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ABSTRACT

Pick-and-place robots play an important role in industry, performing packaging

and assembly tasks. To meet the demand for increasingly fast manipulators, new

designs of parallel robots are being developed, as they have distinct speed advan-

tages over their serial counterparts. Recently, a two-limbed, four-degree-of-freedom

manipulator with high rotatability of its gripper and an isostatic (fully constrained)

structure, the latter improving its assemblability, was introduced. The robot pro-

duces Schön�ies motion, that is, three independent translations and one rotation

about an axis of �xed direction; it is therefore classed as a Schön�ies motion gener-

ator (SMG). The premiere prototype of this design, termed the PepperMill-Carrier

(PMC), was developed and tested, as reported in this thesis. The development of

innovative two-degree-of-freedom cylindrical actuators that drive the robot, termed

C-drives, is also reported. Workspace analyses and experimental and simulation re-

sults are included. The prototypes successfully prove the concepts of the PMC and

the C-drive. Recommendations are provided to guide further development.
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ABRÉGÉ

Les robots à transfert rapide jouent un rôle important dans l'industrie et ser-

vent à l'emballage et à l'assemblage. A�n de répondre à la demande pour des

manipulateurs de plus en plus rapides, de nouveaux concepts de robots parallèles

sont actuellement en développement, béné�ciant d'avantages en terme de vitesse par

rapport aux robots sériels. Récemment, un manipulateur avec deux jambes, quatre

degrés de liberté, une importante mobilité rotationnelle de son e�ecteur et une struc-

ture isostatique a été proposé, cette dernière améliorant l'assemblabilité du robot.

Le robot est capable de produire des déplacements du type Schön�ies, c'est-à-dire

trois translations indépendantes et une rotation autour d'un axe à direction �xe ; il

est ainsi désigné générateur de mouvements Schön�ies (GMS), ou SMG en anglais.

Le premier prototype de ce concept, nommé le � PepperMill-Carrier � (PMC), a

été réalisé et testé, tel que décrit dans ce mémoire. La mise au point d'actionneurs

cylindriques novateurs à deux degrés de liberté, nommés � C-drives �, qui entraînent

le robot, est aussi décrite. De plus, des analyses d'espace de travail et des résultats

d'expériences et de simulation sont inclus. Les prototypes parviennent à valider les

concepts du PMC et du C-drive. Des recommandations sont proposées a�n de guider

le développement futur du robot.
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CHAPTER 1
Introduction

1.1 Motivation

Many industrial tasks, from food packaging to automotive-parts assembly to

electronic-circuit manufacturing, involve manipulating and accurately positioning

objects. As these operations are repetitive and well-structured, they lend themselves

to automation. The �rst industrial robot to be developed was the UNIMATE, oper-

ated by General Motors starting in 1961 [1]. It was a serial robot, i.e., composed of a

single open kinematic chain, and produced motion with �ve (and later six) degrees of

freedom (dof). Early robots such as UNIMATE and later the Stanford Arm featured

prismatic (sliding) joints in addition to revolute (pin) joints, as this simpli�ed their

kinematics [2], an important attribute at a time when microprocessors were in their

infancy. The need for higher dexterity and speeds led to the development of serial

robots with six revolute joints, notably the 1973 KUKA Famulus, the �rst industrial

robot with six electromechanically driven axes, shown in Fig. 1�1a. Many common

pick-and-place operations (PPO) do not require full six-dof manipulation, and are

therefore more suited for specialized robots with reduced mobility. An important

category of PPO robots are the Schön�ies Motion Generators (SMG), capable of

generating four-dof motions of their end e�ector (EE), namely three independent

translations and one rotation about an axis of �xed direction, usually vertical. This

motion is well illustrated by the movement of a waiter's tray, which is kept horizontal

1



(a) (b)

Figure 1�1: Examples of serial robots: (a) Several postures of the KUKA Famulus;
and (b) the Adept Cobra s350 SCARA robot

at all times. SMG take their name from the Schön�ies subgroup X of rigid body

displacements, from the theory of Lie groups [3]. SMG are suited for factory applica-

tions on �at surfaces, such as conveyor-belt lines. The �rst SMG were serial robots

termed SCARA (Selective Compliance Assembly Robot Arm), developed by Hiroshi

Makino in 1978 [4]. A common robot of this type is shown in Fig. 1�1b. Serial

robots are limited in their speed by the need for each motor from the base onward

to drive all upstream motors and links. This motivated the development of parallel

robots�composed of at least two closed kinematic chains�capable of higher speeds

at the cost of higher complexity1. An excellent analysis of the trade-o�s involved

is found in [5]. The �rst parallel robot was the Stewart Gough platform, invented

independently at least three times in the 1950s and 60s [6, 7]. The �rst successful

1 The economics of choosing parallel vs. serial PPO robots is discussed at
http://coro.etsmtl.ca/blog/?p=55.
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(a) (b)

Figure 1�2: Examples of parallel PPO robots: (a) The ABB IRB 360 FlexPicker, an
augmented Delta; and (b) the Adept Quattro s650H, an instance of H4

parallel four-dof PPO robot is a version of Clavel's Delta, patented in 1990 [8]. The

Delta, a generator of the 3D translational subgroup of rigid body displacements, is

augmented with one rotational dof, resulting in a SMG, as shown in Fig. 1�2a. The

STAR concept, employing parallelogram (Π) joints like the Delta but driven by heli-

cal actuators, was proposed by Hervé and Sparacino [9]. The current fastest parallel

SMG is the Adept Quattro, shown in Fig. 1�2b, based on the H4 concept proposed

by Pierrot et al. [10]. The rotation of the moving platform (MP) is achieved by a

complex ampli�cation mechanism and limited to a half turn. Other problems with

the foregoing robots include their complex workspaces, the risk of limb collisions,

and di�cult assembly, as they are overconstrained, thus requiring extra joints that

introduce idle dof, play and compliance. This drawback is absent in isostatic (fully

constrained) robots, which are, therefore, of interest.

3



1.2 Literature Review

Many e�orts have been dedicated to improving the design of parallel SMG. The

I4 family of robots was introduced by Krut et al. [11] to address the drawbacks of

the H4, such as link collisions when rotating the MP. Richard et al. [12] proposed

the partially decoupled four-limb Quadrupteron. Other robot designers have focused

on reducing the complexity of parallel robots by proposing two-limb designs [2]. For

instance, Angeles et al. introduced the McGill SMG [13, 14], shown in Fig. 1�3a.

Motors (�xed)

Drive units

Proximal

Distal modules

Moving platform(PMC distal link)

modules

(a)

C

C

R

R

R

R

H

H

(b)

Figure 1�3: Parallel SMG built at McGill University: (a) The �rst McGill SMG
prototype [13]; and (b) one of Lee's ISMG, termed the PepperMill Carrier (PMC)

In their quest to �nd two-limbed isostatic SMG (ISMG), Lee and Hervé per-

formed a search of all mechanisms resulting from the concatenation of two serial

chains producing Schön�ies (X )-motion, termed X�X motion generators [15], later

focusing their research on SMG [16]. Based on this work, P.-C. Lee et al. proposed

4



four new isoconstrained SMG, derived their kinematics and performed workspace

and singularity analyses [17, 18, 19, 20]. Harada and Angeles [21] selected one of

the designs, shown in Fig. 1�3b, and derived its kinematics and singularity analyses

in the presence of two two-dof actuators, termed the C-drives2 . This ISMG is a

symmetric, single-loop kinematic chain of the CRRHHRRC type, where R, C and H

denote revolute, cylindrical3 and helical (screw) joints, respectively. The common

link to both limbs is composed of two rigidly connected coaxial screws of di�erent

pitches, and termed the PepperMill (PM) by analogy with the motion of a large

pepper mill. The robot is therefore known as the PepperMill-Carrier (PMC). The

application of the Chebyshev-Grübler-Kutzbach formula con�rms that the PMC has

four dof [22], while a Lie group mobility analysis reveals that the four dof are those

of the X -subgroup of rigid-body displacements. In addition to being isostatic, the

simple di�erential rotation mechanism of the PMC endows the PM with high rotata-

bility, as the screw pitches and lengths can be varied to obtain a wide mobility range.

Furthermore, the limbs cannot collide while the screw nuts are within their stroke

length. The principal hurdle in designing a PMC prototype is the embodiment of

the cylindrical joints.

2 One singular posture was found that escaped P.-C. Lee et al. [17].

3 A cylindrical joint is capable of independent rotations about an axis and trans-
lations in the direction of the axis.

5



1.3 Thesis Overview

This thesis reports on the work leading to the development and testing of the

novel PMC and its C-drives. Through analyses and experiments, the C-drive and

PMC concepts are validated and their performance is ascertained. Chapter 2 builds

upon previous research on PMC kinematics to provide means to be used by the

PMC control system, as well as workspace analyses to determine the safe operating

workspace. Chapter 3 summarizes the mechanical design of the prototype and the

principal decisions involved. Chapter 4 reports on the derivations of the C-drive

dynamics in state-space form and introduces several control systems for the C-drive.

Chapter 5 discusses the experimental and simulation results from prototype testing.

Finally, Chapter 6 concludes the work and makes recommendations for further study.

6



CHAPTER 2
PMC Displacement and Workspace Analysis

2.1 Overview of the C-drive and PMC

2.1.1 Mathematical Modelling of the C-drive

The PMC must be driven by fully actuated cylindrical joints in order to keep the

motors �xed to the base. However, no cylindrical drives of this type are commercially

available. One six-dof parallel robot requiring such a drive was proposed by Behi [23].

The design of a rotary-linear actuator was subsequently reported by Kohli et al. [24,

25], consisting of a prismatic actuator in parallel with a rotating prismatic joint.

The motors are �xed, but loaded and dimensioned di�erently. A new concept for a

cylindrical (C) drive that comprises two identical �xed motors equally sharing the

load was recently proposed by Harada et al. [26]. The design process entailed a search

for symmetric single-loop kinematic chains of low complexity, as de�ned by Khan and

Angeles [27]. The resulting coaxial RHHR chain with actuated revolute joints is shown

in Fig. 2�1. Conceptual work on the C-drive and PMC is summarized in an internal

report [28]. Preliminary tests were carried out on the C-drive prototype [26], while

the results of more advanced experiments and simulations were reported recently [29].

The C-drive comprises two coaxial screws of di�erent pitches. For symmetry,

the pitches are given the same absolute value pc, but are of opposite hands. The

collar is the link coupled to each motor shaft via the screws.

7



Motor L
ψL

Screw L

ψL

Nut L

u

O

θ

(left-hand)

Support unit
Coupling

Rotor

Motor R

Collar

Screw R
(right-hand)

Nut R

Figure 2�1: The C-drive

C-drive Kinematics

The kinematics of the C-drive, as reported earlier [26], is summarized below:

ψ ≡

 ψL

ψR

 , w = Jψ, ẇ = Jψ̇ (2.1a)

w ≡

 u

v

 , J ≡ pc
4π

 1 −1

1 1

 (2.1b)

where ψ is the vector of joint displacements, ψL and ψR being the left and right

angular motor displacements, respectively, u the translational displacement of the

collar, and v a linear transformation of the rotational displacement of the collar,

denoted θ, namely,

v ≡ pc
2π
θ (2.2)

8



The Jacobian matrix J is isotropic�its singular values are identical [30]�as JTJ is

proportional to the 2× 2 identity matrix 1:

JTJ =
p2

8π2
1 (2.3)

Furthermore the inverse kinematics is given by

ψ = J−1w, ψ̇ = J−1ẇ, J−1 ≡ 2π

pc

 1 1

−1 1

 (2.4)

C-drive Dynamics in Terms of Generalized Coordinates

The dynamics of the C-drive is represented by the mathematical model reported

by Harada et al. [26]:

Mψ̈ + Dψ̇ + φc = τ (2.5)

where the generalized inertia matrix M, damping matrix D, vector of Coulomb-

friction torques φc and vector of motor torques τ are de�ned as

M ≡

 m11 m12

m12 m11

 , m11 ≡ Ih +
Ic
4

+
p2cm

16π2
, m12 ≡

Ic
4
− p2cm

16π2
(2.6a)

D ≡

 d11 d12

d12 d11

 , d11 ≡ β +
1

2
γ, d12 ≡ −

1

2
γ (2.6b)

φc ≡

 δsgn(ψ̇L) + ηsgn(ψ̇L − ψ̇R)

δsgn(ψ̇R) + ηsgn(ψ̇R − ψ̇L)

 , τ ≡

 τL

τR

 (2.6c)

9



25 mm

300 mm

0◦ 90◦ 180◦

A

B

D

C

Gripper

Figure 2�2: The standard industry test cycle for SMG

whilem and Ic are the collar mass and moment of inertia about the C-drive axis, Ih is

the moment of inertia of the other rotational parts about the same axis, β and γ are

the viscous friction coe�cients, while δ and η are the Coulomb-friction coe�cients,

pc is the screw pitch, and sgn(·) is the signum function.

2.1.2 Design Considerations of the PMC

Standard Industry Test Cycle

In order to compare the performance of di�erent PPO robots, industry has

adopted a benchmark test trajectory, as shown in Fig. 2�2. The cycle consists of a

25 mm upward vertical translation, a 300 mm horizontal translation and simultaneous

half turn rotation, a 25 mm downward translation, and the same motion in reverse.

The PMC is dimensioned to be able to perform this motion. In practice, smoother

curves are employed to avoid the discontinuities at points B and C, for example the

�Adept Motion� used to test the H4 robot [31]. Gauthier et al. proposed a smoother

trajectory based on Lamé curves, to be customized for each robot to reduce the

maximum acceleration values of the gripper [32].

10



PMC Posture

The PMC limbs are each composed of the following links: the base, the proximal

link, the distal link, the Hooke joint, the PepperMill. The base and PM are shared

by both limbs. Each limb has two possible postures, as the �elbow� between the

proximal and distal links can be pointed either up or down, resulting in four total

postures of the PMC for the same PM pose. The posture with both elbows up is

selected for the prototype: the lower elbow is up in order to allow the gripper to

be attached directly below the PM, and the upper elbow has the same posture to

prevent limb collisions. This posture appears in Fig. 1�3b.

PMC Dimensions

The dimensions of the PMC, also referred to as the architecture or layout, are

selected so as to permit the prototype to perform the standard industry test trajec-

tory. The distal links of the PMC were taken directly from the old prototype of the

McGill SMG, as indicated in Fig. 1�3a. For reasons of symmetry, the two screws

of the PM are assigned pitches of the same absolute value, denoted p, the top and

bottom screws being left- and right-handed, respectively.

2.2 Planar Representation of the PMC

The PMC is represented as an annotated 3D CAD model in Fig. 2�3a, where the

point C of the PM has coordinates (x, y, z). A planar representation is now intro-

duced in Fig. 2�3b, which can fully describe any posture of the robot. The respective

planes in which the limbs operate are portrayed as being parallel. The translational

displacement d1 of the proximal link of limb 1 is equal to the x-coordinate of point P2
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of the PM, as described in Section 2.4. The equivalent relation holds for the transla-

tional displacement d2 of the second proximal link and the y-coordinate of point P1

of the PM. Point C, the centre of the PM, is de�ned as the midpoint between points

P1 and P2. The z-coordinate of the PM is indicated by the distance between C and

a line passing through the origin O. The orientation φ of the PM is proportional to

the vertical distance pφ between P2 and C. That is, the x-, y- and z-coordinates as

well as the orientation φ of the PM are readily observed in the diagram.

The planar representation of the PMC was found to be extremely useful in visu-

alizing the postures and motions of the robot. It is readily drawn in any commercial

CAD package to study postures and design changes, without the need of manipu-

lating complex 3D models. Results in the balance of Chapter 2 were veri�ed using

planar diagrams drawn in Solidworks.

2.3 Symmetric Architecture of the PMC

Symmetric relations are imposed on the link dimensions of the PMC in order to

obtain a modular, simple design. The two limbs are identical, as are the lengths of

the proximal and distal links. Furthermore, it is recalled that the PM screw pitches

are identical, but of opposite hands. Hence, the symmetric relations are

p ≡ p1 = −p2, r ≡ ri = li, i = 1, 2 (2.7)

where ri and li are the lengths of the proximal and distal links, respectively, while

p1 and p2 are the pitches of the screws belonging to the �rst and second limbs. Only

the variables r and p need appear in the analyses of the PMC.
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Figure 2�3: Schematic representations of the PMC: (a) 3D model; and (b) planar
diagram of the PMC at an arbitrary posture

2.4 Displacement Analyses of the PMC

The forward and inverse displacement analyses of the PMC are available [19, 20,

21], and brie�y recalled here for quick reference, while new results, on the possible

assembly modes, are reported. The PMC admits four possible postures for one given

PM pose, and four PM poses for a given pair of actuated-joint variable values.

2.4.1 Inverse Displacement Analysis

The Inverse Displacement Analysis (IDA) determines the displacements of the

actuated C-joints from the pose�position (x, y, z) and orientation (φ)�of the PM.

The x - and y-coordinates of the PM lead directly to the C-joint translation variables
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d1 and d2:

d1 = x, d2 = y (2.8)

From previous results, the C-joint angular displacements θ1 and θ2 are the solutions

of the relation

(qTi xi) cos θi + (qTi yi) sin θi =
qTi qi + r2i − l2i

2ri
(2.9)

with

x1 ≡ j, x2 ≡ k, y1 ≡ k, y2 ≡ i (2.10a)

q1 ≡


x− d1

y

z − b0 + pφ

 , q2 ≡


x

y − d2

z + b0 − pφ

 (2.10b)

where the unit vectors i, j and k and length b0 are de�ned in Fig. 2�3a. Relation (2.9)

is solved by introduction of the well-known tan-half identities :

cos θi ≡
1− T 2

i

1 + T 2
i

, cos θi ≡
2Ti

1 + T 2
i

, Ti ≡ tan
θi
2

(2.11)

Relation (2.9) is thus recast as

Ai
1− T 2

i

1 + T 2
i

+Bi
2Ti

1 + T 2
i

+ Ci = 0 (2.12a)

where

Ai ≡ qTi xi, Bi ≡ qTi yi, Ci ≡ −
qTi qi + r2i − l2i

2ri
(2.12b)

Equation (2.12a) is readily rearranged as a quadratic polynomial in Ti

(Ci − Ai)T 2
i + 2BiTi + Ci + Ai = 0 (2.12c)
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Table 2�1: Correspondence between j and inverse/forward conjugate postures
Limb Index Elbow-down/Forearm-up Elbow-up/Forearm-down

i = 1 j = 2 j = 1
i = 2 j = 1 j = 2

whose roots are

Tij =
−Bi ∓

√
A2
i +B2

i − C2
i

Ci − Ai
, j = 1, 2 (2.12d)

The solutions for θi are computed from the roots Tij, j = 1, 2, and denoted θij:

θij = 2 arctan

(
−Bi + (−1)j

√
A2
i +B2

i − C2
i , Ci − Ai

)
(2.12e)

where arctan (·, ·) is the four-quadrant arctangent function. For a given limb i, the

two angles θij correspond to the solutions for the two possible limb postures1; each

limb i can be oriented with the �elbow� between the proximal and distal links pointing

either up or down with respect to the horizontal, called the elbow-up and elbow-down

inverse conjugate postures (ICP), respectively. The correspondence between j and

the limb posture is given in Table 2�1. Figure 2�3a shows an up-up inverse kinematic

posture, while an elbow-down inverse kinematic posture is illustrated by limb 1 in

Fig. 2�4b

1 θi1 and θi2 are equal when the proximal and distal link of the ith limb are parallel.
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Solution of the IDA for the Prototype

For the prototype, θ1 and θ2 take the values θ11 and θ22, respectively. Plugging

in the design speci�cation from eq.(2.7) yields the closed-form solutions

θ1 = 2 arctan

−P1z −
1

2

√
4y2 + 4P 2

1z −
(y2 + P 2

1z)
2

r2
, −y

2 + P 2
1z

2r
− y

 (2.13a)

θ2 = 2 arctan

(
−x+

1

2

√
4x2 + 4P 2

2z −
(x2 + P 2

2z)
2

r2
, −x

2 + P 2
2z

2r
− P2z

)
(2.13b)

where P1z and P2z are the z-coordinates of points P1 and P2 from Fig. 2�3a, namely

P1z ≡ z + b0 + pφ, P2z ≡ z − b0 − pφ (2.13c)

The solution of the IDA is provided directly by eqs.(2.8) and (2.13a�2.13b), with-

out the need to select between multiple solutions. By virtue of its computational

simplicity, the IDA is readily performed in real-time by a digital control system. As

the foregoing analysis employs the conventional solutions to quadratic equations, the

expressions for θi may produce unwanted results due to catastrophic cancellations,

and other pitfalls identi�ed by Forsythe [33]. Robust algorithms for the solution of

quadratic equations could be employed, but this is not necessary as long as the PMC

is operated within the reachable workspace, to be derived in Section 2.5.3.

2.4.2 Forward Displacement Analysis

The FDA produces the PM displacements from the C-joint displacements. Trans-

lational PM coordinates x and y are obtained directly from d1 and d2 as in eq.(2.8).
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Manipulating earlier results [21] yields expressions for z and φ, namely z

φ

 =
1

2p

 p (r2 cos θ2 + l2c2 + r1 sin θ1 + l1s1)

r1 sin θ1 + l1s1 − r2 cos θ2 − l2c2 − 2b0

 (2.14a)

si ≡ sin(θi + λi), ci ≡ cos(θi + λi), i = 1, 2 (2.14b)

Introducing the design speci�cations from eq.(2.7), the foregoing expressions become z

φ

 =
r

2p

 p (sin θ1 + s1 + cos θ2 + c2)

sin θ1 + s1 − cos θ2 − c2 − 2b0/r

 (2.15)

The term b0 vanishes in the expression for z, and does not appear in those for x

and y. From a kinematics standpoint, only the orientation φ of the PM is in�uenced

by the choice of b0, or, more precisely, by the ratio b0/r, which o�sets the orientation.

Variables z and φ admit four possible solutions, corresponding to the four

forward-kinematics branches of the mechanism, as each distal link can be pointed

�up� or �down�; these are therefore called forearm-up and forearm-down forward con-

jugate postures (FCP). A quadruple of postures is shown in Fig. 2�4a, and two of

the resulting PM positions are indicated by points C and C ′.

Revisiting the de�nitions of si and ci in eq.(2.14b) and earlier results [21], the

values of angles λi�the angle of the �elbow� between the proximal and distal links�

are obtained from the solutions of

r1 cos θ1 + l1 cos(θ1 + λ1) = y (2.16a)

r2 sin θ2 + l2 sin(θ2 + λ2) = x (2.16b)
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Figure 2�4: Forward and inverse conjugate postures: (a) Down-down (solid line) and
up-up (dotted line) FCP; and (b) elbow-down (both postures of limb 1, �dotted�
posture of limb 2) and elbow-up (�solid� posture of limb 2) ICP, with x = y = dmaxi

leading to pairs of solutions for λi, denoted λij, namely,

λ11 = − arccos

(
d2 − r1 cos θ1

l1

)
− θ1 (2.17a)

λ12 = arccos

(
d2 − r1 cos θ1

l1

)
− θ1 (2.17b)

λ21 = arcsin

(
d1 − r2 sin θ2

l2

)
− θ2 (2.17c)

λ22 = − arcsin

(
d1 − r2 sin θ2

l2

)
− θ2 + π (2.17d)
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The meaning of subscript j in λij is given in Table 2�1; therefore, solutions λ11 and λ22

produce the correct values of λ1 and λ2, respectively, for the down-down forward-

kinematics branch. The FDA is concluded upon plugging eqs.(2.17a&2.17d) into

eq.(2.14b) and solving eq.(2.15) for z and φ. Explicit solutions are given in the

right-hand side of eqs.(2.27 & 2.28d).

2.5 Mobility Analysis of the PMC

Analyses of the reachable workspace�the volume that the PM can reach in at

least one orientation [34]�and the rotatability�the rotational mobility of the PM

within the workspace�were reported by P.-C. Lee and J.-J. Lee [17] using an arbi-

trary architecture for the PMC. Further analyses are now conducted with the archi-

tecture of the PMC prototype, taking into account the forward-kinematics branches.

2.5.1 Workspace Analysis

The reachable workspace analysis cited above led to maximum and minimum

C-joint displacements, and to the workspace by plugging these values directly into

the FDA. Consequently, the workspace contained singularities and branch switching.

An equivalent analysis is not included here for conciseness. Instead, a safe operating

workspace of the PMC prototype is derived. As indicated by Fig. 2�4b, forward-

and inverse-kinematics branches are di�erent but intersecting. The PM is restricted

to the region of intersection of the down-down forward-kinematics branch (forearm-

down) and the up-up inverse-kinematics branch (elbow-up). New bounds on C-joint

displacements are now derived, yielding practical parameters for safe robot operation.
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C-joint Displacement Constraints

The translational variables of the C-joint are constrained by the stroke of the

C-drive prototype ballscrews and the layout of the drives. In the prototype layout,

the bounds are:

dmini = 191 mm, dmaxi = 407 mm, i = 1, 2 (2.18)

where dmini and dmaxi are the minimum and maximum C-joint translations, respec-

tively. The C-joint stroke length is therefore 216 mm. Furthermore, the rotational

constraints of the C-joint are

θmin ≡ θmin1 = −θmin2 + π/2, θmax ≡ θmax1 = −θmax2 + π/2 (2.19)

where θmin and θmax are the minimum and maximum rotational displacements of

the C-joints, following the de�nition of angle θ1. The equivalent bounds for the

second C-joint, namely θmin2 and θmax2 , are obtained from the foregoing relation. The

numerical values of these constraints are discussed below.

PM Ballscrew Displacement Constraints

The two ballscrews of the PM have a pitch of 20 mm and a usable stroke length

of approximately 45 mm. The PM is therefore capable of performing two full turns.

From the FDA, the orientation φ of the PM in the middle of its range of rotation is

φcentre = −122

5
π (2.20a)

while the bounds of the range are

φmax = −112

5
π, φmin = −132

5
π (2.20b)
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and hence, the range of rotation ∆φ is

∆φ = φmax − φmin =
20

5
π = 4π (2.21)

which is exactly two turns.

Maximum Vertical Displacement

The maximum vertical displacement of the PMC is obtained for every xy�position

when both C-joints are at their maximum displacement θmaxi , i = 1, 2. Beyond these

angles, the PMC approaches a singular posture in which one or both distal links are

horizontal, as shown in Fig. 2�5a.

The maximum safe displacement θmax is therefore bounded by the angle giving

rise to these singular postures, which is denoted θmaxs at its minimum value, that is,

when the arms are �fully extended� at x = y = dmaxi . The angle θmaxs is found to be

θmaxs = 1.21 rad ≈ 69.1◦ (2.22)

leading to angles θmax1s and θmax2s for the �rst and second limb, respectively, obtained

via the same relations as eq.(2.19). A margin of safety is introduced by the require-

ment that the distal links always be oriented at greater than or equal to 30◦ with

respect to the horizontal plane. Amending the foregoing calculation, the maximum

safe C-joint displacement θmax that avoids singularities for every xy�position is

θmax = 1.058 rad ≈ 60◦, θmax < θmaxs (2.23)
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Figure 2�5: PMC postures with x = y = dmaxi : (a) Limb 1 with θ1 = θmax1 and
limb 2 with θ2 = θmax2s illustrate a safe posture and a singular posture, respectively;
and (b) the same, for limb 1 with θ1 = θmin1 and limb 2 with θ2 = θmin2s

The upper limit of the workspace is then readily computed by plugging the foregoing

result into eq.(2.13b) and the �rst row of eq.(2.15), as plotted in Fig. 2�6a. The

stroke length of the PM ballscrews is not taken into account in these renderings.

Minimum Vertical Displacement

As with the computation of the maximum vertical displacement of the PM,

the motion of the PMC is limited at the bottom of its workspace by a singularity,

namely when the proximal and distal links become parallel. The minimum vertical
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(a) (b)

Figure 2�6: Reachable workspace (shaded volume): (a) With unbounded PM screw
stroke; and (b) with bounded PM screw stroke

displacement of the PMC is obtained for every xy�position when both C-joints are

at their minimum displacements θmini . Beyond these angles, the PMC approaches

the aforementioned singular posture, as shown for limb 2 in Fig. 2�5b. The mini-

mum safe displacement θmin is therefore bounded by the angle giving rise to these

singular postures, which is denoted θmins at its maximum value, that is, when the

limbs are �fully extended� at x = y = dmaxi . Angle θmins is readily computed from
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eqs.(2.16a & 2.16b) by plugging in λ1 = π and λ2 = 0, thereby obtaining

θmins = −0.825 rad ≈ −47◦ (2.24)

which leads, as earlier, to angles θmin1s and θmin2s for limbs 1 and 2, respectively. A

margin of safety is introduced by the requirement that the directions of the distal

links always be at least 30◦ from parallel, the limit case happening when

λ1 = −30◦, λ2 = 30◦ (2.25a)

which leads to the bound

θmin = −.530 rad ≈ −30◦, θmin > θmins (2.25b)

and thus to angles θmin1 and θmin2 . The lower bound of the workspace is then read-

ily computed by plugging the foregoing results into eq.(2.13b) and the �rst row of

eq.(2.15), as plotted in Fig. 2�6a.

2.5.2 Rotatability Analysis

The extrema of the PM rotational mobility throughout the workspace�neglecting

the stroke length of the PM screws�are readily computed by plugging the extreme

angular displacements of the C-joints from eqs.(2.23 & 2.25b) into the FDA. The

maximum angle of rotation of the PM is obtained by setting

θ1 = θmax1 , θ2 = θmin2 (2.26a)

while the minimum value of φ is obtained from

θ1 = θmin1 , θ2 = θmax2 (2.26b)

The resulting plots are shown in Figs. 2�7. The transparent parallelepiped represents
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Figure 2�7: PMC rotatability

the range of rotation of the PM prototype, namely two full turns. Positive values for

φ can never occur, as the two screws would overlap.

2.5.3 Prototype Reachable Workspace

The stroke lengths of the PM ballscrews are now considered in order to obtain

the true reachable workspace of the prototype. The maximim and minimum z that

can be reached at every xy�position are found through optimization. The objective

function, denoted zobj(d1, d2, θ1, θ2), is the �rst component of eq.(2.14a) from the

FDA, namely

zobj(d1, d2 θ1, θ2) ≡
r

2

(
sin θ1 −

√
1− (d2 − r cos θ1)

2

r2
+ cos θ2

−
√

1− (d1 − r sin θ2)
2

r2

)
(2.27)
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The objective function is maximized and minimized under nonlinear inequality con-

straints:

θmin1 ≤wrap(θ1) ≤ θmax1 , θmin2 ≤ wrap(θ1) ≤ θmax2 (2.28a)

φmin ≤φ(d1, d2, θ1, θ2) ≤ φmax (2.28b)

where the wrap(·) function that recasts its argument to lie between −π and π is

wrap(·) ≡ arctan(sin(·), cos(·)) (2.28c)

and φobj(d1, d2, θ1, θ2) is obtained from the second row of eq.(2.14a), namely

φobj(d1, d2, θ1, θ2) ≡
r

2p

(
sin θ1 −

√
1− (d2 − r cos θ1)

2

r2
− cos θ2

+

√
1− (d1 − r sin θ2)

2

r2
− 2b0

r

)
(2.28d)

A sequential quadratic programming algorithm is implemented in Maple to solve this

optimization problem with non-linear inequality constraints, using the NLPSolve()

function from the Optimization package. Choosing feasible values for θi as initial

guesses, the upper and lower bounds of the reachable workspace are computed and

plotted in Fig. 2�6b.
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CHAPTER 3
Detailed Design of the PMC

3.1 Hardware Available at the RMSLab

The McGill SMG, shown in Fig. 1�3a, was located at the RMSLab of the Centre

for Intelligent Machines (CIM). The robot was dismantled, and several components

reused for the PMC, to save time and funds. The main repurposed components are:

1. The metal frame and protective acrylic shields.

2. The servomotors and ampli�ers, the control box, the control computers.

3. Carbon �bre tube assemblies, to be used as the PMC distal links.

The full description of these components was reported by Angeles et al. [35].

3.2 General Dimensions of the PMC

Initial conceptual design work on the PMC was performed by Damien Tréz-

ières et al. [28]. Subsequent detailed design work was built upon those e�orts.

In order to carry out the industry standard pick-and-place motion, the PMC

must be capable of performing 300 mm translation in the xy-plane and 25 mm

translation in the z direction. The square xy workspace of the PMC is shown in

Fig. 3�1. The diagonal length of the square is 300 mm, the sides being therefore

approximately 212 mm. The minimum allowable translational capability of the C-

drives must therefore be 212 mm.

While the carbon �bre tube assemblies from the McGill SMG are used as the

distal links of the PMC, the proximal links are given the same length to simplify
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Figure 3�1: Schematic top view of the PMC. The xy workspace of the PM is repre-
sented by the shaded square.

the design and analysis. Recalling the nomenclature from Fig. 2�3a, the link lengths

become

r ≡ r1 = r2 = l1 = l2 = 300 mm (3.1)

Length b0, a key geometric parameter, is illustrated in Fig. 2�3a. Given the space

constraints of the existing robot frame, a convenient value was found to be

b0 = 244 mm (3.2)

The spacing between the C-drives is readily changed on the PMC prototype. The

dimensions r and b0 fully determine the architecture and kinematics of the PMC, and

are the only design parameters to appear in the displacement analyses in Section 2.4.
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3.2.1 General Dimensions of the C-drive

The principal dimensions of the C-drive are represented schematically in Fig. 3�2.

The translational mobility of the C-drive is referred to as its stroke. Ballscrews are

conventionally dimensioned by their nominal stroke, which does not include the width

of the ballnuts. The following relationships hold:

Usable stroke ≡ Nominal stroke− Ballnut width (3.3a)

Inner collar = Usable stroke + Gap (3.3b)

When the foregoing expression is respected, then

C-drive stroke = Usable stroke (3.3c)

Left screw Right screw

Usable stroke

Inner collar

Nominal stroke

Ballnut widthCollar
Ballnut

Gap

Figure 3�2: Schematic of the C-drive, indicating principal dimensions

The C-drives are therefore designed with a stroke of 216 mm, incorporating a

4 mm margin.

3.2.2 General Dimensions of the PM

As many industrial parallel robots are limited to half a turn, a maximum ro-

tatability of two full turns is selected to demonstrate the superior capabilities of the

PMC. The choice of screw pitch is constrained by the availability of ballscrews with
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both left- and right-handed threads, as well as by the corresponding screw diam-

eters, which tend to increase with the pitch, thereby increasing the screw weight.

Right screw

Left screw

PM shaft

Distal
link 1

Gripper

P1

P2

b0

C

pφ

Distal
link 2

Ballnut

M1

M2

φ

Figure 3�3: Schematic of the
PM. The top and bottom screws
are left- and right-handed, respec-
tively.

Ballscrews with a pitch and diameter of 20 mm

are selected1:

p = p1 = −p2 =
20

2π
(3.4)

A usable stroke length of 45 mm is chosen, allow-

ing for up to 2.25 full turns of the PM, leaving a

0.25 turn safety margin. The centrepoints of the

usable stroke of the screws are denoted M1 and

M2. Figure 3�3 shows the principal parts and

dimensions of the PM.

Point C is the centre of the PM, equidis-

tant to points M1 and M2, while points P1 and

P2 are the centres of the threaded U-joints of

the lower and upper wrists, respectively. The

distances CP1 and CP2 are equal to pφ. The

concept of isotropic posture is now introduced, referring to a posture of the PMC at

which its Jacobian matrices are isotropic. Only one such posture arises within the

kinematics branches in which the PMC operates. This posture is shown in Fig. 3�4.

1 It is necessary to divide the pitch length by 2π for consistency with a previous
study [21].
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Figure 3�4: 3D CAD rendering of the PMC in its isotropic posture

By design, the isotropic posture occurs when the PM is centred, that is, when points

P1 and P2 coincide with points M1 and M2, respectively. This is veri�ed when

CM1 = CM2 = b0 ⇔ M1M2 = 2b0 (3.5)

The length of the PM shaft connecting the two screws is chosen accordingly.

3.3 Detailed Design of the PMC Prototype

The detailed design of a single limb of the PMC is illustrated in the CAD model

in Fig. 3�5, while Fig. 3�6 is a picture of the full prototype. Important aspects of

the design of the limbs are now summarized.
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Figure 3�5: Whole upper limb

3.3.1 Proximal Link

The proximal link is composed of the C-drive collar and the proximal link fork,

which is machined out of a single piece of aluminum. The fork shape of the latter

prevents mechanical interference with the PM shaft throughout the entire reachable

workspace of the PMC.

3.3.2 Distal Link

The distal link is embodied by two identical carbon �bre tubes with aluminum

inserts in which are mounted needle-roller bearings. The space between the tubes

leaves clearance for the PM shaft. They are mounted on the outside of the proximal
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Figure 3�6: Complete collar

link to avoid mechanical interference throughout the entire reachable workspace of

the PMC.

The links are reused from the original McGill SMG prototype [35]. The revolute

joint between the proximal and distal links is embodied by two coaxial joints, of

which one is shown in Fig 3�7. The assembly is held together by a nut and Belleville

washers, not shown on the �gure. The number and arrangement of these washers,

as well as the nut tightening torque, determine the joint friction and compliance.

3.3.3 The Hooke Joint

The link connecting the distal link to the PM is called a Hooke joint, as shown in

Fig. 3�8. The body of the Hooke joint is machined out of a single piece of aluminum.
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(Radial needle
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Figure 3�7: Side view of joint between proximal and distal links

The bearing arrangement is the same as in Fig. 3�7, except that the precision shoulder

screw is substituted for a precision shaft that has one end threaded and the other

grooved to accommodate set-screws.

3.3.4 PM

The PM two helical joints are back-driven by the translation of the nuts in order

to rotate the gripper. They are therefore embodied by ballscrews rather than lead

screws, by virtue of their higher back-driving e�ciency, superior accuracy and lower

backlash. The PM thus comprises three main components: two ballscrews and a

lightweight PM shaft. The latter is constructed from a carbon �bre tube with a

�anged aluminum insert adhered to each end. The ballscrews are �xed to the other

components by means of their threaded ends.
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Hooke joint

Shaft with threaded end Ballnut

Setscrew 4×See Fig. 3�7

Figure 3�8: Descriptive view the Hooke joint between distal link and PM. The
ballscrew is hidden for clarity

3.4 Detailed Design of the C-drive

Each C-drive is built on a base machined from a single plate of high-precision

cast aluminum. This material exhibits low warping when machined compared to

conventional rolled aluminum sheets, allowing for accurate assembly of the C-drive.

The motors are �xed on the base via adjustable mounts, as shown in Fig. 3�10. Each

ballscrew is mounted on the base by a support unit containing a pair of angular con-

tact ball bearings, which bear both axial and radial loads. The ballscrews are joined

at their free ends by a custom coupling containing a radial needle-roller bearing, as

shown in Fig. 3�11. This coupling supports only radial forces, and tolerates small

axial translations between the ballscrews.

3.5 Design of the Collar Middle Part for Testing

The mass driven by each C-drive of the PMC is constant�computed in CAD�

and equal to half of the robot mass. By virtue of the robot symmetry, the load is
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Figure 3�9: Cross section view of the PM, with the gripper and ballnuts hidden

shared evenly between the two C-drives. The moment of inertia about each C-drive

axis is posture-dependent.

The C-drives are �rst tested independent of the PMC in order to collect data

on their performance and tune the controller before robot assembly. For testing

purposes, the collar should ideally carry half the inertia load of the assembled robot.

The collar is composed of three parts, the middle and the two ends, as shown in

Fig. 3�12. The lightweight collar middle part, shown in Fig. 3�10, is designed to be

connected to the proximal link fork. A heavy steel tubular middle part is substituted

for C-drive testing. Using CAD software, the desired mass mM of the middle part,
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Figure 3�11: Ballscrew coupling: bearing, housing and shaft

namely approximately half of the PMC mass, is obtained as

mM = 3279 g (3.6)

The resulting dimensions of the outer and inner radii of the collar middle part, r1

and r2 respectively, are rounded up to convenient values and become

r1 = 44.5 mm, r2 = 30 mm (3.7)

37



(a) (b)

Nut

Tube

Tube
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L = 150

r1
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Figure 3�12: Collar components (end caps not shown): (a) Complete collar; (b) mid-
dle part; (c) ends; and (d) dimensions of the middle part, subject to r2 > 15mm

The collar is statically and dynamically balanced by virtue of its symmetries. As

space constraints prevent the C-drive from being designed with the same moment

of inertia as a PMC limb, the C-drive tests cannot faithfully replicate the operation

of the PMC when the drives rotate. However, these tests provide insight into the

feasibility of the C-drive to actuate the PMC.
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CHAPTER 4
Control: Modelling and Implementation

4.1 Control System Setup

4.1.1 Overview of Prototype Control

The prototype features a digital control system programmed in Matlab Simulink.

Each C-drive is actuated by a pair of identical servomotors equipped with incremental

position encoders. A number of control schemes are tested for the C-drives, including

model-based controllers. As the dynamic model of the PMC is not yet available,

only feedback controllers may be employed for the fully-assembled robot. To prevent

damage and injury, several types of safety switches are integrated into the control

system. All of the electronic hardware, with the exception of the safety switches and

electromagnetic gripper1, is reused from the McGill SMG project [13].

4.1.2 Computer Hardware Setup

Two computers are employed to program and run the prototype, as described

below.

Master Computer

The control system is programmed in Matlab Simulink on the Master Computer,

which runs Windows 2000 NT. Using RT-LAB version 8.1.7, the portion of the

1 The description of these is omitted for concision.
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Simulink model that must run in real-time�comprising the low level operations of the

control system�is compiled as C code and loaded onto the Target Computer. The

portion of the model running on the Master Computer then serves as the graphical

user interface to control the prototype.

Target Computer

The Target Computer, running the QNX operating system, performs the control

system logic and computations in real time. It interacts with the control hardware

through a digital/analog I/O board, which is connected through a PCI bus. Data

are exchanged with the Master Computer through a local area network.

Servomotor Control Hardware

The four servomotors and their control circuitry are reused from the McGill

SMG. The speci�cations of the motors, and of the ampli�ers that supply them, are

found in a technical report [35].

4.2 C-drive Dynamics

4.3 Derivation of the State-space Model

The standard linear state-space representation applies to the dynamics of the

C-drive:

ẋ = Ax+Bu (4.1a)

y = Cx, y ≡ ψ (4.1b)

where x is the state vector, u the input vector, y the output vector, A the system

matrix, B the input matrix and C the output matrix. The vector of Coulomb
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friction φc appearing in eq.(2.5) is not included here because its e�ect is nonlinear

and nonsmooth. Non-linear models should be considered in future work.

State variables that fully describe the system are selected so as to relate to

collar displacements and rates. Equations (2.1a & b) provide the required kinematic

relationships. Equation (2.5) becomes

MJ−1ẅ + DJ−1ẇ = τ (4.2)

Upon premultiplication by the Jacobian J, the foregoing generalized coordinate model

becomes regular, with a symmetric, positive-de�nite leading coe�cient, i.e.,

JMJ−1︸ ︷︷ ︸
E

ẅ + JDJ−1︸ ︷︷ ︸
G

ẇ = Jτ (4.3a)

E ≡

 e1 0

0 e2

 , G ≡

 g1 0

0 g2

 (4.3b)

Matrices E and G are thus similarity transformations [36] of M and D, respectively.

Notably, E and G are diagonal, their diagonal entries ei and gi, i = 1, 2 being the

eigenvalues of M and D, respectively. This special case arises because the columns

of J−1 are proportional to the eigenvectors of bothM and D. The diagonal structure

of E and G reveals that the dynamics of the C-drive is decoupled from the collar

coordinates. This is to be expected of an ideal cylindrical joint.

From the properties of similarity transformations, sinceM is positive-de�nite, so

is E, and thus
√
E is real and diagonal, its diagonal entries being the positive square

roots of the eigenvalues of E [36]. Substitutions are now introduced for purposes of
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model simpli�cation:

H ≡
√
E−1G

√
E−1, σ ≡

√
Ew, u ≡

√
E−1Jτ (4.4)

where

√
E ≡

 √e1 0

0
√
e2

 , H ≡

 g1/e1 0

0 g2/e2

 ≡
 h1 0

0 h2

 (4.5)

Equation (4.3a) is thus transformed to monic2 form:

σ̈ +Hσ̇ = u (4.6)

Two-dimensional System

An additional transformation is required to represent the system in state-space

form, with a state vector x de�ned as3

x ≡ σ̇ (4.7)

Plugging the foregoing equation into eq.(4.8) leads to a system of �rst-order ODE:

ẋ+Hx = u ⇒ ẋ = −Hx+ u (4.8)

2 By analogy with polynomials, a vector n-order di�erential equation is monic if
the coe�cient of its highest-order term is the identity matrix.

3 Here x has units of m2kg1/2s−1
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The state-space system is subsequently derived from eqs.(4.7) and (4.8) in the stan-

dard form of eqs.(4.1a & b), with

A ≡ −H, B ≡ 1, C ≡ J−1
√
E−1 (4.9)

where 1 is the 2 × 2 identity matrix, and vectors y ≡ ψ and σ are obtained from

the time-integration of ψ̇ and x, respectively, on post-processing.

Four-dimensional System

A state-space system with a dimensionally homogeneous four-dimensional state

vector x is now introduced4:

x ≡

 σ
ς

 , ς ≡ H−1σ̇ (4.10)

with the state-space system thus taking the standard form (4.1a & b), with

A ≡

 O H

O −H

 , B ≡
 O

H−1

 , C ≡ [Y O] , Y ≡ J−1
√
E−1, y ≡ ψ (4.11)

where O is the 2×2 zero matrix. This system eliminates the need for post-processing

but is more complex than the previous representation. The matrix H−1 is readily

available, as H is diagonal, besides being of 2× 2.

4 Here x has units of m2kg1/2
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4.4 Controllability and Observability of the C-drive

4.4.1 Two-dimensional System

The state-space representations of the dynamics of the C-drive are linear time-

invariant systems. For the system from eq.(4.9), the controllability matrix [37] is

thus derived as

Γ2 ≡ [B AB] = [1 −H] (4.12)

Since the two 2× 2 blocks of Γ2 are of full rank, this 2× 4 controllability matrix has

full rank. The C-drive is thus completely controllable.

The 4× 2 observability matrix is derived in turn as

Ω2 ≡

 Y

YA

 =

 J−1
√
E
−1

−J−1
√
E
−1
H

 (4.13)

where J−1 and
√
E
−1

are available, as J and
√
E are invertible, Ω2 thus having

full rank. This system is thus completely observable. It is, however, not useful to

construct an observer for this system. The state vector x is obtained algebraically

from the output vector ψ̇ using eqs.(2.1a), (4.4) and (4.7):

x =
√
EJψ̇ (4.14)

As ψ̇ cannot be measured by the C-drive prototype encoders, which provide ψ, x

cannot be estimated by an observer using this system.

4.4.2 Four-dimensional System

Estimating x ≡ σ̇ by means of an observer is desirable in order to avoid numer-

ical di�erentiations, which introduce noise. The four-dimensional system (4.10�4.11)
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has ψ as its output, which is directly measured. The controllability and observability

of the system are now assessed, and an observer is designed to estimate x.

Controllability

The 4× 8 controllability matrix is derived as

Γ4 ≡
[
B AB A2B A3B

]
(4.15)

Plugging in matrices A and B from eq.(4.11) leads to

Γ4 =

 O 1 −H H2

︸ ︷︷ ︸
Γ4a

H−1 −1 ︸ ︷︷ ︸
Γ4b

H −H2

 (4.16)

where Γ4a is

Γ4a ≡



0 0 1 0

0 0 0 1

1/h1 0 −1 0

︸ ︷︷ ︸
Γ4a(i)

0 1/h2 ︸ ︷︷ ︸
Γ4a(ii)

0 −1


(4.17)

The columns of Γ4a(i) on the one hand and of Γ4a(ii) on the other are clearly linearly

independent for any �nite values of h1 and h2, that is, the diagonal entries of H.

Upon inspection of the upper 2× 2 blocks of the foregoing matrices, the 2× 2 zero

and identity matrices, it is apparent that the columns of Γ4a(i) and Γ4a(ii) are linearly

independent. Γ4a is therefore nonsingular, that is, of rank four, and the controllability

matrix Γ4 has full rank. This system is thus completely controllable.
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Observability

The next step is to determine whether the system is observable. The observ-

ability matrix is de�ned as

Ω4 ≡



C

CA

CA2

CA3


=



Y O

O −YH

O −YH2

O −YH3



Ω4aΩ4b

(4.18)

From eq.(4.9), it is apparent that Y is nonsingular for �nite ν1 and ν2, while matrix

YH, given by

YH ≡ 2π

p

 g1e
−2/3
1 g2e

−2/3
2

−g1e−2/31 g2e
−2/3
2

 (4.19)

is nonsingular. Matrices Y and −YH are the diagonal blocks of the block-diagonal

submatrix Ω4a, which is therefore nonsingular; hence, Ω4 is of full rank. As a conse-

quence, the system at hand is completely observable.

Minimum-Order State Observer

The state vector x can be estimated by a Luenberger full-order state observer

as the system is linear and time-invariant [38]. For convenience, the de�nition of x
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is recalled:

x ≡

 σ
ς

 , ς ≡ H−1σ̇ (4.20a)

σ̇ ≡
√
Eẇ =

√
EJψ̇, σ ≡

√
Ew =

√
EJψ (4.20b)

where w and ψ are the vectors of collar and motor displacements, respectively, and

the generalized coordinate model of the system is

Eẅ+Gẇ = Jτ (4.20c)

from which

H ≡
√
E
−1
G
√
E
−1

(4.20d)

States σ are computed algebraically from the motor-encoder readoutsψ via eq.(4.20b).

A full-order state observer�producing an estimate of x�estimates σ with lower

accuracy than the foregoing scheme. A minimum-order state observer that only esti-

mates the second (unmeasured) component of x, namely ς, is therefore required [39].

This type of observer has the further advantage that the desired state estimate gener-

ally converges more quickly than with the corresponding full-order state observer [37].

The state and input matrices, A and B are recalled from eq.(4.11) for conve-

nience:

A ≡

 A11 A12

A21 A22

 ≡
 O H

O −H

 , B ≡

 B1

B2

 ≡
 O

H−1

 (4.21)
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The minimum-order observer is de�ned by the system [39]:

κ ≡ ς − Lσ ⇔ κ̃ ≡ ς̃ − Lσ (4.22a)

˙̃κ = Uκ̃+Vσ + Zu (4.22b)

where ( ·̃ ) denotes an estimate of the variable (·), ˙̃κ being the derivative of κ̃, and

the 2× 2 matrix coe�cients of eq.(4.22b) are de�ned as

U ≡ A22 − LA12, V ≡ UL+A21 − LA11, Z ≡ B2 − LB1 (4.22c)

Hence

U ≡ − (1+ L)H, V ≡ UL = − (1+ L)HL, Z ≡ H−1 (4.22d)

The state vector estimate is then obtained from the relation

x̃ = Φκ̃+ Λσ, x̃ ≡

 σ
ς̃

 (4.22e)

with

Φ ≡

 O

1

 , Λ ≡

 1

L

 (4.22f)

where L is the 2× 2 matrix of observer feedback gains. The observer error equation

is then de�ned as

ε̇ = Uε (4.23a)

where

ε ≡ ς − ς̃ = κ− κ̃ (4.23b)

Matrix L is computed upon selection of the poles of the observer. The system

matrices of the C-drive minimum-order state observer are A12 ≡ H, A22 ≡ −H and
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B2 ≡ H−1 from eq.(4.21). Recalling the de�nition of H in eq.(4.5), this matrix is

constructed from the generalized inertia matrix M and damping matrix D of the C-

drive. As the two forgoing matrices are only known approximately, and in particular

D is a�ected by environmental factors and wear, signi�cant perturbations in H are

expected. A robust pole-placement algorithm is performed numerically in Matlab

using the place() function [39, 40], with the arguments

L = place
(
AT

22, A
T
12, [λ1 λ2]

)
(4.24)

where the transpose superscript may be omitted because A12 and A22 are both sym-

metric, and λ1 and λ2 are the observer poles. The poles may be selected arbitrarily

as the minimum-order system is completely observable, the proof of which is left

out for conciseness. The closed-loop poles are selected such that their real parts are

negative�in order for the observer to be asymptotically stable�and that they form

a complex-conjugate pair�to reduce the e�ects of nonlinearities such as backlash:

Re (λ1) , Re (λ2) < 0, λ1 = λ̄2 (4.25)

4.5 Time Response of the C-drive

The time response of the C-drive can be obtained symbolically, to be used in

simulation. The matrix eAt is readily computed:

eAt ≡

 e−h1t 0

0 e−h2t

 (4.26)
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The time response of the system takes the form [37]:

x(t) = eAtx0 +

∫ t

0

eA(t− τ)u(τ) dτ (4.27)

for a given initial state x0. Recalling eqs.(4.4) and (4.7), the velocity ẇ of the collar

is computed from

ẇ =
√
E
−1
x (4.28)

while the joint rates ψ̇ are obtained from eq.(2.4). Meanwhile, the joint and collar

displacements are obtained from the de�nite time integral of x(t). First, vector σ(t)

is computed:

σ(t) =

∫ t

0

x(ϕ) dϕ+ σ0 (4.29a)

=

∫ t

0

eAϕx0 dϕ︸ ︷︷ ︸
z1(t)

+

∫ t

0

∫ ϕ

0

eA(ϕ− τ)u(τ) dτ dϕ︸ ︷︷ ︸
z2(t)

+σ0 (4.29b)

where σ0 is the initial value of σ, and hence,

z1(t) ≡


(

1− e−h1t
)
h−11 0

0
(

1− e−h2t
)
h−12


 √e1ν0√

e2ζ0


︸ ︷︷ ︸

x0

(4.29c)

with ν0 and ζ0 being the initial values of the collar rates u̇ and v̇, and ei, i = 1, 2, the

diagonal entries of E. A closed-form expression for z2 may be available, depending

on the nature of vector u(τ). Finally, the displacement vector of the collar, namely

w, is obtained from the expression

w =
√
E
−1
σ (4.30)
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4.6 C-drive Controllers

4.6.1 Ideal PID Controller

The PID controller is the most common class of feedback controller used in

industry [41]. It is a closed-loop controller that minimizes the Euclidean norm of the

error, de�ned as

e(t) ≡ ψd(t)− y(t) (4.31)

where ψd is the desired reference signal, and y is the process variable, which is being

controlled. The PID controller may be expressed in its ideal form as

τ (t) = KPe(t) +KI

∫
e(t) dt+KDė(t) (4.32)

where τ is the manipulated variable output by the controller, while KP , KI and

KD are the proportional, integral and derivative gain matrices of the controller,

respectively. For the C-drive, τ is the vector of motor torques and y is the vector of

motor displacements as measured by shaft encoders.

4.6.2 PD Controller Implementation

Cascade Controller

The PID controller is the outer loop of a cascade controller driving the motors.

Its output is more accurately denoted τ o, the output torque5 . The PI controller

implemented in the servomotor ampli�ers tracks τ o such that the motors output the

torque τ . A simpli�ed schematic of the full controller is shown in Fig. 4�1.

5 The motors are used in torque control mode.
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PID

PI controller
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C-drive
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ψd e

y

Prototype

τo τ ψ

Figure 4�1: Block-diagram of PID controller, with PI torque control loop

The inner loop is tuned to have a very short settling time6 . It is therefore

assumed that τ o and τ are equal, and the loop is safely neglected in the rest of

the analysis of the control system. All servo ampli�er parameters are reported in

Appendix A.

Controller Selection

It is often not necessary to use both the di�erential and integral components

of PID controllers. The most common type of controller used in industry is the

PI controller, for which Kd is absent [42]. This controller avoids the often di�cult

task of obtaining a low noise derivative of the error signal. This is the �rst type

of controller to be implemented for the C-drives, as reported in [26]. When high-

damping �exible shaft couplings were substituted for high torsional-rigidity couplings

to improve perfomance, the PI controller could not be made stable at the high PI gain

6 Yaskawa technical support suggested a loop time of approximately half of the
controller sample time, namely 1 ms.
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values required for high speed operation. The controller was therefore substituted

with a PD controller, that is, with KI absent.

4.6.3 Model-based Controller

As the dynamic model of the C-drive is available, model-based controllers can be

developed to improve upon the performance of the PD controller. The most common

type of model-based controller is the feedforward controller, which uses the inverse

dynamic model to predict the required actuator e�ort based on the desired motor

displacements, speeds and accelerations. The predicted corrective torques are then

added to the output ψ̈o of the PD-controller [43]. Therefore, the PD controller is

independent of�and perturbed by�the corrective torques. This issue is addressed

by the computed-torque control (CTC) method, introduced by Markiewicz [44] and

discussed in detail by Khosla and Kanade [45]. Here the PD control portion generates

corrective accelerations, which, added to the desired accelerations, are input into the

inverse dynamics.

ψd e yψ̈o τ

ψ̈d

PD Controller

PD
ψ̈c M

D

C-drive

Prototype

˜̇ψ
Obs

1/z

Servo portion Model-based
portion

c

Figure 4�2: Block diagram of computed-torque controller
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In CTC, the corrective acceleration ψ̈c is computed from

ψ̈c = ψ̈d +KPe+KDė︸ ︷︷ ︸
ψ̈o

(4.33)

where ψ̈d is the vector of desired motor accelerations. Equation (2.5) readily yields

the inverse dynamics, that is, the expression for motor torque τ . Substituting motor

accelerations ψ̈ with ψ̈c leads to

τ = Mψ̈c +Dψ̇ (4.34)

The value of ψ̇ is estimated by the observer described in Section 4.4.2, yielding ˜̇ψ.
The friction compensation torque is therefore D ˜̇ψ. The viscous friction model is a

signi�cant simpli�cation of the true frictional dynamics of the C-drive, neglecting

many e�ects such as stiction and Coulomb friction. In order to avoid perturbing the

computed torque with an inaccurate friction compensation torque, the latter is mul-

tiplied by a scalar friction compensation gain, denoted c and tuned experimentally,

thereby leading to the complete formulation of the computed torque:

τ = Mψ̈c + cD ˜̇ψ (4.35)

The block diagram of this computed-torque controller is represented in Fig. 4�2.

The block marked �1/z� is a unit delay, that is, it delays the torque signal to the

observer by one time step, namely 1 ms in our case. The delay is required to avoid

an algebraic loop in the computation of τ .
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4.6.4 Task-space Controller

The PD and CT controllers are said to be joint-space controllers, as the error

vector e is computed from joint variables, namely the motor displacements. It is

often advantageous to use task-space (TS) control, also referred to as Cartesian [46] or

contouring [47] control, in which the error is computed in terms of the task performed

by the mechanism. In the case of the C-drive, the task variables are the collar

coordinates w. The TS error ε is de�ned as

ε ≡ wd −w = Je (4.36)

where wd is the vector of desired collar coordinates. Moreover, ε is computed from

motor coordinates by means of the right-hand side of the foregoing equation.

In C-drive tests with the joint-space PD controller, it was found that higher

gains could be used for the pure-rotation motion program than for its translation

counterpart without incurring instability, thus leading to improved performance in

the rotation tests. TS controllers have independent gains for rotation and translation

of the collar, which are tuned as required for the task.

TS PD controller

A TS PD control scheme is de�ned as

τo = J−1KP Je︸︷︷︸
ε

+J−1KD Jė︸︷︷︸
ε̇

(4.37a)
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where the PD gain matrices are

KP ≡

 ktP 0

0 krP

 , KD ≡

 ktD 0

0 krD

 (4.37b)

and the t and r supercripts refer to collar translation and rotation gains, respectively.

When the translation and rotation gains are equal, namely

ktI = krI , I = P, D (4.38)

then eq.(4.37a) becomes identical to the joint-space PD scheme from eq.(4.32).

Therefore, the TS PD controller can be used as a joint-space controller.

Model-based TS Controller

The TS control counterpart of the CT controller is the resolved-acceleration

controller [48]. It operates like the CT controller, except that the output acceleration

ψ̈o from the servo portion is now de�ned as τ o from eq.(4.37a).

In experiments, the resolved-acceleration controller became unstable when ktP 6=

krP , that is, when it was di�erent from a joint-space CT controller. The cause of this

phenomenon is not known, but further work on the controller was not pursued. In

future sections, the name �TS controller� refers only to the PD TS controller.
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CHAPTER 5
Experimental Results

5.1 C-drive Results

5.1.1 Controller Tuning

PD Controller Tuning

For a PD controller in the ideal form, three parameters must be tuned, namely

gains KP , KD, and the derivative �lter coe�cient N .

Derivative Filter. There are many methods for obtaining the derivative of

the error signal, such as the continuous time methods reported by Visioli [41] and

the discrete-time methods reported by Åström and Wittenmark [49]. The simplest

and most common continuous-time method is used to keep the complexity of the

controller as low as possible. The transfer function of the �lter is de�ned as

F (s) ≡ Ns

N + s
(5.1)

where s is the Laplace-transform variable, and the pole of the �lter is located at −N .

This �lter is readily designed in Simulink and implemented on the Target Computer.

PD Gain Tuning. The high-gain PD controller is tuned experimentally based

on the method suggested by Ellis [42]. KP and KD are diagonal 2 × 2 matrices,
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whose diagonal terms are identical1 and denoted kP and kD respectively. Initial low

proportional and derivative gains are selected arbitrarily. Gain kP is then increased

until just below the limit of stability of the controller; kD is then increased until the

controller is stable. This process is repeated until the highest kP is selected such that

the controller remains stable in testing. The parameters are reported in Table 5�1.

This simple experimental method cannot guarantee optimal gains, but allows

for the control system to be tuned su�ciently well to demonstrate the performance

of the proof-of-concept C-drive.

5.1.2 Computed-torque Controller

The CTC has two portions, the servo portion that tracks motor displacement

errors, and the model-based portion that compensates for the C-drive dynamics.

Servo Portion. The servo portion functions identically to the PD controller,

and is tuned using the same method. The parameters are reported in Table 5�1.

Dynamics Compensation. The value of the generalized inertia matrixM is

computed in CAD software:

M =

 2.6312 1.8797

1.8797 2.6312

 gm2 (5.2)

The values of the damping matrixD were obtained experimentally using tests similar

to those proposed by Virgala and Kelemen [50], and are reported by Harada et al. [26].

1 It was found experimentally that the same gains may be used for each motor,
thus simplifying tuning. However, the control software does allow for separate gains
to be set.
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Table 5�1: Controller tuning parameters
Controller: PD CTC TS

kP 45 Nm/rad 35000 s−2 trans : 45, rot : 112.5 Nm/rad
kD .1 Nms/rad 55 s−1 trans : 0.1, rot : 0.25 Nms/rad
N 600 rad/s 600 rad/s 600 rad/s
λi � −600 rad/s �
c � 0.4 �

In simulation, a 5% error is introduced to the estimates of M and D in the model-

based portion of the controller, to account for uncertainty in their values.

The model-based portion requires tuning of both the observer and the friction

compensation gain. The observer has two poles, λi, i = 1, 2, resulting in a gain

matrix L found using the procedure from Section 4.4.2.

In experimental tests, the friction compensation gain c was then varied between

0 and 1.5 in all motion programs. The value c = 0.4 consistently produced the lowest

absolute error in motor displacements, and was retained2.

5.1.3 TS Controller Tuning

The TS PD controller, referred to as the TS controller for short, is tuned using

the same approach as the joint-space PD controller. The controller parameters are

listed in Table 5�1.

2 In simulations, the value c ≈ 1 produced the best results, as expected.
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Table 5�2: Scaling coe�cients for each motion program

Joint Rates Motion αI (rad)

ψ̇L = −ψ̇R pure translation (200 mm) αL = −20π/3, αR = 20π/3

ψ̇L = ψ̇R pure rotation (π rad) αL = αR = π

|ψ̇L| 6= |ψ̇R| helical motion αL = −17π/6, αR = 23π/6

(100 mm and π/2 rad)

5.1.4 Benchmark Tests

Test Parameters

The analysis of C-drive performance is carried out on three benchmark motion

programs, demonstrating pure translation, pure rotation and combined translation

and rotation�helical motion. As reported earlier [26], a smooth polynomial is used

to de�ne the motion programs. Zero velocity, acceleration and jerk are obtained at

the endpoints of the motion through the use of a 4-5-6-7 polynomial s(τ), namely

s(τ) = −20τ 7 + 70τ 6 − 84τ 5 + 35τ 4 (5.3)

where 0 ≤ s ≤ 1 and 0 ≤ τ ≤ 1, τ being nondimensional time. The prescribed motor

displacements become:

ψI(t) =

 αIs(t) 0 ≤ t ≤ tmax/2

αIs(tmax − t) tmax/2 < t ≤ tmax

, I = R, L (5.4a)

t = τtmax (5.4b)

where tmax is the total cycle time, and scaling coe�cients αI are given in Table 5�2.
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Simulation Parameters

The o�ine simulation and real-time control system are both programmed in

Simulink using the same simulation parameters, reported in Table 5�3.

Table 5�3: Simulation Parameters
Solver type: Fixed-step
Step size: 1 ms
Solver: ODE4 (Runge-Kutta)

Test Metrics

Data are recorded at each 1 ms controller time step by the Target PC during

experimental C-drive testing, namely, controller error e and motor torques τ . Collar

displacement error ε is obtained upon transformation of the error in motor displace-

ments by the Jacobian J, de�ned in eq.(2.1b). This kinematic relation assumes that

the C-drive is made of rigid bodies and that the ballscrews are perfect helical joints.

Measurement Limitations. Motor displacements, and thus error, is mea-

sured at 213 bit resolution by the shaft encoders. Measurement tools were not avail-

able to calibrate the motor torque output; the control torque value is thus assumed

to be accurate. In simulations, control torques are assumed to be identical to motor

output torques, and motor displacements are quantized to the same resolution as the

encoders.

Metrics for Comparison. Metrics are required to compare the torque and

error performance of the three controllers:

RMS The well-known root mean square (RMS) analysis quanti�es overall perfor-

mance; values are averaged over several consecutive test cycles.
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Maximum Torque The maximum absolute value of motor torque over each test

cycle is recorded and averaged. These data are needed to avoid motor saturation.

Error at Cycle Endpoints For pick-and-place operations, the error at cycle end-

points must be minimal. The values are averaged over several test cycles.

Test Results

2 Hz Tests. All motion programs are tested both in simulation and exper-

imentally. The 4-5-6-7 polynomial over a 500 ms cycle, s(t), and its normalized

�rst and second derivatives, ˙̄s(t) and ¨̄s(t), are shown in Fig. 5�1a. The three mo-

tion programs in collar coordinates appear in Figs. 5�1b to 5�1d. The translation

and rotation error curves for the helical motion program are compared in Figs. 5�1f

and 5�1e, respectively. Experimental and simulation results are compared in Fig. 5�

2: the PD, CT and TS controller results are shown for the rotation, translation and

helical motion programs, respectively, as this subset of tests su�ces to illustrate the

performance of the C-drive. The torque curve of the left motor is omitted as it

displays the same behaviour as the right motor.

The RMS values from experimental and simulated tests are shown in Table 5�4.

τ̄ is the average of left and right motor torque results (in Nm), while eu and eθ are

collar translation error (in mm) and rotation error (in rad), respectively.

The RMS results are processed in two ways. Table 5�5 shows the percentage

error in RMS simulation results compared to experimental data. Table 5�6 compares

the performance of the three controllers by showing the percentage di�erence between

the PD controller results and those of the CT and TS controllers.
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Table 5�4: RMS results, 2 Hz tests
Motion RMS PD Exp. CT Exp. TS Exp. PD Sim. CT Sim. TS Sim.

τ̄ 1.4354 1.3434 1.3148 1.4760 1.4693 1.4760
trans. eu 0.3057 0.3548 0.2751 0.3200 0.1811 0.3200

eθ 0.0037 0.0009 0.0009 0.0000 0.0000 0.0000
τ̄ 1.0997 1.0391 1.0476 1.2480 1.1471 1.1810

rot. eu 0.0037 0.0059 0.0043 0.0000 0.0000 0.0000
eθ 0.0249 0.0054 0.0092 0.0283 0.0012 0.0111
τ̄ 0.8024 0.7861 0.8030 0.8400 0.8139 0.8256

helical eu 0.1574 0.1730 0.1535 0.1616 0.0936 0.1631
eθ 0.0119 0.0023 0.0044 0.0141 0.0003 0.0053

Table 5�5: Percentage error in RMS simulation predictions, 2 Hz tests
Motion Type RMS % Error PD Sim. CT Sim. TS Sim.

τ̄ 2.83 9.37 12.27
translational eu 4.68 −48.96 16.32

eθ � � �
τ̄ 13.49 10.39 12.74

rotational eu � � �
eθ 13.61 −78.48 20.89
τ̄ 4.69 3.54 2.82

helical eu 2.64 −45.93 6.27
eθ 18.89 −86.16 19.65

The average error in collar displacements at cycle endpoints is shown in Table 5�

7. The maximum absolute error and torque values are reported in Table 5�8, where

τmax denotes the larger absolute torque output of the two motors.

1 Hz Tests. The same motion programs were tested with a 1 Hz cycle. For

conciseness, only experimental RMS data are reported, along with the percentage

di�erence of CT and TS, as compared to PD control, in Table 5�9.
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Table 5�6: Percentage di�erence of CT, TS vs. PD controller, 2 Hz tests
Motion Type RMS % Di�erence CT Exp. TS Exp. CT Sim. TS Sim.

τ̄ −6.41 −8.40 −0.46 0.00
translational eu 16.07 −10.00 −43.41 0.00

eθ −74.92 −75.87 0.00 0.00
τ̄ −5.51 −4.74 −8.08 −5.37

rotational eu 60.94 18.62 0.00 0.00
eθ −78.24 −62.97 −95.88 −60.60
τ̄ −2.03 0.07 −3.11 −1.72

helical eu 9.92 −2.49 −42.09 0.96
eθ −80.88 −62.77 −97.77 −62.53

Table 5�7: Average error at cycle endpoints, 2 Hz tests
Motion ei PD Exp. CT Exp. TS Exp. PD Sim. CT Sim. TS Sim.
trans. eu 0.0055 0.0309 0.0094 0.0053 0.0020 0.0053
motion eθ −0.0006 0.0003 0.0001 0.0000 0.0000 0.0000
rot. eu 0.0065 0.0102 0.0065 0.0077 0.0077 0.0077

motion eθ −0.0009 0.0000 −0.0006 −0.0018 0.0002 −0.0001
helical eu 0.0114 0.0151 0.0130 0.0069 0.0053 0.0069
motion eθ −0.0007 −0.0001 −0.0007 −0.0013 −0.0001 −0.0003

Table 5�8: Average maximum value over cycle, 2 Hz tests
Motion Max. PD Exp. CT Exp. TS Exp. PD Sim. CT Sim. TS Sim.

τmax 3.4247 3.2753 2.9411 2.8647 2.8506 2.8647
trans. eu 0.6625 0.6168 0.5425 0.5650 0.4487 0.5650

eθ 0.0123 0.0034 0.0032 0.0017 0.0017 0.0017
τmax 2.6163 2.3847 2.3260 2.3623 2.3233 2.3594

rot. eu 0.3773 0.2053 0.2029 0.1972 0.1972 0.1972
eθ 0.0156 0.0077 0.0110 0.0233 0.0049 0.0118
τmax 2.2811 2.3241 2.4782 2.3586 2.3834 2.3980

helical eu 0.3033 0.3077 0.3840 0.3718 0.3138 0.3717
eθ 0.0121 0.0076 0.0069 0.0130 0.0038 0.0072
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Table 5�9: Experimental RMS results and percentage di�erence of CT, TS vs. PD
controllers, 1 Hz tests

Motion RMS PD Exp. CT Exp. TS Exp. %∆ CT Exp. TS Exp.
τ̄ 0.5084 0.4978 0.5052 τ̄ −2.09 −0.63

trans. eu 0.1127 0.0479 0.1040 eu −57.50 −7.76
eθ 0.0007 0.0006 0.0005 eθ −14.19 −33.10
τ̄ 0.2737 0.2750 0.2838 τ̄ 0.48 3.71

rot. eu 0.0031 0.0068 0.0034 eu 117.24 7.19
eθ 0.0067 0.0013 0.0024 eθ −81.01 −63.60
τ̄ 0.3520 0.3757 0.3822 τ̄ 6.73 8.56

helical eu 0.0761 0.0605 0.0740 eu −20.51 −2.72
eθ 0.0030 0.0006 0.0011 eθ −80.44 −61.74

Discussion of Results

Performance Assessment. The performance of the C-drive is most read-

ily assessed by considering the experimental data from the combined rotation and

translation (helical) 2 Hz test program. The translation and rotation error curves

appear in Figs. 5�1f and 5�1e. The torque curves are not shown, as they are visually

indistinguishable.

The performance of all three controllers is satisfactory. Table 5�8 indicates

that the maximum experimental translation and rotation errors are 0.384 mm and

0.0121 rad, respectively. The error at cycle endpoints is very low, the largest being

0.0151 mm and 0.0007 rad, according to Table 5�7.

TS and PD controllers are nearly equivalent in terms of translation error, while

the CT controller has 10% higher RMS error according to Table 5�6. Large di�er-

ences appear in rotation error, where TS and CT controllers achieve 63% and 81%

improvements over the PD controller, respectively. Table 5�9 displays the corre-

sponding results in the 1 Hz tests, where the improvements are nearly the same,
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Figure 5�1: 2 Hz cycles: (a) 4-5-6-7 polynomial and normalized derivatives; (b) ro-
tation motion program; (c) translation motion program; (d) helical motion program;
and experimental helical motion tests: (e) rotation error, (f) translation error
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Figure 5�2: 2 Hz test results: PD controller rotation test: (a) motor torque, (b) ro-
tation error; CTC translation test: (c) motor torque, (d) translation error; and TS
controller helical test: (e) rotation error, (f) translation error
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namely 62% and 80%. However, the degradation in translation error performance

disappears at 1 Hz for the CT controller, this metric being improved by 20.5%. It

can be surmised that the poor translation results at 2 Hz result from unmodelled

dynamics that play a larger role in the presence of higher loads and speeds, or from

limits in the controller bandwidth.

Experiment vs. Simulation. Upon visual inspection of Fig. 5�2, it is appar-

ent that the simulated and experimental motor torques are closely matched. This

is con�rmed by the RMS percentage error analysis in Table 5�5: the simulations

overestimate motor torques by 2.8�13.5%. Possible sources of this discrepancy are

poor motor torque calibration and the underestimation of friction in the theoretical

model.

The accuracy of the error simulations is fairly good for the PD and TS con-

trollers, but poor for the CT controller. For PD and TS controllers, translation error

predictions are best for the translation tests, and rotation error predictions for the

rotation tests. The blank entries in Table 5�5 are due to zero error being predicted

in simulations. For the CT controller, all error predictions are poor, but of the cor-

rect order of magnitude. As this is the only model-based controller, the di�erences

between the simple linear model and the true dynamics of the C-drive are likely more

pronounced in this case.

From a design perspective, one of the most important results is the predicted

maximum torque, as it is used in motor dimensioning. Table 5�8 shows that the

simulated results are close to experiment. The simple theoretical model is therefore

good enough to dimension motor torques for future C-drive prototypes.

68



The predicted error at endpoints from Table 5�7 are generally of the correct order

of magnitude. One likely cause of the discrepancies is the unmodelled elasticity of

the ballscrews and collar.

The performance of CT and TS controllers compared to the PD controller is

considered in Table 5�6. Simulations do not consistently predict the advantages and

disadvantages of each type of controller in the translation motion program, while

being fairly predictive for the other two motions.

5.2 PMC Tests

PMC operating instructions are reported in Appendix B. In the preliminary

PMC tests, it was found that the motors could not produce enough torque to generate

satisfactory motions. This was not predicted, as the dynamics of the PMC is not yet

modelled, and the motors were reused from the old McGill SMG. In order to reduce

the motor loading, a simple static balancing method was devised: the top of the PM

is connect to a counterweight by a rope and pulley system above the robot. The

counterweight has approximately the same mass as the PM, and enables the PMC

to perform the desired motions. Low stretch braided �shing line is used as rope.

5.2.1 Calibration

Robot calibration is required for the controller to obtain good estimates of joint

displacements and gripper pose. In this proof-of-concept testing, accurate calibration

is not required. The PMC is manually placed at its isotropic posture, shown in Fig. 3�

4, by inspection. The controller saves the corresponding C-drive encoder readouts

and associates them with this reference posture, from which the PMC calculates all

other postures using the inverse displacement analysis.
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5.2.2 Observations

Motion Fidelity

The PMC successfully performs translations in all three directions throughout

the workspace. Errors in positioning are too small to be visible. The performance

of the PMC in rotation is much poorer. The PM rotates when subject to opposing

axial forces produced by the two limbs. The transmission angles between the distal

links and the PM are posture-dependent, and so are the motor torques required to

rotate the PM. The central vertical region of the PMC workspace requires the largest

torques, and consequently, the smallest C-drive angular displacements, to rotate the

PM. In that region, the gesture is sensitive to controller, calibration and assembly

error, as well as to de�ections resulting from link �exibility and especially joint

compliance. In summary, the PMC does not always produce de desired amplitude

of rotation.

Substantial improvements in rotational performance were achieved by decreasing

the compliance of the revolute joints of the proximal and distal links, thereby reducing

unwanted pitching and rolling of the PM. Increasing the lubrication of the pulleys

in the static balancing system also improved performance. The PMC was found to

perform best in the upper part of its vertical workspace.

Controller Tuning

The rotational performance of the PMC is sensitive to error in C-drive rotational

displacements. Higher controller gains are thus required for C-drive rotation than for

translation. The TS controller is therefore used to control the PMC. The controller
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gains are listed in Table 5�10. The C-drives have di�erent proportional gains in order

to prevent motor saturation, as the counterweight causes unequal loading.

Table 5�10: PMC controller settings
C-drive # ktransP krotP ktransD krotD N

I 35 105 0.1 0.09 600
II 35 52.5 0.1 0.09 600

Units Nm/rad Nm/rad Nms/rad Nms/rad rad/s

5.2.3 Industry Standard Test Trajectory

The unsmoothed test trajectory described in Section 2.1.2 is produced by the

PMC, as an optimal path is not required for this proof of concept. The path between

segment points is interpolated by 4-5-6-7 polynomials, described in Section 5.1.4. The

duration of segments AB and CD was 350 ms each, while segment BC lasted 1000 ms.

The cycle frequency is therefore 0.3 Hz. Faster cycle times were possible, but led to

signi�cant vibrations of the PM . A video of the PMC performing this test motion

is posted at the following links:

http://www.cim.mcgill.ca/∼rmsl/Index/research.htm

https://youtu.be/m9ieYH4QkYE

Results

The PMC prototype successfully produces the test motion, thereby proving

that the robot concept is viable. The motion appears visually correct. Upon close

inspection, a slight pitch and roll of the PM can be seen. In addition, the rotational

amplitude of the PM is not exactly π rad, and is faster in one direction than the

other. The three translational motions appear satisfactory.
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CHAPTER 6
Conclusions and Recommendations

PMC forward and inverse displacement analyses were formulated for all assembly

modes of the robot, and validated experimentally for the elbow-up forearm-down

kinematics branch in which the prototype operates. The visualisation and veri�cation

of these results were aided by the introduction of planar PMC diagrams. Employing

the foregoing analyses, the reachable workspace of the PMC was derived, allowing

for the safe operation of the robot.

Premiere C-drive and PMC prototypes were designed, built, tested, and shown

to operate as intended. The PMC prototype successfully produced the standard

industry test trajectory at 0.3 Hz, though with inconsistent performance in rotat-

ing the gripper. The C-drives demonstrated good performance in benchmark tests

with three di�erent control schemes. The simple linear dynamic model of the C-

drive, which was employed for simulation, state estimation and model-based control,

yielded satisfactory results. The model-based controller produced the best results

overall, including up to 81% reduction in rotation error as compared to a simple PD

controller.

Although the C-drive dynamics model was shown to be su�ciently accurate for

motor dimensioning, it is recommended that a nonlinear C-drive model now be devel-

oped, for improved performance in simulation and control. Speci�cally, Coulomb fric-

tion and the internal dynamics of the motors�which had been assumed to perform
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ideally�should be included. Furthermore, a task-space approach is recommended

for the control of the PMC, by virtue of the simplicity of the robot kinematics.

The model-based resolved-acceleration controller [48] is suggested, once the PMC

dynamics is derived.

Improvements to the mechanical design of the PMC would enhance performance,

particularly in rotating the gripper. A shorter PepperMill�and smaller vertical

distance between the C-drives�would increase the rigidity of the PMC, and hence

its rotational performance. Moreover, the proximal and distal link lengths need not

be identical, and stand to be optimized for maximum PM rotation torque. To this

end, the analogy between a single limb and a slider-crank mechanism is proposed:

the threaded Hooke joint, which translates in the direction of the axis of the PM,

corresponds to the slider. Well-known methods of solution can then be employed.

Finally, the prototype revolute joints should be redesigned for higher sti�ness.

The PMC is statically balanced by means of a counterweight system, which re-

duces torque requirements at low speeds at the cost of adding to the driven mass.

Loading on the drives could be reduced substantially at high speeds by redesign-

ing the links to achieve dynamic balancing. Further research on this problem is

recommended with the aim of increasing the speed of the PMC.
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Appendix A

Servo Ampli�er Settings (Torque Control Mode is used)

74



Appendix B

PepperMill-Carrier Operation Protocol

Training is mandatory before operating PMC robot  

STARTING THE ROBOT

Step 1: Visually inspect robot to ensure that all safety panels are secured and 
that the enclosure is free of  obstructions.

Step 2: Turn on Brighella computer. The Target computer should always be kept 
on to maintain robot calibration.

Step 3: Open RT-Lab Metacontroller from Start Menu. Load PMCcontroller.mdl

Step 4: Ensure that Motor Torque Saturation is set to 0, then click Execute.

Step 5: Turn power switch of  control box to ON (1) and press Reset button. Plug 
in both Red and Green sensor power supplies.

OPERATING THE ROBOT

Info: The standard industry test-cycle at 0.5 Hz is preloaded into the program. 
Its x, y, z and phi motion amplitudes are multiplied by scalar gains. The 
speed of  the overall cycle can be slowed down.

Step 1: Select the motion gains. [1 1 1 2] produces the standard cycle.

Step 2: Select the time constant as an integer between 1 and 10. The value 1 
corresponds to 0.5 Hz operation, while 10 is 0.05 Hz.

Step 3: Select the overall Motion Amplitude between 0 and 1. This parameter 
multiplies the motion gains. The value 1 is standard.

Step 4: The motors only run while hand-held safety switch is depressed. Keep it 
depressed through the next steps. Releasing it cuts power to the motors.

Step 5: Set Motor Torque Saturation to 1, then 10 when home position reached.

Step 6: Engage Start Robot software switch. The robot performs one test-cycle.

Step 7: Engage Repeat software switch for the robot to repeat cycle indefinitely.

SHUTTING DOWN THE ROBOT

Step 1: Disengage Repeat, wait for cycle to end, disengage Start Robot, release 
hand-held switch, set Motor Torque Saturation to 0.

Step 2: Click Reset in the Metacontroller to close program.

Step 3: Switch off  power button on control box, unplug both power supplies.

Robot Specifications: Maximum Instantaneous Values at End Effector

Horizontal Vertical
Force 640 N 32 N
Velocity 660 mm/s 110 mm/s

Robot cannot carry payload Thomas Friedlaender, April 2015
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