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Preface

The following is a Manuscript-Based Thesis based on the paper entitled Rethinking Graph

Transformers with Spectral Attention [32] published as a conference proceedings at Advances

in Neural Information Processing Systems 34 (NeurIPS 2021). A Background section was

added to make the Thesis stand as an integrated whole.
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Abstract

In recent years, the Transformer architecture has proven to be very successful in sequence

processing, but its application to other data structures, such as graphs, has remained

limited due to the difficulty of properly defining positions. Here, we present the Spectral

Attention Network (SAN), which uses a learned positional encoding (LPE) that can take ad-

vantage of the full Laplacian spectrum to learn the position of each node in a given graph.

This LPE is then added to the node features of the graph and passed to a fully-connected

Transformer. By leveraging the full spectrum of the Laplacian, our model is theoretically

powerful in distinguishing graphs, and can better detect similar sub-structures from their

resonance. Further, by fully connecting the graph, the Transformer does not suffer from

over-squashing, an information bottleneck of most GNNs, and enables better modeling

of physical phenomenons such as heat transfer and electric interaction. When tested em-

pirically on a set of 4 standard datasets, our model performs on par or better than state-of-

the-art GNNs, and outperforms any attention-based model by a wide margin, becoming

the first fully-connected architecture to perform well on graph benchmarks.
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Abrégé

Ces dernières années, l’architecture Transformer s’est avérée très efficace dans le traite-

ment des séquences, mais son application à d’autres structures de données, telles que

les graphes, est restée limitée en raison de la difficulté de définir correctement les po-

sitions. Ici, nous présentons le Spectral Attention Network (SAN), qui utilise un codage

positionnel appris (LPE) qui peut utiliser le spectre laplacien complet pour apprendre

la position de chaque nœud dans un graphe donné. Ce LPE est ensuite ajouté aux car-

actéristique de nœud du graphique et transmis à un Transformeur entièrement connecté.

En utilisant le spectre complet du Laplacien, notre modèle est théoriquement puissant

pour distinguer les graphes et peut mieux détecter des sous-structures similaires à par-

tir de leur résonance. De plus, en connectant entièrement le graphique, le Transformeur

ne souffre pas de sur-écrasement, un goulot d’étranglement d’informations de la plupart

des GNN, et permet une meilleure modélisation des phénomènes physiques tels que le

transfert de chaleur et l’interaction électrique. Lorsqu’il est testé empiriquement sur un

ensemble de 4 ensembles de données standard, notre modèle fonctionne au même niveau

ou mieux que les GNN de pointe et surpasse de loin tout modèle basé sur l’attention,

devenant ainsi la première architecture entièrement connectée à bien fonctionner sur des

repères graphiques.

iii



Acknowledgements

First and foremost, I would like to acknowledge and thank my advisor William L. Hamil-

ton and co-author Dominique Beaini, for their countless support, continuous mentorship

and important contributions to this entire process. Without their guidance, this work

would have never been achievable.

I would also like to thank the remaining co-authors Prudencio Tossou and Vincent

Letourneau for their important contributions.

Finally, I would like to thank my friends and family who supported me through the

pandemic and enabled this entire research project.

I will forever be tremendously grateful to you all.

iv



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
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Chapter 1

Introduction

The prevailing strategy for graph neural networks (GNNs) has been to directly encode

graph structure structure through a sparse message-passing process [21, 23]. In this ap-

proach, vector messages are iteratively passed between nodes that are connected in the

graph. Multiple instantiations of this message-passing paradigm have been proposed,

differing in the architectural details of the message-passing apparatus (see [23] for a re-

view).

However, there is a growing recognition that the message-passing paradigm has in-

herent limitations. The expressive power of message passing appears inexorably bounded

by the Weisfeiler-Lehman isomorphism hierarchy [37,39,53]. Message-passing GNNs are

known to suffer from pathologies, such as oversmoothing, due to their repeated aggre-

gation of local information [23], and over-squashing, due to the exponential blow-up in

computation paths as the model depth increases [1].

As a result, there is a growing interest in deep learning techniques that encode graph

structure as a soft inductive bias, rather than as a hard-coded aspect of message pass-

ing [18,29]. A central issue with the message-passing paradigm is that input graph struc-

ture is encoded by restricting the structure of the model’s computation graph, inherently

limiting its flexibility. This reminds us of how early recurrent neural networks (RNNs)
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encoded sequential structure via their computation graph—a strategy that leads to well-

known pathologies such as the inability to model long-range dependencies [25].

There is a growing trend across deep learning towards more flexible architectures,

which avoid strict and structural inductive biases. Most notably, the exceptionally suc-

cessful Transformer architecture removes any structural inductive bias by encoding the

structure via soft inductive biases, such as positional encodings [48]. In the context of

GNNs, the self-attention mechanism of a Transformer can be viewed as passing messages

between all nodes, regardless of the input graph connectivity.

Prior work has proposed to use attention in GNNs in different ways. First, the GAT

model [49] proposed local attention on pairs of nodes that allows a learnable convolu-

tional kernel. The GTN work [58] has improved on the GAT for node and link predictions

while keeping a similar architecture, while other message-passing approaches have used

enhancing spectral features [10, 15] . More recently, the GT model [18] was proposed as

a generalization of Transformers to graphs, where they experimented with sparse and

full graph attention while providing low-frequency eigenvectors of the Laplacian as po-

sitional encodings.

In this work, we offer a principled investigation of how Transformer architectures can

be applied in graph representation learning. Our primary contribution is the develop-

ment of novel and powerful learnable positional encoding methods, which are rooted in

spectral graph theory. Our positional encoding technique — and the resulting spectral at-

tention network (SAN) architecture — addresses key theoretical limitations in prior graph

Transformer work [18] and provably exceeds the expressive power of standard message-

passing GNNs. We show that full Transformer-style attention provides consistent empiri-

cal gains compared to an equivalent sparse message-passing model, and we demonstrate

that our SAN architecture is competitive with or exceeding the state-of-the-art on several

well-known graph benchmarks.
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Chapter 2

Background

2.1 Graphs

2.1.1 Basic Principles

Graphs are a ubiquitous form of data used to represent complex systems. They are used to

encode a set of points with nodes and their connectedness with edges. As a result, the true

power of graphs relies in their ability to demonstrate the relationships between points, as

opposed to the sole properties of individual ones. See Figure 2.1 for example of a graph.

Figure 2.1: Example of a graph where the numbered points and lines represent nodes and

edges respectively. It is possible for nodes to be disconnected from all others, as shown

here.
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Examples of the use of graphs include their ability to represent social networks, where

nodes represents individuals and edges represent whether or not two individuals are

friends. Further, in the molecular domain, we can represent molecules as graphs where

individual atoms and their bonds are represented as nodes and edges respectively.

More formally, a graph G = (V,E) is a tuple of a set of nodes V and edges E, where

E is its own set of tuples (u1, u2) ∈ E, and u1, u2 ∈ V . In the context of machine learning

on graphs, we are typically only concerned with simple graphs where there are no edges

between a node and itself, at most one edge lies between any two nodes and edges are

only unweighted and undirected: (u1, u2) ∈ E ⇐⇒ (u2, u1) ∈ E.

Graphs are typically represented using an adjacency matrix A, where we provide an

arbitrary ordering of the nodes (as the one shown in 2.1) such that each column and row

of the matrix indexes to a particular node (this arbitrary component has consequences we

will revisit later). For the simple graphs we concern ourselves with, we can then encode

the presence of an edge by setting A[u1, u2] = A[u2, u1] = 1, and filling the remaining

entries with 0.

Finally, there are often certain attributes or properties associated with the elements of

a graph. For example, in a molecular graph, we are often interested in the type of atom

and bond associated with each node and edge respectively. We may even be interested

in features at the molecular-level, such as the polarity of the molecule itself. Thus, along

with each graph’s adjacency matrix, we often have real-valued node-level and edge-level

features matrices Xnode ∈ R|V |×m, Xedge ∈ R|E|×n, and graph-level feature vectors xgraph ∈

Rk, where m,n, k denote the number of node, edge and graph features respectively.

2.1.2 Graph Laplacians

Although the adjacency matrix is an invaluable tool for representing the graph, the Lapla-

cian is of equal fundamental importance. The unnormalized Laplacian is defined as fol-

lows [23]:
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L = D − A (2.1)

where A is the corresponding adjacency matrix and D is the corresponding degree

matrix; a diagonal matrix whose entries are given by the degree (number of connected

edges) of the indexed node. The Laplacian matrix holds the following key properties [23]:

1. L is symmetric: L = LT

2. L is positive semi-definite: xTLx ≥ 0, ∀x ∈ R|V |

3. L possesses the following identity: xTLx =
∑

(u1,u2)∈E(x[u1]− x[u2])
2

4. L has |V | non-negative eigenvalues: 0 = λ0 ≤ λ1 ≤ ... ≤ λ|V |−1

Consider the eigendecomposition of the Laplacian L:

L = UΛUT (2.2)

where U is the corresponding matrix of eigenvectors and Λ the corresponding diag-

onal matrix of eigenvalues (interchangeably referred to as frequencies for reasons I will

come back to). Since there is a natural ordering of the eigenvectors given by their eigen-

values (property 4.), we typically use the graph’s spectrum of eigenvalues to denote a notion

of ’high’ and ’low’ eigenvectors. For example, we call the eigenvector ϕ0 associated to the

lowest eigenvalue λ0 = 0 the ’lowest’ or ’smallest’ eigenvector of the graph. As a result,

we also usually form the matrix U according to this ordering. See 2.2 for visualization.
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Figure 2.2: It is helpful to visualize the matrix of Laplace eigenvectors U as the ordered

column-wise concatenation of eigenvectors based on their eigenvalues, where each row

corresponds to a node in the graph.

2.1.3 Laplacian Eigenvectors

In order to understand the significance of the Laplacian eigenvectors and their eigenval-

ues, we must understand the connection between the Laplacian and the Laplace operator

∆ used ubiquitously across the fields of mathematics and physics. The operator ∆ in the

context of arbitrary smooth functions f : Rd → R is used to compute the divergence ∇ of

the gradient ∇f(x):

∇f(x) =
n∑

i=1

∂2f

∂x2

In basic terms, it is used to measure the average difference between the function f at

the point x and the function at the points in the neighborhood of x.

One can equally consider the Laplacian L as an operator on functions h that map the

nodes of a graph to real values h : V → R|V |. Let h be such a function and G be a graph

with nodes V such that h(V ) = x:

6



(Lx)[i] =
∑
j∈V

A[i, j](x[i]− x[j])

This can be re-written as:

(Lx)[i] =
∑
j∈Ni

(x[i]− x[j]) (2.3)

where Ni is the set of nodes the node i is connected to through an edge (known as

its neighborhood). Thus, the Laplacian L applied to functions over graphs has a similar

intuition: applying it measures the average difference of a node i’s functional value x[i]

to those in its neighborhood.

Now, consider the following quantity (see properties 2. and 3. from Section 2.1.2):

xTLx =
∑

(i,j)∈E

(x[i]− x[j])2 = C ≥ 0 (2.4)

This quantity can be thought of as representing the ’smoothness’ of x: low or high

values of C mean that, on average, connected nodes have close or distant values in x,

respectively.

In particular, the problem of minimizing the quantity C is analogous to finding the

eigenvectors and eigenvalues of the Laplacian L where ϕ = x and λ = C by the Rayleigh-

Ritz Theorem [23]:

minxi∈R|V |:xi⊥xj∀j<i

xT
i Lxi

xT
i xj

Thus, the eigenvectors ϕ correspond to assignments of values x which minimize 2.4

with quantity equal to the eigenvalue λ . In fact, the trivial solution ϕ0 simply assigns

a constant to all neighboring nodes to achieve a minimized value of C = λ0 = 0. The

second solution ϕ1 is the orthogonal vector to ϕ0 which next best minimizes the quantity

C = λ1. This process can be continued to find all the eigenvectors and eigenvalues of

the Laplacian. Note that since the Laplacian can be thought of as a matrix but also as an

7



Figure 2.3: Real visualization of the Laplacian eigenvectors in non-decreasing order of

eigenvalue. The lower the eigenvalue, the smoother the values transition from node to

node.

operator, we interchangeably use the notion of Laplacian eigenvectors or eigenfunctions

ϕ in this work. See Figure 2.3 for visualizing the eigenvectors and how the eigenvalue

impacts the smoothness of the changing values.

These facts about eigenvectors allow us to more easily interpret them as signals prop-

agating across the graph with frequency proportional to their eigenvalue (which is why

we interchange the two terms). These signals can be used as stand-alone properties of

the graph and are highly useful for graph clustering tasks as well as defining positional

encodings.

2.2 Applications of Laplacian Eigenvectors

Here, we present three simple, yet highly effective, applications of the Laplace Eigenvec-

tors for graph-related tasks.
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2.2.1 Counting the number of connected components

One aspect of the Laplace decomposition left out of the previous section is that it is pos-

sible to observe geometric multiplicities greater than 1 for the various eigenvalues of a

graph. In other words, different eigenvectors of the same Laplacian can have the exact

same eigenvalues.

Surprisingly, the geometric multiplicity of the trivial eigenvalue λ0 can be used to

count the number of disconnected components in a graph [23]. This can be simple to

understand when we realize that the trivial eigenvector only needs to assign the same

constant value to neighboring nodes to achieve the global minimum in 2.4:

ϕT
0Lϕ0 =

∑
(i,j)∈E

(ϕ0[i]− ϕ0[j])
2 = 0

If the graph only has only a single connected component (it is possible to reach every

node in the graph from any other), the only eigenvector solution is the one that assigns a

constant value to all nodes.

However, if there are multiple connected components in the graph, there will exist

many more solutions to 2.4 which achieve the same value of 0. Specifically, each solu-

tion only needs to assign a constant value to nodes within a connected component, and thus

there will be as many solutions as there are connected components. Therefore, the geo-

metric multiplicity of the trivial eigenvalue λ0 can directly reveal how many connected

components are in the graph. This was apparent in the example used in Figure 2.3.

2.2.2 Finding the Minimum Cut

The problem of finding the minimum cut of a graph consists of finding a partition of the

nodes of a graph into sets S and S\V such that the number of edges going across the

partition is minimized.

Solving this problem is actually analogous to optimizing equation 2.4, and can be

solved by using the second-smallest (or first non-zero) eigenvector of the Laplacian [50].
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Assuming the graph has one connected component, we can use the first non-zero eigen-

vector ϕ1 in the following manner to assign nodes to the proper set which solves the

minimum cut problem:

u ∈ S, if ϕ1[u] ≥ 0

u ∈ S\V, if ϕ1[u] < 0
(2.5)

2.2.3 Generalized Spectral Clustering

The previous problem can be generalized to the problem of clustering the nodes of a

graph into two separate components. In fact, we can take this problem a step further and

use the first K eigenvectors of the Laplacian (excluding the non-trivial ones) to cluster the

nodes of a graph into K separate components [23, 41].

All we need to is, for each node, assign a feature vector from the corresponding row of

the first K non-trivial eigenvector columns in the Laplacian eigenvector matrix U (revert

to 2.2 for visualizing), and run a K-means clustering algorithm on them.

2.3 Graph Learning Tasks

While classic machine learning methods are suited to model datapoints which lie in a

Euclidean space, here we concern ourselves with ones that lie in the graph space: we seek

to model components of graphs, or entire graphs themselves. Here, we will present the

four most popular tasks for learning on graph-structured data.

2.3.1 Node Classification

In node classification, the goal is to predict labels for all nodes in the graph. As per

regular machine learning tasks, these labels can be associated with binary classification,

regression or categorization tasks.
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Typically, for each graph, we are provided a set of training nodes Vtrain ⊂ V whose

labels are available, and a held out set of testing nodes, whose labels we are trying to

predict.

Though node classification appears to be a standard supervised learning task, there

are key differences that have made researchers refer to it as a semi-supervised learning

task [54]. Importantly, the structure of the entire graph, including the unlabeled test nodes

and their connecting edges, is available during training. This differs substantially from

standard supervised learning, where all elements of test points (not just the label) are

unobserved during training.

A classic example of node classification is labelling the topic of academic articles in

a large citation graph, where nodes represent academic papers and edges represent ci-

tations [6, 31, 36, 40]. Other examples include classifying the function of proteins in the

interactome [22], identifying bots in large social networks or the type of atom in a molec-

ular graph.

Notions to exploit when building successful models for node classification include

homophily, which is the concept that neighboring nodes typically share common features

[38], and structural equivalence, the idea that nodes with similar neighborhoods tend to

have similar attributes [16].

2.3.2 Link Prediction

Link prediction has a similar ambition as node classification, but the objective is to retrieve

edges stripped from a graph. Formally, we are given a graph with a set of nodes V and

a subset of training edges Etrain ⊂ E. The goal is to predict the missing edges Etest to

complete the graph.

Classic examples of link prediction including inferring the friendship status of indi-

viduals on an online network, predicting the side effects of drugs [59] and making recom-

mendations to users on online platforms [55].
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2.3.3 Graph Classification and Regression

In the previous two tasks, we were concerned with modelling components of a graph;

nodes and edges. In this task, we are concerned with learning labels associated with

entire graphs. In other words, each graph is its own independent datapoint associated

with some real or discrete-valued label and, given training examples, we wish to learn

functions which map graphs to these labels.

For example, given graphs representing molecules, we may be concerned with identi-

fying those which inhibit HIV virus replication [26] or their toxicity and solubility [21].

This problem is the most straightforward analogy to supervised learning, as each

graph is independent and identically distributed, and no information about the test set is

accessible during training.

2.3.4 Clustering and Community Detection

Whilst the previously mentioned tasks are the clearest analogs to supervised learning,

clustering and community detection are the analogs of unsupervised learning in the graph

learning space.

In this task, the objective is very simple: given exclusively a graph G and its adjacency

matrix, unravel its community structure and cluster the nodes of graphs into separate

components.

In fact, the Laplacian eigenvectors discussed in section 2.1.3 are very useful for accom-

plishing this task, as it was revealed in sections 2.2.2 and 2.2.3 that they can help cluster

nodes into separate partitions, establishing relative positions of nodes in a graph.

2.4 Graph Neural Networks

In the following section, we will discuss some of the most common frameworks under-

pinning graph neural networks (GNN), which are a class of models used to learn deep rep-

12



resentations of graph-structured data. The inductive biases made for these models are

typically designed with the objective of capturing information about the graph structures

while infusing it with node and edge-level feature information.

Some of the main challenges GNNs overcome are invariance to the arbitrary ordering

of nodes in the adjacency matrix (permutation invariance) and handling of variable number

of neighboring nodes.

2.4.1 Message-Passing Neural Networks

Message-Passing Neural Networks (MPNNs) are the epitome of GNNs. Initially, each node

u ∈ V is given its node feature and/or statistical information as its representation h0
u.

Then, with each MPNN iteration, each nodes’ representation is updated based on infor-

mation gathered from its neighborhood N(u). The generalized MPNN framework can be

visualized in Figure 2.4 and defined as follows [23]:

hk+1
u = UPDATE(hk

u, AGGREGATEk(hk
v,∀v ∈ N(u)) (2.6)

hk+1
u = UPDATE(hk

u,m
k
N(u)) (2.7)

where the UPDATE and AGGREGATE functions are the functions which vary across

MPNN models, and mN(u) is the aggregated message. Since the AGGREGATE function

takes as input a set of nodes, these models are naturally invariant to their ordering.

The intuition behind this method is that with each iteration, nodes’ representations

contain increasing amounts of information about their neighborhood. Precisely, after a

single iteration, each node knows about information from nodes in its 1-hop neighbor-

hood. After a second iteration, they know information from their 2-hop neighborhood.

Finally, after K iterations, each node has information from its K-hop neighborhood. This

allows information to propagate across the graph.

After running K iterations of the method, the final embeddings hK
u for each node u

can be directly fed to a multi-layer perceptron (MLP) to accomplish the desired node-
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level task. If the task is at the graph level, a pooling layer such as sum or mean is applied

over the final node embeddings to generate a graph-level embedding, which can be sub-

sequently also fed to an MLP.

Figure 2.4: Intuition behind the message-passing mechanism. Node A aggregates in-

formation from nodes in its neighborhood who, in turn, also did the same. This allows

information to be passed between nodes that may be far apart in the graph if multiple

iterations are performed [23].

A concrete example of a basic MPNN can be defined as follows [23]:

hk+1
u = σ(Wk

selfh
k
u +Wk

neigh

∑
v∈N(u)

hk
u) (2.8)

In this case, the AGGREGATE function to generate mN(u) is to simply sum the neigh-

bors

mN(u) =
∑
N(u),

hu

while the UPDATE function is to simply learn linear projections of the current rep-

resentation and the aggregated message before adding and passing them through a sig-

moid:

UPDATE(hk
u,mN(u)) = σ(Wk

selfh
k
u +Wk

neighmN(u))

.
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Figure 2.5: As multiple rounds of message-passing are performed, exponential amounts

of information are being stored into constant-sized vector representations. This makes it

challenging to propagate information between distant nodes [1].

Despite being popular, it is well recognized that message-passing has inherent lim-

itations. For one, its expressive power appears inexorably bounded by the Weisfeiler-

Lehman isomorphism hierarchy [37, 39, 53]. Furthermore, MPNNs are known to suf-

fer from pathologies, such as oversmoothing, where repeated aggregations of local infor-

mation tend to make representations increasingly indistinguishable, and over-squashing,

where the exponential blow-up in computation paths as the model depth increases makes

it challenging to capture long-range dependencies [1]. See Figure 2.5 for visualizing the

latter.
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2.4.2 Attention-based Graph Neural Networks

A defining feature of MPNN models is that the neighbors are treated equally during the

aggregation layer. This is clear in the summation aggregator:

mN(u) =
∑
N(u)

hu.

To improve the performance of MPNNs, a basic idea is to apply attention [2] to weigh

the importance of each neighbor during the aggregation step. In fact, this was first em-

ployed in the Graph Attention Network (GAT) [49] with much success:

mN(u) =
∑
N(u)

αu,vhu,

where the attention weight αu,v are defined as follows:

αu,v =
exp(aT[Whu||Whv])∑

v′∈N(u) exp(aT[Whu||Wh′
v])

,

where a is a learnable vector, W is a learnable matrix and || denotes concatenation.

This method is highly useful for increasing the expressivity of the GNN model and

was shown to be superior to MPNN on several key tasks, but continues to suffer from the

same limitations as MPNNs due to the nature of sparse aggregation.
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Figure 2.6: Visualizing the weighting of neighbors during aggregation in GAT [49].

2.4.3 Graph Transformers

Transformers [48] are a trending topic in the Deep Learning community, with its appli-

cations being explored beyond its intentions for NLP in areas including computer vi-

sion [17] and, recently, graphs [18, 56].

In particular, the Graph Transformer (GT) model [18] was proposed as a generaliza-

tion of Transformers to graphs. The method incorporates the learnable K,Q, V matrix

multiplications from the original Transformer architecture [48] to define attention and

considers substituting the original sinusoids with Laplace eigenvectors as positional en-

codings.

Specifically, the authors propose selecting the first k non-trivial eigenvectors of the

Laplacian, passing them through a linear transformation and adding them to the initial

node representations to infuse a relative distance notion:

ϕ0
i = C0ϕi + c0 (2.9)

h0
i = ĥ0

i + ϕ0
i (2.10)
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where C0 ∈ Rd×k and c0 ∈ Rd are a learnable matrix and vector respectively, ϕi ∈ Rk

are node i’s first k eigenvector entries and ĥi ∈ Rd is node i’s initial features. Using

these Laplace eigenvectors as positional features is reminiscent of the Generalized Spec-

tral Clustering algorithm detailed in Section 2.2.3, where it was revealed that they are

highly useful for learning graph structural information on their own. Details on the graph

attention mechanism are described in Section 4.3.

In their work, the authors also experimented with the intended usage of Transformers

by fully connecting the graph to overcome the pathologies of MPNNs, but observed very

poor performance in doing so.

Figure 2.7: An overview of the GT model, which generalizes the attention mechanism

used in Transformers to GNNs and employs a linear transformation of the first k non-

trivial Laplace eigenvectors as substitutes for positional encodings.
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Chapter 3

Theoretical Motivations

There can be a significant loss in structural information if naively generalizing Trans-

formers to graphs. To preserve this information as well as local connectivity, previous

studies [18, 49] have proposed to use the eigenfunctions of their Laplacian as positional

encodings. Taking this idea further by using the full expressivity of eigenfunctions as po-

sitional encodings, we can propose a principled way of understanding graph structures

using their spectra. The advantages of our methods compared to previous studies [18,49]

are shown in Table 3.1.

Table 3.1: Comparison of the properties of different graph Transformer models.

MODELS GAT GT sparse GT full SAN
Preserves local structure in attention ✓ ✓ ✗ ✓

Uses edge features ✗ ✓ ✗ ✓

Connects non-neighbouring nodes ✗ ✗ ✓ ✓

Uses eigenvector-based PE for attention ✗ ✓ ✓ ✓

Use a PE with structural information ✗ ✓ ✗ ✓

Considers the ordering of the eigenvalues ✗ ✓ ✓ ✓

Invariant to the norm of the eigenvector - ✓ ✓ ✓

Considers the spectrum of eigenvalues ✗ ✗ ✗ ✓

Considers variable # of eigenvectors - ✗ ✗ ✓

Aware of eigenvalue multiplicities - ✗ ✗ ✓

Invariant to the sign of the eigenvectors - ✗ ✗ ✗
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3.1 Absolute and relative positional encodings with eigen-

functions

The notion of positional encodings (PEs) in graphs is not a trivial concept, as there exists

no canonical way of ordering nodes or defining axes. In this section, we describe the dif-

ferences between using absolute and relative PEs and investigate how eigenfunctions of

the Laplacian can be used to define them. We also look into how they can measure phys-

ical interactions between nodes and enable ”hearing” of specific sub-structures - similar

to how the sound of a drum can reveal its structure.

3.1.1 Absolute vs relative positional encodings

It is important to understand that the original Transformer architecture employs posi-

tional information in absolute terms; every element in the sequence of length n is given

its own unique position using sinusoids - creating n PEs. However, it is also possible to

consider relative positions, in which n2 PEs are used to describe the distances between each

element in the sequence.

Previous lines of work have investigated the benefit of employing relative positions to

enhance Transformers, by adding learnable vectors between sequence elements [45] that

can be directly included in the attention computation, which was shown to be useful in

several other tasks [24, 51].

This work presents a similar formulation in 4.2, which attempts to learn positional

encodings based on relative positions to tune the self-attention by employing Laplacian

eigenfunctions for graph-structured inputs.

3.1.2 Eigenvectors equate to sine functions over graphs

In the Transformer architecture, a fundamental aspect is the use of sine and cosine func-

tions as PEs for sequences [48]. However, sinusoids cannot be clearly defined for arbitrary

20



graphs, since there is no clear notion of position along an axis. Instead, their equivalent

is given by the eigenvectors ϕ of the graph Laplacian L. Indeed, in a Euclidean space,

the Laplacian (or Laplace) operator corresponds to the divergence of the gradient and

its eigenfunctions are sine/cosine functions, with the squared frequencies corresponding

to the eigenvalues (we sometimes interchange the two notions from here on). Hence, in

the graph domain, the eigenvectors of the graph Laplacian are the natural equivalent of

sine functions, and this intuition was employed in multiple recent works which use the

eigenvectors as PEs for GNNs [19], for directional flows [5] and for Transformers [18].

Being equivalent to sine functions, we naturally find that the Fourier Transform of a

function F [f ] applied to a graph gives F [f ](λi) = ⟨f,ϕi⟩, where the eigenvalue is con-

sidered as a position in the Fourier domain of that graph [8]. Thus, the eigenvectors are

best viewed as vectors positioned on the axis of eigenvalues rather than components of a

matrix as illustrated in Figure 3.1.

Figure 3.1: a) Standard view of the eigenvectors as a matrix. b) Eigenvectors ϕi viewed

as vectors positionned on the axis of frequencies (eigenvalues).

3.1.3 What do eigenfunctions tell us about relative positions?

In addition to being the analog of sine functions, the eigenvectors of the Laplacian also

hold important information about the physics of a system and can reveal distance metrics.

This is not surprising as the Laplacian is a fundamental operator in physics and is notably

used in Maxwell’s equations [20] and the heat diffusion [8].

In electromagnetic theory, the (pseudo)inverse of the Laplacian, known in mathemat-

ics as the Green’s function of the Laplacian [11], represents the electrostatic potential of a
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given charge. In a graph, the same concept uses the pseudo-inverse of the Laplacian G

and can be computed by its eigenfunctions. See equation 3.1 , where G(j1, j2) is the elec-

tric potential between nodes j1 and j2, ϕ̂ and λ̂i are the i-th eigenvectors and eigenvalues

of the symmetric Laplacian D
−1
2 LD

−1
2 , and D is the degree matrix, and ϕ̂i,j the j-th row

of the vector.

G(j1, j2) = d
1
2
j1
d

−1
2

j2

∑
i>0

(ϕ̂i,j1ϕ̂i,j2)
2

λ̂i

(3.1)

Further, the original solution of the heat equation given by Fourier relied on a sum of

sines/cosines known as a Fourier series [9]. As eigenvectors of the Laplacian are the ana-

logue of these functions in graphs, we find similar solutions. Knowing that heat kernels

are correlated to random walks [5, 8], we use the interaction between two heat kernels to

define in equation 3.2 the diffusion distance dD between nodes j1, j2 [8, 12]. Similarly, the

biharmonic distance dB was proposed as a better measure of distances [35]. Here we use

the eigenfunctions of the regular Laplacian L.

d2D(j1, j2) =
∑
k>0

e−2tλi(ϕi,j1 − ϕi,j2)
2 , d2B(j1, j2) =

∑
i>0

(ϕi,j1 − ϕi,j2)
2

λ2
i

(3.2)

There are a few things to note from these equations. Firstly, they highlight the impor-

tance of pairing eigenvectors and their corresponding eigenvalues when supplying informa-

tion about relative positions in a graph. Secondly, we notice that the product of eigenvec-

tors is proportional to the electrostatic interaction, while the subtraction is proportional

to the diffusion and biharmonic distances. Lastly, there is a consistent pattern across all 3

equations: smaller frequencies/eigenvalues are more heavily weighted when determin-

ing distances between nodes.

3.1.4 Hearing the shape of a graph and its sub-structures

Another well-known property of eigenvalues is how they can be used to discriminate

between different graph structures and sub-structures, as they can be interpreted as the
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frequencies of resonance of the graph. This led to the famous question about whether

we can hear the shape of a drum from its eigenvalues [28], with the same questions also

applying to geometric objects [14] and 3D molecules [44]. Various success was found

with the eigenfunctions being used for partial functional correspondence [43], algorithmic

understanding geometries [33], and style correspondence [14]. Examples of eigenvectors

for molecular graphs are presented in Figure 3.2.

Figure 3.2: Examples of eigenvalues λi and eigenvectors ϕi for molecular graphs. The

low-frequency eigenvectors ϕ1,ϕ2 are spread accross the graph, while higher frequencies,

such as ϕ14,ϕ15 for the left molecule or ϕ10,ϕ11 for the right molecule, often resonate in

local structures.

3.2 Laplace Eigenfunctions etiquette

In Euclidean space and sequences, using sinusoids as PEs is trivial: we can simply select

a set of frequencies, compute the sinusoids, and add or concatenate them to the input

embeddings, as is done in the original Transformer [48]. However, in arbitrary graphs,

reproducing these steps is not as simple since each graph has a unique set of eigenfunc-

tions. In the following section, we present key principles from spectral graph theory

to consider when constructing PEs for graphs, most of which have been overlooked by

prior methods. They include normalization, the importance of the eigenvalues and their

multiplicities, the number of eigenvectors being variable, and sign ambiguities. Our LPE

architectures, presented in section 4, aim to address them.
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Normalization. Given an eigenvalue of the Laplacian, there is an associated eigenspace

of dimension greater than 1. To make use of this information in our model, a single eigen-

vector has to be chosen. In our work, we use the L2 normalization since it is compatible

with the definition of the Green’s function (3.1). Thus, we will always chose eigenvectors

ϕ such that ⟨ϕ,ϕ⟩ = 1.

Eigenvalues. Another fundamental aspect is that the eigenvalue associated with each

eigenvector supplies valuable information. An ordering of the eigenvectors based on

their eigenvalue works in sequences since the frequencies are pre-determined. However,

this assumption does not work in graphs since the eigenvalues in their spectrum can

vary. For example, in Figure 3.2, we observe how an ordering would miss the fact that

both molecules resonate at λ = 1 in different ways. Furthermore, it is possible to distin-

guish graphs solely on the spectrum of their eigenvalues.

Multiplicities. Another important problem with choosing eigenfunctions is the possibil-

ity of a high multiplicity of the eigenvalues, i.e. when an eigenvalue appears as a root of

the characteristic polynomial more than once. In this case, the associated eigenspace may

have dimension 2 or more as we can generate a valid eigenvector from any linear com-

bination of eigenvectors with the same eigenvalue. This further complicates the problem

of choosing eigenvectors for algorithmic computations and highlights the importance of

having a model that can handle this ambiguity.

Variable number of eigenvectors. A graph Gi can have at most Ni linearly independent

eigenvectors with Ni being its number of nodes. Most importantly, Ni can vary across

all Gi in the dataset. Prior work [18] elected to select a fixed number k eigenvectors for

each graph, where k ≤ Ni,∀i. This produces a major bottleneck when the smallest graphs

have significantly fewer nodes than the largest graphs in the dataset since a very small

proportion of eigenvectors will be used for large graphs. This inevitably causes loss of
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information and motivates the need for a model which constructs fixed PEs of dimension

k, where k does not depend on the number of eigenvectors in the graph.

Sign invariance. As noted earlier, there is a sign ambiguity with the eigenvectors. With

the sign of ϕ being independent of its normalization, we are left with a total of 2k pos-

sible combination of signs when choosing k eigenvectors of a graph. Previous work

has proposed to do data augmentation by randomly flipping the sign of the eigenvec-

tors [5, 18, 19], and although it can work when k is small, it becomes intractable for large

k.

3.3 Learning with Eigenfunctions

Learning generalizable information from eigenfunctions is fundamental to their succes-

ful usage. Here we detail important points that support it is possible to do so if done

correctly.

Similar graphs have similar spectra. Thus, we can expect the network to transfer pat-

terns across graphs through the similarity of their spectra. In fact, spectral graph theory

tells us that the lowest and largest non-zero eigenvalues are both linked to the geometry

of the graph (algebraic connectivity and spectral radius).

Eigenspaces contain geometric information. Spectral graph theory has studied the ge-

ometric and physical properties of graphs from their Laplacian eigenfunctions in depth.

Developing a method that can use the full spectrum of a graph makes it theoretically pos-

sible capture this information. It us thus important to capture differences between the

full eigenspaces instead of minor differences between specific eigenvalues or eigenvec-

tors from graph to graph.
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Learned positions are relative within graphs. Eigenspaces are used to understand the

relationship between nodes within graphs, not across them. Proposed models should

therefore only compare the eigenfunctions of nodes within graphs.
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Chapter 4

Model Architecture

In this section, we propose an elegant architecture that can use the eigenfunctions as PEs

while addressing the concerns raised in section 3.2. Our Spectral Attention Network (SAN)

model inputs eigenfunctions of a graph and projects them into a learned positional en-

coding (LPE) of fixed size. The LPE allows the network to use up to the entire Laplace

spectrum of each graph, learn how the frequencies interact, and decide which are most

important for the given task.

We propose a two-step learning process summarized in Figure 4.1. The first step,

depicted by blocks (c-d-e) in the figure, applies a Transformer over the eigenfunctions of

each node to generate an LPE matrix for each graph. The LPE is then concatenated to

the node embeddings (blocks g-h), before being passed to the Graph Transformer (block

i). If the task involves graph classification or regression, the final node embeddings are

subsequently passed to a final pooling layer.

4.1 LPE Transformer Over Nodes

Using Laplace encodings as node features is ubiquitous in the literature concerning the

topic. Here, we propose a method for learning node PEs motivated by the principles from

section 3.2. The idea of our LPE is inspired by Figure 3.1, where the eigenvectors ϕ are
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Figure 4.1: The proposed SAN model with the node LPE, a generalization of Transformers

to graphs.

represented as a non-uniform sequence with the eigenvalue λ being the position on the

frequency axis. With this representation, Transformers are a natural choice for processing

them and generating a fixed-size PE.

The proposed LPE architecture is presented in Figure 4.2. First, we create an embed-

ding matrix of size 2×m for each node j by concatenating the m-lowest eigenvalues with

their associated eigenvectors. Here, m is a hyper-parameter for the maximum number

of eigenvectors to compute and is analog to the variable-length sequence for a standard

Transformer. For graphs where m > N , a masked-padding is simply added. Note that to

capture the entire spectrum of all graphs, one can simply select m such that it is equal to

the maximum number of nodes a graph has in the dataset. A linear layer is then applied
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on the dimension of size 2 to generate new embeddings of size k. A Transformer En-

coder then computes self-attention on the sequence of length m and hidden dimension k.

Finally, a sum pooling reduces the sequence into a fixed k-dimensional node embedding.

The LPE model addresses key limitations of previous graph Transformers and is aligned

with the first four etiquettes presented in section 3.2. By concatenating the eigenvalues

with the normalized eigenvector, this model directly addresses the first three etiquettes.

Namely, it normalizes the eigenvectors, pairs eigenvectors with their eigenvalues and

treats the number of eigenvectors as a variable. Furthermore, the model is aware of

multiplicities and has the potential to linearly combine or ignore some of the repeated

eigenvalues.

However, this method still does not address the limitation that the sign of the pre-

computed eigenvectors is arbitrary. To combat this issue, we randomly flip the sign of

the pre-computed eigenvectors during training as employed by previous work [18,19], to

promote invariance to the sign ambiguity.

Figure 4.2: Learned positional encoding (LPE) architectures, with the model being aware

of the graph’s Laplace spectrum by considering m eigenvalues and eigenvectors, where

we permit m ≤ N , with N denoting the number of nodes. Since the Transformer loops

over the nodes, each node can be viewed as an element of a batch to parallelize the compu-

tation. Here ϕi,j is the j-th element of the eigenvector paired to the i-th lowest eigenvalue

λi.

4.2 LPE Transformer Over Edges

Here we present an alternative formulation for Laplace encodings. This method ad-

dresses the same issues as the LPE over nodes, but also resolves the eigenvector sign
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ambiguity. Instead of encoding absolute positions as node features, the idea is to consider

relative positions encoded as edge features.

Inspired by the physical interactions introduced in 3.1 and 3.2, we can take a pair of

nodes (j1, j2) and obtain sign-invariant operators using the absolute subtraction |ϕi,j1 −

ϕi,j2| and the product ϕi,j1ϕi,j2 . These operators acknowledge that the sign of ϕi,j1 at a

given node j1 is not important, but that the relative sign between nodes j1 and j2 is im-

portant. One might argue that we could directly compute the deterministic values from

equations (3.1, 3.2) as edge features instead. However, our goal is to construct models

that can learn which frequencies to emphasize and are not biased towards the lower fre-

quencies — despite lower frequencies being useful in many tasks.

This approach is only presented thoroughly in appendix A, since it suffers from a

major computational bottleneck compared to the LPE over nodes. In fact, for a fully-

connected graph, there are N times more edges than nodes, thus the computation com-

plexity is O(m2N2), or O(N4) considering all eigenfunctions. The same limitation also

affects memory and prevents the use of large batch sizes.

4.3 Main Graph Transformer

Our attention mechanism in the main Transformer is based on previous work [18], which

attempts to repurpose the original Transformer to graphs by considering the graph struc-

ture and improving attention estimates with edge feature embeddings.

In the following, note that hl
i is the i-th node’s features at the l-th layer, and eij is the

edge feature embedding between nodes i and j. Our model employs multi-head attention

over all nodes:

ĥl+1
i = Ol

h

Hn

k=1

(
∑
j∈V

wk,l
ij V

k,lhl
j) (4.1)
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where Ol
h ∈ Rd×d, V k,l ∈ Rdk×d, H denotes the number of heads, L the number of lay-

ers, and
f

concatenation. Note that d is the hidden dimension, while dk is the dimension

of a head ( d
H

= dk).

A key addition from our work is the design of an architecture that performs full-graph

attention while preserving local connectivity with edge features via two sets of attention

mechanisms: one for nodes connected by real edges in the sparse graph and one for

nodes connected by added edges in the fully-connected graph. The attention weights wk,l
ij

in equation 4.1 at layer l and head k are given by:

ŵk,l
ij =


Q1,k,lhl

i◦K1,k,lhl
j◦E1,k,leij√

dk
if i and j are connected in sparse graph

Q2,k,lhl
i◦K2,k,lhl

j◦E2,k,leij√
dk

otherwise

 (4.2)

wk,l
ij =


1

1+γ
· softmax(

∑
dk
ŵk,l

ij ) if i and j are connected in sparse graph

γ
1+γ

· softmax(
∑

dk
ŵk,l

ij ) otherwise

 (4.3)

where ◦ denotes element-wise multiplication and Q1,k,l, Q2,k,l, K1,k,l, K2,k,l, E1,k,l,

E2,k,l ∈ Rdk×d. γ ∈ R+ is a hyperparameter which tunes the amount of bias towards full-

graph attention, allowing flexibility of the model to different datasets and tasks where the

necessity to capture long-range dependencies may vary. Note that, for numerical stability,

the outputs of exponentiating the input to the softmax are clamped to values between −5

and +5 and that the keys, queries and edge projections are different for pairs of connected

nodes (Q1,K1,E1) and disconnected nodes (Q2,K2,E2).

A multi-layer perceptron (MLP) with residual connections and normalization layers

are then applied to update representations, in the same fashion as the GT method [18].

ˆ̂
hl+1 = Norm(hl

i + ĥl+1
i ),

ˆ̂
ĥl+1

i = W l
2ReLU(W l

1
ˆ̂
hl+1

i ), hl+1
i = Norm(

ˆ̂
hl+1 +

ˆ̂
ĥl+1

i ) (4.4)
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with the weight matrices W l
1 ∈ R2d×d, W l

2 ∈ Rd×2d. Edge representations are not

updated as it adds complexity with little to no performance gain. Bias terms are omitted

for presentation.

4.4 Limitations

The first limitation of the node-wise LPE, and noted in Table 3.1 is the lack of sign invari-

ance of the model. A random sign-flip of an eigenvector can produce different outputs

for the LPE, meaning that the model needs to learn a representation invariant to these

flips. We resolve this issue with the edge-wise LPE proposed in 4.2, but it comes at a

computational cost.

Another limitation of the approach is the computational complexity of the LPE being

O(m2N), or O(N3) if considering all eigenfunctions. Further, as nodes are batched in

the LPE, the total memory on the GPU will be num params * num nodes in batch instead of

num params * batch size. Although this is limiting, the LPE is not parameter hungry, with k

usually kept around 16. Most of the model’s parameters are in the Main Graph Transformer

of complexity O(N2).

Despite Transformers having increased complexity, they managed to revolutionalize

the NLP community. We argue that to shift away from the message-passing paradigm and

generalize Transformers to graphs, it is natural to expect higher computational complex-

ities. This is exacerbated by sequences being much simpler to understand than graphs

due to their linear structure. Future work could overcome this by using variations of

Transformers that scale linearly or logarithmically [46].

4.4.1 Theoretical properties of the architecture

Due to the full connectivity, it is trivial that our model does not suffer from the same lim-

itations in expressivity as its convolutional/message-passing counterpart.
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WL test and universality. The DGN paper [5] showed that using the eigenvector ϕ1 is

enough to distinguish some non-isomorphic graphs indistinguishable by the 1-WL test.

Given that our model uses the full set of eigenfunctions, and given enough parame-

ters, our model can distinguish any pair of non-isomorphic graphs and is more powerful

than any WL test in that regard. However, this does not solve the graph isomorphism

problem in polynomial time; it only approximates a solution, and the number of param-

eters required is unknown and possibly non-polynomial. In appendix C, we present a

proof of our statement, and discuss why the WL test is not well suited to study the ex-

pressivity of graph Transformers due to their universality.

Reduced over-squashing. Over-squashing represents the difficulty of a graph neural

network to pass information to distant neighbours due to the exponential blow-up in

computational paths [1].

For the fully-connected network, it is trivial to see that over-squashing is non-existent

since there are direct paths between distant nodes.

Physical interactions. Another point to consider is the ability of the network to learn

physical interactions between nodes. This is especially important when the graph mod-

els physical, chemical, or biological structures, but can also help understanding pixel in-

teraction in images [3, 4]. Here, we argue that our SAN model, which uses the Laplace

spectrum more effectively, can learn to mimic the physical interactions presented in sec-

tion 3.1.3. This contrasts with the convolutional approach that requires deep layers for

the receptive field to capture long-distance interactions. It also contrasts with the GT

model [18], which does not use eigenvalues or enough eigenfunctions to properly model

physical interactions in early layers. However, due to the lack of sign-invariance in the

proposed node-wise LPE, it is difficult to learn these interactions accurately. The edge-

wise LPE (section 4.2) could be better suited for the problem, but it suffers from higher

computational complexity.
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Chapter 5

Experimental Results

The model is implemented in PyTorch [42] and DGL [52] and tested on established bench-

marks from [19] and [26] provided under MIT license. Specifically, we applied our method

on ZINC, PATTERN, CLUSTER, MolHIV and MolPCBA 1, while following their respec-

tive training protocols with minor changes, as detailed in the appendix B.1. The compu-

tation time and hardware is provided in appendix B.4.

We first conducted an ablation study to fairly compare the benefits of using full atten-

tion and/or the node LPE. We then took the best-performing model, tuned some of its

hyperparameters, and matched it up against the current state-of-the-art methods. Since

we use a similar attention mechanism, our code was developed on top of the code from

the GT paper [18], provided under the MIT license.

5.1 Sparse vs. Full Attention

To study the effect of incorporating full attention, we present an ablation study of the

γ parameter in Figure 5.1. We remind readers that γ is used in equation 4.3 to balance

between sparse and full attention. Setting γ = 0 strictly enables sparse attention, while

γ = 1 does not bias the model in any direction.

1MolPCBA is only included in the Comparison to the state-of-the-art section due to its computational bur-
den.
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Figure 5.1: Effect of the γ parameter on the performance across datasets from [19, 26],

using the Node LPE. Dotted black lines indicate sparse attention, which is equivalent to

setting γ = 0. Each box plot consists of 4 runs, with different seeds (except MolHIV).

Test results are presented at the best validation epoch for a given run. Note that this

experiment serves solely to present the effect of tuning γ.

It is apparent that molecular datasets, namely ZINC and MOLHIV, benefit less from

full attention, with the best parameter being log γ ∈ (−7,−5). On the other hand, the

larger SBM datasets (PATTERN and CLUSTER) benefit from a higher γ value. This can

be explained by the fact that molecular graphs rely more on understanding local struc-

tures such as the presence of rings and specific bonds, especially in the artificial task
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Figure 5.2: Ablation study on datasets from [19, 26] for the node LPE and full graph

attention, with no hyperparameter tuning other than γ taken from the best validation

scores in the experiment conducted for Figure 5.1. For a given dataset, all models use the

same hyperparameters, but the hidden dimensions are adjusted to have ∼ 500k learnable

parameters. Means and uncertainties are derived from four runs, with different seeds

(except MolHIV).

from ZINC which relies on counting these specific patterns [19]. Furthermore, molecules

are generally smaller than SBMs. As a result, we would expect less need for full atten-

tion, as information between distant nodes can be propagated with few iterations of even

sparse attention. We also expect molecules to have fewer multiplicities, thus reducing

the space of eigenvectors. Lastly, the performance gains in using full attention on the

CLUSTER dataset can be attributed to it being a semi-supervised task, where some nodes

within each graph are assigned their true labels. With full attention, every node receives

information from the labeled nodes at each iteration, reinforcing confidence about the

community they belong to.

In Figure 5.2, we present another ablation study to measure the impact of the node LPE

in both the sparse and full architectures. We observe that the proposed node-wise LPE

contributes significantly to the performance for molecular tasks (ZINC and MOLHIV),

and believe that it can be attributed to the detection of substructures (see Figure 3.2). For

PATTERN and CLUSTER, the improvement is modest as the tasks are simple clustering
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[19]. Previous work even found that the optimal number of eigenvectors to construct PE

for PATTERN is only 2 [18].

To compare the LPE to the simple concatenation of eigenvectors to node features, one

can refer to results from the sparse GT model [18] presented in Figure 5.3.

5.1.1 Comparison to the state-of-the-art

When comparing to the state-of-the-art (SOTA) models in the literature in Figure 5.3, we

observe that our SAN model consistently performs better on all synthetic datasets from

[19], highlighting the strong expressive power of the model. On the MolHIV dataset, the

performance on the test set is slightly lower than the SOTA. However, the model performs

better on the validation set (85.30%) in comparison to PNA (84.25%) and DGN (84.70%).

This can be attributed to a well-known issue with this dataset: the validation and test

metrics have low correlation. In our experiments, we found higher test results with lower

validation scores when restricting the number of epochs. Here, we also included results

on the MolPCBA dataset, where we witnessed competitive results as well.

Other top-performing models, namely PNA [13] and DGN [5], use a message-passing

approach [21] with multiple aggregators. When compared to attention-based models,

SAN consistently outperforms the SOTA by a wide margin. To the best of our knowledge,

SAN is the first fully-connected model to perform well on graph tasks, as is evident by

the poor performance of the GT (full) model.
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Column1 ZINC PATTERN CLUSTER MOLHIV MOLPCBA

Model MAE % Acc % Acc % ROC-AUC % AP

GCN 0.367	 ± 0.011 71.892	 ± 0.334 68.498	 ± 0.976 76.06	 ± 0.97 20.20	 ± 0.24

GraphSage 0.398	 ± 0.002 50.492	 ± 0.001 63.844	 ± 0.110 - -

GatedGCN 0.282	 ± 0.015 85.568	 ± 0.088 73.840	 ± 0.326 - -

GatedGCN-PE 0.214	 ± 0.013 86.508	 ± 0.085 76.082	 ± 0.196

GIN 0.526	 ± 0.013 85.387	 ± 0.136 64.716	 ± 1.553 75.58	 ± 1.40 22.66	 ± 0.28

PNA 0.142	 ± 0.010 - - 79.05	 ± 1.32 28.38	 ± 0.35

DGN - - - 𝟕𝟗. 𝟕𝟎	 ± 𝟎. 𝟗𝟕 𝟐𝟖. 𝟖𝟓	 ± 𝟎. 𝟑𝟎

Attention-based

GAT 0.384	 ± 0.007 78.271	 ± 0.186 70.587	 ± 0.447 - -

GT (sparse) 0.226	 ± 0.014 84.808	 ± 0.068 73.169	 ± 0.662 - -

GT (full) 0.598	 ± 0.049 56.482	 ± 3.549 27.121	 ± 8.471 - -

SAN 𝟎. 𝟏𝟑𝟗	 ± 𝟎. 𝟎𝟎𝟔 𝟖𝟔. 𝟓𝟖𝟏	 ± 𝟎. 𝟎𝟑𝟕 𝟕𝟔. 𝟔𝟗𝟏	 ± 𝟎. 𝟔𝟓 77.85	 ± 0.247	 27.65	 ± 0.42

Best

Worst

Figure 5.3: Comparing our tuned model on datasets from [19, 26], against GCN [30],

GraphSage [22], GIN [53], GAT [49], GatedGCN [7], PNA [13], and DGN [5]. Means

and uncertainties are derived from four runs with different seeds, except MolHIV which

uses 10 runs with identical seed. The number of parameters is fixed to ∼ 500k for ZINC,

PATTERN and CLUSTER.
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Chapter 6

Conclusion

In summary, we presented the SAN model for graph neural networks, a new Transformer-

based architecture that is aware of the Laplace spectrum of a given graph from the learned

positional encodings. The model was shown to perform on par or better than the SOTA on

multiple benchmarks and outperforms other Attention-based models by a large margin.

As is often the case with Transformers, the current model suffers from a computational

bottleneck, and we leave it for future work to implement variations of Transformers that

scale linearly or logarithmically. This will enable the edge-wise LPE presented in ap-

pendix A, a theoretically more powerful version of the SAN model. It would also be

worth exploring the employability of a learnable γ parameter.

Societal Impact. The presented work is focused on theoretical and methodological im-

provements to graph neural networks, so there are limited direct societal impacts. How-

ever, indirect negative impacts could be caused by malicious applications developed us-

ing the algorithm. One such example is the tracking of people on social media by rep-

resenting their interaction as graphs, thus predicting and influencing their behavior to-

wards an external goal. It also has an environmental impact due to the greater energy use

that arises from the computational cost O(m2N +N2) being larger than standard message

passing or convolutional approaches of O(E).
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Appendix A

LPE Transformer over Edges

Consider one of the most fundamental notions in physics; Potential energy. Interestingly,

potential energy is always measured as a potential difference; it is not an inherent indi-

vidual property, such as mass. Strikingly, it is also the relative Laplace embeddings of two

nodes that paint the picture, as a node’s Laplace embedding on its own reveals no infor-

mation at all. With this in mind, we argue that Laplace positional encodings are more

naturally represented as edge features, which encode a notion of relative position of the

two endpoints in the graph. This can be viewed as a distance encoding, which was shown

to improve the performance of node and link prediction in GNNs [34].

The formulation is very similar to the method for learning positional node embed-

dings. Here, a Transformer Encoder is applied on each graph by treating edges as a batch

of variable size and eigenvectors as a variable sequence length. We again compute up to

the m-lowest eigenvectors with their eigenvalues but, instead of directly using the eigen-

vector elements, we compute the following vectors:

|ϕ:,j1 − ϕ:,j2 | (A.1) ϕ:,j1 ◦ ϕ:,j2 (A.2)

where “:” denotes along all up to m eigenvectors, and ◦ denotes element-wise multi-

plication. Note that these new vectors are completely invariant to sign permutations of

the precomputed eigenvectors.
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As per the LPE over nodes, the 3-length vectors are expanded with a linear layer to

generate embeddings of size k before being input to the Transformer Encoder. The final

embeddings are then passed to a sum pooling layer to generate fixed-size edge positional

encodings, which are then used to compute attention weights in equation 4.2.

This method addresses all etiquettes raised in section 3.2. However, it suffers from

a major computational bottleneck compared to the LPE over nodes. Indeed, for a fully-

connected graph, there are N times more edges than nodes, thus the computation com-

plexity is O(m2N2), or O(N4) considering all eigenfunctions. This same limitation also

affects the memory, as efficiently batching the N2 edges will increase the memory con-

sumption of the LPE by a drastic amount, preventing the model from using large batch

sizes and making it difficult to train.

Figure A.1: Edge-wise Learned positional encoding (LPE) architectures, where the rela-

tive position is considered instead of the absolute position. The model is aware of the

graph’s Laplace spectrum by considering m eigenvalues and eigenvectors, where we per-

mit m ≤ N , with N denoting the number of nodes. Since the Transformer loops over the

edges, each edge can be viewed as an element of a batch to parallelize the computation.

The computational complexity is O(m2E) or O(m2N2) for a fully-connected graph.
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Appendix B

Implementation details

B.1 Benchmarks and datasets

To test our models’ performance, we rely on standard benchmarks proposed by [19]

and [26] and provided under the MIT license. In particular, we chose ZINC, PATTERN,

CLUSTER, and MolHIV.

ZINC [19]. A synthetic molecular graph regression dataset, where the predicted score is

given by the subtraction of computationally estimated properties logP − SA. Here, logP

is the computed octanol-water partition coefficient, and SA is the synthetic accessibility

score [27].

CLUSTER [19]. A synthetic benchmark for node classification. The graphs are generated

with Stochastic Block Models, a type of graph used to model communities in social net-

works. In total, 6 communities are generated and each community has a single node with

its true label assigned. The task is to classify which nodes belong to the same community.

PATTERN [19]. A synthetic benchmark for node classification. The graphs are generated

with Stochastic Block Models, a type of graph used to model communities in social net-
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works. The task is to classify the nodes into 2 communities, testing the GNNs ability to

recognize predetermined subgraphs.

MolHIV [26]. A real-world molecular graph classification benchmark. The task is to pre-

dict whether a molecule inhibits HIV replication or not. The molecules in the training,

validation, and test sets are divided using a scaffold splitting procedure that splits the

molecules based on their two-dimensional structural frameworks. The dataset is heavily

imbalanced towards negative samples. It is also known that this dataset suffers from a

strong de-correlation between validation and test set performance, meaning that more

hyperparameter fine-tuning on the validation set often leads to lower test set results.

MolPCBA [26]. Another real-world molecular graph classification benchmark. The dataset

is larger than MolHIV and applies a similar scaffold spliting procedure. It consists of mul-

tiple, extremely skewed (only 1.4% positivity) molecular classification tasks, and employs

Average Precision (AP) over them as a metric.

B.2 Ablation studies

The results in Figures 5.1-5.2 are done as an ablation study with a minimal tuning of the

hyperparameters of the network to measure the impact of the node LPE and full attention.

A majority of the hyperparameters used were tuned in previous work [19]. However,

we altered some of the existing parameters to accommodate the parameter-heavy LPE,

and modified the Main Graph Transformer hidden dimension such that all models have

approximately ∼ 500k parameters for a fair comparison. We present results for the full

attention with the optimal γ value optimized on validation data for the Node LPE model.

We did this to isolate the impact that the Node LPE has on improving full attention.

Details concerning the model architecture parameters are visible in Figure B.1.
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Attention LPE LPE layers LPE dimension GT layers GT hidden dimension #Parameters

♰Sparse - - - 6 96 511201
Sparse Node 3 16 6 72 494865
Full - - - 6 80 471361
Full Node 3 16 6 64 508577

Sparse - - - 6 96 508634
Sparse Node 3 16 6 72 493340
Full - - - 6 80 469142
Full Node 3 16 6 64 507202

Sparse - - - 16 56 461348
Sparse Node 1 16 16 56 530036
Full - - - 16 48 450498
Full Node 1 16 16 48 519186

Sparse - - - 6 96 525985
Sparse Node 2 16 6 80 503265
Full - - - 6 80 483601
♰Full Node 2 16 6 72 528265

ZINC

CLUSTER

MOLHIV

PATTERN

Figure B.1: Model architecture parameters for the ablation study. We modify the hidden

dimensions of the Main Graph Transformer (GT) such that all models have ∼ 500k pa-

rameters for a fair comparison. Parameters were taken at the highest validation epoch

performance.

†The batch size was doubled to ensure convergence of the model. All other parameters

outside the GT hidden dimension are consistent within a dataset experiment.

For the training parameters, we employed an Adam optimizer with a learning rate

decay strategy initialized in {10−3, 10−4}as per [19], with some minor modifications:

ZINC [19]. We selected an initial learning rate of 7 × 10−4 and increased the patience from

10 to 25 to ensure convergence.

PATTERN [19]. We selected an initial learning rate of 5× 10−4.
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CLUSTER [19]. We selected an initial learning rate of 5 × 10−4 and reduced the minimum

learning rate from 10−6 to 10−5 to speed up training time.

MolHIV [26]. We elected to use similar training procedures for consistency. We selected

an initial learning rate of 10−4, a reduce factor of 0.5, a patience of 20, a minimum learning rate

of 10−5, a weight decay of 0 and a dropout of 0.03.

B.3 SOTA Comparison study

For the results in Figure 5.3, we tuned some of the hyperparameters, using the following

strategies. The optimal parameters are in bold.

ZINC. Due to the 500k parameter budget, we tuned the pairing {GT layers, GT hidden di-

mension} ∈ {{6, 72}, {8, 64},{10,56}} and readout ∈ {”mean”, ”sum”}

PATTERN. Due to the 500k parameter budget and long training times, we only tuned the

pairing {GT layers, GT hidden dimension} ∈ {{4,80}, {6, 64}}

CLUSTER. Due to the 500k parameter budget and long training times, we only tuned the

pairing {GT layers, GT hidden dimension} ∈ {{12, 64},{16,48}}

MolHIV. With no parameter budget, we elected to do a more extensive parameter tuning

in a two-step process while measuring validation metrics on 3 runs with identical seeds.

1. We tuned LPE dimension ∈ {8, 16}, GT layers ∈ {4, 6, 8, 10}, GT hidden dimension ∈

{48, 64, 72, 80, 96}

2. With the highest performing validation model from step 1, we then tuned dropout

∈ {0, 0.01, 0.025} and weight decay ∈ {0, 10−6, 10−5}
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With the final optimized parameters, we reran 10 experiments with identical seeds.

MolPCBA. With no parameter budget, we elected to do a more extensive parameter tun-

ing as well. We tuned learning rate ∈ {0.0001, 0.0003, 0.0005}, dropout ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5},

GT layers ∈ {2, 4, 5, 6, 8, 10, 12}, GT layers ∈ {128, 256, 304, 512}, LPE layers ∈ {8, 10, 12} and

LPE dimension ∈ {8, 16}

B.4 Computation details

Dataset Resource Cluster GPU Epoch/Total time
ZINC Compute Canada Graham Tesla P100-PCIE (12 GB) 106s/17.88hrs

PATTERN Compute Canada Graham Tesla P100-PCIE (12 GB) 340s/12.52hrs
CLUSTER Compute Canada Beluga Tesla V100-SXM2 (16 GB) 433s/11.30hrs
MOLHIV Compute Canada Cedar Tesla V100-SXM2 (32 GB) 204s/5.34hrs

MOLPCBA Compute Canada Cedar Tesla V100-SXM2 (32 GB) 883s/48.02hrs

Figure B.2: Computational details for SOTA Comparison study.
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Appendix C

Expressivity and complexity analysis of

graph Transformers

In this section, we discuss how the universality of Transformers translates to graphs when

using different node identifiers. Theoretically, this means that by simply labeling each

node, Transformers can learn to distinguish any graph, and the WL test is no longer suited

to study their expressivity.

Thus, we introduce the notion of learning complexity to better compare each archi-

tecture’s ability to understand the space of isomorphic graphs. We apply the complexity

analysis to the LPE and show that it can more easily capture the structure of graphs than

a naive Transformer.

C.1 Universality of Transformers for sequence-to-sequence

approximations

In recent work [56] [57], it was proven that Transformers are universal sequence-to-sequence

approximators, meaning that they can encode any function that approximately maps any

first sequence into a second sequence when given enough parameters. More formally,

they proved the following theorems for the universality of Transformers:
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Theorem 1 For any 1 ≤ p < ∞, ε > 0 and any function f : Rd×n → Rd×n that is equivariant

to permutations of the columns, there is a Transformer g such that the Lp distance between f and

g is smaller than ε.

Let Bn be the n-dimensional closed ball and denote by C0(Bd×n,Rd×n) the set of all

continuous functions of the ball to Rd×n. A Transformer with positional encoding gp is a

Transformer g such that to each input X , a fixed learned positional encoding E is added

such that gp(X) = g(X +E).

Theorem 2 For any 1 ≤ p < ∞, ε > 0 and any function f ∈ C0(Bd×n,Rd×n), there is a

Transformer with positional encoding g such that the Lp distance between f and g is smaller than

ε.

C.2 Graph Transformers approximate solutions to the graph

isomorphism problem

We now explore the consequences of the previous 2 theorems on the use of Transformers

for graph representation learning. We first describe 2 types of Transformers on graphs;

one for node and one for edge inputs. They will be used to deduce corollaries of theorems

1 and 2 for graph learning and later comparison with our proposed architecture. Assume

now that all nodes of the graphs we consider are given an integer label in {1, ..., N}.

The naive edge transformer takes as input a graph represented as a sequence of ordered

pairs ((i, j), σi,j) with i ≤ j the indices of 2 vertices and σi,j equal to 1 or 0 if the vertices

i, j are connected or not. Recall there are N(N − 1)/2 pairs of integers i, j in {1, ..., N}

with i < j the indices of 2 vertices and σi,j equal to 1 or 0 if the vertices i, j are connected

or not. It is obvious that any ordering of these edge vectors describe the same graph.

Recall there are N(N − 1)/2 pairs of integers i, j in {1, ..., N} with i ≤ j. Consider the set

of functions f : RN(N−1)/2×2 → RN(N−1)/2×2 that are equivariant to the permutations of
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columns then theorem 1 says the function f can be approximated with arbitrary accuracy

by Transformers on edge input.

The naive node Transformer can be defined as a Transformer with positional encodings.

This graph Transformer will take as input the identity matrix and as positional encodings

the padded adjacency matrix. This can be viewed as a one-hot encoding of each node’s

neighbors. Consider the set of continuous functions f : RN×N → RN×N , then theorem

2 says the function f can be approximated with arbitrary accuracy by Transformers on

node inputs.

From these two observations on the universality of graph Transformers, we get as a corol-

lary that these 2 types of Transformers can approximate solutions of the graph isomor-

phism problem. In each case, pick a function that is invariant under node index permuta-

tions and maps non-isomorphic graphs to different values and apply theorem 1 or 2 that

shows there is a Transformer approximating that function to an arbitrarily small error in

the Lp distance. This is an interesting fact since it is known that the discrimination power

of most message passing graph networks is upper bounded by the Weisfeiler-Lehman

test which is unable to distinguish some graphs.

Here, we want to prove that given a unique node label, node connectivity, and the

right architecture, Transformers can approximate a solution to the graph isomorphism

problem.

Assume now that all nodes of the graphs we consider are given an integer label in

{1, ..., N}. From theorem 1, we can deduce the following about Transformers on graphs.

First, we consider the consequence of these theorems for classification of graph isomor-

phism classes using a Transformer on the edges. A graph will be represented as a se-

quence of ordered pairs ((i, j), σi,j) with i ≤ j the indices of 2 vertices and σi,j equal to 1

or 0 if the vertices i, j are connected or not. Recall there are N(N−1)/2 pairs of integers i, j

in {1, ..., N} with i ≤ j. Consider the set of functions f : RN(N−1)/2×2 → RN(N−1)/2×2 that
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are equivariant to the permutations of columns (the vectors ((i, j), σi,j)), invariant under

permutations of the labelling of the nodes of the graph and distinguish non-isomorphic

graphs. Pick one such f , then theorem 1 says the function f can be approximated with

arbitrary accuracy by Transformers taking as input the sequences ((i, j), σi,j)i≤j∈{1,...,N}.

Now we consider the problem of classification of graph isomorphism classes using

Transformers on the nodes. Choosing instead as input the sequence of graph nodes with

positional encoding the columns of the adjacency matrix and f : RN×N → RN×N a map

that is invariant under permutation of node order and has distinct values for different

isomorphism class of graphs, theorem 2 says that the map f can be approximated by

Transformers in the Lp distance with arbitrary accuracy.

This may seem strange since it is unlikely there is an algorithm solving the graph

isomorphism problem in polynomial time to the number of nodes N , and we address this

issue in the notes below.

Note 1: Only an approximate solution. The universality theorems do not state that Trans-

formers solve the isomorphism problem, but that they can approximate a solution. They

only learn the invariant functions only up to some error so they still can mislabel graphs.

Note 2: Estimate of number of Transformer blocks. For the approximation of the func-

tion f by a Transformer to be precise, a large number of Transformer blocks will be

needed. In [56], it is stated that the universal class of function is obtained by composing

Transformer blocks with 2 heads of size 1 followed by a feed-forward layer with 4 hidden

nodes. In [57] section 4.1, an estimate of the number of blocks is given. If f : Rd×n → Rd×n

is L-Lipschitz, then ||f(X) − f(Y )|| < ε/2 when ||X − Y || < ε/2L = δ . In the notation

of [57], the LPE has constants p = 2 and s = 1. If g is a composition of Transformer blocks

then an error ||f − g||Lp < ε can be achieved with a number of Transformer blocks larger

than

(
dn

δ

)
+

(
p(n− 1)

δd
+ s

)
+
( n

δdn

)
=

dn2L

ε
+

2(n− 1)(2L)d

εd
+ 1 +

n(2L)dn

εdn
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In the case of the node encoder described above, n = d = N (the number of nodes) and

the last term in the sum above becomes N(2L/ε)N
2 , so the number of parameters and

therefore the computational time is exponential in the number of nodes for a fixed error

ε. Note that this bound on the number of Transformer blocks might not be tight and might

be much lower for a specific problem.

Note 3: Learning invariance to label permutations. In the above proof, the Transformer

is assumed to be able to label all isomorphic graphs into the same class within a small

error. However, given a graph of N nodes, there are N ! different node labeling permu-

tations, and they all need to be mapped to the same output class. It seems unlikely that

such function can be learned with polynomial complexity to N .

Following these observations, it does not seem appropriate to compare Transformers

to the WL test as is the custom for graph neural networks and we think at this point we

should seek a new measure of expressiveness of graph Transformers.

C.3 Expressivity of the node-LPE

Here, we want to show that the proposed node-LPE can generate a unique node identi-

fier that allows our Transformer model to be a universal approximator on graphs, thus

allowing us to approximate a solution to graph isomorphism.

Recall the node LPE takes as input an N×m×2 tensor with m the number of eigenval-

ues and eigenvectors that are used to represent the nodes. The output is a N × k tensor.

Notice that 2 non-isomorphic graphs on N nodes can have the same m < N eigenval-

ues and eigenspaces and disagree on the last N − m eigenvalues and eigenspaces. Any

learning algorithm missing the last N −m pieces of information won’t be able to distin-

guish these graphs. Here we will fix some m and show that the resulting Transformer can

approximately classify all graphs with N ≤ m.

Fix some linear injection M : RN×2×m → RN×k×m. Let G be a graph and U ⊂ RN×2×m

be bounded set containing all the tensor representations of graphs TG and let R be the
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radius of a ball containing M(U). Consider the set C0(BN×k×m
R ,RN×k×m) of continuous

functions of the closed radius R ball in RN×k×m. Finally, denote by S : RN×k×m → RN×k

the linear function taking the sum of all values in the m dimension. The following uni-

versality result for LPE Transformers is a direct consequence of theorem 2.

Proposition 1 For any 1 ≤ p < ∞, ε > 0 and any continuous function F : BN×k×m
R → RN×k,

there is an LPE Transformer g such that the Lp distance between M ◦ f ◦ S and g is smaller than

ε.

As a corollary, we get the same kind of approximation to solutions of the graph isomor-

phism problem as with the naive Transformers. Let f be a function of C0(BN×k×m
R ,RN×k×m)

that maps M(TG) to a value that is only dependent of the isomorphism class of the graph

and assigns different values to different isomorphism classes. We can further assume that

f takes values that are 0 for all but one coordinate in the k dimension. The same type of

argument is possible for the edge-LPE from figure A.1.

C.4 Comparison of the learning complexity of naive graph

Transformers and LPE

We now argue that while the LPE Transformer and the naive graph Transformers of sec-

tion C.2 can all approximate a function f solution of the graph isomorphism problem, the

complexity of the learning problem of the LPE is much lower since the spaces it has to

learn are simpler.

Naive Node Transformer. First recall that the naive node Transformer learns a map f :

RN2 → RN2 . In this situation, each graph is represented by N ! different matrices which

all have to be identified by the Transformer. This encoding also does not provide any

high-level structural information about the graph.

Naive Edge Transformer. The naive edge Transformer has the same difficulty since the

function its learning is RN(N−1) → RN(N−1) and the representation of each edge depend
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on a choice of labeling of the vertices and the N ! possible labelings need to be identified

again.

Node-LPE Transformer. In the absence of eigenvalues with multiplicity > 1, the node

LPE that learns a function RN×2×m → RN×k does not take as input a representation of

the graph that depends on the ordering of the nodes. It does, however, depend on the

choice of the sign of each of the eigenvectors so there are still 2N possible choices of graph

representations that need to be identified by the Transformer but this is a big drop in

complexity compared to the previous N !. The eigenfunctions also provide high-level

structural information about the graph that can simplify the learning task of the graph.

Edge-LPE Transformer. Finally, the edge LPE of appendix A uses a graph representation

as input that is also independent of the sign choice of the eigenvectors so each graph has

a unique representation (considering the absence of eigenvalues with multiplicity > 1).

Again, the eigenfunctions provide high-level structural information that is not available

to the naive Transformer.

LPE Transformers for non-isospectral graphs. Isospectral graphs are graphs that have

the same set of eigenvalues despite having different eigenvectors. Here, we argue that

the proposed node LPE can approximate a solution to the graph isomorphism problem

for all pairs of non-isospectral graphs, without having to learn invariance to the sign of

their eigenvectors nor their multiplicities. By considering only the eigenvalues in the

initial linear layer (assigning a weight of 0 to all ϕ), and knowing that the eigenvalues are

provided as inputs, the model can effectively learn to replicate the input eigenvalues at

its output, thus discriminating between all pairs of non-isospectral graphs. Hence, the

problem of learning an invariant mapping to the sign of eigenvectors and multiplicities

is limited only to non-isospectral graphs. Knowing that the ratio of isospectral graphs

decreases as the number of nodes increases (and is believed to tend to 0) [47], this is

especially important for large graphs and mitigates the problem of having to learn to

identify 2N with eigenvectors with different signs. In Figure C.1, we present an example
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of non-isomorphic graphs that can be distinguished by their eigenvalues but not by the

1-WL test.

Figure C.1: Example of non-isomorphic non-isospectral graphs that can be distinguished

by the eigenvalues of their Laplacian matrix, but not by the 1-WL test.
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