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Abstract

There has been tremendous growth within the Internet of Things (IoT) to provide ever

more data at ever lower cost. However, much of this growth has been limited to the

connected regions of the world, where technologies such as WiFi and cellular are widely

available. Much of the remote regions of the Earth have been left with little connectivity,

often expensive and power-hungry. The past few years have seen the launch of several

independent, low-cost Low-Earth Orbit satellite IoT providers, whose services have enabled

low-cost, low-power direct-to-satellite communications. In this project, the key goal was to

be able to transmit data off of low-cost, low-power environmental sensors to be placed in

remote regions of the Arctic. To accomplish this, the satellite IoT service by Swarm

Technologies was selected, and then, an integrative approach was taken to integrate the

Swarm satellite modem with a microcontroller. However, communications with these

young, independent satellite servicesŮsuch as SwarmŮare intermittent and stochastic, and

frequent transmission attempts drastically reduce battery life. To improve the power

performance of direct-to-satellite communications, multiple algorithms are presented to
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allow for more infrequent transmission attempts and increased transmission success rates.

These include algorithms for general system operation and satellite packet construction, as

well as an online learning direct-to-satellite packet scheduling algorithm. Finally, an energy

model is presented for evaluating and comparing energy performance of the system and

scheduling algorithm.
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Abrégé

LŠinternet des objets (IdO) a connu une croissance fulgurante pour fournir toujours plus de

données à un coût toujours plus bas. Cependant, une grande partie de cette croissance a

été limitée aux régions connectées du monde, où les technologies telles que le WiFi et le

cellulaire sont largement disponibles. Une grande partie des régions reculées de la Terre

nŠont bénéĄcié que dŠune connectivité limitée, souvent coûteuse et gourmande en énergie.

Ces dernières années ont vu le lancement de plusieurs fournisseurs indépendants de services

IoT par satellite en orbite terrestre basse, dont les services ont permis des communications

directes par satellite à faible coût et à faible consommation dŠénergie. Dans ce projet,

lŠobjectif principal était de pouvoir transmettre des données à partir de capteurs

environnementaux peu coûteux et peu puissants placés dans des régions éloignées de

lŠArctique. Pour ce faire, le service IoT par satellite de Swarm Technologies a été

sélectionné, puis une approche intégrative a été adoptée pour intégrer le modem satellite

Swarm à un microcontrôleur. Cependant, les communications avec ces jeunes services

satellitaires indépendants, tels que Swarm, sont intermittentes et stochastiques, et les
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tentatives de transmission fréquentes réduisent considérablement la durée de vie de la

batterie. AĄn dŠaméliorer les performances énergétiques des communications directes par

satellite, de nombreux algorithmes sont présentés pour permettre des tentatives de

transmission moins fréquentes et des taux de réussite plus élevés. Il sŠagit notamment

dŠalgorithmes pour le fonctionnement général du système et la construction de paquets par

satellite, ainsi que dŠun algorithme dŠapprentissage en ligne pour lŠordonnancement des

paquets directs par satellite. EnĄn, un modèle énergétique est présenté pour évaluer et

comparer les performances énergétiques du système et de lŠalgorithme dŠordonnancement.
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Chapter 1

Introduction

1.1 Preamble

An ongoing challenge in the study of sea level dynamics has been that of data. While existing

models can produce predictions of sea levels based on factors such as global warming, tidal

patterns, and post-glacial rebound, these models ultimately rely on water level measurements

[2, 3]. To improve and validate these models, low-cost sensors offer a means of scaling

to produce relatively high spatial resolution data, which means sensors need to be placed

frequently along coastlines [2, 4]. In some regions of the world, this is easier than in others.

If a sensor is in or near a city, the site is likely to be easy to access and have an abundance

of connectivity options. One could use all manner of standard IoT protocols from cellular

to LoRa (Ťlong rangeŤ), or one could simply log all the data to an SD card to be collected
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manually. In more remote regions, however, many of those options disappear. There may not

be cell service or other typical IoT communications available, and it may be too far to feasibly

collect the data manually. In many of the most remote regions of the globe, the standard has

been to use satellite communications, but these are often costly and require a lot of power,

two factors often at odds with the scalability needed for high spatial resolution [5, 6]. This

is exactly the problem faced by the project this thesis addresses.

There is already a prototype that uses the multipath interference of global navigation

satellite system (GNSS) signals to measure water levels at low cost, a technique known as

GNSS reĆectometry (GNSS-R) [2]. This solution is meant to be affordable and scalable,

however, it has the same limitations as much of the currently existing domain of IoT: it

can produce data, but it is unable to uplink that data from remote locations to where that

data is needed [2]. This limitation of IoT has spawned a subdomain dedicated to solving

the issues of bringing IoT to the remote corners of the globe, the Internet of Remote Things

(IoRT) [5].

While connectivity options are scarcer in IoRT than for typical IoT, there still remain a

few options. These range from low-power wide area networks (LPWANs) to low-power

cellular network protocols to geostationary and low-Earth orbit satellites [7]. Additionally,

there have been efforts into unmanned aerial vehicles supporting the Internet of Remote

Things [7, 8]. Amongst these, however, satellite options are the only proven options for

truly global coverage [7, 9, 10]. Due to inherent limitations of geostationary satellite
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communications, LEO satellites remain the most practical for the remotest of regions

where terrestrial infrastructure does not reach [5, 6].

Even within the realm of LEO satellite communications, there are several further relevant

ways to subdivide: 1) by communication directness, 2) by satellite company type, and 3) by

LEO orbit conĄguration. Regarding communication directness, this is in terms of whether

individual devices or sensors communicate directly to satellite (known Ąttingly as Ťdirect-to-

satelliteŤ) or indirectly via some sort of local network (often an LPWAN) centered around

a satellite gateway [7, 9]. Then, regarding satellite company type, there are those services

provided by established satellite companies from the pre-IoT eraŮwho often offer satellite

internet and satellite phone coverage as wellŮand those services provided by independent

LEO satellite companies [7, 9]. These independent LEO satellite services are often younger,

more geared towards IoT, and use smaller CubeSats, which are a class of small and modular

picosatellites [7]. Because of these often differing purposes, independent services often use

different LEO satellite conĄgurations; because IoT can tolerate intermittent connectivity

better than satellite phones can, their satellites can use primarily polar orbits to provide

global (but intermittent) coverage [9]. In contrast, the traditional LEO satellite providers

often have their satellites arranged to provide continuous or near-continuous coverage [9].

Using more intermittent, opportunistic LEO satellite constellations for IoRT has the

primary beneĄt of requiring fewer satellites, thus reducing cost [9]. These cost savings

can be felt at the user level, but so can the intermittent connectivity, which requires data
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buffering and knowledge of when satellite passes occur [9]. This in and of itself presents

both challenge and opportunity: some algorithm(s) must be devised to buffer data and

transmit at appropriate times, but a cleverly devised algorithm provides potential for energy

savings [9]. To the best of this authorŠs knowledge, only one previous paper (by Huang et

al.) has examined this problem and proposed an online learning algorithm, where online

learning here refers to machine learning methods that can learn sample-by-sample in the

Ąeld, as opposed to offline in batched datasets [10,11].

This previous work examines a gateway for indirect-to-satellite communications, where

it is unknown when new data will be received by the gateway, and thus the authors pose

their problem as a queue scheduling problem [10]. They then propose an online learning

algorithm based on Lyupanov optimization, which is a common approach for similar problems

such as the allocation of resources and green scheduling in cloud computing [10, 12]. This

previous work, however, is for an indirect-to-satellite gateway receiving data from a local

network (e.g., an LPWAN) at unpredictable times. Because this thesis ultimately designs

for direct-to-satellite communications with a known data production rate, a novel algorithm

is presented. Thus, to the best of this authorŠs knowledge, this thesis is the Ąrst to introduce

an online learning algorithm for scheduling of packets for intermittent direct-to-satellite

communications. The algorithm presented in this thesis is rather derived from reinforcement

learning, speciĄcally Monte Carlo learning and the k-armed bandit problem.

At a high level, the goal of this thesis became to research and design a scheme for the
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aforementioned low-cost water level sensors to be able to operate and transmit their data

from remote locations. Because of the relative youth of the selected independent LEO

satellite service provider, Swarm Technologies, a highly integrative approach is taken to

complete sensor design from requirements, to protocol comparison and selection, to

hardware design, and Ąnally to software and algorithm design. In doing this, this thesis

aims to highlight key design considerations for creating a low-cost, low-power

communications scheme for an Internet of Remote Things device. The key novel

contributions of this thesis are the algorithms, particularly the online learning

direct-to-satellite scheduling algorithm and associated energy model.

1.2 Contribution to Knowledge

• An online learning direct-to-satellite scheduling algorithm based on modiĄed forms of

Monte Carlo learning and the k-armed bandit problem. The algorithm uses a form

of Monte Carlo learning to estimate the probability of successful transmission for a

given set of satellite pass characteristics (maximum elevation angle and pass duration).

The algorithm also balances exploration and exploitation using a form of softmax

exploration, inspired from the k-armed bandit problem. To the best of this authorŠs

knowledge, this is the Ąrst such online learning algorithm for efficiently scheduling

packets for intermittent direct-to-satellite communications.
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• Routines for operating the Swarm M138 modem, efficiently serializing data to binary,

determining candidate satellite passes, and applying the online learning

direct-to-satellite scheduling algorithm.

• An energy model for the Swarm M138 modem to quantify average power under varying

conditions and performance metrics.

• Simulation results demonstrating the performance and behavior of the above online

learning direct-to-satellite scheduling algorithm.

• Practical information for integrating the Swarm M138 modem into a complete system.

At the time of implementation and of writing this thesis, SwarmŠs services are quite

young, and there are few practical resources on using the devices.
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Chapter 2

Background

2.1 Transmission Technologies

This thesis primarily focuses on satellite IoT, but it is valuable to understand other

existing communication protocols that could be used in an IoRT context and to justify the

functional value provided by independent satellite IoT services. We examine three

categories of technologies: 1) cellular technologies, 2) Low-Power Wide Area Networks

(LPWANs), and 3) satellite-based technologies. These technologies are evaluated based on

the deĄned requirements and other relevant factors.



2. Background 8

2.1.1 Cellular Technologies

Cellular technologies are the Ąrst category considered for IoRT. They rely on a prebuilt

infrastructure of cell towers distributed across the landscape. A device communicates with

the nearest tower if it is within a sufficient range to receive a signal. Modern cell towers

typically support high data rates but have limited availability in remote areas. Generally,

cellular services are operated by large, established companies, ensuring long-term service

reliability. We explore two possible cellular standards: LTE-M and NB-IoT, both developed

as part of the same set of standards and designed explicitly for IoT and machine-to-machine

communications [13].

2.1.2 Cellular Technologies

The Ąrst category of prospective technologies for IoRT is cellular. In brief, cellular

communications rely on a prebuilt infrastructure of cell towers spread throughout the

landscape. A device communicates with the nearest tower if a tower is within sufficient

range to receive a signal. In general, modern cell towers support relatively high data rates,

but their availability in remote regions is very limited. From a practical perspective, cell

towers are also generally operated by large, established companies, meaning the presence of

service post-installation is more likely to be assured long-term. Within the category of

cellular, two possible standards will be examined here, LTE-M and NB-IoT. The reason for

the selection of these two is because they were both developed as part of the same set of
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standards, with LTE-M and NB-IoT having been developed as subsets of the regular LTE

standard [13]. There are, however, other cellular standards that exist, but these are two

expressly designed with IoT and machine-to-machine communications in mind [13].

LTE-M

First is LTE-M, which is the higher data rate standard amongst the two. Functionally,

LTE-M acts like an LPWAN (as will be discussed in the next subsection), except using

regular cell towers like traditional cellular protocols such as LTE. This protocol allows

communication within a few km of a cell tower [14]. LTE-M uses a peak power

consumption during transmission of about 1.4 W, and it achieves up to 1 Mbps upload

speeds [13, 15]. In terms of practical considerations, it requires a modem, SIM card, and

data plan for each device. A modem can cost about CAD 40, a SIM can cost CAD 1.35,

and data can cost CAD 0.14 to 0.68 per MB. In total, LTE-M is fairly well-suited for many

IoT applications in terms of cost and power consumption, although its coverage is

dependent on cellular infrastructure.

NB-IoT

NB-IoT, like LTE-M, also acts as an LPWAN based on regular cell towers. Functionally, NB-

IoT is very similar to LTE-M, with similar costs (for both hardware and data) and similar

power consumption [13, 15]. This is largely because NB-IoT, like LTE-M, also operates on
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a subset of LTE standards and can often use the same hardware, SIM cards, and data

plans [13]. The key difference is NB-IoT has lower data rates around 100 kbps, or about

10 times lower than LTE-M [15]. Additionally, NB-IoT enables communications within 10

km of a cell tower in rural and remote areas [14]. Thus, for most environmental sensors in

the Internet of Remote Things, it is anticipated that NB-IoT is the more sensible cellular

technology, save for those applications that may have a particular need for higher data rates.

2.1.3 LPWANs

Low-Power Wide-Area Networks (or LPWANs for short) are precisely what the name

suggests: low-power networks that can cover a wide geographic area [16]. These networks

are designed primarily for IoT, where high data rates are unneeded, low power

consumption is needed, and prices are to be kept as low as possible. Within the category of

LPWAN technologies (with the exception of the aforementioned cellular LPWANs, LTE-M

and NB-IoT), three of the most popular are examined here: 1) SigFox, 2) LoRa, and 3)

LoRaWAN. While this list is not exhaustive of all LPWAN options, they are amongst the

most common, and they are representative of the overall capabilities of LPWANs.

SigFox

SigFox, amongst the non-cellular LPWANs, is the most similar to the cellular LPWANs,

LTE-M and NB-IoT. The key difference is SigFox uses special SigFox gateways instead of
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cell towers [17, 18]. These gateways function similarly, except that they exclusively offer

low-cost (CAD 15 to 30 per transceiver), low-data rate (100 to 600 bps), and low-power (0.5

to 4 W uplink) connectivity [18, 19]. Because of this, SigFox is generally able to provide

service to devices within tens of kilometers of a base station [17, 20]. A downside of this,

however, is it is dependent on existing infrastructure, but is unable to use the more widely

used cellular infrastructure unlike the cellular LPWANs.

However, SigFox makes up for this with the ability to self-host SigFox base stations [17].

SigFoxŠs rules for this depend on the country. For example, permission from SigFox Canada

is required to self-host a SigFox gateway within Canada. Hosting oneŠs own SigFox gateways,

however, would introduce a few practical constraints into any data transmission schemes.

First is that each gateway creates a local network, so each gateway still needs another means

to communicate with the SigFox backend servers such as cellular or ethernet [17]. Also,

because each gateway is designed to service many devices in a region, each one is higher

power (e.g., 2.3 to 7.5 W). Additionally, to offset the monetary and energy costs of hosting a

SigFox gateway, one would want to cluster sensors more heavily. While this particular point

is not necessarily a positive or a negative, it is a factor in any environmental sensing system

design nonetheless.

Overall, self-hosting a SigFox gateway seems a relatively promising option for any

application in which multiple sensors clustered within a radius of tens of kilometers is

desired. However, outside of technical performance, there is another factor to consider for
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SigFox. At the time of writing this thesis, there was recent news of the possibility of the

company SigFox going bankrupt [21]. It is unclear whether this will impact the long-term

reliability of SigFoxŠs services, but it may be important to consider for anyone investing in

sensors that rely on SigFoxŠs continued service for potentially years to come.

LoRa

The next LPWAN technology, LoRa (ŞLong-RangeŤ), does not have the same limitations

as SigFox. LoRa is a proprietary radio technology that is on the physical layer of the OSI

model [14,22], and it allows for sending packets long-distance over license-free RF bands [14].

What this means is long ranges up to tens of kilometers, low data rates (50 bps to 300 kbps

uplink), and low power consumption about equivalent to that of SigFox [14, 16, 20]. Unlike

SigFox, LoRa is not a packaged service. One must set up oneŠs own base stations with

some other method for uploading data from the local cluster to the cloud. Once a cluster is

established, however, there is no recurring service fee for using LoRa, nor is there a single

company to fear going bankrupt, as there is a wide availability of LoRa-capable products

produced by numerous vendors.

LoRaWAN

Lastly amongst the LPWANs is LoRaWAN, which can best be described as ŞLoRa meets

SigFoxŤ. LoRaWAN is a higher-level networking protocol that uses LoRa under the hood [14].
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This means it carries many of the same functional properties as LoRa regarding data rates,

range, and power consumption. Where it differs from LoRa is there are many existing

LoRaWAN gateways on the market, which translate LoRa packets to IP packets, which

must then be sent via another technology (e.g., cellular) to the cloud [14]. Some of these

LoRaWAN gateways can cost on the order of CAD 74, and their power consumption is

generally higher than for simple LoRaWAN nodes, although the exact power depends on

how the gateway is connected to the outside world. All considered, a self-hosted LoRaWAN

gateway is largely equivalent to a self-hosted SigFox gateway, but with the dependence on a

3rd-party service removed.

2.1.4 Satellite Technologies

Compared to cellular and LPWAN options, satellite connectivity functions fundamentally

differently. Whereas cellular and even some of the LPWAN options depend on existing

terrestrial infrastructureŮand where self-hosted LPWANs require creating oneŠs own

terrestrial infrastructureŮsatellite options have global or near-global coverage without the

need for ground-based infrastructure nearby to the sensors. The greatest advantage of this

is it places little to no constraints on sensor location, meaning satellite communications can

reach into the most remote of regions [5, 6]. Within the category of satellite

communications considered in this thesis, however, there are two key subcategories of

satellite service: geostationary and low-earth orbit (LEO). Across these two subcategories,
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this section will examine four commercial satellite IoT services: 1) Inmarsat M2M, 2)

Iridium SBD, 3) Astrocast, and 4) Swarm.

Inmarsat M2M

The Ąrst satellite IoT service, Inmarsat M2M (ŞMachine-to-MachineŤ), operates several

geostationary satellites. This grants it near-globalŮalthough not fully globalŮcoverage.

Most notable is the polar regions have little to no coverage under Inmarsat M2M (or any

geostationary satellite), which is an immediate deal breaker for any project located outside

those bounds [6]. For sensor locations within the geostationary coverage regions, the

functional speciĄcations are as follows. The Inmarsat terminals (which communicate with

the satellites) are relatively large devices that can cost on the order of CAD 2,000 to 4,000

and require on the order of 19 W when transmitting. Part of the reason for the high power

consumption is the terminals have to communicate with geostationary satellites, which are

much farther than LEO satellites. Data plans cost about CAD 200 for 20 MB of data. In

total, Inmarsat M2M does not seem like it was designed for low-power IoT in mind, and it

is likely more suitable for more traditional satellite data purposes than modern low-cost,

low-power IoT.
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Iridium SBD

Iridium SBD (ŞShort-Burst DataŤ), unlike Inmarsat M2M, is powered by a constellation of

66 LEO satellites in polar and non-polar orbits, meaning global coverage [23, 24]. Because

IridiumŠs satellite constellation also offers traditional satellite phone service, it is designed to

offer continuous or near-continuous service [9]. IridiumŠs SBD service, however, is intended

more for IoT and IoT-type applications, and as such has smaller and cheaper satellite modems

(ranging from CAD 454 to 600, depending on version). Iridium is capable of transmitting

about 1 kbps using a maximum power consumption of about 1.6 W [23]. Also because

Iridium SBD is designed for IoT with smaller amounts of data, the data plans offer smaller

portions of data, at about CAD 50 per month for 30 kB.

Astrocast

Unlike Iridium and Inmarsat, which have been in the satellite communications industry for

a while, Astrocast is a newer entrant. AstrocastŠs service, like Iridium SBD, uses a

constellation of LEO satellites to provide connectivity for IoT. Astrocast operates a

constellation of picosatellites in both equatorial and sun-synchronous polar orbits. These

orbits, like Iridium, grant Astrocast global coverage, but AstrocastŠs coverage is more

intermittent than that of Iridium, as is typical for independent satellite IoT providers [9].

Further, the company and service were designed from the ground up for low-power,

low-cost IoT. From a functional perspective, this IoT-oriented design can be seen in its
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speciĄcations. AstrocastŠs ground nodes cost about CAD 67 per device and have a peak

transmission power of less than 0.35 W. The Astrocast data plans cost about CAD 15 per

device for 60 kB. Finally, the ground nodes have a universal asynchronous

receiver-transmitter (UART) serial interface for easy integration with a microcontroller.

While AstrocastŠs coverage is technically global due to their LEO satellite orbits, they

do not yet offer service to all regions. As a young company, they have not yet secured the

rights to use their frequency bands in North America. When reaching out to the company,

the author of this thesis was told they did not anticipate having service in North America

for another 18 months (which would mean mid to late 2023). If in EuropeŮor elsewhere

after they have secured appropriate regional rightsŮAstrocast would be an excellent option

for environmental sensors in the IoRT. It is purely because of their unavailability in North

America that Astrocast was not chosen for the project in this thesis.

Swarm Technologies

Last amongst the satellite communication providers examined in this thesis is Swarm. Swarm

offers an extremely similar service as Astrocast, as it is also an independent satellite IoT

provider [9]. Swarm operates a constellation of polar and near-polar picosatellites that offer

intermittent communication [9]. They are likewise a very young company, however Swarm

is based in the United States, and they currently offer service to North America [25]. The

Swarm modems cost about CAD 121 per device with volume discounts down to about CAD
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80. The data plans cost about CAD 82 per device per year for 750 192-byte packets per

month. This is about 1 packet per hour. Additionally, data plans can be stacked, up to 4

plans per device. During actual transmission, Swarm reports a data rate of about 1 kbps

and a maximum power consumption of about 3 W. Like for Astrocast, each Swarm modem

has a UART interface for integration with a microcontroller. This is rather comparable to

AstrocastŠs ground nodes, and it is likewise designed from the ground up to provide low-cost,

low-power satellite IoT.

2.2 Reinforcement Learning

Reinforcement learning is a branch of machine learning that deals with sequential decision-

making [26, 27]. Where reinforcement learning differs from other Ąelds of machine learning

is that there is no supervisor with correct answers; rather, there is only a reward signal to

reward good outcomes and punish bad outcomes [26].

Within a reinforcement learning problem, there exists some agent and an environment.

The agent is able to make some observations of the environment and use that to perform

some action, which impacts the environment [26]. The agentŠs perception of the environment

is represented as the state, a member of some state space S. The actions the agent can select

from are members of some action space A. Depending on the state, action, and mechanics

of the environment, a reward R is granted. The goal of reinforcement learning, thus, is to

train an agent how to select an action, given a state, so as to maximize cumulative reward
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over sequential decisions [26,27]. This model for action selection is represented by the policy

π, which is learned with experience.

2.2.1 Monte Carlo Learning

To accomplish learning, there exist numerous algorithms and techniques, but among the

simplest and most interpretable is Monte Carlo learning. This technique essentially keeps a

running average of the cumulative reward received by the agent whenever a given state was

visited [26, 27]. That is, if a state was ever visited during an episode (a complete sequence

of states and actions with a clear beginning and end), it records what the Ąnal cumulative

reward turned out to be at the end of the episode.

To state this more mathematically, given an environment with states S, actions A, and

rewards R, the goal of Monte Carlo learning is to Ąnd an optimal policy π∗ that maximizes

the expected return. In Monte Carlo learning, the agent interacts with the environment

repeatedly by following a policy π. This generates an episode

E = ¶(s0, a0, r1), (s1, a1, r2), . . . , (sT , aT , rT +1)♢, where st ∈ S, at ∈ A, and rt ∈ R [26, 27].

The main idea behind Monte Carlo learning is to estimate the value function by averaging

the returns observed after visiting a state. The value function is given by:

Vπ(s) = Eπ[Gt♣St = s], (2.1)

where Gt is the return at time step t deĄned as the sum of discounted rewards:
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Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞

∑

k=0

γkRt+k+1. (2.2)

In the Ąrst-visit Monte Carlo method, the value function V (s) is estimated as the average

of the returns following the Ąrst visit to state s in each episode. The algorithm can be

summarized as follows:

1. Initialize V (s) for all s ∈ S and a counter N(s) for each state s.

2. Generate an episode E following the policy π.

3. For each state s visited in the episode, update the value function and counter:

• Calculate the return Gt after the Ąrst visit to s.

• Update the counter N(s) = N(s) + 1.

• Update the value function V (s) = V (s) + 1
N(s)

(Gt − V (s)).

4. Repeat steps 2-3 for a desired number of episodes or until convergence.

2.2.2 k-Armed Bandit Problem

A particular sub-problem within reinforcement learning is that of the k-armed bandit. Where

most reinforcement learning problems involve sequences of several states and several actions,

the k-armed bandit problem involves just one state, one set of k possible actions, and no

sequential decision-making [26, 27]. Rather, the goal of the k-armed bandit problem is to
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optimize for which action to take, given that the expected reward for each action is unknown.

Thus, algorithms tailored for the k-armed bandit problem frequently focus on exploration

in early epochs to discover the value of the action and then exploitation in later epochs to

beneĄt from that knowledge for close-to-optimal behavior [26,27].

The k-armed bandit problem can be formally deĄned as follows:

• An agent interacts with a set of k actions, where each action i has an unknown reward

distribution Ri.

• At each time step t = 1, 2, . . . , T , the agent selects one of the k actions, denoted by

the action at ∈ ¶1, 2, . . . , k♢.

• After choosing an action, the agent receives a reward rt ∼ Rat
, sampled from the

reward distribution of the chosen action.

• The agentŠs objective is to maximize the total reward over T time steps, i.e.,
∑T

t=1 rt.

Softmax (also known as Boltzmann) exploration is one method to address the

explorationŰexploitation trade-off [28]. In this approach, action probabilities are

determined using a softmax function, which converts the action-value estimates into a

probability distribution. Given a set of action-value estimates Q(a) for each action a and a

temperature parameter τ > 0, the probability of selecting action a is given by:

P (a) =
exp



Q(a)
τ



∑k
j=1 exp



Q(j)
τ

 (2.3)
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where Q(a) is the estimated value of action a, k is the total number of actions, and

τ is a temperature parameter that controls the level of exploration. A high temperature

results in more exploration, with the actions having similar probabilities, whereas a low

temperature leads to more exploitation, where the action with the highest estimated value has

a signiĄcantly higher probability of being chosen [28]. When τ → 0, the softmax exploration

becomes a pure greedy strategy, always choosing the action with the highest estimated value.

Conversely, when τ → ∞, the agent selects actions uniformly at random.

In the context of the k-armed bandit problem, the agent updates the action-value

estimates based on the observed rewards, and the softmax exploration strategy guides the

agent in balancing exploration and exploitation to maximize the cumulative reward.

2.3 Summary

This chapter has laid out the key pieces of background information on various protocols

applicable for IoRT, and it has presented the formulations of Monte Carlo learning and the

k-armed bandit problem. It is upon this background knowledge that the rest of the project

for this thesis was built upon. The background on Monte Carlo learning and the k-armed

bandit problem also form the basis of the custom algorithm presented later in this thesis.

The online learning algorithm that will be presented is based upon a custom modiĄcation of

the Monte Carlo learning algorithm combined with a modiĄed formulation of the k-armed

bandit problem.
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Chapter 3

Methodology

3.1 Research Approach

The challenge of determining the best method for transmitting data from sensors in remote

Arctic regions requires a speciĄc research approach (shown in Figure 3.1). First, it is essential

to deĄne ŤbestŤ in the context of data transmission from these remote Arctic locations,

leading to the establishment of high-level requirements for such a transmission system.

With these requirements outlined, various transmission protocol options and schemes

are considered. Transmission protocols include existing technologies like cellular,

Low-Power Wide Area Network (LPWAN), and satellite data transmission. Transmission

schemes refer to high-level strategies that utilize one or more protocols to create an overall

data transmission solution.



3. Methodology 23

A comprehensive comparison of these transmission protocols and schemes is conducted,

examining their advantages, disadvantages, and relevant factors. This analysis leads to the

selection of Swarm satellite IoT service as the focus of this thesis. Due to the novelty of

SwarmŠs services and satellite IoT services in general, much of the remaining work involves

starting from scratch.

Next, the speciĄc requirements for a satellite IoT system are established, factoring in

Swarm modem speciĄcations and constraints. This step helps solidify the Swarm modem

and satellite requirements, paving the way for the design and implementation phases. Some

of these speciĄcations and characteristics directly inĆuence the Ąnal designs and algorithms

presented.

During the design and implementation stages, an iterative process is followed. Initially, a

third-party commercial breakout board for the chosen Swarm modem is tested. However, due

to its unsuitability for production, a Ąrst prototype PCB is designed and tested, integrating

the Swarm modem with a Raspberry Pi Zero. This prototype ensures the basic operation of

the modem.

A second prototype PCB is then designed and tested, integrating a lower-power

microcontroller with the Swarm modem and relevant sensing components. While not fully

production-ready, the second prototype successfully demonstrates MCU integration with

the Swarm modem and data transmission, fulĄlling the thesis objective of designing a

low-cost, low-power transmission scheme for the Internet of Remote Things. This
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prototype also incorporates a software implementation of an algorithm for data

transmission and power conservation. Furthermore, an online learning algorithm is

introduced, allowing each device to adapt to its speciĄc location and environmental

conditions for optimal satellite communication.

In addition to verifying the boards and microcontrollers, it is crucial to simulate and

demonstrate the value of the online learning direct-to-satellite packet scheduling algorithm.

Simulated results are presented to assist in designing a Ąeld-ready algorithm, taking into

account the factors that affect the success of data transmission, such as satellite pass quality.

Additionally, a simple mathematical model of the systemŠs power consumption is provided,

considering the stochastic nature of data transmission success and its impact on power usage.

This model allows for both optimistic and pessimistic evaluations of power consumption

under varying conditions, serving as a rough tool for assessing the average power of the

system.

3.2 High-Level Requirements

Given the objective of creating low-power, low-cost sensors for remote areas like the Canadian

Arctic, two primary conceptual requirements emerge: 1) the system must be low-power, and

2) the system must be low-cost.

For the speciĄc sensor developed in this project, existing water-level sensors are quite

expensive (e.g., USD 1,000 to 10,000) and demand substantial infrastructure for setup [2].
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Figure 3.1: High-level research, design, implementation, and testing approach.

Consequently, gathering water level data at high spatial resolution becomes less Ąnancially

feasible, especially in remote regions such as the Canadian Arctic. A key goal of this project

is to create affordable sensors that can be widely installed across the Arctic to provide

high-resolution sea level rise data.

The initial prototype for this project, for instance, uses a Raspberry Pi Zero (without

wireless data transmission), resulting in approximately 2 W of power consumption. This

high power consumption necessitates a large 2.4-kWh lead-acid battery, increasing costs in

two ways: 1) the immediate material cost, and 2) the substantial expense of transporting

large batteries to remote locations. A lower-power system can reduce battery requirements,
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saving on both immediate costs and installation expenses. A labor-intensive and travel-

intensive device will signiĄcantly increase costs, even more so than for regular IoT. Once a

sensor is placed in the Arctic (or any other remote location), return trips for maintenance

become prohibitively expensive.

Considering the factors mentioned above, three high-level requirements are deĄned:

1. The sensors must operate year-round (including the Arctic winter) on an airplane-

transportable battery without manual intervention for power. The battery must have

a sufficiently small capacity to be transported by plane to the site location without

exceptional cost or inconvenience.

2. The sensors must be as low-cost per sensor as possible, both in terms of immediate

hardware cost and Ąeldwork and setup cost. Furthermore, the monthly operating

expenses per device must be minimized.

3. The sensors must run year-round without in-person maintenance, although remote

maintenance (e.g., a remote ŤresetŤ functionality) is acceptable.

These requirements naturally lead to the conclusion that the sensors must be low-power

to capitalize on the price advantage and transportability of smaller batteries, as well as

reliably autonomous. To achieve this, this thesis will focus primarily on reducing costs and

promoting longevity by lowering average power, thereby enabling smaller batteries and more

affordable sensor setup. This thesis will also emphasize interpretability in algorithm design
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to enhance trust in autonomous operation.

A Ąnal note, however, is environmental constraints such as operating temperatures and

humidity are not considered in this thesis. The project in this thesis did not result in a

production-ready sensor hardened to the conditions of the Arctic. The scope of the project

in this thesis was limited to reducing the energy associated with data transmission.

3.3 Comparison of Options

3.3.1 Comparison of Transmission Protocols and Standards

There are many details about the reviewed protocols and standards to compare. Thus, side-

by-side comparisons of all the key considerations of each service have been put into Table

3.1.

From Table 3.1 (and the previous in-depth review), some protocols and services emerge as

strong candidates for low-cost, low-power IoRT, while others can be immediately discarded.

First, SigFox can be removed since self-hosting a SigFox gateway provides minimal additional

beneĄts compared to LoRa or LoRaWAN while increasing business risk due to third-party

dependence.

Inmarsat M2M can also be discarded, as it is too high-power and expensive for low-

cost, low-power IoRT. Even when using a terminal as a gateway for indirect-to-satellite

communications with multiple sensors connected via LoRa or LoRaWAN, the terminal, data,
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Name Coverage Upfront Cost Operating Cost Power
LTE-M Heavily limited

in remote
locations

Tens of CAD
per module +
SIM

CAD 0.14 to
0.68 per MB

∼1.4 W max
TX

NB-IoT Heavily limited
in remote
locations

Tens of CAD
per module +
SIM

CAD 0.14 to
0.68 per MB

∼1.4 W max
TX

SigFox Tens of km
radius from
gateway

Low tens of
CAD per
transceiver +
tens of CAD
per gateway

Depends
on country
(usually CAD
10 per year or
less)

∼0.5 to 4 W
max TX, <10
W for gateway

LoRa Tens of km
radius from
gateway

Low tens of
CAD per
transceiver

None ∼0.5 to 4 W
max TX

LoRaWAN Tens of km
radius from
gateway

Under CAD 100
per gateway

None <10 W for
gateway

Inmarsat M2M Global, except
polar regions

CAD 2,000
to 4,000 per
terminal

CAD 200 for 20
MB

∼19 W max TX

Iridium SBD Global CAD 454 to 600
per modem

CAD 50 for 30
kB

∼1.6 W max
TX

Astrocast Global CAD 67 per
modem

CAD 15 for 60
kB

<0.35 W max
TX

Swarm Global CAD 80 to 121
per modem

CAD 82 per
modem per
year

∼3 W max TX

Table 3.1: Comparison of all the evaluated transmission protocols and standards.
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and power supply costs are difficult to offset. Iridium SBD, Astrocast, and Swarm are better

suited for the use case pursued in this thesis. Moreover, polar coverage is required for this

particular project.

Astrocast and Swarm both stand out as exceptional choices for IoRT. These independent

LEO satellite IoT providers were recently developed with low-cost, low-power IoT in mind.

Furthermore, they are both sufficiently low-power and low-cost to enable one modem/ground

node per sensor for direct-to-satellite communications. This simpliĄcation reduces points

of failure and engineering effort. Additionally, it streamlines the algorithmic problem of

optimizing transmission scheduling compared to indirect-to-satellite, as seen in previous

work [10].

Among the remaining options, Iridium SBD is marginal. It could potentially work in

some systems, but it is outperformed by Astrocast and Swarm for the low-cost, low-power

IoRT market. On the other hand, LTE-M and NB-IoT depend on the speciĄc project. For

some projects, cell coverage may be adequate, or sensor locations may be Ćexible enough to

make cellular feasible. This capability is further enhanced when considering the integration

of such a system with LoRa or LoRaWAN. This type of heterogeneous transmission scheme

is discussed in greater detail in the following section.
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3.3.2 Comparison of Transmission Schemes

From the previous section examining key aspects of various protocols, two overall ŤschemesŤ

emerge: 1) a heterogeneous transmission scheme where LoRa or LoRaWAN serve as hubs

or range extenders for an LTE-M or NB-IoT gateway, and 2) a homogeneous transmission

scheme where each sensor has an Astrocast or Swarm modem and can communicate directly

with LEO picosatellites. These two high-level schemes will be referred to as Ťhub-and-spokesŤ

and Ťdirect-to-satellite,Ť respectively.

The hub-and-spokes scheme, as illustrated in Figure 3.2, employs an LTE-M or NB-IoT

gateway as the hub, with LoRa- or LoRaWAN-equipped sensors as the spokes. Alternatively,

a satellite gateway could be used for indirect-to-satellite communications instead of cellular.

This scheme extends the limited range of cellular service and capitalizes on its higher data

rates. One gateway, using the relatively high 1 Mbps uplink rate of LTE-M, for example,

could likely service several sensors. This setup could create a clustered pattern of sensors in

remote areas where gateways are placed in areas with cell service, and the spokes extend an

additional 15Ű20 km.

However, the hub-and-spokes scheme has several signiĄcant downsides. First, it is heavily

limited in coverage. For some use cases, site location Ćexibility may make this limitation

acceptable. For many use cases, though, placing sensors in locations where cellular + LoRa

cannot reach may be necessary, and a solution involving chained LoRa repeaters might

become too complex and expensive to remain in the domain of low-cost, low-power IoRT.
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Figure 3.2: Diagram of a hub-and-spokes transmission scheme.

This point highlights the other salient drawback of the hub-and-spokes scheme: it is

inherently more complex to design and implement. It employs two separate protocols or

standards and creates a middleman gateway. This means designing, implementing, and

conĄguring both sensors with LoRa or LoRaWAN and gateways. The spokes and gateways

would have their own hardware, software, and power supplies, introducing more possible

points of failure and increasing the engineering costs. Moreover, gateways would likely use

signiĄcantly more power, necessitating the creation of larger (and thus more expensive) hubs.

On the other hand, the satellite IoT scheme addresses many of these issues. It offers

truly global coverage, allowing sensors to be placed almost anywhere on Earth without

dependence on cell service. As a result, no hub-and-spokes scheme is necessary for reaching
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Figure 3.3: Diagram of direct-to-satellite transmission scheme.

remote areas; it becomes practical to make each sensor its own gateway for direct-to-satellite

communications. This leads to several related beneĄts.

With each sensor as an independent device, only one standard sensor device needs to be

designed. This means a single set of hardware, software, and power supply, resulting in fewer

points of failure. In contrast to the hub-and-spokes scheme, a gateway failure in the direct-

to-satellite scheme does not entail automatic failure for the whole cluster. Additionally, no

high-powered hub with a larger power supply is needed. All these factors mean the direct-

to-satellite scheme enjoys the signiĄcant advantage of simpliĄed engineering and operation.

However, this comes at the expense of needing extra hardware and data plans for every

single sensor. This is a manageable downside, however, as the new satellite IoT providers

such as Astrocast and Swarm are affordable enough (in both hardware and data plans) to
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be considered low-cost, low-power IoRT.

With all these points in mind for both schemes, the satellite IoT scheme was chosen for

this project, as the hub-and-spokes scheme was too limiting in the Canadian Arctic, where

many of the sensors produced in this project will ultimately be placed. Also, as stated earlier,

Swarm was chosen as the satellite IoT service for this project, as Astrocast was unavailable

in North America at the time. The rest of this methodology section will then focus on the

Swarm-based satellite IoT scheme, from lower-level constraints and requirements, to design

and implementation, to the testing methodology.

3.4 Satellite IoT Requirements

With Swarm chosen as the means of communication for the low-cost, low-power IoRT in

this thesis, it is now possible to examine more in-depth requirements and constraints. To

begin, here is a brief overview of how exactly data is transmitted to the cloud via SwarmŠs

service. Swarm operates a number of LEO satellites. Each one beams down packets towards

the EarthŠs surface, announcing the satelliteŠs presence overhead, for any modems listening.

Any modems that receive one of these packets will then attempt to transmit any queued

packets and listen for acknowledgements from the satellite. If successful, the satellite will

move on in its orbit until it reaches a ground station operated by Swarm. It is here it will

transmit down all the packets it has received from various modems. The ground station

will receive the modemsŠ packets, organized by device ID, and upload them to SwarmŠs data
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servers. Here, the packets are available to the user either via a web portal or by an API.

Of all of this, the part that is relevant to this thesis is the integration and operation of the

modem itself with the sensor. This encompasses both hardware matters (e.g., PCB design)

and software (e.g., packet bundling and packet scheduling). To design both the hardware

and software to use these modems Ąrst requires some examination into their key constraints,

speciĄcations, and requirements.

3.4.1 Swarm Modem Operating SpeciĄcations

To note Ąrst is that the Swarm modem referred to in this thesis is the M138 modem, the

Swarm modem that is available at the time of writing this thesis and the modem with which

this project was designed. With this established, the operating speciĄcations of the modem

will be evaluated Ąrst.

The Swarm modem has four total operating states, all of which consume power: 1) Sleep

Mode, 2) GPS Acquisition Mode, 3) Receive Mode, and 4) Transmit Mode. First, when the

modem is powered on, it enters GPS acquisition mode, wherein it acquires a GPS Ąx so it

can determine the time and location. This typically lasts for about 30 seconds. The modem

will also re-enter GPS Acquisition Mode every 4 hours or every time the modem enters Sleep

Mode and is awoken.

Once a GPS Ąx has been acquired, the modem will enter Receive Mode, wherein it listens

for a packet from any satellites that may be passing overhead. This mode lasts until either
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Power Supply Mode Typical Current Typical Power
Transmit 850mA 2.8W

GPS Acquisition 45mA 150mW

Receive 26mA 86mW

3.3 V Sleep <80µA* <260µW*
Transmit 550mA 2.8W

GPS Acquisition 45mA 230mW

Receive 26mA 130mW

5.0 V Sleep <110µA* <550µW*

Table 3.2: DC power characteristics in the four modes of operation, for both 3.3 and 5.0

V.

a packet is received from a satellite (at which point it enters Transmit Mode), the modem

is instructed to enter Sleep Mode, or enough time elapses that the modem automatically

re-enters GPS Acquisition Mode.

If a packet is indeed received from a satellite, the modem will then enter Transmit Mode,

wherein it will attempt to transmit any queued packets up to the satellite and listen for an

acknowledgement. If this is successful, it will return to Receive Mode as normal, unless put

into Sleep Mode. Sleep Mode, as the name suggests, is a much lower power idle mode for

the modem, in which it uses at least 2 to 3 orders of magnitude less power than the other

modes.

As is typical for communications, the greatest power consumption occurs during Transmit

Mode. This can be seen in Table 3.2, where Transmit Mode consumes by far the most power.

Note, however, that the values for Sleep Mode (marked with an asterisk) are maximum rather

than typical, as Swarm does not report a typical value in the data sheet; this is perhaps
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because it is too low or too inconsistent to be reliably measured. Also note that the modem

can be supplied with either a 3.3 V or a 5.0 V supply, and this selection does indeed have a

slight impact on typical power consumption in GPS Acquisition and Receive Modes.

One important observation from Table 3.2 is that using a 5.0 V supply seems to result

in slightly higher power consumption in Receive and GPS Acquisition Modes, and possibly

in Sleep Mode as well, even though it consumes the same power in Transmit Mode. In

contrast, Figure 3.4 shows SwarmŠs predictions for the battery life of a 10,000 mAh, 3.7

V LiPo battery under varying transmit attempt frequencies. It becomes clear that the

transmit attempt frequency is a large factor inĆuencing average modem power consumption.

However, increasing the transmit attempt frequency also leads to more frequent entry into

GPS Acquisition Mode and Receive Mode. To determine the relative importance of these

modes for overall power consumption, additional information is needed.

One such piece of information is that Swarm reports a 192-byte (the max length) packet

takes about 3.7 seconds and 12.24 joules of energy to transmit.

The information and calculations presented above provide some insight into the energy

required by the Transmit Mode but do not offer much clarity on the energy consumption of

GPS Acquisition Mode and Receive Mode during a typical transmission cycle. In fact, one

of the primary aims of this thesis is to quantify an energy model for communication using a

Swarm modem and to develop an algorithm for operating the modem from the host device to

reduce power consumption. However, constructing these models requires more information,
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Figure 3.4: SwarmŠs reported battery lifetime for a 10,000 mAh, 3.7 V battery.

which will be covered later in this thesis.

Nevertheless, several notable ideas for energy savings are emerging:

1. Keeping the modem in Sleep Mode as much as possible is beneĄcial. While the impact

of using a 3.3 V or 5.0 V supply on average power in Sleep Mode is unclear, it is evident

that Sleep Mode consumes at least 2 to 3 orders of magnitude less power than other

modes.

2. The total process of exiting Sleep Mode, entering intermediary states, and transmitting

data is the most energy-consuming part of modem operation.

3. Failing to transmit wastes signiĄcant energy compared to sleeping. If the modem
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wakes, it must acquire a GPS Ąx (consuming much more power than Sleep Mode) and

then wait in Receive Mode for a signal from a satellite. If no packet is received from

the satellite, all the energy consumed in those two modes is wasted. Therefore, it is

advisable to attempt transmission only when there is a high probability of successful

communication with a satellite.

The above points will be expanded upon in the following sections, serving as the basis

for a more comprehensive energy-saving transmission scheme.

3.4.2 Swarm Satellite Transmission Functional SpeciĄcations

Understanding how to minimize power consumption during transmission requires a grasp of

how satellites, transmission, and data plans function. With a Ąnite number of satellites, a

satellite is not always overhead at any given location and time. Additionally, the angle and

environmental conditions (e.g., background RF noise) can vary. Data plans also limit how

much each device is permitted to send, and frequent transmissions consume more energy.

All these factors impact transmission approaches.

Swarm provides an online satellite pass checker, which, given a set of Earth coordinates,

offers a list of upcoming satellite passes, their times, durations, and maximum elevation

angles. Figure 3.5 shows a visualization of these satellite passes. Qualitatively, max elevation

angles observed in Montreal, Quebec, Canada ranged between 15 and 85 degrees, with pass

durations typically between 10 minutes and an hour.
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Figure 3.5: Sample view of online Swarm satellite pass predictor (for Montreal, Quebec,

Canada). Darker shades of blue correspond to higher maximum elevations (in degrees) above

the horizon.

However, satellite transmission success can be stochastic, meaning that even during a

satellite pass, the modem may not always succeed in a transmission attempt. Factors

impacting this include satellite pass ŤqualityŤ, RF background noise, environmental

conditions, antenna setup, and many others.

Satellite pass quality is related to the pass predictorŠs information on duration and

maximum elevation angle. Swarm does not provide guidance on the factors leading to

successful transmission, so this thesis aims to develop an empirical model for quantifying a

ŤgoodŤ pass, where a ŤgoodŤ pass is relatively likely to result in successful transmission.

For example, for a sensor that has an average success rate of 90%, a good pass that is likely

to result in successful transmission may mean a satellite pass that has a 90% or higher
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Background Noise Intensity (dBm) Quality (for Transmission)
-90 and higher Bad (unlikely to work)
-93 and lower Marginal
-97 and lower OK
-100 and lower Good
-105 and lower Great

Table 3.3: Background noise intensity required for likelihood of transmission.

probability of being successful. In contrast, another sensor with a lower average success

rate of 30%, a good pass that is relatively likely to result in successful transmission may

mean a mere 30% or higher probability.

Swarm provides guidance on the second factor, RF background noise, stating that a

background noise intensity of -93 dBm or lower is likely required for successful transmission.

Note that Swarm does not quantify ŤlikelyŤ in this context, only stating qualitatively that

transmission is unlikely to work at any higher than -93 dBm. As a result of this factor,

transmission is more reliable outside of cities. Table 3.3 shows SwarmŠs qualitative guidance

on what levels of RF background noise are considered good.

Physical constraints such as satellite passes and RF background noise are not the only

factors affecting transmission to satellites. SwarmŠs data plans also impose constraints.

Unlike other transmission protocols, Swarm charges a set amount of USD 60 (about CAD

82) per year per data plan, with up to four data plans stackable onto a single modem. Each

data plan allows up to 750 packets per month, where each packet can be up to 192 bytes,

for a theoretical maximum of about 150 kB. Of these, a maximum of 60 packets can be
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downlink, i.e., transmitted from the satellite to the modem. For reference, 750 packets per

month correspond to about 25 packets per day or approximately one packet per hour.

Considering these constraints, several transmission strategies can be explored. If one

needs measurements at a higher temporal resolution than one hour (e.g., every 15

minutes), they can either bundle measurements or transmit more frequently. Transmitting

more frequently, however, reduces the expected battery life of a system and incurs

additional monetary cost.

The impact on power consumption and battery life is not only due to the transmission

itself but also because each cycle of waking from sleep, acquiring GPS, listening for a

packet from a satellite, and transmitting consumes extra power. Furthermore,

environmental variables introduce uncertainty regarding how long the modem will need to

be awake before successfully transmitting, or if it can transmit at all. This thesis will

further examine this question. In the meantime, data bundling appears to be a promising

power-saving strategy.

3.4.3 Swarm Modem Hardware/Software Interface

All transmission planning strategies are based on the idea that the modem can be controlled,

i.e., it can be instructed to enter different modes or to transmit a speciĄc packet of data at a

certain time. They also depend on the supply voltage provided to the modem. These factors

rely on the physical and software interface for interacting with the Swarm M138 modem.
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Figure 3.6: Diagram of Swarm M138 modem signaling on the mPCI-e connector [1].

Regarding the physical interface, the modem connects with an mPCI-e connector, a

standard connector for wireless modems in embedded devices. However, while the physical

connector is mPCI-e, the signaling is not standard mPCI-e. The Swarm modem pinout is

shown in Figure 3.6. A brief description of each Swarm modem signal is provided in Table

3.4.

The VDD signal, acting as the modemŠs power supply, has strict requirements. Due to

the modemŠs sensitivity to RF background noise (as little as -90 dBm can disrupt

communications), Swarm recommends a minimum amount of decoupling capacitance
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Signal Name Description
VDD Power supply; can be 5.0 V at up to 600 mA or 3.3 V at up to 1000 mA
GND Ground
UART RX 3.3 V serial receive
UART TX 3.3 V serial transmit
T/R OUTPUT Transmit/receive indicator; HIGH when transmitting, LOW when receiving
GPIO1 Software-conĄgurable GPIO

Table 3.4: Swarm modem signal descriptions.

placed close to the VDD pins on the modem. This eliminates as much of the

high-frequency components from the otherwise DC signal as possible because these small

AC components affect modem operation. Higher AC components within the otherwise DC

VDD signal were observed to result in increased measured RF background noise (by up to

10 dB higher). The modem data sheet contains details on the decoupling and feed-through

capacitance that Swarm recommends.

As shown in Table 3.4, the primary means of communication with the modem is via UART

communications, with two optional signals, T/R OUTPUT and GPIO1, also available. In

terms of UART communications, the Swarm modem has a pre-deĄned command and message

set formatted as NMEA sentences. Some take the form of direct commands, some are

command responses, and some are unsolicited messages. These commands and messages

begin with a preĄx consisting of a Ś$Š symbol, followed by a few alphanumeric characters,

and then a space. The preĄx deĄnes the command or message category, while further

details within the message determine the commandŠs function or the messageŠs content. The

full details of the Swarm modem software interface can be found in the data sheet, but a



3. Methodology 44

PreĄx Description
$CS ConĄguration settings
$DT Date/time status
$FV Firmware version read
$GJ GPS jamming/spooĄng indication
$GN Geospatial information
$GP GPIO1 control/status
$GS GPS Ąx quality
$MM Messages received management
$MT Messages to transmit management
$PO Power off
$PW Power status
$RD Receive data unsolicited message
$RS Restart device
$RT Receive test
$SL Sleep mode
$M138 Modem status unsolicited message
$TD Transmit data

Table 3.5: List of Swarm modem command/message preĄxes.

summarized list of the preĄxes is shown in Table 3.5.

The list presented here demonstrates the modemŠs capabilities and how it can be

controlled. While the full details are beyond the scope of this document and can be found

in the data sheet, some of these commands and messages are particularly useful for

managing a low-power operation of the modem.

The $SL preĄx allows the modem to be commanded to sleep for a speciĄc number of

seconds or until a speciĄed date and time. This is useful for power-saving operations, as

it enables the modem to sleep until the next calculated optimal transmission time. This

approach depends on determining Ťa good time to transmitŤ and Ťa good passŤ as previously
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described. By performing offline pass predictions and identifying good passes likely to result

in transmission, the modem can be set to sleep until the next suitable pass.

The special $M138 preĄx announces asynchronously when a GPS Ąx has been acquired.

This is valuable because it informs the host device when the modem switches from GPS

Acquisition Mode to Receive Mode. If the modem already has queued packets for

transmission, it will automatically enter Transmit Mode upon receiving a packet from a

satellite. Otherwise, the host must wait for the correct $M138 message before issuing any

new $TD commands.

The $RT preĄx enables conĄguring periodic reports on the intensity of RF background

noise (in dBm), with reports sent asynchronously at a speciĄed period (in seconds). This

has two advantages. First, it alerts the host if attempting transmission is not worthwhile

due to high RF background noise, which can vary by up to 20 dB in the same location.

Second, it may serve as a useful additional parameter for good packet scheduling, as higher

RF background noise may require better satellite passes. This point will be explored further

later in the thesis.

The $TD preĄx queues data for transmission. Data can be sent in two primary formats:

1) an ASCII string or 2) binary data. Depending on the use case, sending ASCII strings

might be advantageous, but sending raw binary data is generally more efficient for numeric

data. It should be noted that raw binary data must be represented in hexadecimal using

ASCII characters for UART, but the modem reinterprets these back into binary.
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Byte-efficient data encoding is crucial for two reasons. First, each packet has a limited

number of bytes available (192). For instance, a JSON string format, although common,

wastes bytes when representing numerical values. Second, more measurements can Ąt into

each packet with efficient data encoding, allowing for more bundling and fewer transmissions

for the same amount of data.

3.5 Design

Translating high-level strategies into a practical device involves hardware, software, and

algorithmic design. The hardware design necessitates creating a custom PCB to interface

the modem with the host device. This was done in three stages: 1) testing a 3rd-party

Swarm modem breakout board, 2) designing a Ąrst prototype PCB to integrate the Swarm

modem with a Raspberry Pi Zero, and 3) designing a Ąnal prototype PCB to integrate the

Swarm modem with a microcontroller (in this project, a Raspberry Pi Pico) and the relevant

components for GNSS-R water level sensing.

The software design was primarily accomplished in two stages: 1) a small Python program

for testing the 3rd-party breakout board and the Ąrst PCB prototype, and 2) leveraging

an existing open-source library for the Swarm modem to perform higher-level tasks and

algorithms on a microcontroller on the Ąnal prototype PCB. Lastly, the algorithmic design

was informed by background research and practical experience testing data transmission

with the Swarm modems.
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3.5.1 Hardware Design

Understanding the modemŠs unusual signaling on the mPCI-e connector made it clear that

a custom PCB would be necessary for an IoRT sensor, such as the one designed in this

project. However, an off-the-shelf Swarm breakout board offered by SparkFun was used for

early testing of transmit capabilities and came with an antenna ground plane, which was

also utilized for testing the Ąnal prototype PCB.

Figure 3.7 presents the schematic for the Ąnal prototype PCB design produced in this

project. The left-hand side displays spaces for four GPS receivers and four GPS antenna

connectors, which are the project-speciĄc sensing components for GNSS-R water level

sensing. The remaining two-thirds of the schematic on the right is largely generalizeable to

other projects that would use the Swarm M138 modem, including an mPCI-e connector,

decoupling and feed-through capacitors, and headers for the microcontroller. Figure 3.8

presents the Ąnal prototype PCB layout, and Figure 3.9 shows the physical PCB with

microcontroller and Swarm modem attached.

A few of the key design decisions here include the microcontroller selection,

microcontroller integration, and decoupling and feed-through capacitors. The Raspberry Pi

Pico was chosen for this project because GNSS-R water level sensing requires relatively

intensive processing to be performed in-situ for each measurement. The dual-core processor

on board allows for easy separation of duties, with one core producing measurements and

the other managing the Swarm modem.
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Figure 3.7: Schematic of the Ąnal prototype PCB, integrating modem and MCU.

The next key design decision in the hardware involved placing female headers on the PCB,

allowing a Raspberry Pi Pico development board (with male headers) to be easily slotted in.

This choice was made primarily because development boards are already available, relatively

low-cost (under CAD 10, depending on the retailer), and signiĄcantly reduce design time for

the sensors (especially for a prototype).

The Ąnal key design consideration in the hardware pertained to the decoupling and feed-

through capacitors. The recommended capacitance was incorporated into the PCB, placed

as close to the VDD pins on the modem as possible. Additionally, space for two extra 100-µF

capacitors was added, although they were not assembled by the PCB manufacturer. These

extra capacitors were included as a contingency in case more capacitance was needed, since
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Figure 3.8: PCB layout of the Ąnal prototype PCB, integrating modem and MCU.

Swarm strongly emphasizes the importance of these capacitors for removing unwanted high-

frequency components and provides the recommended capacitance as a minimum. In the

context of this project, these extra capacitors were ultimately not required.

3.5.2 Software Design

With the Ąnal PCB prototype, a comprehensive understanding of the Swarm modemŠs

speciĄcations and operation, and several high-level strategies for low-power transmission in

place, the software design process could commence. Although the low-level software design
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Figure 3.9: Image of Ąnal prototype PCB with Pico and Swarm modem (GPS receivers

unattached).

relies on UART communications and SwarmŠs custom command set, this aspect was

greatly simpliĄed with the help of an open-source Arduino library by SparkFun for

operating the modem. This library internally manages all the low-level UART tasks and

exposes a higher-level set of types and methods. The remaining higher-level logic was built

on top of this library.

The high-level view of the two main processes can be seen in Figure 3.10. Note that

while this design was intended for the dual-core Raspberry Pi Pico, the processes could also

be implemented concurrently rather than in parallel. The only signiĄcant change would

be idling the processes (without pre-emption) instead of entering the physical cores into

low-power states.

The process on the left of Figure 3.10 is simpliĄed for the purposes of this thesis to
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Name Type Bits
Water level Floating-point 32 bits (4 bytes)
Error Floating-point 32 bits (4 bytes)
Roughness Floating-point 32 bits (4 bytes)
Minutes since Jan. 1st, 1970 Positive integer 28 bits (<4 bytes)
Status Positive integer 4 bits (<1 byte)
Total 128 bits (16 bytes)

Table 3.6: Format for each datum within the software.

focus on the data transmission aspect: generating data and placing it into a circular queue.

Although a circular queue introduces the possibility of dropping data, it guarantees Ąnite

memory usage, which is crucial for a long-running sensor in a remote location. The Swarm

modemŠs internal transmission queue can also drop packets; by default, packets time out

after 48 hours, but this value can be conĄgured. Consequently, the circular data queue on

the microcontroller was designed to accommodate 48 hoursŠ worth of data.

Efficient Packet Data Bundling

Also note in Figure 3.10 that there are a few implicit sub-algorithms being utilized. First

is a routine for bundling data into packets efficiently. This requires specifying a format of

representing data and a format of bundling them together. Because the ultimate goal is to

minimize power consumption, this means minimizing the number of transmissions to send a

given number of data points, which means maximizing the number of data points per 192-

byte packet, which means minimizing the number of bytes per data point. Table 3.6 shows

the format of data chosen for this particular project.



3. Methodology 52

Figure 3.10: Activity diagram for the host device with two processes.



3. Methodology 53

Note that each datum includes a timestamp, represented as minutes since January 1st,

1970. This is similar to Unix time, which is deĄned as seconds since January 1st, 1970 [29].

The rationale for this choice is that, in this project, temporal precision down to the second

is both unnecessary and unattainable due to the nature of the GNSS-R calculations. By

using minutes instead of seconds, it saves a few extra bits where the status code can be

incorporated using bit manipulation. As a reference, 28 bits can represent time up to the

year 2480 CE in this format, while leaving 4 bits to represent up to 16 unique status codes.

These 4 bits can be placed as the 4 most-signiĄcant bits of the 32-bit value representing

the timestamp, as the 28 least-signiĄcant bits are more than sufficient for the timestamp

representation.

This format allows each datum to Ąt within 16 bytes, which means each packet will be

optimally utilized with 12 data points per packet. Once a bit-minimizing, power-saving data

format is selected, it is possible to create an array of data points using C++ (since it uses

the Arduino framework) and convert it into raw bytes to send to the modem over UART for

transmission.

Beyond data representation and bundling, the second implicit routine within the high-

level processes shown in Figure 3.10 is good satellite pass selection. While the algorithm for

predicting satellite passes is fairly straightforward from the userŠs perspective, thanks to an

open-source SGP4 satellite pass prediction Arduino library, determining what satellite passes

are ŤgoodŤ depends on environmental conditions, setup details, and empirical observations.



3. Methodology 54

Due to the complexity of this aspect, the following subsection is devoted to the topic.

3.5.3 Online Learning Direct-to-Satellite Packet Scheduling

During the development and testing of this project, it was observed that transmitting to

satellites can be unreliable. Transmission performance was found to vary signiĄcantly due

to minor changes in equipment setup or environmental factors. For example, it was

observed that heavily overcast days led to RF background noise levels too high for

successful transmission (i.e., higher than -93 dBm). Additionally, an unshielded

microcontroller within 10 to 20 cm of the antenna could increase measured RF background

noise by 5 to 10 dB. Even slight adjustments in the antennaŠs orientation towards or away

from a distant cell tower could impact the RF background noise by several dB. Considering

these and potentially countless other factors, creating a generalizable ŤgoodŤ pass model

would likely be challenging and require substantial time, resources, and diversity of

hardware.

Moreover, previous work on indirect-to-satellite scheduling has demonstrated the

success of online learning strategies [10]. Simulations conducted by Huang et al. showed an

online-learning algorithm based on Lyapunov optimization theory outperforming a greedy

baseline scheduling algorithm in terms of backlog reduction [10]. SpeciĄcally, under

simulated conditions, Huang et al. reported a 21-point improvement in the percentage of

queues with zero backlogged data after a given number of time steps, which the authors
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state corresponds with a greater per-byte energy efficiency [10].

Given these Ąndings, it was decided that the best approach for selecting good satellite

passes would involve each individual sensor learning for itself, adapting to its speciĄc site

conditions and hardware setup through online learning. Numerous potential approaches

could be considered for such a learning algorithm. For instance, the previously mentioned

work [10] on indirect-to-satellite scheduling addressed the problem as a Lyapunov

optimization problem for network queuing, aiming to avoid assumptions about data

availability. However, in this direct-to-satellite application, where the frequency of new

data generation is known, it is unnecessary to treat it as a network queuing optimization

problem. Therefore, a novel approach is employed.

Algorithmic Problem Statement

For the purposes of a sensor that will be placed in a remote location far from human access

for potentially years at a time, a simple and interpretable model is preferable. This is so

that it can more easily be trusted to perform as expected [30]. To achieve this, a relatively

simple algorithm inspired from reinforcement learning has been devised. Before getting to

this algorithm, however, it is important to clearly state its goals. Essentially, the goal is for

the algorithm to be able to learn an estimate of the probability of successful transmission,

given three input variables: 1) the satellite pass duration (in minutes), 2) the maximum

elevation angle of the satellite pass (in degrees), and 3) the RF background noise (in dBm).
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To begin building the algorithm, some notation and some theory is required. To borrow

the notation of reinforcement learning, it can be said the state space S is the set of all possible

input variable combinations, and the action space A is the set of all possible actions [26].

In this case, A consists of all possible candidate satellite passes with corresponding pass

characteristics s ∈ S. Note that A and S represent the spaces of all possible satellite passes

and their corresponding pass characteristics, and the set of actions and corresponding states

available at any given time step is a function solely of upcoming satellite passes.

Further borrowing from reinforcement learning notation, it could then be stated that

the value function V is the mapping of a given state s ∈ S to the estimated probability

of successful transmission for the satellite pass characteristics represented by s. Lastly, the

policy π represents the conditional probability of choosing a particular action a ∈ A given a

state s ∈ S. That is to say the policy is the mechanism for choosing satellite passes.

π(a♣s) = P (At = a♣St = s) (3.1)

In Equation 3.1, note that At represents the action at time step t, and St represents the

state at time step t.

Regarding V , a natural objective is thus to approximate it with experience. That is, as

the system runs and has successes and failures transmitting with different states s ∈ S, the

idea is it will converge closer to the true probabilities of successful transmission for a given

state, i.e., the value function V [26, 27].
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ModiĄcations to Monte Carlo Learning

Monte Carlo learning is a promising, simple, and interpretable approach to approximating the

value function for this problem. In a traditional reinforcement learning problem, Monte Carlo

learning considers the value of a state as the average return at the end of an episode [26,27].

In the context of direct-to-satellite packet scheduling, episodes have a length of one, meaning

there is no sequential decision-making, which simpliĄes the problem. If the reward is set to

1 for a successful transmission and 0 for an unsuccessful one, the value function can be

represented by the average rate of successful transmission for a given state.

However, Monte Carlo learning requires a discrete state space, while the state space for

this problem is continuous. Discretizing the state space can address this issue. Using the

Swarm pass checker, it is evident that satellite passes are mostly between 15 and 90 degrees,

with durations ranging from 10 to 60 minutes. Moreover, although RF noise is continuous,

modems only report whole numbers, such as -95 dBm. Considering only integer values within

the range of -93 dBm (the highest noise level Swarm reports successful transmissions) to -106

dBm (the lowest noise level measured in this project) provides a naturally discretized state

space. Table 3.7 demonstrates the chosen discretization of the state space, with 5 buckets for

each state variable. This bucketing scheme results in 125 unique combinations, representing

the discretized state space. It is important to note that the bucketing scheme is arbitrary,

and optimizing it is beyond the scope of this thesis.

The next challenge is determining the policy π. Once a good approximation of the true
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Bucket
Number

Max Elevation
Angle (°)

Pass Duration
(minutes)

RF Background Noise
(dBm)

1 15 to 30 10 to 20 -93 to -95
2 31 to 45 21 to 30 -96 to -98
3 46 to 60 31 to 40 -99 to -101
4 61 to 75 41 to 50 -102 to -104
5 76 to 90 51 and higher -105 and lower

Table 3.7: State space bucketing for each state variable.

value function is obtained, the policy could be to exploit and only select the most promising

satellite passes. However, the system will initially have no knowledge of what constitutes a

good satellite pass, so exploration of passes with varying characteristics is necessary. This

presents the classic exploration-exploitation problem in reinforcement learning [26,27]. The

typical approach is to explore early on and gradually shift to exploitation over time.

ModiĄcations to the k-Armed Bandit Problem

The problem of determining the policy for packet scheduling shares similarities with the k-

armed bandit problem, where an agent plays the same one-step episode repeatedly. In each

game, the agent has a selection of options that may yield varying stochastic rewards. The

agentŠs goal is to learn which actions provide the greatest expected reward so as to maximize

the total expected reward over time [26, 27]. A challenge arises if the agent is too greedy

early on, as it may not explore sufficiently; conversely, if the agent never becomes greedy,

it may fail to exploit when enough information is known. One approach to this problem

is softmax (Boltzmann) exploration, which uses the softmax function to calculate a set of
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probabilities corresponding to each possible action [28].

The problem concerning this thesis, however, differs from the k-armed bandit problem in

two signiĄcant ways:

1. The set of actions available to the agent varies in each episode.

2. Maximizing probability of successful transmission is not the sole objective

Regarding the Ąrst point, the agent faces a different selection of satellite passes in each

episode, each with unique pass characteristics and timings. This can be resolved by using

the modiĄed Monte Carlo learning methods described earlier, which allow for tracking the

estimated reward of each action.

Regarding the second point, this is because a good pass in an hour is not the same as an

equally good pass in 24 hours. This is because of a few factors: data does eventually need to

be transmitted, the circular queue holding data has a Ąnite capacity, and the Swarm modem

will drop packets from its transmission queue after a speciĄed timeout (by default, 48 hours).

Thus, to further borrow from reinforcement learning, a conĄgurable discount factor λ can be

applied to the expected reward of satellite passes. However, unlike the discount factor used

in traditional reinforcement learning to discount future rewards over multiple time steps,

the meaning behind the discount factor used for this problem is to give slight preference to

earlier satellite passes. The purpose of this is to prevent long backlogs in the queue caused

by waiting too long for satellite passes.
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Temporal Bounds for Packet Scheduling

This does bring another issue: timing. Under one data plan, each modem can transmit at

most one packet per hour to remain within budget for monthly packets. Additionally, packets

will expire within the modemŠs transmission queue after 48 hours by default. Finally, there

are effectively inĄnite satellite passes to consider as possible pass options. Clearly, some

rules are needed for determining the interval of consideration for packet scheduling. Such

rules are shown in Figure 3.11.

Figure 3.11: Routine for selecting the next satellite pass with which to attempt

transmission.

To fully follow Figure 3.11, a bit of notation should be established. Let tmin and tmax

be the minimum and maximum amount of time (in hours) from the present moment for
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a satellite pass, respectively. Let a be a vector representing the set of all satellite passes

occurring between tmin and tmax hours from the present, and let ai be the i-th element of a

chronologically. Similarly, let s be a vector representing the set of all corresponding states of

all satellite passes in a, and let si be the i-th element of s chronologically. Finally, let t be a

vector representing the set of all corresponding midpoint times (in hours from the present)

of all satellite passes in a, and let ti be the i-th element of t chronologically. Note that a

is encoded simply as a chronological indexing of upcoming candidate passes, meaning that

selecting the i-th element of a, ai, represents the action of selecting the i-th next satellite

pass.

Algorithmic Formulation

Also, let rdata be the rate at which data points are generated (in data points per hour), let

bundlesize be the number of data points that comprise a full bundle (as described in the

previous section), and let rpkt be the rate of full packet bundling, i.e., how many times per

hour a full bundle of new data will be produced.

rpkt =
rdata

bundlesize
(3.2)

Finally, let softmax(z) be the vectorized softmax function and let softmax(z)i be the

softmax function for the i-th element of a vector z, and let v(s) be the value function for

a given state (i.e., pass characteristics) s. Like with softmax, also let v(s) represent the
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vectorized value function. With these variables, it is now possible to construct a policy π:

π(ai♣si) = softmax(λt⊖tmin ⊙ v(s))i (3.3)

First, note that the symbols ⊖ and ⊙ denote element-wise subtraction and

multiplication, respectively, as they operate on the vectors t and s. With this in mind,

Equation 3.3 essentially states that the probability of selecting a satellite pass ai from the

interval between tmin and tmax hours from the present is equal to the softmax of the

estimated probability of transmission success for that pass, multiplied by a discount factor

based on its future occurrence. This formulation results in higher probabilities for passes

with better quality and closer temporal proximity to the present (i.e., occurring less far in

the future), while still allowing for exploration of passes predicted to be less successful.

This approach enables Monte Carlo learning to reĄne the value function estimates for each

state over time. Prioritizing passes that occur sooner also minimizes data loss due to full

queues or dropped packets.

The modiĄed Monte Carlo learning designed for this problem acts as follows:

1. Initialize V (s) to one for all buckets s ∈ S and a counter N(s) to zero for each state s.

2. Generate a list of candidate satellite passes a and their corresponding bucketed pass

characteristics s and pass midpoint times t.

3. Select an action ai from a by following the policy π in Equation 3.3.
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4. For the corresponding state si from s visited in the episode, update the value function

and counter:

• Calculate the return Gt. If transmission was successful, Gt = 1. Else, Gt = 0.

• Update the counter N(s) = N(s) + 1.

• Update the value function V (s) = V (s) + 1
N(s)

(Gt − V (s)).

5. Repeat steps 2-4.

3.5.4 Uplink Transmission Energy Model

At this point in the thesis, various insights on system power consumption have been

presented, as well as designs and algorithms that employ multiple energy-saving strategies.

Next to introduce is a uniĄed uplink transmission energy model to estimate the average

power of a practical system, using the power consumption values of the modem in different

modes, as previously discussed in this thesis.

In terms of the stochastic nature of transmission, two main questions need to be

addressed: whether a transmission will succeed during a given pass; and, if successful, how

long the modem will be in Receive Mode before it can transmit.

To begin building the model, let tSL be the empirical (either measured or simulated) mean

time the modem is in Sleep Mode, tGP S be the mean time the modem is in GPS Acquisition

Mode, and tRX be the mean time the modem is in Receive Mode before transmission is
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successful. With this and some known typical modem power consumption numbersŮPSL,

PGP S, and PRXŮtotal energy usage in these modes over a single transmit attempt cycle,

Eattempt, can be calculated. For the sake of simplicity, the value of ET X (the energy required

to transmit a full packet) provided by Swarm for a full 192-byte packet will be used.

Eattempt = PSLtSL + PGP StGP S + PRXtRX + ET XNpkt (3.4)

In the above equation, note that Npkt represents the number of packets transmitted in

a given pass. Depending on satellite pass selection and/or previous transmission attempt

successes or failures, Npkt may be 1 or larger. Or, in the case of an unsuccessful attempt,

Npkt may be 0. Using this, an expression for Npkt, when Npkt is not 0, may be derived.

Npkt =
rpkt

psuccessrattempt

(3.5)

Note that psuccess is the probability of transmission success, rattempt is the mean

transmission attempt rate, and rpkt is the frequency at which new, fully bundled packets

are generated. Because of the earlier-stated restriction on tmin based on rpkt from Figure

3.11, rattempt is guaranteed to be less than or equal to rpkt, meaning Npkt is guaranteed to

be 1 or greater. The possibility of more than 1 packet per transmission attempt is because

it is assumed that successful transmission of 1 packet will usually entail successful

transmission of all queued packets.
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In Equation 3.4, also note that, while PSL, PGP S, tGP S, PRX , and ET X (at least for full

packets) are functionally constant, tSL and tRX are variable as well. Here, tSL represents the

mean time the modem is in Sleep Mode before making a transmission attempt, and thus can

be represented approximately as follows:

tSL =
1

rattempt

(3.6)

Meanwhile, tRX depends primarily on how long the modem waits until either it receives

a packet from a satellite and begins transmission or the pass is over. For a successful

transmission attempt, the most optimistic assumption may be that it is able to transmit

almost immediately after exiting GPS Acquisition Mode. Meanwhile, the pessimistic

assumption for a successful attempt may be that it only transmits at the very end of the

satellite pass. Mathematically, this is also easier to formulate, as the most pessimistic case

would be the modem reaching the end of a given satellite pass in Receive Mode, only to

not have transmitted. In terms of tRX , this case and successful transmission at the very

end of the pass would be approximately equal. To note is all three of these cases depend on

the mean pass duration, which can be denoted as tpass.

Using the previously stated Equation 3.4 for Eattempt, it can take two forms depending on

if the transmission attempt was a success or failure. If it is a success, it can be expressed as

follows in Equation 3.7, where ϵpass represents the proportion of a satellite pass the modem

idles in Receive Mode before it receives a packet from the satellite and is able to transmit.
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For pessimistic and optimistic models, ϵpass can be treated as either 1 or 0, as these serve as

the upper and lower bounds of possible time in Receive Mode for a given satellite pass.

Esuccess = PSL

1

rattempt

+ PGP StGP S + ϵpassPRXtpass + ET X

rpkt

psuccessrattempt

(3.7)

Likewise, if the attempt is a failure, the model can be represented as follows in Equation

3.8. Note that there is no ϵpass value and no Npkt, as the system will have to wait out a full

pass without transmitting any packets.

Efail = PSL

1

rattempt

+ PGP StGP S + PRXtpass (3.8)

The above two equations can be combined for a more complete model:

Eattempt = psuccessEsuccess + (1 − psuccess)Efail (3.9)

This then simpliĄes down into the following expression:

Eattempt =
PSL

rattempt

+PGP StGP S +psuccess(ϵpassPRXtpass+
ET Xrpkt

psuccessrattempt

)+(1−psuccess)PRXtpass

(3.10)

In the above equation, PSL, PGP S, and PRX are all constants and given by Swarm. The

exact values only depend on if oneŠs modem is integrated using 3.3 V or 5 V power supply.
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The calculated results for this project will be given using 5 V power supply values, as that is

what was used. Similar to these, tGP S is rather constant, and Swarm reports to be about 30

seconds typically. Also note that rattempt will depend on site conditions, project requirements,

and packet scheduling algorithm. Even a non-learning algorithm will need some method of

determining which satellite passes to attempt, after all. Similarly, psuccess and tpass depend

heavily on site conditions and packet scheduling algorithm. Lastly, rpkt depends on project

requirements and data serialization scheme.

3.6 Summary

This chapter provided details on the implementation of a custom PCB and selection and

integration of a microcontroller with the Swarm M138 modem. It also detailed several

routines for efficiently serializing data for and managing overall operation of the Swarm M138

modem. This section also presented the algorithmic problem statement for the proposed

online learning direct-to-satellite scheduling algorithm, and it formulated the algorithm itself.

Finally, this section derived an energy model that may be used in evaluating expected average

power of a practical system using the Swarm M138 modem. From here, the logical next

step is to simulate the proposed learning algorithm and to evaluate those simulated results

according to the derived energy model.
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Chapter 4

Experimental Results

A key goal of this thesis was to document the process of integrating the Swarm modem onto

a custom PCB with a microcontroller, and to interface with the modem with software in

order to minimize power consumption. Much of the testing was done as simple veriĄcation

testing, e.g., using the PCB, microcontroller, and modem to see if they worked together.

There are, however, two key results beyond simple veriĄcation: 1) simulated testing of the

online learning direct-to-satellite packet scheduling algorithm, and 2) an energy model of

average modem power consumption.

4.1 Experimental Methodology

While some of the testing involved in the project in this thesis is simply to verify that the

hardware and software works as expected, there is more complexity in testing two key aspects.
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First is some form of testing to demonstrate the value of the online learning direct-to-satellite

packet scheduling algorithm. The second is the application of the previously-derived energy

model (Equation 3.10) to demonstrate what the average power of a whole operational system

might look like.

4.1.1 Simulation of Online Learning Algorithm

The ultimate test for the online learning direct-to-satellite packet scheduling algorithm would

involve setting up multiple sensors under varying conditions in the Ąeld and monitoring their

transmission success rates over weeks or months. However, this method is time-consuming,

expensive, and requires more advanced, production-ready hardware, which is beyond the

scope of this thesis. Instead, the algorithm is tested using a simulated environment and

simulated data as a proof of concept, an approach also employed in previous work on indirect-

to-satellite scheduling [10].

Simulations are employed primarily because they can demonstrate the algorithmŠs

ability to learn an underlying unknown pattern about satellite pass quality. Additionally,

simulations offer a quicker, more cost-effective, and easier way to verify the algorithmŠs

potential compared to long-running Ąeld tests involving hardware. Simulations can also be

used to tune the discount factor λ hyperparameter.

To create a simulation for the algorithm, two main components are required: 1) virtual

transmitters with an underlying transmission success probability model, and 2) randomly
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Preference
Model

Max Elevation Angle
Preference

Pass Duration
Preference

RF Background
Noise Preference

1 High angles Long durations Low noise
2 Mid to high angles Mid to long

durations
Low to mid noise

3 Low to high angles Short to long
durations

Low to high noise

Table 4.1: Conceptual preference models for the virtual transmitters.

generated satellite pass characteristics and RF noise data.

Three conceptual preference models were developed and translated into mathematical

models, as shown in Table 4.1. Note that, in the table, the preferences refer to the conditions

required for a high likelihood of success. For example, the Ąrst preference mode requires high

angles, long durations, and low noise in order to have a high likelihood of success. The aim

of these preference models was to investigate how different transmission difficulties would

impact the algorithmŠs performance, such as its ability to perform well with a preference

model requiring more stringent conditions for successful transmission.

To create a mathematical model of each virtual transmitter, a function is declared that

takes in the three variables above as inputs and outputs a probability from 0 to 1 of

transmission success. The functions themselves are constructed by simply multiplying

three stretched-and-shifted sigmoid curves together, one for each variable preference. For

example, the desired sigmoid to represent a preference for high angles would be one shifted

and stretched so as to produce a value close to 1 for high angles (e.g., 70 degrees and

higher) but a value close to 0 for low angles (e.g., 30 degrees and lower). The source code
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Preference Model kθ θ0 kd d0 kγ γ0

1 0.5 70 0.5 35 -1 -102
2 0.5 50 0.5 20 -1 -99
3 0.5 30 0.5 10 -1 -96

Table 4.2: Constants for the three preference models.

for this can be accessed from the appendix, or the equation form in Equation 4.1.

P (success) = σ(kθ(θ − θ0)) × σ(kd(d − d0)) × σ(kγ(γ − γ0)) (4.1)

Note that σ(x) represents the sigmoid function, θ represents the max elevation angle, d

represents the pass duration, and γ represents the RF background noise. Also note that kθ,

kd, kγ, θ0, d0, and γ0 represent conĄgurable stretching and shifting constants to represent

the different conceptual preference models. The different values chosen for these constants

to create the three preference models are shown in Table 4.2.

The intuition behind this mathematical representation of these preference models is not

to create a true-to-life model of transmission success, but to create simple underlying

transmission success probability models for the algorithm to learn. If the algorithm can

learn value function estimates for these, it ought to be able to learn real-world value

function estimates.

With the virtual transmitters, simulated satellite passes with randomly generated pass

characteristics can be fed to them. This is done with agents, which each have a preference

model and a value function approximator. Each iteration, each agent is given a random
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RF background noise value and a vector a of satellite passes, their corresponding random

midpoint times t, and their corresponding randomly generated pass characteristics s (except

each si from s also includes the RF noise value). The randomly generated pass characteristics

are drawn from a uniform distribution, and the RF background noise values are drawn from

three differing distributions for three different experiments:

1. Uniform across all buckets (-107 to -93 dBm).

2. Uniform within one bucket (-107 to -105 dBm).

3. Constant (-106 dBm).

It is possible a given sensor may experience the full range of possible RF noise intensities,

but it is also possible a given sensor in a remote location will only often see a narrow sub-

range of possible RF noise intensities. Thus, these three noise conĄgurations were selected

to observe how the algorithm performs under these differing RF noise distributions.

Each agent then calculates the probabilities of selecting each satellite pass from the

discretized states, the agentsŠ value function approximators, and when the pass midpoints

occur in time. These probabilities are calculated according to the policy π. Then, satellite

passes are chosen randomly for each agent according to the calculated probabilities. With the

satellite passes chosen, the satellite pass characteristics and the RF background noise values

are fed into the agentsŠ respective preference models to produce probabilities of transmission

success. Finally, transmission successes are randomly determined according to the agentsŠ
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preference model outputs, the agentsŠ value function approximators are updated, and the

whole process repeats.

4.2 Simulated Online Learning Results

Figures 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6 present the simulated results of the online learning

direct-to-satellite packet scheduling algorithm discussed earlier. Although these speciĄc

results may not accurately represent real Ąeld conditions, the simulationŠs main objectives

were to 1) demonstrate the algorithmŠs ability to learn an unknown pattern behind

transmission success probabilities, and 2) highlight key factors affecting the algorithmŠs

performance in response to essential variables.

The most noticeable outcome is the algorithmŠs response to overall transmission

Ťdifficulty.Ť When transmission is either relatively hard or easy, the algorithm has limited

potential for signiĄcant improvements in the success rate. For instance, when there are few

good passes available, the algorithm often needs to choose between a mediocre and a bad

pass. This scenario is observed in the Ąrst preference modelŠs lower (but still notable)

improvement.

Another important observation is the simulated response to different discount factors.

In the Ąrst preference model, which had a lower likelihood of successful transmission,

varying discount factors had little impact on rattempt, as the penalty for waiting for a decent

pass outweighed the cost of other poorer options. However, for the other two preference



4. Experimental Results 74

Figure 4.1: Simulated results for preference model 1 and random noise within 1 bucket.

models, discount factors closer to 1 resulted in signiĄcantly higher average times to

attempt transmission. One potential limitation of these simulations might be the

distribution of satellite pass characteristics. Real satellite passes are periodic and RF noise

is usually consistent for a given location, while simulations assume a uniform distribution

of all characteristics. To maintain a higher rattempt, using a lower value of tmax or

conducting Ąeld tests for periodicity may yield improved results.

Regarding noise distribution, Figures 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6 also compare results

for two noise models: one with RF noise values drawn randomly and uniformly from all

possible values, and another with RF noise values drawn randomly and uniformly from a

single bucket. The second model was simulated because most remote sites are expected to

have relatively consistent RF background noise levels. The main effects of this constraint are
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Figure 4.2: Simulated results for preference model 1 and random noise across all buckets.

that the algorithm consistently learned faster and converged to higher success rates when

limited to the same bucket of RF noise values. For example, the algorithm learned in 1000

epochs for preference model 2 and fully random noise what it learned in under 300 epochs

for same-bucket noise. For reference, 1000 epochs amount to about 42 days at one attempt

per hour or nearly 3 years at one attempt per 24 hours, while 300 epochs correspond to

about 13 days at one attempt per hour or just under a year at one attempt per 24 hours.

Nevertheless, the algorithm demonstrates its capability to learn.

4.3 Simulated Power Consumption Results

Because the ultimate purpose of the packet scheduling algorithm is to reduce average power,

it is valuable to demonstrate what sorts of energy savings some of the simulated results above
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Figure 4.3: Simulated results for preference model 2 and random noise within 1 bucket.

Constant Value
PSL 550µW

PGP S 230mW

tGP S 30s

PRX 130mW

ET X 12.24J

rpkt
1
3
hr−1

Table 4.3: Sample constants used for transmission attempt energy model.

would bring. Using the previously derived Equation 3.10 for Eattempt, some values for the

variables can be inserted to produce sample results.

Constants used within Equation 3.10 for sample results are shown in Table 4.3. Note that

some of these may depend on exact hardware setup and use case, but they are all constant

with respect to the packet scheduling algorithm. This is in contrast to the terms that are

variable with respect to the algorithm, which are detailed next.
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Figure 4.4: Simulated results for preference model 2 and random noise across all buckets.

In addition to the above constants, the ranges of the variables in Equation 3.10 are shown

in Table 4.4. Note that ŞpessimisticŤ refers to the boundary of the interval that results in

higher average power, per the equation for Eattempt, and ŞoptimisticŤ likewise refers to the

boundary of the interval that results in lower average power. For example, a lower rattempt

means less frequent transmission attempts. In terms of power consumption, this is good,

but too high of an average time to transmit may result in lost data. Also note the difference

between average power and the value for Eattempt given by Equation 3.10; while a low rattempt

will, all else held equal, result in a higher Eattempt, it will result in lower average power, as

shown by Equation 4.2 below. The term in the denominator is the average time elapsed

during a complete cycle.
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Figure 4.5: Simulated results for preference model 3 and random noise within 1 bucket.

Variable Pessimistic Value Optimistic Value
rattempt 1hr−1 1

48
hr−1

psuccess 0.0 1.0
ϵpass 1.0 0.0
tpass 60min 10min

Table 4.4: Sample variable ranges for transmission attempt energy model.

Pavg =
Eattempt

1
rattempt

+ tGP S + psuccessϵpasstpass + (1 − psuccess)tpass

(4.2)

The results of these four variables on average modem power consumption are shown in

Figure 4.7. Most important to observe from the plotted results is that the two dominant

factors in determining average power are average success rate and average time between

attempts. What does not appear in the plotted results, however, is that these two variables

are not independent of one another; rather, higher success rates lead to lower attempt
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Figure 4.6: Simulated results for preference model 3 and random noise across all buckets.

frequencies, as detailed earlier in this thesis.

To give some perspective on the potential impact of improved success rates, then, see

Table 4.5. Note that the psuccess and rattempt values are taken from the simulated results,

and ϵpass and tpass are taken as 0.5 and 25 minutes, respectively. For each preference model,

three results are shown: 1) a baseline based on taking the earliest available passes and no

scheduling, 2) another baseline based on the same average rattempt as the simulated results

but no scheduling, and 3) the test case with scheduling and simulated average rattempt.

For the simulated baseline values, however, the average time to attempt is represented

as the Ąrst available satellite pass, modeled simply by Equation 4.3 below, which represents

the algorithm for determining tmin from earlier in this thesis, where successful transmission

attempts lead to waiting a minimum of 1
rpkt

hours, while unsuccessful attempts lead to no
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Figure 4.7: Average power of the Swarm modem under various variable values.
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Preference
Model

Success Rate Attempt
Frequency

Average
Power

Required
Battery
Capacity

0.13 2.564hr−1 67.54mW 592.1Wh

0.13 1
24

hr−1 3.810mW 33.40Wh

1 0.20 1
24

hr−1 3.735mW 32.74Wh

0.42 0.7937hr−1 29.31mW 256.9Wh

0.42 1
23

hr−1 3.575mW 31.34Wh

2 0.57 1
23

hr−1 3.405mW 29.85Wh

0.78 0.4274hr−1 14.95mW 131.1Wh

0.78 1
22

hr−1 3.234mW 28.35Wh

3 0.85 1
22

hr−1 3.151mW 27.62Wh

Table 4.5: Sample power and battery savings from simulated packet scheduling for a year

of operation.

minimum wait.

tSL,baseline =
psuccess

rpkt

⇒ rattempt,baseline =
rpkt

psuccess

(4.3)

The simulated results show the potential the online learning direct-to-satellite packet

scheduling algorithm has in reducing average power and battery requirements. Note,

however, these are from simulated data, and this is for the modem power consumption

alone. Microcontroller and sensing equipment power are not included. Also note that the

dominant source of the power savings come from a lower average attempt frequency,

although the improved success rate of the scheduling algorithm does introduce

not-insigniĄcant power saving. Additionally, a direct-to-satellite packet scheduling

algorithm can be considered as an enabler for lowering the attempt frequency, as it
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provides a built-in mechanism for selecting future passes.

4.4 Summary

This chapter detailed how the proposed online learning direct-to-satellite scheduling

algorithm was simulated. These simulations were not designed to be true-to-life, rather to

evaluate the proposed algorithmŠs ability to learn and to evaluate characteristics of its

behavior. Further, the proposed algorithm was evaluated for average power under the

derived energy model for a Swarm modem-based system. These simulated results and the

implications they hold for future work are discussed in the following chapter.
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Chapter 5

Discussion and Future Work

There are several key takeaways from the development of low-cost, low-power

satellite-powered communications in the IoRT. Many of these relate to a few core notions

that designing practical devices of this nature is highly integrated, Ąnicky, and there are

many variables for which to account. Because of the core challenge of low-cost, low-power

IoRT, work must be done at every level. A custom PCB needs to be designed with care for

decoupling capacitance, hardware design must be such that the antenna is shielded from

noise produced by the microcontroller itself, and data must be serialized, bundled,

scheduled, and transmitted efficiently to save precious bits and joules.

As such, the primary goal of this thesis was to present a number of practical considerations

for designing and implementing a satellite-powered Internet of Remote Things device, from

lower level hardware considerations to higher level algorithmic design. Therein lies the source
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of this thesisŠs primary limitations, however. Because this thesis was intended with a higher

level, integrative perspective, it does not produce a lot of production-ready designs, nor does

it take too hard a look into any single component or subsystem.

5.1 Physical and Hardware Limitations

For example, one factor that was discovered in veriĄcation testing is the sensitivity of the

antenna to noise. It is so sensitive, in fact, that it was observed that simply placing the

PCB with the microcontroller underneath the ground plane tended to reduce RF noise by

several dB. Further, minor changes in the exact positioning of the PCB and microcontroller

under the ground plane could vary the measured noise by as much as 3 dB. Clearly, the

antenna is capable of picking up RF interference from an unshielded device in the immediate

vicinity (e.g., 10 to 20 cm). Factors such as this illustrate the importance of a Ąnalized,

production-ready housing and ground plane. It was beyond the scope of this thesis and the

expertise of this author to enter the realm of mechanical housing and antenna ground plane

design. Nonetheless, these factors evidently impact the RF characteristics of the device, and

can impact overall ability to transmit. In fact, it was precisely this that played a role in the

design of a online learning direct-to-satellite packet scheduling algorithm; because this thesis

could not possibly account for the range of possible housing, ground plane, and even power

supply designs, as well as varied site conditions and lines of sight, there could be no single

ultimate ŞgoodŤ pass model.
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5.2 Limitations of the Online Learning Algorithm

The online learning direct-to-satellite packet scheduling algorithm does also have its

limitations. Key amongst these is that it currently relies on simulated results. While the

results achieved in this thesis do demonstrate the ability of the algorithm to learn, and

they do indeed demonstrate the impacts of several variables on the performance of the

algorithm, they are nonetheless simulated results. They give no real-world example of

exactly how the algorithm performs on real data in the Ąeld. There are two natural steps

that could be taken in future endeavors to improve on this: 1) the simulations could be

made to more closely reĆect real-world data, or 2) multiple sensors could be placed out in

the Ąeld in different locations for several weeks or months.

Between these two options, the Ąrst one is the natural Ąrst step for the same reason

simulations were chosen in the Ąrst step: it is much cheaper and faster to simulate than to

set up multiple devices for potentially months at a time. Additionally, because the risk of

poorer-than-desired results leading to tweaking the algorithm and starting anew is so high,

it makes much more sense to do as much tweaking in simulations as possible and only to

test on hardware when conĄdent in good results.

5.2.1 Potential Simulation Improvements

The most apparent way to improve the simulations would be to generate a more

representative RF noise distribution and to use actual Swarm satellite passes. Regarding
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the former, one could set up a few devices in reasonably accessible locations and have them

simply log RF background noise (in dBm) over several days, preferably under differing

weather conditions. One could then retrieve the devices and perform a statistical analysis

on the recorded RF noise data with which to generate more realistic distributions.

Regarding the latter, there are regular versions of the same type of satellite pass prediction

library as used on the microcontrollers. Where the microcontrollers use an open-source

SGP4 Arduino library, there are existing open-source libraries meant for regular desktop

use, such as in Python. One could use one of these libraries along with randomized

coordinates to make satellite pass predictions. This would solve the issue of the simulations

using fully randomly generated pass characteristics, and it would instead likely improve

rattempt. This is because the periodic nature of satellite passes means decent to good passes

likely occur relatively regularly, rather than randomly and uniformly distributed over the

interval (tmin, tmax) as in the current simulations.

5.2.2 Tradeoff Between Low Power and Learning Rate

This does relate to another key weakness of the satellite pass algorithm in its current state,

at least on the simulated data: its low average rattempt values. This is very important to

improve, as it can be the difference between a real sensor taking 3 years to learn and a

month to learn. While, as stated above, this very well might be obviated with a more

true-to-life simulation, other strategies such as further limiting tmin may be necessary.
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A downside to this, of course, is likely smaller power savings, as more frequent

transmissions requires signiĄcantly more average power. That is to say there exists a

tradeoff between having a high learning rate and achieving low average power. A key point

in any practical implementation would be balancing learning rate and transmission

attempt frequency, as a slow learning rate may take too long to improve (and thus become

maximally efficient), but a high learning rate may require much more average power.

Perhaps further research could examine the possibility of adaptive learning rates. One

possibility for polar regions would be increasing the transmission attempt frequency (e.g.,

by decreasing the discount factor λ) during the summer when solar power is abundant, and

lowering the transmission attempt frequency during the polar winters when solar power is

absent.

5.2.3 Potential Online Learning Algorithm Improvements

There is also another limitation related to the packet scheduling algorithm: only one

algorithm was designed and tested. While this algorithm did prove able to learn, and while

it does achieve a desired property of interpretability, it does have its weaknesses. First and

foremost is the bucketing mechanism to discretize an otherwise continuous state space. The

bucketing signiĄcantly reduces the resolution of the algorithm, as, for example, 30 degrees

max elevation angle is considered to be the same bucket as 15 degrees, but not the same

bucket as 31 degrees. This not only reduces the resolution, but also likely the accuracy of



5. Discussion and Future Work 88

the value function approximation, as opposite ends of each bucket are considered

equivalent.

One future improvement could be to fuzzify the discretized states such as in fuzzy

logic [31]. The simplest approach to this could be to construct a linear interpolation

between each bucketed value. For example, 31 degrees max elevation angle would be

considered to be roughly half into the Ąrst bucket and half into the second bucket. This

would necessitate reformulating the Monte Carlo learning and softmax exploration to

account for partial membership in the discretized states, but it would likely help to

alleviate the resolution and accuracy issues of the algorithm presented in this thesis. One

could also further embrace the fuzziĄcation and go in the direction of a more standard

fuzzy inference or fuzzy control system [31,32].

5.3 Other Potential Optimizations

Beyond the packet scheduling algorithm and simulations, however, there are a few other

possible future directions. First is that, while the data binarization and bundling scheme

is rather efficient (for this project, it allows up to 12 data points per packet, at only 16

bytes per datum), improvements are certainly possible. These, however, would likely involve

more advanced techniques and may not yield huge savings in energy. Nonetheless, the

following are two ideas: 1) data compression, and 2) Ćoating-point truncation. For data

compression, there are many potential encoding schemes that could likely save a few bits or
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bytes. This thesis anticipates they would be most helpful if they allow Ątting in an extra

datum (or more) per packet. Regarding Ćoating-point truncation, this is highly project-

dependent. In some use cases, it may be acceptable to lose the precision afforded by 32-bit

Ćoating-point numbers by truncating the mantissa and/or lose the range afforded by 32 bits

by truncating the exponential portion. Alternatively, there are other Ćoating-point binary

number representations designed for high precision over prescribed intervals, which may be

an option for certain applications [33].

Another area of future direction would be further work into lowering maintenance of these

devices. While the devices for this project were designed generally to be low-maintenance,

there are a few areas that could receive more attention to improve this. The most immediate

way to do this would be simple testing. Leave a device (or perhaps several) running for

several weeks or months in order to detect any potential memory leaks or memory bugs that

may have inadvertently entered the embedded software. Another would be to implement

a remote reset procedure whereby the modem receives a downlink packet from a satellite,

triggering the system to restart the modem and/or the microcontroller. This would be

controlled by using a few bits as a status code in each datum or each packet.

Overall, this thesis serves merely as a stepping stone into the deeper reaches of low-cost,

low-power direct-to-satellite communications for IoRT. There is an abundance of areas left to

touch upon such as physical enclosures and weatherprooĄng, and also many areas that can

be tweaked or optimized further yet. As independent satellite IoT services such as Swarm



5. Discussion and Future Work 90

and Astrocast mature from their current infancy, more research, more designs, and more

commercial products are likely to surface.
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Chapter 6

Conclusion

The research in this thesis began with a question: What is the optimal data transmission

method for low-cost, low-power sensors in the Arctic? This inquiry led to the analysis of

transmission options, the selection of LEO satellite IoT services, speciĄcally Swarm

Technologies, and the examination of Swarm satellites and modem requirements. A custom

PCB was designed to integrate the modem with a microcontroller, adhering to the

modemŠs strict design requirements.

Successful data transmission proved to be stochastic, highlighting the need for an online

learning algorithm to identify ŤgoodŤ satellite passes and avoid energy waste. A custom

algorithm, inspired by reinforcement learning, was developed for direct-to-satellite

communications. Simulated results demonstrated the algorithmŠs learning capabilities and

potential for signiĄcant power savings. Future work includes reĄning simulations,
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improving the algorithm, and conducting large-scale, long-term Ąeld testing.

In conclusion, this thesis addresses the challenge of transmitting data from remote sensors

in the Arctic and offers an integrative approach to designing a comprehensive system. As

LEO satellite IoT technology matures, further research and products are expected to emerge,

simplifying the design process for similar systems.
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Appendix A

Simulation Code Availability

The source code for simulating the online learning direct-to-satellite packet scheduling

algorithm and calculating average power are available here:

https://github.com/garrettkinman/Self-Learning-Satellite-Pass-Selection.
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Appendix B

Software Libraries Used

Several open-source software libraries were used in the implementation and simulations for

this thesis:

• SparkFun Swarm Satellite Arduino Library:

https://github.com/sparkfun/SparkFun Swarm Satellite Arduino Library

• SparkFun SGP4 Arduino Library:

https://github.com/sparkfun/SparkFun SGP4 Arduino Library

• NNlib.jl: https://github.com/FluxML/NNlib.jl

• Plots.jl: https://github.com/JuliaPlots/Plots.jl

• ProgressLogging.jl: https://github.com/JuliaLogging/ProgressLogging.jl

• StatsBase.jl: https://github.com/JuliaStats/StatsBase.jl
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• Makie.jl: https://github.com/MakieOrg/Makie.jl
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