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Foreword

The author and his supervisor, Prof. Ghyslaine Mo&lare currently undertaking a research
project aimed at evaluating the fundamental pefoochulae in the 2005 edition of the National

Building Code of Canada (NBCC) using ambient vilmratdata. This report is a review of

relevant literature and methods. The topics covenetide fundamental structural dynamics
concepts, seismic design provisions in Canadayiaweof empirical formulae used to calculate
the fundamental periods of structures, experimemiadal analysis, ambient vibration testing,
stochastic processes and signal processing tea@siiqu
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1. Introduction

It has long been recognized that earthquakes Hevpdtential to cause significant damage and
loss of life, a fact that continues to manifeselitsaround the world virtually every time an
earthquake occurs. Since the early 1930s, signifiedforts have been made to provide an
adequate level of protection against earthquakengineered structures, by specifying rational
seismic design guidelines. As the state of knowdeddpout the governing mechanisms
responsible for seismic activity and the effectssefsmic ground motions on structures has
progressed, so too has the refinement of the seidesign provisions.

In Canada, a method for treating the seismicaltizaed forces was introduced in the very first
edition of the National Building Code, in 1941. iBdic changes were made to these guidelines
to reflect the evolution in knowledge. At the tiro& writing this, 12 editions of the National
Building Code of Canada have been released. Inrdéipisrt, a critical review of the changes to
the seismic design requirements for buildings imd&@k, according to the National Building
Code of Canada, will be presented and discussed.

Further, since the 1970 edition of the NBCC, therkl seismic design forces for a structure are
specifically estimated as a function of its fundataé lateral vibration period. However, this
parameter cannot be determined accurately befsteueture is built. Therefore, building codes
typically specify simple empirical formulae based global building geometry to estimate the
fundamental period of structures. A critical reviefathese formulae will also be presented.

In evaluating the adequacy of these period formutas essential to compare them with period
data from actual buildings. Ideally, this infornzatiwould be obtained during significant ground
shaking events, since it is expected that the gexidl elongate as a function of the intensity of
the ground motion (Udwadia and Trifunac 1974). Hesvethis presents an important challenge,
particularly in areas of low to moderate seismitivédy, such as Eastern Canada and Montreal,
since significant earthquakes occur only rarely.suth instances, the use of low amplitude
ambient vibrations is a viable alternative. Thei¢opf vibration testing to obtain the modal
characteristics of full-scale structures will als® reviewed, with emphasis on ambient vibration
testing.

Finally, certain issues relating to the treatmenambient vibration data will be discussed. In

particular, two common frequency domain modal pat@midentification algorithms will be
introduced.

2. Structural Dynamics Concepts

The response of structures to earthquake grounibmd a complex, dynamic phenomenon.
Building codes aim to provide simple guidelinesatttount for these complex effects. Before
discussing the history of seismic design provisionSanada, it is important to understand a few
key structural dynamics concepts, which form they\eundation of these guidelines. These



concepts will also help understand the objectives methods involved in experimental modal
analysis (section 5). The following discussiontengard textbook material, summarized mainly
from Craig and Kurdila (2006), and therefore fewerences will be used in the text for

conciseness. Other excellent structural dynamieserces include Chopra (2001), Clough and
Penzien (2003), and Humar (2002).

2.1 Response of a linear SDOF system to general excitat

The equation of motion of a viscously damped linglastic single-degree-of-freedom (SDOF)
oscillator, subject to general dynamic excitatisn i

mi() + cU Y+ k= 1}, [2.1]

By considering the applied forckt), as a series of impulses occurring at timehe response of
the SDOF system can be obtained using the conwal@ir Duhamel) integral

u() = | f(r)h(t- 1) dr, [2.2]

(o]

whereh(t) represents the unit impulse response function)(IR6r an SDOF oscillator having
undamped natural frequeney,, damped natural frequenay, , and damping raticf, the unit
impulse response function is:

1
h(t) = ma

d

e ‘' sinay, t. [2.3]

The other responsesi(t) , u(t) , etc.) can be derived from the displacement foncti

2.2 Frequency domain response of an SDOF system to gealeexcitation

Alternatively, the solution can be obtained in tlteguency domain by making use of the Fourier
Transform of the input forces and the FrequencyBese Function (FRF) of the system.

2.2.1 Fourier Series

Any continuous, periodic function can be represgiy an infinite sum of discrete harmonics,
each having its own frequency, amplitude and ph@sasider a continuous, general time history
function, x(t), having periodrl; and corresponding fundamental circular frequertty= 2 71/T, .

Then, it can be represented by an infinite serieiszrete harmonics.



x(t) = Z [a, cos(, t)+ h singe, t], [2.4]

In the above equatiorg, and b, are scalar coefficients. Alternatively, a complearmonic
representation can be used.

x(t) = Y, X(n) e | [2.5]
where
€% = cosf+ i sirg. [2.6]

As evident from this equationX(n) represents the complex amplitude of a harmonic of
frequency nQ,. This is referred to as the Fourier coefficienidas generally a complex

guantity, calculated by the following integratiavhich is performed over a period.

T+T,

X(n)= = [ x(ty e gt [2.7]

17

2.2.2 Fourier Transform

Continuous, non-periodic functions require a slighifferent treatment. By considering a non-
periodic function to be a periodic function haviagperiod which tends to infinity, a few
modifications to the above equations lead to th# kvewn Fourier integral transforms. Many
forms of these equations appear in the literatéia. the sake of consistency, the Fourier
Transform pair using the circular frequency varablwill be used here.

X () = ]ox(t) &' g [2.8]

—00

0

x(t) = %T | X(@) € cw [2.9]

—00

The first equation is referred to as the (forwdfdurier Transform (FT) o%(t), and the second,
as the Inverse Fourier Transform (IFT)qt).



The Fourier Transform of(t) will only exist if it satisfies the Dirichlet coittbns (Proakis and
Manolakis 1988):

1. x(t) has a finite number of discontinuities
2. X(t) has a finite number of extrema
3. X(t) is absolutely integrable, that is

0

[Ix]" dt< e [2.10]

—00

2.2.3 Discrete Fourier Transform

In practical applications, the functiox(t) is sampled at constant time intervals for a finite
amount of time, leading to a digital (non-contingpuepresentation of the function. Therefore,
the Fourier integral transforms are not directlplagable, but rather a digital form known as the
Discrete Fourier Transform must be used. Since rdword length is finite, the Dirichlet
conditions are almost always satisfied.

Consider a signal sampled at constant time interelAt. A total of N sampled values are
collected, representing a total sampling timefpf NAt. The total sample time is taken as one
period of a periodic function. Therefore the coutins functionx(t) is approximated by a
periodic signal of period;, sampled at timeg, = mAt, m=0,1...,(N-1). The frequency
spacing of the Fourier Transform will be equal e inverse of the record lengthf = /T,
(Aa = 271/T,). The continuous time variabteis thus replaced by the discrete sampling times
t., = mAt, and the frequency variabde is replaced by discrete frequencies« . This leads to
the following expressions for the Discrete Foutieginsform (DFT) pair:

N-1

X(nAw) =Y. Xt,) e ™™ wheren=0,1,...,(N-1), [2.11]
m=0
1 N-1 )
x(t,) = NZ X(nAw) €™M wherem=0,1,...,(N-1). [2.12]

n=0

The DFT operation is usually performed using thetHeourier Transform (FFT) algorithm,
developed by Cooley and Tukey (1965).

2.24 Frequency Response Function

Instead of performing the convolution of the IRFlahe input force, the response of an SDOF
system can be obtained in the frequency domainrbglg multiplying the Fourier Transform of
the forcing function,F(«), and the complex frequency response function (FIRIE) .



U(aw) = Hw)[F(w) [2.13]
The FRF of an SDOF oscillator is represented by

H(e) = 1/k
- (W) +i[28ww,)]

[2.14]

From Equation 2.13, it is clear that the FRF astadilter (or transfer function) between the
input F(«)and the output («) , as shown in Figure 1.

System

Input Output
Flo) — H(w) — U(o)

Figure 1: lllustration of the relationship betwaeput, output, and FRF

Similarly to the IRF, the FRF contains all the imfation about the system dynamics and is
independent of the forcing function. In fact, tiRFland FRF are Fourier pairs. Further, we can
say that the convolution of two functions in thedi domain is equivalent to the multiplication of
their Fourier Transforms in the frequency domaee(Equations 2.2 and 2.13).

2.3 Response spectra

Typically, in design, the temporal variation of therious response parameters is of little interest;
rather, designers are concerned with their maximalues. A response spectrum is a plot of the
maximum response tospecified excitatiofior all SDOF systems. Typically, they are preseénte
for a given level of damping (e.g. 5% damped). ket since most buildings are considered
lightly damped (typically of the order of 3% to S8hcritical damping), it is common to neglect
the difference between the undamped and dampedahdtaquencies in the development of
response spectra.

In earthquake engineering, three important respspsetra are widely used: the displacement,
pseudo-velocity and pseudo-acceleration responsetrgpdenoted respectivelg;, S, and S..
The displacement response spectrum is a plot ahthemum relative displacement of all SDOF
systems to a particular excitation. It can be oigdiusing the convolution integral.

For a base motion problem, with ground acceleratipft) and relative displacemen(t) , the
equation of motion becomes



mi(f)+ cuU §+ kg y= - mip( X, [2.15]
which leads to the following solution

1
@

n

u(t) = —| o, (r) €7 sinco(t- 7) o . [2.16]

If the maximum value ofu(t) for a particular oscillator occurs at tintg, then the spectral
displacement (corresponding to the natural frequehthe oscillator) is

t

3

S (@1:6) = Yo = UL = y(7) € sinw(f-7) . [2.17]

o

1
a)n

In most cases, this integral is difficult, if n@hpossible, to solve analytically, and a numerical
solution is used. The pseudo-velocity and pseudelaration spectra are obtained simply by
multiplying the displacement response spectrum Hey dppropriate power of the undamped
natural frequency.

S (wy,4) = @, §(w,,4)

2.18
S, = W, S(Wpd) = W2 S(@,d) [2.18]

These are referred to as pseudo- spectra becanldes the displacement response spectrum,
they do not truly represent the maximum velocitydmplacement of an oscillator having given
period and damping to a particular ground motionlydn the case of an undamped system
would the pseudo- spectra correspond to the trlsiwve velocity and absolute acceleration
response spectra. However, since most buildingsrayelightly damped, the pseudo- spectra are
an adequate estimate of the true response spétiisatype of simplification also allows the
three response spectra to be plotted on the saate, Sometimes referred to as a tripartite
representation of ground motion.

2.4 Base shear

The maximum base shear in a linear elastic SDOMHaisc is

~ Sa(a)n,E)W

Vowe = Kt KS (@)= 138,08 = mS(@,,8)= 1 [2.19)



This illustrates the usefulness of the pseudo-acatbn response spectrum: once it is known
only the weight {V) of the SDOF system is needed to estimate thermani elastic base shear
that can be expected during a particular groundamoT his equation is the basis of the lateral
seismic force requirements in most building codes.

2.5 Response of linear MDOF systems under general exaiion

In most cases, however, assuming that the entiss,nstiffness and damping of a building can
be lumped at one point moving along only one degoéefreedom is an unacceptable
simplification. Therefore, most buildings are betteodeled by a multiple degree-of-freedom
(MDOF) system, rather than an SDOF system. In anO¥system, the mass, stiffness and
damping are not concentrated at a single pointdistitibuted along the height, width and length
of the building at discrete points where the dyrmadegrees of freedom are assigned. In such
instances, it is common to use a lumped paramgiproach, whereby mass, stiffness and
damping are lumped at each floor level. The eqonatb motion for a lumped parameter,
viscously damped, elasti¢-degree of freedom system, subject to general dimexcitation is

[m{aco} + [ uop + [ K ud} = { Ro} [2.20]

251 Mode-superposition method

In general, the coefficient matrices in the abogaation contain non-zero off-diagonal terms

(often referred to as coupling terms). Therefoodyiag the above equations would involve the

simultaneous solution o equations iNN unknowns. The mode-superposition method is a
technique used to reduce these coupled linear iegsainto a set of uncoupled equations by
making use of the undamped natural modes of thectste, which define a new coordinate

system (Craig and Kurdila 2006).

The first step of the mode-superposition methad ifnd the undamped natural modes of ke
DOF system by solving an eigenproblem. Numericatedures to find the modes are available

in any structural dynamics textbook. ForMiDOF system, there aié modes of vibration. The
modes of vibration can then be combined inNlx& modal matrix.

[01=[{e} {2} {24 -{0.] [2.21)

If we now assume that the displacement of the systm be represented by

{u} = o) aev} [2.22]



Where{q(t)} is the vector of modal coordinates (notice thad th essentially a separation of

variables, wherd®] and {q(t)} respectively capture the spatial and temporalatian of the
response), then the equation of motion can (evéwiee represented by

[o]" [MI[eNa)} + o] Tclol aof +[o] T Kol a9} =[] { F9}. [2.23]

Because of the orthogonality properties of modepebgCraig and Kurdila 2006), the modal
mass matrix is diagonal with values Mf corresponding to thé" mode. Similarly, the modal

stiffness matrix is diagonal with values @f*M_ corresponding to thé" mode.
(o] [M][®] = diag M,] [2.24]

[o]"[K][®] = diad a? M, | [2.25]

As for the damping matrix, it will most likely ndte diagonalized by the modal matrix.
However, it is common to specify an overall struatudamping ratio, rather than localized
element damping factors. One of the more commonswaydoing this is to assume modal
damping, which assumes that the modal matrix dialyes the damping matrix, such that

[0]"[Cllo] = diad2Ew M ], [2.26]

where & is the modal damping ratio for mode

With the above assumptions, the equations of matrerfully uncoupled, and can thus be solved
independently. For mode

M6, +2Eq M g +@° M q = {@} { F(O}, [2.27]

where M, = {@}T[M]{@} is the modal mass for mode Similarly to Equation 2.1, this
equation can be solved using the convolution irstegr

1
M, @

r

q. (1) = {a} {FO}e s sing (t- ) dr [2.28]

o —

Thus, the mode-superposition method allows thepaddent calculation of the contributions of
each mode to the overall motion of the structureese modal contributions can then be
superimposed to recover the total motion of thecstire.



{u} = ol at} = f{@} g (1 [2.29]

r=1

2.5.2 Frequency domain response of MDOF systems under general excitation

Similarly to SDOF systems, the input at a particld®F can be related to the output at another
DOF by an FRF, which contains the dynamic propgertikethe system. But clearly, for MDOF
systems, a given input at a particular DOF will catise the same output at all DOFs. Similarly,
the output at a particular DOF will not be the sahthe exact same input is applied at different
DOFs. Therefore, a different FRF will exist betwesth input and each output. FOrNdDOF
system with inputs atn DOFs, the different FRFs can be represented byxan FRF matrix.
Thus, element(w) of the FRF matrix represents the relationship betwthe output at DO
Uj(w), and the input at DOK Fy(w).

U, (&) = Hy (@) [F («) [2.30]

o G 1
ij(ca)—rZ:l < - @)+ i[26 @)’ [2.31]

where K, = {qg}T[K]{qq} is the modal stiffness for mode
¢, is the element of thé" mode corresponding to DQFand
¢, is the element of thé" mode corresponding to DOE

Alternatively, the FRF can be expressed in polé@uesform. This representation is widely used
in Experimental Modal Analysis.

Qe w Qe @
H (w) = Z : + :

r=1 ia)r_Ar ia)r_/‘r

[2.32]

where A, = -& @ +iq /1- &£? is the complex pole of modeand
[
Q =

2M, @ 1- &*

Regardless of the form of the FRF, Equation 2.iBhsilds for MDOF systems, only the terms
in the expression are vectors or matricégz.) is theNx1 vector of outputs at the DOFs;

F(«) is themxl vector of inputs at then DOFs; andH(«) is theNxm matrix containing the
FRFs between all the inputs and outputs.



{U(@)} = [H@]{F () [2.33]

Nx1 Nxm mi

Let us now consider the spectral density matridethe input and output signals. The spectral
density is a measure of the energy content ofreak(@r of a pair of signals) per unit frequency.

[Pu“(Nw)] = E{{UN(X?)}E{U(&)}“], [2.34]
[Py (@)= E[{ F(;«J)}E{ F(ﬁd)}”} [2.35]

whereE is the expected value operator. From the abovat®ms, and dropping the notation
referring to frequency for conciseness, the follogvielationship between the input and output
spectral density matrices can be obtained.

[Eiﬁ] i [NljrlE[ i ][ﬁ ,:'X]NH [2.36]

2.5.3 Response of MDOF systems to earthquake ground motion

The equation of motion that describes the respohaa MDOF system to base excitation is
[MHae} + [ wof + TK{ uo} = 1 Mg w09, [2.37]

where{1 is anNxl vector of 1's when only translational motion @sidered.

By making use of the mode-superposition methodeleguations can again be uncoupled.

MG +2Eq Mg +@?M g ={p} [ M{3 1y [2.38]

This equation is very similar to Equation 2.27, amds leads to the following solution:

q, (t) = {(‘}'vl[—'\c/(')]{]} j; U, (€% singy (t- 7)dr . [2.39]

r=-r
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The relative displacement vector, containing thepldicements of the different DOFs relative to
the ground, as a function of time, can then bevemd by adding the contributions of all the
vibration modes.

{u} =Y {ala® [2.40]

r=1

However, in most cases the integration of the gomotion to obtain the time histories of the
modal responses is an unreasonably demanding pnecedk in the case of SDOF systems, it is
common to work with response spectra to obtaimibgimum modal responses.

{4 TM3]
o =19 M  (@<) [2.41]

r=-r

u

r

However, the maxima of the different modes gengraill not occur simultaneously. Therefore,
simply adding the maximum values from each modelavtaad to overly conservative estimates
of the displacements, velocities, acceleratiorts, Bbd circumvent this problem, it is common to
use a Square Root of the Sum of Squares (SRSS)ambpto combine the modal contributions.

. = /rzz'l(m max)z [2.42]

This yields more realistic maximum values, as l@sgthe system does not contain closely-
spaced modes. Other modal combination methods, estisth as the Complete Quadrature
Combination (CQC) and the Closely Spaced Mode (CBiihod. All of these methods aim to
provide an estimate of the expected value of theinrmam response.

3. Overview of seismic design provisions in Canada

Seismic design was a mandatory consideration frben vtery first edition of the National
Building Code of Canada (NBCC) in 1941. Periodiamfes were made to the seismic design
provisions of the NBCC to reflect the advancesnowledge. The purpose is to develop simple
guidelines, which provide a reasonable level otgntion of life safety throughout the country.

The discussion below summarizes the evolution ©hse design requirements in the National
Building Code of Canada, as well as the underlyasgarch which lead to these changes.

11



3.1 NBCC 1941

The first edition of the National Building Code Ganada was published in 1941. In this edition,
it was recognized that earthquakes had the poleiatisause extensive building damage in
certain parts of the country. In the body of thed€atself, only a brief sentence was included
which stated that, in regions where significantlegrakes were probable, every structure, and
part thereof, should be designed to resist thezbotal forces induced by such an earthquake
(NBCC 1941).

A method of calculating the forces due to earthgugkound motion was included in the
Appendix. Each portion of the structure was to esighed for a force

F=CIW, [3.1]

whereW consisted of the dead load and half of the lialof the portion under consideration
andC was a constant which depended on the componeet godsideration.

By today’'s standards, this would of course be dyasadequate; however this Code represented
a first attempt to standardize the calculation @dign loads in general, and seismic design loads
in particular.

3.2 NBCC 1953

In this edition, seismic design loads were includethe main body of the Code, rather than in
the Appendix. Further, an earthquake probabilitypmas included in the climatic information

section. This map, prepared by the Dominion ObgeryeDepartment of Mines and Technical
Surveys, contained four zones, which representgdaditative estimation of the damage that
could be expected from future earthquakes, baséiistorical seismic activity (NBCC 1953).

The equation for calculating seismic design loads the same as in the 1941 edition, though a
few changes were made to the valuesCofThe base shear calculated from that equation
represented the design load for zone 1, which bdsktdoubled for zone 2 and quadrupled for
zone 3 (consideration of seismic loads was notireduor zone 0). In addition, a few extra
sentences were included addressing the importahtieeocsymmetrical layout of braces with
respect to the center of mass of the structurén(iio torsional effects), the application of design
loads at each floor level, and structural sepamatoavoid pounding.

It is also interesting to note that load combinagiavere introduced in this edition. That is, it was
necessary to consider simultaneously the effectdl dateral and vertical loading combinations
in the Working Stress Design approach (though theabilistic combination of these loads was
only introduced later); however it was not necegdar consider earthquake and wind loads
simultaneously.

12



3.3 NBCC 1960

The only major change that occurred in the 196Qi®diwas that dynamic analysis, by a
professional competent in this field, was formatBcognized as an alternative method to
calculate seismic design loads (NBCC 1960). Thisradtive remains in the NBCC to this day.
In fact, in the NBCC 2005, it is the preferred ayauh.

3.4 NBCC 1965

Significant changes were made in the 1965 editicecctount for five main factors that influence
the seismic performance of structures: locatiomstmiction, function, foundation, and dynamic
properties (NBCC 1965b).

Seismic analysis was to be performed by dynamitysisaor using the Equivalent Static Force
Procedure (ESFP). In the ESFP, the design basewhsaalculated using the equation

V= KIW, [3.2]

whereW was the total weight of the structure (includirigbaiilding materials and components,
as well as the full design occupancy load) Kndas calculated using

K= RICII[FIS, [3.3]

where Rwas an earthquake factor (a measure of estimatexsity of seismic forces)
C was a factor that reflected the type of constaurcti
I was an importance factor, which reflected the irteoe of the building
F was a factor to account for foundation conditions
Swas a factor that represented the shape of thgrdasceleration response spectrum.

In contrast to the equation in previous Codess ttlear from the form of this equation that an
attempt was made to recognize the effects of varghenomena on the maximum base shear
expected during the design earthquake. These scasdied below.

34.1 Hazard

In 1965, the seismic hazard was still based orfdbezone hazard map introduced in the 1953
edition and based on a qualitative estimation sfdnical seismic activity in Canada. In contrast
to the 1960 edition however, seismic hazard wdsatefd explicitly in the base shear equation
through an earthquake fact®, rather than through a multiplication of the zdnkbase shear for
zones 2 and 3.

13



3.4.2 Typeof Construction

It has long been accepted that the type of corstrubas a significant effect on the behavior of
structures during earthquakes. Buildings havingnifiant ductility and inelastic energy
dissipation capacity performed very well in pasttfeguakes, even in cases where significant
damage was reported on other types of structur@&C(N1965a). In the 1965 edition of the
NBCC, this was addressed by multiplying the eldséise shear by a factGr ranging from 0.75
for steel or reinforced concrete buildings, with memt-resisting connections, with floors and
roof sufficiently strong and stiff to distributetémal forces to the lateral load resisting elements
and in which the frame alone was able to carryeastl fifty percent of the design shears or in
which shear walls were able to carry design shemes ductile manner; to 1.25, for all other
buildings. This factor was based on the best juddgnoé experts at the time, rather than on
sophisticated analyses of the actual ductilityitfecent types of lateral force resisting systems.

3.4.3 Building Importance

The idea behind the importance factor was, antistisimply to make the Code requirements
more stringent for structures that are expectedetmperational after an important earthquake
(hospitals, emergency shelters, etc.), in ord@réovide a larger margin of safety in their design.

3.4.4 Foundation Effects

The foundation factol;, was meant to account for the amplification o§sec ground motion in
soft soils, and the fact that most building damagpast earthquakes had occurred on soft sall
sites (NBCC 1965b). Since little data was availalthe time to rationally quantify the behavior
of soils during seismic ground motion (soil dynasnis a fairly young discipline), a judgment
factor was adopted to amplify the base shear whenunderlying soil was considered to be
“highly compressible” (NBCC 1965a).

3.4.5 Spectral Effects

Earthquakes do not excite all structures equalbabse of their frequency content, as reflected
in the notion of a response spectrum (see secti®n [d 1965, an attempt was made to account
for the spectral variation of design forces by #yety a design response spectrum based on the
number of storeys (rather than on the actual mglgieriod). The shape of the response spectrum
was captured in the factor

0.25
=, 3.4
S 9+ N [3:4]
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whereN was the number of storeys. Though it is not cleaw this formula was developed,
Supplement No. 3 of the NBCC 1965 states that $#ismic coefficient in the National Building
Code gives a first order approximation” to the dasiesponse spectrum (NBCC 1965b).

3.4.6 Distribution of Seismic Forces

In the ESFP, the base shear calculated by Equatbmas then distributed along the building
height based on an approximately triangular vanmabf loads (triangular if storey weights are
identical), with the apex at the base. This distidm, first suggested by Anderson et al. (1952),
who had investigated the deflections of a unifoantdever due to shear deflection only and to
flexural deflection only, was based on the assupnpdif fundamental mode response only.

F v [3.5]

X N
2, Wh
i=1
wherex indicates the storey under consideration.
This simple static lateral force distribution wamihd to be reasonable to represent the inertia
forces induced by earthquakes at the centroidoair$l for building structures having a height to

width ratio less than 3 or a fundamental period ésn 1 second (NBCC 1970b). However, the
Code allowed the ESFP to be used for all buildings.

3.5 NBCC 1970

In this edition, the design base shear was cakxlasing
1
V= ZDRDKDCDIDFDW, [3.6]

where Rwas a seismic regionalization factor
K was a factor that reflected the type of structayatem
C was a factor representing the shape of the respgpectrum (similar t&in 1965)

The weight of the structur®y, was explicitly required to include 25% of the idessnow load,

in addition to the full weight of all building coropents and the entire design use and occupancy
load (NBCC 1970a).
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351 Hazard

The seismic hazard was revised for this editiothefNBCC, based on new seismic hazard maps
from the Geological Survey of Canada. These maifiscentained four zones; however the
boundaries were based on peak ground accelerdB@A) at a 0.01 annual probability of
exceedance. These were developed using the Gumxtpeine-value method using PGA values
from past earthquakes in and around Canada bet®@@mh and 1963 (Heidebrecht 1995). This
was clearly an improvement over earlier maps, sifGA was now used as an indicator of
damage potential in a region, rather than simpiygia qualitative assessment of seismic hazard.

3.5.2 Typeof Construction

The factorC included in the 1965 edition to account for thef@enance of certain types of
structural systems in past earthquakes was replbged factorK, serving exactly the same
purpose. However, more types of structural systesere included, and the value Kfranged
from 0.67 for ductile moment-resisting frame builgk to 3.00 for certain types of elevated
tanks.

3.5.3 Spectral Effects

The design response spectrum in the 1970 editemytédC, was changed from that in the 1965
edition, denote®.

C=101C for single- or two- storey buildings, and [3.7]
0.05

C-= < 010 for all other buildings, 3.8
T g [3.8]

whereT was the fundamental period of the structure. Tés the first attempt to explicitly
recognize the importance of the fundamental pemndalculating seismic design loads. This
response spectrum was adopted based on recomnuereddtom the Structural Engineers
Association of California (SEAOC) Seismology Contedt (NBCC 1970b). Thus, the
calculation of base shear according to the NBCQMds based on a period-dependent design
response spectrum, which provides a better repiasam of the governing dynamics. This
rational approach to the calculation of seismicigiedorces remains to this day, though
significant changes have been made to the way iohvithe design spectrum is obtained.

This approach required the calculation of the funelatal period of the structure in each
principal direction. Since this is a quantity tikahnot be exactly determined before a structure is
built, the following empirical formulae were sugtghs

005
T=—= for all buildings, except 3.9
\/B g p [3.9]
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T=01IN for all buildings in which moment resisting framresist 100% of the [3.10]
seismic design loads,

where h was the height of the building (in feet), and
D was the length of the building (in feet) in theedtion parallel to the applied forces.

The first period formula was based mainly on vilm@atmeasurements conducted by the U.S.
Coast and Geodetic Survey (USCGS) in 430 buildargs 42 elevated water tanks prior to July
1949 (Anderson et al. 1952), but it is unclear wilgpe of vibration testing methods were used.
Though significant scatter was observed in the,da& authors determined that approximately
80% of observed fundamental building periods libdwe the values obtained from the above
equation. This was deemed conservative since désagis decreased with increasing period
based on the shape of the design response spectrum.

3.5.4 Distribution of Seismic Forces and Higher Mode Effects

Bustamante (1965) compared the shear force anduonigry moment distributions obtained
from the ESFP of the SEAOC provisions to those inbth from modal analyses for 11 real
buildings and 20 imaginary buildings whose mass stifthess distributions were selected to
emphasize the differences between the ESFP andmiyrenalyses. He showed that storey
shears in the upper levels obtained from the ESHERe woften lower than their dynamic
equivalents, particularly in slender buildings mayilong fundamental periods, because of the
effects of higher modes. He suggested assigningdaiitional force at the top storey of the
building in the ESFP to increase the shears irugiger levels. In the NBCC, instead, a portion
of the design base shear was assigned to the dogysivhen the ratio of the height, to the
length of the lateral load-resisting systddg, was greater than 3.

2
h
F = o.oow(Fj < 01¥ [3.11]

The remainder(V - F) was distributed along the building height accogdito the same
distribution as previously assumed.

W h
Fe=(V-R)Bx—— [3.12]

;W.h

However, the overturning moments resulting frons ttistribution of lateral forces were found
to overestimate the true overturning moments, simgher mode effects tend to reduce the
overturning moments (Bustamante 1965). Therefordyase overturning moment reduction
factor,J, was introduced.
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5
<10 [3.13]

T

J =05+

Storey-level overturning moments were also reducedsimilar manner.

3.5.5 Interstorey Drift

In this edition, an additional clause was addediiretg the consideration of interstorey drift in
accordance with accepted practice. The main puspo$ehis provision were to ensure the
comfort of occupants, limit damage to nonstructwamponents, and in some cases avoid
pounding between adjacent buildings. Though thesdatself seemed vague, Supplement 4
(NBCC 1970b) provided some useful guidelines. Ngmielsuggested that the interstorey drift
be limited to 0.005 times the storey height, anat tirift did not need to be considered for
buildings less than 13 storeys in height. It shdaddnoted that there were no guidelines to help
in the calculation of drift. It is assumed that thterey drifts were to be calculated using the
equivalent static loads in an elastic analysigoagdure that was rectified in the 1975 edition.

3.6 NBCC 1975

It is important to note that in this edition of tNBCC, Limit States Design was introduced as an
alternative to Working Stress Design, which was tieem until then (NBCC 1975a; NBCC
1975b). Limit States Design is a probabilistic aygwh to structural design, which accounts for
the variability of the different variables useddetermining design loads and design resistances.
It thus provides a better indication of structwellability than does the Working Stress Design
approach.

The base shear equation for the NBCC 1975 wastlslighanged to reflect a change in the
determination of the seismic hazard. It had thenfor

V = AISIKII[F W, [3.14]

where A was the design ground acceleration at a 0.01 &pneisability of exceedance, and
Swas a seismic response factor (formék)y

Though it may appear that this edition of the NBfe@led on a different hazard map than the
1970 version, in fact it did not. It was the samapmwith four zones whose boundaries were
based on peak ground acceleration values at a @&@bal probability of exceedance. The
difference lies in the fact that the 1970 versigedia non-dimensional fact8r ranging from O

to 4, which reflected the relative seismicity oé tiifferent zones; whereas the 1975 version used
the zonal PGA value directly in the base shear tamuarlhis was an important improvement as
it provided a more rational basis for the calcolatof the seismic design forces.
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As mentioned above, clearer guidelines to calcutderstorey deflections were included in this
edition. The storey drifts obtained from an elastialysis using the equivalent static loads were
to be multiplied by 3 to obtain more realistic v@duof the displacements. This requirement was
included to permit some plastic deformation dutimg design ground motion.

3.7 NBCC 1980

No significant changes were made to the seismigigioms of the 1977 edition of the Code
(NBCC 1977), while the main change in the NBCC 19&% a shift from imperial to Sl units
(NBCC 1980a). As a result, the form of many equetibad to be changed to account for unit
conversions.

The formula to determine the fundamental period douctures other than moment-resisting
frames was changed to

h
T=009—. [3.15]

/D

However, the Rayleigh method was explicitly introdd as an alternative to calculate the

fundamental period of structures, the details & thethod being presented in the supplement
(NBCC 1980b).

Also, a limit was imposed on the base shear ohddiren a dynamic analysis. This limit was set

to 90% of the base shear obtained by the ESFP.

3.8 NBCC 1985

Significant changes were made in this edition ef MBCC to incorporate a new seismic hazard
map, which mapped the peak ground velocity (PGvgddition to the peak ground acceleration
(PGA).

The equation to determine the design base sheacheaged to
V = vISIKII[FIW, [3.16]

where v was the zonal velocity ratio.

It is clear that the Code moved from an equaticsetlaon zonal peak ground acceleration to one
based on zonal peak ground velocity. However, thealkz acceleration was still taken into

account indirectly in the seismic response faddBCC 1985a). The reason for this change was
that PGA is a reasonable indicator of the damagenpial of an earthquake for structures in the
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short period range (near 0.2s). However, most nmedia high- rise buildings have fundamental
periods greater than 0.5s, and their seismic behaepends more on the velocity of the ground
motion (Heidebrecht 1995). Thus, peak ground velo@GV) is a better indicator of damage
potential for buildings in the intermediate periatige (0.5s to 1s).

3.8.1 Hazard

As mentioned previously, a new hazard map was use¢de formulation of the NBCC 1985
seismic design provisions. This map was develogatguhe Cornell-McGuire method (Cornell
1968; McGuire 1976), rather than the extreme-vahg¢hod which was previously used, applied
to a data set that included not only the historg@thquake record, but also some geological and
tectonic information (NBCC 1985b). New ground matiattenuation relations, developed by
Hasegawa et al. (1981), were used in the developofahese maps. Finally, in addition to the
peak ground acceleration, peak ground velocity aia® mapped, both at a probability of
exceedance of ten percent in fifty yeas, rathen ti@ 0.01 annual probability of exceedance
previously used.

The country was divided into seven acceleration-\alocity- related regions (ranging from O to
6) with boundaries based on the PGA and PGV valti@sprobability of exceedance of 10% in
fifty years.

3.8.2 Spectral Effects

The value of the seismic response factor was retisigmificantly in this edition, as compared to
the NBCC 1980, based on calibration of 1985 basarshto 1980 levels (Heidebrecht et al.
1983).

It was realized that a single parameter (PGA or P@¥s insufficient to represent damage
potential for the entire period range, but theoraif PGA to PGV was found to adequately
represent the frequency content of seismic grouotiom (Heidebrecht 1995). Thus, the shape of
the response spectrum was modified to accountherlévels of acceleration- and velocity-
related seismicityZ, andZ,, respectively; whereas in previous versions, it walely based on
the period (or the number of storeys).

In this edition, a limit was also imposed on theiqek calculated by the Rayleigh method, such
that it not exceed the period calculated by the eCéarmulae by more than 20%. This

represented a change in approach from the pre@odsg, in which a limit was instead imposed

on the base shear obtained using a different péhniaxl that provided by the Code formulae (see
NBCC 1980).
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3.8.3 Distribution of Seismic Forces

It was recognized that dynamic analysis providégtéer way of determining the seismic force
distribution than does the ESFP. Thus, the NBCC51@ognized that distributing the base
shear obtained by the ESFP using a modal analysssawalid alternative for determining the
distribution of seismic design loads, and adequaéthods of analysis were included in the
Appendix.

3.9 NBCC 1990

In this edition of the Code, an attempt was madermvide a more rational basis for the

calculation of the design base shear. The elasse lshealy,, was determined using the same
equation as the 1985 edition, but without dactor (recall that this was a judgment factor
reflecting the general performance of the differigpies of lateral load resisting systems in past
earthquakes):

V, = v[SL Il FLW. [3.17]

e

The elastic base shear was then divided by a fomaification factor,R, and multiplied by a
calibration constant), having a value of 0.6, which was a substitutetlfier previous K factor
approach (NBCC 1990a).

Ve
V== [3.18]

3.9.1 Typeof Construction

The force modification factor was meant to accdentthe energy absorption capacity of the
structural system through damping and inelastiomedtion capacity (ductility). It encompassed
a structure’s energy absorption capacity; strutt@@undancy; the capacity to undergo inelastic
cyclic deformations; and the fact that damping dgfly increases with the level of excitatid.
was a calibration factor intended to maintain saimibase shears between the 1985 and 1990
editions of the NBCC, on average, across the cpuBCC 1990b)

3.9.2 Distribution of Seismic Forces and Higher Mode Effects

The portion of the base shear assigned to thettopyswas changed to

F = 007(TIV< Q2%, [3.19]
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whereT was the fundamental period of the building in theection under consideration. This
change reflected the idea that higher mode coniobsi were a direct function of the
fundamental period, rather than the building slemeles. Thus, the revised equation was
considered to be a more rational way to incorpdnggeer mode effects than the equations based
on building slenderness in previous Codes (NBCQbR9

3.9.3 Interstorey Drift

Since the force modification factor accounted fog plastic deformation capacity of the system,
it was decided to use this parameter directly & c¢hlculation of interstorey drifts. Rather than
the somewhat arbitrary factor of 3 included in poeg editions, the elastic interstorey drift
needed to be multiplied bR to obtain realistic estimates of the interstoregpldcements.
Further, limits of 0.01 and 0.02 times the storeight were imposed for post-disaster buildings
and all other buildings, respectively, in contrsiprevious editions where similar limits were
simply suggestions.

3.10 NBCC 1995

The main changes in this edition were the introduactof alternative period formulae for
moment-resisting frames and the formal treatmenPafelta effects (NBCC 1995a). Two
alternative formulae were suggested to calculatefundamental period of steel and reinforced
concrete (RC) moment-resisting frames (MRF)

T = 0.085h,*¥* for steel MRF, and [3.20]
T = 0.075h¥* for RC MRF. [3.21]

The rationale for these formulae is discussed éurtin Section 4. Also, it had long been
recognized that the additional moments createdeéyateral deflections of the structure reduced
the capacity of structures to resist lateral saistnoads (NBCC 1995b). This phenomenon,
commonly calledP-deltaeffect, was addressed by multiplying storey forebears, overturning
moments and torsional moments (but not displaceshéyta stability factor.

3.11 NBCC 2005

Many changes were made to the seismic design poogibetween the 1995 and 2005 versions
of the NBCC, including a new way of characterizgggsmic hazard, changes in the fundamental
period formulae, introduction of period- and intéypsrelated site effects, separation of ductility

and overstrength force modification factors, ane tise of an additional higher mode factor.

Further, dynamic analysis is now the preferred wdttexcept that the ESFP can be used in
certain circumstances (NBCC 2005a). The major cbsngs well as the research that lead to
these changes, will be discussed here.
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The ESFP is now restricted to:
a) Structures in low seismicity areas, or
b) Regular structures of height less than 60m anddmahtal period less than 2s, or
c) Structures having certain types of irregularitye@é are defined in the Code), of height
less than 20m and fundamental period less than (NBC 2005a)

In any of these cases, the design base shear naajdutated using

_S(MIM LI IW

\Y, R, OR )

[3.22]

where S(T)is obtained from the modified Uniform Hazard Spect (UHS)
My is a higher mode factor
Ig is the earthquake importance factor
Ry is the ductility-related force modification factor
R, is the overstrength-related force modificatiortdéac

Certain restrictions are imposed on the valu¥ & ensure a minimum force level, as well as to
avoid undue conservatism. It is also interestingnate that the ESFP can no longer be
systematically applied in Montreal.

3.11.1 Hazard

As mentioned previously, a new seismic hazard mapaveated for this edition of the NBCC. In
previous Codes, a map of PGA and PGV values wad 0$ese values were then scaled based
on an assumed response spectrum to obtain therapeatiation (or the frequency content) of
the ground motion. This however did not adequatelyture the spectral variation, and did not
ensure uniform reliability for all building period¥herefore, it was decided to create a map
based on 5% damped spectral acceleration ordirgtespecific periods, with a uniform
probability of exceedance of 2% in 50 years (refpenod of approximately 2500 years) and a
median confidence level (NBCC 2005b). This is tferee referred to as a Uniform Hazard
Spectrum (UHS).

This map was developed using the Cornell-McGuir¢hioe (Adams and Atkinson 2003). Two
source zone models denotddandR, were used to represent the spatial distributiosetsmic
activity in Canada. Within each of these zones piflebability of an event was assumed constant
(uniformly distributed), and the temporal variatigar magnitude-recurrence relations) was
based on historical seismic activity. These moa#tsnved the estimation of the probability of
occurrence of seismic events as a function of ggagc location in Canada. However, these
events affect a large area by virtue of the propagaof seismic waves. It was therefore
necessary to model the propagation of seismic wasegell.
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To address this, ground motion attenuation relatiarere required to transform a specific
earthquake — i.e. an earthquake of a certain magmitvithin a given source zone, having a
certain probability of occurrence — to a ground iotoparameter at a specific site (in this case, a
spectral acceleration ordinate). In this case,nteelian (58 percentile) spectral acceleration
ordinate at a site, as well as the probabilistitriiution about the median value, was determined
based on earthquake magnitude and distance frosotiree.

This however represents the median spectral aetielerordinate, at a given site and for a
specific period, that results fromspecificearthquake. To calculate the probability of exoegd

a certain ground motion at a site, the hazard tmrtions from earthquakes of all magnitudes
and distances, from all source zones, were thegrated. These calculations of probability of
exceedance were repeated for different target gronation amplitudes, and the values were
interpolated to achieve the target probability xéeedance of 2% in 50 years. Finally, this was
done for different periods, and for the two sourome models, and a “robust approach” was
used, in which the more conservative value from tive models was used. (Adams and
Atkinson 2003)

3.11.2 Type of Construction

As mentioned previously, the effects of ductilitydaoverstrength were separated and explicitly
accounted for in the base shear formula in thisadbf the NBCC. The ductility-related force
modification factor,Ry, essentially replaces the force-modification fack) in previous Codes.
The overstrength-related force modification faciy;, was included to account for the fact that
the lateral resistance of structures is typicallgager than that assumed for design purposes,
because of rounding of member sizes, materialteegie factors, differences between nominal
and actual yield strengths, strain hardening, &edincreased load necessary to form a global
collapse mechanism (Mitchell et al. 2003). Henbe, 1990 calibration factot), was replaced

by a more physically meaningful factor, which retkethe overstrength of different types of
lateral load resisting systems.

3.11.3 Foundation Effects

In previous Codes, foundation factors did not vaith period, nor with intensity of ground
motion. Finn and Wightman (2003; 2004) proposed taators to account for these effects: an
acceleration-related site coefficieRt, for the short-period response, and a velocitgtesl site
coefficient,F,, for long-period response. These are appliedecspectral acceleration ordinates
to modify the design spectrum.

S(T)= ES(023% for T < 02s, [3.23]
F,S,(059 or F,S,(0.29, whichever is smaller, fof = 05s,
F,S.(109 for T = 10s,
F,S,(2.09 for T = 2.0s, or
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F,S.(2.09

for T2 20s.
> or S

3.11.4 Spectral Effects

The period-dependent variation of base shear ieeande editions (NBCC 1985, 1990, 1995)
was obtained by multiplying the zonal velocity oat, by a seismic response fact&r,which
depended on the ratio of zonal acceleration to Izeekcity. However, the Uniform Hazard
Spectra (UHS) adopted for this edition of the NBG€lter capture the spectral variation of
seismic hazard, as spectral acceleration ordinates specified at different periods, thus
removing the need to scale peak values.

An attempt was also made to refine the estimatidhebuilding period. The alternate formulae
for steel and reinforced concrete moment residtimges were adopted, and new formulae were
suggested for the period of steel braced frameshedr wall structures.

T =0.085""* for steel MRF, [3.24]
T=0075""" for RC MRF, [3.25]
T=01N for other MRF, [3.26]
T = 0.025n for steel braced frames, and [3.27]
T=005h"*  for SW and other structures. [3.28]

The addition of the formula for steel braced framesailted from work by Tremblay (2005), and
the other formulae were based on the recommendatibSaatcioglu and Humar (2003). As this
is an important part of the proposed research, thpgc will be discussed in more detail in
section 4.

3.11.5 Distribution of Seismic Forces and Higher Mode Effects

As was the case in all previous editions of theeCdkde ESFP was based on the assumption that
the response of the structure could be adequatphesented by a first mode response only, at
the fundamental period of the structure. As memtibpreviously, in long period structures,
higher modes typically contribute considerably be toverall response. In past Codes, these
higher mode effects were addressed by assignimgtp of the calculated base shear to the top
storey of the structurds;, to augment the shears in the upper storeys;adifarthe remaining
base shear according to an approximately triangliribution; and adjusting the overturning
moments obtained from this load distribution byduction factor,).

Humar and Mahgoub (2003) undertook a numericalystadexamine the differences in shear
distribution along the height of a structure rasgltfrom the ESFP, as opposed to a response
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spectrum analysis using the UHS. Recognizing thHé§@re a composite of many earthquakes,
and as such can not be considered response spketethors first showed that the results from
response spectrum analyses using the UHS closeligheth results from modal superposition

analyses using appropriate simulated earthquakdking®n and Beresnev 1998). They

concluded that UHS could be used in response spe&nalysis without undue conservatism.

Next, they considered several types of structufeescural wall buildings, moment frame
buildings, concentrically-braced frames, couplezkdiral wall systems, and hybrid frame-wall
systems. A number of models were created to acdourthe five different types of systems,
considering twenty-two different cities (with difet hazard levels), and different fundamental
periods. In each case, they compared the elastie $lzear obtained from an SRSS combination
of modal responses in the numerical models usiadJHiS, Ve, to that obtained using the ESFP
in the Code V. to obtain an estimate of the higher-mode fadtby, They found that higher-
mode effects were more important in flexural walll@ings; that braced frames were between
the MRF and flexural wall behavior; that coupledlls/@ssentially behaved as MRF; and that
hybrid systems essentially behaved as flexuralswvallso, they determined that the higher-mode
factor increased with period; that its rate of @ase was higher in Eastern Canada (due to the
shape of the design spectrum); and that it wasrgbpdigher in Eastern Canada than Western
Canada. They proposed values of the higher moderfad, , which capture these variations.

Further, they performed similar analyses to deteenthe base overturning moment reduction

factors that should be applied, given the changekea calculation of the Code base shear. They
proposed revised values of the overturning momedtiction factor (as compared to previous

Codes) to be used with the new base shear formh&se results, as well as those for the higher-
mode factor, were incorporated directly into the@B2005.

4. Fundamental period studies

As we have seen, a structure’s fundamental perasdahvery important effect on the dynamic
forces to which it will be exposed during a parauground shaking event. When the ground
motion has significant energy content in the ranfi¢he structure’s fundamental period, the
structure’s response may be significantly amplifiedere is thus a need to predict this parameter
as accurately as possible during the design prptiestsis, before the structure is actually built.

This is usually done in one of two ways: eithemsyng empirical formulae provided by building

codes; or by analytical methods, such as numemcaleling, eigenvalue analysis, or Rayleigh’s
method. As we have seen, since 1970 the Nation&iBg Code of Canada has provided simple
empirical period formulae for different types ofdeal force-resisting systems, based on building
geometry. Recognizing that these formulae are famfperfect (as discussed below), most
loading codes allow other methods to be used terchite the fundamental period. However,
these methods require the formulation of the massstiffness matrices (numerical modeling
and eigenvalue decomposition), or certain assum@tan the mass and force distributions, as
well as on the shape of the fundamental vibratiavden(Rayleigh’s method). To limit the
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possibility of grossly inappropriate assumptionsilding codes typically impose limits on the
period increase obtained by such methods, as cehparthe empirical formulae.

Further, the earthquake engineering community lbag Irecognized that the distribution of
seismic forces is much better captured by dynamatyais than by any equivalent static force
procedure. Therefore, most current codes allownseislesign to be performed by dynamic
analysis. Again, certain limits are imposed, eithethe fundamental period or on the base shear
obtained by dynamic analysis, to limit the posgipibf gross modeling errors.

It is evident that the calculation of seismic desigads in most building codes, and more
specifically in the NBCC, hinges on empirical periformulae. A critical review of these
formulae will be presented here.

4.1 Critical review of empirical period formulae

As of the 1970 edition of the NBCC, the role of thedamental period on seismic design forces
was formally recognized through the use of a pedependent response spectrum. The
fundamental period was calculated using one ofdhewing formulae:

f

00
T= \/D_ for all buildings, except [3.9]
f

T=01N for all buildings in which moment resisting frantesist 100% of the [3.10]
seismic design loads,

where hs was the height of the building in feet,
Ds was the length of the building, or the length bé tlateral load resisting system
(depending on the edition of the NBCC), in the cli@n parallel to the applied forces, in
feet, and
N was the number of storeys.

As mentioned in section 3.5.3, the first formulaswaased on data that exhibited significant
scatter, but was deemed conservative for desigooges. The second formula has been in use in
building codes at least since the 1960s (HousnérBaady 1963), but it is not clear what it is
based on.

Using period data from 77 steel frame and reinfdrcencrete buildings, Housner and Brady
(1963) showed that these did not provide good esésof the fundamental period of structures.
They suggested that, for use in seismic load caticms, fundamental periods should be
determined by Rayleigh’s method. Nevertheless etleggiations remained in the Code for many
years.

Several attempts were made in the last 40 yeaimpoove these equations by considering
different materials and different types of latef@ice-resisting systems separately. Of course,
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this was only done for the more common systemscu3ised below are the main improvements
that have occurred for the different types of laltéorce-resisting systems.

411 Moment-resisting frames (MRF)

The estimation of the fundamental period of all reotaresisting frames, according to the
NBCC, was based on Equation 3.10 until the 199%&oediin which two alternative formulae
were included to complement it:

T =0085h ¥ for steel MRF, and [3.24]
T=0075h%* for RC MRF, [3.25]

whereh, was the height above ground in metres.

These formulae were originally developed (with beght in feet) by the Applied Technology
Council (1978), based on Rayleigh’'s method. In d®iag them, it was assumed that the base
shear varied withl “2”%; that the lateral seismic forces varied lineathyng the building height;
and that deflections were controlled by drift liatibns (constant inter-storey drift). This resulted
in the period varying approximately with®*. The coefficients were then obtained by carrying
out constrained regression analyses for the diftdvailding types, using acceleration data from
buildings measured during the 1971 San Fernandihcgeake. In total, 17 steel frames, 14
reinforced concrete frames, and 9 reinforced caecshear wall buildings were considered
(Applied Technology Council 1978). Although an immpement on the previous formula, these
equations still exhibited significant scatter, lsstrated in Figures 2 and 3 (the coefficients are
different because the height is in feet). Despits, tthese formulae were adopted in the NBCC
2005 based on the recommendations of Saatcioglidanthr (2003).
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Recognizing that these equations were based omitedi amount of data and from a single

earthquake, Goel and Chopra (1997) evaluated tbgsations using a much larger data set,
comprised of 106 buildings whose periods were meassduring several California earthquakes.

The buildings were classified according to thetedal structural system and 117 data points
from 85 buildings were retained for analysis: 3Tadaoints for 27 RC MRF buildings, 53 data

points for 42 steel MRF buildings, and 27 data tsofor 16 RC shear wall buildings. Each data
point consisted of two periods, one in each of the lateral directions. Because several

buildings were measured during different earthqeakee number of data points exceeded the
number of buildings (Goel and Chopra 1997). Figdrehows a scatter plot of fundamental

periods from the expanded data set, as well asuhes corresponding to Equations 3.24 and
3.25 for steel and RC moment-resisting frames ¢thedficients are different because the height
is in feet).
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Figure 4. Comparison of measured building data gedod equations for RC and steel MRF (source:
Goel and Chopra 1997)

Noting that these equations fit the data rathemlgp&oel and Chopra performed regression
analyses to determine whether the equations caellsnproved. The candidate equations were
all of the form:

T=ah?’, [4.1]

wherea andf were the unknown parameters to be determined fiegression analysis.. As
expected, the value of ¥ for the expongntid not represent the best fit curve, and they
attempted to improve the fit by increasing thisuealThey suggested the following formulae to
determine the fundamental lateral period of MRF:

T =0016h** for RC MRF, and [4.2]
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T =0.028h %% for steel MRF. [4.3]

It should be noted that these improved formulagessgnted only a marginally better fit to the
data, and that these recommendations have notibeleded in the National Building Code of
Canada.

4.1.2 Shear wall buildings

Since few experimentally obtained periods were lalsbe for RC shear wall buildings at the
time, Equation 3.9 was still suggested in the “&#wé provisions for the development of
seismic regulations for buildings” (Applied Techogy Council 1978) as a conservative
equation to estimate the fundamental sway periaRE€ shear wall building.
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Figure 5: Period formula for shear wall buildingsdurce: Applied Technology Council 1978)

In fact, in Canada, this equation remained in tH&CRE until the 1995 edition, inclusively
(NBCC 1995a). However, there was much confusionragraesigners as to the estimation of the
length of the lateral load resisting system, palédy in the case of multiple, coupled or
perforated walls. Therefore, in the 2005 editidre, formula to determine the fundamental period
of reinforced concrete shear wall buildings wasngjeal, based on the recommendations of
Saatcioglu and Humar (2003), to

T = 0.05h ¥, [3.28]
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This equation had been in use for some time inraévanerican codes, including NEHRP-97
(BSSC 1997).

In a companion paper to the one discussed above| &w Chopra (1998) evaluated the
adequacy of Equation 3.28 in predicting the fundaadeperiod of RC shear wall buildings.
Relying on the appropriate buildings from the lardata set described above, they found that it
was inadequate, often leading to overestimatehi@ffindamental lateral period of RC shear
wall buildings, which is unconservative for the giction of base shear forces. Figure 6 shows a
scatter plot of the observed period data, as weliha curve representing Equation 3.28 (the
coefficient differs because the height is expressdeet).
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Figure 6: Period formulae for RC shear wall builds (source: Goel and Chopra 1998)

Goel and Chopra (1998) argued that the buildinghtealone is not sufficient to determine the
fundamental sway period of an RC shear wall bugdifhey proposed a more complex formula,
based on Dunkerley’'s method (Jacobsen and Ayre )194& calibrated using regression
analysis on the measured data. However, even thigghnew formula provided a better fit of

the measured data, its increase in accuracy carie a&xpense of simplicity; the new formula
requiring the estimation of many parameters that beaunknown at the beginning of the design
process. Therefore, for simplicity, the NBCC 2008 dot adopt the suggestion of Goel and
Chopra and retained a simple formula based on helghe (Equation 3.28).

4.1.3 Braced frames

Housner and Brady (1963) suggested that for masrgbuildings a simple expression with the
period varying linearly with building height wouldeld better estimates than Equation 3.9. As
mentioned in the previous section, there was algohnconfusion about the interpretation of the
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length of the lateral load resisting system in #ggiation. Nevertheless, the change was never
incorporated into the NBCC, prior to 2005. Condilgrthis, Tremblay (2005) undertook an
analytical study of different types of steel brafednes.

Tremblay first reviewed a few experimental studidsere the periods of steel braced frames
were reported and compared to predictions basedar@bytical or numerical models. He
suggested that the fundamental period of steeedrél@mes could be accurately predicted from
analytical models. He then reviewed a large datalwdssteel braced frames reported in the
literature, for which the fundamental periods waralytically computed. The database was
comprised of 220 structures - 195 concentricalgebd frames (CBFs) and 25 eccentrically-
braced frames (EBFs) — among which only 3 strustofeeach type were actual structures. The
remaining structures were textbook examples or lgirhgpothetical structures, roughly three
guarters (159) of which were designed accordinght seismic provisions of the Canadian
building codes (NBCC 1990a; 1995a; 2005a); andothers were designed by U.S. (42), New
Zealand (10) or European (9) building codes. Thizda were then used to examine the validity
of previous building code formulae and evaluateitfi@ence of building geometry and seismic
hazard level on the fundamental period. Tremblay thresented an extensive parametric study
to establish a conservative empirical formula faaded steel frames. In this study, all structures
were designed using the equivalent static proceditiee NBCC 2005 provisions and the CSA-
S16 Standard for the design of steel structureSanada, considering different cities (seismic
hazard), soil conditions, building geometries, @uilding importance. The periods were then
computed using a closed-form solution based ondfglys method. Figure 7 shows a scatter
plot of the results of this study.
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Figure 7: Braced frame period formula (source: Ti#ay 2005)

This study confirmed that a linear variation ofipdrwith building height was more appropriate
for steel braced frames, and that the implied preci of Equation 3.9 was not justified.

Tremblay suggested the following equation as a@masive estimate of the fundamental period
for all steel braced frames (both concentricallgt ancentrically braced) — see Figure 7 above.

33



T = 0.025h, [3.27]

However, Tremblay cautioned that field measuremesi® required to validate these analytical
findings, which were essentially based on “numétibailding designs. Nevertheless, Equation
3.27 was adopted by the NBCC 2005.

4.2 Period formulae in NBCC 2005

In the most recent (2005) edition of the NBCC, tinedamental period which is to be used in
determining the design spectral acceleration isutaed by one of the following formulae:

T =0085h** for steel MRF, [3.24]

T =0075h¥* for reinforced concrete MRF, [3.25]
T=01N for other MRF, [3.26]
T=0025h, forbraced frames, and [3.27]

T =005 %" for shear walls (SW) and other structures. [3.28]

As we have seen, most of these equations reprasetdtively poor fit to measured period data.
Though the Code allows other methods (numericaleinogl eigenvalue analysis, or Rayleigh’s
method) to be used to determine the fundamentabgenf a structure, it also imposes
restrictions on the periods thus obtained, basedhenabove empirical formulae. There is
therefore a need to refine these formulae, as stienation of the fundamental period of a
structure plays an important role in the deternmamabf seismic design loads.

Clearly, the goal is to have simple but rationalagpns, which provide reliable estimates of the
fundamental period of vibration of different struiets, as they respond to their design
earthquake ground motion&s mentioned in section 1, the fundamental peab@ structure
tends to increase with increasing excitation amgét The period database on which these
formulae are based was obtained from buildings aif@nia whose periods were measured
during several earthquakes; each causing grounobmsobf significantly different amplitudes at
each location. This data set is thus somewhat Bistamt. This study aims to provide a
consistent data set for the low-amplitude fundamdepériods of buildings in Montreal, which
could be used as an initial conservative estimatedésign purposes. Better estimates of the
actual period expected during the design groundamathould come from magnitude-period
elongation relations, the development of whiclefs for future studies.

Finally, Equation 3.27 was based on an analytitadlys hence there is a need to confirm its
validity using experimental data.
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5. Experimental Modal Analysis

In the preceding sections, it was shown that thhe@mental period plays an important role in the
determination of seismic design forces, and thatampirical equations provided in building
codes to estimate the fundamental period rely omitdd, somewhat inconsistent, data, which
exhibit significant scatter. It is thus suggestea@ttempt to improve these formulae based on the
measured dynamic properties of existing buildiriggs section will discuss the different ways
of obtaining the dynamic properties of a structiuoen measured data, with emphasis on modal
parameter identification using ambient vibratiotada

In section 2, it was shown that the dynamics ofracture could be expressed in a simple form
by making use of its natural vibration modes — Gietcies, damping ratios and mode shapes.
These parameters can of course be derived andllytioam the mass, stiffness, and damping
matrices by solving the eigenvalue problem. Howgsgecurately generating these matrices can
be a laborious, if not impossible, task, as muahbfaildings in the design stage, as for built
structures. On the other hand, different testinghods allow the identification of the modal
parameters of a structure from vibration measurésnevithout unreasonable effort. This
identification is commonly referred to as Experiamodal Analysis (EMA).

EMA is not only useful for seismic applications;ig¢ used widely in the mechanical and
aerospace industries, and also significant resdamshbeen undertaken to attempt to use it for
structural damage evaluation (Bolton 2007) andcstral health monitoring (Darbre and Proulx
2001), as well as numerical model validation andating (Arman et al. 2007). The most
common test methods, as well as their advantagediaadvantages, will be discussed below.

5.1 Input/Output Modal Analysis

Traditionally, EMA has been performed in the contxinput/output modal tests to build modal
models of structures. The simplest of these testslves exciting a structure with a known input
at a specific degree of freedom and measuringglesiesponse component at a particular degree
of freedom (the same or different). This is refdrte as a Single-Input-Single-Output test
(SISO).

Recall from Equation 2.30 that the input and ougduany two DOFs can be related through an
FRF. Conversely, if the input is known and the atiip measured, the FRF relating the input to
the output, which contains the information abow thodal properties, can be estimated by
computing the ratio of the output and input Fousieectra (Maia et al. 1997).

H(c) = % 5.1]
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However, FRFs are usually estimated using spedeaisities, rather than Fourier spectra
directly. Two common FRF estimators are dendig@), Ha(w).

_ Pfu(a‘)
H,(w) = B (w),and [5.2]
P 4
H,(w) = PfECc:; [5.3]

where P, («) is the cross-spectral density between the inpand the output), and similarly

for the other terms. Often, both estimators areluaad they are compared using the ordinary
coherence function.

H, («)

H, () [5.4]

V(o) =

Since both estimators should theoretically yielel $ame result, the ordinary coherence function
is an indicator of the quality of the estimated FRRhird estimatorHs(w), is also used when
the test involves an external white noise inpucdor(t), in addition to the inpuf(t) (Maia et al.
1997).

The excitation itself can vary in character, frofthaamonic excitation (which excites a particular
frequency), to a transient force (e.g. from an ictpaammer), to white noise (exciting all
frequencies approximately equally). For examplsine sweep SISO test can be used to identify
the modal parameters of a system by slowly vartfegfrequency of a harmonic excitation until
the response is amplified. Evidently, it is alsasgible to excite several DOFs with different
forces, and to measure the responses at differ@ksDgiving rise to Single-Input-Multiple-
Output (SIMO), Multiple-Input-Single-Output (MISOand Multiple-Input-Multiple-Output
(MIMO) tests.

A number of different algorithms have been devetbpeer the years to obtain the modal
parameters of a system from input/output modaktdetgeneral, these are separated into those
that carry out the identification in the time domaand those that carry it out in the frequency
domain. A further category, known as subspace #glgos, relies on a state-state formulation of
the equations relating the inputs and the outgbtsne of the more common algorithms for
input/output modal testing are the Complex Expoaén{CE), Polyreference Complex
Exponential (PRCE), Ibrahim Time Domain (ITD), ahBRMA-based time domain methods; as
well as the Peak Amplitude, Circle-Fitting Frequgm2omain Complex Exponential (FDCE),
and Polyreference Frequency Domain (PRFD) frequelocyain methods; and finally subspace
methods such as the Eigensystem Realization AlgurERA) (Maia et al. 1997). This testing
method and the different algorithms are well docot®é in several books on EMA,; two of the
more notable being (Ewins 2000) and (Maia et &.7)9
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The main advantage of input/output tests is th#t bee system response and the input forces are
known. It is thus possible to obtain reliable esties of the modal parameters using the FRF
estimators. However, testing large civil enginegratructures by such means can be a difficult

task. Artificial excitation of large structures tecgs large shakers, which may cause the tests to
take a considerable amount of time, and may alfectathe measured properties due to mass
loading effects. Also, in such structures, the anbloads are always present in addition to the

test loads, thereby compromising the input/outplationship (Parloo et al. 2003).

5.2 Free Response Tests

Free response tests involve subjecting a strudtueeset of initial conditions — for example by
displacing the structure into a particular defornoedfiguration — and measuring the response
over time. Alternatively, the structure can be icted to produce initial conditions on velocity,
rather than displacement. Or, the structure camexmoited at a particular frequency until the
response amplitudes are large enough, and theexttitation removed and the free vibration
response measured (Schiff 1972). ITD is a populadahidentification tool for free response
data.

5.3 Earthquake Response Tests

Earthquake response tests consist of permanestiglling sensors in the building whose modal
properties are sought, waiting for relatively sgaground shaking to occur, and simultaneously
measuring the ground shaking and the structuretsesponding response. For earthquake
engineering purposes, these clearly representdsietésting method as they provide an estimate
of the dynamic properties of the structure duringaatual ground shaking event. The reason is
that these properties tend to vary with the intgnef the ground shaking (McVerry 1979;
Trifunac et al. 2001a; Udwadia and Trifunac 19Mpwever, in areas of low to moderate
seismicity, these tests may be difficult to perfoas it may take long before an earthquake
occurs that causes significant ground shaking athihilding location. Further, as mentioned
above, these types of tests require the permanstrumentation of the building under study;
therefore a large number of sensors are requireabtain reliable information on the spatial
variation of the response (mode shapes).

5.4 Ambient Modal Analysis (AMA)

Ambient vibration tests (or AMA), rely on low-amflde excitation from ambient sources, such
as wind and micro-tremors, to drive building motiarhich is measured and analyzed to obtain
the vibration properties of the structure. In thype of analysis, the input forces are not
measured. Therefore, to extract the modal parametiethe system, the excitation is usually
assumed to have the properties of a broadbandorsiat Gaussian white noise (Brownjohn

2003). This implies that the excitation has apprately equal energy content throughout the
frequency range of interest. The method is sometiragerred to as output-only modal analysis
or operational modal analysis (OMA).
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AMA has been widely touted as a practical modahiidieation technique, mainly due to its easy
and inexpensive setup, as well as the fact thatnibal properties are obtained under the actual
operating conditions of the structure. It has bskown to yield good estimates of the natural
frequencies and mode shapes under normal operatingditions, but estimates of modal
damping ratios are not very reliable because thpliardes of motion generated are typically
small, hence the uncertainty on relative amplitddeays (Brownjohn 2003).

The first known report of vibration experimentsngsiambient vibrations was a study of the
fundamental periods of structures by the U.S. CaadtGeologic Survey (Carder 1936; Ivanovic
et al. 2000b). The method began to stimulate witkerést after the work of Crawford and Ward
(1964), who sought to compare the experimentaltidn periods of actual buildings with those
predicted from mathematical models. They showed dh@ient tests could be used to find the
first few natural frequencies and corresponding enskapes of a structure. Since then, a very
large number of studies have been published osubgct. The following are some of the more
important studies, as pertains to this particukesearch project, and are by no means an
exhaustive list of references on the subject.

Over the years, ambient vibration tests have bemsmucted on a wide range of full-scale
structures to obtain their modal parameters, inolmduildings (Beck et al. 1995; Ivanovic et al.
2000a), bridges (Brownjohn et al. 1999; Farrar dacdhes Ill 1997), and dams (Darbre et al.
2000). Also, many studies compared the dynamic actaristics obtained from ambient
vibration tests with those obtained from otheritesimethods, and investigated the effects of
excitation amplitude on the measured propertiegfufac (1972) compared the results of
ambient and forced vibration tests on two buildimg€alifornia: the San Diego Gas and Electric
Company building and the Robert Millikan Libraryetshowed that the results of ambient and
forced vibration tests agreed very well, but thigh$ reductions in frequencies could be
expected in forced vibration tests when the exomaamplitudes (between the different testing
methods) were significantly different. These firginwvere confirmed by other authors (Hans et
al. 2005). Udwadia and Trifunac (1974) comparedrésellts of ambient, forced and earthquake
tests on the Robert Millikan Library and a stealnfie building at the Jet Propulsion Laboratory
of the California Institute of Technology. They sreal that the apparent natural frequencies
during moderate ground shaking were significantdwedr than those from lower amplitude
excitations (ambient and forced vibration tests amwller earthquakes), but that the buildings
seemed to recover some of their lost stiffness tawee. This recovery appeared to be almost
immediate in the case of small ground motions,tbak longer in the case of stronger ground
motions. This phenomenon was later attributed rgaimisoil-structure interaction (Trifunac et
al. 2001a; Trifunac et al. 2001b). Other similaudés explored the changes in system
parameters before and after retrofit (Celebi and 1998) during construction (Memari et al.
1999), due to non-structural elements (Pan et0@l6P and due to water level in a dam reservoir
(Proulx et al. 2001).

Another important aspect of ambient vibration resieds the development of algorithms to treat
ambient data, often referred to as System Ideatiba (SI). Crawford and Ward (1964) used a
harmonic wave analyzer to perform a Fourier anslgdimeasured velocity data to obtain the
power spectral density curves, which are a measitbe energy per unit frequency (Roberts
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and Mullis 1987). The development of the FFT alijoni (Cooley and Tukey 1965) and the
advent of more powerful computers gave rise to miaeguency domain Sl techniques. The
simplest and most common method, which is stilldusesome extent today, is known as the
peak-picking (or basic frequency domain) methodcdnsists of plotting the spectral density
curves and extracting the frequencies from peakbhencurves. The mode shapes are estimated
by examining the relative magnitudes of the PSDvesiof the different measurement channels,
and the damping by the half-power bandwidth metf@aig and Kurdila 2006). In a series of
papers, Akaike (1969a; 1969b) suggested firshfittin autoregressive (AR) model to the time
series data to improve the spectral density estisnadR-based SI methods began attracting
increasing attention from then on (Gersch and Malii 1979; Gersch et al. 1973; Kadakal and
Yuzugullu 1996). Many other algorithms have beemontuced over the years using Hilbert-
Huang transforms (Yang et al. 2003), neural netwdituang et al. 2003), and a subspace
approach (Van Overschee and De Moor 1993), manyhi¢h have not achieved widespread
popularity. The most popular algorithms currentied for system identification from ambient
vibration data are the Frequency Domain DecommusitiFrDD) method (Brincker et al. 2001b)
and the Stochastic Subspace Identification (SSthatk(Van Overschee and De Moor 1993).
Both methods are quite robust, and have been usmmessfully by many researchers to treat
ambient vibration data. However, due to its simplias compared to SSI, FDD will be used in
this study.

Recently, most studies in the ambient vibratiorersiture have focused on algorithm
development, Finite Element model updating (Yued &atafygiotis 2005), structural health
monitoring (Darbre and Proulx 2001), as well as dgendetection (Weber et al. 2007) and
localization (Duan et al. 2005).

In this study, AMA and FDD will be used to determithe modal parameters of a significant
number of buildings. As mentioned previously, theslerepresent the low-amplitude properties

of the structures (sometimes erroneously referoealstthe linear properties), and it is expected
that their periods will lengthen during strong gndushaking. However, since the empirical

formulae to determine the fundamental frequenciestuctures were derived from ground

motions of different amplitudes, and that the dasad to generate them exhibit such large
scatter, this study will aim to provide better egmntation of the low-amplitude modal

properties. The quantification of the amplitude-@legience of these properties will be left to
future studies.

6. Ambient Vibrations: A Stochastic Process

Data obtained from ambient vibration tests are gdlyetime histories of the displacement,
velocity or acceleration response of a set of D@agh of these time histories can be considered
as a realization of a stochastic (or random) pmcéhis means that future values cannot be
accurately predicted and must instead be descrlyegirobabilities and statistical averages
(Bendat and Piersol 2000). Thus, analysis of antldata borrows heavily from the theory of
random data analysis, the relevant aspects of wareldiscussed below.
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6.1 Terminology and Important Statistical Properties

Suppose a stochastic proceds). Any single observation of(t) represents one of many possible
results. A single time history function is therefaralled asample record xt), and represents a
singlerealizationof the stochastic process. A collection of samet®rds is called aensemble

The two most common properties used to describshastic processes are the mean value and
the autocorrelation function, respectively defired

4, = E[x()] [6.1]

R.(7) = E[X) X t+ 7)]. [6.2]

6.2 Stationary and Ergodic Processes

The above properties can be estimated by averagirggs an ensemble at a particular instant in
timet;.

1 N
#(t) = E[xw)]= im 53 x(t) [6.3]
1 N
R, (t,t,+7)= E[X(tl) X 1+ r)] = lim ﬁ;lxk(t]) X, (t,+ 7) [6.4]

If the calculated mean and autocorrelation properéire the same, regardless of the instant of
time selected, the process is said toMeakly stationaryA strongly stationaryprocess has the
same time invariant characteristics for all of statistical properties (i.e. including its higher
moments).

However, the statistical averages can also be attrby averaging across time in a particular
sample recordx(t).

11,00 = E[x (8] = im = x,(9 c [6.5]

o—-

R, (k)= B[ (0 % (t+ )] = im =[x, (0 x(t+ D)t 6.6]

An ergodic process is one in which the time-averaged pragserire identical for all sample
records, and are equal to the corresponding enseavielages. Therefore, an ergodic process is
necessarily stationary, but a stationary processtisiecessarily ergodic. Since few — often only

40



one - records are typically obtained at each loaaiin ambient vibration tests, it is common to
assume that the process is ergodic, such thantigsés can be performed using a single record
for each DOF.

6.3 Spectral Density Estimation

As mentioned in section 2.5.2, the spectral densitya signal (or between two signals) is a
measure of the energy content per unit frequenbg. Spectral density between signely and
y(t) having corresponding Fourier TransforK(®) andY (») is defined as

P, () = E[ X(@) Y(a)']. 6.7]

An initial estimate of the spectral density candi@ained by performing an FFT for each raw
time signal to obtaiiX(w) andY (@) and simply omitting the expected value operatidowever,
this estimate, known as thperiodogram has very large variance, and fluctuates sigmtiga
about the true spectrum (Oppenheim and Schafer)1385mprove the estimate, the approach
most commonly used is to divide each data setargeries of windows of shorter duration. For
each window, the periodogram is calculated. An mapd estimate of the spectral density is then
obtained by averaging across the different windows.

1 .
Py(@) = L X"(@) Y™ (@) [6.8]

In the above equatiork represents the number of windows ands an index referring to a
particular window (not an exponent). In this cases two time history records(t) and y(t)
would need to have been divided into the same nuwibeindows. This method of averaging
periodograms, commonly referred to as Bartlett’shoé, significantly reduces the variance of
the spectral density estimates (Oppenheim and &cl#&75). The procedure is illustrated in
Figure 8.
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Figure 8: lllustration of Bartlett's method

However, Bartlett's method is still prone to ermwe to a phenomenon known eskage
whereby power from a particular frequeneaksto neighboring frequencies due to the FFT
operation. To circumvent this problem, each windeviirst multiplied by a leakage reduction
window and then the FFT operation is performed.sTimethod is known as the modified
periodogram approach (or Welch’'s method) and thetmommon leakage reduction window is
the Hanning window (Bendat and Piersol 2000). Tikisurrently the most common way of
generating spectral density functions in signatpssing practice.

Alternatively, the spectral density can be estimaby Fourier transforming the correlation
function. In fact, the Weiner-Khintchine relatiossate that the auto- (or cross-) spectral density
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and auto- (or cross-) correlation functions are rleoupairs (Bendat and Piersol 2000). The
continuous form of these relations is

Py (@) = TRW(T) e a, [6.9]

0

1 .
Ry(1)= 5[ Ry(@) 8" . [6.10]

—00

However, this method of spectral density estimai®omot commonly used. In fact, it seems
more common to use the spectral density estimayjeth® previous method to estimate the
correlation function by Equation 6.10 (Bendat andrgdl 2000). The Weiner-Khintchine
relations will be important to understanding thethme used to improve frequency estimates and
obtain estimates of modal damping in Frequency Dombacomposition (section 7.2).

7. Data Treatment

In light of the discussion above, two data treatim@mocedures will be discussed: the peak-
picking method and the Frequency Domain Decompmusithethod (FDD). The peak-picking

method gained popularity mainly due its incrediblmplicity and was the most widely used
frequency domain method until quite recently; FBCan extension of the peak-picking method
introduced in the late 1990s, which addresses sufniks shortcomings, while maintaining its

simplicity.

For the following discussion, suppose ambient vibres measurements were takerNaDOFs,
giving rise to a set of time history record), i = 1,2,..., N . For simplicity, these are shown as

a set of collinear DOFs in Figure 9.
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Figure 9: Example of time history records collectgdN collinear DOFs

7.1 Peak-Picking Method

The peak-picking method, sometimes referred to ha&s Basic Frequency Domain method,
essentially consists of estimating the spectraktigriunctions between all the different signal
channels (records). As mentioned in section 6.8ptain good estimates of the spectral density

functions, it is necessary to first divide eachtlod N recordsx;(t) into k sub-recordsx™(t),
m=1,2... ,k. These sub-records may or may not overlap. Ealshreszord is then multiplied by
a Hanning window to reduce the effects of leakapmerating a set of modified sub-records
yr(t).

Then, an FFT is performed for each modified sulmieécy™(t), thus yieldingY™(w). The

power spectral density (PSD) matrix can then beprged at each frequency, for each window
m, by multiplying the appropriate Fourier coefficienFor example, the entry in rowand
column k, representing the spectral density between charnnahd k for window m and
frequencyw is

Py (@) = Y (o) X'(@)". [7.1]

Each element of the PSD matrix is then obtainegaah frequency by averaging across all
windows.

1 k
P(@) = 12 PR(@) [7.2]
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Figure 10 illustrates the concept of PSD matridediscrete frequencies for a 6-DOF system.
The color within each cell (representing a matrlgneent) is used as an indicator of the
magnitude of the spectral density between the adancorresponding to the cell’s row and
column.

/Frequenc),r

Figure 10: lllustration of PSD matrices at discrdtequencies for a 6-DOF system
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Each spectral density function can then be plagainst frequency by considering one element
of the PSD matrix over the entire frequency ranfienterest. The peaks are identified as
resonance frequencies. The mode shapes can thenfdieed by examining the relative
magnitudes of the spectral densities of the diffehannels, contained in the PSD matrix at
each identified resonance frequency. Modal dampatigs can be estimated by the half-power
bandwidth method (Craig and Kurdila 2006) on anytloé spectral density plots, but as
mentioned previously these are prone to signifieardr.

The peak-picking technique has been shown to weé&tjuate estimates of frequencies and mode
shapes, however it is difficult to identify closedgaced modes (Brincker et al. 2001b). For this

reason, an extension of the method, called Frequienmain Decomposition, has gained
widespread popularity in the field of ambient vifiwa signal processing.

7.2 Frequency Domain Decomposition

Rather than plotting the spectral densities diye@ingular Value Decomposition (SVD) of the
PSD matrices is first performed. The SVD of a squaratrix transforms it into a set of 3
matrices of the same size in the following way:

[PI=[UT$DY", [7.3]

where P] is the matrix to be decomposed (in this case, dbgput PSD matrix at each
frequency), § is the diagonal singular value matrixJ][and [V] are unitary matrices containing
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the orthonormal left- and right- singular vectorsspectively, and' denotes the Hermitian
transformation (complex conjugate transpose). Tingugar values are listed in descending order
along the main diagonal o§[and are always real, non-negative quantitiestt@nother hand,
the singular vectors are generally comprised oflermquantities.

If [P] is a Hermitian matrix, as is the case for the R8&lrix, the SVD degenerates into the
spectral decomposition, hence the matritgsaind [V] are identical.

s 0 -
P o300 = [(o{u}{uld] T 0 e} [7.4]

0 0 - s {uh;}H

More interesting still, the singular vectors thea the orthonormal eigenvectors &,[and the
singular values are the corresponding eigenval@efdit 2005). Hence, the singular vectors
represent an estimate of the directions of prin@pargy of the system, or the mode shapes, and
the corresponding singular values provide an eséiréthe contribution of each mode to the
overall energy at each frequency. In other wortle, $VD of the output PSD matrix is an
approximation to its modal decomposition. The SVDtlee PSD matrices thus allows the
response spectra to be separated into a set of SPEEMSs, each corresponding to a particular
mode of vibration (Brincker et al. 2001b).

The SVD is carried out for each PSD matrix — iteeach discrete frequency resulting from the
FFT operation. In practice, the first few singwatues are plotted against frequency. Figure 11
shows a singular value plot obtained from the \glotme histories of a 6-DOF numerical
model. The solid blue (upper) and dashed greeneflplines represent the first and second
singular values, respectively. Six resonant fregiesncan be identified from the peaks in the
first singular value. The first two, at frequence#).61 and 0.98 Hz, represent the fundamental
frequencies in each lateral direction. They areg vezll defined as they represent a large portion
of the system’s vibrational energy, but it is pbisito estimate higher mode frequencies as well.
Also, studying the second singular value helps tiieslosely-spaced modes (Brincker, et al.
2001b).When closely-spaced modes are present, the sedogules value typically does not
peak near the lowest frequency peak in the firgiidar value, as is the case for the first resonant
frequency; and the next peak in the first singviue seems like a continuation of the second
singular value line. Thus the first two resonaefjfrencies are considered closely-spaced modes.
At each resonant frequendy, the approximate mode shape is contained in tisé dingular

vector{ul( fp)} .

46



—— 1st singular value
- 2nd singular value

Singular Values
—
]

5 X e o | : o ey e ol : T R

10° 10" 10° 10' 10
Frequency (Hz)

Figure 11: Typical plot of first two singular valsie

The method can be improved to provide better eséisnaf the modal frequencies and mode
shapes, and also to estimate the modal dampirggrathe Modal Assurance Criterion (MAC) is
introduced, which is a measure of the correlatietwieen singular vectay at frequency; and
singular vector; at frequencys,.

fu )" du coff
{u el {ucl gy} {ucw)

At a resonance frequencly, the first singular vecto{'ul(fp)}, is compared to the singular

[7.5]

MAC({ y(h{y¢ fz)}) i

vectors at neighboring frequencie{mj ( fb)} , using the MAC. The idea is that a particular mode

will still play an important role in the responddr@quencies near to its natural frequency, thus i
should still be fairly well estimated by a singulgctor over a range of frequencies on either
side of its natural frequency. An SDOF bell funntie created by considering all the frequencies
around a resonance peak that have a singular vil@bhas a MAC value greater than a user-
defined criterion,Q (usually around 0.8). The corresponding frequenaiee denoted,. The
SDOF bell is comprised of the singular valsesorresponding to the singular vectoyswhich
satisfy

MAC({ u () uc fp)}) >0 [7.6]

In the case of well-separated modes, the singudatovs at neighboring frequencies that
correlate well with the first singular vector aetresonance frequenc{/ul( fp)} , will generally

be the first singular vectm{sul(fb)} . However, when closely-spaced modes are predeist, i
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possible that higher singular vectm{sug( fb)} ,{us( fb)} , etc.) will need to be considered. The

resulting SDOF bell function is only defined atquencies near the resonance frequency; the
rest of the SDOF bell function — for frequenciesevehno singular vectors have a MAC value
greater than the specified criterion — is paddeth weros (Brincker et al. 2001a). Figure 12
shows a graphical representation of the SDOF helition. The first graph, on a log-log scale,
represents a singular value plot for a 3-DOF systetin well-separated modes. The portion of
the first singular value (dashed blue upper link)c is highlighted in solid red — i.e. the portion
around the first peak — represents the SDOF betlition. The second graph, on a semi-log scale,
shows the SDOF bell function padded with zeros ffequencies where no singular vector
correlates well enough with the first singular ecit the peak.
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Figure 12: Graphical representation of SDOF belhétion

The SDOF bell function is then brought back totihee domain (or time lag-domain) using the
Inverse Fast Fourier Transform (IFFT). As mentiomedsection 6.3, the Wiener-Khintchine
relation states that the auto-spectral densityaandcorrelation functions are Fourier pairs. Thus,
the time domain function obtained from the IFFT rapien is an approximation of the SDOF
autocorrelation function of the corresponding md&eincker et al. 2001b), which decays
exponentially. In general, the function thus oledinwill be complex. Figure 13 shows the
corresponding plot of the real (solid blue) andgmary (dashed green) parts of the approximate
SDOF autocorrelation function. It is clear thatythmth behave identically, only with a phase
difference.
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Figure 13: Approximate SDOF autocorrelation functio

An improved estimate of the frequency can be obthiby counting the zero crossings of the
SDOF autocorrelation function (either the real maginary part) (Brincker et al. 2001a). The

zero crossings are plotted against time, as inreigd. A linear regression is then performed.
Since the function crosses zero twice for eachegytblen the slope obtained from the regression
— which represents the number of zero crossings@esnd or twice the number of cycles per
second — is twice the frequency.
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Figure 14: Linear regression on crossing times

An improved estimate of the mode shape is obtabedeighting the singular vectors from all
frequencies included in the SDOF bell function bgit corresponding singular values, thus
giving more weight to the singular values near pleak, while still performing an averaging
operation over all relevant singular vectors. Theden shape vector is normalized to unit
magnitude.
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nbell

()= o—. [7.7)

wherenbell is the number of singular values included in tB¥O& bell function — or the number
of singular vectors with a MAC value higher th@n

Finally, an estimate of the modal damping ratio banobtained by the logarithmic decrement
technique. Thek first peaks in the autocorrelation function arentified, as well as their
corresponding valud. The natural logarithms of tH& values are then plotted against the peak
numberk, as in Figure 15. Again, a linear regression iggomed, the slope of which yields the
logarithmic decrement.
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Figure 15: Linear regression to find the logaritlemdecrement

And the modal damping ratio is calculated fromltgarithmic decrement using (Brincker et al.
2001a)

A
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In the ongoing research project, FDD is the primasthod that will be used to treat the data
from ambient tests. For the purposes of this stedyy the fundamental sway modes in each
lateral direction need to be identified. Howevéenyill most likely be possible to identify higher
modes as well. It is also hoped that estimatesafahdamping ratios will be obtained; however,
as mentioned previously, these are typically noy eecurate.
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8. Conclusion

In this report, a literature review of topics refgtto the evaluation of the period formulae in the
National Building Code of Canada (NBCC) using ambigbration data was presented. First, an
introduction to certain fundamental structural dyin@s concepts that form the basis of all
seismic design guidelines was presented. To bapigreciate the importance of the fundamental
period in earthquake engineering, particularly @msmiic force estimation, the seismic design
provisions of the NBCC and their evolution since fhist edition in 1941 were then discussed.
The NBCC empirical fundamental period formulae ukedseismic load calculations were then
reviewed. It was shown that the current equatiors lmsed on limited data from several
earthquakes in California, each causing groundanstof significantly different magnitudes at
each building location, thus representing a soméwiwnsistent data set. The data are quite
scattered, partly because of this inconsistenay,pantly because the simple empirical equations
necessarily omit certain parameters that influetheefundamental periods of buildings. As a
result, the equations fit the measured data ragberly. Finally, local factors such as design and
construction practices, geology, and seismicity maye an effect on the apparent fundamental
periods of buildings. It was thus suggested thetetlis a need to evaluate, and possibly improve,
the empirical period formulae for the design ofistures in Montreal.

The author and his supervisor, Prof. Ghyslaine Mo€&lare currently undertaking a research
project aimed at evaluating and improving thesea@gns using ambient vibration data.
Therefore, a review of certain key ambient vibnatgiudies was presented here. As mentioned
previously, the natural periods of a structure teadlengthen with the amplitude of the
excitation. Thus, the natural periods of a buildoigained from ambient vibration tests (which
represent low excitation conditions) generally uedémate the natural periods expected during
strong ground motions. Some may argue therefoteath@ient vibration data does not represent
the likely behavior of a building during seismicgnd motions. However, since seismic design
loads (in the NBCC) typically decrease with inciegdundamental period, the NBCC formulae
also aim to underestimate the fundamental peridaerd is thus a tradeoff between the
conservatism of the empirical formulae and theaility of the data on which these are based.
On the one hand, data from significant ground nmstibetter represent the likely behavior of
buildings during an earthquake; but to be consemathe equations derived from these data
need to be “lower-bound” equations which may comigiily underestimate the fundamental
period since the data exhibit such variability. tba other hand, ambient vibration data do not
represent the likely behavior as well; but the efoal equations derived from these data do not
necessarily need to be “lower bound” equationsesthe period is expected to elongate during
strong ground motions. It was suggested above ttieatvariability in the data is a result of
inconsistency in the data and the omission of cegarameters of importance in the empirical
equations. It can thus be argued that using ambibrdation data could considerably reduce the
data inconsistency, while still underestimating thmdamental periods of buildings. The
approach proposed in this research is first to ldgveelations for the low-amplitude
fundamental periods, and then develop relationsdxat the excitation magnitude and the period
elongation. The latter is left for future studies.

Finally, the stochastic nature of ambient vibrasioand two methods of treating ambient
vibration data, the peak-picking method and thegéeacy Domain Decomposition method
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(FDD) were also discussed. In the ongoing resegroiect, FDD will be the main modal
identification method.
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