand side of equation (6.15) represents the ratios
of two polynomials. In each case, the order of the poly-

nomial of the numerator is either smaller by one or equal to
the order of the polynomial of the corresponding denominator.

Hence, using partial fractions, equation (6.15) may be written

as:
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s) (P)— ¥ +-£§ e
' - e o P+ Ar

- Y N xr'
0,(P) =& + r2=l A

(6.16)

' ! .
where % , % , ¥ and ¥, are the coefficients of partial

fractions and A, and )& are the roots of the polynomials
of the respective denominators. N and N’ represent the
degree of the polynomials in the two cases. In general, the

roots and the coefficients will be complex.

Inversion of equation (6.18) yields:

N it
Gl(’t)——- % S&) + Eé’re

rel (6.17)
. N,
L&) + = v e

r=1

6, (t)

It is seen that equation (6.17) represents two material
functions in a general form which can be specified by adopt-
‘ing a particular mechanical model for the material properties.
The influence functions for a viscoelastic sheet will be for-
mulated in the next section by employing these general forms.
Subsequently, for the purpose of illustration of the proposed
method, numerical results will be given for an ideal material
which behaves as a standard linear solid in both shear and

dilatation.



- 81 -

6.3 Solution for the Viscoelastic Sheet

By applying the principle of correspondence and the
convolution theorem on equation (6.11), the following ex-

pressions for the displacements are obtained:

(=] t . v
W ¢ = ;_ ‘ [ [Btt-2)+8, ¢t -ty 1[ 9V (e, T)~hn(x, 9 ] d T ]

o t
VT )= > fo [(8, tc) -2 (-] [ 9c 1) +hoe, 1) ]dT

&

+3 fot [6:(t-v) - @2 (t-v)] [H(T-2) - H(=-T)]dT

t
- 5 [ [e.6-T)-a(t-a)][H(tsT) - H(z-te))dT

© .t
> [ 03 e-0) [ 9%z ey + Ke 1) el

n={

L(6.18)

2t
- 2. [ o t-0)[ 257z, 1) + hyXe,t) Jd T
n=

Substituting the expressions of &, and ©, from equation

(6.17) and of Q:K’ and Hf) from equation (6.9) into

equation (6.18) yields:
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o0
n ' - Knla )
WG = (S+%)>e ‘ CA, sinm, 14y +Bf:)cos MniX1)

n=i
2N @ @,
+ zl; ‘XI [A,\ i-jd. (AeT) = T (A, T) }-\- B. {JQ_(/‘[J)+J4,<A',T) }]
n=1 v=
CD N’ I3 c|) f ] (l) ’ ’
+ ;_ 2;_ & (AT § 300, T) = T3 (0 T)} + B, T+ H ()]

(6.19a)

B Tto)= 4 [ 3o () =T ] - & [Ts (o) = Te (k)]

, © -
+SIGNG) o+ 50) S @ A cinmutat + 820 malal)
Nn=1

o N (&) )
+nZ=| %F,[A,‘ {RWT) + T (4T)3+ B, § T (=T (4, T)Y)

© N, &) ' ' » ' ‘
+2 2 %[ A §Ta(d,T)+ To(AeT)} + 8, §To0nT)-T5(4,7)}]

n=t r=1

O _Kknlnl ' .
-SIGN(R) %,e h { (a:,A:s)-xo A(:” )sinm,ln)
+ (% 8.7-x,8,”) cos matnl }
o N (5) (5)
-5 % LA S Toldnte) + Ty (drt,) 3+ B,. §{TalAt)- T(Lo) ]
nzy r=t
o N
1~ (4) ' ' ) . '
+3 S &[A { Tlnte) + T3 (A t) 3 +8, § 3y (o) T (i ta)} |
n=| r=y

(6.19b)
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in which Jj3 to Jg are integrals of the following forms:

t - A(t-T) _ —
JyAT) = L H(T-Z)e ¢ .e. Cn (7~

t -A(-T) -an(T-T
Ja2 (AT) —.-.fo HO-2)e . . )

t -A(t-T) —
T = [ HEDE e Ginb, (1-2) de

t -ACt-T) W(T-T
JaAT) = [ Hz-De e

t
T5(r) = [ 6/ (t-z) [H(T-2)- H(c-T) ] dx

Je(M = }:t 82 (t-t) [H(-2) ~H(c-T) JdtT

sinb,(T-2) dT 7

e cosb, (T-0)dT

cos b, (T-Tvydz

It should be noted that the arguments of these have been

denoted for simplicity by (A,T) , whereas, in a more de-

tailed form, they should be denoted by (A”T)

s CAe,T)

(Ar, o) and (/ﬂ,to) . It will be seen subsequently that

(6.20)

these forms are only intermediate ones and are not employed

in the final representation.

It is of further interest to note that the integrals

in equation (6.20) invoive the Heavyside's function in their

integrands and are , therefore, discrete functions. Since

T and t, are both fixed time values that can be either
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positive or negative (depending upon the starting position

of the load and the location of the pinned point), the

value of the integrals in (6.20) will be affected accordingly.
There are four cases to be distinguished as shown in Figure
31. Taking into account these four possibilities, the inte-

grals have been evaluated in Appendix II.

Substituting the values of the different integrals from
Appendix ITI into equation (6.19), four different expressions
(for fhe four distinct cases) for the displacements are ob-
tained which are given below. It has been found to be con-

venient to introduce the following coefficient functions

. w,r
Q_'SCK)(A 7 = A+ al) - B b,
,T) =
n (A+Q’n)1+ b'f,
K

Y Ty o 2%, + 89%%+al)

n ’ CA+an)t+b2
ey = A A+ any - 88b.,

n CA+an)* + b,>

>~ (6.21)

K,
FW4) = A%%r-a0)+ 8%,
n CA-an)2+ b>
(&) (A) - Acnk’bn + Br(-k)CA + a")
" CA+an)> ¢ b2

€x) CK)
Y " - 5 A"an
‘ynLK)CA) = A bh n ( )

(A- Qr.)z-l- b
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stand for the general case, and where
a, = sIGN(T-t)a,

by, = SIGN(T-t) b,

K, F.
An = =1
my, Fo
b

The symbol SIGN (+) has the same méaning as explained in
(AT.11).

CASE I: T>0, to>0

n & ’, © N Q) N, I ,
Uvlt,)=2 [{(521-80)44" +r2{¥' $ U4T+>5d (A,,T)}sm m, Ju|
n=1 = r=1 n
¢ 0 N Y N, S ~Kn o
+i(r°+80) B‘;,) +Z.8', EP:’(A:,T)_+Z;’, ‘.l’,(‘}(dr,‘rj}co;m,,ld]]e lec]
rs= r=1{
S y - At N’ S ’t .
"'"z, [‘{ ? % 43?,’(/‘r)€ A + rz_ib’r 43,("')2 Ar }sm b, T
= =1 =

-a,T

N w. . -At N .y A
{2 HWUNET LS G 0™ Jeost,T ]
= V=1

=) N
+HED S [ 26 {0t + Pyt

+ S5 {0y + §%y T )
r=1

in which again, the arguments A, T and the superscript (k)

(6.22)

(6.23)
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Vv"(tn',t,,): 3 SIGNE) (¥ - ¥o) ~ 2 SIGN(R) (o= )

- -A N
[sten@)-€ M an-me ¢ T)]

+
3
z yMz
;l x

-
- X

- Ay (=
. [s1aNn@) - € At L 2u(e-m)E ot T’]

1
Pl-
RS

M-

iz M

- —Ar (t-to
[sien(n)-e At o HE-to) e rEt >]

-

PR

L

- Art ~Ae t-to
L’s:eN(fz)-e T+ 2HE-t)E ‘ )]

+
D~
iz

3

2 . N - N ),y
~SIGN(®) 2 [{(B’o-r %) AC:)-rg ffr éh (ArT) +§_?’r én (/\\»,T)}Smm,,,,(]
n=1i = -

N N’y ()
+§(%+0) Bf’ +3 % }k:”(/\r;r) + %FJ ¥, (4T jcas m.,w]o
r=1{ = _Kh(dl
] .e
N At N ~Arty .
- %T E‘{ Z. ¥ 4’:)('“)& B + ;IX; 47:3)(,6:)& d } sinb,T
n=i y=! = i

it

N -4 N ) s —Art -anT
#§ 2 HYE™ + S WA €T Feos b7 )&
r=) =

N - - -
tHEn S LS E (- B 3 &M

N’ , 3 . _ _ﬁl (‘I,'-T)
+S %I - TG 3 T ]
r=1
U N (5) N’ ) (4) ’ .
+S16N(R) % '[{b’a A(:)_Xo A‘?_%if;éh (Arto) +é_|xr @n (Prto) } sinmnln]

! Y N’ ¢ g,@) 0
+ %—Xo B?).. ¥, B(:)_ Z‘X, ‘_.yf’i’(ﬁn‘to) + VZ'IX( Y. (Ar’-t,))s cos m,,h_‘].

- -Knin)

e
!

N -Art g r, - ' .
3 [ 2 aaTe™ - S w el Y sinbute
A=t r=; =1 ' . .
& - N (At -Anto
+§Zw.fs’(/lr)e"'t -2 % ¥y ™ Yeasbats €
r=1 Ye )
e ) : —Ar(t-te
~heety T 20 4700 - B0 ye

_Zu ) - 180 j e ACtte) | (6.2w)
Y=1
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CASE II: T<0, t¢>0

o ry ,Q N 20 N' SO
Ul =3 [{CBer¥o)An +2x,¢f,’u,> + zxrqnf,’ao}smm.,m
n=t

{Cerioyen +zw.,cm + zr.\v.,@f) Y cosmam; ] <!
o0
*Z Eirsz () 4 +;:‘x,'ao<"u,>e- Y Sink,T
n=| = -
N . N'
+§%‘a’, POy M 4 rZ__a’, e KAV } c.osb,,TJ (6.25)

N N' -
V (tTto).. (Xo ~¥%5) -\-—SIGNCQ) (a'o K")-Zl\.'?' & (I €4ﬂ)+:‘_él%(l-e"m)

N
! k.o A t -A (‘t to)
-1 Z Z[senty - 2He-tye " 1

Nl ] _ e
+5 3 [stcw('z) _eMt 2H(t-ts) e et )]

8-.

- N ey
~3 [§Corat) AD + z % Bty + Z 5 &Ae) } sinmnlall
n=\ Y=
#{For¥0)Br> 5_ % T ) + z L P Jcosmate J& <1

N, .
- 2 [{ Z K"‘P(S,("r)e— + ZKHP,?)(A{)Q’“&} sinbaT

T ’ l‘ t d,.T
{2 03P . zx, ‘P,f”u,) &} cosb,T Je
=1

(4) ¢5)

x* N’ (&) .
+suGN(n)-n§_'_ [{XoAn ~-% A, —-2 &’r@n (Ar,to) +Zb’, @n (Ar,to)}.sm Maln )

’ ~Kn
+{Xo B.\ 5,8 Zb’, (Artu) +Zx, (Ar,t.,) }cas m..m}]e lal

+ 2 [{ 2 Xr‘P (Ar)e. - rZN'Kr <p“”(» e At } sinb t,
{

Act. -Qnt,

+5 g_aw.fs’(/l,)é _ ¥ e it 3 cosbats ] €
=\ =t

) v
~HG-t,) ’% C Z&'{‘P:S)(Ar)- B (M i& ~ A (2-t,)

/ir(t to) ]

"Z-x'i“’ ) - W) € (6.26)
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CASE III: T>0, to<0

US(t,T)= same as equation (6.23)

VI T )= & SIGN () (- ¥6) + £ (o= %)

=
™Mz
>

'l9‘~ >

£ [siaN@) - e +2HG-T) e ;AT

[SIGN(A()_Q-'{‘* + 2H<’t—‘l‘)e_"‘(t -7 ]

[eeh ]38 aht]

f:l Ae

|-

wMz

>

g 'r

+

-
M2
J

-
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CASE IV: T<0, toe<0

Uv (t,T)= same as equation (6.25)

Wotemed=-Z [{Cort) A0« z i &) + z ¥ zp"’u,) } 5in o]

N Knl l
+{ (Fo+ ¥0) Bf.s)-rZ_zs’, (Ar) +Z x, v 24r) § cos mafel |€

“f C§ 2. ﬁ'x ¢‘f.3’(/|r)e At + Z Xr‘? Ar)e }su‘nb,,T

n=yg

- - AnT
£ z_r, v.f”(m)e At z_ ¥ 1O M deosbaT ]

+Z [{%AY - %A zxrep‘s)urs z 4> V) Jsinmaln)
+ (5B -5 %Y -zx ¥ +Z % G }eosmani]e 1!
® N - Art v (4), 0y ~Art
+3 [{le’(Pn C/\r) ;a;% CAr) @ }Sl.hb,.t
n=} r=\ =1

W Ant,
+{2g,, Yiye M _ 3 v g e -t }eosbat, Je (6.28)

r=1

6.4 Numerical Results

As an illustration of the method outlined in the pre-
ceding sections, numerical results were obtained for a
specific matefial which behaves as a standard linear solid
in both shear and dilatation. The material functions 6 (t)

and 6, (t) for such a material will be of the following form

(see Appendix III for detail):



.

-2t
i) = 5 st v A T

(6.29)

-t
Ou(t) = 5 8t + A & /T

where K, is the instantaneous bulk modulus and T is the

relaxation time of the material in both shear and dilata-

tion.

In the derivation of relation (6.298), it is assumed
that the ultimate displacement of the solid in shear or
dilatation is twice the corresponding instantaneous dis-

placement and that G°=%K° where G, is the instantaneous

shear modulus.

It was found that the results were dependent upon the
parameter F,z. . As such, numerical results were obtained
for

B =0.005 in.
Ko =1.45x10%p.s.i.

FoT = 102 +to 10 ° in.

and for the four distinct cases as explained earlier. These
results for the normal displacements are shown in Figures 33

and 34, and those for the shear displacements are shown in

Figures 35 to 38.



CHAPTER VII

7. SOLUTION OF THE VISCOELASTIC PROBLEM

After the influence functions for a viscoelastic sheet
have been determined, it is now possible to formulate the

viscoelastic rolling problem.

Although the theory presented in Chapter II is applic-
able to the rolling process in the.presence of frietion, it
is not possible to satisfy the shear displacement condition
(as given by equation (2.6)) in a continuous manner due to
the line-load representatioh of the nip forces. (In such a
case, the displacements and their derivatives diverge at
the point of application of the load.) This difficulty has
already been mentioned in Chapter V, while dealing with the
rolling of the elastic sheet. A semi-inverse method was
then proposed which proved to be successful in solving for

the creep ratio and the elastic problem at large.

In the rolling of a viscoelastic sheet, some additional
unknowns appear due to the asymmetry of the problem. The
determination of the creep ratio for this case, using the

semi-inverse method, becomes much more complicated.

Tn view of these difficulties, the viscoelastic problem

\



will be solved for Case B only (i.e., for complete slip).

If the loads were represented by some finite func-~
tions (like triangular loads or rectangular loads or para-
bolic loads, etc.) this difficulty would not have arisen.

The motivation for picking up dirac delta functions was

that the resulting integrals were obtained in their simplest‘
form and could, therefore, be evaluated analytically. The
latter was an essential requirement to apply the mathematical
operations of the correspondence principle for obtaining the

viscoelastic influence functions.

7.1 The Choice of the Pinned Point (o,%)

In the case of complete slip, there are no shear forces
and the number of unknowns is therefore reduced considerably.
Hence, it is not required to satisf& the shear displacement
conditions. TFurther, since the normal displacéments are not
dependent upon the location of the pinned point, the position
of the latter is not important. However, to determine the
shear displacement, it is necessary to choose a pinned point.
Thus, for convenience, the point lying on the central line
of the sheet and on the line joining the centres of the two

cylinders will be taken as the pinned point.
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7.2 Matching Equation for the Case (B)

Since the influence functions, in this case, are de-
pendent on time, it is necessary to specify the duration
for which any particular load has been acting. This can

be done in the following manner.

Thus, consider some arbitrary point M (Figure 39)
situated at (-b,¥Ym) which is not yet deformed but is just
on the verge of getting deformed. 'Also, consider a unit
1oad situated at the fictitious point (rb,xf), at the time
+=0 » which starts moving with a velocity Fe towards M .

For convenience, it may be assumed that the load stays

stationary while the sheet moves towards the load with the

velocity of the load.

By using equation (6.23) the normal displacement of M

at a certain time t=t¢ can be written as:

Wy = WO (e, ) (7.1)

where

o
T = ACHAS ¢7.2)
Fo

and u;M repbesents the normal displacement at point ™M due
to a unit normal load which, at the present instant, is situ-
ated at the jth point. Therefore, the normal displacement

of M at a certain time t=%( due to the combined effect of
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all loads will be

_E Py uJY‘M = 2 B ullt,T) (7.3)
J=1 J=1

But since point M is moving, it will travel a distance
equal to F,t; in the time t; and will be located at

the point (~b,Y:) where its normal displacement must be

equal to U; as shown in Figure 39. Therefore,
My+WM,
. n .
U __J%l %.u'v(-t,_)-&) (7.4)

Further, from the geometry, the normal displacement at

(-b,X:) can be written as:

s\
My+i-
Us = d— 2l P b (7.5)
Cr ,

From equations (7.4) and (7.5), it follows that

MyrMy 2.2
2(m+1-0)"p"b

.ZL BUl G, T) = dy- EE G

J:

Rearranging the above equation gives

P PR
%‘3 PUS(E,Ty) = XAt B (7.8)
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Defining a coefficient matrix [A] , unknown vector [X]

and the known vector LB] as:

r 1T 1
1
}
|
[Al= |4 ! -w,T) Myt
|
i
|
!
L J i
o (7.7)
s | mt+m2_——

welti 1 )
p}={ Hmerdie 1

equation (7.7) can be written as follows:

[AICx]1=18] (7.8)

By matrix inversion, the unknown vector [ X) can be obtained

[x1= [A]-l‘]'_B] (7.9

The value of B should be corrected in a manner similar

to that of the elastic case.



However, \QA still remains to be fixed. TFor convenience,

let

Ym= 2mua + C. b (7.10)

where C_ is some constant. It is to be noted that no
error will be introduced if the arbitrary point ™M is
chosen to be located sufficiently away from the nip. Thus,
an overestimation in the value of the conétant C_. 1is per-
missible. The value of C&_ was, therefore, chosen in such
a way that the point M was located at a distance equal to
approximately five times the contact length for the particu-
lar case. It was found that a higher value of C did not

yield any significant change in the results.

From the geometry of Figure 39, and by using equation

(7.2), it follows that

Yoz 2(myu+1-0)B b 1
N= (2mp+1-25)pb

te = [2(-)p+rC ]l s (7.11)

(-]

T = Lej-uypra]z
[]

I

/

Thus, for some selected values of (, , the coefficient matrix

may be determined corresponding to 'D' and t¢ as given by

equation (7.11). The unknowns may then be determined by using

equation (7.9).



7.3 Coefficient of Rolling Resistance

In the case of elastic rolling, the pressure distri-
bution is symmetric with respect to the line joining the
centres of the cylinders. Hence, there is no net torque
on the cylinder and, therefore, there is no resistance to

rolling.

In the case of viscoelastic rolling, however, the
symmetry in the pressure distribution is lost due to the
dissipative nature of the sheet material. The forces
acting on the trailing sidelwill be smaller in magnitude
to those on the leading side. Figure 40 illustrates the

force equilibrium diagram of the upper half of the visco-

elastic sheet.

Because of the asymmetric distribution of the pressure,
there is now a net moment acting on the cylinder which is
balanced by exerting some torque in the direction of the
rotation of the cylinder. For the rolling to continue, the
cylinder must exert this torque. This is equivalent to
applying a force in the direction of rolling of the cylinder
and, therefore, this force is known as the resistance +to
rolling and, more commonly, as the friction of rolling. The
coefficient of rolling resistance, /LR » is given by the

ratio of the rolling resistance to the total normal load, and



it turns out to be

S
where
S = Eccentricity of the resultant load,
R = Radius of the cylinder.
Let
My = Total moment (at the centre of the cylinder)
of the forces acting on the leading side; and
Mj,= Total moment (at the centre of the cylinder)
of the forces on the trailing side.
Then,
ml o My .1
Mi=2 BY =2Z B(2miri-25)p.6
J=1 J=1
7.13
My+M, M+, e ¢ )
o
M, = Z ‘3\3 = Z ‘3'(2mi+i—2j)[3b
J=my+i J=m+i

The eccentricity of the resultant load will, therefore, be

given by
g _ Mi*‘Mz
W

(7.14)

and thence, the coefficient of rolling resistance will be

_ My+rMy
Mr= =R

(7.15)



7.4 Creep Ratio for Complete Slip

The creep ratio for the viscoelastic case may be
determined in a manner similar to that of the elastic
case. However, because of asymmetry, it is necessary

to consider the shear displacements due to the normal

force at both the end points.

The shear displacements at the end points can be

written as:

Vi Z, V56

M1+m,_

> v

v(mr#- My+4) = J=1 (my+mye 1)_1 %

From which the creep ratio can be obtained as

x = \}cmri-m-,,-n-i) - V‘ﬂ.
[+
L

or,

Sz = Vimprmy+1) ~ Vg
° 2(myrmy ) b

(7.16)

(7.17)
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7.5 Numerical Results

Numerical results for the same variables as those
in the elastic case, were obtained for the case of com-
plete slip in the rollihg of a Viscoelasticlsheet with
the aid of an IBM 360/75 computer of McGill University.
As stated earlier, it was found that the results were
dependent upon the parameter kT . Therefore, for this

case, the following geometrical and mechanical properties

were considered.

Instantaneous bulk Ko=1.45x10°p.s.1i.
modulus

Instantaneous shear Go=3/8 K,
modulus

The product of relaxa-

tion time to speed For= 10°® to 107° in.

rolling

Radius of the R=6 inches

cylinder

Total normal load wW=50, 100, 150, and
200 P.L.I.

Thickness of the B=1.0, 0.25, 0.0625,

sheet and 0.005 in.

The relevant results for the above variations in
normal load, sheet thickness, and the ratio of relaxation

time to speed of rolling, are tabulated in Tables XTI to

XXVI.
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As a comparison to the elastic case, plots of peak
pressure bwm* » the ratio of the contact length to the
thickness of the sheet L/g , the ratio of the depth of
indentation to the thickness of .the sheet d0/5 , and the
creep ratio against normal load and for the above variations
in.the parameter Fo,T , were obtained as shown in Fig-
ures 41 to 44. To illustrate the influence of the ratio
of the relaxation time to thé speed of rolling, the same
plots were obtained against this ratio and are shown in

Figures 45 to u8.

The variations in pressure distribution and in normal
and shear displacements of the surface of the sheet with the
parameter F,T for B=0.005 in. and W=100 P.L.I. are shown

in Figures 49, 52 and 53 respectively.

The results show that for very low, or very high values
" of this ratio, the material shows elastic behaviour. This
is in full agreement with the particular model chosen for

the purpose of numerical illustration.

The variations in the coefficient of rolling resistance
with the parameter FoT for different loads and for different

thicknesses of the sheet are shown in Figures 50 and 51 re-

spectively.



CHAPTER VIII

8. DISCUSSION AND CONCLUSION

In order to give an assessment of the pfoposed theory,
a discussion of the results and the conclusion that may be

drawn from them, will be presented in the following para-

graphs.

8.1 Elastic Case

For the analysis of the results, it is necessary to
categorize them into two distinct cases, viz.: (i) the
case of thick sheet and, (ii) the -case of thin éheet. These
cases are identified by the ratio of the contact length to
the thickness of the. sheet. If this ratio is small compared
to unity, it iz a case of thick sheet. On the other hand,

if this ratio is large compared to unity, it is a case of

thin sheet.

> Within the nip, a thick sheet has a tendency to move in
(or contract, (Fig.28)) whereas, a thin sheet tries to move
out (or elongate, (Fig.ZQ)). These tendencies are opposed
by the presence of friction on the contact surfaces which

" generate the shear forces. Consequently, the magnitudes of
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the shear forces become larger and larger as the sheet
becomes very thick or very thin. For an intermediate case,
the shear forces are very small in magnitude. In both
cases, the distribution of the shear forces is antisymmetric
with zero value at the centre of the nip and at the ends.

It has been found that the maximum value of the shear forces
occurs at a distance of approximately % from the ends of the
nip (Figure 27). For a thin sheet, the shear forces act

inwards, whereas for a thick sheet, they act outwards.

The creep ratio is negative for a thick sheet and posi-
tive for a thin sheet and increases in magnitude as the normal
load is increased. For an intermediate case, this ratio may
change sign as the normal load is changed. Further, as the
sheet becomes thinner and thinner, the rate of increase of
this ratio with normal load decreases (Figure 20). This is
due to the fact that although the shear displacements of the
end points increase with load, there is a greater increase in
the contact length. This situation is not present in the case

of complete slip where the sheet is completely free to move.

The results have been found to be quite sensitive to the

thickness of the sheet (Figures 17-19 and 21-23).

As the friction on the contact surfaces reduces, the con-
tact length increases and the bPeak pressure decreases. This

results in a flattening of the pressure-distribution curve.
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8.2 Viscoelastic Case

It has been found that, in the case of a viscoelastic
sheet, all formulated functions are dependent upon the para-
meter T whére Tz is the relaxation time of the sheet
material, and F. is the overall speed of the sheet. Tor
very small and very large values of this parameter, the sheet
shows elastic behaviour. The results for the latter case

3 . R .
(KT =10 in. ) are shown by solid line (

) and those for the
former (FKC=i56Hw are shown by a solid line and two broken
lines (—— -- —). It is to be noticed that there is a
difference in magnitude of the results for the two extreme
cases (Figures 45-49). This is due to the particular material
chosen for the purpose of numerical illustration (see Figure
32 for the model). For a value of F,t between 10° to 10™* in.

+the material shows a marked viscoelastic effect.

The pressure distribution is symmefric for the extreme
values of the parameter F,T but leans forward for its inter-
mediate values. This leaning effect first increases, reaches
a certain maximum value, and then decreases with the increase
in the value of F,T (Figure 49). Consequently, the coeffi-
cient of rolling resistance first increases, attains a certain
maximum value (for ﬁﬂ;:g&%quiq) and then decreases monotoni-
cally (Figures 50 and 51). The point where the cylinder loses

contact with the sheet has almost the same behaviour as that
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of the pressure distribution or the coefficient of rolling
resistance (Figure 52). These observations are in full

agreement with previously published reports (see, for example,

Hunter[7]).

The comments made above regarding the behaviour of

thin and thick sheets hold good for viscoelastic sheet as

well.

8.3 Conclusion

In conclusion, it may be stated that by the method of
influence functions, and by using the proposed semi-inverse
methods, the rolling of an elastic sheet has been treated
successfully for the extreme cases of no slip and complete
slip. This method permits the treatment of the rolling of a

viscoelastic sheet which, until now, has not been solved.

It is the author's belief that his contribution to

knowledge lies in the following:

(i Influence functions for the surface displacements of
an elastic sheet, due to normal and shear line loads,

have been determined in a closed form using contour in-

tegration;

(ii) TFor the first time, influence functions for surface

displacements of any general viscoelastic sheet, due

oo e
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to moving loads, have been obtained in a closed
form. This is a very valuable tool in the formu-

lation of the viscoelastic rolling problems.

(iii) The physical behaviour of elastic, as well as
viscoelastic sheet in rolling contact with rigid
cylinders, has been discussed in great detail and
the related boundary conditions of the sheet have
been described for the-extreme cases of complete
slip and no slip. The theory proposed by Bentall[14]
has been considerably improved and the modified
theory is time-saving, more accurate, and applicable

to viscoelastic rolling as well.

(iv) Direct solutions (in contrast to the previous theories
which treat the problem for certain assumed ratios
of the contact length to the thickness of the sheet)
have been obtained for the cases of both elastic and
viscoelastic rolling. Thus, given the mechanical
properties of the sheet material and the dynamics of

loading, this theory can predict the entire state of

the nip.



APPENDIX T

AT EVALUATION OF THE INTEGRALS IlzquFOR THE ELASTIC
CASE '

AI.l The Integral Il(oc)

Putting bf =% > Ly (*) becomes:

ree 2 sinkx. COs&x
Ta() = ¢
1(&) < X (sinh2xX+2X) d,x

Because of symmetry with respect to & ,

a2 . [~} )
f Sinh’x cosax 4 _.f 2 sinhx cosax 4 -1,
; X = - X =1y
oo %X{sinh2x+2x) 2 x(sinh2x+2%)

Also, because of antisymmetry with respect to x ,

@© . 2 .
f sinhx sinax

) oo XCSinh2x+2%) dx =0
Hence,
0 2 1o
sinh> e
f x (sinh2X +2x) dx = Iy(x)

or,

o0 .
[ T Hi@dx =214 () (AT.1)
oQ
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where,

a2 1ol 3L
2sinhe e
% (sinh 2% +2%) (AT.2)

Hy(d, ) =

Consider the contour integration §C HL@,Z)dz, along the

contour C as shown in Figure 54. It can be seen that for

A >0,

oCim. Hy&,%2) =0

Z—» 00
and hence that for & »>p , the integrand will vanish along

the semicircular path so that:
<0
$H,@2)dz = [ Hi@xde =2I, @)
C -0
However, from the calculus of residues,

é\'ﬁ@(,z)dz = onc¢ x sum of the residues of H,(d,z) in C
[od

+ ¢ x sum of the residues of Hy(4,2) on C

Therefore,

I,(*) = n¢ x sum of the residues of Hy(4,2) in C

(AT.3)

-c-%d x sum of the residues of H,(d,z) on C

It is required now to determine the residues of H, (&,z)

within and on the contour (C
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H4(&,2) does not have any pole on contour ¢ . With-

in the contour, it has single poles at the points where

sinh2z+22=0. Let =z =2Zn be one of such po.in'ts in the

first quadrant and let Rn be the residue of Hq(4,z)

at that point. Then, from the definition of residues,

Rn = dim. (z-2n) H, (%,2)
Z - Zn

Substituting for Hi{«,z) from equation (AIL.2), taking the

limit and simplifying gives:

12
- tanh22v\ e "
Rn = —2>2 =

- 2 2,

Substituting Zn=m,+i{kn and simplifying yields:

-Kn“
< )l:(gnmr- + hnkn) cosmat - (hym, -9, Kn) Sin m,‘o(]

R ——
2 (M4 Kn

- KX

+Lm)[c gnmn + h'\k'\) .Sl'n Mn°(+ (hhmn“'gn kn)COSMnoﬂ

where,

g, = Ltan h2na —tan Kn)(1- tanhmptan Kn ) + 4 tankmatan-kn
" C 1+ tankmn tan*Kn)2

h = 2 tanhmn tan Kn (1= tahhl'YIntathn —tankmy, + tan®Kn )
" (l+‘tanh"m...tan1kn)2

o~

(AT.u)

f (AI.5)
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If (Mna+iKn) 1is a root of sinh22+2z=0 5 (= Mn+ ( Kn) is also

a root of this equation (see Appendix IV). Let the resi-
due of H4(d,2) at the point (ma+iKa) be R'n .  Then,
by replacing m,, by -mM, 1n equation (AI.4) and noting
that g, and hnh are even and odd functions of m, respec-
tively, one obtains:

~Ka®k

Rn =

- 2———("\“9._'_!('?.)[:( 9,Mn + hy Kn) cos Mnf( - (hamn-9, Kn)sin mneq

e— Kndl

+L 2“"‘({““1'_._ Kv?‘)[< 9nMn-+hn Kn) sinmut + (hntin -9, K,.,) cos m,p(:l (ATI.6)

Adding equations (AI.4) and (AI.6),

- Knd

Rn+Rn = ¢ [( 9nMn + hnKn) SinMack + (hnMn = 9 Kn) cOS nnnc\:l (AT.7)

mv?'"- K'\"
From equations (AI.3) and (AI.7),

00 =-Ka®
- e I: G Mn +hnkn) SIN MR 4+ ChnMn = gy Kn ) oS M
L= =01 ) i (Onorinte) 4

or,

- Kv\*(

S AQ) i BQ’ cosm o\)
IL(o() =n z e n SINMK + Bn n
N=1
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where,

A‘(")\ - (9nMn+ hn Kh)

m.?‘-q- Kv\o'
(AI.8)
BL: - 9.\an-hn:1n
Mp =+ Kn
in which Z.=Mn+ikn are the roots of sinh2z+2z=0 in the
first quadrant only and where A >0 . By inspection, it
can be seen that Iy(Eo)= I, &) . Thus, for any value of
ol the integral
X _Knlt 1) . (0
IL&@=n> e ‘(As\) SIN Mnlet| + Bn <OS Mald]) (AI.9)

-
-

AIX.2 The Integral Iz(a)

From the properties of sine integrals,

o wl3

[« =]
:‘L'v:e.(v():[° ﬁ';’“_bj.d(bg) if o >0
| $

if o =0

=-0 1 A <O
2 1l

Then, for any value of g , this integral can be written as:

Iy(&) = snGMCd).% (AT.10)

‘



- 112 -

where,
SIGN ()= 1 if « >0

(AT.11)
=-1 if d<o

AI.3 The Forms of the Remaining Integrals:

Following the same procedure as used during the evalu-

ation of Iy() , the remaining integrals of the elastic

case can be expressed as follows:

DO _ Kud) 3 N
I36) = sigN). 1 [‘ -+ ze (A-f‘ )sin m,,!o(l-i-B?)cosmn[q})]
n=1}

L -Kal
j[“(vz):sueN(vg).n[fI Zle QI( smm,,m;-r-B cosm,,]q])]

i o)
TS('Z) = SIGN() n [ Kl (An sinm,lnl + B,, COS mn\'ll)]

© _knlal, coy | ce (AI.12)
Ic(4,2)= n.nz e ! (A.f’.smm,,ldl + 8B, ) cos malal ) - -g— (ta)-1n)) r
=1

= -Knlnl
+ N Z 2 f;’)sm mMgin| + B( cos mle])

D -knlpl , (s
I7 (Q) =0n. z e " (An SlnMn’Qf '!'Bn cosm""”)
n=i
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in which the various coefficients are given by the following

relations:

AR = -'isinh<2m.‘).sinC2Kn) /o>
B
A = CMaHn + Kn 8L Y /7 (m2s 12
Br = (MnGh = Kuhn) /¢ mEe k2)
Af‘s) = sinhm,.sink., /A

5
Bf‘ ) = coshm,.coskn /A

3
Af, = —'“n/’('“3+-K3?

6
BS\ g Kn /(M2 k2)

)
An’ = (Mn9) — Knhn) / (m2+ k2)

w '

Bn" = = (Mohn + kn @) / (m2sk2)
(8 0

A,.) = -9,
(B)__ ]

Bn ' = h,

2 . a2 .
= (coshm, cos*Kk, - sinh Win SiNTKn ) / A%

(AIL.13)
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gn -— S,n n-C S n

h’n = coshm,.sinkn (sinh™m, - cos*kn) / A2

n
h

coshma.cosk, / A > (AI.14)

11','\ = Sihhm,,.sinkn / A

A= cosh m,. COs*Kn + s:’nh"m,, SIN*Kn

J

and Zn=m,+{Kn are the roots of sinh2z+2z=0 in the first

quadrant only.



APPENDIX II

AIT. EVALUATION OF THE INTEGRALS J;~J¢ FOR THE
VISCOELASTIC CASE

AII. 1 Integrals J,(A,T) to J,(\,T) for the Case T>0:

For the evaluation of integrals J3(a,T) to Ja(AT)

first consider the following integrals:

ty
T = J; eKtanﬁ (?-T)dT
(ATII.1)

t2 kx
J'= f e cosp(e-v)dt
t,
Integrating by parts gives:
] Kt2 Kt
J = é [e *cosp(o-ty)-& 'cosp(cp—t.)] -—% J"

J"-= o [e“%%sinp (o-t,) = T sinp(@-1,) ] + % "

]
Solving for J and J" yields:
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!

J = E’:-;Ea [ektz sinp (¢ -ta) —e-Kt'S""PC‘P‘t')] |

B

Kt
+ K> +p* [e, 2(;05{3(CP—'t,_)—eKt'cos/B(q:-t.)_]

n

K Kt . t
= :,-_—_;—6;_ [:e_ 1605{3 (P-ta) "eK cosp (¢-t,) ]

Kty . '
Kf-r[s?- [e 2sinp (91,) - akt sin {3(¢-t,)]

7

-

(AII.2)

Since the integrands of Ji(A4,T) and J2(A,T) involve Heavy-

side's function, it is convenient to break the integrals into

two parts as follows:

t
R = e’ [ha) [ e+ T Ginb, (7-2) dT

—'/\t" T t n
Jo(AT)=¢e n [H(T-t)j; eC’H-a )CC.OS b (T-2)dT

T

+ HE-T) fo eclhdn)t cos b, (T-T) dt]

|

T ¢a
+ H(t—T)L e( van)T sinb, (T-'C)dt]

L‘ (AII.3)

~

Letting k=A+4qd,. t,=0 > 't,_:‘t 5 (3=bn, and ¢=T into equation

(AIT.2) and, after simplifying,
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t
A+Qn
_{; el4ranT sinb, (T-t) dT
_ él\-kan)t {(A-Pan) sinb, (T-t )+ b, cos by, (r-t) }
- CA+An)24b2
(A+an)sinbyT + b, cos b, T
(A+an)t + b2
t
A
‘£ ec e cos bn (r-2)dT

e(h-d..)t {(A+an)c_o_< bn(T-t) - b, Sinb, (1-t) % :
(/"f'Qn)z-l- bv?'

- (/""’q'\)cos bnT - bn S"" by‘T
(A+an)? + 5,2

Further, letting t=7T in equation (AII.4) gives:

T
o eATan)T sinbp(T-2) dT
A+a
-— bne( T n)T— CA"'QH) Si') bnT — an.OS br‘T
(A+an)?+ b2
T (A+dn)T
_(; e_( ) cos ba(T-2) dT
(A+Qn)T .
(A+an) e — (A+an)cosbnT+bn SINbaT

(A+an)*+ b2

(ATII.W)

(AII.5)
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Using equations (AII.3), (AII.4), and (AII.5) and simplify-

ing, yields:

-

TLT) = Hrat) { LI ) 3 cos (1)) pancr)
" n

\A - 3
+ H@&-1) brhe (t-n) _ ( (A*+an)sinba T+ bncos b,.T}
CA+Qn)2+ b2 CA+anYiy b )

-At —anT

T (A7) = 1) § {A+An) C0S br (T-t) — bn Sin bn (T-t) gAY
2(AT) =H(T ){ Ciranyiy b3 Q
+ HGE-T)(1+an) e”"(t'.r)
(A+an)+ b2

_ ((A+an)cosb,T —bn sinbyT } -Q—At ~anT
Atdn)® 4 2

In a similar manner:

-

-At +anT T (h-an
A7)z e " .H(t-T),(r e_( ? )tsinb.,Cr-c) dt

>
- /lt +anT

+
A-an
Tn(AT)=€ MHE-T) [r e( an)c cos bn (T-dT

> (ATIT.6)

(ATIT.7)

Again, letting k=A-q,, T, =T, ty=t > p=b,, and¢=T , in equa-

tion (AII.2) gives, upon simplifying:
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t
A‘ () . -
f_;_ec T sinb, (T-v) dtT

N e(,q-a..)t{g\-a,,)g,-y, bn (T-t) + bn c0s bn (-t) }
- (A-an)l -+ 6.‘2

b, e(ll-Qn)T

(A"qn)l'* br?'

t
f g\-am)T cos ba (T-z)dt
A

_ e(A-qn)t{(A..an) €osbn(T-t) = bnsinbn (T-1) }
- (/\'-Qh)z-l- bnz

(A-an) eA-IT
- (/l'-an)x'l’ bv?-

o’

Using equations (AII.7) and (ATI.8), the integrals J3 and

3# are obtained as follows:

70 CE=T) § (A-@n) $inbnCT:t) + bn €OS b (T-1) }
A,T)= ~
J3(A,T)= H(t-T) [e { CA-dn)*y b2

—A(t-
b, AT

(A-Qn)r+ b2

Jo(A,T) = H(G&=T) [e' q"(t'T){C/\- an )(c 0s b.,) E‘r—tb) - bn Sin bn (T—t)}
. /‘-QH -+ "

_ (A-am) e AT ]
(A-Qn)*+ b >

-

- (AII.8)

L(AII .9)
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ATI.2

Integrals J,(A,T) to Jy (A,T) for the Case T<O0

When T<0 , the Heavyside function

H(r-2) = o \(
i

11

H (x-T1)

]

for all values of © within the limits of integration.

Hence,

Ji(aT)=0 3
3.2 (/\,T):O

t
—-At 4. anT -
B = e’ T [ & IT Gnp creydt
o

S
At +anT Y ¢a-a
Ta(pTy = T [ AT

cosb,(T-T)dT

~

(ATIT.10)

(AIT.11)

Letting K=A-a, , t,z0 > ta=t > P=b,> and ¢=T , in equa-

tion (AII.2) yields:

t
A=-CQn .
) T i b () dT

- e(,‘-a")t {(/"'a") sinb,(7-t) + b,cos bn('r-t)} W
CA-an) + b2

_ (A=) Sin b,T + bacosb,T
CA—=Gn)* + b2

t o4 >
f AT ¢ b (e cydt
o

B} LA-an)t {(A-an)cosba(T-t)_ b, sinbn (Tt) }
(A—an)1+ bv?'

_ (A—an)COS bnT—bnSl‘Y) bnT
(A“an)l-v- b.-,z

(ATIT.12)



- 121 -

Hence, from equations (AII.11) and (AIT.12),

]‘3(,1 -r)_ (/‘ an)S'"bﬂ(T-t) + bn C0s bn(’l‘—t) "qn(t T)
CA-an)* + by

— £2-An)sinb,T + b,cos b, T ot +anT
CA-an)2 4 b2

Ta(AT) = (4-an)cos b, (T-t) - b.,smbnc-r-t) —an(t-'r)
* A-an)* 4+ 2

- (/"'an) cos br\T - bn sin bnT ~At +anT
(’{'—q")’-'f‘ bnz €

AITX.3 Integrals Js5(T) and Js (T) for the Case T>0

Substituting for &, (t) from equation (6.17) yields:

Ts(T)‘f [B’oé(‘l:-'c)+ZX - ArCe-T)

[

HHED) -n ] de

(AII.13)

N t
= %[ H(Tt)= H - 7 =M (e

But,

(ATIT.14)
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t
fo Her-zye ) o

t A Ct- T 4 Ce-
H(T—t),c, e et c)dt + H(t—'r),(oe At C)dc

- —hr(tT) -
— HG-t) {l-—e_ I‘rt} + H{t-T) {e r(t T)_e 1t}
= 7

- A (=T, ~Act
_ H@-tYy+ HE-T)e ¢ )—e"'

Ar

and,

t - - t_A .t_
J;H(z-fr)e’{'ct C)dc = H(t—T)[re r( C)dc,

_ H(t—'r){l—e""(t'-r)}
= y.

Therefore, from equations (AIT.15) and (AIT.186)
that:

t
J; [HeRe) - HEe-m]e -2
= A “/‘y(‘t‘T) -Art
2 LHO-0- (e + 2Hem) @ _e™]

Using equations (AIT.14) and (AII.17) yields:

(AII.15)

(AIT.18)

» 1t is seen

(AII.17)
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T5 (1) = % [H(Tt) - H(t-T) ]

N
+ ?—,% [H(T—t) - H(t-T) - et o H(t—jr)é"'(t;r)] (AII.18)

In a similar way,

Je(T) = % [HEE)-HG-T)]

N t '
+ 2 % [ueen - nen-€ ML openeh D] arrae

Now, recalling from relation (6.6) that:

[H(T-t)-H(t-T)] = SIGNEK)

Mt + 2HE-T)- W

e_—/l,('t—T)]

Ts () = % SIGN () + § é’L[saaN@)—é

=1 Ar

L (AIT.20)

!

’ N’ ! '/‘
To(T) =¥ SIGNE) + > %ES’GN@)-e T 2 H(ET).
r=| 'r
—Ar(t-T
.o e( )] )

It is to be noted that when T is to be replaced by t, »

the parameter o must be replaced by n
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ATI.4 1Integrals J5(T) and Jg (T) for the Case T<0

Using relation (AII.10), integrals Jg and J, become:

t
Js5(1) = —fo 8,(t-t) dt

N
%, ~Art

= -¥ - < (1-¢e
é.n "'( )

: t
Je(T) = —fo 8,(t-7) dt.

' N' [ "A't
=-%-3 % (1-e™)
=1 Ar

It should be noticed that in this case, the integrals Jj

and Jg become independent of their argument.

(AII.21)



APPENDIX IIT

AIIT. O, (t) AND 0O, (t) FOR A STANDARD LINEAR SOLID

The differential equation for the stress and strain

of a standard linear solid is given by (see Figure 32(a)):

Fd GL+G
dt*‘—rf‘%] @) = [61% + ﬁ;;l] €@)

(AIII.D)

_d_ K,+ Ko - d K, Ka
+_—]_ ci) = [ K, at + _—Q" ]é(’t)

The time-dependent moduli (in shear and dilatation) of such

a material can be written as:

G(b)= ﬁi(db+ 62) A
NP+ Gy+ Gy
L (AIITI.2)
K(b) = K1 (P +Ka)
D' b+ K+ K, J

where p is the Laplace transform parameter. o

The material functions Oy and 8, (as given by equation

(4.23)), can be expressed in terms of the transform parameter

as follows:
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}
b+Gy + Q
6 P):——L—— = K: L 2
ARG 2G4 (b + G,)

_ 3
8a(p) = 6 K(b)+ 2G(P)

3(n"p+Ki+ K2Y('P + G+ G2)

T K ('b+Ka) (WP + Gat Ga) + 2G4 (b +G,) (1P + K+ Ka)

By using partial fractions, these can be rewritten as:

b
6,(R) =%, + i
v(P) b+ Ay
B(p) = ¥e + 52 4 _F2_
b+ A, b+ Ay
in which
T S _ A . - 42
F95 0 MTag 0 MY
and
X;:..g__
ad

g'= Cbd-a2) A —cd+af

1 CM-Ny)d?

1_ (bd-ae)Ay, ~cd +af L
xﬂ." ' ' Py

(’\a"/‘g_)d

A= e - Jer_afd

1 2d
. e +Je*— afd

2 2d )

(ATI1.3)

(ATIII.W)

(AITITI.S)

(AITTI.6)

(AIIX.7)



- 127 -

where

a= 3’2”2"

b= 3[R(Ki+Ka) + W' (Gy+ Ga) ]

C = 3I(Ki+K)( G+ Q,)

d=(6Kt“‘251)Q'Q” L (AIII.8)
e

6 KL "Gy +Ga) + WK} + 2 Gy [ R(Ke+Ka)*+ "Gy ]

f= 6K1K(Gy+ Gy) + 2G162<K1+ Ka)

Inverting equation (AIIIL.5), the time-dependent material
function will be of the form:

O ()= ¥, 6¢t) + 5, "

' ' (AIIT.9)
' r =At -At
0. )= 6G) + 3 e L5

For a constant load, the equation for the displacement

of a standard linear solid can be expressed as:

-~ Gat
€t)=6, [G—',,"' é‘zCl—e /'z) 1

Figure 32(b) shows the variation of the displacement with
time.

For convenience, choosing the utlimate displacements

+o be twice the instantaneous displacement in shear and
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dilatations, respectively, yields:

G‘i‘-" G'L: G° ,
Ki= Ky = Ko (AITIT.10)
Similarly, assuming only one relaxation time for the
material in shear and dilatation, yields:
! n
-%; 2 ;21 = C (AIII.11)

Since for the elastic material the Poisson's ratio VY was
taken as 1/3, for which the bulk modulus is related to the

shear modulus as

K=2g¢g

wj0o

it may be assumed that

8
Ko = 3 G, (AITI.12)
Thus, substituting (AIII.10-12) into (AIII.8) gives:
Q.22 . _8 s o
a=FkIer ;5 d=j KT 1
qQ 2 243 3
b= E Ke T ) e = —5—{- Kb C L (ATIT.13)
q r R B! 3
c = 2 Ko > 'F = I3 Ko
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Substituting equation (AIII.13) into equation (AIII.6) and
(AIII.7) yields:

4 . ’ 3
o= Sig 5 ¥ =0
4 we! 4
8 = —— ¥ = ——
T 27 9k.T
. (AIII.1H)
{ '
/l,_:-t- 3 ’\i='é'
."'i 3 '—_2_
%= gx, M= g

Taking the above material constants into consideration yields

the two material functions 8y , Q,z_ as follows:
B, ()= 2 [C Sit) + e—t/C 1
L1750

2ty (AITIT.15)
= c
Qﬁ(t)-;;-’;i-z [C S(t)+ e ]

It is to be noted that equation (AIII.15) represents specific
functions that are based on the above assumptions. These
assumptions were necessary for an illustration of the analyti-
cal method presented in this thesis. For an actual material,

accurate values of these constants will have to be found ex-

perimentally.



APPENDIX IV

AIV. ROOTS OF SINH(Z)+z=0

It is realised that the entire analysis'of the
present problem is dependent upon the roots of the ex-
pression sinhz+z=0 . For a meaningful convergence of
the expressions of the various influence functions, it
is essential that these roots be determined in their
proper order. It is therefore considered to be necessary

to discuss the location and the evaluation of the roots

of this equation.

Substituting =Z=3x+{y, the equation sinhzez =0
becomes:

sinhx+iy) +xX+1y =0
which, on expansion, becomes:

sinhx.cosy +¢ coshx.siny =0
Separating real and imaginary parts

sinhx . cosy + ¢ =0

coshx.siny +Y=0

Let

F(x,y) = sinhx.cosy + X

(AIV.1)
G(Cx,Y)= coshx.siny+y
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Then, the roots of sinh2+2=0 are the points where F(X,y)
and G(%,Y) simultaneously become equal to zero. Let

(%n,Yn) be one of the roots It can be easily verified

that the points (tXpn ,t4,) are also the roots of this

equation. Therefore, the roots in the first quadrant only

will be discussed here.

Let (o,Y.) be a point close to C Xn,Yn) such that

Ay = No + X

(AIV.2)
y"l:yo‘i'&s .

Then, using a Taylor series expansion at the root,

F(Xn,Yn) = F°+ 8x Fxx + 8y Fy

G(Xn,Y9n) = G° +qux‘,’ +53 G;

where,

Fo = F(%,¥) , G°= G(%, %)

o = 2F °_ 23

. ax\ X=Xa 9 Gx = 9% | %= %o
J= Y Y=Y,

@ — BF (Y

Fy = 33‘1:10 and Gy = g% = %,
3—‘—30 Y= yo

since (Xn,¥n) 1is a common root

F(’Cn,yn) = G(%n, ) =0
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Therefore,
(S'x_‘F:_-réy.F; -F°

SX.G;L -f-S}I-G;: —Go

Solving for &x and Sy gives:

JX.-_- Go. F-;— F?G}; ] ]
Fe .Gy - Gy . Fy

. ' (AIV.3)

5 = F Gx -G Fx
F< Gy - G2 Fy

-/
Thus, if (Xo,Y%) bé a point close to CXn, Y,) then
(Xo+8%, Y +8Y) will be a point closer to CXn,%n) and
will therefore be a better approximation. Proceeding

in this manner, the actual root (Xxn,Y,) can be determined.

Now, it is necessary to make a guess for ( Xn,Y,) .

It is noticed that F(x,y) will be zero only when

(2nez)n £ ¥ & CansB)a n=o01,2,.....

Similarly, G(X,¥Y) will be zero only when

(G LEZ BY; B S Y (2n+2)n n=o0,1,2

~

Thus, F(x,Y)
if

and G(x%,Y) will be simultaneously zero only

an+ed)n & ¥« (Q.m-%)n n=0,1,2 ......(AIV.4)
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This gives a range of the locations of the roots. However,

it is also required to find out if there is more than one

root in each cycle.

Let (%*n,Yn) be a root and let (%o, Y) be a neigh-
bouring point related by equa'f:ion_(AIV.2). Assume that

(X0,Y9) is also a root.

From the previous argument, 8Sx and Sy will be given

by equation (AIV.3). Since C%o,Y¥%) is also a root,

F°= Gg°=0

This gives:
Sx = Sy=0

This means that (¥n,Y5) and (Xo,Y ) are the same points

and therefore there is only one root in each cycle.

The locations of the first two roots were guessed by
using equation (AIV.4) and putting X=0 and then the actual
roots were obtained by extrapolation. ¥ was increased by
21 every time and X was given the increment equal to the

difference in % between the last two roots.
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FIGURE 1

A SHEET ROLLING BETWEEN A PAIR OF RIGID CYLINDERS
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NIP FORCES IN ROLLING CONTACT
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FIGURE 3

PHYSICAL BEHAVIOUR OF A SHEET BETWEEN RIGID CYLINDERS
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REPRESENTATION OF THE NIP FORCES
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Pm1+m2—1

Additional force

(a) Underestimation in the value of m»

(b) Overestimation in the value of m,

FIGURE 5

CONSEQUENCES OF UNDERESTIMATION OR OVERESTIMATION
IN THE VALUE OF m, ON LOAD DISTRIBUTION
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(a) Normal line load moving on elastic sheet
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(b) Shear line load moving on elastic sheet

X-y coordinate system moving with the load
Fo velocity of the load
o pinned point

FIGURE 6

REPRESENTATION OF LINE LOADS (NORMAL & SHEAR)
MOVING ON ELASTIC SHEET '
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NORMAL DISPLACEMENT OF THE SURFACE (x=-b) OF AN ELASTIC SHEET DUE TO NORMAL LINE LOAD
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FIGURE 9
VARIATION OF THE FUNCTIONS OF F1 AND F2 WITH n
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SHEAR DISPLACEMENT OF THE SURFACE (x=-b) OF AN ELASTIC SHEET DUE TO NORMAL LINE LOAD
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ﬁISPLACEMENT OF THE SURFACE (x=-b) OF AN ELASTIC SHEET DUE TO SHEAR LINE LOAD
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FIGURE 14

THE GEOMETRY OF THE NIP (ELASTIC SHEET)
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FIGURE 15

POSSIBLE RANGE OF THE CREEP RATIO SATISFYING
EQUATIONS (2.2) AND (2.4) FOR NO-SLIP CONDITION

(Elastic case; D-12in., B=0.005 in.)
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SCHEMATIC REPRESENTATION OF THE SHEAR
DISPLACEMENTS OF THE SHEET SURFACE
(ELASTIC) WITHIN THE CONTACT ZONE
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VARIATION OF THE RATIO % WITH LOAD AND SHEET THICKNESS FOR

NO-SLIP CONDITION (ELASTIC CASE)
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FIGURE 20

VARTIATION OF CREEP RATIO WITH LOAD AND SHEET THICKNESS
FOR NO-SLIP CONDITION (ELASTIC CASE)
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FIGURE 21

VARIATION OF PEAK PRESSURE WITH LOAD AND

SHEET THICKNESS FOR COMPLETE SLIP (ELASTIC CASE)
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VARIATION OF THE RATIO % WITH LOAD AND SHEET

THICKNESS FOR COMPLETE SLIP (ELASTIC CASE)
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FIGURE 23

VARIATION OF %L WITH LOAD AND SHEET THICKNESS
FOR COMPLETE SLIP (ELASTIC CASE)



x x 103

- 159 -~

13
124~
114-
Legend
104~ B=0.005 in.
———  0.0625 in.
ol ——e— 0.25 in.
——fe—— 1.0 in.
84~
7 4=
64—
5.-—.
4-.—-
//’
/
3—-.
/”/
-~
5 ~
/
e
/
1 nd
7~
7
1 /0/
- /-/.
e @
- \
X
-2l \x
\)‘\
-3 1 1 1 : ' 1 ' :
i | 1 1 i ! 1 i
50 100 150 200

W (P.L.L.)

FIGURE 24
VARIATION OF CREEP RATIO WITH LOAD AND SHEET
THICKNESS FOR COMPLETE SLIP (ELASTIC CASE)
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FIGURE 25

LIMITING VALUES OF CONTACT LENGTH AND INDENTATION
FOR DIFFERENT NORMAL LOADS (ELASTIC CASE: B=0.005 in.,)
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FIGURE 28

SURFACE DISPLACEMENTS OF AN ELASTIC SHEET UNDER THE NIP
(B = 1 in., W = 100 P.L.I.)
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FOUR DISTINCT CASES DEPENDING UPON THE LOCATION OF POINT M
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MECHANICAL MODEL AND CREEP RESPONSE OF A
STANDARD LINEAR SOLID
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NORMAL DISPLACEMENT OF THE POINT M ON THE SURFACE OF A VISCOELASTIC SHEET
DUE TO MOVING LINE LOAD WHEN T>0
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NORMAL DISPLACEMENT OF THE POINT M ON THE SURFACE OF A VISCOELASTIC SHEET
DUE TO MOVING LINE LOAD WHEN TI<0
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SHEAR DISPLACEMENT OF THE POINT M ON THE SURFACE OF A VISCOELASTIC SHEET

DUE TO MOVING LINE LOAD WHEN T>0 AND to>0
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THE GEOMETRY OF THE NIP (VISCOELASTIC SHEET)
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VARTIATION OF PEAK PRESSURE WITH NORMAL LOAD
FOR DIFFERENT VALUES OF FoT(B=0.005 in.)
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FIGURE 42
VARIATION OF THE RATIO L WITH NORMAL LOAD FOR

DIFFERENT VALUES OF FoT (B=0.005 in.)
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VARIATION OF THE RATIO %i WITH NORMAL LOAD FOR

DIFFERENT VALUES OF FoT (B=0.,005 4in.)
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FIGURE 44

VARIATION OF CREEP RATIO WITH NORMAL LOAD FOR DIFFERENT
VALUES OF FoT(B=0.005 in.)
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VARIATION OF THE RATIO % WITH FoTFOR
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VARIATION OF NIP PRESSURE WITH FoT(B=0.005 ins, W=100 P.L.I.)
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VARIATION OF THE COEFFICIENT OF ROLLING RESISTANCE WITH Fg4TFOR
DIFFERENT THICKNESSES OF THE SHEET (W=100 P.L.T,)
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VARIATION OF THE NORMAL DISPLACEMENT OF THE SHEET SURFACE WITHIN AND OUTSIDE
THE NIP WITH FoT(3=0.005 in., W=100 P.L.I.) '
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PSSR

ROLLING OF TWO BODIES

ELASTIC~ELASTIC

'

SMOOTH

Hertz

[1]

ROUGH

4

Carter

[2]

Poritsky
[3]

Bufler
[4]

Johnson

[5]

Bentall
[6]

]

ELASTIC-VISCOELASTIC

SMOOTH
Hunter
[71

Morland
[8]

l

ROUGH

None

TABLE I

VISCOELASTIC~VISCOELASTIC

| l

SMOOTH ROUGH

;

Morland None

[91[10]

A BRIEF REVIEW OF THE LITERATURE INVOLVING THE ROLLING OF TWO BODIES

= 06T -



ROLLING OF A SHEET

ELASTIC VISCOELASTIC
SMOOTH ROUGH SMOOTH ROUGH
Wang Bentall Alblas None
[12] & &

Johnson Kuipers
[13] [15]
Bentall
[14]

A BRIEF REVIEW OF THE LITERATURE INVOLVING THE ROLLING OF A SHEET

TABLE II
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= q

SOME RESULTS OF ELASTIC

ROLLING FOR NO-SLIP CONDITION (B= 1 inch)

W 1x10° | dgr10° aqx10° ex10t Prax a,/mx1000 | /B a /m100 | 43/4, max
PLI inch inch inch ' psi psi
25 56.9616 | 341.415 273.818 -10.613 488.802 0.27382 0.05696 0.03414 0.80201 39.924
50 80.4768 613.446 478.519 -14.132 692.287 0.47852 10.08048 0.06134 0.78005 56.183
75 98.3676 859.651 658,064 -16.50L | 844.185 0.65806 0.09837 0.08597 0.76550 69.730
100 113.352 1089.29 821.608 -18.280 979.664 0.82161 0.11335 0.10893 0.75426 81.730
125 126.492 1306.86 973.526 -19.686 1095.74 0.97353 0.12649 0.13069 0.74493 92.648
150 | 138.297 | 1514.42 1115.96 -20.827 | 1200.74 1.11596 0.1383: 0.15144 0.73689 | 102.684
175 149.076 1713.289 1250.30 -21.767 1297.25 1.2503 0.14908 0.17133 0.72977 111.936
200 | 159.10 1905.813 | 1378.45 222.554 | 1387.61 1.3784 0.15910 0.19058 0.72329 | 120.522
TABLE III
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b wacd | agao® | aae® | apt | Paax a,/Bx1000 | /B | dy/B<10D | 4,/d, | Tnax
PLI inch inch inch psi ' , psi
25 | 58.908 | 208.07 | 135.777 |-5.41 490.38 0.54311 | 0.23563 | 0.08323 | 0.65255 | 46.217
50 | 81.98 351.544 | 211.528 |-4.813 | 704.22 0.84611 |0.32792 | 0.14062 | 0.60171 | 63.469
75 | 99.036 | 473.563 | 269.228 [-3.521 | 875.331 1.0769 0.39614 | 0.18943 | 0.56852 | 74.809
100 112.963 582.278 316.433 -1.930 1023.74 1.2657 0.45185 0.23291 0.54344 83.414
125 | 124.648 | 682.476 | 358.785 | -0.5070 | 1163.27 1.4351 0.49859 | 0.27299 | 0.52571 | 84.954
150 134.123 | 774.970 | 400.200 0.2751 | 1301.606 1.6008 0.53649 0.30999 | 0.51641 | 73.626
175 142.204 862.112 | 440.823 0.7164 1438.297 1.7633 0.56881 0.34485 .| 0.51133 55.029
200 149.238 944.591 | 480.590 0.9314 1572.63 1.9224 0.59695 0.37784 0.50878 31.673
TABLE IV

SOME RESULTS OF ELASTIC ROLLING FOR NO-SLIP CONDITION (B=0.25 inch)
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3 6 6 . -
" Lx107 1 d x107 | djx107 | 44 fmax  |d,/Bx1000 | L/B. |d /Bx100 | a,/a | % %max
PLI inch inch inch psi _ psi
25 53.8016 96.8023 36.498 4.278 577.358 0.58397 0.86083 | 0.15488 0.37704 *
50 70.4337 152.541 49.189 9.987 885.508 0.78702 1.12694 0.24407 0.32246 *
75 81.8464 197.584 58.025 14.756 1149.199 0.9284 1.30954 0.31613 0.29367 | 34.148
100 90.7925 236.848 65.113 18.98 1389.173 1.0418 1.45268 0.37896 0.27491 | 55.651
‘125 98.4228 271.294 69.480 21.782 1625.531 1.11169 1.57477 0.43407 0.25611 | 85.388
150 104.845 303.481 74.472 25,121 1839.299 1.19156 1.67751 0.48557 0.24539 {107.628
175 110.536 333.255 78.709 28.081 2045.275 1.25935 1.76858 0.53321" 0.23618 {130.433
200 115.664 361.096 82.383 30.747 2244.799 1.31814 1.85063 0.57775 | 0.22815 |153.413
* Very close to zero
TABLE V

SOME RESULTS OF ELASTIC ROLLING FOR NO-SLIP CONDITION (B=0.0625 inch)
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3 6 6
W .
Ix10° |4 x10" | d;x10 xx10° | Pmax |d,/BX1000 /B |4 /Bx100 | 4;/d, =Imax
PLI | inch inch inch psi psi
25 | 25.18 14.41 | 1.2201 | 119.32 | 1451 0.2440 5.0314 0.2881 0.0847 143
50 | 30.72 21.14 | 1.4826 | 159.22 | 2409 0.2965 6.1438 0.4228 0.0701 222
75 | 34.36 26.27 | 1.6678 | 188.60 | 3246 0.3336 6.8724 0.5253 0.0635 284
100 | 37.13 30.53 | 1.8159 | 213.03 | 4017 0.3632 7.4252 0.6106 0.0595 338
125 | 39.36 | 34.22 | 1.9405 | 234.32 | 4744 0.3881 7.8728 0.6844 0.0567 385
150 | 41.27 37.53 | 2.0495 | 253.66 | 5447 0.4099 8.2542 0.7507 0.0546 429
175 | 42.91 40.51 | 2.1454 | 271.13 | 6122 0.4291 8.5828 0.8102 0.0530 470
200 | 44.34 43.20 | 2.2299 | 287.32 | 6788 0.4460 8.8686 0.8639 0.0516 509
TABLE VI
SULTS OF ELASTIC ROLLING FOR NO-SLIP CONDITION (3=0.005 inch)

SOME RE

- S6T -



[N

SOME RESULTS OF ELASTIC ROLLING FOR COMPLETE SLIP (B=1 inch)

wo | w0’ do"l°6 d1x106 «x10% | Pmax |d,/Bx1000 L/B  |a_/Bx100 | 4,/d
PLI inch inch inch psi 1 ° 1"
25 57.9 | 342 272.11 | -12.112 479 0.2721 0.0579 0.0342 0.7958
50 81.8 | 614.4 475.04 | -16.261 679 0.4750 0.0818 | 0.0614 0.7733
75 | 100 861.2 652.63 | -19.108 832 0.6526 0.1000 0.0861 0.7579
100 | 115.4 | 1091 813.42 | =-21.279 962 0.8134 0.1154 0.1091 0.7458
125 | 128.8 | 1308 962.51 | =-23.031 | 1077 0.9625 0.1288 0.1308 0.7357
150 | 140.9 | 1515 1101.4 | -24.476 | 1181 1.1014 . 0.1409 0.1515 0.7269
175 152.0 | 1715 1233.1 | -25.703 | 1277 1.2331 0.1520 0.1715 0.7191
200 | 162.3 | 1907 1358.3 | -26.754 | 1367 1.3583 0.1624 0.1907 0.7121
TABLE VII
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6

Wl DxL0% | dx10” | dpxa0” | o | Prax |a,/Bxl000 | /B |d/Bx100 | dy/d
PLI | inch inch inch psi :

25 | 62.5 | 211.4 | 130.13 | -6.658 | 478 | 0.5205 | 0.2498 | 0.0846 | 0.6156
so | 6.0 | 357.9 | 200.72 | -6.508 | 687 | 0.8029 | 0.3474 | 0.1431 | 0.5609
75 | 104.8 | 482.6 | 253.68 | -5.494 | 855 | 1.0147 | 0.4193 | 0.1930 | 0.5257
100 | 110.4 | s594.1 | 296.85 | -4.126 | 1002 | 1.1874 | 0.4777 | 0.2376 | 0.4998
125 | 131.9 | 696.5 | 333.85 | -2.576 | 1136 | 1.3354 | 0.5277 | 0.2786 | 0.4794
150 | 142.9 | 791.8 | 366.36 | -0.933 | 1200 | 1.4654 | 0.5716 | 0.3167 | 0.4627
175 | 152.7 | 881.5 | 395.50 | 0.7592 | 1377 | 1.5820 | 0.6109 | 0.3526 | 0.4487
200 | 161.7 | 966.8 | 422.17 | 2.486 | 1489 | 1.6887 | 0.6468 | 0.3868 | 0.4366

TABLE VIII

SOME RESULTS OF ELASTIC ROLLING FOR COMPLETE SLIP (B=0.25 inch)
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Wl o’ 8,x10° ax10°| 104 | Prax |a,/Bx1000| I/B | d/Bx100) d /4
PLI inch inch inch psi 1 i 1o
25 | * 55.4 98.6 34.62 4.3 560 0.5539 0.8869 0.1578 0.3510
50 72.7 | 156.8 46.63 10.59 870 0.7461 1.1635 0.2509 0.2974
75 g4.7 | 204.8 55,29 16.19 | 1134 0.8846 1.3554 0.3277 0.2700
100 94,2 | 247.1 62.35 21.31 | 1373 0.9976 1.5069 0.3954 0.2523
125 | 102.1 | 285.7 68.42 26.08 | 1594 1.0947 1.6339 0.4571 0.2394
150 | 109 321.4 73.81 30.59 | 1802 1.1809 1.7443 0.5143 0.2296
175 | 115.2 | 345.9 78.68 | .34.87 | 2000 1.2589 | -1.8424 0.5679 0.2217
200 | 120.7 | 386.7 83.17 38.98 | 2189 1.3308 1.9314 0.6188 0.2151
TABLE IX

SOME RESULTS OF ELA

STIC ROLLING FOR COMPLETE SLIP (B=0.0625 inch)
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W mx10® | g x108 dyx10 xx10% | Prax d,/Bx1000 | L/B d,/Bx100 | d,/d_
PLI inch inch inch psi

25 | 26.4 16.3 1.77 28.48 | 1339 0.3539 | 5.2778 | 0.3255 | 0.1087

50 | 32.6 24.6 2.38 46.75 | 2179 0.4758 | 6.5286 | 0.4917 | 0.0968

75 | 36.8 31.1 2.83 62.56 | 2906 0.5676 | 7.3635 | 0.6216 | 0.0913
100 [ 40 | 36.6 3.22. | 77.03 | 3571 0.6447 | 8.0042 | 0.7318 | o0.0881
125 | 42.7 41.5 3.56 90.66 | 4197 0.7127 | 8.5302 | 0.8292 | 0.08509
150 | 44.9 | 45.8 3.87 | 103.59 | 4791 0.7741 | 8.9762 | 0.9167 | 0.0844
175 | 46.8 49.8 4.15 | 116.03 | 5362 0.8307 | 9.3658 | 0.9968 | 0.0833
200 | 48.6 53.5 4.41 | 127.93 | s908 0.8829 | 9.7084 | 1.070 0.0825

TABLE X

SOME RESULTS OF ELASTIC ROLLING FOR COMPLETE SLIP  (B=0.005 inch)
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Fot p,x10% Lpx10®  1x103 agx108 . dyx10%  dpa0® L %_p_mz %Lmz a2 digd dp Prax 4009 u-}{xlos

. inch inch inch inch inch inch inch B B o d, psi-
10% 41,055 41,055 3é.110 618,814 4784354 4784354 NeN82 0,067 0,048 0048 77,302 T77.302 681 =1e632 - 0,60
102 41.055 41,055 82,110 619,53y 472,070 479.070 n,082 0,062 0,048 NeN4R  T7,328 77,328 683 _-1.631.- 6,08

n 082 0,063 ° 0,040 0,049 77,582 77,582 694 -~li624 60,04

100 41,051 4l.050 32,101 626,426 485,935 485,998
79.383 791 - -1.589 '527.81 .

41,336 41.336 32,672 690,630 548,241 548,241 N,063 0,069 0,055 'n.N55 79-383‘
75.R53 93,965 704 ~=la711 '2224.08

10°
107! 52,436 26,218  T8.654 949,126 720,000 891,845 1,079 0,095 0,072  0,n89

“2 50,545 6C.566 121.001 1050,325  T44.846  T44.B44  r,120 0,105 0.074 0,074 104916 70,916 550 2,565 195,91

10

1072 564197 56.197 112,394 1061,393 778,217 778,217  ~ell2 0,104 0,078 0,078 76,728 74,728 510 =3,320 . 83,67
10”% 56,086 56,056 112,172 1061,269 779,131 779,131 a,1lz 0,104 0,078 N.078 74,825 74,825. 500 «3,328  8.33
10”5 56,085 55,085 112.170 L1041.270  779.141 779,141 ~.1l2 0 0,104 0{078. N,0TR T4.R26 74,826 499 ~3,328 s 0,83
1076 56,635 55,085 112,170 1041.270 7794141 T19,141 0112 0,104 0,078 0,078 74826 T4.826 499 =3,320 0,08

TABLE XI

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (Bél inch, W=50 P.Lmi.)
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o Fot
inch

10°
102
10!
10°
107!
1072
107}
10
107
107°

Lyx103
inch

57,800

57.890
57,778
58,483
77.492
83,528
79,990
78,800
78,400

78,89

Lox10
inch
57.800
87,800
57.778
584489
38,791
83,528
79,000
78,800
728,820

78,800

Lx10°
inch
115,600
115,600
115,555
116,978
1164104
167,057
158,200
157600
157,600
157,600

a,x10°
inch
1094,579
1096,004
1109,185
123R,69%94
1722,666
1819,55n
1822,319
1817.628
1817,656
1817,656

a,x108
inch
8164175
817,600
830,598
953,615
1223.408
1238,132

13024236

1300175

1300.203
1300.203

d;x10° L
inch B
816,175  0.116
817,600  n.116
830,998 c,1l16
953,615  ¢a117
1597,856 04116
1233,132 04167

11202,236  o0.15¢
1300,175  0.158 .
1300,203  r,158
1300.203  ,158

TABLE XII

d 2.
=L !
B X10

0,109
0,110
0.111
0,126
0.172
00182
0,182
N.182
0,182
74182

d, 2
=L
B x 10

3,082

0,082 .
"GoN83

00095

Ge122
0.124
041307
0,130
0e130
04139

gl 2
B X 10

0,082
0,082
0,003
Ne0N95
Nel60
04124
OuiBO
nllén
0,130

ne130.

T4e555

744593
740920
764986
71018

53¢ NGH

T1e460

Tre531

714532

71-532.

2

dp
glxto

74.565

744598

74,920
T64986
92,755
684044

710460

71,53y

714532

71,532

pmax
psi -
964
966
986

1149

954 .

772
720
708

707

707

xxlo3

=-2,131
-2+130

“2.115

=2+040
24033
-3.977

-4.391
-4,4392 .

44392
44392

SOMF. RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=1 inch, W=100 P.L.I.)

quios

1,07
“ 10,76
105,88
919;08

3246,21

826,83
23,59
8,3¢
0.83
0.08

102



" Fot
inch
10°®
102
10!
10°
107}
10”?
10°°
107"
10°°

1078

L1X103
inch

f0.253
764258
704263
714270
95,985
100,961
95,717
354644
95,643

95,643

L2x103
inch -

7C.258
70,258
70,263
714270
474592
100.9%61
95,717
954644
954643

654643

1x103
inch

140,517
140,517
1404526
142.539
143,977
201.922
191,435
191,238
191,287
1721.287

dox10°
inch

1508,238

1510,376
1531.07Y
1718,109
2393,749
2510,341
2404,586
2484,469
24864,467

2484 ,467

a,x10°

* inch

1096205
1099,021
1119667

12944829

1625,993
1660911
1721.500
17224155
17224163
17224163

a,x108
inch

1095,905
1099.021

1119.667°
1294,820 -

2201.81n

1650,911

17210500

17224155

17224163
17224163

L

B
Ds14)

0'141'

0414)
0,143
Q4144
00202
0,191
0,191

64191

“ne191

- T
s—xw

0,151
0s151
04153
04172
0,239
0.251
0,248

0248

0.248 .

0,248

TABLE XIII

d ——
B
0,110 0,110
0,110 04110
00112 0.112
04129 0,129
04163 0,220
04166 0166
00172 04172
0.172 04172
00172 0,172
0172 04172

724727
724765
T3.130
754264
67927
680163
69276
694317
69.317
694317

72,727
724765

‘71013(5.

75,364
91.082

664163

60,276

694317

69.317
69,317

1178
1181
1208

1422

1160

948
878
867
866

866

2 4, .2 4, 2 d, #Fmax . 3
E'wa x10 a-o-x(o a'o'x'&ppsi xx10

24443
w2144]

~20421

=24297
=2+155

44691

«54080 ‘

«3:083

~55085

=5:085

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=1 inch, W=150 P.L.I.)

ugx10°
1.48
14,82
145,74
1250.15
3933, 22

860,35

83,62

B.35

0,84

0008'

z02



-Fot
inch

10°
102
10!
10°
107!

1072

10
10
10

Lyx10°

inch
80,¢43
B0,843
80,852
82,2068
111,997
115,142
109,932
109,867
109,866

109,865

Lpx10°

inch
804343
36,643
3C,.652
22,268
55,993
1157142
109,932
109,867
129,866

109,866

ix10°
inch

161,485
161,685
161,704
164,537
167,930
230,785
219,065
219,734
219,733

219.733

a,x10°

inch
1394,959
1897,777
1925,361
2173,n6)
30248,062
3132,806
3101,397
3100,822
3100.81%

3100,.,819

a,x10°
inch

1350,332

1353,147
1380,608
1009.,053
1982,979
2n27.993
2094,302
2054,928
2094.936

2094,937

d,x10® L
inch B
1350,332  0.162
1353,147 0,162
1360.608  0.162
1609,053 6.1e5.
2756,791 0,168
2027,993 0,230
2094,302 00220
2094,928 04220
2094,936 0,220
2094.937 0,220
TABLE XIV

71259

714302

RINRITS

744045
65¢4R7
64.73u
67.528
674540
£7e558)

67+561

Qltufpmax

do
710259
71,302
71,706
74.045

91,372

64,734

67,520
67,560
67.561

67.561

psi.

1362
1365
1400
1660
1347
1095
1015
1004

ILLEN

1003

xx103

2669

295666

"n2,629

24467
'2|184
~5,228

=54600

~5:¢610

5,510

54610

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=1 inch, W=200 P.L.I.)

qulo

1.85
18,61

182,87
1556.70
4479,99

870,94
83,69
8,36

0.86
0.08

€02 -



FoT
inch
10°
102
10!
10°
07!
107
100
-ty

10

10°°

10°¢

L,x10°
inch

43,518
43,518
43,522
43,678
54,664
60,535
58,603
58,084
58,078
58.675

L,x10°
inch

43,518
43,518

434522

"63,67E

63,73]
60,585
58,603
58.0hR4
58.C78

55,G78

x10°
inch

B7.0n36
87,036
87,064
87,355
98,395
121,171
117,207
1164167
1164156
1164156

a,x10°

inch
359,107
359,286
361,098
378,512
490,535
575,042
568.363
568,269
568,266

568,266

d,x10%
inch

2014289
2014467
2034250
219,534
2614526
2694160
2820646
287,125
2R7.179
287,180

a,x10°

L
~inch B
2014283 Ds348
2016467 00348
203,250 04348
2194534 04349
3314169 D354
2694160 04485
282,646 De%69
2874125 04465
287,179 04465
267,180 04405

TABLE XV

do o ind
FExI0

0144
Oa.144
0,144
0,151
0,196
0,230
Q.?Zﬂ
0,227

0.227

0.227

q
B %4

.0.981

0,081

"G,081

0,088
0.097
0,108
0e113
0,115
0.115
0.115

2
0

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP

‘%%xtoz g—‘o-xloz g—zx«o’p‘;:’{ xx10° qulo‘5
0s0BL 564053 56,053 689 -04650  0.33
0eNB1 564074 56,074 690 _-0.649 3,28
0,081 56257 540287 701 =04662 32,69
0.088 57,909 57,999 797 0,577 306,89
0e132 40,237 67.512 787 <0,219 1650,6%
00108 464807 46,807 521 =1,436 702,36
Ne1l3 49.688 49,688 527 =~1,609 80,79
0e115 504526 50,526 518 =1,642 7.93
0,115 50,536 50,538 517 -1,642 0,79
Nel15 50e536 504536 516 =1.642 0,08

|
N
=

(B=0.25 inch, W=50 P.L.I.)"



Fot 3 3 03 6 6 6 a2 P
Lyx107 Lpx10°  Lx10 dgx10° . d;x10 d2x10 L dod Q1,0 %—2-:(102 i, 1o? g_z_x,oi max 103 qu106

inch inch inch inch inch inch inch B B B do o - psi
10° 59,750 59,750 119,500 594,618 297,113 297,113 04478 0,238 0,119 N,119 49,967 49,967 1003 =0,412° 0.564
102 59,75) 59,750 119,500 594,973 297,468 297,468 G 4TE 0,238 ne1l19 n.119 49,997 49,997 1005 ~0,410 5,39 .

10! 59,875 £9,875 119,750 600,471 301,719 301,719 0,479 0,240 0,121 0,121 50,247 50,247 1025 0,393 53,73
10° 60,197 66,197 120,394 634,932 332,968  332,9¢4 D.482 0,254 0,133 0,133 52,441 52,44) 1135 0,260 498,01
1071 75,000 60.000 135.000 828,816 360,066 528,816 0,540 0,332 D166 0,212 434443 63,804 1027 0,425 2249,45
1072 82,125 62,125 166,250 936,759 374,715 374,715 0657 04375 0,150 0,150 40.001 40.001 765 ~14334 - 731,04

107° 78,753 78,750 157.500 919,197 4924400 4024400 Ne630 0,365 0,161 MelbY 43,777 43,777 775 ~1.574 80.75

-l . -

10 73,750 78,750 157,560 926,399 409,603 409,603  £.630 0.371  0.164 0,164 464216 64,214 768 ~le597 7.99

1075 . 78,750 76.750 157.500 926,479 409,682 409,682 04630  0.371 0,164 0,164 444219 44,219 766 =~1.597 0.80
b . -

10 78,750 78.750 157.500 926,480 409,683 409,683  0.630 0,371 0,164 04164 440219 44,210 766 ~1,597 - 0,08

TABLE XVI

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=0.25 inch, W=100 P.L.I.)
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Fot
inch

10°
102
10!
10°
107
1072
107
10

10”

107"

L,x103

inch

71.169

93,448
23,071
93-607

93,267

L,x10°
inch

71177
714183
71.591
72.071
714633
974326
53,448
93,071
$3,067

03l067

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=

LXIO3

inch

142,377
142,377
143,132
1444141
161.556
1944652
186,896
186,141
186,133

136,133

d,x10°
inch

787,195
787,713
800,135
851,200
1117.152
1237,657
1218,118
1216,980
1216,969
1216,969

. dix10

6
inch

3644866
3634394
373,029
418.353
445,R44
448,291
490,403
485,133
495,183

495,183

a,x10°
inch

364,364
365,394
373.029
416,353
687}515
468,291
490,409
495,133
495,185
495,185

wj

0570 04315
04570 0,315
0573 0,320
0577 04340
reb46 0e447
fe 779 0,495
A T8 0.487
14745 0.487
2eT45 0,487
Ny T45 0,487

TABLE XVII

B

d,

0,146

0,146
0,149
6e167
0.178
079
0.1%6
n.198
na19é
04198

2
xI0

d,
B

0.146
0s146

0,149

0.167

dy . 2

2
==x10  ==%i0

do
454351
464337
G6e621
494149
39,909
350221
40,4259
40-685v
404690

404690

0.,25inch, W=150 P.L.I.)

d,, 2
doxw

460351

6,387

46,621

49,149
614542
3he221
404259
40,685
40,690

404690

pmax

psi
1254
1257
1251
1503
1219
970
9A8
972
970
970

xxlO3

~0,s101 -

700099
~0y065

04137

1,138
=11115
-14393
~1¢415

=141416
—10416_

qulo6

0,71 -

7.11
117

653,66

2623.43°

748,51

80,99

8,04

0.80
0.08

90¢



3 3 r.103 6 6 6 ‘ : P

FoT  L;x10° L,x10 Lx10 dox10°  d;x10 dx10 L do 2 dy @ dz,,2 41,2 d2 2 max 3 . 6

inch inch inch inch inch - inch inch B B X'D,- B x10 B x10 . a?“” a%"'° psi .xvs.lo qulo

107 B0,735 80,736 161.473 064,770 421,574 421,574 0,646 0,385 . 0,169 0,160 43.697 43,697 1486 0,244 . 0,86
L (et . _ . :

102 8C,736 25,776 161.473 065,479 422,281  422.28)  N,646 0,386 0,169 0,169 43.73R 43,738 1489 0,247 8.69

101 30,743 80,743 161,487 972,534 429,241 429,241 0,646 0,389 j 0,172 0,172 44,136 46,136 1521 - 0,275 ° 86,22
10° 81,368 861,3¢8 162,737 103¢,3B7 487,653 467,653  r,651L 0,416 i 0,195 0,195 464917 46.917 1730  0.543 786,18
107 101,715 81,372 183,087 1376,985 514,523  £25,202 0,732 0,551 0,206 0,330 37.338 59,928 1391 1,861 2909,82
1072 109,469 105,4+9 218,637 1505,858 507,341 507,341 0,876 6,602 0,203 0,203 33.689 33,689 1156 0,861 761,92

10”% 105,010 105,610 210,020 1479,411 560,487 560,467  n,840. 0,592 0,224 0,224 37,886 37,A8R% 1176 ~1,166 81,28

107" 106,669 106,669 209,337 1478,238 565,276 565,276  .837 0,591  0.226 0,226 38,240 3R,240 1159 ~1,186 3.08%
1075 104,665 104,665 209,330 1478,223 565,326 565,326 0,837 0,591 0,226 0,226 238,206 38,264 1157 1,106 0,81
107% 104,065 164,665 209,330 1478,226 565,327 5654327 o837 04591 04226 04226 384244 384244 1157 -1.186  .C,08

TABLE XVIII

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=0,25 inch, W=200 P.L,I.)

LOC



Fot
inch
10°
102
10!
10°
» 107
107
10°
107"
10”

10”¢

L,x10° L,x103

inch
35.312
35,312
35,312
35,275
40,294
46,543
45,131
44,4383
44,475

44,475

inch
35,312
35,312
35.312
25,275
3242325
464543
45,131
44,4F3
46,475

44,475

Tx103
inch
704625
70,625
70.625
70,550
72,529
93,087
90,262

88,966

88,951

88,251

doxlo6
inch
153,593
153,633
154,081
157,813
190,954
2374334
250.975
229,873
229,869

229,869

dyx10
inch

49,679
49.723
504167
540120
554653
564811
614239
64,978
65,031

65,032

6

d,x10%
inch
49,679

49,723

S50.167

544129
1044301
564811

614229

64,978
654031
65,032

= %lxnf
14130 0,246
1+130 0.246
14130 0,247
14129 04253
1160 0,306
10489 0,380
1e44% - 0370
14423 0,368
1.423 0,368
1,423 04368

TABLE XIX

dy
B

04079

N.080

0,080

0,087

C0.039

04091

0,098
00104
J.104

Ne104

2
=x[0

gl 2
B %10

Ne079

. NeN8O

0.080
0eNBY7

0,167

0,091 *

ne0%918
Nel104
06104

0.104

2
lem

do
324344
324304
324559
344294
294145
234937
26513
284287
20290

284291

d; A
avxw

324344
32,364
32,559
34,294

564,653

23.937

2645113
284267
28.2590
28291

pmax

psi
Bas
845
891
945
877
722
722
717

714

712

xx10°

141049

. 1s050

1.057
1,120
14672
21630
04481

0447

0e447

" 00447

6
unxlo

0.l4

;.40.

. 134,01

901.74
684,82
87,55
8,40
0,84

0,08 .

802

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=0.0625 inch, W=50 P.L.I.).



-FoT
inch

. 10°
10?
10t
10°

10°
1072
10”

-l

10

-5

10

10”°

L1x103

inch
45,477
45,497
454512
435,601
52,882
59,305
57530
56,609

50,809

56,800

L,x10

inch

35,607
454437
454512
45,671
424305
55,805
§7.500
56,800
56,500

564620

3

1x10°
inch

90,994
AN TTH
91.n25
91.201
95,187
119,610
115.000
113,600
113.630

113.600

a,x10°
inch

239,311
239.6Q7
240;433
249,080
306,935
371.080

358,913

356.207.

356,272

356,273

dyx10
inch

66482}
664909
67.817
75,796
73945
73.92&
83,392
87.354
87,419

87,420

6

d2X10
inch

56,621
56.9G9
67,817
75,796
157.839
73.020
83,292

87,354

87,419

87:420

6

TABLE XX

d, ,2
B

04107
94107
n.10°
04121
ns118

C0e117

0.133 .

0a140
ﬂ-th

Del40

=XI0

d, 2
ﬁ—xm

. 04107

T 0,107

0,109
n.121
Ne253
0,117
0,133
nel40
o140

Na14n

2
g%xlo

274921
274948
284206
304430
244087
194670
23,235
264523
26.537
244537

27.921
27,947
254206
AN, 430
51,415
19.679
234235
26.523
264537

264537

1395
13%6

1408

i510

1397
1135

1160

1144
1141

116l

xxlo3

2,133
2,135

24151
24292

3,331
41648
1,215
1,302
14302
1,302

qulo6
0.22
2423
22,23
212,32
1285,73
734,59
89,73

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=0.0625 inch, W=100 P.L.I.).
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-FoT
inch

10°
102
10!
10°
107!

1072

-4

10

10~

10°°

L1x103
inch

524509
52,500
52,500
52,590
61,553
694112
65,753
65,173
65,167
654167

sz103
inch

52,570
£2,500
52,590
52500
49,6432
69,112
65,753
65,173
65,147
65.167

i.xlO3
inch

105.n00
105,000
105,600
105.000
111.335
138,224
131.5006

130,346

139,334

130,334

dgx10°
inch

309,687
306,213
310,527
321.913
406,972
482,747
é59.725
457,695
457,679

457,679

a,x10%
inch

79,393
79,526

80,340

92,226
884156
44706
99,435
103,733
103,785

103.785

6

d,x10 L
inch B
79,393 1,680
75,526 1,680
B0.R4D 1,680
92,226 14680
202,930 1,781

84,706 20212
99,435 7,104
103.732 ‘ 2.086°
103,785 24085
103,785 2,085
TABLE XXI

2 4,

%lxw E—xug’
0,495 0,127
0,495 - 0,127
0,497 0.129.

0,515 04148
~ 0e651 l Nyl141
0.772 . 04136
Ao.736 0¢159
0,732 0,166
0,732 0.l06
. 00732 6,166

=2
g -*i0

0e127
n.127
0,129
nel4n
Ne325
Ne136
Ne159
n,166
Nelbb

Ne166

2 g%xlg
254687
25,719
264632
264649
z1e66)
174547
214629
22+664
224676

22:676

g%mjf

254H87
25,710
26,033

284643

%9,863

17,567
21,620
22,564
22,676
22,675

pmax

psi

ip33

)835

1851
1902
1835
1493
1526
1509
!506

1505

xXIO3

3,000

.3o°ﬂ2 .

3el04
3292

4:847 
9,822

24073
24051

‘24051
2;@51

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP.(B=0.0625 inch, W=150"P.L.I.)

qu106
0.29
2,93
25.21
276,04

766.45
91.33
.a.as_
0.89

0.09

0Tz

1



Fot
inch
10°
102
10!
100
107}
107%
107°

-4

10

10°°

-6

10

L1X103
inch

58,4125
58,125
584156
53,190
69.017
76,339
72,296
T14875
714875

71,875

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=0.0625 incﬁ, W=200‘P.L.I.)

L,x10°
inch

54,125
8,125
584156
58,150
55,214
76,339
72,296
714875
71,875

714875

x103
inch

116,25€C
116,25C
116,312
116,280

1244230

1524678

164,591
143,750
143,750

143,750

doxlo6
inch

371,51n
371,648
373,812
389,243
497,197
579,644
548,400
R4k, 040
848,110

548,111

a,x10%
inch

89,967
9Ce145
91.956
107.076
100,252
944010
112854
117545
1174609

1174610

d2X106
inch

89,967
904145
21,906

107,076

242,152
944010

112.8584

1174545

1174609

117.610

TABLE XXII

14860
1.860
1,861
1,862
1,968
24443
2,313
24300
24300

2+300

9,79
0.927
0,877
0.877

0.877

0,077

d, 2
E—KW

0.141’

0elé44

.147

NN
0,160
Gel150
n,181
0.108
n,188

0,183

%lxuf
Nel44
0,144
lela?
0.171
04389
0150
n,181
0,180
0,188

0,188

dy 2
a:xw

244217
244253
244602
27.508
201163
14.219

27578

210448 -

214457

21457

d, 2Prax
a;uo psi

24,217 2240

24,253 2242

264602 2265
27.508 2434
49,905 2226

154217 1814

20,578 1841
21449 1848 .

210457 1844

214457 1848

xx103

3,965

3.968

leO”l

44256

64267

84473 .

2759

24756

24750
2:756

qulo6
0.35
3,58

35,71

325,89
18164,.79
T91.44
92,76
9,03
0.90

0.09

1352

",



.Fot
inch
. 108
102
10!
10°
107!
107?
107°
107"
10°°
10"

L]Xlo3 L2X103 LX103

inch
16,313
16,313
16,313
16,313
17,8090
204622
214100
19,778
19,685

19,664

inch .

16,213

169313
16,313
15.313
144240
16,498
21,100
19,778
15,675

19,684

inch
32.627
32.627
32,027
32.627
32,0640
37,119

42.200

39,557
39,371

39,368

dox10°

inch
26,555

24,559

2“.594

24,933
27,604
38.455
39,330
35,576
35,433

Bﬁnﬁai

d;x10
inch

2,378
2.381
24410
2756
1,291
3.016
2.238
2.978
3140

3e}42

10.706
15.77¢

2+23R

" 249783

34140

3el162

7:374

TABLE XXIIT

‘gl 2
B x10

NeN43

0:N48

Le048

04035
N.024
D06
0,045
0.0060
0,063

0.N63

d, 2
B xlo

0404R
04048
NeN4A
N.055
04216
Ne315
04045
1,060
04062

NeNGA

d, d, Phax
a;x“? a?xu? psi

7¢603 9,633 2177

9,656 0,695 2177

9,825 n,R25 2130
11.053 11,053 2214

4350 3B.7R4 2376

70843 41,020 1847

5690 5,690 1721

84369 8,362 1830
BeR51 P.AGY 1829

NeBSO 0,869 1628

.xx103-

40679

49671

4:678°
- 44745
51459

Be148
By729

3+841

3,852

34852

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=0.005 inch, W=50 P,L.I.) -

qu].O6

0,03
10427
2,74
27,07
236,44
519,78

99.90

11.18

1.09
0,11

rA N7



Fot
inch
10°
102
10t
10°
10”
1072
10

-4

10

10

L,x10°

inch
20,000
20,009
20,900
20,001
21,560
25,762
26,000
23,969
23,905
23,905

L,x10°

inch
20,000
20,000
20,000
20,001
17,4F8
20,608
26,660
23,969
23,505

23:905

1x103

inch
40,000
40,606
40,000
40,003
39.248
46,368
52.000
47,938
47,710

47,010

dgyx10
inch

36,555
36,662
36,622
37,398

424421

59.40n

59,244
51,959
51,919

51.922

6 .

d1x106
inch

3,221
3,228
3,299
3,970
24599
44102
2.911
4084
40298

44392

dleo
inch

3,221
3,228
3.239
3,979
1€.935
244009
2.911
44004
44298

44302

94274
10,400
9,588

94562

9.562 .

dy 2
) §—xw

0.731

0,731

_0.733

04746
0,848
1.188
1,185
1.030
1,030

1,038

TABLE XXIV

d 2
=1
B x10

'ﬂ,hbk

;. NGS5

n,nbh

0,079
8.052
0,082
0.058
0,082
0,086

0,086

B
04064

C 0,065

0,066
0,079
Ne339
0,480
0eN58
n,082
0.086

N.086

2
L2 xi0

thMf
8.R13
8,830
9,055
10,641
bel27

€905

4e914

7859
8.279

B8e285

0
84813

8,830
5¢005
10,641
39.922
404419

6,914

dy . Prax
d

psi
3566

3567

3574
3628

3704

2924

2836
2017

xx;03
74693
74695
Te7I09
7,843
9,247

13,578

10.587

6,298

64437

61438

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=0.005 inch, W=100 P.L.I.)

6
nglo

0,04

Cobb
4,49
: h4,19

370,08
629,28

" 116,01

12,53

1.23

n.12

€1¢



Fot
inch

10°
102
10!

10°

107!

107?
10

107"
10

10

£1x10°  L,x10°

inch
22,4156
22,610
22,416

22,425

inch

224415
22,416
22,416
22,425
19,716
234275
294136
26718
264619
26,618

SOME RESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=0.005 inch, W=150 P.L.I.) °

1x10°
inch

44,831
44,831
44,931
44,8590
444361
524594
58,273
53,435
53,239

53,237

d,x10°

inch
45,734
45,747

45,852

- 46,858

54,678

764012
T4,4123
64,430
64,238

046,237

d,x10%
" inch

4.855
© 3,875
3,980
4,931
44063
4,867
3,378
4.944
5,188

5,191

6
d,xl0 L Q& 2
inch B B Xi0

3,865 8,966  0,915.
3,875 8,966 0,915
3,980 8,966 0,917

4,96) 8.%70 0,938

22,285  8.872 1,094

30,479 10,519 1,520
34379 114635 1.402
44944 104687 1.289
5,1b3 104648 1.285

54191 104647 1,285

TABLE XXV

2
lew

B

0,077
n,078
n,080
0,100
n.081
04097
n,068
04099
0,104

0.104

d, 2
B X {0

0077
0,078

0.080

0
Be450

8471
R.681

0,100 10624

0.“46

n.610 -

0068
n.0%9
Nel04

0104

7431
6e403
4e55R
Te674
8076

84082

d 2
it B
K x10

ds 2
a?ﬂw

R 450
8,471
8.681
104624
40,756
43.098
44558
7674
B8,07A

2,082

pmax

psi

4777
6778

4798

4887
4839
2837
3793
4085
4080

4079

xx103 uR'xlo6 .

10,329

10,331
10.352

10,558
12+734
18,269

140167.

85702
8,723
8,723

0,06
0.60
6,01

486,08

701,60

128,93

13,63
1.34

0,13

= hTZ

. 59,10



FoT
inch

10°
102
10!
10°
107!

1072

10;°

-4

10
10°°

10

Lyx103
inch

24,235
24,2235
24,235
24,235
25,706
31,913
31,393
28,652
23,559
28,4549

L,x10°
inch

26,235

24,235
264,225
264,235
214365
25,531
31.393
28,652
284550
28,549

' SOME ﬁESULTS OF VISCOELASTIC ROLLING FOR COMPLETE SLIP (B=0.005 inch, W=200 P.L.I.)

Lx103
inch

48,469
48,46%
48,469
48,469
48.071
57,444
62.787
57.305
574100
57.n98

dox10°
inch

53,343
53,362
53,502
564,818

64,847

91,317
85,854
74,4035
73,825
73,823

~dyx10®

inch
44405
40‘)19

.4,559

5.875

5e612
54444
3,725
5622
54899
5903

6
pp gl
4,405  8.696 1,067
4ol 9,694 1,007
4,559 9,694 1.070
5.875 9,694 1,69
26,809 9,614 1,297
25,999 11.489 1,806
3,725 124557 1,717
50622 114481 1,451
5,899 11,420 14476
5,903 11,420 1,476
TABLE XXVI

B
2,188
ND.NES
0,091

04117

0.108

0,100

N.074

,0.1;2

04118
2.118

‘ 2
da e %ixm

0,088
r,038
n.n91
N.117
0536

0726

0,074

Nell2
0.118

0.118

d, 2
ETXW

" B.257.
8.281 -

8'521

10.717

8e34A

6+028

g%ﬂg

R.257"
8+281
8.52)
10,717
4{.341
35,858
4,339
7.596
7:991

7.9954

pmax

psi

5894
5286
5300
6023
5987
4671
4631

5017

5010
5008

. xxlo?'

12,741

124744

12,772
13,026

154854,

224574
1703);
104715

10,738

104738

“ugx10°
0,07
0,7

7,61

+ 72,58

586,87

157,91

139,72
14,53

1.43

Vel -

STZ



