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ABSTRACT 
 

Background 

With the emergence of competency-based training, the current evaluation scheme of surgical skills 

is evolving to include newer methods of assessment and training. The large amount of data 

collected from an individual’s performance during virtual reality simulated tasks can be distilled 

into intuitive metrics. Since surgical procedures involve multiple psychomotor skills, effective 

assessment of surgical expertise is more appropriately realized through systems capable of 

revealing the complex relationships between multiple metrics. Artificial intelligence through 

machine learning algorithms can utilize extensive datasets to analyze operator performance. This 

study aims to address three questions, (1) Can artificial intelligence uncover novel metrics of 

surgical performance? (2) Can support vector machine algorithms be trained to differentiate 

“Senior” and “Junior” participants executing a virtual reality hemilaminectomy? (3) Can other 

algorithms achieve a good classification performance?  

 

Methods 

Participants from four Canadian universities were divided in two groups according to their training 

level (senior and junior) and were asked to perform a virtual reality hemilaminectomy. The 

position, angle and force application of the simulated burr and suction along with tissue volumes 

removed were recorded at twenty millisecond intervals. Raw data was manipulated to create 

metrics to train machine learning algorithms. Five algorithms, including a support vector machine, 

were trained to predict whether the task was performed by a senior or junior participant. The 

accuracy of each algorithm was assessed through leave-one-out cross-validation. 
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Results 

Forty-one individuals were enrolled, 22 senior and 19 junior participants. Twelve metrics related 

to safety of the procedure, efficiency, motion of the tools and coordination were selected. 

Following cross-validation, the support vector machine achieved a 97.6% accuracy. The other 

algorithms achieved 92.7, 87.8, 70.7 and 65.9% accuracy, respectively.  

 

Conclusion 

Artificial intelligence defined novel metrics of surgical performance and outlined training levels 

in a virtual reality spinal simulation procedure. 

 

Clinical Relevance 

The significance of these results lies in the potential of artificial intelligence to compliment 

current educational paradigms and better prepare residents for patient procedures. 
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RÉSUMÉ 
 

Introduction 

Avec l’émergence de l’approche par compétences pour les résidences chirurgicales, les méthodes 

d’évaluation d’habiletés chirurgicales actuelles sont sujettes à évoluer pour inclure de nouvelles 

méthodes d’enseignement et de formation. L’importante quantité de données collectées lorsqu’un 

individu performe une opération simulée en réalité virtuelle peut être traduite en mesures de 

performance. Étant donné que les procédures chirurgicales incorporent plusieurs habiletés 

psychomotrices, l’évaluation de l’expertise chirurgicale est plus facilement réalisable en utilisant 

des systèmes capable de révéler les liens complexes entre plusieurs mesures de performance. 

L’intelligence artificielle à l’aide d’algorithme d’apprentissage machine peut utiliser de grandes 

quantité de données pour analyser la performance d’un individu. Cette étude a pour but de répondre 

à trois questions : (1) Est-ce que l’intelligence artificielle peut aider à découvrir de nouvelles 

mesures de performances chirurgicales? (2) Est-ce que les algorithmes de machines à vecteurs de 

support peuvent être entraîner à différencier des participants « senior » et « junior » qui exécute 

une hémi-laminectomie en réalité virtuelle? (3) Est-ce que d’autres algorithmes peuvent classifier 

ces participants adéquatement? 

 

Méthodologie 

Des participants de 4 universités canadiennes ont été divisé en 2 groupes en tenant compte de leur 

niveau de formation (senior et junior) et ont exécuté une hémi-laminectomie en réalité virtuelle.  

Les positions, les angles et la force appliquée par le « burr » et la succion ainsi que les volumes de 

tous les tissus retirés ont été enregistrés à toutes les 20 millisecondes. Les données brutes ont été 

manipulées pour créer des mesures de performance pour entraîner des algorithmes d’apprentissage 
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machine. Cinq algorithmes, incluant une machine à vecteurs de support, ont été entraînés pour 

prédire si la simulation avait été performée par un participant senior ou junior. La précision de 

chaque algorithme a été évalué par validation croisée. 

 

Résultats 

Quarante et un participants ont été recrutés, 22 senior et 19 junior.  Douze mesures de performance 

concernant la sécurité de la procédure, l’efficacité, les mouvements des instruments et la 

coordination ont été sélectionnées. L’algorithme de machine à vecteurs de support a identifié 

correctement le niveau d’expertise (Junior ou Senior) à 97,6% lors de la validation croisée. Les 

autres ont identifié correctement à 92,7%, 87,8%, 70,7% et 65,9%, respectivement. 

 

Conclusion 

L’intelligence artificielle a aidé à définir de nouvelles mesures de performance chirurgicales et a 

adéquatement identifié le niveau de formation de participants dans une procédure de chirurgie 

spinale simulée en réalité virtuelle. 

 

Impact clinique 

Ces résultats démontrent le potentiel de l’utilisation de l’intelligence artificielle pour 

complimenter le curriculum chirurgical actuel afin de mieux préparer les résidents à effectuer des 

opérations sur de vrais patients.  
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INTRODUCTION OF THESIS 
 

The Surgical Education Paradigm Shift 
 

For more than a century, surgical training has been inspired by Halsted and Osler’s apprenticeship 

model, whereby residents learn through direct patient exposure supervised by expert surgeons 

with increased responsibilities according to the year of their residency training.1 While this model 

has been widely used, it may not be optimal in terms of patient safety, residents’ learning 

experience and costs. From a safety perspective, although residents are closely monitored by 

their supervisors in the operating room, allowing them to practice their skills on real patients 

raises ethical questions. Every patient deserves to be operated on by experienced surgeons less 

prone to make mistakes. From an economic standpoint, the apprenticeship model is expensive. 

Allen et al. reported that residents involvement in cases increased operating time by roughly 4.8 

minutes which they calculated leads to an approximate annual cost of $492,889 at their 

institution.2 From an educational point of view, since residents have seen their work-hour 

restricted in an effort to improve their wellness, they have less time to “learn by doing” as the 

traditional paradigm suggests.3 Moreover, the number and complexity of case exposure for 

residents may vary considerably from one institution to another, leading to discrepancies in 

surgical training. Finally, given the ageing of the population, procedures with a higher degree of 

complexity will be increasingly performed. In spine surgery, Deyo et al. outlined a 15-fold increase 

in the rate of complex lumbar fusions in a span of 5 years.4 This could result in less exposure for 

residents as their supervisor may not be keen to let them operate on these complex cases.  
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Given these limitations and mounting pressures from governments, insurance companies and 

the public seeking for improved patient outcomes at a reduced cost, medical entities have 

deemed it important to reassess the current scheme of surgical education. As such, a surgical 

education paradigm shift has been underway, seeking new methods of training and assessment. 

In Canada, this shift led to the emergence of competency by design curricula. 5 

 

In the previous paradigm, residents were assumed competent once they completed their five or 

six-year specialty training and successfully passed a series of examinations. With the shift towards 

competency-based curricula (referred to as competency by design in Canada), residents will need 

to prove their competence in a number of tasks (called entrustable professional activities) before 

graduating.5 The requirement to effectively demonstrate competency at every stage of the 

training will lead to an important rise in the number of assessments, which may increase the 

workload of academic physicians and the cost of training. Technical surgical skill assessments 

such as direct observations, global rating scales and checklists are often performed by practising 

surgeon evaluators. Surgeon evaluators are costly and often lack the time and educational skills 

required to carry out periodic assessments of complex technical skills. This may lead to 

inconsistent, inadequate and delayed feedback of an individual’s performance. In addition, 

human evaluators are prone to subjectivity. The need for more objective, automated, reliable, 

and cost-effective assessments has led to an increased interest in technologies capable of 

quantifying skill in surgical specialties. 
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Simulation-Based Training 
 

Simulation-based training is increasingly utilized and studied in surgery.6 Simulation is viewed as 

a useful adjunct to surgical training for many reasons. First, simulation gives trainees the 

opportunity to practice repeatedly in a safe environment. This allows them to enhance their skills 

prior to operating on patients which has the potential to lead to safer and more efficient surgical 

procedures with better patient outcomes. Second, simulation could improve residents learning 

by allowing for the decomposition of complex surgical procedures into many steps which gives 

residents the opportunity to perform deliberate practice.7 Third, simulation provides the 

opportunity for standardization of training across programs. This is particularly interesting in the 

context of spine surgery in which surgeons come from two different surgical specialties 

(Orthopaedic Surgery and Neurosurgery) with very different training paradigms and surgical 

exposure.  

 

Simulation-based training can be provided in many forms. Animal models, cadavers and 

benchtop models have all been utilized to teach surgical residents.7–9 In spine surgery, these 

types of models have been employed to simulate anterior cervical discectomy and fusion, 

posterior foraminectomy and laminectomy, dural tear repair and pedical screw placement. 10–13 
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Virtual Reality Simulators 
 

With the advancement in computing power and graphics, virtual reality simulators have recently 

emerged as potential training platforms for surgical procedures. In spine surgery, many virtual 

reality platforms have been developed to simulate percutaneous vertebroplasty, pedicle screw 

placement/insertion and laminectomy.14 While procedures on these platforms occur entirely in 

a virtual field, haptic feedback devices can be used to simulate the different tactile sensation an 

operator perceives when interacting with diverse tissues.15 A unique attribute of virtual reality 

platforms is their ability to collect an enormous amount of data that quantifies multiple 

components of psychomotor performance during surgical procedures. Standards of reference to 

quantitate performance and progress (known as metrics) can thus be generated. In neurosurgery, 

metrics of performance have been extensively studied utilizing NeuroVR (CAE, Montreal, Canada) 

formerly known as NeuroTouch (National Research Council Canada, Bourcherville, Canada).16–18 

Since these metrics quantitate performance, they could potentially be employed to create 

proficiency benchmarks to assess surgical skill.19 In fact, our group has demonstrated that metrics 

extracted from virtual reality simulators can better capture some components of the surgical 

performance than visual rating scales.20 While individual metrics provide useful information on 

specific components of surgical skills, combining multiple metrics has the potential to provide a 

more holistic understanding of performance. The need to generate and analyze multiple metrics 

from a large amount of data has led to an increased interest in computer science techniques.  

 

  



 16 

Artificial Intelligence and Machine Learning 
 

Introduced in the 1950’s, artificial intelligence is a concept that aims to give computers human 

problem solving skills.21 Machine learning is a subtype of artificial intelligence whereby 

algorithms search for patterns in the data that allow computers to make decisions or predictions 

with no necessity of explicit instructions.22–24 Machine learning can be broadly subdivided into 

supervised, unsupervised and reinforcement learning.25 Supervised learning is utilized when the 

ground truth is known. In supervised learning, many examples belonging to different categories 

are provided to the algorithm along with data that corresponds to these examples. The idea is 

that the algorithm “learns” to identify patterns in the examples associated with each category.26–

28 This process is called the training of the algorithm. Once trained, the algorithm is tested.28 Data 

from new examples is provided to the algorithm and it needs to decide to which category the 

new examples belong. For instance, in the surgical education context, the algorithm could be 

trained with data from many known expert and novice surgeons. Once trained, the algorithm 

could decide to which group (expert or novice) data from new individuals belongs. In 

unsupervised learning, the ground truth is unknown–the category to which an example belongs 

is a priori unknown. Given this, the algorithm has the task to analyze hidden patterns in the data 

and regroup examples that have similar patterns into categories.25,27,29 In a surgical education 

context, we would provide the data of many surgeons, without a priori labelling them as expert 

or novices. The algorithm would then regroup individuals with similar patterns in their data. In 

reinforcement learning, the algorithm is put in an environment in which it takes actions and 

“learns” from trial and error based on a reward system.25 In a surgical education context, the 

algorithm would be asked to decide whether one individual is a novice or an expert surgeon 
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without prior examples. Then, the algorithm would be “rewarded” if its answer is correct. This 

process results in decision accuracy improvements and can be repeated indefinitely. Although 

both unsupervised and reinforcement learning could be promising techniques for educational 

purposes, supervised learning techniques have been more widely utilized to assess physicians 

technical skills.30,31  
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Hypothesis and objectives 
 
In this investigation, we aimed to test the combination of artificial intelligence methodology and 

virtual reality simulation as a potential objective assessment tool for surgical technical skills. We 

hypothesized that traditional machine learning algorithms could distinguish between two groups 

of different training levels in a virtual reality hemilaminectomy simulation. Three specific 

objectives were outlined to test this hypothesis: 

1) to develop new complex metrics to quantitate psychomotor performance in a virtual reality 

hemilaminectomy simulated scenario. 

 

2) with a selection of these metrics of performance, to train a support vector machine 

algorithm to classify participants performing a virtual reality hemilaminectomy as Senior 

(PGY-4 and above) or Junior (PGY-3 and below) and test its accuracy using cross-

validation. 

 

3) to train other traditional machine learning algorithms to perform the same task with the 

same metrics of performance and evaluate their accuracies using cross-validation. 
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The rationale of the simulated task 

 

With population aging, the prevalence of back pain and the number of spinal procedures being 

performed have been rising.32–34 In parallel, new surgical techniques and instrumentation have 

paved the way for the performance of more complex spine procedures. While spine procedures are 

performed as part of the training of both orthopaedic surgeons and neurosurgeons, there remain 

differences in terms of exposure and educational paradigms in each residency program. In fact, it 

has been reported that orthopaedic surgery residents have much less exposure to spine surgery 

compared their neurosurgery counterparts.35,36 Given increased numbers and complexity of cases 

along with the lack of standardization in training, spine surgery could particularly benefit from the 

use of virtual reality surgical simulators to help residents improve their skill level. 

 

The use of a burr and suction are involved in most spinal procedures and are basic skills residents 

need to acquire. One of the numerous surgical procedures simulated on the NeuroVR is a left L3 

hemilaminectomy. The scenario involves the use of a simulated burr and simulated suction to 

remove part of the L3 lamina without damaging surrounding tissues. Alsidieri et al.  provided an 

initial evaluation of the face, content and construct validity of this scenario.37 The thirteen novel 

metrics of performance identified by the authors did not adequately differentiate between junior 

residents, senior residents and spine surgeons and thus may not be optimal to teach residents how 

to improve their skills. Four limitations could explain the lack of difference in scores amongst the 

three different levels of expertise. First, their sample size was relatively small. Second, the metrics 

they identified may not have been complex enough to identify specific differences amongst the 

groups. Third, the authors looked at the difference amongst three groups (junior residents, senior 

residents and surgeons). However, this simulated task may be too simple to differentiate between 
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senior residents and surgeons.  Fourth, while surgery requires the interaction of multiple skills, 

metrics of performance were not combined. This may have prevented a holistic evaluation of skill 

level that may have differentiated between the groups more accurately. In this study, we increased 

our sample size, built more complex metrics of performance, assessed the differences between 

only two groups of different training levels and used machine learning methodology to combine 

multiple metrics of performance. 
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Machine learning methodology overview 
 
 
As previously mentioned, supervised learning techniques require pre-identified categories or 

classes. If the supervised algorithm is trained to recognize one specific category, then it is said to 

be a one-class algorithm. An example of one-class algorithm would be to train a software to 

recognize images of dogs from a multitude of photographs by finding the attributes (features) 

that makes this animal a dog. If the supervised algorithm is trained to distinguish between two 

or more categories, then it is said to be a two-class or multi-class algorithm. Here the algorithm 

finds the inherent differences between the two or more categories. An example of multi-class 

algorithm would be to train a software to recognize and categorize series of photographs as cats, 

dogs or horses. 

 

Another important concept to understand is the difference between traditional machine learning 

algorithms and the more novel deep learning algorithms. Whereas traditional machine learning 

algorithms required a lot of steps to select the inherent attributes of a category or the  features 

that help distinguish between two or more categories, deep learning algorithms do not require 

this type pre-processing. However, deep learning algorithms typically work better with extremely 

large datasets and their decision-making process is much more complex to understand.27 Our 

small sample size and desire to easily interpret the algorithms decision-making process led us to 

use traditional learning algorithms in this experiment. As such, a series of steps needed to be 

performed to transform the raw data into a handful of important features (metrics) that could 

be used to train traditional machine algorithms to distinguish between the two categories 
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identified a priori. These steps can include the extraction, normalization and selection of features 

or metrics. 38 

Feature extraction 
 
When a large and multivariate dataset is acquired, it can be complex, repetitive and made up of 

noisy data.26 Many techniques can be used to extract relevant and minimally repetitive features 

(metrics) from a large dataset.38 Statistical methods may be employed to extract features that 

seem to differentiate between the two categories and eliminate noisy and repetitive data. 

Feature extraction can also be performed by hand, through combination of the raw data. For 

instance, by recording time and multiple positions of a tool, the average velocity of this tool can 

be extracted. 

 

Feature normalization 
 
In addition to the potential of recording repetitive and noisy information during the data 

acquisition process, the multiple features (metrics) extracted from the data are frequently on 

different scales of measurement. To effectively analyze, combine and compare these features, 

one must put them on the same scale.38 This process of feature normalization can be done by 

utilizing z-scores for each feature (i.e. the difference between one’s score and the mean of all 

scores divided by the standard deviation of all scores). 

Feature selection 
 
The feature selection step ensures to find the optimal combinations features upon which the 

algorithms can be trained to perform a specific task. When the task required from the algorithm 

is to distinguish between two different categories, researchers can hand-pick features that have 
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the potential to discriminate between the two categories based on their expertise or insights 

from previous studies. Feature selection algorithms may also be used during this step. Two 

commonly utilized category of feature selection algorithms are the forward and backward 

feature selection algorithms. The forward selection algorithms begin with one feature, test the 

accuracy of a machine learning algorithm at discriminating two or more categories based on that 

one feature, then adds features subsequently, one-by-one, until optimal accuracy is achieved. 

The backward selection algorithms begin with all features that were extracted from a dataset, 

test the accuracy of a machine learning algorithm at discriminating two or more categories based 

on the combination of all features, then removes features subsequently one-by-one, until 

optimal accuracy is achieved. These feature selection algorithms help find combinations of 

features (or metrics) that can best differentiate between the two or more pre-defined categories. 

Machine learning algorithms 
 
A multitude of traditional machine learning algorithms exist. Some of the most commonly 

reported in the medical education literature are the support vector machines, the k-nearest 

neighbors, linear discriminant analysis, naive bayes and decision trees. 31 

Support vector machines  
 
Support vector machines find a linear (or non-linear) decision surface named hyperplane that can 

separate data points associated with individuals from two different categories and maximize the 

margins between this decision surface and the closest data points to this decision surface 

(support vectors).23,26 In the context of this study, participants from a senior group and a junior 

group can be divided by an hyperplane based on a specific combination of metrics of 

performance. 
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K-nearest neighbors 
 
The k-nearest neighbors algorithm predicts the category to which a data point belong by using 

distance functions to determine the closest neighbors to this data point in a multidimensional 

space (based on multiple variables).25,26 The category of a participant can thus be determined 

based on the relationship with the nearest participants’ category. A parameter (k) corresponds 

to the number of neighbors considered. In the context of this study, a participant can be classified 

as belonging to the junior or senior group based on the category to which belong the closest data 

points in a multivariable space (according to several metrics of performance). For instance, if, out 

of the 7 closest neighbors (k=7), 5 of these are labelled to the senior group, then the data point 

may be classified as belonging to the senior group. 

Linear discriminant analysis 
 
Linear discriminant analysis algorithms project multidimensional data (multiple metrics) on a 

single dimension and maximizes the distance between the means of the data points belonging to 

the different groups while minimizing the variance within each group.23 In the context of this 

study, the data points associated with the junior group would be regrouped to minimize the 

variance within each other, while also maximizing the distance from the mean of the junior group 

data points and the mean of the senior group data points.  

Naive bayes 
 
The naive bayes algorithms utilize probabilities to predict the group to which an individual data 

point should belong.23,26 In the context of this study, the algorithm is trained with multiple 

examples of scores on a series of metrics associated with a label (junior or senior). This process 
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allows the algorithm to learn the probability of a score on a certain metric being associated with 

a certain label (junior or senior). The algorithm then evaluates the probability associated with the 

scores on every metric to predict whether a participant belongs to the junior or senior group.  

Decision trees 
 
Decision trees classify individuals by building a series of nodes whereby participants are divided 

according to the value of a certain metric.26 The algorithm is trained with multiple examples of 

values on a series of metrics associated with a label (junior or senior). This process helps the 

algorithm find the optimal values to divide participants in classes. 

Algorithms’ performance 
 
Once algorithms are trained, their accuracies may be tested with new data points from an 

independent dataset.28 Ideally, the algorithm would be trained with several junior and senior 

participants, then tested on new individuals. However, given the proof of concept nature of this 

manuscript and the relatively small sample size, cross-validation was utilized to train and test the 

algorithms. The algorithms’ performance may be measured in multiple ways. Given the fact that 

the medical community is used to terminology such as accuracy, sensitivity and specificity, these 

results were displayed in a confusion matrix. The confusion matrix shows the number of senior 

classified as senior, junior classified as junior, senior misclassified as junior, junior misclassified 

as senior, and the number of correct predictions overall. The methods utilized in this experiment 

are explained more thoroughly in the methods section of the manuscript.  
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Comprehensive Review of the Literature: The Use of Machine Learning 
to Provide Objective Assessment of Surgical Skills 
 
 
A systematic review was performed by our group to search for current articles that utilized 

supervised machine learning methodology to objectively assess surgical skill level in virtual reality 

simulation.38 A total of 2642 articles were identified with a search through the Medline, Embase 

and Web of Science databases. After screening the titles and abstracts, 84 articles were identified 

involving the application of machine learning to assess surgical skill level using simulation 

technologies. Of these, 9 articles employed supervised machine learning to assess surgical 

expertise utilizing virtual reality simulators. Three other articles were found by manually 

searching on Google Scholar and Cochrane databases.  

 

In 2003, Murphy et al. trained hidden markov models to recognize skill level by analyzing operator 

motions in a basic laparoscopic virtual task of moving a ball towards a target.39 While the task 

was very simple and the sample size limited, they reported an accuracy of up to 81.31% for 

classifying expertise. Huang et al. used number of errors, economy of movement and time to 

train fuzzy algorithms to classify individuals performing a basic laparoscopic virtual task on the 

MIST-VR simulator (Wolfson Centre and VR Solutions, United Kingdom) into 3 groups of different 

skill level.40 Their results were inconclusive due to the very limited sample size. Megali et al. 

trained hidden markov models to analyze kinematic data and predict whether new individuals 

were experts or novices with respect to laparoscopic instrument handling in virtual reality.41 They 

described that one of the four individuals defined as novice was closer to the expert group in 

terms of motion skills. Again, their sample size was limited (2 experts and 4 novices) and the task 
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was very basic (touch a sphere with right and left instrument). In 2007, Hajshirmohammadi et 

al.42 did a follow-up study of Huang et al.40 study. They trained fuzzy algorithms to classify 

between novices, intermediates and experts on a suturing and knot-tying scenario on the MIST-

VR platform. They reported 29 to 44% of correct predictions utilizing number of errors, tissue 

deformation, thread overstretch and time as metrics of performance. In 2010, Sewell et al. used 

naïve bayes, hidden markov models and logistic regression to classify experts and novices 

performing a virtual mastoidectomy achieving 87.5% accuracy.43 In 2010, Richstone et al. used 

eye metrics to train linear discriminant analysis algorithms and neural networks to predict whether 

surgeons performing on the LapMentor system (Simbionix, Cleveland, Ohio) were experts or non-

experts.44 These algorithms achieved 91.9% and 92.9% accuracy, respectively. In 2011, Jog et al. 

used support vector machine and decision tree algorithms to classify novices and experts 

performing a virtual robotic surgical task.45 They achieved an accuracy of 87.5% based on motion 

data. Loukas et al. used support vector machines to distinguish between 11 novices (PGY-2 and 

PGY-3) and 11 intermediates (PGY-5 and PGY-6) performing needle driving and intracorporal 

knot tying on the LapVR platform (CAE Healthcare, Montreal, Canada).46 They achieved 

sensitivity/specificity ranging from 86% to 96%. Liang et al. used hidden markov models to 

perform binary classification of expertise level.47 They achieved 85% accuracy by looking at force 

and position of tools. Rhienmora et al. reported a 100% accuracy with five-fold cross-validation 

utilizing hidden markov models to distinguish between experts and novices performing on a virtual 

reality dental simulator.48 In 2012, Kerwin et al. used decision trees to classify individuals 

performing a virtual mastoidectomy into experts and non-experts by looking at the end product of 

the procedure.49 They described accuracies ranging from 45% to 89%. In 2018, Ershad et al. used 

positional, motion and physiological data to train naïve bayes and support vector machines to 
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distinguish between 4 levels of expertise (expert, fellow, intermediate or novice) in a basic virtual 

robotic surgery task.50 They reported accuracies ranging from 75% to 89% using cross-validation 

techniques. 

 

These articles were all analyzed utilizing the Machine Learning to Assess Surgical Expertise 

(MLASE) checklist. The MLASE checklist was developed by a group of engineers, specialists in 

artificial intelligence and physicians interested in surgical education, with the aim to improve the 

quality of reporting studies involving the assessment of surgical skill in virtual reality with 

machine learning methodology. The checklist is comprised of 20 elements divided into 4 

components: Study Design, Data Structure, Supervised Machine Learning and Discussion.  

 

Six of the elements were reported in less than 60% of the studies. In the data structure, only a few 

authors (n=6) described normalizing metrics to put every metric on the same scale. This is a crucial 

step prior to using machine learning algorithms. In addition, a small proportion (n=7) described 

the metrics they used to train algorithms to recognize skill level. Failure to do so does not allow 

readers to understand and critique the machine learning algorithms’ decision-making process. 

From an educational perspective, it is important for residents to know on which metrics they are 

assessed so they can improve. Only seven of the twelve manuscripts provided a clear explanation 

of their algorithms’ training and testing process. This step is one of the most important aspects of 

research involving machine learning as it allows readers to understand and critique the authors’ 

methods. If the authors used cross-validation or hold out validation techniques, it should be 

explicitly mentioned and assumptions on the generalizability of the models generated should not 

be made. While most of the authors reported their algorithms’ accuracy, only six included 
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sensitivity and specificity. These two measures give a better understanding of the 

misclassifications made by the algorithms. This step is especially important in studies involving 

unequal numbers of individuals in the groups of different expertise. For example, in an 

hypothetical study involving 100 participants (10 experts and 90 non-experts), one could report a 

90% accuracy if every participant gets classified as a non-expert.  This very good result does not 

represent the algorithms’ poor sensitivity (0% capability of identifying experts correctly). Merely 

42% of the articles (n=5) described the educational rationale of their metrics (i.e. how these metrics 

would be utilized to train surgical residents). If the algorithm is to be used for formative 

assessments to help surgical residents improve, it is important for the algorithm to make its 

decisions based on metrics that are intuitive and teachable. Finally, only five articles included a 

description of the limitations of their machine learning methodology. 

 

The following study was carried out and written with the intention to incorporate every key 

element from the MLASE checklist.  
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INTRODUCTION 
 
With the shift toward competency-based curricula, surgical educational paradigms are evolving to 

include new methods of assessment and training. Whereas current assessments rely on subjective 

methods, new technologies offer the potential for more objective approaches to surgical skill 

evaluation.51 Simulation has become important in surgical education with many programs 

implementing courses involving animal models, cadavers, benchtop models and virtual reality 

simulators.7 Virtual reality simulators provide opportunities for repeat practice in risk-free 

environments and can quantify multiple aspects of psychomotor performance during surgical 

procedures.52 The large amount of data collected from an individual’s technical performance 

during a simulated task can be distilled into specific metrics. Metrics can be considered standards 

of reference to quantitate performance, efficiency and progress.17,53 Individual metrics are often 

incapable of effectively assessing surgical expertise since many procedures involve multiple 

complex psychomotor skills. The requirement to efficiently combine multiple metrics has resulted 

in the need to assess systems capable of analyzing extensive amounts of information from 

multivariate datasets. 

   

Artificial intelligence employs machine learning algorithms, giving computers the ability to 

identify patterns and perform tasks without explicit programming when sufficient data is 

provided.21,26 Different types of machine learning algorithms exist. Supervised algorithms, 

including support vector machines, are utilized most commonly. These algorithms are trained with 

examples of labelled data and learn patterns associated with each label, giving them the ability to 

label new data. 26 In surgical simulation, supervised algorithms could be trained utilizing sets of 
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metrics labelled as Senior or Junior, thereby allowing them to classify new individuals’ metrics as 

Senior or Junior. This is referred to as two-class learning. One-class learning (training algorithms 

to identify individuals belonging to one group, e.g. experts) and multi-class learning (training 

algorithms to classify individuals in more than two groups, e.g. junior residents, senior residents, 

and staff surgeons) could also be employed but would require large participants numbers in each 

group to adequately train the algorithms. As such, these techniques have not been widely utilized 

to assess psychomotor skills in this context.30 The purpose of this study was to evaluate the 

potential of artificial intelligence as an assessment tool in virtual reality spine surgery simulation. 

We aimed to provide a preliminary proof of concept that could act to introduce artificial 

intelligence as a mechanism to objectively assess surgical skill level. We addressed three questions 

in this investigation: (1) Can artificial intelligence uncover novel metrics of surgical performance 

that differentiate between two groups of different training levels? (2) Can support vector machine 

algorithms be trained to recognize whether an individual executing a virtual reality 

hemilaminectomy is of senior or junior level? (3) Can other algorithms achieve a good 

classification performance (accuracy above 75%)? 

 

MATERIAL AND METHODS 
 

Spine surgeons, spine fellows, orthopaedic and neurosurgery residents, and medical students from 

four Canadian universities were recruited.  

 

As this investigation aimed to provide an initial proof of concept of the utility of machine learning 

as an assessment tool, we employed simple two-class learning algorithms.  Thus, two groups of 

different expertise level had to be a priori defined. Participants were divided into senior (PGY-4 
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and above) and junior (PGY-3 and below) groups because our group of surgeons considered that 

the procedure required basic burr and suction handling skills that should be acquired by the fourth 

year of orthopaedic and neurosurgery training.  

 

All participants signed a consent approved by McGill University Health Center Research Board 

before entering the study. The NeuroVR (CAE Healthcare, Montreal, Canada) virtual reality 

platform which incorporates a microscopic view and haptic feedback was employed to perform a 

left L3 hemilaminectomy.54 This platform includes numerous simulated surgical scenarios which 

have been extensively studied.18,55–57As demonstrated in Video 1, the virtual hemilaminectomy 

required participants to remove the L3 lamina with a simulated burr in their dominant hand while 

controlling bleeding with a simulated suction in their non-dominant hand (Figs. 1-A, 1-B, and 1-

C). Participants were given verbal and written instructions to remove the L3 lamina without 

damaging surrounding tissues. Subjects had five minutes to complete the task since this was found 

to be adequate in preliminary studies. Each participant performed the task once without prior 

practice. Individuals participated in the trial at a single time point without follow up. The trial was 

conducted in an experimental setting void of distractions. 

 

Artificial intelligence methodology was applied through a series of steps including raw data 

acquisition, metric extraction, metric normalization, metric selection, machine learning algorithms 

and model selection (Fig. 2). These methods follow guidelines to utilize machine learning 

algorithms to assess surgical expertise in simulation previously established by our group.38 

  

Raw data acquisition 
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The position, angle and force of both simulated instruments along with the removed volume of all 

simulated tissues were captured at twenty millisecond intervals and exported to a file.  

 

Metric extraction 
  

A metric is an input used to train a machine learning algorithm to predict whether a participant 

belongs to the senior or junior group. The accuracy of an algorithm can be defined as the number 

of good predictions out of the total number of predictions made. To obtain the best accuracy and 

to reduce computational cost, metrics given to algorithms must be carefully processed.58 

 

The raw variables provided by the NeuroVR can be combined to generate more complex metrics. 

For instance, by combining tooltip position and time, velocity can be assessed. A series of 

functions was developed to extract metrics from the raw data using MATLAB R2018a (Natick, 

MA, USA). Metrics were divided into four categories including safety, efficiency, coordination 

and motion.17,57 Since metrics of varying scales were generated, data normalization was performed 

with z-scores. 

  

Metric selection 
  

Metric selection is an important step in machine learning which attempts to find the combination 

of metrics that most accurately differentiates between the two groups.59 This step is vital to prevent 

the algorithm from receiving irrelevant input, thereby avoiding the training of algorithms that are 

too closely “fitted” to a specific dataset and tend to generalize poorly to new subjects.60 
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Here, metric selection was performed in two parts. First, to capture metrics that are clinically 

relevant, two spine surgeons selected metrics they felt could differentiate between the two groups 

through a questionnaire (Appendix A).  Second, since these metrics may not all adequately 

discriminate between the two groups in this scenario, a backward selection algorithm from PRtools 

(http://prtools.org/) was employed. This backward algorithm started with all the metrics chosen by 

spine surgeons and removed them sequentially while iteratively training a machine learning 

algorithm and testing its accuracy using 10-fold cross-validation.59 The backward algorithm 

stopped when a combination of metrics provided the highest accuracy of classifying senior 

individuals as senior and junior individuals as junior. Metrics that were not selected were not 

further analyzed. 

  

Machine learning algorithms 
 

Support vector machines are suited for small sample size and multivariate data necessary for global 

evaluation of surgical skill, thereby making it a prime candidate for virtual reality surgical 

simulation.26,60,61 Furthermore, their decision-making process is explainable. In a manner similar 

to the coefficients in a linear logistic regression, these algorithms attribute a weight to each metrics 

and make their classification based on an equation that considers every metric and their respective 

weights. This is interesting from an educational perspective because it could help juniors 

understand what they need to improve to achieve the senior level. These factors lead us to focus 

on this algorithm. Four other algorithms (k-nearest neighbors, linear discriminant analysis, naive 

bayes and decision tree) were also trained to assess whether the selected metrics could achieve a 

similar accuracy with diverse classification methods. The mechanism of each algorithm is 

explained in Table I. Additional information is available in the literature.25,26,60–63 

http://prtools.org/
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Since our sample size was relatively limited, leave-one-out cross-validation was employed to train 

and test the algorithms.25 Leave-one-out cross-validation trains the algorithm with all but one of 

the participants and subsequently tests the trained algorithm on the one participant left out of the 

training set. This process is repeated with every participant, hence, in our case, the process was 

repeated 41 times. As algorithms are built according to various parameters, these were adjusted in 

an iterative manner to optimize classification accuracy. 

 

Metric Analysis 
 
To analyze the performance of senior and junior participants, the ratio of the average metric score 

for senior and junior participants (fold difference) was calculated for each metric. 

 

SOURCE OF FUNDING 
 
This work was supported by the Di Giovanni Foundation, the Montreal Neurological Institute and 

Hospital and the McGill Department of Orthopaedics.  

 

RESULTS 
 
Twenty-two senior participants (6 spine surgeons, 3 spine fellows and 13 senior residents) and 19 

junior participants (11 junior residents and 8 medical students) were recruited. The distribution of 

the participants’ training level and specialty is presented in Table II. Number of assisted 

laminectomy cases by each resident are outlined in Table III. Forty-one metrics were generated. 

Of these, 36 metrics were selected by spine surgeons and are presented in Table IV. The backward 

algorithm identified twelve final metrics listed in Table V. Eight metrics relate to tool motions and 
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four relate to safety, efficiency and coordination. The maximum force applied on dura is lower in 

the senior group (fold difference: 0.56). The amount of time spent while using simultaneously the 

burr and suction was higher for senior participants (fold difference: 1.73). The senior participants 

touched adjacent structures more with their suction while removing L3 with the burr (fold 

difference: 2.18). The ratio of the amount of time spent removing L3 on the total time of the 

procedure was similar in both groups (fold difference: 0.96). Finally, senior participants displayed 

slower deceleration overall, showed higher delays between two consecutive accelerations while 

removing L3 and exhibited less variance in the pitch angle of the burr when they remove L3.  

 

Using leave-one-out cross-validation, five algorithms were assessed. The support vector machine 

achieved the highest accuracy at 97.6%. The k-nearest neighbors, linear discriminant analysis, 

decision tree and naive bayes, had 92.7, 87.8, 70.7 and 65.9% accuracy, respectively (Fig. 3). 

 

A confusion matrix was produced for the support vector machine algorithm (Fig. 4). Only one 

junior surgeon was misclassified. 

 

DISCUSSION 
 
 
Machine learning algorithms have defined novel metrics of surgical performance in a virtual reality 

spinal task. This addresses our first research question. 

 

The four areas of surgical skill identified were represented in the twelve metrics selected. From a 

safety perspective, the senior group restricted the force applied on the dura. This is an important 

metric to teach considering that applying high forces on the dura may increase the risk of dural 
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tear. Senior participants also used their tools simultaneously more often than the junior 

participants. This shows the importance of the acquisition of bimanual skills in spine surgery. 

Furthermore, senior participants displayed less angle variance with the burr when removing L3 

and higher delays between two acceleration peaks which provides new insights on the consistency 

of their movements. These results support that surgical skill is multifaceted and may be benefitted 

by teaching based on metrics that embody different aspects of surgical performance.  

 

An automated feedback system was created with these metrics. Future participants will be able to 

see their scores on each of the metrics, as well as a global classification of the surgical training 

level (junior or senior). In addition, they will individually be guided to improve their skills through 

video-based and auditory feedback, which attempts to mimic current training in the operating room 

whereby surgeons explain what to improve and demonstrate how to do it.  

 

We addressed the second question by training a support vector machine algorithm with twelve 

metrics to classify senior and junior participants performing a virtual reality spine procedure. The 

advantage of applying machine learning to our multivariate dataset is that it provides a more 

objective and holistic assessment of psychomotor performance.  

 

As a support vector criterion was employed to select metrics, the final metrics were likely to best 

perform with support vector machine algorithms. To evaluate the ability of these metrics to 

differentiate training level, other algorithms were trained with the same metrics. Two other 

algorithms displayed accuracies above 75%, thereby addressing the third research question 

outlined.  
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The subject misclassified by the support vector machine algorithm was a PGY-2. Although we 

cannot be certain that this misclassification is attributed to a higher set of skills, we analyzed this 

individual’s metrics to understand this result. This individual applied less force on the dura, spent 

more time using both tools simultaneously and displayed more consistency with the burr (less 

variance in pitch angle and larger distance between two acceleration peaks) than juniors. These 

results suggest that this individual’s performance was more consistent with the expected 

performance of the senior group. 

 

Participants were from multiple institutions and two specialties (neurosurgery and orthopaedics) 

making this data more representative of different training paradigms. Incorporating residents from 

both specialties allows the platform to have the potential to improve the standardization of spine 

training. However, this study is only an initial step to incorporate these technologies in residency 

training. It only acts as a proof of concept, and generalizability testing in a new population is 

required to ensure the algorithm is not overfitted and to evaluate the platform’s potentials in 

training. This algorithm was trained according to residency training levels without explicit 

knowledge of surgical skill and has yet to be tested on an independent dataset. Thus, it cannot be 

used to certify the proficiency of residents prior to practice independently, nor can it assess surgical 

skill level with certainty, but it may help with psychomotor skills acquisition. 

 

There are limitations to employing machine learning in this simulated procedure. First, a simulated 

burr and sucker are not representative of the many instruments and bimanual psychomotor skills 

employed during spine operations. Second, the visual and haptic complexities of the simulated 
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procedure, task duration and need to use a microscopic view may not adequately discriminate 

operator performance. More complex and realistic scenarios involving use of multiple instruments 

are presently being studied to address these issues. Third, although participants were asked to 

remove only the lamina, the lamina was not segmented separately from the spinous process and 

facets. Therefore, the volume of lamina removed could not be determined. The new spine scenarios 

being developed are designed to segment all surrounding structures. Defining participants’ surgical 

skill level is difficult.64,65 Numbers of surgical cases assisted are often biased when reported by 

residents and may not reflect the skills acquired throughout their residency.66 It was implied that 

senior residents had acquire the basic skills of using a burr and suction. Since spine training varies 

from one program to another and PGY-4 are in a pivotal year in terms of surgical skills acquisition, 

efforts were made to understand whether the PGY-4 individuals should be included in the senior 

group. Thus, the study was repeated without incorporating PGY-4. The support vector machine 

algorithm achieved a 100% accuracy with 10 metrics, 6 of which are part of the 12 final metrics 

previously described. This is consistent with the concept that psychomotor skills of PGY-4 in this 

study are more aligned with the senior group. However, assessment tools, such as the Objective 

Structured Assessment of Technical Skill, to evaluate the residents’ skills a-priori may help to 

provide a better division of groups in the future.67 Furthermore, if large numbers of spine surgeons 

are recruited, one-class learning could be used to train algorithms to recognize expert performances 

and assess participants according to expert standards. This could provide a more robust evaluation 

of trainees’ technical skill level. 

 

To our knowledge, this is the first investigation employing machine learning to assess surgical 

expertise in a virtual reality spine procedure. Methods outlined in this study could be applied to 
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any surgical simulation scenario, provided that data on individual’s performance is collected. As 

virtual reality simulation becomes more realistic and more widely utilized, algorithms will become 

more robust. One could envision that once algorithms are rigorously validated to recognize expert 

surgeons, surgical accreditation bodies could employ these techniques to ensure their members' 

technical competency. The significance of this study lies in the potential of combining virtual 

reality simulation and artificial intelligence to provide safer training and objective assessment of 

surgical skills, which could lead to improved patient care. 
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DISCUSSION OF THESIS 
 
 
The importance of this manuscript lies in the potential of utilizing artificial intelligence in the 

context of virtual reality simulation to improve spine surgical training. The 12 metrics of 

performance identified through machine learning methodology quantify safety, efficiency, 

coordination and motion during an individual’s performance in a virtual reality hemilaminectomy 

scenario. These metrics have been utilized to create an automated feedback platform that allows 

participants to assess their standing in terms of each of these metrics as compared to the senior 

group as well as a global evaluation of their skill level. Such platforms could allow for regular 

formative assessment of surgical skills and self-guided learning. In addition, this system could 

help residents perform deliberate practice and target the specific psychomotor skills to improve 

their surgical performance. In the scenario studied, the 12 performance metrics differentiate 

between Senior (PGY-4 and above) and Junior (PGY-3 and below). Junior residents could perform 

the virtual hemilaminectomy, compare their performance to benchmarks established by more 

senior individuals score with respect to specific surgical skills and repeat the virtual procedure as 

needed to improve their performance. 

 

While the accuracy of the support vector machine algorithm reported in this study is encouraging, 

it is important to understand that this study constitutes a preliminary proof of concept. The high 

performance of the algorithm may be attributed to the small sample size of the study or the 

relative simplicity of the task performed by the machine learning algorithms (dividing a junior 

group of inexperienced trainees from a more senior group). 14 of the 41 participants were on the 
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extreme spectrum of both groups (medical students and attending spine surgeons), this 

considerable difference in expertise may be simple to establish by machine learning algorithms. 

However, differentiating between the PGY-3 and PGY-4 may be more complex. If there were less 

differences between the participants’ levels of training, the algorithms’ may have been less 

accurate in differentiating between the two groups. In addition, the final metrics were selected 

using a backward metric selection algorithm with the goal to optimize the support vector 

machine algorithms’ accuracy. Although efforts were made to reduce the risk of overfitting—

notably by reducing the number of metrics, the algorithms were not tested on an independent 

dataset. Thus, the results presented in this study represent an average of multiple algorithm 

models (a total of 41 models trained on 40 participants and tested on 1 participant), and may not 

be an exact representation of the accuracy of the model to predict new participants’ level of 

expertise. Future studies could aim to test the proposed algorithm model on a dataset of new 

participants to evaluate better its generalizability.  

 

With advancements in virtual reality and haptics technologies, simulated procedures will become 

more realistic and new metrics of performance that discriminate between individuals of different 

expertise levels may be identified. Moreover, while the simulated scenario presented in this 

study required basic burr and suction handling skills, more complex spine surgery scenarios are 

currently being developed. This may lead to better differentiation of multiple groups of different 

expertise level. Our group, utilizing a complex virtual reality neurosurgical procedure, has been 

able to segregate individual technical performance into 4 levels of expertise demonstrating that 
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algorithms may be capable of classifying surgical expertise with greater granularity and precision 

than has been previously demonstrated in surgery. 68 

 

Besides its use in formative assessments, artificial intelligence methodology has the potential to 

help provide summative assessments. An example would be to train algorithms to recognize 

individuals that have mastered certain skills and use these to evaluate residents before allowing 

them in the operating room. Such a system could improve the safety of surgical procedures. In 

the future, the Royal College of Surgeons could also potentially utilized artificial intelligence 

methodology combined with virtual reality surgical simulators to objectively assess their 

members’ psychomotor skills and proficiency at the end of residency training.  

 

While the study presented in this thesis focused on psychomotor skills, it is evident that surgeons 

should not solely be evaluated on their technical abilities. Cognitive skills, judgement, ability to 

cope with acute stress and social skills (i.e. leadership, teamwork and communication skills) are 

all essential to becoming a good surgeon. As technologies improve, new systems may give us the 

ability to collect more objective data on these other critical skills, which could potentially allow 

for the training of machine learning algorithms that take into account multiple aspects of surgical 

competency.  
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Future directions 
 

While the future may involve the incorporation of virtual reality platforms utilizing artificial 

intelligence methodology to assess surgical skills, further studies are required to ensure these 

systems perform adequately. First, the models (trained algorithms) outlined in this study will 

need to be validated with completely independent test datasets incorporating new individuals 

from multiple institutions not previously seen by the algorithms. This will evaluate the 

generalizability of the models and the performance metrics utilized. If the models do not 

accurately predict training levels of individuals from the testing set, adjustments will need to be 

made. These could include increasing the training sample size (recruiting more participants), 

investigating new methods to select performance metrics (using other selection algorithms) and 

using new definitions of expertise level to split the groups a priori. New definitions of level of 

expertise may require the utilization of global rating scales of residents performing 

laminectomies in the operating room or using crowd-sourcing evaluation systems. Other 

machine learning algorithms not employed in this study–such as artificial neural networks and 

deep learning methodologies, could also be assessed to evaluate their capacity of distinguishing 

groups of different expertise level. A study is currently being performed comparing support 

vector machines to artificial neural networks in the scenario investigated in this thesis. Second, 

studies evaluating the optimal feedback platforms which lead to improved learning curves will 

need to be defined. Third, if the feedback platform improves surgical skill on a virtual reality 

platform, the transferability of these skills in the operating room will need to be confirmed. Once 

all of these questions are answered and algorithms as well as virtual reality simulated scenarios 
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are rigorously validated, these systems may be implemented into surgical residency curricula, 

providing new learning and assessment opportunities. 
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CONCLUSION OF THESIS 
 

Summary 
 
In this investigation, three objectives were outlined to test the hypothesis that machine learning 

could help differentiate between two groups of different training levels in a virtual reality 

hemilaminectomy simulation. First, new complex metrics of performance were generated to 

quantitate psychomotor performance of individuals during a spine surgery simulation task. 

Second, a support vector machine algorithm was trained to predict whether individuals 

performing a virtual reality hemilaminectomy on the NeuroVR (CAE, Montreal, Canada) belonged 

to a Senior or Junior group. Utilizing leave-one-out cross-validation and 12 metrics of 

performance quantifying safety, efficiency, coordination, and motion, a 97.6 % accuracy was 

achieved. Third, four other machine learning algorithms were also trained to perform the same 

task utilizing the same metrics of performance and two of these achieved accuracies above 75% 

using leave-one-out cross-validation.  This suggests that machine learning algorithms have the 

potential to be trained to recognize expertise levels of individuals performing a virtual reality 

hemilaminectomy. The importance of these findings lies in the potential of combining artificial 

intelligence methodology and virtual reality simulators to provide an objective assessment of 

surgical skills in a safe environment, thereby giving surgical trainees an opportunity to improve 

their surgical skills before operating on patients.  
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TABLES 
 

TABLE I Description of the mechanisms of the five machine learning algorithms employed 
 

Machine Learning Algorithm Mechanism* 

Support Vector Machines Use a hyperplane to separate data in two or more groups 
and maximize the distance between the closest points from 
both groups and the hyperplane. 

Linear Discriminant Analysis Projects multidimensional data (many metrics) on a single 
dimension to maximize the distance between the means of 
the groups and minimize the variance within each group.  

k-Nearest Neighbors Use distance functions such as the Euclidean distance to 
determine the closest neighbors to a point. A parameter (k) 
corresponds to the number of neighbors considered. The 
class of a participant is determined based on their 
relationship with the nearest participants in a 
multidimensional space. 

Naive Bayes Classify participants based on probabilities that the chosen 
metrics belong to experts or novice surgeons. It assumes 
that all the chosen metrics are independent from each other.  

Decision Trees Classify individuals by building a series of nodes whereby 
subjects are divided according to the value of a certain 
metric. The algorithm finds the optimal values to divide 
subjects in classes. 

*The mechanism of every algorithm is further discussed in the literature. 23,25,26,28 
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TABLE II Distribution of the sample of population studied in regards to training level and 
specialty 
 

Training Level Orthopaedic Surgery 
(counts) 

Neurosurgery 
(counts) 

Total 
(counts) 

Spine surgeons N/A N/A 6 
Spine fellows 2 1 3 
PGY-6* N/A 2 2 
PGY-5* 3 1 4 
PGY-4* 3 4 7 

Total Senior 8 8 22 
PGY-3* 1 1 2 
PGY-2* 3 2 5 

PGY-1* 2 2 4 
Medical students N/A N/A 8 

Total Junior 6 5 19 

 
*PGY stands for Post-Graduate Year 
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TABLE III Number of laminectomy cases assisted for each resident 
 
Junior Orthopaedics 

 
Number of laminectomy cases assisted 

PGY-1* 0 
PGY-1* 0 
PGY-2* 3 
PGY-2* 6 
PGY-2* N/A 
PGY-3* 25 

Median 3 
 

Junior Neurosurgery Number of laminectomy cases assisted 

 
PGY-1* 

 
3 

PGY-1* 15 
PGY-2* N/A 
PGY-2* N/A 
PGY-3* 3 
Median 3 
  
Senior Orthopaedics Number of laminectomy cases assisted 

PGY-4* 4 
PGY-4* 30 
PGY-4* 20 
PGY-5* 50 
PGY-5* 10 
PGY-5* N/A 

Median 20 
 

Senior Neurosurgery Number of laminectomy cases assisted 

PGY-4† 50 
PGY-4† 60 
PGY-4† 80 
PGY-4† 100 
PGY-5† 75 
PGY-6* 30 
PGY-6* 40 
Median 60 

 
*University A 
†University B 
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TABLE IV Initial metrics selected by 2 spine surgeons 
 

Safety 

 
Mean force applied on ligamentum flavum  
Maximum force applied on ligamentum flavum 
Mean force applied on dura 
Maximum force applied on dura 
Volume of ligamentum flavum removed 
Number of times dura was touched with an active burr 
Minimum and maximum position of the burr in the cephalad-caudad axis while removing L3 
Minimum and maximum position of the burr in the medial-lateral axis while removing L3 
 
Efficiency 

 
Position of the burr when the first removal of L3 occurs 
Idle time (amount of time no force is applied by any tool on any structure) 
Total tip path length of the burr (sum of every change in position) 
Total tip path length of the suction (sum of every change in position) 
Amount of time spent removing L3/ Total time to completion 
Time to completion 
 
Coordination 
 
Volume removed while simultaneously using the suction and the burr  
Mean velocity of the suction while simultaneously using the burr 
Number of times structures are touched with suction while using the burr 
Amount of time spent while simultaneously using the suction and the burr 
Mean distance between the tip of the burr and the tip of the suction 
 
Motion of the tools 

 
Variance of angles of the burr when removing L3 
Consistency of movements (distance between two acceleration peaks for both tools when removing L3) 
Mean acceleration of the burr over the whole procedure 
Mean acceleration of the suction over the whole procedure 
Mean velocity of the burr when removing ligamentum flavum 
Maximum velocity of the burr when removing ligamentum flavum 
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TABLE V Final metrics selected by metric selection algorithm 
 

Safety Ratio Senior/Junior 

  
Maximum force applied on dura 
 

0.56 

Efficiency  

 
Amount of time spent removing L3/ Total time to completion 
 

 
0.96 

Coordination  

  
Amount of time spent while using suction and burr at the same time 1.73 
Number of times structures are touched with suction while using the burr 2.18 

 
Motion of the tools  

  
Distance between two acceleration peaks for the burr in the cephalad-caudad 
axis when removing L3 (consistency of movements of the burr) 

1.48 

Distance between two acceleration peaks for the suction in the medial-lateral 
axis when removing L3 (consistency of movements of the suction) 

0.99 

Mean acceleration of the burr in the anterior-posterior axis 0.61 
Mean acceleration of the burr in the medial-lateral axis 0.73 
Mean acceleration of the suction in the medial-lateral axis  0.46 
Mean velocity of the burr when removing ligamentum flavum 1.16 
Maximum velocity of the burr when removing ligamentum flavum 0.87 
Variance of the pitch angle of the burr when removing L3 0.34 
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FIGURES 
 

 
 
Figs. 1-A, 1-B, and 1-C. Demonstration of the NeuroVR platform. Fig. 1-A Individual 

performing the virtual hemilaminectomy scenario. Fig. 1-B Virtual tissues include L2, L3 and L4 

vertebrae, interspinous ligament, surrounding muscles, ligamentum flavum, intervertebral disc 

and dura. Fig. 1-C The participant must hold the burr in their dominant hand and the suction in 

their non-dominant hand. 
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Fig. 2  

A framework for integrating artificial intelligence in virtual reality surgical simulation. The 

virtual reality surgical simulation section involves raw data acquisition from the simulator. 

Machine learning methodology is followed by performing metric extraction, normalization and 

selection. The selected metrics are fed to a collection of machine learning algorithms and an 

iterative process of parameter adjustment is followed to optimize classification accuracy. This 

step uses cross-validation techniques to assess classification accuracy. Once the optimal 

algorithm and parameters are identified, a single model is trained using all data. This model can 

then be used for generalizability testing on new subjects. 
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Fig. 3  

The support vector machine (SVM) achieved the highest accuracy at 97.6% using leave-one-out 

cross-validation. The k-nearest neighbors (kNN) reached an accuracy of 92.7%. The linear 

discriminant analysis (LDA) achieved 87.8%. The decision tree had a 70.7% accuracy. The naive 

bayes reached the lowest accuracy at 65.9%.  
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Fig. 4 

Using leave-one-out cross-validation, the support vector machine classified senior participants 

with a sensitivity of 100% and junior participants with a specificity of 94.7%. The Positive 

Predictive Value (PPV) obtained was 95.7% and the Negative Predictive Value (NPV), 100%. 

The algorithm achieved an overall classification accuracy of 97.6%. 

 

Video 1 

This video shows an individual performing a simulated L3 hemilaminectomy on the NeuroVR 

platform. 
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APPENDIX A-Questionnaire provided to spine surgeons 
 

Please check () the metrics of performance you believe are important to measure to 
evaluate a surgeon performing a L3 hemilaminectomy with a burr and suction and could 
differentiate between a Senior surgeon (PGY-4 and above training level) and a Junior surgeon 
(PGY-3 and below training level). 
 
 

METRIC OF PERFORMANCE Yes 

Example: Relevant metric to measure  
Example: Irrelevant metric to measure  

SAFETY  

Mean force applied on ligamentum flavum  

Maximum force applied on ligamentum flavum  

Volume of ligamentum flavum removed  

Mean force applied on dura  

Maximum force applied on dura  

Volume of dura removed  

Number of times dura was touched with an active burr  
Minimum position of the burr in the cephalad-caudad axis while removing L3  

Maximum position of the burr in the cephalad-caudad axis while removing L3  
Minimum position of the burr in the medial-lateral axis while removing L3  

Maximum position of the burr in the medial-lateral axis while removing L3  

Maximum position of the burr in the anterior-posterior axis while removing dura  

Blood loss  

Other SAFETY metrics 
not mentioned above? 

 

EFFICIENCY  

Position of the burr when the first removal of L3 occurs  

Idle time (amount of time no force is applied by any tool on any structure)  

Total tip path length of the burr (sum of every change in position)  

Total tip path length of the suction (sum of every change in position)  

Time to completion  
Amount of time spent removing L3/ Time to completion  

Other EFFICIENCY metrics 
not mentioned above? 

 

COORDINATION  
Volume removed while simultaneously using the suction and the burr  

Mean velocity of the suction while simultaneously using the burr  

Number of times structures are touched with suction while using the burr  

Amount of time spent while simultaneously using the suction and the burr  

Mean distance between the tip of the burr and the tip of the suction  
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Other COORDINATION 
metrics not mentioned 
above? 

 
 
 
 

MOTION  

Variance of angles of the burr when removing L3  
Distance between two acceleration peaks for both tools (consistency of 
movements) when removing L3 

 

Mean acceleration of the burr over the whole procedure   

Mean acceleration of the suction over the whole procedure  

Mean velocity of the burr when removing ligamentum flavum  
Maximum velocity of the burr when removing ligamentum flavum  

Mean velocity of the burr when removing dura  

Maximum velocity of the burr when removing dura  
Other MOTION metrics 
not mentioned above? 

 

Other metrics ideas not 
described in this list? 
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